
Steven D. Galbraith
Shiho Moriai (Eds.)

LN
CS

 1
19

23

25th International Conference on the Theory
and Application of Cryptology and Information Security
Kobe, Japan, December 8–12, 2019
Proceedings, Part III

Advances in Cryptology –
ASIACRYPT 2019

Lecture Notes in Computer Science 11923

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Steven D. Galbraith • Shiho Moriai (Eds.)

Advances in Cryptology –

ASIACRYPT 2019
25th International Conference on the Theory
and Application of Cryptology and Information Security
Kobe, Japan, December 8–12, 2019
Proceedings, Part III

123

Editors
Steven D. Galbraith
University of Auckland
Auckland, New Zealand

Shiho Moriai
Security Fundamentals Lab
NICT
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34617-1 ISBN 978-3-030-34618-8 (eBook)
https://doi.org/10.1007/978-3-030-34618-8

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7114-8377
https://orcid.org/0000-0002-6072-6183
https://doi.org/10.1007/978-3-030-34618-8

Preface

ASIACRYPT 2019, the 25th Annual International Conference on Theory and
Application of Cryptology and Information Security, was held in Kobe, Japan, during
December 8–12, 2019.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 307 submissions from all over the world. This was a sig-
nificantly higher number of submissions than recent Asiacrypt conferences, which
necessitated a larger Program Committee (PC) than we had originally planned. We
thank the seven additional PC members who accepted our invitation at extremely short
notice. They are Gorjan Alagic, Giorgia Azzurra Marson, Zhenzhen Bao, Olivier
Blazy, Romain Gay, Takanori Isobe, and Daniel Masny.

The PC selected 71 papers for publication in the proceedings of the conference. The
two program chairs were supported by a PC consisting of 55 leading experts in aspects
of cryptology. Each submission was reviewed by at least three Program Committee
members (or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. There were approximately 380 external reviewers, whose input was
critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 193 submissions to proceed to the second
round. The authors of those 193 papers were then invited to provide a short rebuttal in
response to the referee reports. The second round involved extensive discussions by the
PC members. Indeed, the total number of text items in the online discussion (including
reviews, rebuttals, questions to authors, and PC member comments) exceeded 3,000.

The three volumes of the conference proceedings contain the revised versions of the
71 papers that were selected, together with 1 invited paper. The final revised versions
of papers were not reviewed again and the authors are responsible for their contents.

The program of Asiacrypt 2019 featured excellent invited talks by Krzysztof
Pietrzak and Elaine Shi. The conference also featured a rump session which contained
short presentations on the latest research results of the field.

The PC selected the work “Wave: A New Family of Trapdoor One-Way Preimage
Sampleable Functions Based on Codes” by Thomas Debris-Alazard, Nicolas Sendrier,
and Jean-Pierre Tillich for the Best Paper Award of Asiacrypt 2019. Two more papers
were solicited to submit a full version to the Journal of Cryptology. They are “An LLL
Algorithm for Module Lattices” by Changmin Lee, Alice Pellet-Mary, Damien Stehlé,
and Alexandre Wallet, and “Numerical Method for Comparison on Homomorphically
Encrypted Numbers” by Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee
Lee, and Keewoo Lee.

The Program Chairs are delighted to recognize the outstanding work by Mark
Zhandry and Shweta Agrawal, by awarding them jointly the Best PC Member Award.

Many people have contributed to the success of Asiacrypt 2019. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions.

We are greatly indebted to Mitsuru Matsui, the general chair, for his efforts and
overall organization.

We thank Mehdi Tibouchi for expertly organizing and chairing the rump session.
We are extremely grateful to Lukas Zobernig for checking all the latex files and for

assembling the files for submission to Springer.
Finally we thank Shai Halevi and the IACR for setting up and maintaining the Web

Submission and Review software, used by IACR conferences for the paper submission
and review process. We also thank Alfred Hofmann, Anna Kramer, Ingrid Haas,
Anja Sebold, Xavier Mathew, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2019 Steven Galbraith
Shiho Moriai

vi Preface

ASIACRYPT 2019

The 25th Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

Kobe, Japan, December 8–12, 2019

General Chair

Mitsuru Matsui Mitsubishi Electric Corporation, Japan

Program Co-chairs

Steven Galbraith University of Auckland, New Zealand
Shiho Moriai NICT, Japan

Program Committee

Shweta Agrawal IIT Madras, India
Gorjan Alagic University of Maryland, USA
Shi Bai Florida Atlantic University, USA
Zhenzhen Bao Nanyang Technological University, Singapore
Paulo S. L. M. Barreto UW Tacoma, USA
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd CryptoExperts, France
Olivier Blazy University of Limoges, France
Colin Boyd NTNU, Norway
Xavier Boyen Queensland University of Technology, Australia
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Yilei Chen Visa Research, USA
Chen-Mou Cheng Osaka University, Japan
Nils Fleischhacker Ruhr-University Bochum, Germany
Jun Furukawa NEC Israel Research Center, Israel
David Galindo University of Birmingham and Fetch AI, UK
Romain Gay UC Berkeley, USA
Jian Guo Nanyang Technological University, Singapore
Seokhie Hong Korea University, South Korea
Andreas Hülsing Eindhoven University of Technology, The Netherlands
Takanori Isobe University of Hyogo, Japan
David Jao University of Waterloo and evolutionQ, Inc., Canada

Jérémy Jean ANSSI, France
Elena Kirshanova ENS Lyon, France
Virginie Lallemand CNRS, France
Jooyoung Lee KAIST, South Korea
Helger Lipmaa Simula UiB, Norway
Feng-Hao Liu Florida Atlantic University, USA
Atul Luykx Swirlds Inc., USA
Hemanta K. Maji Purdue, USA
Giorgia Azzurra Marson NEC Laboratories Europe, Germany
Daniel Masny Visa Research, USA
Takahiro Matsuda AIST, Japan
Brice Minaud Inria and ENS, France
David Naccache ENS, France
Kartik Nayak Duke University and VMware Research, USA
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Carles Padró UPC, Spain
Jiaxin Pan NTNU, Norway, and KIT, Germany
Arpita Patra Indian Institute of Science, India
Thomas Peters UCL, Belgium
Duong Hieu Phan University of Limoges, France
Raphael C.-W. Phan Monash University, Malaysia
Carla Ràfols Universitat Pompeu Fabra, Spain
Ling Ren VMware Research and University of Illinois,

Urbana-Champaign, USA
Yu Sasaki NTT laboratories, Japan
Junji Shikata Yokohama National University, Japan
Ron Steinfeld Monash University, Australia
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT Laboratories, Japan
Hoeteck Wee CNRS and ENS, France
Mark Zhandry Princeton University, USA
Fangguo Zhang Sun Yat-sen University, China

Local Organizing Committee

General Chair

Mitsuru Matsui Mitsubishi Electric Corporation, Japan

Honorary Advisor

Tsutomu Matsumoto Yokohama National University, Japan

viii ASIACRYPT 2019

External Reviewers

Masayuki Abe
Parhat Abla
Victor Arribas Abril
Divesh Aggarwal
Martin Albrecht
Bar Alon
Prabhanjan Ananth
Elena Andreeva
Yoshinori Aono
Daniel Apon
Toshinori Araki
Seiko Arita
Tomer Ashur
Nuttapong Attrapadung
Man Ho Allen Au
Benedikt Auerbach
Saikrishna

Badrinarayanan
Vivek Bagaria
Josep Balasch
Gustavo Banegas
Laasya Bangalore
Subhadeep Banik
Achiya Bar-On
Manuel Barbosa
James Bartusek
Carsten Baum
Arthur Beckers
Rouzbeh Behnia
Francesco Berti
Alexandre Berzati
Ward Beullens
Shivam Bhasin
Nina Bindel
Nicolas Bordes
Jannis Bossert
Katharina Boudgoust
Christina Boura
Florian Bourse
Zvika Brakerski
Anne Broadbent
Olivier Bronchain
Leon Groot Bruinderink

Megha Byali
Eleonora Cagli
Ignacio Cascudo
Pyrros Chaidos
Avik Chakraborti
Donghoon Chang
Hao Chen
Jie Chen
Long Chen
Ming-Shing Chen
Qian Chen
Jung Hee Cheon
Céline Chevalier
Ilaria Chillotti
Wonhee Cho
Wonseok Choi
Wutichai Chongchitmate
Jérémy Chotard
Arka Rai Choudhuri
Sherman Chow
Michele Ciampi
Michael Clear
Thomas De Cnudde
Benoît Cogliati
Sandro Coretti-Drayton
Edouard Cuvelier
Jan Czajkowski
Dana Dachman-Soled
Joan Daemen
Nilanjan Datta
Gareth T. Davies
Patrick Derbez
Apporva Deshpande
Siemen Dhooghe
Christoph Dobraunig
Rafael Dowsley
Yfke Dulek
Avijit Dutta
Sébastien Duval
Keita Emura
Thomas Espitau
Xiong Fan
Antonio Faonio

Oriol Farràs
Sebastian Faust
Prastudy Fauzi
Hanwen Feng
Samuele Ferracin
Dario Fiore
Georg Fuchsbauer
Thomas Fuhr
Eiichiro Fujisaki
Philippe Gaborit
Tatiana Galibus
Chaya Ganesh
Daniel Gardham
Luke Garratt
Pierrick Gaudry
Nicholas Genise
Esha Ghosh
Satrajit Ghosh
Kristian Gjøsteen
Aarushi Goel
Huijing Gong
Junqing Gong
Alonso González
Dahmun Goudarzi
Rishabh Goyal
Jiaxin Guan
Aurore Guillevic
Chun Guo
Kaiwen Guo
Qian Guo
Mohammad Hajiabadi
Carmit Hazay
Jingnan He
Brett Hemenway
Nadia Heninger
Javier Herranz
Shoichi Hirose
Harunaga Hiwatari
Viet Tung Hoang
Justin Holmgren
Akinori Hosoyamada
Kexin Hu
Senyang Huang

ASIACRYPT 2019 ix

Yan Huang
Phi Hun
Aaron Hutchinson
Chloé Hébant
Kathrin Hövelmanns
Ilia Iliashenko
Mitsugu Iwamoto
Tetsu Iwata
Zahra Jafargholi
Christian Janson
Ashwin Jha
Dingding Jia
Sunghyun Jin
Charanjit S. Jutla
Mustafa Kairallah
Saqib A. Kakvi
Marc Kaplan
Emrah Karagoz
Ghassan Karame
Shuichi Katsumata
Craig Kenney
Mojtaba Khalili
Dakshita Khurana
Duhyeong Kim
Hyoseung Kim
Sam Kim
Seongkwang Kim
Taechan Kim
Agnes Kiss
Fuyuki Kitagawa
Michael Kloob
François Koeune
Lisa Kohl
Stefan Kölbl
Yashvanth Kondi
Toomas Krips
Veronika Kuchta
Nishant Kumar
Noboru Kunihiro
Po-Chun Kuo
Kaoru Kurosawa
Ben Kuykendall
Albert Kwon
Qiqi Lai
Baptiste Lambin
Roman Langrehr

Jason LeGrow
ByeongHak Lee
Changmin Lee
Keewoo Lee
Kwangsu Lee
Youngkyung Lee
Dominik Leichtle
Christopher Leonardi
Tancrède Lepoint
Gaëtan Leurent
Itamar Levi
Baiyu Li
Yanan Li
Zhe Li
Xiao Liang
Benoît Libert
Fuchun Lin
Rachel Lin
Wei-Kai Lin
Eik List
Fukang Liu
Guozhen Liu
Meicheng Liu
Qipeng Liu
Shengli Liu
Zhen Liu
Alex Lombardi
Julian Loss
Jiqiang Lu
Xianhui Lu
Yuan Lu
Lin Lyu
Fermi Ma
Gilles Macario-Rat
Urmila Mahadev
Monosij Maitra
Christian Majenz
Nikolaos Makriyannis
Giulio Malavolta
Sogol Mazaheri
Bart Mennink
Peihan Miao
Shaun Miller
Kazuhiko Minematsu
Takaaki Mizuki
Amir Moradi

Kirill Morozov
Fabrice Mouhartem
Pratyay Mukherjee
Pierrick Méaux
Yusuke Naito
Mridul Nandi
Peter Naty
María Naya-Plasencia
Anca Niculescu
Ventzi Nikov
Takashi Nishide
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Kazuma Ohara
Emmanuela Orsini
Elena Pagnin
Wenlun Pan
Omer Paneth
Bo Pang
Lorenz Panny
Jacques Patarin
Sikhar Patranabis
Alice Pellet-Mary
Chun-Yo Peng
Geovandro Pereira
Olivier Pereira
Léo Perrin
Naty Peter
Cécile Pierrot
Jeroen Pijnenburg
Federico Pintore
Bertram Poettering
David Pointcheval
Yuriy Polyakov
Eamonn Postlethwaite
Emmanuel Prouff
Pille Pullonen
Daniel Puzzuoli
Chen Qian
Tian Qiu
Willy Quach
Håvard Raddum
Ananth Raghunathan

x ASIACRYPT 2019

Somindu Ramanna
Kim Ramchen
Shahram Rasoolzadeh
Mayank Rathee
Divya Ravi
Joost Renes
Angela Robinson
Thomas Roche
Miruna Rosca
Mélissa Rossi
Mike Rosulek
Yann Rotella
Arnab Roy
Luis Ruiz-Lopez
Ajith Suresh
Markku-Juhani

O. Saarinen
Yusuke Sakai
Kazuo Sakiyama
Amin Sakzad
Louis Salvail
Simona Samardjiska
Pratik Sarkar
Christian Schaffner
John Schanck
Berry Schoenmakers
Peter Scholl
André Schrottenloher
Jacob Schuldt
Sven Schäge
Sruthi Sekar
Srinath Setty
Yannick Seurin
Barak Shani
Yaobin Shen
Sina Shiehian
Kazumasa Shinagawa
Janno Siim
Javier Silva
Mark Simkin

Boris Skoric
Maciej Skórski
Yongsoo Song
Pratik Soni
Claudio Soriente
Florian Speelman
Akshayaram Srinivasan
François-Xavier Standaert
Douglas Stebila
Damien Stehlé
Patrick Struck
Valentin Suder
Bing Sun
Shifeng Sun
Siwei Sun
Jaechul Sung
Daisuke Suzuki
Katsuyuki Takashima
Benjamin Hong Meng

Tan
Stefano Tessaro
Adrian Thillard
Yan Bo Ti
Jean-Pierre Tillich
Radu Ţiţiu
Yosuke Todo
Junichi Tomida
Viet Cuong Trinh
Rotem Tsabary
Hikaru Tsuchida
Yi Tu
Nirvan Tyagi
Bogdan Ursu
Damien Vergnaud
Jorge Luis Villar
Srinivas Vivek
Christine van Vredendaal
Satyanarayana Vusirikala
Sameer Wagh
Hendrik Waldner

Alexandre Wallet
Michael Walter
Han Wang
Haoyang Wang
Junwei Wang
Mingyuan Wang
Ping Wang
Yuyu Wang
Zhedong Wang
Yohei Watanabe
Gaven Watson
Weiqiang Wen
Yunhua Wen
Benjamin Wesolowski
Keita Xagawa
Zejun Xiang
Hanshen Xiao
Shota Yamada
Takashi Yamakawa
Kyosuke Yamashita
Avishay Yanai
Guomin Yang
Kan Yasuda
Masaya Yasuda
Aaram Yun
Alexandros Zacharakis
Michal Zajac
Bin Zhang
Cong Zhang
En Zhang
Huang Zhang
Xiao Zhang
Zheng Zhang
Chang-An Zhao
Raymond K. Zhao
Yongjun Zhao
Yuanyuan Zhou
Jiamin Zhu
Yihong Zhu
Lukas Zobernig

ASIACRYPT 2019 xi

Contents – Part III

Signatures

Approximate Trapdoors for Lattices and Smaller
Hash-and-Sign Signatures. 3

Yilei Chen, Nicholas Genise, and Pratyay Mukherjee

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 33
Daniel J. Bernstein and Andreas Hülsing

Structure-Preserving Signatures on Equivalence Classes
from Standard Assumptions . 63

Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian

Public Key Encryption (1)

Simple and Efficient KDM-CCA Secure Public Key Encryption 97
Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka

Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based
on the DDH Problem. 128

Yusuke Yoshida, Fuyuki Kitagawa, and Keisuke Tanaka

Structure-Preserving and Re-randomizable RCCA-Secure Public Key
Encryption and Its Applications . 159

Antonio Faonio, Dario Fiore, Javier Herranz, and Carla Ràfols

iUC: Flexible Universal Composability Made Simple 191
Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch

Side Channels

Leakage Resilience of the Duplex Construction. 225
Christoph Dobraunig and Bart Mennink

A Critical Analysis of ISO 17825 (‘Testing Methods for the Mitigation
of Non-invasive Attack Classes Against Cryptographic Modules’) 256

Carolyn Whitnall and Elisabeth Oswald

Location, Location, Location: Revisiting Modeling and Exploitation
for Location-Based Side Channel Leakages . 285

Christos Andrikos, Lejla Batina, Lukasz Chmielewski, Liran Lerman,
Vasilios Mavroudis, Kostas Papagiannopoulos, Guilherme Perin,
Giorgos Rassias, and Alberto Sonnino

Simple Refreshing in the Noisy Leakage Model . 315
Stefan Dziembowski, Sebastian Faust, and Karol Żebrowski

Symmetric Cryptography (2)

The Exchange Attack: How to Distinguish Six Rounds of AES with 288:2

Chosen Plaintexts . 347
Navid Ghaedi Bardeh and Sondre Rønjom

Algebraic Cryptanalysis of STARK-Friendly Designs:
Application to MARVELlous and MiMC. 371

Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich,
Reinhard Lüftenegger, Christian Rechberger, and Markus Schofnegger

MILP-aided Method of Searching Division Property Using Three
Subsets and Applications . 398

Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi

Cryptanalysis of GSM Encryption in 2G/3G Networks Without
Rainbow Tables . 428

Bin Zhang

Functional Encryption

Tightly Secure Inner Product Functional Encryption: Multi-input
and Function-Hiding Constructions . 459

Junichi Tomida

Public-Key Function-Private Hidden Vector Encryption (and More) 489
James Bartusek, Brent Carmer, Abhishek Jain, Zhengzhong Jin,
Tancrède Lepoint, Fermi Ma, Tal Malkin, Alex J. Malozemoff,
and Mariana Raykova

Multi-Client Functional Encryption for Linear Functions in the Standard
Model from LWE . 520

Benoît Libert and Radu Ţiţiu

From Single-Input to Multi-client Inner-Product Functional Encryption 552
Michel Abdalla, Fabrice Benhamouda, and Romain Gay

Public Key Encryption (2)

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 585
Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Kevin Liu,
and Giulio Malavolta

xiv Contents – Part III

The Local Forking Lemma and Its Application
to Deterministic Encryption . 607

Mihir Bellare, Wei Dai, and Lucy Li

Fine-Grained Cryptography Revisited . 637
Shohei Egashira, Yuyu Wang, and Keisuke Tanaka

Zero Knowledge

Shorter QA-NIZK and SPS with Tighter Security . 669
Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, Jiaxin Pan,
Arnab Roy, and Yuyu Wang

Efficient Noninteractive Certification of RSA Moduli and Beyond 700
Sharon Goldberg, Leonid Reyzin, Omar Sagga, and Foteini Baldimtsi

Shorter Pairing-Based Arguments Under Standard Assumptions 728
Alonso González and Carla Ràfols

Author Index . 759

Contents – Part III xv

Signatures

Approximate Trapdoors for Lattices
and Smaller Hash-and-Sign Signatures

Yilei Chen1(B), Nicholas Genise2, and Pratyay Mukherjee1

1 Visa Research, Palo Alto, USA
{yilchen,pratmukh}@visa.com

2 University of California, San Diego, USA
ngenise@eng.ucsd.edu

Abstract. We study a relaxed notion of lattice trapdoor called approx-
imate trapdoor, which is defined to be able to invert Ajtai’s one-way
function approximately instead of exactly. The primary motivation of
our study is to improve the efficiency of the cryptosystems built from
lattice trapdoors, including the hash-and-sign signatures.

Our main contribution is to construct an approximate trapdoor by
modifying the gadget trapdoor proposed by Micciancio and Peikert
[Eurocrypt 2012]. In particular, we show how to use the approximate
gadget trapdoor to sample short preimages from a distribution that is
simulatable without knowing the trapdoor. The analysis of the distri-
bution uses a theorem (implicitly used in past works) regarding linear
transformations of discrete Gaussians on lattices.

Our approximate gadget trapdoor can be used together with the exist-
ing optimization techniques to improve the concrete performance of the
hash-and-sign signature in the random oracle model under (Ring-)LWE
and (Ring-)SIS assumptions. Our implementation shows that the sizes of
the public-key & signature can be reduced by half from those in schemes
built from exact trapdoors.

1 Introduction

In the past two decades, lattice-based cryptography has emerged as one of
the most active areas of research. It has enabled both advanced cryptographic
capabilities, such as fully homomorphic encryption [29]; and practical post-
quantum secure public-key encryptions and signatures, as observed in the ongo-
ing NIST post-quantum cryptography (PQC) standardization procedure [4]. A
large fraction of the lattice-based cryptosystems uses lattice trapdoors. Those
cryptosystems include basic primitives like public-key encryption and signature
schemes [31,33,38,39], as well as advanced primitives such as identity-based
encryption [1,19,31], attribute-based encryption [34], and graded encodings [30].

In this work, we focus on the trapdoor for the lattice-based one-way func-
tion defined by Ajtai [2], and its application in digital signatures [31]. Given a
wide, random matrix A, and a target vector y, the inhomogeneous short integer
solution (ISIS) problem asks to find a short vector x as a preimage of y, i.e.
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 3–32, 2019.
https://doi.org/10.1007/978-3-030-34618-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_1

4 Y. Chen et al.

A · x = y (mod q).

Without a trapdoor for the matrix A, finding a short preimage is proven to be
as hard as solving certain lattice problems in the worst case [2]. A trapdoor for
the matrix A, on the other hand, allows its owner to efficiently produce a short
preimage. An explicit construction of the trapdoor for Ajtai’s function was first
given in [3] and later simplified by [9,42].

Towards the proper use of lattice trapdoors in cryptography, what really gives
the trapdoor a punch is the work of Gentry, Peikert and Vaikuntanathan [31].
They show how to sample a short preimage from a distribution that is simu-
latable without knowing the trapdoor, instead of a distribution which may leak
information about the trapdoor (as observed by the attacks [32,46] on the initial
attempts of building lattice-based signatures [33,38]). Such a preimage sampling
algorithm allows [31] to securely build a hash-and-sign signature as follows. Let
the matrix A be the public verification key, the trapdoor of A be the secret sign-
ing key. To sign a message m, first hash it to a vector y, then use the trapdoor to
sample a short preimage x as the signature. The secret signing key is guaranteed
to be hidden from the signatures, since the signatures are simulatable without
using the trapdoor.

Despite its elegant design, the hash-and-sign signature based on Ajtai’s func-
tion suffers from practical inefficiency due to its large key size and signature
size. Indeed, all the three lattice-based signature candidates that enter the sec-
ond round of NIST PQC standardization [4] are built from two alternative
approaches—Falcon [27] is based on the hash-and-sign paradigm over NTRU
lattices; Dilithium [26] and qTESLA [8] are based on the rejection sampling
approach [11,40]. The suggested parameters for the three candidates lead to
competitive performance measures. For example, for 128-bit security, the sizes
of the public keys & signatures for all the three candidates are below 5 kB & 4
kB (respectively). By contrast, for the hash-and-sign signature based on Ajtai’s
function, the sizes of the public keys & signatures are more than 35 kB & 25 kB
according to the implementation benchmarks of [13,14,36].

1.1 Summary of Our Contributions

In this paper we develop new techniques to bring down the sizes of the public keys
& signatures of the hash-and-sign signature based on Ajtai’s one-way function.
We define a relaxed notion of lattice trapdoor called approximate trapdoor, which
can be used to solve the ISIS problem approximately instead of exactly. With a
relaxation of the correctness requirement, it is possible to generate smaller public
matrices, trapdoors, and preimages for Ajtai’s function, which translate to smaller
public-keys, secret-keys, and signatures for the hash-and-sign signature scheme.

Our main technical contribution is to show that the gadget trapdoor proposed
by Micciancio and Peikert [42] can be modified to an approximate trapdoor.
In particular, we show how to use the approximate gadget trapdoor to sample
preimages from a distribution that is simulatable without knowing the trapdoor.
The analysis of the distribution uses a theorem (implicitly used in past works)
regarding linear transformations of discrete Gaussians on lattices.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 5

Our approximate gadget trapdoor can be used together with all existing
optimization techniques, such as using the Hermite normal form and using a
bigger base in the gadget, to improve the concrete performance of the hash-
and-sign signature in the random oracle model under RingLWE and RingSIS
assumptions. Our proof-of-concept implementation shows that the sizes of the
public-key & signature can be reduced to 5 kB & 4.45 kB for an estimation of 88-
bit security, and 11.25 kB & 9.38 kB for an estimation of 184-bit security. Those
are much closer to the sizes of the signatures based on the rejection sampling
approach [8,11,26,40]. More details of the parameters are given in Sects. 1.3 and
5.2.

1.2 Technical Overview

Given a public matrix A ∈ Z
n×m
q where m = O(n log q), and a target y, we call

a vector x ∈ Z
m an approximate short preimage of y if

A · x = y + z (mod q)

for some z ∈ Z
n, and both x and z are short. An approximate trapdoor for A

is defined to be a string that allows its owner to efficiently find an approximate
short preimage given a target y.

Of course, to make sense of the word “trapdoor”, we first need to argue that
solving the approximate version of ISIS is hard without the trapdoor. Under
proper settings of parameters, we show the approximate ISIS problem is as hard
as the standard ISIS problem, or no easier than LWE. The reductions extensively
use the Hermite normal form (HNF) and are pretty straightforward.

The approximate ISIS problem and the approximate trapdoor are natural
generalizations of their exact variants. Indeed, both notions have been used in
the literature, at least on an informal level. For example, the approximate ISIS
problem was used in the work of Bai et al. [12] to improve the combinatorial
algorithms of the exact ISIS problem.

It is well-known that an exact trapdoor of a public matrix in the HNF, say
a trapdoor for A = [In | A′], can be used as an approximate trapdoor for A′.
Such a method was often used in the implementation of signatures to decrease
the sizes of the public key and the signature by a dimension of n. Our goal is thus
to further reduce the sizes compared to the HNF approach, while preserving the
quality of the trapdoor, i.e. at least not increasing the norm of the preimage.

Approximate gadget trapdoor. Our main contribution is to show that the gadget
trapdoor (G-trapdoor) proposed by Micciancio and Peikert [42] can be modified
to an approximate trapdoor, in a way that further reduces the sizes of the public
matrix, the trapdoor, and the preimage.

Recall the core of the G-trapdoor is a specific “gadget” matrix of base b,

G := In ⊗ gt := In ⊗ (1, b, ..., bk−1) ∈ Z
n×(nk),

where k := �logb q�. The base b is typically chosen to be 2 for simplicity, or a
larger value in practical implementations.

6 Y. Chen et al.

Micciancio and Peikert [42] show how to generate a random matrix A
together with a matrix D of small norm such that A · D = G (mod q). In
particular, A is designed to be

A = [Ā|G − ĀR],

where R is a matrix with small entries and is the actual trapdoor. The matrix

D is then equal to
[

R
Ink

]
. Since the kernel of the G matrix has a public short

basis, one can first solve the ISIS problem under the public matrix G, then use
D to solve the ISIS problem under the public matrix A.

We observe that if we drop a few (say l) entries corresponding to the small
powers of b from the gadget matrix G, i.e. let the following F matrix be a
modified gadget matrix

F := In ⊗ f t := In ⊗ (bl, ..., bk−1) ∈ Z
n×n(k−l),

then we are still able to solve the ISIS problem w.r.t. the public matrix F up to a
bl-approximation of the solution (i.e., the norm of the error vector is proportional
to bl). Replacing G by F in A gives

A = [Ā|F − ĀR]. (1)

Then the dimensions of the trapdoor R and the public matrix A can be reduced.

Sampling from a distribution that is simulatable without knowing the trapdoor.
Given a public matrix A together with its approximate G-trapdoor R, finding
an arbitrary approximate short preimage of a given target u is quite straightfor-
ward, but sampling the preimage from a distribution that is simulatable without
knowing the trapdoor turns out to be non-trivial. As mentioned earlier, the abil-
ity to sample from such a distribution is fundamental to most of the trapdoor
applications including digital signatures.

We provide an algorithm that samples an approximate short preimage from
a distribution that is simulatable without knowing the trapdoor. The algorithm
itself is a fairly simple generalization of the perturbation-based discrete Gaussian
sampler from [42], but the analyses of the preimage distribution from [42] are not
easy to generalize. Our analyses of the preimage distribution and the approxima-
tion error distribution extensively use a linear transformation theorem on lattice
distributions (cf. Lemma 4, or Theorem 1, implicitly used in [15,25,42,43]).

The details of the analyses are quite technical. Here let us mention the dif-
ference in the way of obtaining the main result of ours compared to the ones
from [31,42]. The approach taken by [31,42] is to first spell out the distributions
of the preimages for all the target images u ∈ Z

n
q , then show the distributions are

simulatable for uniformly random target images. For the approximate preimage
sampling, we are only able to simulate the distributions of the preimages and the
errors for uniformly random targets, without being able to spell out the mean-
ingful distributions for all the targets an intermediate step. Still, simulating the
preimages of uniform targets suffices for the application of digital signatures.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 7

To briefly explain the reason behind the difference, let us point out that the
methods we have tried to analyze the preimage distribution for all the target
images require significant increases in the smoothing parameters of the lattice
intersections required in the linear transformation theorem (Theorem 1). In other
words, the norm of the resulting preimage increases significantly rendering the
result meaningless.

1.3 Improvement in the Efficiency Compared to the Exact Trapdoor

We now explain the efficiency gain of using our approximate trapdoor compared
to the exact trapdoor and the other existing optimization techniques, with a
focus on the signature application. Our goal is to set the parameters to achieve
the following “win-win-win” scenario:

1. Save on the size of the preimage (i.e., the signature).
2. Save on the size for the public matrix A.
3. Retain, or even gain, concrete security, which is related to the discrete Gaus-

sian width of the preimage and the norm of the error term.

Parameters Exact G-trapdoor Approximate G-trapdoor
m n(2 + k) n(2 + (k − l))
σ

√
b2 + 1 · ω(

√
logn)

√
b2 + 1 · ω(

√
logn)

s C · τ · (√m + 2
√

n) · σ C · τ · (√m + 2
√

n) · σ

ν 0 bl · σ

Fig. 1. A brief comparison of the parameters. The parameters in the table are derived
under a fixed lattice dimension n, a fixed modulus q ≥ √

n, and a fixed base b. Let
k = �logb q�. Let l denote the number of entries removed from g (1 ≤ l < k). Then
we list m as the dimension of the public matrix and the preimage; σ as the width
of the gadget preimage distribution; s as the width of the final preimage distribution
(where C > 0 is a universal constant); τ as the width, or subgaussian parameter, of
the distribution of the entries in the trapdoor matrix R; ν as the length bound of the
error for each entry in the image.

Let us start with an understanding of the dependency of the savings on
the variable l, i.e, the number of entries dropped from the gadget g. In Fig. 1
we provide a comparison of the parameters between the exact G-trapdoor of
[42] and the approximate G-trapdoor samplers in this paper. In both cases the
public matrices are instantiated in the pseudorandom mode. For the approximate
trapdoor, the dimension of the trapdoor decreases from nk to n(k − l). The
dimension m of the public matrix and the preimage decreases. The width s of
the preimage distribution also decreases slightly following the decreasing of m.
However, the norm of the error factor in the image grows with l. So in the
concrete instantiation of the hash-and-sign signature discussed later, we need to

8 Y. Chen et al.

coordinate the value of l with the norms of the preimage and the error, which
will determine the cost of the attacks together.

Our algorithm inherits the O(log q)-space, O(n log q)-time G-preimage sam-
ple subroutine from [28,42]. So the saving of space and time in the sampling of
the perturbation is proportional to the saving in the dimension m.

Concrete parameters for the signatures. We give a proof-of-concept implemen-
tation of the hash-and-sign signature based on our approximate trapdoor. The
security is analyzed in the random oracle model, assuming the hardness of
RingLWE for the pseudorandomness of the public key and RingSIS for the
unforgeability of the signature. Here we provide a short summary and leave
more details in Sect. 5.2.

Let us first remark that different implementation results of the hash-and-sign
signatures [13,14,36] possibly use different ways of measuring sizes and security,
and not all the details behind the parameters are recoverable from these papers.
So we also implementation the exact trapdoor as a reference. For an estimation
of 88-bit security, our reference implementation for the exact trapdoor under the
modulus q ≈ 224 and base b = 2 matches the parameters reported in [13].

We also use smaller moduli and bigger bases to reduce the size and increase
the security level. The parameters in Fig. 2 suggest that for the 3 choices of q
and b, using the approximate gadget trapdoor by setting l = �(logb q)/2� saves
about half of the sizes in the public key and signatures comparing to using the
exact trapdoor, with even a slight increase in the expected cost for the attacking
algorithms. Let us mention that some schemes in the literature (like [23]) use
an extremely large base of size b ≈ √

q (the resulting gadget is g = [1,
√

q]).
However, for the small moduli like 216 or 218, such large bases lead to Gaussian
widths larger than the moduli. So we only use moderately large bases.

Params Exact Approx Approx Exact Approx Approx Exact Approx Approx
n 512 512 512 512 512 512 512 512 512
�log2 q� 24 24 24 16 16 16 16 16 16
b 2 2 2 2 2 2 4 4 4
l 0 12 15 0 7 9 0 2 4
τ 40 40 40 2.6 2.6 2.6 2.6 2.6 2.6
s 38317.0 29615.3 26726.3 2170.7 1756.3 1618.2 3114.2 2833.3 2505.6
m 13312 7168 5632 9216 5632 4608 5120 4096 3072
‖x‖2 4441737.7 2521387.0 2035008.5 211100.9 133305.5 109339.1 223740.1 183004.9 138145.7
‖z‖2 0 374014.0 2118987.6 0 11897.9 46428.4 0 1402.3 19807.1
PK 37.50 19.50 15.00 17.00 10.00 8.00 9.00 7.00 5.00
Sig 25.68 13.53 10.51 13.16 7.83 6.30 7.62 5.94 4.45
LWE 100.0 100.0 100.0 104.7 104.7 104.7 104.7 104.7 104.7
AISIS 80.2 85.8 81.1 83.7 89.0 88.1 82.8 85.5 87.8

Fig. 2. Summary of the concrete parameters. The size of PK and Sig are measured in
kB. ‖x‖2, ‖z‖2 are the upper-bounds of the norms of the preimage and the error term.
LWE and AISIS refer to the estimations of security levels for the pseudorandomness
of the PK and finding a short approximate preimage.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 9

Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25 kB
& 9.38 kB for an estimation of 184-bit security. Those are much closer to the
sizes of the signatures based on the rejection sampling approach [8,11,26,40]. As
a reference, the sizes of the public-key & signature for qTESLA [8] are 4.03 kB
& 3.05 kB for an estimation of 128-bit security, and 8.03 kB & 6.03 kB for an
estimation of 192-bit security. The sizes for Dilithium [26] are even smaller. Let us
remark that our implementation has not adapted possible further optimizations
used in Dilithium [26] and qTESLA [8]. So it is reasonable to expect we have more
room to improve after adding making further optimizations. The parameters for
Falcon [27] are the smallest due to the use of NTRU lattices, so they are rather
incomparable with the ones based on RingLWE. As a side note, we do not know
how to construct approximate trapdoors for NTRU lattices, and we leave it as
an interesting question to investigate in future.

Using approximate trapdoors in the advanced lattice cryptosystems. Finally, let
us briefly mention the possible applications of the approximate trapdoors in the
cryptosystems built from the dual-Regev approach [1,19,31,34] and the GGH15
approach [17,18,21,30,35,52].

To use approximate trapdoors in the schemes based on the dual-Regev app-
roach, we need to sample the LWE secret term with a small norm instead of
from the uniform distribution to maintain the correctness of the schemes. For
many of these schemes, the security analyses require the extensions of the Bonsai
techniques in the approximate setting. We leave the extensions to future works.

For the schemes based on the GGH15-approach, the correctness of the
schemes holds without any changes. The security also holds, except for the
schemes in [21] which requires the extension of the Bonsai techniques. Let
us remark that the saving in the dimension m is of significant importance to
the applications built on the GGH15 graded encoding scheme (implemented in
[20,37]). In those applications, the modulus q is proportional to md (where d ∈ N

is the number of “levels” of the graded encodings; larger d supports richer func-
tionalities). So reducing the dimension m would dramatically reduce the overall
parameter.

Organizations. The rest of the paper is organized as follows. Section 2 pro-
vides the necessary background of lattices. Section 3 provides the definition and
the hardness reductions of the approximate ISIS problem. Section 4 presents
the approximate gadget trapdoors. Section 5 provides an instantiation of the
hash-and-sign signature scheme under the approximate trapdoor, with concrete
parameters.

2 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking

10 Y. Chen et al.

security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn uniformly random from the set S we denote
as v ← U(S). We use ≈s and ≈c as the abbreviations for statistically close
and computationally indistinguishable. For two distributions D1,D2 over the
same support X , we denote D1

ε≈ D2 to denote that each x ∈ X has D1(x) ∈
[1 ± ε]D2(x) and D2(x) ∈ [1 ± ε]D1(x).

Let R,Z,N be the set of real numbers, integers and positive integers. Denote
Z/qZ by Zq. For n ∈ N, [n] := {1, ..., n}. A vector in R

n (represented in column
form by default) is written as a bold lower-case letter, e.g. v. For a vector v,
the ith component of v will be denoted by vi. For an integer base b > 1, we
call a positive integer’s “b-ary” decomposition the vector (q0, q1, . . . , qk−1) ∈
{0, . . . , b − 1}k where k := �logb q�, and q =

∑
qib

i.
A matrix is written as a bold capital letter, e.g. A. The ith column vector

of A is denoted ai. The length of a vector is the �p-norm ‖v‖p := (
∑

vp
i)1/p,

or the infinity norm given by its largest entry ‖v‖∞ := maxi{|vi|}. The length
of a matrix is the norm of its longest column: ‖A‖p := maxi ‖ai‖p. By default
we use �2-norm unless explicitly mentioned. When a vector or matrix is called
“small” or “short”, we refer to its norm but not its dimension, unless explicitly
mentioned. The thresholds of “small” or “short” will be precisely parameterized
in the article when necessary.

2.1 Linear Algebra

Let {ei}n
i=1 be the canonical basis for R

n, with entries δ(j, k) where δ(j, k) = 1
when j = k and 0 otherwise. For any set S ⊆ R

n, its span (denoted as span(S))
is the smallest subspace of Rn containing S. For a matrix, M ∈ R

n×m, its span is
the span of its column vectors, written as span(M). We write matrix transpose
as Mt. Let B̃ denote the Gram-Schmidt orthogonalization of B. The GSO of
an ordered basis B = [b1, . . . ,bk] is assumed to be from left to right, b̃1 = b1,
unless stated otherwise.

Recall M’s singular value decomposition (SVD), i.e. M = VDW ∈ R
n×m

where V ∈ R
n×n along with W ∈ R

m×m are unitary, and D ∈ R
n×m is a

triangular matrix containing M’s singular values. Further, let q = min{n,m}
and Dq = diag(s1, . . . , sq) be the diagonal matrix containing M’s singular values
si = si(M). Throughout the paper, we are concerned with random, subgaussian
[51] matrices M with {s1 ≥ . . . ≥ sq > 0}. Then, D = Dq when n = m,

D = [Dq 0] when m > n, and D =
[
Dq

0

]
in the case m < n.

A symmetric matrix Σ ∈ R
n×n is positive semi-definite if for all x ∈ R

n,
we have xtΣx ≥ 0. It is positive definite, Σ > 0, if it is positive semi-definite
and xtΣx = 0 implies x = 0. We say Σ1 > Σ2 (≥) if Σ1 − Σ2 is positive-
(semi)definite. This forms a partial ordering on the set of positive semi-definite
matrices, and we denote Σ ≥ αI often as Σ ≥ α for constants α ∈ R

+. For any
positive semi-definite matrix Σ, we write

√
Σ to be any full rank matrix T such

that Σ = TTt. We say T is a square root of Σ. For two positive semi-definite

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 11

matrices, Σ1 and Σ2, we denote the positive semi-definite matrix formed by their
block diagonal concatenation as Σ1 ⊕ Σ2. Let M∗ denote Hermitian transpose.
The (Moore-Penrose) pseudoinverse for matrix M with SVD M = VDW is
M+ = WD+V∗ where D+ is given by transposing D and inverting M’s nonzero
singular values. For example, T = sI and T+ = s−1I for a covariance Σ = s2I.
(An analogous T+ = T−1 is given for the non-spherical, full-rank case Σ > 0
using Σ’s diagonalization.)

2.2 Lattices Background

An n-dimensional lattice Λ of rank k ≤ n is a discrete additive subgroup of Rn.
Given k linearly independent basis vectors B = {b1, ...,bk ∈ R

n}, the lattice
generated by B is

Λ(B) = Λ(b1, ...,bk) = {
k∑

i=1

xi · bi, xi ∈ Z}.

Given n,m ∈ N and a modulus q ≥ 2, we often use q-ary lattices and their
cosets, denoted as

for A ∈ Z
n×m
q , denote Λ⊥(A) or Λ⊥

q (A) as {x ∈ Z
m : A · x = 0 (mod q)};

for A ∈ Z
n×m
q ,w ∈ Z

n
q , denote Λ⊥

w(A) as {x ∈ Z
m : A · x = w (mod q)}.

Gaussians on lattices. For any s > 0 define the Gaussian function on R
n with

parameter s:
∀x ∈ R

n, ρs(x) = e−π‖x‖2/s2
.

For any c ∈ R
n, real s > 0, and n-dimensional lattice Λ, define the discrete

Gaussian distribution DΛ+c,s as:

∀x ∈ Λ + c, DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any positive semidefinite Σ = T · Tt, define the non-spherical Gaussian

function as
∀x ∈ span(T) = span(Σ), ρT(x) = e−πxtΣ+x,

and ρT(x) = 0 for all x �∈ span(Σ). Note that ρT(·) only depends on Σ but not
the specific choice of the T, so we may write ρT(·) as ρ√

Σ(·).
For any c ∈ R

n, any positive semidefinite Σ, and n-dimensional lattice Λ such
that (Λ + c) ∩ span(Σ) is non-empty, define the discrete Gaussian distribution
DΛ+c,

√
Σ as:

∀x ∈ Λ + c, DΛ+c,
√

Σ(x) =
ρ√

Σ(x)
ρ√

Σ(Λ + c)
.

Smoothing parameter. We recall the definition of smoothing parameter and some
useful facts.

12 Y. Chen et al.

Definition 1 (Smoothing parameter [44]). For any lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest real s > 0 such that
ρ1/s(Λ∗ \ {0}) ≤ ε.

Notice that for two lattices of the same rank Λ1 ⊆ Λ2, the denser lattice
always has the smaller smoothing parameter, i.e. ηε(Λ2) ≤ ηε(Λ1).

We will need a generalization of the smoothing parameter to the non-spherical
Gaussian.

Definition 2. For a positive semi-definite Σ = TTt, an ε > 0, and a lattice Λ
with span(Λ) ⊆ span(Σ), we say ηε(Λ) ≤ √

Σ if ηε(T+Λ) ≤ 1.

When the covariance matrix Σ > 0 and the lattice Λ are full-rank,
√

Σ ≥
ηε(Λ) is equivalent to the minimum eigenvalue of Σ, λmin(Σ), being at least
η2

ε(Λ).

Lemma 1 ([44]). For any n-dimensional lattice Λ of rank k, and any real ε > 0,

ηε(Λ) ≤ λk(Λ) ·
√

log(2k(1 + 1/ε))/π.

Lemma 2 ([44]). Let Λ be a lattice, c ∈ span(Λ). For any Σ ≥ 0, if
√

Σ ≥ ηε(Λ)
for some ε > 0, then

ρ√
Σ(Λ + c) ∈

[
1 − ε

1 + ε
, 1

]
· ρ√

Σ(Λ)

The following is a generalization of [31, Corollary 2.8] for non-spherical Gaus-
sian.

Corollary 1 (Smooth over the cosets). Let Λ, Λ′ be n-dimensional lattices
s.t. Λ′ ⊆ Λ. Then for any ε > 0,

√
Σ ≥ ηε(Λ′), and c ∈ span(Λ), we have

Δ(DΛ+c,
√

Σ mod Λ′, U(Λ mod Λ′)) < 2ε

Lemma 3 ([44,49]). Let B be a basis of an n-dimensional lattice Λ, and let
s ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,s

[‖x‖ ≥ s · √n ∨ x = 0] ≤ negl(n).

Linear Transformations of Discrete Gaussians. We will use the following general
theorem, implicitly used in [15,42,43], regarding the linear transformation, T, of
a discrete Gaussian. It states that as long as the original discrete Gaussian over
a lattice Λ is smooth enough in the lattice intersect the kernel of T (Λ∩ker(T)),
then the distribution transformed by T is statistically close to another discrete
Gaussian.

Theorem 1 ([41]). For any positive definite Σ, vector c, lattice coset A :=
Λ+a ⊂ c+span(Σ), and linear transformation T, if the lattice ΛT = Λ∩ker(T)
satisfies span(ΛT) = ker(T) and ηε(ΛT) ≤ √

Σ, then

T(DA,c,
√

Σ)
ε̄≈ DTA,Tc,T

√
Σ

where ε̄ = 2ε/(1 − ε).

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 13

We remark that if T is injective (i.e. ker(T) is trivial), then T(DA,c,
√

Σ) =
DTA,Tc,T

√
Σ .

Let us also remark that at the time of writing this article, the following lemma
(which is a special case of Theorem 1) has already been proven in [25]. This
lemma is suitable for all of our proofs using a non-injective linear transformation
of a discrete gaussian.

In what follows, the max-log distance between two distributions with the
same support S is ΔML(X ,Y) = maxs∈S | log X (s) − log Y(s)| [45].

Lemma 4 (Lemma 3, [25]). Let T ∈ Z
n×m such that TZ

m = Z
n and Λ⊥(T) =

{x ∈ Z
m : Tx = 0 ∈ Z

n}. Let Σ = TTt. For ε ∈ (0, 1/2), ε̂ = ε + O(ε2),
r ≥ ηε(Λ⊥(T)), the max-log distance between T · DZm,r and D

Zn,r
√

Σ is at most
4ε̂.

2.3 Gadgets, or G-Lattices

Let G = In ⊗gt ∈ Z
n×nk
q with gt = (1, b, . . . , bk−1), k = �logb q�. G is commonly

referred to the gadget matrix. The gadget matrix’s q-ary lattice, Λ⊥
q (G), is the

direct sum of n copies of the lattice Λ⊥
q (gt). Further, Λ⊥

q (gt) has a simple basis,

Bq =

⎡
⎢⎢⎢⎢⎣

b q0

−1
. . .

...
. . . b qk−2

−1 qk−1

⎤
⎥⎥⎥⎥⎦

where (q0, . . . , qk−1) ∈ {0, 1, . . . , b−1}k is the b-ary decomposition of the modu-
lus, q. When q = bk, we cheat by having q0 = q1 = . . . = qk−2 = 0 and qk−1 = b.
Either way, the integer cosets of Λ⊥

q (gt) can be viewed as the syndromes of gt as
a check matrix, in the terminology of coding theory. These cosets are expressed
as Λ⊥

u (gt) = {x ∈ Z
k : gtx = u mod q} = Λ⊥

q (gt)+u where u can be any coset
representative. A simple coset representative of Λ⊥

u (gt) is the b-ary decompo-
sition of u. The integer cosets of Λ⊥

q (G) are expressed through the direct-sum
construction, Λ⊥

u (G) = Λ⊥
u1

(gt)⊕ . . .⊕Λ⊥
un

(gt) where u = (u1, . . . , un) ∈ Z
n
q . We

call G a gadget matrix since the following problems, SIS and LWE, are easily
solved on the matrix G [42].

2.4 SIS, LWE, and the Trapdoor

We first recall the short integer solution (SIS) problem.

Definition 3 (SIS [2]). For any n,m, q ∈ Z and β ∈ R, define the short integer
solution problem SISn,m,q,β as follows: Given A ∈ Z

n×m
q , find a non-zero vector

x ∈ Z
m such that ‖x‖ ≤ β, and

Ax = 0 mod q.

14 Y. Chen et al.

Definition 4 (ISIS). For any n,m, q ∈ Z and β ∈ R, define the inhomogeneous
short integer solution problem ISISn,m,q,β as follows: Given A ∈ Z

n×m
q , y ∈ Z

n
q ,

find x ∈ Z
m such that ‖x‖ ≤ β, and

Ax = y mod q.

Lemma 5 (Hardness of (I)SIS based on the lattice problems in the
worst case [2,31,44]). For any m = poly(n), any β > 0, and any sufficiently
large q ≥ β · poly(n), solving SISn,m,q,β or ISISn,m,q,β (where y is sampled uni-
formly from Z

n
q) with non-negligible probability is as hard as solving GapSVPγ

and SIVPγ on arbitrary n-dimensional lattices with overwhelming probability, for
some approximation factor γ = β · poly(n).

All the (I)SIS problems and their variants admit the Hermite normal form
(HNF), where the public matrix A is of the form [In | A′] where A′ ∈ Z

n×(m−n)
q .

The HNF variant of (I)SIS is as hard as the standard (I)SIS. This can be seen by
rewriting A ∈ Z

n×m
q as A =: [A1 | A2] = A1 · [In | A−1

1 · A2] (we always work
with n, q such that A1 ← U(Zn×n

q) is invertible with non-negligible probability).

Learning with errors. We recall the decisional learning with errors (LWE) prob-
lem.

Definition 5 (Decisional learning with errors [50]). For n,m ∈ N and
modulus q ≥ 2, distributions for secret vectors, public matrices, and error vectors
θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ← πn×m,
e ← χm, and outputting (A,yt := stA + et mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Zm

q) with probability
greater than 1/2 plus non-negligible.

Lemma 6 (Hardness of LWE based on the lattice problems in the
worst case [16,47,48,50]). Given n ∈ N, for any m = poly(n), q ≤ 2poly(n).
Let θ = π = U(Zq), χ = DZ,s where s ≥ 2

√
n. If there exists an efficient (pos-

sibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists an effi-
cient (possibly quantum) algorithm for solving GapSVPγ and SIVPγ on arbitrary
n-dimensional lattices with overwhelming probability, for some approximation
factor γ = Õ(nq/s).

The next lemma shows that LWE with the secret sampled from the error
distribution is as hard as the standard LWE.

Lemma 7 ([10,16]). For n,m, q, s chosen as was in Lemma 6,
LWEn,m′,q,DZ,s,U(Zq),DZ,s

is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,s
for m′ ≤ m −

(16n + 4 log log q).

Trapdoor. A trapdoor for a public matrix A ∈ Z
n×m
q is a string that allows its

owner to efficiently solve both the (I)SIS and LWE problems w.r.t. A.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 15

3 The Approximate Trapdoor for Ajtai’s Function

Given a matrix A ∈ Z
n×m
q , define an approximate trapdoor of A as anything

that allows us to efficiently solve the approximate version of the ISIS problem
w.r.t. A. We first define the approximate ISIS problem.

Definition 6 (Approximate ISIS). For any n,m, q ∈ N and α, β ∈
R, define the approximate inhomogeneous short integer solution problem
Approx.ISISn,m,q,α,β as follows: Given A ∈ Z

n×m
q , y ∈ Z

n
q , find a vector x ∈ Z

m

such that ‖x‖ ≤ β, and there is a vector z ∈ Z
n satisfying

‖z‖ ≤ α and Ax = y + z (mod q).

Let us remark that the approximate ISIS is only non-trivial when the bounds
α, β are relatively small compared to the modulus q. Also, our definition chooses
to allow the zero vector to be a valid solution, which means when ‖y‖ ≤ α, the
zero vector is trivially a solution. Such a choice in the definition does not cause
a problem in the application, since the interesting case in the application is to
handle all the y ∈ Z

n
q , or y sampled uniformly random from Z

n
q .

Definition 7 (Approximate trapdoor). A string τ is called an (α, β)-
approximate trapdoor for a matrix A ∈ Z

n×m
q if there is a probabilistic poly-

nomial time algorithm (in n, m, log q) that given τ , A and any y ∈ Z
n
q , outputs

a non-zero vector x ∈ Z
m such that ‖x‖ ≤ β, and there is a vector z ∈ Z

n

satisfying
‖z‖ ≤ α and Ax = y + z (mod q).

3.1 Hardness of the Approximate ISIS Problem

To make sense of the approximate trapdoor, we argue that for those who do
not have the trapdoor, the approximate ISIS problem is a candidate one-way
function under proper settings of parameters.

First, we observe a rather obvious reduction that bases the hardness of solv-
ing approximate ISIS (given an arbitrary target) on the hardness of decisional
LWE with low-norm secret (e.g. when the secret is sampled from the error dis-
tribution). In the theorem statement below, when the norm symbol is applied
on a distribution D, i.e. ‖D‖, it denotes the lowest value v ∈ R

+ such that
Prd←D[‖d‖ < v] > 1 − negl(λ).

Theorem 2. For n,m, q ∈ Z, α, β ∈ R
+, θ, χ be distributions over Z such that

q > 4(‖θ‖ · (α + 1) + ‖θn‖ · α · √n + ‖χm‖ · β · √m). Then LWEn,m,q,θ,U(Zq),χ ≤p

Approx.ISISn,m,q,α,β.

Proof. Suppose there is a polynomial time adversary A that breaks
Approx.ISISn,m,q,α,β , we build a polynomial time adversary B that breaks deci-
sional LWE.

Let r = �α� + 1. Given an LWE challenge (A,w) ∈ Z
n×m
q × Z

m
q , where

w is either an LWE sample or sampled uniformly from Z
m
q . B picks a vector

16 Y. Chen et al.

y := (r, 0, ..., 0)t ∈ Z
n
q , sends A and y to the adversary A as an approximate

ISIS challenge. A replies with x ∈ Z
m such that ‖x‖ ≤ β, and there is a vector

z ∈ Z
n satisfying

‖z‖ ≤ α and Ax = y + z (mod q).

Note that x �= 0 since ‖y‖ > α.
B then computes v := 〈w,x〉. If wt = stA + et for s ← θn, e ← χm, then

v = (stA + et)x = st(y + z) + etx ⇒
‖v‖ ≤ ‖θ‖ · r + ‖θn‖ · α · √n + ‖χm‖ · β · √m < q/4.

Otherwise v distributes uniformly random over Zq. So B can compare v with
the threshold value and wins the decisional LWE challenge with probability 1/2
plus non-negligible.

Alternatively, we can also prove that the approximate ISIS problem is as hard
as the standard ISIS. The reductions go through the HNFs of the ISIS and the
approximate ISIS problems. All the reductions in the following theorem works
for uniformly random target vectors.

Theorem 3. ISISn,n+m,q,β ≥p Approx.ISISn,m,q,α+β,β; ISISn,n+m,q,α+β ≤p

Approx.ISISn,m,q,α,β.

Proof. We will show ISIS = HNF.ISIS = HNF.Approx.ISIS = Approx.ISIS under
proper settings of parameters.

Recall that ISISn,m,q,β = HNF.ISISn,m,q,β as explained in the preliminary.
Also, HNF.ISISn,m,q,β ≥p HNF.Approx.ISISn,m,q,α,β for any α ≥ 0 by definition.
It remains to show the rest of the connections.

Lemma 8. HNF.ISISn,m,q,α+β ≤p HNF.Approx.ISISn,m,q,α,β.

Proof. Suppose there is a polynomial time algorithm A that solves HNF.
Approx.ISISn,m,q,α,β , we build a polynomial time algorithm B that solve
HNF.ISISn,m,q,α+β . Given an HNF.ISIS instance [In | A] ∈ Z

n×m
q , y, B passes

the same instance to A, gets back a vector x such that

[In | A] · x = y + z (mod q).

where ‖x‖ ≤ β, ‖z‖ ≤ α. Now write x =: [xt
1 | xt

2]
t where x1 ∈ Z

n, x2 ∈ Z
m.

Then x′ := [(x1 − z)t | xt
2]

t satisfies

[In | A] · x′ = y (mod q),

and ‖x′‖ ≤ α + β. So x′ is a valid solution to HNF.ISIS.

Lemma 9. HNF.Approx.ISISn,n+m,q,α,β ≤p Approx.ISISn,m,q,α,β.

Proof. Suppose there is a polynomial time algorithm A that solves Approx.
ISISn,m,q,α,β , we build a polynomial time algorithm B that solves HNF.Approx.

ISISn,n+m,q,α,β . Given [In | A] ∈ Z
n×(n+m)
q , y ∈ Z

n
q as an HNF.Approx.ISIS

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 17

instance, B passes A ∈ Z
n×m
q , y to A, gets back a short vector x ∈ Z

m. Then
[0t

n | xt]t is a valid solution to the HNF.Approx.ISIS instance.

Lemma 10. HNF.Approx.ISISn,n+m,q,α,β ≥p Approx.ISISn,m,q,α+β,β.

Proof. Suppose there is a polynomial time algorithm A that solves HNF.
Approx.ISISn,n+m,q,α,β , we build a polynomial time algorithm B that solves
Approx.ISISn,m,q,α+β,β . Given an Approx.ISIS instance A ∈ Z

n×m
q , y ∈ Z

n, B

passes [In | A] ∈ Z
n×(n+m)
q , y as an HNF.Approx.ISIS instance to A, gets back

an answer x ∈ Z
m+n such that

[In | A] · x = y + z (mod q), (2)

where ‖x‖ ≤ β, ‖z‖ ≤ α.
Now write x =: [xt

1 | xt
2]

t where x1 ∈ Z
n, x2 ∈ Z

m. Rewriting Eq. (2) gives

A · x2 = y + z − x1 (mod q),

so x2 is a valid solution to Approx.ISISn,m,q,α+β,β .

Theorem 3 then follows the lemmas above.
The following statement immediately follows the proof of Lemma 10.

Corollary 2. An (α, β)-approximate trapdoor for [I | A] is an (α + β, β)-
approximate trapdoor for A.

4 Approximate Gadget Trapdoor

We present an instantiation of an approximate trapdoor based on the gadget-
based trapdoor generation and preimage sampling algorithms of Micciancio and
Peikert [42] (without the tag matrices). In short, we show how to generate a
pseudorandom A ∈ Z

n×m
q along with an approximate trapdoor R with small

integer entries.
In the rest of this section, we first recall the exact G-trapdoor from [42], then

present the approximate trapdoor generation algorithm and the approximate
preimage sampling algorithm. Finally we show that the preimage and the error
distributions for uniformly random targets are simulatable.

4.1 Recall the G-Trapdoor from [42]

Let b ≥ 2 be the base for the G-lattice. Let q be the modulus, k = �logb q�. b
is typically chosen to be 2 for simplicity, but often a higher base b is used for
efficiency trade-offs in lattice-based schemes.

Recall the gadget-lattice trapdoor technique from [42]: the public matrix is

A = [Ā|G − ĀR]

18 Y. Chen et al.

where G is the commonly used gadget matrix, G := In ⊗ gt
k, gt

k :=
(1, b, . . . , bk−1), and R is a secret, trapdoor matrix with small, random entries.
A is either statistically close to uniformly random or pseudorandom, depending
on the structure of Ā and the choice of χ (in the pseudorandom case χ ⊆ Z is
chosen to be a distribution such that LWEn,n,q,χ,U(Zq),χ is hard). In this paper
we focus on the pseudorandom case since the resulting public matrix A and
preimage have smaller dimensions.

In order to sample a short element in Λ⊥
u (A), we use the trapdoor to map

short coset representatives of Λ⊥
q (G) to short coset representatives of Λ⊥

q (A) by
the relation

A
[
R
I

]
= G.

Using the trapdoor as a linear transformation alone leaks information about the
trapdoor. Therefore, we perturb the sample to statistically hide the trapdoor. Let

Σp be a positive definite matrix defined as Σp := s2I− σ2

[
RRt Rt

R I

]
where σ is

at least ηε(Λ⊥
q (G)). The perturbation can be computed offline as p ← D

Zm,
√

Σp
.

We then sample a G-lattice vector in a coset dependent on p as z ← DΛ⊥
v (G),σ

and v = u − Ap ∈ Z
n
q . Finally, the preimage is set to be

y := p +
[
R
I

]
z.

4.2 The Algorithms of the Approximate G-Trapdoor

As mentioned in the introduction, the main idea of obtaining an approximate
trapdoor is to adapt the algorithms from [42] with a gadget matrix without the
lower-order entries. Let 0 < l < k be the number of lower-order entries dropped
from the gadget vector g ∈ Z

k
q . Define the resulting approximate gadget vector

as f := (bl, bl+1, ..., bk−1)t ∈ Z
(k−l)
q . Let w = n(k − l) be the number of columns

of the approximate gadget F := In ⊗ f t ∈ Z
n×w. Then the number of columns

of A will be m := 2n + w.
Once we replace the gadget matrix G with its truncated version, F, our

approximate trapdoor generation and approximate preimage sampling algo-
rithms match the original gadget-based algorithms. The generation and preimage
algorithms are given as Algorithms 2 and 3, respectively. Algorithm 1 represents
our approximate F-sampling algorithm. It simply runs the G-lattice preimage
sampling algorithm and drops the first l entries from the preimage. The covari-
ance of the perturbation in Algorithm 3 is chosen as

Σp := s2Im − σ2

[
RRt R
Rt I

]
.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 19

Algorithm 1: Gsamp.Cut(v, σ)
Input: v ∈ Zq, σ ∈ R

+

Output: z ∈ Z
k−l

1 Sample x ∈ Z
k from DΛ⊥

v (gt),σ

2 Let z be the last k − l entries of x
3 return z.

Algorithm 2:Approx.TrapGenχ

Input: Security parameter λ
Output: matrix-approximate

trapdoor pair (A,R).
1 Sample a uniformly random

Â ← U(Zn×n
q).

2 Let Ā := [In, Â].
3 Sample the approximate

trapdoor R ← χ2n×w.
4 Form A := [Ā|F − ĀR] ∈ Z

n×m
q .

5 return (A,R).

Algorithm 3:Approx.SamplePre.

Input: (A,R,u, s) as in Thm. 4.
Output: An approximate preimage

of u for A, y ∈ Z
m.

1 Sample a perturbation
p ← D

Zm,
√

Σp
.

2 Form v = u − Ap ∈ Z
n
q .

3 Sample the approximate gadget
preimage z ∈ Z

n(k−l) as
z ← Gsamp.Cut(v, σ).

4 Form y := p+
[
R
I

]
z ∈ Z

m.

5 return y.

Fig. 3. Pseudocode for the approximate trapdoor sampling algorithm in Subsect. 4.3.
We abuse notation and let Gsamp.Cut(v, σ) denote n independent calls to Algorithm
1 on each entries of v ∈ Z

n
q , and then concatenate the output vectors. The distribution

χ ⊆ Z is chosen so that LWEn,n,q,χ,U(Zq),χ is hard.

The results of this section are summarized in the following theorem.

Theorem 4. There exists probabilistic, polynomial time algorithms Approx.
TrapGen(·) and Approx.SamplePre(·, ·, ·, ·) satisfying the following.

1. Approx.TrapGen(n) takes as input a security parameter n and returns a
matrix-approximate trapdoor pair (A,R) ∈ Z

n×m
q × Z

2n×n(k−l).
2. Let A be generated with an approximate trapdoor as above and let

approx.A−1(·) denote the approximate preimage sampling algorithm,
Approx.SamplePre(A,R, s, ·). The following two distributions are statis-
tically indistinguishable:

{(A,y,u, e) : u ← U(Zn
q), y ← approx.A−1(u), e = u−Ay mod q}

and

{(A,y,u, e) : y ← DZm,s, e ← D
Zn,σ

√
(b2l−1)/(b2−1)

mod q,u = Ay + e mod q}

20 Y. Chen et al.

for any σ ≥ √
b2 + 1 · ω(

√
log n) and s �

√
b2 + 1 s2

1(R)
s2n(R)ηε(Znk)1. Further-

more, in the second distribution, A is computationally indistinguishable from
random assuming LWEn,n,q,χ,U(Zq),χ.

4.3 Simulate the Preimage and Error Distributions

This subsection is dedicated to proving Theorem 4. For the convenience of expla-
nation, in this subsection we redefine the gadget G by permuting the columns
so that the columns of smaller entries are all on the left, i.e.

G := [M|F] := [In ⊗ (1, b, . . . , bl−1)|F]

Let x = (x1,x2) ∈ Z
nl × Z

n(k−l) denote the short preimage of v := u − Ap
(mod q) under the full gadget matrix G, i.e. Gx = v (mod q).

The first attempt of proving Theorem 4 is to first show that the
joint distribution of (p,x) produced in Algorithm 3 is statistically close to
D

Λ⊥
u [A,G],

√
Σp⊕σ2Ink

for any u ∈ Z
n
q , then apply the linear transformation the-

orem on (p,x) to obtain the distributions of the preimage y and the error term
e. However, applying the linear transformation theorem directly on the lattice
coset Λ⊥

u [A,G] leads to a technical problem. That is, the intermediate lattice
intersections ΛT required in Theorem 1 have large smoothing parameters, which
means even if we go through that route, the Gaussian width of the resulting
preimage would blow up significantly.

Instead, we work only with a uniformly random target u instead of an arbi-
trary target, and directly construct the simulation algorithm. We show that if
the simulation algorithm produces (p,x) ← D

Zm+nk,
√

Σp⊕σ2Ink
, then it is able

to simulate the distributions of y and e correctly without using the trapdoor.
Now the support of (p,x) is the integer lattice Z

m+nk. Working with the integer
lattice is important for two reasons. First, it allows us to treat x1 and x2 as
statistically independent samples; and second, it gives us short vectors in the
kernels summoned when using Lemma 4 or Theorem 1.

Formally, let ε = negl(λ) > 0. We first prove three lemmas.

Lemma 11. For any σ ≥ ηε(Λ⊥(G)), the following two distributions are sta-
tistically close.

1. First sample v ← U(Zn
q), then sample x ← DΛ⊥

v (G),σ, output (x,v);
2. First sample x ← DZnk,σ, then compute v = Gx (mod q), output (x,v).

Proof. The proof follows directly from det(Λ⊥
q (G)) = qn and Corollary 1. Alter-

natively, one can use two applications of the fact ρr(Γ +c) ∈ (1±ε)σn/det(Γ) for
any r ≥ ηε(Γ). The latter yields Pr{Process returns x} ∈

(
1−ε
1+ε , 1+ε

1−ε

)
·DZnk,σ(x).

1 We remark that the ratio s1(R)
s2n(R)

is a small constant for commonly-used subgaussian

distributions for R’s entries [51].

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 21

Lemma 12. The following random processes are statistically close for any
σ ≥ √

b2 + 1 · ω(
√

log n) ≥ ηε(gt): sample x1 ← DZl,σ and return e =
[1, b, . . . , bl−1]x1; or, return e ← D

Z,σ
√

(b2l−1)/(b2−1)
.

Proof. We use Lemma 4 or Theorem 1 where [1, b, . . . , bl−1] is the linear transfor-
mation. Notice that the kernel of [1, b, . . . , bl−1] is the linear span of [b1, . . . ,bl−1]
where

b1 = (b,−1, 0, . . . , 0),b2 = (0, b,−1, 0, . . . , 0), . . . ,bl−1 = (0, . . . , 0, b,−1) ∈ Z
l.

The support of x1, Z
l, contains the (l − 1)-dimensional lattice, Γ = Z

l ∩
Ker([1, b, . . . , bl−1]), spanned by [b1, . . . ,bl−1]. Further, σ ≥ ηε(gt) implies
σ is larger than the smoothing parameter of Γ since ‖bi‖ ≤ √

b2 + 1 for
i = 1, . . . , l − 1. Finally by routine calculation on the Gaussian width (and
support), we have e = [1, b, . . . , bl−1]x1 ≈s D

Z,σ
√

(b2l−1)/(b2−1)
.

Let R′ :=
[

R
In(k−l)

]
. Next, we analyze the distribution given by the linear

transformation representing the convolution step:

y = p + R′x2 = [Im|R′]
(

p
x2

)

for (p,x2) ← D
Zm+n(k−l),

√
Σp⊕σ2In(k−l)

. Let L := [Im|R′] in Lemma 13 and its
proof below.

Lemma 13. For
√

Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
, LDZm+n(k−l),

√
Σp⊕σ2In(k−l)

is statistically close to DZm,s. Further,
√

Σp ⊕ σ2In(k−l) ≥

ηε

(
Λ

(
R′

−In(k−l)

))
is satisfied when s �

√
b2 + 1 s2

1(R)
s2n(R)ηε(Znk).

Proof. The range and covariance are immediate. Next, we use Theorem 1. The
kernel of L is given by all vectors (a,b) where b ∈ R

n(k−l) and a = −R′b.
The integer lattice Z

m+n(k−l) contains all such integer vectors so ΛL :=

Z
m+n(k−l) ∩ ker(L) spans L’s kernel. So

(
R′

−In(k−l)

)
is a basis of ΛL. Given

that
√

Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
, the lemma follows Theorem 1.

Lastly, the implication that
√

Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
whenever

s �
√

b2 + 1 s2
1(R)

s2n(R)ηε(Znk) is proved in Appendix A.

22 Y. Chen et al.

We are now ready to prove Theorem 4.

Proof. (of Theorem 4) The proof’s overview is given via the following. Let

– p ← D
Zm,

√
Σp

be a perturbation,
– u ∈ Z

n
q be the input target coset,

– v = u − Ap ∈ Z
n
q be the G-lattice coset,

– x = (x1,x2) ← DZnk,σ (G-lattice randomized over uniform coset v and σ ≥
ηε(gt), Lemma 11)

– e ← D
Zn,σ

√
(b2l−1)/(b2−1)

be the concatenation of the errors, e, in Lemma 12,
– and y ← DZm,s as in Lemma 13.

The proof is best summarized via the sequence of hybrids below:

u = v + Ap

≈s Gx + Ap

= Mx1 + Fx2 + Ap

≈s e + Fx2 + Ap

= e + AR′x2 + Ap

= e + AL
(

p
x2

)

≈s e + Ay.

The first ≈s is through swapping the order of sampling u and v uniformly
at random, then using the fact that σ ≥ ηε(G) (Lemma 11). The next ≈s is
given by Lemma 12. Finally, the last ≈s is given by concatenating (p,x2) ←
D

Zm+n(k−l),
√

Σp⊕σ2In(k−l)
and using Lemma 13.

We remark that the key in the equivalences above is that we can separate x
into two statistically independent samples, x1 and x2, concatenate p and x2, then
perform two instances of Theorem 1 (Lemma 4) on the statistically independent
samples L(p,x2) and Mx1. The statistical independence of x1 and x2 is due
to the orthogonality of Znk and the same cannot be said if x ∼ DΛ⊥

v (G),σ for a
fixed v (via a fixed u). This difference highlights why we must argue security for
a uniformly random input coset u (and v).

Real distribution: The real distribution of {(A,y,u, e)} is:
A, u ← U(Zn

q), p ← D
Zm,

√
Σp

, v := u − Ap, x = (x1,x2) ← DΛ⊥
v (G),σ,

e = Mx1, and y = L(p,x2).

Hybrid 1: Here we swap the order of sampling u and v. Let v ← U(Zn
q),

p ← D
Zm,

√
Σp

, u = v + Ap. We keep x, e, and y unchanged: x = (x1,x2) ←
DΛ⊥

v (G),σ, e = Mx1, and y = L(p,x2). Then, the real distribution and Hybrid
1 are the same.

Hybrid 2: Instead of sampling a uniform v ∈ Z
n
q and a G-lattice sample x =

(x1,x2) ← DΛ⊥
v (G),σ, we sample x ← DZnk,σ and let v = Gx ∈ Z

n
q . The rest

remains the same:

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 23

A, x ← DZnk,σ, v = Gx, p ← D
Zm,

√
Σp

, u = v + Ap, e = Mx1, and

y = L(p,x2). Lemma 11 implies Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: We combine p,x2 into the joint distribution (p,x2) ←
D

Zm+n(k−l),
√

Σp⊕σ2I
:

A, (p,x2) ← D
Zm+n(k−l),

√
Σp⊕σ2I

, e = Mx1, y = L(p,x2), v = Gx, and
u = v + Ap.

Hybrid 4: Here we apply the linear transformation theorem on L and M.
A, e ← D

Znl,σ
√

(b2l−1)/(b2−1)
, y ← DZm,s, v = Ay + e.

Lemmas 12 and 13 imply Hybrids 3 and 4 are statistically close.

Final distribution: Sample A ← U(Zn×m
q) and keep the rest of the vectors

from the same distribution as Hybrid 4 (notice that the trapdoor R of A is
not used to sample p, x, e and y). The final distribution is computationally
indistinguishable from Hybrid 4 assuming LWEn,n,q,χ,U(Zq),χ.

5 Hash-and-Sign Signature Instantiated with the
Approximate Trapdoor

We spell out the details of the hash-and-sign signature scheme from [31] instan-
tiated with the approximate G-trapdoor instead of an exact trapdoor.

Recall the parameters from the last section. We set k = �logb q�, set l to
be the number of entries dropped from the G-trapdoor such that 1 ≤ l < k
and m = n(2 + (k − l)). Let σ, s ∈ R

+ be the discrete Gaussian widths of the
distributions over the cosets of Λ⊥

q (G) and Λ⊥
q (A) respectively. Let χ be the

distribution of the entries of the trapdoor R chosen so that LWEn,n,q,χ,U(Zq),χ is
hard.

Construction 5. Given an approximate trapdoor sampler from Theorem 4, a
hash function H = {Hλ : {0, 1}∗ → Rλ} modeled as a random oracle, we build
a signature scheme as follows.

– Gen(1λ): The key-generation algorithm samples A ∈ Z
n×m
q together with its

(α, β)-approximate trapdoor R from Approx.TrapGen(1λ). Let the range
Rλ of H be Z

n
q . It outputs A as the verification key, keeps R as the secret

signing key.
– Sig(R,m): The signing algorithm checks if the message-signature pair (m,xm)

has been produced before. If so, it outputs xm as the signature of m; if
not, computes u = H(m), and samples an approximate preimage xm ←
Approx.SamplePre(A,R,u, s). It outputs xm as the signature and stores
(m,xm) in the list.

– Ver(A,m,x): The verification algorithm checks if ‖x‖ ≤ β and ‖A · x −
H(m)‖ ≤ α. If so, it outputs accept; otherwise, it outputs reject.

24 Y. Chen et al.

5.1 Security Analysis

In the security analysis we use the following property on the distributions pro-
duced by Approx.SamplePre proven in Theorem 4. That is, the preimage and
error term for a random target can be simulated from distributions denoted by
Dpre and Derr. Both of them are independent of the public key A and the secret
key R.

To prove that the signature satisfies the strong EU-CMA security, we need
an additional “near-collision-resistance” property for Ajtai’s function, which can
be based on the standard SIS assumption. Let us remark that without this
property, we can still prove the signature scheme satisfies static security based
on the hardness of the approximate ISIS problem, which is tighter by a factor
of two according to Theorem 3.

Lemma 14 (The near-collision-resistance of Ajtai’s function). For any
n,m, q ∈ N and α, β ∈ R. If there is an efficient adversary A that given A ←
U(Zn×m

q), finds x1 �= x2 ∈ Z
m such that

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖Ax1 − Ax2 (mod q)‖ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2(α+β).

Proof Suppose B gets an HNF.SISn,n+m,q,2(α+β) challenge (which is as hard as
SISn,n+m,q,2(α+β)) with the public matrix [In | A], B sends A to A, gets back
x1 �= x2 ∈ Z

m such that

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖y := Ax1 − Ax2 (mod q)‖ ≤ 2α

B then sets z := [−yt | (x1 − x2)t]t as the solution. z is then non-zero and
satisfies ‖z‖ ≤ 2(α + β) and [In | A]z = 0 (mod q).

Theorem 6. Construction 5 is strongly existentially unforgeable under a
chosen-message attack in the random oracle model assuming the hardness of
SISn,n+m,q,2(α+β) and LWEn,n,q,χ,U(Zq),χ.

Proof. Suppose there is a polynomial time adversary A that breaks the strong
EU-CMA of the signature scheme, we construct a polynomial time adversary B
that breaks the near-collision-resistance of Ajtai’s function, which is as hard as
SISn,n+m,q,2(α+β) due to Lemma 14.

To start, B sends Ajtai’s function A to A as the public key for the signature
scheme. Once A makes a random oracle query w.r.t. a message m, B samples
x ← Dpre, computes u := Ax + Derr (mod q) as the random oracle response
on m. B then replies u to A and stores (m,u) in the random oracle storage,
(m,x) in the message-signature pair storage. Once A makes a signing query on
the message m (wlog assume m has been queried to the random oracle before,
since if not B can query it now), B finds (m,x) in the storage and reply x as
the signature. The signatures and the hash outputs produced by B are indis-
tinguishable from the real ones due to the properties of the distributions Dpre

and Derr, and the assumption that a real public key is indistinguishable from
random under LWEn,n,q,χ,U(Zq),χ.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 25

Without loss of generality, assume that before A tries to forge a signature
on m∗, A has queried H on m∗. Denote the pair that B prepares and stores
in the random oracle storage as (m∗,u∗), and the pair in the signature storage
as (m∗,x∗). Finally A outputs x as the forged signature on m∗. So we have
‖A(x − x∗) (mod q)‖ ≤ 2α. It remains to prove that x �= x∗ so as to use them
as a near-collision-pair. If m∗ has been queried to the signing oracle before, then
x �= x∗ by the definition of a successful forgery; if m∗ has not been queried to
the signing oracle before, then x∗ is with high min-entropy by the settings of the
parameter, so x �= x∗ with overwhelming probability.

5.2 Concrete Parameters

We provide a proof-of-concept implementation of the signature. Experiments
are performed over several groups of parameters using different dimensions n,
moduli q, bases b, targeting different security level (mainly around 80 to 90-bit
and 170 to 185-bit security). In each group of parameters, we use fixed n, q, b,
and compare the use of exact trapdoor (under our reference implementation)
versus approximate trapdoor. In Figs. 4 and 5 we list 6 groups of parameters.

Params Exact Approx Approx Exact Approx Approx Exact Approx Approx
n 512 512 512 512 512 512 512 512 512
�log2 q� 24 24 24 20 20 20 16 16 16
b 2 2 2 2 2 2 2 2 2
l 0 12 15 0 10 12 0 7 9
τ 40 40 40 10 10 10 2.6 2.6 2.6
s 38317.0 29615.3 26726.3 8946.4 6919.8 6416.4 2170.7 1756.3 1618.2
m 13312 7168 5632 11264 6144 5120 9216 5632 4608
‖x‖2 4441737.7 2521387.0 2035008.5 956758.1 545470.5 464022.0 211100.9 133305.5 109339.1
‖x‖∞ 184653 111909 94559 38507 25275 24762 8848 6853 6334
‖z‖2 0 374014.0 2118987.6 0 94916.6 343682.9 0 11897.9 46428.4
‖z‖∞ 0 46895 346439 0 13265 52789 0 1439 7213
PK 37.50 19.50 15.00 26.25 13.75 11.25 17.00 10.00 8.00
Sig 25.68 13.53 10.51 18.87 10.01 8.29 13.16 7.83 6.30
LWE 100.0 100.0 100.0 102.8 102.8 102.8 104.7 104.7 104.7
AISIS 80.2 85.8 81.1 82.0 87.5 84.3 83.7 89.0 88.1
δ 1.00685 1.00643 1.00678 1.00670 1.00631 1.00653 1.00658 1.00621 1.00628
k 174 193 177 180 199 188 186 204 201

Fig. 4. Summary of the concrete parameters, with base b = 2, aiming at around 80 to
90-bit security. The sizes of PK and Sig are measured in kB. τ is the Gaussian width
of the secret matrix R. s is the Gaussian width of the preimage. “LWE” refers to the
security level of the pseudorandomness of the PK. “AISIS” refers to the security level
of breaking approximate ISIS. δ and k are the variables used in the AISIS security
estimation.

Methods for security estimation. Let us first explain how we make the secu-
rity estimations. The concrete security estimation of lattice-based cryptographic
primitive is a highly active research area and more sophisticated methods
are proposed recently. Here we use relatively simple methods to estimate the

26 Y. Chen et al.

Params Exact Approx Approx Exact Approx Approx Exact Approx Approx
n 512 512 512 1024 1024 1024 1024 1024 1024
�log2 q� 16 16 16 18 18 18 18 18 18
b 4 4 4 8 8 8 4 4 4
l 0 2 4 0 2 3 0 4 5
τ 2.6 2.6 2.6 2.8 2.8 2.8 2.8 2.8 2.8
s 3114.2 2833.3 2505.6 8861.1 7824.8 7227.9 5118.8 4297.8 4015.5
m 5120 4096 3072 8192 6144 5120 11264 7168 6144
‖x‖2 223740.1 183004.9 138145.7 805772.9 604711.5 516446.3 552713.4 369981.2 311153.9
‖x‖∞ 13320 11868 8948 35348 28823 30435 19274 18283 14927
‖z‖2 0 1402.3 19807.1 0 7316.5 54379.8 0 29958.0 115616.4
‖z‖∞ 0 174 2448 0 905 6680 0 3025 12070
PK 9.00 7.00 5.00 15.75 11.25 9.00 22.50 13.50 11.25
Sig 7.62 5.94 4.45 13.70 10.14 8.36 18.74 11.09 9.38
LWE 104.7 104.7 104.7 192.7 192.7 192.7 192.7 192.7 192.7
AISIS 82.8 85.5 87.8 165.3 172.9 174.9 175.8 185.7 183.7
δ 1.00664 1.00645 1.00629 1.0036 1.00347 1.00343 1.00342 1.00326 1.00329
k 183 192 200 462 488 495 498 532 525

Fig. 5. Summary of the concrete parameters, with base b ≥ 4, aiming at around 80 to
90-bit and 170 to 184-bit security.

pseudorandomness of the public-key (henceforth “LWE security”), and the hard-
ness of breaking approximate ISIS (henceforth “AISIS security”). Let us remark
that our estimations may not reflect the state-of-art, but at least provide a fair
comparison of the parameters for the exact trapdoor versus the approximate
trapdoor.

LWE security depends on the choices of q, n, and the Gaussian width τ of
the trapdoor R. The estimation of LWE security was done with the online LWE
bit security estimator with BKZ as the reduction model2 [5].

For the approximate ISIS problem, the only direct cryptanalysis result we
are aware of is the work of Bai et al. [12], but it is not clearly applicable to the
parameters we are interested. Instead we estimate AISIS through ISISn,m,q,α+β

following the reduction in Lemma 8, where α and β are the upper-bounds
of l2 norm of the error z and preimage x. We estimate the security level of
ISISn,m,q,α+β based on how many operations BKZ would take to find a vector
in the lattice Λ⊥

q (A) of length α + β. Further, we can throw away columns in
A. We choose to only use 2n columns of A as done in [14], denoted A2n, since
Minkowski’s theorem3 tells us Λ⊥

q (A2n) has a short enough vector. Following
[5,7], we use sieving as the SVP oracle with time complexity 2.292k+16.4 in the
block size, k. BKZ is expected to return a vector of length δ2ndet1/2n for a lat-
tice of dimension 2n. Hence, we found the smallest block size k achieving the
needed δ corresponding to forging a signature, α+β√

q = δ2n. Finally, we used the

heuristic δ ≈ (k
2πe (πk)1/k)1/2(k−1) to determine the relation between k and δ,

and we set the total time complexity of BKZ with block-size k, dimension 2n as
2 https://bitbucket.org/malb/lwe-estimator.
3 For any lattice L, λ1 ≤ √

r det(L)1/r where r is the rank of the lattice.

https://bitbucket.org/malb/lwe-estimator

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 27

8 · 2n · time(SV P) = 8 · 2n · 2.292k+16.4 [7,22]. Here we use the “magic eight tour
number” for BKZ to keep consistency with the LWE online estimator. We have
not incorporated the more recent developments in [24] and [6] in the security
estimation.

The comparison. For an estimation of 80-bit4 security, our reference implementa-
tion for the exact trapdoor under the modulus q ≈ 224 and base b = 2 matches
the parameters reported in [13] (the parameters in the other implementation
[14,36] are possibly measured in different ways). We also use smaller moduli and
bigger bases to reduce the size and increase the security level. The parameters
in Figs. 4 and 5 suggest that for all the choices of q and b, using the approximate
gadget trapdoor by setting l = �(logb q)/2� saves about half of the sizes in the
public key and signatures comparing to using the exact trapdoor, with even a
slight increase in the security estimation.

Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25
kB & 9.38 kB for an estimation of 184-bit security. Those are still larger than,
but much closer to the sizes for the signatures based on the rejection sampling
approach [8,11,26,40]. As a reference, the sizes of the public-key & signature for
qTESLA [8] are 4.03 kB & 3.05 kB for an estimation of 128-bit security, and
8.03 kB & 6.03 kB for an estimation of 192-bit security.

Acknowledgments. We are grateful to Daniele Micciancio for valuable advice and
his generous sharing of ideas on the subject of this work. We would also like to thank
Léo Ducas, Steven Galbraith, Thomas Prest, Yang Yu, Chuang Gao, Eamonn Postleth-
waite, Chris Peikert, and the anonymous reviewers for their helpful suggestions and
comments.

A The Smoothing Parameter of ΛL

Recall the notations that R′ =
[

R
In(k−l)

]
∈ Z

m×(n(k−l)), Σp := s2Im − R′(R′)t.

Here we derive the conditions of s so that
√

Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) holds,
where ΛL is the lattice generated by

B :=
[−R′

In(k−l)

]
.

We do this in three steps: first we write out the dual basis of B, then we reduce√
Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) to a statement about the smoothing parameter of

Z
n(k−l), and finally we find when

√
Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) as a function of s.

Dual basis, B∗ : Let Σ = Σp ⊕ σ2In(k−l). By definition, we need ρ(
√

Σ
t
Λ∗
L) ≤

1 + ε. In general, the dual basis Λ∗ is generated by the dual basis B(BtB)−1. In
the case of ΛL, we can write the dual basis as
4 When one applies our security estimate methods to Table 1 of [13], one gets 82-bit

security under the λ = 97, n = 512, q = 224 column.

28 Y. Chen et al.

B∗ :=
[−R′

In(k−l)

] [
RtR + 2I

]−1
.

Reducing to ηε(Zn(k−l)) : Next, the gaussian sum ρ(
√

Σ
t
Λ∗
L) is equal to∑

x∈Zn(k−l)

exp(−πxt(B∗)tΣB∗x).

This reduces to showing
√

(B∗)tΣB∗ ≥ ηε(Zn(k−l)).
Now we write out the matrix product (B∗)tΣB∗,

(B∗)tΣB∗ =
[
RtR + 2I

]−t [−(R′)t I
] [

Σp 0
0 σ2I

] [−R′

I

] [
RtR + 2I

]−1

=
[
RtR + 2I

]−t [
(R′)tΣpR′ + σ2I

] [
RtR + 2I

]−1
.

Before we continue, we consider the structure of the middle matrix:

Σs := (R′)tΣpR′ =
[
Rt I

] (
s2I − σ2

[
R
I

] [
Rt I

]) [
R
I

]

=
[
RtR + I

] (
s2I − σ2

[
RtR + I

])
.

Derive the condition for s: Now we will derive the condition for s so that[
RtR + 2I

]−t [Σs + σ2I]
[
RtR + 2I

]−1 ≥ η2
ε (Zn(k−l)).

Claim. All invertible matrices of the form (RtR+αI)i for i ∈ Z, α ∈ R commute.

Proof. Let QSVt be R’s singular value decomposition. Now, RtR + αI =
VDVt + V(αI)Vt where D = StS = diag(s2i (R)) since V,Q are orthogonal.
Equivalently, we have RtR + αI = VDαVt where Dα = diag(s2i (R) + α) =
StS+αI2n. By induction, we have (RtR+αI)i = VDi

αVt, i ∈ Z. Finally, Di
α is

a diagonal matrix so Di
α and Dj

α′ commute for all α, α′ since diagonal matrices
commute. The result follows from the orthogonality of V (VtV = I).

Claim A allows us to lower-bound the smallest eigenvalue of

(B∗)tΣB∗ =
[
RtR + 2I

]−2 ([
RtR + I

] [
s2I − σ2

[
RtR + I

]]
+ σ2I

)
=

[
RtR + 2I

]−2 (
s2[RtR + I] − σ2[2RtR + (RtR)2]

)
.

Viewing these matrices as their diagonal matrices of eigenvalues, we see
(B∗)tΣB∗’s least eigenvalue is lower-bounded by

λlb(s,R) :=
s2(s22n(R) + 1) − σ2(s41(R) + 2s21(R))

(s21(R) + 2)2
.

Next, we assume σ =
√

b2 + 1ηε(Znk) ≥ ηε(Λ⊥
q (G)) and solve for s using

λlb(s,R) ≥ η2
ε (Zn(k−l)),

s2 ≥ s21(R) + 1
s22n(R) + 1

η2
ε (Zn(k−l)) +

(b2 + 1)(s41(R) + 2s21(R))
s22n(R) + 1

η2
ε (Znk).

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 29

This is

s �
√

b2 + 1
s21(R)
s2n(R)

ηε(Znk).

We remark that the ratio s1(R)
s2n(R) is a constant for commonly-used subgaussian

distributions for R’s entries [51].

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

4. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, National Institute
of Standards and Technology (2019)

5. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

6. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

8. Alkim, E., Barreto, P.S.L.M., Bindel, N., Longa, P., Ricardini, J.E.: The lattice-
based digital signature scheme qTESLA. IACR Cryptology ePrint Archive 2019,
p. 85 (2019)

9. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

10. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

11. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

12. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms
for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83
(2019)

13. El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of
a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43414-7 3

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-662-43414-7_3
https://doi.org/10.1007/978-3-662-43414-7_3

30 Y. Chen et al.

14. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation
of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 13

15. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

16. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584. ACM (2013)

17. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: ITCS, pp. 147–156. ACM (2016)

18. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

19. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

20. Chen, C., Genise, N., Micciancio, D., Polyakov, Y., Rohloff, K.: Implementing
token-based obfuscation under (ring) LWE. IACR Cryptology ePrint Archive 2018,
p. 1222 (2018)

21. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

22. Chen, Y.: Réduction de réseau et sécurité concréte du chiffrement complétement
homomorphe. PhD thesis, Paris 7 (2013)

23. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, 15–19 October 2018, pp. 574–591 (2018)

24. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

25. Ducas, L., Galbraith, S., Prest, T., Yang, Y.: Integral matrix gram root and lattice
Gaussian sampling without floats. IACR Cryptology ePrint Archive 2019, p. 320
(2019)

26. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

27. Fouque, P.-A., et al.: Falcon: fast-fourier lattice-based compact signatures over
NTRU (2018)

28. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

29. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

30. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-662-46497-7_20

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures 31

32. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 20

33. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554. ACM (2013)

35. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS, pp. 612–621.
IEEE Computer Society (2017)

36. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and
evaluation of improved gaussian sampling for lattice trapdoors. In: Proceedings of
the 6th Workshop on Encrypted Computing and Applied Homomorphic Cryptog-
raphy, pp. 61–71. ACM (2018)

37. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: ACM Conference on Computer and
Communications Security, pp. 783–798. ACM (2017)

38. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

39. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

40. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

41. Micciancio, D.: Personal communication (2018)
42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.

In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

43. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

44. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measure. SIAM J. Comput. 37(1), 267–302 (2007)

45. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

46. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

47. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 333–
342 (2009)

48. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/11761679_17

32 Y. Chen et al.

49. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

50. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

51. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
In: Compressed Sensing, pp. 210–268. Cambridge University Press (2012)

52. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS, pp. 600–611. IEEE Computer Society (2017)

https://doi.org/10.1007/11681878_8

Decisional Second-Preimage Resistance:
When Does SPR Imply PRE?

Daniel J. Bernstein1,2(B) and Andreas Hülsing3(B)

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7045, USA

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
djb@cr.yp.to

3 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

andreas@huelsing.net

Abstract. There is a well-known gap between second-preimage resis-
tance and preimage resistance for length-preserving hash functions. This
paper introduces a simple concept that fills this gap. One consequence of
this concept is that tight reductions can remove interactivity for multi-
target length-preserving preimage problems, such as the problems that
appear in analyzing hash-based signature systems. Previous reduction
techniques applied to only a negligible fraction of all length-preserving
hash functions, presumably excluding all off-the-shelf hash functions.

Keywords: Cryptographic hash functions · Preimage resistance ·
Second-preimage resistance · Provable security · Tight reductions ·
Multi-target attacks · Hash-based signatures

1 Introduction

Define S : {0, 1}256 → {0, 1}256 as the SHA-256 hash function restricted to
256-bit inputs. Does second-preimage resistance for S imply preimage resistance
for S?

The classic Rogaway–Shrimpton paper “Cryptographic hash-function basics”
[15] shows that second-preimage resistance tightly implies preimage resistance
for an efficient hash function that maps fixed-length inputs to much shorter
outputs. The idea of the proof is that one can find a second preimage of a

Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf. This work was supported by the U.S. National Science Foun-
dation under grant 1314919, by the Cisco University Research Program, and by
DFG Cluster of Excellence 2092 “CASA: Cyber Security in the Age of Large-Scale
Adversaries”. “Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation” (or other funding agencies). Permanent ID of this
document: 36ecc3ad6d0fbbe65ce36226c2e3eb875351f326. Date: 2019.09.12.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 33–62, 2019.
https://doi.org/10.1007/978-3-030-34618-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_2&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-030-34618-8_2

34 Daniel J. Bernstein and Andreas Hülsing

random input x with high probability by finding a preimage of the hash of x.
But this probability depends on the difference in lengths, and the proof breaks
down for length-preserving hash functions such as S.

The same paper also argues that second-preimage resistance cannot imply
preimage resistance for length-preserving hash functions. The argument, in a
nutshell, is that the identity function from {0, 1}256 to {0, 1}256 provides un-
conditional second-preimage resistance—second preimages do not exist—even
though preimages are trivial to find.

A counterargument is that this identity-function example says nothing about
real hash functions such as S. The identity-function example shows that there
cannot be a theorem that for all length-preserving hash functions proves preim-
age resistance from second-preimage resistance; but this is only the beginning of
the analysis. The example does not rule out the possibility that second-preimage
resistance, together with a mild additional assumption, implies preimage resis-
tance.

1.1 Contributions of This Paper

We show that preimage resistance (PRE) follows tightly from the conjunction
of second-preimage resistance (SPR) and decisional second-preimage resistance
(DSPR). Decisional second-preimage resistance is a simple concept that
we have not found in the literature: it means that the attacker has negligible
advantage in deciding, given a random input x, whether x has a second preimage.

There is a subtlety in the definition of advantage here. For almost all length-
preserving hash functions, always guessing that x does have a second preimage
succeeds with probability approximately 63%. (See Sect. 3.) We define DSPR
advantage as an increase in probability compared to this trivial attack.

We provide three forms of evidence that DSPR is a reasonable assumption.
First, we show that DSPR holds for random functions even against quantum ad-
versaries that get quantum access to a function. Specifically, a q-query quantum
adversary has DSPR advantage at most 32q2/2n against an oracle for a uniform
random hash function from {0, 1}n to {0, 1}n. In [9] the same bound was shown
for PRE and SPR together with matching attacks demonstrating the bounds are
tight. This means that DSPR is at least as hard to break as PRE or SPR for
uniform random hash functions from {0, 1}n to {0, 1}n.

Second, the subtlety mentioned above means that DSPR, when generalized in
the most natural way to m-bit-to-n-bit hash functions, becomes unconditionally
provable when m is much larger than n. This gives a new proof of PRE from
SPR, factoring the original proof by Rogaway and Shrimpton into two steps:
first, prove DSPR when m is much larger than n; second, prove PRE from SPR
and DSPR.

Third, we have considered ways to attack DSPR for real hash functions such
as S, and have found nothing better than taking the time necessary to reliably
compute preimages. A curious feature of DSPR is that there is no obvious way
for a fast attack to achieve any advantage. A fast attack that occasionally finds
a preimage of H(x) will occasionally find a second preimage, but the baseline is

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 35

already guessing that x has a second preimage; to do better than the baseline, one
needs to have enough evidence to be reasonably confident that x does not have a
second preimage. Formally, there exists a fast attack (in the non-uniform model)
that achieves a nonzero advantage (by returning 0 if the input matches some
no-second-preimage values built into the attack, and returning 1 otherwise), but
we do not have a fast way to recognize this attack. See Sect. 2.3.

1.1.1 Multi-target Attacks. We see DSPR as showing how little needs to
be assumed beyond SPR to obtain PRE. However, skeptics might object that
SPR and DSPR are still two separate assumptions for cryptanalysts to study,
that DSPR has received less study than PRE, and that DSPR could be easier to
break than PRE, even assuming SPR. Why is assuming both SPR and DSPR,
and deducing PRE, better than assuming both SPR and PRE, and ignoring
DSPR? We give the following answer.

Consider the following simple interactive game T -openPRE. The attacker is
given T targets H(1, x1), . . . , H(T, xT), where x1, . . . , xT are chosen indepen-
dently and uniformly at random. The attacker is also given access to an “open-
ing” oracle that, given i, returns xi. The attacker’s goal is to output (i, x′) where
H(i, x′) = H(i, xi) and i was not an oracle query. Games of this type appear in,
e.g., analyzing the security of hash-based signatures: legitimate signatures reveal
preimages of some hash outputs, and attackers try to find preimages of other
hash outputs.

One can try to use an attack against this game to break PRE as follows. Take
the PRE challenge, insert it at a random position into a list of T − 1 randomly
generated targets, and run the attack. Abort if there is an oracle query for the
position of the PRE challenge; there is no difficulty answering oracle queries
for other positions. The problem here is that a successful attack could query
as many as T − 1 out of T positions, and then the PRE attack succeeds with
probability only 1/T . What happens if T is large and one wants a tight proof?

If T -openPRE were modified to use targets H(xi) instead of H(i, xi) then
the attacker could try many guesses for x′, checking each H(x′) against all of
the targets. This generic attack is T times more likely to succeed than a generic
attack against PRE using the same number of guesses. However, the inclusion
of the prefix i (as in [9]) seems to force attackers to focus on single targets, and
opens up the possibility of a security proof that does not quantitatively degrade
with T .

One might try to tightly prove security of T -openPRE assuming security
of a simpler non-interactive game T -PRE in which the opening oracle is re-
moved: the attacker’s goal is simply to find some (i, x′) with H(i, x′) = H(i, xi),
given T targets H(1, x1), . . . , H(T, xT). This game T -PRE is simple enough that
cryptanalysts can reasonably be asked to study it (and have already studied it
without the i prefixes). However, the difficulty of answering the oracle queries
in T -openPRE seems to be an insurmountable obstacle to a proof of this type.

We show that the security of T -openPRE follows tightly from the conjunction
of two simple non-interactive assumptions, T -SPR and T -DSPR. This shows an

36 Daniel J. Bernstein and Andreas Hülsing

important advantage of introducing DSPR, allowing a reduction to remove the
interactivity of T -openPRE.

The advantage of SPR (and T -SPR) over PRE (and T -PRE) in answering
oracle queries inside reductions was already pointed out in [9]. The remaining
issue, the reason that merely assuming T -SPR is not enough, is that there might
be an attack breaking PRE (and T -PRE and T -openPRE) only for hash outputs
that have unique preimages. Such an attack would never break SPR.

To address this issue, [9] assumes that each hash-function output has at
least two preimages. This is a restrictive assumption: it is not satisfied by most
length-preserving functions, and presumably it is not satisfied by (e.g.) SHA-256
for 256-bit inputs. Building a hash function that can be reasonably conjectured
to satisfy the assumption is not hard—for example, apply SHA-256, truncate
the result to 248 bits (see Theorem 11), and apply SHA-256 again to obtain a
random-looking 256-bit string—but the intermediate truncation here produces
a noticeably smaller security level, and having to do twice as many SHA-256
computations is not attractive.

We instead observe that an attack of this type must somehow be able to
recognize hash outputs with unique preimages, and, consequently, must be able
to recognize hash inputs without second preimages, breaking DSPR. Instead of
assuming that there are always two preimages, we make the weaker assumption
that breaking DSPR is difficult. This assumption is reasonable for a much wider
range of hash functions.

1.1.2 The Strength of SPR. There are some hash functions H where SPR
is easy to break, or at least seems easier to break than PRE (and T -PRE and
T -openPRE):

– Define H(x) = 4x mod p, where p is prime, 4 has order (p − 1)/2 modulo
p, and x is in the range {0, 1, . . . , p − 2}. Breaking PRE is then solving
the discrete-logarithm problem, which seems difficult when p is large, but
breaking SPR is a simple matter of adding (p−1)/2 modulo p−1. (Quantum
computers break PRE in this example, but are not known to break PRE for
analogous examples based on isogenies.)

– Define H : {0, 1}2kn → {0, 1}n by Merkle–Damg̊ard iteration of an n-bit
compression function. Then, under reasonable assumptions, breaking SPR
for H takes only 2n−k simple operations. See [10]. See also [1] for attacks
covering somewhat more general iterated hash functions.

In the first example, proving PRE from SPR+DSPR is useless. In the second
example, proving PRE from SPR+DSPR is unsatisfactory, since it seems to
underestimate the quantitative security of PRE. This type of underestimate
raises the same difficulties as a loose proof: users have to choose larger and
slower parameters for the proof to guarantee the desired level of security, or
have to take the risk of the “nightmare scenario” that there is a faster attack.

Fortunately, modern “wide-pipe” hash functions and “sponge” hash functions
such as SHA-3 are designed to eliminate the internal collisions exploited in at-
tacks such as [10]. Furthermore, input lengths are restricted in applications to

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 37

hash-based signatures, and this restriction seems to strengthen SPR even for
older hash functions such as SHA-256. The bottom line is that one can easily
select hash functions for which SPR and DSPR (and T -SPR and T -DSPR) seem
to be as difficult to break as PRE, such as SHA3-256 and SHA-256 restricted to
256-bit inputs.

1.2 Organization of the Paper

In Sect. 2 we define DSPR and show how it can be used to relate SPR and
PRE. A consequence of our definition is that a function does not provide DSPR
if noticeably more than half the domain elements have no colliding value. In
Sect. 3 we show that the overwhelming majority of length-preserving hash
functions have the property that more than half of the domain elements have a
colliding value. In Sect. 4 we extend the analysis to keyed hash functions. We
show in Sect. 5 that DSPR is hard in the quantum-accessible-random-oracle
model (QROM). We define T -DSPR in Sect. 6. We show in Sect. 7 how to
use T -DSPR to eliminate the interactivity of T -openPRE. We close our work
with a discussion of the implications for hash-based signatures in Sect. 8.

2 Decisional Second-Preimage Resistance

In this section we give a formal definition of decisional second-preimage resistance
(DSPR) for cryptographic hash functions. We start by defining some notation
and recalling some standard notions for completeness before we move on to the
actual definition.

2.1 Notation

Fix nonempty finite sets X and Y of finite-length bit strings. In this paper, a
hash function means a function from X to Y.

As shorthands we write M = |X |; N = |Y|; m = log2 M ; and n = log2 N .
The compressing case is that M > N , i.e., |X | > |Y|; the expanding case is that
M < N , i.e., |X | < |Y|; the length-preserving case is that M = N , i.e., |X | = |Y|.

We focus on bit strings so that it is clear what it means for elements of X or
Y to be algorithm inputs or outputs. Inputs and outputs are required to be bit
strings in the most common formal definitions of algorithms. These bit strings
are often encodings of more abstract objects, and one could generalize all the
definitions in this paper to work with more abstract concepts of algorithms.

2.2 Definitions

We now give several definitions of security concepts for a hash function H. We
have not found decisional second-preimage resistance (DSPR) in the literature.
We also define a second-preimage-exists predicate (SPexists) and the second-
preimage-exists probability (SPprob) as tools to help understand DSPR. The

38 Daniel J. Bernstein and Andreas Hülsing

definitions of preimage resistance (PRE) and second-preimage resistance (SPR)
are standard but we repeat them here for completeness.

Definition 1 (PRE). The success probability of an algorithm A against the
preimage resistance of a hash function H is

SuccpreH (A)
def
= Pr [x ←R X ;x′ ← A(H(x)) : H(x) = H(x′)] .

Definition 2 (SPR). The success probability of an algorithm A against the
second-preimage resistance of a hash function H is

SuccsprH (A)
def
= Pr [x ←R X ;x′ ← A(x) : H(x) = H(x′) ∧ x �= x′] .

Definition 3 (SPexists). The second-preimage-exists predicate SPexists(H) for
a hash function H is the function P : X → {0, 1} defined as follows:

P (x)
def
=

{
1 if |H−1(H(x))| ≥ 2
0 otherwise.

If P (x) = 0 then x has no second preimages under H: any x′ �= x has
H(x′) �= H(x). The only possible successes of an SPR attack are for inputs x
where P (x) = 1.

Definition 4 (SPprob). The second-preimage-exists probability SPprob(H) for
a hash function H is Pr [x ←R X : P (x) = 1], where P = SPexists(H).

In other words, p = SPprob(H) is the maximum of SuccsprH (A) over all
algorithms A, without any limits on the cost of A. Later we will see that almost
all length-preserving hash functions H have p > 1/2. More precisely, p ≈ 1 −
e−1 ≈ 0.63. For comparison, p = 0 for an injective function H, such as the n-
bit-to-n-bit identity function; and p = 1 for a function where every output has
multiple preimages.

Definition 5 (DSPR). Let A be an algorithm that always outputs 0 or 1.
The advantage of A against the decisional second-preimage resistance of a hash
function H is

Advdspr
H (A)

def
= max {0,Pr [x ←R X ; b ← A(x) : P (x) = b] − p}

where P = SPexists(H) and p = SPprob(H).

2.3 Examples of DSPR Advantages

Here are some examples of computing DSPR advantages. As above, write P =
SPexists(H) and p = SPprob(H).

If A(x) = 1 for all x, then Pr [x ←R X ; b ← A(x) : P (x) = b] = p by defini-
tion, so Advdspr

H (A) = 0.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 39

If A(x) = 0 for all x, then Advdspr
H (A) = max {0, 1 − 2p}. In particular,

Advdspr
H (A) = 0 if p ≥ 1/2, while Advdspr

H (A) = 1 for an injective function H.
More generally, say A(x) flips a biased coin and returns the result, where the

probability of 1 is c, independently of x. Then A(x) = P (x) with probability
cp + (1 − c)(1 − p), which is between min {1 − p, p} and max {1 − p, p}, so again
Advdspr

H (A) = 0 if p ≥ 1/2.
As a more expensive example, say A(x) searches through all x′ ∈ X to see

whether x′ is a second preimage for x, and returns 1 if any second preimage is
found, otherwise 0. Then A(x) = P (x) with probability 1, so Advdspr

H (A) = 1−p.
This is the maximum possible DSPR advantage.

More generally, say A(x) runs a second-preimage attack B against H, and
returns 1 if B is successful (i.e., the output x′ from B satisfies x′ �= x and H(x′) =
H(x)), otherwise 0. By definition A(x) = 1 with probability SuccsprH (B), and if
A(x) = 1 then also P (x) = 1, so A(x) = 1 = P (x) with probability SuccsprH (B).
Also P (x) = 0 with probability 1 − p and if P (x) = 0 also A(x) = 0 as there
simply does not exist any second-preimage for B to find. Hence, A(x) = 0 = P (x)
with probability 1−p. Overall A(x) = P (x) with probability 1−p+SuccsprH (B),
so

Advdspr
H (A) = max {0, 1 − 2p + SuccsprH (B)} .

This advantage is 0 whenever 0 ≤ SuccsprH (B) ≤ 2p− 1: even if B breaks second-
preimage resistance with probability as high as 2p − 1 (which is approximately
26% for almost all length-preserving H), A breaks DSPR with advantage 0. If
B breaks second-preimage resistance with probability p, the maximum possible,
then Advdspr

H (A) = 1 − p, the maximum possible advantage.
As a final example, say x1 ∈ X has no second preimage, and say A(x)

returns 0 if x = x1, otherwise 1. Then A(x) = P (x) with probability p + 1/2m,
so Advdspr

H (A) = 1/2m. This example shows that an efficient algorithm can
achieve a (very small) nonzero DSPR advantage. We can efficiently generate an
algorithm A of this type with probability 1−p by choosing x1 ∈ X at random (in
the normal case that X = {0, 1}m), but for typical hash functions H we do not
have an efficient way to recognize whether A is in fact of this type, i.e., whether
x1 in fact has no second preimage: recognizing this is exactly the problem of
breaking DSPR!

2.4 Why DSPR Advantage Is Defined This Way

Many security definitions require the attacker to distinguish two possibilities,
each of which naturally occurs with probability 1/2. Any sort of blind guess
is correct with probability 1/2. Define a as the probability of a correct output
minus 1/2; a value of a noticeably larger than 0 means that the algorithm is
noticeably more likely than a blind guess to be correct.

If an algorithm is noticeably less likely than a blind guess to be correct then
one can do better by (1) replacing it with a blind guess or (2) inverting its output.
The first option replaces a with max{0, a}; the second option replaces a with
|a|; both options have the virtue of eliminating negative values of a. Advantage

40 Daniel J. Bernstein and Andreas Hülsing

is most commonly defined as |a|, or alternatively as 2|a|, the distance between
the probability of a correct output and the probability of an incorrect output.
These formulas are simpler than max{0, a}.

For DSPR, the two possibilities are not naturally balanced. A second preim-
age exists with probability p, and almost all length-preserving (or compressing)
hash functions have p > 1/2. Guessing 1 is correct with probability p; guessing 0
is correct with probability 1−p; random guesses can trivially achieve any desired
intermediate probability. What is interesting—and what is naturally considered
in our proofs—is an algorithm A that guesses correctly with probability larger
than p. We thus define the advantage as max{0,Succ(A) − p}, where Succ(A) is
the probability of A generating a correct output.

An algorithm A that guesses correctly with probability smaller than 1 − p is
also useful. We could define advantage as max{0,Succ(A)−p, (1−Succ(A))−p}
to take this into account, rather than leaving it to the attack developer to invert
the output. However, this formula is more complicated than max{0,Succ(A)−p}.

If p < 1/2 then, with our definitions, guessing 0 has advantage 1 − 2p > 0.
In particular, if p = 0 then guessing 0 has advantage 1: our definitions state
that injective functions are trivially vulnerable to DSPR attacks. It might seem
intuitive to define DSPR advantage as beating the best blind guess, i.e., as
probability minus max{p, 1−p} rather than probability minus p. This, however,
would break the proof that SPR ∧ DSPR implies PRE: the identity function
would have both SPR and DSPR but not PRE. We could add an assumption
that p ≥ 1/2, but the approach we have taken is simpler.

2.5 DSPR Plus SPR Implies PRE

We now present the main application of DSPR in the simplest case: We show
that a second-preimage-resistant and decisional-second-preimage-resistant hash
function is preimage resistant.

We first define the two reductions we use, SPfromP and DSPfromP, and
then give a theorem statement analyzing success probabilities. The algorithm
SPfromP(H,A) is the standard algorithm that tries to break SPR using an algo-
rithm A that tries to break PRE. The algorithm DSPfromP(H,A) is a variant
that tries to break DSPR. Each algorithm uses one computation of H, one call to
A, and (for DSPfromP) one string comparison, so each algorithm has essentially
the same cost as A if H is efficient.

Definition 6 (SPfromP). Let H be a hash function. Let A be an algorithm.
Then SPfromP(H,A) is the algorithm that, given x ∈ X , outputs A(H(x)).

Definition 7 (DSPfromP). Let H be a hash function. Let A be an algo-
rithm. Then DSPfromP(H,A) is the algorithm that, given x ∈ X , outputs [x �=
A(H(x))].

This output is 0 if A(H(x)) returns the preimage x that was already known
for H(x), and 1 otherwise. Note that the 0 case provides some reason to believe
that there is only one preimage. If there are i > 1 preimages then x, which is

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 41

not known to A except via H(x), is information-theoretically hidden in a set of
size i, so A cannot return x with probability larger than 1/i.

Theorem 8 (DSPR ∧ SPR ⇒ PRE). Let H be a hash function. Let A be an
algorithm. Then

SuccpreH (A) ≤ Advdspr
H (B) + 3 · SuccsprH (C)

where B = DSPfromP(H,A) and C = SPfromP(H,A).

Proof. This is a special case of Theorem 25 below, modulo a change of syntax.
To apply Theorem 25 we set K to be {()}, where () is the empty string. The
change of syntax views a keyed hash function with an empty key as an unkeyed
hash function. ��

3 The Second-Preimage-Exists Probability

This section mathematically analyzes SPprob(H), the probability that a uniform
random input to H has a second preimage. The DSPR advantage of any attacker
is information-theoretically bounded by 1 − SPprob(H).

3.1 Simple Cases

In retrospect, the heart of the Rogaway–Shrimpton SPR-PRE reduction [15,
Theorem 7] is the observation that SPprob(H) is very close to 1 for all highly
compressing hash functions H. See Theorem 9. We show that SPprob(H) is actu-
ally equal to 1 for almost all hash functions H that compress more than a few
bits; see Theorem 11.

Theorem 9 (lower bound on SPprob in the compressing case). If H is a
hash function and M > N then SPprob(H) ≥ 1 − (N − 1)/M .

The maximum possible DSPR advantage in this case is (N − 1)/M . For
example, if M > 1 and N = 1 then SPprob(H) = 1 and the DSPR advan-
tage is always 0. As another example, a 320-bit-to-256-bit hash function H
has SPprob(H) ≥ 1 − (2256 − 1)/2320, and the DSPR advantage is at most
(2256 − 1)/2320 < 1/264.

Proof. Define I as the set of elements of X that have no second preimages; i.e.,
the set of x ∈ X such that |H−1(H(x))| = 1.

The image set H(I) ⊆ Y has size |I|, so |I| ≤ |Y| = N < M = |X |. The
complement X −I is thus nonempty, so the image set H(X −I) is also nonempty.
This image set cannot overlap H(I): if H(x′) = H(x) with x′ ∈ X − I and x ∈ I
then x′, x are distinct elements of H−1(H(x)), but |H−1(H(x))| = 1 by definition
of I. Hence |I| ≤ N − 1.

By definition SPprob(H) is the probability that |H−1(H(x))| ≥ 2 where x is
a uniform random element of X , i.e., the probability that x is not in I. This is
at least 1 − (N − 1)/M . ��

42 Daniel J. Bernstein and Andreas Hülsing

Theorem 10 (average of SPprob). The average of SPprob(H) over all hash
functions H is 1 − (1 − 1/N)M−1.

For example, the average is 1 − (1 − 1/2256)2
256−1 ≈ 1 − 1/e ≈ 0.63212 if

M = 2256 and N = 2256; see also Theorem 12. The average converges rapidly
to 1 as N/M drops: for example, the average is approximately 1 − 2−369.33 if
M = 2256 and N = 2248, and is approximately 1 − 2−94548 if M = 2256 and
N = 2240, while the lower bounds from Theorem 9 are approximately 1 − 2−16

and approximately 1 − 2−32 respectively.
The average converges to 0 as N/M increases. The average crosses below 1/2,

making DSPR trivially breakable for the average function, as N/M increases past
about 1/ log 2 ≈ 1.4427.

Proof. For each x ∈ X , there are exactly N(N − 1)M−1 hash functions H for
which x has no second preimages. Indeed, there are N choices of H(x), and then
for each i ∈ X − {x} there are N − 1 choices of H(i) ∈ Y − {H(x)}.

Hence there are exactly M(NM − N(N − 1)M−1) pairs (H, x) where x has a
second preimage under H; i.e., the total of SPprob(H) over all NM hash functions
H is NM −N(N − 1)M−1; i.e., the average of SPprob(H) over all hash functions
H is 1 − N(N − 1)M−1/NM = 1 − (1 − 1/N)M−1. ��
Theorem 11 (how often SPprob is 1). If H is a uniform random hash
function then SPprob(H) = 1 with probability at least 1 − M(1 − 1/N)M−1.

This is content-free in the length-preserving case but becomes more useful
as N/M drops. For example, if M = 2256 and N = 2248, then the chance of
SPprob(H) < 1 is at most 2256(1 − 1/2248)2

256−1 ≈ 2−113.33. Hence almost
all 256-bit-to-248-bit hash functions have second preimages for all inputs, and
therefore have perfect DSPR (DSPR advantage 0) against all attacks.

Proof. Write q for the probability that SPprob(H) = 1. Then SPprob(H) ≤
1−1/M with probability 1−q. The point here is that SPprob(H) is a probability
over M inputs, and is thus a multiple of 1/M .

The average of SPprob(H) is at most q+(1−q)(1−1/M) = 1−(1−q)/M . By
Theorem 10, this average is exactly 1−(1−1/N)M−1. Hence 1−(1−1/N)M−1 ≤
1 − (1 − q)/M ; i.e., q ≥ 1 − M(1 − 1/N)M−1. ��
Theorem 12 (average of SPprob vs. 1 − 1/e in the length-preserving
case). If M = N > 1 then the average a of SPprob(H) over all hash functions
H has 1 − (1/e)N/(N − 1) < a < 1 − 1/e.

The big picture is that almost all length-preserving hash functions H have
SPprob(H) close to 1− 1/e. This theorem states part of the picture: the average
of SPprob(H) is extremely close to 1 − 1/e if N is large. Subsequent theorems
fill in the rest of the picture.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 43

Proof. The point is that (N/(N − 1))N−1 < e < (N/(N − 1))N for N ≥ 2. See,
e.g., [4]. In other words, e(N − 1)/N < (N/(N − 1))N−1 < e. Invert to see that
1/e < (1 − 1/N)N−1 < (1/e)N/(N − 1). Finally, the average a of SPprob(H) is
1 − (1 − 1/N)N−1 by Theorem 10. ��

3.2 How SPprob Varies

This subsection analyzes the distribution of SPprob(H) as H varies. Theorem 14
amounts to an algorithm that computes the probability of each possible value
of SPprob(H) in time polynomial in M + N . Theorem 16, used in Sect. 3.3,
gives a simple upper bound on each term in the probability.

Theorem 13. Let a, b be nonnegative integers. Define c(a, b) as the coefficient
of xb in the power series b!(ex − 1 − x)a/a!. Then a!c(a, b) is the number of
functions from {1, . . . , b} to {1, . . . , a} for which each of {1, . . . , a} has at least
two preimages.

This is a standard example of “generatingfunctionology”. See, e.g., [16, se-
quence A000478, “E.g.f.”] for a = 3 and [16, sequence A058844, “E.g.f.”] for
a = 4.

Note that c(a, b) = 0 for b < 2a, and that c(0, b) = 0 for b > 0.

Proof. Choose integers i1, . . . , ia ≥ 2 with i1 + · · · + ia = b, and consider any
function f built as follows. Let π be a permutation of {1, . . . , b}. Define f(π(1)) =
f(π(2)) = . . . = f(π(i1)) = 1; note that 1 has i1 ≥ 2 preimages. Define f(π(i1 +
1)) = f(π(i1 + 2)) = . . . = f(π(i1 + i2)) = 2; note that 2 has i2 ≥ 2 preimages.
Et cetera.

There are exactly b! choices of π, producing exactly b!/i1! · · · ia! choices of f .
This covers all functions f for which 1 has exactly i1 preimages, 2 has exactly
i2 preimages, etc.

The total number of functions being counted is thus the sum of b!/i1! · · · ia!
over all i1, . . . , ia ≥ 2 with i1 + · · · + ia = b.

For comparison, the power series ex − 1 − x is
∑

i≥2 xi/i!, so

(ex − 1 − x)a =
∑

i1,...,ia≥2

xi1+···+ia/i1! · · · ia!.

The coefficient of xb is the sum of 1/i1! · · · ia! over all i1, . . . , ia ≥ 2 with i1 +
· · · + ia = b. By definition a!c(a, b)/b! is this coefficient, so a!c(a, b) is the sum of
b!/i1! · · · ia! over all i1, . . . , ia ≥ 2 with i1 + · · · + ia = b. ��
Theorem 14 (exact distribution of SPprob). There are exactly(

M

j

) ∑
j≤k≤N

c(k − j,M − j)
N !

(N − k)!

hash functions H with SPprob(H) = 1 − j/M .

44 Daniel J. Bernstein and Andreas Hülsing

Fig. 1. Cumulative distribution of SPprob(H) for M = N = 1; M = N = 2; M = N =
4; M = N = 8; M = N = 16; M = N = 32; M = N = 64. The probabilities that
SPprob(H) ≤ 0.5 are, respectively, 1; 0.5; 0.65625; ≈0.417366; ≈0.233331; ≈0.100313;
and ≈0.023805. As N → ∞ with M = N , the distribution converges to a vertical line
at 1 − 1/e.

The summand is 0 if k > (M + j)/2, i.e., if M − j < 2(k − j), since then
c(k − j,M − j) = 0. The summand is also 0 if k = j and M > j, since then
c(0,M − j) = 0.

In particular, if j > N then SPprob(H) = 1 − j/M with probability 0; and
if j = N < M then SPprob(H) = 1 − j/M with probability 0. This calculation
shows that Theorem 14 includes Theorem 9.

The distribution of M − j here, for a uniform random hash function H, is
equal to the distribution of “K1” in [3, formula (2.21)], but the formulas are
different. The sum in [3, formula (2.21)] is an alternating sum with cancellation
between large terms. The sum in Theorem 14 is a sum of nonnegative terms;
this is important for our asymptotic analysis.

Figure 1 shows the cumulative distribution of SPprob(H) when M = N ∈
{1, 2, 4, 8, 16, 32, 64}. Each graph ranges from 0 through 1 horizontally, and from
0 through 1 vertically. At horizontal position p, the (maximum) vertical position
is the probability that SPprob(H) ≤ p. We computed these probabilities using
Theorem 14.

Proof. We count the hash functions that (1) have exactly k ≥ j outputs and (2)
have exactly j inputs with no second preimages.

Choose the j inputs. There are
(
M
j

)
ways to do this.

Choose a partition of the N outputs into

• j outputs that will be used (without second preimages) by the j inputs;
• k − j outputs that will be used (with second preimages) by the other M − j

inputs; and
• N − k outputs that will not be used.

There are N !/j!(k − j)!(N − k)! ways to do this.
Choose an injective function from the j inputs to the j outputs. There are

j! ways to do this.
Choose a function from the other M − j inputs to the other k − j outputs for

which each of these k − j outputs has at least two preimages. By Theorem 13,
there are (k − j)!c(k − j,M − j) ways to do this.

This produces a hash function that, as desired, has exactly k outputs and
has exactly j inputs with no second preimages. Each such function is produced
exactly once. Hence there are

(
M
j

)
c(k − j,M − j)N !/(N − k)! such functions.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 45

Finally, sum over k to see that there are(
M

j

) ∑
j≤k≤N

c(k − j,M − j)
N !

(N − k)!

hash functions H that have exactly j inputs with no second preimages, i.e., hash
functions H that have SPprob(H) = 1 − j/M . ��
Theorem 15. Let a, b be positive integers. Let ζ be a positive real number. As-
sume that b/a = ζ + ζ2/(eζ − 1 − ζ). Then c(a, b) ≤ (eζ − 1 − ζ)aζ−bb!/a!.

Our proof applies [5, Proposition VIII.7], which is an example of the “saddle-
point method” in analytic combinatorics. With more work one can use the saddle-
point method to improve bounds by a polynomial factor, but our main concern
here is exponential factors.

Proof. Define B(z) =
∑

i≥2 zi−2/i! = 1/2+z/6+z2/24+· · · . Note that z2B(z) =
ez − 1 − z, and that zB′(z) =

∑
i≥3(i − 2)zi−2/i! = (z − 2)B(z) + 1. Also define

A(z) = 1; R = ∞; T = ∞; N = b − 2a; n = a; and λ = b/a − 2.
Check the hypotheses of [5, Proposition VIII.7]: A and B are analytic func-

tions of the complex variable z, with all coefficients nonnegative; B(0) = 1/2 �= 0;
the coefficient of z in B is nonzero; the radius of convergence of B is ∞; the radius
of convergence of A is also ∞; the limit of xB′(x)/B(x) as x → ∞ is ∞; λ is a
positive real number; N = λn; and ζB′(ζ)/B(ζ) = ζ −2+1/B(ζ) = b/a−2 = λ.

Now [5, Proposition VIII.7] states that the coefficient of zN in A(z)B(z)n is
at most A(ζ)B(ζ)nζ−N ; i.e., the coefficient of zb−2a in ((ez − 1 − z)/z2)a is at
most B(ζ)aζ2a−b; i.e., the coefficient of zb in (ez −1−z)a is at most B(ζ)aζ2a−b.
Hence c(a, b) ≤ B(ζ)aζ2a−bb!/a! = (eζ − 1 − ζ)aζ−bb!/a!. ��
Theorem 16 (exponential convergence of SPprob). Let j be an integer
with 0< j < M . Let k be an integer with j < k < N . Define μ = M/N , α = j/N ,
and κ = k/N . Let ζ be a positive real number. Assume that (μ − α)/(κ − α) =
ζ + ζ2/(eζ − 1 − ζ). Then(

M

j

)
c(k − j,M − j)

N !
(N − k)!

≤ M !N !eNτN

NN

where τ = (eζ − 1 − ζ)κ−α/ζμ−ααα(κ − α)κ−α(1 − κ)1−κ.

The proof combines Theorem 15 with the weak Stirling bound N ! ≥ (N/e)N .
See [14] for a proof that (N/e)N

√
2πNe1/(12N+1) ≤ N ! ≤ (N/e)N

√
2πNe1/12N .

Proof. Define a = k − j and b = M − j. Then a and b are positive integers, and
b/a = (μ − α)/(κ − α) = ζ + ζ2/(eζ − 1 − ζ), so

c(k − j,M − j) = c(a, b) ≤ (eζ − 1 − ζ)ab!
ζba!

46 Daniel J. Bernstein and Andreas Hülsing

by Theorem 15, so(
M

j

)
c(k − j,M − j)

N !
(N − k)!

≤ M !N !(eζ − 1 − ζ)a

j!ζba!(N − k)!

≤ M !N !(eζ − 1 − ζ)a

(j/e)jζb(a/e)a((N − k)/e)N−k

by the weak Stirling bound. Now substitute j = αN , k = κN , a = (κ − α)N ,
and b = (μ − α)N :(

M

j

)
c(k − j,M − j)

N !
(N − k)!

≤ M !N !(eζ − 1 − ζ)(κ−α)N

(αN/e)αNζ(μ−α)N ((κ − α)N/e)(κ−α)N ((N − κN)/e)N−κN

=
M !N !(eζ − 1 − ζ)(κ−α)N

(N/e)NααNζ(μ−α)N (κ − α)(κ−α)N (1 − κ)N−κN
=

M !N !τN

(N/e)N

as claimed. ��

3.3 Maximization

This subsection formalizes and proves our claim that SPprob(H) is close to
1 − 1/e for almost all length-preserving hash functions H: as N increases (with
M = N), the distributions plotted in Fig. 1 converge to a vertical line.

The basic idea here is that τ in Theorem 16 is noticeably below e when
j/N is noticeably below or above 1/e. One can quickly see this by numerically
plotting τ as a function of α and ζ: note that any choice of α and ζ (along with
μ = 1) determines κ = α + (μ − α)/(ζ + ζ2/(eζ − 1 − ζ)) and thus determines
τ . The plot suggests that ζ = 1 maximizes τ for each α, and that moving α
towards 1/e from either side increases τ up to its maximum value e. One could
use interval arithmetic to show, e.g., that τ/e < 0.998 for j/N > 0.4, but the
required number of subintervals would rapidly grow as j/N approaches 1/e. Our
proof also handles some corner cases that are not visible in the plot.

Theorem 17. Let μ, α, κ, ζ be positive real numbers with α < μ; α < κ < 1; and
(μ−α)/(κ−α) = ζ +ζ2/(eζ −1−ζ). First, there is a unique positive real number
Z such that Z(eZ −1)/(eZ −Z) = (μ−α)/(1−α). Second, there is a unique real
number K such that α < K < 1 and (μ − α)/(K − α) = Z + Z2/(eZ − 1 − Z).
Third,

(eζ − 1 − ζ)κ−α

ζμ−ααα(κ − α)κ−α(1 − κ)1−κ
≤ (eZ − 1 − Z)K−α

Zμ−ααα(K − α)K−α(1 − K)1−K
.

Fourth, if μ = 1 then

(eZ − 1 − Z)K−α

Zμ−ααα(K − α)K−α(1 − K)1−K
=

(e − 1)1−α

αα(1 − α)1−α
.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 47

Proof. See full version of this paper online. ��
Theorem 18. Let α, κ, ζ, A be positive real numbers. Assume that α < κ < 1;
that (1−α)/(κ−α) = ζ +ζ2/(eζ −1−ζ); and that 1/e ≤ A ≤ α or α ≤ A ≤ 1/e.
Then

(eζ − 1 − ζ)κ−α

ζ1−ααα(κ − α)κ−α(1 − κ)1−κ
≤ (e − 1)1−A

AA(1 − A)1−A
.

Proof. See full version of this paper online. ��
Theorem 19. Assume that M = N . Let A be a real number with 0 < A < 1.
Let H be a uniform random hash function. If A > 1/e, define E as the event that
SPprob(H) ≤ 1−A. If A ≤ 1/e, define E as the event that SPprob(H) ≥ 1−A.
Then E occurs with probability at most (T/e)N2πN2(N + 1)e1/6N where

T = max{1 +
√

2, (e − 1)1−A/AA(1 − A)1−A}.

Any A �= 1/e has T/e < 1, and then the important factor in the probability
for large N is (T/e)N . For example, if A = 0.4 then T/e < 0.99780899, so
(T/e)N is below 1/22

247
for N = 2256. As another example, if A = 0.37 then

T/e < 0.99999034, so (T/e)N is below 1/22
239

for N = 2256.

Proof. See full version of this paper online. ��

4 DSPR for Keyed Hash Functions

In this section we lift the discussion to the setting of keyed hash functions. We
model keyed hash functions as functions H : K × X → Y that take a dedicated
key as additional input argument. One might also view a keyed hash function as
a family of hash functions where elements of the family H are obtained by fixing
the first input argument which we call the function key. We write Hk

def= H(k, ·)
for the function that is obtained from H by fixing the first input as k ∈ K.

We assume that K, like X and Y, is a nonempty finite set of finite-length
bit strings. We define the compressing, expanding, and length-preserving cases
as the cases |X | > |Y|, |X | < |Y|, and |X | = |Y| respectively, ignoring the size
of K.

We recall the definitions of preimage and second-preimage resistance for
keyed hash functions for completeness:

Definition 20 (PRE for keyed hash functions). The success probability of
adversary A against the preimage resistance of a keyed hash function H is

SuccpreH (A)
def
= Pr [x ←R X ; k ←R K;x′ ← A(Hk(x), k) : Hk(x) = Hk(x′)] .

Definition 21 (SPR for keyed hash functions). The success probability of
adversary A against the second-preimage resistance of a keyed hash function H is

SuccsprH (A)
def
= Pr [x ←R X ; k ←R K;x′ ← A(x, k) : Hk(x) = Hk(x′) ∧ x �= x′] .

48 Daniel J. Bernstein and Andreas Hülsing

Our definition of DSPR for a keyed hash function H relies on the second-
preimage-exists predicate SPexists and the second-preimage-exists probability
SPprob for the functions Hk. If H is chosen uniformly at random then, for large
N and any reasonable size of K, it is very likely that all of the functions Hk

have SPprob(Hk) close to 1 − 1/e; see Theorem 19.

Definition 22 (DSPR for keyed hash functions). Let A be an algorithm
that always outputs 0 or 1. The advantage of A against the decisional second-
preimage resistance of a keyed hash function H is

Advdspr
H (A)

def
= max {0,Pr [x ←R X , k ←R K, b ← A(x, k) : Pk(x) = b] − p}

where Pk = SPexists(Hk) and p is the average of SPprob(Hk) over all k.

As an example, consider the keyed hash function H with X = Y = {0, 1}256,
K = {0, 1}, H0(x) = x, and H1(x) = (x1, x2, . . . , x255, 0) where the xi denote
the bits of x. Then Pk(x) = k, SPprob(Hk) = k, and p = 1/2. A trivial adver-
sary that outputs k has success probability 1 and thus DSPR advantage 1/2,
the maximum possible DSPR advantage: this function does not have decisional
second-preimage resistance.

It might seem natural to define SPprob(H) as the average mentioned in the
theorem. However, we will see later in the multi-target context that p is naturally
replaced by a more complicated quantity influenced by the algorithm.

4.1 DSPR Plus SPR Implies PRE

Before we show that DSPR is hard in the QROM (see Sect. 5), we give
a generalization of Theorem 8 for keyed hash functions. This theorem states
that second-preimage and decisional second-preimage resistance together imply
preimage resistance.

As in Theorem 8, we first define the two reductions we use, and then give
a theorem statement analyzing success probabilities. The special case that K =
{()}, where () means the empty string, is the same as Theorem 8, modulo syn-
tactic replacements such as replacing the pair ((), x) with x.

Definition 23 (SPfromP for keyed hash functions). Let H be a keyed hash
function. Let A be an algorithm. Then SPfromP(H,A) is the algorithm that,
given (k, x) ∈ K × X , outputs A(Hk(x), k).

Definition 24 (DSPfromP for keyed hash functions). Let H be a keyed
hash function. Let A be an algorithm. Then DSPfromP(H,A) is the algorithm
that, given (k, x) ∈ K × X , outputs [x �= A(Hk(x), k)].

Theorem 25 (DSPR ∧ SPR ⇒ PRE for keyed hash functions). Let H
be a keyed hash function. Let A be an algorithm. Then

SuccpreH (A) ≤ Advdspr
H (B) + 3 · SuccsprH (C)

where B = DSPfromP(H,A) and C = SPfromP(H,A).

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 49

Proof. To analyze the success probabilities, we split the universe of possible
events into mutually exclusive events across two dimensions: the number of
preimages of Hk(x), and whether A succeeds or fails in finding a preimage.
Specifically, define

Si
def=

[∣∣H−1
k (Hk(x))

∣∣ = i ∧ Hk(A(Hk(x), k)) = Hk(x)
]

as the event that there are exactly i preimages and that A succeeds, and define

Fi
def=

[∣∣H−1
k (Hk(x))

∣∣ = i ∧ Hk(A(Hk(x), k)) �= Hk(x)
]

as the event that there are exactly i preimages and that A fails.
Note that there are only finitely many i for which the events Si and Fi can

occur, namely i ∈ {1, 2, . . . ,M}. All sums below are thus finite sums.
Define si and fi as the probabilities of Si and Fi respectively. The probability

space here includes the random choices of x and k, and any random choices
made inside A. The conditional probabilities mentioned below are conditional
probabilities given Si.

PRE success probability. By definition, SuccpreH (A) is the probability of
the event that Hk(x) = Hk(A(Hk(x), k)). This event is the union of Si, so
SuccpreH (A) =

∑
i si.

DSPR success probability. Define Pk = SPexists(Hk). For the i = 1 cases,
we have Pk(x) = 0 by definition of SPexists, so B is correct if and only if A
succeeds. For the i > 1 cases, we have Pk(x) = 1, so B is correct as long as A
does not output x. There are two disjoint ways for this to occur:
– A succeeds (case Si). Then A outputs x with conditional probability exactly

1
i , since x is information-theoretically hidden in a set of size i; so there is
conditional probability exactly i−1

i that A does not output x.
– A fails (case Fi). Then A does not output x.

Together we get

Pr[B(x, k) = Pk(x)] = s1 +
∑
i>1

i − 1
i

si +
∑
i>1

fi.

DSPR advantage. By definition Advdspr
H (B) = max{0,Pr[B(x, k) = Pk(x)]−p}

where p is the average of SPprob(Hk) over all k.
By definition SPprob(Hk) is the probability over all choices of x that x has

a second preimage under Hk. Hence p is the same probability over all choices of
x and k; i.e., p =

∑
i>1 si +

∑
i>1 fi. Now subtract:

Advdspr
H (B) = max{0,Pr[B(x, k) = Pk(x)] − p}

≥ Pr[B(x, k) = Pk(x)] − p

= s1 +
∑
i>1

i − 1
i

si +
∑
i>1

fi −
∑
i>1

si −
∑
i>1

fi

= s1 −
∑
i>1

1
i
si.

50 Daniel J. Bernstein and Andreas Hülsing

SPR success probability. For the i = 1 cases, C never succeeds. For the i > 1
cases, C succeeds if and only if A succeeds and returns a value different from
x. This happens with conditional probability i−1

i for the same reason as above.
Hence

SuccsprH (C) =
∑
i>1

i − 1
i

si.

Combining the probabilities. We have

Advdspr
H (B) + 3 · SuccsprH (C) ≥ s1 −

∑
i>1

1
i
si + 3

∑
i>1

i − 1
i

si

= s1 +
∑
i>1

3i − 4
i

si

≥ s1 +
∑
i>1

si = SuccpreH (A)

as claimed.
The formal structure of the proof is concluded at this point, but we close

with some informal comments on how to interpret this proof. What happens is
the following. The cases where the plain reduction from SPR (C in the above)
fails are the S1 cases, i.e., A succeeds when there is only one preimage. If the
probability that they occur (s1) gets close to A’s total success probability, the
success probability of C goes towards zero. However, s1 translates almost directly
to the DSPR advantage of B. This is also intuitively what we want. For a brute-
force attack, one would expect s1 to be less than a 1 − p fraction of A’s success
probability. If it is higher, this allows to distinguish. On the extreme: If s1 = s,
then B’s DSPR advantage is exactly A’s success probability and the reduction is
tight. If s1 = 0, B has no advantage over guessing, but C wins with at least half
the success probability of A (in this case our generic 1/3 bound can be tightened).
As mentioned above, in general one would expect s1 to be a recognizable fraction
of s but clearly smaller than s. In these cases, both reductions succeed. ��

5 DSPR is Hard in the QROM

So far we have highlighted relations between DSPR and other hash function
properties. However, all this is useful only if DSPR is a hard problem for the
hash functions we are interested in. In the following we show that DSPR is hard
for a quantum adversary as long as the hash function behaves like a random
function. We do this presenting a lower bound on the quantum query complexity
for DSPR.

To make previous results reusable, we first need a result that relates the
success probability of an adversary in a biased distinguishing game like the DSPR
game to its success probability in the balanced version of the game.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 51

Theorem 26. Let Bλ denote the Bernoulli distribution that assigns probability
λ to 1, Xb for b ∈ {0, 1} a non-empty set,

Succλ (A)
def
= Pr [b ←R Bλ;x ←R Xb; g ← A(x) : g = b] ,

and
Advλ (A)

def
= max{0,Succλ (A) − λ}

Then for p ≥ 1/2 we have

Advp (A) ≤ p |Pr [x ←R X1 : 1 ← A(x)] − Pr [x ←R X0 : 1 ← A(x)]| .

More specifically

Succ 1
2

(A) ≥ 1
2p

Succp (A) , Adv 1
2

(A) ≥ 1
2p

Advp (A) ,

and
1
2

|Pr [x ←R X1 : 1 ← A(x)] − Pr [x ←R X0 : 1 ← A(x)]| ≥ Adv 1
2

(A)

Proof. Let s0 =Pr [b= 0 ∧ g= 0] =Pr [b= g | b= 0]Pr [b= 0] and s′
0 =Pr [b= g | b= 0].

Define s1 =Pr [b= 1 ∧ g= 1] =Pr [b= g | b= 1]Pr [b= 1] and s′
1 =Pr [b= g | b= 1] ,

accordingly. Then
1
2p

Succp (A) =
1
2p

((1 − p)s′
0 + ps′

1)

=
1 − p

p
· 1
2
s′
0 +

1
2
s′
1 ≤ 1

2
s′
0 +

1
2
s′
1 = Succ 1

2
(A) ,

where we used p ≥ 1/2. Now, for a zero advantage in the biased game the second
sub-claim is trivially true. For a non-zero advantage Advp (A) we get

Advp (A) = max{0,Succp (A) − p}
Advp (A) + p = Succp (A)

1
2p

(Advp (A) + p) ≤ Succ 1
2

(A)

1
2p

Advp (A) +
1
2

≤ Succ 1
2

(A)

1
2p

Advp (A) ≤ Succ 1
2

(A) − 1
2

= Adv 1
2

(A) .

The last sub-claim follows from

Adv 1
2

(A) = max

{
0, Succ 1

2
(A) − 1

2

}
≤

∣∣∣∣Succ 1
2

(A) − 1

2

∣∣∣∣
=

∣∣∣∣12 (Pr [x ←R X1 : 1 ← A(x)] + Pr [x ←R X0 : 0 ← A(x)]) − 1

2

∣∣∣∣
=

∣∣∣∣12 (Pr [x ←R X1 : 1 ← A(x)] + 1 − Pr [x ←R X0 : 1 ← A(x)]) − 1

2

∣∣∣∣
=

1

2
|Pr [x ←R X1 : 1 ← A(x)] − Pr [x ←R X0 : 1 ← A(x)]|

52 Daniel J. Bernstein and Andreas Hülsing

The main statement follows from plugging the last two sub-claims together. ��
Our approach to show that DSPR is hard is giving a reduction from an

average-case distinguishing problem that was used in the full version of [9]. The
problem makes use of the following distribution Dλ over boolean functions.

Definition 27 [9]. Let F def
= {f : {0, 1}m → {0, 1}} be the collection of all

boolean functions on {0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distri-
butions Dλ on F such that f ←R Dλ satisfies

f : x �→
{

1 with prob. λ,
0 with prob. 1 − λ

for any x ∈ {0, 1}m.

In [9] the following bound on the distinguishing advantage of any q-query
quantum adversary was shown.

Theorem 28 [9]. Let Dλ be defined as in Definition 27, and A be any quantum
algorithm making at most q quantum queries to its oracle. Then

AdvD0,Dλ
(A)

def
=

∣∣∣∣ Pr
f←D0

[Af (·) = 1] − Pr
f←Dλ

[Af (·) = 1]
∣∣∣∣ ≤ 8λq2.

We still have to briefly discuss how DSPR is defined in the (quantum-
accessible) random oracle model. Instead of giving a description of the hash
function H as implicitly done in Definition 5, we provide A with an oracle O
that implements a function F : X → Y. As for most other notions that can be
defined for unkeyed hash functions, DSPR in the (Q)ROM becomes the same
for keyed and non-keyed hash functions. For keyed functions, instead of giving
a description of the keyed hash function H and a key k to the adversary A, we
provide A with an oracle that implements a function F : X → Y which now
models H for a fixed key k. Hence, the following result applies to both cases.
This can be seen as the key space might contain just a single key.

Now we got all tooling we need to show that DSPR is a hard problem.

Theorem 29. Let n ∈ N, N = 2n, H : K × {0, 1}n → {0, 1}n as defined above
be a random, length-preserving keyed hash function. Any quantum adversary A
that solves DSPR making q quantum queries to H can be used to construct a
quantum adversary B that makes 2q queries to its oracle and distinguishes D0

from D1/N with success probability

AdvD0,D1/N
(B) ≥ Advdspr

H (A).

Proof. By construction. The algorithm B generates an dspr instance as in Fig. 2
and runs A on it. It outputs whatever A outputs. To answer an H query B
needs two f queries as it also has to uncompute the result of the f query after

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 53

Given: Oracle access to f : X → {0, 1}.

1. Sample x′ and y′ ← Y independently and uniformly at random.
2. Let g :

← X
X → Y\{y′} be a random function. We construct H : X → Y as

follows: for any x ∈ X

x �→
⎧⎨
⎩

y′ if x = x′

y′ if x �= x′ ∧ f(x) = 1
g(x) otherwise.

Output: DSPR instance (H, x′). Namely an adversary is given x′ and oracle
access to H, and the goal is to decide if x′ has a second preimage under H.

Fig. 2. Reducing distinguishing D0 from D1/N to dspr.

it was used. The random function g can be efficiently simulated using 2q-wise
independent hash functions as discussed in [9].

Now, if f ←R D0, (H, x′) is a random dspr challenge from the set of all
dspr challenges with PH(x′) = 0 (slightly abusing notation as we do not know
a key for our random function). Similarly, if f ←R D1/N , (H, x′) is a random
dspr challenge from the set of all dspr challenges.

AdvD0,Dλ
(B) =

∣∣∣∣ Pr
f←D0

[Bf (·) = 1] − Pr
f←Dλ

[Bf (·) = 1]
∣∣∣∣

=
∣∣∣∣ Pr
f←D0

[AH(x′) = 1] − Pr
f←Dλ

[AH(x′) = 1]
∣∣∣∣

=
∣∣Pr[AH(x′) = 1 | PH(x′) = 0] − (

p · Pr[AH(x′) = 1 | PH(x′) = 1]

+(1 − p) · Pr[AH(x′) = 1 | PH(x′) = 0]
)∣∣

= p · ∣∣Pr[AH(x′) = 1 | PH(x′) = 1] − Pr[AH(x′) = 1 | PH(x′) = 0]
∣∣

≥ Advdspr
H (A),

where the last inequality follows from Theorem 26.
��

Theorem 30. Let n ∈ N, N = 2n, H : K×{0, 1}n → {0, 1}n as defined above be
a random, length-preserving keyed hash function. Any quantum adversary A that
makes no more than q quantum queries to its oracle can only solve the decisional
second-preimage problem with advantage

Advdspr
H (A) ≤ 32q2/N.

Proof. Use Theorem 29 to construct an adversary B that makes 2q queries and
that has advantage at least Advdspr

H (A) of distinguishing D0 from D1/N . This
advantage is at most 8(1/N)(2q)2 = 32q2/N by Theorem 28. ��

54 Daniel J. Bernstein and Andreas Hülsing

6 DSPR for Multiple Targets

Multi-target security considers an adversary that is given T independent targets
and is asked to solve a problem for one out of the T targets. This section defines
T -DSPR, a multi-target version of DSPR.

We draw attention to an unusual feature of this definition: the advantage of
an adversary A is defined as the improvement from p to q, where p and q are
two probabilities that can both be influenced by A. The second probability q is
A’s chance of correctly predicting whether the input selected by A has a second
preimage. The first probability p is the chance that the input selected by A does
have a second preimage.

This deviates from the usual view of advantage as how much A improves upon
success probability compared to some trivial baseline attack. What we are doing,
for multi-target attacks, is asking how much A improves upon success probability
compared to the baseline attack against the same target that A selected. In most
of the contexts considered in the literature, the success probability of the baseline
attack is independent of the target, so this matches the usual view. DSPR is
different, because the success probability of the baseline attack depends on the
target.

One can object that this allows the baseline attack to be affected (positively
or negatively) by A’s competence in target selection. We give two responses to
this objection. First, our definition enables a proof (Theorem 33) that T -DSPR
is at most T times easier to break than DSPR. Second, our definition enables
an interactive multi-target generalization (Theorem 38) of our proof that DSPR
and SPR together imply PRE.

Definition 31 (T-DSPR). Let T be a positive integer. Let A be an algorithm
with output in {1, . . . , T} × {0, 1}. The advantage of A against the T -target
decisional second-preimage resistance of a keyed hash function H is

AdvT -dspr
H (A)

def
= max{0, q − p}

where

q = Pr
[
(x1, k1, . . . , xT , kT) ←R (X × K)T ;

(j, b) ← A(x1, k1, . . . , xT , kT) : Pkj
(xj) = b

]
;

p = Pr
[
(x1, k1, . . . , xT , kT) ←R (X × K)T ;

(j, b) ← A(x1, k1, . . . , xT , kT) : Pkj
(xj) = 1

]
;

and Pkj
= SPexists(Hkj

).

The only difference between the formulas for q and p is that q compares
Pkj

(xj) to b while p compares it to 1. If T > 1 then an algorithm might be able
to influence p up or down, compared to any particular SPprob(Hki

), through the
choice of j. Obtaining a significant T -DSPR advantage then means obtaining q
significantly larger than p, i.e., making a prediction of Pkj

(xj) significantly better
than always predicting that it is 1.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 55

As an extreme case, consider the following slow algorithm. Compute each
Pkj

(xj) by brute force; choose j where Pkj
(xj) = 0 if such a j exists, else j = 1;

and output Pkj
(xj). This algorithm has q = 1 and thus T -DSPR advantage

1−p. The probability p for this algorithm is the probability that all of x1, . . . , xT

have second preimages. For most length-preserving functions, this probability is
approximately (1 − 1/e)T , which rapidly converges to 0 as T increases, so the
T -DSPR advantage rapidly converges to 1.

Definition 32. Let A be an algorithm, and let T be a positive integer. Then
PlantT (A) is the following algorithm:

– Input (x, k) ∈ X × K.
– Generate i ←R {1, . . . , T}.
– Generate (x1, k1, . . . , xT , kT) ←R (X × K)T .
– Overwrite (xi, ki) ← (x, k).
– Compute (j, b) ← A(x1, k1, . . . , xT , kT).
– Output b if j = i, or 1 if j �= i.

This uses the standard technique of planting a single-target challenge at a
random position in a multi-target challenge. With probability 1/T , the multi-
target attack chooses the challenge position; in the other cases, this reduction
outputs 1. The point of Theorem 33 is that this reduction interacts nicely with
the subtraction of probabilities in the DSPR and T -DSPR definitions.

The cost of PlantT (A) is the cost of generating a random number i between
1 and T , generating T − 1 elements of X × K, running A, and comparing j to i.
The algorithm has essentially the same cost as A if X and K can be efficiently
sampled.

Theorem 33 (T-loose implication DSPR ⇒ T-DSPR). Let H be a keyed
hash function. Let T be a positive integer. Let A be an algorithm with output in
{1, . . . , T} × {0, 1}. Then

AdvT -dspr
H (A) = T · Advdspr

H (B)

where B = PlantT (A).

Proof. By definition AdvT -dspr
H (A) runs A with T independent uniform random

targets (x1, k1, . . . , xT , kT). Write (j, b) for the output of A(x1, k1, . . . , xT , kT).
Then AdvT -dspr

H (A) = max{0, q−p}, where q is the probability that Pkj
(xj) = b,

and p is the probability that Pkj
(xj) = 1.

To analyze q and p, we split the universe of possible events into four mutually
exclusive events:

E00
def= [b = 0 ∧ Pkj

(xj) = 0];

E01
def= [b = 0 ∧ Pkj

(xj) = 1];

E10
def= [b = 1 ∧ Pkj

(xj) = 0];

E11
def= [b = 1 ∧ Pkj

(xj) = 1].

Then q = Pr E00 + PrE11 and p = PrE01 + Pr E11, so q − p = Pr E00 − PrE01.

56 Daniel J. Bernstein and Andreas Hülsing

For comparison, Advdspr
H (B) runs B, which in turn runs A with T independent

uniform random targets (x1, k1, . . . , xT , kT). One of these targets (xi, ki) is the
uniform random target (x, k) provided to B as a challenge; B randomly selects i
and the remaining targets. The output b′ of B(x, k) is b if j = i, and 1 if j �= i.

The choice of i is not visible to A, so the event that i = j has probability
1/T . Furthermore, this event is independent of E00, E01, E10, E11: i.e., i = j has
conditional probability 1/T given E00, conditional probability 1/T given E01,
etc.

Write q′ for the chance that Pk(x) = b′, and p′ for the chance that Pk(x) = 1.
Then Advdspr

H (B) = max{0, q′ − p′}. To analyze q′ and p′, we split into mutually
exclusive events as follows:

– E00 occurs and i = j. This has probability (PrE00)/T . Then (xj , kj) =
(xi, ki) = (x, k) so Pk(x) = Pkj

(xj) = 0 = b = b′. This contributes to q′ and
not to p′.

– E01 occurs and i = j. This has probability (PrE01)/T . Then (xj , kj) = (x, k)
so Pk(x) = 1, while b′ = b = 0. This contributes to p′ and not to q′.

– All other cases: b′ = 1 (since b′ = 0 can happen only if b = 0 and i = j). We
further split this into two cases:

• Pk(x) = 1. This contributes to q′ and to p′.
• Pk(x) = 0. This contributes to neither q′ nor p′.

To summarize, q′ − p′ = (Pr E00)/T − (Pr E01)/T = (q − p)/T . Hence

max{0, q − p} = max{0, T (q′ − p′)} = T max{0, q′ − p′};

i.e., AdvT -dspr
H (A) = T · Advdspr

H (B). ��

7 Removing Interactivity

The real importance of DSPR for security proofs is that it allows interactive
versions of preimage resistance to be replaced by non-interactive assumptions
without penalty. Interactive versions of preimage resistance naturally arise in,
e.g., the context of hash-based signatures; see Sect. 8.

The example discussed in this section is the T -openPRE notion already infor-
mally introduced in Sect. 1.1.1. We first review T -SPR, a multi-target version
of second-preimage resistance. Then we formally define the interactive notion
T -openPRE and show that its security tightly relates to T -SPR and T -DSPR.

T -SPR is what is called multi-function, multi-target second-preimage resis-
tance in [9]. It was shown in [9] that a generic attack against T -SPR has the
same complexity as a generic attack against SPR.

Definition 34 [9] (T-SPR). The success probability of an algorithm A against
the T -target second-preimage resistance of a keyed hash function H is

SuccT -spr
H (A)

def
= Pr

[
(x1, k1, . . . , xT , kT) ←R (X × K)T ;
(j, x) ← A(x1, k1, . . . , xT , kT) :

Hkj
(x) = Hkj

(xj) ∧ x �= xj

]
.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 57

T -openPRE is essentially what would be T -PRE (which we did not define)
but with the additional tweak that the adversary gets access to an opening
oracle. The adversary is allowed to query the oracle for the preimages of all but
one of the targets and has to output a preimage for the remaining one.

Definition 35 (T-openPRE). Let H be a keyed hash function. The success
probability of an algorithm A against the T -target opening-preimage resistance
of H is defined as

SuccT -openpre
H (A)

def
= Pr

[
(x1, k1, . . . , xT , kT) ←R (X × K)T ;

(j, x′) ← AOpen(Hk1(x1), k1, . . . ,HkT
(xT), kT) :

Hkj
(x′) = Hkj

(xj) ∧ j was no query of A]
where Open(i) = xi.

Now, it is of course possible to reduce PRE to T -openPRE. However, such
a reduction has to guess the index j for which A will output a preimage (and
hence does not make a query) correctly. Otherwise, if the reduction embeds its
challenge image in any of the other positions, it cannot answer A’s query for
that index. As A does not lose anything by querying all indices but j, we can
assume that it actually does so. Hence, such a reduction from PRE must incur
a loss in tightness of a factor T . For some applications discussed below, T can
reach the order of 4

√
N . This implies a quarter loss in the security level.

Theorem 38 shows that T -openPRE is tightly related to the non-interactive
assumptions T -DSPR and T -SPR: if H is T -target decisional-second-preimage
resistant and T -target second-preimage resistant then it is T -target opening-
preimage-resistant. As before, we first define the reductions and then state a
theorem regarding probabilities.

Definition 36 (T-target SPfromP). Let H be a keyed hash function. Let A be
an algorithm using an oracle. Let T be a positive integer. Then SPfromPT (H,A)
is the following algorithm:

– Input (x1, k1, . . . , xT , kT) ∈ (X × K)T .
– Output AOpen(Hk1(x1), k1, . . . ,HkT

(xT), kT), where Open(i) = xi.

This generalizes the standard SPfromP reduction: it handles multiple targets
in the obvious way, and it easily answers oracle queries with no failures since
it knows all the xi inputs. The algorithm SPfromPT (H,A) uses T calls to H
(which can be deferred until their outputs are used) and one call to A.

Definition 37 (T-target DSPfromP). Let H be a keyed hash function. Let
A be an algorithm. Then DSPfromPT (H,A) is the following algorithm:

– Input (x1, k1, . . . , xT , kT) ∈ (X × K)T .
– Compute (j, x′) ← AOpen(Hk1(x1), k1, . . . ,HkT

(xT), kT), where Open(i) = xi.
– Compute b ← ((x′ �= xj) ∨ j was a query of A).
– Output (j, b).

58 Daniel J. Bernstein and Andreas Hülsing

This is an analogous adaptation of our DSPfromP reduction to the interactive
multi-target context. Again oracle queries are trivial to answer. Note that the
case that A cheats, returning an index j that it used for an Open query, is a
failure case for A by definition; the algorithm DSPfromPT (H,A) outputs 1 in
this case, exactly as if A had failed to find a preimage. In other words, this
algorithm returns 0 whenever A returns a solution that contains the preimage
that was already known by the reduction (but not given to A via Open), and 1
otherwise.

Theorem 38 (T-DSPR ∧ T-SPR ⇒ T-openPRE). Let H be a keyed hash
function. Let T be a positive integer. Let A be an algorithm. Then

SuccT -openpre
H (A) ≤ AdvT -dspr

H (B) + 3 · SuccT -spr
H (C)

where B = DSPfromPT (H,A) and C = SPfromPT (H,A).

The core proof idea is the following. As noted above, the reductions attacking
T -SPR and T -DSPR can perfectly answer all of A’s oracle queries as they know
preimages. However, for the index for which A outputs a preimage (without
cheating), it did not learn the preimage known to the reduction. Hence, from
there on we can apply a similar argument as in the proof of Theorem 25. We
include a complete proof below to aid in verification.

Proof. Write (j, x′) for the output of AOpen(Hk1(x1), k1, . . . ,HkT
(xT), kT). As in

the proof of Theorem 25, we split the universe of possible events into mutually
exclusive events across two dimensions: the number of preimages of Hkj

(xj), and
whether A succeeds or fails in finding a preimage. Specifically, define

Si
def=

[∣∣∣H−1
kj

(Hkj
(xj))

∣∣∣ = i ∧ Hkj
(x′) = Hkj

(xj) ∧ j was no query of A
]
,

as the event that there are exactly i preimages and that A succeeds, and define

Fi
def=

[∣∣∣H−1
kj

(Hkj
(xj))

∣∣∣ = i ∧ (
Hkj

(x′) �= Hkj
(xj) ∨ j was a query of A)]

as the event that there are exactly i preimages and that A fails. Note that there
are only finitely many i for which the events Si and Fi can occur.

Define si and fi as the probabilities of Si and Fi respectively. The probability
space here includes the random choices of (x1, k1, . . . , xT , kT), and any random
choices made inside A.

T -openPRE success probability. By definition, SuccT -openpre
H (A) is the prob-

ability that x′ is a non-cheating preimage of Hkj
(xj); i.e., that Hkj

(x′) = Hkj
(xj)

and j was not a query to the oracle. This event is the union of the events Si, so
SuccT -openpre

H (A) =
∑

i si.

T -DSPR success probability. By definition B outputs the pair (j, b), where
b = ((x′ �= xj) ∨ j was a query of A).

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 59

Define Pkj
= SPexists(Hkj

), and define q as in the definition of AdvT -dspr
H (B).

Then q is the probability that B is correct, i.e., that b = Pkj
(xj). There are four

cases:

– If the event S1 occurs, then there is exactly 1 preimage of Hkj
(xj), so

Pkj
(xj) = 0 by definition of SPexists. Also, A succeeds: i.e., j was not a

query, and x′ is a preimage of Hkj
(xj), forcing x′ = xj . Hence b = 0 =

Pkj
(xj).

– If the event F1 occurs, then again Pkj
(xj) = 0, but now A fails: i.e., j was

a query, or x′ is not a preimage of Hkj
(xj). Either way b = 1 �= Pkj

(xj).
(We could skip this case in the proof, since we need only a lower bound on
q rather than an exact formula for q.)

– If the event Si occurs for i > 1, then Pkj
(xj) = 1 and A succeeds. Hence j

was not a query, and x′ is a preimage of Hkj
(xj), so x′ = xj with conditional

probability exactly 1
i . Hence b = 1 = Pkj

(xj) with conditional probability
exactly i−1

i .
– If the event Fi occurs for i > 1, then Pkj

(xj) = 1 and A fails. Failure means
that x′ is not a preimage, so in particular x′ �= xj , or that j was a query.
Either way b = 1 = Pkj

(xj).

To summarize, q = s1 +
∑

i>1
i−1

i si +
∑

i>1 fi.

T -DSPR advantage. Define p as in the definition of AdvT -dspr
H (B). Then

AdvT -dspr
H (B) = max{0, q − p}.

The analysis of p is the same as the analysis of q above, except that we
compare Pkj

(xj) to 1 instead of comparing it to b. We have 1 = Pkj
(xj) exactly

for the events Si and Fi with i > 1. Hence p =
∑

i>1 si +
∑

i>1 fi. Subtract to
see that

AdvT -dspr
H (B) = max{0, q − p} ≥ q − p = s1 −

∑
i>1

1
i
si.

T -SPR success probability. By definition C outputs (j, x′). The T -SPR suc-
cess probability SuccT -spr

H (C) is the probability that x′ is a second preimage of
xj under Hkj

, i.e., that Hkj
(x′) = Hkj

(xj) while x′ �= xj .
It is possible for C to succeed while A fails: perhaps A learns xj = Open(j)

and then computes a second preimage for xj , which does not qualify as an T -
openPRE success for A but does qualify as a T -SPR success for C. We ignore
these cases, so we obtain only a lower bound on SuccT -spr

H (C); this is adequate
for the proof.

Assume that event Si occurs with i > 1. Then x′ is a preimage of Hkj
(xj).

Furthermore, A did not query j, so xj is not known to A except via Hkj
(xj).

There are i preimages, so x′ = xj with conditional probability exactly 1
i . Hence

C succeeds with conditional probability i−1
i .

To summarize, SuccT -spr
H (C) ≥ ∑

i>1
i−1

i si.

60 Daniel J. Bernstein and Andreas Hülsing

Combining the probabilities. We conclude as in the proof of Theorem 25:

AdvT -dspr
H (B) + 3 · SuccT -spr

H (C) ≥ s1 −
∑
i>1

1
i
si + 3

∑
i>1

i − 1
i

si

= s1 +
∑
i>1

3i − 4
i

si

≥ s1 +
∑
i>1

si = SuccT -openpre
H (A) .

��

8 Applications to Hash-Based Signatures

The interactive notion of T -openPRE with a huge number of targets naturally
arises in the context of hash-based signatures. This was already observed and
extensively discussed in [9]. One conclusion of the discussion there is to use keyed
hash functions with new (pseudo)random keys for each hash-function call made
in a hash-based signature scheme.

When applying this idea to Lamport one-time signatures (L-OTS) [11], the
standard security notion for OTS of existential unforgeability under one chosen
message attacks (EU-CMA) becomes T -openPRE where A is allowed to make
T/2 queries. Using L-OTS in a many-time signature scheme such as the Merkle
Signature Scheme [13] and variants like [2,8,12] can easily amplify the difference
in tightness between a reduction that uses (T -)PRE and a reduction from T -SPR
and T -DSPR to 270.

Indeed, the general idea of using T -SPR instead of (T -)PRE in security reduc-
tions for hash-based signatures already occurs in [9]. However, there the authors
make use of the assumption that for the used hash function every input has a
colliding value for all keys, i.e., SPprob(H) = 1 in our notation. This is unlikely
to hold for common length-preserving keyed hash functions as Sect. 3 shows
SPprob(H) ≈ 1 − 1/e for random H. However, as shown above, it is also not
necessary to require SPprob(H) = 1. Instead, it suffices to require (T -)DSPR.

For modern hash-based signatures like XMSS [7] L-OTS is replaced by vari-
ants [6] of the Winternitz OTS (W-OTS) [13]. For W-OTS the notion of EU-
CMA security does not directly translate to T -openPRE. Indeed, the security
reduction gets far more involved as W-OTS uses hash chains. However, as shown
in [9] one can replace (T -)PRE in this context by T -SPR and the assumption
that SPprob(H) = 1. Along the lines of the above approach we can then replace
the assumption that SPprob(H) = 1 by T -DSPR.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Hoch, J.J., Kelsey,
J., Shamir, A., Zimmer, S.: New second-preimage attacks on hash functions. J.
Cryptol. 29(4), 657–696 (2016). https://www.di.ens.fr/∼fouque/pub/joc11.pdf

https://www.di.ens.fr/~fouque/pub/joc11.pdf

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 61

2. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

3. Charalambides, C.A.: Distributions of random partitions and their applications.
Methodol. Comput. Appl. Probab. 9(2), 163–193 (2007)

4. Dörrie, H.: 100 Great Problems of Elementary Mathematics. Courier Corporation
(2013)

5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009). http://ac.cs.princeton.edu/home/AC.pdf

6. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10. https://eprint.iacr.org/2017/965

7. Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391, May 2018. https://rfc-editor.org/rfc/rfc8391.
txt

8. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14. https://eprint.iacr.org/2017/966

9. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15. https://eprint.iacr.org/2015/1256

10. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much
less than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 28.
https://eprint.iacr.org/2004/304.pdf

11. Lamport, L.: Constructing digital signatures from a one way function. Techni-
cal report SRI-CSL-98, SRI International Computer Science Laboratory (1979).
https://lamport.azurewebsites.net/pubs/dig-sig.pdf

12. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27. https://cseweb.ucsd.edu/∼daniele/papers/MMM.html

13. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21. https://merkle.com/papers/Certified1979.pdf

14. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)
15. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-

cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24. https://eprint.iacr.org/2004/035

16. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). https://oeis.
org

https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
http://ac.cs.princeton.edu/home/AC.pdf
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2017/965
https://rfc-editor.org/rfc/rfc8391.txt
https://rfc-editor.org/rfc/rfc8391.txt
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://eprint.iacr.org/2017/966
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2015/1256
https://doi.org/10.1007/11426639_28
https://eprint.iacr.org/2004/304.pdf
https://lamport.azurewebsites.net/pubs/dig-sig.pdf
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://cseweb.ucsd.edu/~daniele/papers/MMM.html
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://merkle.com/papers/Certified1979.pdf
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://eprint.iacr.org/2004/035
https://oeis.org
https://oeis.org

62 Daniel J. Bernstein and Andreas Hülsing

A Some Single-Variable Functions

This appendix proves features of some functions used in the proofs of theorems
in Sect. 3. The proofs in this appendix are split into small lemmas to support
verification, and proofs of the lemmas appear in the full version online. The
notation R>0 means the set of positive real numbers.

Lemma 39. If x �= 0 then ex > 1 + x.

Lemma 40. Any x ∈ R has ex − 2x ≥ 2 − 2 log 2 > 0.

Lemma 41. If x > 0 then ex − 1 + x − x2 > 0.

Lemma 42. Define ϕ1(x) = x(ex − 1)/(ex − x). Then ϕ1 is increasing, and
maps R>0 bijectively to R>0.

Lemma 43. If x �= 0 then ex + e−x > 2.

Lemma 44. If x > 0 then ex − e−x − 2x > 0.

Lemma 45. If x > 0 then ex + e−x − 2 − x2 > 0.

Lemma 46. Define ϕ2(x) = x(ex − 1)/(ex − 1 − x) for x > 0. Then ϕ2 is
increasing, and maps R>0 bijectively to R>2.

Lemma 47. The ratio (e − 1)1−x/xx(1 − x)1−x for 0 < x < 1 increases for
0 < x < 1/e, has maximum value e at x = 1/e, and decreases for 1/e < x < 1.

Lemma 48. The maximum value of 1/(2x− 1)2x−1(1−x)2(1−x)21−x for 1/2 <
x < 1 is 1 +

√
2.

Lemma 49. Define ϕ5(x) = xex − ex + 1. Then ϕ5 decreases for x < 0, has
minimum value 0 at x = 0, and increases for x > 0.

Lemma 50. Let x be a positive real number. Define y = ex − 1 − x and z =
1/(x + x2/y); then 0 < z < 1/2. Define γ = yz/xzz(1 − z)1−z; then γ ≤ e − 1.

Structure-Preserving Signatures
on Equivalence Classes

from Standard Assumptions

Mojtaba Khalili1(B), Daniel Slamanig2, and Mohammad Dakhilalian1

1 Isfahan University of Technology, Isfahan, Iran
{m.khalili,mdalian}@ec.iut.ac.ir

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Structure-preserving signatures on equivalence classes (SPS-
EQ) introduced at ASIACRYPT 2014 are a variant of SPS where a mes-
sage is considered as a projective equivalence class, and a new representa-
tive of the same class can be obtained by multiplying a vector by a scalar.
Given a message and corresponding signature, anyone can produce an
updated and randomized signature on an arbitrary representative from
the same equivalence class. SPS-EQ have proven to be a very versatile
building block for many cryptographic applications.

In this paper, we present the first EUF-CMA secure SPS-EQ scheme
under standard assumptions. So far only constructions in the generic
group model are known. One recent candidate under standard assump-
tions are the weakly secure equivalence class signatures by Fuchsbauer
and Gay (PKC’18), a variant of SPS-EQ satisfying only a weaker unforge-
ability and adaption notion. Fuchsbauer and Gay show that this weaker
unforgeability notion is sufficient for many known applications of SPS-
EQ. Unfortunately, the weaker adaption notion is only proper for a semi-
honest (passive) model and as we show in this paper, makes their scheme
unusable in the current models for almost all of their advertised appli-
cations of SPS-EQ from the literature.

We then present a new EUF-CMA secure SPS-EQ scheme with a tight
security reduction under the SXDH assumption providing the notion of
perfect adaption (under malicious keys). To achieve the strongest notion
of perfect adaption under malicious keys, we require a common reference
string (CRS), which seems inherent for constructions under standard
assumptions. However, for most known applications of SPS-EQ we do
not require a trusted CRS (as the CRS can be generated by the signer
during key generation). Technically, our construction is inspired by a
recent work of Gay et al. (EUROCRYPT’18), who construct a tightly
secure message authentication code and translate it to an SPS scheme
adapting techniques due to Bellare and Goldwasser (CRYPTO’89).

M. Khalili—Work partly done while visiting Universitat Pompeu Fabra, Barcelona,
Spain.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 63–93, 2019.
https://doi.org/10.1007/978-3-030-34618-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_3

64 M. Khalili et al.

1 Introduction

Structure-preserving signatures (SPS) [4] are signatures where the messages,
public keys and signatures only consists of elements of groups equipped with an
efficient bilinear map, and the verification algorithm just consists of group mem-
bership checks and evaluation of pairing product equations (PPEs). SPS schemes
[2,4–8,43–45,60,63,64] are compatible with efficient pairing-based NIZK proofs
[50], and are a useful building-block for many cryptographic applications, such
as blind signatures [4,39], group signatures [4,68], traceable signatures [3], group
encryption [23], homomorphic signatures [66], delegatable anonymous credentials
[34], compact verifiable shuffles [24], network coding [10], oblivious transfer [48],
tightly secure encryption [56] and anonymous e-cash [17]. SPS schemes come
in various different flavors such as being able to sign elements in either one or
both source groups of the bilinear group or requiring certain conditions for mes-
sages (e.g., messages need to be Diffie-Hellman tuples [33,45]). They come with
different provable security guarantees, ranging from ones that are directly ana-
lyzed in the generic group model (GGM) to ones that can be constructed from
standard assumptions such as SXDH or SXDLin (typically within the Matrix-
Diffie-Hellman assumption framework [31]) and under different qualities of the
reduction (from very loose to tight reductions). A desirable goal is to construct
schemes with tight security reductions from standard assumptions which are at
the same time highly efficient. Some SPS schemes are also randomizable (e.g.,
[4,6]), meaning that a signature can be randomized to another unlinkable valid
signature on the same message.

Structure-preserving signatures on equivalence classes (SPS-EQ) [38,40,52]
are a variant of SPS where anyone can randomize not only signatures, but
a message-signature pair publicly, i.e., in addition to randomizing the signa-
ture also the message can be randomized. They have proven to be useful in
many applications such as attribute-based anonymous credentials [29,40,52],
delegatable anonymous credentials [27], self-blindable certificates [11], blind sig-
natures [37,39], group signatures [11,12,26,30], sanitizable signatures [22], ver-
ifiably encrypted signatures [51], access control encryption [36] or proving the
correctness of a shuffle in mix-nets (i.e., for anonymous communication or elec-
tronic voting) [59]. In many of these applications, the idea of randomizing sig-
natures and messages offers the same functionality as when using SPS schemes
combined with a NIZK proof, but without the need for any NIZK. Consequently,
this allows for the design of more efficient constructions.

More concretely, in an SPS-EQ scheme, given a signature on an equivalence
class defined over the message space, anyone can update the signature to another
representative of the same class. Defined on (G∗)� (where G is of prime order
p), this equivalence relation ∼R is as follows (� > 1):

M ∈ (G∗)� ∼R N ∈ (G∗)� ⇔ ∃μ ∈ Z
∗
p : M = μN

An SPS-EQ scheme signs an equivalence class [M]R for M ∈ (G∗
i)

� by signing
a representative M of [M]R. It then allows for switching to other representatives
of [M]R and updating the signature without access to the secret key. Two

Structure-Preserving Signatures on Equivalence Classes 65

important properties of SPS-EQ are unforgeability (EUF-CMA security) defined
on equivalence classes and perfect adaption (potentially even under malicious
signing keys), where the latter requires that updated signatures (output by the
algorithm ChgRep) are distributed identically to new signatures on the respective
representative (if signatures or even if signing keys are computed maliciously).
Latter together with the DDH assumption on the message space then yields a
notion of unlinkability, i.e., that original signatures and those output by ChgRep
cannot be linked. As it turns out, coming up with constructions that achieve
both notions simultaneously is a challenging task.

We note that, as observed in [39], every SPS-EQ yields a (randomizable) SPS
scheme by appending some fixed group element to the message vector before sign-
ing and which is checked on verification, to allow only one single representative
of each class. Recently, the concept of SPS-EQ has even been further extended
to consider also equivalence classes on the public keys, denoted as signatures
with flexible public key [11] and equivalence classes on messages and public keys
simultaneously, denoted as mercurial signatures [27]. This further extends the
scope of applications.

Prior Approaches to Construct SPS-EQ. The first instantiation of SPS-EQ
in [52] was secure only against random message attacks, and later Fuchsbauer et
al. [38,40] presented a revised scheme that achieves EUF-CMA security in the
generic group model (GGM). In [39], Fuchsbauer et al. present another EUF-
CMA secure scheme under a q-type assumption, which by construction does
not provide the perfect adaption notion and thus is not interesting for existing
applications of SPS-EQ. Recently, Fuchsbauer and Gay [35], presented a version
of SPS-EQ (called equivalence class signatures or EQS) which can be proven
secure under standard assumptions, i.e., in the Matrix-Diffie-Hellman assump-
tion framework [31]. In order to prove their scheme secure, they have introduced
a weakened unforgeability notion called existential unforgeability under chosen
open message attacks (EUF-CoMA), in which the adversary does not send group
element vectors to the signing oracle but vectors of Z∗

p elements. Moreover, in
contrast to the original definition of SPS-EQ in [52] and the scheme of Fuchs-
bauer et al. [38,40], which allows to randomize a given signature (change the
representative) an arbitrary number of times, the scheme of Fuchsbauer and
Gay [35] distinguishes two types of signatures. The first type comes from the
signing algorithm and when randomized yields a signature of the second type,
which cannot be randomized any further. As argued by Fuchsbauer and Gay
in [35], for most of the known applications of SPS-EQ the combination of EUF-
CoMA notion and the one-time randomizability is sufficient. Actually, as argued
in [35], it is sufficient for all applications in the literature, except for the one to
round-optimal blind signatures from SPS-EQ [39].

The construction of Fuchsbauer and Gay in [35] does also rely on a weak-
ened notion of adaption (weaker than the original one from [39] in that it
only considers honestly generated keys and honestly computed signatures). We
will show that even though their weaker unforgeability notion is sufficient for
applications, the weaker adaption notion makes the scheme suitable only for
restricted applications, i.e., access control encryption (ACE) or attribute-based

66 M. Khalili et al.

credentials (ABCs) with an honest credential issuer. Moreover, the application
to verifiably encrypted signatures in [51] requires another notion called perfect
composition, which [35] seem to assume implicitly. Unfortunately, their scheme
does not satisfy this notion. Consequently, for the interesting schemes providing
the perfect adaption notion from [39], the current state of affairs is that there is
only the EUF-CMA secure scheme from [38,40] secure in the GGM.

Tight Security for SPS-EQ Schemes. Tight security allows to choose cryp-
tographic parameters of a scheme in a way that is supported by a security proof,
without the need to sacrifice efficiency by compensating the security loss of a
reduction with larger parameters. Latter can be significant if the reduction is
very loose. In case of SPS, quite some progress has been made in recent years
on constructing tightly-secure SPS [7,8,43,55,60], though the state-of-the-art
tightly-secure schemes under standard assumptions are still less efficient than for
instance schemes proven secure in the generic group model (GGM). While tight
security is quite well studied within SPS (and other primitives such as encryp-
tion [41,54,55], signatures [25,46,54,55], identity-based encryption [25,57,58],
key exchange [13,46,53], or zero-knowledge proofs [41,55]), there are no such
results for SPS-EQ schemes so far.

1.1 Our Contributions

Our contributions in this paper can be summarized as follows:

Analysis of FG18: Firstly, we revisit the concrete approach to construct EUF-
CoMA secure EQS from Fuchsbauer and Gay in [35], representing the only known
candidate towards perfectly adapting SPS-EQ under standard assumptions so
far. Thereby, we identify various problems with the applications of the scheme
presented in [35]. We stress that we do not present attacks on the scheme itself
(which is secure in their model), but show that their adaption notion is too
weak for most applications claimed in [35] (apart from access control encryp-
tion (ACE) [36]). Briefly summarizing, we first show that their scheme cannot
be used for the application to attribute-based credentials (ABCs) [38,40]. We
demonstrate an attack based on a trapdoor in the signing key that invalidates
the anonymity proof for ABCs. Secondly, we show an attack that demonstrates
that the scheme in [35] cannot be used even for applications that assume honest
generation of signing keys and in particular for ABCs under honest-keys [52]
and dynamic group signatures [30]. We stress that due to this too weak adap-
tion notion concrete instantiations presented in follow up works by Backes et
al. [11,12], that rely on the FG18 scheme from [35], are invalidated and need to
be reconsidered. Our results allow to repair their now broken claims in part.1

Thirdly, we show that the FG18 scheme does not satisfy another notion called
perfect composition [51], invalidating the use of their scheme for application to
verifiably encrypted signatures as discussed in [35]. Consequently, this means
that contrary to their claim, the EQS framework and scheme in [35] can only

1 For the group signatures in [12] it will only work with our construction when relying
on a CRS, or by using the construction secure in the GGM in [38].

Structure-Preserving Signatures on Equivalence Classes 67

be used for the construction of access control encryption (ACE) in [36] and for
all other applications no instantiations under standard assumptions remain. We
stress that one could relax the security models of the applications to make [35]
usable again, but such models where signatures and keys are assumed to be gen-
erated honestly, i.e., that only guarantee semi-honest (passive) security, limits the
practical applications. For example, one could consider ABCs with anonymity
against honest credential issuers and use the EQS from [35].

SPS-EQ from Standard Assumptions and Applications: As our main con-
tribution, we provide the first construction of SPS-EQ under standard assump-
tions and in particular the Matrix-Diffie-Hellman assumption framework. We
therefore have to revise the model of SPS-EQ in some aspects: (1) we introduce
tags, where the signing algorithm outputs a signature and a tag, randomization
(i.e., ChgRep) requires a signature and a tag, whereas for verification only the
signature is required; signatures that have been randomized using a tag can not
further be randomized, i.e., only a single randomization is possible. This defini-
tion is comparable to the one in [35], apart that FG18 does not use tags. We
stress that as demonstrated in [35], this restriction does not affect existing appli-
cations of SPS-EQ. (2) we require that signers generate their signing keys with
respect to a common reference string (CRS) for achieving the perfect adaption
notion in the malicious setting (prior works on SPS-EQ did not consider having
a CRS). We will show that this does not impact the applications discussed in [35]
with the exception of anonymous credentials in the malicious key model, as the
security models in all other applications assume honest generation of the sign-
ing keys and thus every signer can produce its own CRS as part of the signing
key. As we, however, cannot avoid a CRS in the malicious key setting, we are
not able to instantiate round-optimal blind signatures in the standard model
from SPS-EQ [39] under standard assumptions, which [35] could not achieve
either. On the positive side, however, it allows us to obtain the most efficient
round-optimal blind signatures in the CRS model from standard assumptions.

On the Use of a CRS. Although our scheme does not require a CRS for nearly
all of the applications of SPS-EQ, avoiding a CRS in the malicious setting would
be good. The use of a CRS in general seems to be debatable, as it needs to be
generated by some trusted third party that is hard to find in the real world.
Within recent years, we have seen a number of deployed real-world applications
that require a CRS when using zk-SNARKS (e.g., Zcash2 being probably the
most prominent one) and which have used multi-party computation ceremonies
to construct the CRS in a way that no entity provably knows the trapdoor. A
number of such ceremonies has been run in real-world3 and various works discuss
approaches to achieve it [16,20,21]. In the light of this, we do not consider it
unrealistic to generate a CRS for the use within practical applications of SPS-
EQ that require security under malicious keys, especially since the CRS does not
depend on the message length � and so a single CRS can be used for all types

2 https://z.cash/.
3 See e.g., https://z.cash/blog/the-design-of-the-ceremony/ or https://www.zfnd.

org/blog/conclusion-of-powers-of-tau/.

https://z.cash/
https://z.cash/blog/the-design-of-the-ceremony/
https://www.zfnd.org/blog/conclusion-of-powers-of-tau/
https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

68 M. Khalili et al.

of SPS-EQ keys for different applications. Furthermore, it seems interesting to
investigate the application of recent approaches towards subversion resistant
(QA)-NIZK [1,14] or updatable CRS [49,69], though this typically comes at the
cost of rather strong knowledge assumptions. Clearly, ultimately it would be
good to find SPS-EQ in the malicious key model without a CRS, which we leave
as a challenging open problem.

1.2 Outline of Our Construction

Fuchsbauer and Gay [35] modify an affine MAC of Blazy et al. [18] to obtain a
linear structure-preserving MAC. Then, they make the scheme publicly verifi-
able using a known technique from Kiltz and Wee [65] already used previously in
context of SPS [64]. Unfortunately, the structure-preserving MAC has an inher-
ent problem in the security game, where both messages and Matrix Decision
Diffie-Hellman (MDDH) challenges belong to the same source group of the bilin-
ear group. This forces them to use the weaker EUF-CoMA instead of EUF-CMA
security. Consequently, as we are interested in EUF-CMA security, we need to
look for a different framework when trying to construct EUF-CMA secure SPS-
EQ schemes.

Therefore, we borrow a central idea from the recent work of Gay et al. [43].
In particular, they use a specific OR-proof [71] to then construct tightly secure
structure-preserving MACs based on the key encapsulation mechanism of Gay
et al. in [42]. More precisely, they make use of adaptive partitioning [54] to
randomize all tags in their MAC. Their work is based on the observation (core
lemma in [43]) that for all [t]1 = [A0]1r with r R←− Z

k
p chosen freshly for each

instance, fixed matrices A0,A1
R←− D2k,k, and a NIZK proof π for t ∈ span(A0)∪

span(A1), the following values

k0
�[t]1 , (k0

� + s�)[t]1 (1)

are indistinguishable under the MDDH assumption, where k0 ← Z
2k
p is a key,

and s ∈ Z
2k
p is a fresh random value for each instance. Actually, they show that

[k0
�t]1 is pseudorandom.
In this paper, we are going to present an approach to obtain malleability

for this pseudorandom function, which we use as one part of our signature,
and the NIZK proof as another part. Therefore, we first add a tag (to allow a
homomorphism on the pseudorandom part) to our signature, such that everyone
who knows it can re-randomize the pseudorandom part. Second, we revise the
NIZK proof and give a proof for well-formedness of both the pseudorandom part
and the tag, such that it can be re-randomized and that we finally get a fresh
signature, including fresh pseudorandom part and a proof for it. More precisely,
we first show that for all [t]1 = [A0]1r1 and [w]1 = [A0]1r2 for r1, r2

R←− Z
k
p

chosen freshly for each instance, and a NIZK proof π for t,w ∈ span(A0) ∪
span(A1) (to be discussed later), the following tuples are indistinguishable under
the MDDH assumption

(k0
�[t]1,k0

�[w]1) , ((k0
� + s�)[t]1,k0

�[w]1). (2)

Structure-Preserving Signatures on Equivalence Classes 69

We then use this MAC (for k = 1)4 to construct an SPS-EQ scheme on a message
[m]1 ∈ (G∗

1)
�. Our signature has a basic form like σ = k0

�[t]1 + k�[m]1, with
a tag τ = k�

0 [w]1 (which is only required for randomization), where k0
R←− Z

2
p

and k R←− Z
�
p. We can use (2) to add some randomness to the signature as

σ = k0
�[t]1 + k�[m]1 + ζ for ζ

R←− Zp. At a high level, by adding randomness
to each signature, we can make every signature independent of each other. So,
we completely hide the values k, and an adversary has negligible chance to
compute a valid forgery. On the other hand, everyone can obtain a fresh tag,
using previous tag τ , and add it to the signature to obtain a fresh pseudorandom
part. From a high level perspective, we have a basic MAC which is additively
homomorphic and our signatures and tags are two instances of it, one on message
[m]1 and another one on message zero. This allows deriving a signature on μ[m]1
for μ

R←− Z
∗
p, i.e., to adapt the signature part to representative μ[m]1, using a

multiplication of the signature part with μ and then add it to the fresh tag. Note
that, in our scheme we do not need to have access to the tag τ in the verification
algorithm, but it is required for randomizing messages and signatures (changing
representatives in the language of SPS-EQ). We note that in the EUF-CMA
game, we model it in a way that on a signature query the challenger returns
both the signature and the tag, while the adversary only needs to output a
signature without the tag as its forgery attempt.

Now, we will discuss how to randomize the NIZK proof. At this point, there
is an obvious problem with the OR-proof used in [43] and we need to revise their
approach such that the proof is randomizable (proofs can be re-randomized
to look like fresh proofs) and malleable (statements for given proofs can be
updated), where latter is required to switch between representatives of a class.
In particular, to obtain these properties we change a part of the OR-proof and
replace it with a QA-NIZK. In the NIZK proof of [43], we have a permanent
CRS including [D]2 ∈ G

2
2 and [z]2 ∈ G

2
2, where z /∈ span(D) be parameters of

the system. On the other hand, their scheme has an updatable CRS including
[z0]2 and [z1]2. Now, given the permanent CRS, the complements of the parts
of the updatable CRS are computed in each instance. The idea is that exactly
these CRS generate a sound system (i.e., one of the parts of the updatable CRS
is outside the span of [D]2) and in the other case we have a simulatable system
(i.e., both parts of the updatable CRS are in the span of [D]2). As the public
parameter [z]2 is not in the span of [D]2, we can obtain soundness by letting
[z0]2 = [D]2v and [z1]2 = [z]2 − [z0]2, for v

R←− Zp, where the sum of them is
equal to the value [z]2, i.e., [z0]2 + [z1]2 = [z]2. So, it proves that at least one of
[z0]2 and [z1]2 has a part in the span(z). The fact that this sum of the updatable
CRS is a fixed value is of course not good to enable the randomization of the
updatable CRS. To circumvent this state of affairs and obtain malleability, we
need to compute a NIZK proof π for t,w ∈ span(A0) ∪ span(A1) with the
shared updatable CRS, for t and w, and adapt other proof parts, while we

4 We note that we can only instantiate our construction for k = 1, i.e., under the
SXDH assumption, and leave the construction of SPS-EQ under the more general
Matrix Decision Diffie-Hellman assumption as an interesting open problem.

70 M. Khalili et al.

Table 1. Comparison of SPS-EQ and EQS Schemes when signing vectors of length �
and Q is the number of queries to the signing oracle. A means adaption. �� means
perfect adaption under honest and malicious keys; � means perfect adaption under
honest keys and under malicious keys in the honest parameters model (i.e., using a
CRS); ≈ means adaption under honest keys and honest signatures.

Scheme |Signature| |PK| Model Ass. Loss A

[38] 2|G1| + 1|G2| �|G2| EUF-CMA
(strong)

GGM – ��

[35] (4� + 2)|G1| + 4|G2| (4� + 2)|G2| EUF-CoMA
(weak)

D4,2-MDDH,
D1-KerMDH

O(Q) ≈

Section 5 8|G1| + 9|G2| 3�|G2| EUF-CMA
(strong)

SXDH O(log Q) �

remain sound. Our approach is to set [z0]2 = [D]2v and [z1]2 = [z]2v, and give a
proof using a one-time homomorphic QA-NIZK due to Jutla and Roy [62] that
z0 + z1 is in the linear subspace of D + z. This means that at least one of [z0]2
and [z1]2 has a part in span(z). Fortunately, after this change other parts of the
proof adapt properly, and only moving to using a QA-NIZK comes at the cost
of having computationally soundness instead of perfect soundness.5

For realizing the change representative algorithm ChgRep, our Prove algo-
rithm of the OR-proof computes two proofs with shared randomness and QA-
NIZK (where the second proof is part of the tag), which allows to randomize
the first proof and update its word. This yields to have randomized signatures
output by ChgRep to be distributed identical to a fresh signature for the new
representative, i.e., we obtain perfect adaption. As explained above, we use a
NIZK OR-proof and a QA-NIZK proof in the construction of the SPS-EQ. In
order to guarantee perfect adaption even in front of a signer that generates the
keys in a potentially malicious way (i.e., remembers a trapdoor), we need to have
a CRS for these proof systems.6 Consequently, the perfect adaption of our SPS-
EQ is guaranteed in the common parameter model where the parameters include
a common reference string. However, we stress again that for most applications
the CRS generation can simply be part of the key generation and no trusted
setup is required.

Comparison with Other Schemes. In the following Table 1 we provide a
comparison of previous SPS-EQ schemes with the one proposed in this paper.
We only consider schemes satisfying some reasonable adaption notion, i.e., we

5 Thus, we will formally have a NIZK argument, but in the text we will usually not
make a distinction between NIZK proofs and arguments.

6 Even if all involved proof systems provide zero-knowledge definitions in the style of
composable zero-knowledge [50], i.e., even if the adversary knows the trapdoor and
still simulated and honestly computed proofs cannot be distinguished, we still have
the problem of maliciously generated proofs and thus we cannot avoid a CRS.

Structure-Preserving Signatures on Equivalence Classes 71

exclude the one under q-type assumptions in [39]. We note that while for [38]
original and randomized signatures are identical, for [35] and our scheme pre-
sented in this paper we only consider sizes of randomized signatures, i.e., those
output by ChgRep and signatures without the tag respectively. For [35] we con-
sider a concrete setting where U4,2-MDDH reduces to the SXDLin assumption [2],
i.e., assuming DLin in G1 and G2, and D1-KerMDH in G2 reduces to the DDH
assumption in G2. For our scheme k = 1 and thus we have the L1-MDDH
assumption in G1 and the L1-KerMDH assumption in G2. Latter representing
the 1-KerLin assumption which by Lemma 1 is implied by DDH. Consequently,
our scheme is secure under SXDH, i.e., assuming DDH in G1 and G2.

2 Preliminaries

Notation. Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input 1λ returns a description G = (G, p, P) of an additive cyclic group G of
order p for a λ-bit prime p, whose generator is P . We use implicit representation
of group elements as introduced in [31]. For a ∈ Zp, define [a] = aP ∈ G as the
implicit representation of a in G. We will always use this implicit notation of
elements in G, i.e., we let [a] ∈ G be an element in G, and note that from [a] ∈ G

it is generally hard to compute the value a (discrete logarithm problem in G).
Let BGGen be a PPT algorithm that returns a description BG =

(G1,G2,GT , p, P1, P2, e) of an asymmetric bilinear group where G1,G2,GT are
cyclic groups of order p , P1 and P2 are generators of G1 and G2, respectively,
and e : G1×G2 → GT is an efficiently computable (non-degenerate) bilinear map
and for s ∈ {1, 2, T} and a ∈ Zp, analogous to above, we write [a]s = aPs ∈ Gs

as the implicit representation of a in Gs. For two matrices (vectors) A,B define
e([A]1, [B]2) := [AB]T ∈ GT . With B we denote the upper square matrix of B.
Let r

R←− S denotes sampling r from set S uniformly at random. We denote by
λ the security parameter, and by ε any negligible function of λ.

Assumptions. We recall the definition of the Matrix Decision Diffie-Hellman
assumption [31] and a natural computational analogue of it, called the Kernel-
Diffie-Hellman assumption [70].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z

(k+1)×k
q of full rank k in polynomial time.

Definition 2 (Dk-Matrix Decision Diffie-Hellman Assumption). Let Dk

be a matrix distribution. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH)
Assumption holds relative to BGGen in group Gs if for all PPT adversaries A,
we have:

AdvMDDH
Dk,Gs

(A) := |Pr
[
A(BG, [A]s, [Aw]s) = 1

]

− Pr
[
A(BG, [A]s, [u]s) = 1

]
| ≤ ε(λ)

where the probability is taken over BG ← BGGen(1λ),A ← Dk,w ← Z
k
q ,u ←

Z
k+1
q

72 M. Khalili et al.

Definition 3 (Kernel Matrix Diffie-Hellman Assumption). Let Dk be a
matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman
Assumption (Dk-KerMDH) holds relative to BGGen in group Gs if for all PPT
adversaries A,

AdvKerMDH
Dk,Gs

(A) = Pr
[
[c]3−s ← A(BG, [A]s) : c�A = 0 ∧ c �= 0

]
≤ ε(λ)

where A R←− Dk.

Lemma 1 (Dk-MDDH =⇒ Dk-KerMDH [70]). Let k ∈N and let Dk be a mat-
rix distribution. For any PPT adversary A, there exists a PPT adversary B such
that AdvKerMDH

Dk,Gs
(A) ≤ AdvMDDH

Dk,Gs
(B).

2.1 Structure-Preserving Signatures on Equivalence Classes

In this section, we recall the definition and the security model of SPS-EQ scheme,
as introduced in [52]. We note that in order to cover a broader range of potential
constructions, we rename the algorithm BGGen that generates the bilinear group
BG to ParGen generating public parameters par, i.e., now the parameters par
can potentially include additional values such as a common reference string.
Moreover, our construction is tag-based where the tag output by Sign is just used
as input to ChgRep, where no new tag is output, and required for randomization
(for normal SPS-EQ, every occurrence of the tag τ is just ignored).

Definition 4 (SPS-EQ). A SPS-EQ scheme is tuple of PPT algorithms:

– ParGen(1λ). On security parameter λ and returns par including an asymmetric
bilinear group BG. par is implicitly used as input by all of the algorithms.

– KeyGen(par, �): This algorithm takes pp and vector length � > 1 as input and
outputs a key pair (sk, pk).

– Sign([m]i, sk): This algorithm given a representative [m]i ∈ (G∗
i)

� for class
[m]R and a secret key sk outputs a signature σ′ = (σ, τ) (potentially including
a tag τ).

– ChgRep([m]i, (σ, τ), μ, pk): This algorithm on input a representative [m]i ∈
(G∗

i)
� and signature σ (and potentially a tag τ), a scalar μ and pk as public

key, computes an updated signature σ′ on new representative [m′]i = [μm]i
and returns ([m′]i, σ′).

– Verify([m]i, (σ, τ), pk): This verification algorithm when given a representative
[m]i, a signature σ (potentially including a tag τ) and public key pk, outputs
1 if it accepts and 0 otherwise.

– VKey(sk, pk): This algorithm on input key pair (sk, pk) outputs 1 if secret key
and public key are consistent and 0 otherwise.

We recall correctness, EUF-CMA security and the notion of perfect adaption
(latter being a stronger notion than the original class-hiding notion which we
omit here).

Structure-Preserving Signatures on Equivalence Classes 73

Definition 5 (Correctness). An SPS-EQ over (G∗
i)

� correct if for any λ ∈ N ,
any � > 1, any par ← ParGen(1λ), any pair (sk, pk) ← KeyGen(par, �), any
message [m]i ∈ (G∗

i)
� and any μ ∈ Zp the following holds:

VKey(sk, pk) = 1, and
Pr[Verify([m]i,Sign([m]i, sk), pk) = 1] = 1, and
Pr[Verify(ChgRep([m]i,Sign([m]i, sk), μ, pk), pk) = 1] = 1.

Definition 6 (EU-CMA). An SPS-EQ over (G∗
i)

� is existentially unforgeable
under adaptively chosen-message attacks, if for all � > 1 and PPT adversaries
A with access to a signing oracle OSign, there is a negligible function ε(·):

Pr

⎡

⎣
par ← ParGen(1λ),
(sk, pk) ← KeyGen(par, �),
([m]∗i , σ

∗) ← AOSign(sk,·)
(pk)

: [m∗]R �= [m]R ∀[m]i ∈ QSign ∧
Verify([m]∗i , σ

∗, pk) = 1

⎤

⎦ ≤ ε(λ),

where QSignR is the set of queries that A has issued to the signing oracle OSign.
Note that in the tag-based case this oracle returns (σi, τi).

Perfect adaption introduced in [39] by Fuchsbauer et al. requires signatures
output by ChgRep are distributed like fresh signatures on the new representative.
We present both variants here, as we will require them later. We do not yet adapt
them to the tag-based variant of SPS-EQ (this is done afterwards). Note that in
the following variant signatures are only required to verify (so may be maliciously
computed) while we only consider keys need to satisfy VKey.

Definition 7 (Perfect adaption of signatures). An SPS-EQ over (G∗
i)

� per-
fectly adapts signatures if for all tuples (sk, pk, [m]i, σ, μ) with:

VKey(sk, pk) = 1 Verify([m]i, σ, pk) = 1 [m]i ∈ (G∗
i)

� μ ∈ Z
∗
p

we have that ChgRep([m]i, σ, μ, pk) and ([μ · m]i,Sign([μ · m]i, sk)) are iden-
tically distributed.

In the subsequent definition, the strongest adaption notion, one in addition to
potentially maliciously generated signatures one also considers maliciously gen-
erated keys (i.e., does not require that VKey needs to hold).

Definition 8 (Perfect adaption of signatures under malicious keys).
An SPS-EQ over (G∗

i)
� perfectly adapts signatures under malicious keys if for

all tuples (pk, [m]i, σ, μ) with:

[m]i ∈ (G∗
i)

� Verify([m]i, σ, pk) = 1 μ ∈ Z
∗
p

we have that ChgRep outputs ([μ · m]i, σ′) such that σ′ is a random element
in the space of signatures, conditioned on Verify([μ · m]i, σ′, pk) = 1.

Perfect Adaption in Context of a CRS and for Tag-Based SPS-EQ.
If par contains a CRS (as in the case of our construction), we need to consider
this in the adaption notion. For Definition 7 we just replace (sk, pk, [m]i, σ, μ)
with (par, sk, pk, [m]i, σ, μ) where par ← ParGen(1λ) is honestly generated. We
introduce it subsequently, for completeness.

74 M. Khalili et al.

Definition 9 (Perfect adaption in the honest parameter model). An
SPS-EQ scheme (ParGen,Sign,ChgRep,Verify,VKey) perfectly adapts signatures
if for all (par, sk, pk, [m]i, σ, τ, μ) with

VKey(sk, pk) = 1 Verify([m]i, (σ, τ), pk) = 1 [m]i ∈ (G∗
i)

� μ ∈ Z
∗
p

par ← ParGen(1λ)

the following are identically distributed:

(σ,ChgRep([m]i, σ, τ, μ, pk)) and

((σ′, ·) ← Sign(sk, [m]i),ChgRep([m]i,Sign(sk, [μ · m]i), 1, pk))

Definition 8 does not change and also considers a potentially malicious genera-
tion of the parameters which may include a CRS (which is not satisfied by our
construction). Moreover, we introduce an intermediate notion, where keys may
be generated maliciously, but par is generated honestly. We formally define it in
the following for completeness (this is satisfied by our construction).

Definition 10 (Perfect adaption of signatures under malicious keys in
the honest parameters model). An SPS-EQ over (G∗

i)
� perfectly adapts sig-

natures under malicious keys in the honest parameter model if for all tuples
(par, pk, [m]i, σ, τ, μ) with:

[m]i ∈ (G∗
i)

� Verify([m]i, (σ, τ), pk) = 1 μ ∈ Z
∗
p par ← ParGen(1λ)

we have that ChgRep outputs ([μ · m]i, σ′) such that σ′ is a random element
in the space of signatures, conditioned on Verify([μ · m]i, σ′, pk) = 1.

2.2 Non-Interactive Zero-Knowledge Proofs

Let RL be an efficiently computable relation of pairs (x,w) of words and wit-
nesses. Let L be the language defined as L = {x|∃w : RL(x,w) = 1}. We recall
the definition of a NIZK proof system [19] for a relation RL, where we use the
formalization in [43] (based on [50]) for the sake of consistency. We note that we
focus on NIZK argument systems, where soundness only holds for computation-
ally bounded adversaries.

– PGen(1λ, par): On input a security parameter λ and parameters par outputs
a common reference string crs.

– PTGen(1λ, par): On input a security parameter λ and parameters par outputs
a common reference string crs and a trapdoor td.

– PPro(crs, x, w): On input a common reference string crs, a statement x, and
a witness w such that RL(x,w) = 1, returns a proof Ω.

– PVer(crs, x,Ω): On input a reference string crs and a proof Ω, Returns accept
if Ω is valid and reject otherwise.

– PSim(crs, td, x): On input common reference string crs, and the trapdoor td
and word x and outputs a simulated proof Ω.

Structure-Preserving Signatures on Equivalence Classes 75

A NIZK argument system needs to satisfy the following properties:

– Perfect Completeness: For all possible public parameters par, all λ ∈ N,
all words x ∈ L, and all witnesses w such that RL(x,w) = 1, we have

Pr

[
crs ← PGen(1κ, par),
Ω ← PPro(crs, x, w) : PVer(crs, x,Ω) = 1

]
= 1.

– Computational Soundness: For all PPT adversaries A and for all words
x /∈ L we have:

Pr

[
crs ← PGen(1κ, par),
Ω ← A(crs, x) : PVer(crs, x,Ω) = 0

]
≈ 1.

– Composable Zero-Knowledge: For all PPT adversaries A, we have

Pr
[
crs ← PGen(1λ, par) : A(1λ, crs) = 1

]
≈

Pr
[
(crs, td) ← PTGen(1λ, par) : A(1λ, crs) = 1

]
.

Furthermore, for all for all x ∈ L with witness w such that RL(x,w) = 1, the
following are identically distributed:

PPro(crs, x, w) and PSim(crs, td, x)

where (crs, td) ← PTGen(1λ, par). Note that the composable zero knowledge
requires indistinguishability even for adversaries that get access to (crs, trap).

Quasi-Adaptive NIZK Proofs. Quasi-Adaptive NIZK (QA-NIZK) proofs
[8,28,47,61,62,65,67] are NIZK proofs where the generation of the common ref-
erence string (CRS), for a class of languages Lρ, parametrized by ρ, is allowed
to depend on the language parameter ρ. Moreover the common CRS includes a
fixed part par, generated by an algorithm pargen. Here, we recall the definitions
QA-NIZK proofs, as presented in [65].

Definition 11 (QA-NIZK). A non-interactive proof system (pargen, crsgen,
prove, verify, sim) is said to be a QA-NIZK proof system for an ensemble of dis-
tributions {Dpar} on collection of witness-relations R = {Rρ} with associated
language parameter ρ if the following holds (cf. [65]):

Perfect Completeness: For all λ, all par output by pargen(1λ), all ρ output
by Dpar, all (x, y) with Rρ(x, y) = 1, we have

Pr

[
(crs, trap) ← crsgen(par, ρ),
π ← prove(crs, x, w) : verify(crs, x, π) = 1

]
= 1

Computational Adaptive Soundness: For all PPT adversaries A,

Pr

⎡

⎣
ρ ← Dpar, par ← pargen(1λ),
crs ← crsgen(par, ρ),
(x, π) ← A1(crs, par, ρ)

:
verify(crs, x, π) = 1 ∧

x /∈ Lρ

⎤

⎦ ≤ ε(λ)

76 M. Khalili et al.

Perfect Zero-Knowledge: For all λ, all par output by pargen(1λ), all ρ output
by Dpar, all (crs, trap) output by crsgen(par, ρ), all (x, y) with Rρ(x, y) = 1, the
distributions

prove(crs, x, w) and sim(crs, td, x)

are identical. Note that the formalization of perfect zero-knowledge is similar to
that of composable zero knowledge in [50] and requires indistinguishability even
for adversaries that get access to (crs, trap).

2.3 Malleable Proof Systems

Let RL be the witness relation associated to language L, then a con-
trolled malleable proof system [24] is accompanied by a family of efficiently
computable n-ary transformations T = (Tx, Tw) such that for any n-tuple
{(x1, w1), . . . , (xn, wn)} ∈ Rn

L it holds that (Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈
RL (the family of admissible transformations is denoted by T). Intuitively, such
a proof system allows when given valid proofs {Ωi}i∈[n] for words {xi}i∈[n] with
associated witnesses {wi}i∈[n] to publicly compute a valid proof Ω for word
x := Tx(x1, . . . , xn) corresponding to witness w := Tw(w1, . . . , wn) using an
additional algorithm denoted as ZKEval. More formally, the additional algo-
rithms is defined as follows:

– ZKEval(crs, T, (xi, Ωi)i∈[n]): takes as input common reference string crs, a
transformation T ∈ T , words x1, . . . xn and corresponding proofs Ω1, . . . , Ω2,
and outputs a new word x′ := Tx(x1, . . . , xn) and proof Ω′.

It is desirable that proofs computed by applying ZKEval are indistinguishable
from freshly computed proofs for the resulting word x′ := Tx(x1, . . . , xn) and
corresponding witness w′ := Tw(w1, . . . , wn) (this property is called (strong)
derivation privacy). We recall the weaker notion of derivation privacy below.

Definition 12 (Derivation Privacy [24]). A NIZK proof system
{PGen,PTGen,PPro,PVer,PSim,ZKEval} being malleable with respect to a set
of transformations T defined on some relation R is derivation private, if for all
PPT adversaries A,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

crs ← PGen(1κ), b R←− {0, 1},
(st, ((xi, wi), Ωi)i∈[q], T) ← A(crs),
Return⊥ if (T �∈ T ∨ ∃i ∈ [q] : (PVer(crs, xi, Ωi) = 0 ∨
(xi, wi) /∈ R),
Else if b = 0 : Ω ← PPro(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q]), : b = b∗

Else if b = 1 : Ω ← ZKEval(crs, T, (xi, πi)i∈[q]),
b∗ ← A(st, Ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ ε(λ)

Structure-Preserving Signatures on Equivalence Classes 77

3 Revisiting the FG18 Model and Applications

In this section we recall the construction in [35] (denoted FG18 henceforth) and
point out some issues regarding their signature adaption notion and the implic-
itly assumed notion of perfect composition from [51] for concrete applications.
We again stress that FG18 scheme is secure in FG18 model (honestly signature
and key generation or semi-honest), but we are going to show its problems in
the stronger model, which is current acceptable model. In order to make it more
convenient for the reader we adapt the notion used in [35] to the original SPS-EQ
notion (but keep their name EQS).

First, we recall that their scheme has a one-time randomizability property
and therefore FG18 need to modify the perfect adaption notion from [39] (Defi-
nition 7 in Sect. 2.1) to exclude trivial distinguishers, i.e., they always consider
the pairs of original and adapted signatures in their distributions. We recall their
version in Definition 13. The most important difference7 is that while the original
notion in Definition 7 considers maliciously generated signatures, the definition
in [35] is restricted to honestly generated signatures.

Definition 13 (Signature Adaption [35]). An EQS scheme (ParGen,Sign,
ChgRep,Verify,VKey) perfectly adapts signatures if for all (sk, pk, [m]i, μ) with

VKey(sk, pk) = 1 [m]i ∈ (G∗
i)

� μ ∈ Z
∗
p

the following are identically distributed:

(ρ := Sign(sk, [m]i),ChgRep(pk, ρ, μ)) and

(ρ := Sign(sk, [m]i),ChgRep(pk,Sign(sk, [μ · m]i), 1))

In Fig. 1 we recall the FG18 scheme and then proceed to discuss problems of
Definition 13 and their scheme in context of applications.

3.1 Problem With Key Verification and the Need for a CRS

Fuchsbauer and Gay require for signature adaption that the respective EQS
scheme provides a VKey algorithm that checks consistency of keys sk and pk.
When looking at their keys pk := ([B]2, {[KiB]2}i∈[�]) and sk := (A, {Ki}i∈�),
a potential VKey algorithm can check the consistency of pk with the part of the
secret key {Ki}i∈�. They did not specify the VKey algorithm, but any reasonable
VKey would check if sk contains the trapdoor B, as honest keys would not contain
it. Now an interesting aspect is that this does not per se present a problem in
their definition, as they do not consider perfect adaption under malicious keys
(in the vein of Definition 8; cf. Sect. 2.1). However, the existence of the potential
trapdoor B and no means to proving the absence of it represents a problem with

7 One syntactical difference is that for EQS they do not input the message [m]i in
their ChgRep algorithm, but this does not matter for our discussion.

78 M. Khalili et al.

Setup(PG) :
A R←− D2k,k,B R←− Dk′

for i ∈ [�] do

Ki
R←− Z

2k×(k′+1)
p

endfor
pk := ([B]2, {[KiB]2}i∈[�])
sk := (A, {Ki}i∈[�])
return (pk,sk)

ChgRep(pk, ρ = ({[Si]1}i∈[�+1], [S]2), μ) :

r R←− (Zk
p)

∗, [s]2 = [S]2r
for i ∈ [� + 1] do
[si]1 = μ[Si]1r

endfor
return σ = ({[si]1}i∈[�+1], [s]2)

Sign(sk, [m]1 ∈ (G�
1)∗) :

U R←− GLk,S = AU
for i ∈ [�] do
[Si]1 = [mi]1S

endfor

[S�+1]1 =
�∑

i=1

[mi]1K�
i S

return ρ = ({[Si]1}i∈[�+1], [S]2)

Ver(pk, [m]1, σ = ({[si]1}i∈[�+1], [s]2) :

if [s]2 �= [0]2
and ∀i ∈ [�] : [si]1 · [1]2 = [mi]1 · [s]2

and
�∑

i=1

[s�
i]1 · [KiB]2 = [s�

�+1]1 · [B]2

return 1
else return 0

Fig. 1. EQS Scheme from [35].

the application of the FG18 scheme to attribute-based credentials (ABCs) (cf.
Section 5 in [35]).

In the ABC construction from [40], the issuer generates an SPS-EQ key
pair and in the Issue protocol, the issuer needs to provide a ZKPoK that
VKey(sk, pk) = 1. Note that for FG18 no realization of this ZKPoK can prove
the absence of B (as the issuer could simply pretend to not knowing it and the
ZKPoK cannot cover this) and a malicious issuer may remember B. Now in
the anonymity proof of the ABC scheme (Theorem 8 in [40]), the reduction can
extract the signing key sk from the ZKPoK and in the transition from Game1 to
Game2, for all calls to the oracle OLoR the computation of ChgRep is replaced
with Sign of the SPS-EQ, i.e., instead of adapting existing signatures fresh signa-
tures are computed. Now, this is argued under their signature adaption notion.
However, without additional means, by the strategy we discuss below (i.e., a way
to construct malicious signatures that verify), an adversary can detect with over-
whelming probability that the simulation deviates from the original anonymity
game and thus this proof breaks down when instantiated with EQS in [35]. The
reason is, that their adaption notion in Definition 13 is too weak to be useful to
constructing ABCs following the approach in [40].

Attack Strategy. Let us assume that the adversary who generates the key-
pair pk = ([B]2, {[KiB]2}i∈[�]) and sk = (A, {Ki}i∈[�]) remembers the trapdoor
B. For simplicity we set k = 2 and k′ = 1 in Scheme 1 and so we have B =(

b1
b2

)
. Let us for the sake of exposition assume that the signer (credential issuer)

Structure-Preserving Signatures on Equivalence Classes 79

wants to track a specific instance of signing (issuing) and generates all signatures
honestly, except for the one instance (lets say Alice’s credential). Latter signature
is computed differently by the issuer, but in a way that it is indistinguishable
for verifiers, i.e., it still verifies correctly. Actually, instead of computing S�+1 =(

S1 S2

S3 S4

)
as dictated by the Sign algorithm (cf. Fig. 1), he uses S�+1 (as in Sign)

but also his trapdoor B to compute S′
�+1 =

(
S1 − b2 S2 + b2
S3 + b1 S4 − b1

)
. Then, he includes

S′
�+1 instead of S�+1 in the first part of the signature ρ. Note that we have

S�
�+1B = S′�

�+1B, and for a verifier this alternative signature computation is not
noticeable. When Alice wants to randomize ρ (i.e., run ChgRep in Fig. 1), she

chooses r R←− Z
2
p and obtains s′

�+1 = μS′
�+1r = μ

(
(S1 − b2)r1 + (S2 + b2)r2
(S3 + b1)r1 + (S4 − b1)r2

)
.

Note that the signer knows Ki, and so he can check for any given randomized
signature the following:

�∑

i=1

[s�
i]1Ki = [s�

�+1]1 (3)

which does not use pairing evaluations and thus does not eliminate B. Now it is
easy to see that all randomized signatures including the randomized signature
issued for Alice pass the original verification using Ver. However, the randomized
signature of Alice has an additional part (i.e., B) and so Eq. (3) cannot be
satisfied. So, the signer can easily distinguish the signature issued to Alice from
all other honestly computed signatures.

Trying to Fix the Problem. A modification of the FG18 scheme to prevent
this attack would be to put [B]2 in a common reference string (CRS) used by
all signers when generating their keys so that no signer knows B. As we show
subsequently, however, the adaption notion in Definition 13 used for FG18 still
remains too weak for ABCs and group signatures.

3.2 Distinguishing Signatures

Now, we show how a malicious signer can distinguish signatures even if keys
are generated honestly. In the case of dynamic group signatures (GS) in [30] (or
ABCs under honest keys), the adversary in the anonymity game is allowed to
compute signatures on its own and we will show how this enables the adversary to
track signatures, which breaks the anonymity proof. We stress that this attack
works independently of whether there is a trapdoor in the secret key, as the
GS in [30] rely on the BSZ model [15] and thus assume honest key generation
(mitigating the attack in Sect. 3.1 by construction).

Attack Strategy. First we show how a signer who remembers S during running
Sign can obtain the value of [r]2, which was used as a randomizer for the signature
during ChgRep, and then how he can use it to distinguish two signatures. Again,

80 M. Khalili et al.

let us set k = 2 and k′ = 1. So, we have S =

⎛

⎜
⎜
⎝

S1 S2

S3 S4

S5 S6

S7 S8

⎞

⎟
⎟
⎠, and when ChgRep

multiplies [S]2 on r =
(

r1
r2

)
, we receive [s]2 =

⎡

⎢
⎢
⎣

s1
s2
s3
s4

⎤

⎥
⎥
⎦

2

=

⎡

⎢
⎢
⎣

r1S1 + r2S2

r1S3 + r2S4

r1S5 + r2S6

r1S7 + r2S8

⎤

⎥
⎥
⎦

2

. Taking

[s]2 and S, we compute [s1
S1

]2 − [s2
S3

], and then multiply it to (S2
S1

− S4
S3

)−1 to
obtain [r2]2. Now, we also can recover [r1]2 and so we obtain [r]2.

Now, let the signer generate two signatures, say for Alice and Bob, where he
later wants to link the received randomized signature to one of them.

The signer picks S =

⎛

⎜
⎜
⎝

S1 S2

S3 S4

S5 S6

S7 S8

⎞

⎟
⎟
⎠ for Alice, and picks different S′

5, S
′
6, S

′
7, S

′
8,

and sets S′ =

⎛

⎜
⎜
⎝

S1 S2

S3 S4

S′
5 S′

6

S′
7 S′

8

⎞

⎟
⎟
⎠ for Bob in their respective signatures. When the signer

receives [s]2, a candidate for a signature obtained from ChgRep, based on the
approach discussed above he obtains [r]2. Now he checks whether [s3]2 = [r1S5+
r2S6]2 holds, in which case the randomized signature is related to Alice. On the
other hand, if [s3]2 = [r1S′

5 + r2S
′
6]2 holds, then the randomized signature is

related to Bob.

3.3 No Perfect Composition

Subsequently, in Definition 14 we recall the perfect composition notion from [51]
required to construct VES from SPS-EQ. This notion intuitively requires that
ChgRep executed with random coins fixed to 1 updates only the parts of the
given signature that are affected by updating the representative from [m]i to
μ[m]i and not changing the randomness ω previously used by Sign.

Definition 14 (Perfect Composition [51]). An SPS-EQ scheme (ParGen,
Sign,ChgRep,Verify,VKey) allows perfect composition if for all random tapes ω
and tuples (sk, pk, [m]i, σ, μ):

VKey(sk, pk) = 1 σ ← Sign([m]i, sk;ω) [m]i ∈ (G∗
i)

� μ ∈ Z
∗
p

it holds that (μ[m]i,Sign(μ[m]i, sk;ω)) = ChgRep([m]i, σ, μ, pk; 1).

Since this notion does not require any assumption on the distribution of original
and adapted signatures, the issues discussed so far do not yield to any problem.
However, it is quite easy to see that this notion is not satisfied by the FG18
scheme and this is actually an inherent problem for EQS (SPS-EQ) schemes
where signatures output by Sign and ChgRep have different forms. To illustrate

Structure-Preserving Signatures on Equivalence Classes 81

this for the FG18 scheme (cf. Fig. 1), signatures resulting from Sign contain a
matrix [S]2, whereas signatures output by ChgRep contain the vector [s]2 := [S]2r
(where in context of Definition 14, r represents the all all-ones vector).

4 Our OR-Proof and Core Lemma

Subsequently, we present the concrete instantiation of our malleable OR-proof
that we use for our SPS-EQ scheme. Firstly, PPro computes as a proof two copies
Ω1 and Ω2 of an OR-proof for statements [x1]1 and [x2]1, which use the same
randomness v and share a QA-NIZK proof π (denoted by Ω). Consequently,
instead of ending up with two independent proofs, we end up with a single proof
Ω = (Ω1 = ([C1,i]2, [Π1,i]1), Ω2 = ([C2,i]2, [Π2,i]1), [zi]2, π) for i = 0, 1 where
both proofs share [zi]2 and π. We also have PVer and PSim which take two
statements and proofs with shared randomness and QA-NIZK denoted by π as
input. Our ZKEval is restricted to any two words [x1]1 and [x2]1 corresponding to
witnesses r1 and r2 where the associated proofs Ω1 and Ω2 have been computed
using the same randomness v and thus have shared [zi]2 and π. The output of
ZKEval is a proof Ω′ = (Ω′

1, [z
′
i]2, π

′) for word [x′
1]1 corresponding to witness r′ =

r1+ψr2 with ψ
R←− Zp chosen by ZKEval (i.e., ψ indexes a concrete transformation

in the family T). Finally, we also provide a verification algorithm (PRVer) that
verifies a single OR-proof (as we use it in the SPS-EQ).

Our OR-Proof. Now, we present our malleable proof for OR language L∨
A0,A1

based upon the one in [43]. We recall their NIZK proof as well as the QA-NIZK
used by us in our NIZK proof in the full version. The language is

L∨
A0,A1

= {[x]1 ∈ G
2k
1 |∃r ∈ Z

k
p : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}

and par := (BG, [A0]1, [A1]1) with BG ← BGGen(1λ) and A0,A1
R←− D2k,k

for k ∈ N. We henceforth denote our proof by PS and set k = 1 and consider the
class of admissible transformations T := {(Tψ

x , Tψ
w)}ψ∈Z∗

p
and Tψ

x ([x1]1, [x2]1) :=
[x1]1 + ψ[x2]1 and Tψ

w (r1, r2) := r1 + ψr2. Observe that the output of ZKEval
is a proof with new randomness v′ = αv, s′

0 = αs1,0 + αψs2,0 + β0 and s′
1 =

αs1,1 + αψs2,1 + β1 as well as new witness r′ = r1 + ψr2.
Below, we show that the protocol in Fig. 2 is indeed a NIZK argument.

Theorem 1. The protocol in Fig. 2 is a malleable non-interactive zero-
knowledge argument for the language L∨

A0,A1
with respect to allowable trans-

formations T .

Proof. We need to prove three properties, perfect completeness, composable
zero-knowledge, computational soundness and derivation privacy.

Completeness: This is easy to verify.

Zero-Knowledge: The challenger sends an MDDH challenge ([D]2, [z]2) to the
adversary B. Then B picks A0,A1

R←− D2,1, A R←− D1, K R←− Z
2×1
p and computes

[P]2 = [z� + D�]2K and C = KA.

82 M. Khalili et al.

PGen(par, 1λ) :

D,A R←− D1, z
R←− Z

2
p \ span(D)

K R←− Z
2×1
p

M := D + z
P := M�K
C := KA
crs = (par, [D]2, [z]2, [P]2, [A]1, [C]1)
return crs

PPro(crs, [x1]1, r1, [x2]1, r2) :

Let b ∈ {0, 1}, j ∈ {1, 2} s.t. [xj]1 = [Ab]1rj

v
R←− Zp

[z1−b]2 := v[D]2
[zb]2 := v[z]2
π := v[P]2

s1,0, s1,1, s2,0, s2,1
R←− Zp

[C1,b]2 := s1,b[D]�2 + r1[zb]2
[Π1,b]1 := [Ab]�1 s1,b

[C1,1−b]2 := s1,1−b[D]�2
[Π1,1−b]1 := [A1−b]1 · s1,1−b − [x1]1v
[C2,b]2 := s2,b[D]�2 + r2[zb]2
[Π2,b]1 := [Ab]�1 s2,b

[C2,1−b]2 := s2,1−b[D]�2
[Π2,1−b]1 := [A1−b]1 · s2,1−b − [x2]1v
Ω := ([Cj,i]2, [Πj,i]1, [zi]2, π)j∈{1,2},i∈{0,1}
return Ω

PVer(crs, [x1]1, [x2]1, Ω) :

if e([A]1, π) = e([C]1, [z1]2 + [z0]2)
and for all i ∈ {0, 1}, j ∈ {1, 2} it holds

e([Ai]1, [Cj,i]2)
e([Πj,i]1, [D]�2) + e([xj]1, [zi]�2)

return 1
else return 0

PRVer(crs, [x′
1]1, Ω′

1) :

if e([A]1, π′) = e([C]1, [z1]2 + [z0]2)
and for all i ∈ {0, 1} it holds

e([Ai]1, [C′
i]2) =

e([Π′
i]1, [D]�2) + e([x′

1]1, [z
′
i]

�
2)

return 1
else return 0

PTGen(par, 1λ) :

D,A R←− D1, u
R←− Zp

K R←− Z
2×1
p

z := Du
M := D + z
P := M�K
C := KA
crs := (par, [D]2, [z]2, [P]2, [A]1, [C]1)
trap := (u,K)
return (crs, trap)

PSim(crs, trap, [x1]1, [x2]1) :

v
R←− Zp

[z0]2 := v[D]2
[z1]2 := v[z]2
π := v[P]2

s1,0, s1,1, s2,0, s2,1
R←− Zp

[C1,0]2 := s1,0[D]�2
[Π1,0]1 := [A0]·1s1,0 − [x1]1v
[C1,1]2 := s1,1[D]�2
[Π1,1]1 := [A1]1 · s1,1 − [x1]1(vu)
[C2,0]2 := s2,0[D]�2
[Π2,0]1 := [A0]·1s2,0 − [x2]1v
[C2,1]2 := s2,1[D]�2
[Π2,1]1 := [A1]1 · s2,1 − [x2]1(vu)
Ω := ([Cj,i]2, [Πj,i]1, [zi]2, π)j∈{1,2},i∈{0,1}
return Ω

ZKEval(crs, [x1]1, [x2]1, Ω) :

Parse Ω = (Ω1, Ω2, [zi]2, π)
if PVer(crs, [x1]1, [x2]1, Ω) = 0
return ⊥

else ψ, α, β0, β1
R←− Z

∗
p

and for all b ∈ {0, 1}[
z′

b

]
2
:= α[zb]2[

C′
b

]
2
:= α[C1,b]2 + αψ[C2,b]2 + βb[D]2[

Π′
b

]
1
:= α[Π1,b]1 + αψ[Π2,b]1 + βb[Ab]1

π′ := απ
Ω′ := (Ω′

1, [z
′
i]2, π

′)
return Ω′

Fig. 2. Malleable NIZK argument for language L∨
A0,A1

Then B sends ([A0]1, [A1]1, [z]2, [D]2, [P]2, [A]1, [C]1) to A as crs. When B
receives a real MDDH tuple, where [z]2 = [Du]2 for some u ∈ Zp, B simu-

lates crs as PTGen. In the other case, where [z]2
R←− G

2
2, using the fact that the

Structure-Preserving Signatures on Equivalence Classes 83

uniform distribution over Z
2
p and the uniform distribution over Z

2
p\span(D) are

1/p-statistically close distributions, since D is of rank 1, we can conclude that
B simulates the crs as output by PGen, within a 1/p statistical distance. Now,
note that PPro and PSim compute the vectors [z0]2 and [z1]2 in the exact same
way, i.e., for all b ∈ {0, 1}, zb := Dvb where v0, v1 are uniformly random over Zp

subject to v1 = v0u (recall z := Du).
Also for case j = 1, on input [x1]1 := [Abr1]1, for some b ∈ {0, 1},

PPro(crs, [x1]1, [x2]1, r1, r2) computes [C1,1−b]2 and [Π1,1−b]1 exactly as PSim,
that is: [C1,1−b]2 = s1,1−b[D]2 and [Π1,1−b]1 = [A1−b]1s1,1−b − [x1]1v1−b.
The algorithm PPro additionally computes [C1,b]2 = s1,b[D]2 + r1[z]2 and

[Π1,b]1 = [Ab]1s1,b, with s1,b
R←− Zp. Since the following are identically dis-

tributed:
s1,b and s1,b − r1vb

for s1,b
R←− Zp, we can re-write the commitment and proof computed by PPro

as [C1,b]2 = s1,b[D]2 − r1vb[D]2 + r1[zb]2 = [s1,bD]2 and [Π1,b]1 = [Ab]1s1,b −
[Abr1vb]2 = [Abs1,b]1 − [x1vb]2, which is exactly as the output of PSim.

For case j = 2 the argumentation is analogous.

Computational Soundness: Based on the computational soundness of the
QA-NIZK proofs [65], we have z0 + z1 /∈ span(D). So, there is a b ∈ {0, 1}
such that zb /∈ span(D). This implies that there exists a d⊥ ∈ Z

2
p such that

D�d⊥ = 0, and z�
b d⊥ = 1. Furthermore, as the row vectors of D together with zb

form a basis of Z2
p, we can write [Cj,b]2 := [sj,bD+rjzb]2 for some sj,b, rj

R←− Zp.
Multiplying the verification equation by d thus yields [Abrj]1 = [xj]1, which
proves a successful forgery outside L∨

A0,A1
impossible.

Derivation Privacy: As can be seen, the algorithm ZKEval outputs a
proof with new independent randomness. So, the algorithm ZKEval and the
algorithm PPro, when only compute a single proof, have identical distribu-
tion, i.e., we have perfect derivation privacy. More precisely, under the CRS
([A0]1, [A1]1, [z]2, [D]2, [P]2), a proof Ω′ = (Ω′

1, [z
′
i]2, π

′) for word [x′
1]1 corre-

sponding to witness r′ has form [z′
1−b]2 = v′[D]2, [z′

b]2 = v′[z]2 and π = v′[P]2,
and [C′

b]2 = s′
b[D]�2 + r′[z′

b]2, [Π′
b]1 = [Ab]�1 s′

b, [C′
1−b]2 = s′

1−b[D]�2 and
[Π′

1−b]1 = [A1−b]1 ·s′
1−b − [x′

1]1v
′ for new independent randomness r′, v′, s′

b, s
′
1−b

and so is a random element in the space of all proofs. Concluding, the proof
output by ZKEval is distributed identically to a fresh proof output by PPro. ��

4.1 Our Core Lemma

We now give a new core lemma, which we denote by Expcore
β . Note that we set

k = 1, as it is sufficient for our construction of SPS-EQ. Consider following
experiments (for two cases β = 0 and β = 1), where F : Zp → Z

2
p is a random

function computed on the fly:

84 M. Khalili et al.

Expcore
β (λ), β ∈ {0, 1} :

ctr := 0
BG ← BGGen(1λ)

A0,A1
R←− D1

par := (BG, [A0]1, [A1]1)
crs ← PGen(par, 1λ)

k0,k1
R←− Z

2
p

pp := (BG, [A0]1, crs)
tag ← ATAGO()(pp)
return VERO(tag)

TAGO() :

ctr := ctr + 1

r1, r2
R←− Zp

[t]1 := [A0]1r1, [w]1 := [A0]1r2
Ω := (Ω1, Ω2, [z0]2, [z1]2, π) ← PPro(crs, [t]1, r1, [w]1, r2)[
u′]

1
:= (k0 + β · F(ctr))�[t]1, [u′′]1 := (k0 + β · k1)�[w]1

Tag := ([t]1, [w]1, Ω = (Ω1, Ω2, [z0]2, [z1]2, π), [u′]1, [u′′]1)
return Tag

VERO(tag) :

Parse tag = ([t]1, Ω1, [z0]2, [z1]2, π, [u′]1)
if 1 ← PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π))
and ∃ctr′ ≤ ctr : [u′]1 = (k0 + β · F(ctr′))�[t]1
return 1

else return 0

Lemma 2 (Core lemma). If the D1-MDDH (DDH) assumption holds in G1

and the tuple of algorithms (PGen,PTGen,PPro,PVer) is a non-interactive zero-
knowledge proof system for L∨

A0,A1
, then going from experiment Expcore0 to

Expcore1 can (up to negligible terms) only increase the winning chance of an adver-
sary. More precisely, for every adversary A, there exist adversaries B, B1 and
B2 such that

Advcore
0 (A) − Advcore

1 (A) ≤ Δcore
A ,

where

Δcore
A = (2 + 2�log Q�)Advzk

PS(B) + (8�log Q� + 4)AdvMDDH
D1,Gs

(B1)

2�log Q�Advsnd
PS (B2) + �log Q�ΔD1 +

(8�log Q� + 4)
p − 1

+
(�log Q�)Q

p

and the term ΔD1 is statistically small.

Due to the lack of space and the similarity of the proof to the approach in
[43] we present the full proof in the full version.

