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Preface

ASIACRYPT 2019, the 25th Annual International Conference on Theory and
Application of Cryptology and Information Security, was held in Kobe, Japan, during
December 8-12, 2019.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 307 submissions from all over the world. This was a sig-
nificantly higher number of submissions than recent Asiacrypt conferences, which
necessitated a larger Program Committee (PC) than we had originally planned. We
thank the seven additional PC members who accepted our invitation at extremely short
notice. They are Gorjan Alagic, Giorgia Azzurra Marson, Zhenzhen Bao, Olivier
Blazy, Romain Gay, Takanori Isobe, and Daniel Masny.

The PC selected 71 papers for publication in the proceedings of the conference. The
two program chairs were supported by a PC consisting of 55 leading experts in aspects
of cryptology. Each submission was reviewed by at least three Program Committee
members (or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. There were approximately 380 external reviewers, whose input was
critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 193 submissions to proceed to the second
round. The authors of those 193 papers were then invited to provide a short rebuttal in
response to the referee reports. The second round involved extensive discussions by the
PC members. Indeed, the total number of text items in the online discussion (including
reviews, rebuttals, questions to authors, and PC member comments) exceeded 3,000.

The three volumes of the conference proceedings contain the revised versions of the
71 papers that were selected, together with 1 invited paper. The final revised versions
of papers were not reviewed again and the authors are responsible for their contents.

The program of Asiacrypt 2019 featured excellent invited talks by Krzysztof
Pietrzak and Elaine Shi. The conference also featured a rump session which contained
short presentations on the latest research results of the field.

The PC selected the work “Wave: A New Family of Trapdoor One-Way Preimage
Sampleable Functions Based on Codes” by Thomas Debris-Alazard, Nicolas Sendrier,
and Jean-Pierre Tillich for the Best Paper Award of Asiacrypt 2019. Two more papers
were solicited to submit a full version to the Journal of Cryptology. They are “An LLL
Algorithm for Module Lattices” by Changmin Lee, Alice Pellet-Mary, Damien Stehlé,
and Alexandre Wallet, and “Numerical Method for Comparison on Homomorphically
Encrypted Numbers” by Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee
Lee, and Keewoo Lee.



vi Preface

The Program Chairs are delighted to recognize the outstanding work by Mark
Zhandry and Shweta Agrawal, by awarding them jointly the Best PC Member Award.

Many people have contributed to the success of Asiacrypt 2019. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions.

We are greatly indebted to Mitsuru Matsui, the general chair, for his efforts and
overall organization.

We thank Mehdi Tibouchi for expertly organizing and chairing the rump session.

We are extremely grateful to Lukas Zobernig for checking all the latex files and for
assembling the files for submission to Springer.

Finally we thank Shai Halevi and the IACR for setting up and maintaining the Web
Submission and Review software, used by IACR conferences for the paper submission
and review process. We also thank Alfred Hofmann, Anna Kramer, Ingrid Haas,
Anja Sebold, Xavier Mathew, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2019 Steven Galbraith
Shiho Moriai
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Approximate Trapdoors for Lattices
and Smaller Hash-and-Sign Signatures

Yilei Chen'®™) | Nicholas Genise?, and Pratyay Mukherjee!

! Visa Research, Palo Alto, USA
{yilchen,pratmukh}@visa.com
2 University of California, San Diego, USA
ngenise@eng.ucsd.edu

Abstract. We study a relaxed notion of lattice trapdoor called approz-
imate trapdoor, which is defined to be able to invert Ajtai’s one-way
function approximately instead of exactly. The primary motivation of
our study is to improve the efficiency of the cryptosystems built from
lattice trapdoors, including the hash-and-sign signatures.

Our main contribution is to construct an approximate trapdoor by
modifying the gadget trapdoor proposed by Micciancio and Peikert
[Eurocrypt 2012]. In particular, we show how to use the approximate
gadget trapdoor to sample short preimages from a distribution that is
simulatable without knowing the trapdoor. The analysis of the distri-
bution uses a theorem (implicitly used in past works) regarding linear
transformations of discrete Gaussians on lattices.

Our approximate gadget trapdoor can be used together with the exist-
ing optimization techniques to improve the concrete performance of the
hash-and-sign signature in the random oracle model under (Ring-)LWE
and (Ring-)SIS assumptions. Our implementation shows that the sizes of
the public-key & signature can be reduced by half from those in schemes
built from exact trapdoors.

1 Introduction

In the past two decades, lattice-based cryptography has emerged as one of
the most active areas of research. It has enabled both advanced cryptographic
capabilities, such as fully homomorphic encryption [29]; and practical post-
quantum secure public-key encryptions and signatures, as observed in the ongo-
ing NIST post-quantum cryptography (PQC) standardization procedure [4]. A
large fraction of the lattice-based cryptosystems uses lattice trapdoors. Those
cryptosystems include basic primitives like public-key encryption and signature
schemes [31,33,38,39], as well as advanced primitives such as identity-based
encryption [1,19,31], attribute-based encryption [34], and graded encodings [30].
In this work, we focus on the trapdoor for the lattice-based one-way func-
tion defined by Ajtai [2], and its application in digital signatures [31]. Given a
wide, random matrix A, and a target vector y, the inhomogeneous short integer
solution (ISIS) problem asks to find a short vector x as a preimage of y, i.e.

© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASTACRYPT 2019, LNCS 11923, pp. 3-32, 2019.
https://doi.org/10.1007/978-3-030-34618-8_1
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A -x=y (modq).

Without a trapdoor for the matrix A, finding a short preimage is proven to be
as hard as solving certain lattice problems in the worst case [2]. A trapdoor for
the matrix A, on the other hand, allows its owner to efficiently produce a short
preimage. An explicit construction of the trapdoor for Ajtai’s function was first
given in [3] and later simplified by [9,42].

Towards the proper use of lattice trapdoors in cryptography, what really gives
the trapdoor a punch is the work of Gentry, Peikert and Vaikuntanathan [31].
They show how to sample a short preimage from a distribution that is simu-
latable without knowing the trapdoor, instead of a distribution which may leak
information about the trapdoor (as observed by the attacks [32,46] on the initial
attempts of building lattice-based signatures [33,38]). Such a preimage sampling
algorithm allows [31] to securely build a hash-and-sign signature as follows. Let
the matrix A be the public verification key, the trapdoor of A be the secret sign-
ing key. To sign a message m, first hash it to a vector y, then use the trapdoor to
sample a short preimage x as the signature. The secret signing key is guaranteed
to be hidden from the signatures, since the signatures are simulatable without
using the trapdoor.

Despite its elegant design, the hash-and-sign signature based on Ajtai’s func-
tion suffers from practical inefficiency due to its large key size and signature
size. Indeed, all the three lattice-based signature candidates that enter the sec-
ond round of NIST PQC standardization [4] are built from two alternative
approaches—Falcon [27] is based on the hash-and-sign paradigm over NTRU
lattices; Dilithium [26] and qTESLA [8] are based on the rejection sampling
approach [11,40]. The suggested parameters for the three candidates lead to
competitive performance measures. For example, for 128-bit security, the sizes
of the public keys & signatures for all the three candidates are below 5 kB & 4
kB (respectively). By contrast, for the hash-and-sign signature based on Ajtai’s
function, the sizes of the public keys & signatures are more than 35 kB & 25 kB
according to the implementation benchmarks of [13,14,36].

1.1 Summary of Our Contributions

In this paper we develop new techniques to bring down the sizes of the public keys
& signatures of the hash-and-sign signature based on Ajtai’s one-way function.
We define a relaxed notion of lattice trapdoor called approzimate trapdoor, which
can be used to solve the ISIS problem approximately instead of exactly. With a
relaxation of the correctness requirement, it is possible to generate smaller public
matrices, trapdoors, and preimages for Ajtai’s function, which translate to smaller
public-keys, secret-keys, and signatures for the hash-and-sign signature scheme.

Our main technical contribution is to show that the gadget trapdoor proposed
by Micciancio and Peikert [42] can be modified to an approximate trapdoor.
In particular, we show how to use the approximate gadget trapdoor to sample
preimages from a distribution that is simulatable without knowing the trapdoor.
The analysis of the distribution uses a theorem (implicitly used in past works)
regarding linear transformations of discrete Gaussians on lattices.
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Our approximate gadget trapdoor can be used together with all existing
optimization techniques, such as using the Hermite normal form and using a
bigger base in the gadget, to improve the concrete performance of the hash-
and-sign signature in the random oracle model under RingLWE and RingSIS
assumptions. Our proof-of-concept implementation shows that the sizes of the
public-key & signature can be reduced to 5 kB & 4.45 kB for an estimation of 88-
bit security, and 11.25 kB & 9.38 kB for an estimation of 184-bit security. Those
are much closer to the sizes of the signatures based on the rejection sampling
approach [8,11,26,40]. More details of the parameters are given in Sects. 1.3 and
5.2.

1.2 Technical Overview

Given a public matrix A € Zy*™ where m = O(nlogq), and a target y, we call
a vector x € Z™ an approximate short preimage of y if

A-x=y+z (modq)

for some z € Z", and both x and z are short. An approximate trapdoor for A
is defined to be a string that allows its owner to efficiently find an approximate
short preimage given a target y.

Of course, to make sense of the word “trapdoor”, we first need to argue that
solving the approximate version of ISIS is hard without the trapdoor. Under
proper settings of parameters, we show the approximate ISIS problem is as hard
as the standard ISIS problem, or no easier than LWE. The reductions extensively
use the Hermite normal form (HNF) and are pretty straightforward.

The approximate ISIS problem and the approximate trapdoor are natural
generalizations of their exact variants. Indeed, both notions have been used in
the literature, at least on an informal level. For example, the approximate ISIS
problem was used in the work of Bai et al. [12] to improve the combinatorial
algorithms of the exact ISIS problem.

It is well-known that an exact trapdoor of a public matrix in the HNF, say
a trapdoor for A = [I,, | A’], can be used as an approximate trapdoor for A’.
Such a method was often used in the implementation of signatures to decrease
the sizes of the public key and the signature by a dimension of n. Our goal is thus
to further reduce the sizes compared to the HNF approach, while preserving the
quality of the trapdoor, i.e. at least not increasing the norm of the preimage.

Approzimate gadget trapdoor. Our main contribution is to show that the gadget
trapdoor (G-trapdoor) proposed by Micciancio and Peikert [42] can be modified
to an approximate trapdoor, in a way that further reduces the sizes of the public
matrix, the trapdoor, and the preimage.

Recall the core of the G-trapdoor is a specific “gadget” matrix of base b,

G=Log =1,&,b,.. 0" eznh,

where k := [log, ¢|. The base b is typically chosen to be 2 for simplicity, or a
larger value in practical implementations.
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Micciancio and Peikert [42] show how to generate a random matrix A
together with a matrix D of small norm such that A-D = G (mod ¢). In
particular, A is designed to be

A =[A|G - AR],
where R is a matrix with small entries and is the actual trapdoor. The matrix

D is then equal to {R . Since the kernel of the G matrix has a public short

Ink
basis, one can first solve the ISIS problem under the public matrix G, then use
D to solve the ISIS problem under the public matrix A.

We observe that if we drop a few (say ) entries corresponding to the small
powers of b from the gadget matrix G, i.e. let the following F matrix be a
modified gadget matrix

F=I1,f =1 c@,.0"") ezt

then we are still able to solve the ISIS problem w.r.t. the public matrix F up to a
bl-approximation of the solution (i.e., the norm of the error vector is proportional
to b'). Replacing G by F in A gives

A =[A|F - AR). (1)
Then the dimensions of the trapdoor R and the public matrix A can be reduced.

Sampling from a distribution that is simulatable without knowing the trapdoor.
Given a public matrix A together with its approximate G-trapdoor R, finding
an arbitrary approximate short preimage of a given target u is quite straightfor-
ward, but sampling the preimage from a distribution that is simulatable without
knowing the trapdoor turns out to be non-trivial. As mentioned earlier, the abil-
ity to sample from such a distribution is fundamental to most of the trapdoor
applications including digital signatures.

We provide an algorithm that samples an approximate short preimage from
a distribution that is simulatable without knowing the trapdoor. The algorithm
itself is a fairly simple generalization of the perturbation-based discrete Gaussian
sampler from [42], but the analyses of the preimage distribution from [42] are not
easy to generalize. Our analyses of the preimage distribution and the approxima-
tion error distribution extensively use a linear transformation theorem on lattice
distributions (cf. Lemma 4, or Theorem 1, implicitly used in [15,25,42,43]).

The details of the analyses are quite technical. Here let us mention the dif-
ference in the way of obtaining the main result of ours compared to the ones
from [31,42]. The approach taken by [31,42] is to first spell out the distributions
of the preimages for all the target images u € Zg, then show the distributions are
simulatable for uniformly random target images. For the approximate preimage
sampling, we are only able to simulate the distributions of the preimages and the
errors for uniformly random targets, without being able to spell out the mean-
ingful distributions for all the targets an intermediate step. Still, simulating the
preimages of uniform targets suffices for the application of digital signatures.
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To briefly explain the reason behind the difference, let us point out that the
methods we have tried to analyze the preimage distribution for all the target
images require significant increases in the smoothing parameters of the lattice
intersections required in the linear transformation theorem (Theorem 1). In other
words, the norm of the resulting preimage increases significantly rendering the
result meaningless.

1.3 Improvement in the Efficiency Compared to the Exact Trapdoor

We now explain the efficiency gain of using our approximate trapdoor compared
to the exact trapdoor and the other existing optimization techniques, with a
focus on the signature application. Our goal is to set the parameters to achieve
the following “win-win-win” scenario:

1. Save on the size of the preimage (i.e., the signature).

2. Save on the size for the public matrix A.

3. Retain, or even gain, concrete security, which is related to the discrete Gaus-
sian width of the preimage and the norm of the error term.

Parameters Exact G-trapdoor Approximate G-trapdoor
m n(2+ k) n(2+ (k—1))

o VEF-w(/ogn) VB - w(vIogn)

s C-7-(ym+2yn)-c C-7-(/m+2yn) o
v 0 b o

Fig. 1. A brief comparison of the parameters. The parameters in the table are derived
under a fixed lattice dimension n, a fixed modulus ¢ > /n, and a fixed base b. Let
k = [log, q]. Let I denote the number of entries removed from g (1 < ! < k). Then
we list m as the dimension of the public matrix and the preimage; o as the width
of the gadget preimage distribution; s as the width of the final preimage distribution
(where C' > 0 is a universal constant); 7 as the width, or subgaussian parameter, of
the distribution of the entries in the trapdoor matrix R; v as the length bound of the
error for each entry in the image.

Let us start with an understanding of the dependency of the savings on
the variable [, i.e, the number of entries dropped from the gadget g. In Fig. 1
we provide a comparison of the parameters between the exact G-trapdoor of
[42] and the approximate G-trapdoor samplers in this paper. In both cases the
public matrices are instantiated in the pseudorandom mode. For the approximate
trapdoor, the dimension of the trapdoor decreases from nk to n(k — ). The
dimension m of the public matrix and the preimage decreases. The width s of
the preimage distribution also decreases slightly following the decreasing of m.
However, the norm of the error factor in the image grows with [. So in the
concrete instantiation of the hash-and-sign signature discussed later, we need to
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coordinate the value of [ with the norms of the preimage and the error, which
will determine the cost of the attacks together.

Our algorithm inherits the O(log ¢q)-space, O(nlog ¢)-time G-preimage sam-
ple subroutine from [28,42]. So the saving of space and time in the sampling of
the perturbation is proportional to the saving in the dimension m.

Concrete parameters for the signatures. We give a proof-of-concept implemen-
tation of the hash-and-sign signature based on our approximate trapdoor. The
security is analyzed in the random oracle model, assuming the hardness of
RingLWE for the pseudorandomness of the public key and RingSIS for the
unforgeability of the signature. Here we provide a short summary and leave
more details in Sect. 5.2.

Let us first remark that different implementation results of the hash-and-sign
signatures [13,14,36] possibly use different ways of measuring sizes and security,
and not all the details behind the parameters are recoverable from these papers.
So we also implementation the exact trapdoor as a reference. For an estimation
of 88-bit security, our reference implementation for the exact trapdoor under the
modulus ¢ ~ 224 and base b = 2 matches the parameters reported in [13].

We also use smaller moduli and bigger bases to reduce the size and increase
the security level. The parameters in Fig.2 suggest that for the 3 choices of ¢
and b, using the approximate gadget trapdoor by setting I = [(log, ¢)/2] saves
about half of the sizes in the public key and signatures comparing to using the
exact trapdoor, with even a slight increase in the expected cost for the attacking
algorithms. Let us mention that some schemes in the literature (like [23]) use
an extremely large base of size b ~ /g (the resulting gadget is g = [1,,/q]).
However, for the small moduli like 2'6 or 2'8, such large bases lead to Gaussian
widths larger than the moduli. So we only use moderately large bases.

Params|Exact Approx Approx |Exact Approx Approx |Exact Approx Approx
n 512 512 512 512 512 512 512 512 512
Mog, q]|24 24 24 16 16 16 16 16 16

b 2 2 2 2 2 2 4 4 4

l 0 12 15 0 7 9 0 2 4

T 40 40 40 2.6 2.6 2.6 2.6 2.6 2.6

s 38317.0 29615.3 26726.3 |2170.7 1756.3 1618.2 [3114.2 2833.3 2505.6
m 13312 7168 5632 9216 5632 4608 5120 4096 3072
|[x|l2 |4441737.7 2521387.0 2035008.5|211100.9 133305.5 109339.1|223740.1 183004.9 138145.7
|lzl|2 |0 374014.0 2118987.6(0 11897.9 464284 |0 1402.3  19807.1
PK 37.50 19.50 15.00 17.00 10.00 8.00 9.00 7.00 5.00
Sig 25.68 13.53 10.51 13.16 7.83 6.30 7.62 5.94 4.45
LWE [100.0 100.0 100.0 104.7 104.7 104.7 104.7 104.7 104.7
ATSIS [80.2 85.8 81.1 83.7 89.0 88.1 82.8 85.5 87.8

Fig. 2. Summary of the concrete parameters. The size of PK and Sig are measured in
kB. ||x||2, ||z||2 are the upper-bounds of the norms of the preimage and the error term.
LWE and AISIS refer to the estimations of security levels for the pseudorandomness
of the PK and finding a short approximate preimage.
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Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25 kB
& 9.38 kB for an estimation of 184-bit security. Those are much closer to the
sizes of the signatures based on the rejection sampling approach [8,11,26,40]. As
a reference, the sizes of the public-key & signature for qTESLA [8] are 4.03 kB
& 3.05 kB for an estimation of 128-bit security, and 8.03 kB & 6.03 kB for an
estimation of 192-bit security. The sizes for Dilithium [26] are even smaller. Let us
remark that our implementation has not adapted possible further optimizations
used in Dilithium [26] and ¢TESLA [8]. So it is reasonable to expect we have more
room to improve after adding making further optimizations. The parameters for
Falcon [27] are the smallest due to the use of NTRU lattices, so they are rather
incomparable with the ones based on RinglLWE. As a side note, we do not know
how to construct approximate trapdoors for NTRU lattices, and we leave it as
an interesting question to investigate in future.

Using approximate trapdoors in the advanced lattice cryptosystems. Finally, let
us briefly mention the possible applications of the approximate trapdoors in the
cryptosystems built from the dual-Regev approach [1,19,31,34] and the GGH15
approach [17,18,21,30,35,52].

To use approximate trapdoors in the schemes based on the dual-Regev app-
roach, we need to sample the LWE secret term with a small norm instead of
from the uniform distribution to maintain the correctness of the schemes. For
many of these schemes, the security analyses require the extensions of the Bonsai
techniques in the approximate setting. We leave the extensions to future works.

For the schemes based on the GGHI15-approach, the correctness of the
schemes holds without any changes. The security also holds, except for the
schemes in [21] which requires the extension of the Bomsai techniques. Let
us remark that the saving in the dimension m is of significant importance to
the applications built on the GGH15 graded encoding scheme (implemented in
[20,37]). In those applications, the modulus ¢ is proportional to m? (where d € N
is the number of “levels” of the graded encodings; larger d supports richer func-
tionalities). So reducing the dimension m would dramatically reduce the overall
parameter.

Organizations. The rest of the paper is organized as follows. Section2 pro-
vides the necessary background of lattices. Section 3 provides the definition and
the hardness reductions of the approximate ISIS problem. Section4 presents
the approximate gadget trapdoors. Sectionb provides an instantiation of the
hash-and-sign signature scheme under the approximate trapdoor, with concrete
parameters.

2 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as
A) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
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security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over \.

When a variable v is drawn uniformly random from the set S we denote
as v «— U(S). We use ~; and =, as the abbreviations for statistically close
and computationally indistinguishable. For two distributions Dj, Dy over the
same support X, we denote Dy ~ D5 to denote that each = € X has D;(z) €
[1 £¢]Dy(x) and Do(x) € [1 £ e]D1(z).

Let R, Z, N be the set of real numbers, integers and positive integers. Denote
Z/qZ by Z4. For n € N, [n] := {1, ...,n}. A vector in R™ (represented in column
form by default) is written as a bold lower-case letter, e.g. v. For a vector v,
the i*" component of v will be denoted by v;. For an integer base b > 1, we
call a positive integer’s “b-ary” decomposition the vector (qo,q1,...,qx—1) €
{0,...,b— 1}* where k := [log, q], and ¢ = >_ ¢;b".

A matrix is written as a bold capital letter, e.g. A. The i** column vector
of A is denoted a;. The length of a vector is the £,-norm ||v|, := (3] v?)¥/P,
or the infinity norm given by its largest entry ||v||o := max;{|v;|}. The length
of a matrix is the norm of its longest column: ||A||, := max; ||a;||,. By default
we use fo-norm unless explicitly mentioned. When a vector or matrix is called
“small” or “short”, we refer to its norm but not its dimension, unless explicitly
mentioned. The thresholds of “small” or “short” will be precisely parameterized
in the article when necessary.

2.1 Linear Algebra

Let {e;}!_; be the canonical basis for R", with entries §(j, k) where 6(j,k) =1
when j = k and 0 otherwise. For any set S C R", its span (denoted as span(S))
is the smallest subspace of R™ containing S. For a matrix, M € R"*™ _its span is
the span of its column vectors, written as span(M). We write matrix transpose
as Mt. Let B denote the Gram-Schmidt orthogonalization of B. The GSO of
an ordered basis B = [by, ..., by] is assumed to be from left to right, b = b1,
unless stated otherwise.

Recall M’s singular value decomposition (SVD), i.e. M = VDW € R"*™
where V. € R™ " along with W &€ R™*™ are unitary, and D € R"*™ is a
triangular matrix containing M’s singular values. Further, let ¢ = min{n,m}
and D, = diag(sy, ..., sq) be the diagonal matrix containing M’s singular values
s; = 8;(M). Throughout the paper, we are concerned with random, subgaussian
[61] matrices M with {s; > ... > s, > 0}. Then, D = D, when n = m,

D = [D, 0] when m > n, and D = []?)q in the case m < n.

A symmetric matrix X € R"*™ is positive semi-definite if for all x € R,
we have x!Xx > 0. It is positive definite, X > 0, if it is positive semi-definite
and x!¥x = 0 implies x = 0. We say Xy > Xy (>) if ¥} — Xy is positive-
(semi)definite. This forms a partial ordering on the set of positive semi-definite
matrices, and we denote X > ol often as X~ > « for constants a € RT. For any
positive semi-definite matrix X, we write v/ X to be any full rank matrix T such
that X = TT!. We say T is a square root of X. For two positive semi-definite
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matrices, Yy and Yo, we denote the positive semi-definite matrix formed by their
block diagonal concatenation as X7 @ X5. Let M* denote Hermitian transpose.
The (Moore-Penrose) pseudoinverse for matrix M with SVD M = VDW is
MT = WD'V* where D is given by transposing D and inverting M’s nonzero
singular values. For example, T = sI and T = s~ 'I for a covariance X = sI.
(An analogous T+ = T~! is given for the non-spherical, full-rank case X > 0
using X’s diagonalization.)