5 Our SPS-EQ Scheme

In Fig. 3 we present our SPS-EQ scheme in the common parameter model under
simple assumptions. We set k = 1 as we need randomizability and note that
our scheme is based on the malleable OR-proof presented in Sect. 4. Observe
that in ChgRep the new randomness is v′ = αv, s′

0 = αμs1,0 + αψs2,0 + β0 and
s′
1 = αμs1,1 + αψs2,1 + β1 and the new witness is r′ = μr1 + ψr2.

Structure-Preserving Signatures on Equivalence Classes 85

ParGen(1λ) :

BG ← BGGen(1κ)

A0,A1
R←− D1

crs ← PGen((BG, [A0]1, [A1]1), 1λ)
par := (BG, [A0]1, [A1]1, crs)
return par

Sign([m]1, sk) :

r1, r2
R←− Zp

[t]1 := [A0]1r1
[w]1 := [A0]1r2
Ω ← PPro(crs, [t]1, r1, [w]1, r2)
Parse Ω = (Ω1, Ω2, [z0]2, [z1]2, π)
u1 := K�

0 [t]1 + K�[m]1
u2 := K�

0 [w]1
σ := ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
τ := ([u2]1, Ω2, [w]1)
return (σ, τ)

Verify([m]1, (σ, τ), pk) :

Parse σ = ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
Parse τ ∈ {([u2]1, Ω2, [w]1) ∪ ⊥}
1: if 1 = PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π))
2: if e([u1]�1 , [A]2) =

e([t]�1 , [K0A]2) + e([m]�1 , [KA]2)
if τ �= ⊥

3: if 1 ← PVer(crs, [w]1, (Ω2, [z0]2, [z1]2, π))
4: if e([u2]�1 , [A]2) = e([w]�1 , [K0A]2)

return 1
return 1

else return 0

KeyGen(par, �) :

A R←− D1

K0
R←− Z

2×2
p

K R←− Z
�×2
p

sk := (K0,K)
pk := ([A]2, [K0A]2, [KA]2)
return (pk, sk)

ChgRep([m]1, σ, τ, μ, pk) :

Parse σ = ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
Parse τ = ([u2]1, Ω2, [w]1)
Ω := (Ω1, Ω2, [z0]2, [z1]2, π)
if 1 �= PVer(crs, [t]1, [w]1, Ω)
or e([u2]�1 , [A]2) �= e([w]�1 , [K0A]2)
or e([u1]�1 , [A]2) �=

e([t]�1 , [K0A]2) + e([m]�1 , [KA]2)
return ⊥

else ψ, α, β0, β1
R←− Z

∗
p

[u1]′1 := μ[u1]1 + ψ[u2]1[
t′]

1
:= μ[t]1 + ψ[w]1 = [A0]1(μr1 + ψr2)

for all b ∈ {0, 1}[
z′

b

]
2
:= α[zb]2[

C′
b

]
2
:= αμ[C1,b]2 + αψ[C2,b]2 + βb[D]2[

Π′
b

]
1
:= αμ[Π1,b]1 + αψ[Π2,b]1 + βb[Ab]1

π′ := απ
Ω′ := (Ω′

1, [z
′
i]2, π

′)
σ′ := ([u′

1]1, Ω
′, [t′]1)

return (μ[m]1, σ′)

Fig. 3. Our SPS-EQ scheme.

Theorem 2. If KerMDH and MDDH assumptions holds, our SPS scheme is
unforgeable.

Proof. We prove the claim by using a sequence of Games and we denote the
advantage of the adversary in the j-th game as Advj .

Game 0: This game is the original game and we have:

Adv0 = AdvEUF-CMA
SPS-EQ (A)

Game 1: In this game, in Verify, we replace the verification in line (2:) with the
following equation:

[u∗
1]1 = K0

�[t∗]1 + K�[m∗]1

86 M. Khalili et al.

For any signature σ = ([u∗
1]1, Ω

∗
1 , [z∗

0]2, [z
∗
1]2, π

∗, [t∗]1) that passes the original
verification but not verification of Game 1 the value

[u∗
1]1 − K0

�[t∗]1 − K�[m∗]1

is a non-zero vector in the kernel of A. Thus if A outputs such a signature, we
can construct an adversary B that breaks the D1-KerMDH assumption in G2.
To do this we proceed as follows: The adversary B receives (BG, [A]2), samples
all other parameters and simulates Game 1 for A. When B receives the forgery
from A as tuple σ = ([u∗

1]1, Ω
∗
1 , [z∗

0]2, [z
∗
1]2, π

∗, [t∗]1) for message [m∗]1, he passes
following values to its own challenger:

[u∗
1]1 − K0

�[t∗]1 − K�[m∗]1

We have:
|Adv1 − Adv0| � AdvKerMDH

D1,G2
(B)

Game 2: In this game, we set K0 = K0 + k0(a⊥)� (in key generation we can
pick k0 ∈ Z

2
p and K0 ∈ Z

2×2
p and set K0; we have a⊥A = 0). We compute

[u1]1 = K�
0 [t]1 + K�[m]1 + a⊥(k0)�[t]1 and [u2]1 = K�

0 [w]1 + a⊥(k0)�[w]1.
There is no difference to the previous game since both are distributed identically.
So, we have:

Adv2 = Adv1

Game 3: In this game, we add the part of F(ctr) for ctr = ctr+ 1, where F is a
random function, and obtain [u1]1 = K�

0 [t]1 + K�[m]1 + a⊥(k0 + F(ctr))�[t]1
and [u2]1 = K�

0 [w]1 + a⊥(k0 + k′)�[w]1. In the verification we have:

1 ← PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π)) and

∃ctr′ ≤ ctr :

[u1]1 = K�
0 [t]1 + a⊥(k0 + F(ctr′))� + K�[m]1

Let A be an adversary that distinguishes between Game 3 and Game 2. We
can construct an adversary B1 that breaks the core lemma. B1 receives par =
(BG, [A0]1, crs) from Expcore

β,B1
. B1 picks A R←− Dk, a⊥ ∈ orth(A), K0

R←− Z
2×2
p ,

K R←− Z
2×�
p , and sends public key pk = ([A0]1, [A]2, [K0A]2, [KA]2) to A. B1

uses the oracle TAGO() to construct the signing algorithm. This oracle takes
no input and returns tag = ([t]1, [w]1, Ω = (Ω1, Ω2, [z0]2, [z1]2, π), [u′]1, [u′′]1).
Then B1 computes [u1]1 = K�

0 [t]1 + a⊥[u′]1 + K�[m]1, [u2]1 = K�
0 [w]1 +

a⊥[u′′]1, and sends the signature σ = ([u1]1, [z0]2, [z1]2, π, [t]1) and tag τ =
([u2]1, Ω2, [w]1,) to A. When the adversary A sends his forgery ([m∗]1, σ∗) =
(u∗

1, [t
∗]1, Ω∗

1 , [z∗
0]2, [z

∗
1]2, π

∗), B1 returns 0 if [u1]1 = 0; otherwise he checks
whether there exists [u′∗]1 such that [u∗

1]1 − K�
0 [t∗]1 − K�[m∗]1 = a⊥[u′∗]1. If

it does not hold, then it returns 0 to A, otherwise B1 computes [u′∗]1, and calls
the verification oracle VERO() on the tag tag∗ = ([t∗]1, Ω∗

1 , [z∗
0]2, [z

∗
1]2, π

∗, [u′∗]1)
and returns the answer to A. Using the core lemma, we have:

Adv2 − Adv3 � Advcore
BG (B1)

Structure-Preserving Signatures on Equivalence Classes 87

Game 4: In this game, we pick r1, r2 from Z
∗
p instead of Zp. The difference of

advantage between Game 3 and Game 4 is bounded by the statistical distance
between the two distributions of r1, r2. So, under Q adversarial queries, we have:

|Adv4 − Adv3| � Q

p

Game 5: In this game, we pick c̃tr
R←− [1, Q], and we add a condition ctr′ = c̃tr

to verification. Actually, now we have this conditions:

1 ← PVer(pk, [t]1, (Ω1, [z0]2, [z1]2, π)) and

∃ctr′ ≤ ctr : ctr′ = c̃tr and

[u1]1 = K�
0 [t]1 + a⊥(k0 + F(ctr′))� + K�[m]1

Since the view of the adversary is independent of c̃tr, we have

Adv5 =
Adv4

Q

Game 6: In this game, we can replace K by K + v(a⊥)� for v R←− Z
�
p. Also,

we replace {F(i) : i ∈ [1, Q], i �= c̃tr} by {F(i) + wi : i ∈ [1, Q], i �= c̃tr}, for
wi

R←− Z
2k
p and i �= ĉtr. So, in each i-th query, where i �= ĉtr, we compute

[u1]1 = K�
0 [t]1 + (K� + a⊥v�)[mi]1 + a⊥(k0 + F(i) + wi)�[t]1

Also, for c̃tr-th query for the message [mc̃tr]1, we compute

[u1]1 = K�
0 [t]1 + (K� + a⊥v�)[mc̃tr]1 + a⊥(k0 + F(c̃tr) + wi)�[t]1

So, A must compute the following:

[u∗
1]1 = K�

0 [t∗]1 + (K� + a⊥v�)[m∗]1 + a⊥(k0 + F(c̃tr) + wi)�[t∗]1

Since m∗ �= [mc̃tr]R (in different classes) by definition of the security game,
we can argue v�m∗ and v�mc̃tr are two independent values, uniformly random
over G1. So, A only can guess it with probability of 1

p . So, we have

AdvEUF-CMA
SPS-EQ (A) � AdvKerMDH

BG (B) + Advcore
BG (B1) +

2Q

p
.

Theorem 3. Our scheme satisfies perfect adaption under malicious keys in the
honest parameters model, i.e., Definition 10.

Proof. For any message [m]1, and pk which is generated according to the
CRS ([A]2, [A0]1, [A1]1, [z]2, [D]2, [P]2), a signature σ = ([u1]1, Ω, [t]1,) sat-
isfying the verification algorithm must be of the form σ = (K�

0 [A0]1r +
K�[m]1, v[z]2, v[D]2, v[P]2, s0[D�] + rv[z]2, s1[D�]2, [A0]1s0, [A1]1s1 − [A0]1rv,
[A0]1r). A signature output by ChgRep has the form σ′ = (K�

0 [A0]1r′+K�[m]1,
v′[z]2, v′[D]2, v′[P]2, s′

0[D
�] + r′v′[z]2, s′

1[D
�]2, [A0]1s′

0, [A1]1s1 − [A0]1r′v′,
[A0]1r′) for new independent randomness r′, v′, s′

0, s
′
1 and so is a random ele-

ment in the space of all signatures. Actually, the signature output by ChgRep is
distributed identically to a fresh signature on message [m]1 output by Sign. ��

88 M. Khalili et al.

6 Applications

As already discussed in [35], there are no known applications of SPS-EQ where
signatures that have been randomized need to be randomized again by an entity
that does not know the original signature. Consequently, and as shown in [35],
tag-based schemes as the one introduced in this paper can be used within all the
known applications without restrictions. Now let us summarize and clarify how
our SPS-EQ scheme can be used in existing applications of SPS-EQ.

Using our scheme we can instantiate the group signatures in [30] and [11] as
well as access control encryption (ACE) in [36]. As already mentioned earlier,
both models assume honest key generation and so we can merge ParGen and
KeyGen of the SPS-EQ scheme and do not need a trusted party to generate the
CRS, i.e., it can be done by the signer during key generation.

Also we can instantiate attribute-based credentials [38,40,52] in the honest
key model or under malicious keys (for latter requiring a CRS), but not in
the malicious key model without a CRS. Due to an argumentation following a
reasoning related to the one in Sect. 3.3, our scheme cannot be used to instantiate
the verifiable encrypted signatures from [51].

Round-Optimal Blind Signatures in the CRS Model. What remains to
be discussed is the application to round-optimal blind signatures as introduced
in [37,39]. As already mentioned, as our SPS-EQ scheme does not provide the
strongest notion of perfect adaption under malicious keys, we are only able to
construct round-optimal blind signatures in the CRS model. In contrast to exist-
ing schemes in the CRS model relying on non-standard and non-static q-type
assumptions such as [9,33] which require around 30 group elements in the signa-
ture, the most recent scheme under standard assumptions, i.e., SXDH, by Abe
et al. [8] requires (42, 40) elements in G1 and G2 respectively. In contrast to
other existing schemes which follow the framework of Fischlin [32], we can take
our SPS-EQ scheme to instantiate the framework in [39]. We note that when
we are in the CRS model, we can move the commitment parameters Q and Q̂
from [39] in the CRS, and thus obtain a round optimal blind signature scheme
under SXDH. This is the same assumption as used by Abe et al. in [8], but our
signature sizes are only (10, 9) elements in G1 and G2 respectively, improving
over [8] by about a factor of 4 and even beating constructions proven secure
under q-type assumptions.

Acknowledgments. We are grateful to the anonymous reviewers from ASIACRYPT
2019 and Romain Gay for their careful reading of the paper, their valuable feedback
and suggestions to improve the presentation. We also thanks Carla Ràfols and Alonso
González for their comments on earlier versions of this work. This work was supported
by the EU’s Horizon 2020 ECSEL Joint Undertaking project SECREDAS under grant
agreement n◦783119 and by the Austrian Science Fund (FWF) and netidee SCIENCE
project PROFET (grant agreement P31621-N38).

Structure-Preserving Signatures on Equivalence Classes 89

References

1. Abdolmaleki, B., Lipmaa, H., Siim, J., Zaj ↪ac, M.: On QA-NIZK in the BPK model.
Cryptology ePrint Archive, Report 2018/877 (2018)

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

3. Abe, M., Chow, S.S., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous
tags for traceable signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS,
vol. 6715, pp. 183–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21554-4 11

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

6. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8 29

7. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 19

8. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

9. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
435–450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 26

10. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

11. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible pub-
lic key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 405–434. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03329-3 14

12. Backes, M., Hanzlik, L., Schneider, J.: Membership privacy for fully dynamic group
signatures. Cryptology ePrint Archive, Report 2018/641 (2018)

13. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-21554-4_11
https://doi.org/10.1007/978-3-642-21554-4_11
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-642-10366-7_26
https://doi.org/10.1007/978-3-642-10366-7_26
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26

90 M. Khalili et al.

14. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 26

15. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

16. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304. IEEE Computer Society Press (2015)

17. Blazy, O., Canard, S., Fuchsbauer, G., Gouget, A., Sibert, H., Traoré, J.: Achieving
optimal anonymity in transferable e-cash with a judge. In: Nitaj, A., Pointcheval,
D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 206–223. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21969-6 13

18. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 23

19. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press (1988)

20. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC
2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-662-58820-8 5

21. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. IACR Cryptology ePrint Archive 2017,
1050 (2017)

22. Bultel, X., Lafourcade, P., Lai, R., Malavolta, G., Schröder, D., Thyagarajan, S.:
Efficient invisible and unlinkable sanitizable signatures. In: PKC 2019 (2019, to
appear)

23. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 11

24. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

25. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

26. Clarisse, R., Sanders, O.: Short group signature in the standard model. IACR
Cryptology ePrint Archive 2018, 1115 (2018)

27. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 27

28. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 11

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-642-21969-6_13
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-17253-4_11

Structure-Preserving Signatures on Equivalence Classes 91

29. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials. In: Groth, J. (ed.) IMACC 2015. LNCS,
vol. 9496, pp. 57–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27239-9 4

30. Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signa-
tures. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.) ASIACCS
18, pp. 551–565. ACM Press (2018)

31. Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

32. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

33. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009)

34. Fuchsbauer, G.: Commuting Signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 14

35. Fuchsbauer, G., Gay, R.: Weakly secure equivalence-class signatures from standard
assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 153–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 6

36. Fuchsbauer, G., Gay, R., Kowalczyk, L., Orlandi, C.: Access control encryption
for equality, comparison, and more. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 88–118. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 4

37. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

38. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Cryptology ePrint
Archive, Report 2014/944 (2014)

39. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 12

40. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

41. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

42. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

43. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 8

https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-662-54388-7_4
https://doi.org/10.1007/978-3-662-54388-7_4
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8

92 M. Khalili et al.

44. Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA
2016. LNCS, vol. 9610, pp. 305–321. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29485-8 18

45. Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-
III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS
2017, Part II. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66399-9 3

46. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

47. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 25

48. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 12

49. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

50. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

51. Hanser, C., Rabkin, M., Schröder, D.: Verifiably encrypted signatures: security
revisited and a new construction. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015, Part I. LNCS, vol. 9326, pp. 146–164. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24174-6 8

52. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 26

53. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 65–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 3

54. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part III. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 17

55. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

56. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption.
Designs Codes Cryptogr. 80(1), 29–61 (2016)

57. Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part II. LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 7

https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-66399-9_3
https://doi.org/10.1007/978-3-319-66399-9_3
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-540-89255-7_12
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-24174-6_8
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-030-03329-3_7

Structure-Preserving Signatures on Equivalence Classes 93

58. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

59. Hébant, C., Phan, D.H., Pointcheval, D.: Linearly-homomorphic signatures and
scalable mix-nets. Cryptology ePrint Archive, Report 2019/547 (2019)

60. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-
preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 5

61. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

62. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

63. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 183–
209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

64. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 14

65. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

66. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

67. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

68. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 296–316.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

69. Lipmaa, H.: Key-and-argument-updatable QA-NIZKS. Cryptology ePrint Archive,
Report 2019/333 (2019)

70. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

71. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-46497-7_10

Public Key Encryption (1)

Simple and Efficient KDM-CCA Secure
Public Key Encryption

Fuyuki Kitagawa1(B), Takahiro Matsuda2, and Keisuke Tanaka3

1 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp
3 Tokyo Institute of Technology, Tokyo, Japan

keisuke@is.titech.ac.jp

Abstract. We propose two efficient public key encryption (PKE)
schemes satisfying key dependent message security against chosen cipher-
text attacks (KDM-CCA security). The first one is KDM-CCA secure
with respect to affine functions. The other one is KDM-CCA secure with
respect to polynomial functions. Both of our schemes are based on the
KDM-CPA secure PKE schemes proposed by Malkin, Teranishi, and
Yung (EUROCRYPT 2011). Although our schemes satisfy KDM-CCA
security, their efficiency overheads compared to Malkin et al.’s schemes
are very small. Thus, efficiency of our schemes is drastically improved
compared to the existing KDM-CCA secure schemes.

We achieve our results by extending the construction technique by
Kitagawa and Tanaka (ASIACRYPT 2018). Our schemes are obtained
via semi-generic constructions using an IND-CCA secure PKE scheme
as a building block. We prove the KDM-CCA security of our schemes
based on the decisional composite residuosity (DCR) assumption and
the IND-CCA security of the building block PKE scheme.

Moreover, our security proofs are tight if the IND-CCA security of the
building block PKE scheme is tightly reduced to its underlying compu-
tational assumption. By instantiating our schemes using existing tightly
IND-CCA secure PKE schemes, we obtain the first tightly KDM-CCA
secure PKE schemes whose ciphertext consists only of a constant number
of group elements.

Keywords: Key dependent message security · Chosen ciphertext
security

1 Introduction

1.1 Background

Key dependent message (KDM) security, introduced by Black, Rogaway, and
Shrimpton [3], guarantees confidentiality of communication even if an adversary
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 97–127, 2019.
https://doi.org/10.1007/978-3-030-34618-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_4

98 F. Kitagawa et al.

can get a ciphertext of secret keys. KDM security is defined with respect to a
function family F . Informally, a public key encryption (PKE) scheme is said to be
F-KDM secure if confidentiality of messages is protected even when an adversary
can see a ciphertext of f(sk1, · · · , sk�) under the k-th public key for any f ∈ F
and k ∈ {1, · · · , �}, where � denotes the number of keys. KDM security is useful
for many practical applications including anonymous credential systems [7] and
hard disk encryption systems (e.g., BitLocker [4]).

In this paper, we focus on constructing efficient PKE schemes that satisfy
KDM security against chosen ciphertext attacks, namely KDM-CCA security, in
the standard model. As pointed out by Camenisch, Chandran, and Shoup [6] who
proposed the first KDM-CCA secure PKE scheme, KDM-CCA security is well
motivated since it resolves key wrapping problems that arise in many practical
applications. Moreover, in some applications of KDM secure schemes such as
anonymous credential systems, we should consider active adversaries and need
KDM-CCA security.

The first attempt to construct an efficient KDM secure PKE scheme was
made by Applebaum, Cash, Peikert, and Sahai [1]. They proposed a PKE scheme
that is KDM-CPA secure with respect to affine functions (Faff -KDM-CPA
secure) under a lattice assumption. Their scheme is as efficient as IND-CPA
secure schemes based on essentially the same assumption.

Malkin, Teranishi, and Yung [22] later proposed a more efficient KDM-CPA
secure PKE scheme under the decisional composite residuosity (DCR) assump-
tion [9,24]. Moreover, their scheme is KDM-CPA secure with respect to polyno-
mial functions (Fpoly-KDM-CPA secure), which is much richer than affine func-
tions. A ciphertext of their scheme contains d+1 group elements, where d is the
maximum degree of polynomial functions with respect to which their scheme is
KDM-CPA secure. As a special case of d = 1, their scheme is an Faff -KDM-CPA
secure PKE scheme whose ciphertext consists of only two group elements.

Due to these works, we now have efficient KDM-CPA secure PKE schemes.
As we can see, the above Faff -KDM-CPA secure schemes are as efficient as PKE
schemes that are IND-CPA secure under the same assumptions. However, the
situation is somewhat unsatisfactory when considering KDM-CCA secure PKE.

Camenisch et al. [6] proposed the first KDM-CCA secure PKE scheme
based on the Naor-Yung paradigm [23]. They showed that for any function
class F , an F-KDM-CPA secure PKE scheme can be transformed into an
F-KDM-CCA secure one assuming a non-interactive zero knowledge (NIZK)
proof system. They also showed a concrete instantiation based on the deci-
sional Diffie-Hellman (DDH) assumption on bilinear groups. A ciphertext of
their scheme contains O(λ) group elements, where λ is the security parame-
ter. Subsequently, Hofheinz [12] showed a more efficient KDM-CCA secure PKE
scheme. His scheme is circular-CCA secure, relying on both the DCR and DDH
assumptions, and decisional linear (DLIN) assumption on bilinear groups. A
ciphertext of his scheme contains more than 50 group elements. Recently, Libert
and Qian [20] improved the construction of Hofheinz based on the 3-party DDH
(D3DH) assumption on bilinear groups, and shortened the ciphertext size by
about 20 group elements.

Simple and Efficient KDM-CCA Secure PKE 99

The first KDM-CCA secure PKE scheme using neither NIZK proofs nor
bilinear maps was proposed by Lu, Li, and Jia [21]. They claimed their scheme is
Faff -KDM-CCA secure based on both the DCR and DDH assumptions. However,
a flaw in their security proof was later pointed out by Han, Liu, and Lyu [11].
Han et al. also showed a new Faff -KDM-CCA secure scheme based on Lu et
al.’s construction methodology, and furthermore constructed a Fpoly-KDM-CCA
secure PKE scheme. Their schemes rely on both the DCR and DDH assumptions.
A ciphertext of their Faff -KDM-CCA secure scheme contains around 20 group
elements. A ciphertext of their Fpoly-KDM-CCA secure scheme contains O(d9)
group elements, where d is the maximum degree of polynomial functions.

Recently, Kitagawa and Tanaka [18] showed a new framework for construct-
ing KDM-CCA secure schemes, and they constructed an Faff -KDM-CCA secure
PKE scheme based solely on the DDH assumption (without bilinear maps). How-
ever, their scheme is somewhat inefficient and its ciphertext consists of O(λ)
group elements.

The currently most efficient KDM-CCA secure PKE scheme is that of
Han et al. Their schemes are much efficient compared to other KDM-CCA
secure schemes. However, there are still a large overhead compared to efficient
KDM-CPA secure schemes. Especially, its overhead compared to Malkin et al.’s
scheme is large even though Han et al.’s schemes are based on both the DDH
and DCR assumptions while Malkin et al.’s scheme is based only on the DCR
assumption.

In order to use a KDM-CCA secure PKE scheme in practical applications,
we need a more efficient scheme.

1.2 Our Results

We propose two efficient KDM-CCA secure PKE schemes. The first one is
Faff -KDM-CCA secure, and the other one is Fpoly-KDM-CCA secure. Both of
our schemes are based on the KDM-CPA secure scheme proposed by Malkin et
al. [22]. Although our schemes satisfy KDM-CCA security, its efficiency over-
heads compared to Malkin et al.’s schemes are very small. Thus, efficiency of
our schemes is drastically improved compared to the previous KDM-CCA secure
schemes.

We achieve our results by extending the construction technique by Kitagawa
and Tanaka [18]. Our schemes are obtained via semi-generic constructions using
an IND-CCA secure PKE scheme as a building block. By instantiating the under-
lying IND-CCA secure PKE scheme with the factoring-based scheme by Hofheinz
and Kiltz [16] (and with some optimization techniques), we obtain KDM-CCA
secure PKE schemes (with respect to affine functions and with respect to poly-
nomials) such that the overhead of the ciphertext size of our schemes compared
to Malkin et al.’s KDM-CPA secure scheme can be less than a single DCR-group
element. (See Figs. 1 and 2.)

Moreover, our security proofs are tight if the IND-CCA security of the build-
ing block PKE scheme is tightly reduced to its underlying computational assump-
tion. By instantiating our schemes using existing tightly IND-CCA secure PKE
schemes [10,13], we obtain the first tightly KDM-CCA secure PKE schemes

100 F. Kitagawa et al.

whose ciphertext consists only of a constant number of group elements. To the
best of our knowledge, prior to our work, the only way to construct a tightly
KDM-CCA secure PKE scheme is to instantiate the construction proposed by
Camenisch et al. [6] using a tightly secure NIZK proof system such as the one
proposed by Hofheinz and Jager [14]. A ciphertext of such schemes consists of
O(λ) group elements, where λ is the security parameter.

For a comparison of efficiency between our schemes and existing schemes, see
Figs. 1 and 2. In the figures, for reference, we include [22] on which our schemes
are based but which is not KDM-CCA secure. In the figures, we also show
concrete instantiations of our constructions. The details of these instantiations
are explained in Sect. 7.

We note that the plaintext space of the schemes listed in Figs. 1 and 2 except
for our schemes and Malkin et al.’s [22], is smaller than the secret key space,
and some modifications are needed for encrypting a whole secret key, which will
result in a larger ciphertext size in the resulting PKE schemes. On the other
hand, our and Malkin et al.’s schemes can encrypt a whole secret key without
any modification by setting s ≥ 3. (We provide a more detailed explanation on
the plaintext space of our scheme in Sect. 5.1.)

Organization. In Sect. 2, we give a technical overview behind our proposed
PKE schemes. In Sect. 3, we review definitions of cryptographic primitives and
assumptions. In Sect. 4, we introduce a new primitive that we call symmetric
key encapsulation mechanism (SKEM) and provide concrete instantiations. In
Sect. 5, we present our KDM-CCA secure PKE scheme with respect to affine
functions, and in Sect. 6, we present our KDM-CCA secure PKE scheme with
respect to polynomials. Finally, in Sect. 7, we give instantiation examples of
KDM-CCA secure PKE schemes.

2 Technical Overview

We provide an overview of our construction. Our starting point is the construc-
tion of KDM-CPA secure PKE proposed by Malkin et al. [22]. Their scheme
is highly efficient, but only KDM-CPA secure. Our basic idea is to construct
KDM-CCA secure PKE by adopting a construction technique used in the recent
work by Kitagawa and Tanaka [18] into Malkin et al.’s scheme. However, since
a simple combination of them does not work, we introduce a new primitive that
ties them together. We first review Malkin et al.’s scheme. Below, we explain
the overview by focusing on constructing a PKE scheme that is Faff -KDM-CCA
secure. The actual Malkin et al.’s scheme is Fpoly-KDM-CPA secure, and we can
construct a Fpoly-KDM-CCA secure scheme analogously.

2.1 KDM-CPA Secure Scheme by Malkin et al.

Malkin et al.’s scheme is secure under the DCR assumption and all procedures of
their scheme are performed on Z

∗
Ns , where N = PQ is an RSA modulus with safe

primes P and Q of the same length, and s ≥ 2 is an integer. Below, let n = φ(N)
4 .

Simple and Efficient KDM-CCA Secure PKE 101

Scheme Assumption Ciphertext size Tight?

[23] (not CCA) DCR 2|ZNs |
[7] with [15, § 4] DLIN O(λ)|Gbi| �
[13] (Circular) DCR+DDH(†) & DLIN 6|ZN3 | + 50|Gbi| + OHch&sig

[21] (Circular) DCR+DDH(†) & D3DH 6|ZN3 | + 31|Gbi| + OHch&sig

[12] DCR+DDH(‡) 9|ZNs | + 9|ZN2 | + 2|ZN̄ | + |ZN | + OHae

[19] DDH O(λ)|Gddh|
Ours (§ 5) DCR & CCAPKE 2|ZNs | + |πphf | + OHcca

with [17]+CRHF DCR 2|ZNs | + 2|ZN′ | + lencrhf

with [14] DCR 3|ZNs | + 28|ZN′2 | + OHae �
with [11] DCR & DDH 3|ZNs | + 3|Gddh| + OHae �

Fig. 1. Comparison of KDM-CCA secure PKE schemes with respect to affine functions.
The last three rows are instantiation examples of our scheme. In the “Ciphertext size”
column, we use the following notations: N and N ′ are RSA moduli, and s ≥ 2 is the
exponent of N in the DCR setting; N̄ = 2N +1; For a group G, |G| denotes the size of
an element in G; Gbi denotes a group equipped with a bilinear map, and Gddh denotes a
DDH-hard group (without bilinear maps); |πphf | denotes the output size of the underly-
ing projective hash function; OHcca (resp. OHae) denotes the ciphertext overhead of the
underlying IND-CCA secure PKE (resp. authenticated encryption) scheme; OHch&sig

denotes an overhead caused by the underlying chameleon hash function and one-time
signature scheme; lencrhf denotes the output size of a collision resistant hash function;
For λ-bit security, OHae = λ, lencrhf = 2λ, and OHch&sig can be smaller than |ZN |.
(†) DDH in the order-φ(N)

4
subgroup of Z∗

N3 .
(‡) DDH in QRN̄ := {a2 mod N̄ |a ∈ Z

∗̄
N}.

Scheme Assumption Ciphertext size Tight?

[23] (not CCA) DCR (d + 1)|ZNs |
[12] DCR+DDH(‡) (8d9 + 1)|ZNs | + 9|ZN2 | + 2|ZN̄ | + |ZN | + OHae

Ours (§ 6) DCR & CCAPKE (d + 1)|ZNs | + |πphf | + OHcca

with [17]+CRHF DCR (d + 1)|ZNs | + 2|ZN′ | + lencrhf

with [14] DCR (2d + 1)|ZNs | + 28|ZN′2 | + OHae �
with [11] DCR & DDH (2d + 1)|ZNs | + 3|Gddh| + OHae �

Fig. 2. Comparison of KDM-CCA secure PKE schemes with respect to degree-d poly-
nomial functions. We use the same notation as in Fig. 1.

We can decompose Z
∗
Ns as the internal direct product GNs−1 ⊗〈−1〉⊗Gn ⊗G2,

where 〈−1〉 is the subgroup of Z∗
Ns generated by −1 mod Ns, and GNs−1 , Gn,

and G2 are cyclic groups of order Ns−1, n, and 2, respectively. Note that T :=
1 + N ∈ Z

∗
Ns has order Ns−1 and it generates GNs−1 . Moreover, we can efficiently

compute discrete logarithms on GNs−1 . In addition, we can generate a random
generator of Gn.1

We can describe Malkin et al.’s scheme by using generators T and g of GNs−1

and Gn, respectively, and for simplicity we consider the single user setting for
now. Below, all computations are done mod Ns unless stated otherwise, and

1 This is done by generating μ
r←− Z

∗
Ns and setting g := μ2Ns−1

mod Ns. Then, g is
a generator of Gn with overwhelming probability.

102 F. Kitagawa et al.

Standard Mode:
Enc(pk, f(sk))

Fake Mode:
Sim(pk, f)

Hide Mode:
Enc(pk, 0)

Use the secrecy of
randomness (Re-
duction knows sk)

(1)

Use the secrecy
of sk (Reduction
does not know sk)

(2)

Fig. 3. The triple mode proof. “XX Mode: YY” indicates that in XX Mode, the chal-
lenger returns YY as the answer to a KDM query from an adversary.

we omit to write modNs. When generating a key pair, we sample2 a secret key
as x

r←− Zn and compute a public key as h = gx. When encrypting a message
m ∈ ZNs−1 , we first sample r

r←− Zn and set a ciphertext as (gr, Tm · hr). If we
have the secret key x, we can decrypt the ciphertext by computing the discrete
logarithm of (Tm · hr) · (gr)−x = Tm.

Triple Mode Proof Framework. We say that a PKE scheme is KDM secure if
an encryption of f(sk) is indistinguishable from that of some constant message
such as 0, where sk is a secret key and f is a function. Malkin et al. showed the
Faff -KDM-CPA security of their scheme based on the DCR assumption via the
proof strategy that they call the triple mode proof.

In the triple mode proof framework, we prove KDM security using three main
hybrid games. We let f be a function queried by an adversary as a KDM query.
In the first hybrid called Standard Mode, the challenger returns an encryption of
f(sk). In the second hybrid called Fake Mode, the challenger returns a simulated
ciphertext from f and the public key corresponding to sk. In the final hybrid
called Hide Mode, the challenger returns an encryption of 0. See Fig. 3.

If we can prove that the behavior of the adversary does not change between
Standard Mode and Hide Mode, we see that the scheme is KDM secure. However,
it is difficult to prove it directly by relying on the secrecy of the secret key. This is
because a reduction algorithm needs the secret key to simulate answers to KDM
queries in Standard Mode. Then, we consider the intermediate hybrid, Fake
Mode, and we try to prove the indistinguishability between Standard Mode and
Fake Mode based on the secrecy of encryption randomness. We call this part
Step (1). If we can do that, by showing the indistinguishability between Fake
Mode and Hide Mode based on the secrecy of the secret key, we can complete
the proof. We call this part Step (2). Note that a reduction for Step (2) does not
need the secret key to simulate answers to KDM queries.

Using this framework, we can prove the KDM-CPA security of Malkin et al.’s
scheme as follows. Let f(x) = ax + b mod Ns−1 be an affine function queried
by an adversary, where a, b ∈ ZNs−1 . In Standard Mode, the adversary is given
(gr, T ax+b · hr). In Fake Mode, the adversary is given (T−a · gr, T b · hr). We can
prove the indistinguishability of these two hybrids using the indistinguishability
2 In the actual scheme, we sample a secret key from [N − 1

4
]. We ignore this issue in

this overview.

Simple and Efficient KDM-CCA Secure PKE 103

of gr and T−a · gr. Namely, we use the DCR assumption and the secrecy of
encryption randomness r in this step. Then, in Hide Mode, the adversary is given
(gr, hr) that is an encryption of 0. We can prove the indistinguishability between
Fake Mode and Hide Mode based on the interactive vector (IV) lemma [5] that
is in turn based on the DCR assumption. The IV lemma says that for every
constant c1, c2 ∈ ZNs−1 , (T c1 · gr, T c2 · hr) is indistinguishable from (gr, hr) if in
addition to r, x satisfying h = gx is hidden from the view of an adversary. This
completes the proof of Malkin et al.’s scheme.

2.2 Problem When Proving KDM-CCA Security

Malkin et al.’s scheme is malleable thus is not KDM-CCA secure. In terms of the
proof, Step (2) of the triple mode proof does not go through when considering
KDM-CCA security. In Step (2), a reduction does not know the secret key and
thus the reduction cannot simulate answers to decryption queries correctly.

On the other hand, we see that Step (1) of the triple mode proof goes through
also when proving KDM-CCA security since a reduction algorithm knows the
secret key in this step. Thus, to construct a KDM-CCA secure scheme based on
Malkin et al.’s scheme, all we need is a mechanism that enables us to complete
Step (2) of the triple mode proof.

2.3 The Technique by Kitagawa and Tanaka

To solve the above problem, we adopt the technique used by Kitagawa and
Tanaka [18]. They constructed a KDM-CCA secure PKE scheme Πkdm by com-
bining projective hash functions PHF and PHF′ and an IND-CCA secure PKE
scheme Πcca. Their construction is a double layered construction. Namely, when
encrypting a message by their scheme, we first encrypt the message by the inner
scheme constructed from PHF and PHF′, and then encrypt the ciphertext again
by Πcca. The inner scheme is the same as the IND-CCA secure PKE scheme
based on projective hash functions proposed by Cramer and Shoup [8] except
that PHF used to mask a message is required to be homomorphic and on the
other hand PHF′ is required to be only universal (not 2-universal).

The security proof for this scheme can be captured by the triple mode proof
framework. We first perform Step (1) of the triple mode proof based on the
homomorphism of PHF and the hardness of a subset membership problem on
the group behind projective hash functions. Then, we perform Step (2) of the
triple mode proof using the IND-CCA security of Πcca. In this step, a reduction
algorithm can simulate answers to decryption queries. This is because the reduc-
tion algorithm can generate secret keys for PHF and PHF′ by itself and access
to the decryption oracle for Πcca. When proving the CCA security of a PKE
scheme based on projective hash functions, at some step in the proof, we need to
estimate the probability that an adversary makes an “illegal” decryption query.
In the proof of the scheme by Kitagawa and Tanaka, this estimation can be done
in Hide Mode of the triple mode proof. Due to this, the underlying PHF′ needs
to be only universal.

104 F. Kitagawa et al.

If the secret key csk of Πcca is included as a part of the secret key of Πkdm,
to complete the proof, we need to change the security game so that csk is not
needed to simulate answers to KDM queries in Step (1). It seems difficult unless
we require an additional property for secret keys of Πcca such as homomorphism.
Instead, Kitagawa and Tanaka designed their scheme so that csk is included in
the public key of Πkdm after encrypting it by PHF. Then, by eliminating this
encrypted csk from an adversary’s view by using the security of PHF before Step
(2) of the triple mode proof, the entire proof goes through. Note that, similarly
to the proof for the construction by Cramer and Shoup [8], a reduction algorithm
attacking the security of PHF can simulate answers to decryption queries due
to the fact that the security property of PHF is statistical and an adversary for
Πkdm is required to make a proof that the query is “legal” using PHF′.

2.4 Adopting the Technique by Kitagawa and Tanaka

We now consider adopting the technique by Kitagawa and Tanaka into Malkin
et al.’s scheme. Namely, we add a projective hash function for proving that an
inner layer ciphertext of Malkin et al.’s scheme is well-formed, and also add an
IND-CCA secure PKE scheme Πcca as the outer layer. In order to prove the
KDM-CCA security of this construction, we need to make the secret key csk
of Πcca as part of the public key of the resulting scheme after encrypting it
somehow. Moreover, we have to eliminate this encrypted csk before Step (2) of
the triple mode proof. However, this is not straightforward.

One naive way to do this is encrypting csk by the inner scheme based on the
DCR assumption, but this idea does not work. Since the security of the inner
scheme is computational unlike a projective hash function, a reduction algorithm
attacking the inner scheme cannot simulate answers to decryption queries. One
might think the problem is solved by modifying the scheme so that the security
property of the inner scheme becomes statistical as a projective hash function,
but this modification causes another problem. In order to do this, similarly to
the DCR-based projective hash function by Cramer and Shoup [8], a secret key
of the inner scheme needs to be sampled from a space whose size is as large
as the order of GNs−1 ⊗ Gn (that is, Ns−1 · n). However, the message space of
this scheme is ZNs−1 , and thus we cannot encrypt such a large secret key by this
scheme. The problem is more complicated when considering KDM-CCA security
in the multi-user setting. Therefore, we need another solution to hide the secret
key csk of Πcca.

2.5 Solution: Symmetric Key Encapsulation Mechanism (SKEM)

To solve the above problem, we introduce a new primitive we call symmetric
key encapsulation mechanism (SKEM). It is a key encapsulation mechanism in
which we can use the same key for both the encapsulation algorithm Encap and
decapsulation algorithm Decap. Moreover, it satisfies the following properties.

Encap can take an arbitrary integer x ∈ Z as an input secret key, but its com-
putation is done by x mod z, where z is an integer determined in the setup. Then,

Simple and Efficient KDM-CCA Secure PKE 105

for correctness, we require Decap(x mod z, ct) = K, where (ct,K) ← Encap(x).
Moreover, for security, the pseudorandomness of the session-time key K is
required to hold as long as x mod z is hidden from an adversary even if any
other information of x is revealed.

Using SKEM (Encap,Decap) in addition to an IND-CCA secure PKE scheme
Πcca and a projective hash function PHF, we can construct a KDM-CCA secure
PKE scheme based on Malkin et al.’s scheme as follows. When generating a key
pair, we first sample x

r←− [n·z] and compute h ← gx, where z is an integer that is
co-prime to n and satisfies n · z ≤ Ns−1. Then, we generate a key pair (ppk, psk)
of PHF and (cpk, csk) of Πcca, and (ct,K) ← Encap(x), and encrypt psk and csk
to ctsk using the one-time key K. The resulting secret key is just x and public
key is h, psk, cpk, and (ct, ctsk).3 When encrypting a message m, we encrypt it
in the same way as the Malkin et al.’s scheme and prove that those ciphertext
components are included in Gn by using PHF. Then, we encrypt them by Πcca.
When decrypting the ciphertext, we first retrieve csk and psk from (ct, ctsk) and
x using Decap, and decrypt the ciphertext using x, psk, and csk.

We can prove the Faff -KDM-CCA security of this scheme basically based on
the triple mode proof framework. By doing the same process as Step (1) of the
triple mode proof for Malkin et al.’s scheme, we can change the security game
so that we can simulate answers to KDM queries using only x mod n. Moreover,
due to the use of the projective hash function PHF, we can change the security
game so that we can reply to decryption queries using only x mod n. Therefore,
at this point, we do not need x mod z to simulate the security game, and thus
we can use the security of the SKEM. We now delete csk and psk from ctsk
using the security of the SKEM. Then, by using the security of Πcca, we can
accomplish Step (2) of the triple mode proof. Note that, similarly to the proof
by Kitagawa and Tanaka [18], we estimate the probability that an adversary
makes an “illegal” decryption query after Step (2) using the security of PHF.

2.6 Extension to the Multi-user Setting Using RKA Secure SKEM

The above overview of the proof considers KDM-CCA security in the single user
setting. We can extend it to the multi-user setting. When considering KDM-
CCA security in the multi-user setting, we modify the scheme so that we sample
a secret key x from [n ·z ·2ξ] such that n ·z ·2ξ ≤ Ns−1. In the security proof, we
sample a single x from [n · z] and generate the secret key xi of the i-th user by
sampling Δi

r←− [n ·z ·2ξ] and setting xi = x+Δi, where the addition is done over
Z. In this case, an affine function f of x1 . . . , x� is also an affine function of only
x whose coefficients are determined by those of f and Δ1, . . . ,Δ�. Moreover, the
statistical distance between a secret key generated in this way and that generated
honestly is at most 2−ξ. Then, we can proceed the security proof in the same
way as above, except for the part using the security of the SKEM.

3 In the actual construction, we derive key pairs (csk, cpk) and (ppk, psk) using K as a
random coin. This modification reduces the size of a public key.

106 F. Kitagawa et al.

The secret key xi of the i-th user is now generated as x+Δi by using a single
source x. Thus, each user’s one-time key Ki used to hide the user’s (psk, csk) is
derived from a single source x and a “shift” value Δi. Standard security notations
do not capture such a situation.

To address this problem, we require a security property against related key
attacks (RKA security) for SKEM. However, a very weak form of RKA security
is sufficient to complete the proof. We show that such an RKA secure SKEM can
be constructed based only on the DCR assumption. Therefore, we can prove the
KDM-CCA security in the multi-user setting of our scheme based only on the
DCR assumption and the IND-CCA security of the underlying PKE scheme.

2.7 Differences in Usage of RKA Secure Primitive with Han et al.

We note that the previous most efficient KDM-CCA secure PKE schemes of Han
et al. [11] (and the scheme of Lu et al. [21] on which the constructions of [11] are
based), also use a “symmetric key” primitive that is “RKA secure”. Specifically,
Han et al. use a primitive called authenticated encryption with auxiliary-input
(AIAE, for short), for which they define confidentiality and integrity properties
both under some appropriate forms of affine-RKA. Here, we highlight the differ-
ences between our proposed schemes and the schemes by Han et al. regarding
the usage of a symmetric primitive with RKA security.

In our schemes, an RKA secure SKEM is used to derive the secret keys
(psk, csk) of the underlying projective hash function and IND-CCA secure PKE
scheme, and an SKEM ciphertext is put as part of a public key of the resulting
scheme. In a modified security game considered in our security proofs, a KDM-
CCA adversary sees multiple SKEM ciphertexts {cti} (contained in the public
keys initially given to the adversary), where each cti is computed by using x +
Δi mod z as a secret key, where Δi ∈ [n · z · 2ξ] is chosen uniformly at random.
Consequently, an SKEM used as a building block in our proposed schemes needs
to be secure only against “passive” addition-RKA, in which the shift values {Δi}
are chosen randomly by the challenger (rather than by an RKA adversary). Such
an SKEM is easy to construct, and we will show several simple and efficient
instantiations based on the DCR assumption, the DDH assumption, and hash
functions with some appropriate form of “correlation-robustness” [2,17].

On the contrary, in the Han et al.’s schemes, an AIAE ciphertext is directly
contained as part of a ciphertext of the resulting scheme, and thus AIAE cipher-
texts are exposed to a CCA. This is a main reason of the necessity of the integrity
property for AIAE. Furthermore, in a modified security game considered in the
security proofs of their schemes, a KDM-CCA adversary is able to observe mul-
tiple AIAE ciphertexts that are computed under secret keys that are derived via
(some restricted from of) an affine function of a single (four-dimensional) vector
of elements in ZN through affine/poly-KDM queries, and thus their AIAE scheme
needs to be secure under standard “active” affine-RKA (where key derivation
functions are chosen by an RKA adversary, rather than the challenger). Han
et al.’s instantiation of AIAE is essentially the Kurosawa-Desmedt encryption
scheme [19] used as a symmetric encryption scheme, which is why they require
the DDH assumption in addition to the DCR assumption.

Simple and Efficient KDM-CCA Secure PKE 107

2.8 Tightness of Our Construction

Our construction can be tightly instantiated by using a tightly IND-CCA secure
PKE scheme as a building block. In our security proof, we can accomplish Step
(1) of the triple mode proof by applying the DCR assumption only once via
the IV lemma [5]. In Step (2), we need only a single application of the IND-
CCA security of the outer scheme by requiring IND-CCA security in the multi-
challenge multi-user setting. Thus, if the underlying IND-CCA secure scheme
satisfies tight security in the setting, this step is also tight. In the estimation of
the probability of “illegal” decryption queries, we only use a statistical property,
and thus we do not lose any factor to the underlying assumption. The remaining
part of our proof is eliminating secret keys of projective hash function and IND-
CCA secure PKE encrypted by SKEM from an adversary’s view. To make the
entire proof tight, we have to accomplish this step tightly.

To achieve this, we show the RKA security of our SKEM can be tightly
reduced to the underlying assumptions. Especially, in the proof of the DCR
based construction, we show this using the IV lemma that is different from
that we use in Step (1) of the triple mode proof. Namely, in this work, we use
two flavors of the IV lemmas to make the security proof for the DCR-based
instantiation tight.

To the best of our knowledge, prior to our work, the only way to construct
tightly KDM-CCA secure PKE is instantiating the construction proposed by
Camenisch et al. [6] using a tightly secure NIZK proof system such as that
proposed by Hofheinz and Jager [14]. Schemes instantiated in such a way are
not so practical and a ciphertext of them consists of O(λ) group elements, where
λ is the security parameter. We observe that the DDH-based construction of
Kitagawa and Tanaka [18] can be tightly instantiated by using a tightly IND-
CCA secure PKE scheme as a building block, though they did not state that
explicitly. However, its ciphertext also consists of O(λ) group elements. Thus, our
schemes are the first tightly KDM-CCA secure PKE scheme whose ciphertext
consists of a constant number of group elements.

3 Preliminaries

Here, we review basic notations, cryptographic primitives, and assumptions.

Notations. In this paper, x
r←− X denotes choosing an element from a finite set

X uniformly at random, and y ← A(x) denotes assigning to y the output of an
algorithm A on an input x. For an integer � > 0, [�] denote the set of integers
{1, . . . , �}. For a function f , Sup (f) denotes the support of f . For a finite set S,
|S| denotes its cardinality, and US denotes the uniform distribution over S.

λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is a negligible function if f(λ) tends to 0 faster than
1
λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being a
negligible function.

108 F. Kitagawa et al.

Let X and Y be distributions over a set S. The min-entropy of X, denoted
by H∞(X), is defined by H∞(X) := − log2 maxz∈S Pr[X = z]. The statistical
distance between X and Y , denoted by SD(X,Y), is defined by SD(X,Y) :=
1
2

∑
z∈S |Pr[X = z] − Pr[Y = z]|. X and Y are said to be ε-close if SD(X,Y) ≤ ε.

3.1 Assumptions

We review the algebraic structure and assumptions used in this paper.
Let N = PQ be an RSA modulus with len-bit safe primes P = 2p + 1 and

Q = 2q + 1 where p and q are also primes. Let n = pq. Throughout the paper,
we assume len ≥ λ, and we will frequently use the fact that SD(U[n],U[N−1

4]) =
P +Q − 2

N − 1 = O(2−len).
Let s ≥ 2 be an integer and T := 1 + N . We can decompose Z

∗
Ns as the

internal direct product GNs−1 ⊗ 〈−1〉 ⊗ Gn ⊗ G2, where 〈−1〉 is the subgroup of
Z

∗
Ns generated by −1 mod Ns, and GNs−1 , Gn, and G2 are cyclic groups of order

Ns−1, n, and 2, respectively. Note that T = 1 + N ∈ Z
∗
Ns has order Ns−1 and

it generates GNs−1 . In addition, we can generate a random generator of Gn by
generating μ

r←− Z
∗
Ns and setting g := μ2Ns−1

mod Ns. Then, g is a generator
of Gn with overwhelming probability. We also note that the discrete logarithm
(base T) is easy to compute in GNs−1 .

Let QRNs :=
{
x2

∣
∣x ∈ Z

∗
Ns

}
. Then, we have QRNs = GNs−1 ⊗Gn. We denote

〈−1〉 ⊗ QRNs by JNs . We can efficiently check the membership of JNs by com-
puting the Jacobi symbol with respect to N , without P and Q.

Let GGen be an algorithm, which we call the DCR group generator, that
given 1λ and an integer s ≥ 2, outputs param = (N,P,Q, T, g), where N , P , Q,
and T are defined as above, and g is a random generator of Gn.

We adopt the definition of the DCR assumption [9,24] used by Hofheinz [12].

Definition 1 (DCR assumption). We say that the DCR assumption holds
with respect to GGen if for any integer s ≥ 2 and PPT adversary A, we have
Advdcr

s,A(λ) = |Pr[A (N, g, gr mod Ns) = 1] − Pr[A (N, g, T · gr mod Ns) = 1]| =
negl(λ), where (N,P,Q, T, g) ← GGen

(
1λ, s

)
and r

r←− [n].

We recall the interactive vector game [5].

Definition 2 (Interactive vector game). Let s ≥ 2 be an integer and � be
a polynomial of λ. We define the following IVs,� game between a challenger and
an adversary A.

1. The challenger chooses a challenge bit b
r←− {0, 1} and generates (N,P,Q, T, g)

← GGen
(
1λ, s

)
. If � = 1, the challenger sends N and g1 := g to A. Otherwise,

the challenger generates αi
r←− [

N − 1
4

]
and computes gi ← gαi mod Ns for

every i ∈ [�], and sends N , g, and g1, . . . , g� to A.
2. A can adaptively make sample queries.

Sample queries A sends (a1, . . . , a�) ∈ Z
�
Ns−1 to the challenger. The chal-

lenger generates r
r←− [

N − 1
4

]
and computes ei ← T b·ai · gr

i mod Ns for
every i ∈ [�]. The challenger then returns (e1, . . . , e�) to A.

Simple and Efficient KDM-CCA Secure PKE 109

3. A outputs b′ ∈ {0, 1}.
We say that IVs,� is hard if for any PPT adversary A, we have AdvIV

s,�,A(λ) =
2 · ∣

∣Pr[b = b′] − 1
2

∣
∣ = negl(λ).

For any s and �, IVs,� is hard under the DCR assumption [5,22]. We show
the following lemmas related to IVs,� that are useful to prove the tight security
of our constructions. The proofs of the lemmas are given in the full version.

Lemma 1. Let s ≥ 2 be an integer. Let A be a PPT adversary that plays the
IVs,1 game and makes at most qiv queries. Then, there exists a PPT adversary
B satisfying Adviv

s,1,A(λ) ≤ 2 · Advdcr
s,B(λ) + O(qiv)

2len .

Lemma 2. Let s ≥ 2 be an integer. Let � be a polynomial of λ. Let A be a PPT
adversary that plays the IVs,� game and makes exactly one sample query. Then,
there exists a PPT adversary B satisfying Adviv

s,�,A(λ) ≤ 2 · Advdcr
s,B(λ) + O(�)

2len .

3.2 Projective Hash Function

We review the notion of projective hash functions (PHF) introduced by Cramer
and Shoup [8] (which is also called hash proof systems in the literature). In this
work, we will use PHFs defined with respect to the DCR group generator GGen.

Definition 3 (Projective hash function family). A PHF family PHF with
respect to GGen consists of a tuple (Setup,Πyes,Πno,SK,PK,K, Λ, μ,Pub) with
the following properties:

– Setup is a PPT algorithm that takes param = (N,P,Q, T, g) output by
GGen(1λ, s) (for some s ≥ 2) as input, and outputs a public parameter pp
that parameterizes the remaining components of PHF. (In the following, we
always make the existence of pp implicit and suppress it from the notation).

– Πyes, Πno, SK, PK, and K are sets parameterized by pp (and also by param).
Πyes and Πno form an NP-language,4 where for all c ∈ Πyes, there exists a
witness r with which one can efficiently check the fact of c ∈ Πyes. An element
in Πyes (resp. Πno) is called an yes (resp. no) instance.
Furthermore, it is required that given pp, one can efficiently sample a uni-
formly random element from SK.

– Λ is an efficiently computable (deterministic) hash function that takes a secret
key sk ∈ SK and an yes or no instance c ∈ Πyes ∪ Πno as input, and outputs
a hash value π ∈ K.

– μ is an efficiently computable (deterministic) projection map that takes a
secret key sk ∈ SK as input, and outputs a public key pk ∈ PK.

– Pub is an efficiently computable algorithm that takes a public key pk ∈ PK,
an yes instance c ∈ Πyes, and a witness r that c ∈ Πyes as input, and outputs
a hash value π ∈ K.

4 Strictly speaking, since Πyes and Πno may not cover the entire input space of the
function Λsk(·) introduced below, they form an NP-promise problem.

110 F. Kitagawa et al.

– Projective property: For all sk ∈ SK, the action of Λsk(·) for yes instances
c ∈ Πyes is completely determined by pk = μ(sk). Furthermore, for all c ∈ Πyes

and a corresponding witness r, it holds that Λsk(c) = Pub(μ(sk), c, r).

We next introduce the universal property for a PHF family. In this paper,
we consider the statistical and computational variants. Our definition of the
computational universal property is based on the “computational universal2”
property for a hash proof system introduced by Hofheinz and Kiltz [15]. We
adapt their definition to the “universal1” case, and also relax the notion so that
we only require that guessing a hash value for a no instance is hard, rather than
requiring that a hash value of a no instance is pseudorandom.

Definition 4 (Statistical/computational universal). Let s ≥ 2, GGen be
the DCR group generator, and PHF = (Setup,Πyes,Πno,SK,PK,K, Λ, μ,Pub) be
a PHF family with respect to GGen. We say that PHF is

– ε-universal if for any param output by GGen(1λ, s), any pp output by
Setup(param), any pk ∈ PK, any c ∈ Πno, and any π ∈ K, we have

Pr
sk←SK

[
Λsk(c) = π

∣
∣μ(sk) = pk

] ≤ ε. (1)

Furthermore, we simply say that PHF is universal if it is ε-universal for some
negligible function ε = ε(λ).

– computationally universal if for any PPT adversary A, the advantage
Advcu

PHF,A(λ) in the following game played by A and a challenger is negligible
in λ:
1. First, the challenger executes param = (N,P,Q, T, g) ← GGen(1λ, s) and

pp ← Setup(param). The challenger then chooses sk
r←− SK, and computes

pk ← μ(sk). Then, the challenger sends (N,T, g, pp, pk) to A.
2. A can adaptively make evaluation queries.

Evaluation queries A sends an yes or no instance c ∈ Πyes ∪ Πno to
the challenger. If c ∈ Πyes, the challenger returns π ← Λsk(c) to A.
Otherwise (i.e. c ∈ Πno), the challenger returns ⊥ to A.

3. A outputs a pair (c∗, π∗) ∈ Πno × K. The advantage of A is defined by
Advcu

PHF,A(λ) := Pr[Λsk(c∗) = π∗].

Remark 1 (Statistical implies computational). It is not hard to see that the (sta-
tistical) universal property implies the computational one (even against compu-
tationally unbounded adversaries). To see this, recall that the projective property
ensures that the action of Λsk(·) for yes instances is determined by pk. Thus, the
evaluation results Λsk(c) for yes instances c ∈ Πyes do not reveal the information
of sk beyond the fact that pk = μ(sk). Also, evaluation queries with no instances
c ∈ Πno are answered with ⊥. These imply that throughout the game, the infor-
mation of sk does not leak to an adversary beyond what is already leaked from
pk. Thus, at the point of outputting (c∗, π∗), sk is uniformly distributed over the
subset SK|pk := {sk′ ∈ SK|μ(sk′) = pk} from an adversary’s viewpoint, which is
exactly the distribution of sk in the probability defining the universal property.
Hence, if a PHF family is ε-universal, the probability that Λsk(c∗) = π∗ occurs
is upper bounded by ε.

Simple and Efficient KDM-CCA Secure PKE 111

3.3 Public Key Encryption

A public key encryption (PKE) scheme PKE is a four tuple (Setup,KG,Enc,Dec)
of PPT algorithms. Let M be the message space of PKE. The setup algorithm
Setup, given a security parameter 1λ, outputs a public parameter pp. The key
generation algorithm KG, given a public parameter pp, outputs a public key
pk and a secret key sk. The encryption algorithm Enc, given a public key pk
and message m ∈ M, outputs a ciphertext CT. The decryption algorithm Dec,
given a public key pk, a secret key sk, and a ciphertext CT, outputs a message
m̃ ∈ {⊥} ∪ M. As correctness, we require Dec(pk, sk,Enc(pk,m)) = m for every
m ∈ M, pp ← Setup(1λ), and (pk, sk) ← KG(pp).

Next, we define key dependent message security against chosen ciphertext
attacks (KDM-CCA security) for PKE.

Definition 5 (KDM-CCA security). Let PKE be a PKE scheme, F function
family, and � the number of keys. We define the F-KDM-CCA game between a
challenger and an adversary A as follows. Let SK and M be the secret key space
and message space of PKE, respectively.

1. The challenger chooses a challenge bit b
r←− {0, 1} and generates pp ←

Setup(1λ) and � key pairs (pkk, skk) ← KG(pp) (k ∈ [�]). The challenger sets
sk := (sk1, . . . , sk�) and sends (pk1, . . . , pk�) to A. Finally, the challenger
prepares a list Lkdm which is initially empty.

2. A may adaptively make the following queries polynomially many times.
KDM queries A sends

(
j, f0, f1

) ∈ [�]×F×F to the challenger. We require
that f0 and f1 be functions such that f : SK� → M. The challenger
returns CT ← Enc

(
pkj , f

b(sk)
)

to A. Finally, the challenger adds (j,CT)
to Lkdm.

Decryption queries A sends (j,CT) to the challenger. If (j,CT) ∈ Lkdm,
the challenger returns ⊥ to A. Otherwise, the challenger returns m ←
Dec

(
pkj , skj ,CT

)
to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM-CCA secure if for any polynomial � = �(λ) and
PPT adversary A, we have Advkdmcca

PKE,F,�,A(λ) = 2 · ∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

The above definition is slightly different from the standard definition where
an adversary is required to distinguish encryptions of f(sk1, . . . , sk�) from encryp-
tions of some fixed message. However, the two definitions are equivalent if the
function class F contains a constant function, and this is the case for affine
functions and polynomials treated in this paper.

The definition of IND-CCA security (in the multi-user/challenge setting) is
recovered by restricting the functions used in KDM queries in the KDM-CCA
game to constant functions, and thus we omit the description of the security
game for it. We denote an adversary A’s IND-CCA advantage by Advindcca

PKE,�,A(λ).

112 F. Kitagawa et al.

4 Symmetric KEM and Passive RKA Security

In our proposed PKE schemes, we will use a secret key variant of a key encapsu-
lation mechanism (KEM) satisfying a weak form of RKA security with respect
to addition, as one of the main building blocks. Since several instantiations for
this building block from various assumptions are possible, in this section we for-
malize it as a stand-alone primitive called symmetric KEM (SKEM), together
with its RKA security in the form we use in the security proofs of the proposed
PKE schemes.

4.1 Definition

We first give the formal syntax and functional requirements of an SKEM, and
then give some remarks.

Definition 6 (Symmetric key encapsulation mechanism). An SKEM
SKEM is a three tuple (Setup,Encap,Decap) of PPT algorithms.

– The setup algorithm Setup, given a security parameter 1λ, outputs a public
parameter pp and a pair of natural numbers (z, z̃), where z represents the size
of the secret key space, and the secret key space is [z], and z̃ is an approxima-
tion of z. We assume that z̃ (but not necessarily z) can be efficiently derived
from pp. We also assume that pp specifies the session-key space K.

– The encapsulation algorithm Encap, given a public parameter pp and a secret
key sk ∈ Z, outputs a ciphertext ct and a session-key K ∈ K.

– The decapsulation algorithm Decap, given a public parameter pp, a secret key
sk ∈ Z, and a ciphertext ct, outputs a session-key K ∈ K.

As the functional (syntactical) requirements, we require the following three prop-
erties to hold for all (pp, z, z̃) ← Setup(1λ):

1. (Approximate samplability of secret keys:) SD(U[z],U[z̃])) ≤ O(2−λ) holds.
2. (Correctness of decapsulation:) Decap(pp, sk mod z, ct) = K holds for every

sk ∈ Z and (ct,K) ← Encap(pp, sk).
3. (Implicit modular-reduction in encapsulation:) Encap(pp, sk; r) = Encap(pp,

sk mod z; r) holds for every sk ∈ Z and randomness r for Encap.

Remark 2 (On the syntax and functional requirements).

– As mentioned above, when (pp, z, z̃) is output by Setup(1λ), the secret key
space under pp is [z]. For security reasons, however, in some constructions,
the exact order z cannot be made public even for an entity executing Encap
and Decap. (In particular, this is the case in our concrete instantiation from
the DCR assumption, in which we set z = φ(N)

4 and z̃ = N − 1
4). Hence, we

instead require its approximation z̃ to be public via pp.
– We allow Encap and Decap to take any integer sk ∈ Z (rather than sk ∈ [z]

or sk ∈ [z̃]) as a secret key, but their “correctness guarantees” expressed by
the second and third items of the functional requirements, are with respect
to the modular-reduced value sk mod z. Such flexible interface is convenient
when an SKEM is used as a building block in the proposed PKE schemes.

Simple and Efficient KDM-CCA Secure PKE 113

– The third item in the functional requirements ensures that a ciphertext/
session-key pair (ct,K) generated by using sk ∈ Z does not leak the infor-
mation of sk beyond sk mod z. This property plays an important role in the
security proofs of our proposed PKE schemes.

– Note that an SKEM can satisfy our syntactical and functional requirements
even if its ciphertext is empty. (Say, Encap and Decap output some determin-
istic function of pp and sk mod z̃).

In the following, we give the formalization of passive RKA security. It is
essentially the definition of the same name defined for symmetric encryption by
Applebaum, Harnik, and Ishai [2], with the slight difference that we allow an
adversary to specify the upper bound B of the interval from which key-shifting
values {Δk} are chosen randomly by the challenger.

Definition 7 (Passive RKA security). Let SKEM = (Setup,Encap,Decap)
be an SKEM, and let � be a natural number. Consider the following game between
a challenger and an adversary A:

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates (pp, z, z̃)

← Setup(1λ). Then, the challenger sends z̃ to A.
2. A sends an integer B ≥ z̃ specifying the upper bound of the interval from

which key-shifting values {Δk}k∈[�] are chosen, to the challenger.
3. The challenger samples sk

r←− [z] and Δk
r←− [B] for every k ∈ [�]. Then,

the challenger computes (ctk,K1
k) ← Encap(pp, sk + Δk)5 and also samples

K0
k ← K for every k ∈ [�]. Finally, the challenger sends pp, (Δk)k∈[�], and(
ctk,Kb

k

)
k∈[�]

to A.
4. A outputs b′ ∈ {0, 1}.

We say that SKEM is passively RKA secure, if for any polynomial � = �(λ)
and PPT adversary A, we have Advrka

SKEM,�,A(λ) = 2 · ∣∣Pr[b = b′] − 1
2

∣
∣ = negl(λ).

Remark 3 (Stretching a session-key with a pseudorandom generator). From the
definition, it is easy to see that a session-key of an SKEM can be stretched
by using a pseudorandom generator (PRG) while preserving its passive RKA
security. More specifically, let SKEM = (Setup,Encap,Decap) be an SKEM with
session-key space K, and let PRG : K → K′ be a PRG such that |K| < |K′|. Let
SKEM′ = (Setup,Encap′,Decap′) be the SKEM with session-key space K′ that
is obtained by naturally composing SKEM with PRG, namely, Encap′(pp, sk)
runs (ct,K) ← Encap(pp, sk) and outputs (ct,PRG(K)), and Decap′(pp, sk, ct) :=
PRG(Decap(pp, sk, ct)). Then, if SKEM is passively RKA secure and PRG is a
secure PRG, then SKEM′ is also passively RKA secure. Moreover, if the pas-
sive RKA security of SKEM is tightly reduced to some assumption and the
multi-instance version of the security of PRG is also tightly reduced to the same
assumption, then so is the passive RKA security of SKEM′. (Since the proof is
straightforward, we omit a formal proof of this simple fact). Note that we can
easily construct tightly secure PRG based on the DDH or DCR assumption.
5 The addition sk + Δk is done over Z.

114 F. Kitagawa et al.

Setup(1λ) :
(N ′, P ′, Q′, T ′, g′) ← GGen(1λ, s)
H

r←− H
pp ← (N ′, T ′, g′, H)
Return (pp, z := φ(N′)

4
, z̃ := N′−1

4
).

Encap(pp, sk ∈ Z) :
(N ′, T ′, g′, H) ← pp

α
r←− [N′−1

4
]

ct ← g′α mod N ′s
K ← H(ctsk mod N ′s)
Return (ct, K).

Decap(pp, sk ∈ Z, ct) :
(N ′, T ′, g′, H) ← pp
K ← H(ctsk mod N ′s)
Return K.

Fig. 4. The DCR-based instantiation of an SKEM.

4.2 Concrete Instantiations

Our definition of passive RKA security for an SKEM is sufficiently weak so that
simple and efficient constructions are possible from the DCR or DDH assump-
tion, which are essentially the symmetric-key version of the ElGamal KEM. We
can also realize it from a hash function satisfying an appropriate form of “cor-
relation robustness” [2,17]. We only give a concrete instantiation based on the
DCR assumption here. The other instantiations are given in the full version.

Let s ≥ 2, GGen be the DCR group generator, and H =
{
H : {0, 1}2s·len

→ K} be a universal hash family. Then, we can construct an SKEM SKEM
= (Setup,Encap,Decap) whose session-key space is K, as described in Fig. 4.6

It is obvious to see that SKEM satisfies the three functional require-
ments of SKEM. Specifically, let (pp, z, z̃) be output by Setup. Then, we have
SD

(
U[z],U[z̃]

)
= SD(U[

φ(N′)
4

],U[

N′−1
4

]) = O(2−len) ≤ O(2−λ). The other two

properties of the functional requirements are also satisfied due to the fact that
in Encap and Decap, a secret key is treated only in the exponent of elements in
Gn′ (where n′ = (P ′ −1)(Q′ −1)/4, and Gn′ is the subgroup of Z∗

N ′s of order n′).
The passive RKA security of SKEM is guaranteed by the following lemma,

which is proved via Lemma 2 and the leftover hash lemma. We provide the formal
proof in the full version.

Lemma 3. If the DCR assumption holds with respect to GGen, and εLHL :=
1
2 ·

√
2−(s−1)·(2len−1) · |K| = negl(λ), then SKEM is passively RKA secure.

Specifically, for any polynomial � = �(λ) and PPT adversary A that attacks
the passive RKA security of SKEM, there exists a PPT adversary B such that
Advrka

SKEM,�,A(λ) ≤ 2 · Advdcr
s,B(λ) + � · (εLHL + O(2−len)

)
.

5 KDM-CCA Secure PKE with Respect to Affine
Functions

In this section, we show a PKE scheme that is KDM-CCA secure with respect
to affine functions based on the DCR assumption.

6 Since the RSA modulus used in the SKEM has to be generated independently of
that in the main constructions presented in Sects. 5 and 6, here we use characters
with a prime (e.g. N ′) for values in param.

Simple and Efficient KDM-CCA Secure PKE 115

Setupaff(1
λ) :

param = (N, P, Q, T, g) ← GGen(1λ, s)
ppphf ← Setupphf(param)
(ppskem, z, z̃) ← Setupskem(1λ)
ppcca ← Setupcca(1

λ)
ppaff ← (N, T, g, ppphf , ppskem, ppcca)
Return ppaff .

KGaff(ppaff) :
(N, T, g, ppphf , ppskem, ppcca) ← ppaff

x
r←− [N−1

4
· z̃ · 2ξ]

(ct, K) ← Encap(ppskem, x)
Parse K as (rKG, psk) ∈ RKG × SK.
h ← g2x mod Ns

ppk ← μ(psk)
(cpk, csk) ← KGcca(ppcca; r

KG)
Return PK := (h, ct, ppk, cpk) and SK := x.

Encaff(PK, m ∈ ZNs−1) :
(h, ct, ppk, cpk) ← PK

r
r←− [N−1

4
]

u ← gr mod Ns

v ← T m · hr mod Ns

π ← Pub(ppk, u2 mod Ns, 2r)
CT ← Enccca(cpk, (u, v, π))
Return CT.

Decaff(PK, SK, CT) :
(h, ct, ppk, cpk) ← PK; x ← SK
K ← Decap(ppskem, x, ct)
Parse K as (rKG, psk) ∈ RKG × SK.
(cpk, csk) ← KGcca(ppcca; r

KG)
(u, v, π) ← Deccca(cpk, csk, CT)
If (u, v) /∈ J

2
Ns then return ⊥.

If π �= Λpsk(u2 mod Ns) then return ⊥.
Return m ← logT (v · u−2x mod Ns).

Fig. 5. The proposed KDM-CCA secure PKE scheme Πaff with respect to affine func-
tions. (The public parameter ppaff is omitted from the inputs to Encaff and Decaff).

We first specify the DCR language with respect to which the underlying PHF
family used in our proposed scheme is considered. Then, we give our proposed
PKE scheme in Sect. 5.1. We also give two instantiations for the underlying PHF
family, the first one in Sect. 5.2 and the second one in Sect. 5.3.

DCR Language. Let s ≥ 2, GGen be the DCR group generator, and param =
(N,P,Q, T, g) ← GGen

(
1λ, s

)
. The set of yes instances Πyes is the subgroup Gn

of JNs , and the set of no instances Πno is GNs−1 ⊗ Gn \ Gn. Note that we can
represent any yes instance c ∈ Gn as c = gr mod Ns, where r ∈ Z. Thus, such r
works as a witness for c ∈ Πyes.

5.1 Proposed PKE Scheme

Let s ≥ 2, and GGen be the DCR group generator. Let Πcca = (Setupcca,KGcca,
Enccca,Deccca) be a PKE scheme such that the randomness space of KGcca is
RKG. Let PHF = (Setupphf ,Πyes,Πno,SK,PK,K, Λ, μ,Pub) be a PHF family
with respect to GGen for the DCR language (defined as above). Let SKEM =
(Setupskem,Encap,Decap) be an SKEM whose session key space is RKG × SK.7

Finally, let ξ = ξ(λ) be any polynomial such that 2−ξ = negl(λ). Using these
building blocks, our proposed PKE scheme Πaff = (Setupaff ,KGaff ,Encaff ,Decaff)
is constructed as described in Fig. 5. The plaintext space of Πaff is ZNs−1 , where
N is the modulus generated in Setupaff .

7 Strictly speaking, the concrete format of SK could be dependent on a public param-
eter ppphf of PHF. However, as noted in Remark 3, the session-key space of an SKEM
can be flexibly adjusted by using a pseudorandom generator. Hence, for simplicity
we assume that such an adjustment of the spaces is applied.

116 F. Kitagawa et al.

The correctness of Πaff follows from that of SKEM and Πcca, and the projective
property of PHF.

We note that although our scheme has correctness and can be proved secure
for any s ≥ 2, the plaintext space of our scheme is ZNs−1 , and thus if s = 2, then
the plaintext space ZN becomes smaller than the secret key space

[
N − 1

4 · z̃ · 2ξ
]
,

in which case KDM security for affine functions does not even capture circular
security. (Malkin et al.’s scheme [22] has exactly the same issue.) If z̃ · 2ξ is
smaller than N , then the secret key space can be contained in ZN2 , in which
case s ≥ 3 is sufficient in practice.8

We also note that even if the building block SKEM SKEM and/or PKE
scheme Πcca are instantiated also from the DCR assumption (or any other
factoring-related assumption), the DCR groups formed by (N,T, g) in ppaff

should not be shared with those used in SKEM and/or Πcca. This is because
in our security proof, the reduction algorithms for SKEM and Πcca will use the
information of P and Q behind N . (See our security proof below.) We also remark
that in our construction, N has to be generated by a trusted party, or by users
jointly via some secure computation protocol, so that no user knows its factor-
ization. (The same applies to our DCR-based SKEM.) This is the same setting
as in the previous DCR-based (KDM-)CCA secure PKE schemes [11,13,22].

Before proving the KDM-CCA security of Πaff , we also note the difference
between the “inner scheme” of Πaff and Malkin et al.’s scheme [22]. Although
these schemes are essentially the same, there is a subtle difference. Specifically,
when generating h contained in PK of Πaff , we generate it as h ← g2x mod Ns

while it is generated as h ← gx mod Ns in Malkin et al.’s scheme. Moreover,
such additional squarings are performed on u in the decryption procedure of
our scheme. By these additional squarings, if it is guaranteed that an element u
appearing in the decryption procedure belongs to JNs = GNs−1 ⊗ 〈−1〉 ⊗ Gn, it
can be converted to an element in GNs−1 ⊗ Gn. Thus, we can consider a PHF
family on GNs−1 ⊗ Gn rather than GNs−1 ⊗ 〈−1〉 ⊗ Gn, and as a result, we need
not worry about a case that an adversary for Πaff may learn x mod 2 through
decryption queries. This helps us to simplify the security proof. Note that we can-
not explicitly require that group elements contained in a ciphertext be elements
in GNs−1 ⊗ Gn since it is not known how to efficiently check the membership in
GNs−1 ⊗ Gn without the factorization of N , while we can efficiently check the
membership in JNs using only N .

KDM-CCA Security. Let � be the number of keys in the security game. We
will show that Πaff is KDM-CCA secure with respect to the function family Faff

consisting of functions described as

f (x1, . . . , x�) =
∑

k∈[�]

akxk + a0 mod Ns−1,

where a0, . . . , a� ∈ ZNs−1 . Formally, we prove the following theorem.
8 Actually, if s = 3 and our DCR-based instantiation in Sect. 4.2 is used as the underly-

ing SKEM, then the RSA modulus N generated at the setup of our PKE construction
has to be ξ-bit larger than the RSA modulus generated at the setup of SKEM to
satisfy [N − 1

4
· z̃ · 2ξ] ⊂ ZN2 . We do not need this special treatment if s ≥ 4.

Simple and Efficient KDM-CCA Secure PKE 117

Theorem 1. Assume that the DCR assumption holds with respect to GGen,
SKEM is passively RKA secure, PHF is computationally universal, and Πcca is
IND-CCA secure. Then, Πaff is Faff-KDM-CCA secure.

Specifically, for any polynomial � = �(λ) and PPT adversary A that attacks
the Faff-KDM-CCA security of Πaff and makes qkdm = qkdm(λ) KDM queries and
qdec = qdec(λ) decryption queries, there exist PPT adversaries Bdcr, Brka, B′

rka,
Bcca, B′

cca, and Bcu such that

Advkdmcca
Πaff ,Faff ,�,A(λ) ≤ 2 ·

(
2 · Advdcr

s,Bdcr
(λ) + Advrka

SKEM,�,Brka
(λ) + Advrka

SKEM,�,B′
rka

(λ)

+Advindcca
Πcca,�,Bcca

(λ) + Advindcca
Πcca,�,B′

cca
(λ) + � · (qdec · Advcu

PHF,Bcu
(λ) + 2−ξ)

)

+ O(qkdm · 2−len) + O(2−λ). (2)

Remark 4 (Tightness of the reduction). Note that our reductions to the DCR
assumption and the security of the building blocks are tight, except for the
reduction to the computational universal property of the underlying PHF family
PHF, which has the factor �·qdec. However, if PHF satisfies the statistical universal
property, the term Advcu

PHF,Bcu
(λ) can be replaced with a negligible function that

is independent of a computational assumption, and thus our reduction becomes
fully tight. Hence, if we use an SKEM and an IND-CCA PKE scheme with a
tight security reduction to the DCR assumption (or another assumption A), the
overall reduction to the DCR(& A) assumption becomes fully tight as well.

Proof of Theorem 1. We proceed the proof via a sequence of games argument
using 8 games (Game 0 to Game 7). For every t ∈ {0, . . . , 7}, let SUCt be the
event that A succeeds in guessing the challenge bit b in Game t. Our goal is to
upper bound every term appearing in Advkdmcca

Πaff ,Faff ,�,A(λ) = 2 · ∣
∣Pr[SUC0] − 1

2

∣
∣ ≤

2 · ∑
t∈{0,...,6} |Pr[SUCt] − Pr[SUCt+1]| + 2 · ∣

∣Pr[SUC7] − 1
2

∣
∣.

Game 0: This is the original Faff -KDM-CCA game regarding Πaff .
Game 1: Same as Game 0, except for how KDM queries are replied. When A

makes a KDM query
(
j,

(
a0
0, . . . , a

0
�

)
,
(
a1
0, . . . , a

1
�

))
, the challenger generates

v and π respectively by v ← Tm · u2xj mod Ns and π ← Λpskj

(
u2 mod Ns

)
,

instead of v ← Tm · hr
j mod Ns and π ← Pub

(
ppkj , u

2 mod Ns, 2r
)
, where

r
r←− [

N − 1
4

]
and u = gr mod Ns.

v is generated identically in both games. Moreover, by the projective property
of PHF, Λpskj

(
u2 mod Ns

)
= Pub

(
ppkj , u

2 mod Ns, 2r
)

holds, and thus π is also
generated identically in both games. Hence, we have |Pr[SUC0] − Pr[SUC1]| = 0.

Game 2: Same as Game 1, except for how the challenger generates {xk}k∈[�].

The challenger first generates x
r←− [

N − 1
4 · z̃

]
. Then, for every k ∈ [�], the

challenger generates Δk
r←− [

N − 1
4 · z̃ · 2ξ

]
and computes xk ← x+Δk, where

the addition is done over Z.

118 F. Kitagawa et al.

|Pr[SUC1] − Pr[SUC2]| ≤ � · 2−ξ holds since the distribution of xk in Game 2
and that in Game 1 are 2−ξ-close for every k ∈ [�].

Next, we will change the game so that we can respond to KDM queries
made by A using only x mod n = x mod φ(N)

4 . To this end, we make
some preparation. Observe that in Game 2, the answer to a KDM query(
j,

(
a0
0, . . . , a

0
�

)
,
(
a1
0, . . . , a

1
�

))
is Enccca

(
cpkj , (u, v, π)

)
, where

u = gr mod Ns, v = T
∑

k∈[�] ab
kxk+ab

0 · u2xj mod Ns, π = Λpskj

(
u2 mod Ns

)
,

and r
r←− [

N − 1
4

]
. We also have

∑

k∈[�]

ab
kxk + ab

0 =
∑

k∈[�]

ab
k (x + Δk) + ab

0 =

⎛

⎝
∑

k∈[�]

ab
k

⎞

⎠ x +
∑

k∈[�]

ab
kΔk + ab

0,

where the addition is done over Z. Thus, by defining

Ab =
∑

k∈[�]

ab
k and Bb =

∑

k∈[�]

ab
kΔk + ab

0, (3)

we have v = TAbx+Bb · u2xj mod Ns = TAbx+Bb · (gr)2xj mod Ns. Note that Ab

and Bb are computed only from
(
ab
0, . . . , a

b
�

)
and {Δk}k∈[�].

Game 3: Same as Game 2, except that for a KDM query
(
j,

(
a0
0, . . . , a

0
�

)
,(

a1
0, . . . , a

1
�

))
made by A, the challenger responds as follows. (The difference

from Game 2 is only in Step 3).
1. Compute Ab and Bb as in Eq. 3.
2. Generate r

r←− [
N − 1

4

]
.

3. Compute u ← T− Ab

2 · gr mod Ns.
4. Compute v ← TAbx+Bb · u2xj mod Ns.
5. Compute π ← Λpskj

(
u2 mod Ns

)
.

6. Return CT ← Enccca

(
cpkj , (u, v, π)

)
and add (j,CT) to Lkdm.

Under the hardness of IVs,1, the distributions of gr mod Ns and T− Ab

2 ·
gr mod Ns are computationally indistinguishable. More specifically, there exists
a PPT adversary Biv that makes qkdm sample queries in the IVs,1 game and
satisfies |Pr[SUC2] − Pr[SUC3]| = Adviv

s,1,Biv
(λ). Due to Lemma 1, this means

that there exists another PPT adversary Bdcr such that |Pr[SUC2] − Pr[SUC3]| ≤
2 · Advdcr

s,Bdcr
(λ) + O(qkdm · 2−len).

In Game 3, the answer to a KDM query
(
j,

(
a0
0, . . . , a

0
�

)
,
(
a1
0, . . . , a

1
�

))
is

Enccca

(
cpkj , (u, v, π)

)
, where

u = T− Ab

2 · gr mod Ns,

v = TAbx+Bb · u2xj mod Ns = TBb−AbΔj · g2r(x mod n) · g2rΔj mod Ns,

π = Λpskj

(
u2 mod Ns

)
,

Simple and Efficient KDM-CCA Secure PKE 119

r
r←− [

N − 1
4

]
, and Ab and Bb are computed as in Eq. 3. Thus, we can reply to a

KDM query made by A using only x mod n = x mod φ(N)
4 .

We next change how decryption queries made by A are replied.

Game 4: Same as Game 3, except for how the challenger responds to decryption
queries made by A. For a decryption query (j,CT) made by A, the challenger
returns ⊥ to A if (j,CT) ∈ Lkdm, and otherwise responds as follows. (The
difference from Game 3 is adding Step 2 to the procedure).

1. Compute (u, v, π) ← Deccca

(
cpkj , cskj ,CT

)
. If (u, v) /∈ J

2
Ns , return ⊥.

Otherwise, compute as follows.
2. If u /∈ 〈−1〉 ⊗ Gn, return ⊥. Otherwise, compute as follows.
3. Return ⊥ if π �= Λpskj

(
u2 mod Ns

)
and m ← logT

(
v · u−2xj mod Ns

)

otherwise.

We define the following event in Game i ∈ {4, 5, 6, 7}.

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following
conditions, where (u, v, π) ← Deccca

(
cpkj , cskj ,CT

)
.

– (u, v) ∈ J
2
Ns .

– u /∈ 〈−1〉 ⊗ Gn. Note that JNs = 〈−1〉 ⊗ GNs−1 ⊗ Gn.
– π = Λpskj

(u2 mod Ns).
We call such a decryption query a “bad decryption query”.

Games 3 and 4 are identical unless A makes a bad decryption query in each
game. Therefore, we have |Pr[SUC3] − Pr[SUC4]| ≤ Pr[BDQ4]. Combining this with
the triangle inequality, we will also bound the terms in |Pr[SUC3] − Pr[SUC4]| ≤∑

t∈{4,5,6} |Pr[BDQt] − Pr[BDQt+1]| + Pr[BDQ7].
We let (j,CT) be a decryption query made by A. We also let (u, v, π) ←

Deccca

(
cpkj , cskj ,CT

)
. If the query is not a bad decryption query and u ∈ JNs ,

then (u2 mod Ns) ∈ Gn. Thus,

u2xj mod Ns = (u2)x+Δj mod Ns = (u2 mod Ns)(x mod n) · u2Δj mod Ns.

Thus, if the query is not a bad decryption query, the answer to it can be computed
by using only x mod n.

Furthermore, recall that due to the “implicit modular-reduction in encapsu-
lation” property of SKEM, for every k ∈ [�], the SKEM-ciphertext/session-key
pair (ctk,Kk) computed for generating the k-th public key PKk at the initial
phase, can be generated by using only xk mod z = x + Δk mod z.

Hence, due to the change in Game 4, now we have done the preparation for
“decomposing” x into its “mod n”-component and its “mod z”-component.

Game 5: Same as Game 4, except that the challenger generates x̂
r←− [n] and

x̄
r←− [z] and then uses them for x mod n and x mod z, respectively.

120 F. Kitagawa et al.

Note that when x
r←− [N − 1

4 · z̃], the statistical distance between (x mod
n, x mod z) and (x̂ mod n, x̄ mod z) is bounded by SD(U[N−1

4 ·z̃],U[n·z]), because

if x
r←− [n · z], then the distribution of (x mod n, x mod z) and that of

(x̂ mod n, x̄ mod z) are identical due to the Chinese remainder theorem.9 Note
also that SD(U[N−1

4 ·z̃],U[n·z]) ≤ SD(U[N−1
4],U[n]) + SD(U[z̃],U[z]). Here, the

former statistical distance is P +Q − 2
N−1 = O(2−len) ≤ O(2−λ), and the latter sta-

tistical distance is bounded by O(2−λ) due to the “approximate samplability of
a secret key” property of SKEM. Hence, we have |Pr[SUC4] − Pr[SUC5]| ≤ O(2−λ)
and |Pr[BDQ4] − Pr[BDQ5]| ≤ O(2−λ).

Game 6: Same as Game 5, except that for every k ∈ [�], the challenger generates
Kk

r←− RKG×SK from which rKG
k ∈ RKG and pskk ∈ SK are generated, instead

of using Kk associated with ctk.

By the passive RKA security of SKEM, the view of A in Game 6 is indistin-
guishable from that of Game 5. Namely, there exist PPT adversaries Brka and B′

rka

that attack the passive RKA security of SKEM so that |Pr[SUC5] − Pr[SUC6]| =
Advrka

SKEM,�,Brka
(λ) and |Pr[BDQ5] − Pr[BDQ6]| = Advrka

SKEM,�,B′
rka

(λ) hold, respec-
tively. We provide the descriptions of them in the full version.

Game 7: Same as Game 6, except that the challenger responds to KDM queries
(j,CT) made by A with CT ← Enccca

(
cpkj , (0, 0, 0)

)
.

We can consider straightforward reductions to the security of the underlying
PKE scheme Πcca for bounding |Pr[SUC6] − Pr[SUC7]| and |Pr[BDQ6] − Pr[BDQ7]|.
Note that the reduction algorithms can check whether A makes a bad decryption
query or not by using decryption queries for Πcca, and φ(N) and {pskk}k∈[�]

that could be generated by the reductions themselves. Thus, there exist PPT
adversaries Bcca and B′

cca such that |Pr[SUC6] − Pr[SUC7]| = Advindcca
Πcca,�,Bcca

(λ) and
|Pr[BDQ6] − Pr[BDQ7]| = Advindcca

Πcca,�,B′
cca

(λ).
In Game 7, the challenge bit b is information-theoretically hidden from the

view of A. Thus, we have
∣
∣Pr[SUC7] − 1

2

∣
∣ = 0.

Finally, Pr[BDQ7] is bounded by the computational universal property of PHF.
More specifically, there exists a PPT adversary Bcu such that Pr[BDQ7] ≤ � · qdec ·
Advcu

PHF,Bcu
(λ) + O(2−len). We provide the description of Bcu in the full version.

From the above arguments, we conclude that there exist PPT adversaries
Bdcr, Brka, B′

rka, Bcca, B′
cca, and Bcu satisfying Eq. 2. � (Theorem 1)

5.2 Basic Construction of Projective Hash Function

For the PHF family for the DCR language used in our construction Πaff , we pro-
vide two instantiations: the basic construction PHFaff that achieves the statistical
9 Here, we are implicitly assuming that n = pq and z are relatively prime. This occurs

with overwhelming probability due to the DCR assumption. We thus ignore the case
of n and z are not relatively prime in the proof for simplicity.

Simple and Efficient KDM-CCA Secure PKE 121

universal property in this subsection, and its “space-efficient” variant PHFhash
aff

that achieves only the computational universal property in the next subsection.
Let s ≥ 2, and GGen be the DCR group generator. The basic construc-

tion PHFaff = (Setup,Πyes,Πno,SK,PK,K, Λ, μ,Pub) is as follows. (The con-
struction here is basically the universal PHF family for the DCR setting by
Cramer and Shoup [8], extended for general s ≥ 2). Recall that Πyes = Gn

and Πno = GNs−1 ⊗ Gn \ Gn for the DCR language. Given param output
from GGen(1λ, s), Setup outputs a public parameter pp that concretely speci-
fies (SK,PK,K, Λ, μ,Pub) defined as follows. We define SK :=

[
Ns−1 · N − 1

4

]
,

PK := Gn, and K := GNs−1 ⊗ Gn. For every sk ∈ [
Ns−1 · N − 1

4

]
and

c ∈ GNs−1 ⊗ Gn, we also define μ and Λ as μ(sk) := gsk mod Ns and
Λsk(c) := csk mod Ns.

Projective Property. Let sk ∈ [
Ns−1 · N − 1

4

]
, pk = gsk mod Ns, and c = gr

mod Ns, where r ∈ Z is regarded as a witness for c ∈ Gn. We define the
public evaluation algorithm Pub as Pub(pk, c, r) := pkr mod Ns. We see that
pkr ≡ (

gsk
)r ≡ (gr)sk ≡ Λsk(c) mod Ns, and thus PHFaff satisfies the projective

property.

Universal Property. We can prove that PHFaff satisfies the statistical universal
property. The proof is almost the same as that for the statistical universal prop-
erty of the DCR-based projective hash function by Cramer and Shoup [8]. We
provide the formal proof in the full version.

5.3 Space-Efficient Construction of Projective Hash Function

The second instantiation is a “space-efficient” variant of the first construction.
Specifically, it is obtained from PHFaff by “compressing” the output of the func-
tion Λ in PHFaff with a collision resistant hash function.

More formally, let H =
{
H : {0, 1}∗ → {0, 1}lencrhf

}
be a collision resis-

tant hash family. Then, consider the “compressed”-version of the PHF fam-
ily PHFhash

aff = (Setup′,Πyes,Πno,SK,PK,K′ := {0, 1}lencrhf , Λ′, μ,Pub′), in which
Setup′ picks H

r←− H in addition to generating pp ← Setup, Λ′ is defined sim-
ply by composing Λ and H by Λ′

sk(·) := H(Λsk(·)), Pub′ is defined similarly
by composing Pub and H, and the remaining components are unchanged from
PHFaff . PHFhash

aff preserves the projective property of PHFaff and it is possible
to show that the “compressed” construction PHFhash

aff satisfies the computational
universal property.

This “compressing technique” is applicable to not only the specific instanti-
ation PHFaff , but also more general PHF families PHF, so that if the underlying
PHF is (statistically) universal and satisfies some additional natural properties
(that are satisfied by our instantiation in Sect. 5.2) and H is collision resistant,
then the resulting “compressed” version PHFhash is computationally universal.
In the full version, we formally show the additional natural properties, and the
formal statement for the compressing technique as well as its proof.

122 F. Kitagawa et al.

The obvious merit of using PHFhash
aff instead of PHFaff is its smaller output size.

The disadvantage is that unfortunately, the computational universal property of
PHFhash

aff is only loosely reduced to the collision resistance of H. Specifically, the
advantage of a computational universal adversary is bounded only by the square
root of the advantage of the collision resistance adversary (reduction algorithm).
For the details, see the full version.

6 KDM-CCA Secure PKE with Respect to Polynomials

In this section, we show a PKE scheme that is KDM-CCA secure with respect
to polynomials based on the DCR assumption. More specifically, our scheme is
KDM-CCA secure with respect to modular arithmetic circuits (MAC) defined
by Malkin et al. [22].

Our scheme is based on the cascaded ElGamal encryption scheme used by
Malkin et al., and uses a PHF family for a language that is associated with it,
which we call the cascaded ElGamal language. Furthermore, for considering a
PHF family for this language, we need to make a small extension to the syntax
of the functions μ, and thus we also introduce it here as well.

After introducing the cascaded ElGamal language as well as the extension to
a PHF family below, we will show our proposed PKE scheme, and explain the
instantiations of the underlying PHF family.

Augmenting the Syntax of PHFs. For our construction in this section, we use a
PHF family whose syntax is slightly extended from Definition 3. Specifically, we
introduce an auxiliary key ak ∈ AK that is used as part of a public parameter pp
output by Setup, where AK itself could also be parameterized by param output
by GGen. Then, we allow this ak to (1) affect the structure of the witnesses for
Πyes, and (2) be taken as input by the projection map μ so that it takes ak ∈ AK
and sk ∈ SK as input. We simply refer to a PHF family with such augmentation
as an augmented PHF family.

For an augmented PHF family, we have to slightly adapt the definition of
the statistical/computational universal property from Definition 4. Specifically,

– for the definition of the ε-universal property, in addition to param, pp, pk ∈
PK, c ∈ Πno, and π ∈ K, we also take the universal quantifier for all ak ∈ AK
for considering the probability in Eq. 1.

– for the definition of the computational universal property, we change the
initial phase (Step 1) of the game to allow an adversary to choose ak ∈ AK
in the following way:
1. First, the challenger executes param = (N,P,Q, T, g) ← GGen(1λ, s), and

sends (N,T, g) to A. A sends ak ∈ AK to the challenger. The challenger
then executes pp ← Setup(param), chooses sk

r←− SK, and computes pk ←
μ(ak, sk). Then, the challenger sends (pp, pk) to A.

The remaining description of the game and the definition of the adversary’s
advantage are unchanged.

We note that the implication of the statistical universal property to the compu-
tational one, is also true for an augmented PHF family.

Simple and Efficient KDM-CCA Secure PKE 123

Setuppoly(1
λ) :

param = (N, P, Q, T, g) ← GGen(1λ, s)
ppphf ← Setupphf(param)
(ppskem, z, z̃) ← Setupskem(1λ)
ppcca ← Setupcca(1

λ)
pppoly ← (N, T, g, ppphf , ppskem, ppcca)
Return pppoly.

KGpoly(pppoly) :
(N, T, g, ppphf , ppskem, ppcca) ← pppoly

x
r←− [N−1

4
· z̃ · 2ξ]

(ct, K) ← Encap(ppskem, x)
Parse K as (rKG, psk) ∈ RKG × SK.
h ← g2x mod Ns

ppk ← μ(h, psk) //h is used as an aux. key
(cpk, csk) ← KGcca(ppcca; r

KG)
Return PK := (h, ct, ppk, cpk) and SK := x.

Encpoly(PK, m ∈ ZNs) :
(h, ct, ppk, cpk) ← PK

∀i ∈ [d]: ri
r←− [N−1

4
]; yi ← gri mod Ns

ud ← yd

∀i ∈ [d − 1]: ui ← yi · hri+1 mod Ns

r ← (2r1, . . . , 2rd)
u ← (u2

1 mod Ns, . . . , u2
d mod Ns)

v ← T m · hr1 mod Ns

π ← Pub(ppk, u, r)
CT ← Enccca(cpk, ({ui}i∈[d] , v, π))
Return CT.

Decpoly(PK, SK, CT) :
(h, ct, ppk, cpk) ← PK; x ← SK
K ← Decap(ppskem, x, ct)
Parse K as (rKG, psk) ∈ RKG × SK.
(cpk, csk) ← KGcca(ppcca; r

KG)
({ui}i∈[d] , v, π) ← Deccca(cpk, csk, CT)
If ({u}i∈[d] , v) /∈ J

d+1
Ns then return ⊥.

u ← (u2
1 mod Ns, . . . , u2

d mod Ns)
If π �= Λpsk(u) then return ⊥.
yd ← ud

∀i ∈ [d − 1]: yi ← ui · (yi+1)−2x mod Ns

Return m ← logT (v · y−2x
1 mod Ns).

Fig. 6. The proposed KDM-CCA secure PKE scheme Πpoly with respect to polynomials.
(The public parameter pppoly is omitted from the inputs to Encpoly and Decpoly).

Cascaded ElGamal Language. Let s ≥ 2, GGen be the DCR group generator,
and param = (N,P,Q, T, g) ← GGen

(
1λ, s

)
. Let d = d(λ) be a polynomial.

Let the auxiliary key space AK be defined as Gn, and let ak ∈ AK (which
will be a public key of the underlying cascaded ElGamal encryption scheme
in our concrete instantiations of PHFs). The set of yes instances Πyes is Gd

n,
and the set of no instances is (GNs−1 ⊗ Gn)d \ Gd

n. Any yes instance c ∈ Gd
n

can be expressed in the form c = (c1, . . . , cd) such that cd = grd mod Ns and
ci = gri · akri+1 mod Ns for every i ∈ [d − 1], where r = (r1, . . . , rd) ∈ Z

d. Thus,
such r works as a witness for c ∈ Πyes under ak ∈ AK.

The Proposed PKE Scheme. Let s ≥ 2, and GGen be the DCR group genera-
tor. Let d = d(λ) be a polynomial. Let Πcca = (Setupcca,KGcca,Enccca,Deccca)
be a PKE scheme such that the randomness space of KGcca is RKG. Let
PHF = (Setupphf ,Πyes,Πno,SK,PK,K, μ, Λ,Pub) be an augmented PHF fam-
ily with respect to GGen for the cascaded ElGamal language (defined as above).
Let SKEM = (Setupskem,Encap,Decap) be an SKEM whose session-key space is
RKG×SK.10 Finally, let ξ = ξ(λ) be any polynomial such that 2−ξ = negl(λ). Our
proposed PKE scheme Πpoly = (Setuppoly,KGpoly,Encpoly,Decpoly) is constructed
as described in Fig. 6. The plaintext space of Πpoly is ZNs−1 , where N is the RSA
modulus generated in Setuppoly.

For the scheme Πpoly, the same remarks as those for Πaff apply. Namely, the
correctness and the security proof work for any s ≥ 2, while to capture circular

10 The same format adjustment as in Πaff can be applied. See the footnote in Sect. 5.1.

124 F. Kitagawa et al.

security, we should use s ≥ 3. Furthermore, if we use a statistically universal
PHF family, the KDM-CCA security of Πpoly is tightly reduced to the DCR
assumption and the security properties of the building blocks Πcca and SKEM.

Πpoly is KDM-CCA secure with respect to the class of circuits MACd, con-
sisting of circuits satisfying the following conditions.

– Inputs are variables and constants of ZNs−1 .
– Gates are +, −, or · over ZNs−1 and the number of gates is polynomial in λ.
– Each circuit in MACd computes a polynomial whose degree is at most d. For

a circuit C ∈ MACd, we denote the polynomial computing C by fC .

The formal statement for the security of Πpoly is as follows. Its proof goes
similarly to that of Theorem 1, and we provide it in the full version.

Theorem 2. Assume that the DCR assumption holds with respect to GGen,
SKEM is passively RKA secure, PHF is computationally universal, and Πcca is
IND-CCA secure. Then, Πpoly is MACd-KDM-CCA secure.

Specifically, for any polynomial � = �(λ) and PPT adversary A that attacks
the MACd-KDM-CCA security of Πpoly and makes qkdm = qkdm(λ) KDM queries
and qdec = qdec(λ) decryption queries, there exist PPT adversaries Bdcr, Brka,
B′

rka, Bcca, B′
cca, and Bcu such that

Advkdmcca
Πpoly,MACd,�,A(λ) ≤ 2 ·

(
2 · Advdcr

s,Bdcr
(λ) + Advrka

SKEM,�,Brka
(λ) + Advrka

SKEM,�,B′
rka

(λ)

+Advindcca
Πcca,�,Bcca

(λ) + Advindcca
Πcca,�,B′

cca
(λ) + � · (qdec · Advcu

PHF,Bcu
(λ) + 2−ξ)

)

+ O(d · qkdm · 2−len) + O(2−λ).

Instantiations of PHF Families. We propose two instantiations of an augmented
PHF family used in Πpoly: The basic construction and its space-efficient variant,
which are constructed similarly to those provided in Sects. 5.2 and 5.3, respec-
tively. We provide the details in the full version.

The basic construction PHFpoly is a simple extension of PHFaff , so that they
become identical in case d = 1. The output size of the function Λ in PHFpoly

consists of d elements of ZNs , and its statistical universal property is shown
very similarly to that for PHFaff . The space-efficient construction PHFhash

poly is the
combination of PHFpoly and a collision resistant hash function, and is identical
to PHFhash

aff in case d = 1. Although it is only computationally universal, the
remarkable advantage of PHFhash

poly is that its output size is independent of d.

7 Instantiations

We give some instantiation examples of Faff -KDM-CCA secure PKE schemes
and Fpoly-KDM-CCA secure PKE schemes from our proposed schemes Πaff in
Sect. 5 and Πpoly in Sect. 6. These instantiations are summarized in Figs. 1 and 2
in Sect. 1.2. In all of the following instantiations, the plaintext space of the
resulting schemes is ZNs−1 , where N is the RSA modulus generated in the setup

Simple and Efficient KDM-CCA Secure PKE 125

algorithm and s ≥ 3, and we assume that the underlying SKEM is instantiated
with the one presented in Sect. 4.2.

The first instantiations are obtained by instantiating the underlying PHF
family with the “space-efficient” PHF families (PHFhash

aff for Πaff and PHFhash
poly for

Πpoly), and the underlying IND-CCA secure PKE scheme with the scheme based
on the factoring assumption proposed by Hofheinz and Kiltz [16]. The KDM-
CCA security of the resulting PKE schemes is not tightly reduced to the DCR
assumption, but a ciphertext of the Faff -KDM-CCA secure scheme consists of
only two elements of ZNs , two elements of ZN ′ (caused by the Hofheinz-Kiltz
scheme), and a hash value output by a collision-resistant hash function, where
N ′ is the RSA modulus generated in the Hofheinz-Kiltz scheme. Note that if
s ≥ 3, the size of two elements of ZN ′ plus the size of a hash value is typically
(much) smaller than one element of ZNs ! Furthermore, the improvement on the
ciphertext size of Fpoly-KDM-CCA secure scheme from the previous works is
much more drastic. For KDM security with respect to degree-d polynomials, a
ciphertext of our instantiation consists of (d + 1) elements of ZNs , two elements
of ZN ′ , and a hash value, and its size overhead compared to Malkin et al.’s
scheme [22] is independent of d. In contrast, the ciphertext size of the previous
best construction of Han et al. [11] is O(d9) elements of ZNs and more (and in
addition its security relies on both the DCR and DDH assumptions).

The second instantiations are PKE schemes obtained by instantiating the
underlying PHF family with the “basic” PHF families (PHFaff for Πaff and
PHFpoly for Πpoly), and the underlying IND-CCA secure PKE scheme with the
scheme proposed by Hofheinz [13]. Hofheinz’ scheme is tightly IND-CCA secure
under the DCR assumption, and its ciphertext overhead is 28 group elements
plus the ciphertext overhead caused by authenticated encryption. The advantage
of the second instantiations is that we obtain the first tightly Faff -KDM-CCA
secure PKE scheme and a tightly Fpoly-KDM-CCA PKE scheme based solely on
the DCR assumption. The disadvantage is the relatively large ciphertext size.

The third instantiations are obtained by replacing the underlying PKE
scheme in the second ones with the PKE scheme proposed by Gay, Hofheinz,
and Kohl [10]. Gay et al.’s scheme is tightly IND-CCA secure under the DDH
assumption, and its ciphertext overhead is just three group elements of a DDH-
hard group plus the ciphertext overhead caused by authenticated encryption.
By the third instantiations, relying on both the DCR and DDH assumptions, we
obtain a tightly Faff -KDM-CCA secure PKE scheme whose ciphertext consists
of essentially only three elements of ZNs and three elements of the DDH-hard
group. We also obtain a tightly Fpoly-KDM-CCA secure PKE scheme with much
smaller ciphertexts than our second instantiation achieving the same security.

Acknowledgement. A part of this work was supported by NTT Secure Platform Lab-
oratories, JST OPERA JPMJOP1612, JST CREST JPMJCR19F6 and JPMJCR14D6,
and JSPS KAKENHI JP16H01705 and JP17H01695.

126 F. Kitagawa et al.

References

1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: ICS 2011, pp. 45–60 (2011)

3. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

6. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplication and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

10. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

11. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for
polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 11

12. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 31

13. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17

Simple and Efficient KDM-CCA Secure PKE 127

14. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

15. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

16. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 18

17. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

18. Kitagawa, F., Tanaka, K.: A framework for achieving KDM-CCA secure public-
key encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 127–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 5

19. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

20. Libert, B., Qian, C.: Lossy algebraic filters with short tags. In: Lin, D., Sako, K.
(eds.) PKC 2019. LNCS, vol. 11442, pp. 34–65. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17253-4 2

21. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryp-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp.
559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 22

22. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 28

23. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC 1990, pp. 427–437 (1990)

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-642-01001-9_18
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-030-03329-3_5
https://doi.org/10.1007/978-3-030-03329-3_5
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-030-17253-4_2
https://doi.org/10.1007/978-3-030-17253-4_2
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/3-540-48910-X_16

Non-Committing Encryption
with Quasi-Optimal Ciphertext-Rate

Based on the DDH Problem

Yusuke Yoshida1(B), Fuyuki Kitagawa2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
yoshida.y.aw@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

Abstract. Non-committing encryption (NCE) was introduced by
Canetti et al. (STOC ’96). Informally, an encryption scheme is non-
committing if it can generate a dummy ciphertext that is indistinguish-
able from a real one. The dummy ciphertext can be opened to any mes-
sage later by producing a secret key and an encryption random coin
which “explain” the ciphertext as an encryption of the message. Canetti
et al. showed that NCE is a central tool to achieve multi-party compu-
tation protocols secure in the adaptive setting. An important measure of
the efficiently of NCE is the ciphertext rate, that is the ciphertext length
divided by the message length, and previous works studying NCE have
focused on constructing NCE schemes with better ciphertext rates.

We propose an NCE scheme satisfying the ciphertext rate O(log λ)
based on the decisional Diffie-Hellman (DDH) problem, where λ is the
security parameter. The proposed construction achieves the best cipher-
text rate among existing constructions proposed in the plain model, that
is, the model without using common reference strings. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH
problem was the one proposed by Choi et al. (ASIACRYPT ’09) that
has ciphertext rate O(λ). Our construction of NCE is similar in spirit
to that of the recent construction of the trapdoor function proposed by
Garg and Hajiabadi (CRYPTO ’18).

Keywords: Non-committing encryption · Decisional Diffie-Hellman
problem · Chameleon encryption

1 Introduction

1.1 Background

Secure multi-party computation (MPC) allows a set of parties to compute a
function of their inputs while maintaining the privacy of each party’s input.
Depending on when corrupted parties are determined, two types of adversarial
settings called static and adaptive have been considered for MPC. In the static
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 128–158, 2019.
https://doi.org/10.1007/978-3-030-34618-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_5

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 129

setting, an adversary is required to declare which parties it corrupts before the
protocol starts. On the other hand, in the adaptive setting, an adversary can
choose which parties to corrupt on the fly, and thus the corruption pattern can
depend on the messages exchanged during the protocol. Security guarantee in
the adaptive setting is more desirable than that in the static setting since the
former naturally captures adversarial behaviors in the real world while the latter
is somewhat artificial.

In this work, we study non-committing encryption (NCE) which is introduced
by Canetti, Feige, Goldreich, and Naor [4] and known as a central tool to achieve
MPC protocols secure in the adaptive setting. NCE is an encryption scheme that
has a special property called non-committing property. Informally, an encryption
scheme is said to be non-committing if it can generate a dummy ciphertext that
is indistinguishable from real ones, but can later be opened to any message
by producing a secret key and an encryption random coin that “explain” the
ciphertext as an encryption of the message. Cannetti et al. [4] showed how to
create adaptively secure MPC protocols by instantiating the private channels in
a statically secure MPC protocol with NCE.

Previous Constructions of NCE and their Ciphertext Rate. The ability to open
a dummy ciphertext to any message is generally achieved at the price of effi-
ciency. This is in contrast to ordinary public-key encryption for which we can
easily obtain schemes the size of whose ciphertext is n+poly(λ) by using hybrid
encryption methodology, where n is the length of an encrypted message and λ is
the security parameter. The first NCE scheme proposed by Canetti et al. [4] only
needs the optimal number of rounds (that is, two rounds), but it has ciphertexts
of O(λ2)-bits for every bit of an encrypted message. In other words, the cipher-
text rate of their scheme is O(λ2), which is far from that of ordinary public-key
encryption schemes. Subsequent works have focused on building NCE schemes
with better efficiency.

Beaver [1] proposed a three-round NCE scheme with the ciphertext rate
O (λ) based on the decisional Diffie-Hellman (DDH) problem. Damg̊ard and
Nielsen [8] generalized Beaver’s scheme and achieved a three-round NCE scheme
with ciphertext rate O(λ) based on a primitive called simulatable PKE which in
turn can be based on concrete problems such as the DDH, computational Diffie-
Hellman (CDH), and learning with errors (LWE) problems. Choi, Dachman-
Soled, Malkin, and Wee [7] further improved these results and constructed a
two-round NCE scheme with ciphertext rate O (λ) based on a weaker variant
of simulatable PKE called trapdoor simulatable PKE which can be constructed
the factoring problem.

The first NCE scheme achieving a sub-linear ciphertext rate was proposed
by Hemenway, Ostrovsky, and Rosen [20]. Their scheme needs only two rounds
and achieves the ciphertext rate O (log n) based on the φ-hiding problem which
is related to (and generally believed to be easier than) the RSA problem, where
n is the length of messages. Subsequently, Hemenway, Ostrovsky, Richelson,
and Rosen [19] proposed a two-round NCE scheme with the ciphertext rate
poly(log λ) based on the LWE problem. Canetti, Poburinnaya, and Raykova [5]

130 Y. Yoshida et al.

Table 1. Comparison of existing NCE schemes. The security parameter is denoted
by λ, and the message length n. Common-domain TDP can be instantiated based
on the CDH and RSA problems. Simulatable and trapdoor simulatable PKE can be
instantiated based on many computational problems realizing ordinary PKE. (∗) This
scheme uses common reference strings.

Rounds Ciphertext rate Assumption

Canetti et al. [4] 2 O (
λ2

)
Common-domain TDP

Beaver [1] 3 O (λ) DDH

Damg̊ard and Nielsen [8] 3 O (λ) Simulatable PKE

Choi et al. [7] 2 O (λ) Trapdoor simulatable PKE

Hemenway et al. [19] 2 poly(log λ) LWE, Ring-LWE

Hemenway et al. [20] 2 O (log n) Φ-hiding

Canetti et al. [5](∗) 2 1 + o (1) Indistinguishability obfuscation

This work 2 O (log λ) DDH

showed that by using indistinguishability obfuscation, an NCE scheme with the
asymptotically optimal ciphertext rate (that is, 1 + o(1)) can be constructed.
Their scheme needs only two rounds but was proposed in the common reference
string model.

Despite the many previous efforts, as far as we know, we have only a single
NCE scheme satisfying a sub-linear ciphertext rate based on widely and classi-
cally used problems, that is, the scheme proposed by Hemenway et al. [19] based
on the LWE problem. Since NCE is an important cryptographic tool in con-
structing MPC protocols secure in the adaptive setting, it is desirable to have
more constructions of NCE satisfying a better ciphertext rate.

1.2 Our Contribution

We propose an NCE scheme satisfying the ciphertext rate O (log λ) based on
the DDH problem. The proposed construction achieves the best ciphertext rate
among existing constructions proposed in the plain model, that is, the model
without using common reference strings. The proposed construction needs only
two rounds, which is the optimal number of rounds for NCE. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH problem
was the one proposed by Choi et al. [7] that satisfies the ciphertext rate O (λ).
We summarize previous results on NCE and our result in Table 1.

We first show an NCE scheme that we call basic construction, which sat-
isfies the ciphertext rate poly(log λ). Then, we give our full construction sat-
isfying the ciphertext rate O (log λ) by extending the basic construction using
error-correcting codes. Especially, in the full construction, we use a linear-rate
error-correcting code which can correct errors of weight up to a certain constant
proportion of the codeword length.

Our construction of NCE utilizes a variant of chameleon encryption.
Chameleon encryption was originally introduced by Döttling and Garg [10] as
an intermediate tool for constructing an identity-based encryption scheme based

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 131

on the CDH problem. Roughly speaking, chameleon encryption is public-key
encryption in which we can use a hash value of a chameleon hash function and
its pre-image as a public key and a secret key, respectively. We show a vari-
ant of chameleon encryption satisfying oblivious samplability can be used to
construct an NCE scheme with a sub-linear ciphertext rate. Informally, oblivi-
ous samplability of chameleon encryption requires that a scheme can generate
a dummy hash key obliviously to the corresponding trapdoor, and sample a
dummy ciphertext that is indistinguishable from a real one, without using any
randomness except the dummy ciphertext itself.

Need for the DDH Assumption. A key and a ciphertext of the CDH based
chameleon encryption proposed by Döttling and Garg [10] together form multiple
Diffie-Hellman tuples. Thus, it seems difficult to sample them obliviously unless
we prove that the knowledge of exponent assumption [2,18] is false. In order to
solve this issue, we rely on the DDH assumption instead of the CDH assumption.
Under the DDH assumption, a hash key and a ciphertext of our chameleon
encryption are indistinguishable from independent random group elements, and
thus we can perform oblivious sampling of them by sampling random group
elements directly from the underlying group.

Public Key Size. As noted above, we first give the basic construction satisfying
the ciphertext rate poly(log λ), and then extend it to the full construction satis-
fying the ciphertext rate O (log λ). In addition to satisfying only the ciphertext
rate poly(log λ), the basic construction also has a drawback that its public key
size depends on the length of a message quadratically.

A public key of the basic construction contains ciphertexts of our obliviously
samplable chameleon encryption. The size of those ciphertexts is quadratic in
the length of an input to the associated chameleon hash function similarly to the
construction by Döttling and Garg [10]. Since the input length of the chameleon
hash function is linear in the message length of the basic construction, the public
key size of the basic construction depends on the message length quadratically.

Fortunately, we can remove this quadratic dependence by a simple block-wise
encryption technique. Thus, in the full construction, we utilize such a block-wise
encryption technique in addition to the error-correcting code. By doing so, we
reduce not only the ciphertext rate to O (log λ), but also the public key size to
linear in the length of a message as in the previous constructions of NCE.

Relation with Trapdoor Function by Garg and Hajiabadi [14]. There has been a
line of remarkable results shown by using variants of chameleon encryption, start-
ing from the one by Cho, Döttling, Garg, Gupta, Miao, and Polychroniadou [6].
This includes results on identity-based encryption [3,9–11], secure MPC [6,16],
adaptive garbling schemes [15,17], and so on. Garg and Hajiabadi [14] showed
how to realize trapdoor function (TDF) based on the CDH problem using a
variant of chameleon encryption called one-way function with encryption.1

1 Their technique is further extended by Garg, Gay, and Hajiabadi [13] and Döttling,
Garg, Ishai, Malavolta, Mour, and Ostrovsky [12].

132 Y. Yoshida et al.

Our construction of NCE can be seen as an extension of that of TDF by
Garg and Hajiabadi. Our formulation of chameleon encryption is based on that
of one-way function with encryption. Concretely, we define chameleon encryption
so that it has recyclability introduced by Garg and Hajiabadi as a key property
in their work.

1.3 Paper Organization

Hereafter, in Sect. 2, we first review the definition of NCE. Then, in Sect. 3, we
provide high-level ideas behind our construction of NCE. In Sect. 4, we formally
define and construct obliviously samplable chameleon encryption. In Sect. 5,
using obliviously samplable chameleon encryption, we construct an NCE scheme
that we call the basic construction satisfying the ciphertext rate poly(log λ).
Finally, in Sect. 6, we improve the basic construction and provide the full con-
struction that achieves the ciphertext rate O (log λ).

2 Preliminaries

Let PPT denote probabilistic polynomial time. In this paper, λ always denotes
the security parameter. For a finite set X, we denote the uniform sampling of x

from X by x
$← X. y←A(x; r) denotes that given an input x, a PPT algorithm

A runs with internal randomness r, and outputs y. A function f is said to be
negligible if f(λ) = 2−ω(λ), and we write f(λ) = negl (λ) to denote that f
is negligible. Let Ham (x) denotes the Hamming weight of x ∈ {0, 1}n. E [X]
denotes expected value of X. [n] denotes {1, . . . , n}.

Lemma 1 (Chernoff bound). For a binomial random variable X. If E [X] ≤
μ, then for all δ > 0, Pr [X ≥ (1 + δ)μ)] ≤ e− δ2

2+δ μ holds.

We provide the definition of the DDH assumption and its variants used in
the proof of Theorem1. We first introduce the leftover hash lemma.

Lemma 2 (Leftover hash lemma). Let X and Y are sets. Let H := {H :
X → Y } be a universal hash family. Then, the distributions (H,H(x)) and (H, y)

are
√

|Y |
4|X| -close, where H

$← H, x
$← X, and y

$← Y .

We review some computational assumptions. Below, we let G be a cyclic
group of order p with a generator g. We also define the function dh (·, ·) as
dh

(
ga, gb

)
:= gab for every a, b ∈ Zp. We start with the decisional Diffie-Hellman

(DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption). We say that the
DDH assumption holds if for any PPT adversary A,

|Pr [A (g1, g2, dh (g1, g2)) = 1] − Pr [A (g1, g2, g3) = 1]| = negl (λ)

holds, where g1, g2, g3
$← G.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 133

We introduce a lemma that is useful for the proof of oblivious samplability of
our chameleon encryption. We can prove this lemma by using the self reducibility
of the DDH problem.

Lemma 3. Let n be a polynomial of λ. Let gi,b
$← G for every i ∈ [n] and

b ∈ {0, 1}. We set M := (gi,b)i∈[n],b∈{0,1} ∈ G
2×n.

Then, if the DDH assumption holds, for any PPT adversary A, we have

|Pr [A (M,Mρ) = 1] − Pr [A (M,R) = 1]| = negl (λ) ,

where Mρ = (gρ
i,b)i∈[n],b∈{0,1} ∈ G

2×n and R ← G
2×n.

We next define the hashed DDH assumption which is a variant of the DDH
assumption.

Definition 2 (Hashed DDH Assumption). Let H = {HG : G → {0, 1}�} be
a family of hash functions. We say that the hashed DDH assumption holds with
respect to H if for any PPT adversary A,

|Pr [A (HG, g1, g2, e) = 1] − Pr [A (HG, g1, g2, e′) = 1]| = negl (λ)

holds, where HG

$← H, g1, g2,
$← G, e = HG (dh (g1, g2)), and e′ $← {0, 1}�.

In this work, we use the hashed DDH assumption with respect to a hash
family H whose output length � is small enough such as � = poly(log λ) or
O (log λ). In this case, by using a family of universal hash functions H, we can
reduce the hardness of the hashed DDH problem to that of the DDH problem
by relying on the leftover hash lemma. Formally, we have the following lemma.

Lemma 4. Let H = {HG : G → {0, 1}�} be a family of universal hash functions,
where � = poly(log λ). Then, if the DDH assumption holds, the hashed DDH
assumption with respect to H also holds by the leftover hash lemma.

Non-Committing Encryption. A non-committing encryption (NCE) scheme is a
public-key encryption scheme that has efficient simulator algorithms (Sim1,Sim2)
satisfying the following properties. The simulator Sim1 can generate a simulated
public key pk and a simulated ciphertext CT . Later Sim2 can explain the cipher-
text CT as encryption of any plaintext. Concretely, given a plaintext m,Sim2

can output a pair of random coins for key generation rGen and encryption rEnc,
as if pk was generated by the key generation algorithm with the random coin
rGen, and CT is encryption of m with the random coin rEnc.

Some previous works proposed NCE schemes that are three-round protocols.
In this work, we focus on NCE that needs only two rounds, which is also called
non-committing public-key encryption, and we use the term NCE to indicate it
unless stated otherwise. Below, we introduce the definition of NCE according to
Hemenway et al. [19].

Definition 3 (Non-Committing Encryption). A non-committing encryp-
tion scheme NCE consists of the following PPT algorithms (Gen,Enc,Dec,
Sim1,Sim2).

134 Y. Yoshida et al.

– Gen
(
1λ; rGen

)
: Given the security parameter 1λ, using a random coin rGen, it

outputs a public key pk and a secret key sk.
– Enc

(
pk,m; rEnc

)
: Given a public key pk and a plaintext m ∈ {0, 1}μ, using a

random coin rEnc, it outputs a ciphertext CT .
– Dec (sk, CT): Given a secret key sk and a ciphertext CT , it outputs m or ⊥.
– Sim1

(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public key

pk, a simulated ciphertext CT , and an internal state st.
– Sim2 (m, st): Given a plaintext m and a state st, it outputs random coins for

key generation rGen and encryption rEnc.

We require NCE to satisfy the following correctness and security.

Correctness. NCE is called γ-correct, if for any plaintext m,

Pr[(pk, sk) ←Gen
(
1λ; rGen

)
, CT ←Enc

(
pk,m; rEnc

)
,

m′ = Dec (sk, CT) ;m = m′] ≥ γ.

When γ = 1 − negl (λ), we call it correct. Note that γ cannot be equal to 1 in
the plain model (i.e., the model without using common reference strings).

Security. For any stateful PPT adversary A, we define two experiments as
follows.

ExpReal
NCE,A ExpIdealNCE,A

(pk, sk) ←Gen
(
1λ; rGen

)
(pk,CT, st) ← Sim1

(
1λ

)
m← A (pk) m←A (pk)
CT ←Enc

(
pk,m; rEnc

) (
rGen, rEnc

) ← Sim2 (m, st)
out← A (

CT, rGen, rEnc
)

out← A (
CT, rGen, rEnc

)

We say that NCE is secure if

AdvNCE,A (λ) :=
∣
∣
∣Pr

[
out = 1 in ExpReal

NCE,A
]
− Pr

[
out = 1 in ExpIdealNCE,A

]∣∣
∣ = negl (λ)

holds for every PPT adversary A.

3 Ideas of Our Construction

In this section, we provide high-level ideas behind our construction of NCE.
As a starting point, we review the three-round NCE protocol proposed by

Beaver [1], which contains a fundamental idea to build NCE from the DDH prob-
lem. Next, we show how to extend it and construct a two-round NCE scheme
whose ciphertext rate is O (λ). Then, we show how to reduce the ciphertext
rate to O (log λ), and obtain our main result. Finally, we state that our result-
ing construction can be described by using a variant of chameleon encryption,
and it can be seen as an extension of trapdoor function proposed by Garg and
Hajiabadi [14].

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 135

revieceRredneS
Input: m ∈ {0, 1}
z

$← {0, 1} x
$← {0, 1}

ρz
$← Zp αx

$← Zp

Az = gρz (A0, A1) Bx = gαx

A1−z
$← G −−−−−−−−−−−−−−−−→ B1−x

$← G

(e0, e1), (B0, B1) ex = Ax
αx

←−−−−−−−−−−−−−−−− e1−x
$← G

if Bz
ρz = ez w

w := z ⊕ m −−−−−−−−−−−−−−−−→ if w �= ⊥
else w := ⊥ Output: m = w ⊕ x

Fig. 1. The description of Beaver’s protocol [1].

3.1 Starting Point: Beaver’s Protocol

Beaver’s NCE protocol essentiality executes two Diffie-Hellman key exchange
protocols in parallel. This protocol can send a 1-bit message. The ciphertext
rate is O (λ). We describe the protocol below and in Fig. 1.

Step1. Let G be a group of order p with a generator g. The sender picks a
random bit z

$← {0, 1} and an exponent ρz
$← Zp, and then sets Az = gρz .

The sender also generates a random group element A1−z
$← G obliviously,

i.e., without knowing the discrete log of A1−z. The sender sends (A0, A1) to
the receiver and stores the secret sk = (z, ρz). The random coin used in this
step is (z, ρz, A1−z).

Step2. The receiver picks a random bit x
$← {0, 1} and an exponent αx

$← Zp,

and then sets Bx = gαx . The receiver also obliviously generates B1−x
$← G.

Moreover, the receiver computes ex = Ax
αx and obliviously samples e1−x

$←
G. The receiver sends ((B0, B1), (e0, e1)) to the sender. The random coin
used in this step is (x, αx, B1−x, e1−x).

Step3. The sender checks whether x = z holds or not, by checking if Bz
ρz = ez

holds. With overwhelming probability, this equation holds if and only if x = z.
If x = z, the sender sends w := z ⊕ m, and otherwise quits the protocol.

Step4. The receiver recovers the message by w ⊕ x.

We next describe the simulator for this protocol.

Simulator. The simulator simulates a transcript (A0, A1), ((B0, B1), (e0, e1)),

and w as follows. It generates ρ0, ρ1, α0, α1
$← Zp and sets

((A0, A1), (B0, B1), (e0, e1)) = ((gρ0 , gρ1), (gα0 , gα1), (gρ0α0 , gρ1α1)).

The simulator also generates w
$← {0, 1}.

136 Y. Yoshida et al.

The simulator can later open this transcript to both messages 0 and 1. In
other words, for both messages, the simulator can generate consistent sender
and receiver random coins. For example, when opening it to m = 0, the
simulator sets x = z = w, and outputs (w, ρw, A1−w) and (w,αw, B1−w, e1−w)
as the sender’s and receiver’s opened random coins, respectively.

Security. Under the DDH assumption on G, we can prove that any PPT adver-
sary A cannot distinguish the pair of transcript and opened random coins
generated in the real protocol from that generated by the simulator. The
only difference of them is that e1−x is generated as a random group element
in the real protocol, but it is generated as A1−x

α1−x = gρ1−xα1−x in the sim-
ulation. When the real protocol proceeds to Step. 4, we have x = z with
overwhelming probability. Then, the random coins used by the sender and
receiver (and thus given to A) does not contain exponents of A1−x and B1−x,
that is, ρ1−x and α1−x. Thus, under the DDH assumption, A cannot distin-

guish randomly generated e1−x
$← G from A1−x

α1−x = gρ1−xα1−x . Thus, this
protocol is a secure NCE protocol.

This protocol succeeds in transmitting a message only when z = x, and
otherwise it fails. Note that even when z 	= x, the protocol can transmit a
message because in Step. 3, the sender knows the receiver’s secret x. However,
in that case, we cannot construct a successful simulator. In order to argue the
security based on the DDH assumption, we have to ensure that either one pair
of exponents (ρ0, α0) or (ρ1, α1) is not known to the adversary, but when z 	= x,
we cannot ensure this.

Next, we show how to extend this protocol into a (two-round) NCE scheme
and obtain an NCE scheme with the ciphertext rate O (λ).

3.2 Extension to Two-Round NCE Scheme

As a first attempt, we consider an NCE scheme NCE1lin that is a natural extension
of Beaver’s three-round NCE protocol. Intuitively, NCE1lin is Beaver’s protocol in
which the role of the sender and receiver is reversed, and the sender sends a
message even when z and x are different. Specifically, the receiver generates the
public key pk = (A0, A1) and secret key (z, ρz), and the sender generates the
ciphertext CT = ((B0, B1), (e0, e1), w), where (A0, A1), (B0, B1), (e0, e1), and
w := x ⊕ m are generated in the same way as those in Beaver’s protocol. When
decrypting the CT , the receiver first recovers the value of x by checking whether
Bρz

z = ez holds or not, and then computes w ⊕ x.
Of course, NCE1lin is not a secure NCE scheme in the sense that we cannot

construct a successful simulator when z 	= x for a similar reason stated above.
However, we can fix this problem and construct a secure NCE scheme by running
multiple instances of NCE1lin.

In NCE1lin, if z coincides with x, we can construct a simulator similarly to
Beaver’s protocol, which happens with probability 1

2 . Thus, if we run multiple
instances of it, we can construct simulators successfully for some fraction of them.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 137

redneSrevieceR
Input: m ∈ {0, 1}μ

z
$← {0, 1}n x

$← {0, 1}n

∀i ∈ [n], ρi
$← Zp ∀i ∈ [n], αi

$← Zp

Ai,zi = gρi Bi,xi = gαi

Ai,1−zi
$← G

(
A1,0, . . . , An,0

A1,1, . . . , An,1

)
Bi,1−xi

$← G

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ei,xi = Ai,xi
αi

ei,1−xi
$← G

if Bi,zi
ρi = ei,zi

(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w w = H(x) ⊕ m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
else xi := 1 − zi
Output: m = w ⊕ H(x)

Fig. 2. The description of NCElin.

Based on this observation, we construct an NCE scheme NCElin as follows. We
also describe NCElin in Fig. 2.

Let the length of messages be μ and n = O (μ). We later specify the concrete

relation of μ and n. The receiver first generates z1 · · · zn = z
$← {0, 1}n. Then,

for every i ∈ [n], the receiver generates a pubic key of NCE1lin, (Ai,0, Ai,1) in
which the single bit randomness is zi. We let the exponent of Ai,zi

be ρi, that
is, Ai,zi

= gρi . The receiver sends these n public keys of NCE1lin as the public key
of NCElin to the sender. The secret key is (z, ρ1, . . . , ρn).

When encrypting a message m, the sender first generates x1 · · · xn = x
$←

{0, 1}n. Then, for every i ∈ [n], the sender generates ((Bi,0, Bi,1), (ei,0, ei,1)) in
the same way as NCE1lin (and thus Beaver’s protocol) “encapsulates” xi by using
the i-th public key (Ai,0, Ai,1). We call it i-th encapsulation. Finally, the sender
generates w = m ⊕ H(x), where H is a hash function explained later in more
detail.

The resulting ciphertext is
((

B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
.

Decryption is done by recovering each xi in the same way as NCE1lin and com-
puting w ⊕ H(x).

The simulator for this scheme runs as follows. It first generates z1 · · · zn =
z

$← {0, 1}n and x1 · · · xn = x
$← {0, 1}n. Then, for every index i ∈ [n] such that

zi = xi, it simulates the i-th public key and encapsulation in the same way as
the simulator for NCE1lin (and thus Beaver’s protocol). For every index i ∈ [n]
such that zi 	= xi, it simply generates i-th public key and encapsulation in the
same way as NCElin does in the real execution. Finally, it generates w

$← {0, 1}μ.

138 Y. Yoshida et al.

Although the ciphertext generated by the simulator is not “fully non-
committing” about x, it loses the information of bits of x such that xi = zi.
Thus, if we can program the output value of the hash function H freely by pro-
gramming only those bits of x, the simulator can later open the ciphertext to
any message, and we see that NCElin is a secure NCE scheme.

To realize this idea, we first set n = 8μ in order to ensure that the simu-
lated ciphertext loses the information of at least μ-bits of x with overwhelming
probability. This is guaranteed by the Chernoff bound. Moreover, as the hash
function H, we use a matrix R ∈ {0, 1}μ×n, such that randomly picked μ out
of n column vectors of length μ are linearly independent. The ciphertext rate
of NCElin is O (λ), that is already the same as the best rate based on the DDH
problem achieved by the construction of Choi et al. [7].

3.3 Reduce the Ciphertext Rate

Finally, we show how to achieve the ciphertext rate O (log λ) by compressing
the ciphertext of NCElin. This is done by two steps. In the first step, we reduce
the size of the first part of a ciphertext of NCElin, that is, {Bi,b}i∈[n],b∈{0,1}. By
this step, we compress it into just a single group element. Then, in the second
step, we reduce the size of the second part of a ciphertext of NCElin, that is,
{ei,b}i∈[n],b∈{0,1}. In this step, we compress each ei,b into a O (log λ)-bit string.
By applying these two steps, we can achieve the ciphertext rate O (log λ).

The second step is done by replacing each group element ei,b with a hash value
of it. In NCElin, they are used to recover the value of xi by checking Bρi

i,zi
= ei,zi

.
We can successfully perform this recovery process with overwhelming probability
even if ei,b is hashed to a poly(log λ)-bit string. Furthermore, with the help of an
error-correcting code, we can reduce the length of the hash value to O (log λ)-bit.

In the remaining part, we explain how to perform the first step.

Compressing a Matrix of Group Elements into a Single Group Element. We
realize that we do not need all of the elements {Bi,b}i∈[n],b∈{0,1} to decrypt
the ciphertext. Although the receiver gets both Bi,0 and Bi,1 for every i ∈ [n],
the receiver uses only Bi,zi

. Recall that the receiver recovers the value of xi by
checking whether Bρi

i,zi
= ei,zi holds. This recovery of xi can be done even if the

sender sends only Bi,xi , and not Bi,1−xi .
This is because, similarly to the equation Bρi

i,zi
= ei,zi , with overwhelming

probability, the equation Bρi

i,xi
= ei,zi holds if and only if zi = xi. For this reason,

we can compress the first part of the ciphertext on NCElin into (B1,x1 , . . . , Bn,xn
).

We further compress (B1,x1 , . . . , Bn,xn
) into a single group element generated

by multiplying them, that is, y =
∏

j∈[n] Bj,xj
. In order to do so, we modify the

scheme so that the receiver can recover xi for every i ∈ [n] using y instead of
Bi,xi

. Concretely, for every i ∈ [n], the sender computes ei,xi as

ei,xi =
∏

j∈[n]

A
αj

i,xi
,

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 139

where αj is the exponent of Bj,xj
for every j ∈ [n] generated by the sender. The

sender still generates ei,1−xi as a random group element for every i ∈ [n]. In
this case, with overwhelming probability, the receiver can recover xi by checking
whether ei,zi = yρi holds.

However, unfortunately, it seems difficult to prove the security of this con-
struction. In order to delete the information of xi for indices i ∈ [n] such that
zi = xi as in the proof of NCElin, we have to change the distribution of ei,1−xi

from a random group element to
∏

j∈[n] A
αj

i,1−xi
so that ei,0 and ei,1 are sym-

metrically generated. However, we cannot make this change by relying on the
DDH assumption since all αj are given to the adversary as a part of the sender
random coin. Thus, in order to solve this problem, we further modify the scheme
and construct an NCE scheme NCE as follows.

The Resulting NCE Scheme NCE. In NCE, the receiver first generates z $← {0, 1}n

and {Ai,b}i∈[n],b∈{0,1} in the same way as NCElin. Moreover, instead of the sender,
the receiver obliviously generates Bi,b = gαi,b for every i ∈ [n] and b ∈ {0, 1},
and adds them into the public key. Moreover, for every i ∈ [n], the receiver adds

{Bρi

j,b = A
αj,b

i,zi
}j∈[n],b∈{0,1} s.t. (j,b) �=(i,1−zi)

to the public key. In order to avoid the leakage of the information of z from the
public key, for every i ∈ [n], we have to add

{A
αj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b) �=(i,zi)

to the public key. However, the receiver cannot do it since the receiver gen-
erates Ai,1−zi

obliviously. Thus, instead, the receiver adds the same number
of random group elements into the public key. At the beginning of the secu-
rity proof, we can replace them with {A

αj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b) �=(i,zi) by rely-

ing on the DDH assumption, and eliminate the information of z from the
public key. For simplicity, below, we suppose that the public key includes
{A

αj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b) �=(i,zi) instead of random group elements.

When encrypting a message m by NCE, the sender first generates x $← {0, 1}n

and computes y =
∏

j∈[n] Bj,xj
. Then, for every i ∈ [n], the sender computes

ei,xi
as

ei,xi
=

∏
j∈[n]

A
αj,xj

i,xi
= yρi

just multiplying A
α1,x1
i,xi

, . . . , A
αn,xn
i,xi

included in the pubic key. Recall that Ai,xi
=

gρi . Note that A
αi,1−zi
i,zi

is not included in the public key, but we do not need it to
compute ei,xi

. The sender generates ei,xi
as a random group element for every

i ∈ [n] as before. The resulting ciphertext is
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, Rx ⊕ m

)
.

140 Y. Yoshida et al.

The receiver can recover xi by checking whether ei,zi = yρi holds, and decrypt
the ciphertext.

By defining the simulator appropriately, the security proof of NCE proceeds
in a similar way to that of NCElin. In NCE, for indices i ∈ [n] such that zi = xi, we
can eliminate the information of xi. We can change ei,1−xi

from a random group
element to

∏
j∈[n] A

αj,xj

i,1−xi
by relying on the fact that A

αi,xi
i,1−xi

is indistinguishable
from a random group element by the DDH assumption. By this change, ei,0

and ei,1 become symmetric and the ciphertext loses the information of xi. Then,
the remaining part of the proof goes through in a similar way as that of NCElin
except the following point. In NCE, the first component of the ciphertext, that is,
y =

∏
j∈[n] Bj,xj

has the information of x. In order to deal with the issue, in our

real construction, we replace y with gr
∏

j∈[n] Bj,xj
, where r

$← Zp. Then, y no
longer leaks any information of x. Moreover, after y is fixed, for any x′ ∈ {0, 1}n,
we can efficiently find r′ such that y = gr

′ ∏
j∈[n] Bj,x′

j
. This is important to

ensure that the simulator of NCE runs in polynomial time.

3.4 Abstraction by Chameleon Encryption

We can describe NCE by using obliviously samplable chameleon encryption. If we
consider {Bi,b}i∈[n],b∈{0,1} as a hash key k of chameleon hash function, the first
element of the ciphertext gr

∏
j∈[n] Bj,xj

can be seen as the output of the hash
H (k, x; r). Moreover, group elements contained in the public key are considered
as ciphertexts of an chameleon encryption scheme. Oblivious samplability of
chameleon encryption makes it possible to deal with the above stated issue of
sampling random group elements instead of {A

αj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b) �=(i,zi)

for every i ∈ [n].

Relation with Trapdoor Function of Garg and Hajiabadi. We finally remark that
the construction of NCE can be seen as an extension of that of trapdoor function
(TDF) proposed by Garg and Hajiabadi [14].

If we do not add the random mask gr to y =
∏

j∈[n] Bj,xj
, the key encapsu-

lation part of a ciphertext of NCE, that is,
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

))

is the same as an output of the TDF constructed by Garg and Hajiabadi. The
major difference between our NCE scheme and their TDF is the secret key. A
secret key of their TDF contains all discrete logs of {Ai,b}i∈[n],b∈{0,1}, that is,
{ρi,b}i∈[n],b∈{0,1}. On the other hand, a secret key of our NCE scheme contains
half of them corresponding to the bit representation of z, that is, {ρi,zi

}i∈[n]. Garg
and Hajiabadi already stated that their TDF can be inverted with {ρi,zi

}i∈[n]

for any z ∈ {0, 1}n, and use this fact in the security proof of a chosen ciphertext
security of a public-key encryption scheme based on their TDF. By explicitly
using this technique in the construction, we achieve non-committing property.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 141

We observe that construction techniques for TDF seem to be useful for
achieving NCE. Encryption schemes that can recover an encryption random
coin with a message in the decryption process, such as those based on TDFs, is
said to be randomness recoverable. For randomness recoverable schemes, receiver
non-committing property is sufficient to achieve full (that is, both sender and
receiver) non-committing property. This is because an encryption random coin
can be recovered from a ciphertext by using a key generation random coin.

4 Obliviously Samplable Chameleon Encryption

Chameleon encryption was originally introduced by Döttling and Garg [10]. In
this work, we introduce a variant of chameleon encryption satisfying oblivious
samplability.

4.1 Definiton

We start with the definition of the chameleon hash function.

Definition 4 (Chameleon Hash Function). A chameleon hash function con-
sists of the following PPT algorithms

(
K,H,H−1

)
. Below, we let the input space

and randomness space of H be {0, 1}n and RH, respectively, where n = O(λ).

– K
(
1λ

)
: Given the security parameter 1λ, it outputs a hash key k and a trap-

door t.
– H (k, x; r): Given a hash key k and input x ∈ {0, 1}n, using randomness r ∈ RH,

it outputs a hash value y.
– H−1 (t, (x, r), x′): Given a trapdoor t, an input to the hash x, randomness for

the hash r and another input to the hash x′, it outputs randomness r′.

A chameleon hash function is required to satisfy the following trapdoor collision
property.2

Trapdoor Collision. For all x, x′ ∈ {0, 1}n and hash randomness r ∈ RH,
H (k, x; r) = H(k, x′; r′) holds, where (k, t) ←K

(
1λ

)
, r′ ←H−1 (t, (x, r), x′).

Moreover, if r is sampled uniformly at random, then so is r′.

Next, we define the chameleon encryption.

Definition 5 (Chameleon Encryption). Chameleon encryption (CE) con-
sists of a chameleon hash function

(
K,H,H−1

)
and the following PPT algorithms

(E1,E2,D). Below, we let the input space and randomness space of H are {0, 1}n

and RH, respectively, where n = O(λ). We also let the randomness space of E1

and E2 be RE. Moreover, we let the output space of E2 be {0, 1}�, where � be a
polynomial of λ.

2 Usually, a chameleon hash function is required to be collision resistant, but we omit
it since it is implied by the security of chameleon encryption defined later.

142 Y. Yoshida et al.

– E1 (k, (i , b); ρ): Given a hash key k and index i ∈ [n] and b ∈ {0, 1}, using a
random coin ρ ∈ RE, it outputs a ciphertext ct.

– E2 (k, y; ρ): Given a hash key k and a hash value y, using a random coin
ρ ∈ RE, it outputs e ∈ {0, 1}�.

– D (k, (x, r), ct): Given a hash key k, a pre-image of the hash (x, r) and a cipher-
text ct, it outputs e ∈ {0, 1}� or ⊥.

Chameleon encryption must satisfy the following correctness and security.

Correctness. For all k output by K
(
1λ

)
, i ∈ [n], x ∈ {0, 1}n, r ∈ RH,

and ρ ∈ RE,E2 (k, y; ρ) = D (k, (x, r), ct) holds, where y←H (k, x; r) and
ct←E1(k, (i , xi); ρ).

Security. For any stateful PPT adversary A, we define the following experi-
ments.

Exp0CE,A Exp1CE,A
(x, r, i) ←A (

1λ
)

(x, r, i) ←A (
1λ

)
(k, t) ← K

(
1λ

)
(k, t) ← K

(
1λ

)
ct←E1(k, (i , 1 − xi); ρ) ct←E1(k, (i , 1 − xi); ρ)

e←E2(k,H(k, x; r); ρ) e $← {0, 1}�

out← A (k, ct, e) out←A (k, ct, e)

We say CE is secure if

AdvCE,A (λ) :=
∣∣Pr

[
out = 1 in Exp0CE,A

]

− Pr
[
out = 1 in Exp1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

Remark 1 (On the recyclability). The above definition of chameleon encryption
is slightly different from that of Döttling and Garg [10] since we define it so that
it satisfies a property called recyclability introduced by Garg and Hajiabadi [14]
when defining a primitive called one-way function with encryption that is similar
to chameleon encryption.

More specifically, in our definition, there are two encryption algorithms E1

and E2. E1 outputs only a key encapsulation part and E2 outputs only a ses-
sion key part. In the original definition by Döttling and Garg, there is a single
encryption algorithm that outputs the key encapsulation part and a message
masked by the session key part at once. Importantly, an output of E1 does not
depend on a hash value y. This makes possible to relate a single output of E1

with multiple hash values. (In other words, a single output of E1 can be recycled
for multiple hash values.) We need this property in the construction of NCE and
thus adopt the above definition.

We then introduce our main tool, that is, obliviously samplable chameleon
encryption (obliviously samplable CE).

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 143

Definition 6 (Obliviously Samplable Chameleon Encryption). Let CE =
(K,H,H−1,E1,E2,D) be a chameleon encryption scheme. We define two associ-
ated PPT algorithms K̂ and Ê1 as follows.

– K̂
(
1λ

)
: Given the security parameter 1λ, it outputs only a hash key k̂ without

using any randomness other than k̂ itself.
– Ê1

(
k̂, (i, b)

)
: Given a hash key k̂ and index i ∈ [n] and b ∈ {0, 1}, it outputs

a ciphertext ĉt without using any randomness except ĉt itself.

For any PPT adversary A, we also define the following experiments.

Expos-0CE,A Expos-1CE,A
(k, t) ← K

(
1λ

)
k̂ ← K̂

(
1λ

)

out←AO(·,·) (k) out←A ̂O(·,·)
(
k̂
)

The oracles O(·, ·) and Ô(·, ·) are defined as follows.

– O(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ct←E1 (k, (i , b) ; ρ)
using uniformly random ρ.

– Ô(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ĉt← Ê1

(
k̂, (i , b)

)
.

We say that CE is obliviously samplable if

AdvosCE,A (λ) :=
∣∣Pr

[
out = 1 in Expos-0CE,A

] − Pr
[
out = 1 in Expos-1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

We define another correctness of obliviously samplable CE necessary to assure
the correctness of our NCE.

Definition 7 (Correctness under Obliviously Sampled Keys). An obliv-
iously samplable CE (CE, K̂, Ê1) is correct under obliviously sampled keys if for
all k̂ output by K̂, i ∈ [n], x ∈ {0, 1}n, r ∈ RH, and ρ ∈ RE,E2

(
k̂, (i , b); ρ

)
=

D
(
k̂, (x, r), ct

)
holds, where y←H

(
k̂, x; r

)
and ct←E1

(
k̂, (i , xi); ρ

)
.

4.2 Construction

We construct an obliviously samplable CE CE =
(
K,H,H−1, E1,E2,D, K̂, Ê1

)

based on the hardness of the DDH problem.
Let G be a cyclic group of order p with a generator g. In the construction,

we use a universal hash family H = {HG : G → {0, 1}�}. Below, let HG be a
hash function sampled from H uniformly at random, and it is given to all the
algorithms implicitly.

144 Y. Yoshida et al.

K
(
1λ

)
:

– For all i ∈ [n], b ∈ {0, 1}, sample αi,b
$← Zp and set gi,b := gαi,b .

– Output

k :=
(

g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
and t :=

(
α1,0, . . . , αn,0

α1,1, . . . , αn,1

)
. (1)

H (k, x; r) :

– Sample r
$← RH = Zp and output y = gr

∏
i∈[n] gi,xi .

H−1 (t, (x, r), x′) :
– Parse t as in Eq. 1.
– Output r′ := r +

∑
i∈[n]

(
αi,xi − αi,x′

i

)
.

E1 (k, (i , b); ρ) :
– Parse k as in Eq. 1.
– Sample ρ

$← RE = Zp and compute c := gρ.
– Compute ci,b := (gi,b)

ρ and ci,1−b := ⊥.
– For all j ∈ [n] such that j 	= i , compute cj,0 := (gj,0)

ρ and cj,1 := (gj,1)
ρ

– Output

ct :=
(

c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
. (2)

E2 (k, y; ρ):
– Output e←HG (yρ).

D (k, (x, r), ct) :
– Parse ct as in Eq. 2.
– Output e←HG

(
cr

∏
i∈[n] ci,xi

)
.

K̂
(
1λ

)
:

– For all i ∈ [n] and b ∈ {0, 1}, sample gi,b
$← G.

– Output k̂ :=
(

g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
.

Ê1

(
k̂, (i , b)

)
:

– Set ĉi,1−b := ⊥, and sample ĉ
$← G and ĉi,b

$← G.

– For all j ∈ [n] such that j 	= i, sample ĉj,0
$← G and ĉj,1

$← G.

– Output ĉt :=
(

ĉ,

(
ĉ1,0, . . . , ĉn,0

ĉ1,1, . . . , ĉn,1

))
.

Theorem 1. CE is an obliviously samplable CE scheme assuming the hardness
of the DDH problem.

The trapdoor collision property, correctness, and correctness under oblivi-
ously sampled keys of CE directly follow from the construction of CE. Below, we
first prove the security of CE under the hashed DDH assumption with respect to
H. We then prove the oblivious samplability of CE under the DDH assumption.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 145

Security. Let A be an adversary against the security of CE. We construct a
reduction algorithm A′ which solves the hashed DDH problem using A.

Given (HG, g1, g2, e), A′ first runs (x, r, i) ←A(1λ), and generates k as follows.

For all (j, b) ∈ [n] × {0, 1} such that (j, b) 	= (i, xi), A′ samples αj,b
$← Zp and

sets gj,b := gαj,b , gi,xi := g1/
(
gr

∏
j �=i gj,xj

)
and

k :=
(

g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
.

Next, A′ generates ct as follows. A′ first sets c := g2 and ci,xi :=⊥. Then for
all (j, b) ∈ [n] × {0, 1} such that (j, b) 	= (i, xi), A′ sets cj,b := g2

αj,b . A′ sets the
ciphertext to

ct :=
(

c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

Finally, A′ outputs what A (k, ct, e) does.
k and ct generated by A′ distribute identically to those output by K

(
1λ

)
and E1 (k, (i , 1 − xi); ρ), respectively. A′ perfectly simulates Exp0CE,A to A if e =
HG (dh (g1, g2)) because we have

E2 (k, y; ρ) = HG

⎛
⎝dh

⎛
⎝gr

∏
i∈[n]

gi,xi , c

⎞
⎠

⎞
⎠ = HG (dh (g1, g2)) = e.

On the other hand, if e $← {0, 1}�, A′ perfectly simulates Exp1CE,A to the adver-
sary. Thus, it holds that AdvCE,A (λ) = negl (λ) under the hash DDH assumption
with respect to H.

This completes the security proof of CE.

Oblivious Samplability. Let A be an PPT adversary that attacks oblivious
samplability of CE and makes q queries to its oracle. We prove that the probability
that A outputs 1 in Expos-0CE,A is negligibly close to that in Expos-1CE,A. The detailed
description of these experiments is as follows.

Expos-0CE,A: A is given a hash key k output by K and can access to the oracle
O(i, b) = E1 (k, (i , b); ρ), where i ∈ [n], b ∈ {0, 1}, and ρ ← Zp. Concretely,
O(i, b) behaves as follows.
– Sample ρ uniformly from Zp, and let c := gρ. For all j 	= i , let

cj,0 := (gj,0)
ρ and cj,1 := (gj,1)

ρ, and let ci,b := (gi,b)
ρ and ci,1−b :=⊥.

Return ct :=
(

c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

Expos-1CE,A: A is given a hash key k̂ output by K̂ and can access to the oracle

Ô(i, b) = Ê1

(
k̂, (i , b)

)
, where i ∈ [n] and b ∈ {0, 1}. Concretely, Ô(i, b)

behaves as follows.

146 Y. Yoshida et al.

– Let ĉi,1−b :=⊥, and sample ĉ, ĉi,b , and ĉj,0 and ĉj,1 for all j 	= i uniformly

from G. Return ĉt :=
(

ĉ,

(
ĉ1,0, . . . , ĉn,0

ĉ1,1, . . . , ĉn,1

))
.

We define Exp j for every j ∈ {0, . . . , q} that are intermediate experiments
between Expos-0CE,A and Expos-1CE,A as follows. Below, for two experiments Exp X and
Exp Y , we write Exp X ≈ Exp Y to denote that the probability that A outputs
1 in Exp X is negligibly close to that in Exp Y .

Exp j: This experiment is exactly the same as Expos-0CE,A except how queries made
by A are answered. For the j′-th query (i, b) ∈ [n] × {0, 1} made by A, the
experiment returns E1(k, (i, b); ρ) if j < j′, and Ê1 (k, (i , b)) otherwise.

We see that Exp 0 and Exp q are exactly the same experiment as Expos-0CE,A and
Expos-1CE,A, respectively. Note that A is given k output by K

(
1λ

)
and can access to

the oracle Ê1 (k, (i , b)) in Exp q, but on the other hand, A is given k̂ output by
K̂

(
1λ

)
and can access to the oracle Ê1

(
k̂, (i , b)

)
in Expos-1CE,A. However, this is not

a problem since k output by K
(
1λ

)
and k̂ output by K̂

(
1λ

)
distribute identically

in our construction. For every j ∈ [q], Exp j − 1 ≈ Exp j directly follows from
Lemma 3. Therefore, we have Expos-0CE,A ≈ Expos-1CE,A under the DDH assumption.
From the above arguments, CE satisfies oblivious samplability under the DDH
assumption.

This completes the proof of Theorem 1.

5 Basic Construction of Proposed NCE

In this section, we present our NCE scheme with ciphertext rate poly(log λ)
from an obliviously samplable CE. We call this construction basic construction.
In Sect. 6, improving the basic construction, we describe our full construction of
NCE which achieves ciphertext rate O (log λ).

5.1 Construction

We use three parameters μ, n, and �, all of which are polynomials of λ and
concretely determined later.

Let CE =
(
K,H,H−1,E1,E2,D, K̂, Ê1

)
be an obliviously samplable CE scheme.

We let the input length of H be n and let the output length of E2 (and thus D)
be �. We also let the randomness spaces of H and E1 be RH and RE, respectively.
Below, using CE, we construct an NCE scheme NCE = (Gen,Enc,Dec,Sim1,Sim2)
whose message space is {0, 1}μ.

In the construction, we use a matrix R ∈ {0, 1}μ×n, such that randomly
picked μ out of n column vectors of length μ are linearly independent. A random
matrix satisfies such property except for negligible probability [21].

We first describe (Gen,Enc,Dec) and show the correctness of NCE below. We
also describe a protocol when using NCE in Fig. 3.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 147

redneSrevieceR

z
$← {0, 1}n, k ← K̂ 1λ

)
Input: m ∈ {0, 1}μ

∀i ∈ [n], ρi
$← RE.

cti,zi = E1(k, (i , zi); ρi) x
$← {0, 1}n

cti,1−zi ← Ê1(k, (i , 1 − zi)) r
$← RH.(

k,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
y ← H (k, x; r)

−−−−−−−−−−−−−−−−−−−−−−→ ∀i ∈ [n],
ei,xi = D (k, (x, r), cti,xi)

ei,1−xi
$← {0, 1}�

if ei,zi = E2 (k, y; ρi)
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
w = Rx ⊕ m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−
else xi := 1 − zi
Output: m = w ⊕ Rx

Fig. 3. The description of NCE.

Gen
(
1λ; rGen

)
:

– Sample k← K̂
(
1λ

)
and z

$← {0, 1}n.

– For all i ∈ [n], sample ρi
$← RE.

– For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←
{
E1 (k, (i , b); ρi) (b = zi)
Ê1 (k, (i , b)) (b 	= zi)

.

– Output

pk :=
(
k,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and sk := (z, (ρ1, . . . , ρn)) . (3)

The random coin rGen used in Gen is
(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
.

Enc
(
pk,m; rEnc

)
:

– Sample x
$← {0, 1}n and r

$← RH.
– Compute y←H (k, x; r).
– For all i ∈ [n] and b ∈ {0, 1}, compute

ei,b ←
{
D (k, (x, r), cti,b) (b = xi)
{0, 1}� (b 	= xi)

.

– Compute w ← Rx ⊕ m.

148 Y. Yoshida et al.

– Output

CT :=
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
. (4)

The random coin rEnc used in Enc is
(
x, r, {ei,1−xi}i∈[n]

)
.

Dec (sk, CT):
– Parse sk and CT as the Eqs. 3 and 4, respectively.
– For all i ∈ [n], set

xi :=

{
zi (ei,zi = E2 (k, y; ρi))
1 − zi (otherwise)

.

– Output m := Rx ⊕ w.

By setting � = poly(log λ), NCE is correct. Formally, we have the following
theorem.

Theorem 2. Let � = poly(log λ). If CE is correct under obliviously sampled keys,
then NCE is correct.

Proof. Due to the correctness under obliviously sampled keys of CE, the recovery
of xi fails only when zi 	= xi happens and ei,1−xi

$← {0, 1}� coincides with
E2 (k, y; ρi). Thus, the probability of decryption failure is bounded by

Pr [m 	= Dec (sk, CT)]

≤ Pr
[
∃i ∈ [n], ei,1−xi

$← {0, 1}�; ei,1−xi = E2 (k, y; ρi)
]

≤ n

2�
.

Note that at the last step, we used the union bound. Since n = O (λ), the
probability is negligible by setting � = poly(log λ). Therefore NCE is correct.

Intuition for the Simulators and Security Proof. The description of the simula-
tors (Sim1,Sim2) of NCE is somewhat complex. Thus, we give an overview of the
security proof for NCE before describing them. We think this will help readers
understand the construction of simulators.

In the proof, we start from the real experiment ExpReal
NCE,A, where A is an PPT

adversary attacking the security of NCE. We then change the experiment step by
step so that, in the final experiment, we can generate the ciphertext CT given
to A without the message m chosen by A, which can later be opened to any
message. The simulators (Sim1,Sim2) are defined so that they simulate the final
experiment.

In ExpReal
NCE,A, CT is of the form

CT :=
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, Rx ⊕ m

)
.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 149

Informally,
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

))
encapsulates x ∈ {0, 1}n, and Rx⊕m is a one-

time encryption of m ∈ {0, 1}μ by x. If we can eliminate the information of x
from the encapsulation part, CT becomes statistically independent of m. Thus,
if we can do that, the security proof is almost complete since in that case, CT
can be simulated without m and later be opened to any message. While we
cannot eliminate the entire information of x from the encapsulation part, we can
eliminate the information of μ out of n bits of x from the encapsulation part,
and it is enough to make CT statistically independent of m. Below, we briefly
explain how to do it.

We first change
(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

)
contained in pk so that every cti,b is gener-

ated as cti,b ←E1 (k, (i , b); ρi,b), and set ρi := ρi,zi
, where z ∈ {0, 1}n is a random

string generated in Gen. We can make this change by the oblivious samplability
of CE.

Next, by using the security of CE, we try to change the experiment so that
for every i ∈ [n], ei,0 and ei,1 contained in CT are symmetrically generated in
order to eliminate the information of xi from the encapsulation part. Concretely,
for every i ∈ [n], we try to change ei,1−xi

from a random string to

ei,b ←D (k, (x, r), cti,1−xi
) = E2 (k, y; ρi,1−xi

) .

Unfortunately, we cannot change the distribution of every ei,1−xi
because

some of ρi,1−xi
is given to A as a part of rGen. Concretely, for i ∈ [n] such that

zi 	= xi, ρi = ρi,zi
= ρi,1−xi

is given to A and we cannot change the distribution
of ei,1−xi

. On the other hand, for i ∈ [n] such that zi = xi, we can change the
distribution of ei,1−xi

.
In order to make clear which index i ∈ [n] we can change the distribution

of ei,1−xi
, in the proof, we replace z with z′ = x ⊕ z. Then, we can say that

for i ∈ [n] such that zi = 0, we can change the distribution of ei,1−xi
. Since z

is chosen uniformly at random, due to the Chernoff bound, we can ensure that
the number of such indices is greater than μ with overwhelming probability by
setting n and μ appropriately. Namely, we can eliminate the information of μ
out of n bits of x from CT . At this point, CT becomes statistically independent
of m, and we almost complete the security proof. Note that y itself does not have
any information of x. To make this fact clear, in the proof, we add another step
using the trapdoor collision property of CE after using the security of CE.

To complete the proof formally, we have to ensure that CT can later be
opened to any message efficiently (i.e., in polynomial time). This is possible by
using a matrix R ∈ {0, 1}μ×n, such that randomly picked μ out of n column
vectors of length μ are linearly independent. For more details, see the formal
security proof in Sect. 5.2.

We now show the simulators (Sim1,Sim2).

Sim1 (1λ):
– Sample (k, t) ←K

(
1λ

)
.

150 Y. Yoshida et al.

– For all i ∈ [n] and b ∈ {0, 1}, sample ρi,b
$← RE and compute

cti,b ←E1 (k, (i , b); ρi,b).

– Sample z
$← {0, 1}n, x

$← {0, 1}n 3, and r
$← RH.

– Compute y ← H (k, 0n; r) and sample w
$← {0, 1}μ.

– For all i ∈ [n] and b ∈ {0, 1}, compute

ei,b ←
{
E2 (k, y; ρi,b) (b = xi ∨ zi = 0)
{0, 1}� (b 	= xi ∧ zi = 1)

.

– Output

pk :=
(
k,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
, CT :=

(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
,

and st := (t, z, x, r).
Sim2 (m, st):

– Sample x′ at random from {0, 1}n under the condition that Rx′ = m ⊕ w
and xi = x′

i hold for every i ∈ [n] such that zi = 1.
– Compute r′ ← H−1 (t, (0n, r) , x′) and z′ := z ⊕ x′.
– Output

rGen := k, z′, ρi,z′
i i [n], cti,1 z′

i i [n] and rEnc := x′, r′, ei,1 x′
i i [n] .

5.2 Security Proof

In this section, we prove the security of NCE. Formally, we prove the following
theorem.

Theorem 3. Let μ = O (λ) and n = 8μ. If CE is an obliviously samplable CE,
then NCE is secure.

Proof. Let A is a PPT adversary attacking the security of NCE. We define a
sequence of experiments Exp 0, ...,Exp 6. Below, for two experiments Exp X and
Exp Y , we write Exp X ≈ Exp Y (resp. Exp X ≡ Exp Y) to denote that the
probability that A outputs 1 in Exp X is negligibly close to (resp. the same as)
that in Exp Y .

Exp 0: This experiment is exactly the same as ExpReal
NCE,A. The detailed description

is as follows.
1. The experiment first samples k← K̂

(
1λ

)
and z

$← {0, 1}n. Then, for all

i ∈ [n], it samples ρi
$← RE. Next, for all i ∈ [n] and b ∈ {0, 1}, it computes

cti,b ←
{
E1 (k, (i , b); ρi) (b = zi)
Ê1 (k, (i , b)) (b 	= zi)

.

3 Sim1 and Sim2 do not use xi for i such that zi = 0, but for simplicity, we generate
whole x.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 151

It sets

pk :=
(
k,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and rGen :=

(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
.

Finally, it runs m← A (pk). Note that rGen is used in the next step.

2. The experiment samples x
$← {0, 1}n and r

$← RH. It then computes
y←H (k, x; r). For all i ∈ [n] and b ∈ {0, 1}, it also computes

ei,b ←
{
D (k, (x, r), cti,b) (b = xi)
{0, 1}� (b 	= xi)

.

It sets

CT :=
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, Rx ⊕ m

)
and rEnc =

(
x, r, {ei,1−xi}i∈[n]

)
.

Finally, it outputs out←A (
CT, rGen, rEnc

)
.

Exp 1: This experiment is the same as Exp 0 except the followings. First, pk
is generated together with a trapdoor of the chameleon hash function t as
(k, t) ←K

(
1λ

)
instead of k← K̂

(
1λ

)
. Moreover, all ciphertexts of chameleon

encryption cti,b are computed by E1, instead of Ê1. Specifically, for every

i ∈ [n] and b ∈ {0, 1}, the experiment samples ρi,b
$← RE and compute

cti,b ←E1 (k, (i , b); ρi,b). Also, it sets rGen = (k, z, {ρi,zi}i∈[n], {cti,1−zi
}i∈[n]).

Lemma 5. Assuming the oblivious samplability of CE, Exp 0 ≈ Exp 1 holds.

Proof. Using A, we construct a reduction algorithm A′O∗(·,·) that attacks the
oblivious samplability of CE and makes n oracle queries.

1. On receiving a hash key k∗, A′ generates ρi
$← RE for every i ∈ [n] and sets

the public key as pk =
(
k∗,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
, where

cti,b ←
{
E1 (k∗, (i , b); ρi) (b = zi)
O∗(i , b) (b 	= zi)

.

A′O∗(·,·) also sets rGen =
(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
. Then, A′O∗(·,·) runs

A(pk) and obtains m.
2. A′O∗(·,·) simulates the step 2. of Exp 0 and Exp 1, and outputs what A does.

Note that the step 2. of Exp 0 is exactly the same as that of Exp 1.

When playing Expos-0CE,A and Expos-1CE,A, A′ perfectly simulates Exp 0 and Exp 1
for A, respectively. By the oblivious samplability of CE,

|Pr [out = 1 in Exp 0] − Pr [out = 1 in Exp 1]| = AdvosCE,A′ (λ) = negl (λ)

holds. This proves Exp 0 ≈ Exp 1.

152 Y. Yoshida et al.

Exp 2: This experiment is the same as Exp 1, except that we replace z contained
in rGen by z′ := z ⊕ x.

Because z distributes uniformly at random, so does z′. Therefore, the distri-
bution of the inputs to A does not change between Exp 1 and Exp 2, and thus
Exp 1 ≡ Exp 2 holds.

Exp 3: The essential difference from Exp 2 in this experiment is that when zi =
0, ei,1−xi is computed by E2 (k, y; ρi,1−xi) instead of uniformly sampled from
{0, 1}�.
Additionally, each ei,xi is replaced to E2 (k, y; ρi,xi) from D (k, (x, r), cti,xi),
though this does not change the distribution due to the correctness of CE.
After all, for every i ∈ [n] and b ∈ {0, 1}, the experiment computes

ei,b ←
{
E2 (k, y; ρi,b) (b = xi ∨ zi = 0)
{0, 1}� (b 	= xi ∧ zi = 1)

.

Lemma 6. If CE is correct and secure, Exp 2 ≈ Exp 3 holds.

Proof. This proof is done by hybrid arguments. We define Exp 2j for every
j ∈ {0, . . . , n} that are intermediate experiments between Exp 2 and Exp 3 as
follows.

–Exp 2j: This experiment is exactly the same as Exp 2 except how ei,b is generated
for every i ∈ [n]. For j < i ≤ n, ei,b is generated as in Exp 2. For 1 ≤ i ≤ j, ei,b
is generated as in Exp 3.

Exp 20 is equal to Exp 2, and Exp 2n is equal to Exp 3. In the following, we show
Exp 2j−1 ≈ Exp 2j for all j ∈ [n].

In the case of zj = 1, except negligible probability, ej,xj
distributes identi-

cally in Exp 2j−1 and Exp 2j because E2

(
k, y; ρj,xj

)
= D

(
k, (x, r), ctj,xj

)
holds

with overwhelming probability due to the correctness of CE. Moreover, ej,1−xj
is

generated in the same way in both experiments. Thus Exp 2j−1 ≈ Exp 2j holds.
In the case of zj = 0, we show Exp 2j−1 ≈ Exp 2j by constructing a reduction

algorithm A′ that uses A and attacks the security of CE. The description of A′

is as follows.

1. A′ samples x $← {0, 1}n and r
$← RH, outputs (x, r, j), and receives (k∗, ct∗, e∗).

Then, A′ generates pk as follows. A′ first samples z
$← {0, 1}n and sets z′ =

x ⊕ z. For every (i, b) ∈ [n] × {0, 1} such that (i, b) 	= (j, 1 − xj), A′ samples

ρi,b
$← RE and computes cti,b ← E1 (k, (i , b); ρi,b). A′ sets ctj,1−xj

:= ct∗,

pk :=

(
k∗,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and rGen =

(
k∗, z′, {ρi,z′i}i∈[n], {cti,1−z′i }i∈[n]

)
.

Finally, A′ runs m←A (pk). Note that ρj,z′
i

= ρj,xj⊕zj
= ρj,xj

since we con-
sider the case of zj = 0, and thus A′ generates ρi,z′

i
by itself for every i ∈ [n].

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 153

2. A′ computes y←H(k∗, x; r). For j < i ≤ n, A′ computes ei,b as in Exp 2, and
for 1 ≤ i < j, it does as in Exp 3. For i = j, A′ computes ej,xj

←E2

(
k, y; ρj,xj

)
and sets ej,1−xj

:= e∗. Finally, A′ sets

CT :=
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, Rx ⊕ m

)
and rEnc =

(
x, r, {ei,1−xi}i∈[n]

)
,

and outputs out←A (
CT, rGen, rEnc

)
.

When playing Exp1CE,A′ , A′ simulates Exp 2j−1 for A. Also, when playing
Exp0CE,A′ , A′ simulates Exp 2j for A. By the security of CE,

|Pr [out = 1 in Exp 2j−1] − Pr [out = 1 in Exp 2j]| = AdvCE,A′ (λ) = negl (λ)

holds. From the above, we have

|Pr [out = 1 in Exp 2] − Pr [out = 1 in Exp 3]|
≤

∑
j∈[n]

|Pr[out = 1 in Exp 2j−1] − Pr[out = 1 in Exp 2j]| = negl (λ) .

We can conclude Exp 2 ≈ Exp 3.

Exp 4: This experiment is the same as Exp 3 except how y and r are computed. In
this experiment, y is computed as y←H (k, 0n; r). Moreover, the randomness
r contained in rEnc is replaced with r′ ← H−1 (t, (0n, r) , x).

Due to the trapdoor collision property of CE, the view of A does not change
between Exp 3 and Exp 4. Thus, Exp 3 ≡ Exp 4 holds.

Exp 5: This experiment is the same as Exp 4, except that Rx is replaced with w
$←

{0, 1}μ. Moreover, the experiment computes r′ as r′ ← H−1 (t, (0n, r) , x′), and
replaces x in rEnc with x′, where x′ is a uniformly random string sampled from
{0, 1}n under the following two conditions:
– Rx′ = w holds.
– x′

i = xi holds for every i ∈ [n] such that zi = 1.

Before showing Exp 4 ≈ Exp 5, we review a basic lemma on inversion sampling.

Lemma 7. For a function f : X → Y, we define two distributions D1

and D2 as D1 =
{

(x, y) | x
$← X , y = f(x)

}
and D2 =

{
(x′, y) | x

$← X ,
}

y = f(x), x′ $← f−1(y), where f−1(y) denotes the set of pre-images of y. Then,
D1 and D2 are identical.

Furthermore, we define a distribution D3 as D3 =
{

(x′, y) | y
$← Y,

}

x′ $← f−1(y). If f has a property that f(x) distributes uniformly at random
over Y if the input x distributes uniformly at random over X , D1 and D3 are
identical.

154 Y. Yoshida et al.

Lemma 8. Exp 4 ≈ Exp 5 holds.

Proof. According to the Chernoff bound on z,

Pr
[
Ham (z) ≥ (1 + δ)

n

2

]
≤ e− δ2

2+δ
n
2

holds for any δ > 0. By taking δ = 1 − 2μ
n , we have

Pr [Ham (z) ≥ n − μ] ≤ 2−λ = negl (λ) .

Below, we show that (x, Rx) in Exp 4 has the same distribution as (x′, w) in Exp 5
in the case of Ham (z) < n − μ, and complete the proof of this lemma.

We first introduce some notations. For an integer ordered set I ⊂ [n], we
define RI as the restriction of R to I, that is RI = (r1| · · · |r|I|), where R =
(r1| · · · |rn). We define xI in a similar way.

Fix any z which satisfies Ham (z) < n − μ and set I = {ik ∈ [n] | zik
= 0}.

Because |I| ≥ μ, RI is full rank due to the choice of R. Hence, RI ·u is uniformly
random over {0, 1}μ if u is uniformly random over {0, 1}|I|.

Then, from Lemma 7 when setting X := {0, 1}|I|,Y := {0, 1}μ, and f(u) =

RI · u, the distribution of (xI , RI · xI) and (u,w) are the same, where x
$←

{0, 1}n, u
$← f−1(w) =

{
u′ ∈ {0, 1}|I| | RI · u′ = w

}
, and w

$← {0, 1}μ. More-
over, we have Rx = RI · xI ⊕ R[n]\I · x[n]\I . Since x′ sampled in Exp 5 is a
bit string generated by replacing ik-th bit of x with k-th bit of u for every
k ∈ [|I|], we see that (x, Rx) has the same distribution as (x′, w ⊕R[n]\I · x[n]\I).
(x′, w⊕R[n]\I ·x[n]\I) also has the same distribution as (x′, w) because w is sam-
pled uniformly at random, and thus (x, Rx) has the same distribution as (x′, w).
This completes the proof of Lemma 8.

Note that we can sample the above u in polynomial time, by computing
a particular solution v ∈ {0, 1}|I| of RI · v = w, and add a vector sampled
uniformly at random from the kernel of RI .

Exp 6: This experiment is the same as Exp 6 except that w is replaced with
w ⊕ m. By this change, CT is of the form

CT :=
(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
.

Moreover, x′ contained in rEnc is sampled so that Rx′ = m ⊕ w holds.

Since w is uniformly at random, so is w ⊕ m. Thus, Exp 5 ≡ Exp 6 holds.

We see that Exp 6 is the same as ExpIdealNCE,A. Put all the above arguments
together, we have

AdvNCE,A (λ) ≤ |Pr [out = 1 in Exp 0] − Pr [out = 1 in Exp 6]| = negl (λ) .

Hence NCE is secure. This completes the proof of Theorem 3.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 155

5.3 Ciphertext Rate

Finally, we evaluate the ciphertext rate of NCE. From Theorem 2, in order to make
NCE correct, it is sufficient to set � = poly(log λ). Moreover, from Theorem3, in
order to make NCE secure, it is sufficient to set μ = O (λ) and n = 8μ. In this
setting, the ciphertext length of NCE is |CT | = λ+2n�+μ. Note that we assume
a group element of G is described as a λ-bit string. Then, the ciphertext rate of
NCE is evaluated as

|CT |
μ

=
λ + 2n� + μ

μ
= O (�) = poly(log λ).

6 Full Construction of Proposed NCE

In the basic construction, we construct an NCE scheme with correctness γ =
1 − negl (λ), by setting � = poly(log λ) which is the output length of E2 (and
thus D) of the underlying CE. Of course, if we set � to O (log λ), we can make the
ciphertext rate of the resulting NCE scheme O (log λ). However, this modification
also affects the correctness of the resulting NCE scheme. γ is no longer = 1 −
negl (λ), and is at most 1 − 1/poly(λ).

Fortunately, we can amplify the correctness of the scheme to 1−negl (λ) from
enough large constant without changing the ciphertext rate. For that purpose,
we use a constant-rate error-correcting code which can correct errors up to some
constant fraction. Concretely, we modify the scheme as follows. In the encryption,
we first encode the plaintext by the error-correcting code and parse it into N
blocks of length μ. Then, we encrypt each block by the γ-correct NCE scheme
for a constant γ using different public keys. The decryption is done naturally,
i.e., decrypt each ciphertext, concatenate them, and decode it. The ciphertext
rate is still O (log λ) because the rate of error-correcting code is constant.

This block-wise encryption technique not only amplifies the correctness but
also reduces the public key size. In the basic construction, the size of a public
key depends on the length of a message quadratically. However, by applying the
block-wise encryption technique, it becomes linear in the length of a message.

The description of the full construction is as follows. Let ECC =
(Encode,Decode) be a constant-rate error-correcting code which can correct
errors up to ε-fraction of the codeword where ε > 0 is some constant.

Specifically, given a message m ∈ {0, 1}μM , Encode outputs a codeword−−→
CW ∈ {0, 1}μN . If Ham

(−−→
CW − −−−→

CW ′
)

≤ εμN , Decode
(−−−→
CW ′

)
= m. The rate

of ECC is some constant N/M .
Let NCE = (Gen,Enc,Dec,Sim1,Sim2) be an NCE scheme whose message

space is {0, 1}μ, ciphertext rate is O (log λ), and correctness is γ = 1 − ε
2 . We

construct
−−→
NCE = (

−−→
Gen,

−−→
Enc,

−−→
Dec,

−−→
Sim1,

−−→
Sim2) as follows. The message space of

−−→
NCE

is {0, 1}μM .

156 Y. Yoshida et al.

−−→
Gen

(
1λ;

−−→
rGen

)
:

– Parse the given random coin to
−−→
rGen =

(
rGen1 , . . . , rGenN

)
.

– For all i ∈ [N], generate key pairs (pki, ski) ←Gen
(
1λ; rGeni

)
.

– Output
−→
pk := (pk1, . . . , pkN) and

−→
sk := (sk1, . . . , skN).−−→

Enc
(−→
pk,m;

−−→
rEnc

)
:

– Parse
−−→
rEnc =

(
rEnc1 , . . . , rEncN

)
.

– Compute
−−→
CW ←Encode (m) and parse

−−→
CW = (CW1, . . . , CWN).

– For all i ∈ [N], compute CTi ←Enc
(
pki, CWi; rEnci

)
.

– Output
−→
CT := (CT1, . . . , CTN).−−→

Dec
(−→
sk,

−→
CT

)
:

– For all i ∈ [N], Compute CW ′
i ←Dec (ski, CTi).

– Concatenate them as
−−−→
CW ′ := (CW ′

1, . . . , CW ′
N).

– Output m←Decode
(−−−→
CW ′

)
.

−−→
Sim1

(
1λ

)
:

– For all i ∈ [N], compute (pki, CTi, sti) ← Sim1

(
1λ

)
,

– Output
−→
pk := (pk1, . . . , pkN),

−→
CT := (CT1, . . . , CTN), and

−→
st :=

(st1, . . . , stN).−−→
Sim2

(
m,

−→
st

)
:

– Compute
−−→
CW ←Encode (m) and parse (CW1, . . . , CWN) ← −−→

CW .
– For all i ∈ [N], compute

(
rGeni , rEnci

) ← Sim2 (CWi, sti).

– Output
−−→
rGen :=

(
rGen1 , . . . , rGenN

)
and

−−→
rEnc :=

(
rEnc1 , . . . , rEncN

)
.

Correctness. We can prove the correctness of
−−→
NCE by the Chernoff bound. For-

mally, we have the following theorem. See the full version for the proof.

Theorem 4. Let ECC be an constant-rate error-correcting code which can correct
errors up to ε-fraction of a codeword. Let NCE be a γ-correct NCE scheme, where
γ = 1 − ε

2 . If the number of parsed codeword N ≥ poly(log λ), the above
−−→
NCE is

correct.

Security. For the security of
−−→
NCE, we have the following theorem. Since we can

prove it via a straightforward hybrid argument, we omit it.

Theorem 5. If NCE is an secure NCE scheme, then
−−→
NCE is also secure.

Ciphertext Rate. Since rate of the error-correcting code N/M is constant, the
ciphertext rate of

−−→
NCE is N |CT |

μM = O (�) = O (log λ).

Acknowledgements. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, JP19J22363.

NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 157

References

1. Beaver, D.: Plug and play encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052228

2. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

3. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

4. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648 (1996)

5. Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing encryp-
tion. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 212–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 8

6. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 17

8. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27

9. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

10. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

11. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

12. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 1

13. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 2

https://doi.org/10.1007/BFb0052228
https://doi.org/10.1007/BFb0052228
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-70700-6_8
https://doi.org/10.1007/978-3-319-70700-6_8
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-642-10366-7_17
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2

158 Y. Yoshida et al.

14. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman
assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 13

15. Garg, S., Ostrovsky, R., Srinivasan, A.: Adaptive garbled RAM from laconic oblivi-
ous transfer. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS,
vol. 10993, pp. 515–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96878-0 18

16. Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online com-
plexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8 18

17. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

18. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

19. Hemenway, B., Ostrovsky, R., Richelson, S., Rosen, A.: Adaptive security with
quasi-optimal rate. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 525–541. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 22

20. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from φ-
hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
591–608. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 24

21. Tao, T., Vu, V.: On the singularity probability of random Bernoulli matrices. J.
Am. Math. Soc. 20(3), 603–628 (2007)

https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-662-49096-9_22
https://doi.org/10.1007/978-3-662-49096-9_22
https://doi.org/10.1007/978-3-662-46494-6_24
https://doi.org/10.1007/978-3-662-46494-6_24

Structure-Preserving and
Re-randomizable RCCA-Secure Public
Key Encryption and Its Applications

Antonio Faonio1(B), Dario Fiore1, Javier Herranz2, and Carla Ràfols3

1 IMDEA Software Institute, Madrid, Spain
antonio.faonio@imdea.org

2 Cybercat and Universitat Politècnica de Catalunya, Barcelona, Spain
3 Cybercat and Universitat Pompeu Fabra, Barcelona, Spain

Abstract. Re-randomizable RCCA-secure public key encryption (Rand-
RCCA PKE) schemes reconcile the property of re-randomizability of
the ciphertexts with the need of security against chosen-ciphertexts
attacks. In this paper we give a new construction of a Rand-RCCA PKE
scheme that is perfectly re-randomizable. Our construction is structure-
preserving, can be instantiated over Type-3 pairing groups, and achieves
better computation and communication efficiency than the state of the
art perfectly re-randomizable schemes (e.g., Prabhakaran and Rosulek,
CRYPTO’07). Next, we revive the Rand-RCCA notion showing new
applications where our Rand-RCCA PKE scheme plays a fundamen-
tal part: (1) We show how to turn our scheme into a publicly-verifiable
Rand-RCCA scheme; (2) We construct a malleable NIZK with a (vari-
ant of) simulation soundness that allows for re-randomizability; (3) We
propose a new UC-secure Verifiable Mix-Net protocol that is secure in
the common reference string model. Thanks to the structure-preserving
property, all these applications are efficient. Notably, our Mix-Net proto-
col is the most efficient universally verifiable Mix-Net (without random
oracle) where the CRS is an uniformly random string of size indepen-
dent of the number of senders. The property is of the essence when such
protocols are used in large scale.

1 Introduction

Security against chosen ciphertext attacks (CCA) is considered by many the gold
standard for public key encryption (PKE). Since the seminal paper of Micali,

First and second authors are supported by the Spanish Government through the
projects Datamantium (ref. RTC-2016-4930-7), SCUM (RTI2018-102043-B-I00), and
ERC2018-092822, and by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339).
The work of the third author is partially supported by Spanish Government through
project MTM2016-77213-R.
The fourth author was supported by a Marie Curie “UPF Fellows” Postdoctoral Grant
and by Project RTI2018-102112-B-I00 (AEI/FEDER,UE).

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 159–190, 2019.
https://doi.org/10.1007/978-3-030-34618-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_6

160 A. Faonio et al.

Rackoff and Sloan [30], the research community has spent a great effort on
this fundamental topic by both interconnecting different security notions and
producing a large body of efficient public encryption schemes.

Challenging the overwhelming agreement that CCA security is the right
notion of security for PKE, a paper of Canetti, Krawczyk and Nielsen [6] showed
that for many use cases a weaker security notion than CCA security is already
sufficient. More in details, the paper introduced the notion of Replayable CCA
(RCCA) and showed that the notion is sufficient to realize a variant of the
public key encryption functionality in the universal composability (UC) model
of Canetti [3] where only replay attacks, namely attacks in which the data could
be maliciously repeated, can be mounted by the adversary.

In a nutshell, the main fundamental difference between RCCA security and
CCA security is that, in a RCCA secure scheme (which is not CCA secure)
an adversary is able to maul the challenge ciphertext to obtain new decrypt-
able ciphertexts, the only limitation is that the adversary still cannot break
the integrity of the underlying plaintext. To explain this with an example, in a
RCCA secure PKE scheme an adversary might append an extra 0 at the end
of the ciphertext and still be able to obtain a valid decryption of the mauled
ciphertext (to the same plaintext), on the other hand, for a CCA secure PKE,
this attack should by definition result into an invalid decryption.

Later, Groth [21] showed that the capability to maul a ciphertext to obtain a
new ciphertext which decrypts to the same plaintext should be seen as a feature
and not a weakness. In his paper, he introduced the notion of re-randomizable
RCCA (Rand-RCCA) PKE, namely a RCCA-secure PKE which comes with an
algorithm that re-randomizes the ciphertexts in a way that cannot be linked.

PKE schemes that are both re-randomizable and RCCA-secure have been
shown to have several applications, such as: anonymous and secure message
transmissions (see Prabhakaran and Rosulek [34]), Mix-Nets (see Faonio and
Fiore [14], and Pereira and Rivest [32]), Controlled Functional Encryption (see
Naveed et al. [31]), and one-round message-transmission protocols with reverse
firewalls (see Dodis, Mironov, and Stephens-Davidowitz [11]).

When it comes to constructing these objects, if we look at the literature it
is striking to observe that there are extremely efficient constructions of schemes
that are only RCCA-secure but not re-randomizable (e.g., Cramer-Shoup [8] or
Phan-Pointcheval [33]), or are re-randomizable but only CPA-secure (e.g., ElGa-
mal [12]). In contrast, when the two properties are considered in conjunction, a
considerable gap in the efficiency of the schemes seems to arise. More in concrete,
the most efficient Rand-RCCA scheme in the standard model of [34] has cipher-
texts of 20 groups elements,1 while, for example, the celebrated Cramer-Shoup
PKE [8] has ciphertexts of only 4 groups elements.

In the following paragraphs we state the main contributions of our work.

1 A recent work of Faonio and Fiore [14] takes this down to 11 group elements at
the price of achieving a strictly weaker notion of re-randomizability, in the random
oracle model.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 161

Rand-RCCAPKE. Our first contribution is a new structure-preserving2 Rand-
RCCA PKE scheme which significantly narrows the efficiency gap described
above. The scheme is secure under the Matrix Diffie-Hellman Assumption
(MDDH) in bilinear groups, and for its strongest instantiation, namely, under
the Symmetric External Diffie-Hellman Assumption (SXDH), has ciphertexts of
6 groups elements (3 elements in G1, 2 elements in G2 and 1 element in GT).

From a practical perspective, the advantage of a re-randomizable PKE over
a standard (non-re-randomizable) PKE strikes when the re-randomizable PKE
scheme is part of a larger protocol. To this end, we notice that the structure-
preserving property is indeed vital as it allows for modularity and easy integra-
tion, which are basic principles for protocol design. However, we can substanti-
ate further our assertion by giving three applications where structure-preserving
Rand-RCCA PKE schemes are essential.

Publicly-Verifiable Rand-RCCA PKE. Our first application is a publicly-
verifiable (pv) Rand-RCCA PKE scheme. A PKE scheme is publicly verifiable
when the validity of a ciphertext can be checked without the secret key. This
property is for example convenient in the setting of threshold decryption with
CCA security [4,36], as the task, roughly speaking, reduces to first publicly check
the validity of the ciphertext and then CPA-threshold-decrypt it. Very roughly
speaking, we can obtain our pv-Rand-RCCA PKE scheme by appending a Groth-
Sahai (GS) NIZK proof [23] of the validity of the ciphertext. We notice that the
ciphertext of our Rand-PKE scheme contains3 an element in GT . The verifica-
tion equation does not admit a GS NIZK proof, but only NIWI. We overcome
this problem by constructing an additional commitment type for elements in GT .
This gives us a new general technique that extends the class of pairing product
equations which admit GS NIZK proofs, enlarging therefore the notion of struc-
ture preserving. The latter is a contribution of independent interest which might
have applications in the field of structure-preserving cryptography in general.

Controlled-Malleable NIZKs. Our second application is a general frame-
work for true-simulation extractable (tSE) and re-randomizable (more generally,
controlled-malleable) NIZK systems. The notion of tSE-NIZK was introduced
by Dodis et al. [10] and found a long series of applications (see for example
[9,16,18]). Briefly, the notion assures soundness of the NIZK proofs even when
the adversary gets to see simulated NIZK proofs for true statements of its choice.
In comparison with simulation-extractable (SE) NIZKs (see [22,35]), tSE-NIZKs
are considerably more efficient and keep many of the benefits which motivated
the introduction of SE-NIZKs4. However, if one would like a controlled malleable
2 A scheme is structure preserving if all its public materials, such as messages, public

keys, etc. are group elements and the correctness can be verified via pairing-product
equations.

3 In the lingo of structure-preserving cryptography, the scheme is not strongly struc-
ture preserving.

4 As an example, tSE-NIZKs are sufficient for the CCA2-secure Naor-Yung PKE of
Sahai [35], simulation-sound (SS) NIZKs were introduced in the same paper with
exactly this application in mind.

162 A. Faonio et al.

tSE-NIZK, the only available scheme is an SE-NIZK obtained through the gen-
eral result of Chase et al. [7], which is not very efficient. As main result, we
scale down the framework of Chase et al. to true-simulation extractability, and
by using our new Rand-RCCA PKE we construct a new re-randomizable tSE-
NIZK scheme. Compared to [7], our scheme can handle a more restricted class
of relations and transformations,5 but our proofs are significantly more efficient.
For example, for simple re-randomizable NIZK proofs our tSE NIZKs have an
overhead of the order of tens more pairing operations for verification, opposed
to an overhead of the order of hundreds more pairing operations for verification
of the simulation-extractable with controlled malleability NIZK systems of [7].
The overhead is computed as the difference with the adaptive sound Groth-Sahai
NIZK proof for the same statement.

Mix-Net. Our third application is a universally verifiable and UC-secure Mix-
Net based on our pv-Rand-RCCA PKE scheme. Recently, Faonio and Fiore [14]
gave a new paradigm to obtain UC-secure verifiable Mix-Net protocols based on
Rand-RCCA PKE scheme. Their construction makes use of a non-publicly ver-
ifiable Rand-RCCA PKE scheme and obtains a weaker notion of security called
optimistic (àla Golle et al. [20]). More in details, the mixing paradigm of [14]
is conceptually simple: a mixer receives a list of Rand-RCCA ciphertexts and
outputs a randomly permuted list of re-randomized ciphertexts together with
a simple NIZK proof that they informally dub “loose shuffling”. Such “loose
shuffling” proof guarantees that if all the ciphertexts correctly decrypt then the
output list is a shuffle of the input one. Hence, in their scheme, cheating can
be caught at decryption time, that is after the last mixer returned its list. The
problem is that, cheating might be caught too late, thus, their scheme is only
optimistic secure. Namely, the scheme is an universal verifiable mix-net opti-
mized to quickly produce a correct output when all the mixers run the protocol
correctly. If instead one or more mixers cheat, then no privacy is guaranteed but
one can “back up” to a different, slow, mix-net execution.

In this paper, we show that by leveraging the public verifiability of the Rand-
RCCA PKE scheme we can obtain a simple design for Mix-Net protocols. In
fact, since it is possible to publicly check that a mixer did not invalidate any
ciphertext, the proof of loose shuffling turns out to be, indeed, a proof of shuffle.

Interestingly, our use of publicly verifiable ciphertexts come with additional
benefits. As mentioned in the paragraph above, our pv-RCCA-PKE scheme can
support threshold decryption very easily, and more efficiently than Faonio and
Fiore [14]. Finally, our protocol can be fully instantiated in the standard model,
whereas the one in [14] rely on non-programmable random oracles.

5 Yet, our framework is powerful enough for the application of controlled-malleable
CCA security of Chase et al. Interestingly, we can obtain another pv-Rand-RCCA
PKE through their paradigm, although less efficient than our construction. We
believe that analyzing what other kinds of CM-CCA notions are supported by our
scheme is interesting future work.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 163

Most notably, our protocol is the first efficient universally verifiable Mix-Net
in the common random string model, namely where the common reference string
is a (small) uniformly random string. In fact, a popular approach to achieve a
universally verifiable Mix-Net is to use a NIZK proof of shuffle. However, the
most efficient protocols for this task either rely on random oracles to become non-
interactive (such as the protocol of Bayer and Groth [1] or Verificatum [39]), or
need a structured common reference string (as is the case for the most efficient
state-of-the-art NIZK proof of shuffle of Fauzi et al. [17]). Furthermore, the
common reference string of [17] has size that depends on the number of senders
(which in practical scenarios can be huge), whereas our common reference string
is made by a number of group elements that is linear in the number of mixers.

Our Mix-Net protocol is proved secure based only on general properties of
the pv-Rand-RCCA PKE scheme, and can be instantiated with other schemes
in literature (for example with the schemes in [7,29]).

Controlled-Malleable Smooth Projective Hash Functions. At the core
of our Rand-RCCA PKE scheme is a new technique that can be seen as a re-
randomizable version of smooth projective hash functions (SPHFs) [8]. Given
the pervasive use of SPHFs in cryptographic constructions, we believe that our
technique may find more applications in the realm of re-randomizable crypto-
graphic primitives. For this reason, we formalize our technique as a primitive
called controlled-malleable SPHF. Briefly, we define it as an SPHF with tags
that allows to re-randomize both instances and tags (inside appropriate spaces),
and for which soundness (i.e., smoothness) holds even if the adversary can see a
hash value for an invalid instance. We elaborate on this notion in the full version
of this paper [15].

Comparison with Related Work. If we consider the state of the art of Rand-
RCCA PKE schemes, the most relevant works are the work of Groth, which
introduced the notion of Rand-RCCA PKE scheme [21], the aforementioned
scheme of Prabhakaran and Rosulek [34], the Rand-RCCA PKE scheme of Chase
et al. derived from their malleable NIZK systems [7], and two recent works of
Libert, Peters and Qian [29] and of Faonio and Fiore [14]. In Table 1 we offer a
comparison, in terms of security and functionality properties, of our schemes of
Sect. 3 (PKE1) and Sect. 4 (PKE2) against previous schemes.

From a technical point of view, the scheme of [34] and our scheme PKE1,
although both based on the Cramer-Shoup paradigm, have little in common.
The main differences are: (1) a different design to handle the tags (see next
section); (2) a different approach for the re-randomization of the ciphertext.
In particular, the Rand-PKE scheme of [34] uses the double-strand technique
of Golle et al. [19] to re-randomize the ciphertext, while our re-randomization
technique, as far as we know, is novel. Furthermore, the scheme of [34] works
in two special groups, Ĝ and G̃ that are the subgroups of quadratic residues
of Z∗

2q+1 and Z
∗
4q+3 respectively, for a prime q such that (q, 2q + 1, 4q + 3) is a

sequence of primes (a Cunningham Chain of the first kind of length 3).
In Table 2 we compare the efficiency of our new schemes (in the most efficient

instantiation with k = 1) with the most efficient ones among the Rand-RCCA

164 A. Faonio et al.

Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE
schemes. For group setting, – means any group where the assumption holds; Cunn.
refers to a pair of groups whose prime orders form a Cunningham chain (see [34]);
Bil. stands for bilinear groups. For model, GGM refers to generic group and NPRO
refers to non-programmable random oracle. ∗ the structure-preserving property of the
two schemes in this paper is not strict, since ciphertexts contain some elements in GT .

PKE Group Assumption Model Struc. Pub. Re-Rand
Setting Pres. Ver.

[21] Groth – DDH GGM perfect

[34] PR07 Cunn. DDH std perfect

[7,29] CKLM12, LPQ17 Bilin. SXDH std � � perfect

[14] FF18 – DDH NPRO weak

PKE1 Bilin. Dk-MDDH std �∗ perfect

PKE2 Bilin. Dk-MDDH std �∗ � perfect

schemes: the ones in [34] and [14] for the case of secret verifiability, and the
scheme in [29] for publicly verifiable Rand-RCCA encryption.

Among the schemes with private verifiability, the most efficient one is that
in [14], but its re-randomizability property is weak and the security is in the
random oracle model. Among the other two, our scheme PKE1 is more efficient
than that in [34], because the special groups G̃ required in [34] are large, at
least 3072 bits for a security level of 128 bits. Turning to comparing with pub-
licly verifiable schemes, the computational costs for the scheme in [29], in the
table, are roughly approximate, because not all the exact computations in the
algorithms of the scheme (involving Groth-Sahai proofs) are explicitly described.
The size of the ciphertexts reported in [29] is 34|G1| + 18|G2|. After personal
communication with the authors, we realized that this number is not correct;
the correct one is 42|G1|+20|G2|. Our scheme PKE2 is the most efficient Rand-
RCCA scheme with public verifiability up to date: ciphertext size is comparable
to that in [29] whereas the computational costs are significantly lower. Even
for ciphertext size, ours is comparable to [29] only due to the size of the 4 GT

elements in our scheme. Besides that, our ciphertexts have many fewer group
elements, which is conceptually simpler and, we believe, leaves hope for further
improvements. For the two publicly verifiable schemes, the number of pairings
required for decryption can be decreased, at the cost of increasing the number
of exponentiations, by applying the batching techniques in [24]. The resulting
number would be 22P for PKE2 and something between 40P and 50 P for the
scheme in [29].

Technical Overview. We recall that the main technical contributions of this
paper are: (1) a new technique for Rand-RCCA PKE scheme (which we also
formalize in terms of SPHFs), (2) a new general technique that extends signif-
icantly the class of pairing product equations which admits GS NIZK proofs,
and (3) a new technique for standard-model UC-secure verifiable Mix-Nets. For
space reason, in this technical overview we concentrate on (1).

Structure-Preserving and Re-randomizable RCCA-Secure PKE 165

Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes;
only the last two rows include schemes with public verifiability. For our schemes we
consider k = 1, so based on SXDH assumption. We use G̃ for the special groups used in
[34], G for standard DDH groups as considered in [14], and then groups in asymmetric
bilinear pairings e : G1×G2 → GT as considered both in [29] and in this work. Similarly,
we denote as E, Ẽ, E1, E2, ET the cost of an exponentiation in groups G, G̃,G1,G2,GT ,
respectively. Finally, P denotes the cost of computing a bilinear pairing.

PKE Enc ≈ Rand Dec |C| |pk|
PR07 22 Ẽ 32 Ẽ 20G̃ 11G̃

FF18 16 E 18 E 11G 11G

PKE1 4E1+5E2+2ET +5P 8E1+4E2+4P 3G1+2G2+GT 7G1+7G2+2GT

LPQ17 79E1+64E2 1E1+142P 42G1+20G2 11G1+16G2

PKE2 35E1+31E2+6ET +5P 2E1+46P 12G1+11G2+4GT 8G1+8G2

A common technique of many CCA-secure PKE schemes in the standard
model consists in explicitly labeling each ciphertext produced by the encryp-
tion algorithm with a unique tag. Some notable examples of CCA-secure PKE
schemes that use tags are the Cramer-Shoup PKE [8], the tag-based PKE of
Kiltz [27], and IBE-to-CCA transform of Canetti, Halevi and Katz [5].

Unfortunately, unique tags are not a viable option when designing a re-
randomizable PKE scheme. In fact, a ciphertext and its re-randomization would
share the same tag, and so they could be trivially linked by an attacker. The main
consequence is that many well-known techniques in CCA security cannot be eas-
ily exported in the context of Rand-RCCA security. A remarkable exception is
the work on Rand-RCCA PKE of Prabhakaran and Rosulek [34]. In this work,
the authors managed to reconcile tags and re-randomizability with an ingenious
technique: the tag for a new ciphertext is computed as a re-randomizable encod-
ing of the plaintext itself, the tag is then encrypted and attached to the rest of
the ciphertext. The decryptor first decrypts the tag and then uses it to check the
validity of the payload ciphertext. More in details, the PKE scheme follows the
Cramer-Shoup paradigm, therefore their tag (more accurately, a part of their
tag) is a Zq element (for a properly chosen q). Unfortunately, the restriction on
the type of the tags implies that the scheme can be instantiated only in special
groups G of prime order q where the DDH assumption simultaneously holds for
both Zq and G. Conclusively, the main drawback is a quite large ciphertext size.

We use bilinear-pairing cryptography to overcome the problem of the tags
in Zq. Our starting point is the structure-preserving CCA-PKE of Camenisch et
al. [2]. Briefly, their PKE scheme is based on the Cramer-Shoup paradigm, with
the main twist of performing the validity check in GT . This trick allows to move
the tags from Zq to the source group. We give a brief description of the ideas
underlying our PKE scheme. We use the implicit notation of Escala et al. [13],
that uses additive notation for groups and where elements in Gi, are denoted as
[a]i := aPi where Pi is a generator for Gi. The PKE scheme of [2] uses Type-1
pairing groups (where G1 = G2) which are less efficient and secure than Type-3

166 A. Faonio et al.

pairing groups (where no efficient isomorphism from G2 to G1 is known to exist).
As a first step, we convert their scheme to Type-3 pairing groups; however, for
simplicity, in this overview we present the Type-1 version.

Following the blue print of Cramer and Shoup, a ciphertext of the PKE
scheme of Camenisch et al. consists of three elements: a vector [c]1 ∈ G

3
1 which

we call the instance (for the DLIN problem described by a matrix [D]1 ∈ G
3×2
1),

an element [p]1 which we call the payload, and an element [π]T which we call the
hash. Together, the instance and the payload form the tag, that we denote as
[x]1 = [(c�, p)�]1. The hash is, briefly speaking, a tag-based designated-verifier
zero-knowledge proof of the randomness of [c]1 (namely, that [c]1 = [D]1 · r).
The main difference is that in Cramer-Shoup PKE the tag is computed as a
collision-resistant hash of [x]1, while in our scheme the is the value [x]1 itself.
More in details, the public key material consists of [D∗]1 = [(D�, (a�D)�)�]1,
[f�D]T , and [F�D]1, where a, f ∈ Z

3
q and F ∈ Z

3×4
q are uniformly random, and

the encryption algorithm on message [m]1 computes the tag as [x]1 = [D∗]1 ·
r + [(0�,m)�]1, and the proof of consistency as ([f�D]T + [(F�D)� · x]T) · r,
where the addend [(F�D)� · x]T can be efficiently computed using the pairing.
Using the terminology of SPHFs, the hash of the instance [c]1 and tag [x]1 is
produced using the projective hash algorithm which takes as input the witness r
for [c]1 ∈ span([D]), the tag [x]1 and the projection key ([f�D]T , [F�D]1). The
decryption procedure can re-compute the hash as e(f�[c]1, [1]1)+e([x]1,F�[c]1),
without the knowledge of the witness r but only using the hash key (f ,F).

To validly re-randomize a ciphertext, the goal would be to compute, using
only public information, a new ciphertext where the tag is of the form [x′] =
[D∗](r + r̂) + [(0�,m)�]1 (and therefore the instance is of the form [c′] =
[D](r+ r̂)) and the hash is of the form ([f�D]T +[(F�D)�x′]T)(r+ r̂). However,
computing such a re-randomization of the hash is actually infeasible since the
scheme is CCA secure.

To overcome this problem, our idea is to reveal enough information about
the secret key so as to allow re-randomizability while keeping the scheme secure.
To this end, our first observation is to rewrite the equation defining the re-
randomized hash considering what we know about x′. Specifically, we use the
fact that (F�D)�x′ = (F�D)�(x + D∗r̂) = (F�D)�x + (F�D)� D∗r̂. So the
re-randomized hash can be decomposed in three addends as:

[f�D + (F�D)�x]T (r + r̂) + [(F�D)�(D∗r̂)]T r̂ + [(F�D)�(D∗r̂)]T r

Notice that the first and the second addends can be easily computed knowing
the randomizer r̂, the hash [π]T and thanks to the pairing function. So only the
third addend is missing.

The second key observation is that we can include the value [FD∗]1 in the
public key. It is easy to check that, due to the bilinearity of the pairing function,
we can compute the missing part as a function of tag x, the randomizer r̂ and
this extra piece of information. The third addend can be rewritten as:

[(F�D)�(D∗r̂)]T r = [D�FD∗r̂]T r = [(r�D�)(FD∗)r̂]T = [x�(FD∗r̂)]T

Structure-Preserving and Re-randomizable RCCA-Secure PKE 167

(The last equation can be computed using the pairing e ([x]1, [FD∗]r̂)). However,
at first look, it is not clear why the scheme should still be secure. To understand
it, let us strip away all the computational pieces of the scheme, keeping only the
information-theoretic core. In a nutshell, the (one-time simulation) soundness
property of the hash boils down to the fact that the function f(x) = f + F · x is
pair-wise independent, meaning that, with knowledge of f(x) one cannot predict
f(x′) for x �= x′ better than guessing it. However, once we publish the value FD∗

we lose this property. Indeed, given f(x) and FD∗, now we can easily compute
the function f over all the points in the affine space {x′ | x′ = x+D∗r, r ∈ Z

2
q}.

On one hand, this is good as it allows us to re-randomize. On the other hand,
we should prove that one cannot do more than this honest manipulation. Our
main technical lemma shows that for any x′ outside this affine space we still
have pair-wise independence, i.e., the value f(x′) is unpredictable.

2 Preliminaries and Definitions

A function is negligible in λ if it vanishes faster than the inverse of any polyno-
mial in λ, we write f(λ) ∈ negl(λ) when f is negligible in λ. An asymmetric
bilinear group is a tuple G is a tuple (q,G1,G2,GT , e,P1,P2), where G1,G2 and
GT are groups of prime order q, the elements P1,P2 are generators of G1,G2

respectively, e : G1×G2 → GT is an efficiently computable, non-degenerate bilin-
ear map, and there is no efficiently computable isomorphism between G1 and
G2. Let GGen be some probabilistic polynomial time algorithm which on input
1λ, where λ is the security parameter returns a description of an asymmetric
bilinear group G. Elements in Gi, are denoted in implicit notation as [a]i := aPi,
where i ∈ {1, 2, T} and PT := e(P1,P2). Every element in Gi can be written as
[a]i for some a ∈ Zq, but note that given [a]i, a ∈ Zq is in general hard to com-
pute (discrete logarithm problem). Given a, b ∈ Zq we distinguish between [ab]i,
namely the group element whose discrete logarithm base Pi is ab, and [a]i · b,
namely the execution of the multiplication of [a]i and b, and [a]1 · [b]2 = [a · b]T ,
namely the execution of a pairing between [a]1 and [b]2. Vectors and matrices are
denoted in boldface. We extend the pairing operation to vectors and matrices as
e([A]1, [B]2) = [A� ·B]T . span(A) denotes the linear span of the columns of A.

Let �, k be positive integers. We call D�,k a matrix distribution if it out-
puts (in PPT time, with overwhelming probability) matrices in Z

�×k
q . We define

Dk := Dk+1,k. Our results will be proven secure under the following decisional
assumption in Gγ , for some γ ∈ {1, 2}.

Definition 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ ,
[13]). The D�,k-MDDH assumption holds if for all non-uniform PPT adver-
saries A,

|Pr [A(G, [A]γ , [Aw]γ) = 1] − Pr [A(G, [A]γ , [z]γ) = 1]| ∈ negl(λ),

where the probability is taken over G = (q,G1,G2,GT , e,P1,P2) ← GGen(1λ),
A ← D�,k,w ← Z

k
q , [z]γ ← G

�
γ and the coin tosses of adversary A.

168 A. Faonio et al.

Experiment ExpRCCA
A,PKE(λ):

prm ← Setup(1λ), b∗ ← $ {0, 1}
(pk, sk) ← KGen(prm)
(M0, M1) ← ADec(sk,·)(pk)
C ← Enc(pk, Mb∗)
b′ ← ADec�(sk,·)(pk, C)
return (b′ = b∗)

Oracle Dec�(sk, ·):
Upon input C;
M′ ← Dec(sk, C);
if M′ ∈ {M0, M1} then output �
else output M′

Fig. 1. The RCCA Security Experiment.

2.1 Re-randomizable RCCA PKE

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:
(I) Setup(1λ) upon input the security parameter λ produces public parameters
prm, which include the description of the message and ciphertext space M, C.
(II) KGen(prm) upon input the parameters prm, outputs a key pair (pk, sk); (III)
Enc(pk, M) upon inputs a public key pk and a message M ∈ M, outputs a cipher-
text C ∈ C; (IV) Dec(pk, sk, C) upon input the secret key sk and a ciphertext C,
outputs a message M ∈ M or an error symbol ⊥; (V) Rand(pk, C) upon inputs a
public key pk and a ciphertext C, outputs another ciphertext C′.

The RCCA security notion is formalized with a security experiment similar
to the CCA security one except that in RCCA the decryption oracle (called
the guarded decryption oracle) can be queried on any ciphertext and, when
decryption leads to one of the challenge messages M0, M1, it answers with a special
symbol � (meaning “same”).

Definition 2 (Replayable CCA Security, [6]). Consider the experiment
ExpRCCA in Fig. 1, with parameters λ, an adversary A, and a PKE scheme PKE.
We say that PKE is indistinguishable secure under replayable chosen-ciphertext
attacks (RCCA-secure) for any PPT adversary A:

AdvRCCA
A,PKE(λ) :=

∣
∣
∣
∣
Pr

[

ExpRCCA
A,PKE(λ) = 1

]

− 1
2

∣
∣
∣
∣
∈ negl(λ).

We formally define perfect re-randomizability in the full version of this paper
[15]. Here we give a simplified description of the notion. The notion of perfect re-
randomizability consists of three conditions: (i) the re-randomization of a valid
ciphertext and a fresh ciphertext (for the same message) are equivalently dis-
tributed; (ii) the re-randomization procedure maintains correctness, meaning the
randomized ciphertext and the original decrypt to the same value, in particular,
invalid ciphertexts keep being invalid; (iii) it is hard to find a valid ciphertext
that is not in the support of the encryption scheme. The last condition, cou-
pled with the first one, implies that for any (possibly malicious) ciphertext that
decrypts correctly the distribution of the re-randomized ciphertext and a fresh
ciphertext are statistically close. This stronger property is particularly useful in
applications, like our Mix-Net of Sect. 6, where we need to re-randomize adver-
sarially chosen ciphertexts.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 169

Expder-priv
A,NIZK:

prmG ← $ SetupG(1λ); b∗ ← $ {0, 1};
(crs, tpe, tps) ← Init(prmG);
(x, w, π, T) ← A(crs, tps); Assert V(crs, x, π) = 1;
If b∗ = 0 then π′ ← $ P(crs, Tx(x), Tw(w));
else π′ ← $ ZKEval(crs, π, T);
b ← A(π′);
Output b = b∗.

Fig. 2. The security experiments for the derivation privacy.

Definition 3 (Public Verifiability). PKE = (Setup,KGen,Enc,Dec,Rand) is
a public key scheme with publicly verifiable ciphertexts if there is a determinis-
tic algorithm Ver which, on input (pk, C) outputs an error symbol ⊥ whenever
Dec(pk, sk, C) = ⊥, else it outputs valid.

2.2 Malleable NIZKs

Recall that a non-interactive zero-knowledge proof system (NIZK) is a tuple
(Init,P,V) of PPT algorithms. Briefly, the algorithm Init upon input group
parameters outputs a common reference string and, possibly, trapdoor infor-
mation (we will consider algorithms that outputs a trapdoor tpe for extraction
and a trapdoor tps for simulation). We use the definitional framework of Chase
et al. [7] for malleable proof systems. For simplicity of the exposition we consider
only the unary case for transformations (see the aforementioned paper for more
details). Let T = (Tx, Tr) be a pair of efficiently computable functions, that we
refer as a transformation.

Definition 4 (Admissible transformations, [7]). An efficient relation R is
closed under a transformation T = (Tx, Tw) if for any (x,w) ∈ R the pair
(Tx(x), Tw(w)) ∈ R. If R is closed under T then we say that T is an admissible
for R. Let T be a set of transformations, if for every T ∈ T , T is admissible for
R, then T is allowable set of transformations.

Definition 5 (Malleable NIZK, [7]). Let NIZK = (Init,P,V) be a NIZK
for a relation R. Let T be an allowable set of transformations for R. The proof
system is malleable with respect to T if there exists an PPT algorithm ZKEval
that on input (crs, T, (x, π)), where T ∈ T and V(crs, x, π) = 1 outputs a valid
proof π′ for the statement x′ = Tx(x).

We would like the property that two NIZK proofs where one is derived from the
other cannot be linked. This is formalized with the notion of derivation privacy.

Definition 6. Let NIZK = (Init,P,V,ZKEval) be a malleable NIZK argument
for a relation R and an allowable set of transformations T . We say that NIZK
is derivation private if for any PPT adversary A we have that

Advder-priv
A,NIZK(λ) :=

∣
∣
∣Pr

[

Expder-priv
A,NIZK(1λ) = 1

]

− 1
2

∣
∣
∣ ∈ negl(λ)

170 A. Faonio et al.

Setup(1λ):
G ← $ GGen(1λ) where
G = (q,G1,G2,GT , e, P1, P2);
M = G1;
C = G

k+2
1 × G

k+1
2 × GT ;

Output prm = (G, M, C).

KGen(prm):
Sample D,E ← $ Dk;
Sample a, f ,g ← $ Z

k+1
q ;

F ← $ Z
k+1×k+1
q and G ← $ Z

k+1×k+2
q ;

Set D∗ = (D�, (a�D)�)�;
Set sk = (a, f ,g,F,G) and
Set pk =

([D]1, [E]2, [a�D]1,
[f�D]T , [F�D]1, [g�E]T , [G�E]2,
[GD∗]1, [FE]2);

Output (pk, sk).

Enc(pk, [M]1):
Sample r, s ← $ Z

k
q ;

[u]1 ← [D]1 · r, [p]1 ← [a�D]1 · r+ [M]1;
[x]1 ← ([u�]1, [p]1)�;
[v]2 ← [E]2 · s;
[π1]T = [f�D]T · r+ e([F�D]1 · r, [v]2);
[π2]T = [g�E]T · s+ e([x]1, [G�E]2 · s);
Set π = π1 + π2;
Output C = ([x]1, [v]2, [π]T);

Dec(sk, C):
Parse C = ([x]1, [v]2, π);
parse [x�]1 = ([u�]1, [p]1);
set [M]1 ← [p]1 − [a�u]1;
set [π1]T ← [(f + Fv)�u]T ;
set [π2]T ← [(g +Gx)�v]T ;
If π �= π1 + π2 then output ⊥
else output [M]1.

Rand(pk, C):
Parse C = ([x]1, [v]2, [π]T), [x�]1 = ([u�]1, [p]1);
Sample r̂, ŝ ← $ Z

k
q

[x̂]1 ← [x]1 + [D∗]1 · r̂;
[v̂]2 ← [v]2 + [E]2 · ŝ;
[π̂1]T = [f�D]T · r̂+ e([F�D]1 · r̂, [v̂]2) + e([u]1, [FE]2 · ŝ);
[π̂2]T = [g�E]T · ŝ+ e([x̂]1, [G�E]2 · ŝ) + e([GD∗]1 · r̂, [v]2);
Output the ciphertext Ĉ = ([x̂]1, [v̂]2, [π̂]T), with [π̂]T ← [π]T + [π̂1]T + [π̂2]T .

Fig. 3. Our Rand-RCCA encryption scheme PKE1 based on the Dk-MDDH assump-
tion for k ∈ N

∗.

where Expder-priv is the game described in Fig. 2. Moreover we say that NIZK
is perfectly derivation private (resp. statistically derivation private) when for
any (possibly unbounded) adversary the advantage above is 0 (resp. negligible).

Finally, we assume that an adversary cannot find a verifying proof for a valid
statement which is not in the support of the proof generated by the proving
algorithm. We notice that this property is true for both GS proof systems and
for quasi-adaptive proof system of Kiltz and Wee [28]. In particular, for GS
proofs, for any commitment to the witness, the prover generates a proof that is
uniformly distributed over the set of all the possible valid proofs. On the other
hand, the proofs of Kiltz and Wee are unique, therefore the condition is trivially
true.

3 Our Rand-RCCA PKE Scheme

We present our scheme in Fig. 3. We refer to the introduction for an informal
exposition of our techniques. We notice that the check in the decryption proce-
dure can be efficiently computed using the pairing function and the knowledge

Structure-Preserving and Re-randomizable RCCA-Secure PKE 171

of f ,F,g,G. In the next paragraphs we first show correctness of the scheme,
secondly, we give an information-theoretic lemma which is the basic core of the
security of our PKE scheme, then we proceed with the RCCA-security of the
scheme.

Correctness of Decryption. For correctness of decryption, it is easy to see
that for a honestly generated ciphertext ([x]1, [v]2, [π]T) ← $ Enc(pk, [M]1), the
first line of decryption [p]1 − [a�u]1 yields [M]1. Hence, we are left with showing
that the test [π]T = [(f + Fv)�u]T + [(g + Gx)�v]T is satisfied:

π = π1 + π2 = (f�D)r + (F�Dr)�v + (g�E)s + x�(G�E)s
= (f + Fv)�u + (g + Gx)�v (1)

Before analyzing the perfect re-randomizability and RCCA security of the
scheme we state and prove a powerful information-theoretic lemma. Very infor-
mally speaking, the lemma proves that the smooth projective hash proof system
at the core of our scheme remains sound even if the adversary gets to see a proof
for an instance of its choice. As we want to allow for re-randomization, we relax
the notion of soundness by requiring that the instance forged by the adversary
does not lie in the set of possible re-randomizations of its query.

Lemma 1. Let k be a positive integer. For any matrices D ∈ Z
k+1×k
q ,E ∈

Z
k+1×k
q and any (possibly unbounded) adversary A:

Pr

⎡

⎣

u �∈ span(D)
(v − v∗) �∈ span(E)

z = (f + Fv)�u

∣
∣
∣
∣
∣
∣

f ← $ Z
k+1
q ,F ← $ Z

k+1×k+1
q ;

(z,u,v) ← $ AO(·)(D,E,D�f ,D�F,FE)

⎤

⎦ ≤ 1/q,

where the adversary outputs a single query v∗ to O(·) which returns f + F · v∗.

Proof. Let K =
(
f , F

)

∈ Z
k+1×k+2
q . We can rewrite the information that the

adversary sees about f ,F in matrix form:

(

D,E,D�f ,D�F,FE, f + F · v∗) =
(

D,E,D�K,K
(

0
E

)

,K
(

1
v∗

))

.

We now have to argue that z = u�K
(

1
v

)

is independent of the adversary’s

view when u �∈ span(D) and (v − v∗) �∈ span(E). Without loss of generality
we assume the matrices D,E to be full rank. Otherwise this means there is a
redundancy in the information provided to the adversary and this clearly does
not give him more chances of being successful. Define the following matrices:

D̃ =
(
D, u

)

∈ Z
k+1×k+1
q , Ẽ =

(
0, 1, 1
E, v∗, v

)

∈ Z
k+2×k+2
q .

By the condition that u /∈ span(D) and (v − v∗) �∈ span(E), D̃ and Ẽ are
invertible matrices.

172 A. Faonio et al.

Let us consider the matrix Z = D̃�KẼ ∈ Z
k+1×k+2
q and the information

that the adversary has on this matrix. Note that for zk+1,k+2, namely the term
in last row and last column of Z, the following holds:

zk+1,k+2 = u�K
(

1
v

)

= z.

Since the view of the adversary contains invertible matrix Ẽ, knowledge of D�K
(in the view of the adversary) is equivalent to knowledge of D�KẼ, which are
the first k rows of Z.

Similarly, let Ê be the first k + 1 columns of Ẽ, since D̃ is invertible and
is known by the adversary, knowledge of KÊ (in the view of the adversary) is
equivalent to knowledge of D̃�KÊ, the first k + 1 columns of Z. Therefore, the
view of the adversary includes all the matrix Z except for zk+1×k+2.

On the other hand, since D̃ and Ẽ are invertible matrices, if we see Z =
D̃�KẼ ∈ Z

k+1×k+2
q as a system of equations with unknown K, there exists a

unique solution K for any choice of Z, namely, K = (D̃�)−1ZẼ−1.
Therefore, from the point of view of the adversary, every value of zk+1×k+2 ∈

Zq is equally likely, since K ← $ Z
k+1×k+2
q is sampled uniformly at random. This

concludes the proof.

Security. For space reason we prove perfect re-randomizability in the full ver-
sion of this paper [15]. We prove that the security of the scheme reduces to the
Dk-MDDH assumption. Below we state the main theorem:

Theorem 1. For any matrix distribution Dk such that the Dk-MDDH assump-
tion holds for the groups G1 and G2 generated by GGen, the Rand-PKE scheme
PKE1 described above is RCCA-secure.

Proof. We start by describing a sequence of hybrid games. For readability pur-
poses, we underline the main differences between each consecutive hybrid. In
hybrids H0 and from H3 until H7 we progressively change the way the decryp-
tion procedure works. In the description of the games, the changes correspond
to the underlined formulae. We summarize the main changes in Fig. 4.

Hybrid H0. This hybrid experiment is equivalent to the RCCA experiment
described in Fig. 1 but the oracle Dec� is instantiated with a slightly different
decryption procedure. Decryption proceeds exactly as in the description of the
PKE scheme, except that, before setting each variable M, π1, π2 it additionally
checks if the variable was not set already. For future reference, we label these
commands as the decryption rule (*).

Notice that, in this hybrid, this change is merely syntactical, as at each
invocation of the decryption procedure all the three variables are unset. The
hybrid H0 is equivalent to the experiment ExpRCCA

A,PKE(λ) of Fig. 1.

Hybrid H1. The hybrid H1 is the same as H0 but it computes the chal-
lenge ciphertext C∗ = ([x∗]1, [v∗]2, [π∗]T) by using the secret key. Let x∗ be
((u∗)�, p∗)� and π∗ = π∗

1 + π∗
2 .

Structure-Preserving and Re-randomizable RCCA-Secure PKE 173

[u∗]1 ← [D]1 · r∗, [p∗]1 ← a� · [u∗]1 + [Mb∗]1 where r∗ ←$ Z
k
q

[v∗]2 ← [E]2 · s∗ where s∗ ←$ Z
k
q

[π∗
1]T ← e([u∗]1, [f]2 + F · [v∗]2), [π∗

2]T ← e([g]1 + G · [x∗]1, [v∗]2).

Notice that [π∗
1]T and [π∗

2]T can be efficiently computed using the secret key
and the pairing function. The only differences introduced are in the way we com-
pute [p∗]1 and [π∗]T . However, notice that such differences are only syntactical,
as, by the correctness of the scheme, we compute exactly the same values the
hybrid H0 would compute.

Hybrid H2. The hybrid H2 is the same as H1 but the challenger, upon
challenge messages [M0]1, [M1]1 ∈ G1, computes the challenge ciphertext C∗ =
([x∗]1, [v∗]2, [π∗]T) where x∗ is ((u∗)�, p∗)� by sampling :

u∗ ←$ Z
k+1
q \ span(D) v∗ ←$ Z

k+1
q \ span(E).

The hybrids H1 and H2 are computationally indistinguishable. This follows by
applying the Dk-MDDH Assumption on [D,u∗]1 in G1 and [E,v∗]2 in G2, respec-
tively, and then a standard statistical argument to show that sampling u∗ uni-
formly at random in Z

k+1
q is statistically close to sampling it at random in

Z
k+1
q \ span(D). The reduction is straightforward and is omitted.

From now on, we prove that each pair of consecutive hybrids is statistically
close. In particular, this means that the hybrids (and in principle also the adver-
sary) are allowed to run in unbounded time.

Hybrid H3. The hybrid H3 is the same as H2 but adds the following decryption
rules that upon input a ciphertext ([u]1, [p]1, [v]2, [π]T):

(i) If u = Dr for some r ∈ Z
k
q , then compute

[π1]T ← [(f�D + v�F�D)]T · r [M]1 ← [p]1 − [a�D]1 · r

(ii) If v = Es for some s ∈ Z
k
q , letting x = (u�, p)�, then compute:

[π2]T ← [(g�E + x�G�E)]T · s
Specifically, in the first rule the decryption of M and π1 are computed using the
public key components [a�D]1, [f�D]T and [F�D]1 instead of the secret key
components a, f ,F for all the ciphertexts with u ∈ span(D). Recall that this
strategy is not efficient, but it is possible because the simulator does not need
to run in polynomial time (since we want to argue the games are statistically
close). If v = Es, then by the second rule, the hybrid computes the proof π2

using only the components [g�E]T and [G�E]2 of the public key.
We notice that, again by correctness of the PKE scheme, the computation

of π1, π2 and M in the hybrids H3 and H2 is equivalent. In particular, let π′
1 be

the proof as computed in H2, then [π′
1]T = [(f + Fv)�u]T = [(f + Fv)�Dr]T =

[(f�D + v�F�D)]T · r = [π1]T . (An equivalent derivation holds for π2 and M.)
The difference is then only syntactical.

174 A. Faonio et al.

Procedure Dec∗(sk, C):
Parse C = ([x]1, [v]2, [π]T) and [x�]1 = ([u�]1, [p]1)

(i) If u ∈ span(D), let u = Dr then
[M]1 ← [p − a�Dr]1;
[π1]T ← [(f�D+ v�F�D)r]T ;

(ii) If v ∈ span(E), let v = Es then
[π2]T ← [(g�

0 E+ x�G�E)s]T ;
(iii) If u �∈ span(D) and (v − v∗ �∈ span(E) or v∗ unset) then output ⊥.
(iv) If v �∈ span(E) and (x − x∗ �∈ span(D∗) or u∗ unset) then output ⊥.
(v) If x − x∗ ∈ span(D∗) and v − v∗ ∈ span(E) then

M ← �;
[π1]T ← [π∗]T + [(f�D+ ṽ�F�D)x̃]T
[π2]T ← [(g�

0 E+ x̃�G�E)x̃]T
(*) If [M]1 is unset set [M]1 ← [p]1 − a�[u];
(*) If [π1]T is unset set [π1]T ← [(f + Fv)�u]T ;
(*) If [π2]T is unset set [π2]T ← [(g0 +Gx)�v]T ;

If [π]T = [π1]T + [π2]T output M else ⊥.

Fig. 4. The decryption procedure in the hybrids experiment. The decryption proce-
dure of the hybrid H0 executes only the rules (*) and the last decryption check. The
decryption procedure of the hybrid H3 additionally executes (i) and (ii). The decryp-
tion procedure of the hybrid H4 additionally executes (iii). The decryption procedure
of the hybrid H5 additionally executes (iv). The decryption procedure of the hybrid H6

additionally executes (V). The decryption procedure of the hybrid H7 stops to execute
the rules (*).

Hybrid H4. The hybrid H4 is the same as H3 but adds the following decryption
rule, on input a ciphertext C = ([u]1, [p]1, [v]2, [π]T):

(iii) If u �∈ span(D) and (v − v∗ �∈ span(E) or v∗ is unset) then output ⊥.

Recall that the challenge ciphertext is C∗ = ([u∗]1, [p∗]1, [v∗]2, [π]T). Notice that
we check either if v − v∗ �∈ span(E) or v∗ is unset. We do so to handle simul-
taneously the decryption queries before and after the challenge ciphertext is
computed. In particular, before the challenge ciphertext is computed the decryp-
tion rule simply checks if u �∈ span(D) (as in the classical Cramer-Shoup proof
strategy).

We show in Lemma 3 that H4 is statistically close to H3. Here we continue
describing the hybrid games.

Hybrid H5. The hybrid H5 is the same as H4 but adds the following decryption
rule, on input a ciphertext C = ([x]1, [v]2, [π]T):

(iv) If v �∈ span(E) and (x − x∗ �∈ span(D∗) or x∗ is unset) then output ⊥.

We show that H5 is statistically close to H4 in the full version of this paper
[15]. The proof of the lemma is almost identical to the proof of Lemma3.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 175

Hybrid H6. The hybrid H6 is the same as H5 but adds the following decryption
rule, on input a ciphertext C = ([x]1, [v]2, [π]T):

(v) If x − x∗ ∈ span(D∗) and v − v∗ ∈ span(E) then let r̃, s̃ be such that
x−x∗ = x̃ = Dr̃ and v−v∗ = ṽ = Es̃, and compute [π1]T , [π2]T as follows:

[π1]T ← [π∗]T + [(f�D + ṽ�F�D)x̃]T , [π2]T ← [(gE + x̃�G�E)ṽ]T ,

This hybrid is equivalent to H5. The conditions of the decryption rule (v) imply
that, if the proof π is correct, then the ciphertext C is a re-randomization of C∗.

Hybrid H7. The hybrid H7 is the same as H6 but its decryption procedure
does not execute the rules (*) introduced in the hybrid H0.

In Lemma 4 we show that H7 and H6 are identically distributed, while in
the following we prove that the challenge bit b∗ is perfectly hidden.

Lemma 2. Pr [H7 = 1] = 1
2 .

Proof. We notice that in H7 the decryption procedure does not use the secret
key a to perform the decryption; this can be easily confirmed by inspection of the
decryption procedure in Fig. 4. Notice also that given the value a�D the random
variable a� ·u∗ is uniformly distributed. Thus, both the challenge ciphertext C∗

and the answers of the decryption oracle are independent of the bit b∗.

Lemma 3. The hybrids H4 and H3 are statistically close.

Proof. We prove the statement with a hybrid argument over the number of
decryption queries of the adversary. Let the hybrid H3,i be the experiment that
answers the first i-th oracle queries as in H4 (namely, considering the decryption
rule (iii)) and answers the remaining queries as in H3. Let QD be the number
of decryption queries performed by the adversary A. It is easy to check that
H3,0 ≡ H3 and H3,QD

≡ H4.
On the other hand H3,i and H3,i+1 differ when the (i + 1)-th ciphertext

C = (([u]1, [p]1) , [v]2, [π]T) is such that “u �∈ span(D) and ((v − v∗) �∈ span(E)
or v∗ is unset)”, but the decryption oracle (as it would be computed in H3)
outputs a value different from ⊥. In particular, the latter implies that the proof
[π]T verifies correctly. Let Soundi be such event. To conclude the proof of the
lemma we prove that Pr [Soundi] ≤ 1/q. Then a standard union bound gives
us that the statistical distance between H4 and H3 is at most QD/q, which is
negligible.

We reduce an adversary A that causes event Soundi to occur into an adversary
A′ for the game of Lemma 1. Namely, we define an adversary A′ for the exper-
iment in the lemma which internally simulates the experiment H3,i+1 running
with the adversary A.

Adversary A′(D,E, f�D,F�D,FE) with oracle access to O:

1. Sample a ← $ Z
k+1
q ,g ← $ Z

k+1
q ,G ← $ Z

k+1×k+2
q .

176 A. Faonio et al.

2. Set the public key as:

pk =
(

[D]1, [E]2, [a�D]1, [f�D]T , [F�D]1,
[g�E]T , [G�E]2, [GD∗]1, [FE]2

)

as described by the key generation algorithm and set the secret key sk =
(a, ·,g, ·,G).

3. Run the adversary A with input the public key pk. Answer the j-th decryption
oracle query with ciphertext C = ([u]1, [p]1, [v]2, [π]T) as follows:
(a) If j ≤ i and u ∈ span(D) compute, let u = Dr:

[M]1 ← [p − a�D · r]1, [π1]T ← [(f�D + v� · F�D)]T · r,
[π2]T ← [(g + G · x)� · v]T

If π = π1 + π2 then answer with [M]1, else answer ⊥;
(b) If u �∈ span(D) answer ⊥;
(c) If j = i + 1 then stop and return (π − (g + Gx)�v,u,v).

4. Eventually, A outputs [M0]1, [M1]1. Sample v∗ ← $ Z
k+1
q \span(E), and sample

u∗ ← $ Z
k+1
q \ span(D), query the oracle O with the element v∗ and receive

Π = f + F · v∗. Set p∗ = a�u∗ + Mb∗ and x∗ = ((u∗)�, p∗)�, and:

[π∗]T ←[Π� · u∗ + (g + Gx∗)�v]T (2)

and send to the adversary the challenge ciphertext C∗ = ([c∗]1, [p∗]1, [v]2,
[π∗]T).

5. Answer the j-th decryption oracle query with ciphertext C = ([u]1, [p]1, [v]2,
[π]T) as follows:

(a) If j ≤ i and u ∈ span(D) execute the same as in step 3a.
(b) If j ≤ i and u �∈ span(D) do as follows:

i. if (v∗ − v) ∈ span(E) let v = v∗ + Eγ, compute

[π1]T ← [(Π + FEγ)�)u]T , [π2]T ← [(g� + Gx)�v]T

if π = π1 + π2 then answer [p − a� · u]1 else answer ⊥.
ii. if (v∗ − v) �∈ span(E) then output ⊥.

(c) If j = i + 1 then stop and return (π − (g + Gx)�v,u,v).

We show that the adversary perfectly simulates the hybrid H3,i up to the
i-th decryption query. By inspection, it is easy to check that up to step 3, the
simulation is perfect6.

More interestingly, at step 4 the adversary A′ uses its oracle to compute Π =
f + Fv∗. Thanks to this information the adversary can compute the challenge
ciphertext exactly as the hybrid experiment would do as shown in Eq. 2. After
this step, the adversary A′ can easily answer the decryption queries whenever
j ≤ i and u ∈ span(D) or u �∈ span(D) and (v∗ − v) �∈ span(E). We show
6 The adversary computes π2 in step 3 as the original decryption procedure would do,

but by the modification in H1 we are assured that this is equivalent.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 177

that the answers for the decryption queries where j ≤ i, u �∈ span(D) and
(v∗ − v) ∈ span(E) are distributed exactly as in the hybrid experiment, in fact:

(Π + FEγ)�u = f�u + (Fv∗)�u + (FEγ)�u = f�u + (F(v∗ + Eγ))�u = (f + Fv)�u.

Finally, by definition of Soundi, the adversary A at the (j + 1)-th query outputs
a ciphertext that would correctly decrypt in the hybrid experiment and where
u �∈ span(D) and (v∗ − v) �∈ span(E) with probability Pr [Soundi]. Since the
ciphertext correctly decrypts, it means that π = (f + Fv)�u + (g + Gx)�v,
therefore the output of A′ is a valid guess for the experiment of Lemma 1. How-
ever, the adversary A′ can win with probability at most 1/q, and thus the lemma
follows.

Lemma 4. The hybrids H6 and H7 are identically distributed.

Proof. We prove this lemma by showing that in H6 the decryption procedure
never executes the lines with rules (*). To do this, for any ciphertext queried
to the decryption oracle we partition over all possible cases and show that the
decryption procedure used for the oracle queries either sets the values M, π1, π2

(and thus the rules (*) are not executed) or it stops before reaching those rules
as it outputs ⊥ or �. Let C = ([x]1, [v]2, [π]T) be the ciphertext queried to the
oracle, where [x�]1 = ([u�]1, [p]1). We consider all the possible alternatives:

– u ∈ span(D): notice that in this case, by the rule (i), M and π1 are set;
– v ∈ span(E): notice that in this case, by rule (ii), π2 is also set. Therefore,

since in this branch M, π1, π2 are set, the rules (*) are not executed.
– v /∈ span(E): in this case we enter rule (iv) and thus decryption stops

and outputs ⊥. To see why this rule is entered, notice that either u∗ is
unset, or, if it is set, then u∗ /∈ span(D), and so x − x∗ �∈ span(D∗).

– u /∈ span(D), in this case the output could be either � or ⊥, more in details:
– v∗ is unset: by rule (iii) decryption stops and outputs ⊥.
– v∗ is set and (v − v∗) �∈ span(E): by rule (iii) decryption outputs ⊥.
– v∗ is set and (v − v∗) ∈ span(E):

– (x − x∗) �∈ span(D∗): notice that since v∗ �∈ span(E) then it must
be that v �∈ span(E). Hence, rule (iv) is entered and decryption out-
puts ⊥.

– (x − x∗) ∈ span(D∗): rule (v) is entered, decryption outputs �, so
M, π1, π2 are set, and thus the rules (*) are not executed.

4 Our Publicly-Verifiable Rand-RCCA PKE

Here we show that our RCCA scheme from the previous section can be turned
into a publicly verifiable one. Very informally, the idea is to append a malleable
proof (essentially a GS proof) that [π]T is well formed. The decryption procedure
of the publicly verifiable scheme can simply check the validity of the proof and
then CPA-decrypt the ciphertext [x]1. Let PKE1 = (KGen1,Enc1,Dec1,Rand1)

178 A. Faonio et al.

KGen2(prm):
(pk′, sk′) ← $ KGen′(prm), crs ← Init(prm);
Parse sk′ = (a, f ,F,g,G);
Set sk = (a, crs), pk = (pk′, crs);
Output (pk, sk).

Rand2(pk, C):
Parse C = ([x]1, [v]2, Π),
T ← $ T , (with associated r̂, ŝ ∈ Z

k
q)

x̂ = x+D∗ · r̂;
v̂ = v +E · ŝ;
Π̂ = ZKEval(crs, T, ([x]1, [v]2), Π);
Output ([x̂]1, [v̂]2, Π̂).

Enc2(pk, [M]1):
r, s ← $ Z

k
q ;

([x]1, [v]2, [π]T) ← Enc′(pk, [M]1; r, s);
Π ← $ P(crs, ([x]1, [v]2), ([π]T , r, s));
Output C = ([x]1, [v]2, Π).

Dec2(sk, C):
Parse C = ([x]1, [v]2, Π);
if V(crs, ([x]1, [v]2), Π) = 1

output (−a�, 1) · [x]1;
else output ⊥.

Ver(pk, C) :
Parse C = ([x]1, [v]2, Π);
Output V(crs, ([x]1, [v]2), Π).

Fig. 5. Our publicly-verifiable re-randomizable RCCA encryption scheme PKE2. The
NIZK is for the relation RPKE1 and transformation TPKE1 .

be the scheme of Sect. 3 and let NIZK = (Init,P,V,ZKEval) be a malleable
NIZK system for membership in the relation defined below:

RPKE1 =
{

([x]1, [v]2), ([π]T , r, s) : [π]T = [(f + Fv)�u + (g + Gx)�v]T
}

,

and with allowable set of transformations:

TPKE1 =

⎧

⎨

⎩
T : ∃r̂, ŝ ∈ Z

k
q :

Tx([x]1, [v]2) = ([x̂]1, [v̂]2)
Tw([π]T , r, s) = ([π̂]T , r + r̂, s + ŝ)
([x̂]1, [v̂]2, [π̂]T) = Rand1(pk, ([x]1, [v]2, [π]T); r̂, ŝ)

⎫

⎬

⎭
.

We write T ← $ TPKE1 for the operation that samples the uniquely defined
r̂, ŝ associated to the transformation T . The pv-Rand-PKE scheme PKE2 =
(Init,KGen2,Enc2,Dec2,Rand2,Ver) is described in Fig. 5. We defer the proof of
the following theorem in the full version of this paper [15].

Theorem 2. If the NIZK is adaptive sound and perfect derivation private then
the pv-Rand-PKE scheme PKE2 described in Fig. 5 is publicly verifiable, perfect
re-randomizable and RCCA-secure.

Malleable NIZK. The equations we would like to prove do not admit Groth-
Sahai NIZK proofs [23], but only NIWI. We overcome this problem by developing
a new technique that extends the class of pairing product equations which admit
GS NIZK proofs. This technique is per se a result of independent interest.

More in detail, we produce an additional commitment to [π]T , using a new
commitment type defined over GT with good bilinear properties. This allows us
to construct a NIZK proof that the ciphertext is valid with perfect completeness
and soundness and composable zero-knowledge. The latter notion refers to the
fact that if the common reference string is defined in a “witness indistinguish-
able mode”, the proof system is perfect zero-knowledge. By replacing [πT] in

Structure-Preserving and Re-randomizable RCCA-Secure PKE 179

Exptse-cm
A,Ext,NIZK:

prmG ← $ SetupG(1λ); Set Qw ← ∅;
(crs, tpe, tps) ← Init(prmG);
(x, π) ← A(crs, R)SIM(); z ← Ext(tpe, x, π, R);
Output 1 if V(crs, x, π) = 1 and either:
(a) z �= ◦ and ∀w s.t. z = f(w) we have (x, w) R∈� or
(b) z = ◦ and ∀x′ ∈ Qx, ∀T ∈ T we have Tx(x) �= x.

SIM(x, w):
if (x, w) ∈ R then

π ← Sim(tps, x);
Qx ← Qx ∪ {x};

Fig. 6. The security experiments for the NIZK argument system.

the ciphertext by its commitment, in the witness indistinguishable mode we can
simulate a proof of validity of the ciphertext by setting π = 0 and in an unde-
tectable manner. The proof will be correctly distributed because of the perfect
zero-knowledge property in these modes.

All the details on how to compute the proof are given in the full version
of this paper [15]. Beyond GS Proofs, it also makes use of the QANIZK proof
of membership in linear spaces [25,26,28]. The size of the ciphertexts for the
SXDH instantiation of the publicly verifiable scheme is 12|G1| + 11|G2| + 4|GT |.
The number of pairings for verification is 32 for the GS proof and 14 for the
argument of linear spaces, which can be reduced to 8+14 by batch verifying the
GS equation using the techniques of [24].

5 Malleable and True-Simulation Extractable NIZK

In this section we show an application of our Rand-RCCA scheme to build a
malleable and true-simulation extractable NIZK.

True-Simulation Extractability. We recall the notion of true-simulation f -
extractability (f -tSE-NIZK, for short) of Dodis et al. [10]. The notion is a weak-
ening of the concept of simulation extractability where the extractor can com-
pute a function of the witness and the adversary sees simulated proofs only
for true statements. Here, we give a variation of the notion that allows for re-
randomizability (and malleability). Consider the experiment described in Fig. 6,
the main difference respect to the notion of [10], is that the winning condition
(b) allows the extractor to give up and output a special symbol ◦. The restriction
is that the extractor can safely do this without losing the game only when the
proof π produced by the adversary is derived from a simulated proof.

Definition 7. Let f be an efficiently computable function, let NIZK =
(Init,P,V) be a NIZK argument for a relation R, and consider the experiment
Exptse-cm described in Fig. 6. We say that NIZK is true-simulation controlled-
malleable f -extractable (f-tSE-cm) iff there exists a PPT algorithm Ext such
that for all PPT A we have that

Advtse−cm
A,Ext,NIZK(λ) := Pr

[

Exptse-cm
A,Ext,NIZK(1λ) = 1

]

∈ negl(λ).

180 A. Faonio et al.

Construction. The construction follows the blueprint of Dodis et al. [10] with
the twist that we use a Rand RCCA-PKE scheme instead of a CCA-PKE scheme.
Our compiler works for a special class of tuples, consisting of a function f , an
NP relation R and a transformation T , that we define below:

Definition 8. A tuple (f,R, T), where f is efficiently computable, R is an NP-
relation and T is an admissible transformation for R, is suitable if:

1. there exists an efficiently computable decision procedure g such that for any
(x,w) the function g(x, f(w)) = 1 if and only if (x,w) ∈ R;

2. For any T ∈ T and any (x,w) ∈ R the transformation of the witness is
invariant respect to the function f , namely f(w) = f(Tw(w)).

The restrictions above still allow for many interesting malleabilities. For example,
the condition (2) clearly applies to re-randomizable NIZKs, as in this case Tw(·)
is the identity function. Condition (1) holds in all those cases where the relation
R can be sampled together with a trapdoor information that allows to compute
w from x. The condition (1) applies also to the NIZKs of [10]. More importantly,
the conjunction of (1) and (2) allows to efficiently check the condition (b) of the
security experiment, which makes the tSE-cm NIZK primitive easier to use.

Let PKE = (KGen,Enc,Dec,Rand) be a Rand-RCCA PKE scheme, we addi-
tionally assume there exists an integer � ∈ N such that the random coins of both
the encryption procedure and the re-randomization procedure are in Z

�
q and

that, for any pk, M, given Rand(pk,Enc(pk, M; ρ0); ρ1) = Enc(pk, M; ρ0 + ρ1) where
ρ0, ρ1 ∈ Z

�
q. Notice that the schemes in Sects. 3 and 4 have this property. Let R

be a NP relation and T be a set of allowable transformations for the relation R.
Let NIZK′ = (Init′,P′,V′,ZKEval′) be a malleable NIZK argument for R′ with
the allowable set of transformations T ′ as described below:

R′ = {((pk, c, x), (w, ρ)) : (x,w) ∈ R ∧ c = Enc(pk, f(w); ρ)}

T ′ =
{

T ′ : ∃ρ̂, T :
T ′

x(pk, c, x) = (pk,Rand(pk, c; ρ̂), Tx(x)),
T ′

w(w, ρ) = (Tw(w), ρ + ρ̂), T ∈ T

}

We also assume that any transformation T ′ ∈ T ′ can be efficiently parsed as
a tuple (ρ̂, T) and viceversa. We define a malleable NIZK argument NIZK =
(Init,P,V,ZKEval) for the relation R with allowable set of transformations T in
Fig. 7. Notice that the co-domain of the function f for which we can prove f -tSE
soundness is the message space of the underlying Rand-RCCA PKE scheme. We
remark that, although our scheme is presented with a message space M = G1,
we could easily extend our construction to encrypt vectors in G

�0
1 × G

�1
2 .

Theorem 3. For any suitable (f,R, T) the proof system NIZK is a malleable
NIZK for R with allowable transformations T , and if NIZK′ is perfectly (resp.
statistically) derivation private (Def. 6) and PKE is perfectly re-randomizable
then NIZK is perfectly (resp. statistically) derivation private.

Theorem 4. For any suitable (f,R, T) the proof system NIZK described above
is true-simulation controlled-malleable f-extractable.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 181

Init(prm):
(crs′, tp′

s) ← Init′(prm);
(pk, sk) ← KGen(prm);
crs ← (crs′, pk), tpe ← sk,tps ← (pk, tp′

s)
Output (crs, tpe, tps).

P(crs, x, w):
C ← Enc(pk, f(w); r);
π′ ← P′(crs′, (pk, C, x), (w, r));
Output π = (C, π′).

V(crs, x, π):
Output V′(crs′, (pk, C, x), π′)

ZKEval(crs, T, (x, π)):
Let π = (C, π′), ρ ← $ Z

�
q;

Let T ′ = (ρ, T);
Ĉ ← Rand(pk, C; ρ);
π̂′ ← $ ZKEval′(crs′, T ′, (x, π′));
Output (Ĉ, π̂′).

Fig. 7. Our f -tSE-cm NIZK compiler.

The proofs of Theorems 3 and 4 are in the full version of this paper [15]. We
give an intuition for the proof of Theorem4, which proceeds with a two-steps
hybrid argument. We start with the true-simulation extractability experiment,
we can switch to an experiment where each simulated proof for NIZK contains
an encryption of the f(w). This step can be easily argued using the RCCA
security of the scheme. In particular, the guarded decryption oracle and the
suitability of (f,R, T) are necessary to check the winning condition of the tSE
experiment. In the second step, we switch to valid proofs for NIZK′, instead of
simulated proofs, the indistinguishability follows trivially by the zero-knowledge
of NIZK′. At this point we are in an experiment where the proofs provided by
the SIM are not simulated, so the standard adaptive soundness of NIZK′ is
sufficient to bound the winning probability of the adversary.

Instantiation. For any suitable (f,R, T) where the co-domain of f is G1,
we can instantiate the tSE-cm NIZK scheme with the pv-Rand-RCCA Scheme
PKE2. The public verifiability enables for a simpler malleable NIZK proof for the
associated R′. In fact, we can subdivide the proof in: (1) a malleable GS proof
Π1 for R with transformations T , in particular Π1 contains GS commitments
[cw]1 of the witness; (2) a malleable GS proof Π2 to prove that commitments
[cw]1 and [cw′]1 open to w,w′ an w′ = f(w); (3) a malleable proof Π3 to prove
w′ = (−aT , 1) · [x], in particular, from the linearity of GS commitments the
relation for the last proof is a linear subspace relationship. The verification checks
the proofs Π1,Π2,Π3 and verifies the validity of the ciphertext C.

For the case where f is the identity function, namely, re-randomizable NIZK,
the proof Π2 is trivial as we can set [cw]1 = [cw′]1. The overhead in proof size
between a adaptive sound re-randomizable GS proof for R based on SXDH and
an tSE-cm NIZK based on SXDH is equal to 13|G1| + 11|G2| + 4|GT |.

6 An UC-Secure Mix-Net

In this section we propose an application of pv-Rand-PKE schemes with RCCA
security to Mix-Net protocols. Our starting point is a recent work of Faonio and
Fiore [14] who build an UC-secure Optimistic Mix-Net using a new paradigm

182 A. Faonio et al.

that relies on a specific re-randomizable and RCCA-secure PKE scheme. Here
we extend the main idea of [14] and use the power of public verifiability in order
to obtain a full fledged Mix-Net protocol (not only optimistic secure).

The Universal Composability Model. We review some basic notions of
the Universal Composability model and the extension to auditable protocols of
Faonio and Fiore. In a nutshell, a protocol Π UC-realizes an ideal functional-
ity F with setup assumption G if there exists a PPT simulator S such that no
PPT environment Z can distinguish an execution of the protocols Π which can
interact with the setup assumption G from a joint execution of the simulator S
with the ideal functionality F . The environment Z provides the inputs to all the
parties of the protocols, decides which party to corrupt (we consider static cor-
ruption, where the environment decides the corrupted parties before the protocol
starts), and schedules the order of the messages in the networks. When specifying
an ideal functionality, we use the “delayed outputs” terminology of Canetti [3].
Namely, when a functionality F sends a public delayed output M to party PPi

we mean that M is first sent to the simulator and then forwarded to PPi
only

after acknowledgement by the simulator. Faonio and Fiore consider a variation
of the UC model where, roughly speaking, a bulletin board functionality BB
acts as global setup assumption. More in details, the bulletin board is present in
both the ideal world and the real world, so that the simulator does not have any
advantage over the real-world adversary and all the parties of the protocol can
register their message on the board. An auditable protocol is a tuple (Π,Audit)
where Π is a protocol and Audit is a PPT algorithm. The model additionally
includes an external off-line party, the auditor. The auditor is an incorruptible
party which, whenever is called on an input y′, runs the audit algorithm Audit
on this input and the transcript written in the bulletin boards and forwards its
output to the environment. In the ideal world, the auditor always replies accord-
ing to the output of the ideal functionality, for example, if the ideal functionality
has output y and the auditor is called on input y′, the auditor replies with valid
if and only if y = y′.

Defining Mix-Net Protocols. Our protocol UC-realizes the ideal function-
ality FMix described in Fig. 8 with setup assumptions: the ideal functionality
FTDec for threshold decryption of our PKE scheme and the ideal functionality
for a common-reference string FCRS (and the bulletin board of the auditable
framework of Faonio and Fiore). The functionality FMix (similarly to [14]) is
slightly weaker than the one considered by Wikström in [37,38]. The difference
is that the corrupted senders can replace their inputs, however, they loose this
ability when the first honest mixer sends its message mix. On the other hand,
in the ideal functionality of Wikström, the senders can cast their messages only
during the inputs submission phase.

Building Blocks. The main building blocks of our mix-net construction are:

(i) An linear pv-Rand-RCCA PKE scheme PKE . We say that a pv-Rand-
RCCA PKE scheme is linear if there exist a group G (for example G = G1)

Structure-Preserving and Re-randomizable RCCA-Secure PKE 183

Functionality FMix:

The functionality has n sender parties PSi and m mixer parties PMi :

Input: On message (input, Mi) from PSi (or the adversary if PSi is corrupted) reg-
ister the index i in the list of the senders and register the entry (i, Mi) in the
database of the inputs. Notify the adversary that the sender PSi has sent its
input.

Mix: On message mix from PMi (or the adversary if PMi is corrupted), register the
index i in the list of the mixers and notify the adversary.

Delivery: If all the senders are in the list of the senders and at least one honest
mixer is in the list of the mixers send a public delayed output O ← Sort(〈Mj〉j∈[n])
to all the mixers.

Fig. 8. Ideal Functionality for Mixing.

and parameters �, �′, �′′ ∈ N such that (1) every key pair (pk, sk) we can
parse pk = ([P], p̂k) and sk = (S, ŝk), where [P] ∈ G

�×�′′
and S ∈ Z

�′×�
q , (2)

any ciphertext C ∈ C can be parsed as ([y], Ĉ) where [y] ∈ G
�, (3) for any

ciphertext C such that Ver(pk, C) = 1 the decryption procedure is linear, i.e.,
we have Dec(sk, C) = S · [y] (4) let C′ = Rand(pk, C; r, r) where C′ = ([y′], Ĉ′)
be a re-randomization of C = ([y], Ĉ) and r ∈ Z

�′′
q then ([y] − [y′]) = [P]r.

We notice that both the scheme PKE2 in Sect. 4 and the pv-Rand-RCCA
PKE scheme of [7,29] are linear. Indeed, our abstraction is made to include
the three schemes under the same template.

(ii) An All-but-One label-based NIZK. An ABO label-based NIZKsd =
(Initsd,Psd,Vsd) for knowledge of the plaintext of the linear PKE. More
in details a ABO label-based NIZK is a NIZK system with labels where
there exists an algorithm ABOInit(prm, τ) which creates a common reference
string crs together with a trapdoor tps such that for any label τ ′ �= τ the
trapdoor allows for zero-knowledge while for τ the proof system is adaptive
sound. A ABO label-based NIZK in the random-string model can be easily
obtained from GS NIZK proof system.

(iii) An adaptive sound NIZK. NIZKmx = (Initmx,Pmx,Vmx) for proving mem-
bership in the relation Rmx = {([P], [y]) : [y] ∈ span([P])}. We recall that
GS proof system is in the random-string model.

(iv) An ideal functionality FTDec for threshold decryption of the pv-Rand-
RCCA PKE PKE scheme. More in details, FTDec takes as parameters the
definition of the PKE scheme and group parameters prm for the key gener-
ation. The functionality initializes a fresh key pair and accepts input of the
form (dec, C) from the mixers: when a mixer sends a message of this kind,
we say that the mixer asks for the decryption of C. When all the mixers
have sent a message of the form (dec, C) the functionality sends a public
delayed output Dec(sk, C): in this case we say that the mixers agreed on the
decryption of C. In the full version of this paper [15] we show a protocol for
the functionality FTDec in the FCRS-hybrid world.

184 A. Faonio et al.

(v) An ideal functionality for the common reference string of the above NIZKs.
The functionality initializes m different CRS {crsimx}i=1,...,m, one for each
mixer,7 for NIZKmx and a CRS crssd for NIZKsd. We stress that all the
CRSs can be sampled as uniformly random strings in the real protocol.

Also we recall that our auditable protocol uses a Bulletin Board functionality.
We do not mention it as a “building block” because every auditable protocol, as
defined by [14], necessarily needs a bulletin board as setup assumption.

Our Mix-Net Protocol. Following the design rationale of Faonio and Fiore,
given two lists of ciphertexts L = 〈C1, . . . , Cn〉 and L′ = 〈C′

1, . . . , C
′
n〉, we define

the checksum of these lists as the output of the following procedure:

Procedure CkSum(L,L′):
1. For all j ∈ [n] parse Cj = ([yj], Ĉj) and C′

j = ([y′
j], Ĉ

′
j);

2. Output
∑

j [yj] − [y′
j].

We describe our mix-net protocol Π between n sender parties PSi
and m mixer

parties PMi
and with resources the ideal functionalities FTDec and FCRS:

Inputs Submission. Every sender PSj
, with j ∈ [n], encrypts its message Mj

by computing Cj ← Enc(pk, Mj ; r), and creates a NIZK proof of knowledge
πsd

j ← Psd(crssd, j, (pk, C), (Mj , r)) (the label for the proof is j). The party PSj

posts (Cj , π
sd
j) on the bulletin board.

Mix. Once all the senders are done with the previous phase, let L0 = 〈C0,j〉j∈[n]

be the list of ciphertexts they posted on the bulletin board. To simplify the
exposition of the result, we assume that all the NIZK proofs {πsd

j }j∈[n] and
all the ciphertexts in L0 verify.
For i = 1 to m, the mixer PMi

waits for the PMi−1 to complete and does:
1. Sample a permutation τi ← $ Sn;
2. Read from the BB the message (Li−1, π

mx
i−1) posted by PMi−1 (or read

L0 if this is the first mixer), and parse Li−1 = 〈Ci−1,j〉j∈[n];
3. Build the list Li ← 〈Ci,j〉j∈[n] of shuffled and re-randomized cipher-

texts by sampling randomness rj , rj and computing Ci,τi(j) ← Rand
(pk, Ci−1,j ; rj , rj).

4. Compute a NIZK proof πmx
i ← $ Pmx(crsimx, ([P],CkSum(Li−1,Li)),∑

j rj),
5. Post in the BB the tuple (Li, π

mx
i).

Verification. Once all mixers are done, every mixer PMi
executes:

1. Read the messages (Li, π
mx
i) posted by every mixer on the BB, as well

as the messages (C0,j , π
sd
j) posted by the senders;

2. For all i ∈ [m] and for all j ∈ [n] check that Ver(pk, Ci,j) = 1;

7 We could modify our protocol to let the mixers share the same CRS, at the price of
requiring NIZKmx be simulation sound. Since in most applications the number of
mixers is small, we go for the simpler option of one crs per mixer.

Structure-Preserving and Re-randomizable RCCA-Secure PKE 185

3. For all i ∈ [m], check Vmx(crsimx, ([P],CkSum(Li−1,Li)), πmx
i) = 1 ;

4. If one of the checks does not verify abort and write invalid in the BB.
Decrypt. All the mixers PMi

execute the following in parallel (using the ideal
functionality FTDec to compute decryptions):
1. let Lm = 〈C∗

j 〉j∈[n] be the list of ciphertexts returned by the last mixer.
For j = 1 to n, ask FTDec for the decryption of C∗

j . Once all the mixers
agreed on the decryption, receive Mj ← Dec(sk, C∗

j) from the functionality;
2. Post Sort(〈Mj〉j∈[n]) on the BB.

Audit Message. The mixers PMi
post the message valid on the BB.

Algorithm Audit: the algorithm reads from the BB and computes the verifica-
tion step of the protocol above (notice that this only relies on public information).

Theorem 5. The auditable protocol (Π,Audit) described above UC-realizes FMix

with setup assumptions FTDec and FCRS.

Proof (Sketch). We prove the theorem via a sequence of hybrid experiments. In
the last experiment we define a simulator and highlight its interaction with the
ideal functionality.

In the proof, we let h∗ be the index of the first honest mixer. Also, we consider
two sets Ψin and Ψhide, both consisting of tuples (X,Y) ∈ G

2
1. For Ψin (resp. Ψhide)

we define a corresponding map ψin : G1 → G1 (resp. ψhide) such that ψin(X)
(resp. ψhide(X)) is equal to Y if (X,Y) ∈ Ψin (resp. (X,Y) ∈ Ψhide), otherwise X.
We assume that all the NIZK proofs verify and that all the ciphertexts verify
(as otherwise the protocol would abort without producing any output).

For space reason, in this proof sketch, we group together the hybrid experi-
ments according to their function in the overall strategy.

Hybrids H1 to H3: In the first step we program the CRSs of both the NIZKs
so that we can simulate the proof of the h∗-th mixer and of all the senders
but one corrupted sender (whose index is hidden to the adversary by the CRS
indistinguishability). For this step we can use the zero-knowledge property of the
NIZKs. In the second and third step we use perfect-rerandomizability and RCCA
security to introduce a change in the output of the h∗-th mixer. Specifically, the
mixer PMh∗ outputs ciphertexts which are fresh encryptions of random and
independent messages H1, . . . , Hn. Moreover, we populate the set Ψhide with the
pairs (Mh∗−1,j , Hj)j∈[n] to associate Hj with Mh∗−1,j ← Dec(sk, Ch∗−1,j), and then
we simulate the ideal functionality FTDec to output Ψhide(M) instead of M. This
way the modification is not visible by looking at the decrypted ciphertexts.

Hybrid H4: Let Vm (resp. Vh∗) be the decryption of the list of ciphertexts
output by the last mixer PMm

(resp. by the first honest mixer PMh∗). The hybrid
H4 aborts if Vm �= Vh∗ . Using the perfect adaptive soundness of NIZKmx and
the RCCA security and the public-verifiability of our PKE, we can show that
this abort can happen only with negligible probability. We adapt the security
argument of Faonio and Fiore [14] to our pv-Rand-PKE and our NIZK proof

186 A. Faonio et al.

of “checksum”. The idea is that the proofs of checksum πmx
h∗+1, . . . , π

mx
n establish

a linear relationship between the plaintexts encrypted in the list of ciphertexts
output by PMh∗ and the plaintexts in the list of ciphertext output by PMm

. The
reduction to RCCA security can install a challenge ciphertext in the first list
and then learn information about the underlying plaintext by decrypting the
second list. The idea is that the condition Vm �= Vh∗ guarantees that the RCCA
decryption oracle would not answer � on ciphertexts from the second list, and
the linear relationship guaranteed by the proofs allows to extract the information
on the challenge ciphertext.

Hybrid H5: Simulate the ideal functionality FTDec in different way. Whenever
the mixers agree on the decryption of a ciphertext C ∈ Lm, simulate the func-
tionality FTDec by outputting a message chosen uniformly at random (without
re-introduction) from the list Vh∗−1. Notice, we don’t need to compile the list
Ψhide anymore as the mixers would only agree to decrypt ciphertexts from the
last list Lm and Vm = Vh∗ = Ψhide(Vh∗−1).

We can prove that H5 and H4 are identically distributed. In fact in H4, after
the first honest mixer outputs Lh∗ , an unbounded environment Z knows that
in Ψhide the element Hj for j ∈ [n] is mapped to some other value in Vh∗−1 but,
from its view, it cannot know to which value. Such information is revealed only
during decryption time. In other words, we could sample the permutation τh∗

(uniformly at random) at decryption time.
It is easy to check that, at this point of the hybrid argument, the list of

ciphertexts received by the first honest mixers is (a permutation of) the output
of the protocol. Moreover, the ordering of the ciphertexts in the former list and
in the latter list are uncorrelated. With the next hybrids we make sure that the
inputs of the honest senders are not discarded along the way from the first mixer
to first honest mixer.

Hybrids H6 to H7: Notice that at this point the output of the mix-net is
already distributed uniformly over the set of all the possible permutations of
the inputs. However, the input messages of the honest senders are still (at least
information theoretically) in the view of the adversary, as the honest senders
still encrypt their inputs. In the next hybrids we switch into a hybrid experiment
where all the honest senders encrypt dummy messages from a set MH , that we
call the set of honest simulated messages. To do so we first program the map
ψin to map the simulated messages to the (real) honest ones, and we simulate
the functionality FTDec to pick messages M chosen uniformly at random (without
re-introduction) from the list Vh∗−1 and return ψin(M) instead of M. Then in the
second step we switch and encrypt the simulated messages, relying on RCCA
security.

Hybrid H8 to H9: In the last two hybrids we make sure that (1) the malicious
senders do not copy the ciphertexts of the honest senders, for this step we rely on

Structure-Preserving and Re-randomizable RCCA-Secure PKE 187

the ABO soundness of the NIZKsd proof system, and (2) the malicious mixers
do not duplicate or remove the messages of the honest senders, this argument is
almost the same as in the step H4.

We can proceed to present the simulator S. For space reason, here we describe
the most important parts.

Extraction of the Inputs: Let Lh∗−1 be the list produced by the malicious
mixer PMh∗−1 . For any j, the simulator S decrypts M̂j ← Dec(sk, Ch∗−1,j) and
if M̂j �∈ MH then it submits it as input to the ideal functionality FMix.

Decryption Phase: The simulator S receives from the ideal functionality FMix

the sorted output 〈Mo
1, . . . , M

o
n〉. Whenever the mixers agree on the decryption

of a ciphertext, it simulates the ideal functionality FTDec by outputting a
message from the sorted output randomly chosen (without reinsertion).

We notice that the hybrid compiles the map ψin by setting a correspondence
between the inputs of the honest senders and the simulated ones, and, during
the decryption phase, uses the map ψin to revert this correspondence. On the
other hand, the simulator does not explicitly set the map, as it does not know
the inputs of the honest senders (which are sent directly to the functionality).
However, at inputs submission phase the simulator picks a simulated input for
any honest sender, and at decryption phase it picks a message from the ordered
list in output, which contains the inputs of the honest senders. By doing so, the
simulator is implicitly defining the map ψin. The second difference is that the
simulator picks the outputs from the list 〈Mo

1, . . . , M
o
n〉 while the hybrid H9 uses

the list ψin(Vh∗−1). However, recall that the simulator extracts the corrupted
inputs from the same list Vh∗−1, and that, by the change introduced in H9, we
are assured that all the inputs of the honest senders will be in the list ψin(Vh∗−1).

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

2. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0 5

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

4. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack (Extended Abstract). In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 7

5. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-25385-0_5
https://doi.org/10.1007/3-540-48910-X_7
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13

188 A. Faonio et al.

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

7. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42045-0 8

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

11. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 13

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

14. Faonio, A., Fiore, D.: Optimistic mixing, revisited. Cryptology ePrint Archive,
Report 2018/864 (2018). https://eprint.iacr.org/2018/864

15. Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications. Cryptology
ePrint Archive, Report 2019/955 (2019). https://eprint.iacr.org/2019/955

16. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 32

17. Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 4

18. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 17

19. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2 14

https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://eprint.iacr.org/2018/864
https://eprint.iacr.org/2019/955
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-642-22792-9_17
https://doi.org/10.1007/978-3-540-24660-2_14

Structure-Preserving and Re-randomizable RCCA-Secure PKE 189

20. Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic mixing for
exit-polls. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 451–465.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 28

21. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 9

22. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

24. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for
structural batch verification in bilinear groups with applications to Groth-Sahai
proofs. In: ACM CCS 17, pp. 1547–1564. ACM Press (2017)

25. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

26. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

27. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

28. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

29. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

30. Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryp-
tosystems (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS,
vol. 263, pp. 381–392. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
47721-7 27

31. Naveed, M., et al.: Controlled functional encryption. In: ACM CCS 14, pp. 1280–
1291. ACM Press (2014)

32. Pereira, O., Rivest, R.L.: Marked mix-nets. In: Brenner, M., et al. (eds.) FC 2017.
LNCS, vol. 10323, pp. 353–369. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70278-0 22

33. Phan, D.H., Pointcheval, D.: OAEP 3-round: a generic and secure asymmetric
encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
63–77. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 5

34. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 29

35. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(1999)

https://doi.org/10.1007/3-540-36178-2_28
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/3-540-47721-7_27
https://doi.org/10.1007/3-540-47721-7_27
https://doi.org/10.1007/978-3-319-70278-0_22
https://doi.org/10.1007/978-3-319-70278-0_22
https://doi.org/10.1007/978-3-540-30539-2_5
https://doi.org/10.1007/978-3-540-74143-5_29

190 A. Faonio et al.

36. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

37. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 18

38. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 15

39. Wikström, D.: Verificatum (2010). https://www.verificatum.com

https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/978-3-540-24638-1_18
https://doi.org/10.1007/978-3-540-24638-1_18
https://doi.org/10.1007/11593447_15
https://www.verificatum.com

iUC: Flexible Universal Composability
Made Simple

Jan Camenisch1, Stephan Krenn2, Ralf Küsters3(B), and Daniel Rausch3

1 Dfinity, Zurich, Switzerland
jan@dfinity.org

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 University of Stuttgart, Stuttgart, Germany
{ralf.kuesters,daniel.rausch}@sec.uni-stuttgart.de

Abstract. Proving the security of complex protocols is a crucial and
very challenging task. A widely used approach for reasoning about such
protocols in a modular way is universal composability. A perfect model
for universal composability should provide a sound basis for formal proofs
and be very flexible in order to allow for modeling a multitude of dif-
ferent protocols. It should also be easy to use, including useful design
conventions for repetitive modeling aspects, such as corruption, parties,
sessions, and subroutine relationships, such that protocol designers can
focus on the core logic of their protocols.

While many models for universal composability exist, including the
UC, GNUC, and IITM models, none of them has achieved this ideal goal
yet. As a result, protocols cannot be modeled faithfully and/or using
these models is a burden rather than a help, often even leading to under-
specified protocols and formally incorrect proofs.

Given this dire state of affairs, the goal of this work is to provide a
framework for universal composability which combines soundness, flex-
ibility, and usability in an unmatched way. Developing such a security
framework is a very difficult and delicate task, as the long history of
frameworks for universal composability shows.

We build our framework, called iUC, on top of the IITM model, which
already provides soundness and flexibility while lacking sufficient usabil-
ity. At the core of iUC is a single simple template for specifying essen-
tially arbitrary protocols in a convenient, formally precise, and flexible
way. We illustrate the main features of our framework with example
functionalities and realizations.

Keywords: Universal Composability · Foundations

This work was in part funded by the European Commission through grant agree-
ments n◦s 321310 (PERCY) and 644962 (PRISMACLOUD), and by the Deutsche
Forschungsgemeinschaft (DFG) through Grant KU 1434/9-1. We would like to thank
Robert Enderlein for helpful discussions.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 191–221, 2019.
https://doi.org/10.1007/978-3-030-34618-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_7

192 J. Camenisch et al.

1 Introduction

Universal composability [4,25] is an important concept for reasoning about the
security of protocols in a modular way. It has found wide spread use, not only
for the modular design and analysis of cryptographic protocols, but also in other
areas, for example for modeling and analyzing OpenStack [16], network time
protocols [11], OAuth v2.0 [14], the integrity of file systems [8], as well as privacy
in email ecosystems [13].

The idea of universal composability is that one first defines an ideal protocol
(or ideal functionality) F that specifies the intended behavior of a target proto-
col/system, abstracting away implementation details. For a concrete realization
(real protocol) P, one then proves that “P behaves just like F” in arbitrary
contexts. Therefore, it is ensured that the real protocol enjoys the security and
functional properties specified by F .

Several models for universal composability have been proposed in the litera-
ture [4,5,7,9,10,15,18,23–25]. Ideally, a framework for universal composability
should support a protocol designer in easily creating full, precise, and detailed
specifications of various applications and in various adversary models, instead
of being an additional obstacle. In particular, such frameworks should satisfy at
least the following requirements:

Soundness: This includes the soundness of the framework itself and the general
theorems, such as composition theorems, proven in it.

Flexibility: The framework must be flexible enough to allow for the precise design
and analysis of a wide range of protocols and applications as well as security
models, e.g., in terms of corruption, setup assumptions, etc.

Usability: It should be easy to precisely and fully formalize protocols; this is also
an important prerequisite for carrying out formally/mathematically correct
proofs. There should exist (easy to use) modeling conventions that allow a
protocol designer to focus on the core logic of protocols instead of having
to deal with technical details of the framework or repeatedly taking care of
recurrent issues, such as modeling standard corruption behavior.

Unfortunately, despite the wide spread use of the universal composability app-
roach, existing models and frameworks are still unsatisfying in these respects as
none combines all of these requirements simultaneously (we discuss this in more
detail below). Thus, the goal of this paper is to provide a universal composability
framework that is sound, flexible, and easy to use, and hence constitutes a solid
framework for designing and analyzing essentially any protocol and application
in a modular, universally composable, and sound way. Developing such a secu-
rity framework is a difficult and very delicate task that takes multiple years if
not decades as the history on models for universal composability shows. Indeed,
this paper is the result of many years of iterations, refinements, and discussions.

Contributions: To achieve the above described goal, we here propose a new
universal composability framework called iUC (“IITM based Universal Compos-
ability”). This framework builds on top of the IITM model with its extension to

iUC: Flexible Universal Composability Made Simple 193

so-called responsive environments [1]. The IITM model was originally proposed
in [18], with a full and revised version – containing a simpler and more general
runtime notion – presented in [22].

The IITM model already meets our goals of soundness and flexibility. That
is, the IITM model offers a very general and at the same time simple runtime
notion so that protocol designers do not have to care much about runtime issues,
making sound proofs easier to carry out. Also, protocols are defined in a very
general way, i.e., they are essentially just arbitrary sets of Interactive Turing
Machines (ITMs), which may be connected in some way. In addition, the model
offers a general addressing mechanism for machine instances. This gives great
flexibility as arbitrary protocols can be specified; all theorems, such as composi-
tion theorems, are proven for this very general class of protocols. Unfortunately,
this generality hampers usability. The model does not provide design conven-
tions, for example, to deal with party IDs, sessions, subroutine relationships,
shared state, or (different forms of) corruption; all of this is left to the protocol
designer to manually specify for every design and analysis task, distracting from
modeling the actual core logic of a protocol.

In essence, iUC is an instantiation of the IITM model that provides a conve-
nient and powerful framework for specifying protocols. In particular, iUC greatly
improves upon usability of the IITM model by adding missing conventions for
many of the above mentioned repetitive aspects of modeling a protocol, while
also abstracting from some of the (few) technical aspects of the underlying model;
see below for the comparison of iUC with other frameworks.

At the core of iUC is one convenient template that supports protocol design-
ers in specifying arbitrary types of protocols in a precise, intuitive, and compact
way. This is made possible by new concepts, including the concept of entities
as well as public and private roles. The template comes with a clear and intu-
itive syntax which further facilitates specifications and allows others to quickly
pick up protocol specifications and use them as subroutines in their higher-level
protocols.

A key difficulty in designing iUC was to preserve the flexibility of the orig-
inal IITM model in expressing (and composing) arbitrary protocols while still
improving usability by fixing modeling conventions for certain repetitive aspects.
We solve this tension between flexibility and usability by, on the one hand,
allowing for a high degree of customization and, on the other hand, by pro-
viding sensible defaults for repetitive and standard specifications. Indeed, as
further explained and discussed in Sect. 3 and also illustrated by our case study
(cf. Sect. 4), iUC preserves flexibility and supports a wide range of protocol types,
protocol features, and composition operations, such as: ideal and global function-
alities with arbitrary protocol structures, i.e., rather than being just monolithic
machines, they may, for example, contain subroutines; protocols with joint-state
and/or global state; shared state between multiple protocol sessions (without
resorting to joint-state realizations); subroutines that are partially globally avail-
able while other parts are only locally available; realizing global functionalities
with other protocols (including joint-state realizations that combine multiple
global functionalities); different types of addressing mechanisms via globally

194 J. Camenisch et al.

unique and/or locally chosen session IDs; global functionalities that can be
changed to be local when used as a subroutine; many different highly customiz-
able corruption types (including incorruptability, static corruption, dynamic cor-
ruption, corruption only under certain conditions, automatic corruption upon
subroutine corruptions); a corruption model that is fully compatible with joint-
state realizations; arbitrary protocol structures that are not necessarily hierar-
chical trees and which allow for, e.g., multiple highest-level protocols that are
accessible to the environment.

Importantly, all of the above is supported by just a single template and two
composition theorems (one for parallel composition of multiple protocols and one
for unbounded self composition of the same protocol). This makes iUC quite user
friendly as protocol designers can leverage the full flexibility with just the basic
framework; there are no extensions or special cases required to support a wide
range of protocol types.

We emphasize that we do not claim specifications done in iUC to be shorter
than the informal descriptions commonly found in the universal composability
literature. A full, non-ambiguous specification cannot compete with such infor-
mal descriptions in terms of brevity, as these descriptions are often underspeci-
fied and ignore details, including model specific details and the precise corruption
behavior. iUC is rather meant as a powerful and sound tool for protocol design-
ers that desire to specify protocols fully, without sweeping or having to sweep
anything under the rug, and at the same time without being overburdened with
modeling details and technical artifacts. Such specifications are crucial for being
able to understand, reuse, and compose results and to carry out sound proofs.

Related Work: The currently most relevant universal composability models are
the UC model [4] (see [3] for the latest version), the GNUC model [15], the IITM
model [18] (see [22] for the full and revised version), and the CC model [23]. The
former three models are closely related in that they are based on polynomial
runtime machines that can be instantiated during a run. In contrast, the CC
model follows a more abstract approach that does not fix a machine model or
runtime notion, and is thus not directly comparable to the other models (includ-
ing iUC). Indeed, it is still an open research question if and how typical UC-style
specifications, proofs, and arguments can be modeled in the CC model. In what
follows, we therefore relate iUC with the UC and GNUC models; as already
explained and further detailed in the rest of the paper, iUC is an instantiation
of the IITM model.

While both the UC and GNUC models also enjoy the benefits of established
protocol modeling conventions, those are, however, less flexible and less expres-
sive than iUC. Let us give several concrete examples: conventions in UC and
GNUC are built around the assumption of having globally unique SIDs that are
shared between all participants of a protocol session, and thus locally managed
SIDs cannot directly be expressed (cf. Sects. 3, 4, and 4.3 for details including
a discussion of local SIDs). Both models also assume protocols to have disjoint
sessions and thus their conventions do not support expressing protocols that
directly share state between sessions, such as signature keys (while both models

iUC: Flexible Universal Composability Made Simple 195

support joint-state realizations to somewhat remedy this drawback, those real-
izations have to modify the protocols at hand, which is not always desirable; cf.
Sect. 4.3). Furthermore, in both models there is only a single highest-level proto-
col machine with potentially multiple instances, whereas iUC supports arbitrar-
ily many highest-level protocol machines. This is very useful as it, for example,
allows for seamlessly modeling global state without needing any extensions or
modifications to our framework or protocol template (as illustrated in Sect. 4).
In the case of GNUC, there are also several additional restrictions imposed on
protocols, such as a hierarchical tree structure where all subroutines have a single
uniquely defined caller (unless they are globally available also to the environ-
ment) and a fixed top-down corruption mechanism; none of which is required in
iUC.

There are also some major differences between UC/GNUC and iUC on a tech-
nical level which further affect overall usability as well as expressiveness. Firstly,
both UC and GNUC had to introduce various extensions of the basic computa-
tional model to support new types of protocols and composition, including new
syntax and new composition theorems for joint-state, global state, and realiza-
tions of global functionalities [5,7,12,15]. This not only forces protocol designers
to learn new protocol syntax and conventions for different types of composition,
but also indicates a lack of flexibility in supporting new types of composition
(say, for example, a joint-state realization that combines several separate global
functionalities, cf. Sect. 4.3). In contrast, both composition theorems in iUC as
well as our single template for protocols seamlessly support all of those types
of protocols and composition, including some not considered in the literature so
far (cf. Sect. 4.3). Secondly, there are several technical aspects in the UC model
a protocol designer has to take care of in order to perform sound proofs: a run-
time notion that allows for exhaustion of machines, even ideal functionalities,
and that forces protocols to manually send runtime tokens between individ-
ual machine instances; a directory machine where protocols have to register all
instances when they are created; “subroutine respecting” protocols that keep
sessions disjoint. Technical requirements of the GNUC model mainly consist of
several restrictions imposed on protocol structures (as mentioned above) which
in particular keep protocol sessions disjoint. Unlike UC, the runtime notion of
GNUC supports modeling protocols that cannot be exhausted, however, GNUC
introduces additional flow-bounds to limit the number of bits sent between cer-
tain machines. In contrast, as also illustrated by our case study, iUC does not
require directory machines, iUC’s notion for protocols with disjoint sessions is
completely optional and can be avoided entirely, and iUC’s runtime notion allows
for modeling protocols without exhaustion, without manual runtime transfers,
and without requiring flow bounds (exhaustion and runtime transfers can of
course be modeled as special cases, if desired).

The difference in flexibility and expressiveness of iUC compared to UC and
GNUC is further explained in Sect. 3 and illustrated by our case study in Sect. 4,
where we model a real world key exchange protocol exactly as it would be
deployed in practice. This case study is not directly supported by the UC and
GNUC models (as further discussed in Sect. 4.3). A second illustrative example

196 J. Camenisch et al.

is given in the full version of this paper [2], where we show that iUC can capture
the SUC model [10] as a mere special case. The SUC model was proposed as
a simpler version of the UC model specifically designed for secure multi party
computation (MPC), but has to break out of (some technical aspects of) the UC
model.

Structure of This Paper: We describe the iUC framework in Sect. 2, with a
discussion of the main concepts and features in Sect. 3. A case study further
illustrates and highlights some features of iUC in Sect. 4. We conclude in Sect. 5.
Full details are given in our full version [2].

2 The iUC Framework

In this section, we present the iUC framework which is built on top of the IITM
model. As explained in Sect. 1, the main shortcoming of the IITM model is a lack
of usability due to missing conventions for protocol specifications. Thus, proto-
col designers have to manually define many repetitive modeling related aspects
such as a corruption model, connections between machines, specifying the desired
machine instances (e.g., does an instance model a single party, a protocol ses-
sion consisting of multiple parties, a globally available resource), the application
specific addressing of individual instances, etc. The iUC framework solves this
shortcoming by adding convenient and powerful conventions for protocol spec-
ifications to the IITM model. A key difficulty in crafting these conventions is
preserving the flexibility of the original IITM model in terms of expressing a
multitude of various protocols in natural ways, while at the same time not over-
burdening a protocol designer with too many details. We solve this tension by
providing a single template for specifying arbitrary types of protocols, including
real, ideal, joint-state, global state protocols, which needed several sets of con-
ventions and syntax in other frameworks, and sometimes even new theorems.
Our template includes many optional parts with sensible defaults such that a
protocol designer has to define only those parts relevant to her specific protocol.
As the iUC framework is an instantiation of the IITM model, all composition
theorems and properties of the IITM model carry over.

The following description of the iUC framework is kept independently of the
IITM model, i.e., one can understand and use the iUC framework without know-
ing the IITM model. More details of the underlying IITM model are available
in the full version [2]. Here we explain the IITM model not explicitly, but rather
explain relevant parts as part of the description of the iUC framework. We start
with some preliminaries in Sect. 2.1, mainly describing the general computational
model, before we explain the general structure of protocols in iUC in Sect. 2.2,
with corruption explained in Sect. 2.3. We then present our protocol template in
Sect. 2.4. In Sect. 2.5, we explain how protocol specifications can be composed in
iUC to create new, more complex protocol specification. Finally, in Sect. 2.6, we
present the realization relation and the composition theorem of iUC. As men-
tioned, concrete examples are given in our case study (cf. Sect. 4). We provide
a precise mapping from iUC protocols to the underlying IITM model in the full

iUC: Flexible Universal Composability Made Simple 197

version, which is crucial to verify that our framework indeed is an instantiation
of the IITM model, and hence, inherits soundness and all theorems of the IITM
model. We note, however, that it is not necessary to read this technical map-
ping to be able to use our framework. The abstraction level provided by iUC is
entirely sufficient to understand and use this framework.

2.1 Preliminaries

Just as the IITM model, the iUC framework uses interactive Turing machines
as its underlying computational model. Such interactive Turing machines can
be connected to each other to be able to exchange messages. A set of machines
Q = {M1, . . .,Mk} is called a system. In a run of Q, there can be one or more
instances (copies) of each machine in Q. One instance can send messages to
another instance. At any point in a run, only a single instance is active, namely,
the one to receive the last message; all other instances wait for input. The active
instance becomes inactive once it has sent a message; then the instance that
receives the message becomes active instead and can perform arbitrary com-
putations. The first machine to run is the so-called master. The master is also
triggered if the last active machine did not output a message. In iUC, the envi-
ronment (see next) will take the role of the master. Jumping ahead, in the iUC
framework a special user-specified CheckID algorithm is used to determine
which instance of a machine receives a message and whether a new instance is
to be created (cf. Sect. 2.4).

To define the universal composability security experiment (cf. Fig. 1 and
Sect. 2.5), one distinguishes between three types of systems: protocols, envi-
ronments, and adversaries. Intuitively, the security experiment in any universal
composability model compares a protocol P with another protocol F , where F
is typically an ideal specification of some task, called ideal protocol or ideal func-
tionality. The idea is that if one cannot distinguish P from F , then P must be
“as good as” F . More specifically, the protocol P is considered secure (written
P ≤ F) if for all adversaries A controlling the network of P there exists an
(ideal) adversary S, called simulator, controlling the network of F such that {A,
P} and {S,F} are indistinguishable for all environments E . Indistinguishability
means that the probability of the environment outputting 1 in runs of the sys-
tem {E ,A,P} is negligibly close to the probability of outputting 1 in runs of the
system {E ,S,F} (written {E ,A,P} ≡ {E ,S,F}).

In the security experiment, systems are connected as follows (cf. arrows in
Fig. 1): Every (machine in a) protocol has an I/O interface that is used to connect
to other protocol machines, higher-level protocols, or an environment, which, in
turn, can simulate higher-level protocols. Every (machine in a) protocol also has
a network interface to connect to a network adversary. We sometimes let the
environment subsume the network adversary. That is, the environment performs
both roles: on the left-hand side of Fig. 1, instead of having the systems E and
A we can have an environment E ′ that connects to both the I/O interface and
the network interface of P.

The iUC framework includes support for so-called responsive environments
and responsive adversaries introduced in [1]. Such environments/adversaries can

198 J. Camenisch et al.

Fig. 1. The setup for the universal composability experiment (P ≤ F) and internal
structure of protocols. Here E is an environment, A and S are adversaries, and P and
F are protocols. Arrows between systems denote connections/interfaces that allow for
exchanging messages. The boxes Mi in P are different machines modeling various tasks
in the protocol. Note that the machines in P and the way they are connected is just
an example; other protocols can have a different internal structure.

be forced to answer certain messages on the network interface of the protocol
immediately, without interfering with the protocol in between. These messages
are called restricting messages. This mechanism is very handy to, e.g., exchange
meta information such as the corruption state of a protocol participant or obtain
cryptographic keys from the adversary; see our full version [2] and [1] for a more
detailed discussion.

We require environments to be universally bounded, i.e., there is a fixed
polynomial in the security parameter (and possibly external input) that upper
bounds the runtime of an environment no matter to which protocol and adver-
sary it is connected to. A system Q is called environmentally bounded if for
every (universally bounded) environment E there is a polynomial that bounds
the runtime of the system Q connected to E (except for potentially a negligi-
ble probability). This will mostly be required for protocols; note that natural
protocols used in practice are typically environmentally bounded, including all
protocols that run in polynomial time in their inputs received so far and the
security parameter. This is the same runtime notion used in the IITM model.
Compared to other models, this notion is very general and particularly simple
(see [22] for a discussion).

We define Env(Q) to be the set of all universally bounded (responsive) envi-
ronments that connect to a system Q via network and I/O interfaces. We fur-
ther define Adv(P) to be the set of (responsive) adversaries that connect to
the network interface of a protocol P such that the combined system {A,P} is
environmentally bounded.

2.2 Structure of Protocols

A protocol P in our framework is specified via a system of machines {M1, . . .,
Ml}. Each machine Mi implements one or more roles of the protocol, where
a role describes a piece of code that performs a specific task. For example, a
(real) protocol Psig for digital signatures might contain a signer role for signing

iUC: Flexible Universal Composability Made Simple 199

Fig. 2. Examples of static and dynamic structures of various protocol types. Fsig is an
ideal protocol, Psig a real protocol, Pjs

sig a so-called joint-state realization, and FCRS a
global state protocol. On the left-hand side: static structures, i.e., (specifications of)
machines/protocols. On the right-hand side: possible dynamic structures (i.e., several
machine instances managing various entities).

messages and a verifier role for verifying signatures. In a run of a protocol,
there can be several instances of every machine, interacting with each other
(and the environment) via I/O interfaces and interacting with the adversary
(and possibly the environment) via network interfaces. An instance of a machine
Mi manages one or more so-called entities. An entity is identified by a tuple
(pid , sid , role) and describes a specific party with party ID (PID) pid running
in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of Mi according to the
specification of Mi. Entities can send messages to and receive messages from
other entities and the adversary using the I/O and network interfaces of their
respective machine instances. In the following, we explain each of these parts in
more detail, including roles and entities; we also provide examples of the static
and dynamic structure of various protocols in Fig. 2.

Roles: As already mentioned, a role is a piece of code that performs a specific
task in a protocol P. Every role in P is implemented by a single unique machine
Mi, but one machine can implement more than one role. This is useful for shar-
ing state between several roles: for example, consider an ideal functionality Fsig

for digital signatures consisting of a signer and a verifier role. Such an ideal
protocol usually stores all messages signed by the signer role in some global
set that the verifier role can then use to prevent forgery. To share such a set
between roles, both roles must run on the same (instance of a) machine, i.e., Fsig

generally consists of a single machine Msigner,verifier implementing both roles.
In contrast, the real protocol Psig uses two machines Msigner and Mverifier as
those roles do not and cannot directly share state in a real implementation (cf.
left-hand side of Fig. 2). Machines provide an I/O interface and a network inter-

200 J. Camenisch et al.

face for every role that they implement. The I/O interfaces of two roles of two
different machines can be connected. This means that, in a run of a system, two
entities (managed by two instances of machines) with connected roles can then
directly send and receive messages to/from each other; in contrast, entities of
unconnected roles cannot directly send and receive messages to/from each other.
Jumping ahead, in a protocol specification (see below) it is specified for each
machine in that protocol to which other roles (subroutines) a machine connects
to (see, e.g., also Fig. 3a where the arrows denote connected roles/machines).
The network interface of every role is connected to the adversary (or simula-
tor), allowing for sending and receiving messages to and from the adversary. For
addressing purposes, we assume that each role in P has a unique name. Thus,
role names can be used for communicating with a specific piece of code, i.e.,
sending and receiving a message to/from the correct machine.

Public and Private Roles: We, in addition, introduce the concept of public and
private roles, which, as we will explain, is a very powerful tool. Every role of a
protocol P is either private or public. Intuitively, a private role can be called/used
only internally by other roles of P whereas a public role can be called/used by
any protocol and the environment. Thus, private roles provide their functionality
only internally within P, whereas public roles provide their functionality also to
other protocols and the environment. More precisely, a private role connects via
its I/O interface only to (some of the) other roles in P such that only those
roles can send messages to and receive messages from a private role; a public
role additionally provides its I/O interface for arbitrary other protocols and the
environment such that they can also send messages to and receive messages from
a public role. We illustrate the concept of public and private roles by an example
below.

Using Other Protocols as Subroutines: Protocols can be combined to construct
new, more complex protocols. Intuitively, two protocols P and R can be com-
bined if they connect to each other only via (the I/O interfaces of) their public
roles. (We give a formal definition of connectable protocols in Sect. 2.5.) The
new combined protocol Q consists of all roles of P and R, where private roles
remain private while public roles can be either public or private in Q; this is
up to the protocol designer to decide. To keep role names unique within Q,
even if the same role name was used in both P and R, we (implicitly) assume
that role names are prefixed with the name of their original protocol. We will
often also explicitly write down this prefix in the protocol specification for better
readability (cf. Sect. 2.4).

Examples Illustrating the Above Concepts: Figure 3a, which is further explained
in our case study (cf. Sect. 4), illustrates the structure of the protocols we use
to model a real key exchange protocol. This protocol as a whole forms a pro-
tocol in the above sense and at the same time consists of three separate (sub-)
protocols: The highest-level protocol PKE has two public roles initiator and
responder executing the actual key exchange and one private role setup that

iUC: Flexible Universal Composability Made Simple 201

Fig. 3. The static structures of the ideal key exchange functionality FKE (right side)
and its realization PKE (left side), including their subroutines, in our case study. Arrows
denote direct connections of I/O interfaces; network connections are omitted for sim-
plicity. Solid boxes (labeled with one or two role names) denote individual machines,
dotted boxes denote (sub-)protocols that are specified by one instance of our template
each (cf. Sect. 2.4).

generates some global system parameters. The protocol PKE uses two other pro-
tocols as subroutines, namely the ideal functionality Fsig-CA for digital signatures
with roles signer and verifier, for signing and verifying messages, and an
ideal functionality FCA for certificate authorities with roles registration and
retrieval, for registering and retrieving public keys (public key infrastructure).
Now, in the context of the combined key exchange protocol, the registration
role of FCA is private as it should be used by Fsig-CA only; if everyone could
register keys, then it would not be possible to give any security guarantees in
the key exchange. The retrieval role of FCA remains public, modeling that
public keys are generally considered to be known to everyone, so not only PKE

but also the environment (and possibly other protocols later using PKE) should
be able to access those keys. This models so-called global state. Similarly to role
registration, the signer role of Fsig-CA is private too. For simplicity of pre-
sentation, we made the verifier role private, although it could be made public.
Note that this does not affect the security statement: the environment knows the
public verification algorithm and can obtain all verification keys from FCA, i.e.,
the environment can locally compute the results of the verification algorithm.
Altogether, with the concept of public and private roles, we can easily decide
whether we want to model global state or make parts of a machine globally
available while others remain local subroutines. We can even change globally
available roles to be only locally available in the context of a new combined
protocol.

As it is important to specify which roles of a (potentially combined) pro-
tocol are public and which ones are private, we introduce a simple notation
for this. We write (role1, . . . , rolen | rolen+1, . . . , rolem) to denote a protocol P
with public roles role1, . . . , rolen and private roles rolen+1, . . . , rolem. If there
are no private roles, we just write (role1, . . . , rolen), i.e., we omit “|”. Using

202 J. Camenisch et al.

this notation, the example key exchange protocol from Fig. 3a can be written as
(initiator, responder, retrieval | setup, signer, verifier, registration).

Entities and Instances: As mentioned before, in a run of a protocol there can
be several instances of every protocol machine, and every instance of a protocol
machine can manage one or more, what we call, entities. Recall that an entity
is identified by a tuple (pid , sid , role), which represents party pid running in a
session with SID sid and executing some code defined by the role role. As also
mentioned, such an entity can be managed by an instance of a machine only if
this machine implements role. We note that sid does not necessarily identify a
protocol session in a classical sense. The general purpose is to identify multiple
instantiations of the role role executed by party pid . In particular, entities with
different SIDs may very well interact with each other, if so desired, unlike in
many other frameworks.

The novel concept of entities allows for easily customizing the interpretation
of a machine instance by managing appropriate sets of entities. An important
property of entities managed by the same instance is that they have access to
the same internal state, i.e., they can share state; entities managed by different
instances cannot access each others internal state directly. This property is usu-
ally the main factor for deciding which entities should be managed in the same
instance. With this concept of entities, we obtain a single definitional framework
for modeling various types of protocols and protocol components in a uniform
way, as illustrated by the examples in Fig. 2, explained next.

One instance of an ideal protocol in the literature, such as a signature func-
tionality Fsig, often models a single session of a protocol. In particular, such an
instance contains all entities for all parties and all roles of one session. Figure 2
shows two instances of the machine Msigner,verifier, managing sessions sid and
sid ′, respectively. In contrast, instances of real protocols in the literature, such
as the realization Psig of Fsig, often model a single party in a single session of
a single role, i.e., every instance manages just a single unique entity, as also
illustrated in Fig. 2. If, instead, we want to model one global common reference
string (CRS), for example, we have one instance of a machine MCRS which man-
ages all entities, for all sessions, parties, and roles. To give another example, the
literature also considers so-called joint-state realizations [7,20] where a party re-
uses some state, such as a cryptographic key, in multiple sessions. An instance
of such a joint-state realization thus contains entities for a single party in one
role and in all sessions. Figure 2 shows an example joint-state realization Pjs

sig of
Fsig where a party uses the same signing key in all sessions. As illustrated by
these examples, instances model different things depending on the entities they
manage.

Exchanging Messages: Entities can send and receive messages using the I/O and
network interfaces belonging to their respective roles. When an entity sends a
message it has to specify the receiver, which is either the adversary in the case of
the network interface or some other entity (with a role that has a connected I/O
interface) in the case of the I/O interface. If a message is sent to another entity
(pidrcv, sidrcv, rolercv), then the message is sent to the machine M implementing

iUC: Flexible Universal Composability Made Simple 203

rolercv; a special user-defined CheckID algorithm (see Sect. 2.4) is then used
to determine the instance of M that manages (pidrcv, sidrcv, rolercv) and should
hence receive the message. When an entity (pidrcv, sidrcv, rolercv) receives a
message on the I/O interface, i.e., from another entity (pidsnd, sidsnd, rolesnd),
then the receiver learns pidsnd, sidsnd

1 and either the actual role name rolesnd (if
the sender is a known subroutine of the receiver, cf. Sect. 2.4) or an arbitrary but
fixed number i (from an arbitrary but fixed range of natural numbers) denoting
a specific I/O connection to some (unknown) sender role (if the sender is an
unknown higher-level protocol or the environment2). The latter models that a
receiver/subroutine does not necessarily know the exact machine code of a caller
in some arbitrary higher-level protocol, but the receiver can at least address the
caller in a consistent way for sending a response. If a message is received from
the network interface, then the receiving entity learns only that it was sent from
the adversary.

We note that we do not restrict which entities can communicate with each
other as long as their roles are connected via their I/O interfaces, i.e., entities
need not share the same SID or PID to communicate via an I/O connection.
This, for example, facilitates modeling entities in different sessions using the
same resource, as illustrated in our case study. It, for example, also allows us to
model the global functionality FCRS from Fig. 2 in the following natural way:
FCRS could manage only a single (dummy) entity (ε, ε, CRS) in one machine
instance, which can be accessed by all entities of higher-level protocols.

2.3 Modeling Corruption

We now explain on an abstract level how our framework models corruption of
entities. In Sect. 2.4, we then explain in detail how particular aspects of the cor-
ruption model are specified and implemented. Our framework supports five dif-
ferent modes of corruption: incorruptible, static corruption, dynamic corruption
with/without secure erasures, and custom corruption. Incorruptible protocols do
not allow the adversary to corrupt any entities; this can, e.g., be used to model
setup assumptions such as common reference strings which should not be con-
trollable by an adversary. Static corruption allows adversaries to corrupt entities
when they are first created, but not later on, whereas dynamic corruption allows
for corruption at arbitrary points in time. In the case of dynamic corruption, one
can additionally choose whether by default only the current internal state (known
as dynamic corruption with secure erasures) or also a history of the entire state,
including all messages and internal random coins (known as dynamic corrup-
tion without secure erasures) is given to the adversary upon corruption. Finally,
custom corruption is a special case that allows a protocol designer to disable cor-
ruption handling of our framework and instead define her own corruption model
while still taking advantage of our template and the defaults that we provide;
we will ignore this custom case in the following description.
1 The environment can claim arbitrary PIDs and SIDs as sender.
2 The environment can choose the number that it claims as a sender as long as it does

not collide with a number used by another (higher-level) role in the protocol.

204 J. Camenisch et al.

To corrupt an entity (pid , sid , role) in a run, the adversary can send the spe-
cial message corrupt on the network interface to that entity. Note that, depend-
ing on the corruption model, such a request might automatically be rejected
(e.g., because the entity is part of an incorruptible protocol). In addition to
this automatic check, protocol designers are also able to specify an algorithm
AllowCorruption, which can be used to specify arbitrary other conditions
that must be met for a corrupt request to be accepted. For example, one could
require that all subroutines must be corrupted before a corruption request is
accepted (whether or not subroutines are corrupted can be determined using
CorruptionStatus? requests, see later), modeling that an adversary must cor-
rupt the entire protocol stack running on some computer instead of just indi-
vidual programs, which is often easier to analyze (but yields a less fine grained
security result). One could also prevent corruption during a protected/trusted
“setup” phase of the protocol, and allow corruption only afterwards.

If a corrupt request for some entity (pid , sid , role) passes all checks and is
accepted, then the state of the entity is leaked to the adversary (which can be
customized by specifying an algorithm LeakedData) and the entity is consid-
ered explicitly corrupted for the rest of the protocol run. The adversary gains
full control over explicitly corrupted entities: messages arriving on the I/O inter-
face of (pid , sid , role) are forwarded on the network interface to the adversary,
while the adversary can tell (pid , sid , role) (via its network interface) to send
messages to arbitrary other entities on behalf of the corrupted entity (as long as
both entities have connected I/O interfaces). The protocol designer can control
which messages the adversary can send in the name of a corrupted instance by
specifying an algorithm AllowAdvMessage. This can be used, e.g., to prevent
the adversary from accessing uncorrupted instances or from communicating with
other (disjoint) sessions, as detailed in Sect. 2.4.

In addition to the corruption mechanism described above, entities that are
activated for the first time also determine their initial corruption status by
actively asking the adversary whether he wants to corrupt them. More pre-
cisely, once an entity (pid , sid , role) has finished its initialization (see Sect. 2.4),
it asks the adversary via a restricting message3 whether he wants to corrupt
(pid , sid , role) before performing any other computations. The answer of the
adversary is processed as discussed before, i.e., the entity decides whether to
accept or reject a corruption request. This gives the adversary the power to cor-
rupt new entities right from the start, if he desires; note that in the case of static
corruption, this is also the last point in time where an adversary can explicitly
corrupt (pid , sid , role).

3 Recall from Sect. 2.1 that by sending a restricting message, the adversary is forced
to answer, and hence, decide upon corruption right away, before he can interact in
any other way with the protocol, preventing artificial interference with the protocol
run. This is a very typical use of restricting messages, which very much simplifies
corruption modeling (see also [1]).

iUC: Flexible Universal Composability Made Simple 205

For modeling purposes, we allow other entities and the environment to obtain
the current corruption status of an entity (pid , sid , role).4 This is done by send-
ing a special CorruptionStatus? request on the I/O interface of (pid , sid , role).
If (pid , sid , role) has been explicitly corrupted by the adversary, the entity
returns true immediately. Otherwise, the entity is free to decide whether true
or false is returned, i.e., whether it considers itself corrupted nevertheless (this
is specified by the protocol designer via an algorithm DetermineCorrStatus).
For example, a higher level protocol might consider itself corrupted if at least
one of its subroutines is (explicitly or implicitly) corrupted, which models that
no security guarantees can be given if certain subroutines are controlled by the
adversary. To figure out whether subroutines are corrupted, a higher level proto-
col can send CorruptionStatus? requests to subroutines itself. We call an entity
that was not explicitly corrupted but still returns true implicitly corrupted. We
note that the responses to CorruptionStatus? request are guaranteed to be
consistent in the sense that if an entity returns true once, it will always return
true. Also, according to the defaults of our framework, CorruptionStatus?
request are answered immediately (without intervention of the adversary) and
processing these requests does not change state. These are important features
which allow for a smooth handling of corruption.

2.4 Specifying Protocols

We now present our template for fully specifying a protocol Q, including its
uncorrupted behavior, its corruption model, and its connections to other pro-
tocols. As mentioned previously, the template is sufficiently general to capture
many different types of protocols (real, ideal, hybrid, joint-state, global, ...) and
includes several optional parts with reasonable defaults. Thus, our template com-
bines freedom with ease of specification.

The template is given in Fig. 4. Some parts are self-explanatory; the other
parts are described in more detail in the following. The first section of the tem-
plate specifies properties of the whole protocol that apply to all machines.

Participating Roles: This list of sets of roles specifies which roles are (jointly)
implemented by a machine. To give an example, the list “{role1, role2}, role3,
{role4, role5, role6}” specifies a protocol Q consisting of three machines
Mrole1,role2 , Mrole3 , and Mrole4,role5,role6 , where Mrole1,role2 implements role1 and
role2, and so on.

Corruption Model: This fixes one of the default corruption models supported
by iUC, as explained in Sect. 2.3: incorruptible, static, dynamic with erasures, and
4 This operation is purely for modeling purposes and does of course not exist in reality.

It is crucial for obtaining a reasonable realization relation: The environment needs
a way to check that the simulator in the ideal world corrupts exactly those entities
that are corrupted in the real world, i.e., the simulation should be perfect also
with respect to the corruption states. If we did not provide such a mechanism, the
simulator could simply corrupt all entities in the ideal world which generally allows
for a trivial simulation of arbitrary protocols.

206 J. Camenisch et al.

Fig. 4. Template for specifying protocols. Blocks labeled with an asterisk (*) are
optional. Note that the template does not specify public and private roles as those
change depending on how several protocols (each defined via a copy of this template)
are connected.

dynamic without erasures. Moreover, if the corruption model is set to custom, the
protocol designer has to manually define his own corruption model and process
corruption related messages, such as CorruptionStatus?, using the algorithms
MessagePreprocessing and/or Main (see below), providing full flexibility.

Apart from the protocol setup, one has to specify each procotol machine Mi,
and hence, the behavior of each set of roles listed in the protocol setup.

Subroutines: Here the protocol designer lists all roles that Mi uses as subrou-
tines. These roles may be part of this or potentially other protocols, but may
not include roles that are implemented by Mi. The I/O interface of (all roles
of) the machine Mi will then be connected to the I/O interfaces of those roles,
allowing Mi to access and send messages to those subroutines.5 We note that
(subroutine) roles are uniquely specified by their name since we assume globally
unique names for each role. We also note that subroutines are specified on the
level of roles, instead of the level of whole protocols, as this yields more flexibility
and a more fine grained subroutine relationship, and hence, access structure.

If roles of some other protocol R are used, then protocol authors should prefix
the roles with the protocol name to improve readability, e.g., “R : roleInR” to
5 We emphasize that we do not put any restrictions on the graph that the subroutine

relationships of machines of several protocols form. For example, it is entirely possible
to have machines in two different protocols that specify each other as subroutines.

iUC: Flexible Universal Composability Made Simple 207

denote a connection to the role roleInR in the protocol R. This is mandatory if
the same role name is used in several protocols to avoid ambiguity. If a machine
is supposed to connect to all roles of some protocol R, then, as a short-hand
notation, one can list the name R of the protocol instead.

Internal State: State variables declared here (henceforth denoted by sans-serif
fonts, e.g., a, b) preserve their values across different activations of an instance
of Mi.

In addition to these user-specified state variables, every machine has some
additional framework-specific state variables that are set and changed automati-
cally according to our conventions. Most of these variables are for internal book-
keeping and need not be accessed by protocol designers. Those that might be
useful in certain algorithms are mentioned and explained further below (we pro-
vide a complete list of all framework specific variables in the full version).

CheckID: As mentioned before, instances of machines in our framework man-
age (potentially several) entities (pid i, sid i, rolei). The algorithm CheckID
allows an instance of a machine to decide which of those entities are accepted
and thus managed by that instance, and which are not. Furthermore, it
allows for imposing a certain structure on pid i and sid i; for example, SIDs
might only be accepted if they encode certain session parameters, e.g., sid i =
(parameter1, parameter2, sid

′
i).

More precisely, the algorithm CheckID(pid , sid , role) is a deterministic
algorithm that computes on the input (pid , sid , role), the internal state of the
machine instance, and the security parameter. It runs in polynomial time in the
length of the current input, the internal state, and the security parameter and
outputs accept or reject.

Whenever one (entity in one) instance of a machine, the adversary, or the
environment sends a message m to some entity (pid , sid , role) (via the entity’s
I/O interface or network interface), the following happens: m is delivered to
the first instance of the machine, say M , that implements role, where instances
of a machine are ordered by the time of their creation. That instance then
runs CheckID(pid , sid , role) to determine whether it manages (pid , sid , role),
and hence, whether the message m (that was sent to (pid , sid , role)) should
be accepted. If CheckID accepts the entity, then the instance gets to process
the message m; otherwise, it resets itself to the state before running CheckID
and the message is given to the next instance of M (according to the order of
instances mentioned before) which then runs CheckID(pid , sid , role), and so
on. If no instance accepts, or no instance exists yet, then a new one is created
that also runs CheckID(pid , sid , role). If that final instance accepts, it also gets
to process m; otherwise, the new instance is deleted, the message m is dropped,
and the environment is triggered (with a default trigger message).

We require that CheckID behaves consistently, i.e., it never accepts an entity
that has previously been rejected, and it never rejects an entity that has previ-
ously been accepted; this ensures that there are no two instances that manage
the same entity. For this purpose, we provide access to a convenient framework
specific list acceptedEntities that contains all entities that have been accepted
so far (in the order in which they were first accepted). We note that CheckID

208 J. Camenisch et al.

cannot change the (internal) state of an instance; all changes caused by running
CheckID are dropped after outputting a decision, i.e., the state of an instance
is set back to the state before running CheckID.

If CheckID is not specified, its default behavior is as follows: Given input
(pid , sid , role), if the machine instance in which CheckID is running has not
accepted an entity yet, it outputs accept. If it has already accepted an entity
(pid ′, sid ′, role ′), then it outputs accept iff pid = pid ′ and sid = sid ′. Otherwise,
it outputs reject. Thus, by default, a machine instance accepts, and hence,
manages, not more than one entity per role for the roles the machine implements.

Corruption Behavior: This element of the template allows for customiza-
tion of corruption related behavior of machines by specifying one or
more of the optional algorithms DetermineCorrStatus, AllowCorruption,
LeakedData, and AllowAdvMessage, as explained and motivated in
Sect. 2.3, with the formal definition of these algorithms, including their default
behavior if not specified, given in the full version. A protocol designer can access
two useful framework specific variables for defining these algorithms: transcript,
which, informally, contains a transcript of all messages sent and received by
the current machine instance, and CorruptionSet, which contains all explic-
itly corrupted entities that are managed by the current machine instance. As
these algorithms are part of our corruption conventions, they are used only if
Corruption Model is not set to custom.

Initialization, EntityInitialization, MessagePreprocessing, Main: These
algorithms specify the actual behavior of a machine for uncorrupted entities.

The Initialization algorithm is run exactly once per machine instance (not
per entity in that instance) and is mainly supposed to be used for initializing the
internal state of that instance. For example, one can generate global parameters
or cryptographic key material in this algorithm.

The EntityInitialization(pid , sid , role) algorithm is similar to
Initialization but is run once for each entity (pid , sid , role) instead of once for
each machine instance. More precisely, it runs directly after a potential execu-
tion of Initialization if EntityInitialization has not been run for the current
entity (pid , sid , role) yet. This is particularly useful if a machine instance man-
ages several entities, where not all of them might be known from the beginning.

After the algorithms Initialization and, for the current entity, the algo-
rithm EntityInitialization have finished, the current entity determines its ini-
tial corruption status (if not done yet) and processes a corrupt request from the
network/adversary, if any. Note that this allows for using the initialization algo-
rithms to setup some internal state that can be used by the entity to determine
its corruption status.

Finally, after all of the previous steps, if the current entity has not been
explicitly corrupted,6 the algorithms MessagePreprocessing and Main are
run. The MessagePreprocessing algorithm is executed first. If it does not

6 As mentioned in Sect. 2.3, if an entity is explicitly corrupted, it instead acts as a
forwarder for messages to and from the adversary.

iUC: Flexible Universal Composability Made Simple 209

end the current activation, Main is executed directly afterwards. While we
do not fix how authors have to use these algorithms, one would typically use
MessagePreprocessing to prepare the input m for the Main algorithm, e.g.,
by dropping malformed messages or extracting some key information from m.
The algorithm Main should contain the core logic of the protocol.

If any of the optional algorithms are not specified, then they are simply
skipped during computation. We provide a convenient syntax for specifying these
algorithms in the full version; see our case study in Sect. 4 for examples.

This concludes the description of our template. As already mentioned, in the
full version of this paper we give a formal mapping of this template to protocols
in the sense of the IITM model, which provides a precise semantics for the
templates and also allows us to carry over all definitions, such as realization
relations, and theorems, such as composition theorems, of the IITM model to
iUC (see Sect. 2.6).

2.5 Composing Protocol Specifications

Protocols in our framework can be composed to obtain more complex protocols.
More precisely, two protocols Q and Q′ that are specified using our template
are called connectable if they connect via their public roles only. That is, if a
machine in Q specifies a subroutine role of Q′, then this subroutine role has to
be public in Q′, and vice versa.

Two connectable protocols can be composed to obtain a new protocol R
containing all roles of Q and Q′ such that the public roles of R are a subset of the
public roles of Q and Q′. Which potentially public roles of R are actually declared
to be public in R is up the protocol designer and depends on the type of protocol
that is to be modeled (see Sect. 2.2 and our case study in Sect. 4). In any case,
the notation from Sect. 2.2 of the form (rolepub

1 . . . rolepub
i | rolepriv

1 . . . rolepriv
j)

should be used for this purpose.
For pairwise connectable protocols Q1, . . . ,Qn we define Comb(Q1, . . . ,Qn)

to be the (finite) set of all protocols R that can be obtained by connecting
Q1, . . . ,Qn. Note that all protocols R in this set differ only by their sets of
public roles. We define two shorthand notations for easily specifying the most
common types of combined protocols: by (Q1, . . . ,Qi | Qi+1, . . . ,Qn) we denote
the protocol R ∈ Comb(Q1, . . . ,Qn), where the public roles of Q1, . . . ,Qi remain
public in R and all other roles are private. This notation can be mixed with the
notation from Sect. 2.2 in the natural way by replacing a protocol Qj with its
roles, some of which might be public while others might be private in R. Fur-
thermore, by Q1 || Q2 we denote the protocol R ∈ Comb(Q1,Q2) where exactly
those public roles of Q1 and Q2 remain public that are not used as a subroutine
by any machine in Q1 or Q2.

We call a protocol Q complete if every subroutine role used by a machine in Q
is also part of Q. In other words, Q fully specifies the behavior of all subroutines.
Since security analysis makes sense only for a fully specified protocol, we will
(implicitly) consider this to be the default in the following.

210 J. Camenisch et al.

2.6 Realization Relation and Composition Theorems

In the following, we define the universal composability experiment and state the
main composition theorem of iUC. Since iUC is an instantiation of the IITM
model, as shown by our mapping mentioned in Sect. 2.4, both the experiment
and theorem are directly carried over from the IITM model and hence do not
need to be re-proven.

Definition 1 (Realization relation in iUC). Let P and F be two envi-
ronmentally bounded complete protocols with identical sets of public roles. The
protocol P realizes F (denoted by P ≤ F) iff there exists a simulator (system)
S ∈ Adv(F) such that for all E ∈ Env(P) it holds true that {E ,P} ≡ {E ,S,F}.7

Note that E in {E ,P} connects to the I/O interfaces of public roles as well as
the network interfaces of all roles of P. In contrast, E in the system {E ,S,F}
connects to the I/O interfaces of public roles of F and the network interface of
S. The simulator S connects to E (simulating the network interface of P) and
the network interface of F ; see also Fig. 1, where here we consider the case that
E subsumes the adversary A. (As shown in [1], whether or not the adversary A
is considered does not change the realization relation. The resulting notions are
equivalent.)

Now, the main composition theorem of iUC, which is a corollary of the com-
position of the IITM model, is as follows:

Corollary 1 (Concurrent composition in iUC). Let P and F be two pro-
tocols such that P ≤ F . Let Q be another protocol such that Q and F are
connectable. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R and I
have the same sets of public roles. If R is environmentally bounded and complete,
then R ≤ I.

Just as in the IITM model, we emphasize that this corollary also covers the
special cases of protocols with joint-state and global state. Furthermore, a second
composition theorem for secure composition of an unbounded number of sessions
of a protocol is also available, again a corollary of a more general theorem in the
IITM model (see the full version [2]).

3 Concepts and Discussion

Recall from the introduction that a main goal of iUC is to provide a flexible yet
easy to use framework for universally composable protocol analysis and design.
In this section, we briefly summarize and highlight some of the core concepts
that allow us to retain the flexibility and expressiveness of the original IITM
model while adding the usability with a handy set of conventions. We then high-
light a selection of features that are supported by iUC due to the concepts iUC

7 Intuitively, the role names are used to determine which parts of F are realized by
which parts of P, hence they must have the same sets of public roles.

iUC: Flexible Universal Composability Made Simple 211

uses and that are not supported by other (conventions of) models, including the
prominent UC and GNUC models. Our case study in Sect. 4 further illustrates
the expressiveness of iUC. An extended discussion of concepts and features is
available in the full version [2]. Some of the most crucial concepts of iUC, dis-
cussed next, are the separation of entities and machine instances, public and
private roles, a model independent interpretation of SIDs, support for respon-
sive environments as well as a general addressing mechanism, which enables some
of these concepts.

Separation of Entities and Machine Instances: Traditionally, universal compos-
ability models do not distinguish between a machine instance and its interpreta-
tion. Instead, they specify that, e.g., a real protocol instance always represents a
single party in a single session running a specific piece of code. Sometimes even
composition theorems depend on this view. This has the major downside that,
if the interpretation of a machine instance needs to be changed, then existing
models, conventions, and composition theorems are no longer applicable and
have to be redefined (and, in the case of theorems, reproven). For example, a
typical joint state protocol instance [7,20] manages a single party in all sessions
and one role. Thus, in the case of the UC and GNUC models, the models had
to be extended and reproven, including conventions and composition theorems.
This is in contrast to iUC, which introduces the concept of entities. A protocol
designer can freely define the interpretation of a machine instance by specify-
ing the set of entities managed by that instance; the resulting protocol is still
supported by our single template and the main composition theorem. This is a
crucial feature that allows for the unified handling of real, ideal, joint-state, and
(in combination with the next concept) also global state protocols.

We emphasize that this generality is made possible by the highly customizable
addressing mechanism (CheckID in the template) used in iUC, which in turn
is based on the very general addressing mechansim of the IITM model.

Public and Private Roles: Similar to the previous point, traditionally global
state is defined by adding a special new global functionality with its own sets
of conventions and proving specific global state composition theorems. However,
whether or not state is global is essentially just a matter of access to that state.
Our framework captures this property via the natural concept of public roles,
which provides a straightforward way to make parts of a protocol accessible to the
environment and other protocols. Thus, there is actually no difference between
protocols with and without global state in terms of conventions or composition
theorems in our framework.

A Model Independent Interpretation of SIDs: In most other models, such as UC
and GNUC, SIDs play a crucial role in the composition theorems. Composition
theorems in these frameworks require protocols to either have disjoint sessions,
where a session is defined via the SID, or at least behave as if they had dis-
joint sessions (in the case of joint-state composition theorems). This has two
major implications: Firstly, one cannot directly model a protocol where different
sessions share the same state and influence each other. This, however, is often

212 J. Camenisch et al.

the case for real world protocols that were not built with session separation in
mind. For example, many protocols such as our case study (cf. Sect. 4) use the
same signing key in multiple sessions, but do not include a session specific SID
in the signature (as would be required for a joint-state realization). Secondly,
sessions in ideal functionalities can consist only of parties sharing the same SID,
which models so-called global SIDs or pre-shared SIDs [21]. That is, participants
of a protocol session must share the same SID. This is in contrast to so-called
local SIDs often used in practice, where participants with different SIDs can be
part of the same protocol session (cf. 4.3). Because our main composition the-
orem is independent of (the interpretation of) SIDs, and in particular does not
require state separation, we can also capture shared state and local SIDs in our
framework.

Just as for the concept of entities and instances, this flexibility is made pos-
sible by the general addressing mechanism of iUC (and its underlying IITM
model).

Support for Responsive Environments: Recall that responsive environments [1]
allow for sending special messages on the network interface, called restricting
messages, that have to be answered immediately by the adversary and envi-
ronment. This is a very handy mechanism that allows protocols to exchange
modeling related meta information with the adversary without disrupting the
protocol run. For example, entities in our framework request their initial cor-
ruption status via a restricting message. Hence, the adversary has to provide
the corruption status right away and the protocol run can continue as expected.
Without responsive environments, one would have to deal with undesired behav-
ior such as delayed responses, missing responses, as well as state changes and
unexpected activations of (other parts of) the protocol before the response is
provided. In the case of messages that exist only for modeling purposes, this
adversarial behavior just complicates the protocol design and analysis without
relating to any meaningful attack in reality, often leading to formally wrong
security proofs and protocol specifications that cannot be re-used in practice.
See our full version and [1] for more information.

Selected Features of iUC. The iUC framework uses and combines the above
concepts to support a wide range of protocols and composition types, some of
which have not even been considered in the literature so far, using just a single
template and one main composition theorem. We list some important examples:

(i) Protocols with local SIDs and global SIDs, arbitrary forms of shared state
including state that is shared across multiple protocol sessions, as well as
global state. Our case study in Sect. 4 is an example of a protocol that uses
and combines all of these protocol features, with a detailed explanation and
discussion provided in Sect. 4.3.

(ii) Ideal protocols that are structured into several subcomponents, unlike the
monolithic ideal functionalities considered in other (conventions of) models.
Parts of such structured ideal protocols can also be defined to be global,
allowing for easily mixing traditional ideal protocols with global state.

iUC: Flexible Universal Composability Made Simple 213

Again, this is also illustrated in our case study in Sect. 4. We also note
that in iUC there is no need to consider so-called dummy machines in ideal
protocols, which are often required in other models that do not allow for
addressing the same machine instance with different IDs (entities).

(iii) The general composition theorem, which in particular is agnostic to the spe-
cific protocols at hand, allows for combining and mixing classical composi-
tion of protocols with disjoint session, composition of joint-state protocols,
composition of protocols with global state, and composition of protocols
with arbitrarily shared state. One can also, e.g., realize a global functional-
ity with another protocol (this required an additional composition theorem
for the UC model [12] and is not yet supported by GNUC, whereas in iUC
this is just another trivial special case of protocol composition). iUC even
supports new types of compositions that have not been considered in the
literature so far, such as joint-state realizations of two separate indepen-
dent protocols (in contrast to traditional joint-state realizations of multiple
independent sessions of the same protocol; cf. Sect. 4.3).

Besides our case study in Sect. 4, the flexibility and usability of iUC is also
illustrated by another example in the full version, where we discuss that the iUC
framework can capture the SUC model [10] as a mere special case. As already
mentioned in the introdcution, the SUC model has been specifically designed for
secure multi party computation (MPC) as a simpler version of the UC model,
though it has to break out of (some technical aspects of) the UC model.

4 Case Study

In this section, we illustrate the usage of iUC by means of a concrete exam-
ple, demonstrating usability, flexibility, and soundness of our framework. More
specifically, we model and analyze a key exchange protocol of the ISO/IEC 9798-
3 standard [17], an authenticated version of the Diffie-Hellman key exchange
protocol, depicted in Fig. 5. While this protocol has already been analyzed pre-
viously in universal composability models (e.g., in [6,19]), these analyses were
either for modified versions of the protocol (as the protocol could not be mod-
eled precisely as deployed in practice) or had to manually define many recurrent
modeling related aspects (such as a general corruption model and an interpre-
tation of machine instances), which is not only cumbersome but also hides the
core logic of the protocol.

We have chosen this relatively simple protocol for our case study as it allows
for showing how protocols can be modeled in iUC and highlighting several core
features of the framework without having to spend much time on first explaining
the logic of the protocol.

More specifically, our case study illustrates that our framework manages to
combine soundness and usability : the specifications of the ISO protocol given in
the figures below are formally complete, no details are swept under the rug, unlike
the informal descriptions commonly encountered in the literature on universal
composability. This allows for a precise understanding of the protocol, enabling

214 J. Camenisch et al.

Fig. 5. ISO 9798-3 key exchange protocol for mutual authentication. A and B are the
names of two parties that, at the end of the protocol, share a session key gxy.

formally sound proofs and re-using the protocol in higher-level protocols. At the
same time, specifications of the ISO protocol are not overburdened by recurrent
modeling related aspects as they make use of convenient defaults provided by
the iUC framework. All parts of the ISO protocol are specified using a single
template with one set of syntax rules, including real, ideal, and global state
(sub-)protocols, allowing for a uniform treatment.

This case study also shows the flexibility of our framework: entites are
grouped in different ways into machine instances to model different types of
protocols and setup assumptions; we are able to share state across several ses-
sions; we make use of the highly adjustable corruption model to precisely capture
the desired corruption behavior of each (sub-)protocol; we are able to model both
global state and locally chosen SIDs in a very natural way (we discuss some of
these aspects, including locally chosen SIDs, in detail in Sect. 4.3).

We start by giving a high-level overview of how we model this ISO key
exchange protocol in Sect. 4.1, then state our security result in Sect. 4.2, and
finally discuss some of the features of our modeling in Sect. 4.3.

4.1 Overview of Our Modeling

We model the ISO protocol in a modular way using several smaller proto-
cols. The static structure of all protocols, including their I/O connections for
direct communication, is shown in Fig. 3, which was partly explained already
in Sect. 2.2. We provide a formal specification of FCA using our template and
syntax in Fig. 6. The remaining protocols specifications are given in the full
version due to space limitations. The syntax is mostly self-explanatory, except
for (pidcur, sidcur, rolecur), which denotes the currently active entity (that was
accepted by CheckID), (pidcall, sidcall, rolecall), which denotes the entity that
called the currently active entity on the I/O interface, and “ ”, which is a wild-
card symbol. In the following, we give a high-level overview of each protocol.

The ISO key exchange (Fig. 5) is modeled as a real protocol PKE that uses
two ideal functionalities as subroutines: an ideal functionality Fsig-CA for creating
and verifying ideal digital signatures and an ideal functionality FCA modeling
a certificate authority (CA) that is used to distribute public verification keys
generated by Fsig-CA. The real protocol PKE, as already mentioned in Sect. 2.2,
consists of three roles, initiator, responder, and setup. The setup role mod-
els secure generation and distribution of a system parameter, namely, a descrip-

iUC: Flexible Universal Composability Made Simple 215

tion of a cyclic group (G,n, g). As this parameter must be shared between all
runs of a key exchange protocol, setup is implemented by a single machine
which spawns a single instance that manages all entities and always outputs the
same parameter. The roles initiator and responder implement parties A and
B, respectively, from Fig. 5. Each role is implemented by a separate machine
and every instance of those machines manages exactly one entity. Thus, these
instances directly correspond to an actual implementation where each run of a
key exchange protocol spawns a new program instance. We emphasize that two
entities can perform a key exchange together even if they do not share the same
SID, which models so-called local SIDs (cf. [21]) and is the expected behavior
for many real-world protocols; we discuss this feature in more detail below.

During a run of PKE, entities use the ideal signature functionality Fsig-CA to
sign messages. The ideal functionality Fsig-CA consists of two roles, signer and
verifier, that allow for the corresponding operations. Both roles are imple-
mented by the same machine and instances of that machine manage entities
that share the same SID. The SID sid of an entity is structured as a tuple
(pidowner, sid

′), modeling a specific key pair of the party pidowner. More specifi-
cally, in protocol PKE, every party pid owns a single key pair, represented by SID
(pid , ε)8, and uses this single key pair to sign messages throughout all sessions of
the key exchange. Again, this is precisely what is done in reality, where the same
signing key is re-used several times. The behavior of Fsig-CA is closely related to
the standard ideal signature functionalities found in the literature (such as [20]),
except that public keys are additionally registered with FCA when being gener-
ated.

As also mentioned in Sect. 2.2, the ideal CA functionality FCA allows for
storing and retrieving public keys. Both roles, registration and retrieval,
are implemented by one machine and a single instance of that machine accepts
all entities, as FCA has to output the same keys for all sessions and parties. Keys
are stored for arbitrary pairs of PIDs and SIDs, where the SID allows for storing
different keys for a single party. In our protocol, keys can only be registered by
Fsig-CA, and the SID is chosen in a matter that it always has the form (pid , ε),
denoting the single public key of party pid . We emphasize again that arbitrary
other protocols and the environment are able to retrieve public keys from FCA,
which models so-called global state.

In summary, the real protocol that we analyze is the combined protocol
(PKE,FCA : retrieval | Fsig-CA,FCA : registration) (cf. left side of Fig. 3).
We note that we analyze this protocol directly in a multi-session setting. That is,
the environment is free to spawn arbitrarily many entities belonging to arbitrary
parties and having arbitrary local SIDs and thus there can be multiple key
exchanges running in parallel. Analyzing a single session of this key exchange
in isolation is not possible due to the shared signing keys and the use of local

8 Since we need only a single key pair per party, we set sid′ to be the fixed value ε,
i.e., the empty string.

216 J. Camenisch et al.

Fig. 6. The ideal CA functionality FCA models a public key infrastructure based on a
trusted certificate authority.

SIDs, which, as mentioned, precisely models how this protocol would usually be
deployed in practice.9

We model the security properties of a multi-session key exchange via an
ideal key exchange functionality FKE. This functionality consists of two roles,
initiator and responder, and uses FCA as a subroutine, thus providing the
same interfaces (including the public role retrieval of FCA) as PKE in the
real world. Both initiator and responder roles are implemented via a single
machine, and one instance of this machine manages all entities. This is due to the
fact that, at the start of a run, it is not yet clear which entities will interact with
each other to form a “session” and perform a key exchange (recall that entities
need not share the same SID to do so, i.e., they use locally chosen SIDs, see
also Sect. 4.3). Thus, a single instance of FKE must manage all entities such that
it can internally group entities into appropriate sessions that then obtain the
same session key. Formally, the adversary/simulator is allowed to decide which
entities are grouped into a session, subject to certain restrictions that ensure
the expected security guarantees of a key exchange, including authentication. If

9 Note that this is true in all UC-like models that can express this setting: the assump-
tion of disjoint sessions, which is necessary for performing a single session analysis,
is simply not fulfilled by this protocol. This issue cannot even be circumvented by
using a so-called joint-state realization for digital signatures, as such a realization
not only requires global SIDs (cf. Sect. 4.3) but also changes the messages that are
signed, thus creating a modified protocol with different security properties.

iUC: Flexible Universal Composability Made Simple 217

two honest entities finish a key exchange in the same session, then FKE ensures
that they obtain an ideal session key that is unknown to the adversary. The
adversary may also use FKE to register arbitrary keys in the subroutine FCA,
also for honest parties, i.e., no security guarantees for public keys in FCA are
provided.

4.2 Security Result

For the above modeling, we obtain the following result, with a proof provided in
the full version.

Theorem 1. Let groupGen(1η) be an algorithm that outputs descriptions
(G,n, g) of cyclical groups (i.e., G is a group of size n with generator g) such
that n grows exponentially in η and the DDH assumption holds true. Then we
have:

(PKE,FCA : retrieval | Fsig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

Note that we can realize Fsig-CA via a generic implementation Psig-CA of a
digital signature scheme (we provide a formal definition of Psig-CA in the full
version):

Lemma 1. If the digital signature scheme used in Psig-CA is existentially unfor-
gable under chosen message attacks (EUF-CMA-secure), then

(Psig-CA,FCA : retrieval | FCA : registration)
≤ (Fsig-CA,FCA : retrieval | FCA : registration) .

Proof. Analogous to the proof in [20].

By Corollary 1, we can thus immediately replace the subroutine Fsig-CA of
PKE with its realization Psig-CA to obtain an actual implementation of Fig. 3
based on an ideal trusted CA:

Corollary 2. If the conditions of Theorem1 and Lemma 1 are fulfilled, then

(PKE,FCA : retrieval | Psig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

4.3 Discussion

In the following, we highlight some of the key details of our protocol specification
where we are able to model reality very precisely and in a natural way, illustrating
the flexibility of iUC, also compared to (conventions of) the UC and GNUC
models.

218 J. Camenisch et al.

Local SIDs: Many real-world protocols, including the key exchange in our case
study, use so-called local session IDs in practice (cf. [21]). That is, the SID of an
entity (pid , sid , role) models a value that is locally chosen and managed by each
party pid and used only for locally addressing a specific instance of a protocol
run of that party, but is not used as part of the actual protocol logic. In par-
ticular, multiple entities can form a “protocol session” even if they use different
SIDs. This is in contrast to using so-called pre-established SIDs (or global SIDs),
where entities in the same “protocol session” are assumed to already share some
globally unique SID that was created prior to the actual protocol run, e.g., by
adding an additional roundtrip to exchange nonces, or that is chosen by and then
transmitted from one entity to the others during the protocol run. As illustrated
by the protocols PKE (and FKE) in our case study, iUC can easily model such
local SIDs in a natural way. This is in contrast to several other UC-like models,
including the UC and GNUC models, that are built around global SIDs and
thus do not directly support local SIDs with their conventions. While it might
be possible to find workarounds by ignoring conventions, e.g., by modeling all
sessions of a protocol in a single machine instance M , i.e., essentially ignoring the
model’s intended SID mechanism and taking care of the addressing of different
sessions with another layer of SIDs within M itself, this has two major draw-
backs: Firstly, it decreases overall usability of the models as this workaround is
not covered by existing conventions of these models. Secondly, existing compo-
sition theorems of UC and GNUC do not allow one to compose such a protocol
with a higher-level protocol modeled in the “standard way” where different ses-
sions use different SIDs.10 We emphasize that the difference between local and
global SIDs is not just a minor technicality or a cosmetic difference: as argued
by Küsters et al. [21], there are natural protocols that are insecure when using
locally chosen SIDs but become secure if a global SID for all participants in
a session has already been established, i.e., security results for protocols with
global SIDs do not necessarily carry over to actual implementations using local
SIDs.

Shared State: In iUC, entities can easily and naturally share arbitrary state
in various ways, even across multiple protocol sessions, if so desired. This is
illustrated, e.g., by PKE in our case study, where every party uses just a single
signature key pair across arbitrarily many key exchanges. This allows for a very
flexible and precise modeling of protocols. In particular, for many real-world pro-
tocols this modeling is much more precise than so-called joint-state realizations
that are often used to share state between sessions in UC-like models that assume
disjoint sessions to be the default, such as the UC and GNUC models. Joint-
state realizations have to modify protocols by, e.g., prefixing signed messages
with some globally unique SID for every protocol session (which is not done by
many real-world protocols, including our case study). Thus, even if the modified

10 This is because such a higher level protocol would then access the same subrou-
tine session throughout many different higher-level sessions, which violates session
disjointness as required by both UC and GNUC.

iUC: Flexible Universal Composability Made Simple 219

protocol is proven to be secure, this does not imply security of the unmodified
one. The UC and GNUC models do not directly support state sharing without
resorting to joint-state realizations or global functionalities. While one might be
able to come up with workarounds similar to what we described for local SIDs
above, this comes with the same drawbacks in terms of usability and flexibility.

Global State: Our concept of public and private roles allows us to not only easily
model global state but also to specify, in a convenient and flexible way, machines
that are only partially global. This is illustrated by FCA in our case study, which
allows arbitrary other protocols to retrieve keys but limits key registration to
one specific protocol to model that honest users will not register their signing
keys for other contexts (which, in general, otherwise voids all security guaran-
tees). This feature makes FCA easier to use as a subroutine than the existing
global functionality Gbb for certificate authorities by Canetti et al. [12], which
does not support making parts of the functionality “private”. Thus, everyone
has full access to all operations of Gbb, including key registration, allowing the
environment to register keys in the name of (almost) arbitrary parties, even if
they are supposed to be honest.

Note that our formulation of FCA means that, if the ideal protocol (FKE,
FCA : retrieval | FCA : registration) is used as a subroutine for a new
hybrid protocol, then only FKE but not the higher-level protocol can register
keys in FCA. If desired, one can, however, also obtain a single global FCA where
both FKE and the higher-level protocol can store keys in the following way: First
analyze the whole hybrid protocol while using a second separate copy of FCA,
say F ′

CA, where only the higher-level protocol can register keys. After proving
this to be secure (which is simpler than directly using a global CA where multiple
protocols register keys), one can replace both FCA and F ′

CA with a joint-state
realization where keys are stored in and retrieved from the same FCA subroutine
along with a protocol dependent tag (we discuss this novel type of joint-state
realization in detail in the full version). Of course, this approach can be iterated
to support arbitrarily many protocols using the same FCA. This modeling reflects
reality where keys are certified for certain contexts/purposes.

5 Conclusion

We have introduced the iUC framework for universal composability. As illus-
trated by our case study, iUC is highly flexible in that it supports a wide range
of protocol types, protocol features, and composition operations. This flexibil-
ity is combined with greatly improved usability compared to the IITM model
due to its protocol template that fixes recurring modeling related aspects while
providing sensible defaults for optional parts. Adding usability while preserving
flexibility is a difficult task that is made possible, among others, due to the con-
cepts of roles and entities; these concepts allow for having just a single template
and two composition theorems that are able to handle arbitrary types of proto-
cols, including real, ideal, joint-state, and global ones, and combinations thereof.

220 J. Camenisch et al.

The flexibility and usability provided by iUC also significantly facilitates the
precise modeling of protocols, which is a prerequisite for carrying out formally
complete and sound proofs. Our formal mapping from iUC to the IITM shows
that iUC indeed is an instantiation of the IITM, and hence, immediately inherits
all theorems, in particular, all composition theorems, of the IITM model. Since
we formulate these theorems also in the iUC terminology, protocol designers can
completely stay in the iUC realm when designing and analyzing protocols.

Altogether, the iUC framework is a well-founded framework for univer-
sal composability which combines soundness, flexibility, and usability in an
unmatched way. As such, it is an important and convenient tool for the pre-
cise modular design and analysis of security protocols and applications.

References

1. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal com-
position with responsive environments. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 807–840. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 27

2. Camenisch, Krenn, S., Küsters, R., Rausch, D.: iUC: flexible universal compos-
ability made simple (full version). Technical report 2019/1073, Cryptology ePrint
Archive (2019). http://eprint.iacr.org/2019/1073

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Technical report 2000/067, Cryptology ePrint Archive (2000). http://
eprint.iacr.org/2000/067 with new versions from December 2005, July 2013,
December 2018

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society (2001)

5. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

6. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

7. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 16

8. Canetti, R., Chari, S., Halevi, S., Pfitzmann, B., Roy, A., Steiner, M., Venema,
W.: Composable security analysis of OS services. In: Lopez, J., Tsudik, G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 431–448. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21554-4 25

9. Canetti, R., et al.: Analyzing security protocols using time-bounded task-PIOAs.
Discret. Event Dyn. Syst. 18(1), 111–159 (2008)

10. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 1

11. Canetti, R., Hogan, K., Malhotra, A., Varia, M.: A universally composable treat-
ment of network time. In: CSF 2017, pp. 360–375. IEEE Computer Society (2017)

https://doi.org/10.1007/978-3-662-53890-6_27
http://eprint.iacr.org/2019/1073
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-642-21554-4_25
https://doi.org/10.1007/978-3-642-21554-4_25
https://doi.org/10.1007/978-3-662-48000-7_1

iUC: Flexible Universal Composability Made Simple 221

12. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-
exchange with global PKI. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 265–296. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49387-8 11

13. Chaidos, P., Fourtounelli, O., Kiayias, A., Zacharias, T.: A universally compos-
able framework for the privacy of email ecosystems. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 191–221. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 8

14. Chari, S., Jutla, C.S., Roy, A.: Universally Composable Security Analysis of OAuth
v2.0. IACR Cryptology ePrint Archive 2011/526 (2011)

15. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

16. Hogan, K., et al.: On the Universally Composable Security of OpenStack. IACR
Cryptology ePrint Archive 2018/602 (2018)

17. ISO/IEC IS 9798–3, Entity authentication mechanisms – Part 3: Entity authenti-
cation using assymetric techniques (1993)

18. Küsters, R.: Simulation-based security with inexhaustible interactive turing
machines. In: CSFW 2006, pp. 309–320. IEEE Computer Society (2006). See [22]
for a full and revised version

19. Küsters, R., Rausch, D.: A framework for universally composable Diffie-Hellman
key exchange. In: S&P 2017, pp. 881–900. IEEE Computer Society (2017)

20. Küsters, R., Tuengerthal, M.: Joint state theorems for public-key encryption and
digital signature functionalities with local computation. In: CSF 2008, pp. 270–284.
IEEE Computer Society (2008). The full version is available at https://eprint.iacr.
org/2008/006 and will appear in Journal of Cryptology

21. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: CCS 2011, pp. 41–50. ACM (2011)

22. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive
model for universal composability. Technical report 2013/025, Cryptology ePrint
Archive (2013). http://eprint.iacr.org/2013/025. To appear in Journal of Cryptol-
ogy

23. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9 3

24. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) Innovations
in Computer Science - ICS 2010. Proceedings, pp. 1–21. Tsinghua University Press
(2011)

25. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: S&P 2001, pp. 184–201. IEEE
Computer Society (2001)

https://doi.org/10.1007/978-3-662-49387-8_11
https://doi.org/10.1007/978-3-030-03332-3_8
https://eprint.iacr.org/2008/006
https://eprint.iacr.org/2008/006
http://eprint.iacr.org/2013/025
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3

Side Channels

Leakage Resilience of the Duplex
Construction

Christoph Dobraunig(B) and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
{cdobraunig,b.mennink}@cs.ru.nl

Abstract. Side-channel attacks, especially differential power analysis
(DPA), pose a serious threat to cryptographic implementations deployed
in a malicious environment. One way to counter side-channel attacks
is to design cryptographic schemes to withstand them, an area that is
covered amongst others by leakage resilient cryptography. So far, how-
ever, leakage resilient cryptography has predominantly focused on block
cipher based designs, and insights in permutation based leakage resilient
cryptography are scarce. In this work, we consider leakage resilience of
the keyed duplex construction: we present a model for leakage resilient
duplexing, derive a fine-grained bound on the security of the keyed duplex
in said model, and map it to ideas of Taha and Schaumont (HOST 2014)
and Dobraunig et al. (ToSC 2017) in order to use the duplex in a leakage
resilient manner.

Keywords: Duplex · Sponge · Security proof · Leakage resilience

1 Introduction

With the selection of Keccak [9] as SHA-3 [20], cryptography based on public
permutations has become more and more popular. This is especially caused by
the fact that the sponge [7] and the duplex [8] constructions provide a huge flex-
ibility by enabling various cryptographic tasks besides hashing, such as encryp-
tion, authenticated encryption, and message authentication, by just relying on
a public permutation. Keyed versions of the sponge and duplex constructions
have been analyzed in a series of papers [1,8,10,12,15,21,26,30,31], however,
this analysis has been done in a black-box scenario, not considering the leak-
age of information that occurs in applications where side-channel attacks are
feasible.

Ever since the threat of side-channel attacks has become evident to the pub-
lic [27,28], finding suitable protection mechanisms against this attack vector has
become of increasing importance. One can identify two different ways to protect
against side-channel attacks. The first one deals with hardening the implemen-
tation of cryptographic schemes by means of countermeasures like hiding [14] or
masking [11,13,22,32,33]. The other one aims at developing dedicated schemes
that provide easier protection against side-channel attacks in the first place,
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 225–255, 2019.
https://doi.org/10.1007/978-3-030-34618-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_8

226 C. Dobraunig and B. Mennink

like fresh re-keying [29] or leakage resilient cryptography [18]. With respect to
the sponge and duplex constructions, there exist proposals of Taha and Schau-
mont [38] and Isap [16] that introduce dedicated algorithms that are claimed to
provide protection against side-channel attacks.

Unfortunately, a closer look at the field of leakage resilient symmetric cryp-
tography [6,17,19,34–36,41] reveals that the focus lies on constructions that can
be instantiated with block ciphers. Hence, results regarding the leakage resilience
of the keyed sponge, or more generally the keyed duplex construction that solely
rely on unkeyed cryptographic permutations as building block are scarce. This
particularly means that proposals such as those of [16,38] lack formal support
regarding their leakage resilience.

1.1 Our Contribution

The contributions of this paper are manifold.
First, in Sect. 3, we describe a security model for leakage resilient duplexing.

To do so, we start from the “ideal equivalent” of the keyed duplex of Daemen et
al. [15], called an ideal extendable input function (IXIF), and present an adjusted
version AIXIF. AIXIF is semantically equivalent to the IXIF if there is no leak-
age, but it allows to properly model leakage resilience of the keyed duplex. The
model of leakage resilience of the duplex is now conceptually simple: as we argue
in detail in Sect. 3.4, we consider a scheme leakage resilient if no attacker can
distinguish a keyed duplex that leaks for every query from the random AIXIF.
Here, we focus on non-adaptive leakage, where the leakage function is fixed in
advance, akin to [17,19,35,37,41]. At this point our approach seems to be dif-
ferent from the typical models: the typical approach is to give a distinguisher
access to a leaky version and a leak-free version of the cryptographic construc-
tion, and it has to distinguish the latter from a random function. The reason
that we adopted a different model is that the duplex is just used as building
block for encryption, authenticated encryption, or other types of functionalities.
To prove that the use of a leakage resilient duplex gives rise to a leakage resilient
construction with one of above-mentioned functionalities, the typical approach
to give a distinguisher access to a leaky version and a leak-free version of the
cryptographic construction has to be used again, as we will show later.

Second, in Sect. 5, we perform an in-depth and fine-grained analysis of the
keyed duplex in the newly developed model. We take inspiration from Daemen
et al. [15], who presented a detailed analysis of the keyed duplex in the black-box
scenario, but the proof is not quite the same. To the contrary, due to various
obstacles, it is not possible to argue similar to Daemen et al., nor to reduce
the leakage resilience of a keyed duplex to its black-box security. Instead, we
adopt ideas from the analysis of the NORX authenticated encryption scheme
of Jovanovic et al. [26], and reason about the security of the keyed duplex in
a sequential manner. One of the difficulties then is to determine the amount of
min-entropy of a state in the duplex construction, given that the distinguisher
may learn leakage from a duplex construction at different points in time. On
the way, in Sect. 4 we give a detailed and accessible rationale of how leakage
resilience proofs are performed in general and in our case.

Leakage Resilience of the Duplex Construction 227

Third, in Sect. 6, we interpret our results on the leakage resilience of the keyed
duplex in the context of the proposals of Taha and Schaumont [38] and Isap [16].
In a nutshell, these proposals can be seen to consist of a sequential evaluation of
two duplex constructions: one that “gains entropy” by absorbing a nonce with
small portions at a time, and one that “maintains entropy” in the sense that
after the nonce is absorbed any state that will be visited by the duplex has high
entropy and will be visited only once. We will then have a closer look at one use
case of such a keyed duplex, nonce-based stream encryption, in Sect. 7. We build
this scheme using aforementioned ideas, and prove that it is leakage resilient in
the conventional security model. The proof is hybrid and reduces security of the
stream cipher to that of the underlying duplex.

1.2 Related Work

Guo et al. [23] independently considered leakage resilience of duplex based
modes. Their work is more specifically targeted to authenticated encryption
(rather than to the duplex as building block). A second difference is that it
considers a more generous leakage assumption. We consider a bounded leakage
model, that upper bounds the amount of information that an attacker learns by
λ, whereas Guo et al. assume hard-to-invert leakages. As such, Guo et al. [23] fol-
low a different approach that is complementary to ours, and that might likewise
be relevant in many different use cases.

1.3 Notation

For b ∈ N, the set of b-bit strings is denoted {0, 1}b and the set of arbitrarily
length strings is denoted {0, 1}∗. We define by func(b) the set of all functions
f : {0, 1}b → {0, 1}b and by perm(b) the set of all permutations p : {0, 1}b →
{0, 1}b. By X ← Y we denote the assignment of the value Y to X, and by
X

$←− X we denote the uniformly random drawing of an element X from a finite
set X . For X ∈ {0, 1}b and for c ∈ N with c ≤ b, we denote by leftc(X) the c
leftmost bits of X and by rightc(X) the c rightmost bits of X. We denote by
rotc(X) the right-rotation of X by c bits.

A random variable S has min-entropy at least h, denoted H∞(S) ≥ h, if
maxs∈S Pr (S = s) ≤ 2−h. The conditional min-entropy is straightforward to
define: the probability term gets expanded by the condition.

2 Keyed Duplex Construction

Let b, c, r, k, u, α ∈ N, with c+r = b, k ≤ b, and α ≤ b−k. We describe the keyed
duplex construction KD in Algorithm 1. The keyed duplex construction gets as
input a key array K = (K[1], . . . ,K[u]) ∈ ({0, 1}k)u consisting of u keys, and it is
instantiated using a b-bit permutation p ∈ perm(b). The construction internally
maintains a b-bit state S, and has two interfaces: KD.init and KD.duplex.

The initialization interface gets as input a key index δ ∈ [1, u] and an ini-
tialization vector IV ∈ IV ⊆ {0, 1}b−k, and initializes the state with the δ-th

228 C. Dobraunig and B. Mennink

Algorithm 1. Keyed duplex construction KD[p]K
Interface: KD.init
Input: (δ, IV) ∈ [1, u] × IV
Output: ∅

S ← rotα(K [δ] ‖ IV)
S ← p(S)
return ∅

Interface: KD.duplex
Input: (flag , P) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

Z ← leftr(S)
S ← S ⊕ [flag] · (Z‖0b−r) ⊕ P � if flag , overwrite outer part
S ← p(S)
return Z

p

K[δ]

IV

0

leftr(P)

rightc(P)

flagZ

r r

c

p
0

leftr(P)

rightc(P)

flagZ

r r

c

p

. . .

. . .

Fig. 1. The duplexing interface of KD.

key and the initialization vector IV as S ← rotα(K[δ] ‖ IV), followed by an
evaluation of the underlying permutation p on the state S. It outputs nothing.
Note that the constant α simply determines the bit positions where to place the
key. We will see different examples of the value α in Sect. 6.

The duplexing interface gets as input a flag flag ∈ {true, false} and a new data
block P ∈ {0, 1}b. The interface outputs an r-bit block Z ∈ {0, 1}r off the internal
state S, transforms the state using the new data block P , and finally evaluates the
underlying permutation p on the state. The flag flag describes how absorption is
done on the r leftmost bits of the state that are squeezed: those r bits are either
overwritten (if flag = true) or XORed with r bits of the input block P (if flag =
false). See also Fig. 1, where the duplex is depicted for key offset α = 0.

This description is another rephasing of how the duplex construction can
be viewed compared to the original description used by Bertoni et al. [8], but
also differs from the rephased description of Daemen et al. [15]. Compared to
Daemen et al. the call of the underlying permutation is done at the end of the
duplexing call instead of the beginning. This way of describing the duplex eases
the proof in the leakage resilient setting, while at the same time empowers a
leakage-aware attacker to adaptively react to the leakage of the permutation
before providing new inputs. However, it still reflects the usage of the duplex in
the same way as the description of Daemen et al. [15]. In particular, Daemen
et al. also already considered multi-user security by default, and likewise had

Leakage Resilience of the Duplex Construction 229

two different types of duplexing calls (for flag ∈ {true, false}) to allow imple-
mentation of SpongeWrap and variants using the duplex construction. Indeed,
whereas SpongeWrap encryption can be performed using KD.duplex(false, ·), the
decryption function must be performed using evaluations of KD.duplex(true, ·).

3 Security Model

In this section, we will describe our leakage resilience security model for the keyed
duplex. We consider sampling of keys in Sect. 3.1. We settle the basic notation of
distinguishers in Sect. 3.2. For reference, the black-box duplex security model of
Daemen et al. [15] is treated in Sect. 3.3. We lift the model to leakage resilience
in Sect. 3.4.

3.1 Sampling of Keys

The duplex construction of Sect. 2 is based on an array of u k-bit keys. These keys
may be generated uniformly at random, as K

DK←−− ({0, 1}k)u. In our analysis of
leakage resilience, however, we will require the scheme to be still secure if the
keys are not uniformly random but as long as they have sufficient min-entropy.
Henceforth, we will adopt the approach of Daemen et al. [15] to consider keys
sampled using a distribution DK , that distributes the key independently1 and
with sufficient min-entropy, i.e., for which

H∞(DK) = min
δ∈[1,u]

H∞(K[δ])

is sufficiently high. Note that if DK is the random distribution, H∞(DK) = k.

3.2 Distinguishers

A distinguisher D is an algorithm that is given access to one or more oracles
O, denoted DO, and that outputs a bit b ∈ {0, 1} after interaction with O. If O
and P are oracles, we denote by ΔD (O ; P) the advantage of a distinguisher D in
distinguishing O from P. In our work, we will only be concerned with information-
theoretic distinguishers: these have unbounded computational power, and their
success probabilities are solely measured by the number of queries made to the
oracles.

3.3 Black-Box Security

Daemen et al. [15] described the ideal extendable input function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, modulo
syntactical changes based on the changes we made on the keyed duplex in Sect. 2.
The function is described in Algorithm 2.
1 In Daemen et al. [15], the keys need not be mutually independent, but omitting this

conditions will give various tricky corner cases in the analysis of leakage resilience.

230 C. Dobraunig and B. Mennink

Algorithm 2. Ideal extendable input function IXIF[ro]K
Interface: IXIF.init
Input: (δ, IV) ∈ [1, u] × IV
Output: ∅

path ← encode[δ] ‖ IV
return ∅

Interface: IXIF.duplex
Input: (flag , P) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

Z ← ro(path, r)
path ← path ‖ ([flag] · (Z‖0b−r) ⊕ P) � if flag , overwrite outer part
return Z

The IXIF has the same interface as the keyed duplex, but instead of being
based on a key array K ∈ ({0, 1}k)u and being built on primitive p ∈ perm(b),
it is built on a random oracle ro : {0, 1}∗ × N → {0, 1}∞, that is defined as
follows. Let ro∞ : {0, 1}∗ → {0, 1}∞ be a random oracle in the sense of Bellare
and Rogaway [3]. For P ∈ {0, 1}∗, ro(P, r) outputs the first r bits of ro(P). The
IXIF maintains a path path, in which it unambiguously stores all data input by
the user. It is initialized by encode[δ] ‖ IV for some suitable injective encoding
function encode : [1, u] → {0, 1}k, and upon each duplexing call, the new message
block is appended to the path. Duplexing output is generated by evaluating the
random oracle on path.

Let b, c, r, k, u, α ∈ N, with c + r = b, k ≤ b, and α ≤ b − k. Let p
$←− perm(b)

be a random transformation, ro be a random oracle, and K
DK←−− ({0, 1}k)u a

random array of keys. In the black-box security model, one considers a distin-
guisher that has access to either (KD[p]K , p±) in the real world or (IXIF[ro], p±)
in the ideal world, where “±” stands for the fact that the distinguisher has
bi-directional query access:

Advbb
KD(D) = ΔD

(
KD[p]K , p± ; IXIF[ro], p±)

. (1)

This is the model explicitly considered by Daemen et al. [15].

3.4 Leakage Resilience

We consider non-adaptive leakage resilience of the keyed duplex construction.
Non-adaptive leakage has been considered before in [17,19,35,37,41], among
others, and we will use the description of L-resilience of Dodis and Pietrzak [17].
These models, however, consider the underlying primitive to be a block cipher
or weak PRF, whereas in our setting it is a public permutation. In addition,
the duplex has its characteristic property that it allows variable length input
and variable length output. A final, and technically more delicate difference
(as becomes clear below), is that the duplex consists of two oracles init and
duplex, which the distinguisher may call interchangeably at its own discretion.

Leakage Resilience of the Duplex Construction 231

0

leftr(P)

rightc(P)

flagZ

p

leftr(Sprev)

rightc(Sprev)

leftr(Snext)

rightc(Snext)

Fig. 2. An evaluation of KD.duplex, with its previous state Sprev and next state Snext

are indicated. Intuitively, leakage occurs on both states, and the leakage function L
returns λ bits of leakage.

We will assume that only values leak information that take part in the current
computation, i.e., only leakage can occur from information that is used in calls to
init and duplex. Note that this general way to describe what information can leak
does not put restrictions on how this leakage occurs. For instance, this model
covers even very strong attackers that can directly probe a limited amount of
bits in a circuit, or that can get some limited amount of information about all
values that are used in the current computation.

Recall from (1) that in the black-box model, one compares (KD[p]K , p±) with
(IXIF[ro], p±), where p

$←− perm(b) and ro is a random oracle. In order to prove
leakage resilience of the construction, we have to demonstrate that “leakage
does not help”. For the real keyed duplex KD[p]K , modeling this is as simple
as giving the distinguisher the leakage value � ← L(Sprev,flag , P, Snext), where
L : {0, 1}b × {true, false} × {0, 1}b × {0, 1}b → {0, 1}λ is the leakage function,
Sprev the state before the call, and Snext the state after the call. See also Fig. 2.

For the ideal world IXIF[ro], there is no such thing as a state, and simply
generating random leakage allows for a trivial win for the distinguisher, as leaked
bits may happen to coincide with the actual squeezed bits. For example, if L is
defined as L(Sprev,flag , P, Snext) = leftλ(Snext), in the real world, any leakage
� satisfies � = leftλ(Z), whereas in the ideal world this equation holds with
probability around 1/2λ, only. We resolve this by making a minor tweak to the
duplexing interface of IXIF: the oracle maintains a dummy state S, and instead
of Z ← ro(path, r), it gets Z from this dummy state Z ← leftr(S) and updates
the dummy state constantly by doing S ← ro(path, b). The dummy state is
initialized as in the normal duplex (Algorithm 1). The resulting adjusted IXIF
(AIXIF) is given in Algorithm 3.

It is important to note that the change from IXIF to AIXIF is purely admin-
istrative, in that for any distinguisher D,

ΔD (IXIF[ro] ; AIXIF[ro]K) = 0.

The reason is that (i) an initialized state S = rotα(K[δ] ‖ IV) is never used for
outputting data to the distinguisher, and (ii) later versions of the dummy state
are always updated with b bits of ro-output of which only r bits are squeezed a

232 C. Dobraunig and B. Mennink

Algorithm 3. Adjusted ideal extendable input function AIXIF[ro]K
Interface: AIXIF.init
Input: (δ, IV) ∈ [1, u] × IV
Output: ∅

path ← encode[δ] ‖ IV
S ← rotα(K [δ] ‖ IV)
S ← ro(path, b)
return ∅

Interface: AIXIF.duplex
Input: (flag , P) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

Z ← leftr(S)
path ← path ‖ ([flag] · (Z‖0b−r) ⊕ P) � if flag , overwrite outer part
S ← ro(path, b)
return Z

single time. Therefore, the original black-box security model could just as well
be defined based on AIXIF. The good thing of AIXIF, now, is that it allows to
easily formalize security in the leakage resilience setting where each construction
call leaks.

Let b, c, r, k, u, α, λ ∈ N, with c+r = b, k ≤ b, α ≤ b−k, and λ ≤ 2b. Let p $←−
perm(b) be a random permutation, ro be a random oracle, and K

DK←−− ({0, 1}k)u

a random array of keys. Let L = {L : {0, 1}b × {true, false} × {0, 1}b × {0, 1}b →
{0, 1}λ} be a class of leakage functions, and for any leakage function L ∈ L, define
by KD[p]LK (resp., AIXIF[ro]LK) the keyed duplex (resp., adjusted ideal extend-
able input function) that for each construction call leaks L(Sprev,flag , P, Snext),
where Sprev is the state before the call and Snext the state after the call. In the
leakage resilience security model, one considers a distinguisher that has access
to either (KD[p]LK , p±) in the real world, and (AIXIF[ro]LK , p±) in the ideal world,
maximized over all possible leakage functions L ∈ L:

AdvL-naLR
KD (D) = max

L∈L
ΔD

(
KD[p]LK , p± ; AIXIF[ro]LK , p±)

. (2)

Note that we indeed consider non-adaptive leakage resilience, as we maximize
over all possible leakage functions L. Note furthermore that we do not consider
future computation: the keyed duplex construction is based on the random per-
mutation p and the set of allowed leakage functions is independent of p; the
functions simply operate on the state right before and right after the transfor-
mation that leaks.

Remark 1. It is important to observe that, in our model, any duplex call leaks.
In this way, our model seems to be conceptually different to the established
models of, e.g., [17,19,35,37,41]. At a high level, in these models, the distin-
guisher has access to a leak-free version of the construction, which it has to
distinguish from random, and a leaky version of the construction, which it may

Leakage Resilience of the Duplex Construction 233

use to gather information. The intuition is that, whatever the distinguisher may
learn from leakage, any new evaluation of the construction still looks random. In
comparison, in our model of (2), we simply assume that the construction always
leaks: the real construction KD.duplex leaks actual data of the state, whereas
AIXIF.duplex leaks random data. This can be tolerated in our model as, typi-
cally, the KD.duplex will be used as building block for constructions that enable
functionalities like, e.g., encryption. When we realize leakage resilient encryp-
tion with the help of the keyed duplex in Sect. 7, we consider the established
model where the distinguisher has access to a leaky and a leak-free version of
the construction, and the latter has to be distinguished from random.

4 Proof Rationale

In this section, we outline the rationale of proving leakage resilience of the keyed
duplex. The section is extensive, but should give a high-level overview of how the
security analysis is performed. First, in Sect. 4.1, we detail how typically leakage
resilience of sequential constructions is proven. Then, in Sect. 4.2, we explain
to what degree these approaches apply to permutation based cryptography. In
Sect. 4.3, we consider the keyed duplex construction in more detail, and explain
at a high level how the security proof is performed and how it relies on existing
research on the keyed duplex construction in the black-box model. The discussion
will form a stepping stone to the formal analysis of the keyed duplex in Sect. 5
and of the application of the result in Sect. 6.

4.1 Proving Leakage Resilience

The rationale of leakage resilience security proofs is not straightforward, and
the main cause of this is the delicate selection of entropy measure for a leaky
state. First off, it is important to know that starting from the seminal work
of Dziembowski and Pietrzak [18], almost all leakage resilient PRGs and PRFs
in literature [5,6,17,19,34,35,40,41] are sequential: they maintain a state, and
use a cryptographic primitive to evolve the state in a sequential manner and to
output a random stream. The cryptographic primitive is, in most of these cases,
a block cipher modeled as a weak PRF F : {0, 1}k × {0, 1}m → {0, 1}n.

A measure to identify the amount of randomness of a value is the min-entropy.
Informally, a value S has min-entropy H∞(S) ≥ h if the success probability of
guessing S is at most 1/2h. Unfortunately, the min-entropy is not fully suited
to deal with leakage in above-mentioned sequential constructions: each round,
certain information of a state leaks, and the min-entropy will only decrease with
the leakage over time. Dziembowski and Pietrzak [18] observed that one does not
strictly need the min-entropy of the state to be high enough: all that is needed is
that the state is computationally indistinguishable from a state with sufficiently
high min-entropy, in the eye of the computationally bounded distinguisher. This

234 C. Dobraunig and B. Mennink

is formalized by the HILL-pseudoentropy [24] (or formally the conditional HILL-
pseudoentropy [25], taking into account leakage data). The security proofs of
above constructions now all exist of an iterative execution of the following steps:

(1) If the input to the wPRF F has sufficiently high min-entropy, then with high
probability the output is an n-bit pseudorandom value S;

(2) If λ bits of the n-bit pseudorandom state S are leaked, then with high
probability the state has HILL-pseudoentropy at least n − 2λ;

(3) By definition of the HILL-pseudoentropy, the state is computationally indis-
tinguishable from a state with min-entropy at least n − 2λ;

(4) The resulting state will be (part of the) input to next round’s wPRF.

A formalization of the first three steps can be found in [35, Lemma 2], [35,
Lemma 6], and [35, Definition 3]. We note that the original introduction of
leakage resilient cryptography of Dziembowski and Pietrzak [18] did not consider
a weak PRF but a (stronger) PRG.

It is clear that an iterative execution of above steps allows to prove security
of a sequential wPRF-based construction, provided that the state after step (4)
has enough min-entropy to make the application of step (1) in next round go
through. The iterative execution allows to prove security of the construction,
with a security loss quantified by a sum of the individual losses in steps (1)–(3)
for each of the rounds. More importantly, the security proof stands under the
assumption that the block cipher is a weak PRF, or can be used to construct a
weak PRF (see also Standaert et al. [37]). At this point, it requires cryptanalysts
to investigate the weak PRF security of actual block ciphers.

4.2 Towards Permutation-Based Constructions

The focus in our work is on constructions based on cryptographic permutations.
In the black-box model, both the keyed sponge [1,10,12,21,26,30,31] and the
keyed duplex [8,15,30] have received thorough investigation.

The security analyses are different from black-box analyses of block cipher
based constructions: whereas for the latter one argues security under the assump-
tion that the block cipher is a (strong) pseudorandom permutation, in the former
one assumes that the permutation is perfect and considers a distinguisher that
is computationally unbounded and whose complexity is only measured by the
online complexity (the amount of construction queries) and the offline complex-
ity (the amount of primitive queries).

The approach is well-established, and in our analysis of the leakage resilience
of the duplex, we adopt the approach. This gives two significant advantages in
the analysis. First off, we consider computationally unbounded adversaries, and
there is no need to make the HILL-detour. In other words, we can directly argue
that an n-bit pseudorandom state S has min-entropy at least n − λ after λ bits
are leaked. Second, there is no issue with repeated min-entropy degradation: the
state is transformed through a perfectly random permutation that outputs a
random value (bar repetition) for each new input. We remark that concurrent

Leakage Resilience of the Duplex Construction 235

work [23] also builds upon the random permutation model (and, in addition, an
ideal tweakable block cipher).

These two advantages clearly simplify the rationale and simplicity of the
leakage resilience security analysis of the duplex, yet do not make the security
analysis a trivial extension of earlier leakage resilience analyses: in the new set-
ting, the amount of entropy of a state is not only dependent on the leakage,
but also on the primitive queries that the distinguisher makes, recalling that the
distinguisher has direct access to the primitive. Indeed, this is not the case in
ordinary wPRF-based security proofs.

There is another complication in the analysis of our construction: the dis-
tinguisher can re-initialize the state and start over. This is in line with the
particular application of the duplex: authenticated encryption, where different
authenticated encryptions may start from the same state and even have identical
first permutation calls. Even if we had the possibility to argue that the duplex
primitive is a weak PRF, repeated or mutually related states would invalidate
step (1) of above reasoning, as the query history would skew the distribution
of the weak PRF. In detail, step (1) requires the inputs to be close-to-random,
a condition that appears to be more delicate than one would expect (cf., [41]),
and that is false for repeated states in the duplex.

In a nutshell, one can say that the main overlap in our leakage resilience
analysis compared with earlier approaches [5,6,17,19,34,35,40,41] is that we use
the min-entropy to express the amount of randomness that is left after leakage,
and we argue security based on the assumption that all state values in a keyed
duplex have enough entropy.

4.3 Proving Security of Duplex Construction

Our proof uses many ideas from the solid black-box research already performed
on keyed sponges and duplexes [1,8,10,12,15,21,26,30,31]. However, not all tech-
niques from this line of research are suited in the leakage resilience setting. Most
importantly, a notable technique [1,12,15,30] is to view the keyed sponge/duplex
as a mode based on an Even-Mansour construction on top of the permutation
p ∈ perm(b). The trick is to XOR two copies of a dummy key with the inner part
in-between every two evaluations of the permutation p. The change is purely syn-
tactical, and a distinguisher cannot note the difference. However, in the leakage
resilience setting, the distinguisher may have chosen the leakage function L so
as to leak part of the state that is keyed, and XORing dummy keys turns out to
become tricky. In particular, adoption of the approach to the leakage resilience
setting would require us to be able to “split” leakages into input leakages and
output leakages, but this is not always possible, depending on the leakage func-
tion L.

Instead, the proof resembles much of the approach of Jovanovic et al. [26],
who performed a direct security proof of the NORX nonce-based authenticated
encryption scheme that also applied to other CAESAR candidates. At a high
level, the proof of Jovanovic et al. consists of observing that the output states
are always uniformly random (bar repetition, as a permutation is evaluated),

236 C. Dobraunig and B. Mennink

as long as no bad event occurs. A bad event, in turn, occurs if there are two
construction queries with colliding states or if there is a construction query and
a primitive query with colliding states. The absence of collisions is dealt with in
the first phase by replacing the random permutation by a function that samples
values from random at the cost of an RP-to-RF switch.

In our leakage resilience proofs, we follow the same approach. We also start
by replacing the random permutation by a function f, that samples values from
random and provides two-sided oracle access. Then, as long as the state of the
keyed duplex has enough entropy, the result after applying f is random and also
has enough entropy. Clearly, the entropy of the state reduces with the amount
of leakage that occurs on the state, and consequently, bad events happen with a
slightly larger probability as before. This also shows that estimating (formally,
lower bounding) the amount of min-entropy of the states in the keyed duplex
construction is important for deriving a tight security bound.

Focus on the keyed duplex (KD) of Algorithm 1, based on a function f
$←−

func(b), and consider a duplex state Sprev ∈ {0, 1}b. Assume that the interface
KD.duplex is evaluated on this state for R different inputs,

{(flag i, Pi)}R
i=1.

As the previous state Sprev is the direct output of a call to a function f that
samples b-bit values from random, Sprev is a value with min-entropy b minus the
leakage occurred on this function call. Clearly, the R evaluations of the duplex
in question are made for the same state Sprev, and hence, in total they reduce
the entropy of Sprev further by at most R · λ bits due to the next function call.
In addition, by regular squeezing, the distinguisher learns r bits of the state. In
total, Sprev has conditional min-entropy at least

b − r − (R + 1)λ.

If this entropy is sufficiently high, we get R new states Snext with min-entropy
b minus the leakage occurred from one function call. The main lesson learned
from this: a state that could be duplexed for different message blocks should
have small-rate absorption (as this bounds R), and a unique state can be used
for larger rates even up to full-state absorption.

5 Leakage Resilience of Keyed Duplex Construction

We will prove non-adaptive leakage resilience of the keyed duplex construction
based on a cryptographic permutation p

$←− perm(b) in the model of Sect. 3.4
(see (2)). Although the generic construction and the model are based on the
work of Daemen et al. [15], the security proof approach differs, as explained
in Sect. 4.3. We quantify distinguishers in Sect. 5.1. The main security result is
stated in Sect. 5.2, and an interpretation of it is given in Sect. 5.3. The proof is
given in Sect. 5.4.

Leakage Resilience of the Duplex Construction 237

5.1 Distinguisher’s Resources

We consider an information-theoretic distinguisher D that has access to either
the real world (KD[p]LK , p±) or the ideal world (AIXIF[ro]LK , p±), where p is some
permutation and L some leakage function. Two basic measures to quantify the
distinguisher’s resources are its online complexity M and offline complexity N :

– M : the number of distinct construction calls, either initialization or duplexing
calls;

– N : the number of distinct primitive queries.

For each construction call, we define a path path that “registers” the data that
got absorbed in the duplex up to the point that the cryptographic primitive (p
in the real world and ro in the ideal world) is evaluated. For an initialization call
(δ, IV) 	→ ∅, the associated path is defined as path = encode[δ] ‖ IV . For each
duplexing call (flag , P) 	→ Z, the value [flag] · (Z‖0b−r) ⊕ M is appended to the
path of the previous construction query. Not surprisingly, the definition matches
the actual definition of path in the AIXIF[ro]K construction of Algorithm 3, but
defining the same thing for the real world will allow us to better reason about the
security of the keyed duplex. Note that the value path contains no information
that is secret to the distinguisher. In order to reason about duplexing calls, we
will also define a subpath of a path, which is the path leading to the particular
duplexing call. In other words, for a path path, it subpath is simply path with
the last b bits removed.

In order to derive a detailed and versatile security bound, that in particular
well-specifies how leakage influences the bound, we further parameterize the
distinguisher as follows. For initialization calls:

– q: the number of initialization calls;
– qIV : the maximum number of initialization calls for a single IV ;
– qδ: the maximum number of initialization calls for a single δ.

For duplexing calls:

– Ω: the number of duplexing queries with flag = true;
– L: the number of duplexing calls with repeated subpath, i.e., M minus the

number of distinct subpaths;
– R: the maximum number of duplexing calls for a single non-empty subpath.

Note that these parameters can all be described as a function of the duplexing
calls and the related path’s, and the distinguisher can compute these values
based on the queries it made so far. The parametrization of the distinguisher
is roughly as that of Daemen et al. [15], but we have added parameter R: it
maximizes the number of occurrences of a path subpath for different inputs
(flag , P). The parameter will be used to determine, factually upper bound, the
amount of leakage that the distinguisher learns on a state after the duplexing
call. Indeed, if a certain path subpath occurs R times, this means that these
R duplexing calls have the same input-state, and any evaluation of p in one of

238 C. Dobraunig and B. Mennink

these duplexing calls leaks information about that state. In total, this results in
a maximum amount of R +1 leakages. The parameter R is related to parameter
L, but it is not quite the same. The parameters Ω and L are, as in [15], used
to upper bound the number of duplexing calls for which the distinguisher may
have set the r leftmost bits of the input to the permutation in the duplexing call
to a certain value of its choice. This brings us to the last parameter:

– νfix: the maximum number of duplexing calls for which the adversary has set
the outer part to a single value leftr(T).

Note that νfix ≤ L + Ω, but it may be much smaller in specific use cases of the
duplex, for example, if overwrites only happen for unique values.

5.2 Main Result

We will use a notion from Daemen et al. [15], namely that of the multicollision
limit function.

Definition 1 (multicollision limit function). Let M, c, r ∈ N. Consider the
experiment of throwing M balls uniformly at random in 2r bins, and let μ be
the maximum number of balls in a single bin. We define the multicollision limit
function νM

r,c as the smallest natural number x that satisfies

Pr (μ > x) ≤ x

2c
.

We derive the following result on the keyed duplex under leakage.

Theorem 1. Let b, c, r, k, u, α, λ ∈ N, with c + r = b, k ≤ b, α ≤ b − k, and
λ ≤ 2b. Let p

$←− perm(b) be a random permutation, and K
DK←−− ({0, 1}k)u a

random array of keys. Let L = {L : {0, 1}b × {0, 1}b → {0, 1}λ} be a class of
leakage functions. For any distinguisher D quantified as in Sect. 5.1,

AdvL-naLR
KD (D)

≤ νfixN

2c−(R+1)λ
+

2νM
r,cN

2c−(R+1)λ
+

2νM
r,c

2c
+

νM
r,c(L + Ω) + νfix−1

2 (L + Ω)
2c−Rλ

+

(
M−L−q

2

)
+ (M − L − q)(L + Ω)

2b−λ
+

(
M+N

2

)
+

(
N
2

)

2b

+
q(M − q)

2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ
+

qIV N

2H∞(DK)−qδλ
+

(
u
2

)

2H∞(DK)
.

In addition, except with probability at most the same bound, the final output
states have min-entropy at least b − λ.

The proof is given in Sect. 5.4; we first give an interpretation of the bound in
Sect. 5.3.

Leakage Resilience of the Duplex Construction 239

5.3 Interpretation

By rephasing the duplex and by going over the duplex in a sequential manner
(as [26]), and by only absorbing isolated concepts from Daemen et al. [15] (the
quantification and the multicollision limit function), the proof is intuitively sim-
pler to follow than the black-box variant. This is in part due to the fact that
we start the proof with a transformation reminiscent of the RP-to-RF switch.
This simplifies the proof at various aspects (for example, at the application of
the multicollision limit function) but is not for free, as it induces an extra term
of around

(
M+N

2

)
/2b.

The proof is still fairly general, in part due to the presence of the term νM
r,c.

A naive bounding akin to the derivation of Jovanovic et al. [26] would give a
bound

νM
r,c ≤ max

{

r,

(
2eM2c

2r

)1/2
}

,

but the bound is loose, in particular for small r. Daemen et al. [15] gave a more
detailed analysis of the term, including two lemmas upper bounding it. Omitting
details, one can think of the multicollision limit function to behave as follows [15]:

νM
r,c �

{
b/ log2

(
2r

M

)
, for M � 2r ,

b · M
2r , for M � 2r.

Beyond this multicollision term, the bound of Theorem 1 is complicated due to
the multivariate quantification of the distinguisher’s resources, and most impor-
tantly the terms L and Ω. In Sect. 6, we will consider how the duplex can be
used to create leakage resilient cryptographic schemes, and see how the bound
simplifies drastically for specific use cases.

5.4 Proof of Theorem 1

Let L ∈ L be any leakage function. Consider any information-theoretic distin-
guisher D. Our goal is to bound

ΔD

(
KD[p]LK , p± ; AIXIF[ro]LK , p±)

. (3)

The first step is to replace p with a function f : {0, 1}b → {0, 1}b that has
the same interface as p. The function f maintains an initially empty list F of
input/output tuples (X,Y). For a new query f(X) with (X, ·) /∈ F , it generates
Y

$←− {0, 1}b and returns this value. For a new query f−1(Y) with (·, Y) /∈ F , it
generates X

$←− {0, 1}b and returns this value. In both cases, the primitive adds
(X,Y) to F , and it aborts if this addition yields a collision in X or in Y . Clearly,
as long as f does not abort, the function is perfectly indistinguishable from p, so
we get:

240 C. Dobraunig and B. Mennink

ΔD

(
KD[p]LK , p± ; KD[f]LK , f±

) ≤
(
M+N

2

)

2b
,

ΔD

(
AIXIF[ro]LK , p± ; AIXIF[ro]LK , f±

) ≤
(
N
2

)

2b
,

as in the former there are M + N evaluations of p and in the latter there
are N . Note that this is a purely probabilistic case, and the switch does not
involve/concern any leakage. From (3) we get

ΔD

(
KD[p]LK , p± ; AIXIF[ro]LK , p±) ≤

ΔD

(
KD[f]LK , f± ; AIXIF[ro]LK , f±

)
+

(
M+N

2

)
+

(
N
2

)

2b
. (4)

We proceed with the remaining distance of (4).
The distinguisher makes M construction calls, each of which is either an

initialization call (δi, IV i) 	→ (∅, �i) or a duplexing call (flag i, Pi) 	→ (Zi, �i),
where �i is the λ bits of leakages obtained in this i-th construction call. In
addition, associated to each call is a path pathi as described in Sect. 5.1. Noting
that for an initialization call, δi and IV i are implicit in pathi = encode[δi] ‖ IV i,
we can unify the description as follows. For any initialization call, we define
(flag i, Pi, Zi) := (0, 0b, 0r); all M construction calls – either initialization or
duplex – can be summarized in a transcript

Qc := ((pathi,flag i, Pi, Zi, �i))
M
i=1 . (5)

For each construction call, we define a triplet of states (Si, Ti, Ui). The state
Si is the previous or incoming state. For initialization queries it is defined as
rotα(K[δi] ‖ IV i). The state Ui is the next or outgoing state. These are properly
defined for both the real and ideal world. The state Ti is an intermediate state,
which is defined as Ti := Si ⊕ [flag i] · (Zi‖0b−r)⊕Pi. Note that the intermediate
state is only meaningful for the real world, but the value we add to it is known
to the adversary. Without loss of generality, each leakage satisfies �i = L(Ti, Ui).

Furthermore, the distinguisher makes N primitive calls that are summarized
in a transcript

Qp := ((Xj , Yj))
N
j=1 . (6)

We define the following two collisions events, one that captures collisions
between two construction calls and one that captures collisions between a con-
struction call and a primitive call:

colcc : ∃ i, i′ such that pathi �= pathi′ ∧ Ti = Ti′ , (7)
colcp : ∃ i, j such that Ti = Xj ∨ Ui = Yj . (8)

We write col = colcc ∨ colcp. The bad events are comparable with those of Dae-
men et al. [15], but they are not the same. One notable difference: Daemen et
al. consider (in our terminology) colcc for both input and output collisions. We
do not need to do so, thanks to the RP-RF switch made before.

Leakage Resilience of the Duplex Construction 241

In Lemma 1 below, we will prove that (KD[f]LK , f±) and (AIXIF[ro]LK , f±) are
identical until col is triggered in the real world. Lemma 2 subsequently derives
an upper bound on the event that col is triggered in the real world. These two
results, together with (4) above, complete the proof of Theorem 1. Note that
from the result of Lemma 1, we can particularly conclude that the final states of
the keyed duplex, i.e., all states before re-initializations, have min-entropy b−λ.

Lemma 1. As long as DKD[f]LK ,f± does not set col, the worlds (KD[f]LK , f±) and
(AIXIF[ro]LK , f±) are identical, or formally,

ΔD

(
KD[f]LK , f± ; AIXIF[ro]LK , f±

) ≤ Pr
(
DKD[f]LK ,f± sets col

)
. (9)

Proof. By the fundamental lemma of game playing [4], it suffices to prove that,
as long as the real world (KD[f]LK , f±) does not set col, the real and ideal world
are indistinguishable.

Clearly, in the ideal world (AIXIF[ro]LK , f±), the construction oracle is inde-
pendent of the primitive oracle f±. Also in the real world, the construction oracle
KD[f]LK is independent of f±, by exclusion of duplex-primitive collisions colcp and
as each new query to f± is replied with a uniformly generated value. Therefore,
we can drop the primitive oracle, and focus on proving that KD[f]LK is indistin-
guishable from AIXIF[ro]LK under the assumption that ¬colcc holds.

We will not only consider the output values (Zi, �i), but we will rather prove
a stronger result, namely that output states are identically distributed in both
worlds. Note that in the real world, the output state is computed as Ui ← f(Ti),
whereas in the ideal world, it is computed as Ui ← ro(pathi, b). Consider the
i-th construction call. Clearly, pathi �= pathi′ , as otherwise the query would be
a repeated call. By ¬colcc, also Ti �= Ti′ for all i′ < i. This means that in both
worlds, Ui is a uniformly randomly generated value from {0, 1}b. ��

Lemma 2. The probability that DKD[f]LK ,f± sets col satisfies:

Pr
(
DKD[f]LK ,f± sets col

)

≤ νfixN

2c−(R+1)λ
+

2νM
r,cN

2c−(R+1)λ
+

2νM
r,c

2c
+

νM
r,c(L + Ω) + νfix−1

2 (L + Ω)
2c−Rλ

+

(
M−L−q

2

)
+ (M − L − q)(L + Ω)

2b−λ

+
q(M − q)

2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ
+

qIV N

2H∞(DK)−qδλ
+

(
u
2

)

2H∞(DK)
.

Proof. Consider any distinguisher D that has query access to (KD[f]LK , f±), and
is bound to the parameters (M,N, q, qIV , qδ, Ω, L,R, νfix) listed in Sect. 5.1. Our
goal is to bound

Pr (col) := Pr
(
DKD[f]LK ,f± sets col

)
. (10)

242 C. Dobraunig and B. Mennink

Additional Notation. One can consider duplexing-calls to occur in a tree
fashion, as long as colcc never happens. To proper reasoning about the probability
that col is set, we will have to define parents, siblings, and children of a duplex
call. Consider any construction query (pathi,flag i, Pi, Zi, �i).

The parent of this construction query, parent(i) ∈ {⊥, 1, . . . , i−1}, is defined
as follows: if i corresponds to an initialization call, so if |pathi| = b, then
parent(i) = ⊥; otherwise, parent(i) is the index of the unique duplexing call
that satisfies

pathi = pathparent(i) ‖ ([flagparent(i)] · (Zparent(i)‖0b−r) ⊕ Pparent(i)). (11)

If the i-th query is not an initialization call, its siblings sibling(i) ⊆ {1, . . . , i}
are the set of queries up to the i-th one (later siblings have yet to be born) with
the same parent:

sibling(i) =
{

l ∈ {1, . . . , i} | pathparent(l) = pathparent(i)

}
. (12)

Note that we have |sibling(i)| ≤ R for any i ∈ {1, . . . , M}. The children of the
i-th query are the set of all queries that have i as parent:

child(i) = {l ∈ {i + 1, . . . , M} | parent(l) = i} . (13)

We define the type typei of a construction query (pathi,flag i, Pi, Zi, �i):

typei =

⎧
⎪⎨

⎪⎩

init , if |pathi| = b ,

full , if |pathi| > b ∧ (|sibling(i)| = 1 ∧ flag i = false) ,

fix , if |pathi| > b ∧ (|sibling(i)| > 1 ∨ flag i = true) .

(14)

Note that we have q queries of type init . Type full corresponds to duplex calls of
which the input state Si is a random value from {0, 1}b of which the adversary
may have learned the outer r bits, but it had no possibility to set the outer part
to a certain value of its choice. By definition, there are at most M −L−q queries
of type full . Finally, type fix corresponds to duplex calls of which distinguisher
might have set the outer part to a certain value of its choice; this happens if the
preceding duplex call had siblings, or if the adversary has turned flag i = true,
i.e., enabled the overwrite functionality in the duplex. There are at most L + Ω
queries of type fix .

Analyzing Bad Events. We define three additional collision events. The first
two correspond to multicollisions among the construction queries exceeding an
threshold ν := νM

r,c, and the third one corresponds to plain key collisions in the
key array K:

mcin : ∃ distinct i1, . . . , iν+1 with typeij
= full such that

leftr(Ti1) = · · · = leftr(Tiν+1) , (15)
mcout : ∃ distinct i1, . . . , iν+1 such that leftr(Ui1) = · · · = leftr(Uiν+1) , (16)
key : ∃ distinct δ, δ′ such that K[δ] = K[δ′]. (17)

Leakage Resilience of the Duplex Construction 243

We define mc = mcin ∨ mcout. By basic probability theory,

Pr (col) = Pr (colcc ∨ colcp) ≤ Pr (colcc ∨ colcp | ¬(mc ∨ key)) + Pr (mc ∨ key) .

Note that key is an event independent of the number of queries, whereas colcc,
colcp, and mc are. The distinguisher can make M +N queries, which it makes in
a certain order. For l ∈ {1, . . . , M + N}, denote by colcc(l), colcp(l), and mc(l)
the event that the l-th query sets the respective event. For brevity of notation,
write col(l) = colcc(l) ∨ colcp(l). By basic probability theory,

Pr (col) ≤
M+N∑

l=1

Pr (colcc(l) | ¬col(1 . . . l − 1) ∧ ¬mc(1 . . . l) ∧ ¬key) (18a)

+
M+N∑

l=1

Pr (colcp(l) | ¬col(1 . . . l − 1) ∧ ¬mc(1 . . . l) ∧ ¬key) (18b)

+ Pr (mc) (18c)
+ Pr (key) . (18d)

Based on this, we will proceed as follows. We will consider any query made by
the distinguisher and consider the probability that this query sets either of the
events colcc, colcp, and mc under the assumption that no earlier query set the
event. Note that colcc and mc may only be set by a construction query; colcp
may be set by a construction or a primitive query.

Probability of colcc of Eq. (18a). The event can only be set in duplex queries.
Consider any two i �= i′, and assume that at the point that the latest of the
two queries is made, the events col, mc, and key are still false. We will make a
distinction depending on the type of queries of i and i′.

– typei = typei′ = init . Note that Ti = rotα(K[δi] ‖ IV i), where δi and IV i

can be deduced from pathi, and Ti′ = rotα(K[δi′] ‖ IV i′), where δi′ and IV i′

can be deduced from pathi′ . As pathi �= path ′
i, a collision Ti = Ti′ implies

that necessarily δi �= δi′ and K[δi] = K[δi′]. This is impossible under the
assumption that ¬key holds;

– typei = init and typei′ �= init . Note that Ti = rotα(K[δi] ‖ IV i), where δi and
IV i can be deduced from pathi. Also, Ti′ = Uparent(i′)⊕[flag i′]·(Zi′‖0b−r)⊕Pi′ .

• i < i′. The conditional min-entropy of bits α . . . α + k of Ti is at least
H∞(DK) − qδλ and the conditional min-entropy of rightc(Ti′) is at
least c − |sibling(i′)|λ. The value Ti hits Ti′ with probability at most
1/2H∞(DK)+min{c,max{b−α,c}−k}−(|sibling(i′)|+qδ)λ;

• i′ < i. The conditional min-entropy of bits α . . . α + k of Ti is at least
H∞(DK) − (qδ − 1)λ and the conditional min-entropy of rightc(Ti′) is at
least c− (|sibling(i′)|+1)λ. The value Ti hits Ti′ with probability at most
1/2H∞(DK)+min{c,max{b−α,c}−k}−(|sibling(i′)|+qδ)λ.

Note that |sibling(i′)| ≤ R. There are at most q queries i with typei = init ,
and at most M − q with typei′ �= init . By the union bound, colcc is set in this
case with probability at most q(M−q)/2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ;

244 C. Dobraunig and B. Mennink

– typei �= init and typei′ �= init . We will argue based on the randomness gen-
erated in any query l, which generates a random output state Ul

$←− {0, 1}b.
The probability bound will follow through a union bound, as any query i with
typei �= init is the child any such query.

• Consider any i ∈ child(l) with typei = full . So far, the distinguisher
learned λ bits of leakage on state Si in query l. Thus, Ti has conditional
min-entropy at least b − λ. It hits any other Ti′ with probability at most
1/2b−λ. There are at most M−L−q queries i, i′ with typei = typei′ = full ,
and furthermore, there are at most L + Ω queries i′ with typei′ = fix . By
the union bound, omitting duplicate counting:

(
M−L−q

2

)
+ (M − L − q)(L + Ω)

2b−λ
;

• Consider any i ∈ child(l) with typei = fix . So far, the distinguisher learned
λ bits of leakage on state Si in query l, and (|sibling(i)|−1)λ bits of leakage
on state Si from its sibling queries. Thus, Ti has conditional min-entropy
at least c − |sibling(l)|λ ≥ c − Rλ. It hits any other Ti′ with probability
at most 1/2c−Rλ.
There are at most L+Ω queries i with typei = fix . By ¬mcin, there are at
most ν out of at most M −L− q queries i′ with typei′ = full whose outer
part equals leftr(Tl). There are at most νfix −1 queries i′ with typei′ = fix
whose outer part equals leftr(Tl). By the union bound, omitting duplicate
counting:

ν(L + Ω) + νfix−1
2 (L + Ω)

2c−Rλ
.

colcc is set in this case with probability the sum of above two bounds.

By the union bound,

(18a) ≤ q(M − q)
2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ

+

(
M−L−q

2

)
+ (M − L − q)(L + Ω)

2b−λ
+

ν(L + Ω) + νfix−1
2 (L + Ω)

2c−Rλ
. (19)

Probability of colcp of Eq. (18b). The event can be set in duplex and in
primitive queries. Consider any duplex query i or any primitive query j, and
assume that at the point of querying, the events col, mc, and key are still false.
Note that the bad event consists of two parts, namely input collisions Ti =
Xj and output collisions Ui = Yj . For both cases, we will make a distinction
depending on the type of query of i.

– Event Ti = Xj .
• typei = init . Note that Ti = rotα(K[δi] ‖ IV i), where δi and IV i can be

deduced from pathi. For fixed primitive query, regardless of whether it is in
forward or inverse direction, there are at most qIV possible duplexing calls

Leakage Resilience of the Duplex Construction 245

with matching rightmost b−k bits, i.e., for which IV i = rightb−k(Xj). In
addition, the conditional min-entropy of K[δi] is at least H∞(DK)− qδλ,
and a collision Ti = Xj happens with probability at most 1/2H∞(DK)−qδλ.
Summing over all queries, colcp is set in this case with probability at most
qIV N/2H∞(DK)−qδλ;

• typei = full . As query i is of the type full , its preceding duplex-
ing call parent(i) generated Uparent(i) = Si uniformly at random from
{0, 1}b. However, the distinguisher has learned leftr(Ti), where Ti =
Si ⊕ [flag i] · (Zi‖0b−r) ⊕ Pi, and it may have learned leakage on the other
part. For fixed primitive query, regardless of whether it is in forward or
inverse direction, by ¬mcin there are at most ν possible duplexing calls
with matching leftmost r bits, i.e., for which leftr(Ti) = leftr(Xj). In addi-
tion, the conditional min-entropy of rightc(Ti) is at least c − (R + 1)λ,
and a collision Ti = Xj happens with probability at most 1/2c−(R+1)λ.
Summing over all queries, colcp is set in this case with probability at most
νN/2c−(R+1)λ;

• typei = fix . As query i is of the type fix , the earliest sibling of its pre-
ceding duplex call min(sibling(parent(i))) generated Tmin(sibling(parent(i)))

uniformly at random from {0, 1}b, but in duplexing call i the distinguisher
might have set the outer part to a certain value of its choice, and the dis-
tinguisher may have learned leakage on the other part. For fixed primitive
query, regardless of whether it is in forward or inverse direction, there are
at most νfix possible duplexing calls with matching leftmost r bits, i.e.,
for which leftr(Ti) = leftr(Xj). In addition, the conditional min-entropy
of rightc(Ti) is at least c− (R+1)λ, and a collision Ti = Xj happens with
probability at most 1/2c−(R+1)λ. Summing over all queries, colcp is set in
this case with probability at most νfixN/2c−(R+1)λ;

– Event Ui = Yj . The duplex call generates Ui uniformly at random from
{0, 1}b. However, the distinguisher may have learned leftr(Ui) in any subse-
quent call in child(i), and it may have learned leakage on the other part. For
fixed primitive query, regardless of whether it is in forward or inverse direc-
tion, by ¬mcout there are at most ν possible duplexing calls with matching
leftmost r bits, i.e., for which leftr(Ui) = leftr(Yj). In addition, the con-
ditional min-entropy of rightc(Ui) is at least c − (R + 1)λ, and a collision
Ui = Yj happens with probability at most 1/2c−(R+1)λ. Summing over all
queries, colcp is set in this case with probability at most νN/2c−(R+1)λ;

By the union bound,

(18b) ≤ qIV N

2H∞(DK)−qδλ
+

2νN

2c−(R+1)λ
+

νfixN

2c−(R+1)λ
. (20)

Probability of mc of Eq. (18c). For mcin, note that the state values Ti are
randomly generated using a random function f and M − L − q drawings are
made (we only consider queries of the type full). For mcout, the state values Ui

are randomly generated using a random function f and M drawings are made.
The event mcin is thus identical to a balls-and-bins experiment with M − L − q

246 C. Dobraunig and B. Mennink

balls that are uniformly randomly thrown into 2r bins, and the event is set if
there is a bin with more than ν balls. The event mcout is the same experiment
but with M balls. By definition of ν := νM

r,c (see Definition 1), any of the two
happens with probability at most

(18c) ≤ 2ν

2c
. (21)

Probability of key of Eq. (18d). This is a simple birthday bound colli-
sion event for u randomly drawn k-bit values, as K = (K[1], . . . ,K[u])

DK←−−
({0, 1}k)u. As the keys are mutually independent, we obtain:

(18d) ≤
(
u
2

)

2H∞(DK)
. (22)

Conclusion. The proof is completed by plugging the individual bounds (19),
(20), (21), and (22) into main inequality (18). ��

6 Limiting Leakage of Keyed Duplex Construction

As it can be seen in Theorem 5.2, the advantage that an attacker can gain from
the leakage rises by an increase of either the maximum number of duplexing
calls for a single path R, or the maximum number of different initialization calls
qδ for a single key. Taha and Schaumont [38] and the developers of Isap [16]
presented ways to limit R and qδ. Their usage of the keyed duplex, generalized
to our description of the keyed duplex, is shown in Fig. 3.

p1

K[δ]

IV

Ys

a

p2
0

leftr(P1)

rightc(P1)

flagZ1

r r

c

p2

. . .

. . .

Y1

a

p1

. . .

. . .b − a b − a

Gaining Entropy Maintaining Entropy

k

b − k

Fig. 3. The duplex as used by Taha and Schaumont [38] and Isap [16].

The limit on qδ is simply put by limiting the number of different IV ’s to a
small number, typically to one or two different IV ’s. The role of the IV is then
emulated by a value Y , which is typically a nonce in the case of encryption. Y
is absorbed directly after the initialization in a-bit portions, where a ≤ r. Then,
duplexing is performed the normal way, starting from the final state obtained
after absorption of Y .

Leakage Resilience of the Duplex Construction 247

As becomes clear from Fig. 3, this approach splits the construction into two
different keyed duplex constructions, KD1 and KD2, that use two different ran-
dom permutations (p1 and p2) as well as different rate (a and r). The first part
KD1 is responsible for “gaining entropy”, where the resulting output states are
sufficiently random and mutually independent as long as no two values Y are
the same. In the second part KD2, entropy is “maintained” and used to perform
cryptographic operations. In this separation, the last block Ys is considered to
be absorbed in KD2.

The use of different permutations p1 and p2 may seem artificial, and to a
certain extent it is: we will rely on mutual independence of the two permutations
for easier composability. But also in practical scenarios different permutations
for p1 and p2 would be used, yet, p1 would often just be a permutation with a
very small number of rounds and it could in a strict sense not be considered to
be cryptographically strong.

In what follows, we will apply our general result of Theorem 1 to the con-
struction of Fig. 3. For simplicity of reasoning, we will restrict our focus to the
case of a = 1, where two different uniformly randomly generated keys are pos-
sible (so u ≤ 2), and where two different IV ’s are possible (so |IV| ≤ 2). This
matches the description of Isap [16]. We will consider a distinguisher that makes
Q evaluations, each consisting of a unique s-bit Y and an arbitrary amount of
duplexing calls in the second part. The distinguisher makes N offline evaluations
of p1 and N offline evaluations of p2. The remaining parameters of Sect. 5.1 will
be bounded by the specific use case of the two duplexes in the construction of
Fig. 3.

6.1 Gaining Entropy

The keyed duplex construction KD1 matches the construction of Sect. 2 with
capacity c = b−1, rate r = 1, and key offset α = 0. The number of initialization
calls is at most q ≤ 4, as there are at most two keys and two IV ’s. Likewise,
qIV , qδ ≤ 2. The number of overwrites satisfies Ω = 0. For the number of repeated
paths, note that if a query Y is made, and Y ′ is an older query with the longest
common prefix, then the new query will add one new repeated path, namely
the one that ends at the absorption of the bit where Y and Y ′ differ. In other
words, L ≤ Q, and thus also νfix ≤ Q. The total number of duplexing calls is
at most M ≤ q + Q · s, noting that each query consists of an initialization and
s duplexing calls. We adopt a non-tight νM

1,b−1 ≤ M for simplicity. Finally, as
the absorbed bits Yi can be considered as b-bit blocks Pi where b − 1 bits are
zero-padded, we obtain that R, the maximum number of duplexing calls for a
single non-empty subpath, is at most 2.

We obtain the following corollary from Theorem 1, where we have simplified
the bound by gathering some fractions with leakage in the denominator. Here,
we have also assumed that there is at least 1 bit of leakage, and at least 3 bits
of input, and at least 2 queries.

248 C. Dobraunig and B. Mennink

Corollary 1. Let b, k, s, λ ∈ N, with k ≤ b, s ≥ 3, and 1 ≤ λ ≤ 2b. Let
p1

$←− perm(b) be a random permutation, and K
$←− ({0, 1}k1)2 a random array

of keys. Let L = {L : {0, 1}b × {0, 1}b → {0, 1}λ} be a class of leakage functions.
For any distinguisher D making Q ≥ 2 queries of length at most s bits, and
making N primitive queries,

AdvL-naLR
KD1

(D) ≤ 4sQN + s2Q2

2b−4λ
+

(
4+sQ+N

2

)
+

(
N
2

)

2b
+

2N

2k−2λ
+

1
2k

.

In addition, except with probability at most the same bound, all output states
after absorption of the values Y have min-entropy at least b − λ.

6.2 Maintaining Entropy

For the keyed duplex construction KD2, we consider Ys to be not yet absorbed
by KD1, but instead, it forms the IV for KD2. More detailed, KD2 matches the
construction of Sect. 2 with arbitrary c, r such that c + r = b, with k = b − 1,
and key offset α = 1 meaning that the key is in the bottom b − 1 bits. Note
that, in fact, Ys is XORed to the leftmost bit of the state, but for simplicity of
reasoning, we simply consider it to overwrite it, making the key to KD2 of size
b − 1 bits. The number of initialization calls is Q, all of which may potentially
be under different keys (so u ≤ Q and q = Q), one for every Y ∈ {0, 1}s that
goes through KD1. The keys are not uniformly distributed, yet by Corollary 1
they are independent and all have min-entropy b − 1 − λ. The number of IV ’s is
bounded by 2 (it corresponds to the single bit Ys), so qδ ≤ 2, but each IV may
appear up to Q times, so qIV ≤ q = Q. The value R, the maximum number of
duplexing calls for a single non-empty subpath, as it most the maximum number
of repetitions of Y , so R = 1. There are no repeating paths, hence L = 0. As we
make no a priori restriction on the choice of the flag ’s, Ω is yet undetermined
and νfix ≤ Ω.

We obtain the following corollary from Theorem 1, where we have simplified
the bound by gathering some fractions with leakage in the denominator. Here,
we have also assumed that there is at least 1 bit of leakage.

Corollary 2. Let b, c, r, λ ∈ N, with c+r = b and 1 ≤ λ ≤ 2b. Let p2
$←− perm(b)

be a random permutation, and K
DK←−− ({0, 1}b)Q a random array of keys each

with min-entropy at least b − 1 − λ. Let L = {L : {0, 1}b × {0, 1}b → {0, 1}λ}
be a class of leakage functions. For any distinguisher D making M construction
queries, of which Q initialization calls, and N primitive queries,

AdvL-naLR
KD2

(D) ≤ 2νM
r,c(N + 1)
2c−2λ

+
QN + 2M2

2b−4λ
+

(
M+N

2

)
+

(
N
2

)

2b

+
(νM

r,c + N + Ω)Ω
2c−2λ

+
(M − Q)Ω

2b−λ
.

The bound clearly reveals the impact of overwriting: if the distinguisher may
make all its M duplexing calls with flag = true, the dominating term becomes
MN/2c−2λ.

Leakage Resilience of the Duplex Construction 249

7 Application to Encryption

We will put the results in practice, and show how Corollaries 1 and 2 guaran-
tee leakage resilient nonce-based stream encryption in a modular manner. Let
b, c, r, k ∈ N with c + r = b and k ≤ b. Consider the stream cipher encryption
scheme E of Fig. 4, that gets as input a key K of k bits, a public nonce ℵ of k
bits, and an arbitrarily large plaintext P , and it outputs a ciphertext C. The
ciphertext C is computed by adding |P | bits of key stream generated by the
duplex to P . The IV is a fixed constant.

7.1 Security of Stream Encryption

We consider security of E in the random permutation model. Let p1, p2
$←−

perm(b) be two random permutations, and K
$←− {0, 1}k. Let $ be a function

that for each (ℵ, P) outputs a string of length |P | bits (noting that a nonce
should never be repeated). In the black-box security model, one would consider
a distinguisher that has access to either (E [p1, p2]K , p±

1 , p±
2) in the real world or

($, p±
1 , p±

2) in the ideal world, where again “±” stands for bi-directional query
access:

Advbb-cpa
E (D) = ΔD

(E [p1, p2]K , p±
1 , p±

2 ; $, p±
1 , p±

2

)
.

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

Fig. 4. Leakage-resilient stream encryption using the duplex.

In case of leakage resilience, we will stick to non-adaptive L-resilience of
Dodis and Pietrzak [17], as we did in Sect. 3.4. In the current case, however,
we cannot simply consider any evaluation of the construction to leak, as this
would allow for a trivial break of the scheme. Instead, we adopt the conventional
approach of, e.g., [17,19,35,37,41], where the distinguisher has access to a leak-
free version of the construction, which it has to distinguish from random, and
a leaky version, which it may use to gather information. Formally, we obtain
the following model, which follows Barwell et al. [2] with the difference that we
consider security in the ideal permutation model. Let p1, p2,K, $ be as above.

250 C. Dobraunig and B. Mennink

Let L = {L : {0, 1}b × {true, false} × {0, 1}b × {0, 1}b → {0, 1}λ} be a class
of leakage functions, and for any leakage function L ∈ L, define by E [p1, p2]LK
encryption such that for each call leaks L(Sprev,flag , P, Snext), where Sprev is the
state before the call and Snext the state after the call. In the leakage resilience
security model, one considers a distinguisher that in addition to the oracles in
the black-box model has access to E [p1, p2]LK :

AdvL-naLR-cpa
E (D) =
max
L∈L

ΔD

(E [p1, p2]LK , E [p1, p2]K , p±
1 , p±

2 ; E [p1, p2]LK , $, p±
1 , p±

2

)
.(23)

The distinguisher is not allowed to make an encryption query (to the leaky or
leak-free oracle) under a repeated nonce.

7.2 Security of E
We will demonstrate that the stream cipher encryption is leakage resilient, by
relying on Corollaries 1 and 2.

Theorem 2. Let b, c, r, k, λ ∈ N, with c+ r = b, 4 ≤ k ≤ b, and 1 ≤ λ ≤ 2b. Let
p1, p2

$←− perm(b) be two random permutations, and K
$←− {0, 1}k a random key.

Let L = {L : {0, 1}b ×{0, 1}b → {0, 1}λ} be a class of leakage functions. For any
distinguisher making Q ≥ 2 queries with unique nonces, with a total amount of
M plaintext blocks, N primitive queries to p1 and N primitive queries to p2,

AdvL-naLR-cpa
E (D)

≤ (16k + 2)QN + 4M2 + 4k2Q2

2b−4λ
+

4
(
4+kQ+N

2

)
+ 2

(
M+N

2

)
+ 6

(
N
2

)

2b

+
4νM

r,c(N + 1)
2c−2λ

+
8N

2k−2λ
+

4
2k

.

Proof. Let KD1[p1] and KD2[p2] be the two duplexes described in Sects. 6.1
and 6.2, with the difference that flag = false and no data is absorbed for all
calls to KD2[p2]. One can equivalently describe E [p1, p2]K based on KD1[p1]K
and KD2[p2]K � as in Algorithm 4, where K� is defined as the output states of
KD1[p1]K (we use the � to remind of this fact).

Let L ∈ L be any leakage and D be any distinguisher. Our goal is to bound

ΔD

(E [p1, p2]LK , E [p1, p2]K , p±
1 , p±

2 ; E [p1, p2]LK , $, p±
1 , p±

2

)

= ΔD

(E [KD1[p1]LK ,KD2[p2]LK �] , E [KD1[p1]K ,KD2[p2]K �] , p±
1 , p±

2 ;

E [KD1[p1]LK ,KD2[p2]LK �] , $, p±
1 , p±

2

)
. (24)

Let AIXIF1[ro1] be an AIXIF with the same parameter setting as KD1[p1], and
similarly for AIXIF2[ro2].

We recall from Corollary 1 that, except with probability at most the bound
stated in that corollary, the final output states of KD1[p1] have min-entropy at

Leakage Resilience of the Duplex Construction 251

Algorithm 4. Equivalent description of E [p1, p2]
Interface: E [KD1[p1],KD2[p2]]
Input: (K, ℵ, P) ∈ {0, 1}k × {0, 1}k × {0, 1}∗

Output: C ∈ {0, 1}|P |

KD1.init(1, IV) � only one key K, only one IV
ℵ1‖ . . . ‖ℵk ← ℵ
for i = 1, . . . , k − 1 do

Z ← KD1.duplex(false, ℵi‖0n−1) � discard output

K�[encode(ℵ1 . . . ℵk−1)] ← rightb−1(S) � store state of KD1 in key array of KD2

KD2.init(encode(ℵ1 . . . ℵk−1), Z ⊕ ℵk) � KD2 has key offset α = 1
Z ← ∅

� ← �|P |/r�
for i = 1, . . . , � do

Z ← Z ‖ KD2.duplex(false, 0b)

return left|P |(P ⊕ Z)

least b−λ. This means that we can replace the generation of K� in Algorithm 4
by a dummy K

DK←−− ({0, 1}b)Q consisting of keys with min-entropy b − 1 − λ at
negligible cost. Formally, denoting the resulting scheme by E�, we have obtained:

ΔD

(E [KD1[p1]LK ,KD2[p2]LK �] , E [KD1[p1]K ,KD2[p2]K �] , p±
1 , p±

2 ;

E [KD1[p1]LK ,KD2[p2]LK �] , $, p±
1 , p±

2

)

≤ ΔD

(E�[KD1[p1]LK ,KD2[p2]LK] , E�[KD1[p1]K ,KD2[p2]K] , p±
1 , p±

2 ;

E�[KD1[p1]LK ,KD2[p2]LK] , $, p±
1 , p±

2

)

+ 2 · ΔD′
(
KD1[p1]LK , p±

1 ; AIXIF1[ro1]LK , p±
1

)
, (25)

where D′ is some distinguisher making Q queries of length k−1 bits, and making
N primitive queries. The factor 2 comes from the fact that we perform the change
in both the real and ideal world.

For the remaining distance of (25), we can perform a hybrid argument:

ΔD

(E�[KD1[p1]LK ,KD2[p2]LK] , E�[KD1[p1]K ,KD2[p2]K] , p±
1 , p±

2 ;

E�[KD1[p1]LK ,KD2[p2]LK] , $, p±
1 , p±

2

)

≤ ΔD

(E�[AIXIF1[ro1]LK ,KD2[p2]LK] , E�[AIXIF1[ro1]K ,KD2[p2]K] , p±
2 ;

E�[AIXIF1[ro1]LK ,KD2[p2]LK] , $, p±
2

)

+ 2 · ΔD′
(
KD1[p1]LK , p±

1 ; AIXIF1[ro1]LK , p±
1

)
, (26)

where D′ is some distinguisher making Q queries of length k−1 bits, and making
N primitive queries. The distinguisher D′ operates as follows: it generates a
dummy key K

DK←−− ({0, 1}b)Q and dummy permutation p2
$←− perm(b) on its

own; for each query (ℵ, P) that D makes, D′ pads ℵ1‖ . . . ‖ℵk ← ℵ and evaluates
its own oracle for ℵ1‖ . . . ‖ℵk−1; it uses the output value Z, the last nonce bit
ℵk, and its freshly generated K and p2 to simulate the encryption of P , and it

252 C. Dobraunig and B. Mennink

outputs the result. If D′ is communicating with the real world KD1[p1]K , this
perfectly simulates E�[KD1[p1]K ,KD2[p2]K], and if it is communicating with the
ideal world AIXIF1[ro1]K , this perfectly simulates E�[AIXIF1[ro1]K ,KD2[p2]K].

The isolated distances on KD1 in both (25) and (26) can be bounded directly
by Corollary 1:

ΔD′
(
KD1[p1]LK , p±

1 ; AIXIF1[ro1]LK , p±
1

) ≤
4kQN + k2Q2

2b−4λ
+

(
4+kQ+N

2

)
+

(
N
2

)

2b
+

2N

2k−2λ
+

1
2k

.(27)

We can proceed from the remaining distance in (26):

ΔD

(E�[AIXIF1[ro1]LK ,KD2[p2]LK] , E�[AIXIF1[ro1]K ,KD2[p2]K] , p±
2 ;

E�[AIXIF1[ro1]LK ,KD2[p2]LK] , $, p±
2

)

≤ ΔD

(E�[AIXIF1[ro1]LK ,AIXIF2[ro2]LK] , E�[AIXIF1[ro1]K ,AIXIF2[ro2]K] ;

E�[AIXIF1[ro1]LK ,AIXIF2[ro2]LK] , $
)

+ 2 · ΔD′′
(
KD2[p2]LK , p±

2 ; AIXIF2[ro2]LK , p±
2

)
, (28)

where D′′ is some distinguisher making M construction queries, of which Q ini-
tialization calls, and N primitive queries. Distinguisher D′′ works symmetrically
to distinguisher D′ above, and its description is omitted.

The second distance of (28) can be bounded directly by Corollary 2
for Ω = 0:

ΔD′′
(
KD2[p2]LK , p±

2 ; AIXIF2[ro2]LK , p±
2

) ≤
2νM

r,c(N + 1)
2c−2λ

+
QN + 2M2

2b−4λ
+

(
M+N

2

)
+

(
N
2

)

2b
. (29)

It remains to consider the first distance of (28). As the adversary may never
query its oracle (leaky nor leak-free) for the same nonce, the leaky and leak-free
oracles are mutually independent, and we obtain:

ΔD

(E�[AIXIF1[ro1]LK ,AIXIF2[ro2]LK] , E�[AIXIF1[ro1]K ,AIXIF2[ro2]K] ;

E�[AIXIF1[ro1]LK ,AIXIF2[ro2]LK] , $
)

= ΔD (E�[AIXIF1[ro1]K ,AIXIF2[ro2]K] ; $) = 0. (30)

The proof is completed by combining (24)–(30). ��

7.3 Towards Authentication

The stream cipher encryption construction considered in this section can be
extended to cover authentication as well. One way of doing so is by absorbing
the plaintext blocks Pi during streaming and outputting a tag at the end; another
approach is by evaluating a MAC function (with a different key and IV, noting
that Corollary 1 supports two keys and two IV ’s) after encryption has taken

Leakage Resilience of the Duplex Construction 253

place. Note that in the first case, authenticated decryption would require to
turn flag = true (see Sect. 2). In either case, one must take care of the fact
that, upon decryption, nonces may get reused. In terms of the general picture
of Fig. 3, this means that a same nonce can be “tried” for different blocks Pi,
leading to repeating paths (hence L > 0) and to a higher leakage per evaluation
of p2 (hence R > 1). An authenticated encryption scheme that prohibits such
“trial” of the same nonce with different inputs is Isap [16].

Acknowledgments. We thank the ISAP team, the ESCADA team, and the authors
of [23] for fruitful discussions. Christoph Dobraunig is supported by the Austrian Sci-
ence Fund (FWF): J 4277-N38. Bart Mennink is supported by a postdoctoral fellowship
from the Netherlands Organisation for Scientific Research (NWO) under Veni grant
016.Veni.173.017.

References

1. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48116-5 18

2. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 24

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS 1993, pp. 62–73. ACM (1993)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

5. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.X.: Leakage-Resilient
and Misuse-Resistant Authenticated Encryption. Cryptology ePrint Archive,
Report 2016/996 (2016)

6. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt
Hash Workshop 2007, May 2007

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, Jan-
uary 2011

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop, February 2011

https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-28496-0_19

254 C. Dobraunig and B. Mennink

11. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–
353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 11

12. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge construc-
tion with pseudorandomness in the standard model. In: NIST SHA-3 Workshop,
March 2012

13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [39], pp. 398–412

14. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44499-8 20

15. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 21

16. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

17. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 2

18. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp.
293–302. IEEE Computer Society (2008)

19. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 13

20. FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, August 2015

21. Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: tight
bounds for keyed sponges and truncated CBC. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 368–387. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 18

22. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

23. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards Lightweight Side-
Channel Security and the Leakage-Resilience of the Duplex Sponge. Cryptology
ePrint Archive, Report 2019/193 (2019)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 10

26. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based
authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT

https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-662-47989-6_18
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-72540-4_10
https://doi.org/10.1007/978-3-540-72540-4_10

Leakage Resilience of the Duplex Construction 255

2014. LNCS, vol. 8873, pp. 85–104. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45611-8 5

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

28. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [39], pp.
388–397

29. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 17

30. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 19

31. Naito, Y., Yasuda, K.: New bounds for keyed sponges with extendable output:
independence between capacity and message length. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 3–22. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52993-5 1

32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

34. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel,
C. (eds.) CCS 2015, pp. 96–108. ACM (2015)

35. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 27

36. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

37. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security - Foundations and Practice. ISC, pp. 99–134.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3 5

38. Taha, M.M.I., Schaumont, P.: Side-channel countermeasure for SHA-3 at almost-
zero area overhead. In: HOST 2014, pp. 93–96. IEEE Computer Society (2014)

39. Wiener, M.J. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1

40. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with
minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 223–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36095-4 15

41. Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS
2010, pp. 141–151. ACM (2010)

https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-52993-5_1
https://doi.org/10.1007/978-3-662-52993-5_1
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-40041-4_19
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/3-540-48405-1
https://doi.org/10.1007/978-3-642-36095-4_15
https://doi.org/10.1007/978-3-642-36095-4_15

A Critical Analysis of ISO 17825
(‘Testing Methods for the Mitigation

of Non-invasive Attack Classes Against
Cryptographic Modules’)

Carolyn Whitnall1 and Elisabeth Oswald1,2(B)

1 University of Bristol, Bristol, UK
{carolyn.whitnall,elisabeth.oswald}@bristol.ac.uk

2 University of Klagenfurt, Klagenfurt, Austria

Abstract. The ISO standardisation of ‘Testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules’
(ISO/IEC 17825:2016) specifies the use of the Test Vector Leakage
Assessment (TVLA) framework as the sole measure to assess whether
or not an implementation of (symmetric) cryptography is vulnerable to
differential side-channel attacks. It is the only publicly available standard
of this kind, and the first side-channel assessment regime to exclusively
rely on a TVLA instantiation.

TVLA essentially specifies statistical leakage detection tests with the
aim of removing the burden of having to test against an ever increasing
number of attack vectors. It offers the tantalising prospect of ‘conformance
testing’: if a device passes TVLA, then, one is led to hope, the device would
be secure against all (first-order) differential side-channel attacks.

In this paper we provide a statistical assessment of the specific instan-
tiation of TVLA in this standard. This task leads us to inquire whether
(or not) it is possible to assess the side-channel security of a device via
leakage detection (TVLA) only. We find a number of grave issues in the
standard and its adaptation of the original TVLA guidelines. We propose
some innovations on existing methodologies and finish by giving recom-
mendations for best practice and the responsible reporting of outcomes.

Keywords: Side-channel analysis · Leakage detection · Security
certification · Statistical power analysis

1 Introduction

In the late 1990s, Kocher et al. [23] raised awareness of the fact that ‘provably
secure’ cryptography is potentially vulnerable to attacks exploiting auxiliary
information not accounted for in traditional security models (e.g. power con-
sumption or other measureable characteristics of devices in operation). Since
then, designers and certification bodies have been increasingly concerned with
ensuring and evaluating the physical security of cryptographic implementations.
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 256–284, 2019.
https://doi.org/10.1007/978-3-030-34618-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_9

A Critical Analysis of ISO 17825 257

Adapting theoretical security models to incorporate the full range of realistic
physical threats is difficult (likely infeasible) [36], so that it is typically consid-
ered necessary to subject actual products to experimental testing in a laboratory
setting.

The approach taken by testing regimes within the context of Common Crite-
ria (CC) or EMVCo evaluations is to test ‘all’ of the most effective known attacks
developed in the side-channel literature to date (the JHAS group decides on the
strategies to be considered). But the growing number of such attacks and the
difficulty of determining a priori which are the most pertinent to a particular
scenario (see e.g. [9,35]) makes this unsustainable. An alternative option could
be to rely on leakage detection testing along the lines of the Test Vector Leakage
Assessment (TVLA) framework first proposed by Cryptography Research, Inc.
(now Rambus) [17].

Rather than aim at the successful extraction of sensitive information from
side-channel measurements, as an attack-based evaluation would do, leakage
detection simply seeks evidence (or convincing lack of evidence) of sensitive data
dependencies in the measured traces. TVLA does this via a suite of Welch’s
t-tests targeting mean differences in carefully chosen partitions of trace mea-
surements. For example, the fixed-versus-random test looks for a statistically
significant difference between a trace set associated with a fixed plaintext input
and another trace set associated with randomly varying inputs. Alternatively,
the leakage associated with a specific intermediate value (such as an S-box out-
put) can be targeted by comparing a trace set that has been partitioned into
two according to the value of that bit or byte. Both the ‘specific’ and the ‘non-
specific’ type tests are univariate and are performed on each point in a trace
set separately in order to draw conclusions about the overall vulnerability of the
implementation. So-called ‘higher order’ tests exist to target leakage, more com-
plex in its functional form, that does not present via differences in the mean but
can be found in higher order (joint) statistical moments; these typically entail
pre-processing the traces before performing the same univariate point-wise test
procedures [32].

TVLA is the most well-established and widely-adopted suite of leakage detec-
tion tests despite the lack of a comprehensive analysis of its performance. Sig-
nificantly, the ISO standard ISO/IEC 17825:2016 (‘Testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules’; we will
refer to it as ISO 17825) [20] specifies TVLA (in its full first-order form, as
we describe in Sect. 2) as the sole required measure for testing against differ-
ential side-channel attacks on symmetric key cryptosystems1. ISO 17825 ties in
with ISO 19790, which is the intended replacement/revision of FIPS 140-22 (the

1 Other detection methodologies exist outside of the TVLA framework (including
approaches based on mutual information [6,7,25], correlation [13] and the F -statistic
[3] – all variants on statistical hypothesis tests, with differing degrees of formalism).
These other tests and ‘higher order’ tests are not part of ISO 17825 and therefore
outside the scope of this submission.

2 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Standa
rds.

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Standards
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Standards

258 C. Whitnall and E. Oswald

main evaluation scheme in the US). ISO 19790 specifies the much broader goals
of a security evaluation, and ISO 17825 focuses on susceptibility to non-invasive
attacks for devices aiming for security level 3 or 4.

Within the cryptographic community, publicly available standards are a key
mechanism to ensure the widespread adoption of good practice, and we would
argue that the same should hold in the area of security evaluations. Yet this is
sadly not the case: high-security evaluations according to (e.g.) CC, or EMVCo,
do not release the list of threats that JHAS has agreed are relevant for evaluation.
Thus ISO 17825 is the only publicly available standard that covers side channel
evaluations. As such it is positioned to become the standard methodology for
side-channel testing outside the existing smart card market (which is dominated
by CC and EMVCo). Much is therefore at stake from a commercial as well as
an academic perspective when we come to consider how good ISO 17825/TVLA
is at the task for which it was designed (conformance testing in the context of
side-channel leakage).

We begin this submission by considering the goal(s) of leakage detection in
the context of external evaluations generally, followed by some background on
TVLA in particular and the relevant ISO standards (see Sect. 2). We introduce
statistical power analysis3 in Sect. 3 and, in Sects. 4 and 5 use these tools to
examine the false positive and false negative error rates implied by the standard
recommendations, with appropriate consideration for the fact that multiple tests
are performed as part of a single evaluation. We also introduce the notion of cov-
erage, inspired by that of code coverage in software testing, and use this to com-
ment on how thoroughly the recommendations take account of realistic threats.
We explore some alternative approaches in Sect. 6 and conclude with some rec-
ommendations for best practice in Sect. 7. Our analysis is enabled by adapting a
novel method for complex statistical power simulations by Porter [27], as well as
deriving real-world effect sizes from some actual devices. Interested readers can
find more details about statistical power analysis for leakage detection, including
in relation to the subtly different goals of in-house evaluation, in our companion
paper A Cautionary Note Regarding the Usage of Leakage Detection Tests in
Security Evaluation [42].

2 Background: Leakage Detection in a Security
Evaluation

Leakage detection is often carried out as part of an exercise to evaluate the
security of a cryptographic device. It might be performed by an evaluation labo-
ratory in order to provide security certification when the device goes on sale, or
it might be an in-house effort during the development process to highlight and
fix potential problems prior to formal external evaluation. We address both sce-
narios in [42], while here we focus on the context of external evaluations, where
there are two potential end results aimed at by a detection test:
3 ‘Power,’ as we will explain later in the paper, is a statistical concept and should not

be confused with the ‘P’ of DPA which refers to power consumption.

A Critical Analysis of ISO 17825 259

Certifying vulnerability: Find a leak in at least one trace point. In such a
case it is important to control the number of false positives (that is, conclud-
ing there is a leak where there isn’t one).

Certifying security: Find no leaks having tested thoroughly. Here false neg-
atives (failure to find leaks that are really there) become a concern.

As we will see, the statistical methods used for leakage detection cannot
‘prove’ that there is no effect, they can at best conclude that there is evidence
of a leak or that there is no evidence of a leak. Hence it is especially important
to design tests with ‘statistical power’ in mind – that is, to make sure the
sample size is large enough to detect a present effect of a certain size with rea-
sonable probability (see Sect. 3). Then, in the event that no leak is discovered,
these constructed features of the test form the basis of a reasoned interpreta-
tion. A further, considerable challenge implicit to this goal is the necessity to
be convincingly exhaustive in the range of tests performed – that is, to target
‘all possible’ intermediates and all relevant higher-order combinations of points.
(This suggests analogues with the idea of coverage in code testing, which we
discuss in Sect. 5.1).

2.1 TVLA and its Adoption Within Standards

The TVLA framework was presented by researchers from Cryptography
Research Inc. (now Rambus) at the 2011 Non-Invasive Attack Testing work-
shop organised by NIST [17]. It describes a series of statistical hypothesis tests
to reject (or not) the null of ‘no sensitive information leakage’ against various
alternative hypotheses designed to capture a large range of possible leakage forms
and sources. In summary form (see the paper for full details) the procedure is
follows:

– An acquisition of size n is taken as the device operates with a fixed key on a
fixed plaintext chosen to induce certain values in one of the middle rounds. It
is then divided into two disjoint sets FIXED1 and FIXED2, each of size n/2.

– An acquisition of size 2n is taken as the device operates with the same fixed
key on random inputs. It is then divided into two disjoint sets RANDOM1
and RANDOM2, each of size n.

– Welch’s t-tests [41] are performed, with an (implied, for large samples) sig-
nificance level of α ≈ 0.00001, comparing the population means of:

• The fixed-plaintext traces FIXED1 with the random-plaintext traces
RANDOM1.

• The RANDOM1 traces such that a target intermediate takes a certain
value, versus the remainder of the RANDOM1 traces, for the following
targets: each bit of the XOR between round R input and output; each
bit of the Rth round SubBytes output; each bit of the round R output;
each byte of the round R output (repeated for all possible values in a
one-versus-all manner).

260 C. Whitnall and E. Oswald

– The above is repeated identically for trace sets FIXED2, RANDOM2. The
module is considered to fail the overall test if any pair of repeated individual
tests both conclude that there is a statistically significant difference (in the
same direction) at any trace index.

The TVLA specification provides no discussion of the statistical power of this
procedure, nor does it explicitly discuss the chosen parameters, nor whether the
multiple comparisons problem was accounted for in the design.

2.2 ISO Standards for Physical Security

ISO/IEC 19790 [21] specifies four increasingly rigorous security levels and the
criteria for achieving them. Levels 3 and 4 require (among other things) that
the modules mitigate successfully (to a specified degree) against non-invasive
physical attacks including simple power analysis (SPA) and differential power
analysis (DPA).

ISO/IEC 17825:2016 [20] specifies the tests that the modules must undergo
and the different parameters (sample size, laboratory time, pass/fail criteria) for
running the tests according to each security level.

Under this latter standard, the DPA resilience of symmetric key cryptosys-
tems is essentially determined by performing the full suite of first-order TVLA
tests as detailed above, with the following main differences:

– Fixed plaintexts are required to have the same special characteristics as the
particular values specified by Goodwill et al., but the method of choosing
suitable candidates is left up to the analyst.

– The specified risk of false positives (a.k.a. the significance level, typically
denoted α) is 0.05, which is considerably higher than the level of 0.00001
implied by Goodwill et al.’s t-value threshold of 4.5.

Security levels 3 and 4 are separated by the resources available to perform
the analysis, and the degree of data pre-processing, as per Table 1. These criteria
seem to be directly inherited from FIPS 140-2, which originally was based on
attacks (like CC and EMVCo evaluations).

Table 1. Configuration of the tests to attain security levels 3 and 4. (Note that the
overall acquisition time includes tests not related to DPA vulnerability).

Level 3 Level 4

Maximum acquisition time per test (hours) 6 24
Maximum overall acquisition time (hours) 72 288
Sample size 10,000 100,000
Synchronisation signal available Yes Yes

Noise reduction
Averaging Spectrum
(over 10) analysis

Static alignment attempted No Yes
Dynamic alignment attempted No Yes?

A Critical Analysis of ISO 17825 261

The standard leaves ambiguous whether the sample size specifications apply
per acquisition or for both fixed and random trace sets combined; similarly
whether they are intended per repetition or for both the first and the confir-
matory analysis combined. We have assumed fixed and random are counted
separately and the two repetitions are counted jointly, so that there are 10,000
or 100,000 each of the fixed input and random input traces, split across the two
‘independent’ evaluations.

The remaining questions of interest are then how well TVLA, when applied
as specified in ISO 17825, succeeds in the goals of certifying vulnerability and/or
certifying security – and whether or not (and how) the recommendations could
be adapted to do so more effectively. To address these questions we first introduce
statistical power analysis, which will give us the tools to analyse (and potentially
improve) the theoretical properties of the tests.

3 Statistical Power Analysis for Leakage Detection Tests

It is impossible to eliminate errors in statistical hypothesis testing; the aim is
rather to understand and minimise them. The decision to reject a null hypothesis
when it is in fact true is called a Type I error, a.k.a. ‘false positive’ (e.g. finding
leakage when in fact there is none). The acceptable rate of false positives is
explicitly set by the analyst at a significance level α. A Type II error, a.k.a. ‘false
negative’ is a failure to reject the null when it is in fact false (e.g. failing to find
leakage when in reality there is some). The Type II error rate of an hypothesis
test is denoted β and the power of the test is 1 − β, that is, the probability of
correctly rejecting a false null in favour of a true alternative. The two errors can
be traded-off against one another, and mitigated (but not eliminated) by:

– Increasing the sample size N , intuitively resulting in more evidence from
which to draw a conclusion.

– Increasing the minimum effect size of interest ζ, which in our case implies
increasing the magnitude of leakage that one would be willing to dismiss as
‘negligible’.

– Choosing a different statistical test that is more efficient with respect to the
sample size.

For a given test (i.e. leaving aside the latter option) the techniques of statis-
tical power analysis are concerned with the mutually determined relationship
between α, 1 − β, ζ and N . For the simple case of a t-test with equal sample
sizes and population variances σ1 and σ2

4, the following formula can be derived
(see Appendix A):

N = 2 ·
(zα/2 + zβ)2 · (σ1

2 + σ2
2)

ζ2
(1)

4 We consider these conditions to approximately hold in the case of most of the ISO
standard tests, where the partitions are determined by uniformly distributed inter-
mediates.

262 C. Whitnall and E. Oswald

where ζ = μ1 − μ2 is the true difference in means between the two populations
(this relationship can be found in any standard statistics textbook). Note that
Eq. (1) can be straightforwardly rearranged to alternatively compute any of the
significance level, effect size or power in terms of the other three quantities.

3.1 Configuring Tests via an A Priori Power Analysis

Ideally, a power analysis is performed before a leakage evaluation takes place
as an aid to experimental design; this is known as a priori power analysis and
can help to ensure (e.g.) the collection of a large enough sample to detect data-
dependencies of the expected magnitude with the desired probability of success
[25]. Power analysis can be performed after data collection in order to make
statements about the power to detect a particular effect size of interest, or the
minimum effect size that the test would be able to detect with a certain power.
This can be useful when it comes to responsibly interpreting the non-rejection of
a null hypothesis. However, it is crucial that the effect sizes are chosen indepen-
dently of the test, based on external criteria, as it has been shown that attempts
to estimate ‘true’ effect sizes from the test data produce circular reasoning. In
fact, there is a direct correspondence between the p-value and the power to
detect the observed effect, so that ‘post hoc power analysis’ merely re-expresses
the information contained already in the test outcome [18].

Also needed in order to perform statistical power analysis are the population
standard deviations of the partitioned samples, which may or may not be the
same. These are usually assumed to have been obtained from previous exper-
iments and/or already-published results, which can be especially tricky when
approaching a new target for evaluation.

3.2 Effect Size

This requirement for information about the data sample which cannot be esti-
mated from the data sample is the main obstacle to statistical power analysis.
The choice of effect sizes for the computations can be guided by previous exper-
iments (e.g., in our case, leakage evaluation on a similar device with a similar
measurement set up) or (ideally) by some rationale about the practical implica-
tions of a given magnitude (e.g. in terms of loss of security). Note that we always
eventually need some rationale of this latter type: what is ultimately of interest
is not just whether we are able to detect effects but whether the effects that we
detect are of practical concern. With a large enough sample we will always be
able to find ‘arbitrarily small’ differences; the question then remains, at what
threshold do they become ‘arbitrary’?

It is convenient (and bypasses some of the reliance on prior information)
to express effect sizes in standardised form. Cohen’s d is defined as the mean
difference divided by the pooled standard deviation of two samples of (univariate)
random variables A and B:

d =
a − b√

(nA−1)s2
A+(nB−1)s2

B

nA+nB−2

A Critical Analysis of ISO 17825 263

where a, b are the sample means, s2A, s2B are the sample variances and nA, nB

are the sample sizes. Notice that this is essentially a measure of signal-to-noise
ratio (SNR), closely related to (and therefore tracking) the various notions that
already appear in the side-channel literature. The formula for the sample size
required for the t-test can be expressed in terms of the standardised effect size
as follows:

N = 4 ·
(zα/2 + zβ)2

d2
(2)

Cohen [8] proposed that effects of 0.2 or less should be considered ‘small’,
effects around 0.5 are ‘medium’, and effects of 0.8 or more are ‘large’. Sawilowsky
[30] expanded the list to incorporate ‘very small’ effects of 0.01 or less, and ‘very
large’ and ‘huge’ effects of over 1.2 or 2.0 respectively. The relative cheapness
of sampling leakage traces (and subsequent large sample sizes) compared with
studies in other fields (such as medicine, psychology and econometrics), as well
as the high security stakes of side-channel analysis, make ‘very small’ effects of
more interest than they typically are in other statistical applications.

Focusing on standardised effects helps to put the analysis on a like-for-like
footing for all implementations, but it doesn’t remove the need for specific knowl-
edge about a device in order for meaningful interpretation.

3.3 The Impact of Multiple Testing

Statistical hypothesis testing is generally introduced under the implicit assump-
tion that a single null/alternative pair is up for consideration. Unfortunately,
controlling error rates becomes even more complicated when multiple tests are
performed as part of the same experiment. Without appropriate modifications,
test conclusions are no longer formally supported. This is because, if each test
has (by design) a probability α of falsely rejecting the null hypothesis, then the
probability of rejecting at least one true null hypothesis across all m tests (that
is, the overall false positive rate as opposed to the per-test rate) might be as
high as αoverall = 1 − (1 − αper-test)m if those tests are independent. (Otherwise,
the rate will be lower but will depend on the form of the dependencies).

Multiplicity Corrections. In the statistics literature there are two main
approaches to correcting for multiple tests: controlling the family-wise error
rate (FWER) and controlling the false discovery rate (FDR). Both of these were
discussed and evaluated in the context of leakage detection by Mather et al. [25].

FWER-based methods work by adjusting the per-test significance criteria in
such a way that the overall rate of Type I errors is no greater than the desired
α level. For example:

– Bonferroni correction [12]: per-test significance level obtained by dividing the
desired overall significance level by the number of tests m, i.e. αper-test = α

m .
Controls the FWER for the ‘worst case’ scenario that the tests are indepen-
dent, and is conservative otherwise.

264 C. Whitnall and E. Oswald

– Šidák correction [40]: explicitly assumes independence, and that all null
hypotheses are false, and sets αper-test = 1 − (1 − α)

1
m . These assumptions

potentially gain power but are unlikely to suit a leakage evaluation setting.
– Holm adjustment [19]: a ‘step up’ procedure; tests are ordered according to

p-value (smallest to largest), and criteria set such that αi = α
m−i+1 for the

ith test.

It should be clear that any such downward adjustment to the per-test Type
I error rates (i.e. in order to prevent concluding that there is a leak when there
isn’t) inevitably increases the rate of Type II errors (the probability of missing
a leak which is present). Erring on the “safe side” with respect to the former
criterion may not be at all “safe” in terms of the cost to the latter. The relative
undesirability of the two error types depends heavily on the application and
must be carefully considered.

FDR-based methods take a slightly different approach which is more relaxed
with respect to Type I errors and subsequently less prone to Type II errors.
Rather than minimise the probability of any false positives they instead seek to
bound the proportion of total ‘discoveries’ (i.e. rejected nulls) which are false
positives. The main FDR-controlling method, and the one that we will consider
in the following, is the Benjamini–Hochberg procedure, which (like the Holm
correction) operates in a ‘step up’ manner as follows:

1. For the ordered (small to large) p-values p(1), . . . , p(m), find the largest k such
that p(k) ≤ k

mα.
2. Reject the null hypothesis for all tests i = 1, . . . , k.

A recent proposal in the side-channel literature [11] takes an alternative third
way, using methods developed for the purpose of performing a meta-analysis
based on multiple independent studies: the decision to collectively reject or not
reject a set of null hypotheses is based on the distribution of the p-values. (We
do not analyse this method in the following due to its heavy reliance on the
independence assumption).

In addition to the inevitable loss of power associated with all of the above
adjustments, a substantial obstacle to their use is the difficulty of analysing
(and controlling) the power, which is essential if we want to draw meaningful
and comparable conclusions from test outcomes. In cases where a single per-test
significance level αper-test is derived (e.g. Bonferroni and Šidák), this can sim-
ply be substituted into the power analysis formulae to gain the per-test power.
However, consensus is lacking when it comes to performing equivalent computa-
tions for FDR-controlling procedures (compare, e.g., [4,14,24,28,39]; in Sect. 6
we adopt an approach by Porter that operates by simulating test statistics but
is constrained to fully specified test scenarios [27]). Moreover, depending on the
over-arching goal of the analysis, per-test power may not even be the relevant
quantity to consider, as we next discuss.

Different Notions of Power. Just as multiple tests raise the notion of an
‘overall’ Type I error rate which is not equal to the per-test error rate, so it is

A Critical Analysis of ISO 17825 265

worth giving thought to the ‘overall’ Type II error and what precisely we mean
by that. We have seen above that multiplicity corrections reduce the per-test
power – the probability of detecting a true effect wherever one exists. Porter
[27] describes this as ‘individual’ power, and contrasts it with the notion of ‘r-
minimal’ power5 – the probability of detecting at least r true effects. We propose
that the 1-minimal power is the relevant notion in the context of certifying
vulnerability/security, since a single detected leak is sufficient to fail a device.

The probability of detecting all true effects (as might be the goal of an
in-house development-time evaluation) is known as the ‘complete power’. The r-
minimal power is naturally greater than or equal to this quantity. In particular,
the 1-minimal power can actually be higher in a multiple testing scenario than
in a single test – as long as the true number of false positives is greater than 1,
each such test represents an additional opportunity to find an effect.

4 ISO 17825 for Certifying Vulnerability

In this section we examine how reliable ISO 17825 is for certifying vulnerability –
demonstrating a sensitive dependency in the trace measurements. Since a single
significant test outcome is sufficient to fail the device, it is crucial that the
probability of a false positive be kept very low.

Under the standard, the per-test rate is controlled at αper-test = 0.05 (see
[21, Subsect. 11.1]), and no adjustment is made for the fact that each test is
performed against multiple (potentially thousands of) trace points. However,
any discovered vulnerability is required to be confirmed by a second test on
a separate, identically acquired dataset. In either one of the two sets of tests
we would expect that (on average, under the assumption of independence) 5 in
every hundred true null hypotheses will be falsely rejected, so that for long traces
the overall probability of a false detection becomes almost one. The probability
of both sets of tests producing a false positive is (1 − (1 − αper-test)m)2; the
probability of this happening such that the sign of both the effects is the same
is (1 − (1 − αper-test)m) × (1 − (1 − αper-test/2)m) (the product of an error of
any direction in the first test and an error of fixed direction in the second; see
the red lines in Fig. 1). However, the probability of observing two false positives

(of the same sign) in the same position is αrepeat = 1 −
(
1 − α2

per-test
2

)m

, which
grows much slower as m increases (see the yellow lines in Fig. 1). Still, under the
standard-recommended significance criterion of αper-test = 0.05, the probability
of at least one coinciding detection is over a half once the length of the trace
reaches 600. By contrast, under the original TVLA recommendations (which
imply αper-test ≈ 0.00001), the probability of a coinciding detection is close to
zero even for traces that are millions of points long. (Only once the number of
points is on the order of 1010 do coinciding false detections become non-negligibly
probable).

5 Porter uses the terminology d-minimal; we use r instead of d to avoid confusion with
Cohen’s d.

266 C. Whitnall and E. Oswald

The standard fails to provide adequate assurance that detected vulnerabilities
are real unless leakage traces are extremely short. Either a stricter per-test sig-
nificance criterion (combined with the repetition step) or an established method
to control the FWER (see the purple lines in Fig. 1) would be preferable for this
purpose.

The probability of a false detection under an FDR-controlling procedure
depends on the density of true leaks within the trace and is less easy to state in
advance in this way; note however that such methods do not claim to avoid false
detections altogether, rather to ensure that they are few relative to the number of
true effects identified. We provide some analysis in Sect. 6, essentially confirming
that they are ill-suited to the goal of certifying vulnerability, where a single false
positive is enough to fail a device altogether according to the standard.

The question of how best to handle multiple comparisons depends not just
on the ability of each option to avoid false positives but on the power of each to
detect true positives (i.e. their ability to avoid false negatives). We address this
within the next section, as we turn our attention to the standard’s capabilities
when it comes to certifying security.

5 ISO 17825 for Certifying Security

We have argued so far that the discovery of a leak when the standard recommen-
dations are followed does not reliably certify vulnerability, due to the high risk
of a false positive. We now ask the complementary question: what, if anything,
can be concluded if a leak is not detected? Can non-discovery be interpreted to
‘certify security’?

This question is best separated into two: have all realistic vulnerabilities been
tested for? and can we trust the conclusions of all the tests that were performed?
The first of these is the simpler to answer.

5.1 Have All Realistic Vulnerabilities Been Tested For?

In code testing, the extent to which everything that could be tested has been
tested is referred to as ‘coverage’ [26]. Typical metrics in this setting include

0 100 200 300 400 500 600
Trace length

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Probability of false detection when = 0.05

Single experiment (overall)
Repeat experiment (overall)
Coinciding false detection
Bonferroni

0 0.5 1 1.5 2 2.5 3
Trace length 106

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Probability of false detection when = 1e-05

Single experiment (overall)
Repeat experiment (overall)
Coinciding false detection
Bonferroni

Fig. 1. Overall probability of a false positive as the length of the trace increases, for
two different per-test significance levels.

A Critical Analysis of ISO 17825 267

code coverage (have all lines of code been touched by the test procedure?),
function coverage (has each function been reached?), and branch coverage (have
all branches been executed?) [1]. In a hardware setting one might alternatively
(or additionally) test for toggle coverage (have all binary nodes in the circuit
been switched?) [37]. These examples all assume white-box access to the source
code; in black-box testing scenarios, coverage might alternatively be defined in
functional terms.

We suggest that the concept of coverage is a useful one for thinking about
the (in)adequacy of a side-channel evaluation. The types of questions we might
consider include:

– Have all possible intermediates been tested?
– Have all possible leakage forms been taken into account? For example, some

circuits might leak in function of the intermediate values; some in function of
the transitions between certain intermediates; some in combination of both.
Differences might present in distribution means or more subtly, such as in
higher order moments (e.g. in the presence of countermeasures).

– Have all possible locations in the trace been tested (with each intermediate
and leakage form in mind)? This includes all relevant tuples of trace points in
the case where higher order leakage of protected intermediates is of concern.

– What proportion of the input space has been sampled? Some key/input com-
binations might be more ‘leaky’ than others; with a total possible input space
of, e.g. (in the case of AES-128) 2128 × 2128 = 2256 (key, plaintext) pairs, it
is unavoidable that one can only test a tiny fraction, and we are typically
obliged to rely on simplifying assumptions (e.g. ‘Equal Images under differ-
ent Subkeys (EIS)’ [31]) in order to interpret outcomes as representative.

– Have all possible side-channels been tested?! With most of the literature typ-
ically focused on power (and sometimes EM radiation [16,29]) it is easy to
forget that other potentially exploitable characteristics (timing [22], temper-
ature [5], light [15,34] and sound [2,33] emissions) can also be observed.

It should be clear from the description in Sect. 2.2 that the coverage of ISO
17825 is quite limited. It considers first-order univariate leakages only, relies on
one fixed key and (in the case of the fixed-versus-random tests) one fixed input
to be representative of the entire sample space, and is confined to a small number
of target values (although the fixed-versus-random tests do aim at non-specific
leakages). Moreover, by relying solely on the t-test the evaluations are only able
to discover differences that exhibit in the means of the partitioned populations
– more general distributional differences (such as those produced by masking in
parallel) will remain completely undetected.

5.2 How Reliably do the Performed Tests Find Leakage?

Formally, a statistical hypothesis test either rejects the null hypothesis in favour
of the alternative, or it ‘fails to reject’ the null hypothesis. It does not ‘prove’ nor
even ‘accept’ the null hypothesis. Moreover, it does this with a certain probability
of error.

268 C. Whitnall and E. Oswald

Whilst the Type I error rate α is provided by the standard (albeit chosen
badly), the Type II error rate (denoted β) – i.e. concluding that there is no leak
when there is – is opaque to the evaluator without further effort. If this rate is
very high (equivalently, we say that the ‘statistical power’ 1−β is low) then the
failure of the test to detect leakage really doesn’t mean very much at all.

So, if a test fails to reject the null of ‘no leakage’ in the context of an evalua-
tion, we must be able to say something about its power. The ability of a device
to withstand a well-designed test which is known to be powerful indicates far
more about its security than its ability to withstand an ad-hoc test which may or
may not be suitable for purpose. In addition, the more the statistical properties
of the applied methodologies are known and managed, the easier it becomes to
compare evaluations across different targets and measurement set-ups, and to
establish criteria for fairness. We therefore turn to the tools of statistical power
analysis.

Recall from Sect. 3 that the power of a test depends on the sample size,
the standardised effect size of interest (alternatively, the raw effect size and the
variance of the data), and the significance criteria (the pre-chosen rate of Type
I errors). The standard specifies sample sizes of 10,000 and 100,000 for each of
the security levels 3 and 4 respectively, and an (unadjusted) per-test significance
criteria of αper-test = 0.05. The actual effect size (if an effect exists) is necessarily
unknown (if it was known the evaluator wouldn’t need to test for its existence)
and depends on the target implementation even if a perfect measurement set-up
were available. But we can answer the following:

– What is the power of the tests (as specified) to detect the standardised effects
as categorised by Cohen and Sawilowsky?

– What effect sizes can the tests (as specified) detect for a given power (for
example, if the analyst wishes to balance the rates of the two types of error)?

– What effect sizes have been observed in practice, and would the current spec-
ifications need to be revised in order to detect these?

Power of a Single Test. The LHS of Table 2 shows that, of the standard-
ised effects as categorised by Cohen and Sawilowsky, all but the ‘very small’
are detected with high probability under the sample size criteria defined by
the standard. Meanwhile, level 3 and 4 criteria are both inadequate to detect
standardised effects of 0.01. (Remember though that a single test essentially
corresponds to a leakage trace of unrealistic length 1).

The RHS of the table shows the effect sizes that are detectable; for example,
an analyst who wishes to control Type II errors at the same rate as Type I errors
(β = α = 0.05) is able to detect effects of size 0.072 under the level 3 criteria
and 0.023 under the level 4 criteria. By comparison, the minimum detectable
effect sizes for balanced error rates are more than doubled under the original
TVLA significance criterion (which approximates to α = 0.00001): 0.174 with a
sample size of 10,000 and 0.055 with a sample size of 100,000. (See Table 6 in
AppendixB).

A Critical Analysis of ISO 17825 269

Table 2. LHS: Power to detect Cohen’s and Sawilowsky’s standardised effects under
the level 3 (N = 10, 000) and level 4 (N = 100, 000) criteria; RHS: Minimum effect
sizes detectable for increasing power thresholds, under the level 3 (N = 10, 000) and
level 4 (N = 100, 000) criteria.

Cohen’s Power
d Level 3 Level 4
Very small (0.01) 0.072 0.352
Small (0.2) 1.000 1.000
Medium (0.5) 1.000 1.000
Large (0.8) 1.000 1.000
Very large (1.2) 1.000 1.000
Huge (2) 1.000 1.000

Power Cohen’s d
Level 3 Level 4

0.75 0.053 0.017
0.80 0.056 0.018
0.90 0.065 0.021
0.95 0.072 0.023
0.99 0.086 0.027
0.99999 0.124 0.039

A natural next question is what size are the effects exhibited in actual trace
acquisitions, and are the criteria laid out in the standard adequate to detect real-
world vulnerabilities? We seek indicative answers via analysis of some example
scenarios.

Observed Effect Sizes from Realistic Devices. It is not straightforward to
‘simply’ observe magnitudes in existing acquisitions; all estimated differences will
be non-zero, and deciding which ones are ‘meaningful’ essentially corresponds
to the task of detection itself. Choosing ‘real’ effects based on the outcomes
of t-tests, and then using the magnitudes of those effects to make claims about
‘detectable’ effect sizes, amounts to circular reasoning, and depends on the choice
of significance criteria. Fortunately the motivation behind leakage detection pro-
vides us with a natural, slightly more objective, criterion for identifying ‘real’
effects, via the outcomes of key recovery attacks. That is, if leakage detection
is geared towards identifying (without having to perform attacks) points in the
trace which are vulnerable to attack, then an effect size which is ‘large enough’
to be of interest is one that can be successfully exploited.

We take this approach, and perform distance-of-means attacks on all 128
bits of the first round SubBytes output for three AES acquisitions, taken on an
ARM-M0 processor, an 8051 microcontroller and an RFID (i.e. custom ASIC)
device. We also compute the sample effects for each of those bits, which enables
us to report estimated effect sizes of interest.

To mitigate for false positives we (adapting from [38]) take measures to con-
firm the stability of an outcome before classifying a point as ‘interesting’: we
repeat the attack on 99% of the full sample and retain only those points where
the correct subkey is ranked first in both instances.

Figure 2 shows the raw (top) and standardised (bottom) observed effect sizes
(i.e. mean differences associated with an S-box bit) of first round AES traces
measured from an ARM-M0 processor, an 8051 microcontroller and an RFID
(custom ASIC) device respectively. As expected, because of the different scales
of the measurements (arising from different pre-processing, etc), the raw effects

270 C. Whitnall and E. Oswald

are not necessarily useful to compare. The ARM effects range up to about 0.8,
while effects on the 8051 and the RFID implementation range up to 3 and 2
respectively. The standardised effects are much more comparable (≈ 0.6 and
≈ 1 for ARM and 8051 respectively; ≈ 0.4 for the RFID, although this is for the
second rather than the first S-box as the latter is less ‘leaky’ in this instance).6

0 200 400 600 800 1000 1200 1400
Trace index

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
aw

 e
ffe

ct
 s

iz
e

ARM implementation (10,000 traces)

0 200 400 600 800 1000 1200 1400
Trace index

-0.4

-0.2

0

0.2

0.4

0.6

0.8

St
an

da
rd

is
ed

 e
ffe

ct
 s

iz
e

0 2000 4000 6000 8000 10000 12000
Trace index

-4

-2

0

2

4

R
aw

 e
ffe

ct
 s

iz
e

8051 implementation (10,000 traces)

0 2000 4000 6000 8000 10000 12000
Trace index

-1

-0.5

0

0.5

1

1.5

St
an

da
rd

is
ed

 e
ffe

ct
 s

iz
e

0 500 1000 1500 2000
Trace index

-2

-1

0

1

2

3

R
aw

 e
ffe

ct
 s

iz
e

RFID implementation (5,000 traces)

0 500 1000 1500 2000
Trace index

-0.4

-0.2

0

0.2

0.4

St
an

da
rd

is
ed

 e
ffe

ct
 s

iz
e

Fig. 2. Difference of means (top) and standardised equivalent (bottom) associated with
the first bit of the first S-box of two software AES implementations and the first bit of
the second S-box of one hardware implementation. Red circles denote points where a
distance-of-means attack achieves stable key recovery. (Color figure online)

Table 3 summarises the standardised and raw effect sizes associated with
distance-of-means key recoveries over all bits of all S-boxes. The smallest stan-
dardised effect detected is 0.0413 for the 8051 microcontroller; the ARM and
RFID smallest effects are in a similar ballpark.

Table 3. Summary of effect magnitudes associated with stable distance-of-means key
recovery attacks.

Implementation Proportion Standardised Raw
interesting Min Max Median Min Max Median

ARM 0.0226 0.0444 0.9087 0.1155 0.0388 1.0265 0.1073
8051 0.0150 0.0413 1.4265 0.1670 0.0254 5.3808 0.1469
RFID 0.0049 0.0624 0.3935 0.0933 0.2272 3.4075 0.3836

6 In a non-specific fixed-versus-random experiment (even more so in a fixed-versus-
fixed one) the differences depend on more than a single bit so, depending on the value
of a given intermediate under the fixed input, can potentially be several times larger
(see e.g. [32]) – or they can be smaller (e.g. if the leakage of the fixed intermediate
coincides with the average case, such as the (decimal) value 15 in an approximately
Hamming weight leakage scenario). It is typically assumed in the non-specific case
that, as the input propagates through the algorithm, at least some of the interme-
diates will correspond to large (efficiently detected) class differences [13].

A Critical Analysis of ISO 17825 271

Taking 0.04 as an indicative standardised effect size for actual trace mea-
surements would lead us to conclude that the level 4 criterion is adequate if the
full sample of size 100,000 is used in an individual (non-repeated) test, but that
the level 3 criterion of 10,000 is not. Using the sample size formula we obtain
that a minimum of 32,487 traces are needed to detect an effect of size 0.04 in a
single test with balanced error rates α = β = 0.05. (In reality, one type of error
may be deemed more or less of a concern than the other; we state results for
balanced rates merely by way of example).

However, data-intensive research has been carried out into the exploitable
leakage of devices with far less ‘neat’ side-channel characteristics than the (com-
paratively) favourable scenarios exampled above. De Cnudde et al. [10], for exam-
ple, perform successful attacks against masked hardware implementations with
up to 500 million traces, implying both that extremely small effects exist and that
researchers (and, presumably, some ‘worst case’ attackers) have the resources and
determination to detect and exploit them. FIPS 140-2 (and thus ISO 19790) was
conceived to be more economic than CC, but this comes at the cost of not being
adequate for state of the art hardware implementations.

We would argue that effects of real world relevance should be extended to
include a new category: ‘tiny’ effects of standardised size d = 0.001. An evalua-
tion with α = 0.05 and a sample of size of 10,000 or 100,000 (as per the levels 3
and 4 criteria respectively) would have power of just 0.028 or 0.036 respectively
to detect such an effect. To achieve a power of 0.95 (that is, balanced error rates)
would require a sample of size nearly 52,000,000. Clearly, leakage of this nature
is beyond the scope of the ISO standard to detect, whilst still representing a
demonstrably exploitable vulnerability.

Furthermore, in practice, of course, evaluators are not just checking for a
single effect via a single test, but for a range of different effects all in a series
of separate (possibly correlated) trace points. This adds considerably to the
challenge of rigorous and convincing analysis, due to the problem of multiple
comparisons discussed above – corrections for which inevitably impact on the
power.

‘Overall’ Power in an Example Scenario. The per-test power can be com-
puted via the formulae in Sect. 3, but the r-minimal and the complete power of
a set of tests depends on the total number of tests and the ratio of true to false
null hypotheses, as well as the covariance structure of the test statistics. This
information is not available if an evaluation is set up according to ISO 17825 (it
would need to be determined in preliminary experiments).

By way of illustrative analysis we consider the scenario described above in
Sect. 5.2, where there appeared to be around 30 true leak points in a (truncated)
first round AES software trace of length 1,400, and we make the simplifying
assumption that the tests are independent (we will relax this in Sect. 6 and show
that it makes little difference).

Table 4 shows the per-test and the 1-minimal power under the standard spec-
ifications to detect two different effect sizes: the empirically observed effect of

272 C. Whitnall and E. Oswald

standardised size 0.04, and the ‘worst case adversary’ inspired ‘tiny’ effect of
0.001. The level 3 sample size is just short of that required to achieve an over-
all (i.e. 1-minimal) power of 1 − α to detect at least one effect of the observed
size when the repetition is performed7; the level 4 sample size detects it with
high probability (even at the stricter TVLA-recommended α-level, see Table 7
in AppendixB); however, to detect the ‘tiny’ effect would require 170 times as
many measurements (1,700 more for α = 0.00001). Thus, for this scenario at
least (and under our simplifying assumptions) we conclude that the standard
recommendations are adequate to certify security with respect to modest effect
sizes.

Recall, though, that the standard recommendations are inadequate to cer-
tify vulnerability, as the overall false positive rates are considerably higher than
should be tolerated by a procedure that fails a device based on a single rejected
null hypothesis (see Sect. 4)–this is a prime example that error rates can be
‘traded off’. The question is therefore whether any set of parameters or alterna-
tive method for multiplicity correction is able to make a better trade-off between
the overall false negative and false positive rates.

Table 4. Average (‘per-test’) and 1-minimal (‘overall’) power to detect observed and
‘tiny’ effect sizes under the level 3 and 4 criteria, and the sample size required to achieve
balanced errors for a significance criterion of α = 0.05. (30 leak points in a trace set of
length 1,400).

Effect Repeat Level 3 Level 4 Required sample size
test? Ave 1-min Ave 1-min Ave 1-min

0.04 No 0.516 1.000 1.000 1.000 32,487 1,055
0.04 Yes 0.086 0.932 0.988 1.000 76,615 10,647
0.001 No 0.028 0.574 0.036 0.665 51,978,840 1,687,843
0.001 Yes 0.001 0.022 0.001 0.031 122,584,748 17,034,581

6 Exploring Alternative Test Con gurations

We wish to extend the analysis above to a wider range of adjustment methods
in order to see if any emerge as being promising alternatives to the current
recommendations. Porter suggests a way to approximate the different types of
power by simulating large numbers of test statistics under a suitable alternative
hypothesis, performing the multiplicity adjustments and simply counting the
proportion of instances where 1, r, or all the false nulls are rejected (for the 1-,
r-minimal and complete powers) as well as the total proportion of false nulls
rejected (for the average individual power) [27]. An advantage of this approach

7 We compute the per-test power under the repetition step as the square of the power
to detect with half the sample, deriving from the assumption that the two iterations
of the test are independent.

A Critical Analysis of ISO 17825 273

is that it also allows us to relax the independence assumptions underpinning the
computations in Table 4 – but this introduces the considerable limitation that
specific and detailed information about the particular leakage scenario is needed.
In a real evaluation we do not typically have this; however, for the purposes of
illustration we take the dataset analysed in Sect. 5.2 as an example scenario from
which to construct a realistic set of null and alternative hypotheses, with the aim
of showing how the different notions of power evolve as the sample size increases.

Suppose the t-statistics corresponding to a trace set of length 1,400 have the
same correlation structure as the observed ARM traces, characterised by the
covariance matrix Σ. The null hypothesis is that none of the points leak; the
alternative is that there are 30 effects of standardised size 0.04, located as per
the analysis presented in Fig. 2, where T denotes the set of indices of successful
attacks. Under the null hypothesis, for a large enough trace set (which we need
anyway to detect such a small effect) the joint distribution of the t-statistics
under the alternative hypothesis can be approximated by a multivariate normal
with mean μ = [μ1, . . . , μ1400] such that μt = 0.04 for all t ∈ T and μt = 0 for all
t /∈ T , and covariance matrix Σ. By drawing repeatedly from this distribution
and noting which of the (individual) tests, with and without correction, reject
the null hypothesis and which do not, we can estimate the power and the error
rates for tests in this particular scenario.

We performed the analysis for two different significance levels (αISO = 0.05
and αTV LA = 0.00001) and six different methods: no correction, Bonferroni,
Šidák and Holm corrections to control the FWER, the Benjamini–Hochberg
procedure to control the FDR, and the experiment repetition (for a given overall
sample size) as per ISO and TVLA recommendations. Figure 3 shows, for αISO =
0.05, what we consider to be the most relevant results, based on 5,000 random
draws from the distribution under the alternative hypothesis. (In particular, the
three FWER-controlling corrections perform near-identically, and so we only
display a single representative). Figure 6 in AppendixB shows the corresponding
results for αTV LA = 0.00001.

It is clear that the different approaches have substantially different character-
istics in practice. The FWER-controlling procedures, represented by Bonferroni,
successfully keep false positives down at only a small cost to the power relative
to the repetition step. The FDR-controlling procedure, meanwhile, has better
power than the repetition step but a comparable false positive rate as the sample
size increases. At the lower α level implied by the TVLA criteria Bonferroni (as
well as the BH procedure) actually has higher power than the repetition step,
and all methods keep false positives low for the (short) trace length in question.
Moreover, they all achieve high probability of detecting at least one of the 30
leaks within the level 4 sample size threshold.

We repeated the experiment assuming independence between the tests, and
found that it made very little difference to either error rate. This is not to say
that taking the dependence structure into account in the tests themselves would
not improve the performance of the tests, but it does imply that (at least in

274 C. Whitnall and E. Oswald

0 50 100
traces (1,000s)

0

0.5

1
Average power

0 50 100
traces (1,000s)

0

0.5

1
Complete power

0 50 100
traces (1,000s)

0

0.5

1
1-minimal power

0 50 100
traces (1,000s)

0

0.5

1
False positives

0 50 100
traces (1,000s)

0

0.5

1
False discovery rate

No correction Bonferroni Benjamini-Hochberg Repetition

Fig. 3. Different types of power and error to detect 30 true effects of size 0.04 in a trace
set of length 1,400, as sample size increases, for an overall significance level of α = 0.05.
(Based on 5,000 random draws from the multivariate test statistic distribution under
the alternative hypothesis).

this instance) a power analysis which assumes independence need not give a
misleading account of the capabilities of the chosen tests.

In this example scenario, then, the FWER controlling procedures (but not
the FDR controlling one) appear favourable to the ISO standard confirmation
requirement, holding all other parameters of the ISO standard fixed. However,
we have not yet fully explored the impact of the length of the trace on their
performance, and many real-world evaluations involve considerably more tests
than the 1,400 we here consider. Porter’s methodology does not readily scale –
and, besides, requires specifying a covariance structure. Instead, then, given the
similarity of our results under the independence assumption, we proceed on that
simplifying basis and take advantage of the fact that the Bonferroni-corrected
tests (by contrast with the BH procedure, which we have already been able to
rule out) are relatively straightforward to examine analytically.

The obstacle remains, though, that overall notions of power – such as 1-
minimal, which we have argued is the relevant quantity for our purposes – will
always be highly dependent on the (a priori unknown) particulars of the evalu-
ation scenario under consideration. In particular, if a longer trace implies more
leakage points, then the increased opportunity to detect leakage might help to
compensate for the stricter criteria enforced by the Bonferroni procedure (and
similar). On the other hand, if the number of leakage points stays fixed as the
trace length increases, there is no compensation for the loss of per-test power.
We therefore consider a range of hypothetical scenarios: fixed leakage density of
1 in 1,000 and 1 in 100 as the trace length increases; fixed number of leaks at 1
and (as per our example scenario) 30 as the trace length increases. (In the latter,
we suppose that the first 30 trace points are the vulnerable ones and all those
subsequently added are random).

Figure 4 presents the FWER and the 1-minimal (‘overall’) power of the unad-
justed, repeated and Bonferroni-corrected tests under the level 3 and level 4
sample size (10,000, 100,000) and significance level (0.05) criteria. It is clear
that the relative effectiveness of the approaches is sensitive to the combinations
of various parameters and scenario configurations.

A Critical Analysis of ISO 17825 275

Of the three methods only the Bonferroni succeeds in controlling the FWER
at an acceptable level (recall that a device fails to meet the standard if a single
point of leakage is discovered). Under the level 3 criteria it has lower power than
the repetition in all leakage scenarios; however, at the level 4 sample size it is
more powerful in the case that the density of leak points is fixed. In these fixed
density cases the power of all the methods grows as the trace length increases; in
the case that the number is fixed the unadjusted and repeated tests have a fixed
overall probability of detection whilst the Bonferroni tests peak when there are
no non-leaky points and then decrease at a speed which depends on the sample
size. Note that, at level 4, the power to detect at least one of 30 leaks is still
very close to 1 for traces of length up to 10 million; at level 3 it is close to zero
from traces of 1 million or more.

At the TVLA significance level (see Fig. 7 in AppendixB) the FWER is
(as we’ve already seen) still very low for both adjustment methods, even up to
traces of length 10 million or more (not shown on the graph). The level 3 sample
size is completely inadequate to detect effects of this size regardless of trace
length. Interestingly, for the level 4 sample size the advantage displayed by the
Bonferroni method has widened. We again see a decrease in power to detect a
fixed number of leaks as the total length increases, however it should be pointed
out that the power to detect one of at least 30 leaks is still above 0.999 for a
trace of length 10 million (although it is lower than the power of the repetition
step by this point).