2.2 Lattices Background

An n-dimensional lattice A of rank k < n is a discrete additive subgroup of R™.
Given k linearly independent basis vectors B = {by,...,b; € R"}, the lattice
generated by B is

k
A(B) = A(by, ...,b) = {D _a; - bj,x; € Z}.
=1

Given n,m € N and a modulus ¢ > 2, we often use g-ary lattices and their
cosets, denoted as

for A € Z*™, denote AT (A) or AJ(A) as {x €Z™:A-x=0 (mod q)};
for A € Zy*™, w € Zy, denote AL(A)as {x€Z™: A-x=w (modq)}.

Gaussians on lattices. For any s > 0 define the Gaussian function on R™ with
parameter s:

Vx € R", ps(x) = e lxl*/s*

For any ¢ € R", real s > 0, and n-dimensional lattice A, define the discrete
Gaussian distribution D4 s as:

ps(x)

Atc, Dypes(x)= LX)
VXE +C7 A+c, (X) ps(A+C)

The subscripts s and ¢ are taken to be 1 and 0 (respectively) when omitted.

For any positive semidefinite ) = T - T?, define the non-spherical Gaussian
function as

Vx € span(T) = span(X), pr(x) = e T x

and pr(x) = 0 for all x & span(X). Note that pr(-) only depends on X but not
the specific choice of the T, so we may write pr(-) as p /5(-).

For any ¢ € R"™, any positive semidefinite ), and n-dimensional lattice A such
that (A 4 ¢) Nspan(X) is non-empty, define the discrete Gaussian distribution

Dz a8

py5(x)
VxeA+e, D = Y=
X ¢ Dyievs(®) ps(A+c)

Smoothing parameter. We recall the definition of smoothing parameter and some
useful facts.
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Definition 1 (Smoothing parameter [44]). For any lattice A and positive
real € > 0, the smoothing parameter n.(A) is the smallest real s > 0 such that

p1/s(A"\{0}) <'e.

Notice that for two lattices of the same rank A; C A, the denser lattice
always has the smaller smoothing parameter, i.e. n.(A2) < n.(4;).

We will need a generalization of the smoothing parameter to the non-spherical
Gaussian.

Definition 2. For a positive semi-definite X = TT?, an € > 0, and a lattice A
with span(A) C span(X), we say n.(A) < VI if n(TTA) < 1.

When the covariance matrix X > 0 and the lattice A are full-rank, VX >
n:(A) is equivalent to the minimum eigenvalue of X, A, (%), being at least

UHCOR
Lemma 1 ([44]). For any n-dimensional lattice A of rank k, and any real € > 0,
1e(A) < Ak(A) - VIog(2k(1 + 1/€)) /7.

Lemma 2 ([44]). Let A be a lattice, ¢ € span(A). For any X > 0, if VX > n.(A)
for some € > 0, then

1—e€
pstdtore [ 1o s
The following is a generalization of [31, Corollary 2.8] for non-spherical Gaus-
sian.

Corollary 1 (Smooth over the cosets). Let A, A" be n-dimensional lattices
s.t. A" C A. Then for any € > 0, VX > n.(A"), and c € span(A), we have

A(Dy oz mod A, U(Amod A)) < 2¢

Lemma 3 ([44,49]). Let B be a basis of an n-dimensional lattice A, and let
5 > ||BJ - w(logn), then Prx—p, [[|x]| > s-/nVx = 0] < negl(n).

Linear Transformations of Discrete Gaussians. We will use the following general
theorem, implicitly used in [15,42,43], regarding the linear transformation, T, of
a discrete Gaussian. It states that as long as the original discrete Gaussian over
a lattice A is smooth enough in the lattice intersect the kernel of T (ANker(T)),
then the distribution transformed by T is statistically close to another discrete
Gaussian.

Theorem 1 ([41]). For any positive definite X, vector c, lattice coset A :=
A+a C c+span(X), and linear transformation T, if the lattice A = ANker(T)
satisfies span(Ar) = ker(T) and n.(Ar) < VE, then

€

T(DA,C,\/E) ~ DTA,Tc,T\/f
where € = 2¢/(1 — €).
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We remark that if T is injective (i.e. ker(T) is trivial), then T(D, . /5) =
DTA,Tc,T\/f :

Let us also remark that at the time of writing this article, the following lemma
(which is a special case of Theorem 1) has already been proven in [25]. This
lemma is suitable for all of our proofs using a non-injective linear transformation
of a discrete gaussian.

In what follows, the max-log distance between two distributions with the

same support S is App (X, Y) = maxgegs | log X(s) — log Y(s)| [45].

Lemma 4 (Lemma 3, [25]). Let T € Z"*™ such that TZ™ = Z" and A+(T) =
{x €Z™ : Tx = 0 € Z"}. Let ¥ = TT!. For e € (0,1/2), ¢ = € + O(?),
r > ne(A(T)), the maz-log distance between T - Dgm . and D, . s is at most
4e.

2.3 Gadgets, or G-Lattices

Let G = I,®g" € Z2*"* with g’ = (1,b,...,b"" 1), k = [log, ¢]. G is commonly
referred to the gadget matrix. The gadget matrix’s g-ary lattice, Aql(G), is the
direct sum of n copies of the lattice Aj-(gt). Further, Aj- (g?) has a simple basis,

b q0

B,— | 1
b qr—o
—1gr

where (qo,...,qx—1) € {0,1,...,b—1}* is the b-ary decomposition of the modu-
lus, ¢. When ¢ = b*, we cheat by having g0 =q1 = ... = qu—2 = 0 and g,_; = b.
Either way, the integer cosets of Aé‘ (g?) can be viewed as the syndromes of g’ as
a check matrix, in the terminology of coding theory. These cosets are expressed
as A (g") = {x € Z" : g'x = v mod ¢} = Ay (g")+u where u can be any coset
representative. A simple coset representative of A} (g?) is the b-ary decompo-
sition of u. The integer cosets of /qu(G) are expressed through the direct-sum
construction, A4 (G) = Ay, (g")®. .. A5 (g") whereu = (us,...,u,) € Z7. We
call G a gadget matrix since the following problems, SIS and LWE, are easily
solved on the matrix G [42].

2.4 SIS, LWE, and the Trapdoor

We first recall the short integer solution (SIS) problem.

Definition 3 (SIS [2]). For any n,m,q € Z and 8 € R, define the short integer
solution problem SIS, m g5 as follows: Given A € Zy*™, find a non-zero vector
x € Z™ such that ||x|| < 5, and

Ax =0 mod gq.
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Definition 4 (ISIS). For anyn,m,q € Z and 5 € R, define the inhomogeneous
short integer solution problem SIS, ;. 4.5 as follows: Given A € Zy*™,y € Zy,
find x € Z™ such that ||x|| < B, and

Ax =y mod g.

Lemma 5 (Hardness of (I)SIS based on the lattice problems in the
worst case [2,31,44]). For any m = poly(n), any 8 > 0, and any sufficiently
large ¢ > B - poly(n), solving SIS, 1m.q.3 07 ISISy, m g8 (where y is sampled uni-
formly from ZZ;) with non-negligible probability is as hard as solving GapSVP,
and SIVP, on arbitrary n-dimensional lattices with overwhelming probability, for
some approzimation factor -y = [3 - poly(n).

All the (I)SIS problems and their variants admit the Hermite normal form

(HNF), where the public matrix A is of the form [I,, | A’] where A’ € ng(m_").
The HNF variant of (I)SIS is as hard as the standard (I)SIS. This can be seen by
rewriting A € Zy*™ as A =: [A; | Ag] = Ay - ]I, | ATl Ay (we always work
with n, ¢ such that A, « U(Zy*") is invertible with non-negligible probability).

Learning with errors. We recall the decisional learning with errors (LWE) prob-
lem.

Definition 5 (Decisional learning with errors [50]). For n,m € N and
modulus q > 2, distributions for secret vectors, public matrices, and error vectors
0,m,x C Zq. An LWE sample is obtained from sampling s «— 6", A «— 7™>*™,
e — x™, and outputting (A,y' :=s'A + e’ mod q).

We say that an algorithm solves L\WE,, 1, 46,7, if it distinguishes the LWE
sample from a random sample distributed as 7"*™ X U(qu) with probability
greater than 1/2 plus non-negligible.

Lemma 6 (Hardness of LWE based on the lattice problems in the
worst case [16,47,48,50]). Given n € N, for any m = poly(n), ¢ < 2PV,
Let 0 = m = U(Zy), x = Dz, where s > 2y/n. If there exists an efficient (pos-
sibly quantum) algorithm that breaks L\WE,, 1, ¢ 0.7y, then there exists an effi-
cient (possibly quantum) algorithm for solving GapSVP., and SIVP, on arbitrary
n-dimensional lattices with overwhelming probability, for some approximation
factor v = O(nq/s).

The next lemma shows that LWE with the secret sampled from the error
distribution is as hard as the standard LWE.

Lemma 7 ([10,16]). For n,m,q,s chosen as was in Lemma 6,
LWE,. 1n.q,D2..,U(24),Dz.. 5 as hard as L\WE,, ,,, ; v(z,),0(z,),Ds.. for m' < m —
(16n + 4loglog q).

Trapdoor. A trapdoor for a public matrix A € Zy*™ is a string that allows its
owner to efficiently solve both the (I)SIS and LWE problems w.r.t. A.
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3 The Approximate Trapdoor for Ajtai’s Function

Given a matrix A € Zy*™, define an approrimate trapdoor of A as anything
that allows us to efficiently solve the approximate version of the ISIS problem
w.r.t. A. We first define the approximate ISIS problem.

Definition 6 (Approximate ISIS). For any n,m,q € N and o, €
R, define the approximate inhomogeneous short integer solution problem
Approx.ISIS, m .05 as follows: Given A € Zy*™, y € Zy, find a vector x € Z™
such that ||x|| < B8, and there is a vector z € Z" satisfying

lz]| <a  and Ax=y+z (mod q).

Let us remark that the approximate ISIS is only non-trivial when the bounds
a, 3 are relatively small compared to the modulus ¢. Also, our definition chooses
to allow the zero vector to be a valid solution, which means when ||y|| < «, the
zero vector is trivially a solution. Such a choice in the definition does not cause
a problem in the application, since the interesting case in the application is to
handle all the y € Zy, or y sampled uniformly random from Zj.

Definition 7 (Approximate trapdoor). A string 7 is called an (a,f3)-
approximate trapdoor for a matriz A € Z?*™ if there is a probabilistic poly-
nomial time algorithm (in n, m, logq) that given 7, A and anyy € Ly , outputs
a non-zero vector x € Z™ such that ||x|| < B, and there is a vector z € Z"
satisfying

lz]| <a  and Ax=y+z (mod q).

3.1 Hardness of the Approximate ISIS Problem

To make sense of the approximate trapdoor, we argue that for those who do
not have the trapdoor, the approximate ISIS problem is a candidate one-way
function under proper settings of parameters.

First, we observe a rather obvious reduction that bases the hardness of solv-
ing approximate ISIS (given an arbitrary target) on the hardness of decisional
LWE with low-norm secret (e.g. when the secret is sampled from the error dis-
tribution). In the theorem statement below, when the norm symbol is applied
on a distribution D, i.e. ||DJ|, it denotes the lowest value v € RT such that
Pra—pl||d|l < v] > 1 — negl()).

Theorem 2. For n,m,q € Z, o, 3 € R", 0, be distributions over Z such that
q > 4([|0]] - (a+ 1)+ [[0"]| - - V/n+[[x™| - B-v/m). Then L\WE,, 1 40,U(z,)x <p
Approx.ISIS;, m g.q,8-

Proof. Suppose there is a polynomial time adversary A that breaks
Approx.ISIS,, m g.,3, We build a polynomial time adversary B that breaks deci-
sional LWE.

Let r = [a] + 1. Given an LWE challenge (A,w) € Z3*™ x Z', where
w is either an LWE sample or sampled uniformly from Z;'. B picks a vector
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y = (r,0, ...,O)t € Zy, sends A and y to the adversary A as an approximate

ISIS challenge. A replies with x € Z™ such that ||x|| < §, and there is a vector
z € 7" satisfying

|zl <«  and Ax=y+z (mod q).