0 1000 2000 3000
0

0.5

1

LE
VE

L
3

FWER

0 1000 2000 3000
0

0.5

1

LE
VE

L
4

0 1000 2000 3000
0

0.5

1
1 leak in 1000

0 1000 2000 3000
0

0.5

1
1 leak in 100

0 1000 2000 3000
0

0.5

1
1 leak total

0 1000 2000 3000
0

0.5

1
30 leaks total

0 1000 2000 3000
0.985

0.99

0.995

1

0 100 200
0.985

0.99

0.995

1

0 1000 2000 3000
0.97

0.98

0.99

1

0 100 200
0.985

0.99

0.995

1

No correction
Repetition
Bonferroni

Fig. 4. FWER and 1-minimal (‘overall’) power of the tests to detect effects of the
‘observed’ size 0.04 for various leakage scenarios as the trace length increases, under
the level 3 and level 4 standard criteria with a significance level of α = 0.05. Note that
some of the axes have been truncated in order to focus on the interesting regions of
the graphs.

We remark that the level 4 standard criteria swapping the repetition step
for the Bonferroni method seems an adequate measure to certify vulnerability
and/or security for effect sizes of 0.04, even as the trace length increases. Swap-
ping the significance level for the original TVLA recommendation of 0.00001 also

276 C. Whitnall and E. Oswald

achieves this, although we note that the Bonferroni adjustment is anyway more
powerful than the repetition step in this instance. However, we already know
from Table 4 that the level 4 sample size is too small to reliably detect ‘tiny’
effects (repeating the Fig. 4 analysis confirms this and reveals no new insights).
A reasonable question to ask is then what methods/parameter choices would
enable certification with respect to these types of (still realistic) vulnerabilities.

As should be clear by now, appropriate configuration necessarily depends on
the type of leakage scenario that we envisage. For example, a typical software
implementation might produce very long (e.g. 100,000-point) traces; in the case
that it is unprotected (and especially for the non-specific fixed-versus-random
tests) the number of leak points could be high, say, 1 in 100; in the presence of
countermeasures and/or in the case of a specific test the number could be far
lower, say, 10 total, or even just one (which it remains crucial to be able to find).
By contrast, hardware implementations are faster and typically produce shorter
(e.g. 1,000-point) traces, with any leakage concentrated at one or a few indices.

Table 5 shows suitable parameter choices for Bonferroni-adjusted tests in each
of these settings. The large sample sizes (especially when we are concerned with
finding very sparse leakage) are something of a reality check on the popular view
that leakage detection is a ‘more efficient’ alternative to performing attacks: the
advantages of the former are best understood in terms of its potential to find a
wider variety of possible sensitive dependencies than an attack-based approach.
Meanwhile, precisely because an adversary is targeting a specific vulnerability –
with a tailored tool, using information (if available) about the form of the data
dependency – we should always expect attacks to be more data efficient than
detection tests. It follows (importantly) that we should never interpret the sam-
ple sizes required for leakage detection as quantitative markers of a device’s
resistance to attack. Reciprocally, attack-based configurations should not be
used to inform the specifications of detection-based approaches: the influence
of the (originally attack-based) FIPS 140-2 on the (detection-based) ISO 17825
likely explains why the level 3 and 4 sample sizes are as limitingly small as
they are.

Table 5. Parameter combinations for reliably certifying vulnerability/security in dif-
ferent realistic leakage scenarios using the Bonferroni adjustment to control the false
positive rate at an overall level α.

Scenario type Trace # ISO α = 0.05 TVLA α = 0.00001

length leaks d = 0.04 d = 0.001 d = 0.04 d = 0.001

Software (generic leaks) 100,000 100 2.5 × 104 3.9 × 107 6.8 × 104 1.1 × 108

Software (specific leaks) 100,000 10 4.8 × 104 7.7 × 107 1.2 × 105 1.9 × 108

Software (protected) 100,000 1 1.1 × 105 1.8 × 108 2.9 × 105 4.6 × 108

Hardware (unprotected) 1,000 10 2.9 × 104 4.6 × 107 9.6 × 104 1.5 × 108

Hardware (protected) 1,000 1 8.1 × 104 1.3 × 108 2.5 × 105 4.0 × 108

A Critical Analysis of ISO 17825 277

Remark: At this point it is important to recall that in an actual evaluation
the entire process has to be applied to several/many intermediate values as
part of the specific detection tests. These further tests are synonymous with
considering longer traces and an extended analysis would be possible given a
specified number of tests.

7 Conclusions and Recommendations

TVLA was originally conceived as a structured set of leakage detection tests
to overcome the issue of having to test against an ever increasing number of
attack vectors (thus the concern was coverage of an evaluation rather than trace
efficiency). An in-dept statistical analysis was never carried out yet these recom-
mendations became the basis for leakage evaluations as specified in ISO 17825.

We have shown that following the ISO 17825 recommendations to the
letter would result in the failure of all target devices (at security levels 3
and 4) with extremely high probability. This is because of the inflation of Type I
errors (false positives) as the number of jointly performed statistical hypothesis
tests increases.

The problem can be mitigated by replacing the (somewhat ad hoc) test
repetition step (inherited from TVLA) with an established statistical
method to control the overall error rate, such as the Bonferroni adjustment,
and/or by replacing the threshold for significance with the stricter one originally
implied by the TVLA standard. In the latter case, the repetition step is anyway
shown to be less efficient than Bonferroni-style adjustments, so we recommend
against adhering to that part of TVLA.

There are some ambiguities in ISO 17825 about how to interpret the acqui-
sition criterion. Even opting for the most generous interpretation, the level 3
sample size specification is shown to be inadequate to certify vul-
nerability/security against effects of the size and frequency that we
observe in a range of typical ‘easy to attack’ implementations. The
level 4 specification is able to detect these with high probability, even with the
stricter TVLA-based significance threshold provided the leakages are of sufficient
density as the length of the trace increases. However, neither are sufficient
to detect the types of ‘tiny’ effects that have been shown to exist (and
to be exploitable) by larger-scale academic studies.

We therefore recommend the necessity for larger acquisitions than those
specified by the standard. A difficulty here is that, although statistical power
analysis provides tools to derive the appropriate sample sizes for a particular
test scenario, it requires considerable a priori information about that scenario to
do so (even more so in the case of multiple tests and their corresponding adjust-
ment procedures). Whilst it is possible to broadly identify common expected fea-
tures across classes of scenario, a preferable approach would be to develop
a two-stage evaluation procedure combining an exploratory phase with a
pared-down confirmatory analysis in which information about the covariance

278 C. Whitnall and E. Oswald

structure and likely location/nature of the leaks is used to inform the acqui-
sition process and to chose a (reduced set) of carefully-formulated hypothesis
tests to perform. We leave the precise details of such a strategy as an interesting
avenue for further work.

However the standard procedures (or adaptations therefore) are applied it is
important that outcomes are presented responsibly. An evaluator needs
to decide – and to give a justification for – the false positive and false negative
rates that are acceptable. For example, even if a multiplicity adjustment is used
to successfully control the overall false positive rate at the level specified by the
standard, this still implies that 5 in every 100 secure devices will fail the test at
random. If this is considered too high, then a stricter significance criterion will
need to be chosen, inevitably implying greater data complexity. Either way, the
error rates must be made transparent – as should the effect size the
test is able to detect, the coverage limitations that we identified in Sect. 5.1,
and the fact that the sample size needed for a successful attack may be much
smaller than that required for detection.

Acknowledgements. Our work has been funded by the European Commission
through the H2020 project 731591 (acronym REASSURE). A fuller report on this
aspect of the project can be found in A Cautionary Note Regarding the Usage of Leak-
age Detection Tests in Security Evaluation [42].

A Sample Size for the t-Test

We begin with a simple visual example that illustrates the concepts of α and β
values and their relationship to the sample size.

Consider the following two-sided hypothesis test for the mean of a Gaussian-
distributed variable A ∼ N (μ, σ), where μ and σ are the (unknown) parameters:

H0 : μ = μ0 vs. Halt : μ �= μ0. (3)

Note that, in the leakage detection setting, where one typically wishes to test
for a non-zero difference in means between two Gaussian distributions Y1 and
Y2, this can be achieved by defining A = Y1 − Y2 and (via the properties of the
Gaussian distribution) performing the above test with μ0 = 0.

Suppose the alternative hypothesis is true and that μ = μalt. This is called
a ‘specific alternative’8, in recognition of the fact that it is not usually possible
to compute power for all the alternatives when Halt defines a set or range. In
the leakage detection setting one typically chooses μalt > 0 to be the smallest
difference |μ1 − μ2| that is considered of practical relevance; this is called the
effect size. Without loss of generality, we suppose that μalt > μ0.

Figure 5 illustrates the test procedure when the risk of a Type I error is set
to α and the sample size is presumed large enough (typically n > 30) that the

8 The overloading of terminology between ‘specific alternatives’ and ‘specific’ TVLA
tests is unfortunate but unavoidable.

A Critical Analysis of ISO 17825 279

distributions of the test statistic under the null and alternative hypotheses can
be approximated by Gaussian distributions. The red areas together sum to α;
the blue area indicates the overlap of H0 and Halt and corresponds to β (the risk
of a Type II error). The power of the test – that is, the probability of correctly
rejecting the null hypothesis when the alternative in true – is then 1 − β, as
depicted by the shaded area.

There are essentially three ways to raise the power of the test. One is to
increase the effect size of interest which, as should be clear from Fig. 5, serves
to push the distributions apart, thereby diminishing the overlap between them.
Another is to increase α – that is, to make a trade-off between Type II and
Type I errors – or (if appropriate) to perform a one-sided test, either of which
has the effect (in this case) of shifting the critical value to the left so that the
shaded region becomes larger. (In the leakage detection case the one-sided test
is unlikely to be suitable as differences in either direction are equally important
and neither can be ruled out a priori). The third way to increase the power
is to increase the sample size for the experiment. This reduces the standard
error on the sample means, which again pushes the alternative distribution of
the test statistic further away from null (note from Fig. 5 that it features in the
denominator of the distance).

Suppose you have an effect size in mind – based either on observations made
during similar previous experiments, or on a subjective value judgement about
how large an effect needs to be before it is practically relevant (e.g. the level of
leakage which is deemed intolerable) – and you want your test to have a given
confidence level α and power 1−β. The relationship between confidence, power,
effect size and sample size can then be used to derive the minimum sample size
necessary to achieve this.

The details of the argumentation that now follows are specific to a two-
tailed t-test, but the general procedure can be adapted to any test for which
the distribution of the test statistic is known under the null and alternative
hypotheses.

For the sake of simplicity (i.e. to avoid calculating effectively irrelevant
degrees of freedom) we will assume that our test will in any case require the acqui-
sition of more than 30 observations, so that the Gaussian approximations for the
test statistics hold as in Fig. 5. Without loss of generality we also assume that the
difference of means is positive (otherwise the sets can be easily swapped). Finally,
we assume that we seek to populate both sets with equal numbers n = |Y |/2 of
observed traces.

Theorem 1. Let Y1 be a set of traces of size N/2 drawn via repeat sampling
from a normal distribution N (μ1, σ

2
1) and Y2 be a set of traces of size N/2 drawn

via repeat sampling from a normal distribution N (μ2, σ
2
2). Then, in a two-tailed

test for a difference between the sample means:

H0: μ1 = μ2 vs. Halt: μ1 �= μ2, (4)

280 C. Whitnall and E. Oswald

α/2 α/2

H0 Halt

(μalt−μ0)
σ/

√
n

1− β

Fig. 5. Figure showing the Type I and II error probabilities, α and β as well as the
effect size μalt − μ0 for a specific alternative such that μalt > μ0.

in order to achieve significance level α and power 1 − β, the overall number of
traces N needs to be chosen such that:

N ≥ 2 ·
(zα/2 + zβ)2 · (σ1

2 + σ2
2)

(μ1 − μ2)2
. (5)

Note that Eq. 5 can be straightforwardly rearranged to alternatively compute
any of the significance level, effect size or power in terms of the other three
quantities.

B Results for Original TVLA-Recommended Threshold

Table 6. LHS: Power to achieve Cohen’s and Sawilowsky’s standardised effects under
the TVLA significance criteria (which approximates to α = 0.00001) and the standard
level 3 (N = 10, 000) and level 4 (N = 100, 000) sample size criteria; RHS: Minimum
effect sizes detectable for increasing power thresholds.

Cohen’s d Power
Level 3 Level 4

Very small (0.01) 0.000 0.002
Small (0.2) 1.000 1.000
Medium (0.5) 1.000 1.000
Large (0.8) 1.000 1.000
Very large (1.2) 1.000 1.000
Huge (2) 1.000 1.000

Power Cohen’s d
N = 10, 000 N = 100, 000

0.75 0.102 0.032
0.80 0.105 0.033
0.90 0.114 0.036
0.95 0.121 0.038
0.99 0.135 0.043
0.99999 0.174 0.055

A Critical Analysis of ISO 17825 281

Table 7. Average (‘per-test’) and 1-minimal (‘overall’) power to detect observed and
‘tiny’ effect sizes under the level 3 and 4 criteria, and the sample size required to achieve
balanced errors for a significance criterion of α = 0.00001. (30 leak points in a trace
set of length 1,400).

Effect Repeat Level 3 Level 4 Required sample size
test? Ave 1-min Ave 1-min Ave 1-min

0.04 No 0.008 0.210 0.972 1.000 188,446 38,924
0.04 Yes 0.000 0.000 0.272 1.000 390,228 104,867
0.001 No 0.000 0.000 0.000 0.000 301,512,956 62,279,197
0.001 Yes 0.000 0.000 0.000 0.000 624,365,394 167,786,951

0 100 200
traces (1,000s)

0

0.5

1
Average power

0 100 200
traces (1,000s)

0

0.5

1
Complete power

0 100 200
traces (1,000s)

0

0.5

1
1-minimal power

0 100 200
traces (1,000s)

0

0.5

1
False positives

0 100 200
traces (1,000s)

0

0.5

1
False discovery rate

No correction Bonferroni Benjamini-Hochberg Repetition

Fig. 6. Different types of power and error to detect 30 true effects of size 0.04 in
a trace set of length 1,400, as sample size increases, for an overall significance level
of α = 0.00001. (Based on 5,000 random draws from the multivariate test statistic
distribution under the alternative hypothesis).

Table 8. Different types of power and error to detect 30 true effects of size 0.04 in a
trace set of length 1,400, under the level 3 and level 4 sample size criteria and with
an overall significance level of α = 0.00001. (Based on 5,000 random draws from the
multivariate test statistic distribution under the alternative hypothesis).

Correction Level 3 Level 4
strategy 1-min power FWER 1-min power FWER

None 0.1912 0.0156 1.0000 0.0134
Bonferroni 0.0020 0.0000 1.0000 0.0000
Šidák 0.0020 0.0000 1.0000 0.0000
Holm 0.0020 0.0000 1.0000 0.0000
Benjamini-Hochberg 0.0020 0.0000 1.0000 0.0000
Repetition 0.0000 0.0000 0.9986 0.0000

282 C. Whitnall and E. Oswald

0 1000 2000 3000
0

0.5

1
LE

VE
L

3
FWER

0 1000 2000 3000
0

0.5

1

LE
VE

L
4

0 1000 2000 3000
0

0.5

1
1 leak in 1000

0 1000 2000 3000
0

0.5

1
1 leak in 100

0 1000 2000 3000
0

0.5

1
1 leak total

0 1000 2000 3000
0

0.5

1
30 leaks total

0 1000 2000 3000
0.2

0.4

0.6

0.8

1

0 1000 2000 3000
0.2

0.4

0.6

0.8

1

0 1000 2000 3000
0.2

0.4

0.6

0.8

1

0 1000 2000 3000
0.2

0.4

0.6

0.8

1

No correction
Repetition
Bonferroni

Fig. 7. FWER and 1-minimal (‘overall’) power of the tests to detect effects of the
‘observed’ size 0.04 for various leakage scenarios as the trace length increases, under
the level 3 and level 4 standard criteria with an overall significance level of α = 0.00001.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on
Security and Privacy, pp. 3–11. IEEE Computer Society (2004)

3. Bhasin, S., Danger, J.L., Guilley, S., Najm, Z.: Side-channel leakage and trace
compression using normalized inter-class variance. In: Lee, R.B., Shi, W. (eds.)
HASP 2014, Hardware and Architectural Support for Security and Privacy, pp.
7:1–7:9. ACM (2014)

4. Bi, R., Liu, P.: Sample size calculation while controlling false discovery rate for dif-
ferential expression analysis with RNA-sequencing experiments. BMC Bioinform.
17(1), 146 (2016)

5. Brouchier, J., Kean, T., Marsh, C., Naccache, D.: Temperature attacks. IEEE
Secur. Priv. 7(2), 79–82 (2009)

6. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 33

7. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: CSF, pp. 177–190 (2011)

8. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Routledge (1988)
9. Danger, J.-L., Duc, G., Guilley, S., Sauvage, L.: Education and open benchmarking

on side-channel analysis with the DPA contests. In: NIST Non-Invasive Attack
Testing Workshop (2011)

10. De Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(2), 123–148 (2018)

11. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 7

12. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293),
52–64 (1961)

https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7

A Critical Analysis of ISO 17825 283

13. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

14. Efron, B.: Size, power and false discovery rates. Ann. Stat. 35(4), 1351–1377 (2007)
15. Ferrigno, J., Hlavác̆, M.: When AES blinks: introducing optical side channel. IET

Inf. Secur. 2(3), 94–98 (2008)
16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.

In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

17. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

18. Hoenig, J.M., Heisey, D.M.: The abuse of power. Am. Stat. 55(1), 19–24 (2001)
19. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.

6, 65–70 (1979)
20. Information technology - Security techniques - Testing methods for the mitigation

of non-invasive attack classes against cryptographic modules. Standard, Interna-
tional Organization for Standardization, Geneva, CH (2016)

21. Information technology - Security techniques - Security requirements for cryp-
tographic modules. Standard, International Organization for Standardization,
Geneva, CH (2012)

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

24. Liu, P., Hwang, J.T.G.: Quick calculation for sample size while controlling false
discovery rate with application to microarray analysis. Bioinformatics 23(6), 739–
746 (2007)

25. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

26. Miller, J.C., Maloney, C.J.: Systematic mistake analysis of digital computer pro-
grams. Commun. ACM 6(2), 58–63 (1963)

27. Porter, K.E.: Statistical power in evaluations that investigate effects on multiple
outcomes: A guide for researchers. J. Res. Educ. Eff. 11, 1–29 (2017)

28. Pounds, S., Cheng, C.: Sample size determination for the false discovery rate.
Bioinformatics 21(23), 4263–4271 (2005)

29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

30. Sawilowsky, S.S.: New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8(2),
597–599 (2009)

31. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/11545262_3

284 C. Whitnall and E. Oswald

32. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

33. Shamir, A., Tromer, E.: Acoustic cryptanalysis (website). http://theory.csail.mit.
edu/∼tromer/acoustic/. Accessed 9 Sept 2019

34. Skorobogatov, S.: Using optical emission analysis for estimating contribution to
power analysis. In: Breveglieri, L., Koren, I., Naccache, D., Oswald, E., Seifert,
J.-P. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2009, pp.
111–119. IEEE Computer Society (2009)

35. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: An empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00730-9 16

36. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D.
(eds.) Towards Hardware-Intrinsic Security: Foundations and Practice, pp. 99–134.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3 5

37. Tasiran, S., Keutzer, K.: Coverage metrics for functional validation of hardware
designs. IEEE Des. Test 18(4), 36–45 (2001)

38. Thillard, A., Prouff, E., Roche, T.: Success through confidence: Evaluating the
effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 21–36. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40349-1 2

39. Tong, T., Zhao, H.: Practical guidelines for assessing power and false discovery rate
for fixed sample size in microarray experiments. Stat. Med. 27, 1960–1972 (2008)

40. Šidák, Z.: Rectangular confidence regions for the means of multivariate normal
distributions. J. Am. Stat. Assoc. 62(318), 626–633 (1967)

41. Welch, B.L.: The generalization of “Student’s” problem when several different pop-
ulation variances are involved. Biometrika 34(1–2), 28–35 (1947)

42. Whitnall, C., Oswald, E.: A cautionary note regarding the usage of leakage
detection tests in security evaluation. IACR Cryptology ePrint Archive, Report
2019/703 (2019). https://eprint.iacr.org/2019/703

https://doi.org/10.1007/978-3-662-48324-4_25
http://theory.csail.mit.edu/~tromer/acoustic/
http://theory.csail.mit.edu/~tromer/acoustic/
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-40349-1_2
https://doi.org/10.1007/978-3-642-40349-1_2
https://eprint.iacr.org/2019/703

Location, Location, Location:
Revisiting Modeling and Exploitation

for Location-Based Side Channel Leakages

Christos Andrikos1(B), Lejla Batina2, Lukasz Chmielewski2,4, Liran Lerman5,
Vasilios Mavroudis6, Kostas Papagiannopoulos2,3, Guilherme Perin4,

Giorgos Rassias1, and Alberto Sonnino6

1 National Techical University of Athens, Athens, Greece
{candrikos,grassias}@cslab.ece.ntua.gr

2 Radboud University, Nijmegen, The Netherlands
lejla@cs.ru.nl

3 NXP Semiconductors, Hamburg, Germany
kostaspap88@gmail.com

4 Riscure BV, Delft, The Netherlands
chmielewski@riscure.com, guilhermeperin7@gmail.com

5 Thales Belgium, Herstal, Belgium
liran.lerman@be.thalesgroup.com

6 University College London, London, England
v.mavroudis@cs.ucl.ac.uk, alberto.sonnino@ucl.ac.uk

Abstract. Near-field microprobes have the capability to isolate small
regions of a chip surface and enable precise measurements with high spa-
tial resolution. Being able to distinguish the activity of small regions has
given rise to the location-based side-channel attacks, which exploit the
spatial dependencies of cryptographic algorithms in order to recover the
secret key. Given the fairly uncharted nature of such leakages, this work
revisits the location side-channel to broaden our modeling and exploita-
tion capabilities. Our contribution is threefold. First, we provide a simple
spatial model that partially captures the effect of location-based leak-
ages. We use the newly established model to simulate the leakage of
different scenarios/countermeasures and follow an information-theoretic
approach to evaluate the security level achieved in every case. Second,
we perform the first successful location-based attack on the SRAM of a
modern ARM Cortex-M4 chip, using standard techniques such as differ-
ence of means and multivariate template attacks. Third, we put forward
neural networks as classifiers that exploit the location side-channel and
showcase their effectiveness on ARM Cortex-M4, especially in the con-
text of single-shot attacks and small memory regions. Template attacks
and neural network classifiers are able to reach high spacial accuracy,
distinguishing between 2 SRAM regions of 128 bytes each with 100%
success rate and distinguishing even between 256 SRAM byte-regions
with 32% success rate. Such improved exploitation capabilities revitalize
the interest for location vulnerabilities on various implementations, rang-
ing from RSA/ECC with large memory footprint, to lookup-table-based
AES with smaller memory usage.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 285–314, 2019.
https://doi.org/10.1007/978-3-030-34618-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_10

286 C. Andrikos et al.

Keywords: Side-channel analysis · Location leakage · Microprobe ·
Template attack · Neural network · ARM Cortex-M

1 Introduction

Side-channel analysis (SCA) allows adversaries to recover sensitive information,
by observing and analyzing the physical characteristics and emanations of a
cryptographic implementation. Usually, physical observables such as the power
consumption and electromagnetic (EM) emission of a device [13,24] are closely
related to the data that is being accessed, stored or processed. Such data-based
leakage compromises the device’s security and may allow the adversary to infer
the implemented cipher’s secret key.

Location-based leakage is a less common form of side-channel leakage when
compared to data-based leakages, yet it arises in many practical scenarios. This
form of leakage stems from the fact that chip components such as registers,
memory regions, storage units, as well as their respective addressing mechanisms
(control logic, buses) exhibit leakage when accessed and such leakage is identi-
fiable and data-independent. Thus, the power or EM side-channel potentially
conveys information about the location of the accessed component, i.e. it can
reveal the particular register or memory address that has been accessed, regard-
less of the data stored in it. If there exists any dependence between the secret
key and the location of the activated component, then a side-channel adversary
can exploit it to his advantage and recover the key.

1.1 Previous Research and Terminology

The work of Sugawara et al. [48] demonstrates the presence of location-based
leakage in an ASIC. In particular, they show that the power consumption of
the chip’s SRAM conveys information about the memory address that is being
accessed. They refer to this effect as “geometric” leakage since it relates to
the memory layout. Similarly, Andrikos et al. [2] performed preliminary anal-
yses using the EM-based location leakage exhibited at the SRAM of an ARM
Cortex-M4. The work of Heyszl et al. [18] manages to recover the secret scalar
by exploiting the spatial dependencies of the double-and-add-always algorithm
for elliptic curve cryptography. The experiments were carried out on a decap-
sulated FPGA, using near-field microprobes that identify the accessed register.
Schlösser et al. [40] use the photonic side-channel in order to recover the exact
SRAM location that is accessed during the activation of an AES Sbox lookup
table. This location information can assist in key recovery, thus even cases of
photonic emission analysis can be classified as location-based leakage. Moreover,
countermeasures such as RSM [31] rely on rotating lookup tables to mask the
data. Location-based leakage can identify which lookup table is currently under
use and potentially weaken masking.

For the sake of clarity, we distinguish between “location leakage” and “local-
ized leakage”. Location leakage arises when knowing the location of a component

Location, Location, Location 287

(register, memory region, etc.) is assisting towards key recovery. On the contrary,
localized leakage arises when the adversary is able to focus on the leakage of a
specific (usually small) region of the chip. For example, recovering the memory
address accessed during an Sbox lookup implies location leakage. Being able to
measure the leakage right on top of a processor’s register file implies that the
adversary is capturing localized leakage. Note that capturing localized leakage
can be useful for data-based attacks as well as for location-based attacks. The
works of Unterstein et al. [51], Immler et al. [20] and Specht et al. [43–45] acquire
localized leakage via a microprobe in order to improve the signal-to-noise ratio of
their data-dependent leakage. The work of Heyszl et al. [18] uses the same tech-
nique in order to improve the signal-to-noise ratio of their location-dependent
leakage. The current work follows experimental techniques similar to Heyszl et al.
(localized EM) to showcase a potent location-based attack on ARM Cortex-M4
devices.

Again, for the sake of clarity we distinguish between “location leakage”
and “address leakage” [21]. In our work, address leakage implies the leakage
of addressing mechanisms, e.g. the leakage of the control logic of a storage unit.
Such leakage can even be observed far from the storage unit itself, e.g. at mem-
ory buses or at the CPU. Location leakage implies the leakage caused by such
address leakage and the leakage of the unit itself, which is often observed near
it. We refer to the latter as “spatial leakage”, i.e. location leakage encapsulates
both address-related and spatial effects. For example accessing a table in mem-
ory requires indexing and memory addressing in the CPU (address leakage). In
addition, accessing causes the memory itself to be activated (spatial leakage).
The adversary is usually able to observe both types of leakage and it is often
hard to distinguish between them.

1.2 Contribution and Organization

This work presents the following results in the field on location-based leakage by
expanding our modeling and exploitation capabilities.

1. We provide a simple model that captures the effect of spatial leakages. The
model is motivated by experimental data observed in the SRAM of an ARM
Cortex-M4.

2. Using the newly established model, we simulate the different theoretical sce-
narios that enhance or diminish spatial leakage. We investigate the security
of every scenario using the perceived information (PI) metric.

3. We perform the first practical location-based attack on the SRAM of a modern
ARM Cortex-M4, using difference-of-means, multivariate template attacks
and neural networks.

4. We showcase attacks where it is possible to distinguish consecutive SRAM
regions of 128 bytes each, with 100% success rate and to distinguish between
256 consecutive SRAM bytes with 32% success rate. We conclude that EM
location-based leakages are potent enough to compromise the security of AES
implementations that use SRAM lookup-tables.

288 C. Andrikos et al.

Notation. Capital letters denote random variables and small case letters denote
instances of random variables or constant values. Bold font denotes vec-
tors. For instance, side-channel leakage variables are denoted by L and their
instances by l; and likewise leakage vectors are denoted by L and their
instances by l. The notation Unif({a, b}), Bern(p), Binomial(n, p) and finally
Norm(μ, σ2) denotes random variables with uniform, Bernoulli, binomial and
normal probability distributions respectively. Parameter p denotes the probabil-
ity of Bernoulli/binomial trials and μ, σ2 denote the mean and variance of the
normal distribution. The set {a, b} denotes that the discrete uniform distribution
can receive value a or b equiprobably. The notation E[·], V ar[·] and H[·] describes
the expected value, variance and entropy of a random variable. Finally, the nota-
tion Hp,q[·] shows the cross entropy of a random variable, between probability
distributions p and q.

Organization. Section 2 describes the microprobe-based experimental setup on
ARM Cortex-M4, shows a simple location analysis using difference-of-means,
and motivates experimentally the spatial part of location leakage. Section 3 puts
forward the spatial leakage model, describes several theoretical scenarios, and
performs an evaluation using the perceived information metric. Section 4 demon-
strates real-world template attacks on ARM Cortex-M4 for various cases and
Sect. 5 demonstrates the attacks using neural networks on the same device. We
conclude and discuss future directions in Sect. 6.

2 Experimental Setup and T-Test Analysis

This section describes a high-precision EM-based setup that is able to detect
location leakage on the surface of an ARM Cortex-M4 (Sects. 2.1, 2.2). Using the
setup, we obtain intuition about the location leakage that is caused by switch-
ing circuitry and is observable via EM emissions on the die surface (Sect. 2.3).
Throughout the text, we concentrate on the following adversarial scenario. The
device has implemented a key-dependent cipher operation that uses a lookup-
table and the adversary aims to infer which part of the table is active, i.e. uncover
the location information leading to key recovery.

2.1 Experimental Setup

The main goal of our experimental evaluation is to examine whether it is possible
to detect the access to different SRAM regions in a modern ARM-based device.
Rephrasing, we examine the device’s susceptibility to location-based attacks dur-
ing e.g. key-dependent memory lookups, similarly to AES LUT. Our measure-
ment setup consists of a decapsulated Riscure Piñata device1, on a modified
board, fabricated with 90 nm technology. The decapsulated chip surface (roughly

1 https://tinyurl.com/y9tmnklr.

https://tinyurl.com/y9tmnklr

Location, Location, Location 289

6 mm2 ≈ 2.4 mm × 2.4 mm) is scanned using an ICR HH 100-27 Langer micro-
probe2 with diameter of 100µm (approximately 0.03 mm2). The scan is per-
formed on a rectangular grid of dimension 300, using the Inspector tooling3 and
resulting in 300 × 300 measurement spots. The near-field probe is moved over
the chip surface with the assistance of an XYZ-table with positioning accuracy
of 50µm. At every position of the scan grid, a single measurement is performed,
using sampling rate of 1 Gsample/s and resulting in 170k samples. Due to the
complex and non-homogeneous nature of a modern chip, several types of EM
emissions are present on the surface, most of which are unrelated to the SRAM
location. In this particular case study, the signals of interest were observed in
amplitudes of roughly 70 mV, so we set the oscilloscope voltage range accord-
ingly. In addition, several device peripherals (such as USB communication) have
been disabled in order to reduce interference. The decapsulated surface where
the scan is performed is visible in Fig. 1 and the approximate microprobe area
is also overlaid on the figure (in red) for comparison.

Fig. 1. The chip surface of the device-under-test (ARM Cortex-M4) after removal of
the plastic layer. The approximate area of the ICR HH 100-27 Langer microprobe is
shown by the red circle (0.03 mm2). (Color figure online)

To effectively cause location-dependent leakage, we perform sequential
accesses to a continuous region of 16 KBytes in the SRAM by loading data from
all memory positions. The data at all accessed memory positions have been fixed
to value zero prior to the experiment in order to remove any data-based leakage.
The word size of this ARM architecture is 32 bits, i.e. we accessed 4096 words
in memory. We opted to access the SRAM using ARM assembly instead of a
high-level language in order to avoid compiler-induced optimizations that could
alter the side-channel behavior.
2 https://tinyurl.com/mcd3ntp.
3 https://tinyurl.com/jlgfx95.

https://tinyurl.com/mcd3ntp
https://tinyurl.com/jlgfx95

290 C. Andrikos et al.

2.2 Difference-of-Means T-Test

The initial scan measurements were analyzed using a simple difference-of-means
test. To demonstrate the presence of location-based leakage, we partitioned every
trace (170k samples) into two classes. The first class contains SRAM accesses
from the beginning of the memory until word no. 2047 and the second class
contains SRAM accesses from word 2048 until word 4096. Each class corresponds
to 8 KBytes of SRAM. For every grid position (x, y), we averaged the leakages
samples of class 1 and class 2 producing l̄class1 = 1

85k

∑85k
j=1 ljx,y and l̄class2 =

1
85k

∑170k
j=85k ljx,y respectively. Continuing, we computed the difference of means

l̄class1 − l̄class2 and we performed a Welch t-test with significance level of 0.1%
in order to determine if location-based leakage is present. The results are visible
in Fig. 2a, which is focusing on a specific part of the chip surface that exhibits
high difference.

(a) Distinguishing two 8 KByte regions
of the SRAM with difference-of-means.
Yellow region indicates stronger leakage
from class 1 while blue region from class
2.

(b) Chip surface of ARM Cortex-M4 af-
ter removal of the top metal layer. The
red rectangular region corresponds to the
difference-of-means plot of Figure 2a, i.e.
it shows the location where the highest
differences were observed.

Fig. 2. Spatial properties of chip leakage. (Color figure online)

2.3 Motivating the Location Leakage Model

In Fig. 2a we can observe that the spatial part of location leakage is indeed
present in the ARM Cortex-M4 and it can even be detected through simple
visual inspection if memory regions are large enough (8 KBytes). Repeating
the same difference-of-means test for SRAM regions of 4 KBytes yields similar
results, i.e. the regions remain visually distinct. In both cases, we observe that
these location dependencies demonstrate strong spatial characteristics. That is,
in Fig. 2a we see two regions at close proximity (yellow and blue) where the yellow

Location, Location, Location 291

region shows positive difference between class 1 and 2, while the blue region
shows negative difference between class 1 and 2. To investigate this proximity,
we performed additional chemical etching on the chip surface in order to remove
the top metal layer (Fig. 2b).

The different regions (yellow, blue) shown in Fig. 2a are observed directly
above the chip area enclosed by the red rectangle of Fig. 2b. Interestingly, after
the removal of the top metal layer, we see that the red rectangular region con-
tains large continuous chip components, possibly indicating that SRAM circuitry
is present at this location. This hypothesis is corroborated by the following fact:
when we perform difference-of-means test for 4 KByte regions, the yellow and
blue regions shrink, indicating that the leakage area is proportional to the mem-
ory size that is being activated.

The approximate surface area of an SRAM component can be estimated as
a = m·abit

e , where m is the number of bits in the memory region, abit is the area
of a single-bit memory cell and e is the array layout efficiency (usually around
70%) [54]. The value of abit ranges from 600λ2 to 1000λ2, where λ is equal to half
the feature size, i.e. for the current device-under-test λ = 0.5 ∗ 90 nm, thus the
area of a 32-bit word is between 55 and 92 µm2. Likewise, an 8 KByte region of
the ARM Cortex-M4 amounts to an area of approximately 0.12 until 0.19 mm2,
depending on the fabrication process. Notably, this area estimation is quite close
to the area of the yellow or the blue region of Fig. 2a (approximately half of the
red rectangle). Similar spatial characteristics have been observed by Heyszl et
al. [18] in the context of FPGA registers.

Thus, experimental evidence that suggest that (A) proximity exists between
leaky regions and (B) the area of leaky regions is approximately proportional
to the memory size that we activate. Section 3 builds up on these observations
and develops a simple model that describes spatial leakage, yet we first need to
provide the following disclaimer.

Word of Caution. The activation of a memory region can indeed be inferred
by observing spatial leakage, which according to experimental data is quite rich
in location information. Still, this does not imply that spatial leakage is the
sole source of location leakage. It is possible that location information is also
revealed through address leakage on the CPU and the memory control logic
or buses when they process SRAM addresses, or even by other effects such as
imperfect routing [52]. Thus, modeling spatial leakage captures part of the avail-
able information and can be considered as the first step towards full modeling
of location leakage.

3 A Spatial Model for Location Leakage

Unlike the well-established power and EM data leakage models [12,46], high-
resolution EM-based location leakage remains less explored. The main reason is
the semi-invasive nature of location attacks (often requiring chemical decapsu-
lation), the time-consuming chip surface scanning and the lengthy measurement
procedures involved. Still, we maintain that such attacks are increasingly relevant

292 C. Andrikos et al.

due to the fairly average cost (approx. 15k euros), along with the widespread
protection against data leakages [33,39], which encourages attackers towards
different exploitation strategies.

Hence, this section puts forward a theoretical model that describes the spa-
tial part of location leakage on a chip surface. The model can be viewed as an
extension of the standard data-based model to the spatial domain, encapsulat-
ing the complexity of surface-scanning experiments. The proposed simulation of
Sect. 3.1, in conjunction with the analysis of Sect. 3.2 can significantly enhance
the design and evaluation cycle of SCA-resistant devices. Our approach allows
the countermeasure designer to gauge the amount of experimental work an adver-
sary would need to breach the device using spatial leakage. Thus, the designer can
fine-tune protection mechanisms, provide customized security and avoid lengthy
design-evaluation cycles by capturing certain security hazards at an early stage.
The time-consuming leakage certification on the physical device can be car-
ried out at a later stage, once obvious defects have been fixed. Naturally, all
simulation-driven models (including this work) have inherent limitations, i.e.
they are incapable to describe all the underlying physical phenomena, as we
shall see in Sect. 4. Still, avoiding core issues early on, can free up valuable time
that evaluators can invest towards device-specific effects such as coupling [10]
and leakage combination [35].

3.1 Model Definition and Assumptions

Experimental Parameters. We define a side-channel experiment ε as any
valid instance of the random variable set E = {S,O,G,A,P}. The experimental
parameters are shown in Table 1. We designate the experiment’s goal to be the
acquisition of spatial leakage L, i.e. obtain (L|E = ε) or (L|ε) for short. Much
like in Sect. 2, the experiment consists of a probe scan over the chip surface in
order to distinguish between different components (or regions) and ultimately
between different memory addresses, registers, etc. The parameter S denotes the
area of the chip surface on which we perform measurements, e.g. s can be the
whole chip die (6 mm2) or any smaller surface. Parameter O denotes the area of
the measuring probe that we use in our experiments, e.g. the area o of the ICR
HH 100-27 microprobe is roughly 0.03 mm2. Continuing, parameter G denotes
the measurement grid dimensions, i.e. it specifies the resolution of a uniform
rectangular array of antennas [53]. In Sect. 2 we opted for g = 300. Continuing,

Table 1. Parameters of simulated experiment

Parameter Description Unit

S chip surface area u2

O probe area u2

G scan grid dimension ¡no unit¿
A component areas vector with 1D entries of u2

P component positions vector with 2D entries of u

Location, Location, Location 293

the vector parameters A,P describe the nc surface components that emit EM-
based spatial leakage. The parameter A = [A1, A2, . . . , Anc

] describes the surface
area occupied by each component, e.g. in Sect. 2.3 we estimated the area of an 32-
bit word component to be at most 92 µm2. The parameter P = [P1,P2, . . . ,Pnc

]
describes the position of every component on the chip surface, i.e. Pi is a 2-
dimensional vector. For simplicity, we assume the geometry of the surface, probe
and components to be square, yet we note that the model can be extended to
different geometrical shapes in a straightforward manner. Moreover, we assume
that the measuring probe can capture only emissions that are directly beneath
it, i.e. it functions like an identity spatial filter with area o.

Control Parameter. Every device can use program code to activate different
components of the chip surface, e.g. by accessing different SRAM words through
load/store instructions. To describe this, we use an additional control parameter
C that denotes which components (indexed 1, . . . , nc) are accessed during a
particular experiment ε. Analytically, C = [C1, C2, . . . , Cnc

], where Ci = 1 if
component i is active during the experiment and Ci = 0 if it is inactive; for
instance the vector c = [0, 1, 0] implies that the surface has 3 components (nc =
3) and only component no. 2 is currently active. Note also that in our model
only one out of nc components can be active at a given point in time, since we
assume that the ordinary microcontrollers do not support concurrent memory
access.4. Thus the parameter c uses the one-hot encoding and we define vi as
an nc-dimensional vector where all entries are zero except for the ith entry. For
instance, if nc = 3, then v3 is equal to [0, 0, 1] and it describes the program
state where only component no. 3 is active. In general, we use the notation
(L|E = ε,C = vi) or equivalently (L|ε,vi) to describe a side-channel experiment
ε that captures the leakage when the ith component is active. For an attack to be
successful, we need to distinguish between two (or more) different components
using this spatial leakage. Formally, we need to be able to distinguish between
(L|ε,vi) and (L|ε,vj), for i �= j.

Representative Example. To elucidate the model, Fig. 3 presents an exper-
iment ε with parameters {s, o, g,a,p} = {25, 3, 2, [0.8, 3], [[0.6, 1.5], [1.6, 4.1]]},
where all position parameters are in arbitrary units u and all area parameters
are in square units u2. The experiment targets two components (nc = 2) and
their position is [0.6 u, 1.5 u] and [1.6 u, 4.1 u] respectively. The surface area s,
probe area o, and component areas a1 and a2 are respectively 25 u2, 3 u2, 0.8
u2 and 3 u2. The dimension g of the measurement grid is 2, resulting in a 2 × 2
scan and we capture a single measurement (trace) in every grid spot. We use the
program code (control parameter) to activate components 1 and 2, generating
(L|ε, [1, 0]) and (L|ε, [1, 0]) respectively. Note that in general (L|ε,vi) results in
leakage with g2 dimensions, e.g. (L|ε, [1, 0]) is a 4-dimensional vector. We refer
to the leakage measured at any specified position [x, y] as (L[x,y]|ε,vi) or simply
L[x,y].

4 Parallel word processing can be easily included.

294 C. Andrikos et al.

al.noise

al.noise

component 1

d2d′
2

component 2

p1

[0,0]

[0,5]

[5,0]

surface s

y axis

x axis

•

•

•

•

•p2

×

×

×

×

Fig. 3. Sample experiment ε. The × spots show the measurement points of the 2 × 2
scan grid. Dashed black-line rectangles enclosing these spots denote the measuring
probe area o. Vectors p1,p2 show the position of two components (nc = 2), whose
areas (a1, a2) are enclosed by the solid black-line rectangles. The blue area d2 shows
the area of component 2 captured by the top-right measurement point and the yellow
area d′

2 shows the area of component 2 captured by the top-left measurement point.
(Color figure online)

Independent Noise. In accordance with standard data-based leakage models,
we assume that for given parameters ε,vi, the leakage L[x,y] at any grid position
[x, y] consists of a deterministic part ldet[x,y], an algorithmic noise part Nalgo and
an electrical noise part Nel, thus: L[x,y] = ldet[x,y] + Nalgo + Nel.

Deterministic Leakage. We assume that the deterministic part of the leakage
ldet[x,y] at position [x, y] is caused by the activation (switching behavior) of any
component that is captured by the probe at this grid position. Based on the
experimental observations of Sect. 2.3, we assume the deterministic leakage to
be proportional to the area of the active component located underneath the
probe surface, thus:

ldet[x,y]|vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if comp. i is not captured at [x,y]
di, 0 < di < ai, if comp. i is partially

captured at [x,y]
ai, if comp. i is fully captured at [x,y]

For example, Fig. 3 shows that component 1 is fully captured by the probe on
the bottom-left grid spot, thus (ldet[down,left]|v1) = a1. Since no other measurement
position can capture component 1, it holds that (ldet|v1) = 0 for the other three
grid positions. On the contrary, component 2 is partially captured in two grid

Location, Location, Location 295

positions. Thus, it holds that (ldet[up,right]|v2) = d2 (blue area), (ldet[up,left]|v2) = d′
2

(yellow area) and zero elsewhere.

Electrical and Algorithmic Noise. We employ the common assumption that
the electrical noise Nel follows a normal distribution with zero mean and variance
σ2
el, i.e. Nel ∼ Norm(0, σ2

el). The variance σ2
el is related to the specific device-

under-test and measurement apparatus that we use.
The algorithmic noise in our model is caused by components that, like the

targeted components, leak underneath the probe on measurement spot of the
scan grid. However, unlike our targeted components, they exhibit uniformly
random switching activity (equiprobable ‘on’ and ‘off’ states) that is indepen-
dent of the control parameter c. If na such components, with area parameter
b = [b1, b2, . . . , bna

] are located under the probe, then we assume again their
leakage to be proportional to the respective captured area. The leakage of these
independent, noise-generating components is denoted by Nalgo

i , i = 1, . . . , na.
Thus, Nalgo constitutes of the following sum.

Nalgo =
na∑

i=1

Nalgo
i ,where Nalgo

i ∼ Unif({0, bi})

The algorithmic noise is highly dependent on the device-under-test, i.e. we
could potentially encounter cases where there is little or no random switching
activity around the critical (targeted) components, or we may face tightly packed
implementations that induce such noise in large quantities. For example, in Fig. 3
the top-left and bottom-right spots have no algorithmic noise, while the top-right
and bottom-left spots contain randomly switching components (red rectangles)
that induce noise. Note that the larger the probe area o, the more likely we are
to capture leakage from such components. Appendix A elaborates on the form
of algorithmic noise on tightly-packed surfaces.

3.2 Information-Theoretic Analysis

The proposed spatial leakage model of Sect. 3.1 is able to simulate the EM emis-
sion over a chip surface and provide us with side-channel observables. Due to
the complexity of surface-scanning experiments, the model needs to take into
account multiple parameters in ε (component area, grid size, noise level, etc.), all
of which can directly impact our ability to distinguish between different regions.

In order to demonstrate and gauge the impact of the experimental param-
eters on the side-channel security level, this section introduces an information-
theoretic apporach to analyze the following simple location-leakage scenario.
Using the model of Sect. 3.1, we simulate the spatial leakage emitted by the
ARM Cortex-M4 SRAM, while accessing a lookup-table (LUT) of 256 bytes.
This LUT computation, emulates the spatial leakage of an AES LUT, while
excluding any data-based leakages. The processor uses a 32-bit architecture,
thus we represent the 256-byte lookup table with 64 words (4 bytes each) stored

296 C. Andrikos et al.

consecutively in SRAM. The LUT memory region is placed randomly5 on a chip
surface with s = 0.6 mm2. Then our model generates leakage stemming from 64
chip components (nc = 64), where each one occupies surface area pertaining to
4 SRAM bytes. Using the simulated traceset, we perform template attacks [6]
after PCA-based dimensionality reduction [3], in order to distinguish between
different LUT regions (consisting of one or more words). Being able to infer
which LUT/SRAM region was accessed can substantially reduce the number of
AES key candidates. For instance, the adversary may template separately the
leakage of all 64 words (high granularity) in order to recover the exact activated
word and reduce the possible AES key candidates from 256 to 4. Alternatively,
he can partition the LUT to two regions (words 0 until 31 and words 32 until 63),
profile both regions (low granularity), in order to recover the activated 128-byte
region and reduce the AES key candidates from 256 to 128.

Formally, at a certain point in time, the microcontroller is able to access
only one out of 64 components (high granularity), thus the control variable
c ∈ V = {v1,v2, . . . ,v64} and the adversary can observe the leakage of word-
sized regions (L|C = vi), for i = 1, 2, . . . , 64. Alternatively (low granularity), he
can focus on |R| memory regions and partition the set V to sets V1,V2, . . . ,V |R|,
where usually Vr ⊂ V and Vi ∩ Vj = ∅, for i �= j. We define random variable
R ∈ R = {1, 2, . . . , k} to denote the activated region and we represent the leakage
of region r as (L|R = r) = (L|c ∈ Vr). For example, in the high granularity
scenario, the adversary observes and profiles (L|v1), (L|v2), . . . , (L|v64), while
in the low granularity scenario he profiles two regions (R = {1, 2}) with V1 =
{v1,v2, . . . ,v32} and V2 = {v33,v34, . . . ,v64}. Thus he can obtain (L|R = 1) =
(L|c ∈ V1) and (L|R = 2) = (L|c ∈ V2).

Having completed the profiling of regions for a certain experiment ε, we
quantify the leakage, using the perceived information metric (PI) [38] as follows.

PI(L;R) = H[R] − Htrue,model[L|R] =

H[R] +
∑

r∈R
Pr[r] ·

∫

l∈Lg2

Prtrue[l|r] · log2Prmodel[r|l] dl

Prmodel[r|l] =
Prmodel[l|r]∑

r∗∈R Prmodel[l|r∗]
Prtrue[l|r] =

1
ntest

, ntest size of test set

PI can quantify the amount of information that leakage L conveys about
the activated region R, taking into account the divergence between the real and
estimated distributions. Computing PI requires the distribution Prmodel[l|r], i.e.
the template that is estimated from the training dataset. In addition, it requires
the true leakage distribution Prtrue[l|r], which is unknown and can only be
sampled directly from the test dataset. We opt for this metric since it indicates
when degraded (under-trained) leakage models are present, due to our choice
of experimental parameters. Negative PI values indicate that the trained model

5 Unless specified otherwise, we place every word directly next to each other, starting
from a random position in the surface.

Location, Location, Location 297

is incapable of distinguishing regions, while a positive value indicates a sound
model that can lead to classification.

Using the proposed leakage simulation and the PI metric we evaluate several
scenarios for the LUT case. Sections 3.2 until 3.2 showcase how different exper-
imental parameters hinder or enhance leakage, offering several design options.
To apply the theoretical model in an evaluation context we can simply set our
current device SNR to the PI graphs.

Area and Number of Regions. The first simulation scenario examines the
core attack question: using a certain experimental setup with parameters ε =
{s, o, g,a,p}, what is the smallest region size that I can distinguish reliably?
Rephrasing, we assess how much location information can be extracted from
the observed leakage by plotting the PI(L;R) metric against the electrical noise
variance σ2

el for certain ε and c parameters. We simulate an adversary that
distinguishes regions of a 256-byte LUT using the following three LUT partitions
of increasing granularity. First, he partitions the 256-byte LUT to 2 regions of
128 bytes each (depicted by the solid line in Fig. 4). Second, he partitions the
LUT to 8 regions of 32 bytes (dashed line) and third to 16 regions of 16 bytes
(dotted line). For every partition we profile the regions’ leakage (L|R = r) =
(L|c ∈ Vr) for r = 1, 2, . . . , |R|, where |R| = 2 or 8 or 16 and subsequently
tries to distinguish. Note that surface s = 6 mm2, probe size o = 0.03 mm2

(ICR HH 100-27), feature size 90 nm and g = 100, i.e. the scan resolution is
100 × 100. The component area a = 92µm2 for all SRAM words and the words
are placed adjacent to each other, starting from a random surface position; we
denote this as p = random. Along with parameters ε and c, we need to include
the measurement complexity in our simulation. Thus, we specify the amount of
traces measured at every grid spot, resulting in an acquisition of g2 · #traces.
As expected, the experiments with higher region granularity yield more location
information, as shown by the vertical gaps of the PI metric in Fig. 4. Still, we also
observe that smaller regions are harder to distinguish, even for low noise levels.
Partitioning to 8 or 16 regions could optimally yield 3 or 4 bits of information
respectively, yet the dashed and dotted curves remain well below this limit. Thus,
we note that the adversary may need to improve his experiment ε by measuring
more traces, using smaller probes or increasing the grid dimension in order to
extract the maximum information.

Measurement Grid Dimension. Any side-channel experiment involving
surface scanning can be particularly time-consuming. Moving the microprobe
between adjacent positions takes approximately 2 s, thus the 300 × 300 surface
scan carried out in Sect. 2 takes almost 2 days to conduct. Using the spatial
leakage simulation, we can specify the grid dimension g and find the minimum
scan resolution required to distinguish between certain SRAM regions. Figure 5
demonstrates the information captured when conducting scans with resolutions
100× 100, 40× 40 and 20× 20, taking approximately 6 h, 1 h and 15 min respec-
tively. Across the three simulations we maintain constant data complexity of

298 C. Andrikos et al.

Fig. 4. Region partition of 256-byte LUT to 2, 8, 16 regions. Parameters ε = {6 mm2,
0.03 mm2,100, 92µm2,random}, capturing 10 traces/spot 100k traces in total.

100k traces, distributed to grid spots accordingly (10, 62 and 250 traces per
spot). Figure 5 shows information loss (vertical gap) as the grid dimension is
decreasing, i.e. when trying to distinguish 4 regions only the 6 hour-experiment
with 100 × 100 grid is able reach maximum information (2 bits). Notably, we
see that for larger noise levels, small grid sizes with many traces per spot (dense
measurements) are able to outperform larger grid sizes with less traces per spot
(spread measurements).

Feature Size. A common issue encountered in the side-channel literature is the
scaling of attacks and countermeasures as devices become more complicated and
feature size decreases [22,30,32]. This section uses our simple leakage model to
describe the effect of feature size on SCA. We simulate the location leakage of
SRAM cells fabricated with 180 nm, 120 nm and 90 nm technologies, resulting in
bit cell areas of approximately 8µm2, 3.5µm2 and 2µm2. The results are visible
in Fig. 6. Naturally, smaller technology sizes can potentially limit the amount of
available information, as they decrease the region’s area and force the adversary
towards more expensive tooling.

Algorithmic Noise. This section simulates the countermeasure of spatial algo-
rithmic noise, when implemented on the ARM device. Analytically, we examine
the case where the designer is able to place word-sized noise-generating com-
ponents on the chip surface in order to “blur” the location leakage of a tar-
geted region and hinder recovery. The simulation (Fig. 7) uses the analysis of
Appendix A to approximate the algorithmic noise when the probe captures the
leakage of 11 SRAM words, one of which is the target word (and reveals the crit-
ical region information) and the ten remaining words are randomly activated at
the same time. Observing Fig. 7, we see the algorithmic-noise PI curve (dashed

Location, Location, Location 299

Fig. 5. Grid dimension g = 100, 40 and 20. Parameters ε = {6 mm2, 0.03 mm2, g,
92µm2, random}, distinguishing 4 regions of 64 bytes each, 100k traces in total.

line) shifting to the left of the PI curve without algorithmic noise (solid line).
Thus, much like data-based algorithmic noise [47], we see that randomly acti-
vating words functions indeed as an SCA countermeasure.

Region Proximity and Interleaving. Last, we simulate the countermea-
sure of region proximity and region interleaving on the ARM device, which was
considered by He et al. [16] and Heyszl [17]. Analytically, we assume that the
designer controls the place-and-route process and can place two memory regions
on the chip surface using the following three configurations.

1. Distant placement: the distance between the two regions is roughly 1 mm.
2. Close placement: adjacent placement of the two regions.
3. Interleaved placement: the words of the two regions are interleaved together

in a checkered fashion, i.e. word 0, 2, 4, ... of SRAM belongs to 1st region
and word no. 1, 3, 5, ... belongs to 2nd region.

Figure 8 demonstrates the effect of different placement choices, confirming the
basic intuition that higher proximity is essentially a countermeasure against
location-based leakage. The vertical gap in PI between distant, close and inter-
leaved placement shows that as components get closer, the attainable information
decreases, forcing the adversary to increase the grid size or use a smaller probe.

4 Exploitation Using Template Attacks

Having established a theoretical model for spatial leakages, we move towards a
practical scenario. In particular, we exploit the available location leakages in the
ARM Cortex-M4 so as to infer the accessed memory position of an 256-byte,
data-independent LUT. Note that in the real chip we cannot isolate spatial

300 C. Andrikos et al.

Fig. 6. Feature size of 180, 120, 90 nm, word area a = 368, 163, 92µm2. Parameters
ε = {6mm2, 0.03 mm2, 40, a, random}, for 2 regions of 128 bytes each, 250 measure-
ments/spot, 400k traces in total.

from address leakage, i.e. we observe location leakage in its entirety. We use
the template attack [6], i.e. we model the leakage using a multivariate normal
distribution and attack trying to identify the key, or in our case region r of the
SRAM.

The leakage vector (L|R = r) exhibits particularly large dimensionality and
can generate a sizeable dataset, even for modest values of the grid dimension g.
Thus, we employ dimensionality reduction techniques based on the correlation
heuristic so as to detect points of interest (POIs) in the 300 × 300 grid and
use a train-test ratio of 70–30. In addition, when performing template matching,
we combine several time samples from the test set together (multi-sample/multi-
shot attack), in order to reduce the noise and improve our detection capabilities6.
We also opt for the improved template formulas by Choudary et al. [9] with
pooled covariance matrix and numerical speedups. The goal of our template-
based evaluation is not only to answer whether location exploitation is possible
but also to gauge the effect of the experimental parameters ε on the exploitation
process. Thus, similarly to Sects. 3.2, 3.2 and 3.2, we will investigate the effect of
region partition, grid dimension and region placement in the real-world scenario.
Unfortunately Sects. 3.2 and 3.2 would require control over the manufacturing
process (i.e. chips of different feature size) or control over regions with algorith-
mic noise (i.e. parallel memory activation), thus they cannot be tested in our
current context. Throughout this section we will engage in comparisons between
the theoretical model of Sect. 2 and our real-world attack, i.e. we will put the

6 Whether this constitutes an option depends on the situation. If any sort of random-
ization such as masking or re-keying is present in the device then the adversary is
limited in the number of shots that he can combine.

Location, Location, Location 301

Fig. 7. Deploying 10 noise-generating words. Parameters ε = {6 mm2, 0.03 mm2, 40,
92µm2, random}, for 2 regions of 128 bytes each, 250 measurements/spot, 400k traces
in total.

model’s assumptions to test, discover its limitations and obtain more insight into
the source of location leakage.

4.1 Area and Number of Regions

To observe the effect of partitioning, we gradually split the 256 bytes of the LUT
into classes and built the corresponding template for each class. We perform a
template attack on 2, 4, 8 and 16 partitions (with 128, 64, 32 and 16 bytes each
respectively), i.e. we gauge the distinguishing capability of the adversary, as the
number of components increases and their respective areas decrease. The results
are visible in Fig. 9, which showcases how the number of grid positions (spatial
POIs) and samples/shots per attack affects the success rate (SR). The adversary
can achieve a success rate of 100% when distinguishing between 2 or 4 regions,
assuming that he uses multiple samples in his attack. The success rate drops to
75% for 8 and 50% for 16 regions, an improvement compared to random guess
SRs of 12.5% and 6.25% respectively. Although we are not able to reach success-
ful byte-level classification, we can safely conclude that location-based attacks
are definitely possible on small LUTs and they can reduce the security level of an
LUT-based implementations, unless address randomization countermeasures are
deployed. When performing single-shot attacks, the template strategy becomes
less potent, achieving SR of 57%, 33%, 17% and 11% for 2, 4, 8 and 16 regions,
i.e. only slightly better than a random guess. In order to compare the success
rate of the real attack to the theoretical model, we compute the model’s SR
for current device SNR under the same data complexity7. The model’s single-
shot SR is 99%, 50%, 13% and 12% for 2, 4, 8 and 16 regions respectively. We

7 The template attack uses the experimental data, while the theoretical SR uses sim-
ulated data of the same size and dimensionality.

302 C. Andrikos et al.

Fig. 8. Distant, close, interleaved placement. Parameters ε = {6 mm2, 0.03 mm2, 20,
92µm2, random}, distinguishing 2 regions of 128 bytes each and using 250 measure-
ments/spot, 100k traces in total.

observe that the model follows the same trend, yet the device leakage exhibits
divergences that indicate modeling imperfections.

4.2 Measurement Grid Dimension

Using the same approach, we evaluate the effect of grid dimension on the success
rate of the template attack. We commence with the full 300 × 300 grid (2-day
experiment) and subsequently scale down to 40×40 grid (1-hour) and 10×10 grid
(2-minutes), as shown in Fig. 10. We observe that for small grid sizes such as 10×
10 the reduced dataset makes training harder, yet the multi-shot template attack
is able to distinguish with SR equal to 100%. On the contrary, the theoretical
model is unable classify correctly because the spatial POIs are often missed by
such a coarse grid. To pinpoint this model limitation, we assess the spread of the
POIs across the die surface and we visualize the best (according to correlation)
grid positions in Fig. 11. Interestingly, we discover numerous surface positions
that leak location information, while being far away from the SRAM circuitry
itself. This finding is in accordance with Unterstein et al. [51] on FPGAs. The
figure suggests that location leakage is a combination of SRAM spatial leakage
(as in the model), address leakage in the control logic and potentially out-of-
model effects.

4.3 Region Proximity and Interleaving

Finally, we evaluate the effect of region proximity and interleaving on the SR
of templates. We examine close placement (adjacent SRAM regions), distant

Location, Location, Location 303

(a) 2 regions of 128 bytes
each

(b) 4 regions of 64 bytes
each

(c) 8 regions of 32 bytes
each

Fig. 9. The success rate of the template classifier as we partition the LUT. Y-axis
denotes the number of spatial POIs used in model, X-axis denotes the number of
samples used in attack. Scale denotes SR where white is 100% and black is 0%.

(a) 300 × 300 grid (b) 40 × 40 grid (c) 10 × 10 grid

Fig. 10. The success rate of the 2-region template classifier as we decrease the experi-
ment’s grid size.

placement (SRAM regions at a large distance8) and word-interleaved placement
(checkered SRAM regions). The results are visible in Fig. 12. We observe that in
all cases we reach multi-sample SR of 100%, in accordance with the theoretical
model at the device SNR. However, attacking the word-interleaved LUT requires
a bigger effort in modeling in terms of both grid POIs and samples per attack.
Likewise, distinguishing between distant regions puts considerably less strain
on the model. Thus, we conclude that distance and interleaving does indeed
function like a countermeasure against location leakage, albeit it offers only mild
protection in our ARM device.

8 Without knowledge of the chip layout we cannot be fully certain about the distance
between memory addresses. Here we assume that the low addresses of the SRAM
are sufficiently distant from mid ones, which are approx. 8 KBytes away.

304 C. Andrikos et al.

Fig. 11. Spread of spatial POIs on chip surface.

(a) close (b) distant (c) word-interleaved

Fig. 12. The success rate of the 2-region template-based classifier as we change the
placement of regions.

5 Exploitation Using Neural Networks

Despite the fact that the multivariate normal leakage assumption is fairly realis-
tic in the side channel context, applying distribution-agnostic techniques appears
to be another rational approach [26]. Over the past few years, there has been a
resurgence of interest in Deep Learning (DL) techniques, powered by the rapid
hardware evolution and the need for rigorous SCA modeling [5,27–29,37,55].

In this section, we evaluate the performance of various DL methods, including
convolutional neural networks (CNNs, Subsect. 5.1) and multi layer perceptrons
(MLPs, Subsect. 5.2), in inferring the activated region of the 256-byte, data-
independent LUT on the ARM Cortex-M4. First, motivated by reusable neural
networks, we use trained CNNs with all grid positions (no POI selection), but the
results are fairly unsuccessful. We suspect that the results are affected by noise
coming from spatial points that contain no location information. This approach
can be compared to using full pictures for DL training.

To solve the above problem, we apply a dimensionality reduction based spa-
tial POI selection similarly to Sect. 4.1. We notice that even a simple CNN
already provides good results in a limited number of epochs and there is no gain
in using a complex CNN. Thus, we move our attention to simpler MLPs. Inter-
estingly, this approach surpasses the template attacks in effectiveness, enabling

Location, Location, Location 305

stronger location-based attacks that use less attack samples and can distinguish
between smaller regions. The above method can be compared to using only the
most meaningful parts of pictures for DL training.

5.1 Convolutional Neural Network Analysis

Fully Pretrained CNNs. Before developing and customizing our own CNN
model, we evaluate the performance of existing, state-of-the-art pre-trained net-
works. Pre-trained models are usually large networks that have been trained
for several weeks over vast image datasets. As a result, their first layers tend
to learn very good, generic discriminative features. Transfer Learning [34] is
a set of techniques that, given such a pre-trained network, repurposes its last
few layers for another similar (but not necessarily identical) task. Indeed, the
objectives of our spacial identification task appear to be very close to those of
standard image classification. Moreover, as outlined in Sect. 2, our data is for-
mulated as 300 × 300 grid images, which makes them compatible with the input
format of several computer vision classification networks. For this first attempt
at CNN classification we use several state-of-the-art networks, namely Oxford
VGG16 and VGG19 [42], Microsoft ResNet50 [15], Google InceptionV3 [50] and
Google InceptionResNetV2 [49]. It should be noted that the input format of
these networks is often RGB images, while our 300 × 300 heatmaps resemble
single-channel, grayscale images. To address this and recreate the three color
channels that the original networks were trained for, we experiment with two
techniques; (1) we assemble triplets of randomly chosen heatmaps, and (2) we
recreate the three color channels by replicating the heatmaps of the samples
three times.

We apply the pretrained CNN classification on 2 closely placed SRAM regions
of 128 bytes each. In accordance with the standard transfer learning methodol-
ogy, during re-training we freeze the first few layers of the networks to preserve
the generic features they represent. In each re-training cycle, we perform sev-
eral thousand training-testing iterations. Despite all these and multiple hours of
training, none of the aforementioned CNNs results into a retrained network with
high classification success rate.

Custom Pretrained CNNs. As a result of the low success rate of fully pre-
trained networks, we choose to proceed with Xavier [14] weight initialization
and training from scratch. We observe that, despite the transformation of the
sequential problem (SRAM accesses over time) to a spatial one, our dataset is
dissimilar to visual classification datasets. Rephrasing, the images that we have
to cope with feature intricate characteristics having little resemblance with those
of the datasets that the pretrained CNN versions have been trained on, such
as the ImageNet dataset [11]. Moreover, due to the fully distribution-agnostic
approach, any randomly initialized CNN may suffer the effect of vanishing or
exploding gradients, a danger that Xavier initialization should eliminate. The
framework that was used for training and evaluating our customized CNNs is

306 C. Andrikos et al.

Keras [7] over TensorFlow [1] backend and the customized CNNs tested were
VGG19 [42], InceptionV3 [50], ResNet50 [15], DenseNet121 [19] and Xception
[8]. We also made use of the scikit-learn Python library [36] for the preprocessing
of our data. The execution of this customized CNN training and testing was car-
ried out in ARIS GRNET HPC (High-Performance Computing) infrastructure9.

To gauge the effect of SRAM memory addressing on the training, all five
CNNs are trained in two ways: one-batch training and multiple-batch training.
During one-batch training we use location leakage from a single SRAM LUT,
while for multiple-batch training we use four LUTs placed within a 16 KByte
SRAM address range. The dataset is split into training, validation and test sets
using a 70-20-10 ratio and is standardized by removing the median and scaling
the data according to the quantile range. The networks are trained for 150 epochs
of 32 images each, using the Adam optimizer [23] with default parameters. The
results are visible in Fig. 13.

We observe that the single-shot success rate of the Xception network (green
line) exceeds by far all others’ at 84% and the SR improves in stability when using
multiple-batch training. It is worth noting that some CNNs, especially VGG19,
remain incapable of learning anything meaningful about the discrimination of
the two 128-byte regions. Another troubling fact is the sudden drops of valida-
tion accuracy during training time for both best-performing networks, Xception
and ResNet50, a phenomenon rather indicative of overfitting. In our efforts to
squeeze the best possible performance without sacrificing training stability and
generalization capacity, we investigated the tolerance of the best performing
network against two additional preprocessing techniques, namely sample-wise
standardization and feature-wise standardization. The test set success rate of
the three alternative techniques is visible in Table 2. Comparing with Sect. 4,
we observe that CNNs are capable of surpassing the single-shot accuracy of
template attacks, reaching 88% and making the CNN-based attack particularly
useful against randomization countermeasures that limit the number of samples
we can combine. Moreover we observe that spreading the training phase over
several SRAM addresses (multiple batch) can assist classification, showing that
the knowledge learned in a certain address range may be applicable elsewhere
in the SRAM.

Table 2. Success rate of Xception network for alternative preprocessing techniques.

Alternative Pipeline Preprocessing step Success Rate

Xception-V1 dataset-wise, robust to 84.47 %
outliers standardization

Xception-V2 sample-wise standardization 88.636 %
Xception-V3 feature-wise standardization 84.848 %

9 https://hpc.grnet.gr/en/.

https://hpc.grnet.gr/en/

Location, Location, Location 307

(a) Single-batch training.

(b) Multiple-batch training.

Fig. 13. CNN validation accuracy for single/multiple-batch training.

5.2 Multi Layer Perceptron Network Analysis

We believe that the results from the previous section are affected by noise coming
from spatial points that contain no location information. To eliminate this issue,
we apply a dimensionality reduction techniques based on the correlation heuristic
to detect the best spatial POI in the 300 × 300 grid, like in Sect. 4.1 Initial
results using CNN show that even a simple CNN already provides good results
in a limited number of epochs. Therefore there is no gain in using a complex
CNN and we move our focus to simpler MLPs.

In [27], the authors presented how to use Multi Layer Perceptron (MLP)
network to perform SCA on AES. In this section we present how to use MLP to
recognize accesses to different addresses in the memory. Based on experiments,
we discover that 5000 POI yielded the best network training.

308 C. Andrikos et al.

Table 3. Hyper-Parameters for training and validation.

Epochs 30 − 80 (depends on the number
of regions)

Mini-Batch 100

Learning Rate 0.003

Learning Rate Decay Rate 0.5%

Learning Rate Decay Interval 100 epochs

L1 0.001

L2 (weight decay) 0.001

Weight Initialization RELU

Activation Output Layer SOFTMAX

Loss Function NEGATIVELOGLIKELIHOOD

Updater NESTEROVS

1 Dense Layer:
- Number of Neurons: 20
- Activation Dense Layer: TANH

We define our MLP to contain a single dense layer and used the back-
propagation with NESTEROVS updater, with momentum 0.9, during training.
The weights are initialized at random and applied to a RELU activation. The
MLP is also configured with L1 and L2 regularization in order to improve the
generalization. The analysis presented in this section is performed using Deep
Learning for Java10 in conjunction with Riscure Inspector deep learning func-
tionality. To observe the effectiveness of MLPs, we gradually partition the 256
bytes of the LUT into classes and built the corresponding MLP for each class.
We perform an MLP analysis on 2, 4, 8, 16, 32, 64, 128, and 256 partitions (with
128, 64, 32, 16, 8, 4, 2, and 1 bytes each, respectively). The dataset is split into
training, validation and test sets using a 40-30-30 ratio. Then we select best
hyper-parameters for training and validation11 of our MLP network using a trial
and error method. The chosen parameters are listed in Table 3.

The validation accuracy for 2, 4, 8, 16, 32, 64, 128, and 256 partitions is
visible in Fig. 14a. We have discovered that we achieve the best results for various
numbers of epochs depending on the number of partitions. We have used 30
epochs for the 2 and 4 partitions, 40 epochs for the 16 and 32 partitions, 40
epochs for the 8 partitions, 70 for the 128 partitions, and 80 for the 64 and 256
partitions. Figure 14a indicates that the MLP network reaches high accuracy
even for a large number of regions. To visualize the validation set success rate
we present the validation final partitioning (for 16 partitions) in Appendix B.
The greatest values are located on the diagonal and this indicates that the MLP
learns correctly with high probability. The attack success rates for the test traces
for 2, 4, 8, 16, 32, 64, 128, and 256 partitions are presented in Fig. 14b; the exact

10 https://deeplearning4j.org/.
11 The MLP parameters are chosen to maximize the attack success rate (which is

equivalent to accuracy).

https://deeplearning4j.org/

Location, Location, Location 309

(a) Blue line denotes validation accuracy
and red line denotes random guess success
rate.

(b) Green line denotes attack success rate
and red line denotes random guess success
rate.

Fig. 14. Validation accuracy for training and success rate for testing in MLP. (Color
figure online)

accuracy values are 96%, 91%, 90%, 88%, 83%, 75%, 57%, and 32%, respectively.
As expected, these values are slightly lower for the attacking phase than the
validation ones in the learning phase. We observe that even the SR for the 256
partitions, namely the 32% SR is significantly higher then a SR of a random
guess: 1/256 = 4%.

Observing these results, we conclude that the MLP network can be substan-
tially stronger than the template attacks when exploiting location leakage. It can
achieve high SR using single-shot attacks, reaching 98% for 2 regions and 32%
even when targeting single bytes in the SRAM. Notably, the MLP classification
can strongly enhance the SR of a microprobe setup making it almost on par with
the substantially more expensive photonic emission setup.

6 Conclusions and Future Directions

In this work, we have revisited the potent, yet often overlooked location-based
leakage. We take the first steps towards theoretical modeling of such effects and
we put forward a simple spatial model to capture them. Continuing, we demon-
strate successful location-based attacks on a modern ARM Cortex-M4 using
both standard template attacks, CNNs and MLPs. Throughout these attacks we
assess the impact of various experimental parameters in order to elucidate the
nature and exploitability of location-based leakage.

Regarding future work, we note that during the last years of side-channel
research, the community has established a multitude of potent tools (ranging
from Bayesian techniques to neural networks), all of which are particularly good

310 C. Andrikos et al.

at extracting the available leakage. Still, we remain far less capable of finding
the exact cause behind it, especially in complex modern chips [4,35]. Thus, a
natural extension to this work is to delve deeper into the electrical layer of a
system-on-chip, try to identify the “culprits” behind location leakage and ulti-
mately diminish the emitted information. In the same spirit, we should strive
towards improved circuit modeling, similarly to the works of Šijačić et al. [41]
and Kumar et al. [25], adapt them to the spatial model and use it in order to
shorten the development-testing cycle of products. Finally, going back to algo-
rithmic countermeasures, we can start designing masking schemes that account
for data and location leakage in order to provide a fully-fledged security that
encapsulates multiple side-channel vulnerabilities.

Acknowledgments. We would like to thank Riscure BV, Rafael Boix Carpi, Ilya
Kizhvatov and Tin Soerdien for supporting the process of chip decapsulation and scan.

7 Appendix A

Algorithmic Noise in Tightly-Packed Surfaces. Since countermeasure
designers opt often for algorithmic noise countermeasures, we investigate the
statistical variance of Nalgo for a tightly packed circuit that contains a large
number of randomly switching components which try to hide the targeted com-
ponent. We assume every noise-generating component to have area bi ≈ d, where
d is the area of the targeted component Since we assume large na, both the noise-
generating components as well as the targeted component are small w.r.t. the
probe size, i.e. d
 o. In a tightly packed circuit, the probe area o contains
roughly o

d randomly switching components, i.e. na ≈ o
d . In this particular sce-

nario, the following formula approximates Nalgo.

Nalgo =
na∑

i=1

Nalgo
i = d ·

na∑

i=1

Bi = d · A,

Bi ∼ Bern(0.5) , A ∼ Binomial(na, 0.5)

Thus, Nalgo Central Limit−−−−−−−−→
Theorem

Norm(
d · na

2
,
d · na

4
)

Using the approximation of the Central Limit Theorem, we see that
V ar[Nalgo] = d·na

4 = o
4 . Thus, for the tightly-packed, small-component sce-

nario we have established a direct link between the probe area o and the level
of algorithmic noise, demonstrating how increasing the probe area induces extra
noise.

Location, Location, Location 311

8 Appendix B

Predicted versus actual values, visualizing the validation set success rate.

Predicted: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Actual:
0 35 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 30 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 40 1 1 0 0 0 0 0 0 0 0 0 0
4 2 0 0 1 31 0 0 1 0 0 0 0 1 0 0 0
5 0 1 0 1 0 28 1 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 37 0 0 0 0 0 0 1 0 0
7 0 0 0 1 2 1 0 26 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 0 0 26 0 0 0 0 0 0 0
9 0 0 1 0 0 1 1 0 1 30 0 0 0 0 0 0
10 0 0 0 0 0 2 0 0 1 1 37 0 1 0 0 2
11 0 1 0 1 1 0 0 1 0 1 0 34 0 1 0 0
12 0 1 0 0 0 0 0 2 1 0 0 0 34 0 0 0
13 0 0 0 0 0 0 1 1 0 0 3 0 0 32 2 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0
15 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 31

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from tensorflow.org

2. Andrikos, C., Rassias, G., Lerman, L., Papagiannopoulos, K., Batina, L.: Location-
based leakages: new directions in modeling and exploiting. In: 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation (SAMOS), pp. 246–252, July 2017

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

4. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Chollet, F., et al.: Keras (2015). https://keras.io
8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR,

abs/1610.02357 (2016)

https://www.tensorflow.org
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://keras.io

312 C. Andrikos et al.

9. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

10. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 1

11. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

12. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

13. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

14. Glorot, X., Bengio, Y. Understanding the difficulty of training deep feedforward
neural networks. In: JMLR W&CP: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2010), vol. 9, pp.
249–256, May 2010

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

16. He, W., de la Torre, E., Riesgo, T.: An interleaved EPE-immune PA-DPL struc-
ture for resisting concentrated EM side channel attacks on FPGA implementation.
In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4 4

17. Heyszl, J.: Impact of Localized Electromagnetic Field Measurements on Implemen-
tations of Asymmetric Cryptography. https://mediatum.ub.tum.de/doc/1129375/
1129375.pdf

18. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 15

19. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR, abs/1608.06993 (2016)

20. Immler, V., Specht, R., Unterstein, F.: Your rails cannot hide from localized EM:
how dual-rail logic fails on FPGAs. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 403–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 20

21. Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of cryp-
tographic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36400-5 11

22. Kamel, D., Standaert, F.X., Flandre, D.: Scaling trends of the AES S-box low
power consumption in 130 and 65 nm CMOS technology nodes. In: International
Symposium on Circuits and Systems (ISCAS 2009), 24–17 May 2009, Taipei, Tai-
wan, pp. 1385–1388 (2009)

23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR,
abs/1412.6980 (2014)

24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-642-29912-4_4
https://mediatum.ub.tum.de/doc/1129375/1129375.pdf
https://mediatum.ub.tum.de/doc/1129375/1129375.pdf
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-319-66787-4_20
https://doi.org/10.1007/978-3-319-66787-4_20
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/3-540-48405-1_25

Location, Location, Location 313

25. Kumar, A., Scarborough, C., Yilmaz, A., Orshansky, M.: Efficient simulation of
EM side-channel attack resilience. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 123–130, November 2017

26. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.-X.: Template attacks ver-
sus machine learning revisited and the curse of dimensionality in side-channel anal-
ysis: extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018)

27. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

28. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 7

29. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594 (2013)

30. Maurine, P.: Securing SoCs in advanced technologies. https://cosade.telecom-
paristech.fr/presentations/invited2.pdf

31. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: 2012
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1173–
1178, March 2012

32. Nawaz, K., Kamel, D., Standaert, F.-X., Flandre, D.: Scaling trends for dual-rail
logic styles against side-channel attacks: a case-study. In: Guilley, S. (ed.) COSADE
2017. LNCS, vol. 10348, pp. 19–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-64647-3 2

33. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

34. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data
Eng. 22(10), 1345–1359 (2010)

35. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

36. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

37. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018)

38. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 8

39. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

40. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple photonic
emission analysis of AES. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 41–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 3

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-08302-5_7
https://cosade.telecom-paristech.fr/presentations/invited2.pdf
https://cosade.telecom-paristech.fr/presentations/invited2.pdf
https://doi.org/10.1007/978-3-319-64647-3_2
https://doi.org/10.1007/978-3-319-64647-3_2
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-33027-8_3
https://doi.org/10.1007/978-3-642-33027-8_3

314 C. Andrikos et al.

41. Sijacic, D., Balasch, J., Yang, B., Ghosh, S., Verbauwhede, I.: Towards efficient
and automated side channel evaluations at design time. In: Batina, L., Kühne,
U., Mentens, N., (eds.) PROOFS 2018. 7th International Workshop on Security
Proofs for Embedded Systems. Kalpa Publications in Computing, vol. 7, pp. 16–
31. EasyChair (2018)

42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

43. Specht, R., Immler, V., Unterstein, F., Heyszl, J., Sig, G.: Dividing the threshold:
Multi-probe localized EM analysis on threshold implementations. In: 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp.
33–40, April 2018

44. Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks
on exponentiations based on clustering and extracting leakage from multi-channel
high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21476-4 1

45. Specht, R., Heyszl, J., Sigl, G.: Investigating measurement methods for high-
resolution electromagnetic field side-channel analysis. In: 2014 International Sym-
posium on Integrated Circuits (ISIC), Singapore, 10–12 December 2014, pp. 21–24
(2014)

46. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

47. Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards secu-
rity limits in side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.1007/
11894063 3

48. Sugawara, T., Suzuki, D., Saeki, M., Shiozaki, M., Fujino, T.: On measurable side-
channel leaks inside ASIC design primitives. J. Cryptogr. Eng. 4(1), 59–73 (2014)

49. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet
and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)

50. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

51. Unterstein, F., Heyszl, J., De Santis, F., Specht, R.: Dissecting leakage resilient
PRFs with multivariate localized EM attacks - a practical security evaluation on
FPGA. COSADE 2017/272 (2017)

52. Unterstein, F., Heyszl, J., De Santis, F., Specht, R., Sigl, G.: High-resolution EM
attacks against leakage-resilient PRFs explained - and an improved construction.
Cryptology ePrint Archive, Report 2018/055 (2018). https://eprint.iacr.org/2018/
055

53. Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Part IV: Opti-
mum Array Processing. Wiley, Hoboken (2002)

54. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective,
4th edn. Addison-Wesley Publishing Company, USA (2010)

55. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9 12

http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/11894063_3
https://doi.org/10.1007/11894063_3
https://eprint.iacr.org/2018/055
https://eprint.iacr.org/2018/055
https://doi.org/10.1007/978-3-642-31912-9_12

Simple Refreshing in the Noisy
Leakage Model

Stefan Dziembowski1, Sebastian Faust2, and Karol Żebrowski1(B)

1 University of Warsaw, Warsaw, Poland
s.dziembowski@crypto.edu.pl, k.zebrowski@mimuw.edu.pl

2 TU Darmstadt, Darmstadt, Germany

Abstract. Masking schemes are a prominent countermeasure against
power analysis and work by concealing the values that are produced
during the computation through randomness. The randomness is typ-
ically injected into the masked algorithm using a so-called refreshing
scheme, which is placed after each masked operation, and hence is one of
the main bottlenecks for designing efficient masking schemes. The main
contribution of our work is to investigate the security of a very simple
and efficient refreshing scheme and prove its security in the noisy leak-
age model (EUROCRYPT’13). Compared to earlier constructions our
refreshing is significantly more efficient and uses only n random values
and <2n operations, where n is the security parameter. In addition we
show how our refreshing can be used in more complex masked compu-
tation in the presence of noisy leakage. Our results are established using
a new methodology for analyzing masking schemes in the noisy leakage
model, which may be of independent interest.

1 Introduction

Over the last decade cryptographic research has made tremendous progress in
developing solid foundations for cryptography in the presence of side-channel
leakage (see, e.g., [19] for a recent overview). The common approach in this
area – often referred to as “leakage resilient cryptography” – is to first extend
the black-box model to incorporate side-channel leakage, and then to propose
countermeasures that are provable secure within this model. The typical leakage
model considered in the literature assumes an adversary that obtains some par-
tial knowledge about the internal state of the device. For instance, the adversary
may learn a few bits of the intermediate values that are produced by the device
during its computation.

One of the countermeasures that significantly benefits from such a formal
treatment are masking schemes (see, e.g., [6,8,9,11,18,21] and many more).
Masking is a frequently used countermeasure against power analysis attacks,
which de-correlates the internal computation of a device from the observable
leakage (e.g., the power consumption). A core ingredient of any secure masking
scheme is a refreshing algorithm. At a very high level (we will explain this in
much more detail below) the refreshing algorithm introduces new randomness
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 315–344, 2019.
https://doi.org/10.1007/978-3-030-34618-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_11

316 S. Dziembowski et al.

into the masked computation, thereby preventing that an adversary can exploit
correlations between different intermediate values of the computation. Since
refreshing schemes are computationally expensive a large body of work has
explored how to securely improve their efficiency. Unfortunately, one of the
most simple and efficient (in terms of computation and randomness) refresh-
ing schemes due to Rivain and Prouff [22] cannot be proven secure; even worse,
it was shown in [5] that a simple – though impractical – attack breaks the scheme
in the common threshold probing leakage model [18]. In this work we show –
somewhat surprisingly – that the simple refreshing of Rivain and Prouff [22] is
secure under noisy leakages [21]. Noisy leakages are considered generally to accu-
rately model physical side-channel leakage, and hence our result implies that the
simple refreshing can securely replace more complex and expensive schemes in
practice.

1.1 Masking Schemes

Ingredients of a Masking Scheme. One of the most common countermeasures
against power analysis attacks are masking schemes. Masking schemes work by
randomizing the intermediate values produced during the computation of an
algorithm through secret sharing. To this end each sensitive variable x is repre-
sented by an encoding Enc(x) := (x1, . . . , xn) and the corresponding decoding
function Dec(·) recovers x := Dec(x1, . . . , xn). A simple encoding function uses
the additive encoding function, which works by sampling xi uniformly at random
from some finite field F subject to the constraint that x :=

∑n
i=1 xi. If F is the

binary field, then such a masking scheme is typically called Boolean masking.
In addition to an encoding scheme, we need secure algorithms to compute

with encoded elements. To this end, the algorithm’s computation is typically
modeled as an arithmetic circuit over a finite field F. In such circuits the wires
carry values from F and the gates perform operations from F. At a high-level
the circuit is made out of gates that represent the basic field operations (i.e.,
addition gate denoted “⊕” and multiplication gate denoted “⊗”). Moreover,
it may consist of gates for inversion (i.e., outputting −x on input x), and so-
called randomness gates RND that take no input and produce an output that is
distributed uniformly over F. We often assign unique labels to the wires. Each
label can be interpreted as a variable whose value is equal to the value that the
corresponding wire carries.

Given a circuit built from these gates, a masking scheme then typically works
by replacing each of the above operations by a “masked” version of the gate.
For instance, in case of the aforementioned additive encoding scheme (Enc,Dec)
the masked version of the ⊕ takes as input two encodings Enc(x) and Enc(y)
and outputs an encoding Enc(z), where

∑
i zi :=

∑
i xi +

∑
i yi. Informally, the

masked version of a gate is said to be secure if leakage emitted from the internal
computation of the masked version of the gate does not reveal any sensitive
information.

Refreshing Schemes. A key building block to securely compose multiple masked
operations to a complex masked circuit is the refreshing scheme. The refreshing

Simple Refreshing in the Noisy Leakage Model 317

scheme takes as input an encoding −→x j := (xj
1, . . . , x

j
n) = Enc(x) and outputs

a new encoding (xj+1
1 , . . . , xj+1

n) = −→x j+1 of x. By “new encoding” we mean
that this procedure should inject new randomness into the encoding, in such
a way that the leakage from the previous encodings should not accumulate.
In other words: if we periodically refresh the encodings of x (which leads to a
sequence of encodings: −→x 0 �→ −→x 1 �→ −→x 2 �→ · · ·) then x should remain secret
even if bounded partial information about each −→x j leaks to the adversary. The
operations of computing −→x j+1 from −→x j is also called a refreshing round, and a
circuit that consists of some number of such rounds (and not other operations)
is called a multi-round refreshing circuit.

A common approach for securely refreshing additive encodings is to exploit
the homomorphism of the underlying encoding with respect to addition:1 one
starts by designing an algorithm that samples (b1, . . . , bn) from the distribu-
tion Enc(0), and then, in order to refresh an encoding (xj

1, . . . , x
j
n) one adds

(b1, . . . , bn) to it. Therefore, the refreshed encoding is equal to (xj
1 + b1, . . . , x

j
n +

bn). Observe that after Enc(0) is generated, the refreshing can be done without
any further computation, by just adding bi to every xj

i . Of course in this app-
roach the whole technical difficulty is to generate the encodings of 0 in a secure
way (without relying on any assumptions on leakage-freeness of the encoding
generation).

The most simple and efficient refreshing scheme originally introduced in [22]
uses the “encoding of 0 approach” mentioned above and works as follows (see
also Fig. 1 on page 8). In order to refresh −→x j = (xj

1, . . . , x
j
n), we first sample

bj
1, . . . , b

j
n−1 uniformly at random from F and set bj

n := −bj
1 − . . . − bj

n−1. Then,
we compute the fresh encoding of x as (xj+1

1 , . . . , xj+1
n) := (xj

1 +bj
1, . . . , x

j
n +bj

n).
Notice that besides its simplicity the above refreshing enjoys additional beneficial
properties including optimal randomness complexity (only n − 1 random values
are used) and minimal circuit size (only 2n − 1 field operations are required).
Somewhat surprisingly this simple refreshing scheme turns out to be insecure in
the security model of threshold probing attacks introduced in the seminal work
of Ishai, Sahai and Wagner [18].

Insecurity of Simple Refreshing. The standard model to analyze the security of
masking schemes is the t-probing model [18]. In the t-probing model the adver-
sary can (adaptively) select up to t wires of the internal masked computation
and learn the values carried on these wires during computation. While originally
it was believed that the simple refreshing from above guarantees security for
t = n − 1 [22], Coron et al. [10] showed that when it is combined with certain
other masked operations (e.g., in a masked AES) the resulting construction can
be broken using only ≤ t := n/2 + 1 probes.

An even more devastating attack against this natural refreshing can be shown
in the following setting. Consider a circuit that consists of a sequence of n refresh-
ings of an encoding −→x 0. This may naturally happen in a masked key schedule
1 By this we mean that for every x and y we have Dec(Enc(x) + Enc(y)) = x + y,

where “+” on the left-hand-side denotes the vector addition.

318 S. Dziembowski et al.

of the AES algorithm, where the secret key is encoded and after each use for
encrypting/decrypting is refreshed. If for each of these refreshings the adversary
can learn 2 values, then a simple attack allows to recover the secret (we describe
this attack in more detail below). The attack, however, is rather impossible to
carry out in practice. In particular, it requires the adversary to learn for the n
consecutive executions of the refreshing scheme specific (different) intermediate
values.

The Noisy Leakage Model. The attack against the simple refreshing illustrates
that in some sense the probing model is too strong. An alternative model is
the so-called noisy leakage model of Prouff and Rivain [21]. In the noisy leakage
model the leakage is not quantitatively bounded but instead it is assumed that
the adversary obtains a “noisy distribution” of each value carried on a wire. The
noisy leakage model is believed to model real-world physical leakage accurately,
and hence is prominently used in practice to analyze the real-world security of
physical devices [12].

In [11] it was shown that the noisy leakage model of [21] can be reduced to
the p-random probing model. In the p-random probing model we assume that the
value carried on each wire is revealed independently with probability p. Since
in the p-random probing model the adversary looses control over the choice of
wire that he learns, the attack against the simple refreshing ceases to work. This
raises the question if the simple and most natural refreshing scheme is secure in
the p-random probing model. The main contribution of this paper is to answer
this question affirmatively.

1.2 Our Contribution

We provide a technical outline of our contributions in Sect. 2 and give in the
following only a high-level summary of our results.

Simple Refreshing. Our main contribution is to analyze the security of the sim-
ple refreshing scheme from [22] in the noisy leakage model. In particular, we
show that refreshing an encoding (x1, . . . , xn) is secure even if each wire in the
refreshing circuit is revealed with constant probability p. Our result directly
implies that refreshing an encoded secret k times (where k may be much larger
than the security parameter n) remains secure under noisy leakages for constant
noise parameter. Such consecutive use of refreshings naturally appears in many
practical settings such as the key schedule of the AES mentioned above, or in
general for refreshing the secret key between multiple runs of any cryptographic
primitive. Since the simple refreshing is optimal in terms of circuit size and
randomness complexity our result significantly improves the practicality of the
masking countermeasure.

Concretely, the simple refreshing requires n−1 random values and uses 2n−1
addition gates to securely refresh an encoding (x1, . . . , xn) in the random probing
model (and hence implying security in the noisy leakage model of [21]). In con-
trast, the most widely used refreshing scheme from Ishai, Sahai and Wagner [18]

Simple Refreshing in the Noisy Leakage Model 319

requires (n − 1)2/2 randoms and 2n2 + n addition gates and has been proven
secure only for p ≈ 1/n, which is significantly worse than ours.2 Recently, vari-
ous works provide asymptotically improved refreshing algorithms. In particular,
in [1,3] it was shown how to build a secure refreshing with circuit size O(n), and
randomness complexity O(n) for a constant noise parameter p. While asymp-
totically these constructions are the same as for the simple refreshing analyzed
in our work, from a concrete practical point of view these schemes are very
inefficient as they are based on expander graphs.

New Techniques for Proving Security. At the technical level, our main contribu-
tion is to introduce a new technique for proving security in the random probing
model. Our main observation is that probing security can be translated into a
question of connectivity between nodes in certain graphs. As an example con-
sider the circuit Ĉ executing k times the simple refreshing. It can be represented
as a grid G with k + 1 rows and n + 1 columns, where in each row we have
n + 1 nodes. The edges between the nodes represent intermediate values that
are computed during the execution of the circuit. Leakage of a certain sub-set
of wires then corresponds to a sub-graph of G, which we call leakage diagram.

We then show that if the “leftmost side” and the “rightmost side” of the grid
are connected by a path in the leakage diagram, then this leads to an attack
that allows to recover the encoded secret that is refreshed by the circuit Ĉ. On
the other hand, and more importantly, if the two sides of the diagram are not
connected by a path in the leakage diagram, then we show that the adversary
does not learn any information about the encoded secret from the leakage. The
above can be extended to arbitrary masked arithmetic circuits, in which the
graphs representing the circuit are slightly more involved.

The above allows us to cast security against probing leakage as a question
about connectivity of nodes within a graph. To show security in the p-random
probing model we then need to bound the probability that the random sub-
graph of G representing the leakage contains a path that connects the two sides
of G. The main challenge is that although in the p-random probing model each
wire leaks independently with probability p, in our graph representation certain
edges are more likely to be part of the leakage diagram. Even worse, the events of
particular edges of G ending up in the leakage diagram are not independent. This
significantly complicates our analysis. We believe that the techniques introduced
in our paper are of independent interest and provide a novel tool set for analyzing
security of masked computation in the random probing model.

Extension to Any Masked Computation. As our last contribution we show how
to use the simple refreshing as part of a more complex masked computation. To
this end, we study the security of the masking compiler provided by Ishai, Sahai
and Wagner [18] when using the simple refreshing described above. Notably,
we first show that the simple refreshing can be used to securely compose any

2 We expect that also the refreshing from [18] is secure for some constant probability
p, but we did not analyze its security.

320 S. Dziembowski et al.

affine masked operations. This result is important because it shows for the first
time that the most natural and efficient way to carry out affine computation in
the masked domain is secure against noisy leakages. Compared to the standard
construction of [18] we save a factor of n in circuit and randomness complexity.
Moreover, at the concrete level we make huge practical improvements when
compared to the recent works of [1,3], which use expander graphs and algebraic
geometric codes.

Finally, we show that the simple refreshing can also be securely composed
with the masked multiplication of [18]. Since the masked multiplication of [18]
itself is a composable refreshing [11], this result is maybe not so surprising.
Nevertheless, it shows that combining from a complexity point of view optimal
masked computation with the ISW masked multiplication results into general
masked computation that is secure in the random probing model.3

1.3 Other Related Work

A large amount of work proves different formal security guarantees of masking
schemes (see, e.g., [1,7,18,20,21] and many more), and we only discuss the most
relevant work.

Noisy Leakage Model. As already mentioned most relevant for us is the so-
called noisy leakage model introduced in the work of Prouff and Rivain [21]
and further refined by Duc et al. [11]. In the later it was also shown that the
p-random probing model is closely related to the noisy leakage model. Since
both [11,21] require p ≈ 1/n, one important goal of research is to improve the
noise parameter p. There has recently been significant progress on this. In [1,3]
it was shown how to securely compute in the random probing model for constant
p. Further improvements are made in [2,16], where the later achieves security
under a quasi-constant noise for a construction with complexity O(n log(n))
avoiding heavy tools such as expander graphs and AG codes. Another line of
work investigates relations between different noisy leakage models [14,17] and
provides tight relations between them. A more practical view on noisy leakage –
and in particular a quantitative study of its relation to real-world leakage – was
given by Duc et al. [12].

Refreshing Schemes and Their Usage. Refreshing schemes have always been a
core ingredient of masking schemes. Their randomness consumption is, however,
often the bottleneck for an efficient masked implementation4. Hence, an impor-
tant goal of research is to minimize the overheads resulting from the use of
3 Recall that for the ISW scheme it is known that p ≈ 1/n as otherwise there is an

attack against the masked multiplication. Thus, our result requires a similar bound
on p in the general case. It is an interesting open question if we can combine the
simple refreshing with masked multiplications that are secure for constant p, e.g.,
the schemes from [1,3].

4 Notice that true randomness is hard to generate in practice, and producing securely
pseudorandomness is costly as we need to run, e.g., an AES.

Simple Refreshing in the Noisy Leakage Model 321

refreshing. There are two main directions to achieve this. First, we may improve
the refreshing algorithm itself. In particular, in [1,3] it was shown how to build
a secure refreshing with circuits size and randomness complexity O(n) for a con-
stant noise parameter p. While asymptotically optimal from a concrete practical
point of view these schemes are very inefficient as they are based on expander
graphs. A second direction to improve on the costs for refreshing is to reduce the
number of times the refreshing algorithms are used. This approach was taken by
several works [6,8,9] which develop tools for placing the refreshing algorithm in
an efficiency optimizing way without compromising on security. It is an inter-
esting question for future research to develop tools and methods that securely
place the simple refreshing within a complex masked circuit.

2 Our Approach Informally

As a simple example of circuit to present our approach let us consider a circuit
Ĉ (in the following the “hat notation” will denote masked/transformed circuits)
that is a k-round refreshing circuit. This circuit consist of k consecutive subcir-
cuits that we call refreshing gadgets R̂, presented in Fig. 1. Note that in addition
to the notation from Sect. 1.1 we also use terms cj

i that denote the partial sums:
cj
i = bj

1 + · · · + bj
i (for consistency define cj

0 and cj
n to be always equal to 0). It

is a simple fact that the adversary can learn the encoded secret for k = n even
if just 2 wires from each refreshing gadget leak to her (and no additional leak-
age is given), namely xj

j+1 and cj
j+1. We recall this attack in the full version of

the paper [15]. Similar attacks for different refreshing schemes have been shown
in [5,13]. This attack strongly relies on the fact that the adversary can choose
which wires she learns. As discussed in the introduction, in the weaker p-random
probing model it is very unlikely that the adversary will be lucky enough to learn
xj

j+1 and cj
j+1 in each round (unless p is close to 1). Of course, the fact that one

particular attack does not work, does not immediately imply that the scheme is
secure.

Relaxing the Leakage Model. As already mentioned in Sect. 1.2 our first main
contribution is a formal proof that indeed this simple refreshing procedure is
secure in the p-random probing model. Our starting point is the natural ques-
tion: can we characterize the leakages which allow the adversary to compute the
secret? We answer this question affirmatively by introducing the notion of leak-
age diagrams, which we explain below (for formal definitions see Sect. 4.4).

Leakage Diagrams. Essentially, the leakage diagrams are graphs that can be
viewed as abstract representations of the leakage that occurred during the eval-
uation of a circuit. For a moment let us focus only on leakage diagrams that cor-
respond to k-round refreshing circuits Ĉ. Let x0

1, . . . , x
0
n be some initial encod-

ing of the secret x. In this case the leakage diagram will be a subgraph of a
(n + 1) × (k + 1) grid G with edges labeled xj

i and cj
i as on Fig. 2.

To illustrate how the leakage diagrams are constructed take as an example
a 2-round refreshing circuit (with n = 3) that is depicted on Fig. 3a. Note that
this picture omits the part of circuit that is responsible for generating the bj

i ’s,

322 S. Dziembowski et al.

(bj
1, . . . , b

j
n−1) ← F

n−1

cj
0 := 0

for i = 1, . . . , n − 1 do

cj
i := cj

i−1 + bj
i

bj
n := −cj

n−1

for i = 1, . . . , n do

xj+1
i := xj

i + bj
i

(a) Pseudocode of the
simple refreshing gadget
̂R.

+ + + +

xj
1

xj+1
1

xj
2

xj+1
2

xj
3

xj+1
3

xj
4

xj+1
4

RND

CP

bj
1

RND

CP

bj
2

RND

CP

bj
3

+

+NEG

c
j
1

c
j
2

cj
3bj

4

(b) Corresponding circuit (for n = 4).

Fig. 1. The refreshing gadget. The “j” superscript is added for the future reference
(e.g. on Fig. 3a).

x0
1

xk
1

x0
n

xk
n

c00

ck−1
0

c01

ck−1
1

c0n−1

ck−1
n−1

c0n

ck−1
n

...

· · ·

· · ·

Fig. 2. Graph G corresponding to the k-round refreshing circuit. It has k + 1 rows.
In each jth row (for j = 0, . . . , k) it has n + 1 vertices connected with edges (there is
an edge labeled with “xi” between the ith and (i + 1)st vertex). It also has an edge
between every pair of ith vertices (for i = 0, . . . , n) in the jth and j + 1st row. This
edge is labeled with “cji”.

and in particular the wires carrying the cj
i values are missing on it. This is done

in order to save space on the picture. Let L be the wires that leaked in the
refreshing procedure. Suppose the leaking wires are x0

3, x
1
1, x

3
2, and b12, which is

indicated by double color lines over the corresponding edges on Fig. 3a. We also
have to remember about the cj

i ’s that were omitted on the figure and can also
leak. Recall that every cj

i is equal to a sum bj
1 + · · ·+ bj

i . Hence, the leakage from
cj
i is indicated by a shaded colored region around bj

1, . . . , b
j
i . Let us assume that

c02, c
1
1, and c12 are leaking, and therefore the shaded regions on Fig. 3a are placed

over b11, and the pairs (b01, b
0
2), (b

1
1, b

1
2).

The corresponding leakage diagram is a subgraph of the graph G from Fig. 2
with k := 2 and n := 3. The leakage diagram S(L) has the same vertices as

Simple Refreshing in the Noisy Leakage Model 323

+

+

+

+

+

+

x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

b01

b11

b02

b12

b03

b13

(a) A circuit with leaking wires marked
with colored double lines. Additionally
wires c02(= b01 + b02), c11(= b11), and c12(=
b11 + b12) leak, which is indicated by col-
ored shaded areas around “b01 b02”, “b11”,
“b11 b12”.

� �x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

c00

c10

c01

c11

c02

c12

c03

c13

(b) The corresponding leakage diagram.
We show how the adversary can compute
the sum of edges x0

1, x
0
2, and x0

3. The left-
most and the rightmost vertices of the row
containing these edges are marked with
“ �©”.

Fig. 3. A leaking circuit and its corresponding leakage diagram.

G, but it has only a subset of its edges. Informally, the labels on the edges of
S(L) are variables that suffice to fully reconstruct the leakage from the circuit.
More precisely: given these values one can compute the same leakage information
that the adversary received. Going back to our example: the leakage diagram
corresponding to the leakage presented on Fig. 3a is depicted on Fig. 3b, on
which the members of S(L) are marked with double colored lines. The set S(L)
is created according to the following rules. First, we add to S(L) all the edges
labeled xj

i and cj
i if the corresponding wires are in L. For this reason S(L)

on Fig. 3b contains x0
3, x

1
1, x

2
2, c

0
2, c

1
1, and c12. Handling leaking bj

i ’s is slightly less
natural, since graph G does not contain edges labeled with the bj

i ’s. To deal with
this, we make use of the fact that every bj

i can be computed from cj
i and cj

i−1 (as
bj
i = cj

i − cj
i−1). Hence, for every bj

i from L we simply add cj
i and cj

i−1 to S(L).
For this reason we add c11 and c12 to L (as b12 is in L). This approach works, since,
as mentioned above, the edges in S(L) should suffice to fully reconstruct L. Note
that in some sense we are “giving out too much” in the leakage diagram (as cj

i

and cj
i−1 cannot be uniquely determined from bj

i). Fortunately, this “looseness”
does not cost us much in terms of parameters, while at the same time it greatly
simplifies our proofs. Finally, we add to S(L) all the edges labeled with cj

0 and
cj
n (i.e.: the leftmost and the rightmost columns in G). We can do it since these

edges are always equal to 0 and hence the adversary knows them “for free”.

What the Adversary Can Learn from a Leakage Diagram. The ultimate goal of
the adversary is to gain some information about the encoded secret. To achieve
this it is enough that she learns the sum of all the xj

i ’s from some row of the

324 S. Dziembowski et al.

diagram. We now show how in case of leakage from Fig. 3 the adversary can
compute x0

1+x0
2+x0

3 from the values that belong to the S(L) (i.e. those that are
marked with double colored lines on Fig. 3b). Using the facts that xj+1

i = xj
i +bj

i

and cj
i+1 = cj

i + bj
i+1 several times we have:

x0
1 + x0

2 + x0
3 = (x1

1 − b01) + (x1
2 − b02) + x0

3 = x1
1 + x1

2 − (b01 + b02) + x0
3 =

x1
1 + (x2

2 − b12) − c02 + x0
3 = x1

1 + x2
2 + c11 − c12 − c02 + x0

3

where all the variables on the right hand side belong to S(L). It is easy to see that
the reason why the adversary is able to compute x0

1+x0
2+x0

3 is that the leftmost
and the rightmost nodes in the row containing edges labeled with variables were
connected. These nodes are indicated with the “ �©” symbol on Fig. 3b.

Since the leftmost and the rightmost columns always belong to the leak-
age diagram, thus in general a similar computation is possible when these two
columns are connected. Our first key observation is that if these columns are
not connected, then the secret x remains secure. We state this fact below in the
form of a following informal lemma.

Informal Lemma 1. Consider a multi-round refreshing circuit. Let L be the
set of leaking wires. Let E denote the event that the leftmost and the rightmost
columns of S(L) are connected. If E did not occur then the adversary gains no
information about the secret.

This informal lemma is formalized as Claim 5 (in the full version of this paper
[15]), where it is also stated in a more general form, covering the case of more
complicated circuits (i.e. those that perform some operations in addition to
refreshing). The rest of this section is organized as follows. In Sect. 2.1 we out-
line the main ideas behind the proof on Informal Lemma1, in Sect. 2.2 we sketch
the proof of the upper bound on the probability of E. This, together with the
Informal Lemma 1 shows the security of our multi-round refreshing construction.
Then in Sect. 2.3 we describe how these ideas can be generalized to arbitrary cir-
cuits. Besides of presenting the intuitions behind our formal proof, the goal of
this part is also to introduce some more terminology that is useful later (e.g.:
the “modification vectors”). In the sequel we use the following convention: if G
is a labeled graph such that the labels on its edges are unique, then we some-
times say “edge λ” as a shortcut for “edge labeled with λ”. The same convention
applies to circuits and wires.

2.1 Proof Sketch of Informal Lemma 1

Here we present the main ideas behind the proof of Informal Lemma1. Consider
a k-round refreshing circuit Ĉ that takes as input a secret shared over n wires.
For two arbitrary field elements x0, x1 ∈ F consider experiments of applying Ĉ
to their random encodings. In the proof we consider a fixed set L of leaking wires
in Ĉ. Assume that event E did not occur, i.e., the leftmost and the rightmost
columns of the leakage diagram are disconnected. To prove Informal Lemma 1,

Simple Refreshing in the Noisy Leakage Model 325

it is enough to show that for the distributions of the values of wires in L are
identical in both experiments (following the standard approach in cryptography
this formally captures the fact that the adversary “gains no information about
the secret”). We do it using a hybrid argument. Namely, we consider a sequence
of experiments denoted Exp0

A,Exp0
B ,ExpC ,Exp1

B , and Exp1
A (see below), such

that: (a) Exp�
A (for � = 0, 1) is equal to the original experiment in which x� is

refreshed k times, and (b) the view of the adversary is identical for each pair of
consecutive experiments on this list (and hence it is identical for all of them).

Exp�
A:

Sample −→x 0,� ← Enc(x�).
For j = 0 to k − 1 do:
1. sample

−→
b j,� ← Enc(0),

2. let −→c j,� := f(
−→
b j,�),

3. let −→x j+1,� := −→x j,� +
−→
b j,�,

Exp�
B : ExpC :

Sample −→x 0,� ← Enc(x�).
For j = 0 to k − 1 do:
1. sample −→x j+1,� ← Enc(x�),
2. let

−→
b j,� := −→x j+1,� − −→x j,�,

3. let −→c j,� := f(
−→
b j,�).

Sample −→x 0,1 ← Enc(x0) + (x1 − x0) · −→m0.
For j = 0 to k − 1 do:
1. sample −→x j+1,1 ← Enc(x0) + (x1 − x0) · −→mj+1,
2. let

−→
b j,1 := −→x j+1,1 − −→x j,1,

3. let −→c j,1 := f(
−→
b j,1).

Fig. 4. The sequence of experiments.

Extending the notation from the pseudocode given in Fig. 1a, we will add for
future reference to the procedure that refreshes a secret x� (with � ∈ {0, 1})
a superscript “�” to all the labels, i.e., denote −→x j,� := (xj,�

1 , . . . , xj,�
n),

−→
b j,� :=

(bj,�
1 , . . . , bj,�

n) and −→c j,� := (cj,�
1 , . . . , cj,�

n). Note that all the operations in the
refreshing circuit are linear, and in terms of linear algebra this experiment
(repeated k times) can be described as Exp�

A on Fig. 4, where f is a linear func-
tion defined as f(

−→
b j,�) = (bj,�

1 , bj,�
1 + bj,�

2 , . . . , bj,�
1 + · · · + bj,�

n). It is easy to see
that the experiment Exp�

B depicted on Fig. 4 (where the −→x j,�’s are chosen first,
and then

−→
b j,� is computed as their difference) has the same distribution of the

variables as Exp�
A. To finish the proof of the Informal Lemma1 we need to con-

struct an experiment ExpC , such that the view of the adversary in experiments
Exp0

B , ExpC and Exp1
B is identical. Our approach to this is as follows. Based on

the leakage diagram S(L) (and independently from the choice of the xj,�
i ’s) we

construct carefully crafted vectors −→m0, . . . ,−→mk ∈ {−1, 0, 1}n that we call basic
modification vectors such that for every j we have that mj

1+ · · ·+mj
n = 1 (where

(mj
1, . . . ,m

j
n) = −→mj). These vectors have to satisfy also some other conditions

(that we define in the full version). See Fig. 5 for an example. The modification
of Exp�

B is denoted ExpC and presented on Fig. 4.

326 S. Dziembowski et al.

Two claims (discussed extensively in the full version of this paper [15]) that
allow the proof to go through are that (1) the joint distribution of the variables
−→x j,1,

−→
b j,1, and −→c j,1 in ExpC is the same as in Exp1

B , and (2) the view of the
adversary are distributed identically in ExpC and in Exp0

B . What remains is to
show how the basic modification vectors are constructed. Let LS be the con-
nected component of S(L) that contains its leftmost column. By assumption, E
did not occur so LS does not contain the rightmost column of S(L). This makes
it possible to construct the basic modification vectors with desired properties.
For each j construct −→mj = (mj

1, . . . ,m
j
n) according to the following rules: (i) if

the left node of the edge “xj
i” does belong to LS and its right node does not

belong to LS, then let mj
i be equal to +1, (ii) if the left node of the edge “xj

i”
does not belong to LS and its right node does belong to LS , then let mj

i be
equal to −1, and (iii) let all the other mj

i ’s be equal to 0. An example of how the
basic modification vectors are constructed is presented on Fig. 5 (these vectors
and their coordinates are marked there with numbers in boxes). As it turns out
(see Lemma 6 in the full version of this paper [15] for a generalization of this
statement) these rules guarantee that the requirement that “mj

1+ · · ·+mj
n = 1”,

and all other necessary conditions, are satisfied.

0

x0
1

0

x1
1

0

x2
1

0

x3
1

0

x0
2

0

x1
2

0

x2
2

0

x3
2

0

x0
3

0

x1
3

0

x2
3

0

x3
3

0

x0
4

0

x1
4

0

x2
4

0

x3
4

+1

x0
2

+1

x1
1

−1

x1
2

+1

x1
4

+1

x2
4

+1

x3
2

−1

x3
3

+1

x3
4

c00

c10

c20

c01

c11

c21

c02

c12

c22

c03

c13

c23

c04

c14

c24

−→m0 :=

−→m1 :=

−→m2 :=

−→m3 :=

Fig. 5. The example of the leakage diagram with leakage indicated with double colored
lines. The nodes of the connected component LS (containing the leftmost column) are
indicated with gray color. The modification vectors −→mj and their coordinates are placed
in boxes (e.g.: −→m0 := (0,+1, 0, 0)).

2.2 Bounding the Probability of E

To show how we derive a bound on the probability of E we take a closer look
at how, from the probabilistic point of view, the leakage diagram is constructed
(see p. 9). By definition, it is a subgraph of a graph G from Fig. 2. Recall that in
our experiment every wire of the circuit Ĉ leaks independently at random with
probability p. The leakage diagram S(L) corresponding to leakage L is a random
subgraph of G.

Simple Refreshing in the Noisy Leakage Model 327

Let us now analyze the distribution of S(L). It is easy to see that every
edge “xj

i” is added to S(L) independently with probability p. Unfortunately, the
situation is slightly more complicated when it comes to the cj

i ’s. Recall that cj
i ’s

can be added to S(L) for three reasons. The first (trivial) reason is that i = 0
or i = n. The second reason is that the wire “cj

i” leaks in Ĉ (i.e.: it belongs
to L). The third reason is that the wire bj

i or bj
i+1 leaks in Ĉ. Because of this,

the events {“cj
i belongs to S(L)”}i,j are not independent, and the probability of

each of them may not equal to p.5

Let us look at the “non-trivial” edges in S(L), i.e., the xj
i ’s and the cj

i ’s such
that i ∈ {1, . . . , n−1}. Let U be the variable equal to the set of non-trivial edges
in S(L). To make the analysis of the leakage diagram simpler it will be very
useful to eliminate the dependencies between the “cj

i ∈ U” events. We do it by
defining another random variable Q (that takes the same values as U), and that
has the following properties.

1. It is “more generous to the adversary”, i.e., for every set C of the edges we
have that

Pr[C ⊂ Q] ≥ Pr[C ⊂ U] (1)

(we will also say that the distribution of Q covers the distribution of U , see
Definition 1 on p. 18), and

2. The events {v ∈ Q} (where v is a non-trivial edge) are independent and have
equal probability. Denote this probability q, and say that Q has a standard
distribution (see Definition 2 on p. 18).

Now, consider an experiment ExpQ of constructing a leakage diagram when the
“ci,j” and “xi,j” edges are chosen according to Q. More precisely: let the edges
in the leakage diagram be sampled independently according to the following
rules: the {cj

0}’s and {cj
n}’s are chosen with probability 1, and the remaining

{cj
i}’s are chosen with probability q. It is easy to see that, thanks to Eq. (1), the

probability of E in ExpQ is at least as high as in the probability in the original
experiment. Hence, to give a bound on the probability of E it suffices to bound
the probability of this probability in ExpQ. Thanks to the independence of the
events {cj

i ∈ Q}i,j ∪{xj
i ∈ Q}i,j bounding the probability of E in ExpQ becomes

a straightforward probability-theoretic exercise. For the details on how it is done
see full version of this paper [15].

2.3 Generalizations to Arbitrary Circuits

As mentioned in Sect. 1.2, our final main contribution is a circuit compiler that
uses the simple refreshing together with gadgets that perform the field opera-
tions. We follow the standard method of constructing compilers in a “gate-by-
gate” fashion (see, e.g., [18], and the follow up work). A compiler takes as input

5 For example: it is easy to see that if we know that cji ∈ S(L) then the event “cji+1

belongs to S(L)” becomes more likely (because leakage of bji+1 is more likely).

328 S. Dziembowski et al.

a circuit C (for simplicity assume it has no randomness gates) and produces as
output a transformed circuit Ĉ (that contains randomness gates RND). More
concretely a wire carrying x in C gets transformed into a bundle of n wires car-
rying a random encoding of x. Every gate Γ in C is transformed into a “masked
gate” Γ̂ . For example, an addition gadget will have 2n inputs for n-share encod-
ings of two values a and b, and n output wires that will carry some encoding of
a + b. The masked input gates simply encode the secret (they have one input
and n outputs). The masked output gates decode the secret (they have n inputs
and one outputs). These two gadgets are assumed to be leak-free. They are also
called: input encoder Î and output decoder Ô, respectively. For technical rea-
sons, in our construction we insert the refreshing gadgets between the connected
gadgets.

The main challenge in extending our ideas to such general circuits is that
we need to take into account the leakage from wires of the individual gadgets,
and represent them in the leakage diagram. We do it in such a way that unless
an event E occurs, we are guaranteed that the adversary gained no information
about the secret input. By the “event E” we mean a generalization of the event
E (from the previous sections) to more complicated leakage diagrams. More
concretely (see Sect. 4.1 for details) our approach is to represent each gadget Γ̂

in the graph G with a path N
̂Γ
0 – · · · – N

̂Γ
n of length n and to “project” the

leaking wires of the given gadget onto the edges of the path. Technically, this is
done be defining, for every gadget Γ̂ , a leakage projection function (see Sect. 4.3)
that describes how a leakage from an internal wire is mapped on the path.

A projection function P , by definition, takes as argument a leaking wire w
in a gadget Γ̂ , and returns a subset of [n] (usually of size 1 except for some
wires in the multiplication gadget). We can refer to a projection of a set of
wires in Γ̂ defined in a natural way as P ({w1, . . . , wl}) := P (w1) ∪ . . . ∪ P (wl).
One of the requirements that we impose on the function P is the following:
every set of probes {w1, . . . , wl} (regardless of its size) from Γ̂ can be simulated
knowing only input shares of indices in the projection P ({w1, . . . , wl}) within
each input bundle. Notice that it makes our definition of the gadget security
similar in spirit to the existing definitions for the t-probing leakage model, like
d-non-interference. One of the differences is that we care not only about the
number of input shares that suffice to simulate the leakage, but also take into
account their indices in a particular input bundle. Having a leakage projection
function P defined for a gadget Γ̂ , we will represent a leakage from that gadget
in the leakage diagram as a subset of the edges from the path in G: N

̂Γ
0 – · · · –

N
̂Γ

n . The positions (with the edge N
̂Γ
0 – N

̂Γ
1 being the 1st one) of these edges in

the path are taken from the set P ({w1, . . . , wl}), when the wires w1, . . . , wl are
leaking. This way we can “project” any given leakage from a gadget onto the
path of length n in the leakage diagram.

As an example consider the addition gadget “⊕̂” that computes an encoding−→z of z = x + y as −→z := −→x + −→y (where −→x and −→y are encodings of x and y,
respectively). The leakage projection function P

̂⊕ for this gadget is defined as
follows. Each input wire that is on ith position in the input bundle is projected

Simple Refreshing in the Noisy Leakage Model 329

onto the set {i}, i.e., P
̂⊕(xi) = {i} and P

̂⊕(yi) = {i}. Moreover, projection of the
output wires is defined similarly, namely P

̂⊕(zi) = {i}. It is easy to see that with
such projection function the above mentioned simulation requirement is satisfied.
For example, the leakage illustrated on Fig. 6a can be simulated knowing 3 input
shares from each input bundle, namely x2, x4, x5 and y2, y4, y5. On the leakage
diagram we represent this particular leakage from the addition gadget with 3
edges, as illustrated on Fig. 6b. Note that the addition gate is simple, and hence
the projection function for it is rather straightforward. The projection function
for a multiplication gadget is more involved (see Sect. 4.2).

+

x1 y1

z1

+

x2 y2

z2

+

x3 y3

z3

+

x4 y4

z4

+

x5 y5

z5

(a) An example of leakage from the addition gadget
“̂⊕” (marked with double colored lines).

N
̂⊕
0 N

̂⊕
1 N

̂⊕
2 N

̂⊕
3 N

̂⊕
4 N

̂⊕
5

(b) The corresponding
“projected” leakage in the
leakage diagram (marked
with double colored lines).

Fig. 6. Leakage from an addition gadget and the corresponding “projected” leakage.
This is a valid projection, since it is enough to know x2, x4, x5 and y2, y4, y5 to simulate
the leakage.

Having the projections of leakages for individual gadgets defined, we can
generalize the idea of a leakage diagram S(L) presented in previous sections
from simple sequential k-round refreshing circuits to arbitrary private circuits
built according to our construction. Recall that we insert a refreshing gadget
between each pair of connected gadgets. The leakage from each individual gadget
is projected onto a respective path in the leakage diagram, and the leakage from
the remaining wires, i.e., wires used to generate encodings Enc(0) between two
gadgets is “projected” onto the edges connecting the respective paths (analogue
of the edges cj

i ’s from previous sections). See Sect. 4.4 for the details. Overall, we
obtain a graph that is similar to the leakage diagrams from the previous sections,
but it is more general. In case of an example depicted on Fig. 7 the leakage from
the gadget Γ̂1 induces a projection set {3}. This fact is represented by including
the edge N

̂Γ1
2 – N

̂Γ1
3 into the leakage diagram.

A crucial property of such leakage diagrams is that the generalization of
the Informal Lemma 1 still holds: the notion of the leftmost and the rightmost
column are generalized to the leftmost and the rightmost sides (respectively).
On Fig. 7 the leftmost side is a graph consisting of nodes N

̂Γ1
0 , N

̂Γ2
0 , N

̂Γ3
0 , N

̂Γ4
0 ,

and N
̂Γ5
0 , while the rightmost one consists of nodes N

̂Γ1
3 , N

̂Γ2
3 , N

̂Γ3
3 , N

̂Γ4
3 , and

330 S. Dziembowski et al.

N
̂Γ5
3 . We now define the event E as: “the leftmost and the rightmost sides are

connected”. For example E does not hold for the diagram on Fig. 7. To make it
easier to verify this fact, we indicate (with gray color) the nodes connected with
the leftmost side.

N
̂Γ1
0

N
̂Γ2
0

N
̂Γ3
0

N
̂Γ4
0

N
̂Γ5
0

N
̂Γ1
1

N
̂Γ2
1

N
̂Γ3
1

N
̂Γ4
1

N
̂Γ5
1

N
̂Γ1
2

N
̂Γ2
2

N
̂Γ3
2

N
̂Γ4
2

N
̂Γ5
2

N
̂Γ1
3

N
̂Γ2
3

N
̂Γ3
3

N
̂Γ4
3

N
̂Γ5
3

Fig. 7. An example of a leakage diagram for a transformed circuit ̂C with 5 gadgets.
The nodes connected with the leftmost side are marked in gray.

When using the leakage projection functions we encounter the following prob-
lem that is similar to the “lack of independency problem” described in Sect. 2.2.
Namely, it may happen that the events different edges become part of the pro-
jected set are not independent (this is, e.g., the case for the multiplication gadget
in Sect. 4.2). We handle this problem in a similar way as before (see points 1 and
2 on page 13). That is: we define a “more generous” leakage projection distribu-
tion that (1) “covers” the original distribution, and (2) is “standard” (see the
aforementioned points for the definition). Let q be the parameter denoting the
probability in the standard distribution. This parameter, of course, depends on
the probability p with which a wire leaks. A function that describes this depen-
dence is called projection probability function. Every gadget in our construction
comes with such a function. See Sect. 4.1 for a formalization of these notions.

Our construction is modular and works for different implementations of the
addition and multiplication gadgets, assuming that they come with the leakage
projection that satisfies certain conditions (see Theorem1 on p. 26). We show
(see Sect. 4.2) that the standard gadgets from the literature (including the ISW
multiplication gadget [18]) satisfy this condition. Note that the construction and
reasoning regarding the refreshing circuit presented in previous sections are spe-
cial case of the construction and the security proof for the general arithmetic
circuit. Indeed, we can treat each bundle between refreshing gadgets as an “iden-
tity gadget” (see Sect. 4.2).

Simple Refreshing in the Noisy Leakage Model 331

Organization of the Rest of the Paper. In the next two sections we describe
the technical details of the ideas outlined above. Section 3 consists of formal
definitions, and Sect. 4 contains the details of our constructions. Due to the
lack of space, some parts of these sections are moved to the full version of this
paper [15].

3 Formal Definitions

We start by presenting formal definitions of some notions that were introduced
informally in Sect. 2. Let us start with introducing some standard notation. In
the sequel [n] denotes the set {1, 2, . . . , n}. We write x ← X when the element
x is chosen uniformly at random from the finite set X . A circuit C is affine
if it does not use product gates. A statistical distance between two random
variables X0 and X1 (distributed over some set X) is defined as Δ(X0;X1) :=
1/2 · ∑

x∈X |Pr[X0 = x] − Pr[X1 = x]|. If Δ(X0;X1) ≤ ε then we say that X0

and X1 are ε-close. We assume a fixed security parameter n, i.e. every wire in
C will be represented by a bundle of n wires in Ĉ.

Assumptions About the Circuit. For syntactic purposes we introduce spe-
cial input encoding I gate and output decoding O gate used in original circuit C
that simply implement the identity function, but will be transformed to Î and Ô
gadgets in Ĉ (see Sect. 2.3). Gate I is required at every input wire of the circuit
C that will be a subject to our compiler, and similarly O gate is required at
every output gate of C. We call such circuits satisfying that requirement com-
plete. However, in our proofs we consider also transformations of circuits that
do not use gates I on the input wires and O on the output wires. Such circuits
will be called incomplete. For incomplete circuit C we denote by its completion
a circuit C with added gates I at every input and O at every output.

We also assume that the original C is deterministic, i.e. it has no randomness
gates. This can be done without loss of generality, as the randomness can be
provided to C as an additional input.

Partial Order of the Distributions over Subsets. We now provide formal
definition of what it means that one probability distribution “covers” another
one. The motivation and the intuition behind this concept were described in
Sect. 2.2.

Definition 1. Consider a fixed finite set A and its power set P (A). Let D1 and
D2 be some probability distributions over P (A). We will say that distribution D2

covers distribution D1 if it is possible to obtain D2 from D1 by a sequence of the
following operations on a distribution D:

1. Pick two subsets satisfying A1 ⊂ A2 ⊂ A.
2. Pick a real value 0 < d < D(A1).
3. Subtract d from D(A1) and add d to D(A2).

332 S. Dziembowski et al.

It is clear from the definition above that the relation of covering is indeed a
partial order on the probability distributions. We will write D2 ≥ D1 to denote
the coverage relationship of the distributions (when it is clear from the context
over which power set these distributions are). As already mentioned in Sect. 2.2,
one specific distribution over a power set P (A) that we will consider is a standard
distribution Dp(A) where 0 < p < 1.

Definition 2. Let A be a finite set and let 0 < p < 1. We define a random
subset S of A as follows: any element of A belongs to S with probability p,
independently. We call the distribution over P (A) determined by the random
subset S a standard distribution Dp(A).

For a random variable X with a domain P (A) we denote by D(X) the probabil-
ity distribution over P (A) generated by that variable. For two random variables
X,Y with the same domain P (A) we will say that Y covers X if D(Y) cov-
ers D(X).

3.1 Security Definitions

In this section we present the formal definitions of soundness and privacy of a
circuit transformation. Soundness is defined as follows.

Definition 3. We say that transformation Ĉ of k-input complete circuit C is
sound if it preserves the functionality of C, that is

Ĉ(−→x) = C(−→x)

for every input −→x of length k. In case of incomplete circuit C, we say that its
transformation is sound if transformation of its completion is sound.

To reason about privacy we consider the following experiment.

Definition 4. For a fixed circuit C with k input wires, its input −→x =
(x1, . . . , xk) and probability p we define an experiment Leak(C,−→x , p) that outputs
an adversarial view as follows:

1. Transformed circuit Ĉ is fed with (x1, . . . , xk) resulting with some
assignment of the wires of Ĉ.
In case when C is incomplete, the i-th input wire bundle of trans-
formed circuit Ĉ is fed with an encoding of respective input value
xi, chosen uniformly at random.

2. Each wire of Ĉ leaks independently with probability p. Note that in
case of complete circuit C input and output wires do not leak, as
part of Î and Ô gadgets.

3. Output: (LW : set of leaking wires in Ĉ, A: values assigned to the
leaking wires in LW during the circuit evaluation).

We are now ready to define privacy of a circuit transformation.

Simple Refreshing in the Noisy Leakage Model 333

Definition 5. We say that transformation Ĉ of circuit C is (p, ε)-private if
leakage in experiment Leak(C,−→x , p) can be simulated up to ε statistical distance,
for any input −→x . More precisely, there exist a simulation algorithm that, not
knowing input −→x , outputs a random variable that is ε-close to the actual output
of Leak(C,−→x , p).

4 Technical Details of the Circuit Transformation

Let us now present the technical details of the ideas outlined in Sect. 2, i.e., our
construction of the transformed circuit Ĉ together with a proof of the privacy. For
syntactic purposes we introduce a special single-input single-output refreshing
gate R that acts as an identity function, similarly to I and O gates, but can
be placed anywhere in the circuit C. The general transformation of the original
circuit C consists of two phases. We start with the preprocessing phase. In this
phase, if circuit C is incomplete then we add I gate to every input wire and O to
every output wire. Moreover, we add refreshing gate R on every wire of C that
connects any two gates, except for I and O (see Fig. 8). We call the resulting
circuit C ′. We then proceed to the actual transformation phase in which each
wire in C ′ carrying value x is replaced with a bundle of n wires that carry an
encoding of x. Each gate Γ in C ′ is replaced with a respective gadget subcircuit
Γ̂ that operates on the encodings. Below we give a detailed description of the
gadget subcircuits.

+ CP

+

(a) An original circuit C

+ CP

+

I I I

O O

R R

(b) Circuit C′ after preprocessing phase

Fig. 8. Example of the preprocessing phase of the transformation.

We say that two regular gadgets (not refreshing gadgets) Γ̂1 and Γ̂2 in Ĉ are
connected if there is a refreshing gadget between them. More precisely, if there is
a refreshing gadget R̂ that takes as input the output bundle of Γ̂1, and outputs
the input bundle to Γ̂2.

334 S. Dziembowski et al.

4.1 General Gadget Description

In this section we give a general definition of a gadget and the required proper-
ties. Every gadget used in our construction, except for the refreshing gadget R̂,
satisfies the given definition.

Input and Output Wires of the Gadget. Let us consider a gate Γ in circuit C
of 0 ≤ i ≤ 2 inputs and 1 ≤ o ≤ 2 outputs excluding the case (i, o) = (2, 2),
for example Γ might be a sum gate ⊕ or a product gate ⊗. A respective gadget
Γ̂ will have i input wire bundles and o output wire bundles, that is i · n inputs
and o · n outputs in total. We will denote with IN b

k(Γ̂) the k-th wire of its b-th
input bundle and with OUT b

k(Γ̂) the k wire of its b-th output bundle. We denote
with IN k(Γ̂) all the input wires of index k in its input bundle. More precisely,
IN k(Γ̂) := {IN b

k(Γ̂)|1 ≤ b ≤ i}. Similarly, we define OUT k(Γ̂) as OUT k(Γ̂) :=
{OUT b

k(Γ̂)|1 ≤ b ≤ o}. Moreover, we use IN b(Γ̂) to denote the b-th input
bundle of Γ̂ and OUT b to denote the b-th output bundle. That is, IN b(Γ̂) :=
{IN b

k(Γ̂)|1 ≤ k ≤ n}, and OUT b(Γ̂) = {OUT b
k(Γ̂)|1 ≤ k ≤ n}. Let g : F

i → F
o

be the function computed by the gate Γ . The gadget Γ̂ should implement the
same functionality as Γ . More precisely, if g(x1, . . . , xi) = (y1, . . . , yo) then for
any encoding (−→x1, . . . ,

−→xi) of (x1, . . . , xi) fed to Γ̂ as input, it outputs some
encoding (−→y1, . . . ,−→yo) of (y1, . . . , yo).

Leakage Projections. We now define the “leakage projections” already informally
discussed in Sect. 2.3. Every gadget comes with a leakage projection function P
that takes as input a leaking wire w in Γ̂ and outputs an associated subset P (w)
of [n], usually an one-element subset. We can refer to the projection set of a
subset W of wires in Γ̂ defined as P (W) =

⋃
w∈W P (w). We require the following

properties of the projection P . Firstly, for any subset LG of leaking wires in Γ̂ , it
is enough to know the values carried by wires of the indices ∈ P (LG) from every
input bundle, i.e. the wires in {IN b

k(Γ̂)|1 ≤ b ≤ i, k ∈ P (LG)} to simulate the
leakage from Γ̂ perfectly (without knowing the values of the other input wires).
Secondly, for every output wire w in Γ̂ that is k-th wire in any output bundle,
i.e. w ∈ OUT k(Γ̂), we have P (w) = {k}.

Consider an experiment where each of the wires in the gadget Γ̂ leaks inde-
pendently with probability p. Let us call a set of leaking wires LR. Induced
projection of the leakage P (LR) defines a probability distribution over the sub-
sets of [n]. We denote this leakage projection distribution with Dp(Γ̂). In the
security proof it will be convenient to consider only the gadgets Γ̂ with the fol-
lowing property: if every wire of Γ̂ leaks independently with probability p then
projection of the leakage contains every number i ∈ [n] with some probability
q independently. However it is not the case, e.g. for the product gadget. For
that reason, we introduce a projection probability function describing a partic-
ular gadget. Essentially, it expresses with what probability do we need to add
every particular number ∈ [n] to the projection in order to make these events

Simple Refreshing in the Noisy Leakage Model 335

independent. More precisely, we will say that a function f : [0, 1] → R is a pro-
jection probability function for a gadget Γ̂ if the leakage projection distribution
Dp(Γ̂) is covered by the standard distribution Df(p)([n]) (as in Definition 1).
Note that the function f may depend on the security parameter n, like in the
case of product gadget ⊗̂.

4.2 The Gadgets Used in Our Construction

In this section we present all the gadgets used in our construction.

ISW Product Gadget. As the product gadget ⊗̂ in our construction we use the
gadget proposed in [18]. Here we recall their scheme and prove that it satisfies
the general gadget definition.

1. Input: 2 bundles −→x = (x1, . . . xn) and −→y = (y1, . . . yn)
2. For 1 ≤ i < j ≤ n sample zi,j ← F

3. For 1 ≤ i < j ≤ n compute zj,i = (zi,j ⊕ xi ⊗ yj) ⊕ xj ⊗ yi
4. Compute the output encoding (t1, . . . tn) as ti = xi ⊗ yi ⊕ ⊕

j �=i zi,j
5. Output: a bundle (t1, . . . , tn)

We define the projection function P for this gadget as follows: For every wire w
of the form xi, yi, xi ⊗ yi, zi,j (for any j �= i) or a sum of values of the above
form (with ti as a special case), P (w) = {i}. For the remaining wires w, which
are of the form xi ⊗ yj or zi,j ⊕ xi ⊗ yj , we define P (w) = {i, j}. The following
lemmas are proven in the full version of this paper [15].

Lemma 1. The ISW product gadget with its projection function satisfies a gen-
eral gadget description (given in the Sect. 4.1) for the multiplication function
g(x, y) = x · y.

Lemma 2. The function f(p) = n(8p+
√

3p) is a projection probability function
for the ISW product gadget.

Other Gadgets. We already described the addition gadget ⊕̂ in Sect. 2.3. Besides
of this, we use a copy gadget ĈP that takes one input bundle −→x = (x1, . . . , xn).
Then it applies the copy gate CP to each wire x1, . . . , xn obtaining n respective
pairs (y1, z1), . . . , (yn, zn). We define two output bundles as −→y = (y1, . . . , yn)
and −→z = (z1, . . . , zn). The negation gadget N̂EG . takes one input bundle −→x =
(x1, . . . , xn) and it applies the negation gate NEG to each of n wires x1, . . . , xn

obtaining wires y1, . . . , yn. We define the output bundle of the gadget as −→y =
(y1, . . . , yn). Constant gadget Ĉonstα has zero input bundles and one output
bundle carrying n constant values: (α, 0, . . . , 0). Finally, the Identity gadget ÎD
is a special gadget has one input and one output bundle, and simply outputs the
input.

336 S. Dziembowski et al.

Properties of Gadgets Other Than ISW Product Gadget. It is clear that all the
gadgets described above correctly implement the desired functions. Also, it is
easy to see that for each gadget the leakage projection function P can be defined
as follows: for any input or output wire w in the gadget, define P (w) = {i},
where i is an index of w in its (input or output) bundle. Clearly for each of
these gadgets the function f(p) = 3p is a projection probability function. For the
gadgets Ĉonstα and ÎD even smaller function f(p) = p is a projection probability
function. We omit the proofs in these cases, as they are very straightforward.

4.3 Refreshing Gadget Properties

In this section we describe properties of the refreshing gadget R̂. (see Fig. 1a
on p. 8) that are crucial to the security of the construction, and are used in
the privacy proof. Below, by refreshing bundle B

̂R we mean the wires that are
used to generate the fresh encoding Enc(0) in the refreshing gadget R̂, i.e., wires
carrying bj

1, . . . , b
j
n and cj

1, . . . , c
j
n−1 on Fig. 1.

Refreshing Bundle Leakage Projection. Consider a refreshing bundle B
̂R. Sup-

pose that LR is a set of leaking wires in B
̂R. We define a subset S(LR)

of {0, . . . , n} representing the leakage LR as follows: we start with the set
S = {0, n}. For every wire of the form cj

k = bj
1 ⊕ bj

2 ⊕ . . . ⊕ bj
k in LR, where

1 ≤ k < n, add k to S. For every wire of the form bj
k in LR , where 1 < k ≤ n,

add k and k − 1 to S.
One may think of the function S(·) as an analogue of the leakage projection

function (introduced in Sect. 4.1) in case of a refreshing gadget. The difference
is, however, that S(·) codomain size is n + 1 instead of n, and that 2 elements
(0 and n) belong to S(LR) “by default”.

Leakage Projection Coverage. Here we show a random subset of {0, . . . , n} that
covers the projection of the refreshing bundle leakage. Let us define a random
subset Rq of {0, . . . , n} as follows: Rq contains 0 and n with probability 1, and for
any other number i ∈ {0, . . . , n} Rq contains i with probability q, independently.
The proof of the following lemma appears in the full version of this paper [15].

Lemma 3. Let LR be a subset of leaking wires of a refreshing bundle B
̂R

when each wire leaks independently with probability p. Then the random sub-
set S(LR) ⊂ {0, . . . , n} is covered by Rp+2

√
3p.

Leakage Diagrams. The main technical concept of this work is a leakage diagram
(already introduced informally in Sect. 2). Consider a transformed circuit Ĉ, as
described in previous sections. Suppose that LW is the set of leaking wires in Ĉ.
The leakage diagram is a representation of the set LW . As explained in Sect. 2, in
the security proof the leakage diagram is used to determine whether the leakage
compromises the secret or not. This is because of the property that if the leftmost
and rightmost sides of the leakage diagram are disconnected then the privacy is
preserved.

Simple Refreshing in the Noisy Leakage Model 337

We first define the leakage diagram as a subgraph of G = G(Ĉ) - a graph
associated with the transformed circuit Ĉ. The leakage diagram inherits all nodes
of G and some of its edges, depending on the set of leaking wires LW . The
exact construction of graph G(Ĉ) and the leakage diagram are described in the
following paragraphs. Let C be any circuit and Ĉ its transformation as described
in Sect. 4. We define an associated undirected graph G = G(Ĉ) as follows. For
each general gadget Γ̂ in Ĉ (every gadget except the refreshing gadgets) G(Ĉ)
contains a crosswise path of length n, where n is the security parameter of
the construction. We denote the nodes of this path N

̂Γ
0 , . . . , N

̂Γ
n . Moreover, for

every pair Γ̂1, Γ̂2 of connected gadgets in Ĉ, we add to the graph G(Ĉ) a vertical
matching consisting of the following n + 1 edges: (N

̂Γ1
0 , N

̂Γ2
0), . . . , (N ̂Γ1

n , N
̂Γ2

n).
We call all the nodes of the form N

̂Γ
0 , for some gadget Γ̂ in Ĉ, together with the

edges between these nodes a leftmost of G. Analogically, we define a rightmost
of G as all the nodes of the form N

̂Γ
n with all the edges between them. The

construction of G(Ĉ) can be naturally decomposed into separate subsets of edges
- its crosswise paths and vertical matchings. We will call it a decomposition of
G(Ĉ).

While the computation is executed on circuit Ĉ some wires will leak the
carried values. Let LW denote the set of all the leaking wires. We will be rep-
resenting this set with a leakage diagram H - a subgraph of G(Ĉ). The leakage
diagram inherits all the nodes from G(Ĉ) and some of its edges as in the fol-
lowing construction. Each leaking wire w ∈ LW that belongs to some general
gadget Γ̂ is projected onto the respective crosswise path in G. More precisely,
if P

̂Γ is leakage projection function for the gadget Γ̂ then we add to the leak-
age diagram H the edges in the crosswise path of order in P

̂Γ (w), i.e. edges
{(N ̂Γ

i−1, N
̂Γ

i)|i ∈ P
̂Γ (w)}.

The rest of the leaking wires in the set LW are part of some refreshing
bundle B

̂R, where the refreshing gadget R̂ connects some gadgets Γ̂1 and Γ̂2. Let
LR ⊂ LW be a set of leaking wires in this refreshing bundle. It is represented
in the leakage diagram H by the subset of the vertical matching between two
respective crosswise paths, namely {(N

̂Γ1
i , N

̂Γ2
i)|i ∈ S(LR)}. An example of a

leakage diagram is illustrated on Fig. 7.

Modification Vectors. In the security proof we use a sequence of hybrid exper-
iments that produce exactly the same leakage. One of the hybrids requires to
assign every gadget in Ĉ with a basic modification vector. They were already
informally introduced in Sect. 2. Let us now present their formal definition. A
basic modification vector is a vector −→m = (m1, . . . ,mn) of length n whose coordi-
nates are in the set {−1, 0, 1} and additionally

∑n
i=1 mi = 1. We assign a gadget

Γ̂ with the basic modification vector −→m ̂Γ based on the leakage diagram H. Let
LS be the connected component of the leftmost side of H. Let I be the set of
nodes indices from {N

̂Γ
0 , . . . , N

̂Γ
n } that belong to LS . Now, based on the set I

we assign the modification vector −→m ̂Γ according to the following rule: the i-th

338 S. Dziembowski et al.

coordinate of −→m ̂Γ equals 1 if i−1 ∈ I and i /∈ I, equals −1 if i−1 /∈ I and i ∈ I,
and equals 0 in other cases.

We generalize the definition of a basic modification vector to a modification
vector. We will say that a vector −→w is a modification vector if it can be written
in the form −→w = v · −→m for some scalar value v ∈ F and a basic modification
vector −→m. Moreover, we will say that a modification vector −→m = (m1, . . . ,mn)
is disjoint with a set A ⊂ [n] if ma = 0 for all a ∈ A. Let S be a subset of
{0, . . . , n} and let −→m1

,−→m2 be any modification vectors of length n. We will say
that −→m1 and −→m2 are indistinguishable under S if for every k ∈ S we have that∑k

i=1 m1
i =

∑k
i=1 m2

i .

Leakage and Extended Leakage from a Gadget. In this section we give
the formal definitions of leakages from a gadget. Here, we consider only gadgets
other than refreshing gadget.

Extended Leakage. In order to express the desired property of a gadget we define
a random variable that we call extended leakage. It is a leakage from a subset of
wires in Γ̂ together with values carried by all the output wires of Γ̂ , including
the non-leaking wires (a more restrictive definition that does not include these
wires is given in the full version of this paper [15].

Definition 6. Let Γ̂ be a gadget with i input bundles and o output bundles and
let LG be a subset of its wires. We define a function ExtLeakLG

̂Γ
(−→x1, . . . ,

−→xi) as
the output of the following experiment:

1. The gadget Γ̂ is fed with input (−→x1, . . . ,
−→xi) resulting with some

assignment of the wires of Γ̂ .
2. Let −→y 1, . . . ,

−→y o be the produced output of Γ̂ .
3. Output: (values assigned to wires in LG, values assigned to all the

output wires −→y1, . . . ,−→yo).

Extended Leakage Shiftability. Recall that in Sect. 2.1 one of the main technical
tricks was to show that the experiments ExpC and Exp0

B are indistinguishable
from the point of view of the adversary. This was done by showing that the
vectors encoding the secret can be “shifted” (i.e. a certain vector can be added
to it) in way that is not noticeable to the adversary. This idea is formalized and
generalized to gadgets below.

Definition 7. Let −→v1, . . . −→vk and −→m be vectors of the same length. and let T =
(T1, . . . , Tk) be a sequence of k field elements. We define a shiftT−→m(−→v1, . . . ,−→vk) as
follows: it is a sequence of vectors −→w1, . . . ,

−→wk, with −→wj being a modified vector−→vj :
−→wj = −→vj + Tj · −→m.

Also, when applicable, we treat values v1, . . . , vl as vectors of length 1. Then
we assume a default basic modification vector (1) and write shiftT (v1, . . . , vk)
instead of shiftT

(1)(v1, . . . , vk).

Simple Refreshing in the Noisy Leakage Model 339

Recall that the informal description in Sect. 2 was simplified, since it was
focusing on the multi-round refreshing circuits only. Making this idea work for
arbitrary circuits requires some extra work. In particular, we need to ensure that
nothing goes wrong in the (non-refreshing) gadgets if their input is shifted. Let
LG denote a fixed subset of leaking wires in the gadget Γ̂ . Informally speaking,
the extended leakage shiftability property says that shifting the value of the wires
of index w /∈ P (LG) in the input bundles of Γ̂ results in shifting the extended
leakage only on the index w in the output bundles. This is formalized below.

Definition 8. Let Γ̂ be a gadget with i input bundles and o output bun-
dles implementing a function g, and let P be its leakage projection function.
We say that a pair (Γ̂ , P) satisfies an extended leakage shiftability prop-
erty if the following holds: Let x1, . . . , xi be any input to g and suppose that
g(shiftS(x1, . . . , xi)) = shiftT (g(x1, . . . , xi)) for some sequences S and T of
lengths i and o, respectively. For any fixed encodings −→x1, . . . ,

−→xi of x1, . . . , xi,
any subset of leaking wires LG and any basic modification vector −→m that is dis-
joint with the set P (LG) we have

ExtLeakLG
̂Γ

(shiftS−→m(−→x1, . . . ,
−→xi)) = shiftT−→m(ExtLeakLG

̂Γ
(−→x1, . . . ,

−→xi)).

Here, when the function shift is applied to the output of the ExtLeak experiment,
it is applied only to the second part of the experiment output i.e. values assigned
to the output bundles of a Γ̂ .

Based on the following lemma, whose proof appears in the full version of this
paper [15], every gadget used in our construction satisfies the extended leakage
shiftability property.

Lemma 4. Every general gadget Γ̂ with its leakage projection function, as
described in Sect. 4.1, satisfies the extended leakage shiftability property.

In the proof of Theorem1 we also use a concept of refreshed gadget recon-
struction that is presented in the full version of this paper [15].

4.4 Privacy of the Construction

Here we present and prove a central theorem of our work.

Theorem 1. Let C be any arithmetic circuit and Ĉ its transformation as
described in Sect. 4. Assume that for all gadgets used in Ĉ the projection prob-
ability functions are upper-bounded by a function q : [0, 1] → R, which also
upper-bounds the function f(p) = p + 2

√
3p. Then Ĉ is sound implementation

of C and Ĉ is (p, |C| · (4q(p))n)-private for any probability p.

This theorem is proven along the lines of the intuitions presented in Sect. 2. Due
to space limitation we give only a proof overview. Below we present in a formal
way some tools that are used in the proof (and that were already informally
discussed in Sect. 2). These tools are used in the proof of Theorem 1, which
appears in the full version of this paper [15].

340 S. Dziembowski et al.

Proof Overview. To prove the privacy of our construction, we will show that
any two inputs X1,X2 to circuit Ĉ induce leakages that are close in terms of
statistical distance. We compare these two leakages conditioned on the set of
leaking wires being some fixed set LW . Let H be a leakage diagram induced by
LW . We show that if the left and right sides of the graph H are not connected
then the two leakages are actually identical. To this end, we use a hybrid argu-
ment, with the set of leaking wires being fixed to LW . We define a sequence of
experiments, called hybrids, and show that every two consecutive experiments
produce identical output. Here we briefly describe them:

Hybrid1 (this corresponds to experiment Exp0
A in Sect. 2.1): simply outputs

the leakage when Ĉ is fed with X1.
Hybrid2 (this corresponds to experiment Exp0

B): in this experiment each gad-
get in Ĉ is evaluated separately, and the assignment of the refreshing bundles
between the gadgets are derived from there. To this end, we consider the eval-
uation of the original circuit C when fed with X1. If a particular wire w in C,
which is an input to a gate Γ , is assigned with a value v then the respective
input bundle in the gadget Γ̂ in Ĉ is fed with a freshly chosen random encoding−→v ← Enc(v). Then each gadget in Ĉ is evaluated accordingly to the chosen
inputs. This determines the assignment of all the refreshing bundles in Ĉ. The
output of the experiment consists of the values assigned to wires in LW .

Hybrid3 (this corresponds to experiment ExpC): this experiment is the same
as Experiment 2, except for the random vectors that are assigned to the input
bundles of each individual gadget. Here, after choosing a random encoding −→v ←
Enc(v) just as in Experiment 2, we shift it by carefully chosen modification
vector −→m. As a result, we feed the particular input bundle with −→v + −→m. The
modification vector for the input bundles of each gadget is constructed based on
inputs X1 and X2, and the leakage diagram H. At this point we use the fact
that the left and right sides of the leakage diagram H are not connected. The
details of the construction for modification vectors are given in the Sect. 4.3.

Based on the properties of the refreshed gadgets subcircuits in Ĉ and taking
into account the construction of the modification vectors, we argue that shifting
values that are fed to each gadget actually does not change the leakage. Hence
this experiment outputs the same random variable as Experiment 2.

Hybrid4 (this corresponds to experiment Exp1
B): this experiment is analogous

to the Experiment 2, with input X2 instead of X1. We argue that the random
vectors assigned to the input bundles of each individual gadget in are actually
the same in this experiment and in Experiment 3. Hence, the two experiments
produce identical outputs.

Hybrid5 (this corresponds to experiment Exp1
A): this experiment is analogous

to the Experiment 1, with input X2 instead of X1. Also the transition between
Experiment 4 and this experiment is analogous to the transition for Experiments
1 and 2.

The hybrid argument above essentially shows that unless the left and right
sides of the leakage diagram H are connected, the leakage is the same indepen-
dently of the input X fed to the transformed circuit Ĉ. Now, to complete the

Simple Refreshing in the Noisy Leakage Model 341

privacy proof, it is enough to upper-bound the probability of the left and right
sides of H being connected. This is a pure probability theory exercise, given
that q(p) upper-bounds the leakage projection function of used gadgets which
means that each edge will be included to the leakage diagram independently
with probability at most q(p).

4.5 Concrete Results

In this section we present the concrete results implied by Theorem 1. These
are immediate consequences of the theorem. For affine circuits we obtain the
following.

Proposition 1. Assume that a circuit C is an affine circuit. Our transforma-
tion Ĉ, as described in Sect. 4, is (p, |C| · (4p + 8

√
3p)n)-private for any proba-

bility p.

Proof. As stated in the Sect. 4.2, for every gadget used in Ĉ its projection
probability function is upper-bounded by 3p and hence by p + 2

√
3p. Thus,

the Proposition is a consequence of the Theorem1 for the function q(p) =
p + 2

√
3p. ��

For the general circuits we have the following.

Proposition 2. Assume that a circuit C is an arithmetic circuit. Our transfor-
mation Ĉ, as described in Sect. 4, is (p, |C| · (32np + 4n

√
3p)n)-private for any

probability p.

Proof. From the Sect. 4.2 we conclude that for every gadget used in Ĉ its projec-
tion probability function is upper-bounded by n(8p+

√
3p). Assuming n ≥ 2, this

function also upper-bounds p+2
√

3p. Thus, the Proposition is a consequence of
the Theorem 1 for the function q(p) = n(8p +

√
3p). ��

Finally, let us state the result for the multi-round simple refreshing circuits.

Proposition 3. Consider a k-round refreshing circuit (see Sect. 2). This circuit
is (p, k · (4p + 8

√
3p)n)-private for any probability p.

Proof. As stated in the Sect. 4.2, the projection probability function of the iden-
tity gadgets ÎD used in the circuit equals p and hence is upper-bounded by
p+2

√
3p. Thus, the Proposition is a consequence of the Theorem1 for the func-

tion q(p) = p + 2
√

3p. ��

5 Conclusion

In this work we introduce a new method to analyze the security of masking
schemes in the noisy leakage model of Prouff and Rivain [21]. Our approach
enables us to show the security of a simple refreshing scheme which is optimal in
terms of randomness complexity (it requires only n−1 random values), and uses

342 S. Dziembowski et al.

a small number of arithmetic operations. Our results are achieved by introducing
a new technique for analyzing masked circuits against noisy leakages, which is
of independent interest.

We believe that our results are of practical importance to the analysis of
side-channel resistant masking schemes. The reason for this are twofold. First,
our refreshing scheme is very simple and efficient, and reduces the overheads
of the masking countermeasure significantly – in particular, for certain types
of computation. For example in the case of a secure key update mechanism
as used in any cryptocraphic scheme, we can reduce randomness and circuit
complexity from O(n2) using ISW-like refreshing to O(n), where the asymptotic
in the later is with nearly optimal constants. Second, while in [5] it was shown
how to construct a very simple refreshing scheme (similar to the one used in
our work), the security analysis was in a more restricted model (the bounded
moment model), and carried out only for small n. In our case, the analysis works
for any n and in the standard noisy model that is well accepted in practice.

Interesting questions for future research include to extend our analysis to
other masking schemes [4], to explore the tightness of our bounds and to verify
our results experimentally in practice (e.g., by providing simulations on the
practical resistance of the countermeasure and its efficiency).

Acknowledgements. The authors thank Sonia Beläıd and the anonymous reviewers
for their constructive comments. Sebastian Faust received funding from the German
Federal Ministery of Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the National Research
Center for Applied Cybersecurity (CRISP). Additionally, he received funding from the
Emmy Noether Program FA 1320/1-1 of the German Research Foundation (DFG)
and by the VeriSec project 16KIS0634 from the Federal Ministry of Education and
Research (BMBF). Stefan Dziembowski and Karol Żebrowski received funding from
the Foundation for Polish Science (grant agreement TEAM/2016-1/4) co-financed with
the support of the EU Smart Growth Operational Programme (PO IR).

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: 43rd
Annual ACM Symposium on Theory of Computing, pp. 715–724. ACM Press
(2011)

2. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS. Part III, vol. 10993, pp. 427–455.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 15

3. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/ log(n))
leakage rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS. Part
II, vol. 9666, pp. 586–615. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 21

4. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 45

https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-642-34961-4_45

Simple Refreshing in the Noisy Leakage Model 343

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS. Part I,
vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 19

6. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pp. 116–129. ACM Press (2016)

7. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS. Part I, vol. 9056, pp. 457–485. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 18

8. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS. Part II, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 12

9. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 65–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0 4

10. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

11. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

12. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS. Part I, vol. 9056, pp.
401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 16

13. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 38

14. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS. Part II, vol. 9057, pp. 159–188.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 6

15. Dziembowski, S., Faust, S., Żebrowski, K.: Simple re-freshing in the noisy leakage
model. Cryptology ePrint Archive. Extended version of this paper (2019)

16. Goudarzi, D., Joux, A., Rivain, M.: How to securely compute with noisy leakage
in quasilinear complexity. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS. Part II, vol. 11273, pp. 547–574. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 19

17. Goudarzi, D., Martinelli, A., Passelèegue, A., Prest, T.: Unifying leakage models on
a Réenyi day. Cryptology ePrint Archive, Report 2019/138 (2019). https://eprint.
iacr.org/2019/138

18. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-030-03329-3_19
https://doi.org/10.1007/978-3-030-03329-3_19
https://eprint.iacr.org/2019/138
https://eprint.iacr.org/2019/138
https://doi.org/10.1007/978-3-540-45146-4_27

344 S. Dziembowski et al.

19. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. IACR Cryp-
tology ePrint Archive 2019, p. 302 (2019). https://eprint.iacr.org/2019/302

20. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

21. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

22. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

https://eprint.iacr.org/2019/302
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28

Symmetric Cryptography (2)

The Exchange Attack: How
to Distinguish Six Rounds of AES

with 288.2 Chosen Plaintexts

Navid Ghaedi Bardeh(B) and Sondre Rønjom

Department of Informatics, University of Bergen, 5020 Bergen, Norway
{navid.bardeh,sondre.ronjom}@uib.no

Abstract. In this paper we present exchange-equivalence attacks which
is a new cryptanalytic attack technique suitable for SPN-like block cipher
designs. Our new technique results in the first secret-key chosen plaintext
distinguisher for 6-round AES. The complexity of the distinguisher is
about 288.2 in terms of data, memory and computational complexity.
The distinguishing attack for AES reduced to six rounds is a straight-
forward extension of an exchange attack for 5-round AES that requires
230 in terms of chosen plaintexts and computation. This is also a new
record for AES reduced to five rounds. The main result of this paper is
that AES up to at least six rounds is biased when restricted to exchange-
invariant sets of plaintexts.

Keywords: SPN · AES · Exchange-equivalence attacks ·
Exchange-invariant sets · Exchange-equivalence class · Secret-key
model · Differential cryptanalysis

1 Introduction

Block ciphers are typically designed by iterating an efficiently computable round
function many times in the hope that the resulting composition behaves like a
randomly drawn permutation. The designer is typically constrained by various
practical criterion, e.g. security target, implementation boundaries, and special-
ized applications, that might lead the designer to introduce symmetries and
structures into the round function as a compromise between efficiency and secu-
rity. In the compromise, a round function is iterated enough times to make sure
that any symmetries and structural properties that might exist in the round
function vanish. Thus, a round function is typically designed to increasingly de-
correlate with structure and symmetries after several rounds. However, what
actually constitutes structure is an open question which requires continuous
investigation as long as using randomly drawn codebooks is out of reach.

Low data- and computational-complexity distinguishers and key-recovery
attacks on round-reduced block ciphers have recently gained renewed interest
in the literature. There are several reasons for this. In one direction cryptanal-
ysis of block ciphers has focused on maximizing the number of rounds that can
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 347–370, 2019.
https://doi.org/10.1007/978-3-030-34618-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_12

348 N. G. Bardeh and S. Rønjom

be broken without exhausting the full codebook and key space. This often leads
to attacks marginally close to that of pure brute-force. These are attacks that
typically have been improved over time based on many years of cryptanalysis.
The most successful attacks often become de-facto standard methods of crypt-
analysis for a particular block cipher and might discourage anyone from pursuing
new directions in cryptanalysis that do not reach the same number of rounds.
This in itself might hinder new breakthroughs, thus it can be important to inves-
tigate new promising ideas that might not have reached its full potential yet.
New methods of cryptanalysis that break or distinguish fewer rounds faster but
with lower complexity than established cryptanalysis is therefore interesting in
this process. Many constructions employ reduced round AES as part of their
design. On the other hand, reduced versions of AES have nice and well-studied
properties that can be favorable as components of larger designs (see for instance
Simpira [10]).

The security of Rijndael-type block cipher designs is believed to be a well-
studied topic and has been in the focus of a large group of cryptanalysts during
the last 20 years (e.g. see [1–3,5,6,8,12,13]). Thus, it is rather surprising that
new and quite fundamental results continuously appear for 2–4 rounds of AES
that enables completely new types of more efficient attacks for an increasing
number of rounds of AES. At Crypto 2016, the authors of [15] presented the very
first secret-key 5-round distinguisher for AES. Secret-key (or key-independent)
means that the attack does not care about the particular round keys (e.g. in
contrast to related-key attacks). They extend a 4-round integral property to 5-
rounds by exploiting properties of the AES MixColumn matrix. Although their
distinguisher requires the whole codebook, it spawned a series of new funda-
mental results for AES. It was later improved to 298.2 chosen plaintexts with
2107 computations by extending a 4-round impossible differential property to a
5-round property. Then, at Eurocrypt 2017, the authors of [9] proposed the first
5-round secret-key chosen plaintext distinguisher which requires 232 chosen texts
with a computational cost of 235.6 look-ups into memory of size 236 bytes. They
showed that by encrypting cosets of certain subspaces of the plaintext space the
number of times the difference of ciphertext pairs lie in a particular subspace of
the state space always is a multiple of 8.

Later, at Asiacrypt 2017, the authors of [14] presented new fundamental
properties for Rijndael-type block cipher designs leading to new types of 3- to
6-round secret-key distinguishers for AES that beats all previous records. The
authors introduced a new deterministic 4-round property in AES, which states
that sets of pairs of plaintexts that are equivalent by exchange of any subset of
diagonals encrypts to a set of pairs of ciphertexts after four rounds that all have
a difference of zero in exactly the same columns before the final linear layer. This
was further explored in [7] under the name “mixture cryptanalysis”.

1.1 Our Contribution

The first 5-round secret-key chosen-plaintext distinguisher for AES was intro-
duced at Crypto 2016, almost 20 years after Rinjdael was first proposed as a can-

The Exchange Attack: How to Distinguish Six Rounds of AES 349

didate in the AES-competition, and required the whole codebook. In this paper,
only three years later, we introduce the first 6-round secret-key distinguisher for
AES that has complexity of about 288.2 computations and ciphertexts. This is
a giant leap for cryptanalysis of AES. Our distinguishers are based on simple
techniques which are easy to verify theoretically and in practice. Moreover, we
prove that AES up to at least 6 rounds is biased on exchange-invariant sets. The
5-round distinguisher has been practically verified on a scaled down version in
C/C++ on a standard laptop1.

1.2 Overview of This Paper and Main Results

In Sect. 2 we briefly describe results and notation that makes up the machinery
for the rest of this paper. In particular, we describe what we call exchange
operators, exchange-invariant sets and exchange-equivalence classes, and their
relations to AES. In Sect. 3, we prove that five full rounds of AES is biased
on exchange-invariant sets and in Sects. 4 and 5 we turn this result into simple
distinguishers for AES reduced to five and six rounds.

The currently best secret-key distinguishers for 5- and 6-round AES are
given in Table 1. We adopt that data complexity is measured in a minimum
number of chosen plaintexts/ciphertexts CP/CC or adaptively chosen plain-
texts/ciphertexts ACP/ACC. Time complexity is measured in equivalent num-
ber of AES encryptions (E), memory accesses (M) and/or XOR operations
(XOR) - adopting that 20M ≈ 1 round of AES.

Table 1. Secret-key distinguishers for AES

Property Rounds Data Cost Ref.

Impossible Diff 5 2128 CP 2129.6 XORs [15]
Multiple-8 5 232 CP 235.6 M [9]

Exchange Attack 5 230 CP 230E Sect. 4

Zero difference 6 2122.8 ACC 2121.8 XOR [14]

Exchange Attack 6 288.2 CP 288.2E Sect. 5

2 Preliminaries

The Advanced Encryption Standard (AES) [4] is the most widely adopted block
cipher in the world today and is a critical component in protecting information
in both commercial and high-assurance communication. The AES internal state
is typically represented by a 4 by 4 matrix in F

4×4
28 . The matrix representation is

for the most part purely representational as the actual properties of the matrix
(e.g. rank, order etc.) are not actually exploited for anything. One full round
of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC) and

1 https://github.com/Symmetric-crypto/ExchangeAttack.git.

https://github.com/Symmetric-crypto/ExchangeAttack.git

350 N. G. Bardeh and S. Rønjom

AddKey (AK). The SB-layer applies a fixed permutation over F28 independently
to each byte of the state, the SR-layer cyclically shifts the i-th row by i positions,
while the MC-layer applies a fixed linear transformation to each column. The
key addition adds a secret round-dependent value to the state. One full round
is composed as R = AK ◦ MC ◦ SR ◦ SB. We follow standard convention and
simplify notation by writing Rt(x) to mean t rounds of AES where each round
key is fixed to some random value.

In this section we recall some basic results and introduce necessary notation.
We begin by defining what we call column exchange differences.

Definition 1. For a vector v ∈ F
4
2 and a pair of states α, β ∈ F

4×4
28 define the

column exchange difference Δα,β
v ∈ F

4×4
28 where the i-th column is defined by

(Δα,β
v)i = (αi ⊕ βi)vi

where αi and βi are the i-th columns of α and β.

A pair of states define a set of 2wtc(α⊕β) possible column exchange differ-
ences where wtc(x) denotes the number of non-zero columns of x. We can now
define three related operators that exchange diagonal, column and mixed values
between a pair of AES states.

Definition 2 (Column exchange). For a vector v ∈ F
4
2 and a pair of states

α, β ∈ F
4×4
28 , define column exchange according to v as

ρv
c (α, β) = α ⊕ Δα,β

v .

It is easy to see that the pair of states (ρv
c (α, β), ρv

c (β, α)) = (α ⊕ Δα,β
v , β ⊕

Δα,β
v) are formed by exchanging individual columns between α and β according

to the binary coefficients of v. Thus, for any v it is easy to see that

α ⊕ β = ρv
c (α, β) ⊕ ρv

c (β, α).

From the definition of column exchange, we may define diagonal exchange as
follows.

Definition 3 (Diagonal exchange). For a vector v ∈ F
4
2 and a pair of states

α, β ∈ F
4×4
28 , define diagonal exchange according to v as

ρv
d(α, β) = α ⊕ SR−1(ΔSR(α),SR(β)

v).

The new pair (ρv
d(α, β), ρv

d(β, α)) is formed by exchanging individual diago-
nals between α and β according to the binary coefficients of v. The relationship
between exchange of diagonals and exchange of columns is intuitively straight-
forward.

Lemma 1. From the definition of ρv
d and ρv

c it follows that

R(ρv
d(α, β)) = ρv

c (R(α), R(β)).

The Exchange Attack: How to Distinguish Six Rounds of AES 351

Proof. By definition of diagonal exchange, it follows that

MC ◦ SR(ρv
d(α, β)) = ρv

c (MC ◦ SR(α),MC ◦ SR(β))

and since both ρd and ρc commute with SB, it follows that

R(ρv
d(α, β)) = ρv

c (R(α), R(β)).��

The last exchange operation involves exchanging more general looking sub-
space components belonging to the subspaces formed by applying SR and MC
to single columns.

Definition 4 (Mixed exchange). For a vector v ∈ F
4
2 and a pair of states

α, β ∈ F
4×4
28 define mixed exchange according to v as

ρv
m(α, β) = a ⊕ L(ΔL−1(α),L−1(β)

v)

where L = MC ◦ SR.

Lemma 2. From the definition of ρv
c and ρv

m it follows that

R(ρv
c (α, β)) = ρv

m(R(α), R(β)).

Proof. By definition of ρv
m, let L = MC ◦ SR, we have that

ρv
m(R(α), R(β)) = R(a) ⊕ L(ΔL−1(R(α)),L−1(R(β))

v)

= L ◦ (SB(α) ⊕ ΔSB(α),SB(β)
v)

= L ◦ SB(α ⊕ Δα,β
v)

= R(ρv
c(α, β)).��

Although the following trivial two-round property in AES is straight-forward,
we add it as a simple theorem to summarise the exchange operators.

Theorem 1. For two random states α, β and some non-zero vector v ∈ F
4
2, we

have that

R2(ρv
d(α, β)) = ρv

m(R2(α), R2(β)).

Proof. Follows by combining Lemmas 1 and 2. ��
The exchange operators are related to a type of sets called exchange-invariant

sets.

Definition 5. A set A ⊂ F
4×4
28 is called exchange-invariant if it satisfies

A = {ρv(a, b) | a, b ∈ A, v ∈ F
4
2}

where ρ is either of the three exchange operators.

352 N. G. Bardeh and S. Rønjom

Diagonal exchange-invariant sets have the following form. Let A = A0 ⊕ A1 ⊕
A2 ⊕ A3 where Ai corresponds to a subset of F4×4

28 of matrix states where only
the i-th diagonal is non-zero. It then follows from the definition of the diagonal
exchange operator that

A = {ρv
d(a, b) | a, b ∈ A, v ∈ F

4
2}.

Similarly, we have that a column exchange-invariant set B has the form

B =SR(A)
=SR(A0) ⊕ SR(A1) ⊕ SR(A2) ⊕ SR(A3)
=B0 ⊕ B1 ⊕ B2 ⊕ B3

and similarly, a mixed exchange-invariant set has the form

C =SR ◦ MC(B)
=SR ◦ MC(B0) ⊕ SR ◦ MC(B1) ⊕ SR ◦ MC(B2) ⊕ SR ◦ MC(B3)
=C0 ⊕ C1 ⊕ C2 ⊕ C3.

Then from the definition of exchange-invariant sets and the definition of the
exchange operator, it follows that two rounds of AES maps a diagonal exchange-
invariant set A = A0 ⊕ A1 ⊕ A2 ⊕ A3 to a mixed exchange-invariant set C =
C0 ⊕ C1 ⊕ C2 ⊕ C3 where |Ci| = |Ai|. The adversary may predict the exact size
of each set Ci (since they are equal to the size of Ai’s), but he may even predict
new plaintext/ciphertext pairs over two rounds. For instance, let A = A0 ⊕ A1

with A0 = {a0, a1} and A1 = {b0, b1} (i.e. |A| = 4). Then the adversary may
encrypt two out of four plaintexts from the set A, say a0 ⊕ b0 and a1 ⊕ b1, for
two rounds to a pair of ciphertexts c0 and c1 that provides him with a minimal
set of generators (relative to the mixed exchange operator) which allows him to
predict the remaining ciphertexts corresponding to the remaining two plaintexts
in A, i.e.

C = {ρv
m(c0, c1) | v ∈ F

4
2}.

For a state s ∈ F
4×4
28 , define L−1(s) = SR−1 ◦ MC−1(s) and let ν(s) denote

the binary indicator vector which is 1 in position i if the i-th column of L−1(s)
is non-zero and 0 otherwise. We use this notation to simplify the results and to
avoid working with more complicated state spaces. Thus, ν(s) simply indicates
the non-zero columns of the state before the last linear layer. For a subset I ⊂
{0, 1, 2, 3}, we write vI ∈ F

4
2 to mean the indicator vector which has value vI

i = 1
if i ∈ I and 0 otherwise.

Definition 6. Let α, β be a pair of states that are different in diagonals indicated
by H ⊂ {0, 1, 2, 3} and let H∗ ⊂ H denote the set formed by removing one
element from H. Then we define the exchange-equivalence class relative to (α, β)
as

Sα,β = {(ρvI

d (α, β), ρvI

d (β, α)) | I ⊆ H∗}.

The Exchange Attack: How to Distinguish Six Rounds of AES 353

All pairs in Sα,β are exchange-equivalent to each other. Since 2t−1 of the 2t

possible exchange-equivalent pairs are unique (e.g. ρ
vI+(1,1,1,1)
d (α, β) = ρvI

d (β, α)
when |H| = 4), we fix one index in H in all pairs (i.e. we do not exchange it)
and call it H∗.

Theorem 2. Let A = A0 ⊕ A1 ⊕ A2 ⊕ A3 be a diagonal exchange-invariant set
and assume |Ai| = mi such that |A| = m0 · m1 · m2 · m3. Then there are exactly

Lt(m0,m1,m2,m3) =
∑

I⊂{0,1,2,3}
wt(I)=t

∏

i∈I

(
mi

2

) ∏

j∈{0,1,2,3}\I

mj

representative pairs α, β ∈ A which are different in exactly t diagonals and where
each define a unique exchange-equivalence class Sα,β of size 2t−1. It follows that

4∑

t=1

Lt(m0,m1,m2,m3)2t−1 =
(∏3

i=0 mi

2

)

is the total number of pairs in A and

4∑

t=1

Lt(m0,m1,m2,m3)

is the number of distinct exchange-equivalence classes in A.

Proof. The number of pairs in A that are different in t diagonals I and equal
in the remaining (4 − t) diagonals J , is given by

∏
i∈I

(
mi

2

) ∏
j∈J mj . Each such

combination corresponds to one unique exchange-equivalence class Sa,b of size
2t−1. By inspecting the terms in the sums over the Lt, it can also easily be seen
that it is equivalent to

(
m0·m1·m2·m3

2

)
. ��

Thus, the space of
(|A|

2

)
pairs can be grouped into

∑4
t=1 Lt(m0,m1,m2,m3)

exchange-equivalence classes, which provides us with a fine grained view of the
exchange-equivalence structure of the sets.

We may write a pair in terms of their exchange indicators v, e.g. av =
(ρv

d(α, β), ρv
d(β, α)) where v is drawn from a (t − 1)-dimensional vector space

(to ensure that we generate only unique pairs) defined by fixing one of the active
diagonals in all exchanged pairs. Taking the

(
2t−1

2

)
combinations of all possible

pairs av, au can be viewed as combining (t− 1)-dimensional vectors u and v. We
are interested in determining the number of combinations of pairs from a set
Sα,β in which the first pair can be derived from the other by exchanging exactly
t diagonals. Thus we will need the following.

Lemma 3. The number of distinct pairs of vectors in F
n
2 whose difference has

Hamming weight t, is given by

c(n, t) =
(

n

t

)
2n−1.

354 N. G. Bardeh and S. Rønjom

Proof. There are
(
n
t

)
vectors of weight t. For each such vector, we need to identify

the unique pairs that sum to this vector. For the t positions where the vector
is 1, the two vectors can be set to 2t−1 unique combinations such that those
positions sum one. The remaining positions in the two vectors must be identical,
thus there are 2n−t choices for this part. The proof follows. ��

We can generate
(
2t−1

2

)
unique combinations of pairs (av, au) from Sa,b where

c(t − 1, j) counts the number of combinations of pairs (au, av) in Sa,b which are
exchange-equivalent if one pair can be obtained from the other by exchanging
exactly j diagonals. In other words, c(t − 1, j) of the combinations of pairs
in St(α, β) are equivalent if exactly j diagonals are exchanged between them.
Moreover, it follows that

t−1∑

j=1

c(t − 1, j) =
t−1∑

i=1

(
t − 1

j

)
2t−2

= 2t−2 · (2t−1 − 1)

=
2t−1 · (2t−1 − 1)

2

=
(

2t−1

2

)
.

We will need the following modified theorem from [14], which states an
exchange-difference relation over 4 rounds of AES. Let R4 denotes 4 full rounds
of AES with randomly fixed round keys. Then Theorem 1 of [14] is equal to the
following (slightly re-formulated) theorem.

Theorem 3 (4-round exchange-difference relation). Let α, β ∈ F
4×4
28 and

α′ = ρv
d(α, β), β′ = ρv

d(β, α) for any v ∈ F
4
2, then

ν(R4(α) ⊕ R4(β)) = ν(R4(α′) ⊕ R4(β′)).

In other words, the pattern of non-zero and zero columns in the difference
L−1(R4(α) ⊕ R4(β)) is preserved by diagonal exchange of plaintext pairs α and
β, i.e. on exchange-equivalence classes Sα,β . Figure 1 depicts this relation for the
case when the exchanged pair of plaintexts is formed by exchanging the first
diagonal and the first pair is zero in the last column before the last linear layer.

If we let wt(x) denote the ordinary Hamming weight of a binary vector, then
one last property of AES will be important in this paper.

Theorem 4. Assume a pair of states α and β with wt(ν(α ⊕ β)) = w1. Then

P (wt(ν(R(α) ⊕ R(β))) = w2) =
(

4
4 − w2

)
(2−8)w1(4−w2).

Proof. If SR−1 ◦MC−1(α)⊕SR−1 ◦MC−1(β) has w1 active columns, then each
column of α⊕β can be written as a linear function of w1 independent bytes. E.g.

The Exchange Attack: How to Distinguish Six Rounds of AES 355

R R R R

R R R R

Fig. 1. 4-round exchange trail.

the probability that one column is zero, is thus exactly (28)−w1 . Moreover, the
probability that exactly w2 of the columns are non-zero (i.e. 4−w2 of the columns
are zero) is thus exactly

(
4

4−w2

)
(28)−w1(4−w2). Since the s-box layer preserves zero

differences in bytes (and thus columns), it follows that ν(R(α) ⊕ R(β)) has the
desired probability. ��

2.1 Collision and Multicollision in a Set

The expected number of collision and multicollision in a set are computed in [11].
Suppose m objects taken uniformly at random from a given set (with replace-
ment), of size N . Then by using a heuristic method, the expected number of
collision is:

m · (m − 1)
2N

assuming independence between pairs of objects. In general, the expected num-
ber of collisions in two subsets, of cardinality m0 and m1, which obtained by
drawing at random without replacement from a large set of size N is:

m0 · m1

N

Multicollision can be considered in a set as have l different elements with the
same value or in l different sets and search for an element common to all. Using
the same heuristic method, the expected number of multicollisions in a subset
of size m drawn from a set of size N is:

s(m,N, l) =
∏l

i=1 m + 1 − i

l!N l−1
. (1)

3 When Column Exchange Equals Diagonal Exchange

In the previous section we showed that exchanging diagonals between plaintexts
is the same as exchanging column values after one round. In this section we
describe the intersection of column exchange and diagonal exchange, i.e. the
probabilistic case when exchange of some diagonals between a pair of plaintexts

356 N. G. Bardeh and S. Rønjom

is equal to exchange of (possibly some other) diagonals after one round. We then
combine this with Theorem 3 to form a probabilistic version of Theorem 3 that
instructs us how to construct a chosen-plaintext distinguisher for five rounds of
AES. For this we will need to count the number of bytes that are simultaneously
active in both a fixed set of diagonals and a fixed set of columns. Thus, we define
sets of indices related to diagonals and columns

Definition 7. For a set I ⊂ {0, 1, 2, 3}, let DI denote the set of indices DI =
{(k, k + i) mod 4) | 0 ≤ k < 4, i ∈ I} where (i, j) ∈ DI if the byte at index (i, j)
is activated by any of the diagonals indicated by I.

Definition 8. For a J ⊂ {0, 1, 2, 3}, let CJ = {(k, i) | 0 ≤ k < 4 , i ∈ J} denote
the set of indices (i, j), where the byte at position (i, j) is activated by any of the
columns indicated by J .

It is easy to see that the number of bytes that are simultaneously in a set
of diagonals I and set of columns J is equal to |DI ∩ CJ | = |I| · |J |. Thus, it
follows that |DI ∪ CJ | = 4(|I| + |J |) − |I| · |J | bytes are activated in total by the
diagonals I and by the columns J .

Assume we have a pair of plaintexts (p0, p1) that we encrypt one round to a
pair of ciphertexts (c0, c1). Then assume that we make a new pair of plaintexts

(p′0, p′1) = (ρ(1000)d (p0, p1), ρ(1000)d (p1, p0)),

by exchanging the first diagonal such that the new pair of ciphertexts satisfy

(R(p′0), R(p′1)) = (ρ(1000)c (c0, c1), ρ(1000)c (c1, c0))

= (c′0, c′1).

We have a new pair of ciphertexts (c′0, c′1) formed by exchanging the first
column between c0 and c1. Now let I = {0} such that CI contains the indices of
the first column and imagine that there exists a set J such that the difference
c0⊕c1 is zero in all indices in CI∪DJ except exactly the indices in the intersection
CI ∩DJ , where it can be random. Then, certainly, if the column bytes indicated
by CI were exchanged between the ciphertexts (c0, c1) to get (c′0, c′1), then
certainly we must also have had that diagonal bytes indicated by DJ , and thus
the diagonals indicated by J , were exchanged too. Hence, the pair of states are in
a configuration where exchanging columns and diagonals means the same thing.
The following theorem summarizes the probability of this event.

Theorem 5. Let I, J,K ⊂ {0, 1, 2, 3} and α, β ∈ F
4×4
28 be two random states.

Then the probability that a set of diagonals J are exchanged, given that a set of
columns I are exchanged when the difference α ⊕ β is zero in columns indicated
by K, i.e.

P ((ρvJ

d (α, β), ρvJ

d (β, α)) = (ρvI

c (α, β), ρvI

c (β, α)))

is given by

P (|I|, |J |, |K|) = (2−8)4(|I|+|J|)−|K||J|−2|I|·|J|.

The Exchange Attack: How to Distinguish Six Rounds of AES 357

Proof. We restrict the state difference α⊕β to bytes indicated by indices CI ∪DJ

and require that all byte differences in this restriction is zero except for the
bytes in the intersection CI ∩ DJ . Since |CI ∩ DJ | = |I| · |J | and |CI ∪ DJ | =
4(|I| + |J |) − |I| · |J |, and since the bytes take on 28 values, it follows that with
a probability

(28)|I|·|J|/(28)4(|I|+|J|)−|I|·|J| = (2−8)4(|I|+|J|)−2|I|·|J]

we have that exchanging columns I is equivalent to exchanging diagonals J (and
vice versa). If columns K are equal this means that I can not take on values from
K (else the relation become trivial), but only take on values I ⊂ {0, 1, 2, 3} \ K
not in K such that |I| < 4−|K|. Thus, if the states are equal in K columns, then
since the restriction of CK to CI ∪ DJ is equal to CK ∩ DJ = |K| · |J | bytes, the
probability is increased by a factor of (28)|K|·|J| to (2−8)4(|I|+|J|)−|K||J|−2|I||J|.

��

R

R

(a) |K| = 0

R

R

(b) |K| = 1

R

R

(c) |K| = 2

Fig. 2. Example conditions for column/diagonal exchange equivalence.

In other words we have that with some fixed probability, exchanging diago-
nals between plaintexts is the same as exchanging (possibly some other) diago-
nals between the intermediate states after one round. And if some diagonals are
exchanged after one round, then with probability 1 we also have that Theorem3
applies. For instance, suppose two random plaintexts verify the differential char-
acteristic of one of the examples in Fig. 2. Then if we exchange the first diagonal
between these two plaintexts, then after one round encryption only the first byte
is exchanged between the intermediate states. As a consequence, both the first
column and the first diagonal are exchanged between the intermediate pair after
one round, and thus Theorem3 can be extended to 5 rounds. This is summarized
as follows.

Theorem 6. Let α, β ∈ F
4×4
28 denote two plaintexts equal in |K| diagonals indi-

cated by K ⊂ {0, 1, 2, 3} and assume 0 < wt(ν(R5(α) ⊕ R5(β))) < 4. Then for a
non-trivial choice of I ⊂ {0, 1, 2, 3} \ K the relation

ν(R5(α) ⊕ R5(β))) = ν(R5(ρvI

d (α, β)) ⊕ R5(ρvI

d (β, α)))

358 N. G. Bardeh and S. Rønjom

holds with probability

P5(|I|, |K|) =
3∑

d=1

(
4
d

)
P (|I|, d, |K|)

Proof. The relation follows trivially by combining Theorems 3 and 5. Theorem 3
states that

ν(R4(ρv
d(R(α), R(β))) ⊕ R4(ρv

d(R(β), R(α)))) = ν(R5(α) ⊕ R5(β))

for any non-zero v ∈ F
4
2. Theorem 5 states that, if diagonals indicated by I

are exchanged between the plaintexts α and β, then there is a probability
P (|I|, |J |, |K|) = (2−8)4(|I|+|J|)−|K||J|−2|I|·|J| that this equals exchanging diago-
nals J after one round, i.e.

(ρvJ

d (R(α), R(β)), ρvJ

d (R(β), R(α))) = (R(ρvl

d (α, β)), R(ρvl

d (β, α))).

Then by summing over the probabilities for each possible choice of J , for a fixed
I and K, gives the desired expression. ��

For instance, if |K| = 2 and |I| = 1, the relation holds with probability
P5(1, 2) = 2−28.19. Note that we could set ≥ in front of the probabilities in
Theorems 5 and 6 instead of equality, since the case when exchange of columns
does not equal an exchange of diagonals contributes a tiny fraction to the total
probability of the event. However, for our applications this contribution is van-
ishingly small, thus we may think of it as equality. This will in the worst case
mean that our attack analysis is pessimistic since a higher probability will only
decrease the complexity of all of our attacks.

Assume an diagonal exchange-invariant set A = A0 ⊕A1 ⊕A2 ⊕A3. We then
have the following result.

Theorem 7. For a diagonal exchange-invariant set A = A0 ⊕ A1 ⊕ A2 ⊕ A3

where |Ai| = mi, the expected number of combinations of pairs (a, b), (c, d) =
(ρv

d(a, b), ρv
d(b, a)) that satisfy

(ρu
d(R(a), R(b)), ρu

d(R(b), R(a))) = (R(c), R(d))

for any u and v is expected to be

G(m1,m2,m3,m4) =
4∑

t=1

Lt(m1,m2,m3,m4) ·
t−1∑

j=1

c(t − 1, j) · P5(j, 4 − t). (2)

Proof. Let Sα,β denotes one of the exchange-equivalence classes in A of size 2t−1.
Then there are c(t − 1, j) combinations of two pairs au, av from Sα,β such that
ρz

d(au) = av for a vector z of weight j. For each of those combinations, the
probability is P5(j, 4 − t) that the relation holds, and thus

t−1∑

j=1

c(t − 1, j) · P5(j, 4 − t)

The Exchange Attack: How to Distinguish Six Rounds of AES 359

R R R R R

R R R R R

Fig. 3. 5-round exchange trail.

is the expected number of combinations of pairs from one such set Sα,β of
size 2t−1 that satisfy the condition. Then since there are Lt(m1,m2,m3,m4)
exchange-equivalence classes of size 2t−1, the expression follows (Fig. 3). ��

4 The Exchange Attack on Five Rounds AES

Theorem 6 can be used directly to show that AES limited to five full rounds is
biased when plaintexts are closed under the action of diagonal exchange oper-
ations, i.e. diagonal invariant sets. We show this using the following app-
roach. Assume f(x) is a random permutation acting on the same state space
as AES and two random plaintexts pi, pj together with the exchanged plaintexts
p′i = ρv

d(pi, pj), p′j = ρv
d(pj , pi). We assume that pi and pj are different in at

least two diagonal positions or else the exchanged pair will be equivalent to the
original pair. Then let ci = f(pi), cj = f(pj), c′i = f(p′i) and c′j = f(p′j). Then
we ask the question; what is the probability that

0 < wt(ν(ci ⊕ cj)) = d < 4

and simultaneously

ν(ci ⊕ cj) = ν(c′i ⊕ c′j)?

In other words, what is the probability that SR−1◦MC−1(ci⊕cj) is zero in 4−d
columns and that SR−1 ◦ MC−1(c′i ⊕ c′j) is zero in exactly the same columns?

For a single combination of pairs, the probability that ci and cj satisfy
wt(ν(ci ⊕ cj)) = d (i.e. SR−1 ◦ MC−1(ci) and SR−1 ◦ MC−1(cj) collide in
4 − d columns) is given by

Pfirst =
(

4
4 − d

)
(232)−(4−d).

For instance, the probability that two ciphertexts satisfy wt(ν(ci ⊕ cj)) = 3 is
given by

(
4
1

) · (232)−1 = 2−30, and the probability that the pair has wt(ν(ci ⊕
cj)) = 2 is given by

(
4
2

) · (232)−2 = 6 · 2−64, and so on. The probability that the
second pair is zero in the exact same columns as the first is then in general

Psecond = (232)−(4−d).

360 N. G. Bardeh and S. Rønjom

Thus, in the random case the probability of the two events is given by

Prand = Pfirst · Psecond (3)

=
(

4
d

)
(232)−(4−d) · (232)−(4−d). (4)

But for AES, Theorem6 states that the probability is P5(|I|, |K|) for the second
event, where I is the set of exchanged diagonals while K is the set of diagonals
that are equal in the initial plaintext pair. Thus, the total probability for AES
becomes instead

PAES = Pfirst · P5(|I|, |K|). (5)

For instance, if we set |I| = 1 (i.e. one diagonal is exchanged) and |K| = 2 (i.e. the
difference of the plaintexts is zero in two diagonals), we get that P5(1, 2) > 2−28.2,
while it is 2−32 for random, the probability that second pair is zero in the exact
same columns as the first one is. Notice that the second term of Prand, Psecond,
is a function of the ciphertext collision event while the second term of PAES ,
P5(|I|, |K|), is fixed and independent of this ciphertext collision condition. Thus,
while the second term in the probability for the random case depends on the
size of the space that the difference c′i ⊕ c′j is required to collide in (e.g. has
probability 2−96 for the second event), the second term of PAES is fixed and
independent of this (e.g. has always probability 2−28.2 for the second event).
Thus, since the probability of the exchange-equivalence condition of Theorem5
can easily be made higher than the random collision condition for the second
pair, a distinguishing condition follows.

For five rounds, the adversary bases the distinguisher more concretely on the
following question with respect to a larger subset of plaintexts:

For a subset of plaintexts A, what is the probability that there exist two dis-
tinct pairs au, av from any of the exchange-equivalence classes Sa,b in A that
satisfy

ν(R5(a) ⊕ R5(b)) = ν(R5(c) ⊕ R5(d))

and
0 < wt(ν(R5(a) ⊕ R5(b))) = d < 4.

Theorems 6 and 7 in the previous section can be used directly to set up a
straight-forward 5-round chosen plaintext distinguisher for AES. If the adver-
sary observes a pair of plaintexts (p0, p1) corresponding to a pair of ciphertexts
that satisfy 0 < wt(ν(c0, c1)) < 4, then Theorem 6 states that for any other
pair (p′0, p′1) ∈ Sp0,p1 , the probability of the event ν(c′0 ⊕ c′1) = ν(c0 ⊕ c1) is
significantly higher than for the random case. In Theorem7 we showed that
the expected number of combinations of diagonal exchange-equivalent pairs
(a, b), (c, d) from the diagonal exchange-invariant set A = A0 ⊕ A1 ⊕ A2 ⊕
A3 that are also diagonal exchange equivalent after one round, is given by
G(m1,m2,m3,m4) where mi = |Ai|. In this case, the combination of pairs also
obey the additional 4 round exchange difference relation of Theorem3, thus

The Exchange Attack: How to Distinguish Six Rounds of AES 361

G(m1,m2,m3,m4) is also the expected number of combinations of exchange
equivalent plaintext pairs that enjoy the 4-round exchange-difference relation
for five rounds. Since G(m1,m2,m3,m4) is the expected number of combina-
tions of exchange-equivalent pairs au, av that satisfy Theorem 6, it follows that

EAES = G(m1,m2,m3,m4) ·
(

4
d

)
(2−32)(4−d)

is the expected number of combinations of pairs from the exchange-equivalence
classes whose ciphertexts satisfy

ν(c′0 ⊕ c′1) = ν(c0 ⊕ c1)

when wt(ν(c0 ⊕ c1)) = d. For the random case, the same probability becomes

Erand = H(m1,m2,m3,m4) ·
(

4
d

)
(2−32)(4−d) · (2−32)(4−d)

where

H(m1,m2,m3,m4) =
4∑

t=1

Lt(m1,m2,m3,m4)
(

2t−1

2

)

follows from Theorem 7 and is the total number of combinations of two pairs
from each possible exchange-equivalence class Sa,b.

An algorithm for the 5-round distinguisher is presented in Algorithm1. In our
distinguisher for five rounds, we pick two random subsets A0 and A1 of F4

28 , each
of size m, and encrypt the resulting diagonal exchange-invariant set of m2 plain-
texts A formed by spanning the first diagonal with the possible elements from
A0 and the second diagonal with elements from A1, while setting the remaining
bytes to random constants. The structure of the plaintext subset is determined
by optimizing EAES relative to Erand with the condition that d = 3, i.e. the two
pairs of ciphertexts must collide in the same column before the last linear layer.

In this particular case, when only two diagonals are active in the plaintexts,
the set of plaintexts contains exchange-equivalence classes of size 1 and 2 (note
that we can not draw pairs from an exchange-equivalence class of size 1). If we
set m = 215, we get that

EAES = G(m,m, 1, 1) · 2−30

≈ 1

while

Erand = H(m,m, 1, 1) · 2−62

≈ 2−4.

Thus, by encrypting a plaintext set A = A0⊕A1⊕A2⊕A3 where |A0| = |A1| = m
and |A2| = |A3| = 1 (i.e. |A| ≈ 230), we are able to distinguish AES. An
unoptimized algorithm for the distinguisher is presented in Algorithm1.

362 N. G. Bardeh and S. Rønjom

Algorithm 1. Pseudo-code for 5-round distinguisher.
Input: m = 215, D = 230

Result: 1 if AES, −1 otherwise.
L−1 ← SR−1 ◦ MC−1

Choose m random values A = {a0, a1, . . . , am−1} ⊂ F
4
28

Choose m random values B = {b0, b1, . . . , bm−1} ⊂ F
4
28

Choose random constants z2, z3 ∈ F
4
28

C ← {}
T0, T1, T2, T3 = {} // empty hash tables containing unordered sets(e.g.
unordered multisets)
/* Encrypt and order 230 plaintexts */

for i from 0 to m − 1 do
for j from 0 to m − 1 do

l ← i · m + j
pl ← (ai, bj , z2, z3) // ai is the first diagonal value and bj is

the second diagonal value and so forth.

cl ← EK(pl)
/* Add (i, j) to Tk[z] according to value z of column k of

L−1(cl) */

for k from 0 to 3 do

z ← |L−1(cl)k| // |L−1(cl)k| is integer value of k-th column

Tk[z] ← Tk[z] ∪ {(i, j)}
end

C ← C ∪ {cl}
end

end
/* Search for double collisions */

for each ci in C do
/* coeffs(i) returns coefficients a, b s.t. a · m + b = i */

i1, j1 ← coeffs(i)
for j from 0 to 3 do

for i2, j2 ∈ Tj [|cij |] do
if i1 �= i2 and j1 �= j2 then

if L−1(c(i2·m+j1) ⊕ c(i1·m+j2))k equals 0 then
/* Two pairs forming double collision found */

return 1
end

end

end

end

end
return −1

4.1 Complexity of Distinguisher

The algorithm consists of two parts. In the first part, the adversary encrypts
D = m2 = 230 plaintexts and inserts the index (i, j) into each of the four tables

The Exchange Attack: How to Distinguish Six Rounds of AES 363

Tk according to the integer column values of L−1(ci·m+j) , i.e. the index (i, j) is
inserted into Tk[|L−1(ci·m+j)k|] where |L−1(ci·m+j)k| is the integer value of the
k-th column of L−1(ci·m+j). The complexity of this part is roughly D encryptions
plus D ciphertext-lookups times four insertions to the hash tables Tk, which is
roughly about

Cpart1 =D +
(4 · D)

80
≈D

if we use the convention that one encryption (i.e. 5 · 16 = 80 s-box lookups)
corresponds to one unit of computation. To determine the complexity of the
second part, we need to estimate approximately the expected number of entries
that contains 0 values, 1 values, 2 values etc. using the formula for the expected
number of multicollisions.

For D = 230 and N = 232, by using the formula 1, we do not expect any
multicollisions involving more than seven ciphertexts (i.e. s(D,N, 8) ≈ 0.7) and
thus Tk[r] contains at most seven values such that the complexity of testing
each combination of ciphertexts related to an index entry of Tk[r] takes at most(
7
2

)
= 21. But to get a more accurate complexity estimate, we may iteratively

compute the expected number of sets Tk[r] which contains l = 7 elements (i.e.
correspond to a 7-multicollision), which contains l = 6 elements, and so forth. To
do this, we let s7 = s(D,N, 7). Then the number of 6-multicollisions not already
inside a 7-multicollision is given by

s6 = s(D,N, 6) − s7 ·
(

7
6

)
.

Then the number of 5-multicollisions that are not already inside a 6-
multicollision, is given by

s5 = s(D,N, 5) − s6 ·
(

6
5

)

and so forth, obeying the recurrence

st = s(D,N, t) − st+1 ·
(

t + 1
t

)

until we arrive at s1, which is the expected number of entries which contains
only one element. Moreover, we should have that

∑7
t=1 st · t ≈ D, and indeed

we get that

7∑

t=1

st · t ≈ 230

364 N. G. Bardeh and S. Rønjom

as expected. From this, we can compute the complexity corresponding to finding
collisions in one of the tables Tk in part 2 as

C ′
part2 = s1 +

7∑

t=2

stt
2

≈ (229.7 + 229) · C

≈ 230 · C

such that the total complexity of part 2 roughly becomes

Cpart2 =
4 · C ′

part2

80
≈ 225.7

if we adopt the convention that one operation equals one encryption, which can
be viewed as 16 · 5 = 80 s-box lookups, where C is the number of ciphertext-
lookups we do for each combinations of pairs. Hence, five rounds of AES can
be distinguished using a chosen plaintext distinguisher with D = 230 data and
about the same computational complexity. In the next section, we show that
with a change of parameters the same distinguisher can be used to distinguish
fix rounds of AES.

5 The Exchange Attack on Six Rounds AES

In this section we present the first 6-round secret-key chosen plaintext distin-
guisher for AES, which follows from a straight-forward extension of Theorem6.
Imagine a setup similar to the 5-round distinguisher, but where we encrypt two
random plaintexts pi and pj which are non-zero in all bytes except the last
diagonal. As before, let p′i = ρv

d(pi, pj) and p′j = ρv
d(pj , pi).

Now assume the following two conditions, where the first one is given by

wt(ν(R5(pi) ⊕ R5(pj))) = 1 (6)

and second one is given by

wt(ν(R6(pi) ⊕ R6(pj))) = 1. (7)

At random, the first condition happens with probability 2−94 and thus the second
condition happens with probability

(
4
3

)
(2−8)3 = 2−22 by Theorem 4 conditioned

on the first event. By symmetry of Theorem 4, the same condition applies in
the reverse direction. If we observe that the second condition (7) holds, which
happens with probability 2−94 at random, then the first condition (6) holds with
probability 2−22 by Theorem 4. So assume that we observe a pair of ciphertexts
ci = R6(pi) and cj = R6(pj) that happens to satisfy the second condition (7),

The Exchange Attack: How to Distinguish Six Rounds of AES 365

i.e. SR−1 ◦ MC−1(ci ⊕ cj) contains exactly one active column. Such an event
happens at random with probability

PR6 = 2−94.

Then by Theorem 4 applied in the reverse direction, the probability of the first
condition (6) conditioned on the event (7) is given by

PR5 = 2−22,

i.e. SR−1 ◦MC−1(R5(pi)⊕R5(pj)) contains exactly one active column too. But
if the first event (6) occurs, then by Theorem 6 we also have that the event

ν(R5(p′i) ⊕ R5(p′j)) = ν(R5(pi) ⊕ R5(pj))

happens with probability probability PR1 = P5(3, 1) ≈ 2−38 for the exchanged
pair. Hence, both pairs satisfy

wt(ν(R5(p′i) ⊕ R5(p′j))) = wt(ν(R5(pi) ⊕ R5(pj)))
= 1

and thus it follows from Theorem4 applied to the exchanged pair in the fifth
round that the probability of the two simultaneous events (conditioned on the
previous events)

wt(ν(R6(p′i) ⊕ R6(p′j))) = wt(ν(R6(pi) ⊕ R6(pj))) = 1

is given by PR6′ = 2−22. Hence, if the adversary observes a pair of ciphertexts
that satisfy (7), then the probability that the event wt(ν(R6(p′i)⊕R6(p′j))) = 1
occur (i.e. the same event happens for the exchanged pair too) is given by

Psecond =PR5 · P5(3, 1) · PR6′

≈ 2−44 · 2−38

= 2−82.

In the random case, however, the probability that the second ciphertext pair
satisfies the last condition (7) is 2−94 for both pairs of ciphertexts. Thus, for
a random plaintext/ciphertext pair (pi, pj) → (ci, cj) and an exchanged pair
(p′i, p′j) → (c′i, c′j), the probability that

wt(ν(ci ⊕ cj)) = wt(ν(c′i ⊕ c′j)) = 1

is for a random permutation given by

Prand = 2−94 · 2−94

= 2−188

while it is equal to

PAES = 2−94 · 2−82

= 2−176

for AES. We may summarize the result as follows.

366 N. G. Bardeh and S. Rønjom

Theorem 8. Let A = A0 ⊕ A1 ⊕ A2 ⊕ A3 with |A0| = |A1| = |A2| = 229.4 and
|A3| = 1 such that |A| = 288.2, then the expected number of combinations of pairs
(a, b), (c, d) from the exchange-equivalence classes in A whose ciphertexts satisfy

Pr(wt(ν(R6(a) ⊕ R6(b))) = wt(ν(R6(c) ⊕ R6(d))) = 1)

is given by

EAES = G(m,m,m, 1) · 2−44 · 2−94

≈ 1

while

Erand = H(m,m,m, 1) · 2−94 · 2−94

≈ 2−11

for random.

Proof. Proof follows straight forwardly by combining Theorems 6, 7 and 4.
Assume that two exchange-equivalent pairs satisfy the 5 round exchange rela-
tion and assume that one of them satisfy relation 6. Then the other pair must
satisfy this relation. The probability that both pairs satisfy this condition is
therefore 2−94 (in comparison to 2−94−94 for random). Then due to Theorem4,
it follows that the probability that both pairs of ciphertexts obey relation 7, is
2−22 · 2−22 = 2−44. ��

Hence, if the adversary encrypts a set of D = (229.4)3 = 288.2 plaintexts, we
expect to find a combination of pairs that satisfy our condition, while we expect
to find 2−10 double collisions for a random permutation. Thus, we have the basis
for a distinguisher which can distinguish 6 full rounds of AES that requires 288.2

chosen plaintexts.

5.1 Distinguishing Attack Algorithm for Six Rounds

Similar to the 5-round distinguisher, we pick three sets A0, A1 and A2, each
of size ≈ 229.4 such that we may generate a diagonal exchange-invariant set of
D = 288.2 plaintexts in such a way that the i-th diagonal of each plaintext is
spanned by the possible elements of Ai while the last diagonal is set to a random
constant. In fact, the algorithm is exactly the same as the 5-round distinguisher,
except for a change of parameters and collision condition. Moreover, this time
each of our hash-tables may in the worst case contain up to 288.2 values. The
algorithm for six rounds AES is presented in Algorithm2 and it can be readily
seen that ciphertexts are essentially the same as for five rounds. However, if we
observe a pair of ciperhtexts ci and cj that have our desired collision property and
which stems from a plaintext pair pi and pj which differ in all three diagonals,
then we need to generate the remaining three possible exchanges of those to test
the secondary condition. Due to our use of indices for locating ciphertexts in
the algorithm, exchanging a pair of plaintexts corresponds to exchanging indices
between the corresponding ciphertexts. However, in the algorithm we are more
explicit for ease of understanding (Fig. 4).

The Exchange Attack: How to Distinguish Six Rounds of AES 367

Algorithm 2. Pseudo-code for 6-round distinguisher.
Input: m = 229.4, D = 288.2

Result: 1 if AES, −1 otherwise.
L−1 ← SR−1 ◦ MC−1

Choose m random values A = {a0, a1, . . . , am−1} ⊂ F
4
28

Choose m random values B = {b0, b1, . . . , bm−1} ⊂ F
4
28

Choose m random values C = {c0, c1, . . . , cm−1} ⊂ F
4
28

Choose random constants z3 ∈ F
4
28

C ← {}
T0, T1, T2, T3 = {} // empty hash tables containing unordered sets(e.g.

unordered multisets)

/* Encrypt 288.2 plaintexts */

for i from 0 to m − 1 do
for j from 0 to m − 1 do

for k from 0 to m − 1 do
l ← i · m2 + j · m + k
pl ← (ai, bj , ck, z3) // ai is the first diagonal value and bj

is the second diagonal value and so forth.

cl ← EK(pl)

/* Tr[z] contains indices (i, j, k) for ciphertext ci·m
2+j·m+k

with value z in the r-th column of L−1(ci·m
2+j·m+k) */

for r from 0 to 3 do
z ← |L−1(cl)r| // |L−1(cl)r| is integer value of r-th

column

Tr[z] ← Tr[z] ∪ {(i, j, k)}
end

C ← C ∪ {cl}
end

end

end
/* Search for double collisions */

for each ci in C do
/* coeffs(i) returns coefficients a, b, c s.t. a · m2 + b · m + c = i */

i1, j1, k1 ← coeffs(i)
for j from 0 to 3 do

for i2, j2, k2 ∈ Tj [|cij |] do
/* Gi,j is the set of ciphertexts corresponding to

exchange-equivalence class Spi,pj */

S ← G(i1,j1,k1),(i2,j2,k2) //|G| ≤ 4
for each pair (a, b) ∈ S do

if wt(ν(R6(a)) ⊕ R6(b)) equals 1 then
/* Two pairs forming double collision found */

return 1
end

end

end

end

end
return −1

368 N. G. Bardeh and S. Rønjom

R R R R R R

R R R R R R

Fig. 4. 6-round exchange trail.

5.2 Complexity of Distinguisher

The analysis of the 6-round distinguisher pretty much follows the same line as the
5-round distinguisher. The distinguisher consists of two parts; first the adversary
populates the tables Tk followed by a collision search. The first part is estimated
in the same way as for the five rounds, i.e. we get roughly

Cpart1 = D +
(4 · D)

96
≈ D.

where we adopt the convention that one unit equals one encryption, where one
encryption equals 96 s-box look-ups for six full rounds. For part 2, searching
for collisions, the analysis is the same as for five rounds. Again, by using the
recurrence (1) for multicollisions, we find that more than 10 collisions in the
same entry Tk[r] is unlikely (i.e. s(288.2, 296, 10) ≈ 2−4). Thus, again we may
apply the recursion

st = s(D,N, t) − st+1 ·
(

t + 1
t

)

to compute s8 down to s1 given that s9 is expected to be s(D,N, 9). This way,
we find the expected number of entries in each table which has nine elements,
eight elements, and so on. If the computation is correct, we should have that

9∑

t=1

st · t ≈ 288.2

which we indeed get. From this, we can compute the complexity corresponding
to finding collisions in one of the tables Tk in part 2 as

C ′
part2 = (s1 +

9∑

t=2

stt
2) · C

≈ (288.19 + 281.4) · C

≈ 288.2 · C

The Exchange Attack: How to Distinguish Six Rounds of AES 369

where C is the number of ciphertext-lookups we do for each combinations of
pairs. Note that the algorithm will spend most of the time detecting entries with
no collision. In the second term above, each table index of size t is visited t
times (once for each ciphertext in it, which is not optimal). We can do at most
three additional exchanges between the observed pairs, or else we can do one or
zero exchanges, depending on the size of the exchange-equivalence class these
pairs belong to (either size one, two or four). In any case, this last term does
not contribute to the final complexity C ′

part2 . Thus, the expected complexity of
evaluating the four tables then roughly becomes

Cpart2 =
4 · C ′

part2

96
≈ 283.6

where we adopt the convention that one unit equals one encryption, where one
encryption equals 96 s-box look-ups for six full rounds. Thus, the total complexity
of the algorithm is dominated by the number of required ciphertexts, D = 288.2,
in terms of data, memory and computation.

6 Conclusion

In this paper we have introduced the first 6-round secret-key chosen-plaintext
distinguisher for AES using a new type of attack called exchange-equivalence
attacks (or simply, exchange attacks). The distinguisher has data and compu-
tational complexity of only 288.2 and can thus be viewed as a giant leap in the
cryptanalysis of AES when one considers that the first 5-round secret-key distin-
guisher for AES appeared nearly 20 years after the publication of Rijndael. All
of our attacks can easily be turned into chosen ciphertext attacks on the inverted
block cipher due to the inherent symmetry of the properties we are using. Our
results are easily generalized to any SPN-like cipher, and in particular, we note
that the theory in this paper can be generalized to extend the attacks for more
rounds for ciphers with slower diffusion (e.g. lightweight designs). We are confi-
dent that our results lead the way to further breakthroughs on ciphers such as
AES.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. This research was supported by the Norwegian Research Council.

References

1. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: 3rd AES
Conference, vol. 230 (2000)

2. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.A., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theory 58(11), 7002–7017
(2012)

370 N. G. Bardeh and S. Rønjom

3. Daemen, J., Rijmen, V.: Plateau characteristics. IET Inf. Secur. 1, 11–17 (2007)
4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
5. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De

Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11832072 6

6. Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossible
differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS. Part
II, vol. 9815, pp. 157–184. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53008-5 6

7. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

8. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

9. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS.
Part II, vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 10

10. Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the
AES round function. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS.
Part I, vol. 10031, pp. 95–125. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 4

11. Joux, A.: Algorithmic Cryptanalysis, 1st edn. Chapman & Hall/CRC, Boca Raton
(2009)

12. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45661-9 9

13. Rijmen, V.: Cryptanalysis and design of iterated block ciphers. Doctoral disserta-
tion, K.U. Leuven (1997)

14. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS. Part I, vol. 10624, pp. 217–243.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

15. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS. Part I, vol.
9814, pp. 605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 22

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11832072_6
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22

Algebraic Cryptanalysis
of STARK-Friendly Designs:

Application to MARVELlous and MiMC

Martin R. Albrecht1, Carlos Cid1,2, Lorenzo Grassi5,6,
Dmitry Khovratovich3,4,7, Reinhard Lüftenegger5(B),

Christian Rechberger5, and Markus Schofnegger5

1 Information Security Group, Royal Holloway, University of London, London, UK
{martin.albrecht,carlos.cid}@rhul.ac.uk

2 Simula UiB, Bergen, Norway
3 Dusk Network, Amsterdam, The Netherlands

khovratovich@gmail.com
4 ABDK Consulting, Tallinn, Estonia

5 IAIK, Graz University of Technology, Graz, Austria
{lorenzo.grassi,reinhard.lueftenegger,christian.rechberger,

markus.schofnegger}@iaik.tugraz.at
6 Know-Center, Graz, Austria

7 Evernym Inc., Salt Lake City, USA

Abstract. The block cipher Jarvis and the hash function Friday,
both members of the MARVELlous family of cryptographic primi-
tives, are among the first proposed solutions to the problem of designing
symmetric-key algorithms suitable for transparent, post-quantum secure
zero-knowledge proof systems such as ZK-STARKs. In this paper we
describe an algebraic cryptanalysis of Jarvis and Friday and show
that the proposed number of rounds is not sufficient to provide ade-
quate security. In Jarvis, the round function is obtained by combining
a finite field inversion, a full-degree affine permutation polynomial and
a key addition. Yet we show that even though the high degree of the
affine polynomial may prevent some algebraic attacks (as claimed by the
designers), the particular algebraic properties of the round function make
both Jarvis and Friday vulnerable to Gröbner basis attacks. We also
consider MiMC, a block cipher similar in structure to Jarvis. However,
this cipher proves to be resistant against our proposed attack strategy.
Still, our successful cryptanalysis of Jarvis and Friday does illustrate
that block cipher designs for “algebraic platforms” such as STARKs,
FHE or MPC may be particularly vulnerable to algebraic attacks.

Keywords: Gröbner basis · MARVELlous · Jarvis · Friday · MiMC ·
ZK-STARKs · Algebraic cryptanalysis · Arithmetic circuits

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 371–397, 2019.
https://doi.org/10.1007/978-3-030-34618-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_13

372 M. R. Albrecht et al.

1 Introduction

Background. Whenever a computation on sensitive data is outsourced to an
untrusted machine, one has to ensure that the result is correct. Examples are
database updates, user authentications, and elections. The underlying problem,
formally called computational integrity, has been theoretically solved since the
1990s with the emergence of the PCP theorem. But the performance of actual
implementations was too poor to handle any computation of practical inter-
est. Only recently a few proof systems have appeared where the proving time
is quasi-linear in the computation length (which is typically represented as an
arithmetic circuit), e.g. ZK-SNARKs [Par+13], Bulletproofs [Bun+18], and ZK-
STARKs [Ben+18]. While they all share the overall structure, these proof sys-
tems differ in details such as the need of a trusted setup, proof size, verifier
scalability, and post-quantum resistance.

The cryptographic protocols that make use of such systems for zero-
knowledge proofs often face the problem that whenever a hash function is
involved, the associated circuit is typically long and complex, and thus the hash
computation becomes a bottleneck in the proof. An example is the Zerocash
cryptocurrency protocol [Ben+14]: in order to spend a coin anonymously, one
has to present a zero-knowledge proof that the coin is in the set of all valid coins,
represented by a Merkle tree with coins as leaves. When a traditional hash func-
tion such as SHA-256 is used in the Merkle tree, the proof generation takes
almost a minute for 28-level trees such as in Zcash [Hop+19], which represents
a real obstacle to the widespread use of privacy-oriented cryptocurrencies.

The demand for symmetric-key primitives addressing the needs of specific
proof systems has been high, but only a few candidates have been proposed so
far: a hash function based on Pedersen commitments [Hop+19], MPC-oriented
LowMC [Alb+15], and big-field MiMC [Alb+16,Alb+19]. Even worse, differ-
ent ZK proof systems use distinct computation representations. Concretely, ZK-
SNARKs prefer pairing-friendly curves over prime scalar fields, Bulletproofs uses
a fast curve over a scalar field, whereas ZK-STARKs are most comfortable oper-
ating over binary fields. Hence, the issue of different representations further limits
the design space of ZK-friendly primitives.

STARKs. ZK-STARKs [Ben+18] is a novel proof system which, in contrast
to SNARKs, does not need a trusted setup phase and whose security relies
only on the existence of collision-resistant hash functions. The computation is
represented as an execution trace, with polynomial relations among the trace
elements. Concretely, the trace registers must be elements of some large binary
field, and the polynomials should have low degree. The proof generation time is
approximately1 O(S log S), where

S ≈ (Maximum polynomial degree × Trace length) .

1 We omit optimisations related to the trace layout.

Algebraic Cryptanalysis of STARK-Friendly Designs 373

The STARK paper came with a proposal to use Rijndael-based hash functions,
but as these have been shown to be insecure [KBN09], custom designs are clearly
needed.

Jarvis and Friday. Ashur and Dhooghe recently addressed this need with
the proposal of the block cipher Jarvis and the hash function Friday [AD18].
The primitives were immediately endorsed by the ZK-STARK authors as possible
solutions to reduce the STARK generation cost in many applications2. The new
hash function was claimed to offer up to a 20-fold advantage over Pedersen hashes
and an advantage by a factor of 2.5 over MiMC-based hash functions, regarding
the STARK proof generation time [BS18].

Albeit similar in spirit to MiMC, Jarvis comes with novel design elements
in order to considerably reduce the number of rounds, while still aiming to
provide adequate security. In the original proposal several types of algebraic
attacks were initially ruled out, and security arguments from Rijndael/AES
were used to inform the choice of the number of rounds, leading to a statement
that attacks were expected to cover up to three rounds only. An extra security
margin was added, leading to a recommendation of 10 rounds for the variant
with an expected security of 128 bits. Variants with higher claims of security
were also specified.

Algebraic Attacks. This class of attacks aims to utilise the algebraic proper-
ties of a construction. One example is the Gröbner basis attack, which pro-
ceeds by modelling the underlying primitive as a multivariate system of equa-
tions which is then solved using off-the-shelf Gröbner basis algorithms [Buc65,
CLO97,Fau99,Fau02]. After some initial success against certain stream cipher
constructions [Cou03b,Cou03a], algebraic attacks were also considered against
block ciphers [MR02,CB07], albeit with limited success. Even approaches com-
bining algebraic and statistical techniques [AC09] were later shown not to out-
perform known cryptanalytic techniques [Wan+11]. As a result algebraic attacks
are typically not considered a major concern for new block ciphers. We note how-
ever that Gröbner basis methods have proven fruitful for attacking a number of
public-key schemes [Fau+10,AG11,Alb+14,FPP14,Fau+15].

Contribution. In this paper we show that, while the overall design approach of
Jarvis and Friday seems sound, the choice for the number of rounds is not
sufficient to offer adequate security. We do this by mounting algebraic attacks
on the full-round versions of the primitives with the help of Gröbner bases. Our
results show that designers of symmetric-key constructions targeting “algebraic
platforms” – such as STARKs, FHE and MPC – must pay particular attention to
the algebraic structure of their ciphers, and that algebraic attacks should receive
renewed attention from the cryptographic community.

Organisation. The remainder of this work is organised as follows. In Sect. 2 we
briefly describe the block cipher Jarvis and the hash function Friday. Follow-
2 The ciphers were announced among high anticipation of the audience at the prime

Ethereum conference DevCon4, held in November 2018 [BS18].

374 M. R. Albrecht et al.

ing, we discuss various algebraic attacks in Sect. 3, including higher-order dif-
ferential attacks, interpolation attacks, and in particular attacks using Gröbner
bases. In the following sections, we describe our attacks, including key-recovery
attacks on Jarvis in Sect. 4 and preimage attacks on Friday in Sect. 5. In
Sect. 6, we describe our experimental results from running the attacks and dis-
cuss our findings. Finally, in Sect. 7 we analyse the S-box layer of Jarvis and
compare it to the AES.

2 MARVELlous

MARVELlous [AD18,Aly+19] is a family of cryptographic primitives specifi-
cally designed for STARK applications. It includes the block cipher Jarvis as
well as Friday, a hash function based on this block cipher. We briefly describe
the two primitives in this section.

As usual, we identify functions on F2n with elements in the quotient ring

R := F2n [X] /〈X2n − X〉.
Whenever it is clear from the context, we refer to the corresponding polynomial
representation in the above quotient ring when we speak of a function on F2n

and use the notation F (X), or just F , for the coset F (X) + 〈X2n − X〉 ∈ R.

2.1 JARVIS

Jarvis is a family of block ciphers operating on a state and a key of n bits, thus
working entirely over the finite field F2n . The construction is based on ideas used
by the AES, most prominently the wide-trail design strategy, which guarantees
security against differential and linear (statistical) attacks. However, where AES
uses multiple small S-boxes in every round, Jarvis applies a single nonlinear
transformation to the whole state, essentially using one large n-bit S-box. The
S-box of Jarvis is defined as the generalised inverse function S :F2n → F2n with

S(x) :=

{
x−1 x �= 0
0 x = 0,

which corresponds to the element

S(X) := X2n−2 ∈ R.

We note that this specific S-box makes the construction efficient in the STARK
setting, because verifying it uses only one quadratic constraint (note that for
non-zero x ∈ F2n the equality 1

x = y is equivalent to the equality x · y = 1,
and the constraint for the full S-box can be written as x2 · y + x = 0). We refer
to [Ben+18,AD18] for more details.

The linear layer of Jarvis is composed by evaluating a high-degree affine
polynomial

A(X) := L(X) + ĉ ∈ R,

Algebraic Cryptanalysis of STARK-Friendly Designs 375

where ĉ ∈ F2n is a constant and

L(X) :=
n−1∑
i=0

l2i · X2i ∈ R

is a linearised permutation polynomial. Note that the set of all linearised per-
mutation polynomials in R forms a group under composition modulo X2n − X,
also known as the Betti-Mathieu group [LN96].

In Jarvis, the polynomial A is built from two affine monic permutation
polynomials B,C of degree 4, that is

B(X) := LB(X) + b0 := X4 + b2X
2 + b1X + b0 ∈ R

and
C(X) := LC(X) + c0 := X4 + c2X

2 + c1X + c0 ∈ R
satisfying the equation

A = C ◦ B−1.

The operator ◦ indicates composition modulo X2n − X and B−1 denotes the
compositional inverse of B (with respect to the operator ◦) given by

B−1(X) := LB
−1(X) + LB

−1(b0).

Here, LB
−1 denotes the inverse of LB under composition modulo X2n − X, or

in other words, the inverse of LB in the Betti-Mathieu group. We highlight that
the inverse B−1 shares the same affine structure with B, i.e. it is composed of a
linearised permutation polynomial LB

−1 and a constant term in F2n , but has a
much higher degree.

One round of Jarvis is shown in Fig. 1. Additionally, a whitening key k0 is
applied before the first round.

si si+1

ki

S B−1 C

Fig. 1. One round of the Jarvis block cipher. For simplicity, the addition of the whiten-
ing key is omitted.

Key Schedule. The key schedule of Jarvis shares similarities with the round
function itself, the main difference being that the affine transformations are
omitted. In the key schedule, the first key k0 is the master key and the next
round key ki+1 is calculated by adding a round constant ci to the (generalised)
inverse S(ki) of the previous round key ki. One round of the key schedule is
depicted in Fig. 2.

376 M. R. Albrecht et al.

ki ki+1

ci

S

Fig. 2. The key schedule used by the Jarvis block cipher.

The first round constant c0 is randomly selected from F2n , while subsequent
round constants ci, 1 ≤ i ≤ r, are calculated using the relation

ci := a · ci−1 + b

for random elements a, b ∈ F2n .

Instantiations. The authors of [AD18] propose four instances of Jarvis-n,
where n ∈ {128, 160, 192, 256}. For each of these instances the values c1, a, b,
and the polynomials B and C are specified. Table 1 presents the recommended
number of rounds r for each instance, where the claimed security level is equal
to the key size (and state size) n. We will use r ∈ N throughout this paper to
denote the number of rounds of a specific instance.

Table 1. Instances of the Jarvis block cipher [AD18].

Instance n # of rounds r

Jarvis-128 128 10
Jarvis-160 160 11
Jarvis-192 192 12
Jarvis-256 256 14

2.2 FRIDAY

Friday is a hash function based on a Merkle-Damg̊ard construction, where
the block cipher Jarvis is transformed into a compression function using the
Miyaguchi-Preneel scheme. In this scheme, a (padded) message block mi, 1 ≤
i ≤ t, serves as input m to a block cipher E(m, k) and the respective previous
hash value hi−1 serves as key k. The output of the block cipher is then added
to the sum of mi and hi−1, resulting in the new hash value hi. The first hash
value h0 is an initialization vector and taken to be the zero element in F2n in
the case of Friday. The final state ht is the output of the hash function. The
hash function Friday is thus defined by the following iterative formula

h0 := IV := 0,
hi := E(mi, hi−1) + hi−1 + mi,

for 1 ≤ i ≤ t, as illustrated in Fig. 3.

Algebraic Cryptanalysis of STARK-Friendly Designs 377

m1

h0 h1

m2

h2
. . .

mt

ht−1 ht

Fig. 3. The Friday hash function.

3 Overview of Algebraic Attacks on JARVIS and FRIDAY

From an algebraic point of view, Jarvis offers security mainly by delivering a
high degree for its linear transformations and for the S-box. In the original pro-
posal, the authors analyse the security against various algebraic attack vectors,
such as higher-order differential attacks and interpolation attacks.

3.1 Higher-Order Differential Attacks

Higher-order differential attacks [Knu95] can be regarded as algebraic attacks
that exploit the low algebraic degree of a nonlinear transformation. If this degree
is low enough, an attack using multiple plaintexts and their corresponding cipher-
texts can be mounted. In more detail, if the algebraic degree of a Boolean func-
tion f is d, then when applying f to all elements of an affine vector space V ⊕ c
of dimension > d and taking the sum of these values, the result is 0, i.e.⊕

v∈V⊕c

v =
⊕

v∈V⊕c

f(v) = 0.

Finding such a distinguisher possibly allows the attacker to recover the secret
key.

However, higher-order differential attacks pose no threat to Jarvis. Indeed,
the algebraic degree of S(X) = X2n−2 is the Hamming weight of 2n − 2, which
is equal to n− 1 and thus maximal (note that the S-box is a permutation). This
makes higher-order differential attacks and zero-sum distinguishers infeasible
after only one round of Jarvis.

3.2 Interpolation Attacks

Interpolation attacks were introduced in 1997 [JK97] and are another type of
algebraic attack where the attacker constructs the polynomial corresponding to
the encryption (or decryption) function without knowing the secret key. The
basis of interpolation attacks is a consequence of the Fundamental Theorem of
Algebra: given d + 1 pairs (x0, y0), . . . , (xd, yd) of elements in a certain field F,
there is a unique polynomial P (X) ∈ F[X] of degree at most d which satisfies

P (xi) = yi

378 M. R. Albrecht et al.

for all 0 ≤ i ≤ d. To put it another way, the polynomial P (X) interpolates
the given pairs (xi, yi), which is why it deserves the denotation interpolation
polynomial. There are several approaches for calculating all the coefficients of
the interpolation polynomial. A classical technique is to choose Lagrange’s basis
(L0, L1, . . . , Ld), with

Li(X) :=
d∏

j=0
j �=i

X − xj

xi − xj
∈ F[X] ,

as a basis for the F-vector space F[X] and read off the solution (p0, . . . , pd) from
the resulting system of equations

yi = P (xi) = p0L0(xi) + p1L1(xi) + . . . + pdLd(xi), 0 ≤ i ≤ d.

Lagrange’s basis leads to a complexity of O(d2) field operations and so does
Newton’s basis {N0, N1, . . . , Nd} with

Ni(X) :=
i−1∏
j=0

(X − xj) ∈ F[X] .

A different approach uses the fact that polynomial interpolation can be
reduced to polynomial evaluation, as discussed by Horowitz [Hor72] and
Kung [Kun73], leading to a complexity of O(d log2 d) field operations. In essence,
this approach relies on the Fast Fourier Transform for polynomial multiplication.

From the above complexity estimates, it is thus desirable that the polynomial
representation of the encryption function reaches a high degree and forces all pos-
sible monomials to appear. In Jarvis, a high word-level degree is already reached
after only one round; additionally the polynomial expression of the encryption
function is also dense after only two rounds. It follows that interpolation attacks
pose no threat to Jarvis.

3.3 Gröbner Basis Attacks

The first step in a Gröbner basis attack is to describe the primitive by a system
of polynomial equations. Subsequently, a Gröbner basis [Buc65,CLO97] for the
ideal defined by the corresponding polynomials is calculated and finally used
to solve for specified variables. In more detail, Gröbner basis attacks consist of
three phases:

1. Set up an equation system and compute a Gröbner basis (typically for the
degrevlex term order for performance reasons) using an algorithm such as
Buchberger’s algorithm [Buc65], F4 [Fau99], or F5 [Fau02].

2. Perform a change of term ordering for the computed Gröbner basis (typically
going from the degrevlex term order to the lex one, which facilitates com-
puting elimination ideals and hence eliminating variables) using an algorithm
such as FGLM [Fau+93]. Note that in our applications all systems of alge-
braic equations result in zero-dimensional ideals, i.e. the systems have only
finitely many solutions.

Algebraic Cryptanalysis of STARK-Friendly Designs 379

3. Solve the univariate equation for the last variable using a polynomial factoring
algorithm, and substitute into other equations to obtain the full solution of
the system.

Cost of Gröbner Basis Computation. For a generic system of ne polynomial
equations

F1(x1, . . . , xnv
) = F2(x1, . . . , xnv

) = · · · = Fne
(x1, . . . , xnv

) = 0

in nv variables x1, . . . , xnv
, the complexity of computing a Gröbner basis [BFP12]

is

CGB ∈ O
((

nv + Dreg

Dreg

)ω)
, (1)

where 2 ≤ ω < 3 is the linear algebra exponent representing the complexity of
matrix multiplication and Dreg is the degree of regularity. The constants hidden
by O(·) are relatively small, which is why

(
nv+Dreg

Dreg

)ω
is typically used directly.

In general, computing the degree of regularity is a hard problem. However, the
degree of regularity for “regular sequences” [Bar+05] is given by

Dreg = 1 +
ne∑
i=1

(di − 1), (2)

where di is the degree of Fi. Regular sequences have ne = nv. More generally,
for “semi-regular sequences” (the generalisation of regular sequences to ne > nv)
the degree of regularity can be computed as the index of the first non-positive
coefficient in

H(z) =
1

(1 − z)nv
×

ne∏
i=1

(1 − zdi).

It is conjectured that most sequences are semi-regular [Fro85]. Indeed, experi-
mental evidence suggests random systems behave like semi-regular systems with
high probability. Hence, assuming our target systems of equations behave like
semi-regular sequences, i.e. they have no additional structure, the complexity
of computing a Gröbner basis depends on (a) the number of equations ne, (b)
the degrees d1, d2, . . . , dne

of the equations, and (c) the number of variables nv.
Crucially, our experiments described later in the paper indicate that the systems
considered in this work do not behave like regular sequences.

Cost of Gröbner Basis Conversion. The complexity of the FGLM algorithm
[Fau+93] is

CFGLM ∈ O
(
nv · deg(I)3

)
, (3)

where deg(I) is called the degree of the ideal and defined as the dimension of
the quotient ring F[X1,X2, . . . , Xn]/I as an F-vector space. For the systems we
are considering in this paper – which are expected to have a unique solution in
F – the dimension of R/I corresponds to the degree of the unique univariate

380 M. R. Albrecht et al.

polynomial equation in the reduced Gröbner basis with respect to the canonical
lexicographic order [KR00, Theorem 3.7.25]. Again, the hidden constants are
small, permitting to use nv · deg(I)3 directly. A sparse variant of the algorithm
also exists [FM11] with complexity O (deg(I)(N1 + nv log deg(I))), where N1 is
the number of nonzero entries of a multiplication matrix, which is sparse even
if the input system spanning I is dense. Thus, the key datum to establish for
estimating the cost of this step is deg(I).

Cost of Factoring. Finally, we need to solve for the last variable using the remain-
ing univariate polynomial equation obtained by computing all necessary elimi-
nation ideals. This can be done by using a factorisation algorithm. For example,
the complexity of a modified version of the Berlekamp algorithm [Gen07] to
factorise a polynomial P of degree D over F2n is

CSol ∈ O (
D3n2 + Dn3

)
. (4)

In our context, we can however reduce the cost of this step by performing
the first and second steps of the attack for two (or more) (plaintext, ciphertext)
pairs and then considering the GCD of the resulting univariate polynomials,
which are univariate in the secret key variable k0. Computing polynomial GCDs
is quasi-linear in the degree of the input polynomials. In particular, we expect

CSol ∈ O
(
D(log(D))2

)
. (5)

We will again drop the O(·) and use the expressions directly.

Our Algebraic Attacks on MARVELlous. All attacks on MARVELlous pre-
sented in this paper are inherently Gröbner basis attacks which, on the one hand,
are based on the fact that the S-box S(X) = X2n−2 of Jarvis can be regarded
as the function S :F2n → F2n , where

S(x) = x−1

for all elements except the zero element in F2n . As a consequence, the relation

y = S(x) = x−1

can be rewritten as an equation of degree 2 in two variables, namely

x · y = 1,

which holds everywhere except for the zero element in F2n . We will use this rela-
tion in our attacks, noting that x = 0 occurs with a negligibly small probability
for n ≥ 128.

On the other hand, we exploit the fact that the decomposition of the affine
polynomial A originates from two low-degree polynomials B and C. When setting
up the associated equations for Jarvis, we introduce intermediate variables in

Algebraic Cryptanalysis of STARK-Friendly Designs 381

such a way that the low degree of B and C comes into effect, and then show
that the particular combination of the inverse S-box S(X) = X2n−2 with the
affine layer in Jarvis is vulnerable to Gröbner basis attacks.

Based on the above observations, we describe in the next sections:

– a key-recovery attack on reduced-round Jarvis and an optimised key-recovery
attack on full-round Jarvis;

– its extension to a (two-block) preimage attack on full-round Friday;
– a more efficient direct preimage attack on full-round Friday.