Note that x # 0 since ||y|| > a.
B then computes v := (w,x). If w! = s'A + e’ for s — 0", e < x™, then

v=(s'A+e)x=s(y+z)+ex =
ol < [I0]] -7+ 10" - a- VR + [Ix™]] - B+ vVm < /4.
Otherwise v distributes uniformly random over Z,. So B can compare v with

the threshold value and wins the decisional LWE challenge with probability 1/2
plus non-negligible.

Alternatively, we can also prove that the approximate ISIS problem is as hard
as the standard ISIS. The reductions go through the HNFs of the ISIS and the
approximate ISIS problems. All the reductions in the following theorem works
for uniformly random target vectors.

Theorem 3. ISIS;, nymq8 =p APProx.ISIS, m g.a+6,85 1S1Snntmgats  <p
ApprOX.lSlSn,m,q,aﬂ'

Proof. We will show ISIS = HNF.ISIS = HNF.Approx.ISIS = Approx.ISIS under
proper settings of parameters.

Recall that ISIS,, 1, 4,3 = HNF.ISIS, ;. 4.8 as explained in the preliminary.
Also, HNF.ISIS,, ;. 4.8 =>p HNF.Approx.ISIS,, 1, 4.0, for any a > 0 by definition.
It remains to show the rest of the connections.

Lemma 8. HNF.ISIS,, 1, ¢.0+8 <p HNF.Approx.ISIS;, 1, q.a.8-

Proof. Suppose there is a polynomial time algorithm A that solves HNF.
Approx.ISIS;, 1. q.0,3, We build a polynomial time algorithm B that solve
HNF.ISIS;, m.q,a+5- Given an HNF.ISIS instance [I,, | A] € Zy*™, y, B passes
the same instance to A, gets back a vector x such that

I,|A]l-x=y+2z (mod q).

where ||x|| < 3, ||z|]] < a. Now write x =: [x} | x4]* where x; € Z", x5 € Z™.
Then x’ := [(x; — z)! | x}]? satisfies

1. |A] - x"=y (mod g),
and ||x'|| < a + 8. So x’ is a valid solution to HNF.ISIS.
Lemma 9. HNF.Approx.ISIS,, n4m.q,a,8 <p Approx.ISIS, m ¢.a.8-

Proof. Suppose there is a polynomial time algorithm A that solves Approx.
ISIS;, m,q,0,8, We build a polynomial time algorithm B that solves HNF.Approx.

11 gy Given [, | A] € Zg ™™y € Z? as an HNF.Approx.ISIS
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instance, B passes A € Z;*™, y to A, gets back a short vector x € Z™. Then
[0% | x']* is a valid solution to the HNF.Approx.ISIS instance.

Lemma 10. HNF.Approx.ISIS,, 1 4+m.q.a.8 =p APProx.ISIS;, m . q.0+8,8-

Proof. Suppose there is a polynomial time algorithm A that solves HNF.
Approx.ISIS,, 1 4+m.q.a,3, We build a polynomial time algorithm B that solves
Approx.ISIS;, i g,a+5,8- Given an Approx.ISIS instance A € Zy*™, y € Z", B

passes [I, | A] € ZZX(ner), y as an HNF.Approx.ISIS instance to A, gets back

an answer x € Z™1t" such that
I,|A]l-x=y+2z (mod q), (2)

where ||x[| < 8, ||z[| < a.
Now write x =: [x} | x]* where x; € Z", x5 € Z™. Rewriting Eq. (2) gives

Axs=y+z-x (modqg),
so Xp is a valid solution to Approx.ISIS, ,.q,0+8,3-

Theorem 3 then follows the lemmas above.
The following statement immediately follows the proof of Lemma 10.

Corollary 2. An («, 8)-approximate trapdoor for [I | A] is an (o + 3,0)-
approzimate trapdoor for A.

4 Approximate Gadget Trapdoor

We present an instantiation of an approximate trapdoor based on the gadget-
based trapdoor generation and preimage sampling algorithms of Micciancio and
Peikert [42] (without the tag matrices). In short, we show how to generate a
pseudorandom A € Zy*™ along with an approximate trapdoor R with small
integer entries.

In the rest of this section, we first recall the exact G-trapdoor from [42], then
present the approximate trapdoor generation algorithm and the approximate
preimage sampling algorithm. Finally we show that the preimage and the error
distributions for uniformly random targets are simulatable.

4.1 Recall the G-Trapdoor from [42]

Let b > 2 be the base for the G-lattice. Let ¢ be the modulus, k = [log, ¢]. b
is typically chosen to be 2 for simplicity, but often a higher base b is used for
efficiency trade-offs in lattice-based schemes.

Recall the gadget-lattice trapdoor technique from [42]: the public matrix is

A =[A|G — AR]
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where G is the commonly used gadget matrix, G = I, ® gi, gl :=
(1,b,...,bF"1), and R is a secret, trapdoor matrix with small, random entries.
A is either statistically close to uniformly random or pseudorandom, depending
on the structure of A and the choice of x (in the pseudorandom case y C Z is
chosen to be a distribution such that LWE,, ,, ; \ v(z,).x 18 hard). In this paper
we focus on the pseudorandom case since the resulting public matrix A and
preimage have smaller dimensions.

In order to sample a short element in AL (A), we use the trapdoor to map
short coset representatives of Aé‘(G) to short coset representatives of Aé‘(A) by

the relation
NHEE

Using the trapdoor as a linear transformation alone leaks information about the
trapdoor. Therefore, we perturb the sample to statistically hide the trapdoor. Let
RR!R!

R I
at least 1: (A (G)). The perturbation can be computed offline as p — Dy 5 -

P
We then sample a G-lattice vector in a coset dependent on p as z < D 1 (q).»

and v =u— Ap € Z;. Finally, the preimage is set to be

X, be a positive definite matrix defined as X, := s°I — o> [ ] where ¢ is

Py— + R
y:=p Il%

4.2 The Algorithms of the Approximate G-Trapdoor

As mentioned in the introduction, the main idea of obtaining an approximate
trapdoor is to adapt the algorithms from [42] with a gadget matrix without the
lower-order entries. Let 0 < I < k be the number of lower-order entries dropped
from the gadget vector g € Z’;. Define the resulting approximate gadget vector
as £ = (b, 6%, b- 1)t € Z8F D Let w = n(k — 1) be the number of columns
of the approximate gadget F := I, ® f* € Z"*%. Then the number of columns
of A will be m :=2n + w.

Once we replace the gadget matrix G with its truncated version, F, our
approximate trapdoor generation and approximate preimage sampling algo-
rithms match the original gadget-based algorithms. The generation and preimage
algorithms are given as Algorithms 2 and 3, respectively. Algorithm 1 represents
our approximate F-sampling algorithm. It simply runs the G-lattice preimage
sampling algorithm and drops the first [ entries from the preimage. The covari-
ance of the perturbation in Algorithm 3 is chosen as

RR'R
¥, =81, —o? [ R I]
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Algorithm 1: Gsamp.CuT(v, o)

Input: veZy, 0 € Rt

Output: z € Z*~
1 Sample x € Z* from DA# (gt),0
2 Let z be the last k — [ entries of x
3 return z.

Algorithm 2: APPROX. TRAPGEN,

Algorithm 3: APPROX.SAMPLEPRE.

Input: Security parameter A
Output: matrix-approximate
trapdoor pair (A, R).
1 Sample a uniformly random
A —Uzmm).
2 Let A:=[I,,A]
3 Sample the approximate
trapdoor R «— x2"*v,
4 Form A := [A|[F — AR]| € Z}*™.
5 return (A R).

Input: (A, R, u,s) as in Thm. 4.
Output: An approximate preimage
of u for A,y € Z™.
Sample a perturbation
b~ DZ"”,\/fp'
2 Form v=u— Ap € Z;.
Sample the approximate gadget

[y

preimage z € Z"* D ag
z «— Gsamp.Cur(v, o).

4 Formy::p+|:];{}z€Zm.

5 return y.

Fig. 3. Pseudocode for the approximate trapdoor sampling algorithm in Subsect. 4.3.
We abuse notation and let GsAMP.CUT(v, o) denote n independent calls to Algorithm
1 on each entries of v € Zy, and then concatenate the output vectors. The distribution
X € Z is chosen so that LWE,, ,, 4 x.u(z,),x is hard.

The results of this section are summarized in the following theorem.

Theorem 4. There exists probabilistic, polynomial time algorithms APPROX.
TRAPGEN(-) and APPROX.SAMPLEPRE(:, -, , ") satisfying the following.

1. ApPROX.TRAPGEN(n) takes as input a security parameter n and returns a

matriz-approzimate trapdoor pair (A, R) € Zy*™ x Z2nxn(

k—1)

2. Let A be generated with an approximate trapdoor as above and let
APPROX.A™1(:) denote the approvimate preimage sampling algorithm,

APPROX.SAMPLEPRE(A, R, s, -).
tically indistinguishable:

{(A7y7 u7 e) :

and

u— U(ZZ),

y < APPROX.A ! (u),

The following two distributions are statis-

e=u—Ay mod ¢}

{(A’Yau7e) :y(_DZmy&e(_DZ'n.’o. (b2l—1)/(b2—1) mOd qvu:Ay—'_e mOd q}
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for any o > Vb2 +1-w(/logn) and s = vb* + 1585(23)716(2"1“)1. Further-
more, in the second distribution, A is computationally indistinguishable from
random assuming L\WE,, ,, ¢\ v(z,).x-

4.3 Simulate the Preimage and Error Distributions

This subsection is dedicated to proving Theorem 4. For the convenience of expla-
nation, in this subsection we redefine the gadget G by permuting the columns
so that the columns of smaller entries are all on the left, i.e.

G = [M|F] := I, ® (1,b,...,0'"1)|F]

Let x = (x1,%2) € Z™ x Z"+=D denote the short preimage of v := u — Ap
(mod ¢q) under the full gadget matrix G, i.e. Gx = v (mod gq).

The first attempt of proving Theorem 4 is to first show that the
joint distribution of (p,x) produced in Algorithm 3 is statistically close to
D, LIAGL /T B0 T for any u € Zy, then apply the linear transformation the-

orem on (p,x) to obtain the distributions of the preimage y and the error term
e. However, applying the linear transformation theorem directly on the lattice
coset AL[A, G] leads to a technical problem. That is, the intermediate lattice
intersections At required in Theorem 1 have large smoothing parameters, which
means even if we go through that route, the Gaussian width of the resulting
preimage would blow up significantly.

Instead, we work only with a uniformly random target u instead of an arbi-
trary target, and directly construct the simulation algorithm. We show that if
the simulation algorithm produces (p,x) «— D, ST then it is able

to simulate the distributions of y and e correctly without using the trapdoor.
Now the support of (p, x) is the integer lattice Z™*"*. Working with the integer
lattice is important for two reasons. First, it allows us to treat x; and xo as
statistically independent samples; and second, it gives us short vectors in the
kernels summoned when using Lemma 4 or Theorem 1.

Formally, let e = negl(A) > 0. We first prove three lemmas.

Lemma 11. For any o > n.(A(G)), the following two distributions are sta-
tistically close.

1. First sample v « U(Zy), then sample X < D1 (q),o, output (x,v);
2. First sample X < Dgnr ,, then compute v = Gx (mod q), output (x,v).

Proof. The proof follows directly from det(A;-(G)) = ¢" and Corollary 1. Alter-
natively, one can use two applications of the fact p,.(I'+c) € (1+e)o™/det(I") for

any r > n:(I"). The latter yields Pr{Process returns x} € (}fi, }fz) Dynk 5 (X).

! We remark that the ratio L&)
S2n (R>

distributions for R’s entries [51].

is a small constant for commonly-used subgaussian
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Lemma 12. The following random processes are statistically close for any
o > VbP+1- wKlogn) > n.(g"): sample x1 — Dz, and return e =

[1, b,..., blil]Xl; or, return e «— DZ,U 2 —1)/(b2—1)

Proof. We use Lemma 4 or Theorem 1 where [1,b, ..., b'~!] is the linear transfor-
mation. Notice that the kernel of [1,b, ..., b'~!] is the linear span of [by, ..., b;_1]
where

b, = (b,—1,0,...,0),by = (0,b,—1,0,...,0),...,b;_1 = (0,...,0,b,—1) € Z.

The support of x;, Z!, contains the (I — 1)-dimensional lattice, I' = Z' N
Ker([1,b,...,b71]), spanned by [by,...,b;_1]. Further, ¢ > n.(g’) implies
o is larger than the smoothing parameter of I' since ||b;|| < Vb2 +1 for
i = 1,...,1 — 1. Finally by routine calculation on the Gaussian width (and

support), we have e = [1,b,..., b 1|x; =, D,, ey

R

n(k—1)
transformation representing the convolution step:

Let R’ := [I } Next, we analyze the distribution given by the linear

y=p+ R = 1R (P)

for (p,x3) « DZm+"<k—l>,\/m' Let L := [L,,|]R/] in Lemma 13 and its
proof below.

I
Lemma 13. For /X, ®c?L,—yy > 17 (/1 <_IR ))), LDgmne—),

n(k—1

NeRer=) e is statistically close to Dzm s. Further, /X, ® c?L,g_;y >
!
Me </1 ( IR >) is satisfied when s > /b2 + 51 (RR)) Ne(Z7F).

—AIn(k-1)

Proof. The range and covariance are immediate. Next, we use Theorem 1. The
kernel of L is given by all vectors (a,b) where b € R"*~) and a = —R/b.
The integer lattice Z™T™(*~D contains all such integer vectors so Ay, :=

!/
Zm+n= M ker(L) spans L’s kernel. So ( > is a basis of Ay,. Given

R/
that /X, © 0L, k—1y > e (A <_

Lyk—p

/
Lastly, the implication that /X, ® UQIn(k,l) > ne (/1 ( IR )) whenever
- )

n(k—1
s = Vb + (R) ne(Z™*) is proved in Appendix A.

—In—p
>>7 the lemma follows Theorem 1.
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We are now ready to prove Theorem 4.
Proof. (of Theorem 4) The proof’s overview is given via the following. Let

- p Dzm_’\/zfp be a perturbation,

u € Z; be the input target coset,

— v=u-— Ap € Zj be the G-lattice coset,

~ X = (X1,X2) < Dznr , (G-lattice randomized over uniform coset v and o >
ne(g?), Lemma 11)

- e« DZn’a D)D) be the concatenation of the errors, e, in Lemma 12,

— and y < Dzm , as in Lemma 13.
The proof is best summarized via the sequence of hybrids below:

u=v+Ap
~; Gx+ Ap
= Mx; +Fxs; 4+ Ap
~s; e+ Fxy;+ Ap
=e+ AR'xy, + Ap

:e—i—AL(p)
X2

~g e+ Ay.

The first =2, is through swapping the order of sampling u and v uniformly
at random, then using the fact that ¢ > 7.(G) (Lemma 11). The next =, is
given by Lemma 12. Finally, the last =, is given by concatenating (p,x2) «—

DZm+n(k—l)7\/m and using Lemma 13.
We remark that the key in the equivalences above is that we can separate x

into two statistically independent samples, x; and x2, concatenate p and xo, then
perform two instances of Theorem 1 (Lemma 4) on the statistically independent
samples L(p,x3) and Mx;. The statistical independence of x; and x5 is due
to the orthogonality of Z™* and the same cannot be said if x ~ Dji(a),o fora
fixed v (via a fixed u). This difference highlights why we must argue security for
a uniformly random input coset u (and v).

Real distribution: The real distribution of {(A,y,u,e)} is:
A, u — U(ZZ), P — Dzmv\/Fp’ v:i=u-Ap, x = (X1»X2) — DA#(G),(T?
e = Mxq, and y = L(p, x2).

Hybrid 1: Here we swap the order of sampling u and v. Let v «— U (Zg),
P~ D,, ;- u=v+Ap. We keep x,e, and y unchanged: x = (x;,X2)
Dj1(G),0r € = Mxy, and y = L(p, x2). Then, the real distribution and Hybrid
1 are the same.

Hybrid 2: Instead of sampling a uniform v € Z7 and a G-lattice sample x =
(x1,%2) = Dpi(@),0, We sample X « Dznk , and let v = Gx € Zg. The rest
remains the same:
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A, x « Dgrg, v=Gx,p— D, u = v+ Ap, e = Mxy, and

k) \/ 2;77
v = L(p, x2). Lemma 11 implies Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: We combine p,xs into the joint distribution (p,x2) <«

Dzm+n(k—l)’ /Ep@O'QI:
A7 (p7X2) — Dszrn(k—l)’\/ma € = MXl, y = L(p7x2)a v = GX) and
u=v+ Ap.

Hybrid 4: Here we apply the linear transformation theorem on L and M.

A e Danﬁ CEECE AR Dgm s, v=Ay+e.
Lemmas 12 and 13 imply Hybrids 3 and 4 are statistically close.

Final distribution: Sample A « U(Z;*™) and keep the rest of the vectors
from the same distribution as Hybrid 4 (notice that the trapdoor R of A is
not used to sample p, x, e and y). The final distribution is computationally

indistinguishable from Hybrid 4 assuming LWE,, ,, 4 v v(z,).x-

5 Hash-and-Sign Signature Instantiated with the
Approximate Trapdoor

We spell out the details of the hash-and-sign signature scheme from [31] instan-
tiated with the approximate G-trapdoor instead of an exact trapdoor.

Recall the parameters from the last section. We set k = [log, ¢, set | to
be the number of entries dropped from the G-trapdoor such that 1 <[ < &k
and m = n(2+ (k —1)). Let 0,5 € R" be the discrete Gaussian widths of the
distributions over the cosets of A} (G) and A (A) respectively. Let x be the
distribution of the entries of the trapdoor R chosen so that LWE,, ,, ¢\ v(z,),x 18
hard.

Construction 5. Given an approximate trapdoor sampler from Theorem 4, a
hash function H = {H)y : {0,1}* — Ry} modeled as a random oracle, we build
a signature scheme as follows.

~ Gen(1*): The key-generation algorithm samples A € Zyg*™ together with its
(o, B)-approzimate trapdoor R from APPROX.TRAPGEN(1*). Let the range
Ry of H be Zy. 1t outputs A as the verification key, keeps R as the secret
stgning key.

- Sig(R, m): The signing algorithm checks if the message-signature pair (m, X, )
has been produced before. If so, it outputs x,, as the signature of m; if
not, computes u = H(m), and samples an approximate preimage X, —
APPROX.SAMPLEPRE(A, R, u, s). It outputs x,,, as the signature and stores
(m,x;,) in the list.

— Ver(A,m,x): The verification algorithm checks if ||x|| < £ and ||A - x —
H(m)|| < a. If so, it outputs accept; otherwise, it outputs reject.
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5.1 Security Analysis

In the security analysis we use the following property on the distributions pro-
duced by APPROX.SAMPLEPRE proven in Theorem 4. That is, the preimage and
error term for a random target can be simulated from distributions denoted by
Dyre and D,y Both of them are independent of the public key A and the secret
key R.

To prove that the signature satisfies the strong EU-CMA security, we need
an additional “near-collision-resistance” property for Ajtai’s function, which can
be based on the standard SIS assumption. Let us remark that without this
property, we can still prove the signature scheme satisfies static security based
on the hardness of the approximate ISIS problem, which is tighter by a factor
of two according to Theorem 3.

Lemma 14 (The near-collision-resistance of Ajtai’s function). For any
n,m,q € N and o, € R. If there is an efficient adversary A that given A —
U(Zy*™), finds x1 # xg € Z™ such that

Ix1]| < B  and x| <8 and |JAx; —Axs (mod q)| < 2
Then there is an efficient adversary B that solves SIS, j,1m q.2(a+8)-

Proof Suppose B gets an HNF.SIS,, ,, 1, 4 2(a+) challenge (which is as hard as
SIS, ntm.q,2(a+p)) With the public matrix [I,, | A], B sends A to A, gets back
X1 # X9 € Z™ such that

Ix1]| < B and |xo|| <B and |y :=Ax; — Axy (mod q)| <2«

B then sets z := [—y? | (x1 — x2)!]" as the solution. z is then non-zero and

satisfies ||z|| < 2(a+ B) and [I,, | A]z = 0 (mod q).

Theorem 6. Construction 5 is strongly existentially unforgeable under a

chosen-message attack in the random oracle model assuming the hardness of
SISn ntm.q,2a+8) @nd LWE g3 U(z,) -

Proof. Suppose there is a polynomial time adversary A that breaks the strong
EU-CMA of the signature scheme, we construct a polynomial time adversary B
that breaks the near-collision-resistance of Ajtai’s function, which is as hard as
SIS, ntm,q.2(a+p) due to Lemma 14.

To start, B sends Ajtai’s function A to A as the public key for the signature
scheme. Once A makes a random oracle query w.r.t. a message m, B samples
X « Dpre, computes u := Ax + De;y (mod ¢) as the random oracle response
on m. B then replies u to A and stores (m,u) in the random oracle storage,
(m,x) in the message-signature pair storage. Once A makes a signing query on
the message m (wlog assume m has been queried to the random oracle before,
since if not B can query it now), B finds (m,x) in the storage and reply x as
the signature. The signatures and the hash outputs produced by B are indis-
tinguishable from the real ones due to the properties of the distributions Dy
and Dy, and the assumption that a real public key is indistinguishable from
random under L\WE,, ,, ; \ v(z,).x-
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Without loss of generality, assume that before A tries to forge a signature
on m*, A has queried H on m™*. Denote the pair that B prepares and stores
in the random oracle storage as (m*,u*), and the pair in the signature storage
as (m*,x*). Finally A outputs x as the forged signature on m*. So we have
|A(x —x*) (mod ¢q)|| < 2«. It remains to prove that x # x* so as to use them
as a near-collision-pair. If m* has been queried to the signing oracle before, then
x # x* by the definition of a successful forgery; if m* has not been queried to
the signing oracle before, then x* is with high min-entropy by the settings of the
parameter, so x # x* with overwhelming probability.

5.2 Concrete Parameters

We provide a proof-of-concept implementation of the signature. Experiments
are performed over several groups of parameters using different dimensions n,
moduli ¢, bases b, targeting different security level (mainly around 80 to 90-bit
and 170 to 185-bit security). In each group of parameters, we use fixed n, ¢, b,
and compare the use of exact trapdoor (under our reference implementation)
versus approximate trapdoor. In Figs.4 and 5 we list 6 groups of parameters.

Params|Exact Approx Approx |Exact Approx Approx |[Exact  Approx Approx

n 512 512 512 512 512 512 512 512 512
[log, q1|24 24 24 20 20 20 16 16 16

b 2 2 2 2 2 2 2 2 2

l 0 12 15 0 10 12 0 7 9

T 40 40 40 10 10 10 2.6 2.6 2.6

s 38317.0 29615.3 26726.3 [8946.4 6919.8 6416.4 (2170.7 1756.3 1618.2
m 13312 7168 5632 11264 6144 5120 9216 5632 4608

x|l |4441737.7 2521387.0 2035008.5|956758.1 545470.5 464022.0{211100.9 133305.5 109339.1
[|x|lcc [184653 111909 94559 38507 25275 24762 |8848 6853 6334
llzllz |0 374014.0 2118987.6|0 94916.6 343682.9|0 11897.9 46428.4
Iz]loc |0 46895 346439 |0 13265 52789 |0 1439 7213
PK 37.50 19.50 15.00 26.25 13.75 11.25 17.00 10.00 8.00

Sig 25.68 13.53 10.51 18.87 10.01 8.29 13.16 7.83 6.30
LWE [100.0 100.0 100.0 102.8 102.8 102.8 104.7 104.7 104.7

AISIS [80.2 85.8 81.1 82.0 87.5 84.3 83.7 89.0 88.1
6 1.00685 1.00643 1.00678 |1.00670 1.00631 1.00653 |1.00658 1.00621 1.00628
k 174 193 177 180 199 188 186 204 201

Fig. 4. Summary of the concrete parameters, with base b = 2, aiming at around 80 to
90-bit security. The sizes of PK and Sig are measured in kB. 7 is the Gaussian width
of the secret matrix R. s is the Gaussian width of the preimage. “LWE” refers to the
security level of the pseudorandomness of the PK. “AISIS” refers to the security level
of breaking approximate ISIS. § and k are the variables used in the AISIS security
estimation.