4 Gröbner Basis Computation for JARVIS

We first describe a straightforward approach, followed by various optimisations
which are necessary to extend the attack to all rounds.

4.1 Reduced-Round JARVIS

Let B,C ∈ R be the polynomials of the affine layer in Jarvis. Furthermore, in
round i of Jarvis let us denote the intermediate state between the application
of B−1 and C as xi, for 1 ≤ i ≤ r (see Fig. 4).

si si+1

ki

S B−1 C
xi

Fig. 4. Intermediate state xi in one round of the encryption path.

As a result, two consecutive rounds of Jarvis can be related by the equation

(C(xi) + ki) · B(xi+1) = 1 (6)

for 1 ≤ i ≤ r − 1. As both polynomials B and C have degree 4, Eq. (6) yields a
system of r−1 polynomial equations, each of degree 8, in the variables x1, . . . , xr

and k0, . . . , kr. To make the system dependent on the plaintext p and the cipher-
text c, we add the two equations

B(x1) · (p + k0) = 1, (7)
C(xr) = c + kr (8)

to this system. Additionally, two successive round keys are connected through
the equation

(ki+1 + ci) · ki = 1 (9)

382 M. R. Albrecht et al.

for 0 ≤ i ≤ r − 1. In total, the above description of Jarvis amounts to 2 · r + 1
equations in 2 · r + 1 variables, namely:

– r − 1 equations of degree 8 (Eq. (6)),
– one equation of degree 5 (Eq. (7)),
– one equation of degree 4 (Eq. (8)),
– r equations of degree 2 (Eq. (9)),

in the 2·r+1 variables x1, . . . , xr and k0, . . . , kr. Since the number of equations is
equal to the number of variables, we can estimate the complexity of a Gröbner
basis attack by using Eq. (2). According to this estimate, the computation of
a Gröbner basis for the above system of equations is prohibitively expensive
for full-round Jarvis. For example, Eq. (2) predicts a complexity of ≈ 120 bits
(when setting ω = 2.8) for computing a Gröbner basis for r = 6. However,
we note that we were able to compute such a basis in practice (Sect. 6), which
indicates that the above estimate is too pessimistic.

4.2 Optimisations for an Attack on Full-Round JARVIS

In order to optimise the computation from the previous section and extend it
to full-round Jarvis, we introduce two main improvements. First, we reduce
the number of variables and equations used for intermediate states. Secondly,
we relate all round keys to the master key, which helps to further reduce the
number of variables.

A More Efficient Description of Intermediate States. The main idea is
to reduce the number of equations and variables for intermediate states at the
expense of an increased degree in some of the remaining equations. By relating
a fixed intermediate state xi to the respective preceding and succeeding inter-
mediate states xi−1 and xi+1, we obtain the equations

B(xi) =
1

C(xi−1) + ki−1
, (10)

C(xi) =
1

B(xi+1)
+ ki (11)

for 2 ≤ i ≤ r − 1. Since both B and C are monic affine polynomials of degree 4,
we claim that it is possible to find monic affine polynomials

D(X) := X4 + d2X
2 + d1X + d0

and
E(X) := X4 + e2X

2 + e1X + e0,

also of degree 4, such that
D(B) = E(C).

Algebraic Cryptanalysis of STARK-Friendly Designs 383

Indeed, comparing corresponding coefficients of D(B) and E(C) yields a system
of 5 linear equations in the 6 unknown coefficients d0, d1, d2, e0, e1, e2, which
can then be solved. We explain the construction of D and E in more detail in
Appendix A.

From now on let us assume we have already found appropriate polynomials
D and E. After applying D and E to Eqs. (10) and (11), respectively, we equate
the right-hand side parts of the resulting equations and get

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
(12)

for 2 ≤ i ≤ r − 1. Eventually we obtain a system of polynomial equations of
degree 36 by clearing denominators in Eq. (12).

The crucial point is that variables for every second intermediate state may
now be dropped out of the description of Jarvis. This is because we can consider
either only evenly indexed states or only odd ones, and by doing so, we have
essentially halved the number of equations and variables needed to describe
intermediate states. We note that in all optimised versions of our attacks we
only work with evenly indexed intermediate states, as this choice allows for a
more efficient description of Jarvis compared to working with odd ones.

Finally we relate the plaintext p and the ciphertext c to the appropriate
intermediate state x2 and xr, respectively, and set

D

(
1

p + k0

)
= E

(
1

B(x2)
+ k1

)
, (13)

C(xr) + kr = c. (14)

Here, the degree of Eq. (13) is 24, while Eq. (14) has degree 4.

Remarks. It is worth pointing out that the above description uses several implicit
assumptions. First, it may happen that some intermediate states become zero,
with the consequence that our approach will not find a solution. However, this
case only occurs with a negligibly small probability, in particular when consid-
ering instances with n ≥ 128. If this event occurs we can use another plaintext-
ciphertext pair. Secondly, when we solve the optimised system of equations
(i.e. the system we obtain after applying D and E), not all of the solutions
we find for this system are guaranteed to be valid solutions for the original sys-
tem of equations. Lastly, Eq. (14) implicitly assumes an even number of rounds.
If we wanted to attack an odd number of rounds instead, this equation had to
be adjusted accordingly.

Relating Round Keys to the Master Key. Two consecutive round keys in
Jarvis are connected by the relation

ki+1 =
1
ki

+ ci

384 M. R. Albrecht et al.

if ki �= 0, which is true with high probability for large state sizes n. As a conse-
quence, each round key is a rational function of the master key k0 of degree 1,
i.e.

ki+1 =
αi · k0 + βi

γi · k0 + δi
.

We provide the exact values for αi, βi, γi, and δi in Appendix B. Expressing ki

as a rational function of k0 in Eqs. (12) and (14) raises the total degree of these
equations to 40 and 5, respectively. On the other hand, the degree of Eq. (13)
remains unchanged.

4.3 Complexity Estimates of Gröbner Basis Computation for
JARVIS

Assuming the number of rounds r to be even, the aforementioned two improve-
ments yield

– r
2 − 1 equations of degree 40 (Eq. (12)),

– one equation of degree 24 (Eq. (13)),
– one equation of degree 5 (Eq. (14)),

in r
2 +1 variables (the intermediate states x2, x4, . . . , xr and the master key k0).

Since the number of equations equals the number of variables, we may calculate
the degree of regularity using Eq. (2), again assuming the system behaves like a
regular sequence.

Our results for the degree of regularity, and thus also for the complexity of
computing a Gröbner basis, are listed in Table 2. Note that we assume ω = 2.8.
However, this is possibly a pessimistic choice, as the regarded systems are sparse.
We therefore also give the complexities for ω = 2 in parentheses.

Table 2. Complexity estimates of Gröbner basis computations for r-round Jarvis.

r nv Dreg Complexity in bits

6 4 106 63 (45)
8 5 145 82 (58)
10 (Jarvis-128) 6 184 100 (72)
12 (Jarvis-192) 7 223 119 (85)
14 (Jarvis-256) 8 262 138 (98)

16 9 301 156 (112)
18 10 340 175 (125)
20 11 379 194 (138)

These values show that we are able to compute Gröbner bases for, and there-
fore successfully attack, all full-round versions of Jarvis. We note that, even
when pessimistically assuming that the memory complexity of a Gröbner basis
computation is asymptotically the same as its time complexity (the memory
complexity of any algorithm is bounded by its time complexity) and when con-
sidering the time-memory product (which is highly pessimistic from an attacker’s
point of view), our attacks against Jarvis-256 are still valid.

Algebraic Cryptanalysis of STARK-Friendly Designs 385

5 Gröbner Basis Computation for FRIDAY

In this section, we let F :F2n × F2n → F2n indicate the application of one block
of Friday.

5.1 Extending the Key-Recovery Attack on JARVIS to a Preimage
Attack on FRIDAY

Using the same equations as for Jarvis described in Sect. 4, a preimage attack
on Friday may also be mounted. At its heart, the attack on Friday with r
rounds is an attack on Jarvis with r − 1 rounds.

m1

IV h1

m2

h2

Fig. 5. Two blocks of Friday.

We work with two blocks of Friday, hence a message m is the concatenation

m = m1 || m2

of two message blocks m1,m2 ∈ F2n . The output of the first block is denoted by
h1 and the known (final) hash value of the second block is denoted by h2. The
hash values h1 and h2 can be expressed as

h1 = F (m1, IV)

and
h2 = F (m2, h1).

The initialization vector IV is just the zero element in F2n . We refer to Fig. 5
for an illustration of the introduced notation.

Our preimage attack proceeds as follows: in the first part, we use random
values m̂1 for the input to the first block to populate a table T1 in which each
entry contains a pair (m̂1, ĥ1), where ĥ1 denotes the corresponding intermediate
hash value

ĥ1 := F (m̂1, IV).

In the second part, we find pairs (m′
2, h

′
1) with

F (m′
2, h

′
1) = h2,

386 M. R. Albrecht et al.

or in other words, pseudo preimages for the known hash value h2. To find such a
pseudo preimage, we fix the sum m2 + h1 to an arbitrary value v0 ∈ F2n , i.e. we
set

v0 := m2 + h1.

This has two effects:

1. In the second block, the value v1 entering the first round of Jarvis is fixed
and known until the application of the second round key. Essentially, this
means that one round of Jarvis can be skipped.

2. Since v0 = m2 + h1 is fixed and known, the final output v2 of Jarvis is
defined by

v2 := v0 + h2

and thus also known.

In the current scenario, the intermediate hash value h1 serves as master
key for the r round keys k1, k2, . . . , kr applied in the second block. Using v1 as
plaintext and v2 as ciphertext, an attack on Jarvis with r−1 rounds is sufficient
to reveal these round keys. Once one of the round keys is recovered, we calculate
the second part h′

1 of a pseudo preimage (m′
2, h

′
1) by applying the inverse key

schedule to the recovered key. Finally, we set

m′
2 := h′

1 + v0

and thereby obtain the remaining part of a pseudo preimage. How the presented
pseudo preimage attack on r-round Friday reduces to a key-recovery attack on
(r − 1)-round Jarvis is outlined in Fig. 6.

Conceptually, we repeat the pseudo preimage attack many times (for different
values of v0) and store the resulting pairs (m′

2, h
′
1) in a table T2. The aim is to

produce matching entries (m̂1, ĥ1) and (m′
2, h

′
1) in T1 and T2 such that

ĥ1 = h′
1,

which implies

F (m′
2, F (m̂1, IV)) = F (m′

2, ĥ1) = F (m′
2, h

′
1) = h2,

giving us the preimage (m̂1,m
′
2) we are looking for.

Remark. The (input, output) pairs (v1, v2) we use for the underlying key-
recovery attack on Jarvis are not proper pairs provided by, e.g., an encryption
oracle for Jarvis. Thus, it may happen that for some pairs (v1, v2) the key-
recovery attack does not succeed, i.e. there is no key h′

1 which maps v1 to v2.
The probability for such an event is

Pfail =
(

2n − 1
2n

)2n

=
(

1 − 1
2n

)2n

≈ lim
k→∞

(
1 − 1

k

)k

=
1
e

for large n.

Algebraic Cryptanalysis of STARK-Friendly Designs 387

m2

h1

h2

k1 kr

· · ·
v0 v1 v2

S B−1 C

Fig. 6. Internals of the second block of Friday. The values v0, v1 and v2 are known.

5.2 Complexity of Generating Pseudo Preimages

The cost of generating pseudo preimages is not negligible. Hence, we cannot
afford to generate tables T1 and T2, each with 2

n
2 entries, and then look for a

collision. However, given the attack complexities for Jarvis in Table 2, an attack
on 9-round Jarvis has a complexity of around 83 bits (assuming ω = 2.8).
Considering Jarvis-128, for example, this means we can generate up to 245

pseudo preimages.
Let us assume we calculate 210 pseudo preimages (m̂1,m

′
1) and 2

n
2 intermedi-

ate pairs (m̂1, ĥ1), in both cases for Friday instantiated with Jarvis-128. This
leaves us with a table T1 containing 2

n
2 (m̂1, ĥ1) pairs and a table T2 containing

210 (m′
2, h

′
1) pairs.

Assuming that all hash values in T1 are pairwise distinct and that also all
hash values in T2 are pairwise distinct, the probability that we find at least one
hash collision between a pair in T1 and a pair in T2 is

P = 1 −
|T2|−1∏

i=0

(
1 − |T1|

2128 − i

)
, (15)

which is, unfortunately, too low for |T1| = 2
n
2 . However, we can increase this

probability by generating more entries for T1. Targeting a total complexity of,
e.g., ≈ 120 bits, we can generate 2118 such entries. Note that the number of
expected collisions in a table of m random n-bit entries is

Nc = m − 2n + 2n ·
(

2n − 1
2n

)m

.

Therefore, the expected number of unique values in such a table is

Nu =
(

1 − Nc

m

)
· m = m − Nc = 2n − 2n ·

(
2n − 1

2n

)m

.

We want that Nu ≥ 2118, and by simple computation it turns out that 2119 hash
evaluations are sufficient with high probability. Using these values in Eq. (15)
yields a success probability of around 63%.

388 M. R. Albrecht et al.

5.3 Direct Preimage Attack on FRIDAY

The preimage attack we present in this section works with one block of Friday,
as shown in Fig. 7.

m1

h0

h1

Fig. 7. Preimage attack on Friday using one message block.

The description of the intermediate states x1, . . . , xr yields the same system
of equations as before; however, in contrast to the optimised attack on Jarvis
described in Sect. 4.2, in the current preimage attack on Friday the master key
k0 and thus all subsequent round keys k1, . . . , kr are known. As an effect, we do
not need to express round keys as a rational function of k0 anymore. For the
sake of completeness, we give Eq. (12) once more and note that the degree now
decreases to 32 (from formerly 40). It holds that

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)

for 2 ≤ i ≤ r − 1. Moreover, an additional equation is needed to describe the
structure of the Miyaguchi-Preneel compression function (see Fig. 6), namely

B(x1) · (C(xr) + kr + h1) = 1.

Again, we assume an even number of rounds r and work with intermediate states
x2, x4, . . . , xr, which is why we need to apply the transformations D and E to
cancel out the state x1 in the above equation. Thus, eventually we have

D

(
1

C(xr) + kr + h1

)
= E

(
1

B(x2)
+ k1

)
. (16)

Here, h1 denotes the hash value for which we want to find a preimage m′
1 such

that
F (m′

1, h0) = h1.

To obtain m′
1 we solve for the intermediate state xr and calculate

m′
1 := C(xr) + kr + h1 + h0.

The value h0 = k0 can be regarded as the initialisation vector and is the zero
element in F2n . The above attack results in:

Algebraic Cryptanalysis of STARK-Friendly Designs 389

– r
2 − 1 equations of degree 32 coming from Eq. (12) when considering even
intermediate states, and

– one equation of degree 32 coming from Eq. (16),

in the r
2 variables x2, x4, . . . , xr. The number of equations is the same as the

number of variables, and we can again use Eq. (2) to estimate the degree of reg-
ularity. The complexities of the Gröbner basis computations are summarised in
Table 3, where we pessimistically assume ω = 2.8, but also give the complexities
for ω = 2 in parentheses.

Table 3. Complexity estimates for the Gröbner basis step in preimage attacks on
Friday using r-round Jarvis.

r nv Dreg Complexity in bits

6 3 94 48 (34)
8 4 125 65 (47)
10 (Jarvis-128) 5 156 83 (59)
12 (Jarvis-192) 6 187 101 (72)
14 (Jarvis-256) 7 218 118 (85)

16 8 249 136 (97)
18 9 280 154 (110)
20 10 311 172 (123)

6 Behaviour of the Attacks Against JARVIS and FRIDAY

Recall that our attack has three steps:

1. Set up an equation system and compute a Gröbner basis using, e.g., the F4
algorithm [Fau99], with cost CGB.

2. Perform a change of term ordering for the computed Gröbner basis using the
FGLM algorithm [Fau+93], with cost CFGLM.

3. Solve the remaining univariate equation for the last variable using a polyno-
mial factoring algorithm, substitute into other equations, with cost CSol.

For the overall cost of the attack we have3:

C := 2 CGB + 2 CFGLM + CSol,

C := 2
((

nv + D

D

)ω)
+ 2

(
nv · Du

3
)

+
(
Du log2 Du

)
.

We can estimate CGB if we assume that our systems behave like regular
sequences. For the CFGLM and CSol we need to establish the degree Du of the
3 As suggested in Sect. 3.3, our attack proceeds by running steps 1 and 2 twice, and

recovering the last variable via the GCD computation, thus reducing the complexity
of step 3.

390 M. R. Albrecht et al.

univariate polynomial recovered, for which however we do not have an esti-
mate. We have therefore implemented our attacks on Jarvis and Friday using
Sage v8.6 [Ste+19] with Magma v2.20–5 [BCP97] as the Gröbner basis engine.
In particular, we implemented both the unoptimised and the optimised variants
of the attacks from Sects. 4.2 and 5.3.

We observed that our attacks performed significantly better in our experi-
ments than predicted. On the one hand, our Gröbner basis computations reached
significantly lower degrees D than the (theoretically) expected Dreg. Further-
more, the degrees of the univariate polynomials seem to grow as ≈ 2·5r (Jarvis)
and as ≈ 2 · 4r (Friday), respectively, suggesting the second and third steps of
our attack are relatively cheap.

We therefore conclude that the complexities given in Tables 2 and 3 are con-
servative upper bounds for our attacks on Jarvis and Friday. We summarise
our findings in Table 4, and we provide the source code of our attacks on MAR-
VELlous as supplementary material. We summarise our findings in Table 4,
and the source code of our attacks on MARVELlous is available on GitHub4.

6.1 Comparison with MiMC

We note that the same attack strategy – direct Gröbner basis computation to
recover the secret key – also applies, in principle, to MiMC, as pointed out
by [Ash19]. In particular, it is easy to construct a multivariate system of equa-
tions for MiMC with degree 3 that is already a Gröbner basis by introducing
a new state variable per round5. This makes the first step of a Gröbner basis
attack free.6 However, then the change of ordering has to essentially undo the
construction to recover a univariate polynomial of degree Du ≈ 3r. Performing
this step twice produces two such polynomials from which we can recover the
key by applying the GCD algorithm with complexity Õ (3r). In [Alb+16], the
security analysis implicitly assumes that steps 1 and 2 of our attack are free by
constructing the univariate polynomial directly and costing only the third and
final step of computing the GCD.

The reason our Gröbner basis attacks are so effective against Friday and
Jarvis is that the particular operations used in the ciphers – finite field inversion
and low-degree linearised polynomials – allow us to construct a polynomial sys-
tem with a relatively small number of variables, which can in turn be efficiently
solved using our three-step attack strategy. We have not been able to construct
such amenable systems for MiMC.

4 https://github.com/IAIK/marvellous-attacks.
5 This property was observed by Tomer Ashur and Alan Szepieniec and shared with

us during personal communication.
6 We note that this situation is somewhat analogous to the one described in [BPW06].

https://github.com/IAIK/marvellous-attacks

Algebraic Cryptanalysis of STARK-Friendly Designs 391

Table 4. Experimental results using Sage.

Jarvis (optimised)

r nv Dreg 2 log2

(
nv+Dreg

Dreg

)
D 2 log2

(
nv+D

D

)
Du = deg(I) Time

3 2 47 20 26 17 256 0.3s
4 3 67 31 40 27 1280 9.4s
5 3 86 34 40 27 6144 891.4s
6 4 106 45 41 34 28672 99989.0s

Jarvis (unoptimised)

3 4 25 29 10 20 256 0.5s
4 5 33 38 11 24 1280 23.9s
5 6 41 47 13 29 6144 2559.8s
6 7 47 55 14 34 28672 358228.6s

Friday

3 2 39 19 32 18 128 3.6s
4 2 63 22 36 19 512 0.5s
5 3 70 32 36 26 2048 36.5s
6 3 94 34 48 29 8192 2095.2s

In the table, r denotes the number of rounds, Dreg is the expected degree of regularity
under the assumption that the input system is regular, nv is the number of variables, 2·
log2

(
nv+Dreg

Dreg

)
is the expected bit security for ω = 2 under the regularity assumption, D

is the highest degree reached during the Gröbner basis computation, and 2 ·log2

(
nv+D

D

)

is the expected bit security for ω = 2 based on our experiments. The degree of the
recovered univariate polynomial used for solving the system is denoted as Du.

7 Comparing the S-Boxes of JARVIS and the AES

The non-linear operation in Jarvis shows similarities with the AES S-box
SAES(X). In particular, SAES(X) is the composition of an F2-affine function
AAES and the multiplicative inverse of the input in F28 , i.e.

SAES(X) = AAES(X254),

where

AAES(X) = 0x8F · X128 + 0xB5 · X64 + 0x01 · X32 + 0xF4 · X16 +
0x25 · X8 + 0xF9 · X4 + 0x09 · X2 + 0x05 · X + 0x63.

In Jarvis, we can also view the S-box as

S(X) = A(X254),

where
A(X) = (C ◦ B−1)(X)

392 M. R. Albrecht et al.

and both B and C are of degree 4. In this section we show that AAES cannot be
split into

AAES(X) = (Ĉ ◦ B̂−1)(X),

with both B̂ and Ĉ of low degree. To see this, first note that above decomposition
implies

B̂(X) = A−1
AES(Ĉ(X)),

where

A−1
AES(X) = 0x6E · X128 + 0xDB · X64 + 0x59 · X32 + 0x78 · X16 +

0x5A · X8 + 0x7F · X4 + 0xFE · X2 + 0x5 · X + 0x5

is the compositional inverse polynomial of AAES satisfying the relation

A−1
AES(AAES(x)) = x,

for every x ∈ F28 . Hence, to show that at least one of B̂, Ĉ is of degree > 4, it
suffices to compute A−1

AES(Ĉ) assuming a degree 4 for Ĉ, and to show that then
the corresponding B̂ has degree > 4.

Remark. First of all, note that since AAES has degree 128, it is always possible
to find polynomials Ĉ and B̂ of degree 8 such that the equality AAES(X) =
Ĉ(B̂−1(X)) is satisfied. Indeed, if both Ĉ and B̂ have degree 8, then each one
of them have all monomials of degrees 1, 2, 4 and 8. The equality AAES(X) =
Ĉ(B̂−1(X)) is then satisfied if 8 equations (one for each monomial of AAES) in 8
variables (both Ĉ and B̂ have 4 monomials each) are satisfied. Hence, a random
polynomial AAES satisfies the equality AAES(x) = Ĉ(B̂−1(x)) with negligible
probability if both Ĉ and B̂ have degree at most 4.

Property of AAES. Let us assume a degree-4 polynomial

Ĉ(X) = ĉ4X
4 + ĉ2X

2 + ĉ1X + ĉ0.

We can now write down A−1
AES(Ĉ(X)), which results in B̂(X). However, we

want B̂ to be of degree at most 4, so we set all coefficients for the degrees
8, 16, 32, 64, 128 to 0. This results in a system of five equations in the three vari-
ables ĉ1, ĉ2, ĉ4, given in Appendix C. We tried to solve this system and confirmed
that no solutions exist. Thus, the affine part of the AES S-box cannot be split
into Ĉ(B̂−1(X)) such that both B̂ and Ĉ are of degree at most 4, whereas in
Jarvis this is possible.

As a result, from this point of view, the main difference between AES and
Jarvis/Friday is that the linear polynomial used to construct the AES S-box
does not have the splitting property used in our attacks, while the same is not
true for the case of Jarvis/Friday. In this latter case, even if B(C−1) has high
degree, it depends only on 9 variables instead of n+1 as expected by a linearised
polynomial of degree 2n (where n ≥ 128). Thus, a natural question to ask is what
happens if we replace B and C with other polynomials of higher degree.

Algebraic Cryptanalysis of STARK-Friendly Designs 393

8 Conclusion and Future Work

We have demonstrated that Jarvis and Friday are insecure against Gröbner
basis attacks, mainly due to the algebraic properties of concatenating the finite
field inversion with a function that is defined by composing two low-degree affine
polynomials. In our attacks we modelled both designs as a system of polyno-
mial equations in several variables. Additionally, we bridged equations over two
rounds, with the effect of significantly reducing the number of variables needed
to describe the designs.

Following our analysis, the area sees a dynamic development. Authors
of Jarvis and Friday have abandoned their design. Their new construc-
tion [Aly+19] is substantially different, although it still uses basic components
which we were able to exploit in our analysis. Whether our particular method
of bridging internal state equations can be applied to the new hash functions is
subject to future work. A broader effort is currently underway to identify designs
practically useful for a range of modern proof systems. A noteable competition
compares three new designs (Marvelous [Aly+19], Poseidon/Starkad [Gra+19],
and GMiMC [Alb+19]) with the more established MiMC.

Acknowledgements. We thank Tomer Ashur for fruitful discussions about Jarvis,
Friday, and a preliminary version of our analysis. The research described in this paper
was supported by the Royal Society International Exchanges grant “Domain Specific
Ciphers” (IES\R2\170211) and the “Lightest” project, which is partially funded by
the European Commission as an Innovation Act as part of the Horizon 2020 program
under grant agreement number 700321.

References

[AC09] Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9 12

[AD18] Ashur, T., Dhooghe, S.: MARVELlous: A STARKFriendly Family of Crypto-
graphic Primitives. Cryptology ePrint Archive, Report 2018/1098. https://
eprint.iacr.org/2018/1098 (2018)

[AG11] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol.
6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22006-7 34

[Alb+14] Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: Algebraic Algorithms for
LWE. Cryptology ePrint Archive, Report 2014/1018. http://eprint.iacr.org/
2014/1018 (2014)

[Alb+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 17

[Alb+16] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: effi-
cient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS,

https://doi.org/10.1007/978-3-642-03317-9_12
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/1018
https://doi.org/10.1007/978-3-662-46800-5_17

394 M. R. Albrecht et al.

vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 7

[Alb+19] Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru,
D. et al.: Feistel Structures for MPC, and More. Cryptology ePrint Archive,
Report 2019/397, to appear in ESORICS 2019. https://eprint.iacr.org/2019/
397 (2019)

[Aly+19] Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. Cryp-
tology ePrint Archive, Report 2019/426. https://eprint.iacr.org/2019/426
(2019)

[Ash19] Ashur, T.: Private Communication, March 2019
[Bar+05] Bardet, M., Faugere, J.C., Salvy, B., Yang, B.Y.: Asymptotic behaviour of

the index of regularity of quadratic semi-regular polynomial systems. In:
The Effective Methods in Algebraic Geometry Conference (MEGA), pp. 1–
14 (2005)

[BCP97] Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the
user language. J. Symbolic Comput. 24, 235–265 (1997)

[Ben+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
et al.: Zerocash: Decentralized Anonymous Payments from Bitcoin. Cryp-
tology ePrint Archive, Report 2014/349 (2014). http://eprint.iacr.org/2014/
349

[Ben+18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046. https://eprint.iacr.org/2018/046 (2018)

[BFP12] Bettale, L., Faugère, J.-C., Perret, L.: Solving polynomial systems over finite
fields: improved analysis of the hybrid approach. In: International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2012, pp. 67–74. ACM
(2012)

[BPW06] Buchmann, J., Pyshkin, A., Weinmann, R.-P.: A zero-dimensional Gröbner
basis for AES-128. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp.
78–88. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 6

[BS18] Ben-Sasson, E.: State of the STARK, November 2018. https://drive.google.
com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view

[Buc65] Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. the-
sis, University of Innsbruck (1965)

[Bun+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: short proofs for confidential transactions and more. In: 2018 IEEE
Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society
Press, May 2018. https://doi.org/10.1109/SP.2018.00020

[CB07] Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption
standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 152–169. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77272-9 10

[CLO97] Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms - An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics, 2nd edn. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-319-16721-3

[Cou03a] Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 11

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/426
http://eprint.iacr.org/2014/349
http://eprint.iacr.org/2014/349
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/11799313_6
https://drive.google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view
https://drive.google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-540-77272-9_10
https://doi.org/10.1007/978-3-540-77272-9_10
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-540-45146-4_11

Algebraic Cryptanalysis of STARK-Friendly Designs 395

[Cou03b] Courtois, N.T.: Higher order correlation attacks, XL algorithm and crypt-
analysis of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol.
2587, pp. 182–199. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36552-4 13

[Fau+10] Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A Distin-
guisher for High Rate McEliece Cryptosystems. Cryptology ePrint Archive,
Report 2010/331. http://eprint.iacr.org/2010/331 (2010)

[Fau+15] Faugère, J.-C., Gligoroski, D., Perret, L., Samardjiska, S., Thomae, E.: A
polynomial-time key-recovery attack on MQQ cryptosystems. In: Katz, J.
(ed.) PKC 2015. LNCS, vol. 9020, pp. 150–174. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46447-2 7

[Fau+93] Faugère, J.-C., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation
of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput.
16(4), 329–344 (1993)

[Fau02] Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5). In: Mora, T. (ed.) Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation ISSAC, pp.
75-83. ACM Press, July 2002. ISBN 1-58113-484-3

[Fau99] Faugere, J.-C.: A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

[FM11] Faugère, J.-C., Mou, C.: Fast algorithm for change of ordering of zero-
dimensional Gröbner bases with sparse multiplication matrices. In: Schost,
É., Emiris, I.Z. (eds.) Symbolic and Algebraic Computation, International
Symposium, ISSAC 2011, pp. 115–122. ACM (2011). https://doi.org/10.
1145/1993886.1993908

[FPP14] Faugère, J.-C., Perret, L., de Portzamparc, F.: Algebraic attack against vari-
ants of mceliece with goppa polynomial of a special form. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 21–41.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 2

[Fro85] Fröberg, R.: An inequality for Hilbert series of graded algebras. Mathematica
Scandinavica 56, 117–144 (1985)

[Gen07] Genovese, G.: Improving the algorithms of Berlekamp and Niederreiter for
factoring polynomials over finite fields. J. Symb. Comput. 42(1–2), 159–177
(2007)

[Gra+19] Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofneg-
ger, M.: Starkad and Poseidon: New Hash Functions for Zero Knowledge
Proof Systems. Cryptology ePrint Archive, Report 2019/458. https://eprint.
iacr.org/2019/458 (2019)

[Hop+19] Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specifica-
tion: version 2019.0-beta-37 [Overwinter+Sapling]. Technical report, Zero-
coin Electric Coin Company (2019). https://github.com/zcash/zips/blob/
master/protocol/protocol.pdf

[Hor72] Horowitz, E.: A fast method for interpolation using preconditioning. Inf.
Process. Lett. (IPL) 1(4), 157–163 (1972)

[JK97] Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In:
Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052332

[KBN09] Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for
byte-oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 164–181. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00862-7 11

https://doi.org/10.1007/3-540-36552-4_13
https://doi.org/10.1007/3-540-36552-4_13
http://eprint.iacr.org/2010/331
https://doi.org/10.1007/978-3-662-46447-2_7
https://doi.org/10.1145/1993886.1993908
https://doi.org/10.1145/1993886.1993908
https://doi.org/10.1007/978-3-662-45611-8_2
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-3-642-00862-7_11
https://doi.org/10.1007/978-3-642-00862-7_11

396 M. R. Albrecht et al.

[Knu95] Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 16

[KR00] Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, 1st edn.
Springer, New York (2000)

[Kun73] Kung, H.-T.: Fast Evaluation and Interpolation. Technical report, Depart-
ment of Computer Science, Carnegie-Mellon University, January 1973

[LN96] Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and
its Applications, 2nd edn. Cambridge University Press (1996)

[MR02] Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 1

[Par+13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy,
pp. 238–252. IEEE Computer Society Press, May 2013. https://doi.org/10.
1109/SP.2013.47

[Ste+19] Stein, W., et al.: Sage Mathematics Software Version 8.6. The Sage Devel-
opment Team (2019). http://www.sagemath.org

[Wan+11] Wang, M., Sun, Y., Mouha, N., Preneel, B.: Algebraic techniques in differ-
ential cryptanalysis revisited. In: Parampalli, U., Hawkes, P. (eds.) ACISP
2011. LNCS, vol. 6812, pp. 120–141. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22497-3 9

A Polynomials of Section 4.2

In Sect. 4.2, we search for monic affine polynomials D,E such that the equality

D(B) = E(C)

is satisfied, where B,C are monic affine polynomials of degree 4. In particular,
given

B(X) = X4 + b2X
2 + b1X + b0 and C(X) = X4 + c2X

2 + c1X + c0

the goal is to find

D(X) = X4 + d2X
2 + d1X

1 + d0 and E(X) = X4 + e2X
2 + e1X + e0

such that D(B) = E(C).
By comparing the corresponding coefficients of D(B) and E(C), we obtain

a system of 5 linear equations in the 6 variables d0, d1, d2, e0, e1, e2:

d2 + e2 = b42 + c42,

d1 + b22 · d2 + e1 + c22 · e2 = b41 + c41,

b2 · d1 + b21 · d2 + c2 · e1 + c21 · e2 = 0,

b1 · d1 + c1 · e1 = 0,

d0 + b0 · d1 + b20 · d2 + e0 + c0 · e1 + c20 · e2 = b40 + c40.

This system can be solved to recover D and E.

https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-45708-9_1
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
http://www.sagemath.org
https://doi.org/10.1007/978-3-642-22497-3_9
https://doi.org/10.1007/978-3-642-22497-3_9

Algebraic Cryptanalysis of STARK-Friendly Designs 397

B Constants αi, βi, γi, and δi for the Round Keys

Each round key ki+1 = 1
ki

+ ci in Jarvis can be written as

ki+1 =
αi · k0 + βi

γi · k0 + δi
,

where αi, βi, γi, and δi are constants. By simple computation, note that:

– i = 0:
k1 =

1
k0

+ c0 =
c0k0 + 1

k0
,

and α0 = c0, β0 = 1, γ0 = 1, δ0 = 0;
– i = 1:

k2 =
1
k1

+ c1 =
(c0c1 + 1)k0 + c1

c0k0 + 1
,

and α1 = 1 + c0c1, β1 = c1, γ1 = c0, δ1 = 1;
– i = 2:

k3 =
1
k2

+ c2 =
(c0c1c2 + c0 + c2)k0 + c1c2 + 1

(c0c1 + 1)k0 + c1
,

and α2 = c0c1c2 + c0 + c2, β2 = c1c2 + 1, γ2 = c0c1 + 1, δ2 = c1;

and so on. Thus, we can derive recursive formulas to calculate the remaining
values for generic i ≥ 0:

αi+1 = αi · ci+1 + γi,

βi+1 = βi · ci+1 + δi,

γi+1 = αi,

δi+1 = βi.

C System of Equations from Section 7

The system of equations is constructed by symbolically computing A−1
AES(Ĉ(x)),

as described in Sect. 7, and setting all coefficients for degrees 8, 16, 32, 64, 128 to
0. These are five possible degrees and the following equations are the sum of all
coefficients belonging to each of these degrees:

0x5a · ĉ81 + 0x7f · ĉ42 + 0xfe · ĉ24 = 0,

0x78 · ĉ161 + 0x5a · ĉ82 + 0x7f · ĉ44 = 0,

0x59 · ĉ321 + 0x78 · ĉ162 + 0x5a · ĉ84 = 0,

0xdb · ĉ641 + 0x59 · ĉ322 + 0x78 · ĉ164 = 0,

0x6e · ĉ1281 + 0xdb · ĉ642 + 0x59 · ĉ324 = 0.

By practical tests we found that no (nontrivial) coefficients ĉ1, ĉ2, ĉ4 satisfy all
previous equalities, which means that there are no polynomials B̂ and Ĉ both
of degree 4 that satisfy AAES(X) = (Ĉ ◦ B̂−1)(X).

MILP-aided Method of Searching
Division Property Using Three

Subsets and Applications

Senpeng Wang(B), Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi

PLA SSF Information Engineering University, Zhengzhou, China
wsp2110@126.com

Abstract. Division property is a generalized integral property proposed
by Todo at EUROCRYPT 2015, and then conventional bit-based divi-
sion property (CBDP) and bit-based division property using three sub-
sets (BDPT) were proposed by Todo and Morii at FSE 2016. At the very
beginning, the two kinds of bit-based division properties once couldn’t
be applied to ciphers with large block size just because of the huge time
and memory complexity. At ASIACRYPT 2016, Xiang et al. extended
Mixed Integer Linear Programming (MILP) method to search integral
distinguishers based on CBDP. BDPT can find more accurate integral
distinguishers than CBDP, but it couldn’t be modeled efficiently.

This paper focuses on the feasibility of searching integral distinguish-
ers based on BDPT. We propose the pruning techniques and fast prop-
agation of BDPT for the first time. Based on these, an MILP-aided
method for the propagation of BDPT is proposed. Then, we apply this
method to some block ciphers. For SIMON64, PRESENT, and RECT-
ANGLE, we find more balanced bits than the previous longest distin-
guishers. For LBlock, we find a better 16-round integral distinguisher
with less active bits. For other block ciphers, our results are in accor-
dance with the previous longest distinguishers.

Cube attack is an important cryptanalytic technique against symmet-
ric cryptosystems, especially for stream ciphers. And the most important
step in cube attack is superpoly recovery. Inspired by the CBDP based
cube attack proposed by Todo at CRYPTO 2017, we propose a method
which uses BDPT to recover the superpoly in cube attack. We apply this
new method to round-reduced Trivium. To be specific, the time complex-
ity of recovering the superpoly of 832-round Trivium at CRYPTO 2017
is reduced from 277 to practical, and the time complexity of recovering
the superpoly of 839-round Trivium at CRYPTO 2018 is reduced from
279 to practical. Then, we propose a theoretical attack which can recover
the superpoly of Trivium up to 841 round.

Keywords: Integral distinguisher · Division property · MILP · Block
cipher · Cube attack · Stream cipher

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 398–427, 2019.
https://doi.org/10.1007/978-3-030-34618-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_14

MILP-aided Method of Searching Division Property 399

1 Introduction

Division property, a generalization of integral property [11], was proposed by
Todo at EUROCRYPT 2015 [22]. It can exploit the algebraic structure of block
ciphers to construct integral distinguishers even if the block ciphers have non-
bijective, bit-oriented, or low-degree structures. Then, at CRYPTO 2015 [20],
Todo applied this new technique to MISTY1 and achieved the first theoretical
cryptanalysis of the full-round MISTY1. Sun et al. [18], revisited division prop-
erty, and they studied the property of a set (multiset) satisfying certain division
property. At CRYPTO 2016 [4], Boura and Canteaut introduced a new notion
called parity set to exploit division property. They formulated and character-
ized the division property of S-box and found better integral distinguisher of
PRESENT [3]. But it required large time and memory complexity. To solve this
problem, Xie and Tian [28] proposed another concept called term set, based on
which they found a 9-round distinguisher of PRESENT with 22 balanced bits.

In order to exploit the concrete structure of round function, Todo and Morii
[21] proposed bit-based division property at FSE 2016. There are two kinds of
bit-based division property: conventional bit-based division property (CBDP)
and bit-based division property using three subsets (BDPT). CBDP focuses on
that the parity

⊕

x∈X

xu is 0 or unknown, while BDPT focuses on that the parity
⊕

x∈X

xu is 0, 1, or unknown. Therefore, BDPT can find more accurate integral

characteristics than CBDP. For example, CBDP proved the existence of the
14-round integral distinguisher of SIMON32 while BDPT found the 15-round
integral distinguisher of SIMON32 [21].

Although CBDP and BDPT could find accurate integral distinguishers, the
huge complexity once restricted their wide applications. At ASIACRYPT 2016,
Xiang et al. [27] applied MILP method to search integral distinguishers based on
CBDP, which allowed them to analyze block ciphers with large sizes. But there
was still no MILP method to model the propagation of BDPT.

Cube attack, proposed by Dinur and Shamir [6] at EUROCRYPT 2009, is
one of the general cryptanalytic techniques against symmetric cryptosystems.
For a cipher with n secret variables x = (x0, x1, . . . , xn−1) and m public vari-
ables v = (v0, v1, . . . , vm−1), the output bit can be denoted as a polynomial
f (x,v). The core idea of cube attack is to simplify f (x,v) by summing the
output of cryptosystem over a subset of public variables, called cube. And the
target of cube attack is to recover secret variables from the simplified poly-
nomial called superpoly. In the original paper of cube attack [6], the authors
regarded stream cipher as a blackbox polynomial and introduced a linearity test
to recover superpoly. Recently, many variants of cube attacks were put forward
such as dynamic cube attacks [7], conditional cube attacks [14], correlation cube
attacks [15], CBDP based cube attacks [23,26], and deterministic cube attacks
[30].

At EUROCRYPT 2018 [15], Liu et al. proposed correlation cube attack, which
could mount to 835-round Trivium using small dimensional cubes. Then, in
[30], Ye et al. proposed a new variant of cube attack, named deterministic cube

400 S. Wang et al.

attacks. Their attacks were developed based on degree evaluation method pro-
posed by Liu et al. at CRYPTO 2017 [16]. They proposed a special type of cube
that the numeric degree of every term was always less than or equal to the cube
size, called useful cube. With a 37-dimensional useful cube, they recovered the
corresponding exact superpoly for up to 838-round Trivium. However, as the
authors wrote in their paper, it seemed hard to increase the number of attacking
round when the cube size increased. Namely, their methods didn’t work well
for large cube size. Moreover, at CRYPTO 2018 [9], Fu et al. proposed a key
recovery attack on 855-round Trivium which somewhat resembled dynamic cube
attacks. For the attack in [9], the paper [12] pointed out that there was possibil-
ity that the correct key guesses and the wrong ones shared the same zero-sum
property. It means that the key recovery attack may degenerate to distinguish
attack.

It is noticeable that, at CRYPTO 2017 [23], Todo et al. treated the poly-
nomial as non-blackbox and applied CBDP to the cube attack on stream
ciphers. Due to the MILP-aided CBDP, they could evaluate the algebraic normal
form (ANF) of the superpoly with large cube size. By using a 72-dimensional
cube, they proposed a theoretical cube attack on 832-round Trivium. Then, at
CRYPTO 2018 [26], Wang et al. improve the CBDP based cube attack and gave
a key recovery attack on 839-round Trivium. For CBDP based cube attacks, the
superpolies of large cubes can be recovered by theoretical method. But the the-
ory of CBDP cannot ensure that the superpoly of a cube is non-constant. Hence
the key recovery attack may be just a distinguish attack. BDPT can exploit the
integral distinguisher whose sum is 1, which means BDPT may show a deter-
mined key recovery attack. However, compared with the propagation of CBDP,
the propagation of BDPT is more complicated and cannot be modeled by MILP
method directly. An automatically searching for a variant three-subset division
property with STP solver was proposed in [13], but the variant is weaker than
the original BDPT. How to trace the propagation of BDPT is an open problem.

1.1 Our Contributions

In this paper, we propose an MILP-aided method for BDPT. Then, we apply
it to search integral distinguishers of block ciphers and recover superpolies of
stream ciphers.

1.1.1 MILP-aided Method for BDPT

Pruning Properties of BDPT. When we evaluate the propagation of BDPT,
there may be some vectors that have no impact on the BDPT of output bit. So
we show the pruning properties when the vectors of BDPT can be removed.

Fast Propagation and Stopping Rules. Inspired by the “lazy propagation”
in [21], we propose the notion of “fast propagation” which can translate BDPT
into CBDP and show some bits are balanced. Then, based on “lazy propagation”
and “fast propagation”, we obtain three stopping rules. Finally, an MILP-aided
method for the propagation of BDPT is proposed.

MILP-aided Method of Searching Division Property 401

1.1.2 Searching Integral Distinguishers of Block Ciphers

We apply our MILP-aided method to search integral distinguishers of some block
ciphers. The main results are shown in Table 1.

ARX Ciphers. For SIMON32, we find the 15-round integral distinguisher that
cannot be found by CBDP. For 18-round SIMON64, we find 23 balanced bits
which has one more bit than the previous longest integral distinguisher.

SPN Ciphers. For PRESENT, when the input data is 260, our method can find
3 more balanced bits than the previous longest integral distinguisher. Moreover,
when the input data is 263, the integral distinguisher we got has 6 more balanced
bits than that got by term set in the paper [28]. For RECTANGLE, when the
input data is 260, our method can also obtain 11 more balanced bits than the
previous longest 9-round integral distinguisher.

Generalized Feistel Cipher. For LBlock, we obtain a 17-round integral dis-
tinguisher which is the same with the previous longest integral distinguisher.
Moreover, a better 16-round integral distinguisher with less active bits can also
be obtained.

1.1.3 Recovering Superpoly of Stream Cipher

Using BDPT to Recover the ANF Coefficient of Superpoly. Inspired
by the CBDP based cube attack in [23,26], our new method is based on the
propagation of BDPT which can find integral distinguisher whose sum is 0 or
1. But it’s nontrivial to recover the superpoly by integral distinguishers based
on BDPT. Therefore, we proposed the notion of similar polynomial. We can
recover the ANF coefficient of superpoly by researching the BDPT propagation
of corresponding similar polynomial. In order to analyze the security of ciphers
better, we divide ciphers into two categories: public-update ciphers and secret-
update ciphers. For public-update ciphers, we proved that the exact ANF of
superpoly can be fully recovered by BDPT.

Application to Trivium. In order to verify the correctness and effectiveness of
our method, we apply BDPT to recover the superpoly of round-reduced Trivium
which is a public cipher. To be specific, the time complexity of recovering the
superpoly of 832-round Trivium at CRYPTO 2017 is reduced from 277 to practi-
cal, and the time complexity of recovering the superpoly of 839-round Trivium at
CRYPTO 2018 is reduced from 279 to practical. Then, we propose a theoretical
attack which can recover the superpoly of Trivium up to 841 round. The detailed
information is shown in Table 2. And the time complexity in the table means
the time complexity of recovering superpoly. And c is the average computational
complexity of tracing the propagation of BDPT using MILP-aided method.

402 S. Wang et al.

Table 1. Summarization of integral distinguishers

Cipher Data Round
Number of

Time Reference
balanced bits

SIMON32 231 15 3 [21]
15 3 2m Sect. 5.1

SIMON64 263 18 22 6.7m [27]
18 23 1h41m Sect. 5.1

PRESENT
260 9 1 3.4m [27]

9 4 56m Sect. 5.2

263 9 22 [28]
9 28 10m Sect. 5.2

RECTANGLE 260 9 16 4.1m [27]
9 27 10m Sect. 5.2

LBlock
263

16 32 4.9m [27]
17 4 [8]
17 4 10h25m Sect. 5.3

262 16 18 6h49m Sect. 5.3

Table 2. Superpoly recovery of Trivium

Rounds Cube size Exact superpoly Complexity Reference

832 72 yes
277 [23]
276.7 [26]

practical Sect. 7.3

835 36/37 no [15]

838 37 yes practical [30]

839 78 yes
279 [26]

practical Sect. 7.3

841 78 yes 241 · c Sect. 7.4

1.2 Outline of the Paper

This paper is organized as follows: Sect. 2 provides the background of MILP,
division property, and cube attacks etc. In Sect. 3, some new propagation prop-
erties of BDPT are given. In Sect. 4, we propose an MILP-aided method for
BDPT. Section 5 shows applications to block ciphers. In Sect. 6, we use BDPT
to recover the superpoly in cube attack. Section 7 shows the application to Triv-
ium. Section 8 concludes the paper. Some auxiliary materials are supplied in
Appendix.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ F
n
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,

MILP-aided Method of Searching Division Property 403

define xu =
∏n−1

i=0 xui
i . Then, for any k ∈ F

n
2 and k′ ∈ F

n
2 , define k � k′ if

ki ≥ k′
i holds for all i = 0, 1, . . . , n − 1 and define k � k′ if ki > k′

i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊂ {0, 1, . . . , n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K := K ∪ {k} and K → k when K := K \ {k}. And
|K| denotes the number of elements in the set |K|.

2.2 Mixed Integer Linear Programming

MILP is a kind of optimization or feasibility program whose objective function
and constraints are linear, and the variables are restricted to be integers. Gen-
erally, an MILP model M consists of variables M.var, constrains M.con, and
the objective function M.obj. MILP models can be solved by solver like Gurobi
[10]. If there is no feasible solution, the solver will returns infeasible. When there
is no objective function in M, the MILP solver will only return whether M is
feasible or not.

2.3 Bit-Based Division Property

Two kinds of bit-based division property (CBDP and BDPT) were introduced
by Todo and Morii at FSE 2016 [21]. In this subsection, we will briefly introduce
them and their propagation rules.

Definition 1 (CBDP [21]). Let X be a multiset whose elements take a value
of F

n
2 . When the multiset X has the CBDP D1n

K
, where K denotes a set of n-

dimensional vectors whose i-th element takes a value between 0 and 1, it fulfills
the following conditions:

⊕

x∈X

xu =
{

unknown, if there exists k ∈ K satisfying u � k,
0, otherwise.

Definition 2 (BDPT [21]). Let X be a multiset whose elements take a value
of Fn

2 . Let K and L be two sets whose elements take n-dimensional bit vectors.
When the multiset X has the BDPT D1n

K,L, it fulfills the following conditions:

⊕

x∈X

xu =

⎧
⎨

⎩

unknown, if there is k ∈ K satisfying u � k,
1, else if there is � ∈ L satisfying u = �,
0, otherwise.

According to [21], if there are k ∈ K and k′ ∈ K satisfying k � k′, k can be
removed from K because the vector k is redundant. We denote this progress as
Reduce0 (K). If there are � ∈ L and k ∈ K satisfying � � k, the vector � can
also be removed from L. We denote this progress as Reduce1 (K,L). For any
u, the redundant vectors in K and L will not affect the value of

⊕

x∈X

xu .

The propagation rules of K in CBDP are the same with BDPT. So here we
only show the propagation rules of BDPT. For more details, please refer to [21].

404 S. Wang et al.

BDPT Rule 1 (Copy [21]). Let y = f (x) be a copy function, where
x = (x0, x1, . . . , xn−1) ∈ F

n
2 , and the output is calculated as y =

(x0, x0, x1, . . . , xn−1). Assuming the input multiset X has D1n

K,L, then the out-
put multiset Y has D1n+1

K′,L′ , where

K
′ ←

{
(0, 0, k1, . . . , kn−1) , if k0 = 0
(1, 0, k1, . . . , kn−1) , (0, 1, k1, . . . , kn−1) , if k0 = 1 ,

L
′ ←

{
(0, 0, �1, . . . , �n−1) , if �0 = 0
(1, 0, �1, . . . , �n−1) , (0, 1, �1, . . . , �n−1) , (1, 1, �1, . . . , �n−1) , if �0 = 1 ,

are computed from all k ∈ K and all � ∈ L, respectively.

BDPT Rule 2 (And [21]). Let y = f (x) be a function compressed by an
And, where the input x = (x0, x1, . . . , xn−1) ∈ F

n
2 , and the output is calculated

as y = (x0 ∧ x1, x2, . . . , xn−1) ∈ F
n−1
2 . Assuming the input multiset X has D1n

K,L,
then the output multiset Y has D1n−1

K′,L′ , where K
′ is computed from all k ∈ K as

K
′ ←

(⌈
k0 + k1

2

⌉

, k2, . . . , kn−1

)

,

and L
′ is computed from all � ∈ L satisfying (�0, �1) = (0, 0) or (1, 1) as

L
′ ←

(⌈
�0 + �1

2

⌉

, �2, . . . , �n−1

)

.

BDPT Rule 3 (Xor [21]). Let y = f (x) be a function compressed by an Xor,
where the input x = (x0, x1, . . . , xn−1) ∈ F

n
2 , and the output is calculated as

y = (x0 ⊕ x1, x2, . . . , xn−1) ∈ F
n−1
2 . Assuming the input multiset X has D1n

K,L,
then the output multiset Y has D1n−1

K′,L′ , where K
′ is computed from all k ∈ K

satisfying (k0, k1) = (0, 0) , (1, 0) , or (0, 1) as

K
′ ← (k0 + k1, k2, . . . , kn−1) ,

L
′ is computed from all � ∈ L satisfying (�0, �1) = (0, 0), (1, 0), or (0, 1) as

L
′ x←− (�0 + �1, �2, . . . , �n−1) .

And L
x←− � means

L :=
{
L ∪ {�} if the original L does not include �,
L \ {�} if the original L includes �.

BDPT Rule 4 (Xor with Secret Key [21]). Let X be the input multi-
set satisfying D1n

K,L. For the input x ∈ X, the output y ∈ Y is computed as
y = (x0, . . . , xi−1, xi ⊕ rk, xi+1, . . . , xn−1), where rk is the secret key. Then, the
output multiset Y has D1n

K′,L′ , where K
′ and L

′ are computed as

L
′ ← �, for � ∈ L,

K
′ ← k, for k ∈ K,

K
′ ← (�0, �1, . . . , �i ∨ 1, . . . , �n−1) , for � ∈ L satisfying �i = 0.

MILP-aided Method of Searching Division Property 405

CBDP Rule 5 (S-box [4,27]). Let y = f (x) be a function of S-box, where the
input x = (x0, x1, . . . , xn−1) ∈ F

n
2 , and the output y = (y0, y1, . . . , ym−1) ∈ F

m
2 .

Then, every yi, i ∈ {0, 1, . . . ,m − 1} can be expressed as a Boolean function of
(x0, . . . , xn−1). For the input CBDP K, the output CBDP K

′ is a set of vectors
as follows:

K
′ = {u′ ∈ F

m
2 | for any u ∈ K, if yu ′

contains any term xv satisfying v � u}.

When there was no effective way to model the propagation of BDPT, Todo
and Morii [21] proposed the notion of ‘lazy propagation” to give the provable
security of SIMON family against BDPT.

Definition 3 (Lazy Propagation [21]). Let D1n

Ki,Li
be the input BDPT of the

i-th round function and D1n

Ki+1,Li+1
be the BDPT from the lazy propagation. Then,

Ki+1 is computed from only a part of vectors in Ki, and Li+1 always becomes
the empty set ∅. Therefore, if the lazy propagation creates D1n

Kr,∅, where Kr has
n distinct vectors whose Hamming weight is one, the accurate propagation also
creates the same n distinct vectors in the same round.

2.4 The MILP Representation of CBDP

For an r-round iterative cipher of size n, attackers determine indices set I ={
i0, i1, . . . , i|I|−1,

} ⊂ {0, 1, . . . , n − 1} and prepare 2|I| chosen plaintexts where
variables indexed by I are taking all possible combinations of values and the
other variables are set to constants. The CBDP of such chosen plaintexts is
D1n

K0={kI}. Based on the propagation rules, the propagation of CBDP from D1n

{kI}
can be evaluated as {kI} def

= K0 → K1 → · · · → Kr, where D1n

Kr
is the CBDP

after r-round propagation. If the set Kr doesn’t have the unit vector em ∈ F
n
2

whose only m-th element is 1, the m-th output bit of r-round ciphertexts is
balanced. At ASIACRYPT 2016, Xiang et al. [27] applied MILP method to the
propagation of CBDP. They first introduced the concept of CBDP trail, which
is defined as follows.

Definition 4 (CBDP Trail [27]). Let us consider the propagation of the CBDP

{kI} def
= K0 → K1 → · · · → Kr. For any vector ki+1 ∈ Ki+1, there must exist

a vector ki ∈ Ki such that ki can propagate to ki+1 by the propagation rules
of CBDP. Furthermore, for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki can
propagate to ki+1 for all i ∈ {0, 1, . . . r − 1}, we call k0 → k1 → · · · → kr an
r-round CBDP trail.

In [27], the authors modeled CBDP propagations of basic operations (Copy,
Xor, And) and S-box by linear inequalities. Therefore, they could build an MILP
model to cover all the possible CBDP trails generated from a given initial CBDP.
Here, we introduce the MILP models for Copy, Xor, And and S-box.

406 S. Wang et al.

Model 1 (Copy [27]). Let a
Copy−−−→ (b0, b1, . . . , bn−1) be a CBDP trail of Copy.

The following inequalities are sufficient to describe its CBDP propagation
{M.var ← a, b0, b1, . . . , bn−1 as binary,

M.con ← a = b0 + b1 + · · · + bn−1.

Model 2 (Xor [27]). Let (a0, a1, . . . , an−1)
Xor−−−→ b be a division trail of Xor.

The following inequalities are sufficient to describe its CBDP propagation
{M.var ← a0, a1, . . . , an−1, b as binary,

M.con ← b = a0 + a1 + · · · + an−1.

Model 3 (And [27]). Let (a0, a1, . . . , an−1)
And−−−→ b be a division trail of And.

The following inequalities are sufficient to describe its CBDP propagation
{M.var ← a0, a1, . . . , an−1, b as binary,

M.con ← b ≥ ai for all i ∈ {0, 1, . . . , n − 1}.

Model 4 (S-box [27]). The CBDP Rule 5 in Sect. 2.3 can generate the CBDP
propagation property of S-box. Then, we can using the inequality generator()
function in Sage software [17] to get a set of linear inequalities. Sometimes the
number of linear inequalities in the set is large. Thus, some Greedy Algorithms
[1,19] were proposed to reduced this set.

2.5 Cube Attack

Cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009 [6]. For
a cipher with n secret variables x = (x0, x1, . . . , xn−1) and m public variables
v = (v0, v1, . . . , vm−1), the output bit can be represented as f(x,v). Attackers
determine an indices subset Iv = {i0, i1, . . . , i|Iv|−1} ⊂ {0, 1, . . . ,m − 1}, then
f(x,v) can be uniquely represented as

f (x,v) = vuIv · p (x,v) ⊕ q (x,v) ,

where p (x,v) is called the superpoly of CIv,Jv,Kv
in f (x,v), and every term in

q (x,v) misses at least one variable from {vi0 , vi1 , . . . , vi|Iv|−1}.
Attackers can prepare a cube set denoted as CIv,Jv,Kv

, where public variables
indexed by Iv are taking all possible combinations of values, public variables
indexed by Jv ⊂ {0, 1, . . . ,m−1}−Iv are set to constant 1, and public variables
indexed by Kv = {0, 1, · · · ,m−1}−Iv −Jv are set to constant 0. Just as follows

CIv,Jv,Kv
= {v ∈ F

m
2 |vi ∈ F2 if i ∈ Iv, vj = 1 if j ∈ Jv, vk = 0 if k ∈ Kv} (1)

What’s more, the sum of f (x,v) over the cube set CIv,Jv,Kv
is

⊕

v∈CIv,Jv,Kv

f (x,v) = pIv,Jv,Kv
(x) . (2)

If pIv,Jv,Kv
(x) is not a constant polynomial, attackers can query the encryp-

tion oracle with the chosen cube set CIv,Jv,Kv
to get the equation with secret

variables.

MILP-aided Method of Searching Division Property 407

2.6 The Cube Attack Based on CBDP

At CRYPTO 2017 [23], Todo et al. successfully applied CBDP to cube attack.
They use CBDP to analyze the ANF coefficients of superpoly.

Lemma 1. [23] Let f (x) =
⊕

u∈F
n
2

af
u · xu be a polynomial from F

n
2 to F2 and

af
u ∈ F2 be the ANF coefficients. Let k be an n-dimensional bit vector. If there

is no CBDP trail such that k
f−→ 1, then af

u is always 0 for u � k.

Proposition 1. [23] Let f (x,v) be a polynomial, where x ∈ F
n
2 and v ∈ F

m
2

denote the secret and public variables, respectively. For a cube set CIv,Jv,Kv

defined as Eq. (1), let ei be an n-bit unit vector whose only i-th element is

1. If there is no CBDP trail such that (ei,uIv)
f−→ 1, then xi is not involved in

the superpoly of the cube CIv,Jv,Kv
.

When f (x,v) represents the output bit of target cipher, we can use MILP
method to identify the involved keys set I by checking whether there is division
trial {(ei,uIv)} f−→ 1 for i = 0, 1, · · · , n − 1. Then, at CRYPTO 2018 [26],
Wang et al. proposed the degree bounding and term enumeration techniques to
further reduce the complexity of recovering superpoly. The degree evaluation of
superpoly is based on the following proposition.

Proposition 2. [26] For a set Ix =
{
i0, i1, . . . , i|Ix|−1

} ⊂ {0, 1, . . . , n − 1}, if

there is no CBDP trail such that (uIx ,uIv)
f−→ 1, then xuIx is not involved in

the superpoly of cube CIv,Jv,Kv
.

After getting the involved keys set I and the degree d of superpoly, the

superpoly can be represented with
∑d

i=0

(|I|
i

)

coefficients. Therefore, by select-

ing
∑d

i=0

(|I|
i

)

different x, a linear system with
∑d

i=0

(|I|
i

)

variables can be

constructed. Then, the whole ANF of pIv,Jv,Kv
(x) can be recovered by solv-

ing such a linear system. So the complexity of recovering the superpoly of cube

CIv,Jv,Kv
is 2|Iv| × ∑d

i=0

(|I|
i

)

.

3 The Propagation Properties of BDPT

In this section, we will explore some new propagation properties of BDPT.

3.1 The BDPT Propagation of S-Box

In the Sect. 2.3, we have introduced the existing BDPT propagation rules of
Copy, And, and Xor. Although any Boolean function can be evaluated by using
these three rules, the propagation requires large time and memory complexity
when the Boolean function is complex. Here, we propose a generalized method
to calculate the BDPT propagation of S-box.

408 S. Wang et al.

Theorem 1. For an S-box: F
n
2 → F

m
2 , let x = (x0, x1, . . . , xn−1) and y =

(y0, y1, . . . , ym−1) denote the input and output. Every yi, i ∈ {0, 1, . . . ,m − 1}
can be expressed as a boolean function of (x0, x1, . . . , xn−1). If the input BDPT
of S-box is D1n

K,L={�}, then the output BDPT of S-box can be calculated by
D1m

Reduce0(K),Reduce1(K,L), where

K = {u′ ∈ F
m
2 | for any u ∈ K, if yu ′

contain any term xv satisfying v � u}.

L = {u ∈ F
m
2 |yucontains the term x�}.

Proof. Let K′ be the set of output BDPT that has no redundant vectors. Accord-
ing to the CBDP rules 5 in Sect. 2.3, we know that K

′ = Reduce0 (K).
Let L

′ be the set of output BDPT that has no redundant vectors. For any
u ∈ L

′, we have
⊕

y∈Y

yu = 1. Since there is only one vector � in the input L,

the ANF of yu must has the monomial x� . Thus, we get L
′ ⊂ L. Because the

function Reduce1 only removes the vectors satisfying
⊕

y∈Y

yu = unknown, we

have L
′ ⊂ Reduce1 (K,L).

On the other hand, if yu contains the monomial x� , we have
⊕

x∈X

yu equals

unknown or 1. For the set L, the function Reduce1 will remove all the vectors
satisfying

⊕

y∈Y

yu = unknown. So all the remaining vectors satisfying
⊕

y∈Y

yu = 1.

Then, we get Reduce1 (K,L) ⊂ L
′.

Altogether, we obtain L
′ = Reduce1 (K,L). �

We apply Theorem 1 to the core operation of SIMON family, the obtained
BDPT propagation rules are in accordance with that in [21]. Note that Theorem
1 can get the BDPT propagation rules when the input L has only one vector. If
there are more vectors in L, the paper [21] has showed an example on how to
get its BDPT propagation rules. Let D1n

K,L={�0,�1,...,�r−1} and D1m

K′,L′ be the input
and output BDPT of S-box, respectively. According to Theorem 1, we can get
the output BDPT D1m

K′,L′
i

from the corresponding input BDPT DK,L={�i}, where
i = 0, 1, . . . , r − 1. Then,

L
′ = {�|� appears odd times in sets L

′
0,L

′
1, . . . ,L

′
r−1}.

And we also give an example in Sect. 5.1 to help readers understand the propa-
gation of BDPT.

3.2 Pruning Techniques of BDPT

The previous works often divide ciphers into r rounds, and investigate the CBDP
or BDPT of round functions. Round functions often have too many operations
which will generate many redundant intermediate vectors of division property.
When the round number or block size grows, it will make propagation impossible
just because of complexity. In order to solve this problem, we divide the ciphers

MILP-aided Method of Searching Division Property 409

into small parts. And after getting the BDPT propagation of a part, we will use
the pruning techniques to remove the redundant vectors. Then, the remaining
vectors in BDPT can continue to propagate efficiently.

Let Qi be the i-th round function of an r-round cipher E = Qr ◦ Qr−1 ◦
· · · ◦ Q1, then we divide Qi into li parts Qi = Qi,li−1 ◦ Qi,li−2 ◦ · · · ◦ Qi,0.
Let Ei,j = (Qi,j−1 ◦ Qi,j−2 ◦ · · · ◦ Qi,0) ◦ (Qi−1 ◦ Qi−2 ◦ · · · ◦ Q1) and Ei,j =
(Qr ◦ Qr−1 ◦ · · · ◦ Qi+1) (Qi,li−1 ◦ Qi,li−2 ◦ · · · ◦ Qi,j), then E = Ei,j◦Ei,j , where
1 ≤ i ≤ r, 0 ≤ j ≤ li − 1 and E1,0 is identity function.

Theorem 2 (Prune K). For r-round cipher E = Qr ◦ Qr−1 ◦ · · · ◦ Q1, let
D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. For any vector k ∈ Ki,j, if there is no CBDP

trail such that k
Ei,j−−→ em, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j→k,Li,j
on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Proof. In Sect. 2.3, we know that for public function, the BDPT propagation of
Ki,j and Li,j is independent. Only when the secret round key is Xored, some
vectors of Li,j will affect Ki,j , but they only adds some vectors into Ki,j . Because
every vector k ∈ Ki,j is propagated independently based on CBDP, if there is

no CBDP trail such that k
Ei,j−−→ em, then removing it from Ki,j doesn’t have

any impact on whether Kr+1,0 includes em or not. That means D1n

Ki,j ,Li,j
has the

same result with D1n

Ki,j→k,Li,j
on whether Kr+1,0 includes em or not.

Because all the vectors of Lr+1,0 are generated from Li,j , that is, removing k
from Ki,j has no impact on the generation of em ∈ Lr+1,0. On the other hand,
we have got that removing k from Ki,j doesn’t have any impact on whether
Kr+1,0 includes em or not. So it has no impact on the reduction of em ∈ Lr+1,0.
That means D1n

Ki,j ,Li,j
has the same result with D1n

Ki,j→k,Li,j
on whether Lr+1,0

includes em or not. �

Theorem 3 (Prune L). For r-round cipher E = Qr ◦ Qr−1 ◦ · · · ◦ Q1, let
D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. For any vector � ∈ Li,j, if there is no CBDP

trail such that �
Ei,j−−→ em, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j ,Li,j→� on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Proof. For any vector � ∈ Li,j , if there is no CBDP trail such that �
Ei,j−−→ em,

according to Theorem 2, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j←�,Li,j
on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Because Ki,j ← �, the vector � can be removed from Li,j according to
the definition of BDPT. So the BDPT D1n

Ki,j←�,Li,j
is completely equivalent to

D1n

Ki,j←�,Li,j→� .
According to Theorem 2 again, the BDPT propagation of D1n

Ki,j←�,Li,j→� is
equivalent to that of D1n

Ki,j ,Li,j→� on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or
not. �

410 S. Wang et al.

The propagation of CBDP can be efficiently solved by MILP model. There-
fore, the meaning of Theorems 2 and 3 is that we can use CBDP method to
reduce the BDPT sets Ki,j and Li,j .

3.3 Fast Propagation

Inspired by the notion of “lazy propagation”, we propose a notion called “fast
propagation” to show the balanced information of output bits.

Definition 5 (Fast Propagation). For r-round cipher E = Qr◦Qr−1◦· · ·◦Q1,
let D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. Under fast propagation, we translate the

BDPT into CBDP D1n

Ki,j
, where Ki,j = Ki,j ∪ Li,j. The output CBDP of Ei,j is

computed from D1n

Ki,j
.

The “fast propagation” removes all vectors from Li,j , and get the union set
Ki,j ∪ Li,j . By its nature, “fast propagation” translate BDPT into CBDP. We
can use the MILP method to solve the CBDP propagation of D1n

Ki,j∪Li,j ,
. Let us

consider the meaning of “fast propagation”. Assuming the input set of Ei,j has
BDPT D1n

Ki,j ,Li,j
, according to the definition of BDPT and CBDP, this set must

also has CBDP D1n

Ki,j∪Li,j ,
. If for any k ∈ Ki,j ∪ Li,j , there is no CBDP trial such

that k
Ei,j−−→ em, then the m-th output bit of Ei,j is balanced.

4 The MILP-aided Method for BDPT

Based on the work of [27], we first simplify the MILP algorithm of searching
integral distinguishers based on CBDP to improve efficiency. Then, we show
three stopping rules and propose an algorithm to search integral distinguishers
based on BDPT.

4.1 Simplify the MILP Method of CBDP

Using the method in the paper [27], we can get a linear inequality set which
describes the r-round CBDP division trails with the given initial CBDP D1n

{k}.
The former CBDP method will return a set of balanced bits. Because only one
bit’s balanced information is needed, our MILP model has no objective function
which is added into the constrains. We can use the solver Gurobi [10] to deter-
mine whether the MILP model has feasible solutions or not. If it has feasible
solutions, it shows that the m-th bit of the output is unknown. Otherwise, the
m-th bit is balanced. The detail information is shown in Algorithm 1.

4.2 Stopping Rules

Based on “lazy propagation” and “fast propagation”, in this subsection, we
propose three stopping rules in searching integral distinguishers based on BDPT.

MILP-aided Method of Searching Division Property 411

Algorithm 1. SCBDP(E, k, m)

Input: The cipher E, the initial CBDP vector k, and the number m
Output: Whether the m-th bit of the output is balanced or not based on CBDP

1 begin

2
L is a linear inequality set which describe the CBDP division trails

such that k
E−→ em

3 if L has feasible solutions do
4 return unknown
5 else
6 return 0
7 end

Stopping Rule 1. For an r-round cipher E = Qr ◦Qr−1 ◦· · ·◦Q1, let D1n

Ki,j ,Li,j

be the input BDPT of Ei,j. For any vector k ∈ Ki,j, if there is CBDP trail such

that k
Ei,j−−→ em, according to “lazy propagation”, we stop the process and obtain

that the m-th output bit of E is unknown.

After Stopping Rule 1, if the searching procedure doesn’t stop, all the vectors
in Ki,j will be removed according to the pruning technique in Theorem 2. Then,
we consider the following Stopping Rule 2.

Stopping Rule 2. After removing the redundant vectors in the set Li,j by the
pruning technique in Theorem 3, if there is still vector � ∈ Li,j, we cannot stop
the procedure and � should be propagated to next part based on BDPT. If there
is no vector in Li,j, according to “fast propagation”, we can get that the m-th
output bit of E is balanced.

Different from Stopping Rule 1 which shows the m-th bit is unknown, Stop-
ping Rule 2 can show the m-th bit is balanced based on BDPT. If the process
doesn’t stop even we get the output BDPT of E, Stopping Rule 3 can explain
this situation.

Stopping Rule 3. If Kr+1,0 = ∅ and Lr+1,0 = {em}, then we find an integral
distinguisher whose sum of the m-th output bit is 1.

4.3 The MILP-aided Method of Searching Integral Distinguishers
Based on BDPT

The algorithm of searching integral distinguishers often has a given initial BDPT
D1n

K1,0,L1,0
. For an indices set I = {i0, i1, . . . , i|I|−1} ⊂ {0, 1, . . . , n − 1}, attackers

prepare 2|I| chosen plaintexts where variables indexed by I are taking all possible
combinations of values and the other variables are set to constants. The CBDP
of such chosen plaintexts is D1n

{uI}. Then, the BDPT of such chosen plaintexts is
DK1,0,L1,0 , where K1,0 = {u′ ∈ F

n
2 |u′ � uI} and L1,0 = {uI}. We illustrate the

whole framework in Algorithm 2.

412 S. Wang et al.

Algorithm 2. BDPT (E,L1,0,K1,0, m)

Input: The cipher E, the input BDPT DK1,0,L1,0 , and the number m
Output: The balanced information of the m-th output bit based on BDPT

1 begin
2 for (i = 1; i ≤ r; i + +) do
3 for (j = 0; j ≤ li − 1; j + +) do
4 for k in Ki,j

5 if SCBDP
(
Ei,j , k, m

)
is unknown

6 return unknown
7 else
8 Ki,j → k
9 end
10 L

′
i,j = ∅

11 for � in Li,j do

12 if SCBDP
(
Ei,j , �, m

)
is unknown

13 L
′
i,j = L

′
i,j ∪ �

14 end
15 end
16 if L

′
i,j = ∅

17 return 0
18 end

19 DKi+�(j+1)/li�,(j+1)modli
,Li+�(j+1)/li�,(j+1)modli

= BDPTP
(
Qi,j , D∅,L′

i,j

)

20 end
21 end
22 return 1
23 end

We explain Algorithm 2 line by line:
Line 2–3 The cipher E is divided into small parts.
Line 4–9 For every k ∈ Ki,j , if SCBDP

(
Ei,j ,k,m

)
is unknown (Algorithm 1),

according to Stopping Rule 1, we know that the m-th output bit is unknown
based on BDPT. Otherwise, we remove it from Ki,j according to the pruning
technique in Theorem 2.
Line 10 Initialize L

′
i,j to be an empty set.

Line 11–15 For any vector � ∈ Li,j , if SCBDP
(
Ei,j , �,m

)
can generate the unit

vector em, we store all these vectors in L
′
i,j .

Line 16–18 If the set L′
i,j is empty set, it satisfies Stopping Rule 2, that is, the

m-th output bit is balanced.
Line 19 If we don’t get the balanced information of the m-th bit, we should use
the propagation rules of BDPT to get the input BDPT of the next part.
Line 22 It triggers Stopping Rules 3, and the sum of the m-th output bit is 1.

The principle of dividing the round function Qi is that the vectors of BDPT
don’t expand too much. Only in this way can we run the searching algorithm
efficiently. Algorithm 2 can show the balanced information of any output bit.
Therefore, we can search the integral distinguishers of cipher in parallel.

MILP-aided Method of Searching Division Property 413

5 Applications to Block Ciphers

In this section, we apply our algorithm to SIMON, SIMECK, PRESENT, RECT-
ANGLE, and LBlock. All the experiments are conducted on the platform: Intel
Core i5-4590 CPU @3,3 GHz, 8.00G RAM. And the optimizer we used to solve
MILP models is Gurobi 8.1.0 [10]. For the integral distinguishers, what needs to
be explained is that “a” denotes active bit, “c” denotes constant bit, “?” denotes
the balanced information is unknown, and “b” denotes the balanced bit.

5.1 Applications to SIMON and SIMECK

SIMON is a lightweight block cipher family [2] based on Feistel structure which
only involves bit-wise And, Xor, and Circular shift operations. Let SIMON2n
be the SIMON cipher with 2n-bit block length, where n ∈ {16, 24, 32, 48, 64}.
And the left part of Fig. 1 shows the round structure of SIMON2n. The core
operation of round function is represented by the right part of Fig. 1.

&
<<< 1

<<< 2

<<< 8

1 2 0, , ,i i i
n nx x x

-th round structure of SIMON2a i n ,The core operation Qi jb

1 2 0, , ,i i i
n ny y y

1 1 1
1 2 0, , ,i i i

n nx x x
1 1 1
1 2 0, , ,i i i

n ny y y

&

,
1 mod

i j
j nx ,i j

jy

, 1
1 mod

i j
j nx , 1i j

jy

,
8 mod

i j
j nx ,

2 mod
i j
j nx

, 1
8 mod

i j
j nx

, 1
2 mod

i j
j nx

Fig. 1. The structure of SIMON2n

When we apply Algorithm 2 to SIMON2n, we divide one-round SIMON2n
into n + 1 parts Qi = Qi,n ◦ Qi,n−1 ◦ · · · ◦ Qi,0. And the input of Qi,j is denoted

as
(
xi,j ,yi,j

)
=

(
xi,j
n−1, . . . , x

i,j
0 , yi,j

n−1, . . . , y
i,j
0

)
. When 0 ≤ j ≤ n − 1, we have

Qi,j

(
xi,j ,yi,j

)
=

(
xi,j , yi,j

n−1, . . . , y
i,j
j+1, Y

i,j
j , yi,j

j−1, . . . , y
i,j
0

)
,

where Y i,j
j =

(
xi,j
(j−1)modn&xi,j

(j−8)modn

)⊕
xi,j
(j−2)modn.

Moreover, Qi,n

(
xi,n,yi,n

)
=

(
yi,n ⊕ ki,xi,n

)
, where ki is the i-th round key

of SIMON2n.
For Qi,j , 0 ≤ j ≤ n−1, when we consider the BDPT propagation rules of the

function BDPTP
(
Qi,j ,D∅,L′

i,j

)
, (2n − 4) bits remain unchanged. Thus, only 4-

bit
(
xi,j
(j−1)mod n, xi,j

(j−2)modn, xi,j
(j−8)modn, yi,j

(j)modn

)
of the BDPT vectors will be

414 S. Wang et al.

changed. We can view it as 4-bit S-box and use Theorem 1 to get its accurate
BDPT propagation rules which are in accordance with that in the paper [21].
We show it in Appendix Table 7.

When we use Algorithm 2 to search the integral distinguishers of SIMON2n
based on BDPT, we should call Algorithm 1 to build the MILP model based
on CBDP. The paper [27] has showed us how to model CBDP division trails of
1-round SIMON2n. We introduce it as follows.

1-round Description of SIMON2n. Denote 1-round CBDP trail of SIMON2n
by

(
ai
n−1, . . . , a

i
0, b

i
n−1, . . . , b

i
0

) → (
ai+1
n−1, . . . , a

i+1
0 , bi+1

n−1, . . . , b
i+1
0

)
. In order to

get a linear description of all CBDP trails of 1-round SIMON2n, we intro-
duce four vectors of auxiliary variables which are

(
ui
n−1, . . . , u

i
0

)
,
(
vi
n−1, . . . , v

i
0

)
,(

wi
n−1, . . . , w

i
0

)
and

(
tin−1, . . . , t

i
0

)
. We denote

(
ui
n−1, . . . , u

i
0

)
the input CBDP

of the left circular shift by 1 bit. Similarly, denote
(
vi
n−1, . . . , v

i
0

)
and(

wi
n−1, . . . , w

i
0

)
the input CBDP of the left circular shift by 8 bits and 2 bits,

respectively. Let
(
tin−1, . . . , t

i
0

)
denote the output CBDP of bit-wise And opera-

tion. The following inequalities are sufficient to model the Copy operation used
in SIMON2n:

L1 : ai
j − ui

j − vi
j − wi

j − bi+1
j = 0 for j ∈ {0, 1, . . . , n − 1}.

Then, the bit-wise And operation used in SIMON2n can be modeled by:

L2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tij − ui
(j−1)modn ≥ 0, for j ∈ {0, 1, . . . , n − 1},

tij − vi
(j−8)modn ≥ 0, for j ∈ {0, 1, . . . , n − 1},

tij − ui
(j−1)modn − vi

(j−8)modn ≤ 0, for j ∈ {0, 1, . . . , n − 1}.

At last, the Xor operation in SIMON2n can be modeled by:

L3 : ai+1
j − bij − tij − wi

(j−2)modn = 1 for j ∈ {0, 1, . . . , n − 1}.

So far, we get a description {L1,L2,L3} of 1-round CBDP trails.

How to Describe the CBDP Propagation of Partial Round. For Ei,j , the
first round maybe a partial round Qi,li−1 ◦ Qi,li−2 ◦ · · · ◦ Qi,j . When considering
the CBDP propagation of Qi,j , if add constrain bi+1,j

j = bi,jj , the output vec-
tor is the same with the input vector. Namely, Qi,j is transformed into identity
function.

For 1-round SIMON2n, by adding the following constrains

L4 : ai+1
j − bij = 0 for j ∈ {0, 1, . . . , j − 1},

we obtain a description {L1,L2,L3,L4} of partial round Qi,li−1◦Qi,li−2◦· · ·◦Qi,j .
Then, by repeating the constrains of 1-round (r − i) times, we can get a linear
inequality system L for Ei,j .

MILP-aided Method of Searching Division Property 415

How to Obtain the Output BDPT of Qi,j . After the pruning techniques and
stopping rules, if Algorithm 2 doesn’t stop, we know that Ki,j = ∅ and Li,j �= ∅.
In order to help readers understand our algorithm, we show an example of the
propagation of BDPT.

For SIMON32, if the input BDPT of Q1,15 is DK1,15=∅,L1,15={�1,�2}, where �1
= (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), �2 =
(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The 4
bits of �1 that may be updated by Q1,15 is (0, 1, 1, 0). Then, according to the
BDPT propagation rules of core operation in Table 7. The output vector set is
L

′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}. So �1 generates three vectors as:

(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

In the same way, we can obtain that �2 generates only one vector as

(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .

According to BDPT Rule 3, the vector (1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) should be canceled because it is propagated
from �1 and �2 twice. The output BDPT of Q1,15 is DK1,16=∅,L1,16={�3,�4}, where

�3 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ,

�4 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .

Then, Q1,16 has round keys Xored operation. So a new vector is generated from
�3 and inserted into K1,16 according to the BDPT Rule 4. Moreover, a vector in
L1,16 becomes redundant because of the new vector of K1,16. After the swapping,
the output BDPT of Q1,16 is DK2,0={k},L2,0={�5}, where

k = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
�5 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The High Efficiency of Our Algorithm. For 14-round SIMON32, we prepare
chosen plaintexts such that the leftmost bit is constant and the others are active.
Then, the BDPT of chosen plaintexts is DK={(1,1,1,...,1)},L={(0,1,1,...,1)}. Table 3
shows the sizes of |K| and |L| in every round. The sizes in the paper [21] are
obtained after removing redundant vectors according to the definition of BDPT,
while the sizes in this paper are obtained after the pruning techniques. From
Table 3, we find that |L| of the 5-th round in this paper becomes 0, it triggers
Stopping Rule 2, and we obtain that the rightmost bit is balanced. Our pruning
techniques can reduce the size of BDPT greatly.

Integral Distinguishers. SIMECK is a family of lightweight block cipher pro-
posed at CHES 2015 [29], and its round function is very similar to that of SIMON
except the rotation constants. We use Algorithm 2 to search the integral dis-
tinguishers of SIMON and SIMECK family based on BDPT. For SIMON32,

416 S. Wang et al.

Table 3. Sizes of DK,L in obtaining balanced information of the rightmost output bit

Reference BDPT
Size in every round

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|L| 1 1 5 19 138 2236 89878 4485379 47149981 2453101 20360 168 8 0 0 0

[21] |K| 1 1 1 6 43 722 23321 996837 9849735 2524718 130724 7483 852 181 32 32

This paper
|L| 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0
|K| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

our MILP algorithm finds the 14-round integral distinguisher that found in
[21] by going through all the BDPT division trails. For 17-round SIMON64,
we find an integral distinguisher with 23 balanced bits which has one more
bit than the previous longest integral distinguisher. For SIMON48/96/128 and
SIMECK32/48/64, the distinguishers we find are in accordance with the previous
longest distinguishers that found in [27]. The detailed integral distinguishers of
SIMON32 and SIMON64 are listed in Table 4. And all the integral distinguishers
in Table 4 can be extended one more round by the technique in [25].

Table 4. Integral distinguishers of SIMON32 and SIMON64

Cipher Distinguisher

14-SIMON32
In: (caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Out: (????????????????, ?b??????b??????b)

17-SIMON64
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,bbbbbbbbbbb??b??b?????bbbbbbbbbb)

5.2 Applications to PRESENT and RECTANGLE

PRESENT [3] has an SPN structure and uses 80- and 128-bit keys with 64-bit
blocks through 31 rounds. In order to improve the hardware efficiency, it use a
fully wired diffusion layer. Figure 2 illustrates one-round structure of PRESENT.

Fig. 2. One-round SPN structure of PRESENT

We divide one-round PRESENT into 17 parts Qi = Qi,16◦· · ·◦Qi,0. When 0 ≤
j ≤ 15, we have Qi,j

(
xi,j
0 , . . . , xi,j

63

)
=

(
xi,j
0 , . . . , S

(
xi,j
4j , . . . , xi,j

4j+3

)
, . . . , xi,j

63

)
,

where S
(
xi,j
4j , . . . , xi,j

4j+3

)
is the S-box of PRESENT.

MILP-aided Method of Searching Division Property 417

Moreover, Qi,16

(
xi,16
0 , . . . , xi,16

63

)
= P

(
xi,16
0 , xi,16

1 , . . . , xi,16
63

)
⊕ ki, where P

is the linear permutation of PRESENT and ki is the i-th round key.
RECTANGLE [31] is very like PRESENT. We apply Algorithm 2 to

PRESENT and RECTANGLE, and the results are listed in Table 5.

Table 5. Integral distinguishers of PRESENT and RECTANGLE

Cipher Distinguisher

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaacccc)

Out: (????????????????????????????????,???????????????????b???b???b???b)

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac)

Out: (???b???b???bbbbb???b???b???bbbbb, ???b???b???bbbbb???b???b???bbbbb)

9-RECTANGLE
In: (caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa)

Out: (bbbbbbbbbbbbbbbb,bbbb??bb???bbbbb,????????????????,????????????????)

5.3 Applications to LBlock

LBlock is a lightweitht block cipher proposed by Wu and Zhang [24]. The block
size is 64 bits and the key size is 80 bits. It employs a variant Feistel structure
and consists of 32 rounds. One-round structure of LBlock is given in Fig. 3.

<<< 8

7 6 5 4 3 2 1 0, , , , , , ,i i i i i i i iy y y y y y y y7 6 5 4 3 2 1 0, , , , , , ,i i i i i i i ix x x x x x x x

F

ik

() -th round structure of LBlocka i

7S

6S

0S

1S

2S

3S

4S

5S

(b) The structure of F-function

1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0, , , , , , ,i i i i i i i ix x x x x x x x 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0, , , , , , ,i i i i i i i iy y y y y y y y

ik

Fig. 3. Round structure of LBlock

We divide one-round LBlock into 9 parts Qi = Qi,8 ◦ · · ·◦Qi,0. And the input

of Qi,j is denoted as
(
xi,j ,yi,j

)
=

(
xi,j
7 , . . . ,xi,j

0 ,yi,j
7 , . . . ,yi,j

0

)
. When 0 ≤ j ≤

7, we have Qi,j

(
xi,j ,yi,j

)
=

(
xi,j ,yi,j

7 , . . . ,yi,j
P (j)+1, Y

i,j
P (j),y

i,j
P (j)−1, . . . ,y

i,j
0

)
,

where Y i,j
P (j) = Sj

(
xi,j
j

⊕
ki,j

) ⊕
yi,j
(P (j)−2)mod8, Sj is the j-th S-box of

LBlock, and P (x) is the nibble diffusion function. Moreover, Qi,8

(
xi,8,yi,8

)
=(

yi,8,xi,8
)
.

418 S. Wang et al.

Using Algorithm 2, we find a 17-round integral distinguisher of LBlock which
is in accordance with the previous longest integral distinguisher [8], and a better
16-round integral distinguisher with less active bits. The detail forms of the
integral distinguishers are shown in Table 6.

Table 6. Integral distinguishers of LBlock

Cipher Distinguisher

17-LBlock
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bb??????????????????????????bb)

16-LBlock
In: (aaccaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bbbbbbbbbb?b?bb?b?bbbb????????)

6 Using BDPT to Recover the Superpoly in Cube Attack

In this section, we analyze the ANF coefficients of non-blackbox polynomial
and superpoly in cube attack. Then, we show an MILP-aided method based on
BDPT to recover the ANF coefficients of superpoly.

6.1 Analyze the ANF Coefficients of Polynomial

Let f (x,v) be a polynomial, where x ∈ F
n
2 and v ∈ F

m
2 denote the secret and

public variables, respectively. In cube attack, fIv,Jv,Kv
(x,v) denotes a function

that the public variables indexed by Iv ⊂ {0, 1, · · · ,m − 1} are chosen as cube
variables, the public variables indexed by Jv ⊂ {0, 1, · · · ,m − 1} − Iv are set to
1, and the remaining public variables Kv = {0, 1, · · · ,m − 1} − Iv − Jv are set
to 0. Then, the ANF of fIv,Jv,Kv

(x,v) can be represented as follows

fIv,Jv,Kv
(x,v) =

⊕

ux∈F
n
2 ,uv	uI

a
fIv,Jv,Kv

(ux,uv)
· (x,v)(ux,uv).

where a
fIv,Jv,Kv

(ux,uv)
is the ANF coefficient of term (x,v)(ux,uv) in fIv,Jv,Kv

(x,v).
For polynomial fIv,Jv,Kv

(x,v) and an index subset Ix ⊂ {0, 1, · · · , n − 1}, if
fixing all the secret variables {xk|k ∈ {0, 1, · · · , n − 1} − Ix} to 0, we can get a
new polynomial denoted as fIx,Iv,Jv,Kv

(x,v).

Definition 6. (Similar Polynomial). For subsets of indices I ′
x ⊂ Ix, the poly-

nomial fI′
x,Iv,Jv,Kv

(x,v) is called the similar polynomial of fIx,Iv,Jv,Kv
(x,v).

Lemma 2. If fI′
x,Iv,Jv,Kv

(x,v)is the similar polynomial of fIx,Iv,Jv,Kv
(x,v),

then the value of ANF coefficient a
fI′

x,Iv,Jv,Kv(
uI′

x
,uIv

) in fI′
x,Iv,Jv,Kv

(x,v) is equal to

the value of ANF coefficients a
fIx,Iv,Jv,Kv(

uI′
x
,uIv

) in fIx,Iv,Jv,Kv
(x,v).

MILP-aided Method of Searching Division Property 419

Proof. For fIx,Iv,Jv,Kv
(x,v), if all the variables of {xi|i ∈ Ix − I ′

x} are assigned
0, it becomes the function fI′

x,Iv,Jv,Kv
(x,v). Compared with the ANF of

fIx,Iv,Jv,Kv
(x,v), the ANF of fI′

x,Iv,Jv,Kv
(x,v) only misses terms that contain

any variables of {xi|i ∈ Ix − I ′
x}. Moreover, xuI′

x doesn’t contain any variables

of {xi|i ∈ Ix − I ′
x}, so a

fI′
x,Iv,Jv,Kv(
uI′

x
,uIv

) = a
fIx,Iv,Jv,Kv(

uI′
x
,uIv

) .

6.2 Analyze the ANF Coefficients of Superpoly

The most important part of cube attack is recovering the superpoly. Once the
superpoly is recovered, attackers can compute the sum of encryptions over the
cube and get one equation about secret variables.

Let CIv,Jv,Kv
be a cube set defined as Eq. (1) in Sect. 2.5. For polynomial

fIv,Jv,Kv
(x,v), where x ∈ F

n
2 and v ∈ F

m
2 , it can be unique represented as

fIv,Jv,Kv
(x,v) = vuIv · pIv,Jv,Kv

(x) ⊕ qIv,Jv,Kv
(x,v) . (3)

where pIv,Jv,Kv
(x) does not contain any variable in {vi|i ∈ Iv}, and each term of

qIv,Jv,Kv
(x,v) is not divisible by vuIv . Then, pIv,Jv,Kv

(x) is called the superpoly
of CIv,Jv,Kv

in fIv,Jv,Kv
(x,v).

Definition 7. Let CIx,Iv,Jv,Kv
be the set of (x,v) satisfying secret variables

{xi|i ∈ Ix} are taking all possible combinations of values, secret variables {xi|i ∈
{0, 1, . . . , n − 1} − Ix} are set to constant 0, public variables {vi|i ∈ Iv} are
taking all possible combinations of values, public variables {vj |j ∈ Jv} are set to
constant 1, and public variables {vk|k ∈ Kv} are set to constant 0.

Here, we propose a method to calculate the ANF coefficient of superpoly.

Proposition 3. For any index subset Ix ⊂ {0, 1, . . . , n−1}, the ANF coefficient
of term xuIx in the superpoly pIv,Jv,Kv

(x) can be calculated as

a
pIv,Jv,Kv
uIx

=
⊕

(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv
(x,v) .

Proof. The ANF of pIv,Jv,Kv
(x) can be presented as

pIv,Jv,Kv
(x) =

⊕

u∈F
n
2

a
pIv,Jv,Kv
u · xu .

Then, the ANF of vuIv · pIv,Jv,Kv
(x) can be presented as

vuIv · pIv,Jv,Kv
(x) =

⊕

u∈F
n
2

a
pIv,Jv,Kv
u · (x,v)(u ,uIv) .

So, the ANF coefficient of (x,v)(uIx ,uIv) in vuIv ·pIv,Jv,Kv
(x,v) is also a

pIv,Jv,Kv
uIx

.
Because fIv,Jv,Kv

(x,v) can be unique represented as Eq. (3) and every
term in qIv,Jv,Kv

(x,v) misses at least one variable from {vi|i ∈ Iv}, the term

420 S. Wang et al.

(x,v)(uIx ,uIv) doesn’t exist in qIv,Jv,Kv
(x,v). According to Eq. (3), we obtain

that the ANF coefficient of term (x,v)uIx ,uIv in fIv,Jv,Kv
(x,v) is a

pIv,Jv,Kv
uIx

.
Namely,

a
pIv,Jv,Kv
uIx

= a
fIv,Jv,Kv

(uIx ,uIv)
. (4)

From the Definition 6, we know that fIx,Iv,Jv,Kv
is the similar polynomial of

fIv,Jv,Kv
. And according to Lemma 2, we obtain that

a
pIv,Jv,Kv
uIx

= a
fIv,Jv,Kv

(uIx ,uIv)
= a

fIx,Iv,Jv,Kv

(uIx ,uIv)
. (5)

Then, we have
⊕

(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv
(x,v)

=
⊕

(x,v)∈CIx,Iv,Jv,Kv

⊕

ux	uIx ,uv	vIv

a
fIx,Iv,Jv,Kv

(ux,uv)
· (x,v)(ux,uv)

= a
fIx,Iv,Jv,Kv

(uIx ,uIv)
= a

pIv,Jv,Kv
uIx

.

�

6.3 The Algorithm to Recover Superpoly

The set CIx,Iv,Jv,Kv
can be viewed as a cube set, according to the definition

of BDPT, we know that the BDPT of CIx,Iv,Jv,Kv
is D1n

K,L, where K = ∅, and
L = {(uIx ,uv) |uIv � uv � uIv ⊕ uJv

}. Then, we can use MILP-aided method
(Algorithm 2) to research the propagation of D1n

K,L. The integral distinguisher
got by BDPT recover the ANF coefficient of xuIx in superpoly pIv,Jv,Kv

(x).
For example, if Algorithm 2 BDPT (fIx,Iv,Jv,Kv

,K,L, 0) return 1, it means that⊕

(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv
(x,v) = 1. According to Proposition 3, we know that

the ANF coefficient of xuIx in superpoly pIv,Jv,Kv
(x) equals 1. We illustrate the

whole framework in Algorithm 3.
In order to analyze the ciphers better, we divide them into two categories:

public-update ciphers and secret-update ciphers.

Definition 8. For a function f : F
n
2 → F

m
2 , if the ANF of f is definite, we

call it public function. Let E = Qr ◦ Qr−1 ◦ · · · ◦ Q1 (x,v) be an r-round cipher,
where Qi is the i-th round update function, x denotes the secret variables, and v
denotes the public variables. If all the round update functions Qi, i ∈ {1, 2, · · · , r}
are public functions, the cipher E is public-update cipher. Otherwise we call it
secret-update cipher.

Proposition 4. For a public-update cipher fIv,Jv,Kv
(x,v) and cube set

CIv,Jv,Kv
, the superpoly pIv,Jv,Kv

(x) can be fully recovered by the propagation of
BDPT.

MILP-aided Method of Searching Division Property 421

Algorithm 3. Recover the ANF coefficient of xu Ix in superpoly pIv,Jv,Kv (x)

1 procedure RecoverCoefficient(Ix, Iv, Jv, Kv)
2 Initial K = ∅, L = {(uIx , uv) |uIv � uv � uIv ⊕ uJv}
3 if BDPT (fIx,Iv,Jv,Kv ,K,L, 0) return unknown
4 return unknown
5 else if BDPT (fIx,Iv,Jv,Kv ,K,L, 0) return 1
6 return 1
7 else
8 return 0
9 end procedure

Proof. The superpoly pIv,Jv,Kv
(x) is a function of secret variables x. If for arbi-

trary term xuIx , we can determine its ANF coefficient. Then, the exact superpoly
can be obtained.

Because fIv,Jv,Kv
(x,v) is a public-update cipher, fIx,Iv,Jv,Kv

(x,v) is also a
public-update cipher. Then, for arbitrary term xuIx , we research the propagation
of BDPT D1n+m

K,L , where K = ∅ and L = {(uIx ,uv) |uIv � uv � uIv ⊕ uJv
}. Let

the output BDPT of fIx,Iv,Jv,Kv
(x,v) be D1n+m

K′,L′ . The initial K = ∅ means that
there is no division trail from K = ∅ to K

′. From Sect. 2.3, we know that for
public function, the BDPT propagation of K and L is independent. Only when
the secret round key is involved, some vectors of L will affect K. That means,
there is no division trail from L to K

′ when all the update functions are public.
The output set K

′ = ∅ and the return value of Algorithm 3 is constant (0 or 1).
So the ANF coefficient of arbitrary term xuIx can be recovered by BDPT. �

According to Sect. 2.6, for polynomial fIv,Jv,Kv
(x,v) and cube set CIv,Jv,Kv

,
we can use MILP method to evaluate the secret variables involved in the super-
poly and the upper bounding degree of superpoly. We denote the involved secret
variables indices set as I and the upper bounding degree as d. Then, in order
to recover the superpoly, we only need to determine the coefficients a

pIv,Jv,Kv
u

satisfying u � uI and hw (u) ≤ d.

Analysis of Public-Update Cipher. According to Proposition 4, we can

query the Algorithm 3
∑d

i=0

(|I|
i

)

times to recover all the ANF coefficients of

superpoly. The complexity is c·∑d
i=0

(|I|
i

)

, where c is the average computational

complexity of Algorithm 3. Compared with CBDP based cube attack in Sect. 2.6,
we can know that when c < 2|Iv|, our method can obtain better results.

Analysis of Secret-Update Cipher. Due to the influence of secret keys in
the intermediate rounds, new vectors may be generated from Li and added to
Ki. Therefore, the condition that the output BDPT set K

′ = ∅ may not hold.
Namely, only a part of the ANF coefficients in superpoly pIv,Jv,Kv

(x,v) can be
obtained by BDPT. If there are N ANF coefficients that cannot be determined
by BDPT, we have to get their ANF coefficients by the method used in the

422 S. Wang et al.

CBDP based cube attack. Therefore, the complexity of recovering superpoly is{

c · ∑d
i=0

(|I|
i

)

+ N · 2|Iv|
}

.

7 Application to Trivium

In order to verify the correctness and effectiveness of our method, we apply it
to Trivium [5] which is a public-update cipher.

7.1 Descriptions of Trivium

Trivium [5] is a bit-oriented stream cipher with 288-bit internal state denoted by
s = (s0, s1, . . . , s287). To outline our technique more conveniently, we describe
Trivium using the following expression. Let x = (x0, x1, · · · , x79) denote the
secret variables (80-bit Key), and v = (v0, v1, · · · , v207) denote the public vari-
ables. For public variables, v13, v14, · · · , v92 are the IV variables whose values
can be chosen by attackers (80-bit IV), {v205, v206, v207} are set to 1, and others
are set to 0. Then, the algorithm would not output any keystream bit until the
internal state is updated 1152 rounds. A complete description of Trivium is given
by the following simple pseudo-code.

(s0, s1, . . . , s92) ← (x0, . . . , x79, v0, . . . , v12)
(s93, s94, . . . , s176) ← (v13, . . . , v96)
(s177, s178, . . . , s287) ← (v97, . . . , v207)
for i = 1 to N do

if i > 1152 then

zi−1152 ← s65 ⊕ s92 ⊕ s161 ⊕ s176 ⊕ s242 ⊕ s287

end if

t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170

t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263

t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68

(s0, s1, . . . , s92) ← (t2, s0, . . . , s91)
(s93, s94, . . . , s176) ← (t0, s93, . . . , s175)
(s177, s178, . . . , s287) ← (t1, s177, . . . , s286)

end for

7.2 The MILP-aided Algorithm for Trivium

Because Trivium is a public-update cipher, during the progress of recovering the
ANF coefficients of superpoly, the set K is always empty. The papers [23,26]
have showed the method on how to build the CBDP model of Trivium. Here, we
propose Algorithm 4 to get the L’s propagation of Trivium’s round function. The

MILP-aided Method of Searching Division Property 423

Algorithm 4. The propagation of L for the round function

1 procedure CorePropagation(L, i0, i1, i2, i3, i4)
2 Let x = (x0, x1, x2, x3, x4) be the variables
3 Let y be the function of x, and y = (x0, x1, x2, x3, x0x1 + x2 + x3 + x4)
4 L

′ = ∅
5 for � in L

6 for all u = (u0, u1, u2, u3, u4) ∈ F
5
2 do

7 if yu contains the term x(�i0 ,�i1 �i2 ,�i3 ,�i4) then
8 �′ = �
9 �′

i0 = u0, �′
i1 = u1, �′

i2 = u2, �′
i3 = u3, �′

i4 = u4

10 L
′ x← �′

11 end if
12 end for
13 end for
14 return L

′

15 end procedure

1 procedure RoundPropagation(Lr)
2 initial L′ = ∅, L′′ = ∅, L′′′ = ∅, Lr+1 = ∅
3 L

′ =CorePropagation(Lr, 65, 170, 90, 91, 92)
4 L

′′ =CorePropagation(L′, 161, 163, 174, 175, 176)
5 L

′′′ =CorePropagation(L′′, 242, 68, 285, 286, 287)
6 for all � in L

′′′ do
7 Lr+1 = Lr+1

⋃{� ≫ 1}
8 end for
9 return Lr+1

10 end procedure

input of procedure RoundPropagation in Algorithm 4 is the r-th round BDPT
set Lr, and the outputs is the (r + 1)-th round BDPT set Lr+1.

At CRYPTO 2017 [23], Todo et al. proposed a CBDP based cube attack
on the 832-round Trivium. Then, at CRYPTO 2018 [26], Wang et al. improved
the result and presented a CBDP based cube attack on 839-round Trivium. But
both methods cannot ensure whether the cube attacks are key recovery attacks
or not. After applying Algorithm 3 to the 832-round and 839-round Trivium, we
have the following results.

Result 1. For cube set CIv,Jv,Kv
, where Iv = {13, . . . , 45, 47, . . . , 58, 60, . . . , 92},

no matter what the assignment to the non-cube IVs {46, 59} is, the corresponding
superpoly of 839-round Trivium in the paper [26] is constant. So the cube attack
based on CBDP in the paper [26] is not key recovery attack.

Result 2. For the cube set CIv,Jv,Kv
, where Iv = {13, 14, . . . , 77, 79, 81, . . . , 91},

the superpolies of some assignments are constant. For example, when Jv =
{205, 206, 207} and Kv = {0, 1, . . . , 207} − Iv − Jv, the superpoly recovered is

424 S. Wang et al.

pIv,Jv,Kv
(x) = 0. And the superpolies of some assignments are non-constant. For

example, when Jv = {80, 90, 205, 206, 207} and Kv = {0, 1, . . . , 207}−Iv−Jv, the
superpoly recovered is pIv,Jv,Kv

(x) = x56x57x58+x32x56+x56x59. In a word, the
assignment to the non-cube IVs will affect whether the cube attack on 832-round
Trivium in the paper [23] is key recovery attack or not.

7.3 Theoretical Result

Result 3. Let CIv,Jv,Kv
be a cube set, where Iv = {13, 14, . . . , 89, 91}, Jv =

{205, 206, 207}, and Kv = {0, 1, . . . , 204} − Iv. Using the degree bounding tech-
nique in the paper [26], we can get that the degree of superpoly in 841-round

Trivium is not larger than 10. Then, we have
∑d

i=0

(|I|
i

)

≤ ∑10
i=0

(
80
i

)

≤ 241.

That means we can use no more than 241 MILP-aided propagation of BDPT to
recover the exact superpoly of 841-round Trivium.

Because our computing resources are limited, the exact superpoly of 841-
round Trivium cannot be recovered in practical time. On our common PC (Intel
Core i5-4590 CPU @3.3 GHz, 8.00G RAM), it takes about 18 days to complete
the MILP-aided propagation of BDPT 100 times.

8 Conclusions

This paper is committed to solve the complexity problem of searching integral
distinguishers based on BDPT. In order to make the propagation of BDPT
efficient, we show the pruning techniques which can removing redundant vectors
in time. Then, an algorithm is designed to estimate whether the m-th output
bit is balanced or not based on BDPT. We apply the searching algorithm to
some blocks, and the obtained integral distinguishers are the same or better
than the previous longest integral distinguishers. It should be noted that the
absence of integral distinguishers based on BDPT doesn’t imply the absence of
integral distinguishers. Any improvement on the accuracy of BDPT propagation
may obtain better integral distinguishers. Moreover, our searching algorithm
supposes that all round keys are chosen randomly. If consider the key scheduling
algorithm, we may obtain better integral distinguishers.

Moreover, we apply BDPT to recover the superpoly in cube attack. As far
as we know, this is the first application of BDPT to stream ciphers. For public-
update ciphers, the exact ANF of superpoly can be fully recovered by exploring
the propagation of BDPT. To verify the correctness and effectiveness of our
method, we apply it to Trivium. For the cube attack on the 832-round Trivium
[23], we obtain that only some proper non-cube IV assignments can obtain non-
constant superpolies. For the cube attack on 839-round Trivium [26], our result
shows that the superpoly is always constant. Because our method can determine
the ANF coefficients of superpoly in practical time, we propose a theoretical
superpoly recovery of 841-round Trivium.

MILP-aided Method of Searching Division Property 425

For secret-update ciphers, due to the influence of intermediate round keys,
not all the ANF coefficients can be obtained by BDPT. From this perspective,
when we design stream ciphers, the secret-update ciphers are more secure. How
to recover the superpoly of secret-update ciphers is our future work.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their detailed comments and suggestions. This work was supported by the National
Natural Science Foundation of China [Grant No. 61572516, 61802437].

Appendix

Table 7. The L propagation of BDPT for the core operation of SIMON

Input D14

K,{�} Output D14

K′,L′

� = [0, 0, 0, 0] L
′ = {[0, 0, 0, 0]}

� = [1, 0, 0, 0] L
′ = {[1, 0, 0, 0]}

� = [0, 1, 0, 0] L
′ = {[0, 1, 0, 0]}

� = [1, 1, 0, 0] L
′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}

� = [0, 0, 1, 0] L
′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}

� = [1, 0, 1, 0] L
′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}

� = [0, 1, 1, 0] L
′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}

� = [1, 1, 1, 0] L
′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}

� = [�0, �1, �2, 1] L′ = {[�0, �1, �2, 1]}

Experimental Verification

Example 1. For 591-round Trivium and cube set CIv,Jv,Kv
, where Iv = {13, 23,

33, 43, 53, 63, 73, 83}, Jv = {14, 29, 32, 205, 206, 207} and Kv = {0, 1, · · · , 207} −
Iv −Jv, we can get that the involved secret variables are {x22, x23, x24, x66}, the
degree of superpoly is not larger than 2. Then, we use Algorithm 3 to recover all
the ANF coefficients of the superpoly, which is in accordance with the practically
recovered superpoly as follows:

pIv,Jv,Kv
(x) = x66 + x24 + x23x22 + 1.

Example 2. For 591-round Trivium and cube set CIv,Jv,Kv
, where Iv = {13, 23,

33, 43, 53, 63, 73, 83}, Jv = {29, 32, 82, 205, 206, 207}, and Kv = {0, 1, · · · , 207}−
Iv −Jv, we can get that the involved secret variables are {x22, x23, x24, x65, x66},
the degree of superpoly is not larger than 3. Then, we use Algorithm 3 to recover
the superpoly, which is in accordance with the practically recovered superpoly
as follows:

pIv,Jv,Kv
(x) = x65x23x22 + x65x24 + x66x65 + x65.

426 S. Wang et al.

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, M.: MILP modeling for
(large) S-boxes to optimize probability of differential characteristics. IACR Trans.
Symmetric Cryptol. 2017(4), 99–129 (2017)

2. Beaulieu, R., Shors, D., Smith, J., Treatman–Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013:404 (2013). http://eprint.iacr.org/2013/404

3. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

4. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 24

5. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

6. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

7. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

8. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguish-
ers with ease. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. Lecture Notes in
Computer Science, vol. 11349, pp. 115–138. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10970-7 6

9. Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Triv-
ium. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
160–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 6

10. Gurobi: http://www.gurobi.com/
11. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)

FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

12. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Observations on the
dynamic cube attack of 855-Round TRIVIUM from Crypto 2018. IACR Cryptology
ePrint Archive 2018:972 (2018). https://eprint.iacr.org/2018/972.pdf

13. Hu, K., Wang, M.: Automatic search for a variant of division property using
three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 21

14. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 9

15. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 23

16. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 8

http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-53018-4_24
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/978-3-319-96881-0_6
http://www.gurobi.com/
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://eprint.iacr.org/2018/972.pdf
https://doi.org/10.1007/978-3-030-12612-4_21
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-63697-9_8

MILP-aided Method of Searching Division Property 427

17. Sage: http://www.sagemath.org/
18. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division

property. Sci. Chin. (Inf. Sci.) 2017(09), 274–276 (2017)
19. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-

uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

20. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 20

21. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

22. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

23. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

24. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

25. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

26. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

27. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

28. Xie, X., Tian, T.: Improved distinguisher search techniques based on parity sets.
Sci. Chin. Inf. Sci. 55, 2712 (2018)

29. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48324-4 16

30. Ye, C., Tian, T.: Deterministic cube attacks. IACR Cryptology ePrint Archive,
2018:1028 (2018). https://eprint.iacr.org/2018/1082.pdf

31. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. Chin. Inf.
Sci. 58(12), 1–15 (2015)

http://www.sagemath.org/
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-319-13039-2_9
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16
https://eprint.iacr.org/2018/1082.pdf

Cryptanalysis of GSM Encryption
in 2G/3G Networks Without

Rainbow Tables

Bin Zhang1,2,3,4(B)

1 TCA, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
martin zhangbin@hotmail.com

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
3 University of Chinese Academy of Sciences, Beijing 100049, China

4 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

Abstract. The GSM standard developed by ETSI for 2G networks
adopts the A5/1 stream cipher to protect the over-the-air privacy in cell
phone and has become the de-facto global standard in mobile communi-
cations, though the emerging of subsequent 3G/4G standards. There are
many cryptanalytic results available so far and the most notable ones
share the need of a heavy pre-computation with large rainbow tables or
distributed cracking network. In this paper, we present a fast near colli-
sion attack on GSM encryption in 2G/3G networks, which is completely
new and more threatening compared to the previous best results. We
adapt the fast near collision attack proposed at Eurocrypt 2018 with
the concrete irregular clocking manner in A5/1 to have a state recov-
ery attack with a low complexity. It is shown that if the first 64 bits of
one keystream frame are available, the secret key of A5/1 can be reli-
ably found in 231.79 cipher ticks, given around 1 MB memory and after
the pre-computation of 220.26 cipher ticks. Our current implementation
clearly certified the validity of the suggested attack. Due to the fact that
A5/3 and GPRS share the same key with A5/1, this can be converted
into attacks against any GSM network eventually.

Keywords: Cryptanalysis · GSM · A5/1 · Near collision

1 Introduction

The GSM standard, developed by ETSI for 2G networks used by mobile phones,
specifies the A5/1 stream cipher to protect the over-the-air privacy all over the
world. As of today, A5/1 has become the de-facto global standard for mobile
communications with more than 4 billion customers and over 90% market share,
operating in over 219 countries and territories.

A5/1 is the strong version of the encryption algorithm in GSM standard and
A5/2 is the weak version free of export limitations. A5/1 was designed in the 80’s
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 428–456, 2019.
https://doi.org/10.1007/978-3-030-34618-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_15

Cryptanalysis of GSM Encryption in 2G/3G Networks 429

of last century as a typical LFSR-based stream cipher with an irregular clocking
mechanism. The exact design was reverse-engineered in [6] in 1999 and confirmed
by the relevant authorities subsequently. A newly standardized version in GSM
networks is A5/3, which is based on the block cipher KASUMI. In practice, the
algorithm is frequently re-synchronized and a GSM conversation consists of a
series of frames sent every 4.6 ms. From a 64-bit secret key and a 22-bit publicly
known frame counter, only 228 bits keystream are generated in each frame, and
after that a new frame counter is mixed with the same key again in initialization
to generate another frame.

There are lots of attacks published so far against A5/1 and the GSM encryp-
tion, to name but a few [1–5,7–9,12–14]. Different cryptanalytic strategies, e.g.,
time/memory/data (TMD) tradeoff attacks, guess-and-determine attacks and
(conditional) correlation attacks have been tried, resulting in more and more
powerful attacks in terms of complexity cost. But from both the theoretical and
practical viewpoints, only a few results [2,13] have given new theoretical insights
and have the direct and important consequence on the GSM encryption itself.
At Crypto 2003, a practical ciphertext-only attack on A5/2 was depicted in [2],
which could be extended to more complex and more expensive attacks on A5/1,
of which the cheapest pre-computation required 35 PCs (that were available
around 2003) to work a few years with about 600 GB disks. Given the protocol
flaws of the GSM networks and with the assumption that the targeted mobile
phone supports A5/2, various active attacks were launched accordingly. In Jan-
uary 2007, the Hacker’s Choice started the A5/1 cracking project with plans to
use FPGAs that allow A5/1 to be broken with a rainbow table attack. Then in
2010, K. Nohl announced a new attack in [13] without the reveal of many details,
using a thick rainbow table with the distinguished points technique. It had an
online attack time of about 10 s on a general-purpose GPU with the success prob-
ability of 87%, given 8 known keystream frames and 30 pre-computation tables
of about 1.7 Terabytes. The most recent attack on A5/1 was presented in [11],
where a unified rainbow table cryptanalytic method was introduced and applied
to A5/1. To have a comparable success probability and online attack time to the
relevant attacks, two pre-computation tables of 984 GB were needed, each has
to be prepared in 55 · 2 = 110 days.

In this paper, we take an entirely different cryptanalytic approach to break
A5/1 used in the GSM networks, free of the extremely heavy rainbow tables and
long time pre-computation. While all the previous TMD tradeoff attacks regard
the internal state of A5/1 as a whole and try to restore it in one shot immediately,
we adopt the fast near collision attack (FNCA) strategy in [16] and make a
divide-and-conquer partition of the full internal state. Precisely, we regard the
internal state as the union of the crucial part (CP) and the rest part (RP),
which could be retrieved easily given the corresponding CP and the keystream
prefix. Thus, the security of the primitive mainly depends on the intractability
of restoring the CP and the efficiency of restoring the RP accordingly. We first
launch a fast near collision attack to recover the CP part of the internal state
in A5/1 according to the irregular clocking mechanism, based on which the RP

430 B. Zhang

part could be recovered later by a dynamic guess-and-determine attack similar
to [9]. It is surprising that the irregular clocking mechanism in A5/1 actually
facilitates the list merging procedure in a fast near collision attack. Due to
the event that not all the three registers moves simultaneously happens with a
probability of 0.75, two more overlapping bits are gained for free for each such
step. Further in A5/1, it is found that the parameter configuration in a fast near
collision attack can be easily tuned to have the desirable non-random behaviour
between the resultant list size and a good existence probability of each correct
restricted internal state in FNCA. As a result of these findings, it is shown that
if the first 64 bits of one keystream frame are intercepted, the internal state,
thus the secret key of A5/1 can be reliably found in 231.79 cipher ticks, given
around 1 MB memory and after a pre-computation of 220.26 cipher ticks. Our
current implementation in C language on a single core of a PC clearly certified
the correctness of this new attack. It takes tens of seconds on average to find
the targeted internal state of A5/1, and we feel that further optimization of the
code will reduce the time to several seconds. This is the best known attack on
A5/1 so far and it is worthy noting that due to the fact that A5/3 and GPRS
share the same key with A5/1 in GSM, our attack can be leveraged into attacks
against any GSM 2G/3G network eventually.

This paper is organized as follows. A brief description of the A5/1 stream
cipher and the GSM encryption scheme is presented in Sect. 2. Some basic defi-
nitions and preliminaries of the fast near collision attack relevant to our analysis
are provided in Sect. 3. Then a high-level description of our attack against A5/1
and the technical details are presented in Sect. 4, followed by the experimental
results in Sect. 5. We leverage our attack to any GSM network in Sect. 6 and
finally, some conclusions are drawn in Sect. 7.

2 Description of A5/1 and the GSM Encryption

Let us first present the algorithmic details of the A5/1 stream cipher and the
GSM encryption scheme that are relevant to our analysis. A5/1 consists of 3
short linear feedback shift registers (LFSR), denoted by R1, R2 and R3, which
are of length 19, 22 and 23 bits respectively. Each register has a primitive feed-
back polynomial and thus generates a maximum-length binary sequence. The

Fig. 1. The A5/1 stream cipher.

Cryptanalysis of GSM Encryption in 2G/3G Networks 431

rightmost bit in each register is labelled as bit 0. The taps of R1 are at the 13th,
16th, 17th and 18th bit positions; the taps of R2 are at the 20th, 21st bits and
the taps of R3 are at the 7th, 20th, 21st and 22nd bits, as depicted in Fig. 1.

Besides, each register has another clocking tap, i.e., bit 8 for R1, bit 10 for
R2 and bit 10 for R3, to feed a majority function defined as maj(ct1, ct2, ct3) =
ct1 · ct2 ⊕ ct2 · ct3 ⊕ ct3 · ct1, where ct1 = R1[8], ct2 = R2[10] and ct3 = R3[10].
The three registers are clocked in a stop/go fashion using the majority rule: at
each clock, take the majority function of the clocking taps and only run those
registers whose clocking taps agree with the computed majority bit. It is easy
to see that at each step, either two or three registers are clocked, and that each
register moves with a probability of 3/4 and stops with a probability of 1/4.

In the initialization phase, the three registers are all first set to zero. The
secret session key K and a publicly known frame number FN are first injected
and then mixed, after that 228 keystream bits are generated in each frame.

One Session of GSM Encryption
Input Parameters:
1: K = (K63, · · · ,K1,K0) is the 64-bit secret key
2: FN = (FN21, · · · , FN0) is a 22-bit frame counter
3: for i = 0 to 63 do
4: regularly clock R1, R2 and R3
5: R1[0] =R1[0] ⊕ Ki

6: R2[0] =R2[0] ⊕ Ki

7: R3[0] =R3[0] ⊕ Ki

8: for i = 0 to 21 do
9: regularly clock R1, R2 and R3
10: R1[0] =R1[0] ⊕ FNi

11: R2[0] =R2[0] ⊕ FNi

12: R3[0] =R3[0] ⊕ FNi

13: for i = 0 to 99 do
14: clock R1, R2 and R3 in the specified stop/go fashion

without producing any output
15: for i = 0 to 227 do
16: clock R1, R2 and R3 in the specified stop/go fashion
17: generate zi =R1[18] ⊕ R2[21] ⊕ R3[22]
Output: the keystream segment {zi}227i=0

In the initialization phase (Step 3 to Step 14), the content of the three registers
after step 12 is called the initial state, which is denoted by S(0). The internal
state before Step 15 is denoted by S(100). In one session of a GSM conversation,
one 114-bit keystream segment is generated for one direction communication and
the other 114-bit segment for the opposite direction. Thus, only 228 keystream
bits are available in each frame.

432 B. Zhang

3 Preliminaries

In this section, some notations and basic definitions relevant to the fast near
collision attack and our work are presented.

We start with the notions of keystream prefix, keystream segment difference
(KSD) and internal state difference (ISD).

Definition 1. For a specified cipher such as A5/1, a keystream prefix z =
(z0, z1, · · · , zl−1) of l-bit length is the keystream vector generated consecutively
and directly from the corresponding internal state x.

Definition 2. For a specified cipher such as A5/1 and two keystream prefixes
z and z′, if z is generated from the internal state x and z′ is generated from the
internal state x′, the keystream segment difference (KSD) is Δz = z ⊕ z′ and
the internal difference (ISD) is defined as Δx = x ⊕ x′.

In a fast near collision attack, the full internal state which usually contains a
large number of variables is not targeted directly; instead the adversary only
considers the subset of the full internal state which is directly associated with
a specified keystream prefix, as shown in the following definition of restricted
internal state.

Definition 3. For a specified cipher such as A5/1, the subset x = (xi0 , xi1 ,
· · · , xin−1) of the full internal state which is directly associated with the keystream
prefix z = (z0, z1, · · · , zl−1) is called the restricted internal state of z.

Note that Definition 3 has a subtle difference with the corresponding Definition
1 in [16]. Here we only consider the keystream prefix which is generated consec-
utively from a given internal state, while Definition 1 in [16] covers the general
cases that the keystream bits under consideration are non-consecutive, which is
called the keystream vector.

We also need the notions of two kinds of sampling resistance of the primitive,
which characterizes the enumeration procedure in a fast near collision attack.

Definition 4. For a specified cipher such as A5/1, if there exists some efficient
method to enumerate directly some subset of the full internal state which pro-
duces a special keystream prefix of l bits, e.g., a string of 0s, without trying and
discarding the other states, then it has a BSW sampling resistance of l bits, or
equivalently its BSW sampling resistance is 2−l.

It was shown in [5] that when targeting the full 64-bit internal state, A5/1 has
a BSW sampling resisitance of 2−16 due to the poor choice of the clocking taps,
which makes the register bits that affect the clock control and those affecting
the keystream bits unrelated for about 16 clock cycles, so the adversary can
independently choose them. This technique can be transformed as follows when
only considering the subset of the full internal state.

Definition 5. For a specified cipher such as A5/1, let z = (z0, z1, · · · , zl−1) be
the keystream prefix whose restricted internal state is x = (xi0 , xi1 , · · · , xin−1),
if l bits in x could be derived explicitly by z and the other bits in x, then l is the
restricted BSW sampling resistance corresponding to (x, z).

Cryptanalysis of GSM Encryption in 2G/3G Networks 433

Definition 4 is generalized in [16] to deal with the restricted internal states, as
described in Definition 5. Now we only use very short keystream prefix once a
time, e.g., l = 2 bits in a fast near collision attack, the time complexity to fulfill
the enumeration step becomes negligible compared to the other procedures of
the attack.

Let ∅ be the empty set, the partition of the full internal state into the CP
and RP parts is formally introduced in the following definition.

Definition 6. For a specified cipher such as A5/1, the subset x∗ of the full
internal state xfull that is crucial for the security of the primitive under our
framework is the CP part, the rest of the internal state x̄∗, where x∗ ∩ x̄∗ = ∅

and x∗ ∪ x̄∗ = xfull is the RP part.

Note that it is the freedom of the adversary to determine how to choose the
CP part of the internal state. Usually, the CP part is selected in such a way
that once retrieved, the rest internal state named RP could be relatively easy
to restore, provided the corresponding keystream segment. The partition of CP
and RP may be non-unique in a fast near collision attack, we do not exclude
other possible choices.

Now we come to the theoretical foundation of a fast near collision attack.
Let GF(2) be the binary field and its n-dimensional vector space is denoted by
GF(2)n. First comes the definition of d-near-collision in [15,16].

Definition 7. Two bit strings s1 ∈ GF(2)n and s2 ∈ GF(2)n are d-near-
collision, if wH(s1 ⊕ s2) ≤ d, where wH(·) is the Hamming weight of the input.

The basic near collision lemma is as follows, as stated in [16].

Lemma 1. Let A and B be two random subsets of GF(2)n and D is a condition
set, then there exist a pair (a, b) ∈ A × B satisfying one of the conditions in D
if

|A| · |B| ≥ c · 2n

|D|
holds, where |A|, |B| and |D| are the cardinalities of sets A, B and D respectively;
c is the constant that determines the actual existence probability of the good pair
(a, b). In particular, if D = {Δx ∈ GF(2)n|wH(Δx) ≤ d}, then |D| = v(n, d) =
∑d

i=0

(
n
i

)
is the total number of ISDs with wH(Δx) ≤ d and (a, b) ∈ A × B is a

d-near-collision pair.

Lemma 1 has a very large connotation in the sense that it does not restrict
what kind of condition is defined in D and has nothing to do with any secret
information. The only premise is the randomness of the two involved sets. As in
[16], we have the following statements as the corollary of Lemma 1.

Corollary 1. For a specified cipher such as A5/1 and a constant c, if we choose
|A| = 1 and |B| = c · 2n

|D| with A and B being the n-bit restricted internal states
associated with a l-bit keystream prefix, and D = {Δx ∈ GF(2)n|wH(Δx) ≤ d},
then there exists an element bi ∈ B such that the pair (a, bi) with the unique
element a ∈ A forms a d-near collision pair with a probability dependent on c.

434 B. Zhang

Corollary 1 implies that we can carefully choose the constant c and the parameter
d to control the existence probability of the desirably good near collision pair.

3.1 The Fast Near Collision Attack

At Eurocrypt 2018, a new cryptanalytic method called fast near collision attack
was introduced in [16] to analyze modern stream ciphers with a large internal
state. The idea is to combine a near collision property with the divide-and-
conquer strategy to restore several partial internal states first, merge the recov-
ered partial states together according to the concrete internal structure and
finally recover the full large internal state based on the merged part.

While the original near collision attack in [15] tried to collect two keystream
vector sets and to identify a near collision in the whole internal state at different
time instants, a fast near collision attack only targets several well-chosen partial
restricted internal states based on the refined self-contained method first, whose
idea is depicted in Fig. 2. The observation here is that the adversary could simply
collect only one keystream prefix set A and virtualize the other set B by directly
computing it by himself/herself, i.e., B is not captured. Since we are playing with
the internal states directly, the adversary could randomly produce the internal
state x so that it will have the keystream prefix z = prefix. As stated before,
the premise in Lemma 1 is just the randomness of the two sets A and B, it does
not restrict the way how the adversary gets them. Thus, the adversary could
generate one keystream prefix set by himself/herself without knowing any secret
key. Given the pre-computed table T mapping from a specified ksd to all the
possible ISDs, each partner state x′ = x ⊕ Δx will be checked and stored in
the list L only if it would generate z′ = z ⊕ ksd. The following Algorithm a
shows this technique in the general form, i.e., it could deal with both the full
and the restricted internal state cases. This method will be integrated into the
A5/1 setting with the corresponding chosen parameters and formally introduced
in Sect. 4.4.

A
prefix

T
ISDs

B
x

L
x´

z´ = z ksd ?

captured

computed

z = prefix

x´=x x

Pre-
computed

Fig. 2. The idea of the refined self contained method.

Cryptanalysis of GSM Encryption in 2G/3G Networks 435

Algorithm a. The refined self-contained method in general [10, 16]

1: for each prefix in A do
2: Let i = 0
3: while i ≤ c · 2n/|T | do
4: randomly generate a new (full or restricted) internal state x
5: such that x produces z = prefix

6: for each Δx in |T| do
7: if x′ = x ⊕ Δx generates z′ = prefix ⊕ ksd then
8: store x′ into the list L indexed by prefix

9: i = i + 1
10: Output: The list L

In general, there are two phases in a fast near collision attack: the offline and
online phases. The pre-computation phase is quite efficient due to the divide-
and-conquer strategy, in which the adversary tries to construct some relatively
small tables, instead of one large table, mapping from a fixed ksd to all the
possible ISDs of the corresponding restricted internal state. Now the adversary
does not need to exhaustively search through all the possible ISDs over the full
internal state; instead, he/she just search through all the possible ISDs over
a specified restricted internal state associated with a given keystream prefix,
which could be much smaller than the whole internal state. In the online phase,
the adversary uses the above self-contained method to get a list of the candidates
of the targeted restricted internal state. There is a distilling procedure afterwards
to get a smaller list of the candidates with a higher existence probability of the
correct partial internal state, which consists of some set intersection and union
operations with carefully selected parameters. Then merge the restored restricted
internal states together to cover the chosen CP portion of the full internal state,
which is used later as the starting point for the full recovery of the internal state.

We will go into the details of the refined self-contained method, the distilling
and merge procedures, and the final retrieval of the targeted internal state in
the context of A5/1 in the following sections.

4 Our New Attack

In this section, we will present our new attack against A5/1 in a step-by-step
manner following the above cryptanalytic principles.

4.1 A General Description of the Attack

We first present a high-level overview of our attack. As stated in Sect. 3, the goal
is to first recover the CP part of the internal state, and then the RP part at a
fixed time instance which is consistent with the captured keystream.

The main idea is as follows. In A5/1, the size of the internal state is only 64
bits, thus in the assumed fast near collision attack, if we target a well-chosen CP
part of the internal state, the pre-computation and the memory complexities will
be considerably reduced compared to the previous best attacks. What we need
to do is just to prepare the partial differential tables which record the mappings

436 B. Zhang

from the l-bit KSDs to all the possible ISDs of the restricted internal state with
the sorted occurring probabilities. In the online phase, we exploit the special
internal structure of A5/1 to partition the 64-bit internal state into the CP and
the RP part, and its irregular clocking mechanism to launch the concrete fast
near collision attack against it. Formally, a high-level description of our attack
is depicted in Algorithm 1.

Algorithm 1. Fast near collision attack on A5/1

Parameters: l, α, γ
Offline: Prepare the tables T[ksd, prefix]
1: for each possible value of (ksd, prefix) do
2: use the method in section 4.3 to construct T[ksd, prefix]
Input: A keystream segment z = (z0, z1, . . . , zγ−1)
Online: Recover the full internal state matching with z
3: Divide z into α overlapping prefixes zi (0 ≤ i ≤ α − 1) and a suffix zμ

4: for i = 0 to α − 1 do
5: derive the partial state list Li for zi in section 4.4 and 4.5
6: Merge Lis to get a candidate list for the CP part in section 4.6
7: Recover the RP in section 4.7 and check the consistency with zμ

In the following, we will embed Algorithm 1 into the concrete attack scenario
of A5/1 to demonstrate the attack in details.

4.2 Basic Facts of A5/1

As described in Sect. 2, A5/1 adopts the stop/go clocking fashion according to
a majority function defined over the 3 taps from R1, R2 and R3, respectively.
Thus, for one keystream bit zi, it actually depends on 9 internal state bits: the 2
leftmost bits from each register, i.e., R1[18], R1[17], R2[21], R2[20], R3[22] and
R3[21], and the three clock control bits R1[8], R2[10] and R3[10].

Further, as discussed in Sect. 3.1, the adversary needs to randomly gener-
ate the keystream prefix without knowing the secret key in a fast near colli-
sion attack. In this case, we could use either the oracle which generates the
corresponding keystream prefix directly or the following Algebraic Norm Form
(ANF) of zi, which could be verified by enumerating all the possible values of
x = (x0, x1, x2, . . . , x8):

f(x) = x3 + x4 + x5 + x0x6 + x3x6 + x1x7 + x4x7 + x2x8 + x5x8

+ x0x6x7 + x1x6x7 + x2x6x7 + x3x6x7 + x4x6x7 + x5x6x7

+ x0x6x8 + x1x6x8 + x2x6x8 + x3x6x8 + x4x6x8 + x5x6x8

+ x0x7x8 + x1x7x8 + x2x7x8 + x3x7x8 + x4x7x8 + x5x7x8,

where x0 = R1[18], x1 = R2[21], x2 = R3[22], x3 = R1[17], x4 = R2[20],
x5 = R3[21], x6 = R1[8], x7 = R2[10] and x8 = R3[10]. As in [16], in order to
have an efficient fast near collision attack, we have also tried to use the 2-bit
keystream prefix to recover the corresponding restricted internal state, which

Cryptanalysis of GSM Encryption in 2G/3G Networks 437

contains 6 more variables than the single bit case, as depicted in Fig. 3. Due to
the action of the majority function, there are now 15 input variables involved
for a 2-bit keystream prefix. Precisely, in addition to the above 9 state bits in
the ANF of zi, we have x9 = R1[16], x10 = R2[19], x11 = R3[20], x12 = R1[7],
x13 = R2[9] and x14 = R3[9]. For a 2-bit keystream prefix, we just directly
exploit the keystream generation oracle to generate it in the refined self-contained
method.

Fig. 3. The 15-bit restricted internal state that a 2-bit keystream prefix depends on.

4.3 Pre-computing the Partial Differential Tables

Now we come to the offline phase of Algorithm 1. Since there are only n = 15
or n = 9 variables involved for the 2-bit keystream prefix or 1-bit keystream,
given a small value of d, we could fully enumerate all the possible values of
the corresponding restricted internal state and all the v(n, d) ISDs to accurately
compute the occurring probabilities of each ISD.

Algorithm 2. The offline algorithm

Parameters: n, d and ksd, prefix
1: for each possible value of (ksd, prefix) do
2: Initialize the table T[ksd, prefix]
3: for each of the v(n, d) Δx do
4: Initialize t = 0 and cc = 0
5: for each i ∈ {0, 1, · · · , 2n − 1} do
6: check if x = i generates the prefix

7: if yes then
8: t = t + 1
9: generate the partial internal state x′ = x ⊕ Δx
10: compute the prefix z′ generated by x′

11: if z′ = prefix ⊕ ksd then store Δx and cc = cc + 1
12: Sort the ISDs according to the occurring rates cc/t

Algorithm 2 describes how to generate a series of pre-computed tables, which
record the mappings from a specified ksd to all the possible ISDs Δx, each with
a sorted occurring probability. The core point here is that the only premise in
Lemma 1, i.e., the randomness, enables the adversary to freely compute the

438 B. Zhang

second set B by himself/herself. Thus, the adversary would know the matching
between the partial internal state x′ and the output prefix z′ = prefix ⊕ ksd.

Table 1. The complete differential table when ksd = 0x3 and d = 2

ISD Prob. ISD Prob. ISD Prob. ISD Prob.

(x3, x9) 0.75 (x6, x11) 0.25 (x6, −) 0.25 (x0, x5) 0.125
(x5, x11) 0.75 (x2, x6) 0.25 (x1, x7) 0.25 (x0, x4) 0.125
(x4, x10) 0.75 (x6, x13) 0.25 (x7, −) 0.25 (x1, x14) 0.125
(x0, x3) 0.4375 (x6, x14) 0.25 (x8, −) 0.25 (x1, x11) 0.125
(x2, x5) 0.4375 (x2, x7) 0.25 (x6, x12) 0.234375 (x2, x4) 0.125
(x1, x4) 0.4375 (x7, x9) 0.25 (x7, x8) 0.234375 (x2, x12) 0.125
(x3, x12) 0.375 (x2, x8) 0.25 (x6, x8) 0.234375 (x0, x11) 0.125
(x5, x14) 0.375 (x7, x10) 0.25 (x8, x14) 0.234375 (x2, x13) 0.125
(x4, x13) 0.375 (x0, x7) 0.25 (x7, x13) 0.234375 (x1, x12) 0.125
(x3, x14) 0.3125 (x7, x11) 0.25 (x6, x7) 0.234375 (x1, x5) 0.125
(x4, x9) 0.3125 (x1, x6) 0.25 (x4, x8) 0.21875 (x2, x3) 0.125
(x4, x12) 0.3125 (x7, x12) 0.25 (x3, x7) 0.21875 (x0, x13) 0.125
(x4, x14) 0.3125 (x1, x8) 0.25 (x5, x6) 0.21875 (x1, x2) 0.125
(x5, x9) 0.3125 (x7, x14) 0.25 (x5, x7) 0.21875 (x0, x14) 0.125
(x3, x11) 0.3125 (x6, x10) 0.25 (x3, x8) 0.21875 (x0, x1) 0.125
(x5, x10) 0.3125 (x8, x9) 0.25 (x4, x6) 0.21875 (x1, x10) 0.0625
(x3, x13) 0.3125 (x4, x5) 0.25 (x3, −) 0.1875 (x0, x12) 0.0625
(x5, x12) 0.3125 (x8, x10) 0.25 (x4, −) 0.1875 (x2, x11) 0.0625
(x3, x10) 0.3125 (x0, x6) 0.25 (x5, −) 0.1875 (x1, −) 0.0625
(x5, x13) 0.3125 (x8, x11) 0.25 (x0, x10) 0.125 (x2, x14) 0.0625
(x4, x11) 0.3125 (x3, x5) 0.25 (x2, x9) 0.125 (x1, x13) 0.0625
(x3, x6) 0.28125 (x8, x12) 0.25 (x1, x9) 0.125 (x0, x9) 0.0625
(x4, x7) 0.28125 (x6, x9) 0.25 (x2, x10) 0.125 (x2, −) 0.0625
(x5, x8) 0.28125 (x8, x13) 0.25 (x1, x3) 0.125 (x0, −) 0.0625
(x0, x8) 0.25 (x3, x4) 0.25 (x0, x2) 0.125

Now we choose d = 2 in Algorithm 2, i.e., we consider the ISDs of Hamming
weight less than or equal to 2-bit, there are v(15, 2) =

∑2
i=0

(
15
i

)
= 121 ISDs for

the 15-bit restricted internal state under consideration. For each ISD Δx satis-
fying wH(Δx) ≤ d, we enumerate all the possible values of the 15-bit restricted
internal states x. If x can generate the considered prefix, we xor it with the
Δx and save Δx into the pre-computed table if and only if the xored state x′

could generate prefix ⊕ ksd. In Algorithm 2, t is the number of times that x
generates the prefix, and cc is the number of occurrences of the event that
z′ = prefix ⊕ ksd under the condition that x generates the prefix. Finally,
the table is sorted according to the occurring probabilities of each ISD. We have
computed T[ksd, prefix] for each combination of (ksd, prefix) when l = 1 and
2 with a low complexity of 22l · v(n, d) · 2n · l. We list the complete table when
ksd = 0x3 with an arbitrary 2-bit keystream prefix when d = 2 in Table 1.

Note that in Table 1, (xi, xj) for 0 ≤ i, j ≤ 14 means the 2-bit differences are
at the positions xi and xj in Fig. 3, respectively. For (xi,−) with 0 ≤ i ≤ 14, it

Cryptanalysis of GSM Encryption in 2G/3G Networks 439

means the 1-bit difference is at the position xi only. Given all the pre-computed
tables T[ksd, prefix], it is easy to see that for a fixed ksd, the average reduction
effect of each table indexed by prefix is almost the same, which is measured by
the diversified probability defined below and in [16].

Definition 8. The diversified probability is defined as Pdivs =
∑

Δx∈T PrΔx

|T | ,
where Δx ranges over all the |T | possible ISDs in the table T[ksd,prefix].

This probability measures the average reducing effect of T[ksd, prefix] so that
for a random restricted internal state x generating prefix, if the bits in x are
flipped according to a Δx ∈ T to get x′, then with the probability Pdivs, x′ could
produce prefix⊕ ksd. The observation that Pdivs is mainly determined by ksd
further reduces the memory requirement of the pre-computation. Thus, given the
fixed ksd=0x3, Table 1 actually works for an arbitrary keystream prefix. This
property is crucial for the partial restricted state recovery, since the recovery
procedure will be the same even if the keystream prefix under investigation has
varied along the captured keystream, which is shown in Algorithm 3 in Sect. 4.4.
It is interesting to see that this small differential table only has 99 < 121 possible
ISDs when ksd = 0x3 and d = 2. Note that in the previous TMD tradeoff
attacks, the adversary is expected to search through all the possible ISDs over the
full internal state, which will result in a huge pre-computation complexity and
memory consumption. Now we can just try the 99 possible ISDs over the 15-bit
restricted internal state in the online phase. Further, the occurring probabilities
of the ISDs in Table 1 ranges from 0.75 to 0.0625 and their distribution is heavily
biased. We have tested all the cases for l = 1 and l = 2 with 2 ≤ d ≤ 4 to find
the optimal choice of the pre-computed table T[ksd, prefix]. The results are
listed in Table 2.

Table 2 clearly shows that for the case l = 2 and n = 15, we have
Pdivs = 0.234848, which is the minimum value among all the empirical results.
Besides, there are some more reasons for choosing this configuration, which are
briefly discussed below. The cost of merging the candidates list in the following
Sect. 4.6 accounts for some proportion of our attack, thus we expect to have less
candidates for the involved restricted internal state. Note that the candidates
are generated by xoring all the possible ISDs in the table T[ksd, prefix] in the
refined self-contained method, thus we prefer a small number of possible ISDs
in the selected pre-computed table. Further, we expect the average reduction
effect, measured by Pdivs, to be as low as possible for the efficiency reasons.

In Table 2, given 2 ≤ d ≤ 4 and 0 ≤ ksd ≤ 3, we have enumerated all
the ISDs Δx such that wH(Δx) ≤ d. We have tested the 29 restricted internal
states for the 1-bit keystream case and the 215 restricted internal states for the
2-bit keystream prefix case, respectively. The experimental results in Table 2
imply that it seems to be a good choice to restore the involved 15-bit restricted
internal state for l = 2 with (ksd, d) = (0x3, 2). There are only 99 possible ISDs
involved in the corresponding pre-computed table and the diversified probability
is 0.234848. Note that each ISD in the table has 15 bits and can be stored in
2 bytes, which means that this table only requires about 198 bytes memory
complexity.

440 B. Zhang

Table 2. The empirical results for l = 1 and l = 2 with 2 ≤ d ≤ 4

l d ksd |T| Pdivs l d ksd |T| Pdivs

1 2 0x0 43 0.511628 2 2 0x0 118 0.313559
0x1 45 0.533333 0x1 96 0.289063
− − − 0x2 111 0.297297
− − − 0x3 99 0.234848

3 0x0 127 0.507874 3 0x0 555 0.269876
0x1 128 0.511719 0x1 547 0.272795
− − − 0x2 521 0.269494
− − − 0x3 533 0.256273

4 0x0 253 0.509881 4 0x0 1875 0.258133
0x1 251 0.505976 0x1 1864 0.261266
− − − 0x2 1853 0.261603
− − − 0x3 1874 0.258938

4.4 Determining the Candidates List of the Involved Restricted
Internal State

Now we are ready to enter the online phase of Algorithm 1, whose aim is to
recover the restricted internal states for the targeted 2-bit keystream prefixes by
using the pre-computed tables prepared in Sect. 4.3.

Algorithm 3. The refined self-contained method in online phase

Parameters: l = 2, n = 15, d = 2 and ksd = 0x3

iter num = 4 · 215/|T[ksd, prefix]| = 4 · 215/99
1: Initialize i = 0
2: while i ≤ iter num do
3: randomly generate a new restricted internal state x
4: such that x produces z = prefix

5: for each of the |T| possible ISDs Δx do
6: if x′ = x ⊕ Δx generates z′ = prefix ⊕ ksd then
7: store x′ into the list L
8: i = i + 1
9: Output: The list L

According to Corollary 1, given the pre-computed table T[ksd, prefix], let A
with |A| = 1 be the 15-bit restricted internal state associated with a 2-bit
keystream prefix and B with |B| = c · 215

|T | be the virtualized 15-bit state in
the refined self-contained method, then there should exist an element bi ∈ B
such that the pair (a, bi) with the unique element a ∈ A forms a d-near collision
pair with a probability dependent on c. This is the theoretical basis of Algorithm
3, where c = 4.

Recall that in the previous near collision attack in [15], the adversary needs
to collect two random keystream vector sets, A and B, and tries to identify a
d-near-collision state pair at two different time instants from the corresponding
keystream segments. In this process, a strong wrong-candidate filter with a low

Cryptanalysis of GSM Encryption in 2G/3G Networks 441

complexity is needed, while in its form in [15], the reduction effect is not as
good as expected. In [10], the self-contained method is introduced as a generic
approach to obtain the candidates of the involved internal state. As briefly men-
tioned in Sect. 3.1, this method only requires one keystream prefix set, and allows
the adversary to freely compute the other one based on the pre-computed table.
Precisely, let A be the collected keystream prefix set, the adversary just ran-
domly generates the other set B by himself/herself. For x′ ∈ A and x ∈ B, if
the corresponding keystream prefixes satisfying z′ ⊕ z = ksd with ksd being the
concrete value of the considered KSD, since the adversary knows the matching
between the internal state x and its corresponding output z, he/she could restore
the targeted internal state x′ by trying x′ = x ⊕ Δx. Thus the adversary could
generate the candidates list of the targeted restricted internal state x′ in this
way. Taking into account the divide-and-conquer strategy on the partition of the
full internal state, we have Algorithm 3.

Note that Steps 3 and 4 in Algorithm 3 can be fulfilled by a method similar
to the BSW sampling enumeration technique in [5], but with a very small l =
2. Besides, Corollary 1 further implies that there is an inherent relationship
between c, d and the existence probability of one good pair. For A5/1, we list
this correspondence when 2-bit keystream prefix is considered with d = 2 in
Table 3, which is achieved from 106 times repetition of empirical simulations.
We have tried all the meaningful combinations of parameter configuration from
the practical implementation point of view, and determined to choose c = 4 in
our attack. Note that in this case, when l = 2 and d = 2, we have n = 15 and
v(n, d) = 121 and the existence probability in one invoking of the refined self-
contained method is 0.9835. As can be seen in the following sections, this choice
provides a very good balance between the complexity aspects and the success
probability.

Table 3. The correspondence between the constant c, the list size and the existence
probability of one good pair for A5/1 when d = 2

c List size r Prob.

2 6903 0.8475
3 7654 0.9510
4 7963 0.9835

Further, Let us have a closer look at Algorithm 3 and Table 3 together. There
is a magic fact here that though the adversary has iterated 4·215/|T[ksd, prefix]|
= 4 · 215/99 .= 1324 times and there are 99 ISDs to be xored and checked the
consistency with z′ in each iteration in Algorithm 3, the number of hit values
stored in the list L is much less than 215

22 = 8192 with a high existence probability
of the correct candidate being in L, as can be seen from Table 3. All these facts
can be well explained through the following Theorem1 and are illustrated in
Example 1.

442 B. Zhang

Theorem 1 ([16]). Let b be the number of all the values that can be hit and
a = c · 2n

|D| · |T | · Pdivs, then after one invocation of the refined self-contained
method, the expectation of the final number r of hitting values in the candidates
list is

E[r] =
a∑

r=1

(
b
r

) · r! · {
a
r

} · r

ba
, (1)

where
{

a
r

}
is the Stirling number of the second kind,

(
b
r

)
is the binomial coefficient

and r! is the factorial.

Example 1. Let c = 4, from Eq.(1), the mathematical expectation of the list

size can be calculated as E[r] =
∑a

r=1
(b

r)·r!·{a
r}·r

ba

.= 212.96 .= 7963, where l = 2,
n = 15, b = 215

22 = 8192, a = 4 · 215

|T | · |T | · Pdivs = 4 · 215 · Pdivs = 217 · 0.234848 =
30782. Here Pdivs = 0.234848 is the diversified probability of the selected pre-
computation table T[ksd, prefix] defined in Definition 8 in Sect. 4.3. �	

4.5 Distilling Phase: Enhancing the Existence Probability of the
Correct Candidate

In the real online attack, the adversary usually wants to have a candidate list
of smaller size, while at the same time still containing the correct restricted
internal state with a reasonably good probability. That is, we want to efficiently
filter out the wrong candidates of the involved restricted internal state got from
Algorithm 3. Note that due to the partition of the full internal state, now we
cannot run A5/1 from the involved partial state forwards and backwards to
check the consistency with the available keystream. This is the motivation of the
distilling phase in this section, i.e., we need an efficient wrong-candidate filter
without knowing the full internal state. For consistency with the work in [16],
we follow the conventional notations and descriptions in this domain hereafter.

Algorithm 4. The Distilling Procedure 1: Intersection [16]

Parameters: L = (L1, . . . , Lβ): β candidate lists of
the targeted partial state from Algorithm 3

1: for i = 1 to β − 1 do
2: Li+1 ← Li ∩ Li+1

To improve the hitting rate of the correct restricted internal state while keep-
ing a smaller list size, we continuously modify the involved candidate lists got
from Algorithm 3 by set intersection and union, depicted in Algorithm 4 and
5, respectively. Note that the candidates in list L are generated randomly in
Algorithm 3 with the following property: the correct one has an existence prob-
ability determined by the constant c, which is usually higher than the random
wrong ones, which appear in the list randomly. Some candidate of the restricted
internal state may be hit several times by xoring different ISD Δx with different
values of x in Algorithm 3.

Cryptanalysis of GSM Encryption in 2G/3G Networks 443

Example 2. Let x = 111000010111110 be the correct restricted internal state,
where the leftmost bit is x0 and the rightmost bit x14. It is observed that x is
hit 30 times in one invocation of Algorithm 3 with the following ISDs: (x5,−),
(x3, x4), (x5,−), (x5, x13), (x3, x4), (x1, x7), (x7, x11), (x1, x7), (x1, x9), (x2, x7),
(x2, x5), (x2, x7), (x2, x6), (x6, x8), (x5, x14), (x4, x8), (x6, x8), (x7, x12), (x1, x9),
(x7, x11), (x5, x14), (x5, x13), (x7, −), (x0, x5), (x5, x10), (x1, x14), (x1, x9), (x2,
x6), (x4, x8), (x3, x14). �	
Thus, it is natural to intersect the resultant lists from different independent
invokes of Algorithm 3 to reduce the number of candidates, while still containing
the correct one with a reasonable probability. During the intersection process,
many wrong candidates can be removed from the list. Algorithm 4 depicts this
distilling process. As proved in [16], the expected number of candidates after
β − 1 steps of intersection can be estimated by |L1| · (E[r]

b)β−1, where |L1| is
the number of candidates in the first generated list L1, b and E[r] are defined
and listed in Theorem 1. We have found in practical experiments that β = 6 is a
good choice for the reduction purpose when attacking A5/1, with an appropriate
choice of the following parameter γ in Algorithm 5 at the same time.

On the other hand, we have also observed in the experiments that for a single
invoking of Algorithm 3, there is some missing probability of the event that the
correct partial state is not in the candidate list. If such an event happens, we may
miss the correct partial state through the intersection process. This fact indicates
that we should take some action to remedy such a situation and the existence
probability of the correct restricted internal state in this case. The following
Algorithm 5 resolves this problem by the set union operation. Precisely, after
getting some intersected lists, we adopt Algorithm 5 to generate a candidate
list for the considered restricted internal state. The union operation can well
mitigate the influence of the missing event in Algorithm 3, i.e., as long as the
correct restricted internal state survives in one of the γ lists obtained from
Algorithm 4, it will be in the final list after Algorithm 5. Once Algorithm 5
is executed, we can get a candidate list for the n-bit restricted internal state
associated with the l-bit keystream prefix.

Algorithm 5. The distilling procedure 2: Union [16]

Parameters: U = (U1, . . . , Uγ): γ lists
obtained from Algorithm 4

1: for i = 1 to γ − 1 do
2: Ui+1 ← Ui ∪ Ui+1

Further, it is also proved in [16] that after the preparation of γ resultant lists
from Algorithm 4, the expected number of candidates |Fi+1| after i steps of
union can be recursively derived as

|Fi+1| = |Fi| + |Ui+1| −
|Ui+1|∑

j=0

(|Fi|
j

) · (|Fi+1|−|Fi|
|Ui+1|−j

)

(|Fi+1|
|Ui+1|

) · j , 1 ≤ i ≤ γ − 1, (2)

444 B. Zhang

where Fi is the resultant list after i − 1 steps of union. Equation (2) is derived
from the fact that |Fi+1| = |Fi| + |Ui+1| − |Fi ∩ Ui+1| and the |Fi ∩ Ui+1| term
follows the hypergeometric distribution. Finally, the following corollary provides
the existence probability of the correct restricted internal state after Algorithm 5.

Corollary 2. Let PrAlg5 be the probability that the correct restricted internal
state will exist in the final list generated by Algorithm 5, we have PrAlg5 =
1 − (1 − (p1)β)γ , where p1 is the existence probability of the correct restricted
internal state in Table 3.

Proof. It suffices to consider the opposite event that the correct restricted inter-
nal state does not exist after Algorithm 5, which means that it does not exist
in any of the γ lists, each going through β − 1 intersections. This completes the
proof. �	
In order to have a good existence probability of the correct restricted internal
state with a smaller size of candidate list, we have tried β = {2, 3, 4, 5, 6, 7, 8, 9}
and γ = {2, 3, 4, 5} in the experiments to identify the optimal parameter config-
uration for attacking A5/1. Here we only present some of the simulation results
in Table 4.

Table 4. Some results for different parameter configurations with c = 4

γ β |U | Prob.

2 3 8065 0.9940
2 4 7989 0.9927
2 5 7934 0.9912
2 6 7835 0.9903

From this table, the configuration that β = 6 and γ = 2 is selected to be
used in our attack against A5/1. The success probability can be calculated as
PrAlg5 = 1 − (1 − 0.9835β)γ = 0.9909 according to Corollary 2, which is quite
close to the result 0.9903 obtained from practical experiments, while the expected
list size should be 212.95 in theory according to the Eq. (2), which is also very
close to the simulation result 7835 .= 212.94. The following Lemma is the basis
of our non-randomness observation after Algorithm 5.

Lemma 2. (Chebyshev’s Inequality) Let X be a random variable with the finite
expected value μ and finite non-zero variance σ2. Then for any real number
k > 0, we have Pr(|X − μ| ≥ kσ) ≤ 1

k2 and only the case k > 1 is useful.

Based on Chebyshev’s Inequality, we have the following statements on the non-
randomness observation of the resultant candidate list after Algorithm 5.

Theorem 2. Let β = 6 and γ = 2 in Algorithm 4 and 5, if c = 4, ksd = 0x3,
and d = 2 for a 2-bit keystream prefix, then the candidates list generated after
Algorithm 5 has an averaged size of 7835 with the existence probability 0.9903
for the correct candidate being in the list, which is a non-random case.

Cryptanalysis of GSM Encryption in 2G/3G Networks 445

Proof. Here we follow the classic way of distinguishing two distributions in theory
to show the non-randomness. Below we will investigate the distribution in the
pure random case and that obtained in our attack respectively.

For a specified 2-bit keystream prefix, the candidate space has a size of 215

22 =
213 = 8192 in the pure random case. The probability that a candidate 15-bit
restricted internal state will generate the specified keystream prefix is p = 1

4 and
q = 1 − p = 3

4 otherwise. We regard the list size as a sum of random variables
which follow the binomial distribution with the corresponding parameters in
each case and approximate it with the normal distribution. Then the standard
deviation in the pure random case is σ =

√
213 · p · q ≈ 39.19. Further, the

expectation of the list size in the pure random case with the existence probability
0.9903 should be μunion = 213 · 0.9903 ≈ 8113.

On the other side, in our attack against A5/1 after Algorithm 5, the averaged
list size is μ′

union = 7835 with the existence probability 0.9903. Then according
to the Chebyshev’s inequality in Lemma 2, we can compute the coefficient k as

k =
|μunion − μ′

union|
σ

≈ 8113 − 7835
39.19

≈ 7.09.

Thus, we can conclude that the resultant list size in our attack is non-random
with a probability greater than 99%. This completes the proof. �	
This non-random phenomenon is the basis of our new attack against A5/1. Note
that the probability in theory 0.9909 and empirical rate 0.9903 from Table 4 are
very close to each other, we have chosen to use the ‘worse’ value 0.9903 in the
proof of Theorem 2 to demonstrate the strong validity of our attack.

4.6 Merging Phase: Restoring the CP Part of the Internal State

Now we show how to restore the CP part of the full internal state through the
merging phase in Algorithm 1. The main difference between A5/1 and the target
Grain v1 in [16] is that A5/1 executes according to the specified irregular clocking
mechanism in a stop/go manner, while Grain v1 runs regularly. Though it is
commonly believed that the irregular clocking mechanism improves the security
of the primitive by introducing certain implicit non-linearity, we have found in
the mounted fast near collision attack that the stop/go irregular clocking in
A5/1 actually facilitates the list merging procedure in the attack. Let us first
introduce a notion that is used in our attack.

Definition 9. According to the stop/go clocking rule in A5/1, the intersection
set of the two partial states at the time instants t and t+1 is called the check-state
in the merging phase.

From the irregular clocking rule in A5/1, the check-state in the merging phase
has the following property.

Proposition 1. The check-state in the merging phase has a cardinality of 9 if
all the three registers are clocked once and has a cardinality of 11 if two registers
are clocked once and one register stops at the corresponding time instant.

446 B. Zhang

Proof. There are 8 possible values for the three clock control bits, R1[8], R2[10]
and R3[10]. It suffices to check the 8 cases one-by-one to conclude that only when
the three bits take the value pattern (0, 0, 0) or (1, 1, 1), there will be 9 bits in
the check-state as if all the registers are clocked regularly; otherwise there is one
register unchanged which will offer 5 bits, while each of the two clocked registers
will offer 3 bits. This completes the proof. �	
Example 3. Let 111011011010010 be the starting restricted internal state,
where the leftmost bit is x0 and the rightmost bit is x14. From Fig. 3, consider the
following state transmission chain 111011011010010 → 111010010000000 →
010010010100101 → 010110111100101 → 110100101010001 to see the valid-
ity of the statements in Proposition 1. For example, when 111010010000000 →
010010010100101, R2 stops with the clock control pattern 010, thus the 5-bit
state 11010 in R2 remains unchanged. �	
Note that the event that not all the three registers move simultaneously happens
with a probability of 0.75, in which case two more overlapping bits are gained
for free from Proposition 1. This implies that in most cases, the check-state in
the merging phase has an reduction effect which is unexpected from the crypt-
analyst’s point of view. Based on the check-state, we have Algorithm 6 for the
merging phase, whose basic idea is to combine the candidates which are coinci-
dent on the identified check-state according to the clock control bits, and finally
derive the candidates for the CP part.

Algorithm 6. Merging the lists from Algorithm 5 to restore CP

Parameters: Lzizi+1···zi+m−1 : one list from Algorithm 5
Lzi+1zi+2···zi+m : the other list to be merged
Lzizi+1···zi+m−1zi+m : the resultant list

1: Find the clock control bits set J between the two lists
2: for each value pattern in J do
3: Form the subgroup of Lzi···zi+m−1 according to the pattern
4: Sort the subgroup according to the check-state values
5: for each value pattern in J do
6: Form the subgroup of Lzi+1···zi+m according to the pattern
7: Sort the subgroup according to the check-state values
8: for each pattern in J do
9: for each value pattern of the corresponding check-state do
10: Merge each pair of elements and save the result into Lzi···zi+m

11: Output: Lzizi+1···zi+m−1zi+m

Algorithm 6 actually split the first list Lzi···zi+m−1 into many sublists accord-
ing to the value pattern of the clock control bits and the value of the corre-
sponding check-state under each clock control pattern. Similarly, the second list
Lzi+1···zi+m

will be regrouped into sublists according to the value of the over-
lapping bits determined by each pattern of clock control bits. Then, select an
element from each sublist with the same check-state pattern under the same
clock control pattern to form a candidate of the merged state.

Cryptanalysis of GSM Encryption in 2G/3G Networks 447

In our attack, we first generate 4 candidate lists1, Lz0z1 , Lz1z2 , Lz2z3 , Lz3z4 ,
for the corresponding restricted internal states of the 5-bit keystream prefix
z = (z0, z1, z2, z3, z4), after that we run Algorithm 6 to merge the involved
restricted internal states. The merged candidate list for the CP part of the
internal state is used as the starting point for the following retrieval of the RP
part in a guess-and-determine like manner. In our experiments, each list Lzizi+1

for 0 ≤ i ≤ 3 contains around 7835 candidates on average, thus storing the four
lists costs about 7835·15·4

210·8 ≈ 58 KB. The whole list merging process is depicted
in Fig. 4.

0 1
Lz z 1 2

Lz z 2 3
Lz z 3 4

Lz z

0 1 2
Lz z z 1 2 3

Lz z z 2 3 4
Lz z z

1 2 3 4
Lz z z z0 1 2 3

Lz z z z

0 1 2 3 4
Lz z z z z

Fig. 4. The list merging process.

Precisely, in order to take the full advantage of the list size reduction during
the merging process in Fig. 4, we adopt the merging routine as follows: let the
input lists be denoted by Lz0z1 , Lz1z2 , Lz2z3 , Lz3z4 . We first merge every two con-
secutive candidate lists, and get the new candidate lists Lz0z1z2 , Lz1z2z3 , Lz2z3z4 .
Now the consecutive lists will have more overlapping state bits, and can further
reduce the memory complexity to a large extent. We repeat the similar proce-
dure to get Lz0z1z2z3 and Lz1z2z3z4 . Finally, we merge the last two candidate lists
to get the final list for the CP part of the internal state.

Before running the merging procedure, we have already generated 4 candidate
lists in the online phase from the 5-bit keystream prefix. The expected size of
the check-state between two consecutive lists at the most upper level in Fig. 4 is
9 · 1

4 + 11 · 3
4 = 10.5 bits. The averaged size of the input list is 7835, so it takes

about
4 · 8 · 7835 + 3 · 212.3733 · 221

Ω
≈ 228.3

cipher ticks to fulfill the merging procedure, where Ω = 26.66 is the number
of CPU-cycles to generate 1 bit keystream in A5/1. The detailed computation

1 Other choices are also possible, e.g., we can get the first 6 keystream bits to launch
the attack. For simplicity of description, we take the first 5 keystream bits here.

448 B. Zhang

process of Ω is presented in Sect. 5. The expected number of merged candidates is
216.6, each candidate can be stored in 5 bytes at most, so the memory requirement
is 218.92 bytes, approximately 486 KB. Note that we usually need to store 2 lists
in memory when merging, thus the total memory cost is around 1 MB.

Note that we can recover the correct merged partial internal state if and
only if the two candidate lists contain the correct candidate associated with
their keystream prefixes. Taking into account the tree-like merging procedure in
Fig. 4, the probability that the correct CP part will survive in the resultant list is
Prmerge = (0.9903)η = 0.9618 where η = 4 is the number of the candidate lists
Lzizi+1 . In other words, if we carry out the attack � 1

Prmerge
 ≈ 2 times, we are

expected to find the actual CP part of the internal state from the resultant list.
In our experiments, we have found that the probability p1 defined in Corollary
2 is not stable sometimes, thus we multiply � 1

Prmerge
 by a small constant λ = 4

to recover the actual CP with a high probability.

Remarks. From the A5/1 specification and Fig. 3, for an i-bit keystream prefix
with i ≥ 2, the associated restricted internal state is of size 15 + 6(i − 2) bits.
That is, for a 2-bit keystream prefix, the restricted internal state has 15 bits;
for a 3-bit keystream prefix, the restricted internal state has 15 + 6 = 21 bits;
for a 4-bit keystream prefix, the restricted internal state has 21 + 6 = 27 bits
and for a 5-bit keystream prefix, the restricted internal state has 27 + 6 = 33
bits. So far, we have already obtained a candidate list of the restricted internal
state of 33 bits associated with the first 5 keystream bits (z0, z1, z2, z3, z4) in
a probabilistic way. This is accomplished by independently treat with the 4
overlapping 2-bit keystream prefixes (zi, zi+1) for i = 0, 1, 2, 3. Precisely, for
each keystream prefix, we derive the corresponding candidate list by the method
in Sects. 4.4 and 4.5. By carefully choosing the attack parameters β and γ, we can
guarantee that the corresponding correct restricted internal state for (zi, zi+1) is
indeed in the candidate list with a reasonably good probability. Then we combine
these 4 candidate lists together by the merging procedure in Sect. 4.6 based
on the randomness and independence assumptions to have the larger partial
internal state corresponding to the first 5 keystream bits. Once the 4 correct
restricted internal states, corresponding to the 4 keystream prefixes (zi, zi+1)
for i = 0, 1, 2, 3, are restored successfully in each case, the merging procedure
will definitely retrieve the correct union larger state corresponding to the first 5
keystream bits with probability 1, in which process the merging operation will
also massacre lots of candidates when the two adjacent restricted internal states
have a number of overlapping bits.

4.7 Restoring the RP Part of the Internal State

We have already derived the CP part of the internal state in A5/1 after the
merging phase, the RP part will be retrieved in this section. We decided to take
a dynamic guess-and-determine like method to restore the RP part, similar to
the approach in [9]. The difference is that in [9], all the possibilities of the guessed
part of the internal state are tried, while now we have already obtained some

Cryptanalysis of GSM Encryption in 2G/3G Networks 449

subset of the CP part in the internal state without trying all the possibilities,
which will reduce the overall complexity to a large extent.

Let S(t) be the internal state of A5/1 at time t, then the state recovered
after the merging phase is a subset of S(100), while S(101) is the targeted
state. Since the clock control taps have already been recovered, it is easy to
get S(101) by clocking S(100) one step forwards. As analyzed in [9]2, the state-
transition function of A5/1 is not one-to-one and there are less than or equal to
5 · 261 ≈ 263.32 reachable internal states for S(101). Thus, we take 63.32 instead
of 64 to analyze the complexity after one step forwards, and the unreachable
states can be easily distinguished by a set of linear equations.

Fig. 5. The CP and RP parts of the internal state.

Our attack have exploited 5 keystream bits with η = 4 so far, as shown in
Sect. 4.6. Due to the irregular clocking rule in A5/1, each register moves 3

4 of the
time, which means that each register is expected to clock 5 × 3

4 ≈ 4 times after
the merging phase. From each 2-bit keystream prefix, we can recover 15 bits of
the corresponding restricted internal state, of which 11 bits are overlapped by the
next restricted internal state with a probability of 3

4 , and 9 bits are overlapped
with a probability of 1

4 . Hence, there are around 15 + 3 · 6 = 33 known bits
after the merging phase, and the total entropy of the full internal state will be
reduced to 63.32 − 33 = 30.32 bits on average, which is depicted in Fig. 5.

The dynamic guess-and-determine attack is as follows. Note that in Figs. 1
and 5, the three registers are shifted towards the left direction and the newest
feedback bits are injected into the state at the rightmost cells. The adversary
could first guess y bits in each register from the first unknown clock control tap
on to the right direction. One can thus obtain 3y linearly independent equations
for the unknown bits in S(101) if y is a small integer, e.g., y = 4 as shown in the
register R1 in Fig. 5 whose rightmost 4 cells are unknown. As in [9], the adversary
2 Though the clock control taps defined in [9] are different from here, this issue does not

have any effect on the analysis of the state-transition properties under the condition
that min(ct1, ct2, ct3) ≥ 2.

450 B. Zhang

can get one linear equation for free due to the fact that S(101) is the targeted
state and A5/1 first makes the stop/go clocking when producing the keystream
bit. Corresponding to the directly guessed 3y clock control tap bits, there will
be some number of linear equations obtained from the generated keystream bits
for the adversary. Since on average each register clocks 3 times in 4 steps, the y
guessed bits in each register can determine about 4y

3 values of the clocking control
taps in the register under consideration. Thus, the attacker can obtain around
1 + 4y

3 additional linear equations derived from the keystream bits on S(101).
When y = 4, each equation contains at least two new unknown bits that never
appeared before, and these additional equations will be linearly independent to
each other accordingly. The additional equations are linearly independent to the
above 3y equations if and only if there is at least one bit not guessed in each
of them. This is true when y is a small integer, e.g., y = 4. On the other side,
if there are indeed some linear equations linearly dependent on the 3y single
variable equations, these equations can be used as the linear consistency test
of the guesses. Now there are around 3y + 1 + 4y

3 = 18.33 linearly independent
equations on average, and there are around τ = 30.32 − y = 12 unknown bits
which can be uniformly averaged among the three registers. Since there are
some number of candidates left for the CP part when we only exploit the first
5 keystream bits, we need some very efficient procedure for the recovery of RP
part. To fulfill this task, we then build a tree structure in the same manner
as in [9] to derive the unknown bits dynamically and sequentially. Precisely,
this tree structure sequentially record all the possibilities for the next coming
bits consistent with the linear equations derived from the keystream bits. In each
node of the tree, we store the next 3 clock taps of the three registers, representing
the clocking which are consistent with the 1 + 4y

3 linear equations. As a result
of the action of the majority function, there are 8 types of nodes, two of which
have 8 possible successors and six of which have 4 possible successors. Thus, each
node has 3

4 · 4+ 1
4 · 8 = 5 children in the tree on average. When checked with the

corresponding linear equations, this number can be reduced to 5· 12 = 2.5. Hence,
to retrieve the τ unknown bits, the length of the tree should be 4

3 · τ
3 on average,

and we have to check 2.5
4
3 · τ

3 ≈ 27.22 possibilities on average, instead of 2τ ≈ 212

possibilities under the independence assumption of the supercritical branching
process, analyzed in the Appendix of [9]. In summary, the initial state S(100)
can be restored with a low complexity as shown above, the same as the state
S(101). Once we get the candidates of the full state, we can run A5/1 forwards
for some ticks to check the consistency with the available keystream to decide
whether the recovered state is correct or not.

5 Experimental Results

To check the validity and the actual performance of our attack, we have imple-
mented the crucial steps of the suggested attack on a single core of a PC, running
with Windows 7, Intel 3.4 GHz CPU and 16 GB RAM. In general, the exper-
imental results verified the correctness of the crucial steps in the new method,
and matched the theoretical prediction of each procedure quite well.

Cryptanalysis of GSM Encryption in 2G/3G Networks 451

Since we take cipher ticks as the complexity unit in complexity analysis, we
have first determined the constant Ω used in our attack. The source code of
A5/1 for testing is a modification of a pedagogical implementation in [6]. We
found that the average time to generate 1-bit keystream for A5/1 is 2.97 · 10−8

seconds. Thus, one cipher tick of the A5/1 stream cipher accounts for Ω =
2.97 · 10−8 · 3.4 · 109 .= 26.66 CPU cycles.

Since the basis of a fast near collision attack is the randomness, we use
the RC4 stream cipher with a 128-bit secret key by discarding the first 8192
keystream words as the random source in our experiments. We adopted a random
seed key dependent on the system time when invoking RC4, thus could assure
that we have used random different sources among different calls3.

To see the correctness of the suggested attack, there are essentially two points
to check and verify. The first one is to assure that the correct restricted internal
state associated with a 2-bit keystream prefix is indeed included in the candidates
list generated by Algorithm 3 in Sect. 4.4. The other is to assure that with
the suggested attack parameters, the attack will indeed behave as predicted in
theory, which actually means that the 4 correct restricted internal states are
simultaneously included in Lz0z1 , Lz1z2 , Lz2z3 and Lz3z4 , respectively.

To check the first statement, following the analysis in Sect. 4.3, we have pre-
pared the small differential tables indexed by (ksd, d) = (0x3, 2) with all the
possible ISDs in the pre-processing phase, requiring 198 bytes memory. Each
pre-computed table is sorted according to the occurring probabilities of each
involved ISD, which takes about P = (2·24·215·121+24·99·log2 99)

Ω ≈ 220.26 cipher
ticks.

Then in the online phase, we have tried all the 99 ISDs in the pre-computed
table c· 2n

|T | = 4· 21599

.= 1324 times to make sure that the generated list contains the

correct restricted internal state under consideration, so it takes 4· 21599 ·99
Ω ≈ 210.34

cipher ticks for n = 215 and |T| = 99. Then we enhance the existence probability
of the correct restricted internal state by intersecting β = 6 candidate lists
and unifying γ = 2 such resultant lists, as suggested in Algorithm 4 and 5. The
complexity of the intersection operation in Algorithm 4 is 212.93 cipher ticks, and
the union operation takes about 213.93 cipher ticks. Next, we could check whether
the correct restricted internal states are indeed contained in the corresponding
candidate lists generated by Algorithm 3. Precisely, we just set a flag value 1
when the check is successful, and expect to see 4 consecutive 1,1,1,1 when
running the above steps a few times. In the experiments, we indeed saw the
expected pattern 1,1,1,1 after running the routine a few times. Thus, we have
verified the essential point for verifying the correctness of the suggested attack.
This fact, together with the following merging step, also explained the surprising
phenomenon that we actually restored around 33 internal state bits from only 5
keystream bits in a probabilistic way.

3 The seed key in our c implementation is derived from the system time via some arith-
metic operations such as modulo addition. We have also tried AES as the random
source and obtained almost the same results as the RC4 case.

452 B. Zhang

Note that with the correct restricted internal states being in the candidate
lists, the merging procedure will preserve them, thus the correct union partial
state with probability 1. Precisely, we could merge the restored restricted internal
states to get the CP part of the internal state from the 4 unified lists from Lz0z1 to
Lz3z4 . The preparation for the merging procedure takes about T1 = 22 · 213.93 .=
215.93 cipher ticks. Further, we adopt the list merging process depicted in Fig. 4
to restore the CP part of the internal state, whose time complexity is reduced
to T2 = 228.3 cipher ticks with approximately 1 MB memory, as discussed in
Sect. 4.6.

Next, the RP part of the internal state is restored by the dynamic guess-and-
determine attack in Sect. 4.7, which needs 229.16 cipher ticks on average, which
can be seen from the following deductions. First, the complexity of solving the 3y
linear equations is at most 212 when y = 4, and the subsequent steps take 28.22

cipher ticks. The total complexity of the guess-and-determine attack is 212+8.22

Ω =
213.56 cipher ticks. The averaged number of trials to find the correct S(101)
is reduced to 212.56 cipher ticks. Note that there are about 216.6 candidates
resultant from the merged CP state, so the complexity of the RP recovery is
finally increased to T3 = 216.6 · 212.56 = 229.16 cipher ticks. The complexity of
our attack is T1 + T2 + T3 = 215.93 + 228.3 + 229.16 ≈ 229.79 cipher ticks. Since
we choose λ = 4 to stabilize the success probability, the total complexity of our
attack increase to 231.79 cipher ticks.

We have run the above attack routines many times with different keys and
frame numbers generated randomly, and the experimental results are always con-
sistent with the theoretical analysis. One run of our attack is as follows. We use
RC4 to generate the key 0xeab64598b32b32c4 and the frame number 0x3efd4c,
respectively. The produced keystream frame is 0x4a01e459770cdf81af52e70706
a4c0 for one direction communication and 0xdefc02c7d0697294be821ae0f7adc
0 for the other direction. The first 64 keystream bits are 0x4a01e459770cdf81,
where the first keystream bit z0 is at the most significant bit position of a byte
and z7 is at the least significant bit position. Then we have z0z1z2z3z4 = 01001.
When one l = 2-bit keystream prefix zizi+1 (0 ≤ i ≤ 3) is used in our attack,
it takes around more than one second to generate the pre-computed tables
so far, stored in 198 bytes in RAM. Once constructed, these pre-computation
tables can be used when the key or the frame numbers have changed. In the
online phase, with the determined parameters ksd=0x3, c = 4, β = 6 and
γ = 2, we could mount our attack step-by-step as presented above. The aver-
age size of the generated candidate list is 7835, while the theoretical size is
7880 .= 212.95, which seems to imply that the practical implementation is
more efficient to restore the correct restricted internal state than predicted
in theory. We then ran the merging routine to restore the CP, which takes
tens of seconds for the current non-optimized C implementation. The 4 cor-
rect restricted internal state 01 ↼ 111000111010000, 10 ↼ 000010000011010,
00 ↼ 010011010001111 and 01 ↼ 011011111101010 were simultaneously
restored at the first invocation, which means that after the merging phase,
the correct CP state 111000111010000011010001111111010 would be recov-
ered with probability 1. Finally, we retrieve the full internal state following the

Cryptanalysis of GSM Encryption in 2G/3G Networks 453

steps in Sect. 4.7. To improve the success probability, we set λ = 4 to retrieve
the correct target internal state with a high probability. Note that the current
implementation results are from the non-optimized code, and we think the attack
can actually find the correct internal state, thus the secret key in a few seconds
after future optimizations. The C language codes for verifying the validity of our
attack are available via https://github.com/martinzhangbin.

We end this section by the comparison with other best known TMD attacks
on A5/1, shown in Table 5. This table clearly shows the advantage of the new
attack. Note that the (conditional) correlation attacks in [1,7,12] need much
more keystream frames than our attack, though no long-term storage and no
preprocessing are required.

Table 5. Comparison with the previous best known TMD attacks on A5/1

Attack Data Memory Pre-comp. Online time Success rate

Nohl’s Attack [13] 8 frames 1.7 TB −weeks 10 seconds 87%
TMD Attack [11] 8 frames 1.968 TB 110days 9 seconds 81%

BB Attack [5] 214.67 frames 146 GB > 5 years 1 second −
KP Attack [2] 4 frames 17.6 TB > 2300 years 5 minutes > 60%
Our Attack < 1 frame 1 MB 220.26 ticks 231.79 ticks ≈ 99%

Note that the pre-computation phase of the Biased Birthday (BB) attack in [5]
was extensively sampled rather than completely executed, i.e., there are non-trivial
cases that the online time needed to find the correct internal state is much more
than the claimed time.
KP means known plaintext.

Remarks. Since our attack is a known plaintext attack, we need first capture
the first 64 keystream bits in 1 frame, which is always feasible in general in GSM
networks. As shown in section 7 of [1], each traffic channel between the handset
and the network is accompanied by a slower control channel, which is referred to
as the Slow Associated Control CHannel (SACCH). The mobile uses the SACCH
channel (on the uplink) to report its reception of adjacent cells. The network
uses this channel (on the downlink) to send (general) system messages to the
mobile, as well as to control the power and timing of the current conversation.
The contents of the downlink SACCH can be inferred by passive eavesdropping.
Besides, an attacker would still need to cope with the Frequency Hoping (FH)
used by GSM, of which the hopping sequence can be determined through a quick
exhaustive search due to the fact that given n, GSM defines only 64n hopping
sequences (n cannot be large since the total number of frequencies in GSM is
only about 1000, of which only 124 belong to GSM 900).

6 Leveraging the Attack to Any GSM Network

For completeness, we leverage our attack on A5/1 to other algorithms used in
the GSM network in this section. It exploits the already detected flaw of the

https://github.com/martinzhangbin

454 B. Zhang

GSM protocols that the same key is used in different encryption algorithms.
The key only depends on RAND in GSM, thus once we have restored the secret
key of A5/1 by our method with ease, we are able to use this key to encrypt or
decrypt for A5/3 or GPRS.

Precisely, the adversary can carry out a man-in-the-middle attack by imper-
sonating the base station to the victim and the customer to the base station. In
the initialization of a conversation, there is an authentication phase, which is a
basic challenge-response scheme between the mobile phone and the network. The
network sends a RAND to the attacker, who will transmit it to the victim then.
The victim computes the SRES and return it to the attacker. In GSM protocols,
the customer phone only reports the list of ciphers that it supports, while the
network chooses which encryption algorithm is to be used. Hence, the attacker
asks the victim to encrypt with A5/1 so that he could retrieve the key of A5/1 by
our attack to encrypt in the conversation of the base station. Then the attacker
returns the SRES computed by the victim to the base station, and the authenti-
cation is finished. When the base station asks the attacker to encrypt with A5/3
or GPRS, the attacker has already recovered the same secret key as used by
A5/1, and has the ability to encrypt or decrypt using the restored key. Due to
the fact that the authentication phase may not be initialized frequently, the key
recovered from the previous conversation may be used in future conversations
as well.

There is also a similar attack against GPRS, whose security is based on the
same mechanisms as of GSM except that it uses GPRS-RAND/GPRS-SRES in the
authentication and key agreement, and the GPRS cipher, referred to as GPRS-
A5 or GPRS Encryption Algorithm (GEA), is different from A5/1 or A5/2 and
is never made public so far. The attacker can take advantage of the symmetry
in the key agreement of GPRS and GSM by performing an active attack on the
customer phone via a fake base station. That is, he impersonates the network
and starts a radio session with the mobile phone victim that is protected by
A5/1. Accordingly, the resulting key is identical to the one that is used in GPRS
and the attacker can recover it using our attack on A5/1. This means that the
attacker can encrypt or decrypt the corresponding GPRS traffic successfully.

7 Conclusion

In this paper, we have proposed an entirely different cryptanalytic approach to
break the A5/1 stream cipher without the need of large rainbow tables and a
huge pre-computation phase. We have taken the new viewpoint of the fast near
collision attack to restore the internal state of A5/1 in a divide-and-conquer man-
ner. Based on the refined self-contained method, we could efficiently recover the
restricted internal state of a given keystream prefix and merge several restored
partial states together according to the irregular clocking mechanism in A5/1.
Now the pre-computation becomes quite lightweight and cheap for individual
cryptanalysts. It is shown that the irregular stop/go mechanism in A5/1 does
not frustrate our attack as expected in the merging phase and we can reliably

Cryptanalysis of GSM Encryption in 2G/3G Networks 455

find the initial internal state, thus the secret key of A5/1 from only 1 keystream
frame in 231.79 cipher ticks. The total storage of our attack is about 1 MB,
which is much less than all the previous best known TMD attacks. Due to the
fact that A5/3 and GPRS share the same key as A5/1 in GSM, our attack can
be converted into attacks against any GSM network eventually. It is well known
that the analysis of stream ciphers based on irregularly clocked shift registers is
a long standing problem in theory, our results shed some light on this issue and
open new possibilities to deal with irregularly clocked shift registers.

Acknowledgements. The author would like to thank the anonymous reviewers for
very helpful comments and Yanyi Liu, Hui Peng and Di Zhai for the discussions on the
topic. This work is supported by the National Key R&D Research programm (Grant
No. 2017YFB0802504), the program of the National Natural Science Foundation of
China (Grant No. 61572482), National Cryptography Development Fund (Grant No.
MMJJ20170107) and National Grand Fundamental Research 973 Programs of China
(Grant No. 2013CB338002).

References

1. Barkan, E., Biham, E.: Conditional estimators: an effective attack on A5/1. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 1

2. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM
encrypted communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 600–616. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 35

3. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In: Roy,
B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 43–51. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5 5

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

5. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44706-7 1

6. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of A5/1,
May 1999. http://www.scard.org

7. Ekdahl, P., Johansson, T.: Another attack on A5/1. IEEE Trans. Inf. Theory 49(1),
284–289 (2003)

8. Gendrullis, T., Novotný, M., Rupp, A.: A real-world attack breaking A5/1 within
hours. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 266–282.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 17

9. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

10. Koch, P.C.: Cryptanalysis of stream ciphers-analysis and application of the near
collision attack for stream ciphers. Technical University of Denmark, Master thesis
supervisor, Christian Rechberger, pp. 111–122, November 2013

https://doi.org/10.1007/11693383_1
https://doi.org/10.1007/978-3-540-45146-4_35
https://doi.org/10.1007/978-3-540-45146-4_35
https://doi.org/10.1007/3-540-44495-5_5
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44706-7_1
http://www.scard.org
https://doi.org/10.1007/978-3-540-85053-3_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17

456 B. Zhang

11. Lu, J., Li, Z., Henricksen, M.: Time–memory trade-off attack on the GSM A5/1
stream cipher using commodity GPGPU. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 350–369. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 17

12. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1–18.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 1

13. Nohl, K.: Attacking phone privacy. In: Black Hat USA 2010 Lecture Notes (2010).
https://srlabs.de/decrypting-gsm/

14. Pornin, T., Stern, J.: Software-hardware trade-offs: application to A5/1 cryptanal-
ysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 318–327.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 25

15. Zhang, B., Li, Z., Feng, D., Lin, D.: Near collision attack on the grain v1 stream
cipher. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 518–538. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 27

16. Zhang, B., Xu, C., Meier, W.: Fast near collision attack on the grain v1 stream
cipher. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821,
pp. 771–802. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-
8 25

https://doi.org/10.1007/978-3-319-28166-7_17
https://doi.org/10.1007/978-3-540-30564-4_1
https://srlabs.de/decrypting-gsm/
https://doi.org/10.1007/3-540-44499-8_25
https://doi.org/10.1007/978-3-662-43933-3_27
https://doi.org/10.1007/978-3-319-78375-8_25
https://doi.org/10.1007/978-3-319-78375-8_25

Functional Encryption

Tightly Secure Inner Product
Functional Encryption: Multi-input
and Function-Hiding Constructions

Junichi Tomida(B)

NTT, Tokyo, Japan
junichi.tomida.vw@hco.ntt.co.jp

Abstract. Tightly secure cryptographic schemes have been extensively
studied in the fields of chosen-ciphertext secure public-key encryption,
identity-based encryption, signatures and more. We extend tightly secure
cryptography to inner product functional encryption (IPFE) and present
the first tightly secure schemes related to IPFE.

We first construct a new IPFE scheme that is tightly secure in the
multi-user and multi-challenge setting. In other words, the security of our
scheme does not degrade even if an adversary obtains many ciphertexts
generated by many users. Our scheme is constructible on a pairing-free
group and secure under the matrix decisional Diffie-Hellman (MDDH)
assumption, which is the generalization of the decisional Diffie-Hellman
(DDH) assumption. Applying the known conversions by Lin (CRYPTO
2017) and Abdalla et al. (CRYPTO 2018) to our scheme, we can obtain
the first tightly secure function-hiding IPFE scheme and multi-input
IPFE (MIPFE) scheme respectively.

Our second main contribution is the proposal of a new generic con-
version from function-hiding IPFE to function-hiding MIPFE, which was
left as an open problem by Abdalla et al. (CRYPTO 2018). We obtain
the first tightly secure function-hiding MIPFE scheme by applying our
conversion to the tightly secure function-hiding IPFE scheme described
above.

Finally, the security reductions of all our schemes are fully tight, which
means that the security of our schemes is reduced to the MDDH assump-
tion with a constant security loss.

Keywords: Functional encryption · Inner product · Tight security

1 Introduction

(Multi-input) Inner Product Functional Encryption. Functional encryp-
tion (FE) [13,37] is a relatively novel cryptographic notion that has a crucially
different feature from traditional encryption schemes. Specifically, FE schemes
allow us to obtain computation results from encrypted data without revealing
any other information about the underlying data. This is in contrast to tradi-
tional encryption schemes, in which only owners of legitimate keys can learn
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 459–488, 2019.
https://doi.org/10.1007/978-3-030-34618-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_16

460 J. Tomida

entire underlying data from ciphertexts while others can learn nothing. An FE
scheme supports a certain function class F and in which an owner of a master
secret can issue a secret key skf for any function f ∈ F . Decryption of a cipher-
text ctx of message x with skf yields the computation result f(x) and nothing
else.

Multi-input functional encryption (MIFE) [28] is a natural extension of FE,
which can handle a function class that takes multiple inputs. Roughly speaking,
an owner of skf can learn the computation result f(x1, . . . , xμ) from ciphertexts
ctx1 , . . . , ctxμ

of messages x1, . . . , xμ for some natural number μ ≥ 2.
Known (MI)FE schemes can be classified into two categories with respect to

their function classes.

General functionalities: This category consists of (MI)FE schemes for general
circuits, e.g., [8,23,24,28,39]. Although they are powerful enough to handle
all functions computable in polynomial time, known schemes are built on
quite heavy cryptographic primitives such as indistinguishability obfuscation
[23] or multi-linear maps [22]. Thus, they are captured as rather feasibility
results.

Specific functionalities: The second category covers (MI)FE schemes for spe-
cific functions such as inner product and quadratic function, e.g., [2,4,6,9].
They are aimed at obtaining more practical features, namely, efficiency and
concrete security, with sacrificing the generality. Therefore, they have simple
constructions, and their security is based on standard assumptions.

Inner product functional encryption (IPFE) [2] and multi-input IPFE
(MIPFE) [4], categorized into the latter, are FE and MIFE respectively, whose
function classes are inner product. More precisely, in an (M)IPFE scheme, a
secret key sky1,...,yμ

is associated with vectors y1, . . . ,yμ, and decrypting cipher-
texts ctx1 , . . . , ctxμ

of vectors x1, . . . ,xμ with sky1,...,yμ
reveals the summation

of the inner products
∑

i∈[μ]〈xi,yi〉. When μ = 1, the above description corre-
sponds to an IPFE scheme. Inner product is a simple but powerful functionality,
and many practical applications of IPFE have been suggested, e.g, biometric
authentication, nearest-neighbor search and statistical analysis [2,32].

Function Privacy. In (MI)FE, we can consider two types of privacy: message
privacy and function privacy. Message privacy, which is essential for standard
(MI)FE schemes, is the property that ciphertexts do not reveal any information
about underlying data. On the other hand, function privacy is an additional but
important property for (MI)FE schemes, which indicates that secret keys also
hide the information of the corresponding function. Function privacy is essential
for some applications such as delegation of sensitive computation [15]. We often
refer to (MI)FE with function privacy as function-hiding (MI)FE. Function-
hiding (MI)FE schemes have also been studied for both general functionalities
[14,15] and specific functionalities [12,18,32,38].

Tight Security. When we try to prove the security of a cryptographic scheme,
we often construct a reduction algorithm that solves a problem assumed to be
hard by utilizing a PPT adversary that breaks the security of the scheme. Then,

Tightly Secure Inner Product Functional Encryption 461

breaking the security of the scheme immediately implies solving the hard prob-
lem. It is both theoretically and practically important to evaluate how difficult
breaking the scheme is compared with solving the problem. More formally, when
the reduction algorithm equipped with an adversary that breaks the scheme with
probability ε in time t solves the underlying problem with probability ε/L in
roughly the same time t, it is important to evaluate the security loss L. This is
because we need to set the parameter size of the scheme large enough to negate
the effect of L for the security guarantee. Thus, the smaller the security loss L,
the more desirable the security reduction. We say that the security reduction is
tight if the security loss is constant, i.e., L = O(1).

When we consider public-key primitives such as public-key encryption (PKE)
or identity-based encryption (IBE), we usually prove their security in the single-
challenge setting. This is because the security of public-key primitives in the
single-challenge setting normally implies that in the multi-user and multi-
challenge setting via hybrid argument, which is more realistic setting where
an adversary can make polynomially many challenge queries against multiple
users. However, such a hybrid argument increases the security loss by the factor
of μq, where μ is the number of users and q is the maximum number of chal-
lenge queries for each users [11]. Since the numbers of users and ciphertexts are
quite large in practice, we strongly desire cryptographic schemes whose security
is guaranteed independently of those numbers.

Motivated by the above reason, (almost) tightly secure cryptographic schemes
have been extensively studied in various fields, especially on chosen-ciphertext
secure PKE (CCA-secure PKE), IBE, and signature, e.g, [7,17,25,26,29–31,33].
In spite of such a great deal of effort, tightly secure schemes in the context of
advanced encryption are known only for IBE except the very recent result on
broadcast encryption by Gay et al. [27]. Hence, it is an important and interesting
task to explore what kind of cryptographic schemes can achieve tight security.

Tight Security for IPFE. We would like to discuss the importance of tightly
secure IPFE in more detail. We consider that the most significant situation
where we need a tightly secure IPFE scheme is when a function-hiding scheme
is needed. This is because the only way that we know to realize function-hiding
IPFE schemes requires bilinear groups, which is relatively susceptible to secu-
rity loss. One solution to compensate for security loss caused by loose reduction
is to increase the parameter size of underlying primitives, e.g., bilinear groups,
which will reinforce the difficulty of underlying problems, e.g., the matrix Diffie-
Hellman problem. As observed by Abe et al. [5], however, this is not an easy
task for bilinear groups because there are many factors that involve the secu-
rity and efficiency of them such as the choice of curves, pairings, and various
parameters like embedding degrees. Hence, we typically adopt one from existing
well-studied settings, which are investigated only for standard parameters such
as 128, 192, and 256-bit security. The main problem of this fact is that there is
no intermediate instantiation among these parameters, and one have to hop to
the next standard level if stronger security is necessary. A pairing computation
is especially influenced by this hop; for instance, they state that a pairing in the

462 J. Tomida

192-bit security takes 6 to 7 times more time than in the 128-bit security on
ordinary personal computers [10,20].

Additionally, it is not unrealistic that an adversary obtains a large amount
of ciphertexts so that we need to consider the security loss of IPFE schemes. Let
us consider the case to use a function-hiding IPFE scheme for DNA analysis.
Suppose a national institution holds a database consisting of a certain part of
the human’s DNA sequence. It is rational to assume that the part consists of 213

bases and the number of the samples is 220; actually, GenBank operated by the
National Center for Biotechnology Information has more than 227 sequences [1].
Each sample is encoded to a binary vector setting as A = (1, 0, 0, 0), T = (0, 1,
0, 0), and so on, and stored in a cloud server with an encrypted form. We can
check the number of the same bases between encrypted sequences and a target
sequence by decrypting with a secret key for the target sequence. Because DNA
sequences have a correlation with phenotypes, the DNA similarity check will be
useful for genetical research, medical diagnosis, etc. We need the function-hiding
property because target sequences are also personal data and thus sensitive. In
this situation, the possibly untrusted server has q = 220 ciphertexts, large enough
to consider the security loss of the scheme. Decryption of all known schemes
involves the same number of pairings as the order of the vector length: m = 215

per one sample in our case. Thus, the choice of the security level significantly
affects the efficiency of the system, and we can conclude that tight security is a
very important concept in the context of IPFE as well as other cryptosystems.

1.1 Our Contributions

We extend the realm of tightly secure cryptography to IPFE and present a series
of the first tightly secure (M)IPFE schemes. Our first main contribution is to
construct the first tightly secure public-key IPFE scheme in the multi-user and
multi-challenge setting. Note that previous IPFE schemes are tightly reduced
to underlying assumptions in the single-challenge setting [6], which means that
their security is independent from the number of secret key queries. To our
knowledge, however, there are no results on tight security of IPFE in the multi-
user and multi-challenge setting. Our tightly secure IPFE scheme is constructible
from a pairing-free group and its security is based on the matrix decisional
Diffie-Hellman (MDDH) assumption, which is a generalization of the well-studied
decisional Diffie-Hellman (DDH) assumption, with a small constant security loss.

Our result can be easily extended to the multi-input setting. Recently,
Abdalla et al. proposed a generic conversion from an IPFE scheme into a MIPFE
scheme [3,4]. Their conversion employs parallel execution of μ instances of the
underlying IPFE scheme that is secure in the multi-challenge setting. By this
construction, their conversion incurs a security loss of O(μq) if we apply it to an
IPFE scheme that is secure in the single challenge setting, where μ is the num-
ber of slots of the converted scheme and q is the maximum number of ciphertext
queries for each slot. Interestingly, this construction is precisely compatible with
an IPFE scheme that is secure in the multi-user and multi-challenge setting.
In other words, the security of the converted MIPFE scheme is tightly reduced

Tightly Secure Inner Product Functional Encryption 463

to that of the underlying IPFE scheme if the underlying scheme is secure in
the multi-user and multi-challenge setting. Thus, we can obtain the first tightly
secure MIPFE scheme.

Another important issue is the realization of tightly secure function-hiding
(M)IPFE schemes. All previous function-hiding schemes suffer from a security
loss of L = O(qct +qsk), where qct (resp. qsk) refers to the total number of cipher-
text (resp. secret key) queries [12,18,34,38]. To achieve tight security, we utilize
Lin’s technique, who presented a simple paradigm to construct a function-hiding
(private-key) IPFE scheme from a (public-key) IPFE scheme [34]. Applying her
paradigm to our IPFE scheme, we can obtain the first tightly secure function-
hiding IPFE scheme that is based on bilinear groups. However, the naive appli-
cation of her paradigm to our scheme results in a redundant scheme. Thus, we
optimize the scheme by reducing the unnecessary part.

The final target is to construct a tightly secure function-hiding MIPFE
scheme. Unfortunately, there is no known generic technique to achieve a function-
hiding MIPFE scheme. In fact, Abdalla et al. mention that a powerful conversion
to achieve a function-hiding MIPFE scheme is a very interesting open prob-
lem [3]. Furthermore, the techniques used in the rather specific constructions
of known function-hiding MIPFE schemes [3,19] are not applicable to our case.
This is because our scheme requires the selective setting in a certain step of the
proof, if we naively try to prove the security similarly to [3,19].

Our second main contribution is overcoming this problem by solving the
open problem posed by Abdalla et al., that is, we introduce a new powerful and
generic conversion. It converts a (weakly) function-hiding IPFE scheme into a
(fully) function-hiding MIPFE scheme. Our conversion is as general as that for
constructing non-function-hiding MIPFE by Abdalla et al. [3]: the requirements
for an underlying scheme are essentially the same. Hence, if new function-hiding
IPFE schemes are proposed in the future, e.g., based on lattices, we may uti-
lize our conversion to obtain new function-hiding MIPFE schemes though some
modification will be necessary. Additionally, we can obtain (non-tightly-secure)
function-hiding MIPFE schemes in a more modular way than the previous ones
[3,19] by utilizing our conversion to function-hiding IPFE schemes, e.g., the
scheme from AGRW17 [4] + Lin17 [34]. Applying our conversion to our tightly
secure function-hiding IPFE scheme, we can finally achieve the first tightly secure
function-hiding MIPFE scheme.

Similarly to all previous IPFE schemes based on a cyclic group or bilinear
groups, the decryption algorithms of our schemes require to solve the discrete
logarithm problem on a decryption value. As pointed out in [2,32], however,
this step is not so problematic in many cases. This is mainly because decryption
values will not become exponentially large in real applications. Additionally,
although there are some IPFE schemes that allow exponentially large outputs,
they are either inefficient due to the large modulus [6] or based on a non-standard
assumption [16].

We summarize the comparison of our schemes with previous ones in Tables 1,
2, 3 and 4. In these tables, we count the numbers of elements assuming that

464 J. Tomida

a matrix distribution Dk is a uniform one over Z
(k+1)×k
p . Some readers may

be concerned about the increase of the key and ciphertext sizes, which may
slow the efficiency of the system even after the compensation of security loss.
However, we would like to emphasize that our contribution is the first step
toward more efficient tightly secure schemes. Furthermore, our schemes may
outperform previous ones in some situations. For example, when we instantiate
our function-hiding IPFE scheme from the SXDH, it takes almost 5 times more
pairings in decryption than the state-of-the-art scheme (Table 3). As discussed in
the previous subsection, the difference of security level possibly affects pairings
by the factor of 6 to 7 in practice, and thus there is a possibility that the
decryption, the most important process of IPFE, of our scheme is faster than
those of previous ones in the same security level. We leave constructing more
compact tightly secure IPFE schemes as an interesting open problem.

2 Technical Overview

2.1 Tightly Secure IPFE

Our scheme is secure in the multi-user and multi-challenge setting under the
MDDH assumption, but here we describe our scheme based on the DDH assump-
tion in the single-user and multi-challenge setting to ease the exposition. Our
starting point is the adaptively secure IPFE scheme by Agrawal et al. [6]. We
briefly describe their scheme below. Let m be a vector length in the scheme.

Setup(1λ, 1m): a
U←− Zp, W U←− Z

m×2
p , a := (a, 1), pk := ([a], [Wa]),msk := W.

Enc(pk,x): s
U←− Zp, ct := ([sa], [sWa + x]).

KeyGen(pk,msk,y): sk := (−W�y,y).
Dec(pk, ct, sk): −y�W[sa] + y�[sWa + x] = [〈x,y〉].
Next, we explain the security proof of this scheme by Abdalla et al. [4], which is
somewhat different from the original proof by Agrawal et al. and roughly goes
as follows. First, the form of the challenge ciphertext is changed from ct :=
([sa], [sWa + xβ]) to ct := ([sa + s′b], [W(sa + s′b) + xβ]), where s′ U←− Zp,

b := (1, 0), and β
U←− {0, 1}. This change is computationally indistinguishable

under the DDH assumption. At this point, we redefine W as

W := W̃ + u(x1 − x0)a⊥�
, (2.1)

where u
U←− Zp, W̃

U←− Z
m×2
p , and a⊥ := (1,−a), and note that a⊥�

b = 1. In
fact, x0 and x1 may depend on W̃ because the information of W̃ is leaked to the
adversary from the public key and queried secret keys. However, we can assume
that x0 and x1 do not depend on W̃ (and formally we use complexity leveraging
to argue that). Then, redefined W is also a random element in Z

m×2
p and we

have

Tightly Secure Inner Product Functional Encryption 465

Table 1. Comparison of adaptively secure IPFE schemes in the multi-user and multi-
challenge setting. The columns |pk| and |ct| refer to the number of group elements. The
columns |msk| and |sk| refer to the number of Zp elements. The number m refers to
the vector length. The number qct refers to the total number of ciphertext queries by
an adversary. Note that we omit the group description from |pk|.

IPFE schemes
scheme |pk| |msk| |ct| |sk| sec. loss assumption

ALS16 [6] m + 1 2m m + 2 m + 2 O(qct) DDH
AGRW17 [4] km + k2 + k (k + 1)m m + k + 1 m + k + 1 O(qct) Dk-MDDH
Ours m2 + 1 2m2 3m 3m O(1) DDH

k2m2 + k2 + k (k2 + k)m2 (k2 + k + 1)m (k2 + k + 1)m O(1) Dk-MDDH

Table 2. Comparison of MIPFE schemes based on a pairing-free group. The columns
|msk| and |sk| refer to the number of Zp elements. The column |ct| refers to the number
of group elements. The number m refers to the vector length. The number µ refers to
the number of slots. The number qct refers to the total number of ciphertext queries
for all slots by an adversary.

MIPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

ACFGU18[3] {k2 + k + (k + 1)m}μ m + k + 1 (m + k + 1)μ + 1 O(qct) Dk-MDDH
Ours (k2m + km + 1)mμ (k2 + k + 1)m (k2 + k + 1)mμ + 1 O(1) Dk-MDDH

Table 3. Comparison of fully function-hiding IPFE schemes in the standard model.
Lin17 [34] refers to the scheme obtained by applying her paradigm to the IPFE scheme
AGRW17 [4]. The column |msk| refers to the number of Zp elements. The columns |ct|
and |sk| refer to the number of group elements in G1 and G2 respectively. The number
m refers to the vector length. The numbers qct and qsk refer to the total numbers of
ciphertext queries and secret key queries by an adversary respectively.

function-hiding IPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

DDM16 [18] 8m2+12m+28 4m+8 4m+8 O(qct+qsk) SXDH
TAO16 [38] 4m2+18m+20 2m+5 2m+5 O(qct+qsk) XDLIN
Lin17 [34] (k+1)(4m+3k+1) 2m+2k+2 2m+2k+2 O(qct+qsk) Dk-MDDH
Ours 32m2 10m 10m O(1) SXDH

(4k4+8k3+12k2+8k)m2 (4k2+4k+2)m (4k2+4k+2)m O(1) Dk-MDDH

Table 4. Comparison of fully function-hiding MIPFE schemes. The column |msk| refers
to the number of Zp elements. The columns |ct| and |sk| refer to the number of group
elements in G1 and G2 respectively. The number m refers to the vector length. The
number µ refers to the number of slots. The numbers qct and qsk refer to the total
numbers of ciphertext queries for all slots and secret key queries by an adversary
respectively.

function-hiding MIPFE schemes
scheme |msk| |ct| |sk|

DOT18 [19] (2m+2k+1)2μ 2m+2k+1 (2m+2k+1)μ
ACFGU18 [3] {(k+1)(4m+5k+1) + k}μ 2m+3k+2 (2m+3k+2)μ(+|GT |)
Ours {(k4+2k3+3k2+2k)(2m+1)2+m}μ (2k2+2k+1)(2m+1) (2k2+2k+1)(2m+1)μ

scheme sec. loss assumption
DOT18 [19] O(qct+qsk) k-Lin
ACFGU18 [3] O(qct+μqsk) Dk-MDDH
Ours O(1) Dk-MDDH

466 J. Tomida

Wa = W̃a, (2.2)

W�y� = W̃�y� (� is an index for the query number), (2.3)

W(sa + s′b) + xβ = W̃(sa + s′b) + us′(x1 − x0) + xβ

= W̃(sa + s′b) + (us′ + β)(x1 − x0) + x0.
(2.4)

In the indistinguishability-based security game, we impose a query condition on
the adversary to avoid a trivial attack. That is, for all secret key queries, we
have x0y� = x1y�. Equation (2.3) follows from this condition. Finally, from Eq.
(2.4), we can argue that the information of β is hidden from the adversary by
the term us′ unless s′ = 0, because u is a fresh randomness from the viewpoint
of the adversary. Thus, the scheme is secure under the DDH assumption. In the
multi-challenge setting, however, this proof strategy needs a hybrid argument
for each challenge and incurs the security loss of O(qct), where qct is the number
of the ciphertext challenges. Intuitively, this is because the matrix W is shared
in all challenge ciphertexts and we cannot redefine W suitable for all challenge
ciphertexts simultaneously in Eq. (2.1).

The first attempt to obtain a tight reduction is setting W in Eq. (2.1) as

u1, . . . , uL
U←− Zp, W := W̃ +

∑

ι∈[L]

uιxιa⊥�
,

where L(≤ m) is the dimension of the space V spanned by x1
j − x0

j ∈ Z
m
p for all

j ∈ [qct], and {xι}ι∈[L] are a basis of V . In this case, Eqs. (2.2) and (2.3) do not
change and Eq. (2.4) becomes

W(sja + s′
jb) + xβ

j = W̃(sja + s′
jb) + s′

j

∑

ι∈[L]

uιxι + β(x1
j − x0

j) + x0
j ,

where j is the index of challenge queries. If we can say that {[s′
juι]}j∈[qct],ι∈[L]

are indistinguishable from {[rj,ι]}j∈[qct],ι∈[L], which are qctL random elements in
G, we can conclude that the term s′

j

∑
ι∈[L] uιxι hides the information of β. This

is because x1
j − x0

j ∈ V for all j ∈ [qct], and each
∑

ι∈[L] rj,ιxι is a completely
random element in V . Fortunately, it is well known that {s′

juι}j∈[qct],ι∈[L] on the
exponent forms a synthesizer [36], and they are computationally indistinguish-
able from qctL random group elements with the security loss being either qct or
L. Thus, we can prove the security of the scheme by Agrawal et al. with the
security loss of O(m), which is independent from the adversaries’ behavior.

However, the above proof contains two deficiencies. The first is that the
security reduction is still not tight. The second is that the above strategy is
useful against only selective adversaries. This is because the reduction algorithm
needs to know about V to simulate each challenge ciphertext, but V depends on
all challenge queries that the adversary makes. Thus, we have to overcome these
two problems.

Tightly Secure Inner Product Functional Encryption 467

Toward Tight Security. The solution for the first problem (and partly for the
second problem as a result) is to increase the column of the part a, which allows
us to embed more randomness into ciphertexts. That is, we modify the scheme
as

Setup(1λ, 1m):

a
U←− Zp, W U←− Z

m×2m
p , a := (a, 1),

A := Im ⊗ a =

m vectors
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

a
a

. . .
a

⎞

⎟
⎟
⎟
⎠

∈ Z
2m×m
p ,

pk := ([a], [WA]), msk := W.

Enc(pk,x): s := (s1, . . . , sm) U←− Z
m
p , ct := ([As], [WAs + x]).

KeyGen(pk,msk,y): sk := (−W�y,y).
Dec(pk, ct, sk): −y�W[As] + y�[WAs + x] = [〈x,y〉].
The security proof goes as follows. First, the form of all challenge ciphertexts is
changed to

B := Im ⊗ (1, 0) ∈ Z
2m×m
p , s′

j := (s′
j,1, . . . , s

′
j,m) U←− Z

m
p , (2.5)

ct := ([Asj + Bs′
j], [W(Asj + Bs′

j) + xβ
j]).

The DDH problem is tightly reduced to the problem of distinguishing this change
by the random self-reducibility. Next, we redefine W as

u
U←− Zp, W := W̃ + u

∑

ι∈[L]

xιa⊥�
ι , (2.6)

where a⊥
ι ∈ Z

2m
p is the ι-th column of A⊥ := Im ⊗ a⊥. Then, we have

WA = W̃A,

W�y� = W̃�y�,

W(Asj + Bs′
j) + xβ

j = W̃(Asj + Bs′
j) + u

∑

ι∈[L]

s′
j,ιxι + β(x1

j − x0
j) + x0

j .

(2.7)

In this case, we can see that {[us′
j,ι]}j∈[qct],ι∈[L] are computationally indistin-

guishable from {[rj,ι]}j∈[qct],ι∈[L], which are qctL random elements in G, and this
indistinguishability is tightly reduced to the DDH assumption by the random
self-reducibility. Then, the information of β is completely hidden by the same
argument as before in the selective security model.

468 J. Tomida

Toward Adaptive Security. In this paragraph, we refer to the computational
change from Asj to Asj +Bs′

j as the first step and that from {[us′
j,ι]}j∈[qct],ι∈[L]

to {[rj,ι]}j∈[qct],ι∈[L] as the second step. The main obstacle to achieve the adaptive
security is that the reduction algorithm needs to know about the space V before
seeing all challenge queries in the second step. Our observation is that we do not
need a random element in V to hide the information of β in each ciphertext. Let
Vj be a space spanned by x1

ι − x0
ι ∈ Z

m
p for all ι ∈ [j]. Then, a random element

in Vj suffices to hide the information of β in the j-th ciphertext. Fortunately,
the reduction algorithm knows about Vj when it simulates the j-th ciphertext
because it already receives vectors that span Vj .

To do so, we modify the first step. In particular, we change the way of choos-
ing s′

j in Eq. (2.5) as

s′
j,1, . . . , s

′
j,φ(j)

U←− Zp, s′
j := (s′

j,1, . . . , s
′
j,φ(j), 0

m−φ(j)) ∈ Z
m
p ,

where φ(j) := dim Vj . Next, we modify the definition of xι as xι := x1
ρ(ι)−x0

ρ(ι) ∈
Z

m
p for all ι ∈ [L], where ρ(ι) := min φ−1(ι). It is not difficult to confirm that

{xι}ι∈[φ(j)] form a basis of Vj . Then, Eq. (2.7) is changed to

W(Asj + Bs′
j) + xβ

j = W̃(Asj + Bs′
j) + u

∑

ι∈[φ(j)]

s′
j,ιxι + β(x1

j − x0
j) + x0

j .

Observe that the reduction algorithm can compute xι for ι ∈ [φ(j)]
when it simulates the j-th ciphertext. As explained in the previous
paragraph, {[us′

j,ι]}j∈[qct],ι∈[φ(j)] are computationally indistinguishable from
{[rj,ι]}j∈[qct],ι∈[φ(j)], and the term

∑
ι∈[φ(j)] rj,ιxι hides the information of β in

the j-th ciphertext. Thus, we can achieve the adaptive security.

2.2 Conversion from Function-Hiding IPFE to Function-Hiding
MIPFE

Similarly to previous MIPFE schemes, our conversion utilizes parallel execu-
tion of an underlying function-hiding IPFE scheme. The construction of our
conversion can be seen as the combination of the non-function-hiding MIPFE
scheme by Abdalla et al. [3] and the function-hiding MIPFE scheme by Datta
et al. [19]. For simplicity, we consider the IPFE scheme over Zn for some inte-
ger n, which means that the functionality of FE is inner product over Zn. Let
m be a vector length and μ be a number of slots of the converted scheme,
and IPFE := (Setup′,Enc′,KeyGen′,Dec′) be an underlying weakly function-
hiding IPFE scheme. Then, our conversion invokes Setup′ with setting the
vector length as 2m + 1 and generates μ master secret keys msk′

1, . . . ,msk′
μ

(we omit public parameters here). In addition, it chooses μ random vectors
u1, . . . ,uμ

U←− Z
m
n and sets a master secret key of the converted scheme as

msk := (msk′
1, . . . ,msk′

μ,u1, . . . ,uμ). To encrypt a vector xi for the index i,
it encrypts x̃i := (xi +ui, 0m, 1) as ct′i ← Enc′(mski, x̃i) and outputs ct′i. To gen-
erate a secret key for {yi}i∈[μ], it first generates secret shares of −∑

i∈[μ]〈yi,ui〉

Tightly Secure Inner Product Functional Encryption 469

as r1, . . . , rμ
U←− Zn such that

∑
i∈[μ] ri = −∑

i∈[μ]〈yi,ui〉 (mod n). These
shares prevent the leakage of partial inner product values. Then, our conver-
sion generates a secret key for ỹi := (yi, 0m, ri) as sk′

i ← KeyGen′(msk′
i, ỹi)

for all i ∈ [μ] . Finally, it sets the secret key for converted scheme as sk :=
(sk′

1, . . . , sk
′
μ). The decryption algorithm simply computes

∑
i∈[μ] Dec

′(ct′i, sk
′
i)

(mod n). The correctness of the converted scheme is not difficult to confirm
because

∑
i∈[μ]〈x̃i, ỹi〉 =

∑
i∈[μ]〈xi,yi〉.

Although our conversion is as simple as that by Abdalla et al. [3], the security
proof needs a more ingenious technique. To see this, we briefly recall the proof
strategy of their conversion and show that the naive application of their strategy
to our conversion does not work. Here, we assume that the converted MIPFE
scheme is weakly function-hiding, meaning that an adversary against the con-
verted scheme has the following condition on the queries in the security game.
Let qct,i be the total number of ciphertext queries for index i and qsk be the total
number of secret key queries. Then, for all (j1, . . . , jμ) ∈ [qct,1]×· · ·× [qct,μ], and
� ∈ [qsk], we have

∑

i∈[μ]

〈x0
i,ji

,y0
i,�〉 =

∑

i∈[μ]

〈x0
i,ji

,y1
i,�〉 =

∑

i∈[μ]

〈x1
i,ji

,y1
i,�〉. (2.8)

The proof employs a series of games, and the goal is that the adversary does
not obtain any information about a random bit β in the final game. The first step
is to redefine ui := ũi + x0

i,1 − xβ
i,1, where ũi

U←− Zn. This information-theoretic
change does not affect secret keys because

∑
i∈[μ]〈x0

i,1 − xβ
i,1,y

β
i,�〉 = 0 from Eq.

(2.8). The second step is to change x̃i,ji
from (xβ

i,ji
+ ũi + x0

i,1 − xβ
i,1, 0

m, 1) to
(x0

i,ji
+ ũi, 0m, 1). This change is justified by the security of the underlying IPFE

scheme because 〈xβ
i,ji

− xβ
i,1,y

β
i,�〉 = 〈x0

i,ji
− x0

i,1,y
β
i,�〉 for all i ∈ [μ], which can

be derived from Eq. (2.8). Finally, we want to change ỹi,� from (yβ
i,�, 0

m, ri,�) to
(y0

i,�, 0
m, r′

i,�) to hide the information of β. However, we cannot make this change
in the adaptive setting. The reason is that the reduction algorithm needs to set
r′
i,� := ri,�+Δi,�, where Δi,� := 〈x0

i,ji
+ui,y

β
i,�−y0

i,�〉 = 〈x0
i,1+ui,y

β
i,�−y0

i,�〉 (the
second equality follows from Eq. (2.8)), to keep the inner product value when it
simulates the �-th secret key. If the adversary makes a secret key query before it
makes the first ciphertext query for some index i, the reduction algorithm cannot
simulate a secret key because it does not know the value 〈x0

i,1,y
β
i,� −y0

i,�〉. Hence,
this strategy does not work.

To circumvent this problem, we introduce another proof strategy. Recall that
this problem occurs in the second step, where yβ

i,� is changed to y0
i,�, whereas

the first step goes well, where xβ
i,ji

is changed to x0
i,ji

. Intuitively, our solution
for this problem is to make both changes in one-shot in the same manner as
the first step. That is, we do not take the intermediate step where the inner
product values of queried vectors are

∑
i∈[μ]〈x0

i,ji
,yβ

i,�〉, and we change the replies
such that the inner product values of queried vectors are directly changed from∑

i∈[μ]〈xβ
i,ji

,yβ
i,�〉 to

∑
i∈[μ]〈x0

i,ji
,y0

i,�〉. This means that our conversion allows

470 J. Tomida

us to directly achieve a fully function-hiding MIPFE scheme. This is possible
if we prepare 2n + 1 dimensions for the underlying scheme and use the similar
technique to that by Tomida et al. [38]. To do so, we want to create a situation
where x̃i,ji

:= (xβ
i,ji

+ũi −xβ
i,1,x

0
i,1, 1) and ỹi,� := (yβ

i,�,y
0
i,�, r

′
i,�). This is because

if we have the above situation, we can change x̃i,ji
to (ũi,x0

i,ji
−x0

i,1 +x0
i,1, 1) =

(ũi,x0
i,ji

, 1) by the security of the underlying scheme and the relation 〈xβ
i,ji

−
xβ

i,1,y
β
i,�〉 = 〈x0

i,ji
− x0

i,1,y
0
i,�〉, which also can be derived from Eq. (2.8).

To reach the situation starting from the real game, however, we need one
more trick. This is because the reduction algorithm needs to compute the value
Δi,� := 〈x0

i,1,y
0
i,�〉 to adjust inner products with the term r′

i,� when it simulates
the �-th secret key. Thus, the same problems as above occurs. To solve this
problem, we take the intermediate step where x̃i,ji

:= (xβ
i,ji

+ ui,vi, 1) and

ỹi,� := (yβ
i,�,y

0
i,�, ri,�), where vi

U←− Z
m
n is randomly chosen at the beginning of

the game. This is possible because computing Δi,� := 〈vi,y0
i,�〉 suffices for the

reduction algorithm to reach the step. After the step, we redefine ui := ũi −xβ
i,1

and vi := ṽi + x0
i,1 where ũi, ṽi

U←− Z
m
n . This change is information-theoretic

and we do not need to care about when the adversary makes the first ciphertext
query. By these steps, our proof strategy goes well since there are no steps where
reduction algorithms need to compute values related to x0

i,1 when it simulates
secret keys.

The interesting points of our technique are to crucially utilize the blank space,
namely the n + 1 to 2n-th dimensions, and directly construct a fully function-
hiding MIPFE scheme from a weakly function-hiding IPFE scheme. This is in
contrast to the function-hiding scheme in [3], where they first construct a weakly
function-hiding MIPFE scheme, setting a vector length of an underlying IPFE
scheme as almost n. Then, they convert it into a fully function-hiding scheme
by doubling the vector length of the scheme.

3 Preliminary

3.1 Notation

For a natural number n ∈ N, Zn denotes a ring Z/nZ and [n] denotes a set
{1, . . . , n}. For a set S, s

U←− S denotes that s is uniformly chosen from S. We
treat vectors as column vectors. For a vector x, ||x||∞ denotes its infinity norm.
For vectors v1,v2, . . . ,vn, (v1,v2, . . . ,vn) denotes a vector generated by the
vertical concatenation of these vectors. For matrices (including vectors) with
the same number of rows A1,A2, . . . ,An, (A1||A2|| · · · ||An) denotes a matrix
generated by the horizontal concatenation of these matrices. For a generator
gi of a cyclic group Gi of order p and a ∈ Zp, [a]i denotes ga

i . Furthermore,
for a matrix A := (aj,�)j,� over Zp, [A]i denotes a matrix over Gi whose (i, j)
entry is g

aj,�

i . For vectors x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Z
n
p , let

e([x]1, [y]2) := e(g1, g2)〈x,y〉 be a function that computes the inner product on

Tightly Secure Inner Product Functional Encryption 471

the exponent by
∏

i∈[n] e([xi]1, [yi]2). A matrix In denotes the n × n identity
matrix. A matrix Om×n denotes the m × n zero matrix. A function f : N → R

is called negligible if f(λ) = λ−ω(1) and denotes f(λ) ≤ negl(λ). For families of
distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, X ≈c Y means that they are
computationally indistinguishable.

3.2 Basic Tools and Assumption

Definition 3.1 (Cyclic Group). A description of a cyclic group GCG:=
(p,G, g) consists of a prime p, a cyclic group G of order p, and a generator
g. A cyclic group generator GCG(1λ) takes a security parameter 1λ and outputs
a description of a cyclic group GCG with a λ-bit prime p.

Definition 3.2 (Bilinear Groups). A description of bilinear groups
GBG:=(p,G1, G2, GT , g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of
order p, generators g1 and g2 of G1 and G2 respectively, and a bilinear map
e : G1 × G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For generators g1 and g2, gT := e(g1, g2) is a generator of
GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups GBG with a λ-bit prime p.

Definition 3.3 (Dk-MDDH Assumption [21]). Let Dk be a matrix distribu-
tion over full rank matrices in Z

(k+1)×k
p . We can assume that, wlog, the first k

rows of a matrix A chosen from Dk forms an invertible matrix. We consider the
following distribution:

GCG ← GCG(1λ), GBG ← GBG(1λ),

A ← Dk, v U←− Z
k
p, t0 := Av, t1

U←− Z
k+1
p .

We say that the Dk-MDDH assumption holds with respect to GCG if the advan-
tage of any PPT adversary A defined below is negligible,

AdvDk-MDDH
A,CG (λ) := |Pr[1 ← A(GCG, [A], [t0])] − Pr[1 ← A(GCG, [A], [t1])]|,

and with respect to GBG if the advantage of any PPT adversary A for both
i ∈ {1, 2} defined below is negligible,

AdvDk-MDDH
A,BG,i (λ) := |Pr[1 ← A(GBG, [A]i, [t0]i)] − Pr[1 ← A(GBG, [A]i, [t1]i)]|.

Random Self-reducibility. By the random self-reducibility, we can obtain
arbitrarily many instances of the Dk-MDDH problem without additional security
loss. For any n ∈ N, we additionally define the following distribution:

V U←− Z
k×n
p , T0 := AV, T1

U←− Z
(k+1)×n
p .

472 J. Tomida

The advantages of A against n-fold Dk-MDDH assumption with respect to GCG

and GBG are defined as:

Advn-Dk-MDDH
A,CG (λ) := |Pr[1 ← A(GCG, [A], [T0])] − Pr[1 ← A(GCG, [A], [T1])]|,

Advn-Dk-MDDH
A,BG,i (λ) := |Pr[1 ← A(GBG, [A]i, [T0]i)] − Pr[1 ← A(GBG, [A]i, [T1]i)]|.

Then, for any PPT adversaries A1,A2 and both i ∈ {1, 2}, there exist PPT
adversaries B1,B2 and we have

Advn-Dk-MDDH
A1,CG (λ) ≤ AdvDk-MDDH

B1,CG (λ) + 2−Ω(λ),

Advn-Dk-MDDH
A2,BG,i (λ) ≤ AdvDk-MDDH

B2,BG,i (λ) + 2−Ω(λ),

Time(Bj) ≈ Time(Aj) + npolyj(λ) for both j ∈ {1, 2},

where polyj(λ) is independent from Time(Aj).

3.3 Definitions of Inner Product Functional Encryption

In this paper, we treat both single-input inner product functional encryption
(IPFE) and multi-input IPFE. In both cases, the inner product functionality is
defined over Z and its domain is limited depending on the infinity norms of the
input vectors. We formally define the functionality called bonded-norm inner
product.

Definition 3.4 (Bounded-Norm Inner Product over Z). This function
family F consists of functions fX,Y

y1,...,yμ
: Zm×· · ·×Z

m → Z where m,μ,X, Y ∈ N,
yi ∈ Z

m s.t. ||yi||∞ ≤ Y . For all (x1, . . . ,xμ) ∈ (Zm)μ s.t. ∀i ∈ [μ], ||xi||∞ ≤ X,
we define the function as

fX,Y
y1,...,yμ

(x1, . . . ,xμ) :=
∑

i∈[μ]

〈xi,yi〉.

We call μ a number of slots. We refer to the function as single-input inner product
when μ = 1, and multi-input inner product when μ > 1.

With respect to single-input IPFE, there are two types of IPFE: public-key
IPFE and private-key IPFE. To achieve the function privacy, we need the private-
key setting as defined below. Roughly speaking, this is because an adversary
can learn the information of functions embedded in secret keys by decrypting
ciphetexts generated by itself with the secret keys in the public-key setting.

Definition 3.5 (Public-Key Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bounds. Public-key
inner product functional encryption (Pub-IPFE) consists of five algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.
Setup(1m, pp): It takes a vector length 1m and pp and outputs a public key pk

and a master secret key msk.

Tightly Secure Inner Product Functional Encryption 473

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pki,x

β)
return cti

Osk(i ∈ [μ],y ∈ Z
m)

ski
U←− KeyGen(pki,mski,y)

return ski

Fig. 1. The description of oracles in the security game for Pub-IPFE.

Enc(pk,x): It takes pk and a vector x := (x1, . . . , xm) ∈ Z
m and outputs a

ciphertext ct.
KeyGen(pk,msk,y): It takes pk,msk, and a vector y := (y1, . . . , ym) ∈ Z

m and
outputs a secret key sk.

Dec(pk, ct, sk): It takes pk, ct and sk and outputs a decrypted value d ∈ Z or a
symbol ⊥.

Correctness. Pub-IPFE is correct if it satisfies the following condition. For any
λ,m ∈ N and for any x,y ∈ Z

m s.t. ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = 〈x,y〉

pp ← Par(1λ)
(pk,msk) ← Setup(1m, pp)
ct ← Enc(pk,x)
sk ← KeyGen(pk,msk,y)
d := Dec(pk, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Security. Let μ ∈ N be a natural number that represents the number of users.
Pub-IPFE is adaptively secure in the multi-user and multi-challenge setting if
it satisfies the following condition. That is, the advantage of A against Pub-
IPFE defined as follows is negligible in λ for any constant m,μ ∈ N, and PPT
adversary A,

AdvPub-IPFEA (λ) :=

∣
∣
∣
∣
∣
∣
2Pr

⎡

⎣β = β′
β

U←− {0, 1}, pp ← Par(1λ)
{(pki,mski)}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(β,·,·),Osk(·,·)(1λ, {pki}i∈[μ])

⎤

⎦ − 1

∣
∣
∣
∣
∣
∣
.

The description of the oracles Oct and Osk is presented in Fig. 1. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries.
Let qct,i and qsk,i be the total number of ciphertext queries and secret key queries
for index i respectively. Then, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,yi,�i
〉 = 〈x1

i,ji
,yi,�i

〉. (3.1)

Definition 3.6 (Private-Key Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bounds. Private-key
inner product functional encryption (Priv-IPFE) consists of five algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

474 J. Tomida

Setup(1m, pp): It takes a vector length 1m and pp and outputs a master secret
key msk.

Enc(pp,msk,x): It takes pp, msk, and a vector x := (x1, . . . , xm) ∈ Z
m and

outputs a ciphertext ct.
KeyGen(pp,msk,y): It takes pp,msk, and a vector y := (y1, . . . , ym) ∈ Z

m and
outputs a secret key sk.

Dec(pp, ct, sk): It takes pp, ct and sk and outputs a decrypted value d ∈ Z or a
symbol ⊥.

Correctness. Priv-IPFE is correct if it satisfies the following condition. For any
λ,m ∈ N and for any x,y ∈ Z

m s.t. ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = 〈x,y〉

pp ← Par(1λ)
msk ← Setup(1m, pp)
ct ← Enc(pp,msk,x)
sk ← KeyGen(pp,msk,y)
d := Dec(pp, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Security. Let μ ∈ N be a natural number that represents the number of users.
Priv-IPFE is fully function-hiding in the multi-user setting if it satisfies the
following condition. That is, the advantage of A against Priv-IPFE defined as
follows is negligible in λ for any constant m,μ ∈ N and any PPT adversary A,

AdvPriv-IPFEA,f-fh (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣β′ = 1
pp ← Par(1λ)
{mski}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(0·,·),Osk(0,·,·)(pp)

⎤

⎦

−Pr

⎡

⎣β′ = 1
pp ← Par(1λ)
{mski}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(1,·,·),Osk(1,·,·)(pp)

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is convenient for our paper to define the advantage on Priv-IPFE as above
rather than the form like |2Pr[β = β′]−1|, and both formulations are equivalent.
The description of the oracles Oct and Osk is presented in Fig. 2. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries. Let
qct,i and qsk,i be the total numbers of ciphertext queries and secret key queries
for index i respectively. Then, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y1
i,�i

〉. (3.2)

We say that Priv-IPFE is weakly function-hiding in the multi-user setting if
it satisfies the above definition except that the query condition of A is more
restricted as follows. That is, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y1
i,�i

〉. (3.3)

We denote the advantage of A in weakly function-hiding game in the multi-user
setting by AdvPriv-IPFEA,w-fh (λ).

Tightly Secure Inner Product Functional Encryption 475

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pp,mski,xβ)

return cti

Osk(β ∈ {0, 1}, i ∈ [μ], (y0,y1) ∈ (Zm)2)

ski
U←− KeyGen(pp,mski,yβ)

return ski

Fig. 2. The description of oracles in the security game for Priv-IPFE.

As pointed out by Abdalla et al. [4], public-key multi-input IPFE (MIPFE) is
almost meaningless because it inherently leaks the same amount of information
as parallel execution of single-input IPFE. Therefore, following them, we only
consider private-key MIPFE in this paper.

Definition 3.7 (Multi-input Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bound. Multi-input
inner product functional encryption (MIPFE) consists of four algorithms.

Setup(1λ, 1m, 1μ): It takes a security parameter 1λ, a vector length 1m, and a
number of slots 1μ. Then, it outputs a public parameter pp and a master
secret key msk.

Enc(pp,msk, i,x): It takes pp, msk, an index i ∈ [μ], and a vector x :=
(x1, . . . , xm) ∈ Z

m and outputs a ciphertext cti.
KeyGen(pp,msk, {yi}i∈[μ]): It takes pp,msk, and vectors {yi := (yi,1, . . . ,

yi,m)}i∈[μ] ∈ (Zm)μ, and outputs a secret key sk.
Dec(pp, ct1, . . . , ctμ, sk): It takes pp, ct1, . . . , ctμ and sk and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. MIPFE is correct if it satisfies the following condition. For any
λ,m, μ ∈ N and for any {xi}i∈[μ], {yi}i∈[μ] ∈ (Zm)μ s.t. ∀i, ||xi||∞ ≤ Xλ and
||yi||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈[μ]

〈xi,yi〉
pp,msk ← Setup(1λ, 1m, 1μ)
cti ← Enc(pp,msk, i,xi) for all i ∈ [μ]
sk ← KeyGen(pp,msk, {yi}i∈[μ])
d := Dec(pp, ct, sk)

⎤

⎥
⎥
⎦ = 1.

Security. MIPFE is fully function-hiding if it satisfies the following condition.
That is, the advantage of A against MIPFE defined as follows is negligible in λ
for any constant m,μ ∈ N and any PPT adversary A,

AdvMIPFE
A,f-fh (λ) :=

∣
∣
∣
∣
∣
∣
2Pr

⎡

⎣β = β′
β

U←− {0, 1},
(pp,msk) ← Setup(1λ, 1m, 1μ)
β′ ← AOct(β,·,·),Osk(β,·)(pp)

⎤

⎦ − 1

∣
∣
∣
∣
∣
∣
.

The description of the oracles Oct and Osk is presented in Fig. 3. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries.

476 J. Tomida

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pp,msk, i,xβ)

return cti
Osk(β ∈ {0, 1}, ({y0

i }i∈[μ], {y1
i }i∈[μ]) ∈ ((Zm)μ)2)

sk
U←− KeyGen(pp,msk, {yβ

i }i∈[μ])
return sk

Fig. 3. The description of oracles in the security game for MIPFE.

Let qct,i be the total number of ciphertext queries for index i and qsk be the total
number of secret key queries. Then, for all (j1, . . . , jμ) ∈ [qct,1]×· · ·× [qct,μ], and
� ∈ [qsk],

∑

i∈[μ]

〈x0
i,ji

,y0
i,�〉 =

∑

i∈[μ]

〈x1
i,ji

,y1
i,�〉. (3.4)

In this paper, we assume that qct,i ≥ 1 for all i ∈ [μ] and qsk ≥ 1. Note that this
condition can be easily removed by simply utilizing symmetric key encryption
[4,19].

We say that MIPFE is just adaptively secure if it satisfies the above defini-
tion except that Osk(β, ·) is replaced to KeyGen(pp,msk, ·), and y0

i,� and y1
i,� are

changed to yi,� in Eq. (3.4). This security definition captures only the message
privacy of MIPFE schemes, i.e., the scheme is non-function-hiding. We denote
the advantage of A in the adaptive-security game by AdvMIPFE

A,ad (λ). Note that we
do not explicitly use the word “adaptive” in the definitions of function-hiding
because it seems wordy, but we consider only the adaptive security for function-
hiding schemes in this paper.

4 Tightly Secure (Multi-input) Inner Product Functional
Encryption

In this section, we present our tightly secure Pub-IPFE scheme and non-function-
hiding MIPFE scheme, the latter is obtained by applying the conversion by
Abdalla et al. [3] to our IPFE scheme.

4.1 Construction

Let Dk be a matrix distribution over full rank matrices in Z
(k+1)×k
p and norm

bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GCG ← GCG(1λ), Ã ← Dk, pp := (GCG, [Ã])

Tightly Secure Inner Product Functional Encryption 477

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it
outputs a public key pk and a master secret key msk as follows.

W U←− Z
m×k(k+1)m
p , A :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

Ã
Ã

. . .
Ã

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p , (4.1)

pk := (GCG, [Ã], [WA]), msk := W.

Enc(pk,x): It takes pk and x ∈ Z
m and outputs a ciphertext ct as follows.

s U←− Z
k2m
p , c1 := As ∈ Z

k(k+1)m
p , c2 := WAs + x ∈ Z

m
p , ct := ([c1], [c2]).

KeyGen(pk,msk,y): It takes pp, msk, and y ∈ Z
m and outputs a secret key sk as

follows.

k1 := −W�y ∈ Z
k(k+1)m
p , k2 := y ∈ Z

m
p , sk := (k1,k2).

Dec(pk, ct, sk): It takes pk, ct, and sk. Then it computes [d] := [k�
1 c1 + k�

2 c2]
and searches for d exhaustively in the range of −mXλYλ to mXλYλ. If such
d is found, it outputs d. Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key
of y,

d = −y�WAs + y�WAs + y�x = 〈x,y〉.
Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algo-
rithm is d = 〈x,y〉.

4.2 Security

Theorem 4.1. Assume that the Dk-MDDH assumption holds with respect to
GCG, then our Pub-IPFE scheme is adaptively secure in the multi-user and multi-
challenge setting. More formally, let μ be a number of users, qct :=

∑
i∈[μ] qct,i

be the total number of the ciphertext queries by A, qsk :=
∑

i∈[μ] qsk,i be the total
number of the secret key queries by A, and m be a vector length. Then, for any
PPT adversary A and security parameter λ, there exist PPT adversaries B1 and
B2 for the Dk-MDDH and we have

AdvPub-IPFEA (λ) ≤ 2AdvDk-MDDH
B1,CG (λ) + 2AdvDk-MDDH

B2,CG (λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

478 J. Tomida

Proof. We employ a series of games and evaluate the advantage of the adversary
in each game. In the overveiw, we used the variable i to denote the index of users
and ji (resp. �i) to denote the index of ciphertext (resp. secret key) queries for
user i. For example, a vector s in ji-th ciphertext for user i will be denoted
by si,ji

. In the security proof, however, we change the forms of ciphertexts and
secret keys for every user in the same way simultaneously. Thus, we do not need
to specify users when we consider adversary’s queries. For conciseness, we omit
the index i from (i, ji) and (i, �i), and just use j and � to denote the indices of
queries (but j and � are implicitly associated with i).

Game 0: This game is the same as the real game. Then, for all j ∈ [qct,i], the
j-th ciphertext that A obtains from the oracle corresponds to

sj
U←− Z

k2m
p , cj,1 := Asj , cj,2 := WiAsj + xβ

j .

Game 1: The reply for ciphertext queries is changed as follows. For j ∈ [qct,i],
we define xj := x1

j − x0
j ∈ Z

m
p . Let φi : [qct,i] → [m] be a map such that

φi(j) := rank(x1|| · · · ||xj). Then, for all j ∈ [qct,i], the j-th ciphertext that A
obtains from the oracle corresponds to

b U←− Z
k+1
p \span(Ã), B :=

km vectors
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

b
b

. . .
b

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×km
p , (4.2)

s̃j,1, . . . , s̃j,φi(j)
U←− Z

k
p, s′

j := (s̃j,1, . . . , s̃j,φi(j), 0
k(m−φi(j))) ∈ Z

km
p ,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j .

Game 2: The reply for ciphertext queries is changed as follows. Let ρi :
[φi(qct,i)] → [qct,i] be a map such that ρi(ι) := minφ−1

i (ι). In other words,
on an input ι, ρi returns the first query number j such that the rank of the
matrix (x1|| · · · ||xj) equals ι. Then, for all j ∈ [qct,i], the j-th ciphertext that
A obtains from the oracle corresponds to

u U←− Z
k
p,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j +

∑

ι∈[φi(j)]

〈u, s̃j,ι〉xρi(ι) .

Note that s̃j,ι is defined in Game 1.
Game 3: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i],

the j-th ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j)
U←− Zp,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j +

∑

ι∈[φi(j)]

rj,ιxρi(ι) .

Tightly Secure Inner Product Functional Encryption 479

Game 4: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i],
the j-th ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j)
U←− Zp,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + x0
j +

∑

ι∈[φi(j)]

rj,ιxρi(ι).

We present proofs of the indistinguishability among these games in the full ver-
sion of this paper. �

4.3 Application to Multi-input Inner Product Functional
Encryption

We can obtain an adaptively secure MIPFE scheme whose security is tightly
reduced to the Dk - MDDH assumption by applying the generic conversion by
Abdalla et al. [3] to our scheme. Let Pub-IPFE be a Pub-IPFE scheme that is
adaptively secure in the multi-user and multi-challenge setting. It is not difficult
to see that the security of the MIPFE scheme obtained by applying the conver-
sion to Pub-IPFE is reduced to that of Pub-IPFE with the security loss being 1.
Thus, we obtain the following corollary.

Corollary 4.1. Let MIPFE be the MIPFE scheme obtained by applying the con-
version in [3] to our Pub-IPFE scheme. Then MIPFE is adaptively secure. More
formally, let μ be a number of slots, qct :=

∑
i∈[μ] qct,i be the total number of

the ciphertext queries by A, qsk be the total number of the secret key queries
by A, and m be a vector length. Then, for any PPT adversary A and security
parameter λ, there exist PPT adversaries B1 and B2 for the Dk-MDDH and we
have

AdvMIPFE
A,ad (λ) ≤ 2AdvDk-MDDH

B1
(λ) + 2AdvDk-MDDH

B2
(λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

5 Function-Hiding Inner Product Functional Encryption

Lin proposed a simple framework that allows us to construct a function-hiding
IPFE scheme from a public key IPFE scheme [34]. We can apply her framework
to our scheme and obtain a tightly function-hiding IPFE scheme in the multi-
user setting. Informally, her framework is as follows.

First, we can see that a ciphertext and a secret key in our IPFE scheme consist
of vectors, and decryption involves inner product of these vectors. That is, a
ciphertext of a vector x corresponds to a vector cin := (cin,1, cin,2) := (As,WAs+

x) ∈ Z
(k2+k+1)m
p and a secret key of a vector y corresponds to a vector kin :=

480 J. Tomida

(kin,1,kin,2) := (−W�y,y) ∈ Z
(k2+k+1)m
p . Decryption just computes 〈cin,kin〉.

We call the scheme described above an inner scheme.
To ensure the confidentiality of secret keys, we “encrypt” secret keys in

the same way as ciphertexts in our IPFE scheme. That is, a secret key
of the function-hiding IPFE scheme is generated as sk := (cout,1, cout,2) :=(
Dr ∈ Z

k(k+1)(k2+k+1)m
p ,VDr + kin ∈ Z

(k2+k+1)m
p

)
, where V, D, and r cor-

respond to W, A, and s respectively in our scheme presented in Sect. 4.1.
We call the scheme utilized to encrypt secret keys an outer scheme. We
also need to transform ciphertexts to make them compatible with sk, which
can be done by “generating a secret key” of cin in the outer scheme. That
is, we define a ciphertext of the function-hiding IPFE scheme as ct :=
(kout,1,kout,2) :=

(
−V�cin ∈ Z

k(k+1)(k2+k+1)m
p , cin ∈ Z

(k2+k+1)m
p

)
. Observe that

〈ct, sk〉 = 〈cin,kin〉 = 〈x,y〉.
To achieve the security, of course we need to encode both ct and sk on the

exponent of group elements. We employ bilinear groups that allow us to compute
inner product over the group elements, which is necessary for decryption. Then,
the confidentiality of ciphertexts is assured by the inner scheme and that of
secret keys is assured by the outer scheme.

5.1 Actual Scheme and Optimization

As described above, if we directly apply Lin’s framework to our scheme, the first
components of a ciphertext and a secret key will consist of k(k+1)(k2 +k+1)m
group elements. Recall the reason we need k(k + 1)m group elements in the
first components of a ciphertext and a secret key in the original scheme. That
is, the maximum dimension of the space spanned by the vectors xj = x1

j − x0
j

is m, and this fact directly affects the number of group elements in the first
components. Because the vector length handled in the outer scheme is (k2 + k +
1)m, the first components seem to require k(k+1)(k2 +k+1)m group elements.
However, observe that the maximum dimension of the space spanned by the
vectors kout,� := k1

out,� − k0
out,� := (−W�y1

� ,y
1
�) − (−W�y0

� ,y
0
�) for all � ∈ [qsk]

is m, not (k2 + k + 1)m. Hence, we can reduce the number of group elements in
the first components to k(k + 1)m, and the resulting scheme is given as follows.

Let Dk be a matrix distribution over full rank matrices in Z
(k+1)×k
p and norm

bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GBG ← GBG(1λ), Ã, D̃ ← Dk, pp := (GBG, [Ã]1, [D̃]2).

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it
outputs a master secret key msk as follows.

W U←− Z
m×k(k+1)m
p , V U←− Z

(k2+k+1)m×k(k+1)m
p , msk := (W,V).

Tightly Secure Inner Product Functional Encryption 481

Enc(pp,msk,x): It takes pp, msk, and x ∈ Z
m and outputs a ciphertext ct as

follows.

A :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

Ã
Ã

. . .
Ã

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p ,

s U←− Z
k2m
p , cin := (As,WAs + x) ∈ Z

(k2+k+1)m
p ,

kout,1 := −V�cin ∈ Z
k(k+1)m
p , kout,2 := cin, ct := ([kout,1]1, [kout,2]1).

KeyGen(pp,msk,y): It takes pp, msk, and y ∈ Z
m and outputs a secret key sk as

follows.

D :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

D̃
D̃

. . .
D̃

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p ,

r U←− Z
k2m
p , kin := (−W�y,y) ∈ Z

(k2+k+1)m
p ,

cout,1 := Dr ∈ Z
k(k+1)m
p , cout,2 := VDr + kin ∈ Z

(k2+k+1)m
p ,

sk := ([cout,1]2, [cout,2]2).

Dec(pp, ct, sk): It takes pp, ct, and sk. Then it computes [d]T := e([kout,1]1,
[cout,1]2)e([kout,2]1, [cout,2]2) and searches for d exhaustively in the range of
−mXλYλ to mXλYλ. If such d is found, it outputs d. Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key
of y,

d = −c�
inVDr + c�

inVDr + c�
inkin = 〈cin,kin〉 = 〈x,y〉.

Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algo-
rithm is d = 〈x,y〉.

5.2 Security

Theorem 5.1. Assume that the Dk-MDDH assumption holds with respect to
GBG, then our Priv-IPFE scheme is weakly function-hiding in the multi-user
setting. More formally, let μ be a number of users, qct :=

∑
i∈[μ] qct,i be the total

number of the ciphertext queries by A, qsk :=
∑

i∈[μ] qsk,i be the total number
of the secret key queries by A, and m be a vector length. Then, for any PPT

482 J. Tomida

adversary A and security parameter λ, there exist PPT adversaries B1, . . . ,B4

for the Dk-MDDH, and we have

AdvPriv-IPFEA,w-fh (λ) ≤ 2
∑

ι∈{1,2}
AdvDk-MDDH

Bι,BG,1 (λ) + 2
∑

ι∈{3,4}
AdvDk-MDDH

Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]

{Time(Bι)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Theorem 5.1 follows from Theorem 4.1 and Lin’s observation [34]. That is,
the following relations hold:

{{ct0j}j∈[qct,i], {sk0�}�∈[qsk,i]

}
i∈[μ]

≈c

{{ct1j}j∈[qct,i], {sk0�}�∈[qsk,i]

}
i∈[μ]

≈c

{{ct1j}j∈[qct,i], {sk1�}�∈[qsk,i]

}
i∈[μ]

.

The first indistinguishability follows from the security of the inner scheme and
Eq. (3.3), and the second indistinguishability follows from the security of the
outer scheme and Eq. (3.3). More precisely, we use the relations 〈x0

i,ji
,y0

i,�i
〉 =

〈x1
i,ji

,y0
i,�i

〉 for the inner scheme and 〈c1in,i,ji
,k0

in,i,�i
〉 = 〈c1in,i,ji

,k1
in,i,�i

〉 for the
outer scheme. Both relations can be derived from Eq. (3.3). Note that because
our scheme is adaptively secure, the above relations hold even if ciphertexts and
secret keys are queried by an adversary adaptively.

Remark 5.1. Although the above scheme is weakly function-hiding in the multi-
user setting, we can easily convert it into one that is fully function-hiding in
the multi-user setting by the conversion proposed by Lin and Vaikuntanathan
[35]. The conversion is very simple and works by only doubling vector lengths.
When encrypting x ∈ Z

m, we just encrypt (x, 0m) in the original scheme. Key
generation is also done in the same way. In addition, this conversion is tight.
That is, for any PPT adversary A and security parameter λ, there exist PPT
adversaries B1,B2,B3 and we have

AdvPriv-IPFEA,f-fh (λ) ≤
∑

ι∈[3]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[3]

{Time(Bι)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

6 From Single to Multi-input Function-Hiding Inner
Product Functional Encryption

In this section, we present a generic conversion from weakly function-hiding
single-input IPFE to fully function-hiding multi-input IPFE. Because all known
function-hiding single-input IPFE schemes are based on bilinear groups, we
design the conversion to be compatible with group based schemes. As in [3],
however, we believe that our conversion is so generic that we can easily modify
it to be suitable to schemes based on other primitives.

Tightly Secure Inner Product Functional Encryption 483

6.1 Conversion

Property. Let Priv-IPFE := (Par,Setup,Enc,KeyGen,Dec) be a Priv-IPFE
scheme (Definition 3.6). In our conversion, we require that an underlying scheme
has the following properties.

1. Priv-IPFE is weakly function-hiding in the multi-user setting.
2. A public parameter pp defines an order n, a group G of order n with group

law ◦, and an encoding function E : Zn → G.
3. A decryption algorithm Dec can be divided into the two algorithms Dec1 and

Dec2 with the following properties. For any λ,m ∈ N, any x,y ∈ Z
m, and

any z ∈ Zn such that |z| ≤ mXλYλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = E(〈x,y〉 mod n)

pp ← Par(1λ)
msk ← Setup(1m, pp)
ct ← Enc(pp,msk,x)
sk ← KeyGen(pp,msk,y)
d := Dec1(pp, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1,

Dec2(pp, E(z)) = z.

4. For any a, b ∈ Zn, we have E(a) ◦ E(b) = E(a + b).

Conversion. Let Priv-IPFE :=
(
Par′,Setup′,Enc′,KeyGen′,Dec′ :=(Dec′

1,Dec
′
2)

)

be a Priv-IPFE scheme with the property defined above. Let MIPFE :=
(Setup,Enc,KeyGen,Dec) be a converted MIPFE scheme. Let Xλ := X ′

λ/μ be a
norm bound of MIPFE, where X ′

λ is a norm bound of Priv-IPFE. Our conversion
is performed as follows.

Setup(1λ, 1m, 1μ): It takes a security parameter 1λ, a vector length 1m, and a
number of slots 1μ. Then, it outputs a public parameter pp and a master
secret key msk as follows.

pp′ ← Par′(1λ), {msk′
i}i∈[μ] ← Setup′(12m+1, pp′), {ui}i∈[μ]

U←− Z
m
n ,

pp := pp′, msk := ({msk′
i}i∈[μ], {ui}i∈[μ]).

Enc(pp,msk, i,x): It takes pp, msk, i ∈ [μ] and x ∈ Z
m and outputs a ciphertext

cti as follows.

x̃ := (x + ui, 0m, 1) ∈ Z
2m+1
n , ct′i ← Enc′(pp′,msk′

i, x̃), cti := ct′i.

KeyGen(pp,msk, {yi}i∈[μ]): It takes pp, msk, and {yi}i∈[μ] ∈ Z
m and outputs a

secret key sk as follows.

{ri}i∈[μ−1]
U←− Zn, rμ := −

⎛

⎝
∑

i∈[μ−1]

ri +
∑

i∈[μ]

〈yi,ui〉
⎞

⎠ ∈ Zn,

ỹi := (yi, 0m, ri) ∈ Z
2m+1
n , sk′

i ← KeyGen′(pp′,msk′
i, ỹi) for all i ∈ [μ],

sk := {sk′
i}i∈[μ].

484 J. Tomida

Dec(pp, {cti}i∈[μ], sk): It takes pp, {cti}i∈[μ], and sk. Then, it computes decryp-
tion value d as follows.

di := Dec′
1(pp

′, ct′i, sk
′
i) ∈ G for all i ∈ [μ], d := Dec′

2(pp
′, d1 ◦ · · · ◦ dμ).

Correctness. From property 3, we have

di = E(〈xi + ui,yi〉 + ri mod n).

From property 4, we have

d1◦· · ·◦dμ = E

⎛

⎝
∑

i∈[μ]

(〈xi + ui,yi〉 + ri) mod n

⎞

⎠ = E

⎛

⎝
∑

i∈[μ]

〈xi,yi〉 mod n

⎞

⎠ .

Then, from property 3 and the correctness of Priv-IPFE, we have d := Dec′
2(d1 ◦

· · · ◦ dμ) =
∑

i∈[μ]〈xi,yi〉.
Remark 6.1. Typically, we define Priv-IPFE as consisting of four algorithms
(Setup,Enc,KeyGen,Dec) and Setup outputs pp and msk when we consider Priv-
IPFE in the single-user setting. To apply our conversion to such a Priv-IPFE
scheme, just setting pp := pp′

1, . . . , pp
′
μ suffices in the setup algorithm. In the

security proof, however, we need a hybrid argument for each slot similarly to [3].
Thus, the security reduction will not become tight.

6.2 Security

Theorem 6.1. Let Priv-IPFE be a Priv-IPFE scheme that satisfies the proper-
ties described above. Then converted scheme, MIPFE, is a fully function-hiding
MIPFE scheme. More formally, let μ be a number of slots, qct :=

∑
i∈[μ] qct,i be

the total number of the ciphertext queries by A, qsk be the total number of the
secret key queries by A, and m be a vector length. Then, for any PPT adversary
A and security parameter λ, there exist PPT adversaries B1,B2 for Priv-IPFE
and we have

AdvMIPFE
A,f-fh (λ) ≤ 2

∑

ι∈[2]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[2]

{Time(Bι)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We employ a series of games and evaluate the advantage of the adversary
in each game. For ease of exposition, we first consider six games: Games 0 to
5, and show that the each transition of games is justified by the security of the
underlying scheme (or an information-theoretical argument). Then, we explain
that the transition from Game 0 to 2 and that from Game 3 to 5 can be done
in one-shot. We summarize forms of ciphertexts and secret keys in each game in
Table 5. Similarly to in Sect. 4.2, we omit index i from index ji and just denote
it by j. We present formal proof in the full version of this paper. �

Tightly Secure Inner Product Functional Encryption 485

Table 5. Overview of the game change.

game x̃i,j in ct ỹi,� in sk − ∑
ri,�

0 (real) (xβ
i,j + ui, 0

m, 1) (yβ
i,�, 0

m, ri,�)
∑〈yβ

i,�,ui〉
1 (xβ

i,j + ui, vi , 1) (yβ
i,�, 0

m, ri,�)
∑〈yβ

i,�,ui〉
2 (xβ

i,j + ui,vi, 1) (yβ
i,�, y0

i,� , ri,�)
∑

(〈yβ
i,�,ui〉 + 〈y0

i,�,vi〉)
3 (xβ

i,j −xβ
i,1 + ui, x0

i,1 + vi, 1) (yβ
i,�,y

0
i,�, ri,�)

∑
(〈yβ

i,�,ui〉 + 〈y0
i,�,vi〉)

4 (ui, x0
i,j + vi, 1) (yβ

i,�,y
0
i,�, ri,�)

∑
(〈yβ

i,�,ui〉 + 〈y0
i,�,vi〉)

5 (final) (ui,x
0
i,j + vi, 1) (0m ,y0

i,�, ri,�)
∑〈y0

i,�,vi〉

6.3 Application to Our Scheme

Applying the conversion to our scheme presented in Sect. 5.1, we can obtain a
tightly secure fully function-hiding MIPFE scheme. First, we confirm that our
scheme satisfies the property presented in Sect. 6.1.

1. Theorem 5.1 says that our scheme is weakly function-hiding.
2. We can define that n := p, G := GT , and E : a ∈ Zp → [a]T ∈ GT . The group

law ◦ corresponds to the multiplication over GT .
3. We can define that Dec1 computes [d]T and Dec2 searches for the discrete

logarithm of [d]T .
4. It is obvious that ga

T · gb
T = ga+b

T .

Then, from Theorems 5.1 and 6.1, we obtain the following corollary.

Corollary 6.1. Let MIPFE be the MIPFE scheme obtained by applying the
conversion in Sect. 6.1 to our weakly function-hiding Priv-IPFE scheme. Then
MIPFE is fully function-hiding. More formally, let μ be a number of slots,
qct :=

∑
i∈[μ] qct,i be the total number of the ciphertext queries by A, qsk be

the total number of the secret key queries by A, and m be a vector length. Then,
for any PPT adversary A and security parameter λ, there exist PPT adversaries
B1, . . . ,B4 for the Dk-MDDH and we have

AdvMIPFE
A,f-fh (λ) ≤ 8

∑

ι∈{1,2}
AdvDk-MDDH

Bι,BG,1 (λ) + 8
∑

ι∈{3,4}
AdvDk-MDDH

Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]

{Time(Bι)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

References

1. GenBank and WGS statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/
2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption

schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1007/978-3-662-46447-2_33

486 J. Tomida

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

5. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 19

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

7. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

8. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6 2

9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

10. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

11. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

12. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–
491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 20

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

14. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

15. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 12

https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_12

Tightly Secure Inner Product Functional Encryption 487

16. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner
product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 25

17. Chen, J., Wee, H.: Fully, (almost) tightly secure ibe and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

19. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

20. Enge, A., Milan, J.: Implementing cryptographic pairings at standard security lev-
els. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS,
vol. 8804, pp. 28–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12060-7 3

21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

24. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol.
9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 18

25. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

26. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

27. Gay, R., Kowalczyk, L., Wee, H.: Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In: Catalano, D., De Prisco, R. (eds.) SCN 2018.
LNCS, vol. 11035, pp. 123–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98113-0 7

28. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

29. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 11

https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11

488 J. Tomida

30. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part III. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 17

31. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

32. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

33. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

34. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

35. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016

36. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

37. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

38. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

39. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 33

https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

Public-Key Function-Private Hidden
Vector Encryption (and More)

James Bartusek1(B), Brent Carmer2, Abhishek Jain3, Zhengzhong Jin3,
Tancrède Lepoint4, Fermi Ma5, Tal Malkin6, Alex J. Malozemoff2,

and Mariana Raykova4

1 UC Berkeley, Berkeley, USA
bartusek.james@gmail.com

2 Galois, Portland, USA
{bcarmer,amaloz}@galois.com

3 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu, zjin12@jhu.edu

4 Google, Mountain View, USA
tancrede@google.com, mariana@google.com

5 Princeton University, Princeton, USA
fermima@alum.mit.edu

6 Columbia University, New York, USA
tal@cs.columbia.edu

Abstract. We construct public-key function-private predicate encryp-
tion for the “small superset functionality,” recently introduced by Beul-
lens and Wee (PKC 2019). This functionality captures several important
classes of predicates:

– Point functions. For point function predicates, our construction is
equivalent to public-key function-private anonymous identity-based
encryption.

– Conjunctions. If the predicate computes a conjunction, our con-
struction is a public-key function-private hidden vector encryption
scheme. This addresses an open problem posed by Boneh, Raghu-
nathan, and Segev (ASIACRYPT 2013).

– d-CNFs and read-once conjunctions of d-disjunctions for constant-
size d.

Our construction extends the group-based obfuscation schemes of Bishop
et al. (CRYPTO 2018), Beullens and Wee (PKC 2019), and Bartusek et
al. (EUROCRYPT 2019) to the setting of public-key function-private
predicate encryption. We achieve an average-case notion of function pri-
vacy, which guarantees that a decryption key skf reveals nothing about f
as long as f is drawn from a distribution with sufficient entropy. We for-
malize this security notion as a generalization of the (enhanced) real-or-
random function privacy definition of Boneh, Raghunathan, and Segev
(CRYPTO 2013). Our construction relies on bilinear groups, and we
prove security in the generic bilinear group model.

Research conducted at Princeton University.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 489–519, 2019.
https://doi.org/10.1007/978-3-030-34618-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_17

490 J. Bartusek et al.

1 Introduction

Predicate encryption [BW07,KSW08] is a powerful tool which enables fine-
grained access to encrypted information. Roughly speaking, a sender can encrypt
a message m (commonly referred to as a payload) with respect to an attribute x,
while each decryption key skf is tied to a specific predicate f in some function
class F ; the key skf correctly decrypts a ciphertext if and only if the associated
attribute x satisfies f(x) = 1.

Generally, predicate encryption schemes simultaneously achieve payload-
hiding and attribute-hiding security. At a high level, payload-hiding guarantees
that an encryption of m with respect to attribute x reveals nothing about m to an
adversary who does not possess a decryption key skf where f(x) = 1. Attribute-
hiding guarantees that ciphertexts hide any information about x beyond what
is leaked from successful decryption. That is, an adversary holding decryption
keys skf1 , . . . , skfn

may learn the 0/1 evaluations of f1, . . . , fn on x, but should
not be able to learn anything else about x.

For certain applications, however, these two security guarantees may not be
enough. Suppose an email user wants to set up a gateway that routes encrypted
emails differently depending on whether or not they are spam. The user would
like to avoid giving the gateway full access to the content of their emails; instead
the user may have some list of potential spam email addresses, and would prefer
the gateway only apply its spam filtering algorithm (which requires reading the
email plaintext) if the email is sent from this set of addresses.1

The predicate encryption-based solution treats the contents of the email as
the “payload,” and the sender email address as the “attribute.” The user gen-
erates some decryption key skf for their filtering predicate f (in this scenario,
the predicate would output one if the email address belongs to a list of potential
spammers), and sends this to the gateway. It is easy to imagine that the user
may want to hide its particular choice of f from the gateway, since after all
the user views the gateway as an untrusted party. But given skf , the standard
payload-hiding and attribute-hiding definitions say nothing about whether one
can learn the description of f .

Public-Key Function Privacy. Boneh, Raghunathan, and Segev (BRS) [BRS13a]
address this problem by defining public-key function-private predicate encryp-
tion, which requires that skf leak nothing about f beyond what is leaked through
honest decryption.2 They demonstrate that this notion is achievable with a new
construction of function-private anonymous identity-based encryption (i.e., pred-
icate encryption for equality predicates). We note that here, “function private”
means that the identity embedded in the decryption key is hidden, “anony-
mous” means that the intended recipient of the ciphertext (the attribute) is
1 Note that we would require a public-key predicate encryption scheme for this sce-

nario, with the assumption that an email client would encrypt any email to the user
under the user’s public key.

2 Function privacy had been studied before the work of BRS [BRS13a], albeit in the
private key setting [SWP00,OS07,BSW09,SSW09].

Public-Key Function-Private Hidden Vector Encryption (and More) 491

hidden; and finally the message being encrypted also stays secret. In follow-
up work, BRS [BRS13b] extended public-key function privacy to a significantly
larger class of subspace-membership predicates. We stress that in both works,
BRS present function privacy as an average-case definition, which is essentially
inherent in the public-key setting (see Sect. 1.2 for further discussion).

While BRS [BRS13a,BRS13b] laid the groundwork for the study of function
privacy in the public-key setting, a number of important questions remained
unanswered. In particular, BRS explicitly identified three important directions
for further exploration [BRS13b]:

1. Computational Function Privacy. In both works, BRS construct statis-
tically function-private schemes. They conjectured, however, that it might
be possible to leverage group-based assumptions to achieve more powerful/
expressive computationally function-private predicate encryption schemes.

2. Hidden Vector Encryption. The seminal work of Boneh and Waters
[BW07] introduced hidden vector encryption (HVE) as a general approach
to performing equality, comparison, and subset queries on encrypted data.
In HVE, predicates are specified by a vector v ∈ Σk, where Σ = Zs ∪ {∗}.
We refer to s as the alphabet size and ∗ as a wildcard character. A mes-
sage m encrypted under attribute x ∈ Z

k
s can be decrypted under key fv

if xi matches vi at each i where vi �= ∗. Follow-up work by Katz, Sahai,
and Waters [KSW13] introduced inner product encryption (i.e., predicate
encryption for inner product predicates) as a generalization of HVE. In turn,
inner product predicates are a subclass of more general subspace-membership
predicates. Therefore, predicate encryption for subspace-membership trivially
implies inner product encryption and HVE.
However, BRS [BRS13b] observe that these implications crucially do not pre-
serve function privacy. That is, their function-private subspace-membership
encryption construction is not a function-private HVE. In fact, BRS remark
that even defining function privacy for HVE is not straightforward, and they
leave defining and constructing function-private HVE as an open problem.

3. Enhanced Function Privacy. The plain definition of function privacy given
by BRS [BRS13a] comes with a serious drawback. At a high level, the def-
inition assumes that the adversary holding decryption key skf will never
encounter a ciphertext with a matching attribute x (i.e., where f(x) = 1).
The authors argue that such an assumption is necessary in many settings,
since if an adversary could generate such matching ciphertexts, it must know
some x where f(x) = 1. For equality predicates, this amounts to learning f
entirely.
In almost any natural application, however, we should expect that the party
in possession of skf will encounter “matching” ciphertexts; the crucial point is
that they would not be generating these ciphertexts themselves. To capture
this, BRS define a stronger notion called enhanced function privacy where
the adversary is given access to an “encryption oracle” that outputs match-
ing ciphertexts.
Unfortunately, the only known construction of a public-key scheme achiev-
ing enhanced function-privacy is the anonymous identity-based encryption

492 J. Bartusek et al.

construction presented by BRS [BRS13a]. Therefore, constructing enhanced-
function-private predicate encryption schemes for any class of predicates
beyond equality predicates has remained open since.

1.1 Our Contributions

In this work, we make substantial progress on all three fronts. Compared to
BRS [BRS13a,BRS13b], our results come from using a qualitatively different
high-level approach. In particular, BRS construct public-key function-private
predicate encryption by starting from schemes that satisfy only data privacy
(a definition combining attribute-hiding and payload-hiding), and transforming
them to achieve data privacy and function privacy simultaneously.

We take the opposite approach. We begin with constructions that satisfy
function privacy but not data privacy and transform them to achieve both data
privacy and function privacy. In more standard terminology, our high-level app-
roach is to think of an obfuscated program [BGI+01] as a decryption key within a
“predicate encryption” scheme that has no data privacy whatsoever (since obfus-
cated programs are run directly on non-encrypted inputs). We then show that
several obfuscation schemes from the literature can be appropriately transformed
to achieve public-key function-private predicate encryption.

Our starting point is the recent line of work [BKM+18,BW19,BLMZ19] that
constructs simple, group-based obfuscation schemes for what Beullens and Wee
refer to as the “big subset” predicate [BW19].3 For our work, we re-interpret
these predicates as “small superset” predicates, a notion we find slightly more
natural for our applications. A “small superset” predicate fn,t,X is parameter-
ized by a target set X ⊆ [n], an integer size bound t ≤ n, and takes as input
any set Y ⊆ [n]. fn,t,X(Y) outputs 1 if and only if X ⊆ Y and |Y | ≤ t (that
is, Y is a small superset of X). We show that “small superset” predicates cap-
ture several natural and expressive predicate classes, including large-alphabet
conjunctions, functions in conjunctive normal form with a constant number of
inputs per conjunct (a.k.a., d-CNFs for d = O(1)), and read-once conjunctions
of d-disjunctions for d = O(1).

Our primary contributions are the following:

1. We draw upon a correspondence between program obfuscation and func-
tion privacy to formulate new and versatile simulation-based definitions of
average-case function-privacy and enhanced function-privacy.4 While our def-
initions incorporate elements of the distributional virtual black box notion
from obfuscation [BGI+01,BR17], we view our (enhanced) function privacy
definition as a natural extension of the definition of BRS [BRS13a]. Unlike

3 We remark that [BKM+18,BLMZ19] framed their results as obfuscation for conjunc-
tions. Beullens and Wee [BW19] were the first to notice that these techniques are in
fact obfuscating a more general class of “big subset” predicates, which in particular
encompass conjunctions.

4 While our definitions are new, we are not the first to observe the connection between
program obfuscation and function-privacy. See also [AAB+15,ITZ16,ABF16].

Public-Key Function-Private Hidden Vector Encryption (and More) 493

these prior function-privacy notions [BRS13a,BRS13b], which are tailored
to specific classes of predicates, our definition is completely agnostic to the
predicate class.5 For the special case of HVE (i.e., large-alphabet conjunc-
tions), we demonstrate that constructions achieving our function privacy def-
initions hide strictly more information about the underlying predicate than
constructions achieving other recently proposed HVE function-privacy defi-
nitions (e.g., [PM18,PMR19]).

2. We leverage bilinear maps to construct a public-key predicate encryption
scheme for small superset predicates. At a very high level, our construction
works by embedding the group-based constructions developed in [BKM+18,
BW19,BLMZ19] in group G1, encoding messages/attributes in group G2, and
decrypting using the bilinear map. We prove that our construction achieves
enhanced function privacy in the generic bilinear group model. We note that
generic analysis is somewhat unavoidable in our setting, as the underlying
obfuscation constructions we build on are not known to be secure under any
falsifiable assumption [Nao03,GW11].

3. We show that our general construction of public-key enhanced function-
private predicate encryption for “small superset” immediately yields the fol-
lowing:

– Anonymous IBE achieving enhanced function privacy as long as the
underlying distribution on points has super-logarithmic min-entropy.

– Public-key enhanced-function-private HVE whenever the underlying dis-
tribution meets a certain entropy threshold.

– Public-key enhanced-function-private predicate encryption for d-CNFs
and read-once conjunctions of d-disjunctions, subject to certain entropy
requirements.

1.2 Technical Overview

Our Approach: From Obfuscation to Function-Private Predicate
Encryption. We begin by recalling the notion of program obfuscation [BGI+01],
which is the starting point for all of the constructions in this work. Roughly
speaking, a program obfuscator takes in a description of some program P and
outputs an obfuscated program Obf(P) that is functionally equivalent to P ,
but hides all of the implementation details. A natural approach to formalizing
obfuscation security is the notion of a virtual black box (VBB), which asks that
anything (precisely, any one-bit predicate) one can learn given Obf(P) can also
be learned from black-box access to an oracle for P . While VBB obfuscation for
general programs is known to be impossible [BGI+01], there have been a num-
ber of positive results that achieve (average-case or worst-case) VBB security for

5 We note that we are not the first to give a public-key function-private definition that
is agnostic to the predicate class. In particular, this is also achieved by the definition
of [ITZ16]. However, their definition does not extend to enhanced function privacy,
and furthermore they do not give any constructions achieving their definition except
under a strengthening of indistinguishability obfuscation due to [BCKP14].

494 J. Bartusek et al.

limited classes of functionalities, such as point functions [Can97,LPS04,Wee05],
conjunctions [BR13,BR17,BKM+18,BLMZ19,BW19], Hamming balls [DS05],
hyperplanes [CRV10], “compute-and-compare” functions [WZ17,GKW17], etc.

As mentioned in Sect. 1.1, there is a strong intuitive connection between
program obfuscation and function-private predicate-encryption in the public-key
setting (this has also been observed in prior work [AAB+15,ITZ16,ABF16]). In
both settings, the goal is to allow evaluation of a specific functionality without
leaking anything else about the functionality itself. The difference is that an
obfuscated program runs on an arbitrary public input, while in function-private
predicate encryption, function evaluation occurs when applying a decryption key
for some predicate f to a ciphertext whose hidden attribute is the input to the
function.

Moreover, we can imagine defining function privacy so that a decryption key
skf for some function f leaks no more than a VBB obfuscation of f . In this case,
public-key function-private predicate encryption for some function class F is a
strictly stronger primitive than program obfuscation for F . This follows trivially
from the fact that anyone holding a decryption key skf for f ∈ F can use it as an
obfuscated program: to learn whether f(x) outputs 0 or 1, use the public key to
encrypt a message payload under attribute x and check if decryption succeeds.

In this work, we leverage this intuitive connection to build public-key
function-private predication encryption schemes by transforming simple obfus-
cators [Can97,BKM+18,BLMZ19,BW19] that have appeared in the literature.
Our core construction will be based on an obfuscator for the “small superset”
functionality, which is essentially equivalent to the “big subset” functionality
introduced by Beullens and Wee [BW19]. We define our “small superset” func-
tion fn,t,X , parameterized by a target set X ⊆ [n], a positive integer n, and an
integer size bound t ≤ n, to output 1 on input Y ⊆ [n] if X ⊆ Y and |Y | ≤ t,
and 0 otherwise.6

A simple group-based obfuscator for the “small superset” functionality fol-
lows easily from prior work [BLMZ19,BW19] (which are inspired by the construc-
tion of Bishop et al. [BKM+18]). The obfuscation achieves an average-case notion
of security (i.e., VBB holds if the set X is drawn from a distribution with appro-
priate entropy). From this, we build a public-key (enhanced) function-private
predicate encryption scheme supporting the class of small superset predicates.

In the remainder of this technical overview, we describe a slightly simpli-
fied version of our construction to highlight the main ideas. Instead of start-
ing with the “small superset” functionality, we use the simpler obfuscator of
Canetti [Can97] for point functions. This yields a public-key function-private
predicate encryption scheme for the equality predicate, or equivalently public-key
anonymous IBE. We then provide an extensive discussion on our new definitions
of function privacy and enhanced function privacy. Finally, we demonstrate how

6 The “big subset” function of Beullens and Wee [BW19] is also parameterized by the
same n, t, X, but it outputs 1 if and only if Y ⊆ X and |Y | ≥ t. The functionalities
are seen to be equivalent by associating each input set Y with its complement [n]\Y .

Public-Key Function-Private Hidden Vector Encryption (and More) 495

our predicate encryption for “small supersets” naturally captures hidden vector
encryption.

Remark on Presentation. After the technical overview, we will not return
to the construction of public-key anonymous IBE based on Canetti’s obfusca-
tor [Can97]; the construction described in this technical overview follows trivially
from our full-fledged “small superset” obfuscator in Sect. 5. Details and defini-
tions for our extensions to d-CNFs and read-once conjunctions of d-disjunctions
(for constant d) can be found in the full version; we note that these constructions
follow from a straightforward generalization of our main techniques.

Function-Private Anonymous IBE from Point Obfuscation. We start
with Canetti’s point function obfuscator [Can97]. Recall that a point function
Ix is a boolean-valued function that outputs 1 on input x, and 0 elsewhere. Fix
a cryptographic group with order p and generator g. Given x, we obfuscate Ix

by drawing a uniformly random r ← Fp and outputting

Obf(Ix) = (gr, grx).

Anyone can evaluate Ix on arbitrary input y by computing (gr)y and comparing
with grx. Moreover, Canetti proves that if x is drawn from any distribution with
super-logarithmic min-entropy, the above construction hides x under a strength-
ening of the Decisional Diffie-Hellman (DDH) assumption [Can97].

Handling Encrypted Inputs: A First Attempt. A natural idea to upgrade Canet-
ti’s obfuscator to work for encrypted inputs y is to use a bilinear map, and to
“obfuscate” the input y in a similar manner. Consider groups G1,G2,GT with
associated generators g1, g2, gT equipped with a bilinear map e : G1 ×G2 → GT .
To generate the public key, we draw a uniformly random r ← Fp and give out
gr−1

2 . We treat r as a secret key which is given to the obfuscator. To encrypt
a plaintext y, the user computes (gr−1

2)y−1
. A function decryption key for Ix is

simply Obf(Ix) = grx
1 .

A user holding an encryption gr−1y−1

2 of y and a function decryption key grx
1

for Ix can easily verify whether Ix(y) = 1 (i.e. y = x) by using the bilinear map
and checking whether

e(grx
1 , gr−1y−1

2) ?= gT .

However, this simple method of “encrypting” y fails to achieve even semantic
security for ciphertexts since the encryption algorithm is deterministic. That is,
an attacker trying to distinguish between an encryption of y0 and an encryption
of y1 can easily encrypt both and compare to the challenge ciphertext. A nat-
ural approach to randomizing the encoding procedure would be to encode y as
gr−1y−1α
2 for a random α ← Fp. However, for evaluation to work, the ciphertext

496 J. Bartusek et al.

would have to include gα
T , and essentially the same limitation would arise since

the attacker can request decryption keys of their choice.7

Handling Encrypted Inputs Securely. Our goal now is to modify the scheme
so that we can introduce randomness into the encryption procedure without
disturbing correctness. The idea is to generalize the above procedure to first
encode x as a 2-dimensional vector [x x2], and to replace the role of y−1 with a
uniformly random vector orthogonal to [y y2]. Now if we compute the dot product
of these vectors, we get 0 if y = x and a non-zero value otherwise. Note that a
random vector orthogonal to [y y2] can be written as [−βy β]� where β ← Fp is
uniformly random. The role of the random scalar r in the previous scheme can
be replaced by a uniformly random invertible 2 × 2 matrix R ← F

2×2
p . We are

also free to introduce independent randomness α during obfuscation/secret key
generation. The resulting scheme is as follows.

– Setup. Draw random invertible R ← F
2×2
p , and output pk = gR

−1

2 , sk = R.8

– KeyGen(sk, x). Parse sk as R. Draw random α ← Fp and output skx =

g
[αx αx2]R
1 .

– Enc(pk, y). Parse pk as gR
−1

2 . Draw random β ← Fp and output g
R−1[−βy β]�

2 .

– Dec(skx, c). Parse skx as g
[v1 v2]
1 and c as g

[u1 u2]
�

2 . Use the bilinear map e to

compute g
[v1 v2]·

[
u1
u2

]

T and output 1 if this equals g0T .

Adding Payloads for Function-Private Anonymous IBE. At the moment, the
above scheme corresponds to an IBE scheme without message payloads; if we
interpret x and y as user identities, currently a user only learns whether or not
they were the correct recipient of a ciphertext. To obtain full IBE, we need to
modify the encryption algorithm to incorporate a message payload μ. To enable
this, we extend R to a 3 × 3 matrix, and extend the obfuscated row vector to
[1 x x2]. During encryption we choose more randomness γ, extend the encrypted
column vector to [γ k1 k2]�, and additionally release μ · gγ

T . An accepting input
will now decrypt to gγ

T rather than the identity, which can be divided out from
μ · gγ

T to recover μ.

7 In more detail, an attacker trying to distinguish between an encryption of y0 and
an encryption of y1 (for y0, y1 of their choice) is free to request decryption keys cor-
responding to any function Ix provided that Ix does not trivially allow the attacker
to distinguish between y0 and y1. The attacker can therefore request grx

1 for any x

that does not equal y0 or y1. Given challenge g
αr−1y−1

b
2 , gα

T and decryption key grx
1 ,

the attacker can use the fact that they know x, y0, y1 in the clear to determine b

as follows. The attacker raise gα
T to the exponent xy−1

0 to obtain g
αxy−1

0
T , and then

computes e(grx
1 , g

αr−1y−1
b

2). If b = 0, these quantities match, and otherwise they do
not.

8 We use the shorthand gV where V = (vi,j)i∈[k],j∈[�] to denote the matrix of group
elements (gvi,j)i∈[k],j∈[�].

Public-Key Function-Private Hidden Vector Encryption (and More) 497

On Function-Private Identity Based Encryption. A construction of function-
private anonymous IBE appears in Boneh, Raghunathan, and Segev [BRS13a].
Their approach starts with an existing (anonymous) IBE scheme and “upgrades”
it to statistically hide the function using a randomness extractor. As outlined ear-
lier, our approach and construction differ in several important dimensions. First,
our approach starts with an existing point obfuscation scheme, “upgrades” it to
encrypt the inputs, and then subsequently introduces the ability to encrypt a
message payload. Second, our construction achieves computational function pri-
vacy for any distribution with super-logarithmic min-entropy, rather than λ min-
entropy as required in [BRS13a] (this requirement was also relaxed in [PMR19]).
However, the drawback of our approach is that we can only prove security in
the generic (bilinear) group model [Nec94,Sho97,Mau05], whereas [BRS13a] is
proven secure in the standard model.

Building Public-Key Function-Private Predicate Encryption for
“Small Supersets”. We now briefly describe how to extend the above function-
private anonymous IBE to handle the significantly more expressive “small super-
set” functionality, described earlier. First, we describe how to generate a function
decryption key for fn,t,X , where X ⊆ [n]. Now, R is a uniformly random width
t + 1 matrix (instead of width 2). We now follow essentially the same procedure
as before for each x ∈ X. That is, for each x ∈ X we form the row vector
[x x2 . . . xt+1] and compute the row vector [x x2 . . . xt+1] · R. We collect the
row vectors resulting from this process into a matrix MX where the rows are
indexed by elements x ∈ X.

A set Y ⊆ [n] (corresponding to a set that will be given as input to the “small
superset” functionality) can be encrypted as follows. We assemble a matrix WY

whose rows are indexed by elements y ∈ Y . The row corresponding to y is simply
[y y2 . . . yt+1]. Draw a uniformly random vector v in the right kernel of WY ,
and output vY = R−1 · v. Note that this is only possible if |Y | ≤ t.

To decrypt, compute the matrix-vector product MX · vY in the exponent,
which will be the all-zeros vector if and only if X ⊆ Y . To minimize the size of the
obfuscation, we can collapse the matrix MX to a vector u�

X , by left multiplying
by a uniformly random vector of the appropriate dimension. Then decryption
simply computes the (dot) product u�

X · vY in the exponent. In the body, we
describe these obfuscation and encryption procedures in the language of linear
codes, which results in a cleaner presentation.

Note that our construction is efficient as long as t is polynomial in the security
parameter, since the vector and matrix dimensions are all determined by t. In
particular, the universe size n could be exponential. On the other hand, the
obfuscation construction given by Beullens and Wee [BW19] for large subset is
only efficient for polynomial sized universe.

Finally, we remark that it is also easy to extend this to function-private
predicate encryption for small superset by adding a payload in the same manner
as for identity based encryption.

498 J. Bartusek et al.

Function-Private Hidden Vector Encryption. We now describe how function-
private predicate encryption for small superset gives rise to function-private
hidden vector encryption [BW07]. Consider a vector v = (vi)i∈[k] ∈ (Zs ∪ {∗})k.
Hidden vector encryption corresponds to predicate encryption for the predicate

Pv(u) =
{

1 if for all i ∈ [k] : (vi = ui or vi = ∗),
0 otherwise.

Let the universe size of the small superset instance be n = ks and the threshold
value be k. Let the set X corresponding to v be defined as X := {(i−1)s+vi}i∈B ,
where B denotes the non-wildcard positions of v. Then an input vector u =
(ui)i∈[k] ∈ Z

k
s corresponds to the set Yu := {(i − 1)s + ui}i∈[k], which has size

exactly k. Finally, we have Pv(u) = 1 ⇐⇒ X ⊆ Yu. Since hidden vector
encryption is most generally defined over exponentially sized alphabets, we would
like to take s and thus n to be exponential. Thus, we crucially rely on the fact
that the universe size of our small superset instance is allowed to be exponential.

Function-Privacy Definitions. When considering public-key function-private
predicate encryption, the appropriate notion of function privacy is somewhat
tricky to define. We choose to generalize the original notion of “real-or-random”
function privacy of Boneh et al. [BRS13a]. This definition was originally stated
just for point functions and was later extended to inner products [BRS13b].
Roughly, the definition considers an oracle which is set to be in either “real”
or “random” mode, and which accepts a distribution over points. If it is in real
mode, it produces a key for a point drawn from the queried distribution, and if
it is in random mode, it produces a key for a uniformly random point. Security
is parameterized by a class of allowed distributions for which the adversary can
query its oracle, and requires that an adversary cannot determine which mode
its oracle is in.

Extending this definition to a larger class C of functions would require a
natural notion of a uniformly random function from C. We choose to instead view
the random mode as a “simulated” mode, where the behavior of the oracle is
independent of the queried distribution, but otherwise arbitrary. This definition
now naturally extends to any class of functions, and captures the same intuition
that an adversary learns nothing about the function that it has a key for, as long
as it is drawn from a particular class of distributions. We refer to this oracle now
as the Real-or-Sim oracle.

We note here that although our predicate encryption constructions are
inspired by and built from existing obfuscation constructions (in particular, those
that already satisfy distributional virtual black box security), this notion of func-
tion privacy is incomparable to distributional VBB. In particular, distributional
VBB is defined relative to a distribution D over functions in C, and essentially
requires that no adversary, given the obfuscation of a function f drawn from D,
can guess the value of any predicate P applied to f . On the other hand, our
definition of function privacy is defined relative to an entire class of distribu-
tions D, and does not consider predicates on functions drawn from individual
distributions D. Instead, we require that the class of distributions D is simu-
latable in the sense described above. Note that our constructions also satisfy

Public-Key Function-Private Hidden Vector Encryption (and More) 499

distributional VBB, but we focus on this function-private predicate encryption
style of definition, as it aligns more closely with previous work.

Enhanced Function Privacy. As in prior work [BRS13a], we will be concerned
with evasive distributions over functions, where it is difficult to find an accepting
input given oracle access to a function drawn from the distribution. However, it
is crucial for applications that given a decryption key for an unknown function,
the key can be used to successfully decrypt payloads without sacrificing function
privacy. This means in particular that an adversary should not be able to pro-
duce accepting inputs to its decryption key, even given encryptions of arbitrary
accepting inputs.

This is captured by Boneh et al. [BRS13a] by the notion of enhanced function
privacy, where in the real-or-random game, the adversary is additionally given
an encryption oracle. The adversary can query this oracle to obtain encryp-
tions of arbitrary accepting inputs to the unknown functions corresponding to
the decryption keys in its possession. Enhanced function privacy requires that
the adversary still cannot determine what mode its Real-or-Sim oracle is in.
We prove that our predicate encryption scheme for small superset satisfies this
enhanced function privacy notion, which implies that our hidden vector encryp-
tion construction does as well.

Secure Distributions for Function-Private HVE (and More). We determine
which distributions over HVE instances induce an evasive distribution over small
superset instances, under the mapping defined above. We parameterize HVE dis-
tributions by an alphabet size s, and an input length k. For a particular distri-
bution Dk,s, let H∞(Dk,s) be the min-entropy of the vector v ← Dk,s. Following
the proof strategy from [BW19, Lemma 2], we show enhanced function-private
hidden vector encryption for the set of distributions containing any Dk,s such
that H∞(Dk,s) ≥ k + ω(log k).

Note that the min-entropy requirement scales with the input length, but not
with the alphabet size. Thus as the alphabet size increases, we obtain security for
a larger and larger class of distributions. If we instead had a polynomial limit on
the universe size of our small superset instances (like in [BW19]), then to support
exponentially large alphabets Zs, we would be forced to first write each element
as a bitstring (or more generally a string over a polynomially sized alphabet),
increasing the input length. This would cause the min-entropy requirement to
scale with the size of the alphabet.

On the other hand, this result severely restricts the possible distributions
when s is a small constant. Thus we give an additional set of secure distributions
(that also appear in [BW19] in the context of conjunction obfuscation) over
vectors with a fixed number of wildcards w. We obtain enhanced function-private
hidden vector encryption for the set of distributions containing any

Dk,s such that H∞(Dk,s) = log
(

k

w

)
+ ω(log(k)),

and where Dk,s is supported on vectors with exactly w wildcards. Note that for
some values of w, this min-entropy bound is much less than the input length k,

500 J. Bartusek et al.

and thus supports a large and interesting class of distributions even for small
alphabet size s.

Extentions to d-CNF and Read-once Conjunction of d-disjunctions. We also
extend the enhanced-function-private predicate encryption of “small supersets”
to d-CNF and conjunction of d-disjunctions for d = O(1).
d-CNFs for d = O(1). The underlying technique in the BKMPRS construction
is to translate the evaluation of the conjunction functionality into a polynomial
interpolation, which is successful if and only if all input values (one per compar-
ison clause) are valid points on the underling polynomial. This is achieved by
evaluating the comparison functionality as a lookup table which contains either
valid shares for matching input, or random values, otherwise (all encoded in
the exponent for security). Our observation is that we can use a similar lookup
table approach to implement any circuit functionality besides comparisons, and
this technique is polynomially efficient as long as the underlying circuits have
constant input length.

A d-CNF for k-bit input is a circuit C = C1 ∧ C2 ∧ · · · ∧ Cm where for each
i ∈ [m], Ci is a boolean circuit which depends only on the inputs bits with
indices in a subset, denoted as Ii ⊆ [k]. We now show how to reduce the d-CNF
to the “small superset” functionality.

Given a d-CNF C = C1 ∧ C2 ∧ · · · ∧ Cm, denote K =
(
k
d

)
and D = 2d.

We create a universe of n = KD elements. Then we reform the set [KD] into
a K × D matrix. The rows of the matrix corresponds to subsets of size d in
[k]. The columns of the matrix corresponds to the input strings of k-bits. Now
we specify a subset X of [KD]. For I ∈ (

[k]
d

)
and v ∈ {0, 1}k, X contains the

elements in I-th row and v-th column, if there exists a Ci, i ∈ [m] such that Ci

only depends on I and Ci(v) = 0. On input x ∈ {0, 1}k, we specify a subset
Y ∈ [KD]. For every I ∈ (

[n]
d

)
, Y contains all elements in I-th row, except the

one in xI -th column. Since Y contains K(D − 1) elements, we simply set the
threshold t = K(D − 1). Then, C(x) = 1 if and only if X ⊆ Y . This is because,
C(x) = 1 if and only if the following condition holds: for every I ∈ (

[k]
d

)
, either

there exists a Ci such that Ci only depends on I and Ci(xI) = 1, or such Ci

doesn’t appear in C. The above condition is equivalent to X ⊆ Y . We prove
security for some special distributions over d-CNF.

Function Distribution. We prove the security for two distributions. The first dis-
tribution essentially corresponds to the “uniform” case. Here, we achieve the best
possible parameter, namely, m = ω(log k).9 Our proof in this case is a natural
extension of the BKMPRS proof. The second distribution is useful for obtaining
obfuscation of conjunctions of d-disjunctions via the mapping discussed earlier.
Crucially, in this distribution, we do not require the distribution over Ci to be
independent. Consequently, the proof of security for this distribution is more
involved. Specifically, since Ci’s may be dependent, in order to use a combina-
torial argument similar to BKMPRS, we first need to “break” the dependence.

9 Indeed, m must be ω(log k) in order to make the function family evasive.

Public-Key Function-Private Hidden Vector Encryption (and More) 501

We address this by choosing a subset of sets, say I, such that the sets in I are
disjoint. Clearly, I has the necessary independence. To choose such a subset,
we build a graph, where each vertex of the graph represents a set, and draw an
edge between the two vertices if and only if the intersection of two vertex is non-
empty. We then bound the degree of this graph and argue that the number of
color used for coloring the graph is also bounded. Finally, we use the pigeonhole
principle to pick such a subset I. Due to lack of space, we refer the reader to
the full version for details.
Read Once Conjunctions of d-Disjunctions. We also consider a class of function-
alities that directly generalizes the conjunctions functionality but in a different
way from d-CNFs. While the conjunctions functionality constrains the value
of each input bit independently, in our generalization we constrain the values
of several consecutive input bits together. More precisely, our functionality is
defined as (

p
(1)
1 ∨ · · · ∨ p

(1)
d

) ∧ · · · ∧ (
p
(�)
1 ∨ · · · ∨ p

(�)
d

)
,

where p
(i)
j is a length ki string over alphabet {0, 1, ?}, and

∑
i ki = k. It evaluates

to one on input string x = x(1)‖ · · · ‖x(�) ∈ {0, 1}n if and only if for every i ∈ [�],
it holds that |x(i)| = ki and x(i) matches one of {p

(i)
j }j∈[d].

One direct way to achieve the above functionality using the d-CNF construc-
tion is by considering each

(
p
(i)
1 ∨ · · · ∨p

(i)
d

)
as the functionality of the clause Ci.

However, this will impose a restriction that each ki = O(1). Instead, We provide
a different mapping to the d-CNF class with the only restriction that

∑
i ki = k

when k = O(1). This mapping transforms the conjunction of disjunction over
strings into a conjunctions of disjunctions over bits by representing the matching
y =? x of a longer string x = x1 . . . xt as the conjunction over bit comparisons
y1 =? x1 ∧ · · · ∧ yt =? xt.

1.3 Outline

The rest of the paper is structure as follows. In Sect. 2 we define notation and
provide background definitions. In Sect. 3 we present our construction for obfus-
cating small supersets. In Sect. 4 we formally define our security notions of data
privacy and (enhanced) function privacy, and in Sect. 5 we present our construc-
tion for function-private predicate encryption for small supersets. In the full
version we present applications of our construction to hidden vector encryption,
d-CNFs for d = O(1), and read-once conjunctions of d-disjunctions for d = O(1).

2 Preliminaries

We use the standard Landau notations. A function ε(λ) is written as negl(λ)
if for all positive integers c, ε(λ) = o(1

λc). For a positive integer n, we let [n]
denote the set {1, 2, . . . , n}. For a finite set S, x ← S denotes a uniformly random
sample.

We write scalars as lowercase unbolded letters (e.g., α or a), vectors as lower-
case bold letters (e.g., v) and matrices as uppercase bold letters (e.g. M). We use

502 J. Bartusek et al.

the shorthand gv where v = (v1, . . . , vn) to denote the vector of group elements
gv1 , . . . , gvn , and naturally extend this notation to matrices V. To distinguish
between the case where x refers to a specific value and the case where x is used
as a formal variable, we will explicitly write x̂ if it is a formal variable. This
notation will also extend to vectors v̂ = (v̂1, . . . , v̂n) where each entry is itself a
formal variable, as well as to matrices M̂ where each entry is a formal variable.

2.1 Bilinear Groups

We briefly recall the definition of an asymmetric bilinear group [Jou04,BF01].
Let G1,G2,GT be distinct groups, all of prime order q, and let e : G1×G2 → GT

be a mapping from G1×G2 onto the target group GT . Let g1, g2 be generators for
G1 and G2, respectively. We say that (G1,G2,GT , e) is an asymmetric bilinear
group if the following conditions are met:

– (Efficiency) The group operations in G1,G2,GT as well as the mapping e(·, ·)
are all efficiently computable.

– (Non-degeneracy) e(g1, g2) = gT , where gT is a generator of GT .
– (Bilinearity) e(ga

1 , gb
2) = gab

T for all a, b ∈ Zq.

2.2 Generic Bilinear Group Model

We use an extension of the generic group model [Nec94,Sho97] adapted to bilin-
ear groups. The following definition is taken verbatim from [KLM+18].

Definition 1 (Generic Bilinear Group Oracle). A generic bilinear group
oracle is a stateful oracle BG that responds to queries as follows:

– On a query BG.Setup(1λ), the oracle generates two fresh nonces pp, sp ←
{0, 1}λ and a prime p. It outputs (pp, sp, p). It stores the generated values,
initializes an empty table T ← {}, and sets the internal state so subsequent
invocations of BG.Setup fail.

– On a query BG.Encode(k, x, i) where k ∈ {0, 1}λ, x ∈ Zp and i ∈ {1, 2, T}, the
oracle checks that k = sp (returning ⊥ otherwise). The oracle then generates
a fresh nonce h ← {0, 1}λ, adds the entry h �→ (x, i) to the table T , and
outputs h.

– On a query BG.Add(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that
(1) k = pp, and (2) the handles h1, h2 are present in its internal table T
and are mapped to the values (x1, i1) and (x2, i2), respectively, with i1 =
i2 (returning ⊥ otherwise). The oracle then generates a fresh handle h ←
{0, 1}λ, computes x = x1 + x2 ∈ Zp, adds the entry h �→ (x, i1) to T , and
outputs h.

– On a query BG.Pair(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that
(1) k = pp, and (2) the handles h1, h2 are present in T and are mapped to
values (x1, 1) and (x2, 2), respectively (returning ⊥ otherwise). The oracle
then generates a fresh handle h ← {0, 1}λ, computes x = x1x2 ∈ Zp, adds the
entry h �→ (x, T) to T , and outputs h.

Public-Key Function-Private Hidden Vector Encryption (and More) 503

– On a query BG.ZeroTest(k, x) where k, x ∈ {0, 1}λ, the oracle checks that (1)
k = pp, and (2) the handle h is present in T and it maps to some value (x, i)
(returning ⊥ otherwise). The oracle then outputs “zero” if x = 0 ∈ Zp and
“non-zero” otherwise.

2.3 Virtual Black Box Obfuscation

We recall the definition of a distributional virtual black-box (VBB) obfuscator.
We roughly follow the definition of Brakerski and Rothblum [BR13].

Definition 2 (Distributional VBB Obfuscation). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n, and let Obf be a PPT algorithm which takes as input an
input length n ∈ N and a circuit C ∈ Cn and outputs a boolean circuit Obf(C)
(not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families
Dn where each D ∈ Dn is a distribution over Cn.

Obf is a distributional VBB obfuscator for the distribution class D over the
circuit family C if it has the following properties:

1. (Strong) Functionality Preservation: For every n ∈ N, C ∈ Cn, there exists a
negligible function μ such that

Pr[Obf(C, 1n)(x) = C(x) ∀x ∈ {0, 1}n] = 1 − μ(n) .

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
Obf(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box: For every PPT adversary A, there exists a
(non-uniform) polynomial size simulator S such that for every n ∈ N, every
distribution D ∈ Dn (a distribution over Cn), and every predicate P : Cn →
{0, 1}, there exists a negligible function μ such that

∣∣∣∣ Pr
C←Dn

[A(Obf(C, 1n)) = P(C)] − Pr
C←Dn

[SC(1|C|, 1n) = P(C)]
∣∣∣∣ = μ(n) .

2.4 Predicate Encryption

Let F = {Fλ}λ be a function class, where Fλ = {f : Xλ → {0, 1}}. Let M =
{Mλ}λ be a message space.

Definition 3 (Public-key Predicate Encryption). A public-key predicate
encryption scheme Π = (Setup,KeyGen,Enc,Dec) for a function class F and
message space M is a tuple of ppt algorithms defined as follows:

– Setup(1λ): On input security parameter λ ∈ N provided in unary, output
master secret key msk and public key pk.

– KeyGen(msk, f): On input master secret key msk and function f ∈ Fλ, output
decryption key skf .

– Enc(pk, x, μ): On input public key pk an attribute x ∈ Xλ, and a payload
μ ∈ Mλ, output ciphertext ct.

504 J. Bartusek et al.

– Dec(skf , ct): On input decryption key skf for function f ∈ Fλ and ciphertext
ct, output an element of Mλ ∪ {⊥}.

A public-key predicate encryption scheme Π for function class F = {Fλ}λ and
message space M = {Mλ}λ is correct if for all λ ∈ N, f ∈ Fλ, x ∈ Xλ, and
μ ∈ Mλ, it holds that:

Pr

⎡
⎣ (msk, pk) ← Setup(1λ)

skf ← KeyGen(msk, f)
ct ← Enc(pk, x, μ)

∣∣∣∣∣∣ Dec(skf , ct) =

{
μ if f(x) = 1
⊥ if f(x) = 0

⎤
⎦ = 1 − ν(λ) ,

where the probability is taken over the internal randomness of the algorithms
and ν(·) is a negligible function.

We defer the security notions for predicate encryption to Sect. 4.

3 Obfuscating Small Supersets

We define the “small superset” functionality. As mentioned earlier, this is an
alternative but virtually identical view of the “big subset” functionality proposed
by Beullens and Wee [BW19]. However, we find the “small superset” formula-
tion to be significantly more intuitive for our applications. The small superset
functionality fn,t,X is parameterized by a universe size n, a threshold value t,
and a set X ⊆ [n]. fn,t,X takes as input a set Y ⊆ [n], and accepts if |Y | ≤ t
and X ⊆ Y . While Beullens and Wee [BW19] limit n to be polynomial-size, we
integrate the approach of Bartusek, Lepoint, Ma, and Zhandry [BLMZ19] for
large-alphabet conjunctions to handle exponential size n, provided t = poly(λ).

Definition 4. Let X ⊆ Fq consist of elements x1, . . . , xk. Let Bt,X,q ∈ F
k×(t+1)
q

be defined as

Bt,X,q :=

⎛
⎜⎜⎜⎝

x1 x2
1 . . . xt+1

1

x2 x2
2 . . . xt+1

2
...

...
. . .

...
xk x2

k · · · xt+1
k

⎞
⎟⎟⎟⎠ .

We also define the following helper functionalities.

– SampCodeword(B ∈ F
k×(t+1)
q). Output a random codeword in the code gen-

erated by B by sampling uniformly random e ∈ F
k
q and outputting e� · B.

– SampDualCodeword(B ∈ F
k×(t+1)
q). Output a uniformly random vector w ∈

F
t+1
q in the right kernel of B, i.e., w such that B · w = 0.

3.1 Small Superset Obfuscation Construction

In this section, we define a small superset obfuscator using the above helper
functionalities. The following construction is similar to the generic group

Public-Key Function-Private Hidden Vector Encryption (and More) 505

constructions in [BW19,BLMZ19] (which build on [BKM+18]), though the pre-
sentation is tailored to fit the scope of this work. We assume that global parame-
ters (λ, n, t, q) are set in advance, where λ is the security parameter, n = 2poly(λ)

is the universe size, t = poly(λ) is the threshold size, and q is a prime larger than n

(for strong functionality preservation, we will require that q ≥ 2λ
(
n′

t

)
= 2poly(λ),

where n′ = max{n, 2t}). Let G be a group of order q with generator g.

– Obf((n, t, q),X ⊆ [n]). c� ← SampCodeword(Bt,X,q). Output gc
�

(inter-
preted as gc1 , . . . , gct+1).

– Eval((n, t, q), gc
� ∈ G

t+1, Y ⊆ [n]). Let w ← SampDualCodeword(Bt,Y,q).
Accept if and only if gc

�·w = g0.

3.2 Functionality Preservation

We rely on the following fact (also stated in [BLMZ19]).

Lemma 1. For any t + 1 values of x1, . . . , xt+1 < q, the corresponding set of
t + 1 vectors {(

xi x2
i · · · xt+1

i

)}i∈[t+1] are linearly independent over Fq.

Functionality preservation now follows almost immediately from the following.

Lemma 2. Let X,Y ⊆ Zq be such that |X|, |Y | ≤ t and X �⊆ Y . Let c� ←
SampCodeword(Bt,X,q) and w ← SampDualCodeword(Bt,Y,q). Then Pr[c� ·w =
0] ≤ 2/q.

Proof. We first show that Pr[Bt,X,q · w = 0] ≤ 1/q. By definition, there must
be some element x ∈ X such that x /∈ Y . By Lemma 1, the row vector
(x x2 . . . xt+1) is not in the row span of Bt,Y,q. Thus, only a 1/q fraction of the
vectors in the kernel of Bt,Y,q are orthogonal to (x x2 . . . xt+1). Noting that w
is a uniformly random vector in the kernel of Bt,Y,q, and that (x x2 . . . xt+1) is
a row of Bt,X,q establishes the claim. Finally, note that if Bt,X,q · w �= 0, then
the uniform randomness of the vector c chosen by SampCodeword implies that
Pr[c� · w = 0] = 1/q. Thus Pr[c� · w = 0] ≤ 1/q + ((q − 1)/q)(1/q) ≤ 2/q. ��

Now, if X ⊆ Y , then w is in the kernel of Bt,X,q, so c� · w = 0 with
probability 1. Otherwise, the above lemma shows that c� · w �= 0 except with
probability 2/q. Now let q ≥ 2λ

(
n′

t

)
, where n′ = max{n, 2t}, and consider all

sets Y such that |Y | ≤ t and X �⊆ Y . The number of such sets is at most∑
i∈[t] i

(
n
i

)
< t

(
n′

t

)
. A union bound shows that strong functionality is preserved

except with probability at most t/2λ = negl(λ).

3.3 Security

Definition 5. Let n(·) and t(·) be functions of the security parameter. We say
that a family of distributions {Dn,t,λ}λ where each Dn,t,λ is a distribution over
subsets X ⊆ [n(λ)] such that |X| ≤ t(λ), is an evasive distribution for the small-
superset functionality, if for all fixed Y ⊆ [n(λ)], |Y | ≤ t(λ),

Pr[X ⊆ Y | X ← Dn,t,λ] = negl(λ).

506 J. Bartusek et al.

Theorem 1. For any functions n(·) and t(·), and evasive family of distribu-
tions {Dn,t,λ}λ for the small superset functionality, the above construction is a
distributional-VBB secure obfuscator in the generic group model.

The proof is similar to the generic group proofs given in prior work [BLMZ19,
BW19].

4 Function-Private Predicate Encryption Security
Definitions

4.1 Data Privacy

Our data privacy definition is standard and captures the property that an adver-
sary should not be able to tell the difference between two encrypted attributes
x0 and x1 or payloads μ0 and μ1, provided that it does not have decryption
keys that allow it to distinguish trivially. We allow the adversary access to a key
generation oracle, allowing it to produce decryption keys for functions f of its
choice (from a specified function class), subject to the usual requirement that
f(x0) = f(x1), and if f(x0) = f(x1) = 1 for some queried f , then μ0 = μ1.

Definition 6 (Data Privacy). Let Π be a public-key predicate encryption
scheme for function class F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}} and
message space M = {Mλ}λ, and let A be a stateful adversary. We define the
data privacy (DP) advantage as

AdvDP
Π,A(λ) def=

∣∣∣Pr
[
ExptDP

Π,A(λ, 0) = 1
]

− Pr
[
ExptDP

Π,A(λ, 1) = 1
]∣∣∣ ,

where for λ ∈ N and b ∈ {0, 1},
we define experiment ExptDP

Π,A(λ, b) as
on the right, where x0, x1 ∈ Xλ, and
μ0, μ1 ∈ Mλ. We additionally require
that A is admissible in the following
sense: for all KeyGen queries f ∈ Fλ

made by A we have that f(x0) =
f(x1), and if there exists an f such
that f(x0) = f(x1) = 1, then μ0 = μ1.

ExptDP
Π,A(λ, n, b)

(msk, pk) ← Setup(1λ)

(x0, x1, μ0, μ1) ← AKeyGen(msk,·)(1λ, pk)

ct ← Enc(pk, xb, μb)

return AKeyGen(msk,·)(ct)

We say Π is a data-private predicate encryption scheme if for all admissible ppt
adversaries A, there exists a negligible function ν(·) such that for all λ ∈ N,
AdvDP

Π,A(λ) ≤ ν(λ).

4.2 Function Privacy

Now consider a set of distribution ensembles over functions, where for each choice
of λ, we have a set of distributions Dλ. Our first function privacy notion states
that function keys for functions drawn from any distribution D ∈ Dλ can be

Public-Key Function-Private Hidden Vector Encryption (and More) 507

simulated even without the description of D. We consider two experiments. In
the first, the adversary has access to a “distributional key generation oracle” that
takes as input some D ∈ Dλ and outputs a decryption key for a boolean function
f drawn from D. In the second, we replace the distributional key generation
oracle by a simulator. This simulator has no access to the input D, and thus must
produce “fake” decryption keys that are indistinguishable to any ppt adversary
from real decryption keys produced by the key generation oracle.

Since we consider public-key schemes, an adversary essentially has oracle
access to the function corresponding to any decryption key in its possession.
Thus it may be easy for the adversary to distinguish these two experiments if
for f ← D, it can find an attribute x such that f(x) = 1. So this notion is only
realizable for carefully chosen sets of distributions Dλ, which in particular must
consist solely of evasive distributions D [BBC+14]. That is, for f ← D, finding
x such that f(x) = 1 given oracle access to f is computationally intractable.

Definition 7 (Function Privacy). Let Π be a public-key predicate encryption
scheme for function class F and message space M, let A be a stateful adversary,
and let S be an explicit ppt algorithm simulating KeyGen. We define the function
privacy (FP) advantage for set of distribution ensembles D = {Dλ}λ as

AdvFH
Π,S,A(λ,D) def=

∣∣∣Pr
[
ExptFHΠ,S,A(λ,D, 0) = 1

]
− Pr

[
ExptFHΠ,S,A(λ,D, 1) = 1

]∣∣∣ ,

where for λ ∈ N and b ∈ {0, 1}, we define experiment ExptFHΠ,S,A(λ,D, b) as:

ExptFHΠ,S,A(λ,D, 0)

(msk, pk) ← Setup(1λ)

return AODKeyGen(msk,·)(1λ, pk)

ODKeyGen(msk, D)

If D ∈ Dλ, f ← D, return KeyGen(msk, f)

Else return ⊥

ExptFHΠ,S,A(λ,D, 1)

(msk, pk) ← Setup(1λ)

return AS(msk)(1λ, pk)

We say Π is a D-function-private predicate encryption scheme if there exists a
simulator S such that for all ppt adversaries A, there exists a negligible function
ν(·) such that for all λ ∈ N, AdvFH

Π,S,A(λ,D) ≤ ν(λ).

4.3 Enhanced Function Privacy

In the standard notion of function privacy described above, the fact that the
adversary only receives decryption keys skfj

for functions fj (where fj denotes
the jth output of ODKeyGen during the course of the experiment) drawn from
an evasive distribution D implies it will not be able to generate a ciphertext c
encrypting (x, μ) such that Dec(skfj

, c) → μ (except with negligible probabil-
ity). We now describe a strictly stronger notion of function privacy known as
enhanced function privacy, where we provide the adversary with an oracle OEnc

508 J. Bartusek et al.

that generates ciphertexts of (x, μ) such that fj(x) = 1 for some fj . More pre-
cisely, OEnc takes pk and an index j as input, and outputs a ciphertext c of some
arbitrary (x, μ) such that Dec(skfj

, c) → μ.
Note that normal (non-enhanced) function privacy does not guarantee any

security the moment a function decryption key holder receives a ciphertext of
(x, μ) such that f(x) = 1. This renders the standard function privacy notion
almost useless in many settings, since as soon as a user is able to use its decryp-
tion key to decrypt any payload μ, all function privacy may be lost. We give
our formal definition below, which generalizes the enhanced function privacy
notion proposed by Boneh et al. [BRS13a, §3.2] in the context of identity-based
encryption (IBE).

Definition 8 (Enhanced Function Privacy). Let Π be a public-key predi-
cate encryption scheme for function class F and message space M, let A be a
stateful adversary, and let S = (SDKeyGen,SEnc) be an explicit ppt algorithm sim-
ulating KeyGen and Enc. We define the enhanced function privacy (eFP) advantage
for distribution ensemble D = {Dλ}λ as

AdveFP
Π,S,A(λ,D) def=

∣∣∣Pr
[
ExpteFPΠ,S,A(λ,D, 0) = 1

]
− Pr

[
ExpteFPΠ,S,A(λ,D, 1) = 1

]∣∣∣ ,

where for λ ∈ N and b ∈ {0, 1}, we define experiment ExpteFHΠ,S,A(λ,D, b) as:

ExpteFHΠ,S,A(λ,D, 0)

(msk, pk) ← Setup(1λ)

j := 1

return AODKeyGen(msk,·),OEnc(pk,·)(1λ, pk)

ODKeyGen(msk, D)

If D ∈ Dλ, fj ← D, return KeyGen(msk, f)

Else return ⊥
(j := j + 1)

OEnc(pk, j)

choose any (x, μ) ∈ Xλ × Mλ

such that fj(x) = 1

return Enc(pk, x, μ)

ExpteFHΠ,S,A(λ,D, 1)

(msk, pk) ← Setup(1λ)

return ASDKeyGen(msk),SEnc(pk,·)(1λ, pk)

We say Π is a D-enhanced function-private predicate encryption scheme
if there exists a simulator S = (SDKeyGen,SEnc) such that for all ppt adver-
saries A, there exists a negligible function ν(·) such that for all λ ∈ N,
AdveFH

Π,S,A(λ,D) ≤ ν(λ).

4.4 Discussion

We view our enhanced function privacy definition as a direct generalization of
the “real-or-random” enhanced function privacy definition considered by Boneh

Public-Key Function-Private Hidden Vector Encryption (and More) 509

et al. [BRS13a]. Boneh et al. give their definition in the context of identity-based
encryption (IBE), where an adversary is given an oracle that accepts distribu-
tions D over identities. The guarantee is that the adversary cannot determine
whether the oracle is in “real” or “random” mode, where real mode means that it
will return the secret key for an identity I drawn from the input distribution D,
and random mode means that it will return the secret key for a uniformly ran-
dom identity. When attempting to generalize this definition to more expressive
function classes (note that IBE corresponds to predicate encryption for point
functions), it is not necessarily clear what the behavior of the random mode
oracle should be.

We instead view the random mode oracle as a simulator which does not get to
see the input distribution D. In the case of IBE, one possible simulator could be
defined to return a secret key for a uniformly random identity. But in general, we
can allow the simulator’s behavior to be arbitrary, as long as it does not depend
on the queried distribution.

We note that our definition is weaker than the Boneh et al. defini-
tion [BRS13a] for IBE in one sense: we no longer provide the adversary with
an explicit KeyGen oracle, which can be used to obtain secret keys for arbi-
trary functions of the adversary’s choice (our only key generation oracle outputs
functions drawn from evasive distributions). This is because such a definition
is trivially unachievable when considering general functionalities such as small
superset.

Indeed, since the behavior of the Enc oracle is arbitrary, assume that given
an index j corresponding to a secret key for hidden subset Xj , it encrypts using
the attribute Xj itself, a valid accepting input. Assume further that the universe
size n is polynomial. Now an adversary can use the KeyGen oracle n times to
receive a secret key for each of the subsets {i} for i ∈ [n]. Then it simply tries
to decrypt the encryption with attribute Xj with each of the keys, and can
figure out exactly what Xj is, breaking function privacy. This style of attack
does not exist when considering IBE where the functions encrypted are simply
point functions.

As a final note about our definitions, we compare to those of Patranabis
et al. [PMR19], which to the best of our knowledge is the only previous work
proposing function private hidden vector encryption. They consider a notion
of “left-or-right” security, where the adversary queries two distributions at a
time to its oracle, and the oracle chooses which one to draw the function from
depending on whether it is in “left” or “right” mode. They do not consider the
enhanced version where an Enc oracle is provided, but they do provide a KeyGen
oracle as in the original Boneh et al. [BRS13a] definition.

In the full version, we augment our basic (non-enhanced) function privacy
definition to include a KeyGen oracle, sketch a proof that our small superset
construction obtains this definition, and then show that this definition implies
the left-or-right definition considered by Patranabis et al. [PMR19]. By going
through our HVE-to-small-superset compiler and comparing the class of distri-
butions considered in this work with those of Patranabis et al. [PMR19] (which,

510 J. Bartusek et al.

in particular, reveal the positions of the wildcards), we demonstrate that the
security of our function private HVE construction generalizes that of Patranabis
et al. [PMR19].

5 Function-Private Predicate Encryption for Small
Superset

The following construction Π relies on an asymmetric bilinear map e : G1 ×
G2 → GT . We let [a]1, [b]2, [c]T denote encodings of a, b, c in groups G1,G2,GT

respectively. For a vector v or matrix M, we use the shorthand [v] or [M] (for
any of the three groups) to denote the group elements obtained by encoding each
entry of v or M respectively. Let n(·), t(·) be functions of the security parameter.
Let the message space M := Mλ be a subset of the target group GT such that
|M|/|GT | = negl(λ).10

– Setup(1λ). Set n := n(λ), t := t(λ). Pick a prime q > max{n, 2λ}. Sample
a uniformly random matrix R ∈ F

(t+2)×(t+2)
q and compute R−1. Output

msk := R−1 and pk := [R]2.
– KeyGen(msk,X). Parse msk as R−1. To encrypt a subset X ⊆ [n], draw
c� ← SampCodeword(Bt,X,q), sample α ← Fq, and output

[(1 | α · c�) · R−1]1.

– Enc(pk, Y, μ). Parse pk as [R]2. To encrypt a message Y ⊆ [n] such that
|Y | ≤ t, let w ← SampDualCodeword(Bt,Y,q), sample β, γ ← Fq, and output

[R]2 · (γ | w� · β)�, μ · [γ]T .

– Dec(skX , ctxtY). Parse skX as [v�]1 and ctxtY as ([w]2, h). Compute

μ := h/[v� · w]T ,

where the dot product in the target group is computed using the bilinear
operation. If μ ∈ M, output μ, otherwise output ⊥.

Correctness. If X ⊆ Y , note that the w vector associated with ctxtY is a code-
word in the dual of the code from which the c� vector from skX was drawn. This
follows since every row in the generator matrix of c�’s code is one of the rows in
the generator matrix of w’s dual code. Thus the dot product computed during
decryption will be equal to γ, and dividing h by [γ]T will give the encrypted
payload μ.

If X �⊆ Y , a straightforward application of Lemma2 shows that with over-
whelming probability, h/[v� · w]T will be a uniformly random group element,
and will thus be an element of M with negligible probability. Thus, decryption
will output ⊥ with overwhelming probability.
10 In [BW07], it is noted that this restriction on the size of the message space can be

avoided in practice by essentially setting the payload to be the key of a symmetric
key encryption scheme, and releasing an encryption of the actual message under this
key (along with a consistency check). This technique can easily be applied in our
setting.

Public-Key Function-Private Hidden Vector Encryption (and More) 511

5.1 Security

We make use of a variant [BGMZ18] of a lemma by Badrinarayanan et
al. [BMSZ16]. In fact, we only need a particular special case of the lemma,
stated below.

Lemma 3 ([BMSZ16,BGMZ18]). Let R̂ be an n × n matrix of distinct formal
variables r̂i,j, and u,v ∈ F

n
q be two arbitrary vectors. Let û = u� · R̂−1 and

v̂ = R̂ · v be two vectors of rational functions over the r̂i,j formal variables. Let
P be a polynomial over the entries of û and v̂ such that each monomial contains
exactly one entry from û and one from v̂. Then if P is identically a constant
over the r̂i,j variables, it must be a constant multiple of the inner product of û
and v̂.

Theorem 2. The above construction Π is a data-private predicate encryption
scheme for small superset.

Proof. Consider any Y0, Y1 ⊆ [n] such that |Y0|, |Y1| ≤ t, and μ0, μ1 ∈ GT .
The adversary A receives the public key and an encryption of (Yb, μb) where
b ← {0, 1}. For convenience, we will let μ′

0 and μ′
1 be the discrete logs of μ0, μ1.

A is free to request keys for sets Xi such that Xi is not contained in either Y0 or
Y1. If μ0 = μ1, it is also free to request keys for sets Xi such that Xi is contained
in both Y0 and Y1.

Thus, A has access to the handles of the elements

[R]2, {[(1 | αi · c�
Xi

) · R−1]1}i, [R · (γ | w�
Yb

· β)�]2, [μ′
b + γ]T .

Recall that the only distinguishing information the adversary can obtain
in the generic group model is the responses to zero-test queries in the target
group. We first imagine replacing {αi}i, β,γ, and the entries of R with formal
variables. So we let R̂ be a (t+2)×(t+2) matrix of formal variables r̂i,j for i, j ∈
[t+2]. We would like to apply Schwartz-Zippel to every zero-test query submitted
by A in order to conclude that A cannot distinguish this switch except with
negligible probability. However, the resulting zero-test expressions are rational
functions of the above formal variables. We instead imagine taking each zero-test
query and multiplying through by det(R̂), which does not change whether it is
identically zero or not. By construction, this results in a polynomial of degree at
most t + 5 = poly(λ) over the formal variables. Thus applying Schwartz-Zippel
and union bounding over the polynomially many zero-test queries submitted
by A establishes that A cannot distinguish this switch except with negligible
probability.

Now, define (û(i))� := (α̂−1
i | c�

Xi
) · R̂−1, and v̂ := R̂ · (β̂−1γ̂ | w�

Yb
)�.

Using this notation, we will write down a general expression for any zero-test
query submitted by the adversary. We consider all the possible ways that A
can produce elements in the target group: pairing its ciphertext, secret key, or
public key elements with a constant in the other group, or pairing its secret key
elements with public key or ciphertext elements. Then we write a general linear

512 J. Bartusek et al.

combination of such elements, where κi,j , τk, δk,�, ηi,j,k, ρi,j,k,�, and ν represent
coefficients submitted by A. This results in the following expression.

∑
i,j

κi,jα̂iû
(i)
j +

∑
k

τkv̂kβ̂ +
∑
k,�

δk,�r̂k,� +
∑
i,j,k

ηi,j,kα̂i(û
(i)
j)�v̂kβ̂

+
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,� + ν(μ′

b + γ̂)

= β̂

⎛
⎝∑

k

τkv̂k +
∑

i

α̂i

⎛
⎝∑

j,k

ηi,j,k(û(i)
j)�v̂k

⎞
⎠

⎞
⎠ +

∑
i,j

κi,jα̂iû
(i)
j +

∑
k,�

δk,�r̂k,�

+
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,� + ν(μ′

b + γ̂)

Now any potentially distinguishing zero-test query must result in an identically
zero rational function for at least one setting of b ∈ {0, 1}, and thus must set
the coefficient on β̂ to some scaling of β̂−1 for one of these settings (since β̂ does
not appear in the other terms). This implies a few things about the adversary’s
coefficients. First, for each k, τk = 0, since each entry of v̂ is a sum over distinct
formal variables from R̂ which cannot be canceled out elsewhere in the coefficient
on β̂. Next, for each i, the coefficient on α̂i within this β̂ coefficient must be some
scaling of α̂−1

i . Then by Lemma 3, for each i, the coefficients {ηi,j,k}j,k must be
set to induce a scaling of the inner product of û(i) and v̂. Let zi denote this
scaling. We can rewrite the above expression as follows.

β̂

(∑
i

α̂i

(
zi(α̂−1

i β̂−1γ̂ + c�
Xi

· wYb
)
))

+
∑
i,j

κi,jα̂iû
(i)
j +

∑
k,�

δk,�r̂k,�

+
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,� + ν(μ′

b + γ̂)

= γ̂

(∑
i

zi + ν

)
+ β̂

(∑
i

α̂izic�
Xi

· wYb

)
+

∑
i,j

κi,jα̂iû
(i)
j +

∑
k,�

δk,�r̂k,�

+
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,� + νμ′

b

Now observe that we need the coefficient on γ̂ to be zero in order to obtain a
successful zero-test. We consider two cases. First, if zi = 0 for all i, then the
coefficient on γ̂ is zero only if ν = 0. But in this case, the remaining term is

∑
i,j

κi,jα̂iû
(i)
j +

∑
k,�

δk,�r̂k,� +
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,�,

which is independent of the bit b. Thus, such a zero-test cannot be used to
distinguish.

Otherwise, let S be the set of i such that zi �= 0. If the coefficient on β̂ is
zero for some b, this implies that c�

Xi
· wYb

= 0 for each i ∈ S, and thus by

Public-Key Function-Private Hidden Vector Encryption (and More) 513

correctness, Xi ⊆ Yb for each i ∈ S. Then by admissibility, Xi ⊆ Y0, Y1 for each
i ∈ S, meaning that the coefficient on β̂ is zero regardless of b. But again by
admissibility, this also implies that μ′

0 = μ′
1. Then it is clear that the remaining

expression
∑
i,j

κi,jα̂iû
(i)
j +

∑
k,�

δk,�r̂k,� +
∑

i,j,k,�

ρi,j,k,�α̂iû
(i)
j r̂k,� + νμ′

b

is independent of the bit b, completing the proof. ��
Definition 9. Let n(·), t(·) be functions of the security parameter. Let En,t be
the entire set of families of evasive small superset distributions {Dn,t,λ}λ. Write
En,t = {En,t,λ}λ.

Theorem 3. For any n(·), t(·), the above construction Π is an En,t-enhanced
function-private predicate encryption scheme for small superset.

Proof. In ExpteFPΠ,S,A(1λ, En,t, 0) from Definition 8, A interacts with an honest
implementation of the construction Π in the generic bilinear group model. We
prove through a series of hybrid experiments that A’s view in the honest world
is indistinguishable from its view in ExpteFPΠ,S,A(1λ, En,t, 1), in which the oracles
ODKeyGen and OEnc are implemented by the simulator S with no knowledge of
the queried distributions in En,t,λ. Note that the oracles ODKeyGen and OEnc are
allowed to share state.

First, we make explicit the following generic group instantiation of
ExpteFPΠ,S,A(1λ, En,t, 0). Note that the adversary A in the below experiment and
all following hybrid experiments also implicitly has access to generic group bilin-
ear map operations described in Definition 1. Since A is ppt, we’ll say that A
makes J = poly(λ) queries to ODKeyGen and K = poly(λ) queries to OEnc.
ExpteFPΠ,S,A(1λ, En,t, 0):

1. Set n := n(λ), t := t(λ), q > max{n, 2λ}.
2. Sample R ← F

(t+2)×(t+2)
q and set msk := R−1.

3. Generate fresh handles in group 2 for each entry of R, letting pk consist of
this set of handles.

4. Output AODKeyGen(msk,·),OEnc(pk,·)(1λ, pk).

ODKeyGen(msk,D):
This oracle maintains an internal counter j, initialized at j = 1. After each oracle
call, increment j. On each oracle call:

1. Sample Xj ← D and set (c(j))� ← SampCodeword(Bt,Xj ,q).
2. Sample αj ← Fq.
3. Set (u(j))� := (1 | αj · (c(j))�) · R−1.
4. Generate and return fresh handles in group 1 for (u(j))�.

OEnc(msk, j):
On the kth oracle call, do the following:

514 J. Bartusek et al.

1. Let Yk ⊆ [n] be any set satisfying |Yk| ≤ t and Xj ⊆ Yk.
2. Let μ′

k ∈ Fq.
3. Sample:

– w(k) ← SampDualCodeword(Bt,Yk,q)
– βk, γk ← Fq

– v(k) := R · (γk | (w(k))� · βk)�

4. Generate and return fresh handles in group 2 for v(k), and a fresh handle in
group T for μ′

k + γk.

Now, we present a series of hybrid experiments, beginning with
the above experiment and ending with a generic group instantiation of
ExpteFPΠ,S,A(1λ, En,t, 1).

– Expt0 is exactly ExpteFPΠ,S,A(1λ, Et,n, 0).
– Expt1 is obtained from Expt0 by modifying OEnc(msk, ·) to the following:

OEnc(msk, j):
On the kth oracle call, do the following:
1. Let μ′

k ∈ Fq.
2. Sample βk, γk ← Fq.
3. Define t new formal variables ŵk,1, . . . , ŵk,t.

4. Define w(k) :=
[
ŵk,1, . . . , ŵk,t − 1

c
(j)
t+1

∑t
i=1 c

(j)
i ŵk,i

]
.

5. Set v̂(k) := R · (γk | (w(k))� · βk)�.
6. Generate and return fresh handles in group 2 for v̂(k), and a fresh handle

in group T for μ′
k + γk.

Note that the generic bilinear group operations are now performed over the
ring Z[{ŵk,i}k∈[K],i∈[t]]. Also note that OEnc and ODKeyGen are sharing state,
in particular the set of c(j) vectors.

– Expt2,� (for � = 0, . . . , J) is obtained from Expt1, except ODKeyGen(msk, ·) is
modified to the following:
ODKeyGen(msk,D):
The oracle maintains an internal counter j, initialized at j = 1. After each
oracle call, increment j. On each oracle call:
1. If j ≤ �, sample uniformly random (c(j))� ← F

t+1
q . If j > �, sample

Xj ← D and set (c(j))� ← SampCodeword(Bt,Xj ,q).
2. Sample αj ← Fq.
3. Set (û(j))� := (1 | αj · (c(j))�) · R−1.
4. Generate and return fresh handles in group 1 for (û(j))�.

Observe that Expt1 = Expt2,0, and that Expt2,J is a generic group instanti-
ation of ExpteFPΠ,S,A(1λ, En,t, 1). This follows since the input D is not used by
ODKeyGen at any point during the course of the experiment, so ODKeyGen can
be simulated by S.

Claim. A cannot distinguish between Expt0 and Expt1 except with negl(λ)
advantage.

Public-Key Function-Private Hidden Vector Encryption (and More) 515

Proof. Let jk denote the index input to OEnc(pk, ·) on the kth query. We con-
dition on the event that for each Yk, Xj′ �⊆ Yk for all j′ �= jk. This occurs with
overwhelming probability due to the definition of En,t and a union bound over
J,K = poly(λ). We further condition on the event that in Expt0, for all k, j,
(c(j))� ·w(k) = 0 if and only if j = jk, which follows from Lemma 2 and a union
bound.

In both games, consider replacing all the entries of R and all αj , βk, γk with
formal variables, and call the resulting games Sim-Real’ and Sim-Enc’. By a sim-
ilar argument as in the proof of Theorem2, A notices this switch with negligible
probability. Now fix any zero-test query that A submits. We claim that it eval-
uates to identically zero in Sim-Real’ if and only if it does so in Sim-Enc’.

As in the proof of Theorem 2, we first write explicitly the form of a zero-
test query in Sim-Real’/Sim-Enc’. Define (û′(j))� := (α̂−1

j | (c(j))�) · R̂−1, and
v̂′(k) := R̂ · (β̂−1

k γ̂k | (w(k))�)�. Letting κj,m, τk,�, δk,�, ηj,m,k,�, ρj,m,k,�, νk refer
to the coefficients submitted by A, the general form of a zero-test query is
∑
j,m

κj,mα̂jû′(j)
m +

∑
k,�

τk,�v̂
′(k)
� β̂k +

∑
k,�

δk,�r̂k,� +
∑

j,m,k,�

ηj,m,k,�α̂j(û′(j)
m)�v̂′(k)

� β̂k

+
∑

j,m,k,�

ρj,m,k,�α̂jû′(j)
m r̂k,� +

∑
k

νk(μ′
k + γ̂k).

First, notice that all but the second and fourth terms are identical between
the two games Sim-Real’ and Sim-Enc’, since the only difference lies in the v′(k)

vectors. Note further that an adversary can only hope to obtain a successful zero-
test in either game by setting τk,� = 0 for all k, �. This follows from a similar
argument as in the proof of Theorem 2, where the entire expression is stratified
by the β̂k variables. Looking at each β̂k term, it is clear that the formal variables
from R̂ in the elements of the v̂′(k) vectors cannot be canceled out.

Thus we focus on the fourth term, and stratify by the α̂j and β̂k variables to
obtain

∑
j,k

α̂j β̂k

⎛
⎝∑

m,�

ηj,m,k,�(û′(j)
m)�v̂′(k)

�

⎞
⎠ .

A can only hope to obtain a successful zero-test if the coefficient on each α̂j β̂k

is a constant multiple of α̂−1
j β̂−1

k . So by Lemma 3, for this to happen, it must
be the case that for each (j, k), the coefficients {ηj,m,k,�}m,� induce a scaling of
the inner product between û′(j) and v̂′(k). For each (j, k), let zj,k be this scaling.
Now we can re-write this term as∑

j,k

α̂j β̂kzj,k

(
α̂−1

j β̂−1
k γ̂k + (c(j))� · w(k)

)
=

∑
k

γ̂k

⎛
⎝∑

j

zj,k

⎞
⎠ +

∑
j,k

α̂j β̂kzj,k(c(j))� · w(k).

516 J. Bartusek et al.

Again notice that the first term will be identical in both games, so focus
attention on the second. We see that the term will be zero if and only, for each
(j, k) such that zj,k �= 0, (c(j))� ·w(k) = 0. Finally, we see that (c(j))� ·w(k) = 0
under the exact same conditions in both games, namely, if and only j = jk (due
to the conditioning at the beginning of this proof). This completes the proof of
the claim. ��
Claim. For � = 1, . . . , J , A cannot distinguish between Expt2,�−1 and Expt2,�

except with negl(λ) advantage.

Proof. This follows from a straightforward reduction to the generic group secu-
rity of small superset obfuscation with the simulator specified in the proof of The-
orem 1 (which initializes the adversary with t + 1 uniformly random group ele-
ments). Let Ŵ refer to the set of formal variables {ŵk,i}k∈[K],i∈[t]. Notice that
the only difference between Expt2,�−1 and Expt2,� is whether c(�) is a uniformly
random vector or an obfuscation of X�. Consider a reduction B interacting with
the generic group model game for small superset obfuscation. B associates the
t+1 handles it receives with c(�), which it sets to be formal variables ĉ1, . . . , ĉt+1.
Let Ĉ refer to this set of formal variables. It can now simulate Expt2,�−1 or Expt2,�

for A, maintaining its table with polynomials over Ĉ and Ŵ . Whenever A make
a zero-test query, B stratifies the resulting polynomial by the Ŵ variables, con-
sidering separately each coefficient on ŵk,i. Note that by the restrictions imposed
by the bilinear generic group model, each such coefficient must be a linear poly-
nomial over the Ĉ variables. Therefore, B can determine whether it is zero via
a zero-test query to its own generic group oracle. Combining the results, B can
respond appropriately to A. If B’s generic group oracle is implementing the valid
obfuscation, then A sees exactly Expt2,�−1. If B’s generic group oracle is initial-
izing B with t + 1 random elements, then A sees exactly Expt2,�. This completes
the proof of the claim. ��

Acknowledgements. This research was supported in part by ARO and DARPA Safe-
ware under contracts W911NF-15-C-0227, W911NF-15-C-0236, W911NF-16-1-0389,
W911NF-15-C-0213, and by NSF grants CNS-1633282, 1562888, 1565208, and 1814919.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the ARO and DARPA.

References

[AAB+15] Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: On the practical security of inner product
functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
777–798. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 35

[ABF16] Arriaga, A., Barbosa, M., Farshim, P.: Private functional encryption:
indistinguishability-based definitions and constructions from obfuscation.
In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol.
10095, pp. 227–247. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49890-4 13

https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-319-49890-4_13
https://doi.org/10.1007/978-3-319-49890-4_13

Public-Key Function-Private Hidden Vector Encryption (and More) 517

[BBC+14] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.:
Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8 2

[BCKP14] Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey
box obfuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44381-1 7

[BF01] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BGMZ18] Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable
security against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 544–574. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03810-6 20

[BKM+18] Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi,
K.: A simple obfuscation scheme for pattern-matching with wildcards.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993,
pp. 731–752. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96878-0 25

[BLMZ19] Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfus-
cating conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 636–666. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 22

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 27

[BR13] Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 24

[BR17] Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. J. Crypt. 30(1),
289–320 (2017)

[BRS13a] Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based
encryption: hiding the function in functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 26

[BRS13b] Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-
membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42033-7 14

[BSW09] Bethencourt, J., Song, D., Waters, B.: New techniques for private stream
searching. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(3), 16 (2009)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7 29

https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-319-96878-0_25
https://doi.org/10.1007/978-3-319-96878-0_25
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-40084-1_24
https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1007/978-3-642-42033-7_14
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29

518 J. Bartusek et al.

[BW19] Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge
assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443,
pp. 254–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17259-6 9

[Can97] Canetti, R.: Towards realizing random oracles: hash functions that hide
all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 455–469. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052255

[CRV10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane mem-
bership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 5

[DS05] Dodis, Y., Smith, A.: Correcting errors without leaking partial information.
In: 37th ACM STOC (2005)

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th FOCS
(2017)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: 43rd ACM STOC (2011)

[ITZ16] Iovino, V., Tang, Q., Zebrowski, K.: On the power of public-key function-
private functional encryption. In: CANS 2016 (2016)

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263–276 (2004)

[KLM+18] Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.:
Function-hiding inner product encryption is practical. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 29

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 9

[KSW13] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. J. Cryptol. 26(2), 191–224
(2013)

[LPS04] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 2

[Mau05] Maurer, U.M.: Abstract models of computation in cryptography. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete log-
arithm. Math. Notes 55(2), 165–172 (1994)

[OS07] Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. J. Cryp-
tol. 20(4), 397–430 (2007)

[PM18] Patranabis, S., Mukhopadhyay, D.: New lower bounds on predicate entropy
for function private public-key predicate encryption. Cryptology ePrint
Archive, Report 2018/190 (2018). https://eprint.iacr.org/2018/190

https://doi.org/10.1007/978-3-030-17259-6_9
https://doi.org/10.1007/978-3-030-17259-6_9
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/978-3-642-11799-2_5
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-540-45146-4_6
https://eprint.iacr.org/2018/190

Public-Key Function-Private Hidden Vector Encryption (and More) 519

[PMR19] Patranabis, S., Mukhopadhyay, D., Ramanna, S.C.: Function private pred-
icate encryption for low min-entropy predicates. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 189–219. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17259-6 7

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 27

[SWP00] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy (2000)

[Wee05] Wee, H.: On obfuscating point functions. In: 37th ACM STOC (2005)
[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under

LWE. In: 58th FOCS (2017)

https://doi.org/10.1007/978-3-030-17259-6_7
https://doi.org/10.1007/978-3-030-17259-6_7
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-00457-5_27

Multi-Client Functional Encryption
for Linear Functions in the Standard

Model from LWE

Benoît Libert1,2(B) and Radu Ţiţiu2,3

1 CNRS, Laboratoire LIP, Lyon, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),

Lyon, France
benoit.libert@ens-lyon.fr, radu.titiu@gmail.com

3 Bitdefender, Bucharest, Romania

Abstract. Multi-client functional encryption (MCFE) allows � clients
to encrypt ciphertexts (Ct,1,Ct,2, . . . ,Ct,�) under some label. Each client
can encrypt his own data Xi for a label t using a private encryption
key eki issued by a trusted authority in such a way that, as long as
all Ct,i share the same label t, an evaluator endowed with a func-
tional key dkf can evaluate f(X1, X2, . . . , X�) without learning anything
else on the underlying plaintexts Xi. Functional decryption keys can
be derived by the central authority using the master secret key. Under
the Decision Diffie-Hellman assumption, Chotard et al. (Asiacrypt 2018)
recently described an adaptively secure MCFE scheme for the evalua-
tion of linear functions over the integers. They also gave a decentralized
variant (DMCFE) of their scheme which does not rely on a centralized
authority, but rather allows encryptors to issue functional secret keys
in a distributed manner. While efficient, their constructions both rely
on random oracles in their security analysis. In this paper, we build a
standard-model MCFE scheme for the same functionality and prove it
fully secure under adaptive corruptions. Our proof relies on the Learning-
With-Errors (LWE) assumption and does not require the random oracle
model. We also provide a decentralized variant of our scheme, which we
prove secure in the static corruption setting (but for adaptively chosen
messages) under the LWE assumption.

Keywords: Multi-client functional encryption · Inner product
evaluation · LWE · Standard model · Decentralization

1 Introduction

Functional encryption (FE) [19,62] is a modern paradigm that overcomes the
all-or-nothing nature of ordinary encryption schemes. In FE, the master secret
key msk allows deriving a sub-key dkf associated with a specific function f . If a
ciphertext C encrypts a message X under the master public key mpk, when dkf

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 520–551, 2019.
https://doi.org/10.1007/978-3-030-34618-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_18

Multi-Client Functional Encryption for Linear Functions 521

is used to decrypt C, the decryptor only obtains f(X) and nothing else about X.
Functional encryption is an extremely general concept as it subsumes identity-
based encryption [17,29], searchable encryption [16], attribute-based encryption
[44,62], broadcast encryption [32] and many others.

As formalized by Boneh, Sahai and Waters [19], FE only allows evaluating
a function f over data provided by a single sender whereas many natural appli-
cations require to compute over data coming from distinct distrustful parties.
A straightforward solution to handle multiple senders is to distribute the gen-
eration of ciphertexts by means of a multi-party computation (MPC) protocol.
Unfortunately, jointly generating a ciphertext incurs potentially costly interac-
tions between the senders who should be online at the same time and have their
data ready to be submitted. Ideally, the participants should be able to supply
their input without interacting with one another and go off-line immediately
after having sent their contribution. This motivates the concepts of multi-input
[37,38] and multi-client [37,43] functional encryption, which support the evalu-
ation of multivariate functions over data coming from distinct sources.

1.1 (Decentralized) Multi-Client FE

Multi-client functional encryption. As defined in [37,43], multi-client
functional encryption (MCFE) allows computing over input vectors (X1, . . . , X�)
of which each coordinate Xi may be sent by a different client. Each ciphertext
Ci is associated with a client index i and a tag t (also called “label”): on input
of a vector of ciphertexts (C1 = Encrypt(1, X1, t), . . . , C� = Encrypt(�, X�, t)),
where Ci is generated by client i using a secret encryption key eki for each
i ∈ [�], anyone holding a functional decryption key dkf for an �-ary function can
compute f(X1, . . . , X�) as long as all Ci are labeled with the same tag t (which
may be a time-specific information or a dataset name). No further information
than f(X1, . . . , X�) is revealed about individual inputs Xi and nothing can be
inferred by combining ciphertexts generated for different tags. MCFE can thus
be seen as a multi-party computation (MPC) where each ciphertext Ci can be
generated independently of others and no communication is needed between data
providers.

Decentralized multi-client functional encryption. Most FE flavors
involve a single central authority that should not only be trusted by all users, but
also receives the burden of generating all functional secret keys. In decentralized
FE systems [24,52], multiple authorities can operate independently without even
being aware of one another.

Like its single-client counterpart, multi-client FE requires a trusted entity,
which is assigned the task of generating a master key msk as well as handing
out encryption keys eki to all clients and functional decryption keys dkf to all
decryptors. In some applications, clients may be reluctant to rely on a single
point of trust. This motivates the design of a decentralized version of MCFE, as
introduced by Chotard et al. [27]. Decentralized multi-client functional encryp-
tion (DMCFE) obviates the need for a centralized authority by shifting the task

522 B. Libert and R. Ţiţiu

of generating functional secret keys to the clients themselves. In a setup phase,
the clients S1, . . . , S� first generate public parameters by running an interactive
protocol but no further interaction is needed among clients when it comes to
generating functional secret keys later on. When a decryptor wishes to obtain a
functional secret key for an �-ary function f , it interacts with each client i inde-
pendently so as to obtain partial functional decryption keys dkf,i. The decryptor
can then fold {dkf,i}�

i=1 into a functional decryption key dkf for f . By doing so,
each client has full control over his individual data and the functions for which
secret keys are given out. Importantly, no interaction among senders is required
beyond the setup phase, where public parameters are generated.

As a motivating example, Chotard et al. [27] consider the use-case of a finan-
cial analyst that is interested in mining several companies’ private data so as to
better understand the dynamics of an economical sector. These companies have
some incentives to collaborate, but they do not want their clients’ data to be
abused (in which case, they would risk heavy fines owing to the EU General Data
Protection Regulation). After having interactively set up DMCFE parameters,
each company can encrypt its own data with respect to a time-stamp. Then, the
analyst can contact each company to obtain partial functional keys and recon-
struct a key that only reveals a weighted aggregate of companies’ private inputs
provided they are labeled with the same time-stamp.

Chotard et al. [27] described a DMCFE scheme that allows evaluating lin-
ear functions over encrypted data: namely, if (X1, . . . , X�) ∈ Z

� are the indi-
vidual contributions sent by � senders, a functional secret key dkf for the
integer vector y = (y1, . . . , y�) ∈ Z

� allows computing
∑�

i=1 yi · Xi from
{Ci = Encrypt(i, Xi, t)}�

i=1, where Ci is generated by the i-th sender. In the
decentralized setting, each sender can also generate a partial functional secret
key dkf,i for y = (y1, . . . , y�) ∈ Z

� using their secret encryption key eki.

1.2 Our Contributions

The MCFE scheme of Chotard et al. [27] was proved fully secure (as opposed
to selectively secure) in the random oracle model under the standard Decision
Diffie-Hellman assumption in groups without a bilinear maps. Its decentralized
variant was proved secure under the Symmetric eXternal Diffie-Hellman (SXDH)
assumption in groups endowed with an asymmetric bilinear map. While efficient,
the schemes of [27] both require the random oracle model. Chotard et al. thus left
open the problem of designing a (D)MCFE system under well-studied hardness
assumptions without using random oracles: even in the centralized setting, the
only known MCFE candidates in the standard model [37,43] rely on indistin-
guishability obfuscation. They also left open the problem of instantiating their
schemes under the LWE assumption or any other assumption than DDH.

In this paper, we address both problems. For linear functions over the inte-
gers (i.e., the same functionality as [27]), we construct the first MCFE scheme
in the standard model and prove it fully secure under the Learning-With-Errors
assumption [60] in the adaptive corruption setting (note that only static corrup-
tions were considered in [43, Section 2.3]). This construction turns out to be the

Multi-Client Functional Encryption for Linear Functions 523

first standard-model realization of an MCFE system with labels – albeit for a
restricted functionality – that does not require obfuscation. Next, we extend our
centralized system to obtain the first labeled DMCFE scheme without random
oracles. Like [27], our decentralized solution is only proved secure in the static
corruption setting although we can handle adaptive corruptions in its central-
ized version. Both constructions are proved secure under the LWE assumption
with sub-exponential approximation factors. Our security proofs stand in the
standard model in the sense of the same security definitions as those considered
in [27].

We leave it as an open problem to achieve security under an LWE assumption
with polynomial approximation factor. Another natural open question is the
feasibility of (D)MCFE beyond linear functions under standard assumptions.

1.3 Challenges and Techniques

We start from the observation that the DDH-based MCFE scheme of Chotard
et al. [27] can be interpreted as relying on (a variant of) the key-homomorphic
pseudorandom function [18] of Naor, Pinkas and Reingold [58]. Namely, the
scheme of [27] encrypts xi ∈ Zq for the tag t by computing Ci = gxi · Hsi

t,1 · Hti
t,2,

where (si, ti) ∈ Z
2
q is the i-th sender’s secret key and (Ht,1, Ht,2) = H(t) ∈ G

2

is derived from a random oracle in a DDH-hard group G = 〈g〉.
The security proof of [27] crucially exploits the entropy of the secret key

(si, ti) in a hybrid argument over all encryption queries. To preserve this entropy,
they need to prevent the encryption oracle from leaking too much about uncor-
rupted users’ secret keys {(si, ti)}i. For this purpose, they rely on the DDH
assumption to modify the random oracle H : {0, 1}∗ → G

2 in such a way
that, in all encryption queries but one, the hash value H(t) ∈ G

2 lives in a
one-dimensional subspace. In order to transpose this technique in the standard
model, we would need a programmable hash function [46] that ranges over a
one-dimensional subspace of G

2 on polynomially-many inputs while mapping
an extra input outside this subspace with noticeable probability. The results
of Hanaoka et al. [45] hint that such programmable hash functions are hardly
instantiable in prime-order DDH groups. While the multi-linear setting [33]
allows bypassing the impossibility results of [45], it is not known to enable stan-
dard assumptions.

A natural idea is to replace the random-oracle-based key-homomorphic PRF
of [58] by an LWE-based key-homomorphic PRF [11,18]. However, analogously
to Chotard et al. [27],1 we aim at an MCFE system that can be proved secure
in a game where the adversary is allowed to corrupt senders adaptively. In order
to deal with the adaptive corruption of senders, we thus turn to the adaptively
secure distributed PRF proposed by Libert, Stehlé and Titiu [55]. The latter
can be seen as instantiating the programmable hash function of Freire et al. [33]
in the context of homomorphic encryption (FHE). Their PRF maps an input x

1 While their decentralized scheme is only proved secure under static corruptions, its
centralized version is proved secure under adaptive corruptions.

524 B. Libert and R. Ţiţiu

to �A(x)� · s�p, where2 s ∈ Z
n is the secret key and A(x) ∈ Z

n×m
q is derived

from public matrices using the Gentry-Sahai-Waters FHE [36]. More precisely,
the matrix A(x) is obtained as the product of GSW ciphertexts dictated by
the output of an admissible hash function [15] applied to the PRF input. The
security proof of [55] uses the property that, with noticeable probability, the
input-dependent matrix A(x) is a GSW encryption of 1 for the challenge input
x�: namely, A(x�) is a matrix of of the form A(x�) = A · R� + G, where
G ∈ Z

n×m
q is the gadget matrix of Micciancio and Peikert [57] and R� ∈ Z

m×m is
a small-norm matrix. At the same time, all evaluation queries are associated with
a matrix A(x) consisting of a GSW encryption of 0 (i.e., a matrix A(x) = A ·R,
for a small-norm R ∈ Z

m×m). Then, the proof of [55] appeals to the lossy mode
of LWE [39] and replaces the uniform matrix A� ∈ Z

m×n
q by a lossy matrix of

the form Â� · C + E, where E ∈ Z
m×n is a short integer matrix with Gaussian

entries, C ∈ Z
n1×n
q is random, and Â ∈ Z

n1×m
q has rank n1 � n. In all evaluation

queries, the smallness of s ∈ Z
n then ensures that the values �A(x)� ·s�p always

reveal the same information about s, which amounts to the product C · s ∈ Z
n1
q .

Since A(x�) depends on G for the challenge input x�, the function �A(x�)� ·s�p

is in fact an injective function of s, meaning that it has high min-entropy.
Our MCFE scheme relies on the lossy mode of LWE in a similar way to

[55], except that we add a Gaussian noise instead of using the Learning-With-
Rounding technique [12]. The i-th sender uses his secret key si ∈ Z

n to encrypt
a short integer vector as xi ∈ Z

n0 as Ci = G�
0 · xi + A(t)� · si + noise ∈ Z

m
q ,

where A(t) ∈ Z
n×m
q is a tag-dependent matrix derived as a product of GSW

ciphertexts indexed by the bits of t and G0 ∈ Z
n0×m
q is a gadget matrix for

which the lattice Λ⊥(G0) has a short public basis. A functional secret key for
the vector y = (y1, . . . , y�)� consists of dky =

∑�
i=1 yi · si ∈ Z

n and allows com-
puting G�

0 · (
∑

i=1 yi · xi) + small ∈ Z
m
q from

∑�
i=1 yi · Ci ∈ Z

m
q and eventually

recovering the linear function
∑

i=1 yi · xi ∈ Z
n0 of X = [x1 | . . . | x�] ∈ Z

n0×�
q .

At this point, adapting the security proof of [55] is non-trivial. We cannot
rely on the DPRF of [55] in a modular way as it would require a DPRF where
partial evaluations are themselves pseudorandom so long as the adversary does
not obtain the underlying secret key shares: in our setting, a challenge cipher-
text contains a bunch of partial evaluations (one for each message slot) rather
than a threshold recombination of such evaluations. We emphasize that, in the
LWE-based DPRF of [55], partial evaluations are not proven pseudorandom: [55]
only proves – via a deterministic randomness extraction argument – the pseudo-
randomness of the final PRF value obtained by combining partial evaluations.
They cannot apply (and neither can we) a randomness extractor to individual
partial DPRF evaluations as it would destroy their key homomorphic property.
Instead of relying on the pseudorandomness of partial evaluations, we actually
prove a milder indistinguishability property which suffices for our purposes.

2 Introduced in [12], the notation �x�p stands for the rounded value �(p/q) · x� ∈ Zp,
where x ∈ Zq, and p < q.

Multi-Client Functional Encryption for Linear Functions 525

The first step is to make sure that all encryption queries will involve a lossy
matrix A(t)� = Rt ·Â� ·C+Et, for small-norm Rt ∈ Z

m×m and Et ∈ Z
m×n, so

that honest senders’ ciphertexts are of the form Ci = G�
0 ·xi+Rt·Â�·C·si+noise

and thus leak nothing about si ∈ Z
n beyond C · si ∈ Z

n1
q . The difficulty arises in

the challenge queries (i, t�,x�
0,i,x

�
1,i), where A(t�) ∈ Z

n×m
q is not a lossy matrix

and we must find a way to replace C�
i = G�

0 · x�
0,i + A(t�)� · si + noise by

C�
i = G�

0 · x�
1,i + A(t�)� · si + noise without the adversary noticing. In [55],

the proof relies on a deterministic randomness extraction3 argument to extract
statistically uniform bits from �A(x�)� · s�p, which has high min-entropy when
A(x�) is of the form A · R� + G. Here, we do not see how to apply deterministic
extractors in the proof while preserving the functionality of the MCFE scheme.

Our solution is to program the public parameters in such a way that, with
noticeable probability, the challenge ciphertexts are generated for a matrix
A(t�) ∈ Z

n×m
q of the form

A(t�)� = R� · A� + G�
0 · V = R� · Â� · C + G�

0 · V + noise, (1)

for a statistically random matrix V ∈ Z
n0×n
q included in the public parameters.

In the proof, the simulator generates a statistically uniform matrix U = [V
C],

where C ∈ Z
n1×n
q is used to build the lossy matrix A� = Â� · C + E, together

with a trapdoor TU for Λ⊥(U). (The idea of embedding a trapdoor in the LWE
secret of a lossy matrix is borrowed from [54]). Using TU, the simulator can
sample a short matrix T ∈ Z

n×n0 satisfying U · T =
[In0

0
]

mod q, allowing it to
define an alternative secret key s′

i = si + T · (x�
0,i − x�

1,i) ∈ Z
n. As long as si is

sampled from a Gaussian distribution with sufficiently large standard deviation,
s′

i and si are negligibly far apart in terms of statistical distance (note that,
as in [13,67], the simulator can guess x�

0,i − x�
1,i upfront without affecting the

polynomial running time of the reduction since we are in the middle of a purely
statistical argument). The alternative secret keys {s′

i}�
i=1 further satisfy

∑�
i=1 yi ·

s′
i =

∑�
i=1 yi · si for all legal functional key queries y = (y1, . . . , y�) made by the

adversary. The definition of s′
i finally ensures that C ·s′

i = C ·si mod q, meaning
that s′

i is compatible with all encryption queries for which A(t) is lossy. From (1),
the condition V · T = In0 mod q then implies that the challenge ciphertext can
be interpreted as an encryption of x�

1,i since C�
i = G�

0 ·x�
1,i + A(t�)� · s′

i + noise
is statistically close to C�

i = G�
0 · x�

0,i + A(t�)� · si + noise.
We insist that our construction and proof are not merely obtained by plugging

the DPRF of [55] into the high-level design principle of [27]. In particular, we do
not rely on the pseudorandomness of partial PRF evaluations, but rather prove a
milder indistinguishability property in some transition in our sequence of games.
To do this, we need to modify the proof of [55], by introducing a matrix V and
embedding a trapdoor in the matrix U obtained by stacking up V and the secret
matrix C of the lossy mode of LWE.
3 The standard Leftover Hash Lemma cannot be applied since the source �A(x�)� ·s�p

is not guaranteed to be independent of the seed. A deterministic extractor based on
k-wise independent functions [31] is thus needed in [55].

526 B. Libert and R. Ţiţiu

In order to build a DMCFE system, we proceed analogously to [27] and
combine two instances of our centralized MCFE scheme. The first one is only
used to generate partial functional secret keys whereas the second one is used
exactly as in the centralized system. As in [27], we first have the senders run
an interactive protocol allowing them to jointly generate public parameters for
the two MCFE instances. At the end of this protocol (which may involve costly
MPC operations, but is only executed once), each sender holds an encryption key
eki = (si, ti) consisting of encryption keys for the two underlying instances. In
order to have the i-th sender Si generate a partial functional secret key dkf,i for
a vector y = (y1, . . . , y�)�, we exploit the fact that our centralized scheme allows
encrypting vectors. Namely, the decryptor obtains from Si an MCFE encryption
of the vector yi · si ∈ Z

n under the encryption key ti of the first instance.

1.4 Related Work

Functional encryption was implicitly introduced by Sahai and Waters in [62],
where they also constructed a scheme for threshold functions. Constructions
of FE for point functions (known as identity-based encryption) [17,29] existed
already, but were not viewed through the lens of FE until later. Subsequent works
saw constructions for several more advanced functionalities such as inner prod-
uct functions [7,50], Boolean formulas [44,51,53,59,65], membership checking
[20] and even finite state automaton [66]. Recently, the landscape of functional
encryption improved considerably. Gorbunov et al. [42] and Garg et al. [34] pro-
vided the first constructions of attribute-based encryption for all circuits; Gold-
wasser et al. [41] constructed succinct simulation-secure single-key FE scheme
for all circuits and also obtained FE for Turing machines [40]. In a breakthrough
result, Garg et al. [34] designed indistinguishability-secure multi-key FE schemes
for all circuits. However, while the constructions of [41,42] rely on standard
assumptions, the assumptions underlying the other constructions [34,40] are
still ill-understood and have not undergone much cryptanalytic effort.

FE for simple circuits. Abdalla, Bourse, De Caro and Pointcheval [3] con-
sidered the question of building FE for linear functions (a functionality dubbed
IPFE for “inner product functional encryption”). Here, a ciphertext C encrypts
a vector y ∈ D� over some ring D, a secret key for the vector x ∈ D� allows com-
puting 〈x,y〉 and nothing else about y. Abdalla et al. [3] described two construc-
tions under the Decision Diffie-Hellman (DDH) and Learning-With-Errors (LWE)
assumptions, respectively. On the downside, Abdalla et al. [3] only proved their
schemes to be secure against selective adversaries. Namely, in the security game,
the adversary chooses two vectors x0,x1 ∈ D� and expects to receive an encryp-
tion of one of these in the challenge phase. Selective security forces the adversary
to declare x0,x1 before seeing the public key and before obtaining any private
key. Agrawal, Libert and Stehlé subsequently upgraded the constructions of [3] so
as to prove security against adaptive adversaries, which may choose x0,x1 after
having seen the public key and obtained a number of private keys. Agrawal et
al. [8] described several IPFE schemes under well-established assumptions which

Multi-Client Functional Encryption for Linear Functions 527

include the standard Decision Diffie-Hellman (DDH) assumption, the Decision
Composite Residuosity (DCR) assumption and the LWE assumption. Under the
DCR and LWE assumptions, the schemes of [8] can evaluate both inner prod-
ucts over the integers and modulo a prime or composite number. The IPFE
constructions of [3,8] served as building blocks for FE schemes handling general
functionalities [9] in the bounded collusion setting [42,61]. Quite recently, the
IPFE functionality [3,8] was extended into FE schemes supporting the evalua-
tion of quadratic functions over encrypted data [10,56]. The schemes of [10,56]
are only proved secure against selective adversaries and they can only compute
functions which have their output confined in a small interval. For the time
being, the only known FE schemes that support the evaluation of more general
functions than quadratic polynomials either require fancy tools like obfuscation
[34], or are restricted to bounded collusions [9,42].

Multi-Input and Multi-Client Functional Encryption. Goldwasser et
al. [37,38] introduced the concept of multi-input functional encryption (MIFE).
MIFE and MCFE are both more interesting in the secret-key setting than in
the public-key setting, where much more information inevitably leaks about the
data (see, e.g., [5,27,38]). Similarly to MCFE, MIFE operates over input vec-
tors (X1, . . . , X�) comprised of messages sent by distinct parties, but without
assigning a tag to ciphertexts: each user i can encrypt Xi as Ci = Encrypt(Xi)
in such a way that anyone equipped with a functional secret key dkf for an
�-argument function f can compute f(X1, . . . , Xn) given multiple ciphertexts
{Ci = Encrypt(Xi)}�

i=1. Brakerski et al. [22] gave a transformation for construct-
ing adaptively secure general-purpose MIFE schemes for a constant n from any
general-purpose private-key single-input scheme. Like MCFE, MIFE for gen-
eral functionalities necessarily rely on indistinguishability obfuscation or mul-
tilinear maps, so that instantiations under standard assumptions are currently
lacking. Under the SXDH assumption, Abdalla et al. [5] managed to construct a
MIFE scheme for the inner product functionality. In their scheme, each input slot
encrypts a vector xi ∈ Z

m
p while each functional secret key sky corresponds to a

vector y ∈ Z
�·m
p , where � is the total number of slots. On input of encrypted data

X = (x1, . . . ,x�) such that xi is encrypted by sender i in the i-th slot, their
multi-input inner product functionality computes 〈X,y〉 using sky. Function-
hiding MIFE schemes were described in [4,30]. Abdalla et al. [4] notably gave
a generic single-input to multi-input transformation, which yields MIFE con-
structions for the inner product functionality under the DDH, LWE and DCR
assumptions.

Besides syntactical differences, MCFE departs from MIFE in the amount of
information leaked about plaintexts. The MIFE model [37,38] allows any slot of
any ciphertext to be combined with any other slot of any other ciphertext. As
soon as senders encrypt more than one ciphertext per slot, a given functional
secret key can thus compute a much larger number of values. As discussed in
[27], this feature incurs a much more important information leakage, especially
when many functional secret keys are given out. In contrast, the multi-client
setting only allows functional secret keys to operate over ciphertexts that share

528 B. Libert and R. Ţiţiu

the same tag. As long as tags are single-use (e.g., a timestamp), this allows
clients to retain a more accurate control over the information leaked about their
data.

The first MCFE realization was proposed in [37,43] and relies on the DDH
assumption and on indistinguishability obfuscation to handle general circuits.
The notion of aggregator-oblivious encryption (AOE) [14,23,48,64] allows an
untrusted aggregator to compute sums of encrypted values without learning
anything else about individual inputs. As such, AOE can be seen as a form of
MCFE with single-key security (namely, the only key revealed to the aggregator
is for the vector (1, 1, . . . , 1)�) for the evaluation of inner products. So far, all
non-interactive AOE constructions [14,48,64] rely on the random oracle model.

The first efficient MCFE scheme with multi-key security was described by
Chotard et al. [27] who also introduced the concept of decentralized MCFE.
Their schemes both rely on DDH-like assumptions in the random oracle model.
At the time of writing, we are not aware of any (D)MCFE construction based
on a well-studied assumption in the standard model.

Decentralized Functional Encryption. The first examples of decentral-
ized FE schemes were given in the context of attribute-based encryption (ABE)
[25,26]. Lewko and Waters [52] gave the first ciphertext-policy ABE where users’
attributes may be certified by completely independent authorities. Boneh and
Zhandry [21] suggested distributed broadcast encryption systems, which dispense
with the need for an authority handing out keys to registered users. Chandran
et al. [24] considered decentralized general-purpose FE using obfuscation. The
decentralization of multi-client FE was first considered by Chotard et al. [27] in a
model where all clients run an interactive protocol to generate public parameters,
but eliminate any interaction beyond the setup phase.

Abdalla et al. [2] described generic transformations providing DMCFE
schemes from any MCFE system satisfying extra properties. While applying
their compilers to [4] yields DMCFE schemes in the standard model, the result-
ing ciphertexts are not labeled. Without labels, the functionality leaks much
more information about encrypted messages for a given functional key since
there is no restriction on the way slots from different ciphertexts can be com-
bined together (any slot from any ciphertext can be combined with any other slot
from any other ciphertext). In this paper, our goal is to support labels, which is
significantly more challenging and was only achieved in the random oracle model
so far.

Chotard et al. [28] gave a technique to remove the restriction that forces the
adversary to make challenge queries for all uncorrupted ciphertext slots. Their
technique upgrades any MCFE scheme satisfying our definition (which is the
definition introduced in [27] and called “pos-IND” security in [2]) so as to prove
security under a stronger definition where the adversary can obtain incomplete
ciphertexts. Their technique builds on a “secret-sharing layer” (SSL) primitive
which is only known to exist assuming pairings and random oracles as their
SSL scheme [28, Section 4.2] is implicitly based on the Boneh-Franklin IBE [17].
Abdalla et al. [2] suggested a different technique to handle incomplete ciphertexts

Multi-Client Functional Encryption for Linear Functions 529

without using pairings, but they either require random oracles or they do not
support labels (except in a model with static corruptions and selective security).

Chotard et al. [28] also showed how to transform the ROM-based scheme
from [27] in such a way that users are allowed multiple encryption queries for
each slot-label pair. Their technique is not generic and only works for their DDH-
based construction (as they mention in Sect. 6.2). Finally, [2,28] both give generic
compilers from MCFE to DMCFE. Abdalla et al. [2] obtain DMCFE under
adaptive corruptions, but they need to start from an MCFE which computes
inner products modulo an integer L (instead of inner products over Z). Hence,
their compiler does not imply DMCFE from LWE in the standard model. As it
turns out, neither [2,28] implies MCFE with labels in the standard model from
LWE (nor any standard assumption), even for the security definition of [27]. In
a concurrent and independent work [1], Abdalla et al. provide a solution to this
problem via a generic construction of labeled MCFE from single-input IPFE
schemes evaluating modular inner products. While their construction satisfies a
stronger security notion than ours (which allows multiple encryption queries for
the same slot-label pair), their scheme of [1, Section 3] requires longer ciphertext
than ours as each slot takes a full IPFE ciphertext of linear size in � if � is the
number of slots.

In their construction and in ours, handling incomplete ciphertexts expands
partial ciphertexts by a factor O(�). In our most efficient schemes, we still need to
assume that the adversary obtains challenge ciphertexts for all clients as in [27].
In the full version of the paper, we show that a variant of the compiler of Abdalla
et al. [2] allows proving security in the standard model, even when the adversary
is allowed to obtain incomplete challenge ciphertexts. Our compiler relies on
pseudorandom functions satisfying a specific security definition in the multi-
instance setting. The concurrent work of Abdalla et al. [1] achieves a similar
result using any PRF satisfying a standard security definition.

2 Background

2.1 Lattices

For any q ≥ 2, we let Zq denote the ring of integers modulo q. For a vector x ∈ R
n

denote ‖x‖ =
√

x2
1 + x2

2 + · · · x2
n and ‖x‖∞ = maxi |xi|. If M is a matrix over R,

then ‖M‖ := supx�=0
‖Mx‖

‖x‖ and ‖M‖∞ := supx�=0
‖Mx‖∞

‖x‖∞
. For a finite set S, we

let U(S) denote the uniform distribution over S. If X and Y are distributions over
the same domain, then Δ(X, Y) denotes their statistical distance. Let Σ ∈ R

n×n

be a symmetric positive-definite matrix, and c ∈ R
n. We define the Gaussian

function on R
n by ρΣ,c(x) = exp(−π(x − c)�Σ−1(x − c)) and if Σ = σ2 · In

and c = 0 we denote it by ρσ. For an n dimensional lattice Λ ⊂ R
n and for

any lattice vector x ∈ Λ the discrete gaussian is defined ρΛ,Σ,c(x) = ρΣ,c

ρΣ,c(Λ) .
For an n-dimensional lattice Λ, we define ηε(Λ) as the smallest r > 0 such
that ρ1/r(Λ̂ \ 0) ≤ ε with Λ̂ denoting the dual of Λ, for any ε ∈ (0, 1). For
a matrix A ∈ Z

n×m
q , we define Λ⊥(A) = {x ∈ Z

m : A · x = 0 mod q} and

530 B. Libert and R. Ţiţiu

Λ(A) = A� · Zn + qZm. For an arbitrary vector u ∈ Z
n
q , we also define the

shifted lattice Λu(A) = {x ∈ Z
m : A · x = u mod q}.

Definition 2.1 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of
a security parameter λ. The LWE problem consists in distinguishing between the
distributions (A, As + e) and U(Zm×n

q ×Z
m
q), where A ∼ U(Zm×n

q), s ∼ U(Zn
q)

and e ∼ DZm,αq. For an algorithm A : Zm×n
q × Z

m
q → {0, 1}, we define:

AdvLWE
q,m,n,α(A) = |Pr[A(A, As + e) = 1] − Pr[A(A, u) = 1| ,

where the probabilities are over A ∼ U(Zm×n
q), s ∼ U(Zn

q), u ∼ U(Zm
q) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if, for any ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.

Micciancio and Peikert [57] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Z

n×w
q , with w = n log q, for which anyone

can publicly sample short vectors x ∈ Z
w such that G · x = 0.

Lemma 2.2 ([57, Section 5]). Let m ≥ 3n log q. There exists a ppt algorithm
GenTrap that outputs a statistically uniform matrix A ∈ Z

n×m
q , together with a

trapdoor TA ∈ Z
m×m for Λ⊥(A), such that maxj ‖t̃j‖ ≤ O(

√
n log q), where t̃j

are the corresponding Gram-Schmidt vectors.

It is known [57] that, for any u ∈ Z
n
q , a trapdoor for A ∈ Z

n×m
q allows sampling

from D
Λu(A),s·ω

(√
log m

) for s = O(
√

n log q). Since

η2−m

(
Λ⊥(A)

)
≤ max

j
‖t̃j‖ · ω(

√
log m) ≤ s · ω(

√
log m)

for large enough s = O(
√

n log q), the magnitude of a vector x sampled from
D

Λu(A),s·ω
(√

log m
), is bounded by ‖x‖ ≤ s

√
m · ω(

√
log m).

Remark 2.3. For m ≥ 3n log q, we can thus sample a statistically uniform matrix
A from Z

n×m
q together with a trapdoor, which allows finding small solutions of

A · x = u mod q, with ‖x‖ ≤ s
√

m · ω(
√

log m) = O(
√

mn log q) · ω(
√

log m).

We sometimes rely on the so-called “noise flooding” technique via the next
lemma.

Lemma 2.4 ([39, Lemma 3]). Let y ∈ Z
m. The statistical distance between

DZm,σ and y + DZm,σ is at most Δ (DZm,σ,y + DZm,σ) ≤ m · ‖y‖∞
σ .

Lemma 2.5 ([35, Theorem 4.1]). There is a ppt algorithm that, given a basis
B of an n-dimensional lattice Λ = L(B), a parameter s > ‖B̃‖·ω(

√
log n), and a

center c ∈ R
n, outputs a sample from a distribution statistically close to DΛ,s,c.

Multi-Client Functional Encryption for Linear Functions 531

2.2 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [15] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. [33]
gave a simplified definition. Jager [47] considered the following generalization in
order to simplify the analysis of reductions under decisional assumption.

Definition 2.6 ([47]). Let �(λ), L(λ) ∈ N be functions of a security parameter
λ ∈ N. Let AHF : {0, 1}� → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1, ⊥}L, let the partitioning function PK : {0, 1}� → {0, 1} such
that

PK(X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is a balanced admissible hash function if there exists
an efficient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a
non-negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1, ⊥}L such that, for all
X(1), . . . , X(Q), X� ∈ {0, 1}� such that X� �∈ {X(1), . . . , X(Q)}, we have

γmax(λ) ≥ Pr
K

[
PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0

]
≥ γmin(λ),

where γmax(λ) and γmin(λ) are functions such that

τ(λ) = γmin(λ) · δ(λ) − γmax(λ) − γmin(λ)
2

is a non-negligible function of λ.

Intuitively, the condition that τ(λ) be non-negligible requires γmin(λ) to be
noticeable and the difference of γmax(λ) − γmin(λ) to be small.

It is known [47] that balanced admissible hash functions exist for �, L = Θ(λ).

Theorem 2.7 ([47, Theorem 1]). Let (C�)�∈N be a family of codes C� :
{0, 1}� → {0, 1}L with minimal distance c · L for some constant c ∈ (0, 1/2).
Then, (C�)�∈N is a family of balanced admissible hash functions. Furthermore,
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1, ⊥}L for which η = � ln(2Q+Q/δ)

− ln((1−c)) �
components are not ⊥ and γmax = 2−η, γmin =

(
1 − Q(1 − c)

)η · 2−η, so that
τ = (2δ − (2δ + 1) · Q · (1 − c)η)/2η+1 is a non-negligible function of λ.

Lemma 2.8 ([49, Lemma 8],[6, Lemma 28]). Let K ← AdmSmp(1λ, Q, δ), an
input space X and the mapping γ that maps a (Q + 1)-uple (X�, X1, . . . , XQ) in
X Q+1 to a probability value in [0, 1], given by:

γ(X�, X1, . . . , XQ) := Pr
K

[
PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0

]
.

We consider the following experiment where we first execute the PRF security
game, in which the adversary eventually outputs a guess b̂ ∈ {0, 1} of the chal-
lenger’s bit b ∈ {0, 1} and wins with advantage ε. We denote by X� ∈ X the

532 B. Libert and R. Ţiţiu

challenge input and X1, . . . , XQ ∈ X the evaluation queries. At the end of the
game, we flip a fair random coin b′′ ←↩ U({0, 1}). If the condition PK(X(1)) =
· · · = PK(X(Q)) = 1 ∧ PK(X�) = 0 is satisfied we define b′ = b̂. Otherwise, we
define b′ = b′′. Then, we have | Pr[b′ = b] − 1/2| ≥ γmin · ε − γmax−γmin

2 , where
γmin and γmax are the maximum and minimum of γ(X) for any X ∈ X Q+1.

2.3 Randomness Extraction

The Leftover Hash Lemma was used by Agrawal et al. [6] to re-randomize matri-
ces over Zq by multiplying them with small-norm matrices.

Lemma 2.9 ([6]). Let integers m, n such that m > 2n · log q, for some prime
q > 2. Let A, U ←↩ U(Zn×m

q) and R ←↩ U({−1, 1}m×m). The distributions
(A, AR) and (A, U) are within 2−Ω(n) statistical distance.

2.4 Multi-Client Functional Encryption

We recall the syntax of multi-client functional encryption as introduced in [43].

Definition 2.10. A multi-client functional encryption (MCFE) scheme
for a message space M and tag space T is a tuple (Setup,Encrypt,DKeygen,
Decrypt) of efficient algorithm with the following specifications:

Setup(cp, 1�) :Takes in global parameters cp and a pre-determined number of
users 1�, where cp specifies a security parameter 1λ. It outputs a set of pub-
lic parameters mpk, a master secret key msk, and a set of encryption keys
{eki}�

i=1.We assume that mpk is included in all encryption keys eki.
Encrypt(eki, xi, t) : Takes as input the encryption key eki of user i ∈ [�], a

message xi and a tag t ∈ T . It output a ciphertext Ct,i.
DKeygen(msk, f) : Takes as input the master secret key msk and an �-argument

function f : M� → R. It outputs a functional decryption key dkf .
Decrypt(dkf , t, C) : Takes as input a functional decryption key dkf , a tag t,

and an �-vector of ciphertexts C = (Ct,1, . . . , Ct,�). It outputs a function
evaluation f(x) ∈ R or an error message ⊥.

Correctness. For any set of public parameters cp, any (mpk,msk, {eki}�
i=1) ←

Setup(cp, 1�), any vector x ∈ Mn any tag t ∈ T and any function f : M� → R,
if Ct,i ← Encrypt(eki, xi, t) for all i ∈ [�] and dkf ← DKeygen(msk, f), we have
Decrypt

(
dkf , t, Ct = (Ct,1, . . . , Ct,�)

)
= f(x) with overwhelming probability.

We now recall the security definition given in [43] for an adaptively secure
MCFE, and then we will give the definition that we use in this work. These two
definitions are in fact equivalent.

Definition 2.11. (IND-sec). For an MCFE scheme with � senders, consider
the following game between an adversary A and a challenger C. The game
involves a set HS of honest senders (initialized to HS := [�]) and a set CS
(initialized to CS := ∅) of corrupted senders.

Multi-Client Functional Encryption for Linear Functions 533

Initialization: The challenger C chooses cp and runs (mpk,msk, {eki}�
i=1) ←

Setup(cp, 1�). Then, it chooses a random bit b ← {0, 1} and gives the master
public key mpk to the adversary.

Encryption queries: The adversary A can adaptively make encryption queries
QEncrypt(i, x0, x1, t), to which the challenger replies with Encrypt(eki, xb, t).
For any given pair (i, t), only one query is allowed and subsequent queries
involving the same (i, t) are ignored.

Functional decryption key queries: The adversary can adaptively obtain
functional decryption keys by making queries of the form QDKeygen(f). The
challenger returns dkf ← DKeygen(msk, f).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i), to which the challenger replies with eki and updates HS
and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary makes its guess b′ ∈ {0, 1}; A wins the game if β = b,
where β is defined to be β := b′ except in the following situations.
1. An encryption query QEncrypt(i, x0, x1, t) has been made for an index

i ∈ CS with x0 �= x1.
2. For some label t, an encryption query QEncrypt(i, x0

i , x1
i , t) has been asked

for i ∈ HS, but encryption queries QEncrypt(j, x0
j , x1

j , t) have not been
asked for all j ∈ HS.

3. For a label t and some function f queried to QDKeygen, there exists a
pair of vectors (x0,x1) such that f(x0) �= f(x1), where

– x0
i = x1

i for all i ∈ CS;
– QEncrypt(i, x0

i , x1
i , t) have been asked for all i ∈ HS.

In any of the above cases, A’s output is replaced by a random β ← U({0, 1}).

An MCFE scheme provides IND security if, for any efficient adversary A, we
have AdvIND(A) := |Pr[β = 1 | b = 1] − Pr[β = 1 | b = 0]| ∈ negl(λ).

In the following, it will be convenient to work with the following security
definition, which is equivalent to Definition 2.11.

Definition 2.12. (1-challenge IND-sec). For an MCFE scheme with �
senders, we consider the following game between an adversary A and a chal-
lenger C. The game involves a set HS (initialized to HS := [�]), of honest
senders and a set CS (initialized to CS := ∅), of corrupted senders.
Initialization: The challenger C generates cp and runs (mpk,msk, {eki}�

i=1) ←
Setup(cp, 1�). Then, it chooses a random bit b ← {0, 1} and gives the master
public key mpk to the adversary A.

Encryption queries: The adversary can adaptively make encryption queries
QEncrypt(i, x, t), to which the challenger replies with Encrypt(eki, x, t). Any
further query involving the same pair (i, t) is ignored.

Challenge queries: The adversary adaptively makes challenge queries of
the form CQEncrypt(i, x�0

i , x�1
i , t�). The challenger replies with Encrypt(eki,

x�b
i , t�). Only one tag t� can be involved in a challenge query. If t� denotes

the tag of the first query, the challenger only replies to subsequent challenge
queries for the same label t�. Moreover, only one query (i, t�) is allowed for
each i ∈ [�] and subsequent queries involving the same i ∈ [�] are ignored.

534 B. Libert and R. Ţiţiu

Functional decryption key queries: The adversary can adaptively obtain
functional decryption keys via queries QDKeygen(f). At each query, the chal-
lenger returns dkf ← DKeygen(msk, f).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i), to which the challenger replies with eki and updates HS
and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary outputs a bit b′ ∈ {0, 1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.
1. A challenge query CQEncrypt(i, x�0

i , x�1
i , t�) has been made for an index

i ∈ CS with x�0
i �= x�1

i .
2. An encryption query QEncrypt(i, x, t�) has been made for the challenge

tag t� for some index i ∈ [�].
3. For the challenge tag t�, a challenge query CQEncrypt(i, x�0

i , x�1
i , t�) has

been asked for some i ∈ HS, but challenge queries CQEncrypt(j, x�0
j ,

x�1
j , t�) have not been asked for all j ∈ HS.

4. For the challenge tag t� and some function f queried to QDKeygen, there
exists a pair of vectors (x�0,x�1) such that f(x�0) �= f(x�1), where

– x�0
i = x�1

i for all i ∈ CS;
– CQEncrypt(i, x�0

i , x�1
i , t�) have been asked for all i ∈ HS.

If any of these events occurred, A’s output is overwritten by β ← U({0, 1}).

We say that an MCFE scheme provides 1Ch-IND security if, for any efficient
adversary A, we have Adv1Ch-IND(A) :=

∣
∣Pr[β = b] − 1

2
∣
∣ ∈ negl(λ).

In the full version of the paper, we show that 1Ch-IND security implies IND
security. We also note that condition 2 of “Finalize” could be:

2’. Both QEncrypt(i, x, t�) and CQEncrypt(i, x�0
i , x�1

i , t�) have been made for an
index i and the challenge label t�, such that x0�

i �= x1�
i

This allows the adversary to make both an encryption query QEncrypt(i, x, t�)
and a challenge query CQEncrypt(i, x�0

i , x�1
i , t�) where x�0

i = x�1
i . In the full

version of the paper, we show that replacing condition 2 by condition 2′ does
not make the adversary any stronger.

Our first construction is proven secure under Definition 2.12. Abdalla et al. [2]
and Chotard et al. [28] independently showed constructions that can be proven
secure in the sense of a stronger definition which eliminates restriction 3 from the
“Finalize” stage. In the full version of the paper, we show that a variant of the
compiler of [2, Section 4.2] is secure in the standard model. Recently, Abdalla et
al. [1] independently obtained a similar result. While their PRF-based compiler
[1] can rely on any PRF, we obtain a tighter reduction using a specific PRF
described in [55]. Chotard et al. [28] additionally show how to enable repetitions
by allowing multiple encryption queries for the same pair (i, t). However, they
need random oracles for this purpose.

Multi-Client Functional Encryption for Linear Functions 535

2.5 Decentralized Multi-Client Functional Encryption

We use the same syntax as Chotard et al. [27] with the difference that we explic-
itly assume common public parameters cp. As in [27], we assume that each
function f can be injectively encoded as a tag tf (called “label” in [27]) taken
as input by the partial functional key generation algorithm.

Definition 2.13. For a message space M and tag space T , a decentralized
multi-client functional encryption (DMCFE) scheme between � senders
{Si}�

i=1 and a functional decryptor FD is specified by the following components.

Setup(cp, 1�) : This is an interactive protocol between the senders {Si}�
i=1, which

allows them to generate their own secret keys ski and encryption keys eki,
for i ∈ [�], as well as a set of public parameters mpk.

Encrypt(eki, xi, t) : Takes as input the encryption key eki of user i ∈ [�], a
message xi and a tag t ∈ T . It output a ciphertext Ct,i.

DKeygenShare(ski, tf) : Takes as input a user’s secret key ski and the label tf of
a function f : M� → R. It outputs a partial functional decryption key dkf,i

for the function described by tf .
DKeygenComb({dkf,i}i, tf) : Takes as input a set of partial functional decryp-

tion keys {dkf,i}i and the label tf of a function f : M� → R. It outputs a
full functional decryption key dkf for the function f described by tf

Decrypt(dkf , t, C) : Takes as input a functional decryption key dkf , a tag t,
and an �-vector of ciphertexts C = (Ct,1, . . . , Ct,�). It outputs a function
evaluation f(x) ∈ R or a message ⊥ indicating a decryption failure.

For simplicity, we assume that mpk is included in all secret keys and encryp-
tion keys, as well as in (partial) functional decryption keys. We also assume that
a description of f is included in (partial) functional decryption keys.

Correctness. For any λ ∈ N, any (mpk, {ski}�
i=1, {eki}�

i=1) ← Setup(cp, 1�),
any x ∈ Mn, any tag t ∈ T and any function f : M� → R, if Ct,i

← Encrypt(eki, xi, t) for all i ∈ [�] and dkf ← DKeyComb({DKeyGenShare
(ski, tf)}i, tf), with overwhelming probability, we have Decrypt

(
dkf , t, Ct =

(Ct,1, . . . , Ct,�)
)

= f(x).

Definition 2.14. (IND-sec for DMCFE). For a DMCFE scheme with �
senders, we consider the following game between an adversary and a challenger.
It involves a set HS of honest senders (initialized to HS := [�]) and a set CS
(initialized to CS := ∅) of the corrupted senders.

Initialization: The challenger C generates cp and runs (mpk, {ski}�
i=1, {eki}�

i=1)
← Setup(cp, 1�). Then, it flips a fair coin b ← {0, 1} and gives the master
public key mpk to the adversary A.

Encryption queries: The adversary A can adaptively make encryption queries
QEncrypt(i, x0, x1, t), to which the challenger replies with Encrypt(eki, xb, t).
For any given pair (i, t), only one query is allowed and subsequent queries
involving the same (i, t) are ignored.

536 B. Libert and R. Ţiţiu

Functional decryption key queries: Via queries QDKeygen(i, f), A can
adaptively obtain partial functional decryption keys on behalf of uncorrupted
senders. At each query, the challenger returns dkf ← DKeygenShare(ski, tf)
if i ∈ HS (if i ∈ CS, the oracle returns ⊥).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i) and the challenger replies by returning (ski, eki). It also
updates the sets HS and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary outputs a bit b′ ∈ {0, 1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.
1. An encryption query QEncrypt(i, x0

i , x1
i , t) has been made for an index

i ∈ CS with x0
i �= x1

i .
2. For some label t, an encryption query QEncrypt(i, x0

i , x1
i , t) has been asked

for i ∈ HS, but encryption queries QEncrypt(j, x0
j , x1

j , t) have not been
asked for all j ∈ HS.

3. For a tag t and some function f queried to QDKeygen(i, .) for all i ∈ HS,
there exists a pair of vectors (x0,x1) such that f(x0) �= f(x1), where

– x0
i = x1

i for all i ∈ CS;
– QEncrypt(i, x0

i , x1
i , t) have been asked for all i ∈ HS.

If any of these events occurred, A’s output is overwritten by β ← U({0, 1}).

We say that a DMCFE scheme provides IND security if, for any efficient
adversary A, we have AdvIND(A) := |Pr[β = 1 | b = 1] − Pr[β = 1 | b = 0]| ∈
negl(λ).

The above definition captures adaptive corruptions in that the QCorrupt(·)
oracle may be invoked at any time during the game. In the static corruption
setting, all queries to QCorrupt(·) should be made at once before the initialization
phase. In this case, the sets HS and CS are thus determined before the generation
of (mpk, {ski}�

i=1, {eki}�
i=1). We denote by sta-IND-sec the latter security game.

Our scheme of Sect. 4 will be proven secure under static corruptions. We
insist that only corruptions are static: the encryption oracle can be queried on
adaptively chosen messages (x0, x1), which is stronger than the selective security
game, where the challenge messages have to be declared upfront.

3 Our MCFE Scheme for Linear Functions

The scheme encrypts xi ∈ Z
n0 as a vector Ct,i = G�

0 ·xi +A(τ)� ·si +ei, where
G0 is a gadget matrix; τ = AHF(t) ∈ {0, 1}L is an admissible hash of the tag t;
and ei is a Gaussian noise. This is done in a way that a functional secret key
sy =

∑�
i=1 yi · si ∈ Z

n allows computing
∑�

i=1 yi · xi from {Ct,i}�
i=1 by using

the public trapdoor of the lattice Λ⊥(G0).
We derive A(τ) from a set of 2L public matrices {Ai,0, Ai,1}L

i=1 and an addi-
tional matrix V ∈ Z

n0×n
q . Like [55], our proof interprets each Ai,b ∈ Z

n×m
q as a

GSW ciphertext Ai,b = A·Ri,b +μi,b ·G, where Ri,b ∈ {−1, 1}m×m, μi,b ∈ {0, 1}
and G ∈ Z

n×m
q is the gadget matrix of [57]. Then, we homomorphically com-

pute A(τ) as an FHE ciphertext A · R′
τ + (

∏L
i=1 μi,τ [i]) · G, for some small-norm

Multi-Client Functional Encryption for Linear Functions 537

R′
τ ∈ Z

m×m, which is in turn multiplied by G−1(V� · G0) in such a way that
A(τ) = A·Rτ +(

∏L
i=1 μi,τ [i])·(V� ·G0). Via a careful choice of {μi,b}i∈[L],b∈{0,1},

the properties of admissible hash functions imply that
∏L

i=1 μi,x[i] vanishes in all
encryption queries but evaluates to 1 on the challenge tag τ�. In order to prevent
the encryption oracle from leaking too much about si ∈ Z

n, we proceed as in
[55] and replace the random A ∈ Z

n×m
q by a lossy matrix A� = Â� · C + E,

where Â ←↩ U(Zn1×m
q), C ←↩ U(Zn1×n

q) and for a small-norm E ∈ Z
m×n.

Our construction and proof depart from [55] in that we use an additional
multiplication by G−1(V� · G0) in order to introduce a matrix V ∈ Z

n0×n
q in

the expression of A(τ�). In addition, unlike [55], we do not rely on a randomness
extraction argument to exploit the entropy of A(τ�)� · si + ei in the challenge
phase. Instead, we use a trapdoor for the matrix U = [V

C] to “equivocate” the
challenge ciphertexts and explain them as an encryption of x�

1,i instead of x�
0,i.

Another difference with [55] is that the product A(τ) of GSW ciphertexts
{Ai,τ [i]}L

i=1 is evaluated in a sequential manner4 (as in the “right-spine” PRF
construction of [11]) in order for the noise matrix Rτ to retain small entries.

3.1 Description

In the following description, we assume public parameters

cp :=
(

λ, �max, X, Y, n0, n1, n, m, α, α1, σ, �t, L, q, AHF
)

,

consisting of a security parameter λ and the following quantities:

– (X, Y, �max, n0, n1, n, m), which are all in poly(λ)
X = 1, n1 = λd, q = 2λd−1 , α = 2−√

λ, α1 = 2−λd−1+d log λ, n0 = o(λd−2),
n = O(λ2d−1), σ = 2λd−1−2λ and n0 · �max = O(λd−2) where d is a constant;
for instance d = 3 works asymptotically.

– The description of a tag space T = {0, 1}�t , for some �t ∈ poly(λ), such that
tags may be arbitrary strings (e.g., time period numbers or dataset names).

– The description of a balanced admissible hash function AHF : {0, 1}�t →
{0, 1}L, for a suitable L ∈ Θ(λ).

– The message space will be M = [−X, X]n0 , for some n0 ∈ poly(λ).
– Integers n, n0, n1, m ∈ poly(λ) satisfying the conditions m > 2n · �log q� and

n > 3 · (n0 + n1) · �log q�.
– A real α > 0 and a Gaussian parameter σ > 0, which specifies an interval

[−β, β] = [−σ
√

n, σ
√

n] where the coordinates of users’ secret keys will live
(with probability exponentially close to 1).

Letting � ∈ poly(λ), with � ≤ �max, be the number of users, our function
space is the set of all functions fy : Zn0×� → Z

n0 indexed by an integer vector
y ∈ Z

� of infinity norm ‖y‖∞ < Y .
4 In [55], the multiplication of ciphertexts {Ai,τ [i]}L

i=1 was computed in a parallel fash-
ion A0 ·∏L

i=1 G
−1(Ai,τ [i]) because their initial proof required the matrices {Ai,b}i,b

to be generated in such a way that G−1(Ai,b) was invertible over Zq.

538 B. Libert and R. Ţiţiu

We define G0 ∈ Z
n0×m
q to be the gadget matrix

G0 = [In0 ⊗ (1, 2, 4, . . . , 2�log q) | 0n0 | . . . | 0n0] ∈ Z
n0×m
q

where the product In0 ⊗ (1, 2, 4, . . . , 2�log q) is padded with m − n0 · �log q� zero
columns. We similarly denote by G ∈ Z

n×m
q the gadget matrix of rank n:

G = [In ⊗ (1, 2, 4, . . . , 2�log q) | 0n | . . . | 0n] ∈ Z
n×m
q .

Our MCFE construction goes as follows.
Setup(cp, 1�): On input of cp and a number of users �, do the following.

1. Choose random matrices Ai,b ←↩ U(Zn×m
q), for each i ∈ [L], b ∈ {0, 1}.

2. Choose a uniformly random matrix V ←↩ U(Zn0×n
q).

3. For each i ∈ [�], sample si ←↩ DZn,σ and define eki = si ∈ Z
n.

Output the master secret key msk := {eki}�
i=1 and the public parameters

mpk :=
(
cp, V, {Ai,0, Ai,1 ∈ Z

n×m
q }L

i=1

)
.

DKeygen(msk, fy) : Given the master secret key msk := {eki}�
i=1 and a linear

function fy : Zn0×� → Z
n0 defined by an integer vector y = (y1, . . . , y�)� ∈

Z
� which maps an input X = [x1 | . . . | x�] ∈ Z

n0×� to fy(X) = X · y ∈ Z
n0 ,

parse each eki as a vector si ∈ Z
n. Then, compute and output the functional

secret key dky := (y, sy), where sy =
∑�

i=1 si · yi ∈ Z
n.

Encrypt(eki,xi, t) : Given eki = si ∈ Z
n, xi ∈ [−X, X]n0 , and t ∈ {0, 1}�t ,

1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Define W = G�

0 · V ∈ Z
m×n
q and compute

A(τ) = AL,τ [L] · G−1
(

AL−1,τ [L−1] · G−1(
. . . A2,τ [2] · G−1(

A1,τ [1]
)))

·G−1(W�) ∈ Z
n×m
q . (2)

3. Sample a noise vector ei ←↩ DZm,αq. Then, compute and output
Ct,i = G�

0 · xi + A(τ)� · si + ei ∈ Z
m
q .

Decrypt(dky, t, Ct) : On input of a functional secret key dky = (y, sy) for a
vector y = (y1, . . . , y�)� ∈ [−Y, Y]�, a tag t ∈ {0, 1}�t , and an �-vector of
ciphertexts Ct = (Ct,1, . . . , Ct,�) ∈ (Zm

q)�, conduct the following steps.
1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Compute A(τ) ∈ Z

n×m
q as per (2).

3. Compute ft,y =
∑�

i=1 yi · Ct,i − A(τ)� · sy mod q.
4. Interpret ft,y ∈ Z

m
q as a vector of the form ft,y = G�

0 · z + ẽ mod q, for
some error vector ẽ ∈ [−B, B]m. Using the public trapdoor of Λ⊥(G0),
compute and output the underlying vector z ∈ [−� · X · Y, � · X · Y]n0 .

The following lemma is proved in the full version of the paper.
Lemma 3.1. (Correctness). Assume that αq = ω(

√
log �), Y ·�·αq·log q < q/2

and � · X · Y < q/2. Then, for any (mpk,msk, {eki}�
i=1) ← Setup(cp, 1λ), any

message X = [x1| · · · |x�] ∈ [−X, X]n0×�, any y ∈ [−Y, Y]�, any tag t ∈ {0, 1}�t ,
algorithm Decrypt(dky, t, Ct) outputs X · y ∈ Z

n0 with probability exponentially
close to 1, where Ct,i ← Encrypt(eki,xi, t) and dky ← DKeygen(msk, fy).

Multi-Client Functional Encryption for Linear Functions 539

3.2 Security

We now prove the security of the scheme in the sense of Definition 2.12 (and thus
Definition 2.11 modulo some loss of tightness in the reduction).

For the current parameters n1 = λd, q = 2λd−1 , and α1 = 2−λd−1+d log λ,
α1q = Ω(√n1), we know from [60] that LWEq,n1,α1 is at least as hard as
GapSVPγ , with γ = Õ(n1/α1) = Õ(2λd−1). The best known algorithms [63]
for solving GapSVPγ run in 2Õ(n1

log γ), which for our parameters is 2Õ(λ).

Theorem 3.2. The above MCFE schemes provides adaptive security under the
LWEq,m,n1,α1 assumption.

Proof. The proof considers a sequence of games. In each game, we denote by Wi

the event that b′ = b. For each i, the adversary’s advantage function in Gamei

is Advi(A) := | Pr[b′ = b] − 1/2| = 1
2 · | Pr[b′ = 1 | b = 1] − Pr[b′ = 1 | b = 0]|.

Game0: This is the real security game. We denote by t� the tag of the challenge
phase while t(1), . . . , t(Q) are the tags involved in encryption queries. Namely,
for each j ∈ [Q], t(j) stands for the j-th distinct tag involved in an encryption
query. Since up to � encryption queries (i,xi, t) are allowed for each tag t,
the adversary can make a total of � · Q encryption queries. The game begins
with the challenger initially choosing encryption keys {eki}�

i=1 by sampling
eki = si ←↩ DZn,σ for each i ∈ [�]. In addition, the challenger flips a fair coin
b ←↩ U({0, 1}) which will determine the response to challenge queries. At
each corruption query i ∈ [�], the adversary obtains eki and the challenger
updates a set CS := CS ∪ {i}, which is initially empty. At each encryption
query (i,x(j)

i , t(j)), the challenger samples e(j)
i ←↩ DZm,αq and returns

Ct,i = G�
0 · x(j)

i + A(τ (j))� · si + e(j)
i ∈ Z

m
q ,

where τ (j) = AHF(t(j)). In the challenge phase, the adversary A chooses a
fresh tag t� and two vectors of messages X�

0 = [x�
0,1 | . . . | x�

0,�] ∈ [−X, X]n0×�

and X�
1 = [x�

1,1 | . . . | x�
1,�] ∈ [−X, X]n0×� subject to the constraint that, for

any private key query y ∈ [−Y, Y]� made by A, we must have X�
0 ·y = X�

1 ·y
over Z. In addition, the invariant that x�

0,i = x�
1,i for any i ∈ CS must

be satisfied at any time during the game. In response to a challenge query
(i,x�

0,i,x
�
1,i, t�), the challenger generates a challenge ciphertext Ct�,i, where

Ct�,i = G�
0 · x�

b,i + A(τ�)� · si + e�
i , (3)

where τ� = AHF(t�) and e�
i ←↩ DZm,αq for all i ∈ [�].

When A halts, it outputs b̂ ∈ {0, 1} and the challenger defines b′ := b̂. We
have Adv(A) := | Pr[W0] − 1/2|, where W0 is event that b′ = b.

Game1: This game is identical to Game0 except for the following changes. First,
the challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1, ⊥}L

540 B. Libert and R. Ţiţiu

for a balanced admissible hash function AHF : {0, 1}�t → {0, 1}L. When the
adversary halts and outputs b̂ ∈ {0, 1}, the challenger checks if the conditions

PK(t(1)) = · · · = PK(t(Q)) = 1 ∧ PK(t�) = 0 (4)

are satisfied. If conditions (4) do not hold, the challenger ignores A’s output
b̂ ∈ {0, 1} and overwrites it with a random bit b′′ ←↩ {0, 1} to define b′ = b′′.
If conditions (4) are satisfied, the challenger sets b′ = b̂. By Lemma 2.8,

| Pr[W1] − 1/2| ≥ γmin · Adv(A) − 1
2 · (γmax − γmin) = τ,

where τ(λ) is a noticeable function.
Game2: In this game, we modify the generation of mpk in the following way.

Initially, the challenger samples a uniformly random matrix A ←↩ U(Zn×m
q).

Next, for each i ∈ [L], it samples Ri,0, Ri,1 ←↩ U({−1, 1})m×m and defines
{Ai,0, Ai,1}L

i=1 as follows for all i ∈ [L] and j ∈ {0, 1}:

Ai,j :=
{

A · Ri,j if (j �= Ki) ∧ (Ki �=⊥)
A · Ri,j + G if (j = Ki) ∨ (Ki =⊥) (5)

Since A ∈ Z
n×m
q was chosen uniformly, the Leftover Hash Lemma ensures

that {Ai,0, Ai,1}L
i=1 are statistically independent and uniformly distributed

over Z
n×m
q . It follows that | Pr[W2] − Pr[W1]| ≤ L · 2−λ.

We note that, at each encryption query (i,x(j)
i , t(j)), the admissible hash

function maps t(j) to τ (j) = AHF(t(j)), which is itself mapped to a GSW encryp-
tion

A(τ (j)) = A · Rτ(j) + (
L∏

i=1
μi) · W�, (6)

of a product
∏L

i=1 μi, for some small norm matrix Rτ(j) ∈ Z
m×m, where

μi :=
{

0 if (AHF(t(j))i �= Ki) ∧ (Ki �=⊥)
1 if (AHF(t(j))i = Ki) ∨ (Ki =⊥)

If conditions (4) are satisfied, at each encryption query (i, x
(j)
i , t(j)), the admis-

sible hash function ensures that τ (j) = AHF(t(j)) satisfies

A(τ (j)) = A · Rτ(j) ∀j ∈ [Q], (7)

for some small norm Rτ(j) ∈ Z
m×m. Moreover, the challenge tag t� is mapped

to an L-bit string τ� = AHF(t�) such that

A(τ�) = A · Rτ� + W� = A · Rτ� + V� · G0 (8)

Multi-Client Functional Encryption for Linear Functions 541

Game3: In this game, we modify the distribution of mpk and replace the uniform
matrix A ∈ Z

n×m
q by a lossy matrix such that

A� = Â� · C + E ∈ Z
m×n
q , (9)

where Â ←↩ U(Zn1×m
q), C ←↩ U(Zn1×n

q) and E ←↩ DZm×n,α1q, for n1 � n.
The matrix (9) is thus “close” to a matrix Â� ·C of much lower rank than n.
Under the LWE assumption in dimension n1 with error rate α1, this change
should not significantly affect A’s behavior and a straightforward reduction
B shows that | Pr[W3] − Pr[W2]| ≤ n · AdvLWEq,m,n1,α1

B (λ), where the factor
n comes from the use of an LWE assumption with n secrets.

Game4: In this game, we modify the encryption oracle. At each encryption query
(i,x(j)

i , t(j)), the challenger generates the ciphertext by computing:

Ct,i = G�
0 · x(j)

i + R�
τ(j) · Â� · C · si + e(j)

i ∈ Z
m
q , (10)

and for each challenge query (i,x�
0,i,x

�
1,i, t�) the challenger replies with:

Ct�,i = G�
0 · x�

b,i +
(

R�
τ� · Â� · C + G�

0 · V
)

· si + e�
i ∈ Z

m
q (11)

where e(j)
i ←↩ DZm,αq and e�

i ←↩ DZm,αq. The only difference between Game3
and Game4 is thus that the terms R�

τ(j) · E · si + e(j)
i and R�

τ� · E · si + e�
i are

replaced by e(j)
i and e�

i respectively, at each encryption or challenge query.
However, the smudging lemma (Lemma 2.4) ensures that the two distribu-
tions are statistically close as long as α is sufficiently large with respect to α1
and σ. Concretely, Lemma 3.3 implies | Pr[W4]−Pr[W3]| ≤ � ·(Q+1) ·2−Ω(λ).

Game5: This game is like Game4 but we modify the challenge oracle. Instead
of encrypting X�

b = [x�
b,1 | . . . | x�

b,�] as in (11), the challenger encrypts a
linear combination of X�

0 and X�
1. It initially chooses a uniformly random

γ ←↩ U(Zq) and, at each challenge query (i,x�
0,i,x

�
1,i, t�), computes Ct�,i as

Ct�,i = G�
0 ·

(
(1 − γ) · x�

b,i + γ · x�
1−b,i

)
+

(
R�

τ� · Â� · C + G�
0 · V

)
· si + e�

i ,

with e�
i ←↩ DZm,αq, for all i ∈ [�]. Lemma 3.4 shows that Game4 and Game5

are negligibly far part as | Pr[W5] − Pr[W4]| ≤ 2−Ω(λ).

In Game5, we clearly have Pr[W5] = 1/2 since the challenge ciphertexts
(C�

t,1, . . . , C�
t,�) reveal no information about b ∈ {0, 1}. ��

Lemma 3.3. Let Rτ ∈ Z
m×m be as in equation (6). Let E ←↩ DZm×n,α1q and

s ←↩ DZn,σ. If α1q = ω(
√

log n), σ = ω(
√

log n) and α ≥ 2λ · L · m4 · n3/2 · α1 · σ,
we have the statistical distance upper bound Δ

(
DZm,αq, R�

τ · E · s + DZm,αq

)
≤

2−λ. (The proof is given in the full version of the paper.)

542 B. Libert and R. Ţiţiu

Lemma 3.4. We have | Pr[W5] − Pr[W4]| ≤ 2−Ω(λ).

Proof. To prove the result, we resort to a technique of guessing in advance the
difference X�

1−b − X�
b , which was previously used in [13,67] and can be seen as

complexity leveraging with respect to a statistical argument. We consider the
following variants of Game4 and Game5, respectively.

We define Game′
4 and Game′

5 simultaneously by using an index k ∈ {4, 5}:

Game′
k: This game is like Gamek with one difference in the setup phase. To gen-

erate mpk, the challenger B generates a statistically uniform U ∈ Z
(n0+n1)×n
q

with a trapdoor TU for the lattice Λ⊥(U). Then, B parses U as

U =
[
V
C

]

∈ Z
(n0+n1)×n
q ,

where V ∈ Z
n0×n
q and C ∈ Z

n1×n
q are statistically independent and uniform

over Zq. Next, it computes

A� = Â� · C + E ∈ Z
m×n
q ,

where Â ←↩ U(Zn1×m
q) and E ←↩ DZm×n,α1q. The obtained matrix A ∈ Z

n×m
q

is then used to generate {Ai,j}i∈[L],j∈{0,1} as per (5). The upper part V ∈
Z

n0×n
q of U is included in mpk, the distribution of which is statistically close

to that of Gamek: we indeed have | Pr[W ′
k] − Pr[Wk]| ≤ 2−Ω(λ).

We do the same as above and define Game′′
4 and Game′′

5 simultaneously by
using an index k ∈ {4, 5}:

Game′′
k : This game is identical to Game′

k with the following difference. At the out-
set of the game, the challenger randomly chooses ΔX ←↩ U([−2X, 2X]n0×�)
as a guess for the difference X�

1−b − X�
b between the challenge messages

X�
0, X�

1. In the challenge phase, the challenger checks if ΔX = X�
1−b − X�

b . If
not, it aborts and replaces A’s output b̂ with a random bit b′′ ←↩ U({0, 1}).
If the guess for X�

1−b − X�
b was successful (we call Guess this event), the

challenger proceeds exactly as it did in Game′
k.

Since the choice of ΔX ←↩ U([−2X, 2X]n0×�) is completely independent
of A’s view, we clearly have Pr[Guess] = 1/(4X)n0�. Since Game′′

4 is identical
to Game′

4 when Guess occurs, this implies Adv4′(A) = (4X)n0� · Adv4′′(A).
Indeed,

Adv4′′(A) := 1
2 · | Pr[b′ = 1 | b = 1,Guess] · Pr[Guess] + 1

2 · Pr[¬Guess]

− Pr[b′ = 1 | b = 0,Guess] · Pr[Guess] − 1
2 · Pr[¬Guess]|

= 1
2 · Pr[Guess] · | Pr[b′ = 1 | b = 1,Guess] − Pr[b′ = 1 | b = 0,Guess]|

= Pr[Guess] · Adv4′(A) = 1
(4X)n0�

· Adv4′(A)

and we can similarly show that Adv5′(A) = (4X)n0� · Adv5′′(A).

Multi-Client Functional Encryption for Linear Functions 543

Game′′′
5 : This game is identical to Game′′

4 except that encryption keys {eki}�
i=1

are replaced by alternative encryption keys {ek′
i}�

i=1, which are generated as
follows. After having sampled eki = si ←↩ DZn,σ for all i ∈ [�], the challenger
B chooses γ ←↩ U(Zq) and uses the trapdoor TU for Λ⊥(U) to sample a
small-norm matrix T ∈ Z

n×n0 satisfying

U · T =
[

γ · In0

0n1×n0

]

mod q, (12)

so that V · T = γ · In0 mod q and C · T = 0n1×n0 mod q. For each i ∈ [�], B
then defines the alternative key ek′

i = s′
i of user i to be

s′
i = si + T · Δxi ∈ Z

n ∀i ∈ [�], (13)
where Δxi is the i-th column of ΔX (i.e., the guess for x�

1−b,i −x�
b,i). These

modified encryption keys {ek′
i = s′

i}�
i=1 are used to answer all encryption

queries and to generate the challenge ciphertext. At each corruption query i,
the adversary is also given ek′

i instead of eki.
We first claim that, conditionally on Guess, Game′′′

5 is statistically close to Game′′
4 .

To see this, we first argue that trading {eki}�
i=1 for {ek′

i}�
i=1 has no incidence on

queries made by a legitimate adversary:
– We have C · s′

i = C · si mod q, so that encryption queries obtain the same
responses no matter which key set is used among {eki}�

i=1 and {ek′
i}�

i=1.
– We have

∑�
i=1 s′

i · yi =
∑�

i=1 si · yi so long as the adversary only obtains
private keys for vectors y ∈ Z

� such that (X�
0 − X�

1) · y = 0 (over Z).
– For any corrupted user i ∈ CS, it should be the case that x�

0,i = x�
1,i, meaning

that s′
i = si as long as Guess occurs.

This implies that Game′′′
5 is identical to Game′′

4 , except that users’ secret keys are
defined via (13) and thus have a slightly different distribution. Lemma 3.5 shows
that the statistical distance between the distributions of {s′

i}�
i=1 and {si}�

i=1 is at
most 2−λ · (4X)−n0�. This implies that Game′′

4 and Game′′′
5 are statistically close

assuming that Guess occurs. When Guess does not occur, both games output a
random b′ ←↩ U({0, 1}), so that | Pr[W ′′′

5] − Pr[W ′′
4]| ≤ 2−λ · (4X)−n0�.

We finally claim that, from the adversary’s view Game′′′
5 is identical to Game′′

5 .
Indeed, our choice of T ensures that V · T = γ · In0 mod q, so that we have
V · s′

i = V · si + γ · (x�
1−b,i − x�

b,i) mod q. This implies

Ct�,i = G�
0 · x�

b,i + (R�
τ� · Â� · C + G�

0 · V) · s′
i + ei

�

= G�
0 ·

(
(1 − γ) · x�

b,i + γ · x�
1−b,i

)
+ (R�

τ� · Â� · C + G�
0 · V) · si + ei

�

which is exactly the distribution from Game′′
5 .

Putting the above altogether, we find | Pr[W ′′
4]−Pr[W ′′

5]| ≤ 2−Ω(λ) ·(4X)−n0�,
which in turn implies | Pr[W4] − Pr[W5]| ≤ 2−Ω(λ), as claimed.

��
Lemma 3.5. If σ ≥ 2λ ·n0 ·(4X)n0�+1 ·ω(n2√

log n), then we have the inequality
Δ (DZn,σ, T · Δxi + DZn,σ) ≤ 2−λ · (4X)−n0�. (The proof is in the full version.)

544 B. Libert and R. Ţiţiu

4 A DMCFE Scheme for Linear Functions

As in [27], our DMCFE scheme combines two instances of the underlying cen-
tralized scheme of Sect. 3. While the second instance is used exactly in the same
way as in the centralized construction, the first instance is used for the sole
purpose of generating partial functional secret keys without having the senders
communicate with one another. As in [27], the senders have to initially run an
interactive protocol in order to jointly generate public parameters for the two
schemes. Note that this protocol is the only step that requires interaction among
senders and it is only executed once. This interactive step ends with each sender
holding an encryption key eki = (si, ti) comprised of encryption keys for the
two MCFE instances. The distributed protocol also ensures that a functional
secret key t =

∑�
i=1 ti for the all-one vector (1, 1, . . . , 1)� ∈ Z

� be made pub-
licly available for the first MCFE instance. Later on, when a decryptor wishes
to obtain a partial functional secret key dkf,i for a vector y = (y1, . . . , y�)� from
the i-th sender Si, the latter can generate an MCFE encryption of the vector
yi · si ∈ Z

n under his secret key ti. Having obtained partial functional secret
keys dkf,i from all senders {Si}�

i=1, the decryptor can then use the functional
secret key t =

∑�
i=1 ti to compute sy =

∑�
i=1 yi · si ∈ Z

n.

4.1 Description

We assume global public parameters

cp :=
(

λ, �max, X, X̄, Y, Ȳ , n0, n1, n̄1, n, n̄, , m, m̄, α,

α1, ᾱ1, σ, σ̄, �t, �f , L, q, q̄, AHFt, AHFf

)
,

which specify a security parameter λ and the following quantities

– Let �max = λk, n1 = λd, d̄ = 3d + k − 1, q = 2λd−1+λ, q̄ = 2λd̄−1+λ, n̄1 = λd̄,
α1 = 2−λd−1+d log λ, ᾱ1 = 2−λd̄−1+d̄ log λ, α = 2−√

λ, n0 · �max = O(λd−2),
n0 = O(λd−2), n = O(λ2d−1), n̄ = O(λ4d+k−2), X = 1, Ȳ = 1, σ = 2λd−1−2λ,
σ̄ = 2λd̄−1−2λ, X̄ = 2� · Y · σ

√
n and the rest of the parameters Y, m, m̄ are

all in poly(λ)
– A tag length �t ∈ Θ(λ) and a length �f ∈ Θ(λ) of function labels.
– Dimensions n, m, n0, n1, n̄, m̄ ∈ poly(λ) such that n > 3 · (n0 + n1) · �log q�,

m > 2 · n · �log q�, n̄ > 3 · (n + n̄1) · �log q̄� and m̄ > 2 · n̄ · �log q̄�.
– The description of balanced admissible hash functions AHFt : {0, 1}�t →

{0, 1}L and AHFf : {0, 1}�f → {0, 1}L, for a suitable L ∈ Θ(λ).
– A real α > 0 and a Gaussian parameter σ > 0, which will specify an interval

[−β, β] = [−σ
√

n, σ
√

n] where the coordinates of the secret will live (with
probability exponentially close to 1).

We define Ḡ ∈ Z
n×m̄
q̄ to be the gadget matrix

Ḡ = [In ⊗ (1, 2, 4, . . . , 2�log q̄) | 0n | . . . | 0n] ∈ Z
n×m̄
q̄

Multi-Client Functional Encryption for Linear Functions 545

where In ⊗ (1, 2, 4, . . . , 2�log q̄) is padded with m̄ − n · �log q̄� zero columns.

Setup(cp, 1�): On input of a number of users � < �max, the senders {Si}�
i=1 run

an interactive protocol at the end of which the following quantities are made
publicly available.
– Random matrices Ai,b ←↩ U(Zn×m

q), for each i ∈ [L], b ∈ {0, 1}.
– Random matrices Bi,b ←↩ U(Zn̄×m̄

q̄), for each i ∈ [L], b ∈ {0, 1}.
– Random matrices V ←↩ U(Zn0×n

q), V̄ ←↩ U(Zn×n̄
q̄).

– The sum t =
∑�

i=1 ti ∈ Z
n̄ of Gaussian vectors ti ←↩ DZn̄,σ̄ for i ∈ [�].

In addition, for each i ∈ [�], the i-th sender Si privately obtains the following:
– The i-th term ti ∈ Z

n̄ of the sum t =
∑�

i=1 ti.
– A Gaussian vector si ←↩ DZn,σ, which is used to define Si’s encryption key

eki = si ∈ Z
n and the corresponding secret key ski = (si, ti) ∈ Z

n × Z
n̄.

The master public key is defined to be

mpk :=
(
cp, V, V̄, {Ai,0, Ai,1 ∈ Z

n×m
q }L

i=1,

{Bi,0, Bi,1 ∈ Z
n̄×m̄
q̄ }L

i=1, t
)

,

while Si obtains eki = si ∈ Z
n and ski = (si, ti) ∈ Z

n × Z
n̄ for each

i ∈ [�].
DKeygenShare(ski, tf) : Given the secret key ski = (si, ti) ∈ Z

n × Z
n̄ and

the label tf of a linear function fy : Z
n0×� → Z

n0 described by a vector
y = (y1, . . . , y�)� ∈ [−Y, Y]�, conduct the following steps.
1. Compute τf = τf [1] . . . τf [L] = AHFf (tf) ∈ {0, 1}L as well as

B(τf) = BL,τf [L] · Ḡ−1
(
BL−1,τf [L−1] · Ḡ−1

(
. . .B2,τf [2] · Ḡ−1

(
B1,τf [1]

)))

·Ḡ−1(W̄�) ∈ Z
n̄×m̄
q̄ , (14)

where W̄ = Ḡ� · V̄ ∈ Z
m̄×n̄
q̄ .

2. Sample a noise vector ef,i ←↩ DZm̄,αq̄. Then, compute

dkf,i = Ḡ� · (yi · si) + B(τf)� · ti + ef,i ∈ Z
m̄
q̄ . (15)

Output the partial functional decryption key dkf,i ∈ Z
m̄
q̄ .

DKeygenComb({dkf,i}i, tf) : Given the label of a function described by a vector
y = (y1, . . . , y�) ∈ [−Y, Y]� and � partial functional keys {dkf,i}�

i=1 where
dkf,i ∈ Z

m̄
q̄ for each i ∈ [�], conduct the following steps.

1. Compute τf = AHFf (tf) ∈ {0, 1}L and parse it as τf = τf [1] . . . τf [L].
2. Compute B(τf) ∈ Z

n̄×m̄
q̄ as per (14).

3. Compute dtf
=

∑�
i=1 dkf,i − B(τf)� · t mod q̄, where t ∈ Z

n̄ is taken
from mpk.

546 B. Libert and R. Ţiţiu

4. Interpret dtf
∈ Z

m̄
q̄ as a vector of the form dtf

= Ḡ� · sy + ẽf mod q̄, for
some error vector ẽf ∈ [−B̄, B̄]m̄. Using the public trapdoor of Λ⊥(Ḡ),
compute the underlying sy ∈ [−� · β · Y, � · β · Y]n.
Output the functional secret key dky = (y, sy).

Encrypt(eki,xi, t) : Given eki = si ∈ Z
n, xi ∈ [−X, X]n0 , and t ∈ {0, 1}�t ,

1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Letting W = G�

0 · V ∈ Z
m×n
q , compute

A(τ) = AL,τ [L] · G−1
(

AL−1,τ [L−1] · G−1(
. . . A2,τ [2] · G−1(

A1,τ [1]
)))

·G−1(W�) ∈ Z
n×m
q . (16)

3. Sample a noise vector ei ←↩ DZm,αq. Then, compute and output

Ct,i = G�
0 · xi + A(τ)� · si + ei ∈ Z

m
q .

Decrypt(dky, t, Ct) : On input of a functional secret key dky = (y, sy) for a
vector y = (y1, . . . , y�)� ∈ [−Y, Y]�, a tag t ∈ {0, 1}�t , and an �-vector of
ciphertexts Ct = (Ct,1, . . . , Ct,�) ∈ (Zm

q)�, conduct the following steps.
1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Compute A(τ) ∈ Z

n×m
q as per (16).

3. Compute ft,y =
∑�

i=1 yi · Ct,i − A(τ)� · sy mod q.
4. Interpret ft,y ∈ Z

m
q as a vector of the form ft,y = G�

0 · z + ẽ mod q, for
some error vector ẽ ∈ [−B, B]m. Using the public trapdoor of Λ⊥(G0),
compute and output the underlying vector z ∈ [−� · X · Y, � · X · Y]n0 .

The scheme’s correctness is implied by that of the two underlying centralized
schemes. In turn, these are correct by Lemma 3.1 and the choice of parameters.

4.2 Security

The proof of Theorem 4.1 is given in the full version of the paper. In order to
reduce the security of the centralized scheme to that of its decentralized variant,
the proof first moves to a game where the partial functional key generation oracle
of Definition 2.14 can be simulated using the functional key generation oracle of
Definition 2.11. To this end, it relies on the security of the first MCFE instance.
The next step is to move to a game where encryption queries (i,xi,0,xi,1, t) are
answered by returning encryptions of xi,1 instead of xi,0. To this end, we rely on
the security of the second MCFE instance, which is possible since the partial key
generation oracle can be simulated using the centralized key generation oracle.
The final transition restores the partial key generation oracle of Definition 2.14
to its original output distribution. To this end, we invoke again the security of
the first MCFE instance and reverse the transition of the first step.

Theorem 4.1. The above DMCFE scheme provides sta-IND-sec security under
the LWE assumption.

Multi-Client Functional Encryption for Linear Functions 547

Acknowledgements. Part of this work was funded by the French ANR ALAM-
BIC project (ANR-16-CE39-0006) and by BPI-France in the context of the national
project RISQ (P141580). This work was also supported by the European Union
PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701).

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner
product functional encryption. In: Galbraith, S., Moriai, S. (eds.) ASIACRYPT
2019, LNCS, vol. 11923, pp. 552–582. Springer, Heidelberg (2019)

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17259-6_5

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_20

5. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7_21

6. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

7. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0_2

8. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3_12

9. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7

10. Baltico, C., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7_3

11. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2_20

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20

548 B. Libert and R. Ţiţiu

12. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_42

13. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional
encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 36–66. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7_2

14. Benhamouda, F., Joye, M., Libert, B.: A framework for privacy-preserving aggre-
gation of time-series data. ACM Trans. Inf. Syst. Secur. (ACM-TISSEC) 18(3),
10:1–10:21 (2016)

15. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27

16. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3_30

17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_13

18. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

20. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

21. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_27

22. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_30

23. Chan, T., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tol-
erance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_15

24. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: decentralised
and delegatable. Cryptology ePrint Archive: Report 2015/1017

25. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7_28

26. Chase, M., Chow, S.: Improving privacy and security in multi-authority attribute-
based encryption. In: ACM-CCS (2009)

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28

Multi-Client Functional Encryption for Linear Functions 549

27. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.-H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3_24

28. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.-H., Pointcheval, D.: Multi-client
functional encryption with repetition for inner product. Cryptology ePrint Archive:
Report 2018/1021 (2018)

29. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

30. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (Unbounded) multi-input inner
product functional encryption from the k-linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 245–277. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5_9

31. Dodis, Y.: Exposure-resilient cryptography. Ph.D. thesis, MIT (2000)
32. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.

LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2_40

33. Freire, E., Hofheinz, D., Paterson, K., Striecks, C.: Programmable hash functions in
the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_28

34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

36. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

37. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5_32

38. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption.
Cryptology ePrint Archive: Report 2013/727 (2013)

39. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: ICS (2010)

40. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1_30

41. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC (2013)

42. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_11

43. Gordon, S., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-input functional encryp-
tion. Cryptology ePrint Archive: Report 2013/774 (2014)

https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-32009-5_11

550 B. Libert and R. Ţiţiu

44. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM-CCS (2006)

45. Hanaoka, G., Matsuda, T., Schuldt, J.: On the impossibility of constructing effi-
cient key encapsulation and programmable hash functions in prime order groups.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 812–
831. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_47

46. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5_2

47. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7_5

48. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_10

49. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6_23

50. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3_9

51. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

52. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4_31

53. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_12

54. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor func-
tions and selective opening chosen-ciphertext security from LWE. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9_12

55. Libert, B., Stehlé, D., Titiu, R.: Adaptively secure distributed PRFs from LWE.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 391–421.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_15

56. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

57. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

58. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23

https://doi.org/10.1007/978-3-642-32009-5_47
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/978-3-642-39884-1_10
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-030-03810-6_15
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-48910-X_23

Multi-Client Functional Encryption for Linear Functions 551

59. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7_11

60. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

61. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM-CCS (2010)

62. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

63. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53(2–3), 201–224 (1987)

64. Shi, E., Chan, T., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation
of time-series data. In: NDSS (2011)

65. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8_4

66. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5_14

67. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8_26

https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

From Single-Input to Multi-client
Inner-Product Functional Encryption

Michel Abdalla1,2(B) , Fabrice Benhamouda3 , and Romain Gay4

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@ens.fr
2 INRIA, Paris, France

3 Algorand Foundation, New York, NY, USA
fabrice.benhamouda@normalesup.org

4 University of California, Berkeley, CA, USA
rgay@berkeley.edu

Abstract. We present a new generic construction of multi-client func-
tional encryption (MCFE) for inner products from single-input func-
tional inner-product encryption and standard pseudorandom functions.
In spite of its simplicity, the new construction supports labels, achieves
security in the standard model under adaptive corruptions, and can be
instantiated from the plain DDH, LWE, and Paillier assumptions. Prior
to our work, the only known constructions required discrete-log-based
assumptions and the random-oracle model. Since our new scheme is not
compatible with the compiler from Abdalla et al. (PKC 2019) that decen-
tralizes the generation of the functional decryption keys, we also show
how to modify the latter transformation to obtain a decentralized version
of our scheme with similar features.

1 Introduction

Functional encryption [11,18] is a generalization of standard encryption which
allows for a more fine-grained control over the decryption capabilities of third
parties. In these schemes, the owner of a master secret key can derive secret keys
for specific functions via a key derivation algorithm. Then, given the encryption
of a message x, the holder of a secret decryption key skf for a function f can
compute f(x) using the decryption algorithm. Informally, a FE scheme is deemed
secure if it is infeasible for an adversary to learn any information about x other
than what it can be computed using the secret keys at its disposal.

Multi-input functional encryption [16] is an extension of the functional
encryption in which the function can be computed over several different inputs
that can be encrypted independently. More precisely, the decryption algorithm
of such schemes takes as input a secret key skf for a function f together with n
different ciphertexts Enc(x1), . . . ,Enc(xn) and outputs the value of the function
f applied to underlying plaintexts (x1, . . . , xn).

In the setting in which each ciphertext of a multi-input functional encryption
scheme is generated by a different party or client Pi. we often refer to these
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 552–582, 2019.
https://doi.org/10.1007/978-3-030-34618-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_19&domain=pdf
http://orcid.org/0000-0002-2447-4329
http://orcid.org/0000-0002-8300-1820
http://orcid.org/0000-0003-3864-9756
https://doi.org/10.1007/978-3-030-34618-8_19

From Single-Input to Multi-client Inner-Product FE 553

schemes as multi-client functional encryption (MCFE) schemes [13,16]. In this
setting, it is natural to assume that the adversary can corrupt these parties
and learn their secret encryption keys. The master secret key, however, is still
assumed to be owned by a trusted third party.

Another important property of multi-client functional encryption considered
by Chotard et al. [13] is the inclusion of labels in the encryption process. More
precisely, in a labeled MCFE scheme, the individual encryption algorithms each
take a label as an additional parameter and decryption should only be possible
when using ciphertexts generated with respect to the same label. That is, labels
allow the users to have more control over the mix-and-match capabilities, as
opposed to MCFE without labels, where the owner of a functional decryption
key can mix and match all the ciphertexts.

Note that labels can be obtained without loss of generality for MCFE for
all functions; however, this is not the case of the practical constructions for
restricted classes of functions, such as inner products, which is the focus of
this paper. Reciprocally, any MCFE with labels can be turned into a label-
free MCFE for the same functionality, simply by setting the labels used by the
encryption algorithm to be always a fixed value ⊥. Put simply, labels are an
extra feature that offers a better control over the information leaked by each
generated functional decryption key.

For instance, suppose we want to use MCFE to allow teachers to grade their
students in a way that the students can use these grades in different college
applications and that colleges only learn the average grades of the students with
weights of their choice. In this scenario, each teacher would encrypt the grade of
each student for their subject. Each college would have a functional decryption
key to compute the weighted average of all the grades of each student. It is very
important that the teachers use the student ID as a label, otherwise colleges
would be able to compute weighted average of a mix of multiple students (like
Maths from student A and Physics from student B), which significantly hinders
privacy.

Prior Work. As remarked in [5], most of the prior work in the multi-input
setting are either feasibility results for general functionalities (e.g,. [8,9,12,16])
or efficient constructions for particular functionalities (e.g.,[2,4,5,13–15]). In the
latter case, which is the setting in which we are interested in this paper, the main
functionality under consideration is the inner-product functionality, in which
functions are associated to a collection y of n vectors y1, . . . ,yn. In particular, on
input a collection x of n vectors x1, . . . ,xn, it outputs fy (x) =

∑n
i=1〈xi,yi〉 =

〈x,y〉. As noted in prior works [3,5,13], inner-product functionalities can be
quite useful for computing statistics or performing data mining on encrypted
databases.

Among the constructions of multi-input functional inner-product encryption
schemes without labels, the work of Abdalla et al. in [4] is the one requiring
the weakest assumptions since it can be built from any single-input functional
encryption scheme satisfying some mild properties (recalled in Sect. 3). In partic-

554 M. Abdalla et al.

ular, by instantiating it with the public-key functional inner-product encryption
schemes in [7], one can obtain constructions based on the DDH, Paillier, and
LWE assumptions. Moreover, as recently shown in [2], their schemes remain
secure even when the secret encryption keys can be adaptively corrupted by the
adversary. Unfortunately, as we further discuss below, we do not know how to
generalize the ACFGU scheme to the labeled setting. In fact, the construction
from [4] relies on an information-theoretic multi-input FE (as they put it, the
functional encryption equivalent of a one-time pad) to obtain security in the
restricted context of one challenge ciphertext per input slot. Then, they boot-
strap security to many challenge ciphertexts using an extra layer of single-input
FE. That information-theoretic approach cannot be emulated, since we need to
hide messages for arbitrarily many labels in our case. Thus, an entropy argument
can be used to show that we need to resort to a computational assumption, even
for proving security in the context of one challenge ciphertext per input slot and
label. In our case, we use PRFs.

Among the constructions of multi-input functional inner-product encryption
schemes with labels, the works of Abdalla et al. [2] and Chotard et al. [14]
currently represent the state of the art in this area. In particular, both schemes
provide labeled MCFE schemes in the random-oracle model in discrete-log-based
groups. The main advantage of the work of Chotard et al. is that its ciphertexts
are shorter and that it allows for multiple ciphertexts under the same label.
However, it requires pairing groups. The main advantage of the work of Abdalla
et al. is that it can be instantiated in pairing-free groups. However, its cipher-
texts are longer and it only allows for one ciphertext per label, a restriction
inhereted from [13]. As in the case of other discrete-log-based constructions of
functional inner-product encryption schemes (e.g, [3,5,7,10]), the size of sup-
ported messages is restricted for both schemes since the decryption algorithm
needs to compute discrete logarithms.

Contributions. In order to address the shortcomings of previous labeled MCFE
schemes, the main contribution of this paper is to provide the first construction
of labeled MCFE schemes in the standard model from more general assumptions
than discrete-logarithm-based ones. As in the work of Abdalla et al. in [4], our
constructions can be built from any single-input public-key functional encryption
scheme satisfying some mild properties (recalled in Sect. 3). In particular, by
instantiating it with the schemes in [7], one can obtain constructions based on
the DDH, Paillier, and LWE assumptions. Our constructions have no restriction
on the number of ciphertexts per label and are proven secure with respect to
adaptive corruptions.

In order to achieve our main result, our security proof proceeds in two parts.
First, we prove the security of our MCFE scheme in a setting in which the
adversary is required to query the encryption oracle in all n positions for each
label. Then, in a second step, we apply the compiler suggested in [2] to remove
this requirement. Since the proof for the latter transformation given in [2] is in
the random-oracle model, an additional contribution of our work is to provide
an alternative proof for it in Sect. 4 which does not require random oracles.

From Single-Input to Multi-client Inner-Product FE 555

Finally, since our main construction is not compatible with the transforma-
tion from [2] that decentralizes the generation of the functional decryption keys,
we also show how to modify the latter to obtain a decentralized version of our
scheme with similar features. As a result, we obtain the first decentralized labeled
MCFE schemes in the standard model based on the DDH, Paillier, and LWE
assumptions.

Independent Work. In a recent work [6], the authors define multi-input func-
tional encryption schemes with decentralized key generation and setup, in which
users can join the system dynamically. They give a feasibility result for general
functions, and also provide a construction for inner products, from a standard
assumption (LWE). However, their construction does not handle labels.

Overview of Our Construction. Following the proof strategy first used in [5]
in the context of multi-input FE for inner products, we start with a scheme whose
security only holds when there is only one challenge ciphertext per input slot.
The novelty compared to multi-input FE is that we have to handle arbitrarily
many labels, even if there is only one challenge ciphertext per slot and label.

One-time Security With Labels. We modify the scheme from [4], where the one-
time secure MIFE is simply obtained using a one-time pad of the messages.
The functional decryption keys are simply the linear combination of these pads.
Namely, for any input slot i, we have cti := xi + ti, and for sky :=

∑n
i=1〈ti,yi〉,

where ti ← Z
m
L , m denotes the dimension of individual messages xi, and every-

thing is computed modulo L, for some specified integer L. Here, we write
y := (y1‖ . . . ‖yn), the concatenation of n vectors, each of dimension m. To
decrypt the set of ciphertext {cti}i, one simply compute

∑
i〈cti,yi〉, and sub-

tract by the key sky to get
∑

i〈xi,yi〉. Security follows by a perfect statistical
argument.

The technical challenge is to emulate this idea to a setting where ciphertexts
can be generated for many labels. Since the number of label is not a priori
bounded, we cannot resort to a perfectly statistical argument: the master secret
key (which in the previous scheme contains all the vectors ti) is simply too small
to contain all possible pads ti,� for all labels � ∈ Labels that would required
to perform such an argument. We must resort to a computation argument. A
natural but flawed idea would to generate the pads ti,� using a PRF applied on
a label � ∈ Labels. This approach faces two issues: first, if one slot is corrupted,
then the security of the entire system is compromised, since each input slot needs
the PRF key to encrypt. Second, since the labels are only known at encryption
time, the generation of functional decryption keys is unable to produce the value∑

i〈yi, ti,�〉.
To circumvent these issues we generate the pads ti,� :=

∑

j �=i

(−1)j<iPRFKi,j
(�),

where for all i < j ∈ [n], the keys Ki,j ← {0, 1}λ, and Kj,i = Ki,j , and (−1)j<i

denotes −1 if j < i, 1 otherwise. This construction has first been used in [17] to

556 M. Abdalla et al.

decentralize the computation of the sum of private values in a non-interactive
way. Each input slot i ∈ [n] needs the set of keys {Ki,j}j∈[n] to encrypt. Assuming
the security of the PRF, it produces pseudorandom pads, which will be able to
mask the messages xi simultaneously for all used label � ∈ Labels. Thus, we
prove that this holds even when some users i ∈ [n] are corrupted (in fact, up to
n − 2 can be corrupted). This solves the first issue mentioned above. To solve
the second issue, namely, ensuring correctness holds for all possible labels, we
use the structure property that holds for all label � ∈ Labels:

∑
i∈[n] ti,� = 0,

where 0 denotes the zero vector. Otherwise stated, these pads are shares of a
perfect n out of n secret sharing of 0. We use this by setting the ciphertext
for slot i ∈ [n] and label � ∈ Labels to be an encryption of the vector wi,� :=
(0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,� ∈ Z

mn
L . This way, we have 〈wi,�,y〉 = 〈xi,yi〉 +

〈ti,�,y〉 for all slots i ∈ [n], therefore:
∑

i∈[n]〈wi,�,y〉 =
∑

i∈[n]〈xi,yi〉. The last
step is to encrypt the vector wi,� using any single-input, public-key FE for inner
products. The functional decryption key is simply the functional decryption key
of the single-input inner-product FE for the associated vector y. Correctness is
preserved, since the decryption only needs to compute the inner product between
wi,� and y.

Full-fledged Security. To obtain security with many challenge ciphertexts per
input slot and label, we use similar techniques to those used in [4] in the con-
text of multi-input inner-product FE. However, these can only be applied when
the adversary does not make use of the information revealed by partial cipher-
texts {cti,�}i∈[n]\{missing}, where {missing} denotes the set of missing slots for
label �. Prior works [2,14] provides generic compilers that precisely avoid partial
ciphertexts to leak any information about the underlying plaintext (decryption
is only successful when ciphertexts for all slots are present), but they are only
proven secure in the random oracle model, and for [14], use additional assump-
tions (pairings). Since our focus it to build simple MCFE schemes from weak
assumptions, we give a new generic transformation (in Sect. 4) that avoids the
leakage of information of partial ciphertexts, with no extra assumption (only
PRFs, in the standard model), and that handles adaptive corruptions.

Decentralizing MCFE. In order to decentralize the generation of functional
decryption keys, we adapt the construction from [2]. The main idea is to secret
share the master secret key, since computing the functional secret key is a linear
operation, it can be done non-interactively from these shares.

Outline. The rest of the paper is organized as follows. After giving the relevant
technical preliminaries and definitions in Sect. 2, we give our new construction
of MCFE from single-input FE for inner products in Sect. 3. In Sect. 4, we show
how to generically strengthen the security of our MCFE construction, thereby
removing any artificial restrictions on the security model. Finally, in Sect. 5, we
show how to decentralize our MCFE to obtain a DMCFE.

From Single-Input to Multi-client Inner-Product FE 557

2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and
xi for the i-th element. For security parameter λ and additional parameters n,
we denote the winning probability of an adversary A in a game or experiment
G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the
random coins of G and A.

2.1 Multi-Client Functional Encryption

In this section, we recall the definition of MCFE [16]. It is taken almost verbatim
from [2], with the following differences: the use of a stronger security definition
(see Remark 2.3) and the introduction of a master public key mpk, so that
public-key functional encryption becomes a particular case of MCFE.

Definition 2.1. (Multi-Client Functional Encryption) Let F = {Fρ}ρ be
a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ

→ Yρ.1 Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the function family F and the label set Labels is a tuple of
five algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of parties n,
and generates public parameters pp. The public parameters implicitly define
an index ρ corresponding to a set Fρ of n-ary functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n], a master secret key msk, and a master public key mpk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret
key msk and a function f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp,mpk, ski, xi, �): Takes as input the public parameters pp, a master public
key mpk, a secret key ski, a message xi ∈ Xρ,i to encrypt, a label � ∈ Labels,
and outputs ciphertext cti,�.

Dec(pp, skf , ct1,�, . . . , ctn,�): Takes as input the public parameters pp, a func-
tional key skf and n ciphertexts under the same label � and outputs a value
y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ,
� ∈ Labels, xi ∈ Xρ,i, when ({ski}i∈[n],msk,mpk) ← KeyGen(pp) and skf ←
KeyDer(pp,msk, f), we have for x = (x1, . . . , xn):

Pr [Dec(pp, skf ,Enc(pp,mpk, sk1, x1, �), . . . ,Enc(pp,mpk, skn, xn, �)) = f(x)] = 1.

When ρ is clear from context, the index ρ is omitted. Note that the case
of (single-input) functional encryption as defined in [11,18] corresponds to the
case n = 1, and Labels = {⊥}. For such schemes, we also consider the public-key
variant, where sk1 =⊥, that is, the encryption algorithm only requires the public

1 All the functions inside the same set Fρ have the same domain and the same range.

558 M. Abdalla et al.

parameters pp and the master public key mpk to encrypt the message x1. In this
setting, sk1 is omitted.

Except for public-key single-input functional encryption, the master public-
key can be included in each secret key ski and we omit it.

We follow the notation of [2] here, where the algorithm Setup only gener-
ates public parameters that determine the set of functions for which functional
decryption keys can be created, and the secret/encryption keys and the master
secret keys are generated by another algorithm KeyGen, while the functional
decryption keys are generated by KeyDer.

In the following, we define security as adaptive left-or-right indistinguishabil-
ity under both static (sta), and adaptive (adt) corruption. We also consider two
variants of these notions (any,pos+) related to the number of encryption queries
asked by the adversary for each slot.

Definition 2.2. (Security of MCFE) Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {any,pos+}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β in
Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote
by CS the set of corrupted slots at the end of the experiment.

Left-Right oracle QLeftRight(i, x0
i , x

1
i , �): Outputs cti,� = Enc(pp, ski, x

β
i , �) on

a query (i, x0
i , x

1
i , �). We denote by Qi,� the number of queries of the form

QLeftRight(i, ·, ·, �).
Encryption oracle QEnc(i, xi, �): outputs cti,� = Enc(pp,mpk, ski, xi, �) on a

query (i, xi, �).
Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0
i , x

1
i , �),

x0
i = x1

i .
2

– For any label � ∈ Labels, for any family of queries {QLeftRight(i, x0
i ,

x1
i , �) or QEnc(i, xi, �)}i∈[n]\CS , for any family of inputs {xi ∈ Xρ,i}i∈CS , for

any query QKeyD(f), we define x0
i := xi and x1

i := xi for any slot i ∈ CS
and any slot queried to QEnc(i, xi, �), and we require that:

f(x0) = f(x1) where xb = (xb
1, . . . , x

b
n) for b ∈ {0, 1} .

We insist that if one index i /∈ CS is not queried for the label �, there is no
restriction.

2 We could define a stronger security notion without this restriction. However, in this
paper, as in the prior works on MCFE, we add this restriction. In particular, we
allow the secret key for the slot i to decrypt ciphertexts for the slot i. We leave
achieving stronger security as an interesting open problem.

From Single-Input to Multi-client Inner-Product FE 559

– When yy = pos+: for any slot i ∈ [n] and � ∈ Labels, if Qi,� > 0, then
for any slot j ∈ [n] \ CS, Qj,� > 0. In other words, for any label, either the
adversary makes no left-right encryption query or makes at least one left-right
encryption query for each slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣
∣ Pr[xx-yy-INDMCFE

0 (λ, n,A) = 1]

− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]

∣
∣ .

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if
for any n, for any polynomial-time adversary A, there exists a negligible function
negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the
parameter of experiments or games when it is clear from the context.

Remark 2.3 (The role of the oracle QEnc). The security definitions we give are
slightly stronger than those given in [2], since the oracle QEnc gives out infor-
mation that is not captured by Condition (*), for pos+, hence the use of the
notation pos+ instead of pos in [2]. For any, this addition of QEnc has no effect,
as QEnc queries can be simulated using QLeftRight. But for pos+/pos, there is
no equivalence in general between the security definition with and without the
encryption oracle. We add this oracle QEnc so that we can reduce the security
with respect to one label to the security with respect to multiple queried labels,
via a simple hybrid argument (which would not be valid without the QEnc ora-
cle), as done in [14]. This will be used in our generic compiler from pos+ to any
security, in Sect. 4.

Now we define a seemingly weaker security notion than xx-yy-IND, which
we call xx-yy-IND-1-label, since the adversary is restricted to query the oracle
QLeftRight on at most one label, and it cannot query the oracle QEnc oracle on
that label. Using a standard hybrid argument (cf Lemma 2.5), we show that this
is equivalent to the original xx-yy-IND security defined above. These restrictions
will make the proofs easier in the rest of the paper.

Definition 2.4 (1-label Security) Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {any,pos+}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β

exactly as in Fig. 1, where the oracles are defined as for Definition 2.2, except:

Left-Right oracle QLeftRight(i, x0
i , x

1
i , �): Outputs cti,� = Enc(pp, ski, x

β
i , �) on

a query (i, x0
i , x

1
i , �). This oracle can be queried at most on one label. Further

queries with distinct labels will be ignored.
Encryption oracle QEnc(i, xi, �): outputs cti,� = Enc(pp,mpk, ski, xi, �) on a

query (i, xi, �). If this oracle is queried on the same label that is queried to
QLeftRight, the game ends and return 0.

560 M. Abdalla et al.

Condition (*) is defined as for Definition 2.2.
We define the advantage of an adversary A in the following way:

Advxx-yy-IND-1-label
MCFE,A (λ, n) =

∣
∣ Pr[xx-yy-IND-1-labelMCFE

0 (λ, n,A) = 1]

− Pr[xx-yy-IND-1-labelMCFE
1 (λ, n,A) = 1]

∣
∣ .

Lemma 2.5 (From one to many labels). Let MCFE be a scheme that is xx-
yy-IND-1-label secure, for xx ∈ {sta, adt} and yy ∈ {pos+, any}. Then it is also
secure against PPT adversaries that query QLeftRight on many distinct labels
(xx-yy-IND security). Namely, for any PPT adversary A, there exists a PPT
adversary B such that:

Advxx-yy-IND
MCFE,A (λ, n) ≤ qEnc · Advxx-yy-IND-1-label

MCFE,B (λ, n),

where Advxx-yy-IND-1-label
MCFE,B (λ, n) denotes the advantage of B against an experiment

defined as above, except QLeftRight can be queried on at most one label and QEnc
must not be queried on that label. By qEnc we denote the number of distinct labels
queried by A to QLeftRight in the original security game.

Proof (Sketch).
First, let us consider the case of yy = any security. The proof uses a hybrid

argument which goes over all the labels �1, ...�Q queried to both the oracles QEnc
and QLeftRight. In the k’th hybrid, the queries for the first k’th labels to the
QLeftRight oracle are answered with the right plaintext, and the the last Q − k
labels are answered with the left plaintext. To go from hybrid k − 1 to k, B
uses its own QEnc oracle to answer A’s queries to QLeftRight for labels �j for
j < k, and j > k (using the right and left plaintext respectively), and uses its
own oracle QLeftRight for label �k. The queries made by A to QEnc and QCor
are answered straightforwardly by B from its own oracles. Note that the queries
made by B satisfy the 1-label restriction, since QLeftRight is only queried on �k,
and QEnc is not queried on �k.

For the case of yy = pos+ security, to go from hybrid k − 1 to k, B uses
the QEnc oracle to answer QLeftRight queries for labels �j for j < k and j > k
(using the right and left plaintext respectively). For the label �k, B uses its own
oracle QLeftRight to answer A’s queries to both QLeftRight and QEnc. So far,
the reduction works as for the case of yy = any security. However, the difference
is yy = pos+ security requires additional conditions on the queries made to
QLeftRight, in particular, if one honest slot is queried to QLeftRight for �k, then
all honest slots should be queried. Thus, we need to distinguish two cases: case
(1) �k is queried to QEnc, but never on QLeftRight, in which case B uses its own
QEnc oracle; case (2) �k is queried to QLeftRight at some point (and by definition
of pos+ security, that means it’s queried to all honest slots). In case 2, the queries
of B to QLeftRight will satisfy the condition required by the yy = pos+ security
game, namely, if QLeftRight is queried on �k for some honest input slot, then
it has to be queried on the same label �k for all honest input slots. Note that
this restriction doesn’t apply to the queries made to QEnc. In case 1, we use the

From Single-Input to Multi-client Inner-Product FE 561

Fig. 1. Security games for MCFE

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or
being “a stronger security notion than”)

fact that the two hybrid games k − 1 and k are exactly the same. Therefore, at
the end of the simulation, B checks whether case 1 occurs, and if it does, simply
outputs 0 to its own experiment, ignoring A’s output. Otherwise, it means it is
case 2, and B forwards the output from A to its own experiment.
�

We summarize the relations between the six security notions in Fig. 2, where
xx-pos-IND is the notion defined in [2] (i.e., it is like xx-pos+-IND without the
QEnc oracle).

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryp-
tion (DMCFE) [13]. As for our definition of MCFE, we separate the algorithm
Setup which generates public parameters defining in particular the set of func-
tions, from the algorithm KeyGen. We do not consider public-key variants of
DMCFE and hence completely omit the master public key mpk.

562 M. Abdalla et al.

Definition 2.6. (Decentralized Multi-Client Functional Encryption)
Let F = {Fρ}ρ be a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 ×
· · · × Xρ,nρ

→ Yρ. Let Labels = {0, 1}∗ or {⊥} be a set of labels. A decen-
tralized multi-client functional encryption scheme (DMCFE) for the function
family F and the label set Labels is a tuple of six algorithms DMCFE =
(Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec):

Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys

{ski}i∈[n].
KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key

ski from position i and a function f ∈ Fρ, and outputs a partial functional
decryption key ski,f .

KeyDerComb(pp, sk1,f , . . . , skn,f): Takes as input the public parameters pp, n
partial functional decryption keys sk1,f , . . . , skn,f and outputs the functional
decryption key skf .

Enc(pp, ski, xi, �) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,�, . . . , ctn,�) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, � ∈
Labels, xi ∈ Xρ,i, when {ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f)
for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . , skn,f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, �), . . . ,Enc(pp, skn, xn, �)) = f(x1, . . . , xn)] = 1 .

We remark that there is no master secret key msk. Furthermore, similarly
to [13], our definition does not explicitly ask the setup to be decentralized. Our
DMCFE construction based on DDH (Sect. 5) however has a setup which can
be easily decentralized.

We consider a similar security definition for the decentralized multi-client
scheme. We point out that contrary to [13], we do not differentiate encryption
keys from secret keys. This is without loss of generality, as corruptions in [13]
only allow to corrupt both keys at the same time.

Definition 2.7. (Security of DMCFE) The xx-yy-IND security notion of
an DMCFE scheme (xx ∈ {sta, adt} and yy ∈ {any,pos+}) is similar to the one
of an MCFE (Definition 2.2), except that there is no master secret key msk and
the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f): Computes ski,f := KeyDerShare(pp, ski, f)
for i ∈ [n] and outputs {ski,f}i∈[n].

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper.
The index of the family is defined as ρ = (R, n,m,X, Y) where R is either Z or
ZL for some integer L, and n,m,X, Y are positive integers. If X,Y are omitted,
then X = Y = L is used (i.e., no constraint).

From Single-Input to Multi-client Inner-Product FE 563

This defines F ip
ρ = {fy1,...,yn

: (Rm)n → R} where

fy1,...,yn
(x1, . . . ,xn) =

n∑

i=1

〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for
i ∈ [n], and where x ∈ Rmn and y ∈ Rmn are the vectors corresponding to the
concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn respectively.

2.4 Pseudorandom Functions (PRF)

We make use of a pseudorandom function PRFK(�), indexed by a key K ∈ {0, 1}λ,
that takes as input a label � ∈ Labels, and outputs a value in the output space
Z. For a uniformly random key K ← {0, 1}λ, this function is computationally
indistinguishable from a truly random function from Labels to Z.

We define the advantage of an adversary A in the following way:

AdvPRF,A(λ) =
∣
∣ Pr[INDPRF

0 (λ,A) = 1] − Pr[INDPRF
1 (λ,A) = 1]

∣
∣ ,

where INDPRF
0 (λ,A) is the experiment where A has an oracle access to PRFK(·),

whereas INDPRF
1 (λ,A) is the experiment where A has an oracle access to a truly

random function instead.
A PRF is secure, if for any any polynomial-time adversary A, there exists a

negligible function negl such that: AdvPRF,A(λ) ≤ negl(λ).

2.5 Symmetric-Key Encryption (SE)

A symmetric encryption with key space K consists of the following PPT algo-
rithms:

– Enc(K,m): given a symmetric key K and a message m, outputs a ciphertext.
– Dec(K, ct): given a symmetric key K and a ciphertext ct, outputs a message

(or ⊥ if it fails to decrypt).

For all message in the message space, we have Pr[Dec(k,Enc(k,m)) = m] = 1,
where the probability is taken over the random choice of K ← K. We say a
symmetric-key encryption with key space K is compatible with a PRF with
output space Z if K = Z.

Definition 2.8 (SE). For any SE with key space K, any bit β ∈ {0, 1}, any
security parameter λ, and any adversary A, we define the experiment INDPRF

β

as follows.
We define the advantage of an adversary A in the following way:

AdvSE,A(λ, n) =
∣
∣ Pr[INDPRF

0 (λ,A) = 1] − Pr[INDSE
1 (λ,A) = 1]

∣
∣ .

A SE is secure, if for any any polynomial-time adversary A, there exists a
negligible function negl such that: AdvSE,A(λ) ≤ negl(λ).

564 M. Abdalla et al.

Fig. 3. Security games for SE. The oracle OSE(m0, m1) returns Enc(K, mβ).

3 MCFE from Public-Key Single-Input FE

In this section, we build a multi-client FE for inner products generically from
any public-key single-input FE and a standard PRF.

3.1 Construction

The construction resembles the multi-input FE from [4], where an inner layer of
information-theoretic one-time FE is combined with an outer layer of single-input
FE. We manage to extend this paradigm to the setting where the encryption
additionally takes a label as input: the one-time pads are replaced by pads which
are pseudorandom for all used labels �, using techniques similar to those used in
[2] to decentralize the generation of functional secret keys.

The underlying single-input FE is required to satisfy simple structural prop-
erties, originally defined in [4] and recalled below (converted to the public-key
setting), which are satisfied by all known existing single-input FE for inner prod-
ucts.

Definition 3.1 (Two-step decryption [4]). A public-key FE scheme
FE = (Setup,KeyGen,KeyDer,Enc,Dec) for the function ensemble F ip

ρ , ρ =
(Z, 1,m,X, Y) satisfies the two-step decryption property if it admits PPT algo-
rithms Setup�, Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup�(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X, Y)
and a bound B ∈ R

+, as well as the description of a group G (with group law
◦) of order L > n ·m ·X ·Y , which defines the encoding function E : ZL ×Z →
G.

2. For all (msk,mpk) ← KeyGen(pp),x ∈ Z
m, ct ← Enc(pp,mpk,x),y ∈ Z

m,
and sk ← KeyDer(msk,y), we have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise) ,

for some noise ∈ Z that depends on ct and sk. Furthermore, it holds that
Pr[|noise| < B] = 1 − negl(λ), where the probability is taken over the random
coins of KeyGen and KeyDer. Note that there is no restriction on the norm of
〈x,y〉 here.

From Single-Input to Multi-client Inner-Product FE 565

Fig. 4. Inner-Product MCFE for Fρ, ρ = (Z, n, m, X, Y) built from a public-key FE
FE := (Setupipfe,Encipfe,KeyDeripfe,Decipfe) for Fρipfe , ρipfe = (Z, 1, n · m, 2X, Y). We
assume FE satisfies the two-step decryption property (see Definition 3.1), hence the
existence of PPT algorithms Setup�

ipfe, Decipfe,1 and Decipfe,2. Here, for any K ∈ {0, 1}λ,
PRFK : Labels → Z

mn
L is a pseudorandom function (see Sect. 2.4).

3. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′) .

4. For all γ < n · m · X · Y , and |noise| < n · B, Dec2(pp, E(γ, noise)) = γ.

Definition 3.2 (Linear encryption [4]). A secret-key FE scheme FE =
(Setup,KeyGen,KeyDer,Enc,Dec) is said to satisfy the linear encryption prop-
erty if there exists a deterministic algorithm Add that takes as input a ciphertext

566 M. Abdalla et al.

and a message, such that for all x,x′ ∈ Z
m, the following are identically dis-

tributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x + x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm
Setup� (see the two-step decryption property above).

Correctness. The correctness of the scheme in Fig. 4 follows from (i) the cor-
rectness and Definition 3.1 (two-step decryption) of the single-input scheme,
and (ii) the fact that for all � ∈ Labels,

∑
i∈[n] ti,� = 0, by definition of the

vectors ti,�. Thus, writing wi := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,� mod L, we have∑
i∈[n] wi mod L = x mod L ∈ Z

mn
L , where x ∈ Rnm denotes the concatenation

of the n vectors x1, . . . ,xn.
More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Z

mn,
such that ‖x‖∞ < X, ‖y‖∞ < Y and let pp ← Setup(1λ), ({ski}i∈[n],msk) ←
KeyGen(pp), sky ←KeyDer(pp,msk,y), and cti ← Enc(pp, ski,xi, �) for all i∈ [n].

By (2) of Definition 3.1, the decryption algorithm Dec(pp, sky , {cti}i∈[n])
computes E(〈wi,y〉 mod L, noisei) ← Decipfe,1(pp, ski, cti) where for all i ∈ [n],
|noisei| < B with probability 1− negl(λ), where B ∈ R

+ is the bound output by
Setup�

ipfe.
By (3) of Definition 3.1 (linearity of E) we have:

E(〈w1,y〉 mod L, noise1) ◦ · · · ◦ E(〈wn,y〉 mod L, noisen)

= E
⎛

⎝〈
∑

i∈[n]

wi,y〉,
∑

i∈[n]

noisei

⎞

⎠ = E
⎛

⎝〈x,y〉 mod L,
∑

i∈[n]

noisei

⎞

⎠ .

Since 〈x,y〉 < n · m · X · Y < L and
∣
∣
∣
∑

i∈[n] noisei

∣
∣
∣ < n · B, we have

Decipfe,2
(E(〈x,y〉 mod L,

∑

i∈[n]

noisei)
)

= 〈x,y〉,

by (4) of Definition 3.1.

3.2 Static Security

Now we proceed to prove the sta-pos+-IND-security of the scheme, that is, secu-
rity with static corruption, which serves as a warm up to the more complicated
proof of adt-pos+-IND-security, that we give later. Using the generic transfor-
mation in Sect. 4, we can remove the pos+ restriction, and obtain adt-any-IND
security.

From Single-Input to Multi-client Inner-Product FE 567

Theorem 3.3 (adt-pos+-IND-security). If the FE scheme FE = (Setupipfe,
KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme for the
inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y), and PRF

is secure, then MCFE from Fig. 4 is sta-pos+-IND-secure for the functionality
defined as F ip

ρ , ρ = (Z, n,m,X, Y). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advsta-pos
+-IND

MCFE,A (λ, n) ≤ 2qEnc · Advany-IND
FE,B (λ) + 2(n − 1)qEnc · AdvPRF,B′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. For simplicity, we consider the case where A only queries QLeftRight on
one label ��, and never queries QEnc on ��. We build PPT adversaries B and B′

such that: Advsta-pos
+-IND-1-label

MCFE,A (λ, n) ≤ 2 ·Advany-IND
FE,B (λ)+2(n−1) ·AdvPRF,B′(λ),

where Advsta-pos
+-IND-1-label

MCFE,A (λ, n) is defined as Advsta-pos
+-IND

MCFE,A (λ, n), except with
the limitations mentioned above, namely, A can query QLeftRight on at most
one label, which cannot be queried to QEnc. Then we use Lemma 2.5 to obtain
the theorem.

First, consider the case where there is only one honest user. In this case,
the security follows directly from the any-IND security of FE. Namely, in
that case we build a PPT adversary B such that Advsta-pos

+-IND-1-label
MCFE,A (λ, n) ≤

Advany-IND
FE,B (λ). Given ppipfe, B first samples the keys Ki,j for all i, j ∈ [n],

thanks to which it can compute pp, {ski}i∈[n], and send (pp, {ski}i∈CS) to
A. B can answer all queries to QEnc(i,xj

i , �), by returning Enc(pp, ski,x
j
i , �),

since it know ski for all i ∈ [n]. Call i� the only honest slot. B can answer
all queries to QEnc(i, ·, ·, ·) and QLeftRight(i, ·, ·, ·) for i = i�, using pp and
{ski}i∈[n]. Whenever A queries QLeftRight(i�,xj,0

i� ,xj,1
i� , ��), B queries its own

left right oracle on (0‖ . . . ‖0‖xj,0
i� ‖0‖ . . . ‖0), (0‖ . . . ‖xj,1

i� ‖0‖ . . . ‖0), to receive
cti := Encipfe(ppipfe,mpkipfe, ski� , (0‖ . . . ‖xj,β

i� ‖0‖ . . . ‖0)), where β ∈ {0, 1},
depending on the experiment B is interacting with. Then, B computes ti�,��

as described in Fig. 4, and returns Add(cti� , ti�,��) to A, which, according to
the property from Definition 3.2 (linear encryption), is identically distributed to
Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖xj,β

i� ‖0‖ . . . ‖0)+ti�,�� mod L). Whenever A queries
QKeyD on input y, B queries its own QKeyD on the same input, and forwards the
output to A. For all y queried to QKeyD, we have 〈(0‖ . . . ‖xj,0

i� ‖0‖ . . . ‖0),y〉 =
〈(0‖ . . . ‖xj,1

i� ‖0‖ . . . ‖0),y〉, by Condition (*). Moreover, for all β ∈ {0, 1},
‖(0‖ . . . ‖xj,β

i� ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries B sends to its left-right
oracle are legitimate. This concludes the case where there is only one honest
user.

Second, we consider the case where there is more than one honest user. For
this case, we proceed via a hybrid argument, using the games described in Fig. 5.
Note that G0 corresponds to sta-pos+-INDMCFE

0 (λ, n,A), and G4 corresponds to
sta-pos+-INDMCFE

1 (λ, n,A), with the one label restriction. Thus, we have:

Advsta-pos
+-IND-1-label

MCFE,A (λ, n) =
∣
∣WinG0

A (λ, n) − WinG4
A (λ, n)

∣
∣.

568 M. Abdalla et al.

Fig. 5. Games for the proof of Theorem 3.3. Here, HS := [n] \ CS. Condition (*) is
given in Definition 2.1. Here, RF denotes a random function that is computed on the
fly. WLOG, QLeftRight is only queried on label ��, and QEnc isn’t queried on ��.

Game G1. In game G1, we change the way the vectors ti,� used by QEnc and
QLeftRight are generated, switching the values PRFKi1,it

(�) to RF(t, �), for all
t ∈ [2, h], where we write the set of honest users HS := {i1, . . . , ih}, and RF
denotes a random function, computed on the fly (see Fig. 5). The transition
from G0 to G1 is justified by the security of the PRF. Namely, in Lemma 3.4,
we exhibit a PPT adversary B0 such that:

∣
∣WinG0

A (λ, n) − WinG1
A (λ, n)

∣
∣ ≤ (h − 1) · AdvPRF,B0(λ),

where h ≤ n denotes the number of honest users.

From Single-Input to Multi-client Inner-Product FE 569

Game G2. In game G2, the vectors wi used to generate the challenge ciphertexts
contain an additional vector (0‖ . . . ‖0‖x1,1

i − x1,0
i ‖0‖ . . . ‖0). The transition

from G1 to G2 is justified by the any-IND security of FE. Namely, in Lemma
3.5, we exhibit a PPT adversary B1 such that:

∣
∣WinG1

A (λ, n) − WinG2
A (λ, n)

∣
∣ ≤ Advany-IND

FE,B1
(λ).

Game G3. In game G3, the vectors wi used in the challenge ciphertexts are of
the form: wi := (0‖ . . . ‖0‖xj,1

i ‖0‖ . . . ‖0). The transition from G2 to G3 is
justified by the any-IND security of FE. Namely, in Lemma 3.6, we exhibit a
PPT adversary B2 such that:

∣
∣WinG2

A (λ, n) − WinG3
A (λ, n)

∣
∣ ≤ Advany-IND

FE,B2
(λ).

Game G4. This game is sta-pos+-INDMCFE
1 (λ, n,A). The transition from G3 to

G4 is symmetric to the transition from G0 to G1, justified by the security of
the PRF. Namely, it can be proven as in Lemma 3.4 that there exists a PPT
adversary B3 such that:

∣
∣WinG3

A (λ, n) − WinG4
A (λ, n)

∣
∣ ≤ (h − 1) · AdvPRF,B3(λ),

where h ≤ n denotes the number of honest users. We defer to the proof of
Lemma 3.4 for further details.

Putting everything together, we obtain the theorem.
�
Lemma 3.4 (Transition from G0 to G1). There exists a PPT adversary B′

such that
∣
∣WinG0

A (λ, n) − WinG1
A (λ, n)

∣
∣ ≤ (h − 1) · AdvPRF,B′(λ).

Proof. We can use the security of the PRF on all keys Ki,j where i, j ∈ HS, since
these are hidden from the adversary A. We show that using the security of the
PRF on h − 1 carefully chosen such keys is sufficient to transition from G0 to
G1. Namely, if we write HS := {i1, . . . , ih}, where the indices i1 < i2 < · · · < ih
are ordered, we use the security of the PRF on keys of the form Ki1,j for all
j ∈ HS \ {i1}.

We build the adversary B′ as follows. Given CS sent by A, it samples
ppipfe ← Setup�

ipfe(1
λ, 1n) and mskipfe ← KeyGenipfe(ppipfe). For all i ∈ [n] \ {i1},

for all j > i, B′ samples Ki,j = Kj,i ← {0, 1}λ, thanks to which it can compute
ski := {Ki,j}j∈[n] for all i ∈ CS and send them to A. B′ can simulate the oracle

QKeyD using mskipfe, and answers the queries to QEnc(i,xj
i , �) for i ∈ CS, and

QLeftRight(i,xj,0
i ,xj,1

i , ��) for i ∈ CS using ski.
To answer QEnc(i1,x

j
i1

, �) or QLeftRight(i1,x
j,0
i1

,xj,1
i1

, ��), B′ computes

ti1,� :=
∑

j∈CS
(−1)j<i1PRFKi1,j

(�) +
h∑

t=2

RF(t, �).

570 M. Abdalla et al.

To answer QEnc(it,x
j
it

, �) or QLeftRight(it,x
j,0
it

,xj,1
it

, ��), for t ∈ [2, . . . , h], B′

computes
tit,� :=

∑

j∈[n]\{it,i1}
(−1)j<itPRFKit,j

(�) − RF(t, �).

Here, RF(t, �) is either a truly random function, or PRFKi1,it
(�), depending on

the experiment B′ is interacting with. In fact, we implicitly use a hybrid argument
which goes over all t ∈ [2, . . . , h] here, in order to switch the values PRFKi1,it

(�)
to RF(t, �). Thus, we obtain

∣
∣WinG0

A (λ, n)−WinG1
A (λ, n)

∣
∣ ≤ (h−1) ·AdvPRF,B′(λ).

�
Lemma 3.5 (Transition from G1 to G2). There exists a PPT adversary B1

such that
∣
∣WinG1

A (λ, n) − WinG2
A (λ, n)

∣
∣ ≤ Advany-IND

FE,B1
(λ).

Proof. The adversary B1 works as follows. Given CS sent by A, and ppipfe from
its own experiment, B1 samples Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks
to which it can send the ski for all i ∈ CS, together with ppipfe to A. Since B1

knows the ski for all i ∈ [n], it can answer the oracle QEnc as described in Fig. 5.
Whenever A queries QKeyD on input y, B1 queries its own oracle on the

same input, and forwards the answer to A.
Since we are considering pos+-IND security, we know A queries all honest

slots on QLeftRight(·, ·, ·, ��) and we denote by it� the last honest slot queried
on QLeftRight(·, ·, ·, ��). We call Δx := (x1,1

1 − x1,0
1 , . . . ,x1,1

n − x1,0
n), where for

all i ∈ HS, (i,x1,0
i ,x1,1

i , ��) is the first query of the form QLeftRight(i, ·, ·, ��),
and for all i ∈ CS, we define x1,1

i − x1,0
i := 0 ∈ Z

m (note that QLeftRight can
be queried on a corrupted slot, but by Condition (*), that means the query is of
the form (i,x1,0

i ,x1,1
i , ��)).

Whenever A queries QLeftRight(i,xj,0
i ,xj,1

i , ��), B1 computes the vectors ti,��

for all i ∈ [n], using ski and computing the random function RF on the fly, as
described in Fig. 5. Then, if i = it� , it computes wi := (0‖ . . . ‖0‖xj,0

i ‖0‖ . . . ‖0)+
ti,�� mod L, and returns Encipfe(ppipfe,mpkipfe,wi) to A. If i = it� , then B1

queries its left-right oracle on input (0,Δx) to get cti := Encipfe(ppipfe,mpkipfe,0)
or cti := Encipfe(ppipfe,mpkipfe,Δx), depending on the experiment B1 is inter-
acting with. Note that at this point, Δx is entirely known to B1, since it� is
the last honest slot to be queried to QLeftRight(·, ·, ·, ��). Then, B1 computes
wi := (0‖ . . . ‖0‖xj,0

i ‖0‖ . . . ‖0) + ti,�� mod L and returns ct′i := Add(cti,wi),
which, according to the property from Definition 3.2 (linear encryption), is identi-
cally distributed to Encipfe(ppipfe,mpkipfe,wi mod L) or Encipfe(ppipfe,mpkipfe,wi+
Δx mod L), (again, depending on which experiment B1 is interacting with). For
all y queried to QKeyD, we have 〈Δx ,y〉 = 0, by Condition (*). Moreover,
‖Δx‖∞ < 2X. Thus, the queries B1 sends to its left-right oracle are legitimate.
Finally, B1 returns ct′i to A.