Methods for security estimation. Let us first explain how we make the secu-
rity estimations. The concrete security estimation of lattice-based cryptographic
primitive is a highly active research area and more sophisticated methods
are proposed recently. Here we use relatively simple methods to estimate the



26 Y. Chen et al.

Params|Exact  Approx Approx [Exact  Approx Approx |Exact  Approx Approx

n 512 512 512 1024 1024 1024 1024 1024 1024
Mog, q][16 16 16 18 18 18 18 18 18

b 4 4 4 8 8 8 4 4 4

! 0 2 4 0 2 3 0 4 5

T 2.6 2.6 2.6 2.8 2.8 2.8 2.8 2.8 2.8

s 31142 28333 2505.6 (8861.1 7824.8 7227.9 |5118.8 4297.8 4015.5
m 5120 4096 3072 (8192 6144 5120  |11264 7168 6144

x| [223740.1 183004.9 138145.7(805772.9 604711.5 516446.3|552713.4 369981.2 311153.9
[x]lo [13320 11868 8948 (35348 28823 30435 |19274 18283 14927
lzll [0 1402.3  19807.1 [0 7316.5 54379.8 |0 29958.0 115616.4
2]l [0 174 2448 [0 905 6630 |0 3025 12070
PK [9.00  7.00 500 [1575 1125 9.00  [2250 13.50  11.25
Sig [7.62 594 445  |13.70 10.14 836  |1874 11.09  9.38
LWE 1047 1047 1047 [192.7 1927 1927 [1927 1927  192.7
AISIS [82.8 855  87.8  |165.3 1729 1749 [175.8  185.7  183.7

s 1.00664 1.00645 1.00629 |1.0036 1.00347 1.00343 |1.00342 1.00326 1.00329
k 183 192 200 462 488 495 498 532 525

Fig. 5. Summary of the concrete parameters, with base b > 4, aiming at around 80 to
90-bit and 170 to 184-bit security.

pseudorandomness of the public-key (henceforth “LWE security”), and the hard-
ness of breaking approximate ISIS (henceforth “AISIS security”). Let us remark
that our estimations may not reflect the state-of-art, but at least provide a fair
comparison of the parameters for the exact trapdoor versus the approximate
trapdoor.

LWE security depends on the choices of ¢, n, and the Gaussian width 7 of
the trapdoor R. The estimation of LWE security was done with the online LWE
bit security estimator with BKZ as the reduction model? [5].

For the approximate ISIS problem, the only direct cryptanalysis result we
are aware of is the work of Bai et al. [12], but it is not clearly applicable to the
parameters we are interested. Instead we estimate AISIS through ISIS,, 1 q,0+8
following the reduction in Lemma 8, where o and @ are the upper-bounds
of I norm of the error z and preimage x. We estimate the security level of
ISIS;, m,q,0+8 based on how many operations BKZ would take to find a vector
in the lattice A;- (A) of length a + 3. Further, we can throw away columns in
A. We choose to only use 2n columns of A as done in [14], denoted Ay, since
Minkowski’s theorem? tells us A;-(Agn) has a short enough vector. Following
[5,7], we use sieving as the SVP oracle with time complexity 2:292¥+16-4 in the
block size, k. BKZ is expected to return a vector of length §2ndet/?™ for a lat-
tice of dimension 2n. Hence, we found the smallest block size k achieving the

needed 9 corresponding to forging a signature, o‘—\%ﬂ = 4?7, Finally, we used the

heuristic § ~ (55 (wk)!/*)1/2(:=1) to determine the relation between k and §,
and we set the total time complexity of BKZ with block-size k, dimension 2n as

2 https://bitbucket.org/malb/lwe-estimator.
3 For any lattice L, A1 < /7 det(L)Y/" where  is the rank of the lattice.
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8-2n - time(SV P) = 8- 2n - 2:292k+16-4 [7 99] Here we use the “magic eight tour
number” for BKZ to keep consistency with the LWE online estimator. We have
not incorporated the more recent developments in [24] and [6] in the security
estimation.

The comparison. For an estimation of 80-bit* security, our reference implementa-
tion for the exact trapdoor under the modulus ¢ ~ 22* and base b = 2 matches
the parameters reported in [13] (the parameters in the other implementation
[14,36] are possibly measured in different ways). We also use smaller moduli and
bigger bases to reduce the size and increase the security level. The parameters
in Figs. 4 and 5 suggest that for all the choices of ¢ and b, using the approximate
gadget trapdoor by setting I = [(log;, q)/2] saves about half of the sizes in the
public key and signatures comparing to using the exact trapdoor, with even a
slight increase in the security estimation.

Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25
kB & 9.38 kB for an estimation of 184-bit security. Those are still larger than,
but much closer to the sizes for the signatures based on the rejection sampling
approach [8,11,26,40]. As a reference, the sizes of the public-key & signature for
qTESLA [8] are 4.03 kB & 3.05 kB for an estimation of 128-bit security, and
8.03 kB & 6.03 kB for an estimation of 192-bit security.
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A The Smoothing Parameter of Ap,

R c me(n(k—l))7 Ep — SQIm _ Rl(Rl)t.
Lok

Here we derive the conditions of s so that /X, © 0?L,(,—;) > nc(AL) holds,
where Ay, is the lattice generated by

Recall the notations that R’ = {

/
B = [ -R } .
In(k—l)

We do this in three steps: first we write out the dual basis of B, then we reduce

V2p ® %L, k—1) > 1e(AL) to a statement about the smoothing parameter of
7" =1 and finally we find when , /Xy ® 021, 1) > 1e(AL) as a function of s.

Dual basis, B* : Let X = X, @ 0L, ;_;). By definition, we need p(\/ft/li) <
1+ €. In general, the dual basis A* is generated by the dual basis B(B'B)~!. In
the case of Ay, we can write the dual basis as

4 When one applies our security estimate methods to Table1 of [13], one gets 82-bit
security under the A = 97, n = 512, ¢ = 2** column.
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-R/ —1
B* = R'R + 21| .
{Inwz)] [ + 2

Reducing to 7. (Z"*~1) : Next, the gaussian sum p(\/ft/li) is equal to

Z exp(—mx'(B*)! YB*x).

xcZmn(k—1)

This reduces to showing /(B*)!XB* > . (Z"*k=D).
Now we write out the matrix product (B*)!YB*,

(B')'¥B* = [R'R+20] ' [-(R)' T] ﬁf’ U‘QJ H{ } [R'R+21] "
1

= [R'R+21] " [(R))!Z,R +02I] [R'R +21] .

Before we continue, we consider the structure of the middle matrix:

s (1o f o)
= [R'R+1] (s’I-0* [R'R+1]).

Derive the condition for s: Now we will derive the condition for s so that
[RIR+21) ' [, + 0%1] [RIR +20] ' > (27D,
Claim. All invertible matrices of the form (R'R+al)! fori € Z,a € R commute.

Proof. Let QSV? be R’s singular value decomposition. Now, R'R + ol =
VDV! + V(al)V! where D = S!S = diag(s?(R)) since V,Q are orthogonal.
Equivalently, we have R'R + ol = VD,V! where D, = diag(s?(R) + a) =
S'S+ al,,. By induction, we have (R'R+al)’ = VD! V' i € Z. Finally, D, is
a diagonal matrix so D?, and D’, commute for all o, ¢’ since diagonal matrices
commute. The result follows from the orthogonality of V (V!V =T).

Claim A allows us to lower-bound the smallest eigenvalue of
(B*)'¥B* = [R'R +2I) * ([R'R +1] [T — 02 [R'R +1]] + ¢°1)
= [R'R+21] ° (S[R'R +1] — ¢’ 2R'R + (R'R)?)) .

Viewing these matrices as their diagonal matrices of eigenvalues, we see
(B*)!XB*’s least eigenvalue is lower-bounded by
2 (s3,(R) + 1) — 0?(s1(R) + 25}(R))

(s1(R) +2)? '

Next, we assume o = Vb2 + 1n.(Z") > 1.(A;7(G)) and solve for s using
Aip(s,R) = 2 (Z+0),

2 R
2 81( ) 1 2 mpn(k—1) (
> —————n:(Z —+
o= sgn(R)Jrlne( )

)\lb(s, R) =

b2+ 1)(s}(R) + 253(R))
s3,(R) + 1

nZ(Z"%).
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This is

s> Vb2t 1;(&776(2"’6).

We remark that the ratio ,Sln ((RR)) is a constant for commonly-used subgaussian

s2
S

distributions for R’s entries [51].
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Abstract. There is a well-known gap between second-preimage resis-
tance and preimage resistance for length-preserving hash functions. This
paper introduces a simple concept that fills this gap. One consequence of
this concept is that tight reductions can remove interactivity for multi-
target length-preserving preimage problems, such as the problems that
appear in analyzing hash-based signature systems. Previous reduction
techniques applied to only a negligible fraction of all length-preserving
hash functions, presumably excluding all off-the-shelf hash functions.

Keywords: Cryptographic hash functions - Preimage resistance *
Second-preimage resistance - Provable security - Tight reductions -
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1 Introduction

Define S : {0,1}**° — {0,1}*°° as the SHA-256 hash function restricted to
256-bit inputs. Does second-preimage resistance for S imply preimage resistance
for S?7

The classic Rogaway—Shrimpton paper “Cryptographic hash-function basics”
[15] shows that second-preimage resistance tightly implies preimage resistance
for an efficient hash function that maps fixed-length inputs to much shorter
outputs. The idea of the proof is that one can find a second preimage of a
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random input x with high probability by finding a preimage of the hash of x.
But this probability depends on the difference in lengths, and the proof breaks
down for length-preserving hash functions such as S.

The same paper also argues that second-preimage resistance cannot imply
preimage resistance for length-preserving hash functions. The argument, in a
nutshell, is that the identity function from {0,1}**® to {0,1}**° provides un-
conditional second-preimage resistance—second preimages do not exist—even
though preimages are trivial to find.

A counterargument is that this identity-function example says nothing about
real hash functions such as S. The identity-function example shows that there
cannot be a theorem that for all length-preserving hash functions proves preim-
age resistance from second-preimage resistance; but this is only the beginning of
the analysis. The example does not rule out the possibility that second-preimage
resistance, together with a mild additional assumption, implies preimage resis-
tance.

1.1 Contributions of This Paper

We show that preimage resistance (PRE) follows tightly from the conjunction
of second-preimage resistance (SPR) and decisional second-preimage resistance
(DSPR). Decisional second-preimage resistance is a simple concept that
we have not found in the literature: it means that the attacker has negligible
advantage in deciding, given a random input x, whether x has a second preimage.

There is a subtlety in the definition of advantage here. For almost all length-
preserving hash functions, always guessing that  does have a second preimage
succeeds with probability approximately 63%. (See Sect.3.) We define DSPR
advantage as an increase in probability compared to this trivial attack.

We provide three forms of evidence that DSPR is a reasonable assumption.
First, we show that DSPR holds for random functions even against quantum ad-
versaries that get quantum access to a function. Specifically, a g-query quantum
adversary has DSPR advantage at most 32¢%/2" against an oracle for a uniform
random hash function from {0,1}" to {0,1}". In [9] the same bound was shown
for PRE and SPR together with matching attacks demonstrating the bounds are
tight. This means that DSPR is at least as hard to break as PRE or SPR for
uniform random hash functions from {0,1}" to {0,1}".

Second, the subtlety mentioned above means that DSPR, when generalized in
the most natural way to m-bit-to-n-bit hash functions, becomes unconditionally
provable when m is much larger than n. This gives a new proof of PRE from
SPR, factoring the original proof by Rogaway and Shrimpton into two steps:
first, prove DSPR when m is much larger than n; second, prove PRE from SPR
and DSPR.