To conclude, we show that when B1 is interacting with any-INDFE
0 (λ, 1,A),

then it simulates the game G1, whereas it simulates the game G2 when it is inter-
acting with any-INDFE

1 (λ, 1,A). It is clear for the case any-INDFE
0 (λ, 1,A). For

From Single-Input to Multi-client Inner-Product FE 571

the case any-INDFE
1 (λ, 1,A), we consider the vectors {ut}t∈[h], where we write

HS := {i1, . . . , ih} and we denote by u1 := −∑h
t=2 RF(t, ��) and ut := RF(t, ��),

for all t ∈ [2, . . . , n]. These are shares of a perfect h out of h secret sharing of
0, that is, they are uniformly random conditioned on

∑
t∈[h] ut = 0. Thus,

{ut}t∈[t]\{t�} ∪ {ut� + Δx} is a set of shares for a secret sharing of the vector
Δx . Thus, the following distributions are identical:

{ut}t∈[h]\{t�} ∪ {ut� + Δx}

and
{ut + (0‖ . . . ‖x1,1

it
− x1,0

it
‖0‖ . . . ‖0)}

t∈[h]
,

where for all t ∈ [h], ut ← Z
mn
L such that

∑
t∈[h] ut = 0. The uppermost

distribution corresponds to the simulation by B1 when it is interacting with
any-INDFE

1 (λ, 1,A), while the lowermost distribution corresponds to the game
G1.ρ. This concludes the proof.
�
Lemma 3.6 (Transition from G2 to G3). There exists a PPT adversary B2

such that
∣
∣WinG2

A (λ, n) − WinG3
A (λ, n)

∣
∣ ≤ Advany-IND

FE,B (λ).

Proof. We build an adversary B2 against the any-IND security of FE as follows.
Given CS sent by A, and ppipfe from its own experiment, B2 samples Ki,j =

Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks to which it can send the ski for all
i ∈ CS, together with ppipfe to A, and answer the oracle queries to QEnc as
described in Fig. 5.

Then, whenever A queries QKeyD on input y, B2 queries its own ora-
cle on the same input, and forwards the answer to A. Whenever A queries
QLeftRight(i,xj,0

i ,xj,1
i , ��), B2 computes ti,�� using ski and computing the ran-

dom function RF on the fly, as described in Fig. 5. Then, B2 queries its left-right
oracle on input (0‖ . . . ‖0‖xj,0

i − x1,0
i ‖0‖ . . . ‖0), (0‖ . . . ‖0‖xj,1

i − x1,1
i ‖0‖ . . . ‖0)

to get

cti := Encipfe(ppipfe,mpkipfe(0‖ . . . ‖0‖xj,β
i − x1,β

i ‖0‖ . . . ‖0)),

where β ∈ {0, 1}, depending on the experiment B2 is interacting with.
Finally, B2 computes vi := (0‖ . . . ‖0‖x1,1

i ‖0‖ . . . ‖0) + ti,�� mod L, and returns
ct′i := Add(cti,vi) to A, which, according to the property from Definition
3.2, is identically distributed to Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖0‖xj,β

i − x1,β
i +

x1,1
i ‖0‖ . . . ‖0)+ ti,�� mod L). For all y queried to QKeyD, Condition (*) implies

that 〈(0‖ . . . ‖0‖xj,0
i − x1,0

i ‖0‖ . . . ‖0),y〉 = 〈(0‖ . . . ‖0‖xj,1
i − x1,1

i ‖0‖ . . . ‖0),y〉
for all queries (i,xj,0

i ,xj,1
i , ��) to QLeftRight. Moreover, for all β ∈ {0, 1}, we

have ‖(0‖ . . . ‖0‖xj,β
i − x1,β

i ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries B2 sends to
its left-right oracle are legitimate.
�

572 M. Abdalla et al.

3.3 Adaptive Security

Now we proceed to prove the adt-pos+-IND-security of the scheme, that is, secu-
rity with adaptive corruption. As before, using the generic transformation in
Sect. 4, we can remove the pos+ restriction, and obtain adt-any-IND security.

Theorem 3.7 (adt-pos+-IND-security). If the FE scheme FE =
(Setupipfe,KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme
for the inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y), and

PRF is secure, then MCFE from Fig. 4 is adt-pos+-IND-secure for the functional-
ity defined as F ip

ρ , ρ = (Z, n,m,X, Y). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advadt-pos
+-IND

MCFE,A (λ, n) ≤ 2(n + 1)n(n − 1)2qEnc · AdvPRF,B(λ)

+ 2(n + 1)qEnc · Advany-IND
FE,B′ (λ) ,

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. WLOG, we can assume that adversary A only queries QLeftRight on one
label ��, that isn’t queried to QEnc. Namely, we show that there exist PPT
adversaries B and B′ such that:

Advadt-pos
+-IND-1-label

MCFE,A (λ, n) ≤ 2(n + 1)n(n − 1)2 · AdvPRF,B(λ)

+ 2(n + 1) · Advpos+-IND
FE,B′ (λ) .

The theorem then follows from Lemma 2.5.
We proceed via a hybrid argument, using the games described in Fig. 6. The

lemmas from the transitions are provided in the full version [1].

Game G�0 : is as xx-yy-IND-1-label0, except the size of Q�� , which denotes
the set of slots queried to QLeftRight(·, ·, ·, ��), is initially guessed by the
experiment, by choosing a uniformly random κ� ← {0, . . . , n}. The game
behaves exactly as xx-yy-IND-1-label0, except it ignores the A’s output α,
and outputs 0 instead, in case the guess κ� was incorrect. Since this guess is
correct with probability 1

n+1 , we have

Win
G�
0

A (λ, n) =
1

n + 1
· Win

xx-yy-IND-1-label0
A (λ, n) .

Game G�
1: in this game, we change the distribution of the cipher-

texts output QLeftRight, for the case κ� ≥ 2. For these, the vector
(0‖ . . . ‖0‖xj,0

i ‖0‖ . . . ‖0) to be encrypted is added a share of a perfect κ�

out of κ� secret sharing of 0. This game is similar to the game G1 from Fig. 5
for the proof of Theorem 3.3. We justify this transition using the security of
the PRF, as in Lemma 3.5, with the crucial difference that corruptions are
adaptive here. Thus, the set of slots Q�� queried to QLeftRight is not known

From Single-Input to Multi-client Inner-Product FE 573

Fig. 6. Games for the proof of Theorem 3.7. We say the guess κ� is correct if the size
of Q�� is κ�.

in advance by the reduction. Since guessing the entire set would incur an
exponential security loss, we introduce gradually the shares, starting with a
2 out of 2 perfect secret sharing, then 3 out of 3, and so forth, via a hybrid
argument, until we reach the κ� out of κ� secret sharing among all queried
slots. To go from one hybrid to another, we only require to guess a pair of
users (i, j) (as opposed to guessing the entire set of honest users) to use the
security of the PRF on the key Ki,j . Namely, in the full version [1], we show
that there exists a PPT adversary B0 such that:

∣
∣Win

G�
0

A (λ, n) − Win
G�
1

A (λ, n)
∣
∣ ≤ n(n − 1)2 · AdvPRF,B0(λ)

574 M. Abdalla et al.

Game G�
2: in this game, the vectors wi used to generate the ciphertexts output

by QLeftRight contain an additional vector (0‖ . . . ‖0‖x1,1
i − x1,0

i ‖0‖ . . . ‖0).
The transition from G�

1 to G�
2 is justified by the any-IND security of FE,

similarly than the transition from G1 to G2 in Fig. 5 for the proof of Theorem
3.3. Namely, in the full version [1], we exhibit a PPT adversary B1 such that:

∣
∣Win

G�
1

A (λ, n) − Win
G�
2

A (λ, n)
∣
∣ ≤ Advany-IND

FE,B1
(λ).

Game G�
3: in this game, the vectors wi used in the ciphertexts output by

QLeftRight are of the form: wi := (0‖ . . . ‖0‖xj,1
i ‖0‖ . . . ‖0) + ti,�� mod L.

The transition from G�
ρ−1.2 to G�

ρ−1.3 is justified by the pos+-IND security
of FE, similarly than the transition from G2 to G3 in Fig. 5 for the proof of
Theorem 3.3. Namely, in the full version [1], we build a PPT adversary B2

such that: ∣
∣Win

G�
2

A (λ, n) − Win
G�
3

A (λ, n)
∣
∣ ≤ Advany-IND

FE,B2
(λ).

Game G�4 . The transition from G�
3 to G�

4 is symmetric to the transition from
G�
0 to G�

1, justified by the security of the PRF. Namely, we prove in in the full
version [1] that there exists a PPT adversary B3 such that:

∣
∣Win

G�
3

A (λ, n) − Win
G�
4

A (λ, n)
∣
∣ ≤ n(n − 1)2 · AdvPRF,B3(λ).

We defer to the full version [1] for further details. Since G�
4 is exactly as the

game xx-yy-INDMCFE
0 except it it guesses κ� ← {0, . . . , n}, we have

Win
G�
4

A (λ, n) =
1

n + 1
· Win

xx-yy-IND-1-label1
A (λ, n).

Putting everything together, we obtain the theorem.
�

4 From pos+-IND to any-IND Security

In this section, we give a compiler that generically transforms any adt-pos+-IND
secure (D)MCFE into an adt-any-IND secure (D)MCFE. Our construction builds
up from the compiler from [2, Section 4.1], which does not support labels. Our
technical contribution is to handle multiple labels, many challenge ciphertexts
per label and input slots, and adaptive corruptions, without resorting to the
random oracle model, as opposed to [2, Section 4.2]. This is the first generic
transformation to support such features, and when combined with our MCFE
from Sect. 3, it gives the first MCFE for inner products whose adt − any-IND
security is proven in the standard model. Our construction is given in Fig. 7.
I’ve added this last sentence. It is stated in terms of DMCFE, but a similar
transformation works for MCFE.

From Single-Input to Multi-client Inner-Product FE 575

Fig. 7. Compiler from an xx-pos+-IND DMCFE DMCFE into an xx-any-IND DMCFE
DMCFE′ using an IND-CPA symmetric-key encryption scheme SE.

Theorem 4.1. (Security). Let the tuple DMCFE = (Setup,KeyGen,
KeyDerShare,KeyDerComb,Enc,Dec) be an adt-pos+-IND-secure DMCFE
scheme for a family of functions F . Let SE = (EncSE,DecSE) be an IND-CPA
symmetric-key encryption scheme. Let PRF be a pseudorandom function. Then
the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,
Enc′,Dec′) described in Fig. 7 is adt-any-IND secure. Namely, for any PPT
adversary A, there exist PPT adversaries B, B′, and B′′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ qEnc · Advadt-pos+-IND

DMCFE,B (λ, n)

+ qEncn
2 · AdvIND-CPA

SE,B′ (λ) + 2qEncn
2 · AdvPRF,B′′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. WLOG, we can consider the security where only one label is queried
to QLeftRight, and that label is not queried to QEnc. Namely, we show there
exist PPT adversaries B, B′ and B′′ such that Advadt-any-IND-1-label

DMCFE′,A (λ, n) ≤
Advadt-pos

+-IND
DMCFE,B (λ, n)+n·AdvIND-CPA

SE,B′ (λ)+2n·AdvPRF,B′′(λ). The theorem follows
from Lemma 2.5 (from one to many labels). We call �� the unique label queried
to QLeftRight (if QLeftRight is not queried, the security follows trivially).

Intuitively, the proof uses the adt-pos+-IND security of DMCFE for the case
where all honest slots are queried to QLeftRight(·, ·, ·, ��), and the security of
the PRF together witht the IND-CPA security of SE for the case where not all
honest slots are queried to QLeftRight(·, ·, ·, ��).

576 M. Abdalla et al.

Formally, for all b ∈ {0, 1}, we define G�
b as adt-yy-INDDMCFE′

1 (λ, n,A),
except the game guesses an honest slot that is not going to be queried to
QLeftRight(·, ·, ·, ��), by sampling uniformly at random i� ← {0, ..., n}, where
i� = 0 means that all honest slots are queried to QLeftRight(·, ·, ·, ��). The out-
put of G�

b is the same adt-yy-INDDMCFE′
1 (λ, n,A), unless the guess is unsuc-

cessful, in which case, G�
b outputs 0. Clearly, we have Pr[G�

b(λ, n,A) = 1] =
1

n+1 · Pr[adt-yy-INDDMCFE′
b (λ, n,A) = 1].

When i� = 0, we can rely on the adt-pos+-IND security of DMCFE. Namely,
we have a PPT adversary B such that:

∣
∣ Pr[G�

0(λ, n,A) = 1|i� = 0]

− Pr[G�
1(λ, n,A) = 1|i� = 0]

∣
∣ ≤ Advadt-pos

+-IND
DMCFE,B (λ, n).

For all j ∈ [n], we prove that there exist PPT adversaries B′ and B′′ such
that:

∣
∣ Pr[G�

0(λ, n,A) = 1|i� = j] − Pr[G�
1(λ, n,A) = 1|i� = j]

∣
∣

≤ n · AdvIND-CPA
SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

To prove the statement above, we use the fact that if there is a query
QLeftRight(i,xj,0

i ,xj,1
i , ��) with xj,0

i = xj,1
i , then the slot i ∈ [n] cannot be

corrupted without violating the Condition (*) from the security definition given
in Definition 2.2. We call such a slot explicitly honest, and such a query explic-
itly honest. We define hybrid games Hρ for all ρ ∈ {0, . . . , n}, defined as G�

0,
except that every explicitly honest query QLeftRight(i,xj,0

i ,xj,1
i , ��) is answered

by Enc′(pp, sk′
i,x

j,1
i , ��) if i ≤ ρ, and is answered by Enc′(pp, sk′

i,x
j,0
i , ��) if i > ρ.

The game H0 is the same as G�
0, and Hn is the same as G�

1. We prove that for all
j ∈ [n], for all ρ ∈ [n], there exist PPT adversaries Bρ and B′

ρ such that:

∣
∣ Pr[Hρ−1(λ, n,A) = 1|i� = j] − Pr[Hρ(λ, n,A) = 1|i� = j]

∣
∣

≤ AdvIND-CPA
SE,Bρ

(λ, n) + 2 · AdvPRF,B′
ρ
(λ, n).

The transition from H�
ρ−1 and H�

ρ−1 is justified as follows. If ρ is not an
explicitly honest slot, then the two games are the same by definition. Other-
wise, we use the security of the PRF to switch the key kρ,i�(��) to uniformly
random (note that we can do so since the slots ρ and i� are known beforehand
by the reduction). If the guess i� is correct (i.e i� is honest but never queried to
QLeftRight), then the key kρ,i�(��) := PRFkρ,i� (��) only appears in the output
QLeftRight(ρ, ·, ·, ��). So, for these challenge ciphertexts, we have a uniformly
random key Kρ(��), which allows us to use the IND-CPA security of SE, and
changes encryption of xj,0

ρ as in G�
ρ−1 into encryption of xj,1

ρ , as in G�
ρ. Then we

switch back the key kρ,i� from uniformly random to pseudo-random, using the
security of the PRF once again. Summarizing, we have:

Pr[H�
ρ−1(λ, n,A) = 1|i� = j] − Pr[H�

ρ(λ, n,A) = 1|i� = j]

= AdvIND-CPA
SE,Bρ

(λ, n) + 2 · AdvPRF,B′
ρ
(λ, n).

From Single-Input to Multi-client Inner-Product FE 577

Summing up for all ρ ∈ [n], we obtain the following for all j ∈ [n]:
∣
∣ Pr[G�

0(λ, n,A) = 1|i� = j] − Pr[G�
1(λ, n,A) = 1|i� = j]

∣
∣

≤ n · AdvIND-CPA
SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

Thus, we have:
∣
∣ Pr[G�

0(λ, n,A) = 1] − Pr[G�
1(λ, n,A) = 1]

∣
∣

≤ 1
n + 1

Advadt-pos
+-IND

DMCFE,B (λ, n)

+
n2

n + 1
· AdvIND-CPA

SE,B′ (λ, n) +
2n2

n + 1
· AdvPRF,B′′(λ, n) .

Therefore, we obtain:
∣
∣ Pr[adt-yy-INDDMCFE′

0 (λ, n,A) = 1] − Pr[adt-yy-INDDMCFE′
1 (λ, n,A) = 1]

∣
∣

≤ Advadt-pos
+-IND

DMCFE,B (λ, n) + n2 · AdvIND-CPA
SE,B′ (λ, n) + 2n2 · AdvPRF,B′′(λ, n) .

�

5 Decentralized Multi-Client Function Encryption

In this section, we modify the generic construction of Sect. 3 to make it decen-
tralized. We cannot use directly the transformation from [2], because the master
secret key msk may be arbitrary, and not necessarily the concatenation of the
parties’ secret keys ski (for i ∈ [n]), as required by [2]. Moreover, the functional
decryption keys skf may not be computed just from ski. Instead, we additively
secret share the master secret key of the underlying single-input FE. For key
derivation to be possible in a decentralized way, we require an extra property on
the single-input FE, that is fulfilled by most known constructions of single-input
inner FE for inner products. This property is called special key derivation, and
is very similar to special key derivation for MCFE defined in [2].

Definition 5.1 (FE with Special Key Derivation). Let FE =
(Setup,KeyGen,KeyDer,Enc,Dec) be a public-key FE scheme for the inner prod-
uct functionality F ip

ρ , where ρ = (R, 1, n ·m,X, Y) where R is either Z or ZL for
some integer L, and n,m,X, Y are positive integers. FE is said to have special
key derivation modulo M if:

– The algorithm KeyGen(pp) generates a master secret key of the form msk :=
U ∈ Z

κ×mn
M , for some constant κ (which can depend on pp).

– sky ← KeyDer(pp,msk,y) outputs sky = (y,U · y ∈ Z
κ
M).

For our security proof, we require M to be a prime number.

578 M. Abdalla et al.

Instantiations. All the stateless3 IPFE constructions in [7] satisfy the special
key derivation property. More precisely, the DDH construction has special key
derivation modulo p, the prime order of the used cyclic group, and κ = 2 (using
notations from [7], the matrix U is defined by U1,i = si and U2,i = ti). The
Paillier and LWE constructions have special key derivation modulo any large
enough prime number M so that U · y is the same modulo M and over the
integers with overwhelming probability over the generation of msk. For Paillier,
κ = 1 and U1,i = si, while for LWE, κ = m and U = Z (using notations from
[7]).

Construction. The construction is provided in Fig. 8.
When instantiated with the DDH construction from [7], KeyGen can be decen-

tralized non-interactively. Let G be the underlying cyclic group of order p and g
and h be two generators of G. Each party i independently generates Ui ← Z

2×mn
p

and K′
i,j ← {0, 1}λ, computes

hk,i := gUi,1,k · hUi,2,k for k ∈ [mn] .

It then sends ({hk,i}k∈[mn],K
′
i,j) to party j, for each j ∈ [n]. After receiving all

the messages from the other parties, each party i computes and sets:

mpkipfe := {hk :=
∏n

i=1 hk,i}k∈[mn] ,

Ki,j := Kj,i := K′
i,j ⊕ K′

j,i for j ∈ [n] ,

ski := (mpkipfe, Ui, {Ki,j}j∈[n]) .

When instantiated with the Paillier or DDH construction from [7], we do not
know how to decentralize KeyGen this way. The issue is that in these construc-
tions, U is not uniform in Z

κ×mn
M but is sampled according to some Gaussian

distribution.

Correctness. The only remaining part of correctness to be proven for the
scheme in Fig. 8 is to show that the key computed by the algorithms KeyDerShare
and KeyDerComb corresponds to the one that would have been computed by
KeyDer. This follows from the following fact:

sky =
n∑

i=1

ski,y =
n∑

i=1

Ui · y = U · y .

Theorem 5.2 (adt-pos+-IND-security). If the FE scheme FE =
(Setupipfe,KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme
for the inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y), if FE

has the special key derivation property modulo the prime number M , and if PRF

3 In this paper, our definitions do not allow for the encryption to be stateful.

From Single-Input to Multi-client Inner-Product FE 579

Fig. 8. Algorithms KeyGen, KeyDerShare and KeyDerComb making the inner-product
MCFE from Fig. 4 a DMCFE, assuming that FE := (Setupipfe,Encipfe,KeyDeripfe,Decipfe)
has the special key derivation property modulo a prime number M .

is secure, then DMCFE from Fig. 8 is adt-pos+-IND-secure for the functionality
defined as F ip

ρ , ρ = (Z, n,m,X, Y). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advadt-pos
+-IND

MCFE,A (λ, n) ≤ 2n2(n − 1)qEnc · AdvPRF,B(λ) + 2qEnc · Advany-IND
FE,B′ (λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. Let A be a PPT adversary against the security of MCFE. We proceed
via a hybrid argument, using the games described in Fig. 9. Note that G0

corresponds to the game adt-pos+-INDDMCFE
0 (λ, n,A), and G3 corresponds to

the game adt-pos+-INDDMCFE
1 (λ, n,A). Thus, we have: Advadt-pos

+-IND
DMCFE,A (λ, n) =

∣
∣WinG0

A (λ, n) − WinG3
A (λ, n)

∣
∣.

Game G1. In game G1, we change the way the oracles QCor and QKeyD answer:
instead of using each individual share Ui, they generate their answers on-the-
fly to be consistent with previous answers and KeyDeripfe(ppipfe,mskipfe,y) in
the case of QKeyD. The transition from G0 to G1 is justified by linear algebra:
the two games are perfectly indistinguishable. A formal proof can be derived
from [2, Lemma A.2] (for κ = 1, the lemma applies directly, while for κ ≥ 2,
we just need to apply for each row of U.

580 M. Abdalla et al.

Fig. 9. Games for the proof of Theorem 5.2. Condition (*) is given in Definition 2.1.

Game G2. In game G2, the challenge ciphertexts encrypts xj,1
i instead of xj,0

i .
The transition from G1 to G2 is justified by the adt-pos+-IND security of
MCFE proven in Theorem 3.7.

Game G3. In game G3, we change back the way the oracles QCor and QKeyD
answer to match adt-pos+-INDDMCFE

1 (λ, n,A). The transition from G2 to G3

is similar to the one from G1 to G0: G3 and G2 are perfectly indistinguishable.

Putting everything together, we obtain the theorem.
�

Acknowledgments. This work was supported in part by the European Union’s Hori-
zon 2020 Research and Innovation Programme under grant agreement 780108 (FEN-
TEC), by the ERC Project aSCEND (H2020 639554), by the French Programme
d’Investissement d’Avenir under national project RISQ P141580, and by the French
FUI project ANBLIC. The third author was partially supported by a Google PhD
Fellowship in Privacy and Security. Part of this work was done while the second author
was at IBM Research, Yorktown Heights, USA, and the third author was at École
normale supérieure, Paris, France.

From Single-Input to Multi-client Inner-Product FE 581

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-
product functional encryption. Cryptology ePrint Archive, Report 2019/487
(2019). https://eprint.iacr.org/2019/487

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 5

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

5. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

6. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. Cryptology ePrint Archive, Report 2019/356 (2019).
https://eprint.iacr.org/2019/356

7. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

8. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

9. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6 2

10. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 20

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

12. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. J. Cryptol. 31(2),
434–520 (2018). https://doi.org/10.1007/s00145-017-9261-0

13. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03329-3 24

https://eprint.iacr.org/2019/487
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://eprint.iacr.org/2019/356
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/978-3-030-03329-3_24

582 M. Abdalla et al.

14. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client
functional encryption with repetition for inner product. Cryptology ePrint Archive,
Report 2018/1021 (2018). http://eprint.iacr.org/2018/1021

15. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

16. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

17. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol.
6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22263-4 10

18. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

http://eprint.iacr.org/2018/1021
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-642-22263-4_10
http://eprint.iacr.org/2010/556

Public Key Encryption (2)

Rate-1 Trapdoor Functions
from the Diffie-Hellman Problem

Nico Döttling1(B), Sanjam Garg2, Mohammad Hajiabadi2, Kevin Liu2,
and Giulio Malavolta3

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
nico.doettling@gmail.com

2 University of California, Berkeley, USA
3 Simons Institute for the Theory of Computing, Berkeley, USA

Abstract. Trapdoor functions (TDFs) are one of the fundamental
building blocks in cryptography. Studying the underlying assumptions
and the efficiency of the resulting instantiations is therefore of both the-
oretical and practical interest. In this work we improve the input-to-
image rate of TDFs based on the Diffie-Hellman problem. Specifically,
we present:
(a) A rate-1 TDF from the computational Diffie-Hellman (CDH)

assumption, improving the result of Garg, Gay, and Hajiabadi
[EUROCRYPT 2019], which achieved linear-size outputs but with
large constants. Our techniques combine non-binary alphabets and
high-rate error-correcting codes over large fields.

(b) A rate-1 deterministic public-key encryption satisfying block-
source security from the decisional Diffie-Hellman (DDH) assump-
tion. While this question was recently settled by Döttling et al.
[CRYPTO 2019], our scheme is conceptually simpler and concretely
more efficient. We demonstrate this fact by implementing our con-
struction.

1 Introduction

Trapdoor functions (TDFs) are the public-key variant of the notion of one-
way functions. Informally, TDFs are (families of) one-to-one functions, where
each function can be computed in the forward direction using the index key,

S. Garg—Supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200, AFOSR YIP
Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-
C-4065, a Hellman Award and research grants by the Okawa Foundation, Visa Inc.,
and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed
are those of the author and do not reflect the official policy or position of the funding
agencies.
G. Malavolta—“Part of this work was done while the author was at Carnegie Mellon
University.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 585–606, 2019.
https://doi.org/10.1007/978-3-030-34618-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_20

586 N. Döttling et al.

and in the backward direction using a corresponding trapdoor key. More-
over, without knowledge of a trapdoor, a randomly chosen function should
be one-way. Trapdoor functions, or extensions thereof such as lossy TDFs
or deterministic public-key encryption, have important applications in the
construction of primitives with CCA security, selective-opening security, and
more recently in the context of designated-verifier non-interactive zero knowl-
edge [BFOR08,BHY09,BBN+09,MY10,BCPT13,LQR+19].

A series of works, some quite recent, have shown how to build TDFs and
related primitives based on almost any specific assumptions from which public-
key encryption (PKE) is known [PW08,FGK+10,PW11,Wee12,GH18,GGH19].
However, all these constructions are less efficient than those of PKE from the
corresponding assumptions, in particular with respect to the sizes of public-keys
and ciphertexts. For instance, we have constructions of PKE for which cipher-
text expansion factors are small constants, sometimes even approaching 1. Yet,
the situation for TDFs is different: All TDFs either have quadratic ciphertext
expansions or linear expansions with large constants.

In this work we build TDFs and deterministic-encryption schemes with rates
approaching 1 based on standard assumptions in cyclic groups, specifically the
Computational Diffie Hellman (CDH) and Decisional Diffie Hellman (DDH)
assumptions. Concretely, for an image y of an input x, the ratio |x|/|y| approaches
1 as |x| grows. The first TDF constructions based on DDH [PW08,FGK+10]
resulted in schemes in which the size of the image is quadratic in the input
size. In a nutshell, the optimized TDF construction of Peikert and Waters, due
to [FGK+10], computes a linear function in the exponent on a binary encoding
of the input. In particular, recall that in a group with a generator g, if we have an
encoding [M] = gM of an invertible matrix M of exponents, then we can encode
any column vector X of bits by computing M ·X in the exponent. This will allow
for inversion if one possesses M−1. We can argue lossiness in a very elegant way
by making the matrix M rank-deficient. On the downside however, we need to
spend an entire group element in the output for each input bit, resulting in an
expansion factor of Ω(λ).

A recent result of Garg, Gay and Hajiabadi [GGH19] shows how to construct
linearly-expanding TDFs and DE schemes based on CDH or DDH. In particular,
they give schemes in which the image expansion ratio is O(1). However, this
linear expansion hides big constants—a rough estimate of the constant is at
least 20. At a high level, the constructions of [GGH19] achieve linear-expansion
rates via the following two steps:

(a) For some constant c, first build a so-called local TDF, in which the inversion
algorithm for every coordinate of the input either manages to recover the
underlying bit correctly or outputs ⊥, the latter happening with probability
at most 1/2c.

(b) Boost correctness of local TDFs by applying erasure-correcting codes.

Their local TDFs from step (a) already incur an expansion factor of at least
2c. Also, since erasure corrections for strings over F2 can tolerate only relatively
small erasure rates (i.e., the ratio between the maximum number of tolerated

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 587

erasures and the total length), they have to choose the constant c bit enough in
Step (a)—at least 10.

The problem of rate-1 (lossy) TDFs from DDH was recently resolved in the
work of Döttling et al. [DGI+19], who presented a construction based on the
interplay of [GGH19] and techniques developed in the context of homomorphic
secret sharing [BGI16]. Their approach however results in large index keys and
does not appear to extend to the more challenging CDH settings.

Our Results. In this work, we show how to build rate-1 TDFs based on
CDH or DDH, satisfying stronger properties such as block-source deterministic-
encryption security in the sense of [BBO07,BFO08,BFOR08].1 This notion of
security requires that the deterministic encryptions of any two distributions each
having high min-entropy (more than a threshold k) should be computationally
indistinguishable. Ideally, we want k << n, where n is the bit length of the
input.

At a high-level, our CDH-based construction deviates from the paradigm
of [GGH19] by parsing the input into elements from a poly-sized field F (i.e.,
|F| = poly(λ)). Then for every block Bi ∈ F of the input, we provide a correspond-
ing “hinting” block Oi in the output of almost equal size. We then show how
to perform inversion in a way which allows us to recover all except a 1/poly1(λ)
fraction of the input blocks, for some polynomial poly1. By choosing an appro-
priate error-correcting code over F and by choosing poly1 appropriately based
on |F|, we are able to achieve rate 1. The main technical novelty of our work lies
in providing the hints in a succinct way. See Sect. 1.1 for more details.

Under the DDH assumptions, we give a more direct rate-1 construction with-
out the need of relying on error-correction techniques. For an input x ∈ {0, 1}n,
the output of the TDF contains only one group element plus exactly n bits.
The construction has perfect correctness (i.e., can be inverted with probability
1), is conceptually simple, and is concretely efficient. We show this by provid-
ing a proof-concept-implementation in Python. Our implementation confirms our
expectation of having short ciphertexts and relatively fast encryption/decryption
times. Both encryptions and decryption times take less than a second on inputs
of 128 Bytes (1024 bits).

Comparison with [DGI+19]. The work of [DGI+19] also shows how to build
lossy TDFs (and deterministic encryption) based on DDH achieving rate 1 as in
our construction. However, our construction achieves shorter public keys, sav-
ing an additive factor of at least 3n2 group elements, and is much simpler. In
particular, the construction of [DGI+19] relies on non-trivial techniques such as

1 We mention that building rate-1 TDFs satisfying one-wayness alone is trivial. If a
TDF TDF maps n-bit inputs to nc-bit outputs, then define a second TDF whose

input is of the form (x ∈ {0, 1}n, x′ ∈ {0, 1}nc+1
), and the output is (TDF(x), x′).

While this trivial construction achieves rate-1, it destroys stronger properties such
as deterministic-encryption security.

588 N. Döttling et al.

those developed in the context of homomorphic secret sharing [BGI16] as well
as error-correcting code type techniques. We rely on neither of these tools.

Open Problems. Our rate-1 primitives only provide CPA security. It would
be interesting to see if techniques from [GGH19], along with those developed
in this work, yield a rate-1 CCA primitive. One challenge is that in [GGH19]
the (constant) multiplicative overhead of ciphertexts in the CCA case is much
larger than the CPA case. In particular, our current techniques do not appear
to naturally yield a rate-1 CCA primitive. We leave this as an open problem.

1.1 Technical Overview

In the following we provide an informal overview of the techniques developed
in this work. We first discuss how to construct a CDH-based trapdoor function
with rate 1, then we turn our attention to the DDH-based settings.

The Basic Building Block. The starting point of this work is the following
group-based hash function, which maps {0, 1}n into a group G

Hash(k, x) :=
n∏

j=1

gj,xj

where the key

k :=
(

g1,1, g2,1, . . . , gn,1

g1,2, g2,2, . . . , gn,2

)
$←− G

2×n.

is chosen uniformly at random and x ∈ {0, 1}n is the input. By choosing n larger
than the representation size of a group element in G, this function becomes
compressing. This surprisingly powerful function plays a central role in recent
constructions of identity based encryption [DG17b], trapdoor functions [GH18],
deterministic encryption and lossy trapdoor functions [GGH19].

In a first step, we increase the alphabet size of the input x, i.e instead of
taking x from {0, 1}n, we take it from Σn for an alphabet Σ := {1, . . . , σ} of size
σ = poly(λ). While the definition of the function Hash is unchanged, we need to
account for the increased alphabet size by sampling the key as

k :=

⎛

⎜⎜⎝

g1,1, g2,1, . . . , gn,1

g1,2, g2,2, . . . , gn,2

. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

⎞

⎟⎟⎠
$←− G

σ×n.

The main effect of this modification for now is that the size of the key is increased
by a σ factor. While this modification seems insignificant at first, it will be
instrumental in achieving rate 1.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 589

Adding the Encryption. We now show how this function can be aug-
mented with the encryption functionality, using techniques of [GGH19]. Let
y := Hash(k, x), for a certain input x ∈ Σn, our objective is to design an encryp-
tion algorithm such that a ciphertext encrypted under an index i ∈ [n], a symbol
f ∈ Σ and y, can be decrypted with the knowledge of x only if xi = f . This is
done by sampling a uniform ρ

$←− Zp and publishing

cti,f :=

⎛

⎜⎜⎜⎜⎝

gρ
1,1, gρ

2,1, . . . , ⊥, . . . , gρ
n,1

. . . , . . . , . . . , . . . , . . . , . . .
gρ
1,f , gρ

2,f , . . . , gρ
i,f , . . . , gρ

n,f

. . . , . . . , . . . , . . . , . . . , . . .
gρ
1,σ, gρ

2,σ, . . . , ⊥, . . . , gρ
n,σ

⎞

⎟⎟⎟⎟⎠
,

as the ciphertext, and letting yρ be the underlying (secret) encapsulated value.
Given x, anyone can recover yρ by simply computing

yρ :=
m∏

j=1

gρ
j,xj

.

It is not hard to show that recovering the yρ if xj �= f is as hard as solving the
Diffie-Hellman problem.

Constructing Trapdoor Functions. The key observation of [GH18] (later
improved in [GGH19]) is that the same value can be recovered from y using the
trapdoor ρ, without the knowledge of x. This allows us to use the above structure
to construct a trapdoor function by sampling the trapdoor as a matrix

tk :=

⎛

⎜⎜⎝

ρ1,1, ρ2,1, . . . , ρn,1

ρ1,2, ρ2,2, . . . , ρn,2

. . . , . . . , . . . , . . .
ρ1,σ, ρ2,σ, . . . , ρn,σ

⎞

⎟⎟⎠
$←− Z

σ×n
p

and setting the index key as

ik := k,

⎛

⎜⎜⎝

ct1,1, ct2,1, . . . , ctn,1

ct1,2, ct2,2, . . . , ctn,2

. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctn,σ

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

a1,1, a2,1, . . . , an,1

a1,2, a2,2, . . . , an,2

. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , an,σ

⎞

⎟⎟⎠

where k and cti,f are defined as above and each ai,f
$←− G is a random group

elements. The purpose of these random elements is to shift the (negligible) inver-
sion error from the random choice of x to the random choice of ik (see [GGH19]
for a detailed discussion). Given an input x, the output of the trapdoor function
is defined to be

u := (y, v1 := yρ1,x1 ⊕ a1,x1 , . . . , vn := yρn,xn ⊕ an,xn
).

590 N. Döttling et al.

Note that, as discussed before, this computation can be performed without the
trapdoor tk. On the other hand, the function can be easily inverted with the
knowledge of tk (and without x) by simply recomputing each yρi,f ⊕ ai,f and
comparing it with vi. If it matches, then the i-th symbol is set to f . While this
gives us a trapdoor function, its rate is far from 1: To encode one symbol xi ∈ Σ,
we need to spend one group element vi ∈ G.

Boosting the Rate. However, we can improve the rate of this construction
with a surprisingly simple idea. Namely, we will use a hardcore function (in
the sense of [GL89]) H to hash the element yρi,xi into a polynomial-size domain
{0, 1}w and sample ai,f from the same domain. Image values of the function now
look as follows

u := (y, v1 := H(yρ1,x1) ⊕ a1,x1 , . . . , vn := H(yρn,xn) ⊕ an,xn
).

Inversion is done as before: Given y and the trapdoor key tk one can check
whether vi

?= H(yρi,f) ⊕ ai,f for all possible f ∈ Σ. If one finds a unique f ∈ Σ
with this property, then it must hold that xi = f . However, as {0, 1}w is a domain
of polynomial size, collisions can and will occur. That is, there can occur false
positives f ′ �= xi which satisfy the above condition. Given that such collisions
are not too frequent, we can protect against them by pre-processing x with a
suitable code which also has high rate. Our analysis shows that the number of
indices i at which such collisions occur is at most 2n · σ/2w, where σ = |Σ| is
the size of the alphabet.

Achieving Rate 1. The crucial observation now is that we can choose Σ
and {0, 1}w in such a way that σ/2w is sublinear, but at the same time log(σ)/w
approaches 1. Note that log(σ)/w is the rate at which we encode a symbol xi ∈ Σ
by H(yρi,xi) ⊕ ai,xi

. This is e.g. achieved by choosing σ ≥ λ and 2w = σ · log(λ).
This choice gives us σ/2w ≤ 1/ log(λ) and

log(σ)
w

=
log(σ)

log(σ) + log log(λ)
= 1 − log log(λ)

log(σ) + log log(λ)
≥ 1 − log log(λ)

log(λ)
,

which approaches 1. Finally, we can pre-process the input x with a code
which can handle a 2·σ/2w = 2/ log(λ) fraction of erasures, such as a [n, n −
2n/ log(λ), 2/ log(λ) + 1] Reed Solomon code over a field Σ of size σ ≥ n. This
code has rate 1 − 2/ log(λ). Concluding, the image (ignoring the group element
y which causes only an additive overhead) encodes a message x at rate

(
1 − 2

log(λ)

)
·
(

1 − log log(λ)
log(λ)

)
≥ 1 − Ω

(
log log(λ)

log(λ)

)
.

The last question to address is how to instantiate H to extract enough random-
ness from a CDH instance. By our choice of parameters above, w = O(log(λ))
random bits suffice, which allows us to use the standard Goldreich-Levin [GL89]
hardcore function.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 591

DDH-Based Deterministic Encryption (DE). Recall that we say a
TDF with input space {0, 1}n has (k, n)-CPA-security if the evaluations of
any two distributions with min-entropy at least k result in computationally-
indistinguishable distributions. We show how to realize this notion in a very
simple and ciphertext-compact way using DDH.

The index key of our TDF consists of a random vector g ∈ G
n together with

n vectors {gi ∈ G
n}i∈[n], where each gi is an element-wise exponentiation of

g to a random power ρi. To evaluate an input x ∈ {0, 1}n, we return a group
element g′ := x · g (where · denotes the hash

∏n
j=1 g

xj

j), as well as an encoded
bit bi := BL(x · gi) ⊕ xi for the i-th bit of the input. Here BL : G → {0, 1} is a
balanced function, meaning that the output of BL(gu) on a uniformly-random
gu is a uniformly-random bit. Inversion can be performed by knowing all the
exponents ρi’s.

We show if k ≥ log p + ω(log λ)—where p is the size of the group—then we
have (k, n)-CPA security. To argue this, first recall that an index key is of the
form (g, g1, . . . ,gn), where each gi is an exponentiation of g. Say two x and x′ are
siblings if x · g = x′ · g. (That is, if both result in the same group element in the
output.) We show that for any x ∈ {0, 1}n, one may sample the gi components
of the index key in a manner correlated with x to get a correlated ik∗ in such a
way that:

1. (x, ik∗)
c≡ (x, ik), where ik is a real index key; and

2. ik∗ will lose information w.r.t. all siblings of x. That is, if x′ is a sibling of x,
then TDF.F(ik∗, x) = TDF.F(ik∗, x′).

3. The joint distribution (ik∗,TDF.F(ik∗, x)) can be formed just by knowing g′ :=
x · g, and especially without knowing x.

Let us first sketch why the above properties imply DE security. Let D0

and D1 be the underlying high-entropy distributions. Let xb
$←− Db, g

$←− G
n

and g′
b = xb · g. Also, let ik∗

b be the corresponding correlated index key
which by Item 3 can be formed just by knowing g′

b. By Item 1 we have
(ik,TDF.F(ik, xb))

c≡ (ik∗
b ,TDF.F(ik∗

b , xb)). Now since by Item 3 the joint dis-
tribution (ik∗

b ,TDF.F(ik∗
b , xb)) can be sampled just by knowing g′

b and since we
have g′

0

s≡ g′
1 (by the leftover hash lemma), we have (ik∗

0,TDF.F(ik∗
0, x0))

s≡
(ik∗

1,TDF.F(ik∗
1, x1)), establishing the desired security.

Now let us explain how to sample such “lossy” index key ik∗ for x just by
knowing gc = x·g. We form ik∗ := (g, g∗

1, . . . ,g
∗
n), where each g∗

i is formed exactly
as in gi, except that we multiply the i-th element of the vector gi := gρi with a
random group element g′

i which satisfies BL(gρi
c) = 1⊕BL(gρi

c ·g′
i). Namely, each

g∗
i is an “almost” exponentiation of g in that we tamper with the i-th element

of the resulting exponentiated vector.
Using simple inspection we can verify that Property 2 follows by the particu-

lar way in which ik∗ is sampled. Also, the way ik∗ is defined allows us to sample
the joint distribution (ik∗,TDF.F(ik∗, x)) just by knowing gc and ρi’s, establish-
ing Property 3. Finally, via a sequence of hybrids, we show how to establish
Property 1 based on DDH.

592 N. Döttling et al.

2 Preliminaries

We denote the security parameter by λ. We use
c≡ to denote computational indis-

tinguishability between two distributions and use ≡ to denote two distributions
are identical. We write

s≡ for statistical indistinguishability and we write ≈ε to
denote that two distributions are statistically close, within statistical distance
ε. For a distribution S we use x

$←− S to mean x is sampled according to S and
use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribution.

For a set S we overload the notation to use x
$←− S to indicate that x is chosen

uniformly at random from S. The set {1, . . . , n} is often abbreviated as [n]. We
say that a machine is PPT if it runs in probabilistic polynomial-time.

The min-entropy of a distribution S is H∞(S) �= − log(maxx Pr[S = x]). For
a finite alphabet Σ, we say a distribution S is a k-source over Σn if H∞(S) ≥ k.
When the alphabet Σ is clear from context, we say S is a (k, n)-source.

Lemma 1 (Chernoff Inequality). Let X be binomially distributed with
parameters n ∈ N and p ∈ [0, 1]. Let p′ > p. Then

Pr[X > 2p′n] < e−p′n/3.

Lemma 2 (Leftover Hash Lemma [ILL89]). Let X be a random variable
over X and h : S × X → Y be a 2-universal hash function, where |Y| ≤ 2m for
some m > 0. If m ≤ H∞(X) − 2 log

(
1
ε

)
, then (h(S,X),S) ≈ε (U ,S), where S

is uniform over S and U is uniform over Y.

Lemma 3 (Log-Many Bits Hardcore Functions [GL89]). Let f : {0, 1}n →
{0, 1}m be an OWF with respect to a distribution D. Let Bi : {0, 1}n ×{0, 1}2n →
{0, 1} be a function defined as Bi(x, s) := 〈x, s[i, i + n − 1]〉 mod 2, where s[i, i +
n−1] := (si, . . . , si+n−1). Then for any constant c > 0, the function H : {0, 1}n ×
{0, 1}2n → {0, 1}c�log n� defined as

H(x, s) := (B1(x, s), . . . ,Bc�log n�(x, s))

is a hardcore function for f. That is, (s, f(x),H(x, s))
c≡ (s, f(x),w), where s

$←−
{0, 1}2n, x $←− D and w

$←− {0, 1}c�log n�.

2.1 Error Correcting Codes

For our constructions we will rely on efficiently correctable error correcting
block codes. Fix a finite alphabets Σ, and two parameters k and m. We will
represent codes by two efficient algorithms Encode and Decode, where Encode
takes as input a message x = (x1, . . . , xk) ∈ Σk and outputs a codeword
c = (c1, . . . , cm) ∈ Σm. We refer to the support of the algorithm Encode as
the code C. The algorithm Decode takes as input a string ĉ ∈ (Σ ∪ {⊥})m and
outputs a message x ∈ Σk or ⊥. We say that such a code jointly corrects r errors
and s erasures, if it holds for every ĉ ∈ (Σ∪{⊥})m which can be obtained from a

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 593

codeword c ∈ C by changing at most r positions and erasing at most s positions
that Decode(ĉ) = Decode(c).

The specific class of codes which we use in our constructions are Reed
Solomon (RS) codes [RS60]. The alphabets of Reed Solomon codes are finite
fields Fq, and an [m, k]-RS code exists whenever m ≤ q. The encoding proce-
dure Encode of a [m, k]-RS code represents the message x ∈ F

k
q as a polynomial

P of degree k − 1 over Fq via the coefficient embedding, and computes and
outputs (P (ξ1), . . . , P (ξm)), where ξ1, . . . , ξm are pairwise distinct elements of
Fq. There exists an efficient decoding algorithm, the so-called Berlekamp-Welch
decoder [WB86], which can jointly decode r errors and s erasures given that
2r + s ≤ m − k. We say this RS code has minimum-distance m − k + 1.

In abuse of notation, we will provide as input to the encoding algorithm a
binary string, i.e. an element from {0, 1}n. For Σ = F2κ , such a string x ∈ {0, 1}n

can be mapped to a string x ∈ F2k by chopping x into blocks of length κ and
letting each block represent an element of F2κ . Finally, we will always assume
that there is a canonical enumeration of the elements in Σ. This lets us identify
each element in Σ with a corresponding element in the set {1, . . . , Σ}.

2.2 Trapdoor Functions

We recall the definition of trapdoor function (TDFs).

Definition 4 (Trapdoor Functions). Let n = n(λ) be a polynomial. A family
of trapdoor functions TDF with domain {0, 1}n consists of three PPT algorithms
TDF.KG, TDF.F and TDF.F−1 with the following syntax and security properties.

– TDF.KG(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of
index/trapdoor keys.

– TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and
deterministically outputs an image element u.

– TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs
a value x ∈ {0, 1}n ∪ {⊥}.
We require the following properties.

– Correctness:

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) �= x] = negl(λ), (1)

where the probability is taken over (ik, tk) $←− TDF.KG(1λ).
– One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where

(ik, ∗) $←− TDF.KG(1λ), x $←− {0, 1}n and u := TDF.F(ik, x).

We also define a stronger security property, called CPA block-source security.

– CPA-deterministic security: We say TDF is (k, n)-CPA-secure if for any
two (k, n)-sources D0 and D1: (ik,TDF.F(ik,D0))

c≡ (ik,TDF.F(ik,D1)), where

(ik, ∗) $←− TDF.KG(1λ).

594 N. Döttling et al.

We give the definition of rate for a TDF, which captures the asymptotic input-
to-image ratio.

Definition 5 (Rate). A TDF (TDF.KG,TDF.F,TDF.F−1) has rate ρ if for all
λ ∈ N, all polynomials n(λ), all ik in the support of TDF.KG(1λ), all inputs in
x ∈ {0, 1}n(λ):

lim inf
λ→∞

n(λ)
|TDF.F(ik, x)| = ρ.

2.3 The Diffie-Hellman Problems

We recall the classical Diffie-Hellman problem [DH76] both in its search and
decisional version. Let G be a group-generator scheme, which on input 1λ outputs
(G, p, g), where G is the description of a group, p is the order of the group which
is always a prime number and g is a generator for the group. In favor of a simpler
analysis, we consider groups such that log(p) = |g| = λ.

Definition 6 (Diffie-Hellman Assumptions). We say G is CDH-hard if for
any PPT adversary A Pr[A(G, p, g, ga1 , ga2) = ga1a2] = negl(λ) where (G, p, g)
$←− G(1λ) and (a1, a2)

$←− Z
2
p. We say G is DDH-hard if (G, p, g, ga1 , ga2 , ga3)

c≡ (G, p, g, ga1 , ga2 , ga1a2), where (G, p, g) $←− G(1λ) and (a1, a2, a3)
$←− Z

3
p.

3 Smooth Recyclable OWFE

We recall the definition of recyclable one-way function with encryption
(OWFE) from [GH18]. The following definitions are taken almost in verbatim
from [GGH19], except that we consider a generalized version of the primitive
over any finite alphabets Σ. The notion of OWFE in turn builds on related
notions known in the literature as (chameleon) hash encryption and its vari-
ants [DG17b,DG17a,BLSV18,DGHM18].

Definition 7 (Recyclable one-way function with encryption). Let Σ =
{1, . . . , σ} for some integer σ. A w-bit recyclable (k, n)-OWFE scheme consists
of the PPT algorithms Gen, Hash, Enc1, Enc2 and Dec with the following syntax.

– Gen(1λ): Takes the security parameter 1λ and outputs a public parameter k
(by tossing coins) for a function Hash(k, ·) from n bits to ν bits.

– Hash(k, x): Takes a public parameter k and a preimage x ∈ Σn, and deter-
ministically outputs an element y.

– Enc1(k, (i, z); ρ): Takes a public parameter k, an index i ∈ [n], a word z ∈ Σ
and randomness ρ, and outputs a ciphertext ct. We implicitly assume that ct
contains (i, z).

– Enc2(k, y, (i, z); ρ): Takes a public parameter k, a value y, an index i ∈ [n], a
word z ∈ Σ and randomness ρ, and outputs a string e ∈ {0, 1}w. Notice that
unlike Enc1, which does not take y as input, the algorithm Enc2 does take y
as input.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 595

– Dec(k, ct, x): Takes a public parameter k, a ciphertext ct and a preimage x ∈
Σn, and deterministically outputs a string e ∈ {0, 1}w.

We require the following properties.

– Correctness. For any choice of k ∈ Gen(1λ), any index i ∈ [n], any preimage
x ∈ Σn and any randomness value ρ,

Pr[Enc2(k, y, (i, xi); ρ) = Dec(k, ct, x)] = 1

where y := Hash(k, x) and ct := Enc1(k, (i, xi); ρ).
– (k, n)-One-wayness: For any k-source S over Σn and any PPT adversary

A:
Pr[Hash(k,A(k, y)) = y] = negl(λ),

where k
$←− Gen(1λ), x

$←− S and y := Hash(k, x). If k = n, then we simply
refer to an OWFE scheme (without specifying the parameters).

– (k, n)-Smoothness: For any two (k, n)-sources S1 and S2:

(k,Hash(k, x1))
c≡ (k,Hash(k, x2))

where k
$←− Gen(1λ), x1

$←− S1 and x2
$←− S2.

– Security for Encryption: For any i ∈ [n], any x ∈ Σn, and any f ∈
Σ \ {xi}:

(x, k, ct, e)
c≡ (x, k, ct, e′)

where k
$←− Gen(1λ), ρ

$←− {0, 1}∗, ct := Enc1(k, (i, f); ρ), e := Enc2
(
k,Hash(k,

x), (i, f); ρ
)

and e′ $←− {0, 1}w.

3.1 Smooth Recyclable OWFE from CDH

We generalize the recyclable OWFE from [GH18] to any finite alphabet Σ.
Although this modification might look insignificant, it will be our main leverage
to construct a rate-1 trapdoor function.

Construction 8 (Smooth recyclable OWFE from CDH). Let G be a
CDH-hard group-generator scheme and let Σ := {1, . . . , σ} be a finite alpha-
bet.

– Gen(1λ): Sample (G, p, g) $←− G(1λ). For each j ∈ [n] and f ∈ Σ, choose

gj,f
$←− G. Output

k :=

⎛

⎜⎜⎝

g1,1, g2,1, . . . , gn,1

g1,2, g2,2, . . . , gn,2

. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

⎞

⎟⎟⎠ . (2)

– Hash(k, x): Parse k as in Eq. 2, and output y :=
∏

j∈[n] gj,xj
.

596 N. Döttling et al.

– Enc1(k, (i, z); ρ): Parse k as in Eq. 2. Given the randomness ρ
$←− Zp, proceed

as follows:
• For every j ∈ [n] \ {i}, and every f ∈ Σ set cj,f := gρ

j,z.
• For every f ∈ Σ \ {z} set ci,f := ⊥, then set ci,z := gρ

i,z.
• Output

ct :=

⎛

⎜⎜⎝

c1,1, c2,1, . . . , cn,1

c1,2, c2,2, . . . , cn,2

. . . , . . . , . . . , . . .
c1,σ, c2,σ, . . . , cn,σ

⎞

⎟⎟⎠ . (3)

– Enc2(k, (y, i, z); ρ): Given the randomness ρ
$←− Zp, output H(yρ), where H :

G → {0, 1}w denotes a hardcore function (e.g., the function from Lemma 3).
– Dec(k, ct, x): Parse ct as in Eq. 3, and output H

(∏
j∈[n] cj,xj

)
.

Correctness of the scheme is immediate. We now show that the construction
satisfies all of the required security properties properties.

Theorem 9 (One-Wayness). Let G generate a CDH-hard group, then for all
n ≥ ω(log(p)), Construction 8 is one-way.

Proof. This is shown with a reduction to the discrete logarithm problem. On
input a challenge random element h ∈ G, sample a random pair of indices
i∗ $←− [n] and f∗ $←− Σ and set gi∗,f∗ := h. For all i

$←− [n] and f
$←− Σ, except for

the pair (i∗, f∗), set gi,f := gri,f , for a uniform ri,f
$←− Zp. Define the public key

as

k :=

⎛

⎜⎜⎝

g1,1, g2,1, . . . , gn,1

g1,2, g2,2, . . . , gn,2

. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

⎞

⎟⎟⎠ .

Then sample a uniform x
$←− Σn such that xi∗ �= f∗ and compute y :=∏

j∈[n] gj,xj
. Give (k, y) to the adversary and receive some x′. By Lemma 2,

x′
i∗ = f∗ with probability close to 1/σ, which allows us to compute the discrete

logarithm of h.

Theorem 10 ((k, n)-Smoothness). Let G generate a CDH-hard group and k ≥
log p + ω(log λ), then Construction 8 is (k, n)-smooth.

Proof. Let S1 and S2 be two (k, n) sources. The smoothness is a direct conse-

quence of Lemma 2. Namely, assuming k
$←− Gen(1λ), x1

$←− S1 and x2
$←− S2,

since Hash is a 2-universal hash function, by Lemma 2 we know that the outputs
of both Hash(k, x1) and Hash(k, x2) are statistically 1

2ω(log λ) close to the uniform
over G, and hence negligibly close (statistically) to each other.

Theorem 11 (Security for Encryption). Let G generate a CDH-hard group,
then Construction 8 is secure for encryption.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 597

Proof. Assume towards contradiction that there exists some i∗, x, and f∗ �=
xi∗ such that an adversary can successfully distinguish on those input. Let
(g, h1, h2, s) be a CDH challenge, where s ∈ {0, 1}w is either a random string
or the output of the hardcore function. For all i ∈ [n] \ i∗ and all f ∈ Σ

set gi,f := gri,f , for a uniform ri,f
$←− Zp. Similarly, for all f ∈ Σ \ xi∗ set

gi∗,f := gri∗,f , for a uniform ri∗,f
$←− Zp. Finally set

gi∗,xi∗ :=
h1∏

j∈[n]\i∗ gj,xj

and define k accordingly. Define

ct :=

⎛

⎜⎜⎝

c1,1, c2,1, . . . , cn,1

c1,2, c2,2, . . . , cn,2

. . . , . . . , . . . , . . .
c1,σ, c2,σ, . . . , cn,σ

⎞

⎟⎟⎠

where for i ∈ [n] \ i∗ and all f ∈ Σ we have ci,f := h
ri,f

2 and ci∗,f∗ := h
ri∗,f∗
2 ,

whereas the other terms are set to ⊥. The adversary is given (x, k, ct, s) and the
reduction returns whatever the adversary returns. Security follows from the fact
that

Hash(k, x) =
∏

j∈[n]

gj,xj
= h1.

4 Rate-1 CDH-Based Trapdoor Function

In this section we give a construction of rate-1 TDFs based on CDH, satisfying
deterministic-encryption security. The result of [GGH19] gives CDH-based TDF
constructions with rates 1/c for a constant c. A rough estimate of the constant
c is at least 20. The main reason behind the large constant is that [GGH19] first
builds an intermediate local TDF which (1) outputs two bits for every bit of the
input (i.e., a rate less than 1/2) and (2) the TDF has a local property in that for
each bit of the input, the inversion algorithm either recovers the bit or gives up
for that particular bit, each happening with probability 1/2. The construction
of [GGH19] then performs error correction over bitstrings to boost correctness.
This results in another constant blowup.

At a high level our approach for achieving rate 1 proceeds as follows. We
encode the input to the TDF block-by-block, instead of bit-by-bit. Each block
is a symbol of an alphabet over a field for which erasure correction with better
rates can be done. We then show how to provide an almost equally-sized hint
for every block of the input, achieving a rate 1 at the end. The main technical
novelty of our work relies on how to form the hint in a succinct way.

Construction 12 (Rate-1 TDF from CDH). Let Σ = {1, . . . , σ} be a finite
alphabet, let (Gen,Hash,Enc1,Enc2,Dec) be a w-bit OWFE, and let (Encode,
Decode) be an error-correcting code, where Encode : {0, 1}n → Σm. We define
our TDF construction (TDF.KG,TDF.F,TDF.F−1) as follows.

598 N. Döttling et al.

– TDF.KG(1λ):
1. Sample k := Gen(1λ).
2. For all i ∈ [m] and all f ∈ Σ:

(a) Sample ρi,f
$←− {0, 1}λ and ai,f

$←− {0, 1}w.
(b) Compute cti,f := Enc1(k, (i, f); ρi,f).

3. Set the trapdoor key as

tk := k,

⎛

⎜⎜⎝

ρ1,1, ρ2,1, . . . , ρm,1

ρ1,2, ρ2,2, . . . , ρm,2

. . . , . . . , . . . , . . .
ρ1,σ, ρ2,σ, . . . , ρm,σ

⎞

⎟⎟⎠ (4)

and the index key as

ik := k,

⎛

⎜⎜⎝

ct1,1, ct2,1, . . . , ctm,1

ct1,2, ct2,2, . . . , ctm,2

. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctm,σ

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

a1,1, a2,1, . . . , am,1

a1,2, a2,2, . . . , am,2

. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , am,σ

⎞

⎟⎟⎠ . (5)

– TDF.F(ik, x ∈ {0, 1}n):
1. Parse ik as in Eq. 5.
2. Let z := Encode(x) ∈ Σm and y := Hash(k, z).
3. For all i ∈ [m]:

(a) Let hi := Dec(k, cti,zi
, z).

(b) Set vi := hi ⊕ ai,zi
∈ {0, 1}w.

4. Return u := (y, v1, . . . , vm).
– TDF.F−1(tk, u):

1. Parse tk as in Eq. 4 and u := (y, v1, . . . , vm).
2. Retrieve z′ element-by-element as follows. For i ∈ [m], to retrieve the i-th

element:
(a) If there exists one and only one index f ∈ Σ such that

Enc2(k, y, (i, f); ρi,f) = ai,f ⊕ vi, (6)

then set z′
i = f .

(b) Otherwise, set z′
i = ⊥.

3. Return Decode(z′).

4.1 Analysis

In the following we show that our construction is a correct and secure TDF.

Theorem 13 (Correctness). Let (Gen,Hash,Enc1,Enc2,Dec) be a w-bit
OWFE, where 2w ≥ 2σ/η, for some η ∈ (0, 1]. Let (Encode,Decode) be an
error-correcting code resilient against a η-fraction of erasures, where Encode :
{0, 1}n → Σm and m ≥ 6λ/η. Then Construction 12 is correct except with
probability e−λ: Pr[∃x ∈ {0, 1}n : TDF.F−1(tk,TDF.F(ik, x)) �= x] ≤ e−λ, where

(ik, tk) $←− TDF.KG(1λ).

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 599

Proof. Let (ik, tk) := TDF.KG(1λ), let u := TDF.F(ik, x) for a uniform x
$←−

{0, 1}n, and let z := Encode(x). For all i ∈ [m], by the correctness of the OWFE
we have

vi = hi ⊕ ai,zi
= Dec(k, cti,zi

, z) ⊕ ai,zi
= Enc2(k, y, (i, zi); ρi,zi

) ⊕ ai,zi
.

Thus, the index zi satisfies Eq. 6. Now we consider the probability that some
f �= zi satisfies the same condition. Since ai,f is chosen uniformly and indepen-
dently at random, the two values Enc2(k, (y, i, f); ρi,f)⊕vi and ai,f are indepen-
dent. Thus, the probability that the index f �= zi satisfies Eq. 6 is

Pr [Enc2(k, y, (i, f); ρi,f) ⊕ vi = ai,f] ≤ 1
2w

.

By a union bound, the probability that such an f �= zi exists is at most

Pr [∃f ∈ Σ \ {zi} : Enc2(k, y, (i, f); ρi,f) ⊕ vi = ai,f] ≤ σ

2w
≤ η

2

as 2w ≥ 2σ/η. Applying the Chernoff bound (Lemma 1) yields that at most η ·m
of the indices contain a non unique decoding and therefore z′

i is set to ⊥, except
with probability e− η·m

6 ≤ e−λ. Let S ⊆ [m] be the set of indices for which there
exists a z′

i = ⊥. By the above, |S| ≤ η · m, except with probability e−λ. As we
assume the code (Encode,Decode) is capable of handling a η-fraction of erasures,
Decode(z′) will output x with overwhelming probability.

We show that our TDF is one-way.

Theorem 14 (One-Wayness and DE security). Assuming (Gen,Hash,Enc1,
Enc2,Dec) is an (n,m)-OWFE scheme, then Construction 12 is one-way. More-
over, if (Gen,Hash,Enc1,Enc2,Dec) is (k,m)-smooth, the resulting TDF is
(k,m)-CPA indistinguishable.

Proof. Let x ∈ {0, 1}n be the random input to the TDF, and let z := Encode(x).
Also, let y := Hash(k, z). We first construct a simulator Sim(k, y), which—without
knowledge of x—samples a simulated index key iksim together with a correspond-
ing usim as follows.

– Sim(k, y):
1. For all i ∈ [m]: Sample ai

$←− {0, 1}w.
2. For all i ∈ [m] and f ∈ Σ:

(a) Sample ρi,f
$←− {0, 1}∗.

(b) Compute cti,f := Enc1(k, (i, f); ρi,f).
(c) Compute ai,f := ai ⊕ Enc2(k, y, (i, f); ρi,f).

3. Set the index key as

iksim := k,

⎛

⎜⎜⎝

ct1,1, ct2,1, . . . , ctm,1

ct1,2, ct2,2, . . . , ctm,2

. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctm,σ

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

a1,1, a2,1, . . . , am,1

a1,2, a2,2, . . . , am,2

. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , am,σ

⎞

⎟⎟⎠

and the image as u := (y, a1, . . . , am).

600 N. Döttling et al.

We now show that for any distribution S over {0, 1}n

(x, ik,TDF.F(ik, x))
c≡ (x,Sim(k, y)) (7)

where x
$←− S, (ik, ∗) $←− TDF.KG(1λ), k $←− Gen(1λ), and y := Hash(k,Encode(x)).

This will yield both the one-wayness and deterministic-encryption security claims
of the lemma.

We define Sim′(k, x, y) as follows. For all i ∈ [m] and f ∈ Σ, sample cti,f
exactly as in Sim(k, y), and letting z := Encode(x), sample ai,j as follows:

– If f = zi, then set ai,f := ai ⊕ Enc2(k, y, (i, f); ρi,f), exactly as in Sim(k, y).

– If f �= zi, then sample ai,f
$←− {0, 1}w.

By the security-for-encryption requirement of the underlying OWFE

(x,Sim(k, y))
c≡ (x,Sim′(k, x, y)).

By simple inspection we can see that the distribution (x,Sim′(k, x, y)) is iden-

tically distributed to (x, ik,TDF(ik, x)), where (ik, ∗) $←− TDF.KG(1λ). The proof
is now complete.

4.2 Parameters

We analyze the rate of our scheme and we discuss possible instantiations for the
underlying building blocks.

Theorem 15 (Rate). Let σ ≥ λ and let (Encode,Decode) be an error correcting
code for an alphabet Σ of size σ that can correct a fraction of erasure η =
1/ log(λ) and has rate 1 − 1/ log(λ). Let 2w = 2 · σ/η and m ≥ 6λ/η. Then
Construction 12 has rate 1.

Proof. By definition we have that

2w = 2 · σ/η = 2 · σ · log(λ).

Then the value vi ∈ {0, 1}w encodes the codeword symbol zi ∈ Σ of the codeword
xi. Thus, each codeword symbol is encoded at rate

log(σ)
w

=
log(σ)

log(σ) + log log(λ) + 1
≥ 1 − 2

log log(λ)
log(σ)

≥ 1 − 2
log log(λ)

log(λ)
.

Recall that (Encode,Decode) has rate 1−1/ log(λ) and can efficiently decode from
a η = 1/ log(λ) fraction of errors. Taking into account that the sender message
includes an additional group element y ∈ G and assuming that log(|G|) = λ, this
accounts for a decrease of the rate by a factor

m · w

m · w + log(|G|) = 1 − log(|G|)
m · w + log(|G|) ≥ 1 − 1

m · log(λ)
.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 601

Consequently, the total rate of our scheme is lower bounded by
(

1 − 1
m · log(λ)

)(
1 − 1

log(λ)

)(
1 − 2

log log(λ)
log(λ)

)
≥ 1 − 3

log log(λ)
log(λ)

,

which approaches 1.

Note that the constraints 2w = 2σ · log(λ) and σ ≥ λ require us to instantiate a
hardcore function H that extracts O(log(λ)) random bits from a CDH instance.
This is well in reach of the function given in Lemma 3. What is left to be shown is
a code that handles a η = 1/ log(λ) fraction of errors. A natural choice is a Reed
Solomon code over the alphabet Σ2, specifically a [m,m−m/ log(λ),m/ log(λ)+
1] Reed Solomon code. For this code, we can efficiently decode m/ log(λ) = ηm
erasures, ensuring correctness of our scheme. This code has rate 1 − 1/ log(λ).

5 Rate-1 DDH-Based Deterministic Encryption

In this section we show how to build TDFs satisfying DE security with the
following two properties: (a) the index key contains (n2 +1) group elements and
(b) the image contains one group element plus exactly n bits. We mention that a
recent result of Döttling et al. [DGI+19] achieve the same image size, but at the
cost of bigger index keys, containing at least 4n2 group elements. Moreover, the
construction of [DGI+19] is highly non-trivial, using techniques from [BGI16] as
well as error-correcting codes. In contrast, our construction is fairly elementary
and does not need ECC-based techniques.

We will make use of a balanced predicate during our construction, defined as
follows.

Definition 16 (Balanced predicates). We say a predicate P : S × {0, 1}∗ →
{0, 1} is balanced over a set S if for all b1, b2 ∈ {0, 1}: Pr[P(x1; r) = b1 ∧
P(x2; r) = b2] = 1/4, where x1, x2

$←− S and r
$←− {0, 1}∗.

An obvious example of a balanced predicate is the inner-product function
mod 2. However, in some situations one may be able to give a more direct (and
sometimes a deterministic) construction. For example, if the underlying set S is
{0, 1}n, then we may simply define P(x) = x1.

Notation. For x ∈ {0, 1}n and a vector g := (g1, . . . , gn) we define x · g =
Πi∈[n]g

xi
i .

Construction 17 (Linear-image TDF). Let G be a group scheme and let BL
be a balanced predicate for the underlying group (Definition 16).

We define our TDF construction (TDF.KG,TDF.F,TDF.F−1) as follows.

2 By increasing the the size of Σ to e.g. the next power of 2, the bit representation
of each symbol in Σ grows by at most one bit, i.e., the rate of such an encoding is
1 − 1/λ.

602 N. Döttling et al.

– TDF.KG(1λ):

1. Sample (G, p, g) $←− G(1λ) and g := (g1, . . . , gn) $←− G
n.

2. For all i ∈ [n], sample ρi
$←− Zp and set gi := gρi , where gρi denotes

element-wise exponentiation to the power of ρi.
3. For each i ∈ [n] sample random coins ri

$←− {0, 1}∗ for BL.3

4. Set tk := (ρ1, . . . , ρn, {ri}) as the trapdoor key and ik := (g, g1, . . . ,
gn, (ri)i∈[n]) as the index key.

– TDF.F(ik, x ∈ {0, 1}n): Parse ik := (g, g1, . . . ,gn, (ri)i∈[n]). Return

u := (x · g,BL(x · g1; r1) ⊕ x1, . . . ,BL(x · gn; rn) ⊕ xn) ∈ G × {0, 1}n. (8)

– TDF.F−1(tk, u):
1. Parse tk := (ρ1, . . . , ρn, (ri)i∈[n]) and u := (gc, b

′
1, . . . , b

′
n).

2. Return (BL(gρ1
c ; r1) ⊕ b′

1, . . . ,BL(gρn
c ; rn) ⊕ b′

n).

5.1 Analysis

The correctness of the scheme is immediate.

Lemma 18 (Deterministic-encryption security). Assuming the underlying
group is DDH-hard, then for any k ≤ n such that k ≥ log p + ω(log λ), the TDF
given in construction 17 provides (k, n)-CPA security.

Proof. For any two (k, n)-sources D0 and D1 we need to show (ik,TDF.F

(ik,D0))
c≡ (ik,TDF.F(ik,D1)), where (ik, ∗) $←− TDF.KG(1λ). We do this via

a series of hybrids, where in each hybrid we sample (ik, u) as follows.

– Hybb [Real game for Db]: sample g
$←− G

n and set gi := gρi , for ρi
$←− Zp. Set

ik := (g, g1, . . . ,gn). Sample x
$←− Db and return (ik,TDF.F(ik, x)).

– Hyb′
b:

1. Sample g
$←− G

n, x $←− Db, and set gc := x · g.
2. For i ∈ [n] sample ρi

$←− Zp and set g′
i := gρi .

3. Set gi := g′
i · vi, where

vi := (1, . . . , 1, g′
i︸︷︷︸

ith position

, 1, . . . , 1) (9)

and
(a) sample g′

i
$←− G in such a way that 1 ⊕ BL(g′′

i · g′
i; ri) = BL(g′′

i ; ri),
where g′′

i := x · g′
i.

4. Set ik := (g, g1, . . . ,gn) and u := TDF.F(ik, x).

3 We can also prove security just by sampling a single r, but the proof will be more
complicated.

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 603

Note 1 about Hyb′
b. For x and ik sampled as in Hyb′

b, we have the following
relation: TDF.F(ik, x) = (gc,BL(gρ1

c ; r1), . . . ,BL(gρn
c ; rn)). In particular, the out-

put of TDF.F(ik, x) can be sampled without knowing x, and just by knowing gc

and ρi’s. Notice that the value of g′′
i := x · g′

i (Item 3a above) can alternatively
be computed as g′′

i = gρi
c , without knowing x. We will make use of this fact in

our proofs below.

Indistinguishability in Hyb′: We have Hyb′
0

c≡ Hyb′
1. This follows from two

facts. First, by Note 1 above, Hyb′
b can be sampled by just knowing gc and ρi’s

and especially without knowing x. The second fact is that the distributions of gc

in Hyb′
0 and Hyb′

1 are statistically indistinguishable, by the leftover hash lemma
and the fact that H∞(Db) ≥ k. These two facts together imply Hyb′

0

c≡ Hyb′
1.

Proof of Hybb

c≡ Hyb′
b for both b ∈ {0, 1}: We prove this for b = 0, and the

proof for the other case is the same. To prove Hyb0
c≡ Hyb′′

0 , define the following
two hybrids:

– HybRnd0: same as Hyb0 except for every i we replace gi with a random vector
chosen uniformly from G

n.
– HybRnd′

0: same as Hyb′
0 except for every i we replace g′

i with a random vector
chosen uniformly from G

n.

We will now show Hyb0
c≡ HybRnd0

c≡ HybRnd′
0

c≡ Hyb′
0, and this will complete

the proof.

Proof for Hyb0
c≡ HybRnd0. The proof follows from DDH, by considering the

fact that either hybrid can be simulated just by knowing gi and that in one
hybrid we have gi := gρi for a random exponent ρi, and in the other exponent

gi
$←− G

n.

Proof for HybRnd0
c≡ HybRnd′

0. These two distributions are identical, because
in either distribution gi is uniformly random.

Proof for HybRnd′
0

c≡ Hyb′
0. The proof follows from DDH, by considering the

fact that either hybrid can be simulated just by knowing x and g′
i’s, and that in

one hybrid we have g′
i

$←− G
n, and in the other hybrid g′

i := gρi for a random
exponent ρi.

6 Experimental Results

In this section we report proof-of-concept implementations of our DDH-based
TDF construction (Construction 17) using Python. We report the resulting
parameters of the scheme in Table 1.

Our group is an elliptic curve group on Ed25519 and the size of a group ele-
ment in our implementation is 32 Bytes (B) = 256 bits. The encryption and
decryption algorithms take less than a second. The table shows the growth
of ciphertext size based on input size. We have not optimized our code for

604 N. Döttling et al.

achieving more compact ciphertexts. Essentially, we used a serialization package
(Pickle) which resulted in extra overhead in ciphertext size. As expected, the
key-generation algorithm is main bottleneck in our implementation, together
with the resulting index/trapdoor keys.

The machine specifications are as follows.

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 4
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 6
Model name: QEMU Virtual CPU version 2.5+
Stepping: 3
CPU MHz: 2599.998
BogoMIPS: 5199.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 4096K
L3 cache: 16384K
NUMA node0 CPU(s): 0-3

Table 1. Experimental results of our TDF construction. Here B denotes bytes (8 bits).
The size of the group element is 32 B.

msg ct tk ik KG time Enc time Dec time

64 B 274 B 18 KB 19 MB 15.6 s 0.11 s 0.04 s

128 B 338 B 35 KB 75 MB 62.3 s 0.42 s 0.07 s

References

[BBN+09] Bellare, M., et al.: Hedged public-key encryption: how to protect against
bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 232–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 14

[BBO07] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently search-
able encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5 30

https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem 605

[BCPT13] Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent
message security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
700–720. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36594-2 39

[BFO08] Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for determin-
istic encryption, and efficient constructions without random oracles. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 19

[BFOR08] Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic
encryption: definitional equivalences and constructions without random
oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
360–378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 20

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4 19

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9 20

[DG17a] Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 13

[DG17b] Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 18

[DGHM18] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–
31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 1

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[FGK+10] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More
constructions of lossy and correlation-secure trapdoor functions. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
279–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13013-7 17

https://doi.org/10.1007/978-3-642-36594-2_39
https://doi.org/10.1007/978-3-642-36594-2_39
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17

606 N. Döttling et al.

[GGH19] Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor
functions and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part III. LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 2

[GH18] Garg, S., Hajiabadi, M.: Trapdoor functions from the computational diffie-
hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 13

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: 21st ACM STOC, Seattle, WA, USA, 15–17 May 1989, pp. 25–32. ACM
Press (1989)

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: 21st ACM STOC, Seattle, WA,
USA, 15–17 May 1989, pp. 12–24. ACM Press (1989)

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New con-
structions of reusable designated-verifier NIZKs. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[MY10] Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor
functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 296–311. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 18

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: 40th ACM STOC, Victoria, BC, Canada, 17–20 May 2008, pp. 187–196.
ACM Press (2008)

[PW11] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
SIAM J. Comput. 40(6), 1803–1844 (2011)

[RS60] Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc.
Ind. Appl. Math. 8(2), 300–304 (1960)

[WB86] Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes,
December 30 1986. US Patent 4,633,470

[Wee12] Wee, H.: Dual Projective hashing and its applications—lossy trapdoor
functions and more. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 16

https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-29011-4_16

The Local Forking Lemma and Its
Application to Deterministic Encryption

Mihir Bellare1(B), Wei Dai1, and Lucy Li2

1 University of California San Diego, La Jolla, USA
{mihir,weidai}@eng.ucsd.edu

2 Cornell University, Ithaca, USA
lucy@cs.cornell.edu

Abstract. We bypass impossibility results for the deterministic encryp-
tion of public-key-dependent messages, showing that, in this setting, the
classical Encrypt-with-Hash scheme provides message-recovery security,
across a broad range of message distributions. The proof relies on a new
variant of the forking lemma in which the random oracle is reprogrammed
on just a single fork point rather than on all points past the fork.

1 Introduction

Deterministic Encryption. In a scheme DE for Deterministic Public-Key Encryp-
tion (D-PKE) [2], the encryption algorithm DE.Enc takes public encryption key
ek and message m to deterministically return a ciphertext c. The standard pri-
vacy goal is most easily understood as the same as for randomized public-key
encryption—IND-CPA, asking for indistinguishability of encryptions of different
messages—but with two restrictions: (1) That messages not depend on the pub-
lic key, and (2) that messages be unpredictable, meaning have high min entropy.
We will use the IND formalism of [5], shown by the latter to be equivalent to the
PRIV formalization of [2] as well as to several other formalizations. A canonical
and practical construction is EwH (Encrypt with Hash) [2]. It encrypts message
m under a (any) randomized IND-CPA scheme RE with the coins set to a hash
of ek‖m, and is proven IND-secure if the hash function is a random oracle [2].
Further schemes and considerations can be found in [6,13,14,19,20,27,30].

Why D-PKE? Determinism allows sorting of ciphertexts, enabling fast search on
encrypted data, the motivating application in BBO’s introduction of D-PKE [2].
Determinism also closes the door to vulnerabilities arising from poor random-
ness [15,28]. Understood to be a threat already when its causes were inadvertent
system errors [31], poor randomness is now even more a threat when we see that
it can be intentional, arising from the subversion of RNGs happening as part of
mass-surveillance activities [11].

Narrowing the Gap. We benefit, in light of the above motivations for D-PKE, from
the latter providing privacy as close to IND-CPA as possible. We can’t expect of
course to entirely close the gap—no D-PKE scheme can achieve IND-CPA—but
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 607–636, 2019.
https://doi.org/10.1007/978-3-030-34618-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_21

608 M. Bellare et al.

we’ll narrow it. Our target will be the first of the two limitations of IND noted
above, namely that it guarantees no privacy when messages depend on the public
key. In particular, for all we know, in this case, one could recover the entire
message from an EwH-ciphertext. This is the gap we will close, showing EwH
message recovery is not possible across a broad range of public-key-dependent
message distributions. We’ll explain how this bypasses, rather than contradicts,
prior impossibility results that have inhibited progress on the question, while
also contributing new, more fine-grained impossibility results to indicate that our
own possibility results will not extend much beyond the message distributions for
which we establish them. Underlying our possibility result is a new variant of the
forking lemma [1,7,29], that we call the Local Forking Lemma, of independent
interest. We now look at all this in more detail.

Prior Work. Given that the public key is, as the name indicates, public, messages
depending on it are a possibility in practice, and IND-CPA provides privacy
even for such messages. But, for D-PKE, the literature says that security for
public-key-dependent messages is impossible [2,5]. The argument supporting this
claim is that the following attack violates IND-security of any D-PKE scheme
DE. In its message finding stage, the adversary, given the public key ek, picks
m0,m1 at random—of length, say, equal to the security parameter—subject
to the constraint that the first bits of h0 ← Hash(DE.Enc(ek,m0)) and h1 ←
Hash(DE.Enc(ek,m1)) are 0, 1, respectively, where Hash is a random oracle. The
messages m0,m1 are unpredictable, but given a ciphertext c ← DE.Enc(ek,mb)
encrypting mb, the adversary can determine b as the first bit of the hash Hash(c)
of the ciphertext.

That IND cannot be achieved for public-key dependent messages doesn’t
mean no security is possible in this setting; perhaps guarantees can be provided
under some other, meaningful metric (definition) of security X. Raghunathan,
Segev and Vadhan (RSV) [30] were the first to pursue this, making a choice
of X that we’ll refer to as PDIND. In X= PDIND, security is parameterized by
the number N(·) of (public-key dependent) distributions from which the message
may be drawn. RSV [30] show that, if one first fixes an upper bound N(·) = 2p(·)

on the number of allowed message distributions, then one can build a PDIND
secure D-PKE scheme, with the scheme and its parameters depending on N(·).
While theoretically interesting, this result has limitations from a practical per-
spective. The scheme is expensive, with key size and computation time growing
polynomially with p, and this is inherent. Security is fragile: If the number of
message distributions exceeds the bound N(·), security may—and in some of
their schemes, will—fail. There is difficulty of use: it is not clear how a designer
or implementer can, with confidence, pick N(·) a priori, but they must have N(·)
in hand to build the scheme.

PDMR Security. Our target is a simple, meaningful security guarantee (when
deterministically encrypting public-key dependent messages) that we can estab-
lish for practical schemes. We reach this by making a different choice of X
above. We formalize and target X = PDMR, message recovery security for

The Local Forking Lemma and Its Application to Deterministic Encryption 609

public-key-dependent messages. The definition, in Sect. 4, considers a source S
that, given the public key ek and access to the random oracle Hash, returns
a sequence of unpredictable messages. Encryptions under ek of these messages
are then provided to the adversary A, who, continuing to have ek and access to
Hash, must, to win, recover (in full) one of the messages. Unlike PDIND [30],
there is no a priori restriction on the number of message distributions (here,
sources).

One might object that message recovery security is a weak security guaran-
tee, in response to which we note the following. First, in practice adversaries
benefit more by recovering the full message from a ciphertext than by merely
distinguishing the encryptions of two messages. So, even when distinguishing
attacks are possible, a scheme preventing message recovery can add significant
security. Second, right now, practical schemes like EwH are not proven to pro-
vide any security for public-key dependent messages, so if we can show PDMR
is present, we have improved security guarantees without increasing cost. Third,
in providing PDMR, we will insist that IND be maintained, so that overall secu-
rity only goes up, not down. In other words, for messages not depending on the
public key, we continue to provide the guarantee that is standard and viewed as
best possible (IND), supplementing this with a meaningful guarantee (PDMR)
for messages that do depend on the public key.

It is useful to define n(·)-PDMR security as PDMR security for sources that
output n messages. We will establish PDMR first for n = 1 and then boost to
more messages.

One-Message PDMR Security of EwH. The core possibility result of this paper is
that EwH is 1-PDMR secure, meaning provides message-recovery security for the
encryption of one unpredictable message even when the latter depends arbitrarily
on the public key. The underlying randomized public-key encryption scheme RE
is assumed, only and correspondingly, to itself provide security against message-
recovery. (This is implied by IND-CPA and hence true for EwH [2], but strictly
weaker.) The hash function Hash continues, as in [2], to be modeled as a random
oracle.

The proof requires new techniques. Let m denote the challenge message pro-
duced by the source, and let c1 ← RE.Enc(ek,m; r1) where r1 ← Hash(ek‖m).
The approach of [2] would replace c1 with a ciphertext c0 ← RE.Enc(ek,m; r0)
for random r0, allowing a reduction to the assumed message-recovery security of
RE. This requires that neither the source nor the adversary make query ek‖m to
Hash, for otherwise they can differentiate c0 from c1. But this in turn requires
that the source not have ek. Indeed, in our setting, where it does have ek, it can
query ek‖m to Hash, and we must assume that it does so. The prior argument
now breaks down entirely and it is not clear how to do the reduction. We obtain
our result, instead, via a novel rewinding argument. Two executions are forked
at the crucial hash query, one corresponding to response r1 and the other to
response r0, but with a twist. In the classical rewinding technique [7,29], all
answers to random-oracle queries after the fork are random and independent in

610 M. Bellare et al.

the two forks. This fails to work in our case. Instead we are able to re-program
the random oracle at just one point in the rewinding and argue that the two
executions both result in correct guesses by the adversary.

The analysis relies on what we call the Local Forking lemma, a (new) variant
of the forking lemmas of [1,7,29] that we give and prove. As with the General
Forking Lemma of BN [7], our Local Forking Lemma is a purely probabilistic
result, knowing or saying nothing about encryption. Handing off to our Local
Forking Lemma the core probabilistic analysis in the above-discussed proof of 1-
PDMR security not only makes the latter more modular but allows an extension
to security against chosen-ciphertext attacks.

Many-Message PDMR Security of EwH. We show that EwH provides PDMR secu-
rity for all sources (distributions on message sequences) that are what we
call resampling indistinguishible (RI). Very roughly—the formal definition is in
Sect. 5—RI asks that different messages in the sequence, although all allowed to
depend on the public key in different ways, are themselves almost independently
distributed.

Our first step is a general result showing that if a D-PKE scheme is 1-PDMR
then it provides PDMR for any RI source. That is, once we have PDMR secu-
rity when encrypting just one, single message, we also have it when encrypting
any polynomial number of RI messages. This is a general result, holding for
any D-PKE scheme. An interesting element of this result is that the public-key
dependence of messages is a plus, exploited crucially in the proof.

To put this in context, for IND, security for one message does not, in
general—that is, for arbitrary message distributions—imply security for multiple
messages [2]. It has been shown to do so for particular message distributions,
namely block sources, by Boldyreva, Fehr and O’Neill [13]. But they do not con-
sider public-key-dependent messages, and block sources and RI distributions are
not the same.

That EwH provides PDMR security for all RI sources now of course follows
directly from the general reduction just mentioned and our above-discussed result
establishing 1-PDMR security of EwH.

That these results are for EwH rather than some other scheme is important
for two reasons. The first is that EwH is efficient and practical. The second is
that we know that EwH already achieves IND for messages that do not depend
on the public key [2]. As discussed above it is important that PDMR be provided
while maintaining IND so that we augment, not reduce, existing guarantees.

CCA Too. All the above considered security under chosen-plaintext attack
(CPA). This is certainly the first and foremost goal, but one can ask also about
security against chosen-ciphertext attack (CCA), particularly if our quest is
parity (to the best extent possible) with randomized encryption, where moti-
vated by applications [12], efficient IND-CCA schemes have been sought and
provided [9,17,18,21,23,25].

Our results extend to CCAs. Namely, we show that, under chosen-ciphertext
attack, EwH continues to provide 1-PPDMR, and PDMR for RI sources, assum-
ing the underlying randomized public-key encryption scheme itself provides mes-

The Local Forking Lemma and Its Application to Deterministic Encryption 611

sage recovery under CCA, which is implied by IND-CCA. Put another way, EwH
promotes message-recovery security of RE to message-recovery security of the
constructed DE, in both the CPA and the CCA cases, for public-key dependent
messages produced by RI sources. In the body of the paper, we give unified defi-
nitions and a single, unified result that cover both CCA and CPA by viewing the
latter as the special case of the former in which adversaries make no decryption
queries, exploiting our Local Forking lemma to provide a modular proof.

Impossibility Results. Our possibility results show that PDMR security is achiev-
able when messages in the sequence are somewhat independent of each other,
formalized as RI. We complement these possibility results with negative ones,
showing that, when messages in a sequence are closely related, PDMR secu-
rity is not possible. Section 6 gives attacks to show that PDMR security can be
violated even when encrypting just two, closely related messages, even though
both messages are unpredictable. This is true for any D-PKE scheme. These
attacks are novel; the above-mentioned attacks understood in the literature vio-
late indistinguishability security for public-key-dependent messages, but do not
recover messages and thus, unlike ours, do not violate PDMR. We believe that a
contribution here is not just to give these attacks, but with rigorous and formal
analyses (Theorems 4 and 5), which is unusual in the literature. The proof of
unpredictability in Theorem 5 relies on techniques from the proof of the Leftover
Hash Lemma [24].

Discussion and Further Directions. It is interesting to note that Goldwasser and
Micali’s original definition of semantic security for public-key encryption [22]
only required privacy for messages not depending on the public key. This was
pointed out by Micali, Rackoff and Sloan (MRS) [26], who strengthened the
definition in this regard. (In their terminology, this corresponds to three pass
versus one pass notions). Modern definitions of semantic security (IND-CPA) [4,
16] accordingly ask for privacy even for messages that depend on the public
key, and modern public-key encryption schemes provide this privacy. Our work
continues the quest, started by RSV [30], to bring D-PKE to parity as much as
possible in this regard.

There is a great deal of work on D-PKE including many schemes without
random oracles [6,13,14,19,20,27,30]. A direction for future work is to assess
whether these schemes provide PDMR security, or give new schemes without
random oracles that provide both IND and PDMR security.

The full and most current version of this paper is available as [3].

2 Preliminaries

Notation and Terminology. By λ ∈ N we denote the security parameter and by
1λ its unary representation. We denote the number of coordinates of a vector
x by |x|, the length of a string x ∈ {0, 1}∗ by |x| and the size of a set S by
|S|. If x is a string then x[i] is its i-th bit. Algorithms are randomized unless

612 M. Bellare et al.

otherwise indicated. Running time is worst case. “PT” stands for “polynomial-
time”, whether for randomized algorithms or deterministic ones. For integers
a ≤ b we let [a..b] = {a, a + 1, . . . , b}. We let y ← AO1,...(x1, . . . ; r) denote
executing algorithm A on inputs x1, . . . and coins r with access to oracles O1, . . .
and letting y be the result. We let y ←$ AO1,...(x1, . . .) be the resulting of picking
r at random and letting y ← AO1,...(x1, . . . ; r). We let [AO1,...(x1, . . .)] denote
the set of all possible outputs of A when invoked with inputs x1, . . . and oracles
O1, We use qOi

A to denote the number of queries that A makes to Oi in the
worst case. We recall that a function f : N → R is negligible if for every positive
polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np. An
adversary is an algorithm or a tuple of algorithms. The running time of a tuple
of algorithms is defined as the sum of the individual running times. We use tA
to denote the running time of an adversary A.

Games. We use the code based game playing framework of [10]. (See Fig. 4 for an
example). By G ⇒ y we denote the event that the execution of game G results
in output y, the game output being what is returned by the game. We write
Pr[G] as shorthand for Pr[G ⇒ true], the probability that the game returns true.

Random Oracle Model (ROM). In the ROM [8], we give parties a random oracle
Hash that on input a string x ∈ {0, 1}∗ returns a an output y that is (concep-
tually at least) a random, infinite string. The caller will then read a prefix of
y, of any length it wants, and be charged, in terms of computation, an amount
proportional only to the number of bits read.

Let T denote the set of all functions T : {0, 1}∗ → {0, 1}∞. Then, mathemat-
ically, a random oracle Hash is a function drawn at random from T. We view
each T ∈ T as a table so that values in it can be reprogrammed, and thus may
write T [·] in place of T (·). Hash could be a procedure in games, for example in
Fig. 3, where return values are sampled lazily as they are needed. Alternatively,
we also sample the table T that describes Hash uniformly at random from T at
the beginning of the game (and write T in place of Hash), for example in Fig. 1.
We note that the above two ways of implementing the random oracle Hash are
equivalent.

It is sometimes useful to give parties a variable output length random oracle.
This takes two inputs, x ∈ {0, 1}∗ and � ∈ N, and returns a random �-bit string,
and, even for a fixed x, the outputs for different lengths � must be independent.
We can implement such a variable output length RO in our model above, and
now discuss how. First, what does not work is to query x and take the �-bit
prefix of the infinite-length string returned, since in this case the result for x, � is
a prefix of the result for x, �′ whenever �′ > �, and so the two are not independent
as required. However, one can first fix an efficient injective encoding of the form
{0, 1}∗ ×N → {0, 1}∗. Then, a query of the form x, � to a variable-length RO can
be simulated by quering encoding of the pair (x, �) to our single-input random
oracle Hash. With this understood, we will work in our model above.

The Local Forking Lemma and Its Application to Deterministic Encryption 613

Game Gsingle
Samp,F

π ←$ Samp()
T ←$ T
(α, x) ← FT (π)
Return (α ≥ 1)

Game Gdouble
Samp,F

π ←$ Samp()
T ←$ T
(α, x) ← FT (π)
T ′ ← T
T ′[x] ←$ {0, 1}∞

(α′, x′) ← FT ′
(π)

Return ((α = α′) ∧ (α ≥ 1))

Fig. 1. Games Gsingle
Samp,F (single run) and Gdouble

Samp,F (double run) associated with algo-
rithms Samp and F .

3 The Local Forking Lemma

We consider two algorithms Samp and F . The first could be randomized but has
no oracle. The second is deterministic and has access to a random oracle Hash
as defined in Sect. 2. These algorithms work as follows.

Via π ←$ Samp(), algorithm Samp returns a value π that we think of as
parameters that are input to F . Via (α, x) ← FT (π), algorithm F , with input
π, and with access to oracle T ∈ T, returns a pair, where α ≥ 0 is an integer
and x is a string. We require that if α ≥ 1 then x must be the α-th query that F
has made to its oracle. If α = 0, there is no requirement on x. Think of α = 0 as
denoting rejection and α ≥ 1 as denoting acceptance. We let q denote maximum
value that α can take. Furthermore, we require that the first q queries that F
make must be distinct.

Consider the games Gsingle
Samp,F and Gdouble

Samp,F in Fig. 1. They are parameterized
by algorithms Samp and F . Game Gsingle

Samp,F is a “normal” execution, in which
π is sampled via Samp, then F is executed with oracle T , the game returned
true if α ≥ 1 (acceptance) and false if α = 0 (rejection). Game Gdouble

Samp,F begins
with the same “normal” run. Then, it reruns F with a different oracle T ′. The
difference is in just one point, namely the reply to the α-th query. Otherwise, T ′

is the same as T . This “local”, as opposed to “global” change in T ′ versus T is
the main difference from the General Forking Lemma of [7]. Our Local Forking
Lemma relates the probability of these games returning true. Our proof follows
the template of [7].

Lemma 1 (Local Forking Lemma). Let Samp, F and q be as above. Then

Pr[Gdouble
Samp,F] ≥ 1

q
· Pr[Gsingle

Samp,F]2 . (1)

Proof (Lemma 1). Consider the games of Fig. 2. They are like the corresponding
games of Fig. 1 except that π ∈ [Samp()] is fixed as a parameter of the game
rather than chosen via Samp in the game. Our main claim, that we will establish
below, is that for every π ∈ [Samp()] we have

614 M. Bellare et al.

Game Gsingle
π,F

T ←$ T
(α, x) ← FT (π)
Return (α ≥ 1)

Game Gdouble
π,F

T ←$ T
(α, x) ← FT (π)
T ′ ← T
T ′[x] ←$ {0, 1}∞

(α′, x′) ← FT ′
(π)

Return ((α = α′) ∧ (α ≥ 1))

Fig. 2. Games Gsingle
π,F (single run) and Gdouble

π,F (double run), with the parameter π now
fixed.

Pr[Gdouble
π,F] ≥ 1

q
· Pr[Gsingle

π,F]2 . (2)

From this we obtain Eq. (1) as in [7]. Namely, define Y1,Y2: [Samp()] → [0, 1]
by Y1(π) = Pr[Gsingle

π,F] and Y2(π) = Pr[Gdouble
π,F], and regard these as random

variables over the choice of π ←$ Samp(). Then, from Eq. (2), we have

Pr[Gdouble
Samp,F] = E[Y2]

≥ E
[
1
q

· Y2
1

]

≥ 1
q
E [Y1]

2 (3)

=
1
q

· Pr[Gsingle
Samp,F]2 ,

Where Eq. (3) is by Jensen’s inequality. This establishes Eq. (1). We proceed
to the main task, namely to prove Eq. (2). Henceforth, regard π ∈ [Samp()] as
fixed.

Since F makes a finite number of oracle queries and has finite running time,
we can fix an integer L such that any query x made by F has |x| ≤ L and also
the maximum number of bits of any reply read by F is at most L. This allows
us to work over a finite sample space. Namely, let D = {0, 1}≤L be the set of
all strings of length at most L and let R = {0, 1}L be shorthand for the set of
strings of length L. Then let OS be the set of all functions T : D → R. Now we
can view T in the games as being sampled from the finite set OS.

We let Q1, Q2, . . . , Qq denote the query functions of F , corresponding to
the first q queries. Function Qi: Ri−1 → D takes a list h1, . . . , hi−1 of answers
to queries 1, . . . , i − 1 and returns the query that F would make next. To be
formal, the only possible input to Q1 is the empty string ε, and it returns the
first query made by F , which is uniquely defined since F is deterministic. On
input a string h1 ∈ R, function Q2 returns the query that F would make if
it received h1 as the answer to its first query. And so on, so that function Qi,
given h1, . . . , hi−1 ∈ R, returns the i-th query that F would make had it received
h1, . . . , hi−1 as responses to its prior queries. We note again that the determinism
of F is important for these (deterministic) query functions to be well defined.

The Local Forking Lemma and Its Application to Deterministic Encryption 615

For i ∈ [1..q] we let Q(h1, . . . , hi−1) = (Q1(ε), Q2(h1), . . . , Qi(h1, . . . , hi−1)) be
the vector consisting of the first i queries given responses h1, . . . , hi−1. Note that
by our assumptions on F , the i entries of this vector are always distinct.

We will be wanting to tinker with a function T , erasing it at some points,
and then adding in new values. We now develop some language to facilitate this.
If V is a vector, we let [V] denote the set whose elements are the entries of V , for
example [(1, 7, 5)] = {1, 7, 5}. For a vector Q ∈ Di of possible queries, we let OSQ

denote the set of all functions S: D \ [Q] → R, meaning functions just like those
in OS but undefined at inputs in [Q]. Now if S ∈ OSQ and H ∈ Ri is a vector
of possible answers, we let S[H] denote the function T ∈ OS that reprograms S
on the query points, leaving it intact on others. In detail, for 1 ≤ j ≤ i we let
T (Q[j]) = H[j], and for x 	∈ [Q], we let T (x) = S(x).

Recall that F ’s output is a pair of the form (α, x) where 0 ≤ α ≤ q is
an integer. We are only interested in the first output α, and it is convenient
to let F1 denote the algorithm that returns this. Also if i, α ≥ 0 are integers,
Indi(α) is defined to be 1 if α = i and 0 otherwise. Now suppose i ∈ [1..q].
We let Ωi be the set of all (h1, . . . , hi−1, S) such that h1, . . . , hi−1 ∈ R and
S ∈ OSQ(h1,...,hi−1), meaning S is undefined at the first i queries made by F .
The function Xi: Ωi → [0, 1] is then defined by

Xi(h1, . . . , hi−1, S) = Pr
[
α = i : h ←$ R ; α ← F

S[(h1,...,hi−1,h)]
1 (π)

]

=
1

|R| ·
∑
h∈R

Indi

(
F

S[(h1,...,hi−1,h)]
1 (π)

)
.

This function fixes the answers to the first i − 1 queries, which uniquely deter-
mines the i-th query, and also fixes, as S the answers to all but these i queries,
taking the probability only over the answer h to the i-th query. Let I and I′ be
the random variables taking values α and α′, respectively, in game Gdouble

π,F . Then

Pr[Gdouble
π,F] = Pr[I ≥ 1 ∧ I′ = I]

=
q∑

i=1

Pr[I = i ∧ I′ = i]

=
q∑

i=1

Pr [I = i] · Pr[I′ = i | I = i]

=
q∑

i=1

1
|Ωi|

∑
(h1,...,hi−1,S)∈Ωi

Xi(h1, . . . , hi−1, S)2

=
q∑

i=1

E[X2
i] (4)

≥
q∑

i=1

E[Xi]2 . (5)

616 M. Bellare et al.

In Eq. (4), we regard Xi as a random variable over Ωi, and refer to its expectation.
Eq. (5) is by Jensen’s inequality. Now recall that if q ≥ 1 is an integer and
x1, . . . , xq ≥ 0 are real numbers, then

q ·
q∑

i=1

x2
i ≥

(
q∑

i=1

xi

)2

.

This can be shown via Jensen’s inequality or the Cauchy-Schwartz inequality,
and a proof is in [7]. Setting xi = E[Xi], we have

q ·
q∑

i=1

E[Xi]2 ≥
(

q∑
i=1

E[Xi]

)2

.

At this point, we would like to invoke linearity of expectation to say that E[X1]+
· · · + E[Xq] = E[X1 + · · · + Xq], but there is a difficulty, namely that linearity
of expectation only makes sense when the random variables are over the same
sample space, and ours are not, so the sum is not really even defined. (This is
glossed over in [7]). So instead we expand the expectations again,

q∑
i=1

E[Xi] =
q∑

i=1

1
|Ωi|

∑
(h1,...,hi−1,S)∈Ωi

Xi(h1, . . . , hi−1, S)

=
q∑

i=1

Pr[I = i]

= Pr[I ≥ 1] = Pr[Gsingle
π,F] .

Putting all the above together, we have Eq. (2). ��

4 Public-Key-Dependent Message-Recovery Security

We start by recalling definitions for public-key encryption schemes.

Public-Key Encryption. A public-key encryption (PKE) scheme PKE defines
PT algorithms PKE.Kg,PKE.Enc,PKE.Dec, the last deterministic. Algorithm
PKE.Kg takes as input 1λ and outputs a public encryption key ek ∈
{0, 1}PKE.ekl(λ) and a secret decryption key dk, where PKE.ekl: N → N is the
public-key length of PKE. Algorithm PKE.Enc takes as input 1λ, ek and a mes-
sage m with |m| ∈ PKE.IL(λ) to return a ciphertext c ∈ {0, 1}PKE.cl(λ,|m|),
where PKE.IL is the input-length function of PKE, so that PKE.IL(λ) ⊆ N is
the set of allowed input (message) lengths, and PKE.cl: N × N → N is the
ciphertext length function of PKE. Algorithm PKE.Dec takes 1λ,dk, c and out-
puts m ∈ {0, 1}∗ ∪ {⊥}. Correctness requires that PKE.Dec(1λ,dk, c) = m for
all λ ∈ N, all (ek,dk) ∈ [PKE.Kg(1λ)] all m with |m| ∈ PKE.IL(λ) and all
c ∈ [PKE.Enc(1λ, ek,m)]. Let PKE.rl: N → N denote the randomness-length

The Local Forking Lemma and Its Application to Deterministic Encryption 617

Game G$ind
PKE,A(λ)

(ek, dk) ←$ PKE.Kg(1λ)
b ←$ {0, 1}
b′ ←$ ALR,Dec(1λ, ek)
Return (b = b′)

Hash(x, �)
If not T [x, �] then

T [x, �] ←$ {0, 1}�

Return T [x, �]

LR(m0, m1)
If (|m0| �= |m1|) Return ⊥
c ←$ PKE.Enc(1λ, ek, mb)
S ← S ∪ {c}
Return c

Dec(c)
If c ∈ S then return ⊥
m ←$ PKE.Dec(1λ, dk, c)
Return m

Fig. 3. Game G$ind defining $IND security of PKE.

function of PKE, meaning PKE.Enc(1λ, ·, ·) draws its coins at random from the
set {0, 1}PKE.rl(λ).

Via game G$ind
PKE,A(λ) of Fig. 3, we recall the definition of what is usually called

IND-CCA. We use the notation $IND to emphasize that this is for randomized
schemes and to avoid confusion with “IND” also being a notion for D-PKE
schemes [5], and we cut the “CCA” for succinctness. We explicitly write the
random oracle Hash as a variable-output-length one, so that it takes a string
x and integer � to return a random �-bit string. (This can be implemented as
discussed in Sect. 2 via a RO that, like in Lemma 1, takes one string input and
returns strings of infinite length.) We let

Adv$indPKE,A(λ) = 2Pr[G$ind
PKE,A(λ)] − 1 .

We say that PKE is $IND-secure if the function Adv$indPKE,A(·) is negligible for
every PT adversary A. We don’t have to define what is conventionally called
IND-CPA separately, but can recover it by saying that PKE is $IND-CPA secure
if the function Adv$indPKE,A(·) is negligible for every PT adversary A that makes
zero queries to the Dec oracle.

We say that a PKE scheme PKE is a deterministic public-key encryption (D-
PKE) [2] scheme if the encryption algorithm DE.Enc is deterministic. Formally,
PKE.rl(·) = 0, so that the randomness can only be the empty string.

The EwH D-PKE Scheme. We recall the Encrypt-with-Hash D-PKE scheme (for-
mally, a transform) [2]. Let PKE be a PKE scheme. Then DE = EwH[PKE] is a
ROM scheme defined as follows. First, DE.Kg = PKE.Kg and DE.Dec = PKE.Dec,
meaning the key generation and decryption algorithms of DE are the same
as those of PKE. We also have that DE.IL(λ) = PKE.IL(λ) and DE.cl(λ, �) =
PKE.cl(λ, �), for all λ and message lengths �. We let DE.rl(λ) = 0 for all λ. The
encryption algorithm of DE is as follows:

DE.EncHash(1λ, ek,m)
r ← Hash(ek‖m,PKE.rl(λ)) ; c ← PKE.Enc(1λ, ek,m; r)
Return c

Above, Hash is the variable output length random oracle as discussed previously.

618 M. Bellare et al.

Game Gpred
PKE,S,P (λ)

(ek, dk) ←$ PKE.Kg(1λ)
cc ←$ S.cx(1λ)
m ←$ S.msgHash,Dec(1λ, cc, ek)
For i = 1, . . . , |m| do

�[i] ← |m[i]|
(m, i) ←$ PHash,Dec(1λ, cc, ek, |m|, �)
Return (m = m[i])

Hash(x, 1�)
If not T [x, �] then

T [x, �] ←$ {0, 1}�

Return T [x, �]

Dec(c)

Return DE.Dec(1λ, dk, c)

Game Gpdmr
PKE,S,A(λ)

(ek, dk) ←$ PKE.Kg(1λ)
cc ←$ S.cx(1λ)
m ←$ S.msgHash,Dec(1λ, cc, ek)
For i = 1 to |m| do

c[i] ←$ PKE.EncHash(1λ, ek,m[i])
(m, i) ←$ AHash,Dec(1λ, cc, ek, c)
Return (m = m[i])

Hash(x, 1�)
If not T [x, �] then

T [x, �] ←$ {0, 1}�

Return T [x, �]

Dec(c)
If (∃i : c = c[i]) then Return ⊥
Return PKE.Dec(1λ, dk, c)

Fig. 4. Left: Game defining unpredictability of source S. Right: Game defining PDMR
security of PKE scheme PKE with source S and PDMR adversary A.

PDMR. We know that D-PKE cannot provide indistinguishability-style security
for messages that depend on the public key [2]. We ask whether, for public-
key dependent messages, it could nonetheless provide a form of security that,
although weaker, is desirable and meaningful in practice, namely security against
message recovery. Here we give the necessary definitions, but in the general
setting of PKE instead of restricting to D-PKE.

Let PKE be a PKE scheme. A source S for PKE specifies PT algorithms S.cx
and S.msg, the first called the context sampler and the second called the mes-
sage sampler. A PDMR adversary for source S is an algorithm A. We associate
to PKE, S, A, and λ ∈ N the game Gpdmr

PKE,S,A(λ) in the right panel of Fig. 4.
Via cc ←$ S.cx(1λ), the game samples the context. Via m ←$ S.msgHash,Dec(1λ,
cc, ek), the message sampler S.msg produces a target-message vector m. We
require that |m[i]| ∈ PKE.IL(λ) for all i. The fact that S.msg has ek as input
means that target messages may depend on the public key. For i = 1, . . . , |m|,
the game then encrypts message m[i] to create target ciphertext c[i]. Via
(m, i) ←$ AHash,Dec(1λ, cc, ek, c), the adversary A produces a (guess) message
m and an index i in the range 1 ≤ i ≤ |c|; it is guessing that m[i] = m,
and wins if this guess is correct. Note that A is not allowed to query Dec on
any of the ciphertexts in the vector c. The PDMR-advantage Advpdmr

PKE,S,A(λ) =
Pr[Gpdmr

PKE,S,A(λ)] of A is the probability that the game returns true. For con-
venience of notation, we omit writing Dec in the superscript if the source or
adversary do not query it.

Classes of Sources. We define classes of sources (a set of message samplers) as a
convenient way to state our results. For n: N → N, we let Sn denote the class of

The Local Forking Lemma and Its Application to Deterministic Encryption 619

Sn Sources that output n(λ) messages
Sup Unpredictable sources
Sri Resampling-indistinguishable sources

Fig. 5. Classes of message samplers of interest. See text for explanations.

sources whose message sampler’s output vector m ← S.msgHash,Dec(1λ, ·, ·) has
length |m| = n(λ). In some of our usage, n will be a constant and we will refer,
for example to S1 or S2. Later we will define other classes as well. A summary
is in Fig. 5.

Unpredictability. We cannot expect PDMR security for predictable target mes-
sages. Indeed, if, say, there are s known choices for m[1] then A can return one
of them at random to get PDMR advantage 1/s. Alternatively, A could encrypt
all s candidates and return the one whose encryption equals c[1], getting an
advantage of 1. We formalize unpredictability of a source S via game Gpred

PKE,S,P

specified in the left panel of Fig. 4, associated to D-PKE scheme PKE, source S
and an adversary P that we call a predictor. Source S is run as in the message-
recovery game. Next, instead of running A, predictor P is run and it tries to
predict (guess) some component of m. Unlike A, predictor P is not given c.
Instead it gets |m|, the lengths of all component messages of this vector, and
1λ, cc, ek. Note that P gets the decryption oracle Dec, with no restrictions on
querying it. Predictor P wins the game if m = m[i]. For λ ∈ N we define the
prediction advantage of P to be

AdvpredPKE,S,P (λ) = Pr[Gpred
PKE,S,P (λ)] .

For λ ∈ N we also define

AdvpredPKE,S(λ) = max
P

AdvpredPKE,S,P (λ) .

where the maximum is over all predictors P , with no limit on their running time
or the number of Hash queries. We say that S is unpredictable if AdvpredPKE,S(·) is
negligible. We let Sup be the class of all unpredictable sources S.

Parameterized Security. We will see that achievability of PDMR security depends
very much on the class (set) of sources. Let S be a class of sources. We say that
PKE scheme PKE is PDMR-secure against S if Advpdmr

PKE,S,A(·) is negligible for
all S ∈ S and all PT A. We say that PKE scheme PKE is PDMR-CPA-secure
against S if Advpdmr

PKE,S,A(λ) is negligible for all S ∈ S that make no Dec queries
and all PT A that make no Dec queries.

$IND Implies PDMR. We show that $IND-security implies PDMR security for
randomized PKE schemes. It is important that this does not apply to D-PKE
schemes as these cannot achieve $IND security. Let PKE be a PKE scheme, S
be a source for PKE and A be a PDMR adversary for S. The following implies

620 M. Bellare et al.

that if PKE is $IND secure, then it is PDMR-secure against Sn ∩ Sup for any
polynomial n. Since the reduction preserves the number of decryption queries,
the result holds in that case as well.

Proposition 1. Let PKE be a PKE scheme, and n a polynomial. Let S ∈ Sn

be a source for PKE and let A be a PDMR adversary. The proof gives $IND
adversary B and predictor P such that

Adv$indPKE,B(λ) + AdvpredPKE,S,P (λ) ≥ Advpdmr
PKE,S,A(λ) .

Furthermore, the resources of adversary B and predictor P relate to those of S
and A as follows:

qLRB = n, qHash
B = qHash

S + qHash
A , qDec

B = qDec
S + qDec

A , tB ≈ tS + tA ,

and

qHash
P = qHash

A + n · qHash
PKE.Enc, qDec

P = qDec
A , tP ≈ n · tPKE.Enc + tA .

Proof (of Proposition 1). $IND adversary B and predictor P are as follows:

Adversary BLR,Hash,Dec(1λ, ek)
cc ←$ S.cx(1λ)
m ←$ S.msgHash,Dec(1λ, cc, ek)
For i = 1, . . . |m| do
m′[i] ←$ {0, 1}|m[i]|

c[i] ←$ LR(m′[i],m[i])
(m, i) ←$ AHash,Dec(1λ, cc, ek, c)
Return (m = m[i])

Adversary PHash,Dec(1λ, cc, ek, �)
For i = 1, . . . , |�| do
m′[i] ←$ {0, 1}�[i]

c[i] ←$ PKE.EncHash(1λ, ek,m′[i])
(m, i) ←$ AHash,DecSim(1λ, cc, ek, c)
Return (m, i)

Algorithm DecSim(x)
If (∃i : x = c[i]) then return ⊥
Return Dec(x)

Adversary B uses m output by S.msg as well as m′ that is sampled uniformly
at random at each component i subjected to |m[i]| = |m′[i]|. Adversary B will
query LR(m′,m) to obtain ciphertext c. Adversary B then runs A on ciphertext
c and checks if the guess of A matches message m. Predictor P obtains the
encryption of a randomly sampled messages m′ where component i has length
�[i]. Then it runs A and returns its output. We have

Adv$indPKE,B(λ) = 2 · Pr[b = b′] − 1

= Pr[b′ = 1 | b = 1] − (1 − Pr[b′ = 0 | b = 0])
= Pr[b′ = 1 | b = 1] − Pr[b′ = 1 | b = 0] ,

Where b′ and b are random variables associated to game G$ind
PKE,B(λ). It is stan-

dard to check that

Pr[b′ = 1 | b = 1] = Advpdmr
PKE,S,A(λ) , (6)

and
Pr[b′ = 1 | b = 0] = AdvpredPKE,S,P (λ) . (7)

Combining the above two equations, we obtain Proposition 1. ��

The Local Forking Lemma and Its Application to Deterministic Encryption 621

5 Possibility Results

In this section, we show that when messages are not too strongly related to each
other—more precisely when they are resampling-indistinguishable, to be defined
shortly—PDMR security is possible. Furthermore this is not just in principle,
but in practice: we show that such PDMR security is provided by the simple
and efficient EwH scheme. Thus we can add, to the IND security for public-key
independent messages we know this scheme already provides [2], a good privacy
guarantee for messages that depend on the public key. This supports the security
of existing or future uses of the scheme.

In more detail, our main technical result, Theorem 1, shows that DE =
EwH[PKE] is PDMR-secure against S1 sources (namely, for the encryption of
a single message) as long as the same is true for the randomized PKE. The proof
relies crucially on Lemma 1. Note that this reduction does not need to assume
unpredictability of the source. It follows from Proposition 1 that DE = EwH[PKE]
is PDMR-secure against Sup∩S1 sources as long as the randomized PKE is $IND-
secure.

The above is all for encryption of a single message. We will then turn to the
encryption of multiple messages. We define a class of sources Sri that we call
resampling indistinguishable. Such sources produce a polynomially-long vector
of messages, reflecting that we are asking for privacy when encrypting many
messages. Theorem 2 is a general result saying that any scheme that is PDMR-
secure for S1 ∩ Sup is automatically PDMR security for Sri ∩ Sup, meaning
PDMR-security for a single unpredictable message implies it for any polyno-
mial number of unpredictable resampling-indistinguishable messages. Putting
all this together, we get that DE = EwH[PKE] is PDMR-secure against Sup ∩ Sri

sources as long as the randomized PKE is $IND-secure.

Remark Regarding CPA. All of the results in this section are stated in the pres-
ence of a decryption oracle. However, our reductions will preserve the num-
ber of decryption queries, so that analogous CPA-type result can be obtained
simply by restricting the number of decryption queries qDec to be 0 for all
sources and adversaries involved. Thus the statement “. . . PDMR(-CPA)-secure
. . . $IND(-CPA)-secure . . . ”, is read as two separate statements: “. . . PDMR-
secure . . . $IND-secure” and “. . . PDMR-CPA-secure . . . $IND-CPA-secure . . . ”.

Remark Regarding PKE Schemes that Rely on a Random Oracle. For simplicity
we assume that the starting randomized PKE scheme is not a ROM scheme.
However our result applies also to the case where it is in fact a ROM scheme like
those of [9,18]. For this, we simply use domain separation, effectively making
the RO used by EwH and the RO used by PKE independent.

5.1 Security of EwH for a Single Message

Canonical 1-Sources and PDMR Adversaries. Let S ∈ S1 be a source for DE, and
A be a PDMR adversary for S. Since S.msg only produces one message, we can
assume that the message index given by A is always 1. Hence, we can view the

622 M. Bellare et al.

BHash,Dec(1λ, cc, ek, c)

Q ← ∅ ; μ ←$ AHSim,Dec(1λ, cc, ek, c)
x ←$ Q ; (ek‖m∗, �) ← x

Return m∗

HSim(w)
Q ← Q ∪ {w}
Return Hash(w)

Algorithm Samp

(ek, dk) ←$ PKE.Kg(1λ)
cc ←$ S.cx(1λ)
ρS ←$ {0, 1}S.msg.rl(λ)

ρA ←$ {0, 1}A.rl(λ)

Return (ek, dk, cc, ρS , ρA)

Subroutine DecSim(d)
If (d = c) then return ⊥
Return PKE.Dec(1λ, dk, d)

Algorithm FHash((ek, dk, cc, ρS , ρA))
j ← 0 ; Q ← ∅ ; ms ← true

m ← S.msgHSim,DecSim(1λ, cc, ek; ρS)
x ← (ek‖m,PKE.rl) ; r ← Hash(x)[1..PKE.rl]
c ← PKE.Enc(1λ, ek, m; r) ; ms ← false

μ ← AHash,DecSim(1λ, cc, ek, c; ρA)
If (x ∈ Q) then α ← Idx(x) else α ← 0
Return (α, x)

Subroutine HSim(w)
If (ms) then j ← j + 1 ; Idx(w) ← j

Else Q ← Q ∪ {w}
Return Hash(w)

Fig. 6. Top is our PDMR adversary B against PKE in the proof of Theorem 1. It
invokes a given PDMR adversary A against EwH[PKE]. Bottom are algorithms Samp,
F used in the analysis.

output of both S.msg and A as a single message. Next, we note that we can
require S.msg and A to query Hash at (ek‖m,PKE.rl(λ)) if they output m. This
can always be done at the expense of one more query to Hash. For the following
results, we shall assume canonical 1-sources and PDMR adversaries for them.

PDMR-Security of PKE Implies PDMR of EwH. The following says that if ran-
domized scheme PKE is PDMR-secure for a source S ∈ S1, then so is deter-
ministic scheme DE = EwH[PKE]. As noted above, the theorem itself does not
assume unpredictability of the source. That will enter later.

Theorem 1. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S ∈ S1 be a
1-message source. Let A be a PDMR adversary for S, and let B be the PDMR
adversary for S given in Fig. 6. Then

Advpdmr
PKE,S,B(λ) ≥ 1

(1 + qHash
S) · (1 + qHash

A)
·
(
Advpdmr

DE,S,A(λ)
)2

.

Additionally qHash
B ≤ 1 + qHash

A , qDec
B = qDec

A and tB ≈ tA + O(qHash
A).

Proof (of Theorem 1). Let � = PKE.rl. We assume that if SHash,Dec(1λ, cc, ek)
outputs message m then it has always queried (ek‖m, �) to Hash. Likewise,
we assume that if AHash,Dec(1λ, cc, ek, c) outputs message μ then it has always
queried (ek‖μ, �) to Hash. In both cases, as discussed above, this can be ensured

The Local Forking Lemma and Its Application to Deterministic Encryption 623

Games G0, G1

(ek, dk, cc, ρS , ρA) ←$ Samp()
j, j′, j′′ ← 0 ; Q, Q′, Q′′ ← ∅ ; c, c′, c′′ ← ⊥ ; ms ← true ; � ← PKE.rl

T ←$ T ; m ← S.msgHSim,DecSim(1λ, cc, ek; ρS) ; x ← (ek‖m, �)
T ′ ← T ; T ′[x] ←$ {0, 1}∞ ; m′ ← S.msgHSim′,DecSim′

(1λ, cc, ek; ρS) ; x′ ← (ek‖m′, �)
α ← Idx(x) ; α′ ← Idx′(x′) ; ms ← false

r ← T (x)[1..�] ; r′ ← T ′(x′)[1..�] ; r′′ ← T ′(x)[1..�]

c ← PKE.Enc(1λ, ek, m; r) ; μ ← AHSim,DecSim(1λ, cc, ek, c; ρA)
c′ ← PKE.Enc(1λ, ek, m′; r′) ; μ′ ← AHSim′,DecSim′

(1λ, cc, ek, c′; ρA)
c′′ ← PKE.Enc(1λ, ek, m; r′′) ; μ′′ ← AHSim′′,DecSim′′

(1λ, cc, ek, c′′; ρA)

If (x �∈ Q) then α ← 0
If (x′ �∈ Q′) then α′ ← 0

Return (x ∈ Q′′) // G0

Return ((x ∈ Q′′) ∧ (α = α′) ∧ (α ≥ 1)) // G1

Procedure DecSim(d)
If (d = c) then return ⊥
Return PKE.Dec(1λ, dk, d)

Procedure DecSim′(d)
If (d = c′) then return ⊥
Return PKE.Dec(1λ, dk, d)

Procedure DecSim′′(d)
If (d = c′′) then return ⊥
Return PKE.Dec(1λ, dk, d)

Procedure HSim(w)
If (ms) then j ← j + 1 ; Idx(w) ← j

Else Q ← Q ∪ {w}
Return T (w)

Procedure HSim′(w)
If (ms) then j′ ← j′ + 1 ; Idx′(w) ← j

Else Q′ ← Q′ ∪ {w}
Return T ′(w)

Procedure HSim′′(w)
If (not ms) then Q′′ ← Q′′ ∪ {w}
Return T (w)

Fig. 7. Games G0, G1 for proof of Theorem 1, in the top box, differ only in their Return
statements, and use the procedures in the bottom box.

by modifying the algorithm to make the required query if it did not already do
so, increasing the number of Hash queries by at most one. So, letting q1 = qHash

S

and q2 = qHash
A , we now regard the number of Hash queries of S and A as 1+ q1

and 1 + q2, respectively. We assume that all Hash queries of S are distinct, and
also that all Hash queries of A are distinct. Crucially, we do not, and cannot,
assume distinctness across these queries, meaning A could repeat queries made
by S.
Fix some λ ∈ N. We start the analysis with the Samp algorithm of Fig. 6. (Ignore
the rest of that Figure for now). It picks keys, common coins cc, coins ρS for the
message-finding phase of sampler S, and coins ρA for A, so that these can be
fixed and maintained across multiple executions of the algorithms. Now consider

624 M. Bellare et al.

Games G2, G3

(ek, dk, cc, ρS , ρA) ←$ Samp()
j, j′, j′′ ← 0 ; Q, Q′, Q′′ ← ∅ ; c, c′, c′′ ← ⊥ ; ms ← true ; � ← PKE.rl

T ←$ T ; m ← S.msgHSim,DecSim(1λ, cc, ek; ρS) ; x ← (ek‖m, �)
T ′ ← T ; T ′[x] ←$ {0, 1}∞ ; m′ ← S.msgHSim′,DecSim′

(1λ, cc, ek; ρS) ; x′ ← (ek‖m′, �)
α ← Idx(x) ; α′ ← Idx′(x′) ; ms ← false

r ← T (x)[1..�] ; r′ ← T ′(x)[1..�]

c ← PKE.Enc(1λ, ek, m; r) ; μ ← AHSim,DecSim(1λ, cc, ek, c; ρA)
c′ ← PKE.Enc(1λ, ek, m; r′) ; μ′ ← AHSim′,DecSim′

(1λ, cc, ek, c′; ρA)

μ′′ ← AHSim′′,DecSim′
(1λ, cc, ek, c′; ρA) // G2

μ′′ ← μ′ // G3

If (x �∈ Q) then α ← 0
If (x �∈ Q′) then α′ ← 0

Return ((x ∈ Q′′) ∧ (α = α′) ∧ (α ≥ 1)) // G2

Return ((x ∈ Q′) ∧ (α = α′) ∧ (α ≥ 1)) // G3

Fig. 8. Games G2, G3 for the proof of Theorem 1. They use the procedures at the
bottom of Fig. 7.

games G0,G1 at the top of Fig. 7. They invoke Samp at the very beginning.
They also invoke the procedures in the bottom of Fig. 7. We claim that

Advpdmr
PKE,S,B(λ) ≥ 1

1 + q2
· Pr[G0] . (8)

This is justified as follows. The message m in G0 is created just as in game
Gpdmr

PKE,S,A(λ), the oracle Hash being set, by procedure HSim, to T . In game
Gpdmr

PKE,S,A(λ), ciphertext c is created by encryption of m under coins that are
random and independent of Hash, captured in G0 as T ′[x]. However, B runs
A with its own oracle Hash, here T , not T ′, captured in G0 as HSim′′. We
have written HSim and HSim′′ as two, separate, oracles, even though both reply
simply via T , because they keep track of different things. In the message-sampling
phase (flag ms = true) they store the index of each query, and when A is run
(flag ms = false), they store the queries in a set. Note that in G0, we are not
concerned with x′, r′, c′, μ, μ′, α, α′, meaning all these quantities can be ignored
in the context of Eq. (8). Game G0 returns true if x ∈ Q′′, meaning if A made
query x = (ek‖m, �) to HSim′′. We have assumed that A always makes hash
query (ek‖μ, �) on output μ, and we have |Q′′| ≤ 1 + q2, yielding Eq. (8).
Games G0,G1 differ only in what they return, and the boolean returned by G1

is the one returned by G0 ANDed with more stuff. So, regardless of what is this
stuff, we must have

Pr[G0] ≥ Pr[G1] . (9)

The Local Forking Lemma and Its Application to Deterministic Encryption 625

Suppose the winning condition of game G1 is met, so that α = α′ 	= 0. This
implies (x,m, r′, c′) = (x′,m′, r′′, c′′). To explain, we have assumed the hash
queries of S are distinct, we have maintained the coins of S across the runs, and
T, T ′ differ only at x, so until x is queried, the executions of S are the same, so
x = x′. This implies r′ = r′′. From the definitions of x, x′ we get m = m′, and
thus we also get c′ = c′′. In game G2 of Fig. 8—the procedures used continue to be
those at the bottom of Fig. 7—we rewrite and simplify the code of G1 under the
assumption that (x,m, r′, c′) = (x′,m′, r′′, c′′). Since G2 maintains the winning
condition of G1, and we have seen this implies (x,m, r′, c′) = (x′,m′, r′′, c′′), we
have

Pr[G1] = Pr[G2] . (10)

In game G2, consider the computations of μ′ and μ′′. The only difference is
that in the first A has oracle HSim′, and in the second, HSim′′. However, the
replies from these oracles differ only at query x, and the winning condition of
G2 depends only on x and other quantities determined prior to the reply to hash
query x being obtained by A. This means that the winning condition of game
G3 is equivalent to that of G2. (Game G3 no longer computes μ′′ as in game G2

to ensure HSim′′ is no longer used, and sets μ′′ instead, correctly, to μ′, but this
quantity is not used in the winning condition). We have

Pr[G2] = Pr[G3] . (11)

Now consider algorithm F of Fig. 6, and consider executing game Gdouble
Samp,F of

Fig. 1. We have

Pr[G3] ≥ Pr[Gdouble
Samp,F] (12)

≥ 1
1 + q2

· Pr[Gsingle
Samp,F]2 , (13)

where Eq. 13 is by Lemma 1. Now we observe that

Pr[Gsingle
Samp,F] ≥ Advpdmr

DE,S,A(λ) . (14)

Combining the equations above completes the proof. ��

PDMR Security of EwH for Unpredictable One-Message Sources. An immediate
corollary of Proposition 1 and Theorem 1 is that $IND(-CPA) security of PKE
implies PDMR(-CPA)-security of EwH[PKE] against S1 ∩ Sup.

Corollary 1. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S ∈ S1 be a
1-message source. Let A be a PDMR adversary for S. The proof specifies PDMR
adversary B for S, and predictor P , such that

Advpdmr
DE,S,A(λ) ≤

√
(1 + qHash

S)(1 + qHash
A)

(
Adv$indPKE,B(λ) + AdvpredPKE,S,P (λ)

)
.

626 M. Bellare et al.

Game Gri
DE,S,D(λ)

(ek, dk) ← DE.Kg(1λ)
cc ←$ S.cx(1λ) ; b ←$ {0, 1}
j ←$ [n(λ)]
m0 ←$ S.msgHash,Dec(1λ, cc, ek)
m1 ← m0

m1[j] ←$ S.msgHash,Dec(1λ, cc, ek)[j]
b′ ←$ DHash,Dec(1λ, cc, ek,mb, j)
Return (b = b′)

Hash(x, 1�)
If not T [x, �] then

T [x, �] ←$ {0, 1}�

Return T [x, �]

Dec(c)

Return DE.Dec(1λ, dk, c)

Fig. 9. Game defining resampling indistinguishability of source S for DE.

The resources of B and P are related to those of S and A as follows:

qHash
B = qHash

S + qHash
A , qDec

B = qDec
S + qDec

A , tB ≈ tS + tA ,

and
qHash
P = qHash

A + qHash
Enc , qDec

P = qDec
A , tP ≈ tEnc + tA .

5.2 Resampling Indistinguishability

We define what it means for an adversary A to be resampling indistinguishable.
At a high level, the condition is that, the distribution of the vector of messages
produced by the adversary is not detectably changed by replacing one of the
components of the vector with a component from another vector produced by
a second run of the adversary using independent coins. This captures a weak
form of independence of the components of the vector. We give accompanying
examples after the precise definition.

Definition. Let DE be a D-PKE scheme. Consider the game Gri
DE,S,D given in

Fig. 9, where S is a n(λ)-source for DE and D is an adversary called the resam-
pling distinguisher. In this game, a message vector m0 is obtained by running
S.msg. Then m1 is created to be the same as m0 except at one, random, location
j. The value it takes at j is the j-th component of a message vector obtained
by running S.msg again, independently and with fresh coins, but on the same
inputs 1λ, cc, ek. Finally, D takes input (1λ, cc, ek,mb, j) and attempts to guess
the value of b. We let

AdvriDE,S,D(λ) = 2Pr[Gri
DE,S,D(λ)] − 1 .

We say that S is resampling-indistinguishable if the function AdvriDE,S,D(·) is
negligible for any PT distinguisher D. We let Sri be the class of resampling-
indistinguishable sources.

Examples of Message Samples in Sri. We give some examples of RI sources. First,
if each m[i] is sampled independently from some distribution depending on i,

The Local Forking Lemma and Its Application to Deterministic Encryption 627

then S is RI even when these distribution depends on the public key. More pre-
cisely, suppose, for some PT algorithm X and polynomial n(·), sampler S.msg
works as follows:

Adversary S.msgHash(1λ, cc, ek)
For i = 1, . . . , n(λ) do m[i] ←$ XHash(1λ, cc, ek, i)
Return m

Then, for any choices of X,n, sampler S.msg as above (together with any context
sampler) is RI. Moreover, S is perfectly RI, i.e. AdvriA,D(λ) = 0 for any distin-
guisher D. Note that the class of such adversaries, defined by all the choices
of PT X and polynomials n, is too large for the constructions of RSV [30], so
our positive results give schemes providing security for classes of message distri-
butions for which their schemes do not provide security. This example extends
naturally to sources S′ such that the output of S′.msg is indistinguishable from
the output of S.msg (for some choice of X and n(·)). The notion of RI also
allows us to capture correlation in m that cannot be efficiently detected. For
example, consider S that does the following. It first generate a random string
r ←$ {0, 1}n. Then, it sets m[i] ← Hash(r‖i, 1n) for i ∈ {1, 2}. Note that there
is strong information-theoretic correlation between m[1] and m[2], given the
entire function table of Hash. However, any distinguisher D making q queries
to Hash cannot detect this correlation with advantage more than q/2n. Finally,
we note that resampling-indistinguishability is independent of predictability. In
particular, if X always returns a constant message (that is compatible with the
message space of the encryption scheme), then the source constructed before is
still RI, but it is trivially predictable.

Reduction to 1-PDMR Security. A useful property of RI adversaries is that their
PDMR security reduces to the PDMR security of the encryption of just one mes-
sage. This is formalized via the theorem below, which says that DE is PDMR-
(CCA-)secure for Sup ∩ S1, then it is PDMR-(CCA-)secure for Sup ∩ Sri.

Theorem 2. Let DE be any D-PKE scheme. Let S1 be any n(λ)-source and A
be a PDMR adversary for D-PKE scheme DE. Consider the 1-source S2 and
PDMR adversary B given in Fig. 10. Then

Advpdmr
DE,S1,A(λ) ≤ n(λ) ·

(
Advpdmr

DE,S2,B(λ) + AdvriDE,S1,D(λ)
)

. (15)

Source S2, adversary B, and distinguisher D are efficient as long as S1 and A
are. In particular,

qHash
B = qHash

S1
+ n(λ) · qHash

DE.Enc + qHash
A , qDec

B = qDec
S1

+ qDec
A ,

tB ≈ tS + n(λ) · tDE.Enc + tA ,

qHash
D = n(λ) · qHash

DE.Enc + qHash
A , qDec

D = qDec
A ,

tD ≈ n(λ) · tDE.Enc + tA .

628 M. Bellare et al.

S2.cx(1λ)

cc ←$ S1.cx(1λ) ; j ←$ [n]
Return (cc, j)

S2.msgHash,Dec(1λ, cc, ek)
(cc, j) ← cc

m ← S1.msgHash,Dec(1λ, cc, ek)
Return m[j]

BHash,Dec(1λ, cc, ek, c)
(cc, j) ← cc

m ←$ S1.msgHash,Dec(1λ, cc, ek)
For i ← 1, . . . , n(λ) do

c[i] ←$ DE.EncHash(1λ, ek,m[i])
c[j] ← c

(m, i) ← AHash,DecSim(1λ, cc, ek, c)
If (i = j) then Return m

Else Return ⊥
Algorithm DecSim(x)
If (∃i : x = c[i]) then return ⊥
Return Dec(x)

DHash,Dec(1λ, cc, ek,m, j)

For i ← 1, . . . , |m| do c[i] ← DE.EncHash(1λ, ek,m[i])
(m, i) ←$ AHash,DecSim(1λ, cc, ek, c)
Return ¬((m[i] = m) and (j = i))

Algorithm DecSim(x)
If (∃i : x = c[i]) then return ⊥
Return Dec(x)

Fig. 10. Source S2 (top left), adversary B (top right), and distinguisher D (bottom)
used in Theorem 2.

Furthermore, S2 is unpredictable if S1 is. Given any predictor P2 for S2, the
proof gives predictor P1 such that

AdvpredDE,S2,P2
(λ) ≤ AdvpredDE,S1,P1

(λ) , (16)

and
qHash
S2

= qHash
S1

, qDec
S2

= qDec
S1

, tS2 ≈ tS1 ,

qHash
P2

= qHash
P1

, qDec
P2

= qDec
P1

, tP2 ≈ tP1 .

The intuition behind the proof of Theorem 2 is straightforward—resampling-
indistinguishability allows a PDMR adversary to simulate the ciphertext vector
c in order to run any RI PDMR adversary. We give the details below.

Proof (of Theorem 2). Consider game G0 and G1 given in Fig. 11, where G1

contains the boxed code, while G0 does not. By construction,

Pr[G1] = Pr[Gpdmr
DE,S2,B(λ)] . (17)

Next, we claim that

Pr[G0] =
1

n(λ)
· Pr[Gpdmr

DE,S1,A(λ)] . (18)

The Local Forking Lemma and Its Application to Deterministic Encryption 629

Game G0 G1

ek ←$ DE.Kg(1λ) ; cc ←$ S1.cx(1λ) ; m ←$ S1.msgHash,Dec(1λ, cc, ek)
j ←$ [n] ; m[j] ←$ S1.msgHash(1λ, cc, ek)[j]
For i ← 1, . . . , |m| do c[i] ← DE.EncHash(1λ, ek,m[i])
(m, i) ←$ AHash,Dec(1λ, cc, ek, c) ; Return ((m[i] = m) and (j = i))

Hash(x, 1�)
If not T [x, �] then T [x, �] ←$ {0, 1}�

Return T [x, �]

Algorithm Dec(c)
If (∃i : c = c[i]) then return ⊥
Return DE.Dec(1λ,dk, c)

Fig. 11. Games G0 and G1 used in the proof of Theorem 2.

This is because j is uniformly sampled and is not used any where in G0 besides
computing the return value. Finally, let us consider Gri

S1,D. We note that by
construction of D, it holds for i ∈ {0, 1} that

Pr[Gi] = Pr[D outputs 0 | b = i] , (19)

Where the second probability is taken over game Gri
DE,S1,D and b is as sampled

in the game. Hence,

Pr[G0] − Pr[G1] = AdvriDE,S1,D(λ) . (20)

Combining Eqs. (17), (18) and (20), we obtain Eq. (15). Lastly, let P2 be a pre-
dictor for S2, consider the following predictor P1 for S1:

PHash,Dec
1 (1λ, cc, ek, n, �)

(cc, j) ← cc ; m ← PHash,Dec
2 (1λ, cc, ek, 1, �[j])

Return (m, j)

It is easy to check that Eq. (16) holds.

5.3 Security of EwH Against Sup ∩ Sri

Combining Theorem 2 and Corollary 1, we obtain the following theorem, which
says that if PKE is $IND(-CPA) secure, then DE = EwH[PKE] is PDMR(-CPA)-
secure against Sri ∩ Sup.

Theorem 3. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S be a n(λ)-
source for DE. Let A be a PDMR adversary for S. $IND adversary B for PKE,
predictor P , and distinguisher D can be constructed such that

630 M. Bellare et al.

Advpdmr
DE,A(λ) ≤ n(λ) · AdvriS,D(λ)

+ n(λ)
√(

qHash
S + 1

) (
qHash
S + qHash

A + n(λ) + 1
) (

Adv$indPKE,B(λ) + AdvpredS,P (λ)
)
.

Furthermore, D, B and P are efficient as long as S and A are. In particular,

qHash
B = 2 · qHash

S + qHash
A + n(λ) + 1, qDec

B = 2 · qDec
S + qDec

A

tB = 2 · tS + n(λ) · tPKE.Enc + tA ,

qHash
D = n(λ) + qHash

A , qDec
D = qDec

A , tD ≈ n(λ) · tDE.Enc + tA ,

and
qHash
P = qHash

S + qHash
A + n(λ) + 1, qDec

P = qDec
S + qDec

A ,

tP ≈ tS + n(λ) · tPKE.Enc + tA .

The proof of Theorem 3 is straight forward given Theorem 2 and Corollary 1
and we only sketch it here. We first apply Theorem 2 to source S and adversary
A to obtain a 1-source S′, adversary A′ and distinguisher D. Then, we can apply
Corollary 1 to S′ and A′ to obtain adversary B and predictor P .

6 Impossibility Results

In this section, we explore what goes wrong when messages can have correla-
tion. The known attacks showing IND-style security is unachievable [2,5] only
distinguish between encryptions of unpredictable messages. Here we give attacks
showing that public-key-dependent messages can in fact be recovered in full by
the adversary—that is, PDMR security is violated—as long as two or more
closely related messages are encrypted. In particular, we show that no D-PKE
scheme is secure against Sup (in particular Sup∩S2). We start with a basic attack
on schemes that can encrypt messages of any length, and then extend this to
schemes that can only encrypt messages of a fixed length.

Basic Attack. The basic PDMR attack works when the D-PKE scheme allows
the encryption of messages of arbitrary length, meaning DE.IL(·) = N. The idea
is simple. Since the message-choosing adversary A1 has the public key, it can
encrypt. It sets the second message to the encryption of a first, random message.
The first challenge ciphertext is thus the second message. This requires that the
scheme be able to encrypt messages of varying length because the ciphertext
will not (usually) have the same length as the plaintext. For the attack to be
valid, we must also show that the adversary is unpredictable. The following the-
orem formalizes this intuition. Here μ(·) is a parameter representing the message
length. The adversary is statistically unpredictable for μ(·) = ω(log(·)), ruling
out even weak PDMR security. The D-PKE scheme is arbitrary subject to being
able to encrypt messages of arbitrary length.

The Local Forking Lemma and Its Application to Deterministic Encryption 631

S.cxHash(1λ)
Return ε

S.msgHash(1λ, ε, pp)

m[1] ←$ {0, 1}μ(λ)

m[2] ← DE.EncHash(1λ, pp,m[1])
Return m

AHash(1λ, ε, pp, c)
Return (c[1], 2)

S.cxHash(1λ)

hk ←$ {0, 1}H.kl

Return hk

S.msgHash(1λ, hk, pp)

m[1] ←$ {0, 1}μ(λ)

c ← DE.EncHash(1λ, pp,m[1])
m[2] ← H.Ev(1λ, hk, c)
Return m

AHash(1λ, hk, pp, c)

Return (H.Ev(1λ, hk, c[1]), 2)

Fig. 12. Left: Source S and PDMR adversary A used in Theorem 4. Right: Source
S and PDMR adversary A used in Theorem 5.

Theorem 4. Let DE be a D-PKE scheme with DE.IL(λ) = N for all λ. Then, DE
is not PDMR-secure against Sup message samplers. In particular, let μ: N → N

be any function, and S,A be the source and adversary given on the left in Fig. 12.
Then, we claim that S ∈ S2 ∩ Sup; in particular, for predictors P and all λ,

AdvpredDE,S,P (λ) ≤ 2−μ(λ) . (21)

But for all λ,

Advpdmr
DE,S,A(λ) = 1 . (22)

Proof (of Theorem 4). We first prove Eq. (22). Adversary A wins game Gpdmr
DE,A(λ)

as long as m[2], as computed by A1, equals c[1], as computed by the game. Both
are computed independently as DE.EncHash(1λ, pp,m[1]), so they will always be
equal, since DE.Enc is deterministic.

We move on to prove Eq. (21). Let P be any predictor, and consider game
Gpred

DE,S,P (λ). For i = 1, 2 let Ei be the event that in game Gpred
DE,S,P (λ), predictor P

outputs a guess of the form (m′, i), for some string m′. The following inequalities,
which complete the proof, are justified after they are stated:

AdvpredDE,S,P (λ) =
2∑

i=1

Pr[Gpred
DE,S,P (λ) | Ei] · Pr[Ei]

≤ 2−μ(λ) · Pr[E1] + 2−μ(λ) · Pr[E2] (23)

≤ 2−μ(λ) . (24)

Since the first message m[1] is randomly chosen from {0, 1}μ(λ), the probability
that m′ = m[1] when P returns (m′, 1) is at most 2−μ(λ). The second message
m[2] is the deterministic encryption of the first message, m[1]. Since the func-
tion DE.Enc(1λ, ek, ·) is injective, and there are 2μ(λ) possible values for m[1],

632 M. Bellare et al.

there will also be 2μ(λ) possible values for m[2]. So again, the probability that
m′ = m[2] when P returns (m′, 2) is at most 2−μ(λ). This justifies Eq. (23).
Equation (24) holds simply because Pr[E1] + Pr[E2] ≤ 1.

General Attack. The basic attack assumed the D-PKE scheme could encrypt mes-
sages of varying length. Many D-PKE schemes—and even definitions—in the
literature restrict the space of allowed messages to ones of a single length. We
now extend the basic attack to one that works in this case, showing that no D-
PKE scheme is (even weakly) PDMR-secure for the encryption of two or more
messages, even if these are of the same length.

Function Families. A family of functions (or function family) F specifies a deter-
ministic PT evaluation algorithm F.Ev such that F.Ev(1λ, ·, ·): {0, 1}F.kl(λ) ×
{0, 1}F.il(λ) → {0, 1}F.ol(λ) for all λ ∈ N, where F.kl, F.il and F.ol are the key,
input and ouput length functions, respectively. Many security attributes may be
defined and considered for such families.

Universal Hash Functions. As a tool we need a family of universal hash functions,
so we start by recalling the definition. Let H be a family of functions. For λ ∈ N,
a key hk ∈ {0, 1}H.kl(λ) and inputs x1, x2 ∈ {0, 1}H.il(λ) we define the collision
probabilities

cpH(λ, x1, x2) = Pr[H.Ev(1λ,hk, x1) = H.Ev(1λ,hk, x2)]
cpH(λ) = max cpH(λ, x1, x2) ,

Where the probability is over hk ←$ {0, 1}H.kl(λ) and the max is over all distinct
x1, x2 ∈ {0, 1}H.il(λ). We say that H is universal if cpH(λ) = 2−H.ol(λ) for all
λ ∈ N.

Theorem 5. Let DE be a D-PKE scheme. Let μ: N → N be any function such
that μ(λ) ∈ DE.IL(λ) for all λ ∈ N. We claim that DE is not PDMR-secure for
Sup message samplers. More precisely, let H be a universal family of functions
with H.il(λ) = DE.cl(λ, μ(λ)) and H.ol(λ) = μ(λ) for all λ ∈ N. Let S,A be
the source and PDMR adversary for DE shown on the right in Fig. 12. Then
S ∈ S2 ∩ Sup; in particular, for all predictors P and all λ,

AdvpredDE,S,P (λ) ≤
√

2 · 2−μ(λ)/2 . (25)

But for all λ,

Advpdmr
DE,S,A(λ) = 1 . (26)

The adversary picks m[1] as before and hashes its encryption down to get m[2].
Note that both these strings have the same length μ(λ), so the attack works even
if there is just one allowed message length. The key hk for the hash function is
shared using the common coins, so is available to both the message source and
the adversary. The adversary continues to have PDMR advantage one. The more

The Local Forking Lemma and Its Application to Deterministic Encryption 633

difficult task is to establish its unpredictability. The theorem shows that the pre-
diction advantage has degraded (increased) relative to Theorem 4, being about
the square root of what it was before, but this is still exponentially vanishing
with μ(·). The proof of this bound uses techniques from the proof of the Leftover
Hash Lemma [24].

Proof (of Theorem 5). We first prove Eq. (26). Adversary A wins game
Gpdmr

DE,S,A(λ) as long as m[2] from S equals H.Ev(1λ,hk, c[1]), as computed by
the game. Both are calculated as H.Ev(1λ,hk,DE.EncHash(1λ, pp,m[1])), so they
will always be equal, since DE.Enc is deterministic.

Now we prove Eq. (25). Let P be any predictor, and consider game
Gpred

DE,S,P (λ). For i = 1, 2 let Ei be the event that in game Gpred
DE,S,P (λ), predictor

P outputs a guess of the form (m′, i), for some string m′. We claim that

Pr[Gpred
A,P (λ) | E1] ≤ 2−μ(λ) (27)

Pr[Gpred
A,P (λ) | E2] ≤

√
2 · 2−μ(λ)/2 . (28)

Given the above, we can complete the proof via

AdvpredDE,S,P (λ) =
2∑

i=1

Pr[Gpred
DE,S,P (λ) | Ei] · Pr[Ei]

≤ 2−μ(λ) · Pr[E1] +
√

2 · 2−μ(λ)/2 · Pr[E2]

≤
√

2 · 2−μ(λ)/2

Equation (27) is true for the same reason as in Theorem 4, namely that, since
the first message m[1] is randomly chosen from {0, 1}μ(λ), the probability that
m′ = m[1] when P returns (m′, 1) is at most 2−μ(λ). The main issue is Eq. (28),
which we now prove.

Let (ek,dk) ∈ [DE.Kg(1λ)] and hk ∈ {0, 1}H.kl(λ). Define Xek,hk: {0, 1}μ(λ) →
{0, 1}μ(λ) by

Xek,hk(m) = H.Ev(1λ,hk,DE.Enc(1λ, ek,m)) .

Regard this as a random variable over the random choice of m ←$ {0, 1}μ(λ).
Now consider the guessing and collision probabilities of this random variable,

gp(Xek,hk) = max
h∈{0,1}H.ol(λ)

Pr[Xek,hk = h]

cp(Xek,hk) =
∑

h∈{0,1}H.ol(λ)

Pr[Xek,hk = h]2 .

Further define GPek,CPek: {0, 1}H.kl(λ) → [0, 1] by

GPek(hk) = gp(Xek,hk) and CPek(hk) = cp(Xek,hk) ,

634 M. Bellare et al.

and regard them as random variables over the random choice of hk ←$

{0, 1}H.kl(λ). Below we will show that

E [GPek] ≤
√

2 · 2−μ(λ)/2 (29)

for every (ek,dk) ∈ [DE.Kg(1λ)]. Now, hk is an input to P , so

Pr[Gpred
A,P (λ) | E2] ≤ max

(ek,dk)∈[DE.Kg(1λ)]
E [GPek]

≤
√

2 · 2−μ(λ)/2

Where the second equation is by Eq. (29). This proves Eq. (28).
Fixing (ek,dk) ∈ [DE.Kg(1λ)], we now prove Eq. (29). It is clear (and a standard
relation between guessing and collision probabilities of a random variable) that
for all hk we have

gp(Xek,hk)2 ≤ cp(Xek,hk) .

Thus

GPek ≤
√

CPek .

By Jensen’s inequality and concavity of the square-root function,

E [GPek] ≤ E
[√

CPek

]
≤

√
E [CPek] .

Now with the expectation over hk ←$ {0, 1}H.kl(λ) and the probability over
m1,m2 ←$ {0, 1}μ(λ), we have

E [CPek] = E [Pr[Xek,hk(m1) = Xek,hk(m2)]] ≤ 2−μ(λ) + cpH(λ) .

This is by considering two cases. The first is that m1 = m2, which happens
with probability 2−μ(λ). The second is that m1 	= m2, in which case the inputs
to H.Ev(1λ,hk, ·) are different due to the injectivity of DE.Enc(1λ, ek, ·), and
we can exploit the universality of H. Now by assumption of universality of H,
cpH(λ) = 2−μ(λ), so putting everything together we have Eq. (29).

Acknowledgments. The first and second authors are supported in part by NSF
grants CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift
from Microsoft. The second author is supported in part by a Powell fellowship. The
third author was supported in part by NSF grant CNS-1564102.

We thank reviewers from Asiacrypt 2019 and Crypto 2019 for their detailed and
extensive comments.

The Local Forking Lemma and Its Application to Deterministic Encryption 635

References

1. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press (October 2008)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

3. Bellare, M., Dai, W., Li, L.: The local forking lemma and its application to deter-
ministic encryption. Cryptology ePrint Archive, Report 2019/1017 (2019). https://
eprint.iacr.org/2019/1017

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

5. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

6. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 21

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006, pp. 390–399. ACM Press, October/November 2006

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (November 1993)

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

11. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
Cryptology ePrint Archive, Report 2015/767 (2015). http://eprint.iacr.org/2015/
767

12. Bleichenbacher, D.: On the security of the KMOV public key cryptosystem. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 235–248. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052239

13. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

14. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 543–560. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 31

https://doi.org/10.1007/978-3-540-74143-5_30
https://eprint.iacr.org/2019/1017
https://eprint.iacr.org/2019/1017
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2015/767
https://doi.org/10.1007/BFb0052239
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-22792-9_31

636 M. Bellare et al.

15. Brown, D.R.L.: A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology
ePrint Archive, Report 2005/189 (2005). http://eprint.iacr.org/2005/189

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

17. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

19. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. J. Cryptol. 28(3),
671–717 (2015)

20. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 2

21. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

22. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

23. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 18

24. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th FOCS, pp.
248–253. IEEE Computer Society Press, October/November 1989

25. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

26. Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryptosys-
tems. SIAM J. Comput. 17(2), 412–426 (1988). Special issue on cryptography

27. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 37

28. Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01001-9 17

29. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

30. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 6

31. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, pp. 15–27. ACM
(2009)

http://eprint.iacr.org/2005/189
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-01001-9_18
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-01001-9_17
https://doi.org/10.1007/978-3-642-01001-9_17
https://doi.org/10.1007/978-3-642-38348-9_6

Fine-Grained Cryptography Revisited

Shohei Egashira1, Yuyu Wang2(B) , and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
egashira.s.aa@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn

Abstract. Fine-grained cryptographic primitives are secure against
adversaries with bounded resources and can be computed by honest
users with less resources than the adversaries. In this paper, we revisit the
results by Degwekar, Vaikuntanathan, and Vasudevan in Crypto 2016 on
fine-grained cryptography and show the constructions of three key fun-
damental fine-grained cryptographic primitives: one-way permutations,
hash proof systems (which in turn implies a public-key encryption scheme
against chosen chiphertext attacks), and trapdoor one-way functions. All
of our constructions are computable in NC1 and secure against (non-
uniform) NC1 circuits under the widely believed worst-case assumption
NC1 � ⊕L/poly.

Keywords: Fine-grained cryptography · NC1 circuit · One-way
permutation · Hash proof system · Trapdoor one-way function

1 Introduction

1.1 Background

To prove the security of a cryptographic scheme, we typically reduce the security
to some computational hardness assumption with a precise security definition.
Due to the fact that most assumptions are unproven, it is desirable to make
the underlying assumptions as weak as possible. However, it turns out to be
very hard to construct a public-key cryptographic scheme without assuming
the existence of one-way functions (OWF). Moreover, for a vast majority of
primitives (including public-key encryption (PKE)), we further need to assume
the hardness of specific problems such as factoring, discrete-logarithm, learning
with errors, etc. It still remains open whether it is possible to construct even basic
cryptographic primitives under no assumptions, or at least mild complexity-
theoretic assumptions. For instance, the complexity-theoretic assumption NP �

BPP, which is strictly weaker than the assumption of OWFs, has been proven
to be insufficient for constructing even OWFs as shown by Akavia et al. [4].

Due to the difficulty of directly constructing cryptographic primitives against
any polynomial probabilistic time adversaries based on mild complexity-theoretic
assumptions such as NP � BPP, a line of beautiful works focused on fine-grained
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 637–666, 2019.
https://doi.org/10.1007/978-3-030-34618-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_22&domain=pdf
http://orcid.org/0000-0002-1198-1903
https://doi.org/10.1007/978-3-030-34618-8_22

638 S. Egashira et al.

cryptographic primitives [16], where (1) the resource of an adversary is a-prior
bounded, (2) an honest party can run the algorithms with less resource than an
adversary, and (3) the underlying assumption is extremely mild.

Merkle [35] initialized the study in this field by constructing a non-interactive
key exchange scheme, which can be run in time O(n) and adversaries running
in time o(n2) cannot break the security. The construction only requires random
functions (i.e., the random oracle). Subsequent to his work, Biham et al. [10]
showed the existence of strong OWFs based on the same assumption.

While Merkle restricted adversaries in the term of running time, Maurer
considered a model where adversaries have infinite computing power but only
restricted storage [34]. Afterwards, he proposed a key exchange protocol in
this model [36]. Following these works, Cachin and Maurer [13] constructed
a symmetric-key encryption scheme and a key exchange protocol which can be
run with storage O(s) and are unconditionally secure against adversaries with
storage o(s2). Besides, there have been many other works focusing on primitives
in this model [8,9,18–20,42].

In the constant depth circuit model, Ajtai and Wigderson [3] con-
structed an unconditional secure pseudo-random generator. Then, Boppana and
Lagarias [12] exploited the results by Ajitai [2] and Furst et al. [21], which shows
that parity cannot be computed in size-bounded circuits, to achieve OWFs. The
proposed OWF can be computed in AC0 (constant-depth polynomial-sized) cir-
cuits consisting of AND, OR, and NOT gates of unbounded fan-in, while the
inverse cannot. Afterwards, several works treating the same model have been
proposed [6,28,43,44].

Recently, Degwekar et al. [16] proposed fine-grained cryptographic primi-
tives against adversaries captured by two (non-uniform) classes of adversaries,
which are AC0 and NC1 (logarithmic-depth polynomial-sized) circuits consisting
of AND, OR, and NOT gates of fan-in 2. They first constructed an uncondition-
ally secure pseudorandom generator with arbitrary polynomial stretch, a weak
pseudorandom function, and a secret-key encryption scheme, all of which are
computable in AC0 and secure against adversaries that are AC0 circuits. Then,
under the widely believed separation assumption NC1 � ⊕L/poly, they con-
structed a OWF, a pseudorandom generator, a collision-resistant hash function,
and a semantically secure PKE scheme that are computable in NC1 and secure
against NC1 circuits.

Following the above work, Campanelli and Gennaro [14] constructed a some-
what homomorphic encryption and a verifiable computation against NC1 circuits.
As in [16], the underlying assumption is NC1 � ⊕L/poly.

While the above sequence of works have achieved amazing success, it still
remains open whether it is possible to construct other fine-grained primitives,
such as one-way permutation (OWP), PKE against chosen ciphertext attacks
(CCA), and even trapdoor one-way function (TDF).

Fine-Grained Cryptography Revisited 639

1.2 Our Results and Techniques

In this paper, we propose several fine-grained cryptographic primitives under
the assumption NC1 � ⊕L/poly. Specifically, we propose a OWP, a hash proof
system (HPS) (which in turn derives a CCA-secure PKE scheme), and a TDF.
All of them are computable in NC1 and secure against adversaries captured by
the class of NC1 circuits. Since a lot of results have been devoted to constructing
advanced primitives from these fundamental ones, our results greatly alleviate
the efforts to achieve more fine-grained primitives from scratch.

Our constructions rely on the fact shown in the papers by Appelebaum, Ishai,
and Kushilevitz [5,29], that if NC1 � ⊕L/poly, there exist a distribution Dn

0 over
n×n matrices of rank (n−1) and a distribution Dn

1 over n×n matrices of rank
n, which are indistinguishable for NC1 circuits.
One-Way Permutation. As one of the most fundamental cryptographic primi-
tives, OWP has been shown to be sufficient for constructing many primitives (e.g.
pseudorandom generators [11] and universal one-way hash functions [37]). Com-
pared with primitives built from OWFs which are not bijective (e.g., [26,40]),
ones built from OWPs are usually more efficient [7,33].

In the previous work, Degwekar et al. [16] showed a construction of fine-
grained OWFs in NC1. Their construction relies on a randomized encoding of a
boolean function f , which is a randomized function outputting the distribution
related only to f(x). Specifically, let f̂ : {0, 1}n × {0, 1}m → {0, 1}m+1 ∈ NC1

be the randomized encoding of f ∈ ⊕L/poly, where the existence of f̂ is shown
in [5]. Then, their construction of a OWF is g(x) = f̂(0n, x).1 However, the
domain and range of g are {0, 1}m and {0, 1}m+1 respectively, i.e., the domain
and range of g are inconsistent. Thus their construction is not a permutation.
Moreover, since they define OWFs using randomized encoding directly, it is
difficult to make their construction a permutation, i.e., it is not clear how to
further achieve OWPs under the same worst-case assumption.

In this work, we propose a collection of OWPs and extend it to a OWP,
both of which are computable in NC1 and secure against NC1 circuits under the
assumption NC1 � ⊕L/poly.

To achieve the goal, we exploit the two distributions Dn
0 and Dn

1 described
above. Essentially, our idea is to construct a “lossy function family” {fM(x) =
Mx}M∈Dn

1
. We let M ← Dn

1 and M ← Dn
0 in the injective and lossy model

respectively, and the indistinguishability between the two models can be reduced
to the indistinguishability between Dn

1 and Dn
0 . Then we follow the Peikert-

Waters [38] approach to prove that fM in the injective model satisfies one-
wayness. Furthermore, since a matrix M ← Dn

1 is of full rank, it holds that fM
in the injective model is a permutation. Therefore, {fM(x) = Mx}M∈Dn

1
is a

collection of OWPs. Next, we extend it to a OWP, i.e., we give a construction
of OWP based on a collection of OWPs which satisfies the distribution of index
sample algorithm is identical to the uniform distribution over index set as follows.

1 The one-wayness of g is based on the indistinguishability of the output distributions
of f̂ conditioned on f(x) = 0 and f(x) = 1, which can be reduced to NC1 � ⊕L/poly.

640 S. Egashira et al.

For a collection of OWPs {fi : Di → Di}i∈I where I is an index set, define a
function g with the domain D :=

⋃
i∈I({i} × Di) and g((i, x) ∈ D) = (i, fi(x)).

Since fi is a permutation and one-way, g is a permutation and one-way as well,
i.e., g is a OWP.

Hash Proof System and CCA Secure PKE Scheme. The notion of HPS,
which can be treated as designated verifier non-interactive zero-knowledge proof
system for a language, was first introduced by Cramer and Shoup [15] for the
purpose of constructing a CCA secure PKE scheme. An HPS allows one to gen-
erate a valid proof π proving that a statement x is in a language L by using
a witness w and a public key pk. Also, one can generate a valid proof for x
(not necessarily in L) by using only a secret key sk. For x ∈ L, proofs gen-
erated in these two ways should be the same. Typically, L is required to be a
hard subset membership one, i.e., statements sampled from inside and outside
the language should be indistinguishable. Furthermore, an HPS usually satisfies
universality and smoothness. Universality means that for fixed x outside L and
pk, the entropy of π is high enough (due to the entropy of sk). Smoothness means
that for x outside L, the distribution of π honestly generated with sk is close
to the uniform distribution in the proof space. HPSs are very versatile. Besides
the application of PKE schemes, they play important roles in constructing var-
ious primitives, such as password authenticated key exchange [24,32], oblivious
transfer [1,31], and zero-knowledge arguments [30].

In previous works, there has been no known way to construct HPSs that is
computable in NC1 and secure against adversaries bounded in NC1 yet. Note that
HPS is a quite different primitive from the ones in [14,16], and its instantiation
cannot be achieved via some simple extension. The main bottleneck is that it
is not clear how to construct an HPS, where we can reduce the hardness of the
subset membership to the indistinguishability between Dn

0 and Dn
1 . To overcome

this problem, we define two sets L and L′ that are identical to the supported
language in a somewhat sophisticated way. The interesting part is that we can
reduce the indistinguishability between L′ and X/L to that between Dn

0 and
Dn

1 . Also we did very careful analysis on the entropy of secret keys with respect
to fixed public keys the to prove smoothness and universality. More details are
given as follows.

In this work, we propose the first HPS that is computable in NC1 and secure
against NC1 adversaries based on the worst-case assumption NC1 � ⊕L/poly.

Our idea is to let a proof in the HPS be of the form sk�M�w, where M ←
Dn

0 , x = M�w is the statement with witness w, sk is the secret key, and
Msk = pk is the public key. A proof can be generated as either pk�w or sk�x.
The language that our HPS supports is Im(M�). To achieve the hardness of
our subset membership problem, we exploit the fact that Im(M�) is identical
to both

L = {x|w ∈ 1×{0, 1}n−1,x = M�w} and L′ = {x|w∈0×{0, 1}n−1,x = M�w}.

We prove that if we sample M as M ← Dn
1 instead of M ← Dn

0 for L′, L′

becomes exactly X \ L where X = {0, 1}n. Then we reduce the indistinguisha-

Fine-Grained Cryptography Revisited 641

bility between the uniform distributions over L and X \ L to that between Dn
0

and Dn
1 . To prove universality and smoothness, we show that for one pk, there

exist different valid secret keys, which lead to different outputs for any statement
not in the language. Hence, the entropy of the proof is high due to the entropy
of the secret key for a fixed pk and statement. We refer the reader to Sect. 4 for
further details.

The proof size of the above scheme is only one single bit, while we can extend
it to an HPS with multi-bit proofs by running many HPSs in parallel and show
that the extension is still computable in NC1 and secure against NC1 circuits.

We now can instantiate the generic constructions [15] of a CCA-secure PKE
scheme with our HPSs. The resulting scheme is secure against NC1 circuits
allowed to make constant rounds of adaptive decryption queries, while in each
round, it can make arbitrary polynomial number of queries. This restriction is
natural and defined in the same way as the adversaries for the NC1-verifiable
computation scheme in [14].

As far as we know, this is the first PKE that is CCA secure against NC1

circuits under a mild complexity-theoretic assumptions, and there is no known
way to make the PKE in [16] and the somewhat homomorphic encryption scheme
in [14], which are malleable, CCA secure.

Trapdoor One-Way Function. TDF is a fundamental primitive introduced
by Diffie and Hellman [17]. Unlike PKE schemes, where the decryption algorithm
only recovers the plaintext (not including the internal randomness used in the
encryption procedure), the inversion algorithm of a TDF recovers the entire pre-
image. The property of TDF mentioned above is useful in many applications,
where proofs of well-formedness are required [22]. However, in the same time, it
makes constructing TDFs very challenging.

In the previous works [14,16], the PKEs use randomness in the encrypting
procedures and it is difficult to recover the randomness in the decrypting proce-
dures since the constructions recover the plaintexts by canceling the randomness
using the property of the kernel of M ← Dn

0 . Namely, it is not easy to extend
their construction to achieve a TDF. In fact, it has been shown that a TDF can-
not be built from a PKE scheme in a black-box way [25]2. On the other hand, it
seems that there is a naive approach to construct a TDF f by defining it in the
same way as our OWP, i.e., f(x) = M1x where M1 is a sampled from Dn

1 , and
sample the inverse M−1

1 or some other elements that can be used to solve linear
equations efficiently as the trapdoor. However, there is no known way to perform
such a sampling procedure in NC1 circuits. Therefore, some more sophisticated
approach has to be taken.

In this work, we propose a TDF that is computable in NC1 and secure against
NC1 circuits based on NC1 � ⊕L/poly. The intuition is as follows.

We first change the domain to {0, 1}t × (L × X \ L)t where M ← Dn
0 ,

L = Im(M), and X = {0, 1}n. On input (x, (c1, c′
1), · · · , (ct, c′

t)) ∈ {0, 1}t ×
(L × X \ L)t, our TDF computes y = f(x), and additionally outputs (ci, c′

i) if
2 There is no rigorous proof showing that the separation holds for NC1, while it is an

evidence that TDF is not easy to achieve.

642 S. Egashira et al.

xi = 0 and (c′
i, ci) otherwise for all i. Here, f is a OWF that is computable in

NC1 and secure against NC1 and xi denotes the ith bit of x. Then, if we have
a non-zero vector k in the kernel of M, which is samplable in NC1 [16], we can
determine whether x ∈ {0, 1}n is in Im(M�) or {0, 1}n \ Im(M�) and recover
xi by checking whether ci and c′

i are swapped. This provides us an efficiently
samplable trapdoor. Due to the subset membership problem for L = Im(M) we
described before, the uniform distributions over Im(M�) and {0, 1}n \ Im(M�)
are indistinguishable when M is a matrix sampled from Dn

0 . Therefore, the
adversary in the one-wayness game can only obtain information on f(x) (which
is one-way) and the additional pairs do little help to it.

The above technique of sampling additional pairs is called bits planting which
was used by Garg et al. [23] to construct a TDF based on the computational
Diffie-Hellman problem. Although both our construction and the one in [23] aim
at constructing trapdoor TDFs, we use the bits planting in a different way. In [23],
this technique is exploited to recover the randomness used in the computation
procedure of the TDF (see [23] for details), while in our work, we use it to avoid
sampling the inverse of M so that every operation can be performed in NC1.

1.3 Possibility on the Extension from Our Proposed NC1

Fine-Grained Primitives

As described above, the fundamental cryptographic primitives we considered
play key roles in a great deal of applications. Hence, our results directly imply
the existence of more advanced NC1-fine-grained primitives. As a simple instance,
besides CCA secure PKE schemes, our HPS immediately implies the existence
of a non-interactive key exchange scheme according to the recent construction
by [27]. However, some NC1 primitives can not be directly derived from existing
ones by adopting previous generic conversions in the polynomial-time world since
the resulting primitive may not be in NC1 any more. For example, although it is
well known that pseudorandom functions can be constructed from OWF/OWPs,
ones in NC1 are neither implied by our NC1-OWP nor the OWF in [16]. It remains
open how to construct such fine-grained primitives, and we believe that our works
will serve a good starting point.

2 Preliminaries

2.1 Notation

For a distribution D, we denote sampling x according to D by x ← D. For a
set S, we denote sampling x from S uniformly at random by x ← S. We denote
the set {1, · · · , n} by [n] and the ith element of a vector x by xi. For a vector
x ∈ {0, 1}∗, x will be regarded by default as a column vector. For a matrix M,
we denote the sets {y | ∃x s.t. y = Mx} and {x | Mx = 0} by Im(M) and
Ker(M) respectively. Let X and Y be random variables over a finite set S. The
statistical distance between X and Y is defined to be

Fine-Grained Cryptography Revisited 643

Dist(X,Y) =
1
2

∑

s∈S

|Pr[X = s] − Pr[Y = s]|.

We say that X and Y are ε-close if Dist(X,Y) ≤ ε.
We note that all arithmetic computations are over GF (2) in this work.

Namely, all arithmetic computations are performed with a modulus of 2. By
negl we denote an unspecified negligible function.

2.2 Definitions

In this section, we recall the definitions of a function family, NC1 circuits, and
⊕L/poly.

Definition 1 (Function Family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rf

λ.

Definition 2 (NC1). The class of (non-uniform) NC1 function families is the
set of all function families F = {fλ} for which there is a polynomial p and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ) and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (⊕L/poly). ⊕L/poly is the set of all boolean function families
F = {fλ} for which there is a constant c such that for each λ, there is a
non-deterministic Turing machine Mλ such that for each input x with length
λ, Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the
number of accepting paths of Mλ(x).

We now give the lemma about the number of solutions for the linear equations
defined by a matrix. It is straightforwardly follows from the fact that the rank
of A is n − 1.

Lemma 1. For any n×n matrix A, if the rank of A is n−1 and all arithmetic
computations are over GF (2), then for any y ∈ Im(A), there exist and only exist
two different vectors x and x′ such that Ax = Ax′ = y.

2.3 Definitions in Fine-Grained Cryptography

In this section, we define several cryptographic primitives which are secure
against restricted complexity classes of adversaries and easy to run for hon-
est parties. In the following definitions, we denote the class of honest parties by
C1 i.e., function families that compose the primitive are in the class C1 and the
class of adversaries by C2, and the condition C1 ⊆ C2 is implicit in each definition
and hence left unmentioned.

Definition 4 (One-Way Function [16]). Let l be a polynomial in λ. Let
F = {fλ : {0, 1}λ → {0, 1}l(λ)} be a function family. F is a C1-one-way function
(OWF) against C2 if:

644 S. Egashira et al.

– Computability: For each λ, fλ is deterministic.
– One-wayness: For any G = {gλ : {0, 1}l(λ) → {0, 1}λ} and any λ ∈ N:

Pr

[

fλ(gλ(y)) = y

∣
∣
∣
∣
∣

x ← {0, 1}λ

y = fλ(x)

]

≤ negl(λ).

Definition 5 (One-Way Permutation). Let F = {fλ : Dλ → Dλ} be a
function family. F is a C1-one-way permutation (OWP) against C2 if:

– Permutation: For each λ, fλ is a permutation.
– One-wayness: For any G = {gλ : Dλ → Dλ} and any λ ∈ N:

Pr

[

gλ(y) = x

∣
∣
∣
∣
∣

x ← Dλ

y = fλ(x)

]

≤ negl(λ).

Definition 6 (Collection of OWPs). Let KeyGen = {KeyGenλ : φ →
Kλ} and Eval = {Evalλ : Kλ × {0, 1}λ → {0, 1}λ} be function families.
(KeyGen, Eval) is a collection of C1-OWPs against C2 if:

– Permutation: For each λ and k ← KeyGenλ, Evalλ(k, ·) : Dλ,k → Dλ,k is a
permutation where Dλ,k ⊆ {0, 1}λ.

– One-wayness: For any G = {gλ : Kλ × {0, 1}λ → {0, 1}λ} and any λ ∈ N:

Pr

⎡

⎣gλ(k, y) = x

∣
∣
∣
∣
∣

k ← KeyGenλ

x ← Dλ,k ⊆ {0, 1}λ

y = Evalλ(k, x)

⎤

⎦ ≤ negl(λ).

Definition 7 (Hash Proof System). Let PPλ = (Xλ, Lλ, Wλ, Rλ, SKλ,
PKλ, Πλ, Hλ, αλ, auxλ) where Xλ is a finite non-empty set, Lλ is a subset of X
such that x ∈ Lλ iff there exists a witness w ∈ Wλ with (x,w) ∈ Rλ ⊂ Xλ ×Wλ,
SKλ is a secret key space, PKλ is a public key space, Πλ is a proof space,
Hλ : SKλ ×Xλ → Πλ is a hash function, αλ : SKλ → PKλ is a projective map,
and auxλ is an auxiliary information. Define the following function families.

• Setup = {Setupλ : φ → PPλ} where Setupλ outputs a public parameter
pp ∈ PPλ.

• SampYes = {SampYesλ : PPλ → Rλ} where SampYesλ on input pp ∈ PPλ

outputs a random element x ∈ Lλ with a witness w ∈ Wλ, i.e., a random
element (x,w) ∈ Rλ.

• SampN o = {SampNoλ : PPλ → Xλ\Lλ} where SampNoλ on input pp ∈ PPλ

outputs a random element x ∈ Xλ \ Lλ.
• KeyGen = {KeyGenλ : PPλ → PKλ × SKλ} where KeyGenλ on input pp ∈

PPλ outputs a public key pk and secret key sk such that pk = αλ(sk).
• Priv = {Privλ : PPλ × SKλ × Xλ → Πλ} where Privλ on input pp ∈ PPλ,

sk ∈ SKλ, and an instance x ∈ Xλ outputs its proof π = Hλ(sk, x).
• Pub = {Pubλ : PPλ × PKλ × Rλ → Πλ} where Pubλ on input pp ∈ PPλ,

pk ∈ PKλ, and an instance with a witness (x,w) ∈ Rλ outputs its proof
π ∈ Πλ.

Fine-Grained Cryptography Revisited 645

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is a C1-hash proof system
(HPS) against C2 if for any λ ∈ N, it holds that:

– Correctness: For any (x,w) ∈ Rλ, we have

Privλ(pp, sk, x) = Hλ(sk, x) = Pubλ(pp, pk, x, w)

where pp ← Setupλ and (pk, sk) ← KeyGenλ(pp).
– Subset membership problem:

• The distributions of x and x′ are identical where pp ← Setupλ, (x,w) ←
SampYesλ(pp), and x′ ← Lλ.

• The distributions of x and x′ are identical where pp ← Setupλ, x ←
SampNoλ(pp), and x′ ← Xλ \ Lλ.

• For any G = {gλ} ∈ C2,

|Pr[gλ(pp, x0) = 1] − Pr[gλ(pp, x1) = 1]| ≤ negl(λ)

where pp ← Setupλ, (x0, w) ← SampYesλ(pp), and x1 ← SampNoλ(pp).

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is perfectly smooth C1-
HPS against C2 if it satisfies the following property.

– Perfect smoothness: For any pp ← Setupλ, the following random variables
are identical, i.e., 0-close.

(x, pk, π), (x, pk, π′)

where x ← SampNoλ(pp), (pk, sk) ← KeyGenλ(pp), π = Privλ(pp, sk, x), and
π′ ← Π.

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is ε-universal1 C1-HPS
against C2 if it satisfies the following property.

– ε-universality1: For any pp ← Setupλ, pk ∈ PKλ, x ∈ Xλ \ Lλ and π ∈ Πλ,
it holds that

Pr[Privλ(pp, sk, x) = π | αλ(sk) = pk] ≤ ε.

If ε is a negligible function, then (Setup, SampYes, SampN o, KeyGen, Priv,
Pub) is a strong universal1 C1-HPS against C2.

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is ε-universal2 C1-HPS
against C2 if it satisfies the following property.

– ε-universality2: For any pp ← Setupλ, pk ∈ PKλ, x, x∗ ∈ Xλ and π, π∗ ∈ Πλ

with x /∈ Lλ ∪ {x∗}, it holds that

Pr[Privλ(pp, sk, x) = π | Privλ(pp, sk, x∗) = π∗ ∧ αλ(sk) = pk] ≤ ε.

If ε is a negligible function, then (Setup, SampYes, SampN o, KeyGen, Priv,
Pub) is a strong universal2 C1-HPS against C2.

646 S. Egashira et al.

Definition 8 (Trapdoor One-Way Function). Let KeyGen = {KeyGenλ :
φ → EKλ×TKλ}, Eval = {Evalλ : EKλ×Dλ → Rλ} and Inverse = {Inverseλ :
TKλ × Dλ → Rλ} be function families where Dλ and Rλ are determined by
the key pair (ek, tk) generated by KeyGenλ. (KeyGen, Eval, Inverse) is a C1-
trapdoor one-way function (TDF) against C2 if:

– Correctness: For any λ ∈ N, any (ek, tk) ← KeyGenλ, and any X ∈ Dλ:

Inverseλ(tk,Evalλ(ek,X)) = X.

– One-wayness: For any G = {gλ} ∈ C2, and any λ ∈ N:

Pr

⎡

⎣Evalλ(ek, gλ(ek, Y)) = Y

∣
∣
∣
∣
∣

(ek, tk) ← KeyGenλ

X ← Dλ

Y = Evalλ(ek,X)

⎤

⎦ ≤ negl(λ).

2.4 Sampling Procedure

In this section, we recall the sampling procedure in [16], and then show several
lemmas on the sampling procedure that will be used later in the security proofs.

Construction 1 (Sampling Procedure). Let Mn
0 and Mn

1 be the following
n × n matrices:

Mn
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Mn
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 1
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– LSamp(n):
1. Output the following n × n upper triangular matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 r1,2 · · · r1,n−1 r1,n

0 1 r2,3 · · · r2,n

0 0
. . .

...
...

...
. . . 1 rn−1,n

0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where ri,j ← {0, 1}.
– RSamp(n):

1. Output the following n × n matrix:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where ri ← {0, 1}.

Fine-Grained Cryptography Revisited 647

– ZeroSamp(n):
1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1Mn

0R2.
– OneSamp(n):

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1Mn

1R2.

Here, the output of ZeroSamp(n) is always a matrix of rank n−1 and the output
of OneSamp(n) is always a matrix of full rank.

Lemma 2 ([5,29]). If NC1 � ⊕L/poly, then there is a polynomial n such that
for any family F = {fλ} in NC1 and any λ ∈ N, we have

|Pr[fλ(M) = 1 | M ← ZeroSamp(n(λ))]−
Pr[fλ(M′) = 1 | M′ ← OneSamp(n(λ))]| ≤ negl(λ).

Lemma 3. For any M ← ZeroSamp(n), it holds that Ker(M) = {0,k} where
k is a vector such that k ∈ {0, 1}n−1 × 1.

Proof. M is a matrix sampled from ZeroSamp(n), i.e.,

M = R1Mn
1R2

= R1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where R1 ← LSamp(n) and R2 ← RSamp(n). Then, we have k = (r1r2 · · · 1)� ∈
Ker(M) since

M = R1Mn
1R2k

= R1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r1
r2
...

rn−1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= R1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
...
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= R10 = 0.

Moreover, according to Lemma 1, there are only two vectors v such that Mv = 0.
Therefore, we have Ker(M) = {0,k}, completing the proof of Lemma 3. �

648 S. Egashira et al.

Lemma 4. For any M ← ZeroSamp(n), it holds that Ker(M�) = {0,k} where
k is a vector such that k ∈ 1 × {0, 1}n−1.

Proof. M is a matrix sampled from ZeroSamp(n) i.e., M = R1Mn
0R2, where

R1 ← LSamp(n), R2 ← RSamp(n). Since R�
1 has full rank, the equation

R�
1 x = (1 0 · · · 0)� has a unique solution x∗. x∗ is in the kernel of M�

since R�
2 M

n�
0 R�

1 x
∗ = R�

2 M
n�
0 (1 0 · · · 0)� = R�

2 0 = 0. According to the
following equation

R�
1 x

∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0
r2,1 1 0 · · · 0

r3,1 r3,2
. . .

...
...

...
. . . 1 0

rn,1 · · · rn,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x∗
1

x∗
2

x∗
3
...

x∗
n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

we have x∗
1 = 1, i.e., x ∈ 1 × {0, 1}n−1.

Moreover, according to Lemma 1 and the fact that the rank of M� is n − 1,
there are only two vectors v such that M�v = 0. Therefore, we have Ker(M�) =
{0,x∗}, completing the proof of Lemma 4. �
Lemma 5. For any M ← ZeroSamp(λ), it holds that

Im(M�) = {x|w ∈ 0×{0, 1}λ−1,x = M�w} = {x|w∈1×{0, 1}λ−1,x = M�w}.

Proof. Let U be a set such that U = {x|w ∈ 0×{0, 1}λ−1,x = M�w} and V be a
set such that V = {x|w ∈ 1 × {0, 1}λ−1,x = M�w}. Let k be a non-zero vector
such that k ∈ Ker(M�). According to Lemma 4, we have k ∈ 1 × {0, 1}λ−1.
Therefore, for any x ∈ U such that x = M�w where w ∈ 0×{0, 1}λ−1, we have
x = M�w = M�(w + k) ∈ V since (w + k) ∈ 1 × {0, 1}λ−1. Moreover, for any
x ∈ V such that x = M�w where w ∈ 1 × {0, 1}λ−1, we have x = M�w =
M�(w + k) ∈ U since (w + k) ∈ 0 × {0, 1}λ−1. Therefore, we have U = V and
it follows that Im(M�) = U ∪ V = U ∪ U = U = {x|w ∈ 0 × {0, 1}λ−1,x =
M�w}. In the same way, we have Im(M�) = U ∪ V = V ∪ V = V = {x|w ∈
1 × {0, 1}λ−1,x = M�w}. As a result, we have

Im(M�) = {x|w ∈ 0×{0, 1}λ−1,x = M�w} = {x|w∈1×{0, 1}λ−1,x = M�w},

completing the proof of Lemma 5. �
Lemma 6. The distributions of M + N and M′ are identical, where M ←
ZeroSamp(λ), M′ ← OneSamp(λ), and N is the following matrix.

N =

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

.

Fine-Grained Cryptography Revisited 649

Proof. For R1 ← LSamp(λ) and R2 ← RSamp(λ), we have

M′ = R1Mλ
1R2 = R1

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎠

R2

= R1

⎛

⎜
⎜
⎜
⎝

0 · · · 0 0

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎠

R2 + R1

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1

0 0
... 0

...
...

. . . 0
...

0 · · · 0 0 0

⎞

⎟
⎟
⎟
⎠

R2

= R1

⎛

⎜
⎜
⎜
⎝

0 · · · 0 0

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎠

R2 +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1

0 0
... 0

...
...

. . . 0
...

0 · · · 0 0 0

⎞

⎟
⎟
⎟
⎠

= R1Mλ
0R2 + N = M + N.

Hence, the distributions of M + N and M′ are identical for M ← ZeroSamp(λ)
and M′ ← OneSamp(λ), completing the proof of Lemma 6. �

3 Construction of NC1-OWP Against NC1

In this section, we first give our construction of a collection of NC1-OWPs against
NC1 under the assumption NC1 � ⊕L/poly. Next, we extend it to a NC1-OWP
against NC1 based on the same assumption.

Construction 2 (Collection of NC1-OWPs). Let λ be a security parameter.
We define the families KeyGen = {KeyGenλ} with key spaces {Kλ = {M | M ∈
OneSamp(λ)}} and Eval = {Evalλ} as follows.

– KeyGenλ:
1. Sample M ← OneSamp(λ).
2. Output M (which defines the domain as Dλ,M := {0, 1}λ).

– Evalλ(M,x):
1. Compute y := Mx and output y.

Theorem 1. (KeyGen, Eval) defined as Construction 2 is a collection of NC1-
OWPs against NC1 under the assumption NC1 � ⊕L/poly.

Proof Sketch. As described in Introduction, our construction is essentially a
“lossy function”. More specifically, it is straightforward that our scheme is a
permutation, since M is of full rank when M ← OneSamp(λ). Moreover, when
we generate M ← ZeroSamp(λ) instead of M ← OneSamp(λ) in KeyGenλ, we
can prove that an adversary A breaking the one-wayness of our construction

650 S. Egashira et al.

with probability ε can also be used to find a second pre-image x′ for Evalλ(M,x)
such that x �= x′ with probability 1

2ε. This is due to the fact that M is not
of full rank in this case and A has no information on whether the pre-image
is x or x′. However, it is unlikely that A can find such a second pre-image,
since this construction is indistinguishable with the original one, where M is
generated as M ← OneSamp(λ) and there exists no second pre-image for each
M. Therefore, we can conclude that this scheme is one-way, which immediately
gives us the one-wayness of the original scheme (due to the indistinguishability
between OneSamp(λ) and ZeroSamp(λ)).

The formal proof is as follows.

Proof. First note that both KeyGen and Eval are computable in NC1, since
they only involve operations including multiplications of a constant number
of matrices, inner products, and sampling random bits. We now show that
(KeyGen, Eval) satisfies computability and one-wayness.

Permutation. Since for M ← OneSampλ, M is a full rank matrix, we have that
Evalλ(M,x) = Mx ∈ Dλ,M = {0, 1}λ is a permutation.

One-Wayness. Let A = {aλ} be any adversary in NC1. We give hybrid games
to show that the advantage of A in breaking the one-wayness of Construction 2
is negligible.

Game 0: This is the original one-wayness game for A = {aλ}. CH runs M ←
KeyGenλ and samples x ← {0, 1}λ. Then, it runs y = Evalλ(M,x) and sends y
to aλ. aλ succeeds if it outputs x̃ such that x = x̃. Otherwise, it fails.

Game 1: This game is the same as Game 0 except that CH runs ZeroSamp(λ)
instead of OneSamp(λ) in the key generation procedure.

Lemma 7. If A = {aλ} succeeds with advantage ε0 (resp., ε1) in Game 0
(resp., Game 1), then |ε0 − ε1| = negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M ← ZeroSamp(λ)
and M ← OneSamp(λ) with advantage |ε0 − ε1|, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSamp(λ) or M ←
OneSamp(λ) from its challenger. Then, it samples x ← {0, 1}λ. Next, bλ runs
y = Evalλ(M,x) and sends y to aλ. When aλ outputs x̃, if x = x̃, bλ outputs 1.
Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M ← ZeroSamp(λ) (resp., M ← OneSamp(λ)),

the view of aλ is identical to its view in Game 0 (resp., Game 1), i.e., bλ

outputs 1 with probability ε0 (resp., ε1). Therefore, B = {bλ} distinguishes
M ← ZeroSamp(λ) and M ← OneSamp(λ) with advantage |ε0 − ε1|, which
should be negligible according to Lemma 2, completing the proof of Lemma 7.

�
Game 2: This game is the same as Game 1 except that aλ succeeds if x �=
x̃ ∧ Evalλ(M,x) = Eval(M, x̃).

Fine-Grained Cryptography Revisited 651

Lemma 8. If A = {aλ} succeeds with advantage ε1 (resp., ε2) in Game 1
(resp., Game 2), then ε1 = ε2.

Proof. According to Lemma 1 and due to the fact that the rank of M ←
ZeroSamp(λ) is λ − 1, for any y ∈ Im(M), there are two vectors x,x′ such
that Mx = Mx′ = y ∧ x �= x′, and we have

ε1 = Pr

⎡

⎣x̃ = x∗
∣
∣
∣
∣
∣

x∗ ← {x,x′}
y = Mx∗

x̃ ← aλ(y)

⎤

⎦

=
1
2

Pr

⎡

⎣x̃ = x

∣
∣
∣
∣
∣

x∗ = x
y = Mx∗

x̃ ← aλ(y)

⎤

⎦ +
1
2

Pr

⎡

⎣x̃ = x′
∣
∣
∣
∣
∣

x∗ = x′

y = Mx∗

x̃ ← aλ(y)

⎤

⎦

=
1
2

Pr

⎡

⎣x̃ = x

∣
∣
∣
∣
∣

x∗ = x′

y = Mx∗

x̃ ← aλ(y)

⎤

⎦ +
1
2

Pr

⎡

⎣x̃ = x′
∣
∣
∣
∣
∣

x∗ = x
y = Mx∗

x̃ ← aλ(y)

⎤

⎦

= Pr

⎡

⎣ x̃ �= x∗ ∧
Evalλ(M, x̃) = Evalλ(M,x∗)

∣
∣
∣
∣
∣

x∗ ← {x,x′}
y = Mx∗

x̃ ← aλ(y)

⎤

⎦ = ε2,

completing the proof of Lemma 8.

Lemma 9. If A = {aλ} succeeds with advantage ε2 in Game 2, then ε2 =
negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M ← ZeroSamp(λ)
and M ← OneSamp(λ) with advantage ε2, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSamp(λ) or M ←
OneSamp(λ) from its challenger. Then, it samples x ← {0, 1}λ. Next, bλ runs y =
Evalλ(M,x) and send y to aλ. When aλ outputs x̃, if x �= x̃ ∧ y = Evalλ(M,x),
bλ outputs 1. Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M ← ZeroSamp(λ), the view of aλ is identical to its

view in Game 2, i.e., bλ outputs 1 with probability ε2.
When M ← OneSamp(λ), since Eval(M, x̃) is permutation, there is no vector

x̃ such that x �= x̃ ∧ y = Evalλ(k,x), i.e. bλ outputs 1 with probability 0.
Therefore, B = {bλ} distinguishes M ← ZeroSamp(λ) and M ← OneSamp(λ)

with advantage ε2, which should be negligible according to Lemma 2, completing
the proof of Lemma 9. �

Since |ε0 − ε1| = negl(λ), ε1 = ε2, and ε2 = negl(λ), we have

ε0 ≤ |ε0 − ε1| + ε1 = negl(λ) + ε2 = negl(λ),

i.e., Construction 2 satisfies one-wayness. This completes the proof of Theorem 1.
�

652 S. Egashira et al.

Extension to NC1-OWPs Against NC1. We now show a transformation from
collections of NC1-OWPs against NC1, where the output distributions of the
key generation algorithms are uniformly random over key space, to NC1-OWPs
against NC1. Specifically, given a collection of OWPs {fk : Dk → Dk}k∈K where
K is the key space, we construct a OWP g : D → D where D :=

⋃
k∈K({k} ×

Dk) and g((k, x) ∈ D) = (k, fk(x)). This transformation can be applied in
NC1, and the properties of permutation and one-wayness of g hold due to those
properties of f . Note that in [5], it is shown that OneSamp(λ) samples M ←
{M ∈ OneSamp(λ)} uniformly. Thus, KeyGenλ of our construction samples k ←
Kλ = {M | M ∈ OneSamp(λ)} uniformly, and we can apply this transformation
to our collection of NC1-OWPs against NC1. We refer the reader to the full paper
for the details.

Computability in AC0[2]. Perhaps interestingly, our one-way permutation can
be run by an even smaller class of circuits AC0[2], which satisfies AC0[2] �

NC1 [39,41] and consists of constant-depth circuits with MOD2 gates. The reason
is that it only involves multiplications of a constant number of matrices, inner
products, and sampling random bits. Due to the same reason, our constructions
of single-bit HPS introduced later in Sect. 4 is also computable in AC0[2].

4 Construction of NC1-HPS Against NC1

In this section, we start by giving a construction of perfectly smooth and 1
2 -

universal1 NC1-HPS against NC1 such that the proof space is one-bit. Next, we
turn this construction into a perfectly smooth and strong universal1 NC1-HPS
against NC1 such that the proof space is multi-bit. Finally, we construct a strong
universal2 NC1-HPS against NC1 such that the language L supports {0, 1}n.

4.1 Perfectly Smooth and Universal1 for One-Bit

In this section, we give our construction of perfectly smooth and 1
2 -universal1

NC1-HPS against NC1 circuits under the assumption NC1 � ⊕L/poly.

Construction 3 (NC1-HPS). Let λ be a security parameter. We define the
families Setup = {Setupλ}, SampYes = {SampYesλ}, SampN o = {SampNoλ},
KeyGen = {KeyGenλ}, Priv = {Privλ}, and Pub = {Pubλ} as follows.

– Setupλ:
1. Sample M ← ZeroSamp(λ).
2. Output pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) where

• Xλ := {0, 1}λ.
• Lλ := {x|w ∈ 1 × {0, 1}λ−1,x = Mw} = Im(M�) (∵ Lemma 5).
• Wλ := 1 × {0, 1}λ−1.
• Rλ := {(x,w)| w ∈ 1 × {0, 1}λ−1,x = Mw}.
• SKλ := {0, 1}λ.
• PKλ := Im(M).

Fine-Grained Cryptography Revisited 653

• Πλ := {0, 1}.
• Hλ(sk,x) := sk�x.
• αλ(sk) := Msk.
• auxλ := M.

– SampYesλ(pp):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) and let auxλ =

M.
2. Sample w ← 1 × {0, 1}λ−1.
3. Compute x := M�w and output x.

– SampNoλ(pp):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) and let auxλ =

M.
2. Sample w ← 1 × {0, 1}λ−1.
3. Compute M′ as

M′ = M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

.

4. Compute x := M′�w and output x.
– KeyGenλ(pp):

1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Hλ,Πλ, αλ, auxλ).
2. Sample sk ← SKλ.
3. Compute pk := αλ(sk) and output (pk, sk).

– Privλ(pp, sk,x):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ).
2. Compute π := Hλ(sk,x) and output π.

– Pubλ(pp,pk,x,w):
1. Compute π := pk�w and output π.

Theorem 2. If NC1 � ⊕L/poly, then (Setup, SampYes, SampN o, KeyGen,
Priv, Pub) defined as Construction 3 is a perfectly smooth and 1

2 -universal1
NC1-HPS against NC1 circuits.

Proof Sketch. It is straightforward that this HPS is correct.
To show the subset membership problem of our construction, we first give

two observations: (1) for any M sampled from ZeroSamp(λ), the distribution of
M + N is identical to OneSamp(λ), where

N =

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

,

and (2) perhaps interestingly, for any w ∈ 0 × {0, 1}n−1 (respectively, w ∈
1 × {0, 1}n−1), there is a vector k in the kernel of M such that Mw� =

654 S. Egashira et al.

M(w+k)� and (w+k) ∈ 1 × {0, 1}n−1 (respectively, (w+k) ∈ 0 × {0, 1}n−1),
which implies Im(M�) = {x|w ∈ 0 × {0, 1}n−1,x = M�w} = {x|w ∈
1 × {0, 1}n−1,x = M�w}. Since for any vector w ∈ 0 × {0, 1}n−1, it holds
that (M + N)�w = M�w + N�w = M�w + 0 = M�w, we have L =
Im(M�) = {x|w ∈ 0 × {0, 1}n−1,x = (M + N)�w} due to observation
(2). Moreover, since M + N is of full rank due to observation (1), we have
X = {0, 1}n = {x|w ∈ {0, 1}n,x = (M + N)�w}. Thus, we can conclude that
X \ L = {x|w ∈ 1 × {0, 1}n−1,x = (M + N)�w}. Then, the subset member-
ship problem follows from the fact that Im(M�) = {x|w ∈ 1 × {0, 1}n−1,x =
M�w} and the indistinguishability between the distributions over Im(M�) and
X \ L can be reduced to the indistinguishability between ZeroSamp(λ) and
OneSamp(λ).

We now explain the intuition of the proof of universal1. Since the rank of M
is n − 1, when we fix the public key pk, there are two different secret keys sk
and sk′ such that pk = Msk = Msk′. As explained before, for any x ∈ X \ L,
there exists w ∈ 1 × {0, 1}n−1 such that x = (M + N)�w, and (M + N)
is a full rank matrix. Therefore, we have (M + N)sk �= (M + N)sk′ which
implies Nsk �= Nsk′, i.e., either Nsk or Nsk′ is zero-vector and the other is
(1 0 · · · 0)�. Therefore, when we let Nsk = (0 · · · 0)� and Nsk′ = (1 0 · · · 0)�,
it holds that H(sk,x) = sk�(M+N)�w = sk�M�w+ (0 · · · 0)w = sk�M�w
and H(sk′,x) = sk′�(M + N)�w = sk′�M�w + (1 0 · · · 0)w = sk′�M�w + 1,
which implies H(sk,x) �= H(sk′,x). As a result, for fixed pk, one can guess the
proof for an instance x ∈ X \ L with probability at most 1

2 since there is no
information on whether the secret key is sk or sk′.

The formal proof is as follows.

Proof. First note that all of the algorithms Setup, SampYes, SampN o, KeyGen,
Priv, and Pub are in NC1, since they only involve operations including multipli-
cations of a constant number of matrices, inner products, and sampling random
bits.

Next we prove that Construction 3 satisfies correctness, subset membership
problem, perfect smoothness, and 1

2 -universality1.

Correctness. Since Privλ(pp, sk,x) = Hλ(sk,x) = sk�x = sk�M�w =
(Msk)�w = pk�w = Pubλ(pp,pk,x,w), Construction 3 satisfies correctness.

Subset Membership Problem. We now propose and prove three propositions
corresponding to the three properties in the definition of subset membership
problem (see Definition 7) respectively.

Proposition 1. The distributions of x and x′ are identical where pp ← Setupλ,
x ← SampYesλ(pp), and x′ ← Lλ.

Proof. Let M ← ZeroSamp(λ) be a matrix generated in the procedure of Setupλ.
Let f be a map f : 1 × {0, 1}λ−1 → Im(M�) such that f(w) = M�w. One can
see that for any pp ← Setupλ, the distributions of x and x′ are identical where
x ← SampYesλ(pp), w′ ← 1 × {0, 1}λ−1, and x′ = f(w′). Moreover, if f is

Fine-Grained Cryptography Revisited 655

bijective, the distributions of x′ and x′′ are identical for w′ ← 1 × {0, 1}λ−1,
x′ = f(w′), and x′′ ← Im(M�). Therefore, if f is bijective, the distributions of
x and x′′ are identical. Namely, to show Proposition 1, we only have to show
that f is bijective.

Injectivity. We now show that for any w,w′ ← 1×{0, 1}λ−1 such that w �= w′,
we have f(w) �= f(w′). We prove by contradiction, i.e. we show that if there are
w,w′ ← 1 × {0, 1}λ−1 such that w �= w′ and f(w) = f(w′), then it contradicts
on Lemma 4.

Since M�w = M�w′, we have M�(w − w′) = 0. Moreover, since w �= w′

and w,w′ ∈ 1×{0, 1}λ−1, w−w′ is the non-zero vector in the kernel of M� and
w − w′ ∈ 0 × {0, 1}λ−1. However, according to Lemma 4, we have Ker(M�) =
{0,k} where k ∈ 1 × {0, 1}λ, which gives us the conflict.

Surjectivity. We now show that for any x ∈ Im(M�), there exists a vector
w ∈ 1 × {0, 1}λ−1 such that x = f(w), i.e., x = M�w. According to Lemma 5,
we have Im(M�) = {x|w ∈ 1 × {0, 1}λ,x = M�w}. Therefore, it holds that
for any x ∈ Im(M�), there exists w ∈ 1 × {0, 1}λ such that x = M�w, i.e.,
x = f(w), completing the proof of surjectivity.

Putting all the above together, Proposition 1 immediately follows. �
Proposition 2. The distributions of x and x′ are identical for pp ← Setupλ,
x ← SampNoλ(pp), and x′ ← Xλ \ Lλ.

Proof. Let M ← ZeroSamp(λ) and M′ be

M′ = M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

.

We first show that for any w ∈ 1×{0, 1}λ−1, we have M′�w ∈ {0, 1}λ\Im(M�).
(�) For any w ∈ 0 × {0, 1}λ−1, we have

M′w =

⎛

⎜
⎜
⎜
⎝
M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

�

w

= M�w +

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
w2

...
wλ

⎞

⎟
⎟
⎟
⎠

= M�w + 0 = M�w.

Moreover, according to Lemma 5, we have Im(M�) = {x |w ∈ 0×{0, 1}λ−1, x =
M�w}. Hence, we have

{x | w ∈ 0 × {0, 1}λ−1, x = M′�w} = {x | w ∈ 0 × {0, 1}λ−1, x = M�w} (�)
= Im(M�).

656 S. Egashira et al.

As a result, for all x ∈ Im(M�), there exists w′ ∈ 0 × {0, 1}λ−1 such that
x = M′�w′. Moreover, according to Lemma 6, M′ is a full rank matrix, which
means that for any w ∈ 1×{0, 1}λ−1 and any x ∈ Im(M�), we have M′�w �= x.
Namely, for any w ∈ 1 × {0, 1}λ−1, we have M′�w ∈ {0, 1}λ \ Im(M�).

It is straightforward that for any pp ← Setupλ, the distributions of x ←
SampNoλ(pp) and x′ = M′�w′ are identical where w′ ← 1×{0, 1}λ−1. Moreover,
since M′� is of full rank, the map f : 1 × {0, 1}n−1 → {0, 1}λ \ Im(M�) such
that f(w) = M′�w is bijective, i.e., the distributions of x′ = f(w′) and x′′ ←
{0, 1}λ \ Im(M�) are identical for w′ ← 1 × {0, 1}λ−1, completing the proof of
Proposition 2. �
Proposition 3. For any A = {aλ} ∈ NC1,

|Pr[aλ(pp,x0) = 1] − Pr[aλ(pp,x1) = 1]| ≤ negl(λ)

where pp ← Setupλ, (x0,w) ← SampYesλ(pp), and x1 ← SampNoλ(pp).

Proof. Let A = {aλ} be any adversary in NC1. We give hybrid games to show
that the advantage of A in breaking the hardness of subset membership problem
is negligible.

Game 0: This is the original SampYes game for A. CH runs pp ← Setupλ,
(x,w) ← SampYesλ(pp). Then it sends (pp,x) to aλ. aλ succeeds if aλ outputs
1. Otherwise, it fails.

Game 1: This game is the same as Game 0 except that CH runs M ←
OneSampλ in the procedure of Setupλ.

Lemma 10. If A = {aλ} succeeds with advantage ε0 (resp., ε1) in Game 0
(resp., Game 1), then |ε0 − ε1| = negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M ← ZeroSamp(λ)
and M ← OneSamp(λ) with advantage |ε0 − ε1|, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSampλ or M ←
OneSampλ from its challenger. Then, it runs pp ← Setupλ using M, samples
w ← 1 × {0, 1}λ−1, and sets x := M�w. Next, bλ gives (pp,x) to aλ. When aλ

outputs b, then bλ outputs b.
Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M ← ZeroSamp(λ) (resp., M ← OneSamp(λ)),

the view of aλ is identical to its view in Game 1 (resp., Game 2), i.e., bλ

outputs 1 with probability ε0 (resp., ε1). Therefore, B = {bλ} distinguishes
M ← ZeroSamp(λ) and M ← OneSamp(λ) with advantage |ε0 − ε1|, which
should be negligible according to Lemma 2, completing the proof of Lemma 10.

�
Game 2: This is the original SampNo game for A, i.e., it is the same as Game 1
except that CH runs M′ ← ZeroSamp(λ) and set M := M′ +N in the procedure
of Setupλ, where

Fine-Grained Cryptography Revisited 657

N =

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

.

Lemma 11. If A = {aλ} succeeds with advantage ε1 (resp., ε2) in Game 1
(resp., Game 2), then ε1 = ε2.

Proof. Lemma 11 follows from the fact that the distributions of M0 + N and
M1 are identical where M0 ← ZeroSamp(λ) and M1 ← OneSamp(λ) (according
to Lemma 6). �

Note that, ε0 = Pr[aλ(pp,x) = 1] and ε2 = Pr[aλ(pp,x′) = 1] where pp ←
Setupλ, (x,w) ← SampYesλ(pp), and x′ ← SampNoλ(pp). Moreover, since |ε0 −
ε1| = negl(λ) and ε1 = ε2, we have

|ε0 − ε2| ≤ |ε0 − ε1| + |ε1 − ε2| = negl(λ).

�
According to Propositions 1, 2, and 3, Construction 3 satisfies the subset

membership problem, completing this part of proof.

Perfect Smoothness. We now show that for any pp ← Setupλ, the random
variables (x,pk, π) and (x,pk, π′) are identical where x ← Xλ \ Lλ, (pk, sk) ←
KeyGenλ(pp), and π′ ← Πλ.

According to Lemma 1, for any pk∗ ∈ PKλ, there are only two secret keys
sk and sk′ such that pk∗ = αλ(sk) = Msk = αλ(sk′) = Msk′. Moreover,
according to Lemma 3, we have sk = sk′ + k where k is a vector such that k ∈
Ker(M) and k ∈ {0, 1}λ−1 × 1, i.e., the last elements in sk and sk′ are different
(one is 1 and other is 0). Therefore, for any x∗ ∈ Xλ \ Lλ and pk∗ ∈ PKλ, we
have

π = Privλ(pp, sk,x∗) = sk�M′�w∗

= sk�

⎛

⎜
⎜
⎜
⎝
M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

�

w∗

= sk�M�w∗ + (sk1 · · · skλ)

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1
w∗

2
...

w∗
λ

⎞

⎟
⎟
⎟
⎠

= pk∗�w∗ + skλ,

and it follows that for any x∗ ∈ Xλ \ Lλ and pk∗ ∈ PKλ, there are two
secret key sk, sk′ such that pk∗ = αλ(sk) = αλ(sk′), Privλ(sk,x∗) = 0, and
Privλ(pp, sk′,x∗) = 1. Namely, the number of secret keys satisfying pk∗ =
αλ(sk) ∧ π∗ = Privλ(sk,x∗) is 1. Therefore, we have

658 S. Egashira et al.

Pr[(x,pk, π) = (x∗,pk∗, π∗)] = Pr

[
pk = pk∗ ∧

π = π∗

∣
∣
∣
∣
∣
x = x∗

]

Pr[x = x∗]

= Pr
[

pk∗ = αλ(sk) ∧
π∗ = Privλ(pp, sk,x∗)

]

Pr [x = x∗]

=
1

|SKλ| Pr [x = x∗]

where sk ← SKλ and x ← Xλ × Lλ. Similarly, we have

Pr[(x,pk, π′) = (x∗,pk∗, π∗)] = Pr[π′ = π∗] Pr[pk = pk∗] Pr[x = x∗]

=
1
2

2
|SKλ| Pr [x = x∗]

=
1

|SKλ| Pr [x = x∗] .

Therefore, we have Pr[(x,pk, π) = (x∗,pk∗, π∗)] = Pr[(x,pk, π′) =
(x∗,pk∗, π∗)] and it follows that Construction 3 satisfies perfect smoothness.
1
2 -universality1. 1

2 -universality1 follows from the fact that for any pp ← Setupλ,
x ∈ Xλ \ Lλ, pk ∈ PKλ, and π ∈ Πλ, the number of secret keys such that
pk = αλ(sk) is 2 and the number of secret keys such that pk = αλ(sk) ∧ π =
Privλ(pp, sk,x) is 1 as described above. Therefore, we have

Pr[Privλ(pp, sk,x) = π ∧ αλ(sk) = pk] =
1

|SKλ| =
1
2

2
|SKλ|

=
1
2

Pr[αλ(sk) = pk]

⇔ Pr[Privλ(pp, sk,x) = π|αλ(sk) = pk] =
1
2
.

Therefore, Construction 3 satisfies 1
2 -universality1.

Putting all the above together, Theorem 2 immediately follows. �
Multi-bit NC1-HPS. Notice that the size of proof space of Construction 3 is
only one-bit, which makes it less useful. However, we can extend this construction
with multi-bit proofs by running multiple HPS in parallel. We refer the reader
to the full paper for the multi-bit version of our HPS and the security proof.

Universal2 NC1-HPS. By carefully adopting the technique by Cramer and
Shoup [15], we achieve a universal2 NC1-HPS. The resulting scheme can be
computed in NC1 and it is secure against NC1 circuits under the assumption
NC1 � ⊕L/poly. We refer the reader to the full paper for the details.

4.2 Application: NC1-CCA Secure PKE

As one of the most important application of HPSs, Cramer and shoup [15] con-
structed a CCA secure PKE scheme. Interestingly, by instantiating the under-
lying HPS with our construction, we immediately achieve an NC1-CCA secure

Fine-Grained Cryptography Revisited 659

PKE scheme against NC1 circuits restricted in the same way as the ones defined
for verifiable computation schemes by Campanelli and Gennaro [14], i.e., ones
allowed to make constant rounds of adaptive queries to the decryption oracle,
while in each round, they can make arbitrary polynomial number of queries. We
refer the reader to the full paper for the details on this application.

5 Construction of NC1-TDF Against NC1

In this section, we give our construction of NC1-TDF against NC1 under the
assumption NC1 � ⊕L/poly.

Construction 4 (NC1-TDF). Let λ be a security parameter and l be a polyno-
mial in λ. Let F = {fλ : {0, 1}λ → {0, 1}l(λ)} be a NC1-OWF against NC1. We
define the families KeyGen = {KeyGenλ} with key spaces EKλ = {M | M ←
ZeroSamp(λ)} and TKλ = Ker(M), Eval = {Evalλ} and Inverse = {Inverseλ}
as follows.

– KeyGenλ:
1. Run R ← LSamp(λ), R′ ← RSamp(λ).
2. Set k := (r 1)� where (r 1)� is the last column of R′.
3. Compute M := RMλ

0R
′ where Mλ

0 is defined as Construction 1.
4. Set ek := M and tk := k, and output (ek, tk) (according to the proof of

Lemma 3, it holds that k ∈ Ker(M)).
The domain Dλ,ek and range Rλ,ek are defined as follows.

Dλ,ek := {0, 1}λ × (
Im(M�) × {0, 1}λ \ Im(M�)

)λ
.

Rλ,ek := {0, 1}l(λ)+2λ2
.

– Evalλ(ek,X):
1. Parse X := (x, (c1,0, c1,1), (c2,0, c2,1), · · · , (cλ,0, cλ,1)) ∈ Dλ,ek.
2. For x = x1x2 · · · xλ ∈ {0, 1}λ and all i ∈ [λ], if xi = 0, set (ci, c′

i) :=
(ci,0, ci,1), otherwise set (ci, c′

i) := (ci,1, ci,0).
3. Compute y := fλ(x).
4. Set Y := (y, (c1, c′

1), (c2, c
′
2), · · · , (cλ, c′

λ)) and output Y .
– Inverseλ(tk, Y):

1. Parse tk := k and Y := (y, (c1, c′
1), (c2, c

′
2), · · · , (cλ, c′

λ)) ∈ Rλ,ek.
2. For all i ∈ [λ], if k�ci = 0 ∧ k�c′

i = 1, then set xi := 0 and (ci,0, ci,1) :=
(ci, c′

i).
3. Else if k�ci = 1 ∧ k�c′

i = 0, then set xi := 1 and (ci,0, ci,1) := (c′
i, ci).

4. Else output ⊥ and halt.
5. Set X = (x, (c1,0, c1,1), · · · , (cλ,0, cλ,1)) and output X.

Theorem 3. If NC1 � ⊕L/poly and there exists an NC1-OWF against NC1

circuits, Construction 4 is an NC1-TDF against NC1.

660 S. Egashira et al.

Proof Sketch. Let k and M be the trapdoor key and evaluation key generated
by KeyGenλ respectively. For any c ∈ Im(M�), we must have k�c = 0 since
k ∈ Ker(M). Also, we prove that for any c ∈ {0, 1}λ \ Im(M�), there must

exists w such that w ∈ 1 × {0, 1}λ−1 and c =

⎛

⎜
⎜
⎜
⎝
M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

w. Since

k�M�w = 0 and k�

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

�

w = 1, we must have k�c = 1 in this case.

Therefore, k, which is samplable in NC1, can be used to determine whether c is
in Im(M�) or {0, 1}λ \ Im(M�) and recover xi by checking whether ci and c′

i

are swapped in the inversing procedure, i.e., correctness holds.
Moreover, due to the subset membership problem for L = Im(M), the uni-

form distributions over Im(M�) and {0, 1}λ\Im(M�) are indistinguishable when
M is a correctly generated evaluation key, i.e., the distributions (ci,0, ci,1) ←
Im(M�) × {0, 1}λ \ Im(M�) and (ci,0, ci,1) ← Im(M�) × Im(M�) are indis-
tinguishable. Therefore, the adversary in the one-way game can only obtain
information on fλ(x) (which is one-way), and the additional pairs (ci,0, ci,1) can
be simulated by just sampling them from Im(M�) × Im(M�), i.e., they reveal
little information on x.

The formal proof is as follows.

Proof. Note that KeyGen, Eval, and Inverse only involve operations including
multiplications of the constant number of matrices, inner products and sampling
random bits. Since these operation can be performed in NC1, we have KeyGen,
Eval, and Inverse can be computed in NC1.

Next, we prove that Construction 4 satisfies correctness and one-wayness.

Correctness. For any M ← ZeroSamp(λ) and any c ∈ Im(M�), we have

k�c = k�M�w = (Mk)�w = 0�w = 0

where k ∈ Ker(M) and w is a vector such that c = Mw.
Next we show that when c ∈ {0, 1}λ \Im(M�) then k�c = 1. Before showing

this, we first propose the following lemma, which is straightforwardly implied by
Proposition 2 in Theorem 2.

Lemma 12. For any M ← ZeroSamp(λ), it holds that

{0, 1}λ \ Im(M�) = {x | ∃w ∈ 1 × {0, 1}λ−1,x = M′�w}
where

M′ = M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

.

Fine-Grained Cryptography Revisited 661

According to Lemma 12, for any M ← ZeroSamp(λ) and any c ∈ {0, 1}λ \
Im(M�), we have

k�c = k�M′�w = k�

⎛

⎜
⎜
⎜
⎝
M +

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

�

w

= (Mk)�w +

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

k

⎞

⎟
⎟
⎟
⎠

�

w

= 0�w + (1 0 · · · 0)w = 0 + 1 = 1

where k is a vector in the kernel of M and w is a vector such that w ∈ 1 ×
{0, 1}λ−1 ∧ c = M′�w.

As a result, for all i ∈ [λ], k generated by KeyGenλ can be used to determine
whether ci (resp., c′

i) generated by Evalλ are in Im(M�) or {0, 1}λ \ Im(M�),
and hence recover xi.

One-Wayness. Let A = {aλ} be any adversary in NC1. We give hybrid games
to show that the advantage of A in breaking the one-wayness of Construction 4
is negligible.

Game 0: This is the original one-wayness game for A = {aλ}. CH runs
(ek, tk) ← KeyGenλ, samples X ← Dλ,ek, and runs Y = Evalλ(ek,X). Then it
sends (ek, Y) to aλ. aλ succeeds if aλ outputs X∗ such that Evalλ(ek,X∗) = Y .
Otherwise it fails.

Game 1 ∼ Game λ: For i ∈ [λ], Game i is the same as Game i-1 except that
CH samples (ci,0, ci,1) ← Im(M�) × Im(M�).

Lemma 13. If A = {aλ} succeeds with advantage εi−1 (resp., εi) in Game i-1
(resp., Game i), then |εi−1 − εi| = negl(λ).

Proof. According to the proof of the part of subset membership problem in
Theorem 2, we have the following lemma.

Lemma 14. For any G = {gλ} ∈ NC1,

|Pr[gλ(M, c0) = 1] − Pr[gλ(M, c1) = 1]| ≤ negl(λ),

where M ← ZeroSamp(λ), c0 ← Im(M�), and c1 ← {0, 1}λ \ Im(M�).

Proof. Let (Setup,SampYes,SampN o,KeyGen,Priv,Pub) be a strong smooth
HPS defined as Construction 3. According to Propositions 1, 2, and 3, we have

– the distributions of x0 and c0 are identical where pp ← Setupλ, (x0, w) ←
SampYesλ(pp), and c ← Im(M�) (∵ Proposition 1).

662 S. Egashira et al.

– the distributions of x1 and c1 are identical where pp ← Setupλ, (x0, w) ←
SampNoλ(pp), and c ← {0, 1}λ \ Im(M�) (∵ Proposition 2).

– it holds that for any G = {gλ} ∈ C2,

|Pr[gλ(pp,x0) = 1] − Pr[gλ(pp,x1) = 1]| ≤ negl(λ)

where pp ← Setupλ, (x0, w) ← SampYesλ(pp), and x1 ← SampNoλ(pp) (∵
Proposition 3).

Moreover, the distribution of pp ← Setupλ depends only on the distribution of
M ← ZeroSamp(λ). Therefore, for any G = {gλ} ∈ C2, we have

|Pr[gλ(M, c0) = 1] − Pr[gλ(M, c1) = 1]| ≤ negl(λ),

where M ← ZeroSamp(λ), c0 ← Im(M�), and c1 ← {0, 1}λ \ Im(M�), complet-
ing the proof of Lemma 14. �

We now construct B = {bλ} ∈ NC1 that distinguishes c ← Im(M�) and
c ← {0, 1}λ\Im(M�) with advantage |εi−1−εi|, which contradicts to Lemma 14.

bλ takes as input (M, c), which is generated as M ← ZeroSamp(λ) and
c sampled as c ← Im(M�) or c ← {0, 1}λ \ Im(M�) from its challenger.
Then, it sets ek := M and ci,1 := c. Next, bλ samples x ← {0, 1}λ,
(cj,0, cj,1) ← Im(M�) × Im(M�) for all j ∈ [i − 1], ci,0 ← Im(M�),
and (cj,0, cj,1) ← Im(M�) × {0, 1}λ \ Im(M�) for all j ∈ {i + 1, · · · , λ}.
Next, bλ sets X := (x, (c1,0, c1,1), (c2,0, c2,1), · · · , (cλ,0, cλ,1)) and computes
Y = Evalλ(ek,X). Finally, bλ gives (ek, Y) to aλ. When aλ output X∗, if
Y = Evalλ(ek,X∗), bλ outputs 1. Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when c ← Im(M�) (resp., c ← {0, 1}λ \Im(M�)), the view

of aλ is identical to its view in Game i-1 (resp., Game i), i.e., bλ outputs 1
with probability εi−1 (resp., εi). Therefore, B = {bλ} distinguishes c ← Im(M�)
and c ← {0, 1}λ \ Im(M�) with advantage |εi−1 − εi|, which should be negligible
according to Lemma 14, completing the proof of Lemma 13. �
Lemma 15. If A = {aλ} succeeds with advantage ελ in Game λ, then ελ =
negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that breaks the one-wayness of F =
{fλ} with advantage εn.

bλ takes as input y, which is generated as x ← {0, 1}λ and y =
fλ(y) from its challenger. Then, bλ runs (ek, tk) ← KeyGenλ, parses ek :=
M, and samples ((c0,0, c0,1), · · · , (cλ,0, cλ,1)) ← Im(M�)2λ. Next bλ gives
(y, (c0,0, c0,1), · · · , (cλ,0, cλ,1)) to aλ. When aλ outputs X∗, bλ parses X∗ :=
(x∗(c∗

0,0, c
∗
0,1), · · · , (c∗

λ,0, c
∗
λ,1)) and outputs x∗.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that the view of aλ is identical to its view in Game λ, i.e., bλ

outputs x∗ such that y = fλ(x∗) with probability ελ. Therefore, B = {bλ} breaks

Fine-Grained Cryptography Revisited 663

the one-wayness of F = {fλ} with advantage ελ, which should be negligible,
completing the proof of Lemma 15.

Since for i ∈ [λ], |εi−1 − εi| = negl(λ), ελ = negl(λ), we have

ε0 ≤
λ∑

i=1

|εi−1 − εi| + ελ = negl(λ).

Therefore, Construction 4 satisfies one-wayness. �
Putting all the above together, Theorem 3 immediately follows. �

6 Conclusion

In this paper, we formalize fine-grained OWPs, HPSs (which in turn derives a
CCA-secure PKE), and TDFs, and show how to construct the NC1 versions of
them secure against NC1 adversaries. Compared with traditional cryptographic
primitives, our schemes treat restricted class of adversaries, while they can be run
more efficiently and are only based on the mild worst case assumption NC1 �

⊕L/poly. It remains open how to construct more fine-grained primitives not
implied by our results, such as pseudo-random functions and signature schemes,
in the same model.

Acknowledgements. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, and the Sichuan Science and Technology Program
under Grant 2017GZDZX0002 and 2018GZDZX0006.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7 12

2. Ajtai, M.: Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983)
3. Ajtai, M., Wigderson, A.: Deterministic simulation of probabilistic constant depth

circuits (preliminary version). In: 26th Annual Symposium on Foundations of Com-
puter Science, pp. 11–19. IEEE Computer Society Press (October 1985)

4. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: Erratum for: on basing
one-way functions on NP-hardness. In: Schulman, L.J. (ed.) 42nd Annual ACM
Symposium on Theory of Computing, pp. 795–796. ACM Press (June 2010)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th Annual
Symposium on Foundations of Computer Science, pp. 166–175. IEEE Computer
Society Press (October 2004)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0. Comput. Complex. 17(1), 38–69 (2008)

https://doi.org/10.1007/978-3-642-42033-7_12
https://doi.org/10.1007/978-3-642-42033-7_12

664 S. Egashira et al.

7. Asharov, G., Segev, G.: On constructing one-way permutations from indistin-
guishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part
II. LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 19

8. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage
model. IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

9. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the
limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 65–79. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 5

10. Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography on strong
one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 55–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 4

11. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

12. Boppana, R.B., Lagarias, J.C.: One- way functions and circuit complexity. In:
Structure in Complexity Theory, Proceedings of the Conference hold at the Uni-
versity of California, Berkeley, California, USA, June 2–5, 1986, pp. 51–65 (1986)

13. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

14. Campanelli, M., Gennaro, R.: Fine-grained secure computation. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 66–97. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 3

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

16. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
533–562. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 19

17. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

18. Ding, Y.Z.: Oblivious transfer in the bounded storage model. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 155–170. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 9

19. Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer
in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
446–472. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-
1 25

20. Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage
model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 126–137. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 8

21. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. In: 22nd Annual Symposium on Foundations of Computer Science, Nashville,
Tennessee, USA, 28–30 October 1981, pp. 260–270 (1981)

22. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 2

https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/3-540-48405-1_5
https://doi.org/10.1007/978-3-540-78524-8_4
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/3-540-44647-8_9
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24676-3_8
https://doi.org/10.1007/978-3-540-24676-3_8
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2

Fine-Grained Cryptography Revisited 665

23. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman
assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 13

24. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

25. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of
Computer Science, pp. 126–135. IEEE Computer Society Press (October 2001)

26. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

27. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 65–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 3

28. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. In: 30th Annual Symposium on Foundations of Computer Science, pp.
236–241. IEEE Computer Society Press, October/November 1989

29. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium
on Foundations of Computer Science, pp. 294–304. IEEE Computer Society Press
(November 2000)

30. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 29

31. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 5

32. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

33. Matsuda, T.: On the impossibility of basing public-coin one-way permutations on
trapdoor permutations. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 265–
290. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 12

34. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Cryptol. 5(1), 53–66 (1992)

35. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
(CACM) 21(4), 294–299 (1978)

36. Mitchell, C.J.: A storage complexity based analogue of Maurer key establishment
using public channels. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS,
vol. 1025, pp. 84–93. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60693-9 11

37. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st Annual ACM Symposium on Theory of Computing, pp. 33–
43. ACM Press (May 1989)

38. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing,
pp. 187–196. ACM Press (May 2008)

https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-54242-8_12
https://doi.org/10.1007/3-540-60693-9_11
https://doi.org/10.1007/3-540-60693-9_11

666 S. Egashira et al.

39. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Math. Notes Acad. Sci. USSR 41(4), 333–338
(1987)

40. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM
Press (May 1990)

41. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, STOC 1987, pp. 77–82. ACM, New York (1987)

42. Vadhan, S.P.: On constructing locally computable extractors and cryptosystems in
the bounded storage model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 61–77. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 4

43. Viola, E.: On constructing parallel pseudorandom generators from one-way func-
tions. Cryptology ePrint Archive, Report 2005/159 (2005). http://eprint.iacr.org/
2005/159

44. Viola, E.: The complexity of distributions. In: 51st Annual Symposium on Founda-
tions of Computer Science, pp. 202–211. IEEE Computer Society Press (October
2010)

https://doi.org/10.1007/978-3-540-45146-4_4
https://doi.org/10.1007/978-3-540-45146-4_4
http://eprint.iacr.org/2005/159
http://eprint.iacr.org/2005/159

Zero Knowledge

Shorter QA-NIZK and SPS
with Tighter Security

Masayuki Abe1, Charanjit S. Jutla2, Miyako Ohkubo3, Jiaxin Pan4,
Arnab Roy5, and Yuyu Wang6(B)

1 NTT Corporation, Tokyo, Japan
abe.masayuki@lab.ntt.co.jp

2 IBM T. J. Watson Research Center, Yorktown Heights, USA
csjutla@us.ibm.com

3 Security Fundamentals Laboratories, CSR, NICT, Tokyo, Japan
m.ohkubo@nict.go.jp

4 Department of Mathematical Sciences, NTNU – Norwegian University of Science
and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no
5 Fujitsu Laboratories of America, Sunnyvale, USA

aroy@us.fujitsu.com
6 University of Electronic Science and Technology of China, Chengdu, China

wangyuyu@uestc.edu.cn

Abstract. Quasi-adaptive non-interactive zero-knowledge proof (QA-
NIZK) systems and structure-preserving signature (SPS) schemes are
two powerful tools for constructing practical pairing-based cryptographic
schemes. Their efficiency directly affects the efficiency of the derived
advanced protocols.

We construct more efficient QA-NIZK and SPS schemes with tight
security reductions. Our QA-NIZK scheme is the first one that achieves
both tight simulation soundness and constant proof size (in terms of num-
ber of group elements) at the same time, while the recent scheme from
Abe et al. (ASIACRYPT 2018) achieved tight security with proof size
linearly depending on the size of the language and the witness. Assuming
the hardness of the Symmetric eXternal Diffie-Hellman (SXDH) problem,
our scheme contains only 14 elements in the proof and remains indepen-
dent of the size of the language and the witness. Moreover, our scheme
has tighter simulation soundness than the previous schemes.

Technically, we refine and extend a partitioning technique from a
recent SPS scheme (Gay et al., EUROCRYPT 2018). Furthermore, we
improve the efficiency of the tightly secure SPS schemes by using a
relaxation of NIZK proof system for OR languages, called designated-
prover NIZK system. Under the SXDH assumption, our SPS scheme

J. Pan—Research was conducted at KIT, Germany under the DFG grant HO 4534/4-1.
Yuyu Wang—Research was conducted at Tokyo Institute of Technology. A part of
this work was supported by the Sichuan Science and Technology Program under
Grant 2017GZDZX0002 and 2018GZDZX0006, Input Output Cryptocurrency Collab-
orative Research Chair funded by IOHK, JST OPERA JPMJOP1612, JST CREST
JPMJCR14D6, JSPS KAKENHI JP16H01705, JP17H01695.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 669–699, 2019.
https://doi.org/10.1007/978-3-030-34618-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_23&domain=pdf
http://orcid.org/0000-0002-1198-1903
https://doi.org/10.1007/978-3-030-34618-8_23

670 M. Abe et al.

contains 11 group elements in the signature, which is shortest among the
tight schemes and is the same as an early non-tight scheme (Abe et al.,
ASIACRYPT 2012). Compared to the shortest known non-tight scheme
(Jutla and Roy, PKC 2017), our scheme achieves tight security at the
cost of 5 additional elements.

All the schemes in this paper are proven secure based on the Matrix
Diffie-Hellman assumptions (Escala et al., CRYPTO 2013). These are
a class of assumptions which include the well-known SXDH and DLIN
assumptions and provide clean algebraic insights to our constructions. To
the best of our knowledge, our schemes achieve the best efficiency among
schemes with the same functionality and security properties. This natu-
rally leads to improvement of the efficiency of cryptosystems based on
simulation-sound QA-NIZK and SPS.

Keywords: Quasi-adaptive NIZK · simulation soundness ·
Structure-preserving signature · Tight reduction

1 Introduction

Bilinear pairing groups have enabled the construction of a plethora of rich cryp-
tographic primitives in the last two decades, starting from the seminal works
on three-party key exchange [30] and identity-based encryption (IBE) [11]. In
particular, the Groth-Sahai non-interactive zero knowledge (NIZK) proof sys-
tem [24] for proving algebraic statements over pairing groups has proven to be
a powerful tool to construct more efficient advanced cryptographic protocols,
such as group signatures [21], anonymous credentials [7], and UC-secure com-
mitment [17] schemes.

Quasi-Adaptive NIZK for Linear Subspaces. There are many applications
which require NIZK systems for proving membership in linear subspaces of group
vectors. A couple of examples are CCA2-secure public-key encryption via the
Naor-Yung paradigm [42], and publicly verifiable CCA2-secure IBE [29].

For proving linear subspace membership, the Groth-Sahai system has a proof
size linear in the dimension of the language and the subspace, in terms of num-
ber of group elements. To achieve better efficiency, Jutla and Roy proposed a
weaker notion [32] called quasi-adaptive NIZK arguments (QA-NIZK), where
the common reference string (CRS) may depend on the linear subspace and
the soundness is computationally adaptive. For computationally adaptive sound-
ness, the adversary is allowed to submit a proof for its adaptively chosen invalid
statement. Based on their work, further improvements [1,33,38] gave QA-NIZK
systems with constant proof size. This directly led to KDM-CCA2-secure PKE
and publicly verifiable CCA2-secure IBE with constant-size ciphertexts.

Structure-Preserving Signature. Structure-Preserving (SP) cryptography
[3] has evolved as an important paradigm in designing modular protocols. In
order to enable interoperability, it is required for SP primitives to support veri-
fication only by pairing product equations, which enable zero-knowledge proofs
using Groth-Sahai NIZKs.

Shorter QA-NIZK and SPS with Tighter Security 671

Structure-preserving signature (SPS) schemes are the most important build-
ing blocks in constructing anonymous credential [7], voting systems and mix-
nets [22], and privacy-preserving point collection [25]. In an SPS, all the public
keys, messages, and signatures are group elements and verification is done by
checking pairing-product equations. Constructing SPS is a very challenging task,
as traditional group-based signatures use hash functions, which are not structure-
preserving.

Tight Security. The security of a cryptographic scheme is proven by con-
structing a reduction R which uses a successful adversary A against the security
of the scheme to solve some hard problem. Concretely, this argument establishes
the relation between the success probability of A (denoted by εA) and that of
R (denoted by εR) as εA ≤ � · εR + negl(λ), where negl(λ) is negligible in the
security parameter λ. The reduction R is called tight if � is a small constant
and the running time of R is approximately the same as that of A. Most of
the recent works consider a variant notion of tight security, called almost tight
security, where the only difference is that � may linearly (or, even better, log-
arithmically) depend on the security parameter λ. It is worth mentioning that
the security loss in all our schemes is O(log Q), where Q is the number of A’s
queries. We note that Q � 2λ and thus our security loss is much less than O(λ).
In this paper, we do not distinguish tight security and almost tight security, but
we do provide the concrete security bounds.

Tightly secure schemes are more desirable than their non-tight counterparts,
since tightly secure schemes do not need to compensate much for their secu-
rity loss and allow universal key-length recommendations independent of the
envisioned size of an application. In recent years, there have been significant
efforts in developing schemes with tight security, such as PKEs [18,19,26–28],
IBEs [9,13,29], and signatures [4,8,20,28].

As discussed above, QA-NIZK and SPS are important building blocks for
advanced protocols which are embedded in larger scale settings. Designing effi-
cient QA-NIZK and SPS with tight security is very important, since non-tight
schemes can result in much larger security loss in the derived protocols.

QA-NIZK: Tight Security or Compact Proofs? Several of the aforemen-
tioned applications of QA-NIZK require a stronger security notion, called simu-
lation soundness, where an adversary can adaptively query simulated proofs for
vectors either inside or outside the linear subspace and in the end the adversary
needs to forge a proof on a vector outside the subspace. We assume that the
simulation oracle can be queried by the adversary up to Q times. If Q > 1,
we call the QA-NIZK scheme unbounded simulation-sound and if Q = 1, we
call it one-time simulation-sound. Many applications, such as multi-challenge
(KDM-)CCA2-secure PKE and CCA2-secure IBE, require unbounded simula-
tion soundness.

If we consider the tightness, CRS and proof sizes1 of previous works, we
have three different flavors of unbounded simulation-sound QA-NIZK schemes:

1 We only count numbers of group elements.

672 M. Abe et al.

(1) schemes with non-tight security, but compact CRS-es (which only depend
on the dimension of the subspace) and constant-size proofs [37]; (2) schemes
with tight security and constant-size proofs, but linear-size CRS-es (which are
linearly in λ) [18,29]; and (3) schemes with tight security and compact CRS-es,
but linear-size proofs (in the dimension of the language and the subspace) [5,6].

A few remarks are made for the tightly secure QA-NIZK scheme of Abe
et al. [5,6]. Its proceedings version has a bug and the authors fix it in the
ePrint version [6], but the proof size of the new scheme linearly depends on the
dimension of the language and the subspace. To be more technical, the work
of Abe et al. achieves tight simulation soundness via the (structure-preserving)
adaptive partitioning of [4,31]. Due to its use of OR proofs (cf. Fig. 1 in their
full version [6]), the QA-NIZK proof size ends up being linear in the size of the
language and the subspace (in particular, |π| = O(n1 + n2)). Thus, it remained
open and interesting to construct a tightly simulation-sound QA-NIZK with
compact CRS-es and constant-size proofs.

SPS: Tightness with Shorter Signatures. In the past few years, substan-
tial progress was made to improve the efficiency of SPS. So far the schemes with
shortest signatures have 6 signature elements with non-tight reduction [34] by
improving [36], or 12 elements with security loss 36 log(Q) [6], or 14 elements
with security loss 6 log(Q) [20], where Q is the number of signing queries. Our
goal is to construct tightly secure SPS with shorter signatures and less security
loss.

1.1 Our Contributions

To make progress on the aforementioned two questions, we construct a QA-NIZK
scheme with 14 proof elements and an SPS scheme with 11 signature elements,
based on the Symmetric eXternal Diffie-Hellman (SXDH) assumption. The secu-
rity of both schemes is proven with tight reduction to the Matrix Diffie-Hellman
(MDDH) assumption [16], which is an algebraic generalization of Diffie-Hellman
assumptions (including SXDH). The security proof gives us algebraic insights
to our constructions and furthermore our constructions can be implemented by
(possibly weaker) linear assumptions beyond SXDH.

Our QA-NIZK scheme is the first one that achieves tight simulation sound-
ness, compact CRS-es and constant-size proofs at the same time. Even among
the tightly simulation-sound schemes, our scheme has less security loss. Since it
achieves better efficiency, using our scheme immediately improves the efficiency
of the applications of QA-NIZK with unbounded simulation soundness, including
publicly verifiable CCA2-secure PKE with multiple challenge ciphertexts.

In contrast to the Abe et al. framework [5], we use a simpler and elegant
framework to achieve better efficiency. Technically, we make novel use of the
recent core lemma from [20] to construct a designated-verifier QA-NIZK (DV-
QA-NIZK) and then compile it to (publicly verifiable) QA-NIZK by using the
bilinearity of pairings. As a by-product, we achieve a tightly secure DV-QA-
NIZK, where the verifier holds a secret verification key.

Shorter QA-NIZK and SPS with Tighter Security 673

Let L[M]1 := {[y]1 ∈ G
n1
1 : ∃w ∈ Z

n2
p such that y = Mw}2 be a linear

subspace, where M ∈ Z
n1×n2
p and n1 > n2. We compare the efficiency and

security loss of QA-NIZK schemes in Table 1. Here we instantiate our schemes
(in both Tables 1 and 2) based on the SXDH assumption for a fair comparison.

Table 1. Comparison of unbounded simulation-sound QA-NIZK schemes for proving
membership in L[M]1 . |crs| and |π| denote the size of CRS-es and proofs in terms of
numbers of group elements. For asymmetric pairings, notation (x, y) means x elements
in G1 and y elements in G2. Q denotes the number of simulated proofs and λ is the
security parameter.

Scheme Type |crs| |π| Sec. los. Ass.
LPJY14 [38] QA-NIZK 2n1 + 3(n2 + λ) + 10 20 O(Q) DLIN
KW15 [37] QA-NIZK (2n2 + 6, n1 + 6) (4, 0) O(Q) SXDH
LPJY15 [39] QA-NIZK 2n1 + 3n2 + 24λ + 55 42 3λ + 7 DLIN
GHKW16 [18] DV-QA-NIZK n2 + λ 4 8λ + 2 DDH
GHKW16 [18] QA-NIZK (n2 + 6λ + 1, n1 + 2) (3, 0) 4λ + 1 SXDH
AJOR18 [5,6] QA-NIZK (3n2 + 15, n1 + 12) (n1 + 16, 2(n2 + 5)) 36 log(Q) SXDH
Ours (Sect. 3.1) DV-QA-NIZK (2n2 + 3, 4) (7, 6) 6 log(Q) SXDH
Ours (Sect. 3.2) QA-NIZK (4n2 + 4, 8 + 2n1) (8, 6) 6 log(Q) SXDH

Our second contribution is a more efficient tightly secure SPS. It contains 11
signature elements and n1 + 15 public key elements, while the scheme from [5]
contains 12 and 3n1 + 23 elements respectively, where n1 denotes the number of
group elements in a message vector. We give a comparison between our scheme
and previous ones in Table 2. Compared with GHKP18, our construction has
shorter signatures and less pairing-product equations (PPEs) with the same level
of security loss. Compared with AJOR18, our construction has shorter signature
and tighter security, but slightly more PPEs. We leave constructing an SPS with
the same signature size and security loss but less PPEs as an interesting open
problem. As an important building block of our SPS, we propose the notion of
designated-prover OR proof systems for a unilateral language, where a prover
holds a secret proving key and the language is defined in one single group. We
believe that it is of independent interest.

1.2 Our QA-NIZK: Technical Overview

The Kiltz-Wee Framework. In contrast to the work of Abe et al. [5], our
construction is motivated by the simple Kiltz-Wee framework [37], where they
implicitly constructed a simulation-sound DV-QA-NIZK and then compiled it
to a simulation-sound QA-NIZK with pairings. However, their simulation-sound
DV-QA-NIZK is not tight. In the following, we focus on constructing a tightly
simulation-sound DV-QA-NIZK. By a similar “DV-QA-NIZK → QA-NIZK tran-
sformation as in [37], we derive our QA-NIZK with shorter proofs and tighter
simulation soundness in the end.

The DV-QA-NIZK in [37] is essentially a simple hash proof system [14] for the
linear language L[M]1 : to prove that [y]1 = [Mx]1 for some x ∈ Zp, the prover

2 We follow the implicit notation of a group element. [·]s (s ∈ {1, 2, T}) denotes the
entry-wise exponentiation in Gs.

674 M. Abe et al.

Table 2. Comparison of structure-preserving signatures for message space Gn1 (in their
most efficient variants). “|m|”, “|σ|”, and “|vk|” denote the size of messages, signatures,
and public keys in terms of numbers of group elements. Q denotes the number of
signing queries. “# PPEs” denotes the number of pairing-product equations. “NL”
denotes the number of non-linear equations that includes signatures in both groups.
“L1” denotes the number of linear equations in G1 group. “L2” denotes the number of
linear equations in G2 group.

Scheme |m| |σ| |vk| Sec. loss Assumption # PPEs
Total NL L1 L2

HJ12 [28] 1 10� + 6 13 O(1) DLIN 6� + 3
ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) O(Q) SXDH,XDLIN 5 1 2 2
LPY15 [40] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH,XDLINX 5 3 2
KPW15 [36] (n1, 0) (6, 1) (0, n1 + 6) O(Q2) SXDH 3 2 1
JR17 [34] (n1, 0) (5, 1) (0, n1 + 6) O(Q log Q) SXDH 2 1 1
AHNOP17 [4] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH 15 4 3 8
JOR18 [31] (n1, 0) (11, 6) (7, n1 + 16) O(λ) SXDH 8 4 2 2
GHKP18 [20] (n1, 0) (8, 6) (2, n1 + 9) 6 log(Q) SXDH 9 8 1
AJOR18 [5,6] (n1, 0) (6, 6) (n1 + 11, 2n1 + 12) 36 log(Q) SXDH 6 4 1 1
Ours(unilateral) (n1, 0) (7, 4) (2, n1 + 11) 6 log(Q) SXDH 7 6 1

outputs a proof as π := [x�p]1, where the projection [p]1 := [M�k]1 is published
in the CRS. With the vector k as the secret verification key, a designated verifier
can check whether π = [y�k]1. By using k as a simulation trapdoor, a zero-
knowledge simulator can return the simulated proof as π := [y�k]1, due to the
following equation:

x�p = x�(M�k) = y�k.

Soundness is guaranteed by the fact that the value y∗�k is uniformly random,
given M�k, if y∗ is outside the span of M.

Affine MACs and Unbounded Simulation Soundness. To achieve
unbounded simulation soundness, we need to hide the information of k in all the
Qs-many simulation queries, in particular for the information outside the span
of M�. The Kiltz-Wee solution is to blind the term y�k with a 2-universal hash
proof system. Via a non-tight reduction the hash proof system can be proved
to be a pseudorandom affine message authentication code (MAC) scheme pro-
posed by [9]. Technically, unbounded simulation soundness requires the under-
lying affine MAC to be pseudorandom against multiple challenge queries. This
notion has been formally considered in [29] later and it is stronger than the orig-
inal security in [9]. Because of that, the affine MAC based on the Naor-Reingold
PRF in [9] cannot be directly used in constructing tightly simulation-sound QA-
NIZK.

Gay et al. [18] constructed a tightly secure unbounded simulation-sound
QA-NIZK3. Essentially, their tight PCA-secure PKE against multiple challenge
ciphertexts is a pseudorandom affine MAC against multiple challenge queries.
Then they use this MAC to blind the term y�k. However, this tight solution

3 We note that the tight affine MAC in [29] can also be used to construct a DV-QA-
NIZK and a QA-NIZK with tight unbounded simulation soundness. Their efficiency
is slightly better than those in [18].

Shorter QA-NIZK and SPS with Tighter Security 675

has a large CRS, namely, the number of group elements in the CRS is linear in
the security parameter. That is because the number of Zp elements in the under-
lying affine MAC secret keys is also linear in the security parameter. These Zp

elements are later converted as group elements in the CRS of QA-NIZK. To
the best of our knowledge, current pairing-based affine MACs enjoy either tight
security and linear size secret keys or constant size secret keys but non-tight
security. Therefore, it may be more promising to develop a new method, other
than affine MACs, to hide y�k with compact CRS and tight security.

Our Solution. We solve the above dilemma by a novel use of the core lemma
from [20]. To give more details, we fix some matrices A0,A1 ∈ Z

2k×k
p , choose a

random vector k′ and consider μ := ([t]1, [u′]1, π′) that has the distribution:

t $← Span(A0) ∪ Span(A1)

u′ = t�k′ ∈ Zp

π′ : proves that t ∈ Span(A0) ∪ Span(A1)

. (1)

In a nutshell, the NIZK proof π′ guarantees that t is from the disjunction space
and, by introducing randomness in the “right” space, the core lemma shows
that [u′]1 is pseudorandom with tight reductions. The core lemma itself is not a
MAC scheme, since it does not have message inputs, although it has been used
to construct a tightly secure (non-affine) MAC in [20].

A “naive” attempt: Using the Core Lemma. To have unbounded simu-
lation soundness, our first attempt is to use the pseudorandom value [u′]1 to
directly blind the term y�k from the DV-QA-NIZK with only adaptive sound-
ness in a straightforward way. Then the resulting DV-QA-NIZK outputs the
proof ([t]1, [u]1, π′), which has the following distribution:

t $← Span(A0) ∪ Span(A1)

u = y�k + t�k′ ∈ Zp

π′ : proves that t ∈ Span(A0) ∪ Span(A1)

. (2)

In order to publicly generate a proof for a valid statement [y]1 = [Mx]1 with
witness x ∈ Z

n2
p , we publish [M�k]1, [A�

0 k′]1 and CRS for generating π′ in the
CRS of our DV-QA-NIZK. Verification is done with designated verification key
(k,k′). Zero knowledge can be proven using (k,k′).

However, when we try to prove the unbounded simulation soundness, we run
into a problem. The core lemma shows the following two distributions are tightly
indistinguishable:

REAL := {([ti]1, [t�
i k′]1, π′

i)} ≈c {([ti]1, [t�
i k′

i]1, π
′
i)} =: RAND,

where k′,k′
i

$← Z
2k
p and i = 1, ..., Q. In the proof of unbounded simulation sound-

ness, we switch from REAL to RAND and then we can argue that all our simulated
proofs are random, since y�k is blinded by the random value t�

i k′
i. Unfortu-

nately, here we cannot use an information-theoretical argument to show that an

676 M. Abe et al.

adversary cannot compute a forgery for an invalid statement: An adversary can
reuse the kj in the j-th (1 ≤ j ≤ Q) simulation query on [yj]1 ∈ Span([M′]1)
and Span([M′]1) ∩ Span([M]1) = {[0]1} and given the additional information
M′�k from the j-th query an adversary can compute a valid proof for another
invalid statement y∗ ∈ Span(M′).

Moreover, this straightforward scheme has an attack: An adversary can ask
for a simulated proof π := ([t]1, [u]1, π′) on an invalid [y]1. Then it computes
([2t]1, [2u]1) and adapts the OR proof π′ accordingly to π̂. The proof π∗ :=
([2t]1, [2u]1, π̂) is a valid proof for an invalid statement [y∗]1 := [2y]1 /∈ Span
([M]1).

From Failure to Success via Pairwise Independence. The above prob-
lem happens due to the malleability in the “naive” attempt. We introduce non-
malleability by using a pairwise independent function in k. More precisely, let
τ ∈ Zp be a tag and our DV-QA-NIZK proof is still ([t]1, [u]1, π′) with ([t]1, π′)
as in Eq. (2) but

u := y�(k0 + τk1) + t�k′.

We assume that all the tags in the simulated proofs and forgery are distinct,
which can be achieved by using a collision-resistant hash as τ := H([y]1, [t]1, π′)
∈ Zp. Given kj the adversary can only see y�

j (k0 + τjk1) from the j-th query
and for all the other queries the random values t�

i ki (i �= j) hide the information
about k0 and k1. Given k0+τjk1 for a τj , the pairwise independence guarantees
that even for a computationally unbounded adversary it is hard to compute k0 +
τ∗k1 for any τ∗ �= τj . Thus, the unbounded simulation soundness is concluded.
Details are presented in Sect. 3.1. In a nutshell, we use the pseudorandom element
[u′]1 from the core lemma to hide [y�(k0 + τk1)]1 from a one-time simulation
sound DV-QA-NIZK.

From Designated to Public Verification. What is left to do is to convert
our DV-QA-NIZK scheme into a QA-NIZK. Intuitively, we first make u publicly
verifiable via the (tuned) Groth-Sahai proof technique, and then modify the QA-
NIZK so that we can embed the secret key of our DV-QA-NIZK into it without
changing the view of the adversary. Then we can extract a forgery for the USS
experiment of the DV-QA-NIZK from the forgery by the adversary. Similar ideas
have been used in many previous works [9,12,20,33,36,37].

1.3 Our SPS: Technical Overview

The recent SPS schemes exploit the adaptive partitioning paradigm [4,19,27] to
achieve tight security. In this paradigm, NIZK for OR languages [23,43] plays an
important role, while at the same time, it also incurs high cost. Our basic idea is
to replace the full-fledged OR proof system proposed by Gay et al. [20] with one
in the designated-prover setting, where a prover is allowed to use a secret proving
key. Intuitively, it is easier to achieve an efficient scheme in such a setting since
it suffers less restrictions. In fact, the previous SPS scheme in [5] has already
exploited the designated-prover setting to reduce the proof size. However, it only

Shorter QA-NIZK and SPS with Tighter Security 677

works for bilateral OR language (i.e., one out of two words lies in the linear span
of its corresponding space), while an OR-proof for unilateral language (i.e., a
single word lies in the linear span of either one of two spaces) is required in
the construction of [20]. Thus, some new technique is necessary for solving this
problem.

For ease of exposition, we focus on the SXDH setting now, where the following
OR-language is in consideration:

L1 := {[y]1 ∈ G
2
1 | ∃r ∈ Zp : [y]1 = [A0]1 · r ∨ [y]1 = [A1]1 · r}.

Let A1 = (a, b)�, we observe that it is equivalent to the following language.

L2 := {[y0, y1]�1 ∈ G
2
1 | ∃x, x′ ∈ Zp : [y1]1 − [y0]1 · b

a
= [x]1 ∧ [y]1 · x = [A0]1 · x′}.

Specifically, when x = 0, we have [y1]1 − [y0]1 · b
a = [0]1, i.e., [y0, y1]�1 is in the

span of A1. Otherwise, we have [y]1 = [A0]1 · x′
x , i.e., [y0, y1]�1 is in the span of

A0. Note that this language is an “AND-language” now. More importantly, a
witness consists only of 2 scalars and a statement consists only of 3 equations.
Hence, when applying the Groth-Sahai proof [15,24], the proof size will be only
7 (4 elements for committing the witness and 3 elements for equations), which
is shorter than the well-known OR proof in [43] (10 elements). However, the
statement contains b

a now, which may leak information on a witness. To avoid
this, we make b

a part of the witness and store its commitment (which consists of
2 group elements) in the common reference string. By doing this, we can ensure
that the information on b

a will not be leaked and b
a is always “fixed”, due to the

hiding and biding properties of commitments respectively. Also, notice that this
does not increase the size of proofs at all. This scheme satisfies perfect soundness,
and zero-knowledge can be tightly reduced to the SXDH assumption. Since the
prover has to use b

a to generate a witness for L2 given a witness for L1, this
scheme only works in the designated-prover setting. However, notice that when
simulating the proof, A0 and A1 are not necessary, which is a crucial property
when applying to the partitioning paradigm.

We further generalize this scheme to one under the Dk-MDDH assumptions
for a fixed k. The size of proof will become O(k3), and the zero-knowledge
property can be reduced to the Dk-MDDH assumption with almost no security
loss.

Replacing the OR-proof system of [20] with our designated-prover ones imme-
diately derives the most efficient SPS by now. We refer the reader to Table 2 for
the comparison between our scheme and the previous ones.

Additionally, we give another designated-prover OR proof scheme where the
proof size is O(k2), which is smaller than the above scheme when k > 1. As a
trade-off, it suffers a security loss of k. When k = 1, its efficiency is the same
as that of our original designated-prover OR proof scheme described above. In
symmetric groups, we adapt the designated-prover OR proof to provide the most
efficient full NIZK (i.e., one with public prover and verifier algorithms) for OR
languages based on the Dk-MDDH assumptions by now.

678 M. Abe et al.

2 Preliminaries

Notations. We denote an empty string as ε. We use x $← S to denote the
process of sampling an element x from set S uniformly at random. For positive
integers k > 1, η ∈ Z

+ and a matrix A ∈ Z
(k+η)×k
p , we denote the upper square

matrix of A by A ∈ Z
k×k
p and the lower η rows of A by A ∈ Z

η×k
p . Similarly,

for a column vector v ∈ Z
k+η
p , we denote the upper k elements by v ∈ Z

k
p and

the lower η elements of v by v ∈ Z
η
p. For a bit string m ∈ {0, 1}n, mi denotes

the ith bit of m (i ≤ n) and m|i denotes the first i bits of m.
All our algorithms are probabilistic polynomial time unless we stated other-

wise. If A is a probabilistic polynomial time algorithm, then we write a $← A(b)
to denote the random variable that outputted by A on input b.

Games. We follow [9] to use code-based games for defining and proving security.
A game G contains procedures Init and Finalize, and some additional proce-
dures P1, . . . ,Pn, which are defined in pseudo-code. All variables in a game are
initialized as 0, and all sets are empty (denote by ∅). An adversary A is executed
in game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification) and obtain their
output, where the total number of queries is denoted by Q. Finally, it makes one
single call to Finalize(·) and stops. We use GA ⇒ d to denote that G outputs
d after interacting with A, and d is the output of Finalize.

2.1 Collision Resistant Hash Functions

Let H be a family of hash functions H : {0, 1}∗ → {0, 1}λ. We assume that it is
efficient to sample a function from H, which is denoted by H $← H.

Definition 1 (Collision resistance). We say a family of hash functions H is
collision-resistant (CR) if for all adversaries A

AdvcrH,A(λ) := Pr[x �= x′ ∧ H(x) = H(x′) | H $← H, (x, x′) $← A(1λ,H)]

is negligible.

2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order p for a λ-bit prime p, P1 and P2

are generators of G1 and G2, respectively, and e : G1 × G2 → GT is an efficient
computable (non-degenerated) bilinear map. Define PT := e(P1, P2), which is
a generator in GT . In this paper, we only consider Type III pairings, where
G1 �= G2 and there is no efficient homomorphism between them.

We use implicit representation of group elements as in [16]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.

Shorter QA-NIZK and SPS with Tighter Security 679

Similarly, for a matrix A = (aij) ∈ Z
n×m
p we define [A]s as the implicit repre-

sentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
p } ⊂ Z

n
p denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
p } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
[16] and related assumptions [41].

Definition 2 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in polynomial

time. By Dk we denote Dk+1,k.

Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. For a matrix A $← D�,k, we define the set of kernel matrices
of A as

ker(A) := {a⊥ ∈ Z
(�−k)×�
p | a⊥ · A = 0 ∈ Z

(�−k)×k
p and a⊥ has rank (� − k)}.

Given a matrix A over Z
�×k
p , it is efficient to sample an a⊥ from ker(A).

The D�,k-Matrix Diffie-Hellman problem is to distinguish the two distribu-
tions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
p and u $← Z

�
p.

Definition 3 (D�,k-matrix decisional Diffie-Hellman assumption). Let
D�,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix
Diffie-Hellman (D�,k-MDDH) is hard relative to GGen in group Gs if for all
PPT adversaries A, it holds that

Advmddh
Gs,D�,k,A(λ) := |Pr[1 $← A(G, [A]s, [Aw]s)] − Pr[1 $← A(G, [A]s, [u]s)]|

is negligible in the security parameter λ, where the probability is taken over G $←
GGen(1λ), A $← D�,k,w $← Z

k
p and u $← Z

�
p.

We define the Kernel Diffie-Hellman assumption Dk-KerMDH [41] which is a
natural search variant of the Dk-MDDH assumption.

Definition 4 (Dk-kernel Diffie-Hellman assumption, Dk-KerMDH). Let
Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-kernel Matrix
Diffie-Hellman (Dk-KerMDH) is hard relative to GGen in group Gs if for all PPT
adversaries A, it holds that

Advkmdh
Gs,D�,k,A(λ) := Pr[c�A = 0 ∧ c �= 0|[c]3−s

$← A(G, [A]s)]

is negligible in security parameter λ, where the probability is taken over G $←
GGen(1λ), A $← Dk.

The following lemma shows that the Dk-KerMDH assumption is a relaxation
of the Dk-MDDH assumption since one can use a non-zero vector in the kernel
of A to test membership in the column space of A.

680 M. Abe et al.

Lemma 1 (Dk-MDDH ⇒ Dk-KerMDH [41]). For any matrix distribution Dk,
if Dk-MDDH is hard relative to GGen in group Gs, then Dk-KerMDH is hard
relative to GGen in group Gs.

For Q > 1, W $← Z
k×Q
p ,U $← Z

�×Q
p , consider the Q-fold D�,k-MDDH problem

which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold D�,k-MDDH problem contains Q independent instances of the D�,k-MDDH
problem (with the same A but different wi). The following lemma shows that
the two problems are tightly equivalent and the reduction only loses a constant
factor � − k.

Lemma 2 (Random self-reducibility [16]). For � > k and any matrix distri-
bution D�,k, D�,k-MDDH is random self-reducible. In particular, for any Q ≥ 1,
if D�,k-MDDH is hard relative to GGen in group Gs, then Q-fold D�,k-MDDH is
hard relative to GGen in group Gs, where T(B) ≈ T(A) + Q · poly(λ) and

AdvQ-mddh
Gs,D�,k,A(λ) ≤ (� − k)Advmddh

Gs,D�,k,B(λ) +
1

p − 1
.

The boosting lemma in [35] shows that the D2k,k-MDDH assumption reduces
to the Dk-MDDH assumption with a security loss of a factor of k.

2.3 Non-interactive Zero-Knowledge Proof

In this section, we follow [24,37] to recall the notion of a non-interactive zero-
knowledge proof [10] and then an instantiation for an OR-language.

Let par be the public parameter and L = {Lpar} be a family of languages
with efficiently computable witness relation RL. This definition is as follows .

Definition 5 (Non-interactive zero-knowledge proof [24]). A non-inter-
active zero-knowledge proof (NIZK) for L consists of five PPT algorithms Π =
(Gen,TGen,Prove,Ver,Sim) such that:

– Gen(par) returns a common reference string crs.
– TGen(par) returns crs and a trapdoor td.
– Prove(crs, x, w) returns a proof π.
– Ver(crs, x, π) returns 1 (accept) or 0 (reject). Here, Ver is deterministic.
– Sim(crs, td, x) returns a proof π.

Perfect completeness is satisfied if for all crs ∈ Gen (1λ, par), all x ∈ L, all
witnesses w such that RL(x,w) = 1, and all π ∈ Prove(crs, x, w), we have

Ver(crs, x, π) = 1.

Zero-knowledge is satisfied if for all PPT adversaries A we have that

AdvzkΠ,A(λ) :=
∣
∣
∣
∣
Pr[AProve(crs,·,·)(1λ, crs) = 1 | crs $← Gen(1λ, par)]

−Pr[ASim(crs,·,·)(1λ, crs) = 1 | (crs, td) $← TGen(1λ, par)]
∣
∣
∣
∣

Shorter QA-NIZK and SPS with Tighter Security 681

is negligible, where Sim(crs, x, w) returns π $← Sim(crs, td, x) if RL(x,w) = 1
and aborts otherwise.

Perfect soundness is satisified if for all crs ∈ Gen(par), for all words x /∈ L
and all proofs π it holds Ver(crs, x, π) = 0.

Notice that Gay et al. [20] adopted a stronger notion of composable zero-knowled-
ge. However, one can easily see that the standard we defined above is enough for
their constructions, as well as ours introduced later. Also, we can define perfect
zero-knowledge, which requires AdvzkΠ,A(λ) = 0, and computational soundness,
which requires that for all for all words x /∈ L,

AdvsndΠ,A =
∣
∣
∣
∣
Pr[Ver(crs, x, π) = 1 | crs $← Gen(1λ, par), π $← A(1λ, crs)]

∣
∣
∣
∣

is negligible.

NIZK for an OR-Language. Let G ← GGen(1λ), k ∈ N, A0,A1
$← D2k,k,

and par := (G, [A0]1, [A1]1). We refer the reader to the full paper for a NIZK
proof scheme, which was previously presented in [37] and also implicitly given
in [23,43], for the OR-language

L∨
A0,A1

:= {[x]1 ∈ G
2k
1 | ∃r ∈ Z

k
p : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

It will be used as a building block of our QANIZK proof.

2.4 Quasi-Adaptive Zero-Knowledge Argument

The notion of Quasi-Adaptive Zero-Knowledge Argument (QANIZK) was pro-
posed by Jutla and Roy [32], where the common reference string CRS depends
on the specific language for which proofs are generated. In the following, we recall
the definition of QANIZK [18,37]. For simplicity, we only consider arguments for
linear subspaces.

Let par be the public parameters for QANIZK and Dpar be a probability
distribution over a collection of relations R = {R[M]1} parametrized by a matrix
[M]1 ∈ G

n1×n2
1 (n1 > n2) with associated language L[M]1 = {[t]1 : ∃w ∈

Z
t
q, s.t. [t]1 = [Mw]1}. We consider witness sampleable distributions [32] where

there is an efficiently sampleable distribution D′
par outputs M′ ∈ Z

n1×n2
q such

that [M′]1 distributes the same as [M]1. We note that the matrix distribution
in Definition 2 is sampleable.

We define the notions of QANIZK, designated-prover QANIZK (DPQANIZK),
designated-verifier QANIZK (DVQANIZK), designated-prover-verifier QANIZK
(DPVQANIZK) as follow.

Definition 6 (QANIZK). Let X ∈ {ε,DP,DV,DPV}. An XQANIZK for a lan-
guage distribution Dpar consists of four PPT algorithms Π = (Gen,Prove,Ver,
Sim).

– Gen(par, [M]1) returns a common reference string crs, a prover key prk, a
verifier key vrk and a simulation trapdoor td:

682 M. Abe et al.

• X = ε iff prk = vrk = ε.
• X = DP iff vrk = ε.
• X = DV iff prk = ε.
• X = DPV iff prk �= ε and vrk �= ε.

– Prove(crs, prk,[y]1,w) returns a proof π.
– Ver(crs, vrk,[y]1, π) returns 1 (accept) or 0 (reject). Here, Ver is a determin-

istic algorithm.
– Sim(crs, td,[y]1) returns a simulated proof π.

Perfect completeness is satisfied if for all λ, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, all (crs, prk, vrk, td) ∈ Gen(par, [M]1), and all π ∈ Prove(crs, prk,[y]1,w),
we have

Ver(crs, vrk, [y]1, π) = 1.

Perfect zero knowledge is satisfied if for all λ, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, and all (crs, prk, vrk, td) ∈ Gen(par, [M]1), the following two distributions
are identical:

Prove(crs, prk, [y]1,w) and Sim(crs, td, [y]1).

We define the (unbounded) simulation soundness for all types of QANIZK.

Definition 7 (Unbounded simulation soundness). Let X ∈ {ε,DP,DV,
DPV}. An XQANIZK Π := (Gen,Prove,Ver,Sim) is unbounded simulation sound
(USS) if for any adversary A,

AdvussΠ,A(λ) := Pr[USSA ⇒ 1]

is negligible, where Game USS is defined in Fig. 1.

Fig. 1. USS security game for XQANIZK.

Weak USS. We can also consider a weak notion of simulation soundness. in the
sense that it is only required that [y∗]1 /∈ Qsim.4

4 In [5], the defined security is this weak version. However, it is not sufficient for
constructing a CCA2 secure encryption scheme, since it does not prevent an adver-
sary from forging a new ciphertext for a challenge message and sending that it as a
decryption query.

Shorter QA-NIZK and SPS with Tighter Security 683

Witness-Samplable Distribution. Here we define simulation soundness for
witness-sampleable distributions, namely, Init gets M ∈ Z

n1×n2
p as input, proofs

of our DVQANIZK and QANIZK schemes do not require the explicit M over Zp.
In all the standard definitions of (simulation) soundness of QANIZK for linear
subspaces, the challenger needs information on M in Zp (not necessary the whole
matrix) to check whether the target word [y∗]1 is inside the language Span([M]1).
This information can be a non-zero kernel vector of M (either in Zp or in G2).
We can also define USS with respect to non-witness sampleable distributions
while our security proofs (with straightforward modifications) introduced later
also hold. In this case, we have to allow the challenger to use super polynomial
computational power to check whether [y∗]1 ∈ Span(M), i.e., then the USS game
becomes non-falsifiable. Otherwise, we have to assume that the attacker always
gives [y∗]1 /∈ Span(M) in USS. In fact, we note that many constructions and
applications of simulation-sound QANIZKs consider witness-sampleable distribu-
tions (c.f., [18,29,32,38]).

2.5 Structure-Preserving Signature

We now recall the notion of structure-preserving signature (SPS) [3] and unforge-
ability against chosen message attacks (UF-CMA).

Definition 8 (Signature). A signature scheme is a tuple of PPT algorithms
SIG := (Gen,Sign,Ver) such that:

– Gen(par) returns a verification/signing key pair (vk, sk).
– Sign(sk,m) returns a signature σ for m ∈ M.
– Ver(vk,m, σ) returns 1 (accept) or 0 (reject). Here Ver is deterministic.

Correctness is satisfied if for all λ ∈ N, all m ∈ M, and all (vk, sk) ∈ Gen(par),

Ver(vk,m,Sign(sk,m)) = 1.

Definition 9 (Structure-preservation). A signature scheme is said to be
structure-preserving if its verification keys, signing messages, and signatures con-
sist only of group elements and verification proceeds via only a set of pairing
product equations.

Definition 10 (UF-CMA security). For a signature scheme SIG := (Gen,
Sign,Ver) and any adversary A, we define the following experiment:

Fig. 2. UF-CMA security game for SIG.

684 M. Abe et al.

A signature scheme SIG is unforgeable against chosen message attacks
(UF-CMA), if for all PPT adversaries A,

Advuf-cma
SIG,A (λ) := Pr[UF-CMAA ⇒ 1]

is negligible, where Game UF-CMA is defined in Fig. 2.

3 Quasi-Adaptive NIZK

In this section, we construct a QANIZK with tight simulation soundness. As
a stepping stone, we develop a DVQANIZK based on the Matrix Diffie-Hellman
assumption. By using the Kernel Matrix Diffie-Hellman assumption and pairings,
our DVQANIZK gives us a more efficient QANIZK. All the security reductions in
this section are tight.

The Core Lemma. We recall the useful core lemma from [20], which can com-
putationally introduce randomness. More precisely, it shows that moving from
experiment Core0 to Core1 can (up to negligible terms) only increase the winning
chances of an adversary.

Fig. 3. Security games Core0 and Core1 for the core lemma. RF : Zp → Z
2k
p is a random

function. All the codes are executed in both games, except the boxed codes which are
only executed in Core1.

Lemma 3 (Core lemma). If the Dk-MDDH assumption holds in the group G2,
and Πor = (Genor,TGenor,Proveor,Veror,Simor) is a NIZK for L∨

A0,A1
with perfect

completeness, perfect soundness, and zero-knowledge, then for any adversary A
against the core lemma, there exist adversaries B, B′ with running time T (B) ≈
T (B′) ≈ T (A) + Q · poly(λ) such that

AdvcoreA (λ) := Pr[CoreA
0 ⇒ 1] − Pr[CoreA

1 ⇒ 1]

≤(4k�log Q� + 2) · Advmddh
G2,D2k,k,B(λ) + (2�log Q� + 2) · AdvzkNIZK,B′(λ)

+ �log Q� · ΔD2k,k
+

4�log Q� + 2
p − 1

+
�log Q� · Q

p
,

where ΔD2k,k
is a statistically small term for D2k,k.

Shorter QA-NIZK and SPS with Tighter Security 685

In a slight departure from [20], we include the term [A�
0 k]1 in crs. We argue

that the core lemma still holds by the following reasons (for notation, our k is
their k0):

– The main purpose of k is to introduce the constant random function F0(ε) in
the transition from G2 to G3.0 in Lemma 4 in [20]. The same argument still
holds, given [A�

0 k]1.
– The randomization of Lemma 5 in [20] is done by switching [t]1 into the right

span, and this can be done independent of k. Additionally, we note that, given
[A�

0 k]1, one cannot efficiently compute [t�k]1 without knowing s ∈ Z
k
p s.t.

t = A0s.

We give some brief intuition about the proof of the lemma here. Similar to [20],
we re-randomize k via a sequence of hybrid games. In the i-th hybrid game, we
set u = t�(k + RFi(c|i)) where RFi is a random function and c|i denotes the
first i-bit prefix of the counter c for queries to Evalcore. To proceed from the
i-th game to the (i+1)-th, we choose t ∈ Span(Aci+1) in Evalcore depending on
the (i + 1)-th bit of c. We note that the view of the adversary does not change
due to the D2k,k-MDDH assumption. Then, as in [20], we can construct RFi in
the way that it satisfies t�RFi+1(c|i+1) = t�RFi(c|i). The main difference is
that our RFi additionally satisfies A�

0 (k + RFi+1(0i+1)) = A�
0 (k + RFi(0i)),

namely, it not only re-randomizes k but also ensures that the A�
0 k part in crs is

always independent of all the u′-s generated by Evalcore. We furthermore make
consistent changes to Finalizecore as in [20]. We refer the reader to the full paper
for the full proof.

3.1 Stepping Stone: Designated-Verifier QA-NIZK

Let G ← GGen(1λ), par := G, k ∈ N, H be a collision-resistant hash function
family, and Πor := (Genor,Proveor,Veror) be a NIZK system for language L∨

A0,A1
.

Our DVQANIZK Πdv := (Gen,Prove,Ver,Sim) is defined as in Fig. 4. We note that
our scheme can be easily extended to a tag-based scheme by putting the label �
inside the hash function. Thus, our scheme can be used in all the applications
that require tag-based DVQANIZK.

Theorem 1 (Security of Πdv). Πdv is a DVQANIZK with perfect zero-knowle-
dge and (tightly) unbound simulation soundness. In particular, for any adversary
A, there exist adversaries B and B′ with T(B) ≈ T(A) and

AdvussΠdv,A(λ) ≤AdvcrH,B̂(λ) + (4k�log Q� + 2) · Advmddh
G1,D2k,k,B(λ)

+(2�log Q� + 2) · AdvzkΠor,B′(λ) + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(�log Q� + 1) · Q + 1
p

.

Proof (of Theorem 1). Perfect completeness follows directly from the correctness
of the OR proof system and the fact that for all y = Mw, p := A�

0 k, p0 :=
M�k0, p1 := M�k1, and t = A0s, for any τ , we have

686 M. Abe et al.

Fig. 4. Construction of Πdv := (Gen,Prove,Ver, Sim).

w�(p0 + τp1) + s�p = w�(M�k0 + τM�k1) + s�A�
0 k

= y�(k0 + τk1) + t�k.

Moreover, since

w�(p0 + τp1) + s�p = w�(M�k0 + τM�k1) + s�p

= y�(k0 + τk1) + s�p,

proofs generated by Prove and Sim for the same y = Mw are identical. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of Πdv. Let A be an adversary
against the unbounded simulation soundness of Πdv. We bound the advantage
of A via a sequence of games defined in Fig. 5.

G0 is the real USS experiment for DVQANIZK as defined in Definition 7.

Lemma 4 (G0). Pr[USSA ⇒ 1] = Pr[GA
0 ⇒ 1].

Lemma 5 (G0 to G1). There is an adversary B breaking the collision resistance
of H with T(B) ≈ T(A) and AdvcrH,B(λ) ≥ |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|.

Proof. We note that in G0 and G1 the value u is uniquely defined by y, t and πor.
Thus, if A asks Finalize with ([y∗]1, [t∗]1, π∗

or) that appears from one of the Sim
queries, then Finalize will output 0, since ([y∗]1, π∗ := ([y∗]1, [t∗]1, [u∗]1, π∗

or)) ∈
Qsim. Now if ([y∗]1, [t∗]1, π∗

or) has never appeared from one of the Sim queries,
but τ∗ = H([y∗]1, [t∗]1, π∗

or) ∈ Qtag, the we can construct a straightforward
reduction B to break the CR property of H. ��

Shorter QA-NIZK and SPS with Tighter Security 687

Fig. 5. Games G0, G1 and G2 for the proof of Theorem 1. RF : Zp → Z
2k
p is a random

function. Given M over Zp, it is efficient to check whether [y∗]1 ∈ L[M]1 .

Lemma 6 (G1 to G2). There is an adversary B breaking the core lemma (cf.
Lemma 3) with running time T(B) ≈ T(A) and AdvcoreB (λ) = Pr[GA

1 ⇒ 1] −
Pr[GA

2 ⇒ 1].

Proof. We construct the reduction B defined in Fig. 6 to break the core lemma.
Clearly, if B’s oracle access is from Core0, then B simulates G1; and if B’s oracle
access is from Core1 (which uses a random function RF), then B simulates G2.
Thus, Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1] = Pr[CoreB

0 ⇒ 1] − Pr[CoreB
1 ⇒ 1] = AdvcoreB (λ),

which concludes the lemma. ��
Lemma 7 (G2). Pr[GA

2 ⇒ 1] = Q
p .

Proof. We apply the following information-theoretical arguments to show that
even a computationally unbounded adversary A can win in G2 only with negligi-
ble probability. If A wants to win in G2, then A needs to output a fresh and valid
π∗ := ([t∗]1, [u∗]1, π∗

or). According to the additional rejection rule introduced in
G2, u = y∗�(k0 + τ∗k1) + t∗�(k + RF(j∗)) must hold for some 0 ≤ j∗ ≤ Q. Fix
a j∗ ≤ Q, we show that A can compute such a u with probability at most 1/p.

The argument is based on the information leak about k0 and k1:

– For the j-th Sim query (j �= j∗), the term t�RF(j) completely blinds the
information about k0 and k1 as long as t �= 0.

– For the j∗-th Sim query, we cannot use the entropy from the term (k+RF(j∗))
to hide k0 and k1 anymore, but we make the following stronger argument.

688 M. Abe et al.

Fig. 6. Reduction B for the proof of Lemma 6 with oracle Initcore, Evalcore, Finalizecore

defined in Fig. 3. We highlight the oracle calls with grey.

We assume that A learns the term t�(k+RF(j∗)), and thus y�(k0 + τk1) is
also leaked to A. However, since τ∗ �= τ , the terms (k0+τ∗k1) and (k0+τk1)
are pairwise independent.

Now together with the information leaked from M�k0 and M�k1 in crs, from
A’s view, the term y∗�(k0 + τ∗k1) is distributed uniformly at random, given
y�(k0 + τk1) from the j∗-th Sim query ([y]1 may not be in L[M]1). Thus, A can
compute the random term y∗�(k0 + τ∗k1) and make Finalize output 1 with
probability at most 1/p. By the union bound, A can win in G2 with probability
at most (Q + 1)/p. ��

From Lemmata 4 to 7, we have AdvussΠdv,A(λ) := Pr[USSA] ≤ AdvcrH,B̂(λ) +

AdvcoreB′ (λ) + (Q+1)
p . By Lemma 3, we conclude Theorem 1 as

AdvussΠdv,A(λ) ≤AdvcrH,B̂(λ) + (4k�log Q� + 2) · Advmddh
G1,D2k,k,B(λ)

+(2�log Q� + 2) · AdvzkNIZK,B′(λ) + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(�log Q� + 1) · Q + 1
p

.

��

3.2 QA-NIZK

Let G ← GGen(1λ), par := G, k ∈ N, H be a collision-resistant hash function fam-
ily, and Πor := (Genor,Proveor,Veror) be a NIZK system for language L∨

A0,A1
. Our

Shorter QA-NIZK and SPS with Tighter Security 689

(publicly verifiable) QANIZK Π := (Gen,Prove,Ver,Sim) is defined as in Fig. 7.
The main idea behind our construction is to tightly compile the DVQANIZK
Πdv from Fig. 4 by using pairings. Again we note that our scheme can be easily
extended to a tag-based scheme by putting the label � inside the hash function.
Thus, our scheme can be used in all the applications that require tag-based
QANIZK.

Fig. 7. Construction of Π.

Theorem 2 (Security of Π). Π defined in Fig. 7 is a QANIZK with perfect
zero-knowledge and (tight) unbounded simulation soundness if the Dk-KerMDH
assumption holds in G2 and the DVQANIZK Πdv in Fig. 4 is unbounded simula-
tion sound. In particular, for any adversary A, there exist adversaries B and B′

with T(B) ≈ T(B′) ≈ T(A) + Q · poly(λ), where Q is the number of queries to
Sim, poly is independent of Q and

AdvussΠ,A(λ) ≤ Advkmdh
G1,Dk,B(λ) + AdvussΠdv,B′(λ).

Proof (of Theorem 2). Perfect completeness follows directly from the complete-
ness of the OR proof system and the fact that for all P := A�

0 K, P0 := M�K0,
P1 := M�K1, C := KA, C0 := K0A, C1 := K1A, and any τ

690 M. Abe et al.

[w�(P0 + τP1) + s�P]1 ◦ [A]2
=[w�(M�K0 + τM�K1) + s�A�

0 K]1 ◦ [A]2
=[w�M�]1 ◦ [K0A + τK1A]2 + [s�A�

0]1 ◦ [KA]2
=[y�]1 ◦ [C0 + τC1]2 + [t�]1 ◦ [C]2.

Moreover, since

w�(P0 + τP1) + s�P = w�(M�K0 + τM�K1) + s�P

= y�(K0 + τK1) + s�P,

the output of Prove is identical to that of Sim for the same y = Mw. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of Π. We prove it by a
sequence of games: G0 is defined as the real experiment, USS (we omit the
description here), G1 and G2 are defined as in Fig. 8.

Fig. 8. Games G1 and G2 for proving Theorem 2.

Shorter QA-NIZK and SPS with Tighter Security 691

Lemma 8 (G0). Pr[USSA ⇒ 1] = Pr[GA
0 ⇒ 1].

In G1, Finalize additionally verifies the adversarial forgery with secret keys
K, K0, and K1 as in Fig. 8.

Lemma 9 (G0 to G1). There is an adversary B breaking the Dk-KerMDH
assumption over G2 with T(B) ≈ T(A) + Q · poly(λ) and Advkmdh

G2,Dk,B(λ) ≥
|Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|.

Proof. It is straightforward that a pair ([y∗]1, π∗) passing the Finalize in G1

always passes the Finalize in G0. We now bound the probability that A pro-
duces ([y∗]1, π∗) that passes the verification in G0 but not that in G1. For
π∗ = ([t∗]1, [u∗]1, π∗

or), the verification equation in G0 is:

[u∗]1 ◦ [A]2 = [y∗�]1 ◦ [K0A + τK1A]2 + [t�]1 ◦ [KA]2

⇔ [u∗ − y∗�(K0 + τK1) − t�K]1 ◦ [A]2 = [0]T .

One can see that for any ([t∗]1, [u∗]1, π∗
or) that passes the verification equation

in G0 but not that in G1, u∗ − y∗(K0 + τK1) − t�K is a non-zero vector in the
kernel of A.

We now construct an adversary B as follows. On receiving (G, [A]1) from the
Dk-KerMDH experiment, B samples all other parameters by itself and simulates
G0 for A. When A outputs a tuple ([t∗]1, [u∗]1, π∗

or), B outputs u∗ − y∗�(K0 +
τK1) − t�K. Since B succeeds in its experiment when A outputs a tuple such
that u∗ − y∗�(K0 + τK1) − t�K is a non-zero vector in the kernel of A, we
have Advkmdh

G1,Dk,B(λ) ≥ |Pr[GA
0 ⇒ 1] − Pr[GA

1 ⇒ 1]|, completing the proof of this
lemma. ��
Lemma 10 (G1 to G2). Pr[GA

1 ⇒ 1] = Pr[GA
2 ⇒ 1].

Proof. Now we finish the reduction to the KerMDH assumption and we can have
A over Zp. In G2, for i ∈ {0, 1} we replace Ki by K′

i + kia⊥ for a⊥ ∈ ker(A),
where K′

i
$← Z

n1×(k+1)
p , and ki

$← Z
n1
p . Furthermore, we replace K by K′ +ka⊥

for K′ $← Z
2k×(k+1)
p and k $← Z

2k
p . Since K′ and K′

i are uniformly random, K
and Ki in G2 are distributed at random and the same as in G1. Thus, G2 is
distributed the same as G1. ��
Lemma 11 (G2). There is an adversary B′ breaking the USS security of Πdv

defined in Fig. 4 with T(B′) ≈ T(A)+Q·poly(λ) and Pr[GA
2 ⇒ 1] ≤ AdvussΠdv,B′(λ).

Proof. We construct a reduction B′ in Fig. 9 to break the USS security of Πdv

defined in Fig. 4.
We note that the [p]1, [pi]1 (i = 0, 1) from Initdv have the forms, p = A�

0 k
and pi = M�ki for some random k ∈ Z

2k
p and ki ∈ Z

n1
p , and furthermore the

value [u]1 from Simdv has the form u = y�(k0 + τk1) + t�k. Hence, essentially,
B′ simulate the security game with K and Ki that are implicitly defined as
K := K′ + k · a⊥ and Ki := K′

i + ki · a⊥. The simulated Init and Sim are
identical to those in G2.

692 M. Abe et al.

Fig. 9. Reduction B′ for the proof of Lemma 11 with oracle access to Initdv, Simdv and
Finalizedv as defined in G0 of Fig. 5. We highlight the oracle calls with grey.

In G2, Finalize([y∗]1, π∗ := ([t∗]1, [u∗]1, π∗
or)) outputs 1 if

u∗ = y∗�(K′
0 + τ∗K′

1) + t∗�K′ + (y∗�(k0 + τ∗k1) + t∗�k
︸ ︷︷ ︸

=:v

) · a⊥

and ([y∗]1, π∗) /∈ Qsim and [y∗]1 /∈ L[M]1 and Ver(crs, [y∗]1, π∗) = 1. Thus, if A
can make Finalize([y∗]1, π∗) output 1 then B′ can extract the corresponding
[v]1 to break the USS security. We conclude the lemma. ��

To sum up, we have Pr[USSA ⇒ 1] ≤ Advkmdh
G1,Dk,B(λ) + AdvussΠdv,B′(λ) with B

and B′ as defined above. ��

3.3 Application: Tightly IND-mCCA-Secure PKE

By instantiating the labeled (enhanced) USS-QA-NIZK in the generic construc-
tion in [5] with our construction in Sect. 3.2, we immediately obtain a more
efficient publicly verifiable labeled public-key encryption (PKE) with tight IND-
CCA2 security in the multi-user, multi-challenge setting (IND-mCCA). The secu-
rity reduction is independent of the number of decryption-oracle requests of the
CCA2 adversary. We refer the reader to the full paper for the definition of labeled
IND-mCCA secure PKE and the construction.

4 Tightly Secure Structure-Preserving Signature

In this section, we present an SPS via a designated-prover NIZK for the OR-
language, whose security can be tightly reduced to the D2k,k-MDDH and Dk-
MDDH assumptions.

Shorter QA-NIZK and SPS with Tighter Security 693

4.1 Designated-Prover OR-Proof

In this section, we construct NIZKs in the designated-prover setting. In contrast
to [5], we focus on the language L∨

A0,A1
defined in Sect. 2.3, where a single word

y is required to be in the linear span of either one of two spaces given by matrices
A0 and A1.

While previous techniques [23,43] require ten group elements in a proof, our
novel solution gives a QANIZK with only seven group elements under the SXDH
hardness assumption, by leveraging the privacy of the prover CRS.
Definition. For A0,A1

$← D2k,k, we define the notion of designated-prover
OR-proof for L∨

A0,A1
.

Definition 11 (Designated-Prover OR-Proof). A designated-prover proof
system for L∨

A0,A1
is the same as that of NIZK for L∨

A0,A1
(see Sect. 2.3), except

that

– Gen takes (par,A0,A1) as input instead of (par, [A0]1, [A1]1) and outputs an
additional prover key prk.

– Prove takes prk as additional input.
– In the soundness definition, the Adversary is given oracle access to Prove with

prk instantiated by the one output by Gen.

Construction. Let G ← GGen(1λ), par := G, and k ∈ N. In Fig. 10 we present
a Designated-Prover OR-proof system for L∨

A0,A1
.

Lemma 12. If the Dk-MDDH assumption holds in the group G2, then the
proof system Πor = (Genor,TGenor,Proveor,Veror,Simor) as defined in Fig. 10
is a designated-prover or-proof system for L∨

A0,A1
with perfect completeness,

perfect soundness, and zero-knowledge. More precisely, for all adversaries A
attacking the zero-knowledge property of Πor, we obtain an adversary B with
T (B) ≈ T (A) + Q · poly(λ) and AdvzkΠor,A(λ) ≤ Advmddh

G,G2,Dk,B(λ).

We refer the reader to Introduction for the high-level idea of our construction.
We refer the reader to the full paper for the full proof.
Extensions. For larger matrices A0,A1, and under Dk-MDDH assumption for
a fixed k, we improve our proof size so that it asymptotically approaches a factor
of two. As a trade-off, it loses a factor of k.

Roughly, for some invertible matrix U, we exploit the following language
instead:

L∨
A0,A1

:= {[y]1 ∈ G
2k
1 | ∃x ∈ Z

1×k
p ,X ∈ Z

k×k
p : A0X = yx ∨ y�A⊥

1 U = x}.

One can see that it is also equal to L∨
A0,A1

, since y is in the span of A0 if x �= 0
and in the span of A1 otherwise. Instead of directly applying the Groth-Sahai
proof to it as before, we make careful adjustment on the proof for [y]�1 A⊥

1 U =
[x]1 and commitment of the information on A⊥

1 in this case. We also extend it to
an efficient OR-Proof in the symmetric pairing, which might be of independent
interest. We refer the reader to the full paper for the constructions and security
proofs.

694 M. Abe et al.

Fig. 10. Designated-prover OR-proof for L∨
A0,A1 .

4.2 Structure-Preserving Signature

By replacing the underlying OR-proof in the SPS in [20] with our designated-
prover one, we immediately obtain a more efficient SPS. A signature consists
only of 11 elements, which is the shortest known for tightly secure SPS-es.

Theorem 3 (Security of Σ). If Πor := (Genor,TGenor,Veror,Simor) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, the signature scheme Σ

described in Fig. 11 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
signing queries, poly is independent of Q, and

Shorter QA-NIZK and SPS with Tighter Security 695

Fig. 11. Tightly UF-CMA secure structure-preserving signature scheme Σ with message
space G

n
1 . k ∈ N and the public parameter is par = G where G ← GGen(1λ).

Advuf-cma
SPS,A ≤(4k�log Q� + 2) · Advmddh

G1,D2k,k,B

+ (2�log Q� + 3) · Advmddh
G2,Dk,B′ + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(Q + 1)�log Q� + Q

p
+

Q

pk
.

We omit the proof of the above theorem since it is exactly the same as the
security proof of the SPS in [20] except that we adopt the notion of standard
zero knowledge instead of the composable one and the OR-proof system is a
designated-prover one now, which does not affect the validity of the proof at all.
We refer the reader to [20] for the details. Notice that in the MDDH games of
the security proof, the reduction algorithm is not allowed to see A0 and A1 so
that it cannot run the honest generation algorithm Genor(par,A0,A1). However,
it does not have to, since in all the MDDH games, common reference strings are
always switched to simulated ones, namely, the reduction algorithms only have
to run TGenor(par, [A0]1, [A1]1).

4.3 DPQANIZK and Black-Box Construction

We can also use our designated-or-proof system to construct a structure-preserv-
ing DPQANIZK with weak USS, which might be of independent interest. We
refer the reader to the full paper for the construction and security proof of it.

On the other hand, as shown in [5,6], there is an alternative approach for
constructing SPS directly from DPQANIZK. It is just mapping a message to
an invalid instance out of the language and simulating a proof with a trapdoor
behind a common reference string published as a public key. In the concrete
construction in [5,6], n0 + 1 extra elements are included in a public key so that
they are used to make sure that messages consisting of n0 elements are certainly

696 M. Abe et al.

mapped to invalid instances. We can take the same approach but with improved
mapping that requires only one extra element assuming the hardness of the
computational Diffie-Hellman problem. The resulting signature size is exactly
the same as that of proofs of DPQANIZK and the public-key size is that of a
common-reference string plus one element.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems:
new constructions and applications. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 3

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29(4), 833–878 (2016)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–
421 (2016)

4. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

5. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (Almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

6. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. IACR Cryptology ePrint Archive
2018/849 (2018)

7. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

8. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 20

https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20

Shorter QA-NIZK and SPS with Tighter Security 697

13. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

15. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

17. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0 25

18. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

19. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

20. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

21. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

22. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76900-2 4

23. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for non-interactive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/2220357.
2220358

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Hartung, G., Hoffmann, M., Nagel, M., Rupp, A.: BBA+: improving the security
and applicability of privacy-preserving point collection. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1925–1942. ACM Press
(2017)

26. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-25385-0_25
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11

698 M. Abe et al.

27. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

28. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

29. Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 7

30. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Proceedings of
the Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden,
The Netherlands, 2–7 July 2000, pp. 385–394 (2000)

31. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-
preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 5

32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

33. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 17

34. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

35. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 235–262. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 9

36. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

37. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

38. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

39. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

40. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-662-48000-7_15

Shorter QA-NIZK and SPS with Tighter Security 699

41. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

42. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

43. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 247–276. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-46497-7_10

Efficient Noninteractive Certification
of RSA Moduli and Beyond

Sharon Goldberg1(B) , Leonid Reyzin1 , Omar Sagga1 ,
and Foteini Baldimtsi2

1 Boston University, Boston, MA, USA
{goldbe,reyzin}@cs.bu.edu, osagga@bu.edu
2 George Mason University, Fairfax, VA, USA

foteini@gmu.edu

Abstract. In many applications, it is important to verify that an RSA
public key (N, e) specifies a permutation over the entire space ZN , in
order to prevent attacks due to adversarially-generated public keys.
We design and implement a simple and efficient noninteractive zero-
knowledge protocol (in the random oracle model) for this task. Appli-
cations concerned about adversarial key generation can just append our
proof to the RSA public key without any other modifications to exist-
ing code or cryptographic libraries. Users need only perform a one-time
verification of the proof to ensure that raising to the power e is a per-
mutation of the integers modulo N . For typical parameter settings, the
proof consists of nine integers modulo N ; generating the proof and veri-
fying it both require about nine modular exponentiations.

We extend our results beyond RSA keys and also provide efficient
noninteractive zero-knowledge proofs for other properties of N , which
can be used to certify that N is suitable for the Paillier cryptosystem, is
a product of two primes, or is a Blum integer. As compared to the recent
work of Auerbach and Poettering (PKC 2018), who provide two-message
protocols for similar languages, our protocols are more efficient and do
not require interaction, which enables a broader class of applications.

1 Introduction

Many applications use an RSA public key (N, e) that is chosen by a party who
may be adversarial. In such applications, it is often necessary to ensure that
the public key defines a permutation over ZN : that is, raising to the power e
modulo N must be bijective, or, equivalently, every integer between 0 and N −1
must have an eth root modulo N . An attacker who deliberately generates a
bad key pair may subvert the security of other users—see for example, [MRV99,
CMS99,MPS00,LMRS04]. In particular, our work was motivated by TumbleBit
[HAB+17], a transaction-anonymizing system deployed [Str17] on top of Bitcoin,
in which a bad key pair can lead to a devastating attack (see footnote 2 in Sect. 5
for the attack specifics).

Interactive proofs for correctness of RSA keys are available (see, for example,
[AP18] and references therein), but interaction with the key owner is often not
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 700–727, 2019.
https://doi.org/10.1007/978-3-030-34618-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_24&domain=pdf
http://orcid.org/0000-0002-1002-3332
http://orcid.org/0000-0002-2052-8203
http://orcid.org/0000-0002-5554-027X
http://orcid.org/0000-0003-3296-5336
https://doi.org/10.1007/978-3-030-34618-8_24

Efficient Noninteractive Certification of RSA Moduli and Beyond 701

possible in the application. Thus, the folklore solution, used, for example, in
[MRV99,CMS99,MPS00,LMRS04], is to choose the public RSA exponent e such
that e is prime and larger than N . This solution has two major drawbacks.

First, because the folklore solution requires e > N , e is not in the set of
standard values typically used for e in RSA implementations e.g., e ∈ {3, 17, 216+
1}. Unless a large prime value for e is standardized, before using the public key,
one would have to perform a one-time primality test on e, to ensure that e really
is prime. This primality test is quite expensive (see Sect. 5).

Second, most RSA implementations choose a small value for e, typically
from a set of standard values e ∈ {3, 17, 216 + 1}. Choosing a small e signifi-
cantly reduces the cost of performing RSA public key operations. However, this
efficiency advantage is eliminated in the folklore solution, which requires e > N .
Unlike the previous drawback, which results in a one-time cost for each public
key used, this drawback makes every public-key operation about two orders of
magnitude more expensive.

In addition, this solution is not compatible with existing RSA standards
and off-the-shelf implementations. This is because the folklore solution does not
ensure that the public key operation is a permutation over ZN , where ZN =
{0, 1, ..., N − 1}. Instead, it ensures only that the public key operation defines
a permutation over the set Z

∗
N , where Z

∗
N is the set of values in ZN that are

relatively prime with N . Thus, there are no assurances about the values in the set
ZN −Z

∗
N , i.e., the set of values that are less than N but not relatively prime with

N . (To see this, consider the example N = 9 and e = 11.) If the RSA public key
is generated honestly, this is not a problem, because the set ZN − Z

∗
N contains

only a negligible fraction of ZN . However, if an adversary chooses the RSA
public key (N, e) maliciously, then it could choose N so that the set ZN −Z

∗
N is

a large fraction of ZN .1 To address this attack, the folklore solution additionally
requires a gcd check along with every RSA public-key operation, to ensure that
the exponentiated value is relatively prime with N .

1.1 Our Contributions

Proving that an RSA Key Specifies a Permutation over all of ZN We present a
simple noninteractive zero-knowledge proof (NIZK) in the random oracle model,
that allows the holder of an RSA secret key to prove that the corresponding
public key defines a permutation over all of ZN , without leaking information
about the corresponding secret key. Our NIZK can be used even when the RSA
exponent e is small, which is useful for applications that require fast RSA public
key operations. In addition to the NIZK algorithm and a concrete security proof,

1 It has been observed that such an N could be detected by checking if N has small
divisors. However, the risk of being detected is not usually an adequate deterrent,
unless implemented and deployed as part of a protocol. But if such a check is
deployed, then the adversary, knowing what check has been deployed, could set
divisors of N to be just slightly larger than the limits of the check, and thus still
ensure that ZN − Z

∗
N is a nonnegligible fraction of ZN .

702 S. Goldberg et al.

we present a detailed specification of the prover and verifier algorithms, as well as
production-quality implementation and an analysis of its performance. Because
our NIZK is for all values in ZN , it is compliant with existing cryptographic
specifications of RSA (e.g., RFC8017 [MKJR16]).

For typical parameter settings, our NIZK consists of 9 elements of ZN . Gen-
erating the NIZK costs roughly 9 full-length RSA exponentiations modulo N .
Meanwhile, each verifier pays the one-time cost of verifying our NIZK, which
is also roughly equal to 9 full-length exponentiations. When compared to the
folklore solution we described earlier, our solution (1) avoids the more expensive
one-time primality test and (2) allows the verifier to continue using a small value
of e, resulting in better performance for every public-key verification.

We view this result as of most immediate practical applicability (in fact, it has
already been deployed). We therefore present not only a high-level explanation
of this protocol (Sect. 3.3), but also its detailed specification (AppendixC) and
implementation results (Sect. 5 and code at [cod]).

Suitability for Paillier and Other Properties of N . We also present simple NIZK
proofs for several other properties of N , such as ensuring that N is square-free
(Sect. 3.2), is suitable for Paillier encryption (required in [Lin17] and [HMRT12];
see Sect. 3.2), is a product of exactly two primes (Sect. 3.4), or is a Blum inte-
ger (i.e., product of two primes that are each 3 modulo 4; see Sect. 3.5). Most
of these problems have been addressed only via interactive protocols in prior
literature [AP18]. Noninteractive proofs have considerably broader applicability
than interactive ones, because the owner of the public key can simply generate
a nonineractive proof once and publish it once together with the public key,
whereas in the interactive, the owner needs to be online, handle potentially high
query loads, and be subject to denial of service attacks.

Our proofs for square-freeness and suitability for Paillier are of similar effi-
ciency to the permutation proof, requiring only 8 elements in ZN for typical
parameter settings and 8 full-length modular exponentiations. Our proofs for
products of two primes and Blum integers require the proof of square-freeness
and a test for prime powers (same as in [AP18]), plus one more component, which
is less efficient for the prover, but more efficient for the verifier. For 128-bit secu-
rity, this additional component requires about 1420 square root operations ZN

by the prover (note, however, that this is done one-time during key generation).
The verifier, on the other hand, needs to perform only Jacobi-symbol computa-
tions and modular squarings, which are much more efficient, making the verifier
cost comparable to the cost of just a few full-length modular exponentiation.
This additional component requires the publication of 1420 elements of ZN .

All of our protocols are presented first as two-message public-coin honest-
verifier protocols. We then convert them to noninteractive using the Fiat-Shamir
heuristics, by obtaining the verifier’s public-coin message through an application
of the random oracle to the protocol input (see Sect. 4). They all have per-
fect completeness, perfect honest-verifier zero-knowledge, and statistical sound-
ness, with the exception of the protocol for showing that N is a product of

Efficient Noninteractive Certification of RSA Moduli and Beyond 703

two primes, which has computational honest-verifier zero-knowledge under the
quadratic residuosity assumption.

1.2 Related Work

Auerbach and Poettering [AP18] present two-message interactive protocols in the
random oracle model for the same problems as we consider, with the exception of
proving that (N, e) specifies a permutation over ZN (they prove only that (N, e)
specifies a permutation over Z

∗
N , which, would require users to modify their

RSA implementations to add a gcd computation to every public-key operation).
As already mentioned, noninteractive protocols have broader applicability than
interactive ones. It is much more appealing to be able to post, say an RSA public
key along with a NIZK proof of being well formed, as opposed to be expected
to run an online, interactive protocol with each verifier. Their protocols for
proving that (N, e) specifies a permutation, N is square-free, or is suitable for
Paillier, are all considerably less efficient than ours, requiring 81–128 modular
exponentiations for 128-bit security level. Their protocols for proving that N is
a product of exactly two primes or is a Blum integer are also less efficient for the
verifier (because the first step in those protocols is proving square-freeness); they
are about 10 times more efficient for the prover if we consider only one-time use,
but, because they are interactive, they must be run repeatedly by the prover,
while in our noninteractive case, the prover needs to run them only once.

Kakvi, Kiltz, and May [KKM12] show how to verify that RSA is a permuta-
tion by providing only the RSA public key (N, e) and no additional information,
as long as e > N1/4. They also show that when e is small, it is impossible,
under reasonable complexity assumptions, to verify that (N, e) is a permutation
without any additional information [KKM12, Section 1]. Thus, their approach
cannot be used when e is small. We circumvent their impossibility by having the
prover additionally provide our NIZK (rather than just (N, e)) to the verifier.

Wong, Chan, and Zhu [WCZ03, Section 3.2] and Catalano, Pointcheval, and
Pornin [CPP07, Appendix D.2] present interactive protocols (using techniques
similar to ours) that, like the protocols of [AP18], also work only over Z∗

N rather
than the entire ZN .

The protocols given by Camenisch and Michels [CM99, Section 5.2] and
Benhamouda et al. [BFGN17] achieve much stronger goals. The former proves
N = pq is a product of two safe primes (i.e., p, q, (p − 1)/2, and (q − 1)/2 are all
prime); the second can prove that any prespecified procedure for generating the
primes p and q was followed. These protocols can be used to prove that (N, e)
specifies a permutation by imposing mild additional conditions on e (and the
prime generation procedure for [BFGN17]). However, these stronger goals are
not necessary for our purposes. Our protocol is considerably simpler and more
efficient, and does not restrict p and q in any way.

Our protocol for showing that (N, e) specifies a permutation over ZN builds
on the protocol of Bellare and Yung [BY96], who showed how to prove that

704 S. Goldberg et al.

any function is “close” to a permutation. However, “close” is not good enough
for our purposes, because the adversary may be able to force the honest par-
ties to use the few values in ZN at which the permutation property does not
hold. Thus, additional work is required for our setting. This additional work is
accomplished with the help of a simple sub-protocol from Gennaro, Micciancio,
and Rabin [GMR98, Section 3.1] for showing the square-freeness of N (a similar
sub-protocol in the interactive setting was discovered earlier by Boyar, Friedl,
and Lund [BFL89, Section 2.2]). We demonstrate how to combine the ideas of
[BY96] and [GMR98] to prove that (N, e) specifies a permutation over ZN .

2 Preliminaries

Some number-theoretic preliminaries are presented in AppendixA.
Here, we first recall the standard notion of honest-verifier zero-knowledge

(HVZK).

Definition 1. (Honest-Verifier Zero Knowledge (HVZK)) An interactive proof
system between a prover and verifier (P, V) for a NP language L is said to be
honest-verifier zero knowledge if the following properties hold:

1. (perfect) Completeness. For every x ∈ L and every NP-witness w for x,

Pr[〈P (x,w), V (x)〉 = 1] = 1.

2. (statistical) Soundness. For every x �∈ L and every interactive algorithm P ∗

Pr[〈P ∗(x), V (x)〉 = 1] = negl(|x|)

3. HVZK. There exists a probabilistic polynomial-time simulator S such that for
all x ∈ L and all PPT distinguishers D we have:

viewD〈P (x,w),V (x)〉 ≈ viewDS(x).

We say (P, V) is public coin if all the messages sent by verifier V to prover
P are random coin tosses.

Promise Problems. We also recall the notion of a promise problem, which is a
generalization of the notion of a language. A promise problem consists of two
disjoint sets: Lyes and Lno. In a language, Lno = Lyes, but in a promise problem,
there may be strings that are neither in Lyes nor Lno, and we generally do not
care what happens if such a string is input. Thus, in a ZK proof for a promise
problem, completeness and zero-knowledge need to hold for inputs in Lyes, while
soundness needs to hold for inputs in Lno.

Efficient Noninteractive Certification of RSA Moduli and Beyond 705

3 HVZK Proofs for Properties of N and e

3.1 HVZK Proof for a Permutation over Z
∗
N

Bellare and Yung [BY96] showed how to certify that any function is close to a
permutation. The idea is to simply ask the prover to invert the permutation on
random points. It is a standard fact from number theory (Lemma8) that raising
to eth power is either a permutation of Z∗

N or very far from one—in fact, it is
either a permutation or an e′-to-1 function, where e′ is the smallest prime divisor
of e. Here, we adapt the protocol of [BY96] to show that the RSA function is
not just close to a permutation, but is actually a permutation over Z

∗
N : if we

check that e′ is high enough, then not many random points will be needed.
It is also a standard fact (recalled in Lemma2) that raising to the power e

defines a permutation over Z∗
N if and only if e is relatively prime to φ(N). Thus,

let
LpermZ

∗
N

= {(N, e) |N, e > 0 and gcd(e, φ(N)) = 1} .

Let
Le′ = {(N, e) |N, e > 0 and no prime less than e′ divides e} .

(In typical RSA implementations, e is a fixed small prime, such as 3, 17, or
65537, and one would use e′ = e.)

The following is an HVZK protocol for LpermZ
∗
N

∩ Le′ with perfect complete-
ness, perfect zero-knowledge, and statistical soundness error 2−κ. We emphasize
that, while the protocol is similar to that of [BY96], it is not identical. Specifi-
cally, the addition of Le′ and the verifier check in Step 4a allow us to guarantee
that the RSA function is a permutation over Z∗

N much more efficiently than the
protocol of [BY96].
Protocol PpermZ

∗
N

1. Both prover and verifier let m = �κ/ log2 e′	.
2. The verifier chooses m random values ρi ∈ Z

∗
N and sends them to prover.

3. The prover sends back eth roots of ρi modulo N :

σi = (ρi)e−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ LpermZ

∗
N

∩Le′ if all of the following checks pass.
(a) Check that N, e, and σi for i = 1 . . . m are positive integers, and that

e not divisible by all the primes less than e′ (if e is a fixed prime as in
typical RSA implementations, this check simply involves checking that
e = e′).

(b) Verify that ρi = (σi)e mod N for i = 1 . . . m.

Theorem 1. PpermZ
∗
N

is a 2-message public-coin protocol with perfect complete-
ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the language LpermZ
∗
N

∩ Le′ .

706 S. Goldberg et al.

Proof. It is a standard fact that raising to the power N is a permutation of
Z

∗
N whenever e ∈ LpermZ

∗
N

, and the inverse of this permutation is raising to the
power (e−1 mod φ(N)) (see Lemma 2). This fact gives perfect completeness and a
perfect HVZK simulator who simply chooses σi and computes ρi = (σi)e mod N
for i = 1 . . . m (recall that by definition, completeness and HVZK apply only to
(N, e) ∈ LpermZ

∗
N

∩ Le′). Statistical soundness with error 2−κ follows from the
fact that if (N, e) /∈ LpermZ

∗
N

but (N, e) ∈ Le′ , then size the image of the map
σ
→ σe is at most |Z∗

N |/e′ by Lemma 8. Thus, the probability that a σi exists
for every ρi is at most 1/(e′)m = 2−m log2 e′ ≤ 2−κ. �

3.2 HVZK Proofs for Paillier and Square-Free N

The Paillier cryptosystem requires a modulus N that is relatively prime with
φ(N). Thus, let

Lpailler-N = {N > 0 | gcd(N,φ(N)) = 1} .

We emphasize that, unlike [AP18], we do not verify the properties of the gen-
erator g in the Paillier cryptosystem—but since the common choice is to use
g = N + 1 per [DJ01], verifying that N ∈ Lpailler-N is sufficient for the common
case.

Let

Lsquare-free = {N > 0 | there is no prime p such that p2 divides N} .

Note that to be in Lpailler-N , N has to be in Lsquare-free and also have no prime
divisors p, q such that p | q−1 (by definition of φ(N), as recalled in AppendixA),
so Lpailler-N ⊂ Lsquare-free (see Lemma 3).

Thus, letting

Lgap = {N ∈ Lsquare-free|N has two prime divisors p, q such that p divides q −1},

we know that Lsquare-free − Lgap = Lpailler-N .
Our protocols for proving suitability for Paillier or square-freeness will depend

on a parameter α and the corresponding language

Lα = {N > 0 | no prime less than α divides N} .

We now describe the protocol Ppailler-N , an HVZK protocol for Lα ∩Lpailler-N with
perfect completeness, perfect zero-knowledge, and statistical soundness error
2−κ. This protocol builds on the protocol from [GMR98, Section 3.1], but is
not identical to it: specifically, the addition of Lα and verifier’s Step 4a gives
better performance. Setting α = 2 gives a protocol for Lpailler-N , but a higher
setting of α will improve efficiency (see Sect. 5 for a discussion of how to pick α).

The idea of the protocol is to ask the prover to take Nth roots of random
points—they will not exist for many points if N /∈ Lpailler-N , because raising to

Efficient Noninteractive Certification of RSA Moduli and Beyond 707

the power N will be far from a permutation. The protocol is the same as the
protocol LpermZ

∗
N

described in Sect. 3.1, replacing e with N and e′ with α.

Protocol Ppailler-N :

1. Both prover and verifier let m = �κ/ log2 α	.
2. The verifier chooses m random values ρi ∈ Z

∗
N and sends them to prover.

3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)N−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ Lpailler-N ∩Lα if all of the following checks pass.

(a) Check that N is a positive integer and is not divisible by all the primes
less than α.

(b) Check that σi is a positive integer for i = 1 . . . m.
(c) Verify that ρi = (σi)N mod N for i = 1 . . . m.

Theorem 2 (GMR98). Ppailler-N is a 2-message public-coin proof with perfect
completeness, perfect honest-verifier zero-knowledge, and statistical soundness
error 2−κ for the language Lα ∩ Lpailler-N .

Note that choosing elements in Z
∗
N in step 2 of the protocol requires a gcd

computation by the verifier (because the verifier cannot be sure that the differ-
ence between ZN and Z

∗
N is negligible). To avoid this computation, the verifier

can choose values in ZN instead. Then the verifier may have a lower probability
of rejecting inputs outside of Lα∩Lpailler-N , but is still guaranteed to reject inputs
outside of Lα ∩Lsquare-free with probability 1− 2−κ, as we show in Lemma 6. Per-
fect completeness and zero-knowledge still hold for Lα∩Lpailler-N , and thus for an
honestly generated RSA modulus. Let us call this modified protocol Psquare-free.

Protocol Psquare-free: Same as the protocol Ppailler-N described above, replacing
Z∗

N with ZN in step 2 and N ∈ Lpailler-N ∩ Lα with N ∈ Lsquare-free ∩ Lα in step
4. Specifically,

1. Both prover and verifier let m = �κ/ log2 α	.
2. The verifier chooses m random values ρi ∈ ZN and sends them to prover.
3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)N−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ Lsquare-free ∩ Lα if all of the following checks

pass.
(a) Check that N is a positive integer and is not divisible by all the primes

less than α.
(b) Check that σi is a positive integer for i = 1 . . . m.
(c) Verify that ρi = (σi)N mod N for i = 1 . . . m.

708 S. Goldberg et al.

Theorem 3. Psquare-free is a 2-message public-coin proof with perfect complete-
ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the promise problem (Lyes = Lα ∩ Lpailler-N ,Lno = Lα ∩ Lsquare-free).

Proof. It is a standard fact that raising to the power N is a permutation of
ZN whenever N ∈ Lpailler-N , and the inverse of this permutation is raising to
the power (N−1 mod φ(N)) (see Lemmas 3 and 4, setting f = N). This fact
gives perfect completeness and a perfect HVZK simulator who simply chooses
σi and computes ρi = (σi)N mod N for i = 1 . . . m (recall that by definition,
completeness and HVZK apply only to N ∈ Lyes). Statistical soundness with
error 2−κ follows from the fact that if p ≥ α is a prime such that p2|N , then
the map σ
→ σN is at least α-to-1 over ZN (per Lemma 6); thus, the probability
that a σi exists for every ρi is at most 1/αm = 2−m log2 α ≤ 2−κ. �

3.3 HVZK Proof for Permutation over Entire ZN

As explained in the introduction, ensuring that raising to the power e is a per-
mutation over the entire ZN is more desirable than ensuring only that it is a
permutation over Z∗

N . In this section, we show that a careful combination of pro-
tocols Psquare-free and PpermZ

∗
N

gives an efficient two-message public-coin HVZK
protocol for proving that an RSA public key defines a permutation over the
entire ZN .

Let LpermZ
∗
N

and Le′ be as in Sect. 3.1, and Lα, Lsquare-free, Lpailler-N , and Lgap

be as in Sect. 3.2, except defined not just on integers N , but on pairs (N, e) for
an arbitrary e > 0.

Let LpermZN
= {(N, e) |N, e > 0 and raising to the power e is a permutation

over ZN}.
Note that

(
Lpailler-N ∩ LpermZ

∗
N

) ⊂ (
Lsquare-free ∩ LpermZ

∗
N

) ⊂ LpermZN
.

(the first ⊂ property follows from Lemma 3; the second ⊂ property follows from
Lemma 4). Note that the only pairs (N, e) in LpermZN

− (
Lsquare-free ∩ LpermZ

∗
N

)

are those for which e = 1 and N is not square-free (per Lemma 5).
We want to design a protocol for LpermZN

. For efficiency reasons, we will focus
instead on LpermZN

∩ Lα ∩ Le′ , i.e., require N and e to not have divisors smaller
than α and e′, respectively. Moreover, just like in protocol Psquare-free of Sect. 3.2,
we will consider slightly weaker completeness: if N is square-free, but has two
prime divisors p, q such that p | (q − 1) (i.e., falls into Lgap), the verifier will be
permitted to reject N . Thus, let

Lyes = Lpailler-N ∩ LpermZ
∗
N

∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

The gap between Lyes and Lno (i.e., the only pairs (N, e) not in Lyes ∪Lno) is
almost the same as in Theorem 3: namely, Lgap ∩ Le′ ∩ Lα, as well as some pairs

Efficient Noninteractive Certification of RSA Moduli and Beyond 709

(N, e) with e = 1. Naturally occurring RSA moduli should never fall into this
gap. Every (N, e) in the gap still defines a permutation over the entire ZN , but
the prover may be unable to show this fact.

We now present a protocol PpermZN
for the promise problem (Lyes,Lno). The

protocol PpermZN
is not simply a combination of Psquare-free and PpermZ

∗
N

: we save
space by using the same ρi for both eth roots and Nth roots. Because any value
that has an (eN)th root also has an eth root and an Nth root, we combine the
two protocols simply by checking the ρi values have eNth roots.

The protocol PpermZN
depends on two parameters α and e′, which are both

primes, at most about 16 bits long. The verifier will reject any N that is divisible
by a prime less than α and any e that is divisible by a prime less than e′. Any
setting of α and e′ is valid for security; varying these parameters affects only
efficiency. An optimal setting of these parameters is implementation-dependent,
since larger e′ and α will result in some additional work for the verifier, but will
also reduce work for the prover and verifier since m1 and m2 in Eq. (1) below
become smaller. When e is a fixed prime like 3, 17, or 216 + 1, as is standard
for many RSA implementations, then we set e′ equal to e. We further discuss
parameter settings in Sect. 5.

The prover’s witness is the prime factorization of N . Recall that κ is a security
parameter. The protocol will achieve statistical soundness error 2−κ.

Protocol PpermZN
:

1. Both prover and verifier let

m1 = �κ/ log2 α	 and m2 =
⌈
−κ/ log2

(
1
α

+
1
e′

(
1 − 1

α

))⌉
. (1)

Notice that m2 ≥ m1 since e′ > 1.
2. The verifier chooses m2 random values ρi ∈ ZN and sends them to Prover.
3. The Prover sends back

σi = (ρi)(eN)−1 mod φ(N) (mod N)

for i = 1 . . . m1 (for convenience, we call this a “weird RSA signature”) and

σi = (ρi)e−1 mod φ(N) (mod N)

for i = m1 + 1 . . . m2 (which is just a regular RSA signature).
4. The verifier accepts that (N, e) defines a permutation over all of ZN if all of

the following checks pass.
(a) Check that N > 0 and N is not divisible by all the primes less than α.

(Equivalently, one can let P be the product of all primes less than α (also
known as α − 1 primorial) and verify that gcd(N,P) = 1).

(b) Check that e > 0 and is e not divisible by all the primes less than e′.
(In most implementations of RSA, e is a fixed prime, in which case the
verifier can just check that e = e′).

(c) Verify that ρi = (σi)eN (mod N) for i = 1 . . . m1.
(d) Verify that ρi = (σi)e (mod N) for i = m1 + 1 . . . m2.

710 S. Goldberg et al.

Note that for many natural choices of parameters (e, κ, α), we have m1 = m2,
and so step 4d disappears.

Theorem 4. PpermZN
is a 2-message public-coin proof with perfect complete-

ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the promise problem

Lyes = Lpailler-N ∩ LpermZ
∗
N

∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

Proof. It is a standard fact (per Lemmas 3 and 4) that raising to a power f is
a permutation of ZN whenever N ∈ Lpailler-N and gcd(f, φ(N)) = 1, and that
the inverse of this permutation is raising to the power (f−1 mod φ(N)). This
fact, when we set f = eN for i = 1 . . . m1 and f = N for i = m1 + 1, . . . ,m2,
gives perfect completeness. It also gives a perfect HVZK simulator who simply
chooses σi and computes ρi = (σi)eN mod N for i = 1 . . . m1 and ρi = (σi)e for
i = m1 + 1, . . . , m2 (recall that, by definition, the simulator needs to work only
for (N, e) ∈ Lyes).

To show soundness, suppose (N, e) ∈ Lno. If x ∈ Lα ∪ Le′ , the verifier will
reject in steps 4a or 4b, and soundness holds. Therefore, assume (N, e) ∈ Lα∩Le′ .
This means (N, e) /∈ LpermZN

.
Suppose (N, e) /∈ Lsquare-free. Since the smallest prime divisor of N is at least

α, by applying Lemma6, we know at most 1/α fraction of ZN will have an Nth
root. By choosing m1 elements of ZN and verifying that they have Nth roots,
we ensure that the chances that the prover passes Step 4c with N that is not
square-free are at most (1/α)m1 ≤ 2−κ.

Now suppose (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN
. Since N is square free,

the smallest prime divisor of N is at least α, and the smallest prime divisor of e
is at least e′, we can apply Lemma 7 to conclude that at most 1/α+(1−1/α)/e′

fraction of ZN have an eth root. By choosing m2 elements of ZN and verifying
that they have eth roots, we ensure that the chances that the prover passes Steps
4c and 4d are at most

(
1
α

+
1
e′

(
1 − 1

α

)′)m2

≤ 2−κ .

�

A Possible Optimization. Instead of choosing the ρi values from ZN , the prover
could choose ρi values from Z

∗
N (this requires m2 gcd computations), and set

a potentially lower m2 = max (�κ/ log2 e′	 ,m1). The proofs of completeness
and zero-knowledge proofs remain the same (because if (N, e) define a per-
mutation over ZN , they also define a permutation when restricted to Z

∗
N).

The proof of soundness changes in the last paragraph. Observe that, since(
Lsquare-free ∩ LpermZ

∗
N

) ⊂ LpermZN
, if (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN

,

Efficient Noninteractive Certification of RSA Moduli and Beyond 711

then (N, e) /∈ LpermZ
∗
N

. Thus, per Lemma 8, the chances that the prover passes
steps 4c and 4d are at most

(
1
e′

)m2

≤ 2−κ .

For example, for κ = 128 and e = α = 65537, this optimization reduces the
value of m2 from 9 to 8. This reduction in m2 is at the expense of gcd(ρi, N)
computations, and so it may or may not improve overall performance, depending
on the implementation and the parameter values. We emphasize, however, that
the lower m2 value will not give security 2−κ without the gcd computations on
the part of the verifier, so implementers of this optimization should ensure the
verifier rejects if gcd(ρi, N) �= 1 for some i.

3.4 HVZK Proof for a Product of Two Primes

In this section, we consider the language

Lppp = {N > 0 | N is odd and has exactly two distinct prime divisors} .

Note that the more interesting language is

Lpp = {N > 0 | N is odd and is a product of two distinct primes } =
(Lppp ∩ Lsquare-free) ⊃ (Lppp ∩ Lpailler-N) ,

because it rules out prime powers as factors of N .
We obtain a two-round public-coin HVZK proof for the promise problem

Lyes = Lpp and Lno = Lppp (note that only N not in Lyes ∪ Lno are those that
have exactly two distinct odd prime divisors and are not square-free). We can
obtain an HVZK proof for Lpp (with a similar gap for the case p|q − 1) by
combing the protocol in this section with the protocol for and Lsquare-free, similar
to [AP18]. The combination can be space-saving, similar to Protocol PpermZN

in
Sect. 3.3.

Let JN denote the subset of Z
∗
N with Jacobi symbol 1. Let QRN denote

the subset of JN that consists of quadratic residues in Z
∗
N . The following is an

HVZK protocol for for the promise problem (Lyes = Lpp, Lno = Lppp). Let κ be
the statistical security parameter.

Protocol Pppp

1. Both the Prover and the Verifier let m = �κ · 32 · ln 2	.
2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.
3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗

N such that σ2
i mod N =

ρi. Of the four square roots, the Prover chooses one at random. For other ρi,
the prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a
prime power (see [Ber98,BLP07] and references therein). If these checks pass,
then the Verifier accepts if the number of nonzero responses is at least 3m/8,
and for every nonzero σi, it holds that ρi = (σi)2 mod N .

712 S. Goldberg et al.

Note that our design choice to have the verifier pick values in JN rather than
in all of Z∗

N results in improved efficiency by a factor of four as compared to the
hash-then-solve protocol presented in [AP18]. This is because when the verifier
chooses elements in JN , at least 1/2 of them have square roots for N ∈ Lpp, vs.
1/4 for N /∈ Lppp. In contrast, when the verifier chooses elements in all of Z∗

N ,
the fractions change to 1/4 and 1/8, respectively. But the number of repetitions
m required to distinguish 1/4 from 1/8 is four times greater than the number of
repetitions required to distinguish 1/2 from 1/4, for any fixed confidence level
2−κ (this follows from bounds on the tail of the binomial distribution; see the
proof of Theorem 5).

Theorem 5. Pppp is a 2-message public-coin protocol for the promise problem
(Lyes = Lpp, Lno = Lppp) with statistical completeness error 2−κ, computational
honest-verifier zero-knowledge, and statistical soundness error 2−κ.

Proof. In order to show completeness, we need to show that the honest prover
will be able to carry out Step 3, and the verifier’s checks in Step 4 will pass.
Since the prover knows the factorization of N = pq, it can efficiently check if
ρi ∈ QRN by determining if it is a quadratic residue module each prime divisor
p and q of N .

Then, given that ρi ∈ QRN , it is easy for the prover to compute σi such that
σ2

i mod N = ρi. To do so, the prover computes βi = ρi mod p and γi = ρi mod q.
Then the prover finds solutions ±b to σ2

i mod p = β, and ±c to σ2
i mod q = γ,

using any of the available algorithms for finding square roots modulo primes.
Finally, the prover uses the Chinese Remainder Theorem to obtain four solutions
(corresponding to pairs (b, c), (−b, c), (b,−c), (−b,−c)) to σ2

i mod N = ρi. Thus,
the prover can indeed carry out Step 3.

Let us now discuss why the verifier’s checks in Step 4 will pass with prob-
ability close to 1. As discussed above if ρi ∈ QRN the prover can always send
back valid σi’s. So in order to achieve completeness, we need to make sure that
among the ρi’s sent from the Verifier to the Prover in Step 2, at least 3m/8 of
them are in QRN . Since N ∈ Lpp, |JN | = φ(N)/2 while |QRN | = φ(N)/4 (it is
in this step that we use the fact that that N ∈ Lpp and not just in Lppp; because
|JN | when is N is a product of two prime powers can be more than twice |QRN |
if one or both the powers is even).

By applying the classic Hoeffding bound [Hoe63, Theorem 2] for m = �κ ·32 ·
ln 2	, we see that Pr[the number of ρi’s ∈ QRN < 3m/8] < e−2m(1/2−3/8)2 =
2−2m/(64 ln 2) ≤ 2−κ. Thus we conclude that our protocol has statistical com-
pleteness with error probability at most 2−κ.

To show soundness, suppose that N �∈ Lppp , i.e., N is even, a prime, a prime
power, or has at least three prime divisors. If N is even, a prime, or a prime
power, the verifier will reject. If N has at least three prime divisors, then at
most 1/4 of the elements of JN have square roots. But the prover can cheat
only if 3m/8 of the ρi values have square roots. Thus, probability of cheating is
Pr[the number of squares is ≥ 3m/8] ≤ e−2m(3/8−1/4)2 ≤ 2−κ by the Hoeffding
bound.

Efficient Noninteractive Certification of RSA Moduli and Beyond 713

Finally, we argue that our protocol is computational honest-verifier zero-
knowledge. We first recall the QR assumption [GM84].

Assumption 6 (QR assumption). For any N = pq, a randomly chosen
ρ ∈ JN , and any PPT algorithm A,

Pr[σ = QR(ρ) | N = pq, ρ ← JN , A(ρ,N) → σ ∈ {±1}] ≤ 1/2 + negl(κ).

The HVZK simulator (which, by definition, needs to work only when N ∈ Lpp)
will pick random values σi and square them getting ρi. For each number, it will
flip a coin and, depending on the coin’s output the simulator will either output
(σi, ρi) or (0, ρ′

i) for a random ρ′
i ∈ JN . Because of the QR assumption (the

distributions of JN and QRN are computationally indistinguishable) the view of
the simulator is computationally indistinguishable from that of an honest verifier
interacting with a prover. �

3.5 HVZK Proof for a Blum Integer

In this section we consider the language Lblum−powers = {N > 0 | N = paqb for
primes p ≡ q ≡ 3 (mod 4)}. Note, similar to Sect. 3.4, that the more interesting
language is the language of Blum integers Lblum = Lsquare-free ∩ Lblum−powers.

In this section we obtain a two-round public-coin HVZK protocol for the
promise problem (Lyes = Lblum,Lno = Lblum−powers). We can obtain a protocol
for Lblum (with a similar gap for the case p | q − 1 as in Sect. 3.2) by combing
the proofs for Lblum−powers and Lsquare-free. Remarks at the beginning of Sect. 3.4
apply here, as well.

The protocol for Lblum−powers is very similar to the protocol for Lppp but
instead of considering square roots, we now consider 4th roots. Note that if N
is a Blum integer then among the four roots of ρi ∈ QRN , one and only one is
a quadratic residue.

Protocol Pblum−powers

Same as protocol Pppp described in Sect. 3.4 but in step 3 the prover computes
4th roots instead and in step 4 the verifier checks 4th roots.

1. Both the Prover and the Verifier let m = �κ · 32 · ln 2	.
2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.
3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗

N such that σ4
i mod N =

ρi, choosing one at random from among four possibilities. For other ρi, the
prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a
prime power (see [Ber98,BLP07] and references therein). The Verifier accepts
if the number of nonzero responses is at least 3m/8, and for every nonzero
σi, it holds that ρi = (σi)4 mod N .

Theorem 7. Pblum−powers is a 2-message public-coin protocol with statistical
completeness error 2−κ, perfect honest-verifier zero-knowledge, and statistical
soundness error 2−κ, for the promise problem (Lyes = Lblum,Lno = Lblum−powers).

714 S. Goldberg et al.

Proof. Similar to the proof of Theorem5, we get statistical completeness with
error 2−κ. The prover knowing the factorization of N can efficiently compute the
4th roots for N ∈ Lyes, and completeness relies on receiving enough ρi’s ∈ QRN .
Also we get the same statistical soundness error 2−κ.

Finally, Pblum−powers achieves perfect honest-verifier zero-knowledge since −1
is always a Jacobi symbol 1 non-square. Then we can construct a simulator that,
after computing ρi by raising a random σi to the fourth power, flips a coin and
sends either (0,−ρi) or (σi, ρi). �

4 Making Our Protocols Noninteractive via Fiat-Shamir

We use the Fiat-Shamir paradigm [FS86] to convert each of the 2-message public-
coin HVZK interactive protocols presented above into a non-interactive zero-
knowledge (NIZK) protocol. The transformation is very simple, because the first
message in every protocol we present always consists of the verifier sending some
challenges ρ1, . . . , ρm to the prover. The challenges are uniformly distributed in
some space with easy membership testing (such as ZN or Z

∗
N , for example).

Thus, to make our protocols noninteractive, Prover samples ρi by herself
using the random oracle. To make sure values ρi are in the correct space, such as
ZN or Z

∗
N , the prover performs rejection sampling for each ρi using a counter,

trying multiple random-oracle outputs until obtaining the first one that lands
in the desired space. Thus, each ρi is obtained by computing the output of the
random oracle over the concatenation of (1) the protocol input—e.g., the RSA
public key (N, e); (2) a salt given as a system parameter; (3) the index i; and
(4) the counter value. If the result is in the correct space, the prover uses this
ρi; if not, she increments the counter and tries again.

Thus, the protocol input and the salt determine the set of ρi ∈ ZN . The
verifier can therefore compute ρi on his own, by following the same procedure
as the prover, and subsequently perform verification. Note that the verifier, just
like the prover, will need to perform rejection sampling.

The noninteractive proof then is simply the message that the prover sends
to the verifier in the interactive protocol.

The security of this transformation is standard; we provide some formal
details in AppendixB.

5 Specification, Implementation and Performance for
NIZK of Permutations over ZN

Specification. Here we provide a more precise specification the protocol of
Sect. 3.3 made non-interactive using the Fiat-Shamir paradigm as described in
Sect. 4. The goal of this specification is to make the protocol precise enough
for implementation and compatibility. The full specification is available in
AppendixC. It assumes e is a fixed prime and thus sets e′ = e. It takes in

Efficient Noninteractive Certification of RSA Moduli and Beyond 715

α and the salt as system parameters. The random oracle used to deterministi-
cally select the ρi values is a “full-domain hash” [BR93] instantiated with the
industry-standard MGF1 Mask Generation Function as defined in [MKJR16,
Sec. B.2.1]. We use the industry-standard I2OSP and OS2IP to convert between
octet strings and integers [MKJR16, Sec. 4.1] and the industry-standard RSASP
to perform an RSA secret key operations [MKJR16, Sec. 5.2.1], and RSAVP for
RSA public-key operations [MKJR16, Sec. 5.2.2].

Implementation. An open-source implementation of our specification in C#,
based on the bouncycastle cryptographic library [bou], is publicly available [cod].
We hope that our implementation will become a part of bouncycastle.

Integration with TumbleBit. Our implementation has already been inte-
grated into the open-source reference implementation of TumbleBit, which is
currently being developed for production use [Ntu,Str17]. TumbleBit [HAB+17]
is a unidirectional Bitcoin payment hub that allows parties to make fast, anony-
mous, off-blockchain payments through an untrusted intermediary called the
Tumbler. The security of the TumbleBit protocol rests on the assumption that
the Tumbler’s RSA public key (N, e) defines a permutation over ZN . In the
absence of this assumption, the Tumbler can steal bitcoin from payers.2 Thus,
in addition to publishing (N, e), a Tumbler publishes our NIZK proof that (N, e)
defines a permutation, which is verified, during a setup phase, by any payer or
payee who wants to participate in the protocol with this Tumbler. Integration
with TumbleBit was easy. No modification to the existing TumbleBit protocol
or codebase were required; instead, our NIZK was simply added to TumbleBit’s
setup phase.

Parameters and Performance for TumbleBit. When used with TumbleBit,
our NIZK has parameters κ = 128, the RSA key length is |N | = 2048, the public
RSA exponent is e = e′ = 65537, and the salt is the SHA256 hash of the Genesis
block of the Bitcoin blockchain.

The performance of our NIZK largely depends on our choice of the parameter
α. A shorter α means that the verifier has to spend less time trying to divide N
by primes less than α, but also increases m1 and m2, the number of RSA values

2 Specifically, in TumbleBit, the Tumbler provides the payee Bob with a value z called
a “puzzle,” and a proof that its solution will transfer some of Tumbler’s money to
Bob. This solution is a value ε such that z = εe mod N . The protocol crucially relies
on uniqueness of ε, because the proof that the solution will unlock money applies to
only one of the solutions of z. When Alice wants to pay Bob, she learns the solution
to the puzzle in exchange for paying money to the Tumbler, and then gives that
solution to Bob as payment. If RSA is not a permutation, then a malicious Tumbler
can provide the payee Bob with a puzzle z that has two valid solutions ε1 �= ε2, where
z = (ε1)

e = (ε2)
e mod N , and a proof that ε1 transfers money. Then, to steal money,

the Tumbler gives payer Alice the solution ε2 in exchange for her money, which does
not permit Bob to obtain the Tumbler’s money and complete the transaction.

716 S. Goldberg et al.

in the NIZK. The relationship between α and m1,m2 is determined by Eq. (1).
Specifically for the TumbleBit parameters, we show this relationship in Fig. 1.
To evaluate the performance of our NIZK, we choose the smallest value of α
that corresponds a given pair of (m1,m2) values, and benchmark proving and
verifying times for our NIZK for the RSA key length |N | = 2048 bits in Table 1
on a single-core of an Intel Xeon processor. We can see from the table that
choosing α = 319567 (so that m1 = 7 and m2 = 9) gives optimal performance,
though performance for α = 65537 is roughly similar and the optimal choice is
likely implementation-dependent.

For the optimal choice of α, proving takes about 237 ms (a small fraction of
the key generation cost, which is 2022 ms) and verifying takes about 713 ms. For
comparison, verification of our NIZK is about 8 times faster than the folklore
solution discussed in Sect. 1, which requires the verifier to spend 5588 ms to
perform the Rabin-Miller primality test on a 2048-bit RSA exponent, and also
slows down every public-key operation by a factor of about 60 because e is 2048
bits long (instead of e = 65537, which is 17 bits long). We should note that even
though our solution is much faster than the folklore one, and adds only 12% to
the prover’s normal RSA key generation cost, it is still relatively expensive for
the verifier: for comparison, the public key operation (encryption or signature
verification) with e = 65537 takes only about 1.4ms.

From Table 1 we also see that verifying is generally slower than proving (until
α gets so big that divisibility testing takes too long for the verifier). This follows
because proving involves m1 modular exponentiations (using RSASP), which
can be done separately modulo p and modulo q for N = pq (with the exponent
reduced modulo p−1 and q−1), and then combined using the Chinese Remainder
Theorem (CRT). Meanwhile, the verifier does not know p and q, and so cannot
use (CRT); moreover, the exponent used for modular exponentiations (using
RSAVP) is slightly longer than φ(n), but the verifier does not know φ(N) and
so cannot reduce it. Thus, exponentiations performed by the verifier are slower
than those performed by the prover.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

5

10

15

20

nu
m

be
r o

f v
al

ue
s s

en
t (

m
1,

 m
2)

prime α

m1
m2

Fig. 1. Values of m1 and m2 versus the choice of parameter α for our NIZK, when
κ = 128 and e = e′ = 65537.

Efficient Noninteractive Certification of RSA Moduli and Beyond 717

Table 1. Proving and verifying times for our C# implementation as observed on an
Azure DS1 v2 virtual machine running Windows Server 2016 Datacenter (single-core
2.4 GHz Intel Xeon E5-2673 v3 Haswell processor, 3.5GiB RAM). Time is given in ms.
Public exponent is e = e′ = 65537 and security parameter is κ = 128.

Parameters Permutation Proof
α m1 m2 Prove Verify

41 24 24 632 2326
89 20 20 518 1925

191 17 17 443 1612
937 13 13 334 1216

1667 12 12 311 1127
3187 11 12 308 1042
3347 11 11 281 1025
7151 10 11 284 943
8009 10 10 256 948

19121 9 10 254 853
26981 9 9 233 854
65537 8 9 230 768

319567 7 9 237 713
2642257 6 9 234 956

50859013 5 9 230 6756

Acknowledgements. The authors thank Ethan Heilman, Alessandra Scafuro and
Yehuda Lindell for useful discussions. This research was supported, in part, by US
NSF grants 1717067, 1350733, and 1422965.

A Number-Theoretic Lemmas

We present number-theoretic lemmas that are useful for proving security of our
protocols. Some of them are standard and are presented here only to make the
presentation self-contained.

Let ZN = {0, 1, ..., N − 1} for any positive integer N and Z
∗
N be the multi-

plicative group modulo N, i.e., the set of values in ZN that are relatively prime
to N , or else {x ∈ ZN | gcd(x,N) = 1}. We use notation p|N to denote that “p
divides N”.

Euler’s phi or totient function (see, e.g., [Sho09, Section 2.6] for the relevant
background) is defined for all positive integers N as:

φ(N) = |Z∗
N |.

If N = pq where p, q are two distinct primes it holds that φ(N) = (p− 1)(q − 1).
More generally, if the prime factorization of N is N = pα1

1 × · · · × pαk

k , then
φ(N) = (pα1−1

1 × · · ·× pαk−1
k)× ((p1 − 1)× · · ·× (pk − 1)), with φ(1) = 1 [Sho09,

Theorem 2.11]. The following theorem is standard [Sho09, Theorem 2.13]:

Lemma 1 (Euler’s theorem). Let N be a positive integer and a ∈ Z
∗
N . Then

aφ(N) mod N = 1.

718 S. Goldberg et al.

Given positive integers N and e, consider the map x
→ xe mod N . We will
first consider this map as restricted to Z

∗
N . The following lemma is standard.

Lemma 2. The map x
→ xe mod N is a permutation of Z
∗
N if and only if

gcd(e, φ(N)) = 1. If the map is a permutation of Z∗
N , then its inverse is the map

x
→ xd mod N for d = e−1 mod φ(N) (which exists by [Sho09, Theorem 2.5]
because gcd(e, φ(N)) = 1).

Proof. Suppose gcd(e, φ(N)) = 1. Then let d = e−1 mod φ(N). Thus, de =
kφ(N) + 1 for some integer k. For every x ∈ Z

∗
N , (xe)d mod N = xed mod N =

(xφ(N))k · x mod N = 1k · x = x, where the second-to-last equality follows from
Lemma 1.

Now suppose gcd(e, φ(N)) = g �= 1. Let p be a prime divisor of g. Then
p |φ(N), and therefore Z

∗
N contains an element x �= 1 such that xp mod N = 1

[Sho09, Theorem 6.42]. Therefore, xe mod N = (xp)e/p mod N = 1e/p = 1, and
thus the map is not a permutation. �

A number N is square free if it can be written as N = p1p2 . . . pk for distinct
prime numbers pi. (N is not square free if it is divisible by p2, where p is some
prime.)

Lemma 3. For a positive integer N , if gcd(N,φ(N)) = 1, then N is square-free.

Proof. Indeed, suppose p2 |N for some prime p. Then p |φ(N), so gcd(N,φ(N)) ≥
p > 1. �

We now extend one direction of Lemma 2 to all of ZN for the case of square-
free N .

Lemma 4. If for some positive integers N and f , N is square-free and gcd(f,
φ(N)) = 1, then the map x
→ xf mod N is a permutation on ZN . Its inverse is
computed as follows: for g = f−1 mod φ(N) (which exists by [Sho09, Theorem
2.5]) and for all x ∈ ZN , xgf mod N = x.

Proof. Let N = p1p2 . . . pk for distinct prime numbers pi. By the Chinese
Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring ZN is isomorphic
to the product of rings Zp1 × · · · × Zpk

. It therefore suffices to show that
xef mod pi = x for each i. Indeed, fg = tφ(N) + 1 for some integer t, and
therefore xfg = (xpi−1)s · x for some integer s, and the result follows by Fer-
mat’s little theorem [Sho09, Theorem 2.14] when x mod pi �= 0, and trivially
when x mod pi = 0. �

To extend the other direction of Lemma 2 to all of ZN is a little more com-
plicated.

Lemma 5. If for some positive integers N and f , the map x
→ xf mod N is
a permutation on ZN , then x
→ xf mod N is a permutation on Z

∗
N (and thus

gcd(f,N) = 1 by Lemma 2) and either:

Efficient Noninteractive Certification of RSA Moduli and Beyond 719

– N is square-free, or
– f = 1

Proof. The first part of the lemma follows from the fact that when raised to the
power f modulo N , elements of Z∗

N stay within Z∗
N (because if gcd(x,N) = 1,

then gcd(xf mod N,N) = 1). The second part of the lemma is proven as follows.
Suppose N is not square-free and f > 1. Then let p2 |N for some prime p. The
set {x ∈ ZN : x is divisible by p} contains N/p elements. The image of this
set is contained in {x ∈ ZN : x is divisible by p2}, which contains only N/p2

elements. Thus, the map is not injective.

The following lemma shows that one can validate if an integer N is square-free
by checking if random values in ZN have Nth roots. This lemma generalizes the
result of Gennaro, Micciancio, and Rabin [GMR98, Section 3.1], which worked
over Z

∗
N and thus required a gcd computation every time a random value was

selected.

Lemma 6. Let N be a positive integer and p be a prime such that p2 divides N
(i.e., N is not square free). Then, the fraction of elements of Z∗

N that have an
N th root modulo N is at most 1/p, and the fraction of elements of ZN that have
an N th root modulo N is also at most 1/p.

Proof. Suppose x has an Nth root modulo N . Then there is a value r such that
rN ≡ x (mod N). Hence, N divides rN − x, which means p2 divides rN − x
(since p2 divides N), and therefore r is the Nth root of x modulo p2. Thus, in
order to have an Nth root modulo N , x must have an Nth root modulo p2.
Since a uniformly random element x of ZN is also uniform modulo p2, and a
uniformly random element x of Z∗

N is also uniform in Z∗
p2 when reduced modulo

p2, it suffices to consider what fractions of Z∗
p2 and of Zp2 have Nth roots.

By Lemma 8 below, the number of elements of Z∗
p2 that have Nth roots

is at most φ(p2)/e′, where e′ is the largest prime divisor of gcd(N,φ(p2)) =
gcd(N, p(p − 1)). Since p|N , we have e′ = p. Thus, the number of elements of
Z∗

p2 that have Nth roots is at most φ(p2)/p = p − 1. This shows the first half of
the conclusion.

If x ∈ Zp2 −Z∗
p2 , then p|x. If x has an Nth root r modulo p2, then p2|(rN −x),

hence p|(rN − x), hence p|rN (because p|x and p|(rN − x)), hence p|r (because
p is prime), hence p2|r2, hence p2|rN (because N > 1), and hence p2|x (because
p2|(rN − x) and p2|rN). We therefore have that x ∈ Zp2 and p2|x, which means
that x = 0.

Thus, the total number of elements of Zp2 that have an Nth root is at most
p − 1 elements from Z∗

p2 and one element from Zp2 − Z∗
p2 (namely, the element

x = 0), for a total of at most p elements from Zp2 . Thus, at most a p/|Zp2 | = 1/p
fraction of elements of Zp2 have Nth roots. It follows that at most a 1/p fraction
of elements of ZN has Nth roots. �

The following lemma shows that if we know that N is square free (which we
can test using Lemma 6), then we can check whether raising to the power e is a
permutation of ZN , by checking if random values in ZN have eth roots.

720 S. Goldberg et al.

Lemma 7. Suppose N > 0 is a square-free integer so that N = p1p2 . . . pk for
distinct prime numbers pi, and e > 0 is an integer. If raising to the power e
modulo N is not a permutation over ZN , then the fraction of elements of ZN

that have a root of degree e is at most

1
p

+
1
e′

(
1 − 1

p

)
,

where e′ is the smallest prime divisor of e and p is the smallest prime divisor
of N (these are well-defined, because if N = 1 or e = 1, then raising to the eth
power is a permutation over ZN).

Proof. By Chinese Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring
ZN is isomorphic to the product of rings Zp1 × · · · × Zpk

. Note that if raising
to the power e modulo N is not a permutation over ZN , then there exist x �≡ y
(mod N) such that xe ≡ ye (mod N). Let i be such that x �≡ y (mod pi) (it
must exist by CRT); then raising to the power e modulo pi is not a permutation
of Zpi

, because xe ≡ ye (mod pi) (by CRT).
Since a uniformly random element x of ZN is uniform modulo pi, it suffices

to consider what fraction of Zpi
has eth roots. By Lemma 8 below, the number

of elements of Z∗
pi

that have eth roots is at most φ(Z∗
pi

)/e′ = (pi − 1)/e′. The
only element in Zpi

− Z∗
pi

is the element 0. So, in total, at most (pi − 1)/e′ + 1
elements of Zpi

have eth roots. Since pi ≥ p,

(pi − 1)/e′ + 1
pi

=
1
e′ +

1
pi

(
1 − 1

e′

)
≤ 1

e′ +
1
p

(
1 − 1

e′

)
=

1
p

+
1
e′

(
1 − 1

p

)
.

�
The proofs of two lemmas above relied on the lemma below.

Lemma 8. For any positive integers N and e, if raising to the power e modulo
N is not a permutation over Z

∗
N , then gcd(e, φ(N)) > 1 and the number of

elements of Z∗
N that have a root of degree e is at most φ(N)/e′, where e′ is the

largest prime divisor of gcd(e, φ(N)).

Proof. Suppose there exist x and y in Z
∗
N such that xe ≡ ye (mod N) but x �≡ y

(mod N). Then x/y �≡ 1 (mod N) but (x/y)e ≡ 1 (mod N). Therefore, the
multiplicative order of (x/y) is greater than 1 and divides e [Sho09, Theorem
2.12] and φ(N) [Sho09, Theorem 2.13], which implies that gcd(e, φ(N)) > 1. Let
e′ be the largest prime divisor of gcd(e, φ(N)).

Because e′ is a prime that divides φ(N), Z∗
N contains an element z of order e′

[Sho09, Theorem 6.42]. Therefore, the homomorphism that takes each element
of Z∗

N to the power e has kernel of size at least e′ (because this kernel contains
distinct values z, z2, . . . , ze′

which are all eth roots of 1 because e′ divides e).
The image of this homomorphism contains exactly the elements that have roots
of degree e, and the size of this image is equal to φ(N) divided by the size of the
kernel [Sho09, Theorem 6.23], i.e., at most φ(N)/e′. �

Efficient Noninteractive Certification of RSA Moduli and Beyond 721

B Background on the Fiat-Shamir transform

Any efficient, interactive constant-round, public-coin, honest-verifier zero knowl-
edge (HVZK) proof system can be converted into a noninteractive ZK argument3

(NIZK) through the so called Fiat-Shamir (FS) transformation [FS86]. Apply-
ing FS allows us to replace the verifier V by instead calling a hash function
on input the current transcript. The security of the resulting scheme holds in
the random oracle [BR93] (RO), where a hash function H is evaluated through
calls to an oracle that acts as a random function. The main idea in the security
proof is that the simulator for HVZK can “program” the RO (i.e., the simulator
decides the answer to each specific query). This allows the simulator to convert
the entire transcript of a public-coin HVZK proof into a single message that is
indistinguishable from the message computed by an honest NIZK prover. We
first recall the definition of NIZKs in the RO and then state the Fiat-Shamir
transformation theorem (definitions slightly modified from [FKMV12]).

Let S be a simulator that operates in two modes: (hi, st) ← S(1, st, qi) which
on input a random oracle query qi it responds with hi (usually by lazy sampling),
and (π, st) ← S(2, st, x) which simulates simulates the actual proof. (Note that
calls to S(1, · · ·) and S(2, · · ·) share the common state st that is updated after
each operation).

Definition 2 (NIZK). Let (S1,S2) be oracles such that S1(qi) returns the first
output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of (π, st) ←
S(2, st, x) if (x,w) ∈ RL.

A protocol 〈PH ,VH〉 is said to be a NIZK proof for language L in the random
oracle model, if there exists a PPT simulator S such that for all PPT distinguish-
ers D we have

viewDH(·),PH(·,·) ≈ viewDS1(·),SH
2 (·,·).

We now state and prove the following theorem for the Fiat-Shamir transfor-
mation [FKMV12]:

Theorem 8 (Fiat-Shamir NIZK). Let κ be a security parameter. Consider a
non-trivial constant round, public-coin, honest-verifier zero-knowledge (HVZK)
interactive proof system 〈P,V〉 for a language L. Let H() be a function with range
equal to the space of the verifier’s coins. In the random oracle model the proof
system 〈PH ,VH〉, derived from 〈P,V〉 by applying the Fiat-Shamir transform, is
a noninteractive ZK argument.

Proof. (sketch) All we need to show is that there exists a simulator S as required
in Definition 2. This can be done by invoking the HVZK simulator associated
with the underlying interactive proof system.

3 As opposed to a proof system where soundness needs to hold unconditionally, in an
argument system it is sufficient that soundness holds with respect to a computation-
ally bounded adversary P∗.

722 S. Goldberg et al.

We design S to work as follows:

– To answer to a query q to S1, S(1, st, q) lazily samples a lookup table kept
in state st. It checks whether an answer for q was already defined. If this is
the case, it returns the previously assigned value; otherwise it returns a fresh
random value h and stores the pair (q, h) in the table.

– To answer to a query x to S2, S(2, st, x) calls the HVZK simulator of 〈P,V〉 on
input x to obtain a proof π. Then, it updates the look up table by storing x, π.
If the look up table happens to be already defined on this input, S returns
failure and aborts.

Given that the protocol is non-trivial, the probability of failure in each of the
queries to S2 is negligible. �

C Detailed Specification for the NIZK of Permutations
over Zn

The following specification is for the NIZK of Permutations over Zn, as described
in Sect. 5. This specification assumes that the RSA exponent e is prime.

C.1 System Parameters

The system parameters are the RSA modulus length len, the security parameter
κ (where by default κ = 128), a small prime α (about 16 bits long or less), and
a publicly-known octet string salt.

C.2 Proving

System Parameters:

1. salt (an octet string),
2. α (a prime number)
3. κ (the security parameter, use 128 by default)
4. e, the fixed prime RSA exponent
5. len, the RSA key length.

Auxiliary Function: getRho, defined in Sect. C.4.

Input: Distinct equal-length primes p and q greater than α such that the RSA
modulus is N = pq is of length len, and e does not divide (p − 1)(q − 1).

Output: (N, e), {σ1, ..., σm2}.

Efficient Noninteractive Certification of RSA Moduli and Beyond 723

Algorithm:

1. Set m1 and m2 as in Eq. 1, Sect. 3.3, with e′ = e.
2. Set N = pq.
3. Obtain the RSA secret key K as specified by [MKJR16, Sec. 3.2]:

K = (p, q, dNP , dNQ , qInv)

4. Compute the “weird RSA” secret key corresponding to public key (N, eN)
(with exponent eN and modulus N) in the [MKJR16, Sec. 3.2] as

K ′ = (p, q, dNP , dNQ , qInv)

where p, q, qInv are the same as in the normal RSA secret key K and

dNP = (eN)−1 mod (p − 1) dNP = (eN)−1 mod (q − 1) (2)

5. For integer i = 1 . . . m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, let
σi = RSASP1(K ′, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1].
In other words, σ is the RSA decryption of ρi using the “weird RSA”
secret key K ′.
(It follows that σi is (eN)th root of ρi.)

(c) Else let
σi = RSASP1(K, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1].
In other words, σ is the RSA decryption of ρi using the regular RSA
secret key K.
(It follows that σi is eth root of ρi.)

6. Output (N, e), {σ1, ..., σm2}.

C.3 Verifying

System Parameters:

1. salt (an octet string),
2. α (a prime number)
3. κ (the security parameter, use 128 by default)
4. e, the fixed prime RSA exponent
5. len, the RSA key length

724 S. Goldberg et al.

Auxiliary Function: getRho, defined in Sect. C.4.

Input: RSA public key (N, e) and {σ1, ..., σm2}.

Output: VALID or INVALID

Algorithm:

1. Check that N is an integer and N ≥ 2len−1 and N < 2len. If not, output
INVALID and stop.

2. Check that e is prime. If not, output INVALID and stop.
3. Compute m1 and m2 per Eq. (1), Sect. 3.3, with e′ = e.
4. Check that there are exactly m2 values {σ1, ..., σm2} in the input. If not,

output INVALID and stop.
5. Generate the vector Primes(α−1), which includes all primes up to and includ-

ing α−1. (This can be efficiently implemented using the Sieve of Eratosthenes
when α is small.)
For each p ∈ Primes(α − 1):

– Check that N is not divisible by p. If not, output INVALID and stop.
(Alternatively, let primorial be the product of all values in Primes(α−1).
primorial should be computed once and should be a system parameter.
Check that gcd(primorial, N) = 1.)

6. For integer i = 1 . . . m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, check that

ρi = RSAVP1((N, eN), σi)

where RSAVP1 is the RSA verification primitive of [MKJR16, Sec. 5.2.2].
In other words, check that ρi is the RSA encryption of σi using the “weird
RSA” public key (N, eN). If not, output INVALID and stop.
(Thus, check that ρi = σeN

i mod N).
(c) Else check that

ρi = RSAVP1(PK , σi)

In other words, check that the ρi is the RSA encryption of σi using the
RSA public key (N, e). If not, output INVALID and stop.
(Thus, check that ρi = σe

i mod N).
7. Output VALID.

C.4 Auxiliary function: getRho

This function is for rejection sampling of a pseudorandom element ρi ∈ ZN . It
is “deterministic,” always producing the same output for a given input.

Efficient Noninteractive Certification of RSA Moduli and Beyond 725

Input:

1. RSA public key (N, e).
2. salt (an octet string)
3. Index integer i.
4. Length of RSA modulus len
5. Value m2, with i ≤ m2.

Output: ρi

Algorithm:

1. Let
|m2| =

⌈
1
8 (log2(m2 + 1))

⌉

be the length of m2 in octets. (Note: This is an octet length, not a bit length!)
2. Let j = 1.
3. While true:

(a) Let PK be the ASN.1 octet string encoding of the RSA public key (N, e)
as specified in [MKJR16, Appendix A].

(b) Let EI = I2OSP(i, |m2|) be the |m2|-octet long string encoding of the
integer i. (The I2OSP primitive is specified in [MKJR16, Sec. 4.2].)

(c) Let EJ = I2OSP(j, |j|) be the |j|-octet long string encoding of the integer
j, where |j| = � 1

8 log2(j + 1)	.
(d) Let s = PK ||salt||EI||EJ be the concatenation of these octet strings.
(e) Let ER = MGF1-SHA256(s, len) where H1 is the MGF1 Mask Gen-

eration Function based on the SHA-256 hash function as defined in
[MKJR16, Sec. B.2.1], outputting values that are len bits long.

(f) Let ρi = OS2IP(ER) be an integer.
(That is, convert ER to an len bit integer ρi using the OS2IP primitive
specified in [MKJR16, Sec. 4.1].)

(g) If ρi ≥ N , then let j = j + 1 and continue; Else, break.
(Note: This step tests if ρi ∈ ZN .)

4. Output integer ρi.

References

[AP18] Auerbach, B., Poettering, B.: Hashing solutions instead of generating prob-
lems: on the interactive certification of RSA moduli. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 403–430. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 14

[Ber98] Bernstein, D.J.: Detecting perfect powers in essentially linear time. Math.
Comput. 67, 1253–1283 (1998)

[BFGN17] Benhamouda, F., Ferradi, H., Géraud, R., Naccache, D.: Non-interactive
provably secure attestations for arbitrary RSA prime generation algo-
rithms. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10492, pp. 206–223. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66402-6 13

https://doi.org/10.1007/978-3-319-76581-5_14
https://doi.org/10.1007/978-3-319-66402-6_13
https://doi.org/10.1007/978-3-319-66402-6_13

726 S. Goldberg et al.

[BFL89] Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: giving
hints and using deficiencies. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 155–172. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 18

[BLP07] Bernstein, D.J., Lenstra, H.W., Pila, J.: Detecting perfect powers by fac-
toring into coprimes. Math. Comput. 76(257), 385–388 (2007)

[bou] bouncycastle c# api. https://www.bouncycastle.org/csharp/index.html
[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for

designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, pp. 62–73. ACM (1993)

[BY96] Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-
knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166
(1996). https://cseweb.ucsd.edu/∼mihir/papers/cct.html

[CM99] Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is
the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48910-X 8

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

[cod] Tumblebit setup implementation. https://github.com/osagga/
TumbleBitSetup

[CPP07] Catalano, D., Pointcheval, D. and Pornin, T. Trapdoor hard-to-invert
group isomorphisms and their application to password-based authentica-
tion. J. Cryptol. 20(1), 115–149, 2007. http://www.di.ens.fr/∼pointche/
Documents/Papers/2006 joc.pdf

[DJ01] Damg̊ard, I., Jurik, M.: A Generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 9

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34931-7 5

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[GMR98] Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statis-
tical zero-knowledge proof system for quasi-safe prime products. In: Gong,
L., Reiter, M.K. (eds.) CCS 19, Proceedings of the 5th ACM Conference
on Computer and Communications Security, San Francisco, CA, USA, 3–5
November 1998, pp. 67–72. ACM (1998). http://eprint.iacr.org/1998/008

[HAB+17] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A. and Goldberg, S.:
Tumblebit: an untrusted bitcoin-compatible anonymous payment hub. In:
24th Annual Network and Distributed System Security Symposium, NDSS.
The Internet Society (2017). https://eprint.iacr.org/2016/575.pdf

https://doi.org/10.1007/3-540-46885-4_18
https://www.bouncycastle.org/csharp/index.html
https://cseweb.ucsd.edu/~mihir/papers/cct.html
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_28
https://github.com/osagga/TumbleBitSetup
https://github.com/osagga/TumbleBitSetup
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/1998/008
https://eprint.iacr.org/2016/575.pdf

Efficient Noninteractive Certification of RSA Moduli and Beyond 727

[HMRT12] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gener-
ation and threshold paillier in the two-party setting. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27954-6 20

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[KKM12] Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K.
(eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34961-4 25

[Lin17] Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 21

[LMRS04] Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate
signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24676-3 5

[MKJR16] Moriarty, K., Kaliski, B., Jonsson, J., Rusch, A.: RFC 8017: PKCS #1:
RSA Cryptography Specifications Version 2.2. Internet Engineering Task
Force (IETF) (2016). https://tools.ietf.org/html/rfc8017

[MPS00] MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key
exchange based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 599–613. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3 46

[MRV99] Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
40th Annual Symposium on Foundations of Computer Science, FOCS 1999,
17–18 October 1999, New York, NY, USA, pp. 120–130. IEEE Computer
Society (1999)

[Ntu] Tumblebit implementation in.net core. https://github.com/NTumbleBit/
NTumbleBit/

[Sho09] Shoup, V.: A Computational Introduction to Number Theory and Algebra,
2nd edn. Cambridge University Press (2009). http://www.shoup.net/ntb/
ntb-v2.pdf

[Str17] Stratis Blockchain: Bitcoin privacy is a breeze: tumblebit successfully inte-
grated into breeze, August 2017. https://stratisplatform.com/2017/08/10/
bitcoin-privacy-tumblebit-integrated-into-breeze/

[WCZ03] Wong, D.S., Chan, A.H., Zhu, F.: More efficient password authenticated key
exchange based on RSA. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 375–387. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-24582-7 28

https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-540-24676-3_5
https://tools.ietf.org/html/rfc8017
https://doi.org/10.1007/3-540-44448-3_46
https://doi.org/10.1007/3-540-44448-3_46
https://github.com/NTumbleBit/NTumbleBit/
https://github.com/NTumbleBit/NTumbleBit/
http://www.shoup.net/ntb/ntb-v2.pdf
http://www.shoup.net/ntb/ntb-v2.pdf
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
https://doi.org/10.1007/978-3-540-24582-7_28
https://doi.org/10.1007/978-3-540-24582-7_28

Shorter Pairing-Based Arguments Under
Standard Assumptions

Alonso González1(B) and Carla Ràfols2

1 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

alonso.gonzalez@ens-lyon.fr
2 Universitat Pompeu Fabra and Cybercat, Barcelona, Spain

carla.rafols@upf.edu

Abstract. This paper constructs efficient non-interactive arguments for
correct evaluation of arithmetic and boolean circuits with proof size O(d)
group elements, where d is the multiplicative depth of the circuit, under
falsifiable assumptions. This is achieved by combining techniques from
SNARKs and QA-NIZK arguments of membership in linear spaces. The
first construction is very efficient (the proof size is ≈ 4d group elements
and the verification cost is ≈ 4d pairings and O(n + n′ + d) exponentia-
tions, where n is the size of the input and n′ of the output) but one type
of attack can only be ruled out assuming the knowledge soundness of QA-
NIZK arguments of membership in linear spaces. We give an alternative
construction which replaces this assumption with a decisional assump-
tion in bilinear groups at the cost of approximately doubling the proof
size. The construction for boolean circuits can be made zero-knowledge
with Groth-Sahai proofs, resulting in a NIZK argument for circuit satis-
fiability based on falsifiable assumptions in bilinear groups of proof size
O(n + d).

Our main technical tool is what we call an “argument of knowledge
transfer”. Given a commitment C1 and an opening x, such an argument
allows to prove that some other commitment C2 opens to f(x), for some
function f , even if C2 is not extractable. We construct very short, constant-
size, pairing-based arguments of knowledge transfer with constant-time
verification for any linear function and also for Hadamard products. These
allow to transfer the knowledge of the input to lower levels of the circuit.

1 Introduction

This paper deals with the problem of constructing non-interactive publicly verifi-
able arguments of knowledge under falsifiable assumptions to prove that a circuit
φ is correctly evaluated in two different settings.

A. González—This author was supported in part by the French ANR ALAMBIC
project (ANR-16-CE39-0006).
C. Ràfols—The research leading to this article was supported by a Marie Curie “UPF
Fellows” Postdoctoral Grant and by Project RTI2018-102112-B-I00 (AEI/FEDER,
UE).

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 728–757, 2019.
https://doi.org/10.1007/978-3-030-34618-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_25

Shorter Pairing-Based Arguments Under Standard Assumptions 729

In one such possible setting, all of the input of the circuit φ is known. In
this case, the argument does not need to be zero-knowledge and can leak partial
information. This is the typical situation in verifiable computation in which
a resource-limited device delegates a costly computation to a more powerful
machine.

Another important setting requires the input and output to be partially or
totally hidden and the argument to be zero-knowledge. This is interesting from
a theoretical perspective as CircuitSat is usually taken to be the standard NP
complete problem. On the practical side, often the best way to prove a large,
complicated statement in zero-knowledge is to encode it as a circuit and prove
that it is satisfiable. Further, CircuitSat is considered a sort of benchmark to
evaluate the efficiency of zero-knowledge proofs.

Succinct Non-Interactive Arguments of Knowledge or SNARKs in bilinear
groups have been a phenomenal success in both of these scenarios [1,8,15,16,28].
These arguments are succinct, more specifically, they are constant size, that is,
not dependent on the circuit size, and extremely efficient also concretely (3
group elements in the best constructions [16]). They are also very fast to verify,
which is a very interesting feature in practice, as in many scenarios verification
is performed many times. However, these constructions still suffer from some
problems, like long trusted parameters, heavy computation for the prover and
reliance on non-falsifiable computational assumptions. Further, it is a well-known
fact that the latter is unavoidable for succinct arguments in the non-interactive
setting [11].

Non-falsifiable assumptions offer great efficiency at the price of less under-
stood security guarantees. The problem is that it is not possible to efficiently
check if the adversary effectively breaks the assumption, which results in non-
explicit security reductions [32] which inherently do not allow to choose concrete
security parameters meaningfully. Therefore, it is interesting to construct argu-
ments with properties similar to SNARKs (short proof size, fast verification) for
correct circuit evaluation that avoid falsifiable assumptions.

When the input of the circuit is public, SNARKs can be used to prove that
the circuit is correctly evaluated while avoiding falsifiable assumptions. Indeed,
since it is possible to check if a prover breaks soundness (as the input is public),
the tautological assumption “the scheme is sound” is already falsifiable. For the
case where at least some part of the input is secret, the same trivial solution
can be used if the prover additionally commits to the input with some commit-
ment which is extractable under falsifiable assumptions.1 However, these trivial
solutions require circuit dependent assumptions.

The goal of this paper is to design efficient constructions both in terms of
proof size and verification complexity from milder (falsifiable, circuit indepen-
dent) assumptions.

1 Essentially the only such commitment known is bit to bit encryption, e.g. Groth-
Sahai commitments to bits.

730 A. González and C. Ràfols

1.1 Our Results

We construct an argument for proving that an arithmetic circuit φ : Z
n
p →

Z
n′
p is correctly evaluated. We give two instantiations, the first one with proof

size (3d + 2)G1 + (d + 2)G2 and where verification requires 4d + 6 parings and
O(n+n′+d) exponentiations, for d the depth of the circuit. We give a less efficient
scheme where both proof size and verification cost are approximately the double
of the first construction, more concretely, the proof size is (6d+3)G1+(2d+3)G2

and the verification requires 8d + 9 pairings.
For the first construction, we need to rely on the knowledge soundness of QA-

NIZK arguments of membership in linear spaces, which has only been proven in
the generic group model [5]. The second argument is fully based on falsifiable
assumptions. The first one is an assumption that falls into the Matrix Decisional
Diffie-Hellman assumption framework of Escala et al. [4] extended in asymmetric
groups, where the challenge matrix is given in both groups. The size of the matrix
depends on q, for q being the maximum number of multiplicative gates with the
same multiplicative depth in the circuit. The second assumption is also a q-type
assumption and similar to the q-SFrac Assumption of [12].

For boolean circuits, the argument can be made zero-knowledge with O((n−
npub) + d) proof size, where npub is the public input size.

1.2 Our Techniques

Circuit Satisfiability can be represented as a set of quadratic and linear equa-
tions. It would seem that it suffices to find aggregated proofs of satisfiability of
these equations to get sublinear proofs in the number of wires circuit wires. For
instance, a natural strategy would be to commit to wires with shrinking commit-
ments and use any constant-size QA-NIZK argument of membership in linear
spaces (e.g. [25]) to give an aggregated proof that the affine constraints hold
and use “aggregated” variants of GS Proofs [18] such as [2,14] for the quadratic
constraints.

The reason why this approach fails is that when using shrinking commitments
it is unclear what are the guarantees provided by QA-NIZK arguments since they
are not proofs of knowledge (w.r.t. general PPT adversaries and not generic
ones). Similarly, the arguments for quadratic equations are commit-and-prove
schemes which require binding commitments to the solution of the equation.

Knowledge Transfer Arguments. Our solution is to divide the set of con-
straints into d sets of quadratic and affine constraints, one per multiplicative
level of the circuit. Namely, if φ : Zn

p → Z
n′
p is an arithmetic circuit of depth d,

we express correct evaluation at level i as the following system:

– (quadratic constraints) cij = aijbij for j = 1, . . . , ni.
– (affine constraints) aij , bij are affine combinations of output wires of previous

levels,

Shorter Pairing-Based Arguments Under Standard Assumptions 731

that is aij , bij , cij represent, respectively, the left, right and output of the jth
gate at level i. Our technical innovation is to eliminate the need for binding
commitments to the wires at all levels of the circuit by “transferring” knowledge
of the input to lower levels.

More specifically, given adversarially chosen shrinking commitments Li (resp.
Ri, Oi) to all the left (resp. right, output) wires at level i, we first give a constant-
size argument with constant-time verification which proves:

If (ai, bi, Li, Ri, Oi) is such that Li, Ri open to ai, bi then Oi opens to
ci = ai ◦ bi.

We think of this building block as a “quadratic knowledge transfer argument”,
as it shows that if an adversary knows an opening for left and right wires, it
also knows an opening of the output wires at the next level. This property is
formalized as a promise problem because the verifier of the argument never
checks that Li, Ri open to ai, bi (otherwise the verification of the argument
would be linear in the witness). Using a quadratic arithmetic program encoding
[8] of the quadratic constraints we prove soundness under a certain q-assumption.

With this building block, the problem of constructing the argument is reduced
to arguing that left and right wires are correctly assigned, i.e. proving that affine
constraints are satisfied. We build a “linear knowledge transfer” argument with
constant proof size and verification time showing that:

Given an opening of the commitments to the output wires O1, . . . , Oi which is
consistent with L1, . . . , Li and R1, . . . , Ri then it is also consistent with Li+1

and Ri+1.

Correct evaluation of the circuit can be easily proven by combining
these two building blocks. Since the input of the circuit is public and the
shrinking commitments we use are deterministic, a consistent assignment
O1, L1, R1, . . . , Od, Ld, Rd of the circuit wires is known by the reduction in
the proof of soundness. A successful soundness adversary must output another
assignment which disagrees with it starting from some level i. If the adver-
sary outputs as part of its proof L1, . . . , Li, R1, . . . , Ri, O1, . . . , Oi−1, O

∗
i , with

O∗
i �= Oi, the reduction knows openings of Li, Ri and it can break the soundness

of the quadratic knowledge transfer argument. On the other hand, if it sends
L1, . . . , L

∗
i , R1, . . . , R

∗
i , O1, . . . , Oi−1, where either L∗

i �= Li or R∗
i �= Ri, then it

knows valid openings of Oj until level i − 1 and it can break the soundness of
the “linear knowledge transfer” argument.

To construct the linear knowledge transfer argument, we use QA-NIZK argu-
ments of membership in linear spaces [14,20,21,25,27]. Although soundness of
these arguments can be proven under standard assumptions, it turns out that
traditional soundness is not what we need in this setting. Indeed, to see this, sup-
pose we want to prove that two shrinking, deterministic commitments open to
the same value. Let M,N be the commitment keys. If C1 = Mw and C2 = Nw
are commitments to the same value, obviously(

C1

C2

)
∈ Im

(
M
N

)
. (1)

732 A. González and C. Ràfols

Let π a QA-NIZK proof of membership in linear spaces for (1). In our linear
knowledge transfer argument, π should convince the verifier that:

“If C1 = Mw for some known w, and π verifies, then C2 = Nw.”

The problem is that for any w′ such that C1 = Mw = Mw′, an adversary can set
C2 = Nw′ and compute π honestly with w′. In other words, the adversary can
“switch witnesses” without breaking the soundness of the QA-NIZK argument.
So standard soundness does not help to argue that the left and right wires are
consistently evaluated with lower levels of the circuit.

On the other hand, the “witness switching attack” is easy to rule out, as it
requires the attacker to know two openings for C1, but this breaks the binding
property of the first commitment. However, because the commitment is shrinking
we do not know how to extract w′ to get a reduction to the binding property
unless we use the knowledge soundness property of the QA-NIZK Argument as
proven (in the generic group model) in [5].

Soundness of the Linear Argument Under Standard Assumptions. One
of our main technical contributions is to show that such witness switching attacks
are not possible under a certain decisional assumption in bilinear groups. To get
back to our example, our first observation is that, using the linear properties of
the QA-NIZK arguments of membership in linear spaces, a break of the knowl-
edge transfer property can be turned into a proof of membership π† for a vector
of the form (0

C), where C = C2 − Nw �= 0.
The crs of the QA-NIZK argument system is of the form A,B = M�K1 +

N�K2,KA, for some matrix A and a random matrices K1,K2. A proof for
(C1, C2) must be of the form C�

1 K1 + C�
2 K2 (unless one solves some computa-

tionally hard problem). Intuitively, is not easy to construct π† since it must be of
the form π† = C�K2 and hence an adversary must somehow find an element in
the kernel of M (which is in general a hard problem, otherwise the commitment
is not binding) in order to eliminate any dependence on K1 in B. However, in
the security proof it is not clear how to extract such element in the kernel of M,
which is of the same size of w, only from C and π†, which are of constant size.
To bypass this problem, we assume that a stronger decisional assumption related
to M holds, namely that it is hard to decide membership in the image of M�

(a type of Matrix Diffie-Hellman assumption [4]). Specifically, we assume that
M�K1 is pseudo-random and, using this decisional assumption, we can jump to
game where K2 is information theoretically hidden and then there is an expo-
nentially low probability of computing π† = C�K2. To do this, we need to find
a way around the problem that there is still some information about K1 which is
leaked trough the crs of QA-NIZK arguments of [25] as KA =

(
K1A
K2A

)
, where A

is either a (k+1)×k matrix for general linear spaces or a k×k matrix when the
linear spaces are generated by witness samplable distributions. To solve this, we
use the fact that, information theoretically, part of K1 is never leaked through
KA when A is a (k + 1) × k matrix. We leave it as an open question to achieve
a similar result when A is a k × k to exploit witness samplability.

Shorter Pairing-Based Arguments Under Standard Assumptions 733

Zero-Knowledge. In all our subarguments the verification equations are pair-
ing product equations, so they can be made zero-knowledge with Groth-Sahai
proofs [18]. However, our proof uses in a fundamental way that the input of the
verification is public. Therefore, this only works when the commitment to the
input is extractable. The resulting scheme is not practical as this is only possible
with bit-by-bit commitments to the input. However, it can be easily extended to
boolean circuits with a proof size of O(n − npub + n′ + d) group elements (where
npub is the size of the public input), which is an interesting improvement over
state-of-the-art, as all constructions in the crs model under falsifiable assump-
tions are linear in the circuit size (see [17] and concrete improvements thereof,
mainly [14]).

1.3 Previous Work

CRS NIZK for NP from Falsifiable Assumptions. Groth, Ostrovsky, and
Sahai [17] constructed a NIZK proof system for boolean CircuitSat only from
standard assumptions. Both the the size of the proof (in group elements) and
the verifier’s complexity (in group operations) depend asymptotically on the
circuit size. The construction can be extended to arithmetic circuits using [18].
Several concrete improvements in the proof size can be done with recent results
in the QA-NIZK setting [14,20,21,25,27] but we are not aware of any asymptotic
improvements.

A trivial approach to reduce the proof size is to encrypt the witness using fully
homomorphic encryption [9] and let the verifier evaluate the circuit homomor-
phically. Building on this idea, and using hybrid fully homomorphic encryption,
Gentry et al. [10] constructed a proof of size n + poly(λ). While this shows that
it is theoretically possible to build proofs of size independent of the circuit size
under standard assumptions, they need to give NIZK proofs for correct key gen-
eration of FHE keys and correct evaluations of the FHE encryption algorithm
and decryption algorithms.2 These NIZK proofs, in general, need to represent
the statements as boolean circuits and therefore they are of lower practical inter-
est. Furthermore, note that the verifier needs to homomorphically evaluate the
circuit using the FHE scheme, so its runtime is proportional to the circuit size.

A very recent result constructs proofs of size proportional to the circuit size
plus an additive overhead in the security parameter (as opposed to multiplicative
as in our work) in pairing based groups [24]. For NC1, one of the constructions
is of size n (independent of the circuit size) plus an additive overhead in the
security parameter. Although the verifier’s runtime is proportional to the circuit
size, it may be possible to preprocess the circuit dependent part and add it to
the crs so that the verifier’s runtime is only proportional to the size of the input.
On the downside, the size of the crs is O(n3) as well as the underlying security
assumption which is a q-assumption with q of size O(n3). Furthermore, the

2 Note that using the celebrated recent results of Peikert and Shiehian [35] this scheme
can be based solely on the LWE assumption.

734 A. González and C. Ràfols

additive overhead might be large as it hides a NIZK proof (computed with [17])
for the correct decryption of a ciphertex. Such a NIZK proof requires representing
the decryption algorithm as a boolean circuit and to commit to each circuit wire.

Verifiable Computation. Kalai et al. [22], based on [13] and the sum-
check protocol of Lund et al. [29], constructed the first publicly verifiable
non-interactive delegation scheme for boolean circuits from a simple constant
size assumption in bilinear groups. Their crs is circuit dependent but it can
be universal using a crs for the universal circuit.3 The verifier’s runtime is
O((n+d)polylog(s)), and the communication complexity is O(d·polylog(s)) group
elements, where s is the size of the circuit, and in most other parameters it is
far from being efficient (crs size, prover complexity).

As explained in [22] there’s a vast literature on verifiable computation (apart
from the already mentioned) which can be roughly classified into a) designated
verifier schemes [7,23], b) schemes under very strong assumptions: “knowledge
of exponent” type (e.g. [8,34]), generic or algebraic group model (e.g. [16,30]),
assumptions related to obfuscation, or homomorphic encryption [33] or c) inter-
active arguments [13]. Note that all these constructions are incomparable to
ours as long as they either rely on arguably stronger assumptions (b) or are in
a different model (a and c).

2 Preliminaries

Given some distribution D we denote by x ← D the process of sampling x
according to D. For a finite set S, x ← S denotes an element sampled from the
uniform distribution over S.

Bilinear Groups. Let G be some probabilistic polynomial time algorithm which
on input 1λ, where λ is the security parameter, returns the group key which is
the description of an asymmetric bilinear group gk = (p,G1,G2,GT , e,P1,P2),
where G1,G2 and GT are groups of prime order p, the elements P1,P2 are
generators of G1,G2 respectively, e : G1×G2 → GT is an efficiently computable,
non-degenerate bilinear map, and there is no efficiently computable isomorphism
between G1 and G2.

Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and
PT = e(P1,P2). With this notation, e([a]1, [b]2) = [ab]T . Vectors and matrices
are denoted in boldface. Given a matrix T = (ti,j), [T]γ is the natural embedding
of T in Gγ , that is, the matrix whose (i, j)th entry is ti,jPγ . We use the notation
(a, b) to refer to a elements of G1 and b elements of G2.

In refers to the identity matrix in Z
n×n
p , 0m×n to the all-zero matrix in Z

m×n
p

(simply I and 0, respectively, if n and m are clear from the context).
3 There’s the technicality that a verifier running in time sub-linear in the circuit size

can not even read the circuit, which is part of the input of the universal circuit. For
this reason, they restricted the circuits to be log space uniform boolean cicuits.

Shorter Pairing-Based Arguments Under Standard Assumptions 735

Lagrangian Pedersen Commitments. Given an arbitrary set R =
{r1, . . . , rm} ⊂ Zp, we define the jth Lagrange interpolation polynomial as:

λj(X) =
∏
� �=j

(X − r�)
(rj − r�)

.

It is a well known fact that given a set of values xj , j = 1, . . . , m, P (X) =∑m
j=1 xjλj(X) is the unique polynomial of degree at most m − 1 such that

P (rj) = xj . The Lagrangian Pedersen commitment in Gγ for some γ ∈ {1, 2} to
a vector x ∈ Z

m
p is defined as

Comck(x) =
m∑

i=1

xj [λj(s)]γ = [P (s)]γ ,

where the commitment key is ck = ([λ1(s)]γ , . . . , [λm(s)]γ), for s ← Zp. It is
computationally binding under the m-DLog assumption.

We also consider vectors of Lagrangian Pedersen commitments defined as
[P (s)]γ =

∑m
i=1 xi[λi(s)]γ ∈ G

ks
γ , where s ∈ Z

ks
p for some ks ∈ N and λi(s) is

just (λi(s1), . . . , λi(sks
))�.

2.1 Cryptographic Assumptions

Definition 1. Let k ∈ N. We call D�,k (resp. Dk) a matrix distribution if it
outputs in PPT time, with overwhelming probability matrices in Z

�×k
p (resp. in

Z
(k+1)×k
p). For a matrix distribution Dk, we denote as Dk the distribution of the

first k rows of the matrices sampled according to Dk.

Assumption 1. Let D�,k be a matrix distribution and gk ← G(1λ). For all
non-uniform PPT adversaries A and relative to gk ← G(1λ), A ← D�,k,w ←
Z

k
p, [z]γ ← G

�
γ and the coin tosses of adversary A,

1. the Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-MDDHγ) holds
if

|Pr[A(gk, [A]γ , [Aw]γ) = 1] − Pr[A(gk, [A]γ , [z]γ) = 1]| ≤ negl(λ),

2. the Split Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-SMDDHγ)
holds if

|Pr[A(gk, [A]1, [A]2, [Aw]γ) = 1] − Pr[A(gk, [A]1, [A]2, [z]γ) = 1]| ≤ negl(λ).

Two examples of interesting distributions are the following:

Lk : A =

⎛
⎜⎝

s1 0 ... 0
0 s2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... sk
1 1 ... 1

⎞
⎟⎠ LGR,k : A =

⎛
⎜⎝

λR
1 (s1) λR

1 (s2) ... λR
1 (sk)

λR
2 (s1) λR

2 (s2) ... λR
2 (sk)

.

.

.

.

.

.
. . .

.

.

.

λR
� (s1) λR

� (s2) ... λR
� (sk)

⎞
⎟⎠ ,

736 A. González and C. Ràfols

where si ← Zp and R = {r1, . . . , rN} ⊂ Zp. The assumption associated to
the first distribution is the k-Lin family. The assumption associated to the sec-
ond one is new to this paper and is the (R, k)-Lagrangian Assumption. In our
construction, we will use the LGR,2-SMDDH1 assumption (for N the maximum
number of gates of the same multiplicative depth). In the full version of this work
we argue about the generic hardness of the LGR,2-MDDHγ assumption in sym-
metric bilinear groups, which implies the generic hardness of LGR,2-SMDDH1 in
asymmetric bilinear groups.

We note that for all interesting distributions Dk, we can assume that the
Dk-MDDH Assumption is generically hard in k-linear groups and in particular,
that every k × k minor is invertible with overwhelming probability.

The Kernel Diffie-Hellman Assumption [31] says one cannot find a non-zero
vector in one of the groups which is in the co-kernel of A. We also use a gen-
eralization in bilinear groups which says one cannot find a pair of vectors in
G

k+1
1 × G

k+1
2 such that the difference of the vector of their discrete logarithms

is in the co-kernel of A.

Assumption 2. Let D�,k be a matrix distribution. For all non-uniform PPT
adversaries A and relative to gk ← G(1λ), A ← D�,k,w ← Z

k
p, [z]γ ← G

�
γ and

the coin tosses of adversary A,

1. the Find-Rep Assumption holds if

Pr
[
r ← A(gk, [A]1, [A]2) : rT A = 0

]
= negl(λ),

2. the Kernel Matrix Diffie-Hellman Assumption holds in Gγ [31] if

Pr
[
[r]3−γ ← A(gk, [A]γ) : r�A = 0

]
= negl(λ),

3. the Split Kernel Matrix Diffie-Hellman Assumption [14] holds if

Pr
[
[r]1, [s]2 ← A(gk, [A]1, [A]2) : r �= s ∧ r�A = s�A

]
= negl(λ).

The Find-Rep Assumption for the LGR,�,k MDH Assumption is equivalent to
solving k instances of the q-Dlog Assumption in both groups, in which the adver-
sary receives q powers of si, i = 1, . . . , k in both groups and computes si ∈ Zp.
This follows from the observation that if r is a solution of the Find-Rep problem,
it can be associated to a polynomial which is 0 in si for all i = 1, . . . , k and its
factorization allows to compute si.

We note that the Split Decisional and Split Kernel MDH Assumptions are
generically hard in asymmetric bilinear groups for all distributions for which the
non split variant is hard in symmetric bilinear groups whenever k ≥ 2.

Finally, we introduce an assumption which is similar to the q-SFrac Assump-
tion considered in [12], but in the source group.

Assumption 3 (R-RSDH Assumption). Let R be an arbitrary set of inte-
gers of cardinal q. The R-Rational Strong Diffie-Hellman Assumption holds in
G1 if the following probability is negligible in λ:

Pr

[
e([z]1, [1]2) = e([w]1, [t(s)]2)

z �= 0

∣∣∣∣
gk ← G(1λ);

([z]1, [w]1) ← A
(
gk,R,

{
[si]1,2

}q−1

i=1
, [sq]2

)
]
,

Shorter Pairing-Based Arguments Under Standard Assumptions 737

where t(s) =
∏

r∈R(s− r), and the probability is taken over gk ← G(1λ), s ← Zp

and the coin tosses of adversary A.

It is important to note that it is possible to check if an adversary has suc-
ceeded in breaking the assumption, since the value [t(s)]2 can be constructed as
a linear combination of {[si]2}q

i=1 given R.
The intuition why the assumption is generically hard is as follows. Since

[z]1, [w]1 are given in the group G1, the adversary must construct them
as a linear combinations of all elements it has received in G1, which are
([1]1, [s]1, . . . , [sq−1]1). On the other hand, the adversary can only win if z/t(s) =
w, but the adversary can only find a non-trivial solution generically if z is con-
structed as a (non-zero) multiple of t(X) =

∏
r∈R(X − r) evaluated at s. But

this is not possible because in G1 it only receives powers of s of degree at most
q − 1 and t(X) is of degree q.

3 Arithmetic Circuits

Arithmetic circuits are acyclic directed graphs where the edges are called wires
and the vertices are called gates. Gates with in-degree 0 are labeled by variables
Xi, i = 1, . . . , n or with a constant field element, the rest of the gates are either
labeled with × and are referred to as multiplication gates or with + and are called
addition gates. In this work we consider only fan-in 2 multiplication gates and the
circuit is defined over a field Zp, where p is the order of some cryptographically
useful bilinear group. Each circuit computes a function φ : Zn

p → Z
n′
p .

Let G be the set of multiplicative gates of the circuit excluding multiplication-
by-constant gates. We denote by m the cardinal of this set. For simplicity and
without loss of generality, we may assume all outputs of the circuit to be the
output of some multiplication gate.

For our construction of Sect. 5, we partition the set G of multiplicative gates
of the circuit into different levels. More precisely, we define {Gi}d′

i=1, where Gi,
for i = 1, . . . , d′, is the set of gates G ∈ G such that the maximum of gates in G
evaluated in any path from the input of the circuit to an input of G is i−1. The
minimal such d′ for which the partition exists is the multiplicative depth of the
circuit, which we always denote by d. Further, we define G0 to be the set of n0

variable inputs. If G ∈ Gi, we say that G has multiplicative depth i. Let ni be the
cardinal of Gi. With this notation, a circuit computes a function φ : Zn0

p → Z
nd
p ,

i.e. n = n0, n′ = nd and the number of multiplication gates is
∑d

i=1 ni.
We now consider an encoding of circuit satisfiability where the variables are

divided according to their multiplicative depth. For each gate in Gi, i ∈ {1, . . . , d}
the circuit is correctly evaluated if the output of the gate is the product of
two multivariate polynomials of degree 1 where the variables are outputs of
gates of less multiplicative depth, that is, the output of gates in Gj , for some j,
0 ≤ j ≤ i − 1.

Lemma 1. Let φ : Zn0
p → Z

nd
p , be a circuit of multiplicative depth d and with

m gates. For i ∈ {1, . . . , d}, define ni as the number multiplication gates at level
i. There exist

738 A. González and C. Ràfols

(a) variables Cij, i = 0, . . . , d, j = 1, . . . , ni,
(b) variables Aij, Bij, i = 1, . . . , d, j = 1, . . . , ni,
(c) constants fij , gij , fijk�, gijk� ∈ Zp, i = 1, . . . , d, k = 0, . . . , i − 1, j =

1, . . . , ni, � = 1, . . . , nk

such that, for every (x1, . . . , xn0) ∈ Z
n0
p , if we set C0j = xj, for all j = 1, . . . , n0,

then φ(x1, . . . , xn0) = (y1, . . . , ynd
) and for each i ∈ {1, . . . , d}, Aij , Bij , Cij are

evaluated respectively to the left, the right and the output wires of the jth gate
at level i, if and only if the following equations are satisfied:

1. (Quadratic Constraints). For each i = 1, . . . , d, if j = 1, . . . , ni: Cij = AijBij .

2. (Affine Constraints) Aij = fij +
∑i−1

k=0

∑nk

�=1 fijk�Ck� and Bij = gij +∑i−1
k=0

∑nk

�=1 gijk�Ck�.
3. (Correct Output) Cdj = yj, j = 1, . . . , nd.

Given an arithmetic circuit φ : Zn0
p → Z

nd
p , we can define the witness for

correct evaluation of φ(x) = y as a tuple (a, b, c), where a = (a1, . . . ,ad),
b = (b1, . . . , bd), c = (c0, . . . , cd), si = (si1, . . . , sini

) for any s ∈ {a, b, c}.
The tuple is an an assignment to Aij , Bij and Cij which satisfies the equations
described in Lemma 1.

Using standard techniques due to [8], quadratic constraints can be written
as a polynomial divisibility problem.

Lemma 2. (QAP for the Hadamard Product) Let (ai, bi, ci) ∈ (Zni
p)3, ni ∈ N.

Let R = {r1, . . . , rN} ⊂ Zp be a set of elements of Zp for some N ≥ ni and let

λi(X) =
∏

j �=i

X − rj

ri − rj
. Define

pi(X) =

⎛
⎝ ni∑

j=1

aijλj(X)

⎞
⎠
⎛
⎝ ni∑

j=1

bijλj(X)

⎞
⎠−

⎛
⎝ ni∑

j=1

cijλj(X)

⎞
⎠ .

Then, ci = ai ◦bi if and only if pi(X) = hi(X)t(X), where t(X) =
∏

r∈R(X −r)
and hi(X) ∈ Zp[X] is a polynomial of degree at most N − 2.

Proof. By definition, pi(rj) = aijbij − cij , so pi(X) is divisible by t(X) if and
only if aijbij − cij = 0 for all j = 1, . . . , ni.

On the other hand, for each i, affine constraints can be written also as poly-
nomial relations. That is, for any set R = {r1, . . . , rN} such that N ≥ ni, there
exist families of polynomials V = {vi, vik�}, W = {wi, wik�} of degree N − 1
such that (a, b, c) is a valid witness if and only if

∑ni

j=1 aijλj(X) = vi(X) +∑i−1
k=0

∑nk

�=1 cklvik�(X) and
∑ni

j=1 bijλj(X) = wi(X) +
∑i−1

k=0

∑nk

�=1 cklwik�(X).
It suffices to define vi(X) =

∑ni

j=1 fijλj(X), vik�(X) =
∑ni

j=1 fijk�λj(X),
wi(X) =

∑ni

j=1 gijλj(X), wik�(X) =
∑ni

j=1 gijk�λj(X). The proof follows by
evaluating the equations in the points rj ∈ R.

Shorter Pairing-Based Arguments Under Standard Assumptions 739

4 Arguments of Knowledge Transfer

In this section we construct what we informally name “knowledge transfer argu-
ment” for both linear and quadratic equations. The name captures the idea that
these arguments ensure that if a valid opening is known for some committed
value, then an opening is also known for another commitment and this second
opening is a certain quadratic or linear function of the original opening.

Formally, the prover needs to prove membership in a language L of the form
(w, C,D), where w is the opening of a shrinking commitment C. The statement
is that “if C opens to w, then D opens to F (w)”. Since typically there is an
exponential number of possible openings of C, the language would not make
sense without w, i.e. the statement “there exists an opening w of C such that
D opens to F (w)” would most probably be always true.

Deciding membership in L can be done efficiently with a number of operations
which is proportional to the size of the statement. Our verifier, however, does
not use w for verification (i.e. it never checks that w is a valid opening of C)
and does only a constant number of public key operations (ignoring the need
to read w as part of the statement). When using these subarguments in the
full argument for correct circuit evaluation, the verifier never reads w but w is
uniquely determined by the context.

This is formalized as a promise problem defined by a language of good
instances LY ES and of bad instances LNO. Completeness guarantees that proofs
are accepted for all instances of LY ES , while soundness guarantees that no argu-
ment will be accepted for instances of LNO. The promise is that “w is an opening
of C” and nothing is claimed when x /∈ (LY ES ∪ LNO) (i.e. when the promise
does not hold). A formal definition of QA arguments for promise problems can
be found in the full version of this work.

4.1 Argument for Hadamard Products

Let m ∈ N. We give an argument for the promise problem defined by languages
Lquad

Y ES ,Lquad
NO , which are parameterized by m ∈ N and a Lagrangian Pedersen

commitment key ck = ([Λ]1, [Λ]2) and are defined as

Lquad
Y ES =

{
(a, b, [L]1, [R]2, [O]1) : c = a ◦ b
and [L]1 = [Λ]1a, [R]2 = [Λ]2b, [O]1 = [Λ]1c

}
,

Lquad
NO =

⎧⎨
⎩

(a, b, [L]1, [R]2, [O]1) : c = a ◦ b,
[L]1 = [Λ]1a and [R]2 = [Λ]2b,
but [O]1 �= [Λ]1c

⎫⎬
⎭ .

Perfect Completeness. The argument described in Fig. 1 has perfect com-
pleteness as the values [L]1, [O]1 can be computed from {[λi(s)]1 . . . , [λm(s)]1},
and [R]2 from {[λi(s)]2 . . . , [λm(s)]2}. Further, by definition, the polynomial
�(X)r(X) − o(X) takes the value aibi − ci = 0 at point ri ∈ R. Therefore,

740 A. González and C. Ràfols

K(gk,R):
Sample s ← Z

∗
p;

Output crs =(
gk, {[

λ1(s)]γ , . . . , [λm(s)]γ
}

γ∈{1,2},{
[si]1

}
i∈{1,...,m−2}, [t(s)]2

)
.

P(crs,a, b):
�(X) =

∑m
i=1 aiλi(X);

r(X) =
∑m

i=1 biλi(X);
o(X) =

∑m
i=1 ciλi(X);

h(X) = (�(X)r(X) − o(X))/t(X);
[L]1 = [�(s)]1; [R]2 = [r(s)]2;
[O]1 = [o(s)]1; [H]1 = [h(s)]1;
Output [H]1.V(crs,a, b, [L]1, [R]2, [O]1, [H]1):

Check if:
e([L]1, [R]2) − e([O]1, [1]2) = e([H]1, [t(s)]2);
output 1 in this case and 0 otherwise.

Fig. 1. Our argument for Hadamard products. λi(X) is the ith Lagrange polynomial
associated to R, a set of Zp of cardinal m, t(X) is the polynomial which has as roots
all the elements of R. Both a and b are m-dimensional vectors in Zp.

�(X)r(X) − o(X) is divisible by t(X), so h(X) is well defined. Further, the
degree of H is at most m − 2 (since �(X)r(X) has degree 2m − 2 and t(X) has
degree m) and thus [H]1 can be computed from

{
[s]1, . . . , [sm−2]1

}
.

Computational Soundness. We argue that if A produces an accepting proof
for (a, b, c, [L]1, [R]2, [O]1) ∈ Lquad

NO then we can construct an adversary B against
the (R,m)-Rational Strong Diffie-Hellman Assumption. Given a challenge gk,{
[si]1

}m−1

i=1
,
{
[si]2

}m

i=1
, adversary B can simulate the common reference string

perfectly because λi(X) is a polynomial whose coefficients in Zp depend only on
R of degree at most m − 1. Therefore, [λi(s)]1, [λi(s)]2 can be computed from
{si}m−1

i=1 in both the source groups. On the other hand, t(X) is a polynomial
with coefficients in Zp which depend only on R of degree at most m. So [t(s)]2
can be computed in G2 given {[si]2}m

i=1.
Adversary A outputs (a, b, c, [L]1, [R]2, [O†]1, [H†]1) which is accepted by the

verifier and (a, b, c, [L]1, [R]2, [O†]1) ∈ Lquad
NO , which in particular means that, for

L = �(s), R = r(s), the equation

e([L]1, [R]2) − e([O†]1, [1]2) = e([H†]1, [t(s)]2) (2)

holds but O† �= O(s).
Since adversary B received a, b as part of A’s output, it can run the honest

prover algorithm and obtain O, H which satisfy that

e([L]1, [R]2) − e([O]1, [1]2) = e([H]1, [t(s)]2) (3)

and O = O(s).
Subtracting Eqs. (2) and (3), we get e([O† −O]1, [1]2) = e([H† −H]1, [t(s)]2).

Therefore, ([O† − O]1, [H† − H]1) is a solution to the (R,m)-Rational Strong
Diffie-Hellman Assumption.

Shorter Pairing-Based Arguments Under Standard Assumptions 741

We note that the verification algorithm never uses (a, b) which are part of
the statement. When using the scheme as a building block, we omit (a, b) from
the input of the verifier of the quadratic relations.

4.2 Argument for Linear Languages

Let gk be a bilinear group of order p and �1, �2, n ∈ N and [M]1 ∈ G
�1×n
1 , [N]1 ∈

G
�2×n
1 be some matrices sampled from some distributions M,N . We give two

different arguments for the promise problem defined by languages Llin
Y ES ,Llin

NO,
which are parameterized by gk, [M]1, [N]1 and are defined as:

Llin
Y ES = {(w, [u]1, [v]1) : [u]1 = [M]1w, [v]1 = [N]1w}

Llin
NO = {(w, [u]1, [v]1) : [u]1 = [M]1w, [v]1 �= [N]1w}.

The arguments are simply the QA-NIZK Arguments of membership in linear
spaces for general and witness samplable distributions as presented by Kiltz and
Wee [25] (which generalize previous constructions [21,26]). Both arguments are
very similar and can be easily written in a unified way. The idea is to use the

arguments to prove that there exists a witness w such that
(

u
v

)
=
(
M
N

)
w.

Intuitively, assuming that it is hard to find non-trivial (w,w′) such that [u]1 =
[M]1w = [M]1w′, this would prove that [v]1 = [N]1w. However, finding a
security proof is not simple.

For witness samplable distributions, we only know a proof in the generic
group model. The proof is a trivial consequence of the knowledge soundness
property of QA-NIZK arguments which has already been used in previous works
[5]. It has a proof size of k group elements when instantiated for the k-Lin
Assumption.

Our main technical contribution is to prove soundness for the promise prob-
lem for general distributions (not necessarily witness samplable) assuming the
hardness of the decisional problem for the distribution associated to matrix M
(the M�-MDDH Assumption). It has a proof size of k + 1 group elements when
instantiated for the k-Lin Assumption.

In Fig. (2) we describe the QA-NIZK argument of membership in linear spaces
for witness samplable and general distributions (the only difference between
these two cases is the definition of D̃k), as presented in [25]. The difference with
the original presentation in [25] is that we separate the key K in blocks K1,K2

associated to M,N, which will be convenient for the proof. Perfect completeness,
perfect zero-knowledge and computational soundness under any Dk-KerMDH
Assumption is proven [25].

Soundness of LinD̃k
, w.r.t. the language Llin

NO, is a direct consequence of
Lemma 3.

Lemma 3. For any adversary A and for any N ∈ Z
�2×n
p , let

εA = Pr

⎡
⎣ v �= 0

π = v�K2

∣∣∣∣
M ← M;N ← N ;
crs ← K(gk, [M]1, [N]1);
([v]1, [π]1) ← A(crs, [M]1, [N]1)

⎤
⎦ .

742 A. González and C. Ràfols

K(gk, [M]1, [N]1):// M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p

K1 ← Z
�1×k
p ; K2 ← Z

�2×k
p ;

K =
(
K1
K2

)
;

Sample A ← D̃k;
[B]1 = [M�K1 + N�K2]1;
C1 = K1A; C2 = K2A; C = KA
return crs = (gk, [B]1, [A]2, [C]2).

P(crs, [u]1, [v]1,w):
return [π]1 = w�[B]1;

V(crs, [u]1, [v]1, [π]1):
Check if:
e([π]1, [A]2) =
e([u�]1, [C1]2) + e([v�]1, [C2]2)

Fig. 2. The Lin
˜Dk

argument for proving membership in linear spaces. The matrix A is

either sampled from a distribution ˜Dk = Dk or from a distribution ˜Dk = Dk, such that
the Dk-KerMDH assumption holds. In the latter case k = k + 1 while in the former
case k = k.

1. When D̃k = Dk and M is witness samplable, if A is generic there exists a
PPT adversary B such that εA ≤ AdvM-FindRep(B) + negl(λ).

2. When D̃k = Dk, there exists a PPT adversary B such that εA ≤
AdvM�-MDDH(B) + 1/p,

where M� is the distribution which results from sampling matrices from M and
transposing them.

Proof. (Lemma 3.1.) The proof is a direct consequence of the fact that scheme
from Fig. 2 is an argument of knowledge in the generic group model, as proven
by Fauzi et al. [5, Theorem 2]. Indeed, if this is the case there exists an extractor
which given A outputs a witness w∗ such that (0

v) = (M
N) w∗. Since v �= 0, then

w∗ �= 0 and w∗ ∈ Z
n
p is a non-trivial element in the kernel of M, breaking the

M-FindRep assumption4.

Proof. (Lemma 3.2). The proof follows from the indistinguishability of the fol-
lowing games

Game0: This game runs the adversary as in Lemma 3.
Game1: This game is exactly as Game0 but the crs is computed using algorithm

K∗, as defined in Fig. 3, and the winning condition is

v �= 0 and π = (v�(C2 − K2,2A)A
−1

,v�K2,2),

where A is the last row of A and A is the first k × k block of A.
Game2: This game is exactly as Game1 but z ← Z

n
p .

We now prove some Lemmas which show that the games are indistinguish-
able. Lemmas 4 and 5 show that the adversary has essentially the same advantage
4 For the distribution M� used in Sect. 5 this assumption is equivalent to the m-DLog

assumption.

Shorter Pairing-Based Arguments Under Standard Assumptions 743

K∗(gk, [M]1, [N]1): // M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p

Sample A ← Dk;

C1 ← Z
�1×k
p ; C2 ← Z

�2×k
p ; C =

(
C1
C2

)
; K1,2 ← Z

�1
p ; K2,2 ← Z

�2
p ;

K2,1 = (C2 − K2,2A)A
−1 ∈ Z

�2×k
p ; [z]1 = [M�]1K1,2;

[B]1 = ([M�C1A
−1 − zAA

−1
+ N�K2,1]1, [z]1 + [N�]1K2,2);

return crs = (gk, [B]1, [A]2, [C]2).

Fig. 3. The modified crs generation algorithm used in Lemma 3.

of winning in any game. Lemma 6 says that the adversary has negligible proba-
bility of winning in Game2. Lemma 3.2 follows from the composition of Lemmas
4, 5 and 6.

Lemma 4. For any (unbounded) algorithm A we have Pr[Game1(A) = 1] =
Pr[Game0(A) = 1].

Proof. If we define K1,1 = (C1 − K1,2A)A
−1

and K =
(
K1

K2

)
=
(
K1,1 K1,2

K2,1 K2,2

)
,

we observe that the output of K∗ is well formed and the winning condition is
the same as in the previous game, since

[B]1 = ([M�C1A
−1 − zAA

−1
+ N�K2,1]1, [z]1 + [N�]1K2,2)

= ([M�K1,1+N�K2,1]1, [M�K1,2+N�K2,2]1) = [M�K1+N�K2]1, and

KA =

(
(C1 − K1,2A)A

−1
K1,2

(C2 − K2,2A)A
−1

K2,2

)(
A
A

)
=
(
C1 − K1,2A + K1,2A
C2 − K2,2A + K2,2A

)
= C,

and by definition π = (v�(C2 − K2,2A)A
−1

,v�K2,2) = (v�K2,1,v
�K2,2) =

v�K2.
Therefore we just need to argue that the distribution of K is the same in both

games. But this is an immediate consequence of the fact that for every value of
(C,K1,1,K2,1) there exists a unique value of (K1,2,K2,2) which is compatible
with C = KA. Indeed, C = KA ⇐⇒ Ci = Ki,1A + Ki,2A, i = 1, 2 ⇐⇒
(Ci − Ki,2A)A

−1
= Ki,1, i = 1, 2.

Lemma 5. For any PPT algorithm A there exists a PPT algorithm B such that
|Pr[Game1(A) = 1] − Pr[Game0(A) = 1]| ≤ AdvM�-MDDH(B).

Proof. We construct an adversary B that receives the challenge ([M�]1, [z∗]1),
where z∗ is either M�r, r ← Z

�1
p , or z∗ ← Z

n
p . B computes the crs running

K∗(gk, [M]1, [N]1) but replaces [z]1 with [z∗]1, and then runs A as in game
Game1. It follows that Pr[B([M�]1, [z∗]1) = 1|z∗ = M�r] = Pr[Game1(A) = 1]
and Pr[B([M∗]1, [z∗]1) = 1|z∗ ← Z

n
p] = Pr[Game2(A) = 1] and the lemma

follows.

744 A. González and C. Ràfols

Lemma 6. For any (unbounded) algorithm A, Pr[Game2(A) = 1] ≤ 1/p.

Proof. We will show that, conditioned on A,C,B,M,N, the matrix K2,2 is
uniformly distributed. Since it holds that BA = (M�,N�)C, we get that the
first k columns of B, namely B1, are completely determined by B2, the last
column of B. Indeed

(B1,B2)A = (M�,N�)C ⇐⇒ B1 = ((M�,N�)C − B2A)A
−1

.

Hence, conditioning in A,C,B2,M,N doesn’t alter the probability. We have
that B2 = z + N�K2,2, which consists of n equations on n + �2 variables. It
follows that there are �2 free variables. Then K2,2 is uniformly distributed and
hence completely hidden to the adversary.

Note that
π = v�K2 =⇒ π2 = v�K2,2,

where π2 is the last element of π. Given that v �= 0, the last equation only holds
with probability 1/p and so A’s probability of winning.

The knowledge transfer property is a direct consequence of Lemma 3.

Theorem 1. For any adversary A against the soundness of Lin with respect to
Llin

NO, it holds that:

1. When D̃k = Dk, M is witness samplable, if A is generic then there exists a
PPT adversary B such that εA ≤ AdvM-FindRep(B) + negl(λ).

2. When D̃k = Dk, there exist adversaries B1 and B2 such that

AdvLin(A) ≤ AdvDk-KerMDH(B1) + AdvM�-MDDH(B2) + 1/p.

Proof. Both for the witness samplable and the general case, given an adversary
that produces a valid proof for a statement in Llin

NO, successful attacks can be
divided in two categories.

Type I: In this attack [π]1 �= [u�]1K1 + [v�]1K2.
Type II: In this type of attack [π]1 = [u�]1K1 + [v�]1K2.

Type I attacks are not possible when k = k, because proofs are unique, i.e.
there is only one value of π which can satisfy the verification equation. Type I
attacks are computationally infeasible when k = k + 1, as they can be used to
construct an adversary B1 against the Dk-KerMDH assumption.5 Adversary B1

receives a challenge [A]2 and then runs the soundness experiment for A. When
A outputs ([u]1, [v]1, [π]1), B1 outputs [π†]1 = [π]1 − [u�]1K1 − [v�]1K2 �= 0.
Since [π]1 is accepted by the verifier we get that e([π]1, [A]2) = e([u�]1, [C1]2)+
e([v�]1, [C2]2) and then π†A = πA − u�K1A − v�K2A = πA − u�C1 −
5 This part of the proof follows essentially the same lines of the first constant-size QA-

NIZK arguments for linear spaces of Libert et al. [26] which were later simplified
and generalized by Kiltz and Wee [25].

Shorter Pairing-Based Arguments Under Standard Assumptions 745

v�C2 = 0. We conclude that the success probability of a type I attack is bounded
by AdvDk-KerMDH(B1).

For type II attacks, for both types of distributions, since [π]1 = [u�]1K1 +
[v�]1K2 is a valid proof for

(
[u]1
[v]1

)
, then, by linearity of the verification equation,

π† = π − w�B is a valid proof for
(

0
[v†]1

)
=
(

[u]1−[M]1w
[v]1−[N]1w

)
. Since v �= Nw,

we conclude that an attacker of type II can be turned into an attacker B2 for
Lemma 3.

4.3 Extension to SMDDH Assumptions

In Sect. 5 the crs includes M in both groups, i.e. [M]1, [M]2. This implies that
we need to prove Lemma 3 even when the adversary is given [M]1, [M]2. But
this is not a problem, since we can build an adversary for Lemma 5 against
the M�-SMDDHG1 assumption. Similarly, we can prove that Theorem 1 holds,
even when the adversary is given [M]1, [M]2, assuming the hardness of the
M�-SMDDH assumption.

4.4 Extension to Bilateral Linear Spaces

In Sect. 5 we need a QA-NIZK argument for bilateral linear spaces [14], which
are linear spaces split between G1 and G2. In [14], a QA-NIZK argument for
such languages is given, which is very close to the argument of membership in
(unilateral) linear spaces of [25]. In Fig. (4) we describe the QA-NIZK argument
of [14] adapted to matrices with 3 blocks. The proof of the knowledge transfer
property is essentially the same as in the unilateral case and can be found in the
full version of this work.

5 A New Argument for Correct Arithmetic Circuit
Evaluation

In this section we describe our construction for proving correct evaluation of
an arithmetic circuit. It makes use of two subarguments: a quadratic and a
linear “knowledge transfer” subarguments. The reason why we use the term
“knowledge transfer” is because these arguments will ensure that, if the prover
knows a witness for the circuit evaluation up to level i which is also a valid
opening up to level i of a set of shrinking commitments to the corresponding
wires, it also knows a valid opening to the commitments of the wires at level
i + 1.

Since the input of the circuit is public, the idea is that these arguments allow
to “transfer” the knowledge of the witness for correct evaluation (a consistent
assignment to all wires) to lower levels of the circuit. Any adversary against
soundness needs to break the “chain” of consistent evaluations at some point
and thus, break the soundness of one of the two subarguments. This technique
allows us to avoid using binding commitments to the wires at each level, while

746 A. González and C. Ràfols

K(gk, [M]1, [N]1, [P]2):
// M ∈ Z

�1×n
p ,N ∈ Z

�2×n
p ,P ∈ Z

�3×n
p

K1 ← Z
�1×k
p ; K2 ← Z

�2×k
p ; K3 ← Z

�3×k
p

K� = K�
1 ,K�

2 ,K�
3

)
;

Sample A ← D̃k; Γ ← Z
n×k
p

[B]1 = [M�K1 + N�K2 + Γ]1;
[D]2 = [P�K3 − Γ];
C1 = K1A; C2 = K2A;
C3 = K3A: C = KA
return crs = (gk, [B]1, [D]2, [A]1,2,
[C1]2, [C2]2, [C3]1).

P(crs, [u]1, [v1]1, [v2]2,w):
ρ ← Z

k
p;

[π]1 = w�[B]1 + [ρ]1;
[θ]1 = w�[D]2 − [ρ]2;
return ([π]1, [θ]2).

V(crs, [u]1, [v1]1, [v2]2, [π]1, [θ]2):
Check if:
e([π]1, [A]2) − e([u�]1, [C1]2)
−e([v�

1]1, [C2]2) =
e([θ]2, [A]1) − e([v�

2]2, [C3]1)

Fig. 4. The BLin
˜Dk

argument for proving membership in bilateral linear spaces. The

matrix A is either sampled from a distribution ˜Dk = Dk or from a distribution ˜Dk =
Dk, such that the Dk-SKerMDH assumption holds. In the latter case k = k + 1 while
in former case k = k. Since the D1-SKerMDH is false [14] for any D1, it should hold
that k ≥ 2.

still being able to define what it means to break soundness. Intuitively, the
difficulty we have to circumvent is to reason about whether the openings of
shrinking commitments satisfy a certain equation without assuming that the
adversary is generic, as there are many possible such openings.

The reason why we use two arguments is natural given characterization of
circuits given in Sect. 3. The variables Aij (resp. Bij , Cij) describe correct assign-
ments to the j-th left (resp. right, output) wire at level i. We use the quadratic
knowledge transfer property to ensure that a certain value Oi is a valid (deter-
ministic, not hiding) commitment to all the outputs at level i if Li−1 and Ri−1

are valid commitments (i.e. consistent with the input) to all the right and left
wires at the previous level. On the other hand, we encode the affine constraints
as membership in linear spaces and use the linear knowledge transfer argument
to ensure that Li,Ri are valid commitments to all left and right wires at level
i if Oj for j = 1, . . . , i − 1 are valid commitments to the previous levels.

Throughout this section, Rφ represents a relation Rφ = {(gk,x,y) : φ(x) =
y} where gk is an asymmetric bilinear group of order p and φ : Zn0

p → Z
nd
p as

described in Sect. 3 and N = maxi=1,...,d ni is the maximum number of multi-
plicative gates of same multiplicative depth. The construction is parameterized
by a value ks, following the dicussion in Sect. 4.2 on the security properties of
the linear knowledge transfer argument.

This section is organized as follows: we first show how to encode affine con-
straints as membership in linear spaces, then we present the description of our
argument in terms of the two subarguments and give the (sketched) proof of
security, and finally we discuss its efficiency.

Shorter Pairing-Based Arguments Under Standard Assumptions 747

5.1 Encoding Affine Constraints as Membership in Linear Spaces

We translate the affine constraints described in the circuit encoding of Sect. 3 as
membership of ([O]1, [L]1, [R]2) in a linear subspace of Gn+(2d−1)ks

1 × G
dks
2 .

We write in matrix form the expression of (x, [O]1, [L]1, [R]2) in terms of the
internal wires of the circuit, following Sect. 3. The commitments to the output
values [O]1 should satisfy that [Oi]1 = [Λi]1ci, where Λi = (λ1(s), . . . , λni

(s))
and λj(X) is the jth Lagrangian polynomial for some R = {r1, . . . , rN} ⊂ Zp

and the input x = c0 is public. These constraints can be expressed in matrix
form in Eq. (4):

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
O1

O2

O3

...
Od−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 . . . 0
0 Λ1 0 0 . . . 0
0 0 Λ2 0 . . . 0
0 0 0 Λ3 0
...

...
...

. . .
0 0 0 0 . . . Λd−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
c3
...

cd−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4)

We denote the matrix on the right hand side of (4) as M, so this equation reads
(x

O) = Mc. On the other hand, the constraints satisfied by the left wires in
terms of the output wires of previous levels can be written in matrix form as
shown in Eq. (5):

⎛
⎜⎜⎜⎜⎜⎝

L1

L2

L3

...
Ld

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

F1,0 0 0 . . . 0
F2,0 F2,1 0 . . . 0
F3,0 F3,1 F3,2 . . . 0

...
...

...
. . .

...
Fd,0 Fd,1 Fd,2 . . . Fd,d−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
c2
...

cd−1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

L̂1

L̂2

L̂3

...
L̂d

⎞
⎟⎟⎟⎟⎟⎠

, (5)

that is, for each i, Li =
∑i−1

k=0 Fi,kck + L̂i, where

Fi,k =
(∑nk

j=1 fijk1λj(s),
∑nk

j=1 fijk2λj(s), . . .
∑nk

j=1 fijknk
λj(s)

)
=
(
vik1(s), vik2(s), . . . viknk

(s)
)

(6)

and L̂i =
∑ni

j=1 fijλj(s) = vi(s), for the constants which are defined in Lemma 1.
We denote the matrix on the right hand side of Eq. (5) as N, so this equation
reads L = Nc + L̂. The constraints satisfied by the right wires in terms of the
output wires of previous levels can be written in a similar form as shown in
Eq. (7):

⎛
⎜⎜⎜⎜⎜⎝

R1

R2

R3

...
Rd

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

G1,0 0 0 . . . 0
G2,0 G2,1 0 . . . 0
G3,0 G3,1 G3,2 . . . 0

...
...

...
. . .

...
Gd,0 Gd,1 Gd,2 . . . Gd,d−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
c2
...

cd−1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

R̂1

R̂2

R̂3

...
R̂d

⎞
⎟⎟⎟⎟⎟⎠

, (7)

748 A. González and C. Ràfols

that is, for each i, Ri =
∑i−1

k=0 Gi,kck + R̂i, where

Gi,k =
(∑nk

j=1 gijk1λj(s),
∑nk

j=1 gijk2λj(s), . . .
∑nk

j=1 gijknk
λj(s)

)
=
(
wik1(s), wik2(s), . . . wiknk

(s)
)
, (8)

and R̂i =
∑ni

j=1 gijλj(s) = wi(s). We denote the matrix on the right hand side
of Eq. (7) as P, so this equation reads R = Pz + R̂.

With the notation defined, satisfaction of the affine constraints can be writ-

ten as

(
[O ′]1

[L]1−[L̂]1

[R]2−[R̂]2

)
∈ Im

(
[M]1
[N]1
[P]2

)
, where [O′]1 =

(
[x]1
[O]1

)
. That is, the linear

constraints are satisfied if a certain vector is in a subspace generated by some
matrix which depends on the circuit.

5.2 New Argument

In this section we describe our construction for proving correct evaluation of an
arithmetic circuit.

Setup(Rφ): Pick s ← Z
ks
p . Generate crsφ = (crsφ,1, . . . , crsφ,ks

), where
crsφ,i ← Quad.K(gk, {[sj

i]1}N−1
j=1 , {[sj

i]2}N
j=1) is the crs for the quadratic

knowledge transfer argument defined in Fig. 1. Express affine constraints
(Eqs. (4), (5), and (7)) which define circuit satisfiability as membership in
the image of ([M�]1, [N�]1, [P�]2)� as explained in Sect. 5.1. Generate a
crs for the bilateral linear knowledge transfer argument defined in Fig. 4 for
([M�]1, [N�]1, [P�]2)�.

Prove(crs, (x,y,a, b, c) ∈ Rφ): Given the input x, the output y, and (a, b, c) a
valid assignment to left, right and output wires as described in Lemma 1, the
prover proceeds as follows:
1. For each i ∈ {1, . . . , d}, commit to ai, ci in G

ks
1 and to bi in G

ks
2 as:

[Li]1 =
∑ni

j=1 aij [λj(s)]1 = [Λi]1ai, [Ri]2 =
∑ni

j=1 bi,j [λj(s)]2 = [Λi]2bi,
[Oi]1 =

∑ni

j=1 cij [λj(s)]1 = [Λi]1ci.
2. (Quadratic Constraints) For each i ∈ {1, . . . , d}, and each j ∈ {1, . . . , ks},

compute a proof Πquad
i,j that the vector ai◦bi, which is the componentwise

product of the openings of [Lij]1, [Rij]2, is an opening of [Oij]1.
3. (Linear Constraints) Compute a proof Π lin that [Li]1 and [Ri]2 are com-

mitments to the correct evaluation of all the left and right wires at level i,
for all i ∈ {1, . . . , d}, that is, that they satisfy the affine linear constraints
which relate them to the outputs of gates at levels j = 0, . . . , i − 1.

4. Output (C = ([L]1, [R]2, [O]1),Πquad,Π lin) as the proof, where Πquad =
{Πquad

i,j : i = 1, . . . , d, j = 1, . . . , ks}.
Verify(crs, (x,y), (C,Πquad,Π lin)): Output 1 if the following two checks are suc-

cessful and 0 otherwise:
1. Verify Πquad,Π lin.
2. Check that [Od]1 =

∑nd

j=1[λj(s)]1yj .

Shorter Pairing-Based Arguments Under Standard Assumptions 749

Security. Perfect completeness is obvious, because if (x,y,a, b, c) is a valid
witness for satisfiability, then it satisfies both linear and quadratic constraints
because of the characterization of Sect. 3 and the definition of M,N,P presented
in Sect. 5.1.

Let A be an adversary against the soundness of the scheme. We con-
struct an adversary B1 against the quadratic knowledge transfer argument,
B2,0, . . . ,B2,d−1 against the linear knowledge transfer argument.

Adversary B1 receives the common reference string of the quadratic sub-
argument, which includes (gk,

{
[si]1

}N−1

i=1
,
{
[si]2

}N

i=1
) and samples αj ← Z

∗
p,

j = 2, . . . , ks. It defines s = s1, sj = αjsj and computes the crs of the
quadratic argument for sj , j = 1, . . . , ks from the received values. It then
creates the common reference string of the full argument in the natural way,
by defining the matrices M,N,P from the crs of the quadratic subargument
and sampling the rest of the secret key. When it receives an accepting proof
(C = ([L]1, [R]2, [O]1),Πquad,Π lin) from adversary A for some statement (x,y),
adversary B1 computes the full witness for correct evaluation (a, b, c) from
x. The adversary searches for indexes i, j such that [Lij]1 and [Rij]2 are
commitments to ai and bi but [Oij]1 is not a valid commitment to ai ◦ bi,
and it aborts if these indexes do not exist. From αj , adversary A computes
μ = (μ1, . . . , μni

) ∈ Z
ni
p such that λ�(sj) = μ�λ�(s) and ν ∈ Zp such that

νt(sj) = t(s). It returns (ai ◦ μ, bi ◦ μ, [Lij]1, [Rij]2, [Oij]1), as an instance of
Lquad

NO together with an accepting proof [νHij]1.
Adversary B2,i, i = 0, . . . , d − 1 receives a common reference string of the

linear subargument for the language associated to the first i+1 (resp. i+2, i+2)
blocks of rows and the first

∑i
j=0 ni columns of M (resp. N,P). That is, Mi,Ni

are defined as:

Mi =

⎛
⎝

I 0
Λ1

. . .
0 Λi

⎞
⎠ , Ni =

⎛
⎝

F1,0 0 ... 0
F2,0 F2,1 ... 0

...
...

. . .
...

Fi+1,0 Fi+1,1 ... Fi+1,i

⎞
⎠ ,

and Pi is defined similarly. Using the linear properties of the crs, B2,i com-
putes the common reference string of the full argument.6 When it receives an
accepting proof (C = ([L]1, [R]2, [O]1)}d

i=1,Π
quad,Π lin) from adversary A for

some statement (x,y), adversary B2,i computes the full witness (a, b, c). It then
checks if [O1]1, . . . , [Oi]1 are commitments to c1, . . . , ci but either [Li+1]1 or
[Ri+1]2 are not valid commitments to ai or bi. If this is not the case, it aborts.
Else it outputs (c1, . . . , ci, [O1]1, . . . , [Oi], [L1]1 − [L̂1], [Li+1]1 − [L̂i+1], [R1]2 −
[R̂1]2, . . . , [Ri+1]2− [R̂i+1]2) together with its corresponding proof, which adver-
sary B2,i can compute from the proof given by adversary A and the secret values
it sampled to extend the crs of the subargument to the full crs (this is possible
using the linearity of the proof, full details are in the full version of this work.

For every successful adversary A at least one of the adversaries B1,B2,0, . . . ,
B2,d−1 does not abort. This is because if the statement is false there must be
6 We can assume w.l.o.g. that the crs for the linear knowledge transfer associated to
Mi,Ni,Pi includes {[sj]1,2}N−1

j=1 , [sN
j], as this does not compromise security.

750 A. González and C. Ràfols

some point in the “chain” where either [Li]1, [Ri]2 are honestly computed but
[Oi]1 is not, or [Oi]1 is honestly computed but [Li+1] or [Ri+1] is not.

The linear knowledge transfer argument at level i is based on the
L2-SKerMDH and the M�

i -SMDDHG1 assumptions. The latter reduces to the
LRR,ks

-SMDDHG1 and the SXDH assumptions as proven in the full version of
this work. Based on this proof, we can state the following Theorem.

Theorem 2. Let (gk, φ : Zn0
p → Z

nd
p ,R) be a bilinear group of order p, an arith-

metic circuit and a set of Zp of cardinal N = maxi=1,...,d ni. For any adversary
A against the soundness of the argument defined above there exist adversaries
B1,B2,B3,B4 such that:

Advsnd(A) ≤AdvR-RSDH(B1) + dAdvL2-SKerMDH(B2) + dksAdvLGR,ks -SMDDHG1
(B3)+

d min(N − ks, d) log ksAdvSXDH(B4) +
d(1 + ks)

p
.

Note that the most efficient, secure choice is ks = 2 and then the largest
security loss factor is d min(N − ks, d) ≤ d · N , which is at most the number of
multiplicative gates in the circuit.

5.3 Efficiency

In the most efficient instantiation, the proof size is (3d + 2, d + 2) group elements
and naive verification requires to compute 3d pairings for the quadratic relations
and 2(n0 + 3d + 4) for the linear part, and nd exponentiations in G1 for the
output. Using the “bilinear batching” techniques of Herold et al. [19] the number
of pairings can be reduced to n0 + 3d + 4 for the linear part. Since the input
is known in Zp, n0 pairings in this part can be replaced by n0 exponentiations
in GT . Finally, using standard batching techniques [6], the number of pairings
for the quadratic part can be reduced to d + 2. As a result the total number of
pairings required for verification is 4d + 6, plus n0 exponentiations in GT and
O(n0 + d + nd) exponentiations in the source group.

In the instantiation which is secure under standard assumptions, the proof
size is (6d+3, 2d+3) group elements and naive verification requires to compute
6d pairings for the quadratic relations and 2(n0 + 6d + 6) for the linear part,
and using the same batching techniques the number of pairings required for
verification is 8d + 9.

5.4 Adding Zero-Knowledge

In this section we argue how to add zero-knowledge to the argument for cor-
rect arithmetic circuit evaluation of Sect. 5.2. The same discussion applies for
the argument for boolean circuit satisfiability discussed in Sect. 6.1 for boolean
circuits.

We have to distinguish two different situations. In the first one the input
is public, and we can easily modify our proof so that it reveals nothing about
the internal evaluation steps. When the input or part of the input must be

Shorter Pairing-Based Arguments Under Standard Assumptions 751

secret, which is the most useful case, the circuit input cannot be part of the
verifier’s input, at least not in the clear. A natural idea is to let the prover
commit to it. The problem is that our “knowledge transfer” idea requires the
reduction in the soundness proof to know this secret input, which means that the
commitment to the input must be extractable so that we can efficiently extend
it to a vector of correct evaluations (a, b, c). Even in a QA-NIZK setting where
we can efficiently open the commitments, they are only F -extractable [3] (under
falsifiable assumptions), which means that we can only extract in the source
groups but not in Zp. This leaves us only with a couple of solutions, all of them
unsatisfactory.

One of them is to commit to inputs bitwise and prove that this is done
correctly. This is not acceptable in terms of concrete efficiency for arithmetic
circuits, but it is a practical approach for boolean circuits.

The second one is to use a commitment to the input which is extractable
under knowledge assumptions. Of course, then our construction is no longer
secure under falsifiable assumptions, but it is interesting that it indicates a trade-
off in SNARK constructions: longer proof size and verification costs (Θ(d) group
elements/pairings, respectively) but weaker assumptions (only the input needs
to be extracted and not the full witness).

In any case, we leave for future work to explore the possibilities of this or
other mixed approaches (like using ROM based constructions for extracting the
input). We now give the technical details on how to add zero-knowledge to our
argument for correct circuit evaluation, distinguishing the two aforementioned
situations.

Adding Zero-Knowledge to Correct Evaluation of Middle Wires. This
step is straightforward. The argument is changed so that [L]1, [R]2, [O]1 are
not given in the clear, but instead the prover gives GS commitments [18] to
each of its components. For the quadratic argument, it gives a GS Proof that
the verification equation is satisfied, that is, for each i it proves in zk that the
pairing product equation:

e([Li]1, [Ri]2) − e([Oi]1, [1]2) = e([Hi]1, [T]2)

is satisfied, where [Li]1, [Ri]2, [Oi]1, [Hi]1 are hidden committed values.
For the linear argument, it suffices to give a GS proof of satisfiability of the

verification equation in Fig. 4. In its most efficient instantiation, the verification
equation in Fig. 4 consists of 2 pairing product equations and hence the GS proof
consists of 8 elements of each group. An alternative, more efficient approach
(which requires only (2, 2) group elements) for the linear argument proves that
the vectors of committed elements are in a certain linear (bilateral) space. The
idea is quite simple but details are a bit cumbersome, so we explain it in the full
version of this work.

752 A. González and C. Ràfols

Hiding the Input and Output. Finally, we discuss how to use our results
in a scenario where not only the middle wires should be hidden but also the
input and the output. In this case the prover should commit to the input and
the output with perfectly binding commitments (cx ,dy).

The commitment to the input should be extractable. For instance, cx can
be just the concatenation of GS commitments to the inputs provided the prover
submits also a proof of knowledge of their opening (giving additional bitwise
commitments and a proof that cx is of the right form, or a proof with knowledge
assumptions or in the ROM). In any case, we require cx to be algebraic, that
is, it should be possible to write it as cx = [E]1x + [V]1r, where r is the vector
of randomness and matrices E, V are described in the commitment key (we can
also allow cx to have components in both G1,G2, in which case E and V will
be split). The only difference with the case where the commitment is public is
that in the first n0 rows of M the identity matrix should be replaced by E and
an additional column of the form

(
V, 0

)� should be added.
The prover should also give a GS proof that dy opens to the same value as

[Od]1.

6 Boolean Circuits

We extend our results to any boolean circuit φ : {0, 1}n0 → {0, 1}nd . The gates
of φ are assumed to have fan-in two but otherwise they can be of any type
(excluding non-interesting or trivial gate types). The construction relies on the
characterization of these gates as quadratic functions of the inputs. We list below
the 10 gate types allowed for the circuit φ, along with its expression as a quadratic
function. The list of gates is taken from [1], which observe that the last remaining
6 gate types depend mostly on one input and are not used often.

AND(a, b, c): ab = c NAND(a, b, c): 1 − ab = c
OR(a, b, c): 1 − (1 − a)(1 − b) = c NOR(a, b, c): (1 − a)(1 − b) = c
XOR(a, b, c): b(1 − a) + a(1 − b) = c XNOR(a, b, c): 1 − a(1 − b) − b(1 − a) = c

G1(a, b, c) = (c = a ∧ b): (1 − a)b = c G2(a, b, c) = (c = a ∧ b): 1 − (1 − a)b = c

G3(a, b, c) = (c = a ∧ b): a(1 − b) = c G4(a, b, c) = (c = a ∧ b): 1 − a(1 − b) = c.

From this characterization we slice the circuit into several quadratic and
affine constraints similar to the arithmetic case. As before, we partition the set
of gates G of a given circuit φ into different subsets Gi according to the depth,
ni is cardinal of the gates at level i and we assume that gates at each level are
ordered in some way and they are denoted as Gi1, . . . , Gini

.
For each level i, we define variables Cij , j = 1, . . . , ni which will encode

the output of gate j at level i. The gate Gij will be correctly evaluated if
Cij = Gij(Aij , Bij), where Aij = CkL�L

and Bij = CkR�R
for some indexes

0 ≤ kL, kR < i, 1 ≤ �L ≤ nkL
and 1 ≤ �R ≤ nkR

, which depend on i, j and which
are specified by the circuit description. That is, the left wire of Gij should be
the output of the �Lth gate at level kL and the right wire the output of the �Rth
gate at level kR.

Shorter Pairing-Based Arguments Under Standard Assumptions 753

Lemma 7. Let φ : {0, 1}n0 → {0, 1}nd , be a circuit of multiplicative depth d
with ni gates at level i. There exist

(a) variables Cij, i = 0, . . . , d, j = 1, . . . , ni,
(b) variables Aij , Bij, i = 1, . . . , d, j = 1, . . . , ni,
(c) constants fijk�, gijk� ∈ {0, 1}, i = 1, . . . , d, k = 0, . . . , i − 1, j = 1, . . . , ni,

� = 1, . . . , nk,
(d) constants βij , γij , εij , δij ∈ Zp, i = 1, . . . , d, j = 1, . . . , ni, which depend on

the type of gate Gij,

such that, for every (x1, . . . , xn0) ∈ {0, 1}n0 , if we set C0,j = xj, for all j =
1, . . . , n0, then φ(x) = y and Aij, Cij are evaluated to the left and output of the
jth gate at level i, if and only if the following equations are satisfied:

1. (Quadratic constraints) For each i = 1, . . . , d, for all j = 1, . . . , ni,

Cij = AijBij + Aijβij + Bijγij + εij , (9)

2. (Affine constraints) Aij =
∑i−1

k=0

∑nk

�=1 fijk�Ck� and Bij =
∑i−1

k=0∑nk

�=1 gijk�Ck�.
3. (Correct Output) For all j = 1, . . . , nd, Cdj = yj.

Proof. For the (i, j)th circuit gate, a description of the circuit φ specifies the gate
type and indexes (ki,j,L, �i,j,L) which indicate the left and right wire. Therefore,
from the quadratic expression of boolean gates for boolean circuit satisfiability,
correct evaluation of Gij is expressed as:

Cij = Cki,j,L,�i,j,L
Cki,j,R,�i,j,R

αij + Cki,j,L,�i,j,L
βij + Cki,j,R,�i,j,R

γ̂ij + εij ,

for some αij , βij , γ̂ij , εij ∈ Z which depend on the gate type. This can be rewrit-
ten as an equation over Zp as:

Cij = Cki,j,L,�i,j,L(Cki,j,R,�i,j,Rαij) + Cki,j,L,�i,j,Lβij + (Cki,j,R,�i,j,Rαij)(α
−1
ij γ̂ij) + εij .

(10)
For any (i, j) we define the constant fijk� and gijk� to be 0 every-

where except for fijki,j,L�i,j,L
= 1 and gijki,j,R�i,j,R

= αij . Therefore, if
Aij =

∑i−1
k=0

∑nk

�=1 fijk�Ck� = Cki,j,L,�i,j,L
and Bij =

∑i−1
k=0

∑nk

�=1 gijk�Ck� =
Cki,j,R,�i,j,R

and Eq. (10) which expresses correct evaluation of gate (i, j) can be
rewritten as:

Cij = AijBij + Aijβij + Bijγij + εij , (11)

where γij = α−1
ij γ̂ij .

Obviously, this implies that if c0,j = xj , and the linear constraints are satis-
fied, then the rest of the output wires are also consistent with xj and we conclude
that cnd,j is the output corresponding to this input. Therefore, if cnd,j = yj , we
can conclude that φ(x) = y.

To achieve succinct ness, quadratic equations which encode correct gate eval-
uation are represented as a divisibility relation with the usual polynomial aggre-
gation technique.

754 A. González and C. Ràfols

Lemma 8. Let R ⊂ Zp be a set of cardinal N and let λj(X) be the associated
Lagrangian polynomials and t(X) the polynomial whose roots are the elements
of R. Let φ : {0, 1}n0 → {0, 1}nd , be any circuit such that N = maxi=1,...,d ni.
There exist some unique polynomials uL,i(X), uR,i(X), u0,i(X) of degree at most
N −1 which are efficiently computable from the circuit description and such that
for any tuple (ai, bi, ci) ∈ ({0, 1}ni)3, if

�i(X) =
ni∑

j=1

ajλj(X), ri(X) =
ni∑

j=1

bjλj(X), oi(X) =
ni∑

j=1

cjλj(X),

it holds that ai, vecci are consistent assignments to the left and output values of
gates at level i if and only if t(X) divides pi(X), where

pi(X) = �i(X)ri(X) + �i(X)uL,i(X) + r(X)uR,i(X) + u0,i(X) − oi(X).

Proof. The proof is a direct consequence of Lemma 7. Indeed, it suffices to
define uL,i(X), uR,i(X), u0,i(X) to take the values uL,i(rj) = βij , uR,i(rj) = γij

and u0,i(rj) = εij for j = 1, . . . , ni and 0 for j = ni + 1, . . . , N . Therefore,
pi(rj) = aijbij +aijβij + bijγij + εij − cij . This proves that if Eq. (11) is satisfied
then pi(X) is divisible by t(X), since it is 0 in all of its roots. Finally, the poly-
nomials uL,i(X), uR,i(X), u0,i(X) can be efficiently computed from the circuit
description, as they depend only on N and the type of each gate.

6.1 A New Argument for Correct Boolean Circuit Evaluation

From Lemma 7, we can design an argument for boolean circuit satisfiability
based on falsifiable assumptions, similar as in Sect. 5. The argument is based on
a quadratic and a linear “knowledge transfer” subarguments. The value [Ri]2 is
now defined as [Ri]2 =

∑ni

j=1 αijbijλj(s). The linear argument is identical to the
arithmetic case.

For the quadratic argument, now the prover needs to show (aggregating the
proof at each level i for j = 1, . . . , ni) that the quadratic equations Cij =
AijBij + Aijβij + Bijγij + εij are satisfied, whereas before the equations were
Cij = AijBij . However, the security proof is almost identical to the arithmetic
case.

Indeed, the verification equation of the quadratic argument is adapted to the
new equation type, i.e. For each level i = 1, . . . , d, and each j = 1, . . . , ks given
commitments [Lij]1, [Rij]2, [Oij]1, and some value [Hij]1 the quadratic argument
checks if

e([Lij]1, [Rij]2)+e([Lij]1, [uL,i(sj)]2)+e([uR,i(sj)]1, [Rij]2)+e([u0,i(sj)]1, [1]2)
− e([Oij]1, [1]2) = e([Hij]1, [T]2),

where uL,i(X), uR,i(X), u0,i(X) are the polynomials associated to the gate con-
stants at level i. To prove soundness, given an opening of [Lij]1 and [Rij]2 which
is not consistent with [Oij], it suffices to compute [O′

ij]1, [H
′
ij]1 consistent with

these openings and subtract the two verification equations to find a solution to
the R-Rational Strong Diffie-Hellman Assumption.

Shorter Pairing-Based Arguments Under Standard Assumptions 755

Zero-Knowledge. The argument can be made zero-knowledge for the middle
wires by proving with the GS proof system that the argument for correct circuit
evaluation is satisfied, as discussed in Sect. 5.4 for the arithmetic case. The input
can also be hidden provided it is encrypted with an extractable commitment.
In the boolean case this can be done in a relatively efficient way, for example
under the DDH Assyumption with GS commitments. The cost of giving the
committed secret inputs and a proof that they open to {0, 1} using the GS
proof system is (6(n0 − npub), 6(n0 − npub)) group elements. It can be reduced
to (2(n0 − npub) + 10, 10) group elements under standard assumptions using the
results of González and Ràfols [14], but at the price of having a crs quadratic in n0

and to (2n0+4, 6) with a linear crs under a non-standard (falsifiable) (n0−npub)-
assumption similar to the q-Target Strong Diffie-Hellman Assumption using the
results of Daza et al. [2].

References

1. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

2. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 11

3. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

4. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

5. Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 4

6. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-
7 21

7. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

8. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June (2009)

10. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

756 A. González and C. Ràfols

11. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

12. Ghadafi, E., Groth, J.: Towards a classification of non-interactive computational
assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part II. LNCS, vol. 10625, pp. 66–96. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70697-9 3

13. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May 2008

14. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 25

15. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

17. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11 (2012)

18. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

19. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for
structural batch verification in bilinear groups with applications to groth-sahai
proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1547–1564. ACM Press, October/November (2017)

20. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

21. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

22. Kalai, Y., Paneth, O., Yang, L.: On publicly verifiable delegation from standard
assumptions. Cryptology ePrint Archive, Report 2018/776 (2018). https://eprint.
iacr.org/2018/776

23. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 485–494. ACM
Press, May/June (2014)

24. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring constructions
of compact NIZKs from various assumptions. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. Part III, volume 11694 of LNCS, pp. 639–669. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8 21

25. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-662-46803-6_4

Shorter Pairing-Based Arguments Under Standard Assumptions 757

26. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

27. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 296–316.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

28. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

29. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2–10. IEEE Computer Society Press, October
1990

30. Maller, M., Kohlweiss, M., Bowe, S., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updateable structured reference string. Cryptology
ePrint Archive, Report 2019/099 (2019). http://eprint.iacr.org/2019/099

31. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix diffie-hellman assumption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

32. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

33. Paneth, O., Rothblum, G.N.: On Zero-testable homomorphic encryption and pub-
licly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017, Part II. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 9

34. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press, May 2013

35. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. Cryptology ePrint Archive, Report 2019/158 (2019). https://
eprint.iacr.org/2019/158

https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-642-28914-9_10
http://eprint.iacr.org/2019/099
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-319-70503-3_9
https://eprint.iacr.org/2019/158
https://eprint.iacr.org/2019/158

Author Index

Abdalla, Michel II-386, III-552
Abe, Masayuki III-669
Albrecht, Martin R. III-371
Altuğ, Salim Ali II-293
Ananth, Prabhanjan I-112
Andreeva, Elena II-153
Andrikos, Christos III-285
Au, Man Ho I-278, I-371

Badrinarayanan, Saikrishna I-342, II-577
Bai, Shi I-55
Baldimtsi, Foteini III-700
Bardeh, Navid Ghaedi III-347
Bartusek, James III-489
Batina, Lejla III-285
Bellare, Mihir III-607
Benhamouda, Fabrice II-386, III-552
Bernstein, Daniel J. III-33
Beullens, Ward I-227
Bolboceanu, Madalina II-91
Bonnetain, Xavier I-196, I-552
Boudgoust, Katharina I-55
Bourse, Florian I-679
Brakerski, Zvika II-91

Camenisch, Jan III-191
Carmer, Brent III-489
Cascudo, Ignacio II-606
Chan, John II-183
Chen, Hao II-446
Chen, Qi II-505
Chen, Yilei II-293, III-3
Cheon, Jung Hee II-415
Chillotti, Ilaria II-446
Chmielewski, Lukasz III-285
Choi, Wonseok I-175
Cid, Carlos III-371
Cojocaru, Alexandru I-615
Colisson, Léo I-615
Coron, Jean-Sébastien II-325, II-356

Dai, Wei III-607
Dakhilalian, Mohammad III-63

Damgård, Ivan II-606
Das, Dipayan I-55
David, Bernardo II-606
De Feo, Luca I-248
Debris-Alazard, Thomas I-21
Degabriele, Jean Paul II-209
Dobraunig, Christoph III-225
Döttling, Nico II-606, III-585
Dowsley, Rafael II-606
Dziembowski, Stefan III-315

Egashira, Shohei III-637

Fan, Xiong I-112
Faonio, Antonio III-159
Faust, Sebastian III-315
Fauzi, Prastudy I-649
Fernando, Rex I-342
Fiore, Dario III-159

Garg, Sanjam I-426, III-585
Gay, Romain III-552
Genise, Nicholas II-473, III-3
Gentry, Craig II-473
Giacomelli, Irene II-606
Goel, Aarushi I-426
Goldberg, Sharon III-700
González, Alonso III-728
Grassi, Lorenzo III-371
Guan, Jie III-398
Guo, Chun II-3
Guo, Qian I-82

Hajiabadi, Mohammad III-585
Halevi, Shai II-473
Herranz, Javier III-159
Hhan, Minki I-584
Hofheinz, Dennis I-311
Hong, Seokhie II-273
Hosoyamada, Akinori I-145, I-552
Hu, Bin III-398
Hülsing, Andreas III-33

Iwata, Tetsu I-145

Jain, Abhishek I-426, II-577, III-489
Janson, Christian II-209
Jin, Zhengzhong III-489
Johansson, Thomas I-82
Jutla, Charanjit S. III-669

Kashefi, Elham I-615
Khalili, Mojtaba III-63
Khovratovich, Dmitry III-371
Kim, Dongwoo II-415
Kim, Duhyeong II-415
Kim, Suhri II-273
Kirshanova, Elena I-521
Kirsten, Michael I-488
Kitagawa, Fuyuki III-97, III-128
Kleinjung, Thorsten I-227
Koch, Alexander I-488
Kolesnikov, Vladimir II-636
Koppula, Venkata I-342
Krenn, Stephan III-191
Kurosawa, Kaoru II-564
Küsters, Ralf III-191

Lai, Junzuo I-371
Lallemand, Virginie II-153
Lee, Byeonghak I-175
Lee, Changmin II-59
Lee, Hun Hee II-415
Lee, Jooyoung I-175
Lee, Keewoo II-415
Lepoint, Tancrède III-489
Lerman, Liran III-285
Li, Baiyu II-473
Li, Lucy III-607
Li, Xiangxue II-3
Libert, Benoît III-520
Lin, Zhiqiang II-505
Liu, Hanlin I-401
Liu, Kevin III-585
Lüftenegger, Reinhard III-371

Ma, Fermi III-489
Malavolta, Giulio III-585
Malkin, Tal III-489
Malozemoff, Alex J. III-489
Mårtensson, Erik I-521

Masson, Simon I-248
Matsuda, Takahiro III-97
Mavroudis, Vasilios III-285
Meiklejohn, Sarah I-649
Mennink, Bart III-225
Mercer, Rebekah I-649
Micciancio, Daniele II-473
Moulik, Subhayan Roy I-521
Mukherjee, Pratyay III-3

Naehrig, Michael II-243
Naya-Plasencia, María I-552
Nguyen, Khoa II-25
Nguyen, Ngoc Khanh II-121
Notarnicola, Luca II-356

Ohkubo, Miyako III-669
Orlandi, Claudio I-649
Ostrovsky, Rafail II-577
Oswald, Elisabeth III-256

Pan, Jiaxin III-669
Papagiannopoulos, Kostas III-285
Park, Young-Ho II-273
Passelègue, Alain II-386
Patra, Arpita I-456
Pellet-Mary, Alice II-59
Pereira, Hilder V. L. II-325
Perin, Guilherme III-285
Perlman, Renen II-91
Perrin, Léo I-196
Petit, Christophe I-248
Pointcheval, David I-679
Postlethwaite, Eamonn W. I-521
Purnal, Antoon II-153

Ràfols, Carla III-159, III-728
Raskin, Michael II-537
Rassias, Giorgos III-285
Rausch, Daniel III-191
Ravi, Divya I-456
Raykova, Mariana III-489
Rechberger, Christian III-371
Renes, Joost II-243
Reyhanitabar, Reza II-153
Reyzin, Leonid III-700
Rogaway, Phillip II-183

760 Author Index

Rønjom, Sondre III-347
Rosulek, Mike II-636
Roux-Langlois, Adeline I-55
Roy, Arnab II-153, III-669

Sagga, Omar III-700
Sahai, Amit I-342
Sanders, Olivier I-679
Sanso, Antonio I-248
Sasaki, Yu I-552
Schofnegger, Markus III-371
Schrempp, Michael I-488
Schrottenloher, André I-552
Sendrier, Nicolas I-21
Sharma, Devika II-91
Shi, Elaine I-3, I-112
Shi, Tairong III-398
Simkin, Mark II-537
Slamanig, Daniel III-63
Song, Yongsoo II-446
Sonnino, Alberto III-285
Stehlé, Damien II-59
Struck, Patrick II-209

Tanaka, Keisuke III-97, III-128, III-637
Tang, Chunming II-505
Tang, Hanh II-25
Tian, Shizhu I-196
Tian, Song I-278
Tillich, Jean-Pierre I-21
Ţiţiu, Radu III-520
Tomida, Junichi III-459
Trieu, Ni II-636

Ursu, Bogdan I-311

Vercauteren, Frederik I-227
Visconti, Ivan II-577
Vizár, Damian II-153

Wallden, Petros I-615
Wallet, Alexandre II-59
Wang, Huaxiong II-25
Wang, Kunpeng I-278
Wang, Senpeng III-398
Wang, Xiao II-636
Wang, Yuyu III-637, III-669
Waters, Brent I-342
Wen, Weiqiang I-55
Weng, Jian II-3
Whitnall, Carolyn III-256

Xagawa, Keita I-584
Xu, Qiuliang I-371
Xu, Xiu I-278
Xue, Haiyang I-278

Yamakawa, Takashi I-584
Yang, Jing I-82
Yang, Rupeng I-371
Yoon, Kisoon II-273
Yoshida, Yusuke III-128
Yu, Yu I-401, II-3
Yu, Zuoxia I-371

Żebrowski, Karol III-315
Zeng, Neng II-25
Zhang, Bin III-428
Zhang, Jiang I-401, II-3
Zhang, Kai III-398
Zhang, Zhenfei I-55
Zhao, Shuoyao I-401

Author Index 761

	Preface
	ASIACRYPT 2019 The 25th Annual International Conference on Theory and Application of Cryptology and Information Security
	Contents -- Part III
	Signatures
	Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures
	1 Introduction
	1.1 Summary of Our Contributions
	1.2 Technical Overview
	1.3 Improvement in the Efficiency Compared to the Exact Trapdoor

	2 Preliminaries
	2.1 Linear Algebra
	2.2 Lattices Background
	2.3 Gadgets, or G-Lattices
	2.4 SIS, LWE, and the Trapdoor

	3 The Approximate Trapdoor for Ajtai's Function
	3.1 Hardness of the Approximate ISIS Problem

	4 Approximate Gadget Trapdoor
	4.1 Recall the G-Trapdoor from DBLP:confspseurocryptspsMicciancioP12
	4.2 The Algorithms of the Approximate G-Trapdoor
	4.3 Simulate the Preimage and Error Distributions

	5 Hash-and-Sign Signature Instantiated with the Approximate Trapdoor
	5.1 Security Analysis
	5.2 Concrete Parameters

	A The Smoothing Parameter of L
	References

	Decisional Second-Preimage Resistance:When Does SPR Imply PRE?
	1 Introduction
	1.1 Contributions of This Paper
	1.2 Organization of the Paper

	2 Decisional Second-Preimage Resistance
	2.1 Notation
	2.2 Definitions
	2.3 Examples of DSPR Advantages
	2.4 Why DSPR Advantage Is Defined This Way
	2.5 DSPR Plus SPR Implies PRE

	3 The Second-Preimage-Exists Probability
	3.1 Simple Cases
	3.2 How SPprob Varies
	3.3 Maximization

	4 DSPR for Keyed Hash Functions
	4.1 DSPR Plus SPR Implies PRE

	5 DSPR is Hard in the QROM
	6 DSPR for Multiple Targets
	7 Removing Interactivity
	8 Applications to Hash-Based Signatures
	References
	A Some Single-Variable Functions

	Structure-Preserving Signatures on Equivalence Classes from Standard Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Outline of Our Construction

	2 Preliminaries
	2.1 Structure-Preserving Signatures on Equivalence Classes
	2.2 Non-Interactive Zero-Knowledge Proofs
	2.3 Malleable Proof Systems

	3 Revisiting the FG18 Model and Applications
	3.1 Problem With Key Verification and the Need for a CRS
	3.2 Distinguishing Signatures
	3.3 No Perfect Composition

	4 Our OR-Proof and Core Lemma
	4.1 Our Core Lemma

	5 Our SPS-EQ Scheme
	6 Applications
	References

	Public Key Encryption (1)
	Simple and Efficient KDM-CCA Secure Public Key Encryption
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Technical Overview
	2.1 KDM-CPA Secure Scheme by Malkin et al.
	2.2 Problem When Proving KDM-CCA Security
	2.3 The Technique by Kitagawa and Tanaka
	2.4 Adopting the Technique by Kitagawa and Tanaka
	2.5 Solution: Symmetric Key Encapsulation Mechanism (SKEM)
	2.6 Extension to the Multi-user Setting Using RKA Secure SKEM
	2.7 Differences in Usage of RKA Secure Primitive with Han et al.
	2.8 Tightness of Our Construction

	3 Preliminaries
	3.1 Assumptions
	3.2 Projective Hash Function
	3.3 Public Key Encryption

	4 Symmetric KEM and Passive RKA Security
	4.1 Definition
	4.2 Concrete Instantiations

	5 KDM-CCA Secure PKE with Respect to Affine Functions
	5.1 Proposed PKE Scheme
	5.2 Basic Construction of Projective Hash Function
	5.3 Space-Efficient Construction of Projective Hash Function

	6 KDM-CCA Secure PKE with Respect to Polynomials
	7 Instantiations
	References

	Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based on the DDH Problem
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Paper Organization

	2 Preliminaries
	3 Ideas of Our Construction
	3.1 Starting Point: Beaver's Protocol
	3.2 Extension to Two-Round NCE Scheme
	3.3 Reduce the Ciphertext Rate
	3.4 Abstraction by Chameleon Encryption

	4 Obliviously Samplable Chameleon Encryption
	4.1 Definiton
	4.2 Construction

	5 Basic Construction of Proposed NCE
	5.1 Construction
	5.2 Security Proof
	5.3 Ciphertext Rate

	6 Full Construction of Proposed NCE
	References

	Structure-Preserving and Re-randomizable RCCA-Secure Public Key Encryption and Its Applications
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Re-randomizable RCCA PKE
	2.2 Malleable NIZKs

	3 Our Rand-RCCA PKE Scheme
	4 Our Publicly-Verifiable Rand-RCCA PKE
	5 Malleable and True-Simulation Extractable NIZK
	6 An UC-Secure Mix-Net
	References

	iUC: Flexible Universal Composability Made Simple
	1 Introduction
	2 The iUC Framework
	2.1 Preliminaries
	2.2 Structure of Protocols
	2.3 Modeling Corruption
	2.4 Specifying Protocols
	2.5 Composing Protocol Specifications
	2.6 Realization Relation and Composition Theorems

	3 Concepts and Discussion
	4 Case Study
	4.1 Overview of Our Modeling
	4.2 Security Result
	4.3 Discussion

	5 Conclusion
	References

	Side Channels
	Leakage Resilience of the Duplex Construction
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Notation

	2 Keyed Duplex Construction
	3 Security Model
	3.1 Sampling of Keys
	3.2 Distinguishers
	3.3 Black-Box Security
	3.4 Leakage Resilience

	4 Proof Rationale
	4.1 Proving Leakage Resilience
	4.2 Towards Permutation-Based Constructions
	4.3 Proving Security of Duplex Construction

	5 Leakage Resilience of Keyed Duplex Construction
	5.1 Distinguisher's Resources
	5.2 Main Result
	5.3 Interpretation
	5.4 Proof of Theorem 1

	6 Limiting Leakage of Keyed Duplex Construction
	6.1 Gaining Entropy
	6.2 Maintaining Entropy

	7 Application to Encryption
	7.1 Security of Stream Encryption
	7.2 Security of E
	7.3 Towards Authentication

	References

	A Critical Analysis of ISO 17825 (`Testing Methods for the Mitigation of Non-invasive Attack Classes Against Cryptographic Modules')
	1 Introduction
	2 Background: Leakage Detection in a Security Evaluation
	2.1 TVLA and its Adoption Within Standards
	2.2 ISO Standards for Physical Security

	3 Statistical Power Analysis for Leakage Detection Tests
	3.1 Configuring Tests via an A Priori Power Analysis
	3.2 Effect Size
	3.3 The Impact of Multiple Testing

	4 ISO 17825 for Certifying Vulnerability
	5 ISO 17825 for Certifying Security
	5.1 Have All Realistic Vulnerabilities Been Tested For?
	5.2 How Reliably do the Performed Tests Find Leakage?

	6 Exploring Alternative Test Configurations
	7 Conclusions and Recommendations
	A Sample Size for the t-Test
	B Results for Original TVLA-Recommended Threshold
	References

	Location, Location, Location: Revisiting Modeling and Exploitation for Location-Based Side Channel Leakages
	1 Introduction
	1.1 Previous Research and Terminology
	1.2 Contribution and Organization

	2 Experimental Setup and T-Test Analysis
	2.1 Experimental Setup
	2.2 Difference-of-Means T-Test
	2.3 Motivating the Location Leakage Model

	3 A Spatial Model for Location Leakage
	3.1 Model Definition and Assumptions
	3.2 Information-Theoretic Analysis

	4 Exploitation Using Template Attacks
	4.1 Area and Number of Regions
	4.2 Measurement Grid Dimension
	4.3 Region Proximity and Interleaving

	5 Exploitation Using Neural Networks
	5.1 Convolutional Neural Network Analysis
	5.2 Multi Layer Perceptron Network Analysis

	6 Conclusions and Future Directions
	7 Appendix A
	8 Appendix B
	References

	Simple Refreshing in the Noisy Leakage Model
	1 Introduction
	1.1 Masking Schemes
	1.2 Our Contribution
	1.3 Other Related Work

	2 Our Approach Informally
	2.1 Proof Sketch of Informal Lemma1
	2.2 Bounding the Probability of E
	2.3 Generalizations to Arbitrary Circuits

	3 Formal Definitions
	3.1 Security Definitions

	4 Technical Details of the Circuit Transformation
	4.1 General Gadget Description
	4.2 The Gadgets Used in Our Construction
	4.3 Refreshing Gadget Properties
	4.4 Privacy of the Construction
	4.5 Concrete Results

	5 Conclusion
	References

	Symmetric Cryptography (2)
	The Exchange Attack: How to Distinguish Six Rounds of AES with 288.2 Chosen Plaintexts
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of This Paper and Main Results

	2 Preliminaries
	2.1 Collision and Multicollision in a Set

	3 When Column Exchange Equals Diagonal Exchange
	4 The Exchange Attack on Five Rounds AES
	4.1 Complexity of Distinguisher

	5 The Exchange Attack on Six Rounds AES
	5.1 Distinguishing Attack Algorithm for Six Rounds
	5.2 Complexity of Distinguisher

	6 Conclusion
	References

	Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC
	1 Introduction
	2 MARVELlous
	2.1 JARVIS
	2.2 FRIDAY

	3 Overview of Algebraic Attacks on JARVIS and FRIDAY
	3.1 Higher-Order Differential Attacks
	3.2 Interpolation Attacks
	3.3 Gröbner Basis Attacks

	4 Gröbner Basis Computation for JARVIS
	4.1 Reduced-Round JARVIS
	4.2 Optimisations for an Attack on Full-Round JARVIS
	4.3 Complexity Estimates of Gröbner Basis Computation for JARVIS

	5 Gröbner Basis Computation for FRIDAY
	5.1 Extending the Key-Recovery Attack on JARVIS to a Preimage Attack on FRIDAY
	5.2 Complexity of Generating Pseudo Preimages
	5.3 Direct Preimage Attack on FRIDAY

	6 Behaviour of the Attacks Against JARVIS and FRIDAY
	6.1 Comparison with MiMC

	7 Comparing the S-Boxes of JARVIS and the AES
	8 Conclusion and Future Work
	References
	A Polynomials of Section4.2
	B Constants i, i, i, and i for the Round Keys
	C System of Equations from Section7

	MILP-aided Method of Searching Division Property Using Three Subsets and Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Outline of the Paper

	2 Preliminaries
	2.1 Notations
	2.2 Mixed Integer Linear Programming
	2.3 Bit-Based Division Property
	2.4 The MILP Representation of CBDP
	2.5 Cube Attack
	2.6 The Cube Attack Based on CBDP

	3 The Propagation Properties of BDPT
	3.1 The BDPT Propagation of S-Box
	3.2 Pruning Techniques of BDPT
	3.3 Fast Propagation

	4 The MILP-aided Method for BDPT
	4.1 Simplify the MILP Method of CBDP
	4.2 Stopping Rules
	4.3 The MILP-aided Method of Searching Integral Distinguishers Based on BDPT

	5 Applications to Block Ciphers
	5.1 Applications to SIMON and SIMECK
	5.2 Applications to PRESENT and RECTANGLE
	5.3 Applications to LBlock

	6 Using BDPT to Recover the Superpoly in Cube Attack
	6.1 Analyze the ANF Coefficients of Polynomial
	6.2 Analyze the ANF Coefficients of Superpoly
	6.3 The Algorithm to Recover Superpoly

	7 Application to Trivium
	7.1 Descriptions of Trivium
	7.2 The MILP-aided Algorithm for Trivium
	7.3 Theoretical Result

	8 Conclusions
	References

	Cryptanalysis of GSM Encryption in 2G/3G Networks Without Rainbow Tables
	1 Introduction
	2 Description of A5/1 and the GSM Encryption
	3 Preliminaries
	3.1 The Fast Near Collision Attack

	4 Our New Attack
	4.1 A General Description of the Attack
	4.2 Basic Facts of A5/1
	4.3 Pre-computing the Partial Differential Tables
	4.4 Determining the Candidates List of the Involved Restricted Internal State
	4.5 Distilling Phase: Enhancing the Existence Probability of the Correct Candidate
	4.6 Merging Phase: Restoring the CP Part of the Internal State
	4.7 Restoring the RP Part of the Internal State

	5 Experimental Results
	6 Leveraging the Attack to Any GSM Network
	7 Conclusion
	References

	Functional Encryption
	Tightly Secure Inner Product Functional Encryption: Multi-input and Function-Hiding Constructions
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Tightly Secure IPFE
	2.2 Conversion from Function-Hiding IPFE to Function-Hiding MIPFE

	3 Preliminary
	3.1 Notation
	3.2 Basic Tools and Assumption
	3.3 Definitions of Inner Product Functional Encryption

	4 Tightly Secure (Multi-input) Inner Product Functional Encryption
	4.1 Construction
	4.2 Security
	4.3 Application to Multi-input Inner Product Functional Encryption

	5 Function-Hiding Inner Product Functional Encryption
	5.1 Actual Scheme and Optimization
	5.2 Security

	6 From Single to Multi-input Function-Hiding Inner Product Functional Encryption
	6.1 Conversion
	6.2 Security
	6.3 Application to Our Scheme

	References

	Public-Key Function-Private Hidden Vector Encryption (and More)
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Outline

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Generic Bilinear Group Model
	2.3 Virtual Black Box Obfuscation
	2.4 Predicate Encryption

	3 Obfuscating Small Supersets
	3.1 Small Superset Obfuscation Construction
	3.2 Functionality Preservation
	3.3 Security

	4 Function-Private Predicate Encryption Security Definitions
	4.1 Data Privacy
	4.2 Function Privacy
	4.3 Enhanced Function Privacy
	4.4 Discussion

	5 Function-Private Predicate Encryption for Small Superset
	5.1 Security

	References

	Multi-Client Functional Encryption for Linear Functions in the Standard Model from LWE
	1 Introduction
	1.1 (Decentralized) Multi-Client FE
	1.2 Our Contributions
	1.3 Challenges and Techniques
	1.4 Related Work

	2 Background
	2.1 Lattices
	2.2 Admissible Hash Functions
	2.3 Randomness Extraction
	2.4 Multi-Client Functional Encryption
	2.5 Decentralized Multi-Client Functional Encryption

	3 Our MCFE Scheme for Linear Functions
	3.1 Description
	3.2 Security

	4 A DMCFE Scheme for Linear Functions
	4.1 Description
	4.2 Security

	References

	From Single-Input to Multi-client Inner-Product Functional Encryption
	1 Introduction
	2 Definitions and Security Models
	2.1 Multi-Client Functional Encryption
	2.2 Decentralized Multi-Client Functional Encryption
	2.3 Inner-Product Functionality
	2.4 Pseudorandom Functions (PRF)
	2.5 Symmetric-Key Encryption (SE)

	3 MCFE from Public-Key Single-Input FE
	3.1 Construction
	3.2 Static Security
	3.3 Adaptive Security

	4 From pos+-IND to any-IND Security
	5 Decentralized Multi-Client Function Encryption
	References

	Public Key Encryption (2)
	Rate-1 Trapdoor Functions from the Diffie-Hellman Problem
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Error Correcting Codes
	2.2 Trapdoor Functions
	2.3 The Diffie-Hellman Problems

	3 Smooth Recyclable OWFE
	3.1 Smooth Recyclable OWFE from CDH

	4 Rate-1 CDH-Based Trapdoor Function
	4.1 Analysis
	4.2 Parameters

	5 Rate-1 DDH-Based Deterministic Encryption
	5.1 Analysis

	6 Experimental Results
	References

	The Local Forking Lemma and Its Application to Deterministic Encryption
	1 Introduction
	2 Preliminaries
	3 The Local Forking Lemma
	4 Public-Key-Dependent Message-Recovery Security
	5 Possibility Results
	5.1 Security of EwH for a Single Message
	5.2 Resampling Indistinguishability
	5.3 Security of EwH Against SupSri

	6 Impossibility Results
	References

	Fine-Grained Cryptography Revisited
	1 Introduction
	1.1 Background
	1.2 Our Results and Techniques
	1.3 Possibility on the Extension from Our Proposed NC1 Fine-Grained Primitives

	2 Preliminaries
	2.1 Notation
	2.2 Definitions
	2.3 Definitions in Fine-Grained Cryptography
	2.4 Sampling Procedure

	3 Construction of NC1-OWP Against NC1
	4 Construction of NC1-HPS Against NC1
	4.1 Perfectly Smooth and Universal1 for One-Bit
	4.2 Application: NC1-CCA Secure PKE

	5 Construction of NC1-TDF Against NC1
	6 Conclusion
	References

	Zero Knowledge
	Shorter QA-NIZK and SPS with Tighter Security
	1 Introduction
	1.1 Our Contributions
	1.2 Our QA-NIZK: Technical Overview
	1.3 Our SPS: Technical Overview

	2 Preliminaries
	2.1 Collision Resistant Hash Functions
	2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions
	2.3 Non-interactive Zero-Knowledge Proof
	2.4 Quasi-Adaptive Zero-Knowledge Argument
	2.5 Structure-Preserving Signature

	3 Quasi-Adaptive NIZK
	3.1 Stepping Stone: Designated-Verifier QA-NIZK
	3.2 QA-NIZK
	3.3 Application: Tightly IND-mCCA-Secure PKE

	4 Tightly Secure Structure-Preserving Signature
	4.1 Designated-Prover OR-Proof
	4.2 Structure-Preserving Signature
	4.3 DPQANIZK and Black-Box Construction

	References

	Efficient Noninteractive Certification of RSA Moduli and Beyond
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 HVZK Proofs for Properties of N and e
	3.1 HVZK Proof for a Permutation over ZN*
	3.2 HVZK Proofs for Paillier and Square-Free N
	3.3 HVZK Proof for Permutation over Entire ZN
	3.4 HVZK Proof for a Product of Two Primes
	3.5 HVZK Proof for a Blum Integer

	4 Making Our Protocols Noninteractive via Fiat-Shamir
	5 Specification, Implementation and Performance for NIZK of Permutations over ZN
	A Number-Theoretic Lemmas
	B Background on the Fiat-Shamir transform
	C Detailed Specification for the NIZK of Permutations over Zn
	C.1 System Parameters
	C.2 Proving
	C.3 Verifying
	C.4 Auxiliary function: getRho

	References

	Shorter Pairing-Based Arguments Under Standard Assumptions
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Previous Work

	2 Preliminaries
	2.1 Cryptographic Assumptions

	3 Arithmetic Circuits
	4 Arguments of Knowledge Transfer
	4.1 Argument for Hadamard Products
	4.2 Argument for Linear Languages
	4.3 Extension to SMDDH Assumptions
	4.4 Extension to Bilateral Linear Spaces

	5 A New Argument for Correct Arithmetic Circuit Evaluation
	5.1 Encoding Affine Constraints as Membership in Linear Spaces
	5.2 New Argument
	5.3 Efficiency
	5.4 Adding Zero-Knowledge

	6 Boolean Circuits
	6.1 A New Argument for Correct Boolean Circuit Evaluation

	References

	Author Index