Third, we have considered ways to attack DSPR for real hash functions such
as S, and have found nothing better than taking the time necessary to reliably
compute preimages. A curious feature of DSPR is that there is no obvious way
for a fast attack to achieve any advantage. A fast attack that occasionally finds
a preimage of H(x) will occasionally find a second preimage, but the baseline is
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already guessing that = has a second preimage; to do better than the baseline, one
needs to have enough evidence to be reasonably confident that x does not have a
second preimage. Formally, there exists a fast attack (in the non-uniform model)
that achieves a nonzero advantage (by returning 0 if the input matches some
no-second-preimage values built into the attack, and returning 1 otherwise), but
we do not have a fast way to recognize this attack. See Sect. 2.3.

1.1.1 Multi-target Attacks. We see DSPR as showing how little needs to
be assumed beyond SPR to obtain PRE. However, skeptics might object that
SPR. and DSPR are still two separate assumptions for cryptanalysts to study,
that DSPR has received less study than PRE, and that DSPR could be easier to
break than PRE, even assuming SPR. Why is assuming both SPR and DSPR,
and deducing PRE, better than assuming both SPR and PRE, and ignoring
DSPR? We give the following answer.

Consider the following simple interactive game T-openPRE. The attacker is
given T targets H(1,z1),...,H(T,xr), where x1,...,zr are chosen indepen-
dently and uniformly at random. The attacker is also given access to an “open-
ing” oracle that, given i, returns x;. The attacker’s goal is to output (i, 2") where
H(i,z') = H(i,x;) and i was not an oracle query. Games of this type appear in,
e.g., analyzing the security of hash-based signatures: legitimate signatures reveal
preimages of some hash outputs, and attackers try to find preimages of other
hash outputs.

One can try to use an attack against this game to break PRE as follows. Take
the PRE challenge, insert it at a random position into a list of 7' — 1 randomly
generated targets, and run the attack. Abort if there is an oracle query for the
position of the PRE challenge; there is no difficulty answering oracle queries
for other positions. The problem here is that a successful attack could query
as many as 1" — 1 out of T positions, and then the PRE attack succeeds with
probability only 1/7. What happens if T is large and one wants a tight proof?

If T-openPRE were modified to use targets H(z;) instead of H(%,z;) then
the attacker could try many guesses for a’, checking each H(2') against all of
the targets. This generic attack is T' times more likely to succeed than a generic
attack against PRE using the same number of guesses. However, the inclusion
of the prefix i (as in [9]) seems to force attackers to focus on single targets, and
opens up the possibility of a security proof that does not quantitatively degrade
with T

One might try to tightly prove security of T-openPRE assuming security
of a simpler non-interactive game T-PRE in which the opening oracle is re-
moved: the attacker’s goal is simply to find some (i,2") with H(i,2") = H (i, x;),
given T targets H(1,21),..., H(T,xzr). This game T-PRE is simple enough that
cryptanalysts can reasonably be asked to study it (and have already studied it
without the i prefixes). However, the difficulty of answering the oracle queries
in T-openPRE seems to be an insurmountable obstacle to a proof of this type.

We show that the security of T-openPRE follows tightly from the conjunction
of two simple non-interactive assumptions, 7-SPR and T-DSPR. This shows an
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important advantage of introducing DSPR, allowing a reduction to remove the
interactivity of T-openPRE.

The advantage of SPR (and T-SPR) over PRE (and T-PRE) in answering
oracle queries inside reductions was already pointed out in [9]. The remaining
issue, the reason that merely assuming 7-SPR is not enough, is that there might
be an attack breaking PRE (and T-PRE and T-openPRE) only for hash outputs
that have unique preimages. Such an attack would never break SPR.

To address this issue, [9] assumes that each hash-function output has at
least two preimages. This is a restrictive assumption: it is not satisfied by most
length-preserving functions, and presumably it is not satisfied by (e.g.) SHA-256
for 256-bit inputs. Building a hash function that can be reasonably conjectured
to satisfy the assumption is not hard—for example, apply SHA-256, truncate
the result to 248 bits (see Theorem 11), and apply SHA-256 again to obtain a
random-looking 256-bit string—but the intermediate truncation here produces
a noticeably smaller security level, and having to do twice as many SHA-256
computations is not attractive.

We instead observe that an attack of this type must somehow be able to
recognize hash outputs with unique preimages, and, consequently, must be able
to recognize hash inputs without second preimages, breaking DSPR. Instead of
assuming that there are always two preimages, we make the weaker assumption
that breaking DSPR is difficult. This assumption is reasonable for a much wider
range of hash functions.

1.1.2 The Strength of SPR. There are some hash functions H where SPR
is easy to break, or at least seems easier to break than PRE (and 7-PRE and
T-openPRE):

— Define H(x) = 4* mod p, where p is prime, 4 has order (p — 1)/2 modulo
p, and z is in the range {0,1,...,p — 2}. Breaking PRE is then solving
the discrete-logarithm problem, which seems difficult when p is large, but
breaking SPR is a simple matter of adding (p—1)/2 modulo p— 1. (Quantum
computers break PRE in this example, but are not known to break PRE for
analogous examples based on isogenies.)

— Define H : {O,l}Qk" — {0,1}" by Merkle-Damgard iteration of an n-bit
compression function. Then, under reasonable assumptions, breaking SPR
for H takes only 2"~* simple operations. See [10]. See also [1] for attacks
covering somewhat more general iterated hash functions.

In the first example, proving PRE from SPR+DSPR is useless. In the second
example, proving PRE from SPR+DSPR is unsatisfactory, since it seems to
underestimate the quantitative security of PRE. This type of underestimate
raises the same difficulties as a loose proof: users have to choose larger and
slower parameters for the proof to guarantee the desired level of security, or
have to take the risk of the “nightmare scenario” that there is a faster attack.
Fortunately, modern “wide-pipe” hash functions and “sponge” hash functions
such as SHA-3 are designed to eliminate the internal collisions exploited in at-
tacks such as [10]. Furthermore, input lengths are restricted in applications to
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hash-based signatures, and this restriction seems to strengthen SPR even for
older hash functions such as SHA-256. The bottom line is that one can easily
select hash functions for which SPR and DSPR (and 7-SPR and T-DSPR) seem
to be as difficult to break as PRE, such as SHA3-256 and SHA-256 restricted to
256-bit inputs.

1.2 Organization of the Paper

In Sect.2 we define DSPR and show how it can be used to relate SPR and
PRE. A consequence of our definition is that a function does not provide DSPR
if noticeably more than half the domain elements have no colliding value. In
Sect.3 we show that the overwhelming majority of length-preserving hash
functions have the property that more than half of the domain elements have a
colliding value. In Sect.4 we extend the analysis to keyed hash functions. We
show in Sect.5 that DSPR is hard in the quantum-accessible-random-oracle
model (QROM). We define T-DSPR in Sect.6. We show in Sect.7 how to
use T-DSPR to eliminate the interactivity of T-openPRE. We close our work
with a discussion of the implications for hash-based signatures in Sect. 8.

2 Decisional Second-Preimage Resistance

In this section we give a formal definition of decisional second-preimage resistance
(DSPR) for cryptographic hash functions. We start by defining some notation
and recalling some standard notions for completeness before we move on to the
actual definition.

2.1 Notation

Fix nonempty finite sets X and ) of finite-length bit strings. In this paper, a
hash function means a function from X to Y.

As shorthands we write M = |X|; N = |Y|; m = log, M; and n = log, N.
The compressing case is that M > N, i.e., |X| > |V|; the expanding case is that
M < N,ie., |X| < |Y|; the length-preserving case is that M = N, i.e., |X| = |}

We focus on bit strings so that it is clear what it means for elements of X" or
Y to be algorithm inputs or outputs. Inputs and outputs are required to be bit
strings in the most common formal definitions of algorithms. These bit strings
are often encodings of more abstract objects, and one could generalize all the
definitions in this paper to work with more abstract concepts of algorithms.

2.2 Definitions

We now give several definitions of security concepts for a hash function H. We
have not found decisional second-preimage resistance (DSPR) in the literature.
We also define a second-preimage-exists predicate (SPexists) and the second-
preimage-exists probability (SPprob) as tools to help understand DSPR. The
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definitions of preimage resistance (PRE) and second-preimage resistance (SPR)
are standard but we repeat them here for completeness.

Definition 1 (PRE). The success probability of an algorithm A against the
preimage resistance of a hash function H is

Succ™ (A) X py [ g X;2" — A(H(x)) : H(z) = H(2)].

Definition 2 (SPR). The success probability of an algorithm A against the
second-preimage resistance of a hash function H is

Succy™ (A) X py (v —p X;2' — A(z) : H(zx) = H(z') Az # 2] .

Definition 3 (SPexists). The second-preimage-exists predicate SPexists(H) for
a hash function H is the function P : X — {0,1} defined as follows:

Pla) {z if [ (H(2))| > 2

0 otherwise.

If P(x) = 0 then z has no second preimages under H: any 2’ # x has
H(z'") # H(x). The only possible successes of an SPR attack are for inputs x
where P(z) = 1.

Definition 4 (SPprob). The second-preimage-exists probability SPprob(H) for
a hash function H is Pr[z < X : P(x) = 1], where P = SPexists(H).

In other words, p = SPprob(H) is the maximum of Succy™ (A) over all
algorithms A, without any limits on the cost of A. Later we will see that almost
all length-preserving hash functions H have p > 1/2. More precisely, p ~ 1 —
e~ ! ~ 0.63. For comparison, p = 0 for an injective function H, such as the n-
bit-to-n-bit identity function; and p = 1 for a function where every output has

multiple preimages.

Definition 5 (DSPR). Let A be an algorithm that always outputs 0 or 1.
The advantage of A against the decisional second-preimage resistance of a hash
function H is

AdviE(A) 4 max {0,Priz < X;b«— A(z) : P(x) =b] — p}

where P = SPexists(H) and p = SPprob(H).

2.3 Examples of DSPR Advantages

Here are some examples of computing DSPR advantages. As above, write P =
SPexists(H) and p = SPprob(H).

If A(z) =1 for all x, then Pr[z «—pg X;b— A(z) : P(z) = b] = p by defini-
tion, so Adviy™ (A) = 0.
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If A(z) = 0 for all z, then Advy"™™(A) = max{0,1— 2p}. In particular,
AdvP™(A) = 0 if p > 1/2, while Adv["™(A) = 1 for an injective function H.

More generally, say A(z) flips a biased coin and returns the result, where the
probability of 1 is ¢, independently of x. Then A(z) = P(z) with probability
ep~+ (1 —¢)(1 —p), which is between min {1 — p, p} and max {1 — p, p}, so again
Adv™(A) =0if p > 1/2.

As a more expensive example, say A(x) searches through all 2/ € X to see
whether 2’ is a second preimage for x, and returns 1 if any second preimage is
found, otherwise 0. Then A(z) = P(x) with probability 1, so Adv ™ (A) = 1—p.
This is the maximum possible DSPR advantage.

More generally, say A(z) runs a second-preimage attack B against H, and
returns 1 if B is successful (i.e., the output 2’ from B satisfies 2’ # x and H(z') =
H(z)), otherwise 0. By definition A(z) = 1 with probability Succy™ (B), and if
A(x) =1 then also P(x) = 1, so A(x) = 1 = P(x) with probability Succfi" (B).
Also P(z) = 0 with probability 1 — p and if P(x) = 0 also A(x) = 0 as there
simply does not exist any second-preimage for B to find. Hence, A(z) = 0 = P(x)
with probability 1—p. Overall A(z) = P(z) with probability 1 —p-+ Succy™ (B),
SO

AdvP™*(A) = max {0, 1 — 2p + Succi™ (B)} .

This advantage is 0 whenever 0 < Succy™ (B) < 2p — 1: even if B breaks second-
preimage resistance with probability as high as 2p — 1 (which is approximately
26% for almost all length-preserving H), A breaks DSPR with advantage 0. If
B breaks second-preimage resistance with probability p, the maximum possible,
then Advi™(A) = 1 — p, the maximum possible advantage.

As a final example, say z; € X has no second preimage, and say A(x)
returns 0 if x = z1, otherwise 1. Then A(x) = P(z) with probability p + 1/2™,
so Advy"™(A) = 1/2™. This example shows that an efficient algorithm can
achieve a (very small) nonzero DSPR advantage. We can efficiently generate an
algorithm A of this type with probability 1—p by choosing x; € X at random (in
the normal case that X = {0,1}"™), but for typical hash functions H we do not
have an efficient way to recognize whether A is in fact of this type, i.e., whether
1 in fact has no second preimage: recognizing this is exactly the problem of
breaking DSPR!

2.4 'Why DSPR Advantage Is Defined This Way

Many security definitions require the attacker to distinguish two possibilities,
each of which naturally occurs with probability 1/2. Any sort of blind guess
is correct with probability 1/2. Define a as the probability of a correct output
minus 1/2; a value of a noticeably larger than 0 means that the algorithm is
noticeably more likely than a blind guess to be correct.

If an algorithm is noticeably less likely than a blind guess to be correct then
one can do better by (1) replacing it with a blind guess or (2) inverting its output.
The first option replaces a with max{0,a}; the second option replaces a with
|a|; both options have the virtue of eliminating negative values of a. Advantage
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is most commonly defined as |a|, or alternatively as 2|a|, the distance between
the probability of a correct output and the probability of an incorrect output.
These formulas are simpler than max{0,a}.

For DSPR, the two possibilities are not naturally balanced. A second preim-
age exists with probability p, and almost all length-preserving (or compressing)
hash functions have p > 1/2. Guessing 1 is correct with probability p; guessing 0
is correct with probability 1 —p; random guesses can trivially achieve any desired
intermediate probability. What is interesting—and what is naturally considered
in our proofs—is an algorithm A that guesses correctly with probability larger
than p. We thus define the advantage as max{0, Succ(A) — p}, where Succ(A) is
the probability of A generating a correct output.

An algorithm A that guesses correctly with probability smaller than 1 — p is
also useful. We could define advantage as max{0, Succ(A) —p, (1 —Succ(A)) —p}
to take this into account, rather than leaving it to the attack developer to invert
the output. However, this formula is more complicated than max{0, Suce(.A)—p}.

If p < 1/2 then, with our definitions, guessing 0 has advantage 1 — 2p > 0.
In particular, if p = 0 then guessing 0 has advantage 1: our definitions state
that injective functions are trivially vulnerable to DSPR attacks. It might seem
intuitive to define DSPR advantage as beating the best blind guess, i.e., as
probability minus max{p, 1 — p} rather than probability minus p. This, however,
would break the proof that SPR A DSPR implies PRE: the identity function
would have both SPR and DSPR but not PRE. We could add an assumption
that p > 1/2, but the approach we have taken is simpler.

2.5 DSPR Plus SPR Implies PRE

We now present the main application of DSPR in the simplest case: We show
that a second-preimage-resistant and decisional-second-preimage-resistant hash
function is preimage resistant.

We first define the two reductions we use, SPfromP and DSPfromP, and
then give a theorem statement analyzing success probabilities. The algorithm
SPfromP(H, A) is the standard algorithm that tries to break SPR using an algo-
rithm A that tries to break PRE. The algorithm DSPfromP(H, .4) is a variant
that tries to break DSPR. Each algorithm uses one computation of H, one call to
A, and (for DSPfromP) one string comparison, so each algorithm has essentially
the same cost as A if H is efficient.

Definition 6 (SPfromP). Let H be a hash function. Let A be an algorithm.
Then SPfromP(H, A) is the algorithm that, given x € X, outputs A(H(x)).

Definition 7 (DSPfromP). Let H be a hash function. Let A be an algo-
rithm. Then DSPfromP(H, A) is the algorithm that, given x € X, outputs [x #
A(H(z))].

This output is 0 if A(H(z)) returns the preimage = that was already known
for H(x), and 1 otherwise. Note that the 0 case provides some reason to believe
that there is only one preimage. If there are ¢ > 1 preimages then x, which is
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not known to A except via H(x), is information-theoretically hidden in a set of
size i, so A cannot return z with probability larger than 1/i.

Theorem 8 (DSPR A SPR = PRE). Let H be a hash function. Let A be an
algorithm. Then

Sucei™ (A) < Adviy™(B) + 3 - Sucey ™ (C)
where B = DSPfromP(H, A) and C = SPfromP(H, A).

Proof. This is a special case of Theorem 25 below, modulo a change of syntax.
To apply Theorem 25 we set I to be {()}, where () is the empty string. The
change of syntax views a keyed hash function with an empty key as an unkeyed
hash function. a

3 The Second-Preimage-Exists Probability

This section mathematically analyzes SPprob(H), the probability that a uniform
random input to H has a second preimage. The DSPR advantage of any attacker
is information-theoretically bounded by 1 — SPprob(H).

3.1 Simple Cases

In retrospect, the heart of the Rogaway—Shrimpton SPR-PRE reduction [15,
Theorem 7] is the observation that SPprob(H) is very close to 1 for all highly
compressing hash functions H. See Theorem 9. We show that SPprob(H) is actu-
ally equal to 1 for almost all hash functions H that compress more than a few
bits; see Theorem 11.

Theorem 9 (lower bound on SPprob in the compressing case). IfH is a
hash function and M > N then SPprob(H) >1— (N —1)/M.

The maximum possible DSPR advantage in this case is (N — 1)/M. For
example, if M > 1 and N = 1 then SPprob(H) = 1 and the DSPR advan-
tage is always 0. As another example, a 320-bit-to-256-bit hash function H
has SPprob(H) > 1 — (22°¢ — 1)/23%0) and the DSPR advantage is at most
(2256 _ 1)/2320 < 1/264.

Proof. Define I as the set of elements of X that have no second preimages; i.e.,
the set of 2 € X such that [H ' (H(z))| = 1.

The image set H(I) C Y has size |I|, so |I| < |Y| = N < M = |X|. The
complement X — I is thus nonempty, so the image set H(X —I) is also nonempty.
This image set cannot overlap H(I): if H(z') = H(z) with 2’ e X — T and z €
then «/, x are distinct elements of H™*(H(x)), but [H™*(H(x))| = 1 by definition
of I. Hence [I| < N —1.

By definition SPprob(H) is the probability that [H™!(H(z))| > 2 where z is
a uniform random element of X, i.e., the probability that x is not in I. This is
at least 1 — (N — 1)/M. O
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Theorem 10 (average of SPprob). The average of SPprob(H) over all hash
functions H is 1 — (1 — 1/N)M-1,

For example, the average is 1 — (1 — 1/2256)2°~1 &~ 1 — 1/e ~ 0.63212 if
M = 2256 and N = 2259, see also Theorem 12. The average converges rapidly
to 1 as N/M drops: for example, the average is approximately 1 — 2736933 if
M = 2256 and N = 22%® and is approximately 1 — 2794548 if ) = 2256 and
N = 2240 while the lower bounds from Theorem 9 are approximately 1 — 2716
and approximately 1 — 2732 respectively.

The average converges to 0 as N/M increases. The average crosses below 1/2,
making DSPR trivially breakable for the average function, as N/M increases past
about 1/log?2 = 1.4427.

Proof. For each x € X, there are exactly N(N — 1)™~1 hash functions H for
which x has no second preimages. Indeed, there are N choices of H(z), and then
for each i € X — {x} there are N — 1 choices of H(i) € Y — {H(z)}.

Hence there are exactly M(N™ — N(N — 1)M~1) pairs (H, z) where z has a
second preimage under H; i.e., the total of SPprob(H) over all N™ hash functions
His NM — N(N —1)M~1: je., the average of SPprob(H) over all hash functions
His1 - NN -1)M-1/NM =1 - (1-1/N)M-1, O

Theorem 11 (how often SPprob is 1). If H is a uniform random hash
function then SPprob(H) = 1 with probability at least 1 — M (1 —1/N)M~1,

This is content-free in the length-preserving case but becomes more useful
as N/M drops. For example, if M = 2256 and N = 2248  then the chance of
SPprob(H) < 1 is at most 22%6(1 — 1/2248)2°°~1 ~ 2-11333 Hence almost
all 256-bit-t0-248-bit hash functions have second preimages for all inputs, and
therefore have perfect DSPR (DSPR advantage 0) against all attacks.

Proof. Write ¢ for the probability that SPprob(H) = 1. Then SPprob(H) <
1—1/M with probability 1—gq. The point here is that SPprob(H) is a probability
over M inputs, and is thus a multiple of 1/M.

The average of SPprob(H) is at most ¢+ (1—¢)(1—1/M) =1-(1—¢q)/M. By
Theorem 10, this average is exactly 1—(1—1/N)M =1 Hence 1—(1—1/N)M-1 <
1—(1-¢q)/M;ie,qg>1—M(1—1/N)M-1, O

Theorem 12 (average of SPprob vs. 1 —1/e in the length-preserving
case). If M = N > 1 then the average a of SPprob(H) over all hash functions
H has1—(1/e)N/(N —-1)<a<1l-—1/e.

The big picture is that almost all length-preserving hash functions H have
SPprob(H) close to 1 —1/e. This theorem states part of the picture: the average
of SPprob(H) is extremely close to 1 — 1/e if N is large. Subsequent theorems
fill in the rest of the picture.
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Proof. The point is that (N/(N — 1))V ~! < e < (N/(N — 1)) for N > 2. See,
e.g., [4]. In other words, e(N — 1)/N < (N/(N —1))N¥=1 < e. Invert to see that
/e < (1—-1/N)N=1 < (1/e)N/(N — 1). Finally, the average a of SPprob(H) is
1—(1-1/N)N=! by Theorem 10. O

3.2 How SPprob Varies

This subsection analyzes the distribution of SPprob(H) as H varies. Theorem 14
amounts to an algorithm that computes the probability of each possible value
of SPprob(H) in time polynomial in M + N. Theorem 16, used in Sect. 3.3,
gives a simple upper bound on each term in the probability.

Theorem 13. Let a,b be nonnegative integers. Define c(a,b) as the coefficient
of x° in the power series bl(e* — 1 — x)?/a!. Then alc(a,b) is the number of
functions from {1,...,b} to {1,...,a} for which each of {1,...,a} has at least
two preimages.

This is a standard example of “generatingfunctionology”. See, e.g., [16, se-
quence A000478, “E.g.f.”] for a = 3 and [16, sequence A058844, “E.g.f.”] for
a=4.

Note that ¢(a,b) = 0 for b < 2a, and that ¢(0,b) = 0 for b > 0.

Proof. Choose integers i1,...,4, > 2 with i3 + -+ 4+ i, = b, and consider any
function f built as follows. Let 7 be a permutation of {1,. .., b}. Define f(w(1)) =
f(m(2)) =...= f(w(i1)) = 1; note that 1 has ¢; > 2 preimages. Define f(m(i; +
1)) = f(n(ir +2)) = ... = f(w(i1 + i2)) = 2; note that 2 has i5 > 2 preimages.
Et cetera.

There are exactly b! choices of 7, producing exactly b!/i1!- - -4,! choices of f.
This covers all functions f for which 1 has exactly i; preimages, 2 has exactly
19 preimages, etc.

The total number of functions being counted is thus the sum of b!/iy!---i,!
over all 41,...,14 > 2 with 4y +--- 411, = b.

For comparison, the power series e — 1 —x is Y _,5, x'/il, so

(" =1—2)* = Z gt e f g, ),

W1 yeeeria 22
The coefficient of 2° is the sum of 1/i1!---i,! over all iy,...,4, > 2 with i; +
-+« 41, = b. By definition alc(a, b)/b! is this coeflicient, so alc(a, b) is the sum of
bl/ir!-- i ) over all 4q,...,4, > 2 with 41 + -+ + i, = b. O

Theorem 14 (exact distribution of SPprob ). There are exactly
M NI
k—j3iM—j)——s
() T, - iv-itsy
J<k<N

hash functions H with SPprob(H) =1 —j/M.
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B A A |

Fig. 1. Cumulative distribution of SPprob(H) for M = N=1; M =N =2, M =N =
4 M=N=8 M =N=16; M = N = 32 M =N = 64 The probabilities that
SPprob(H) < 0.5 are, respectively, 1; 0.5; 0.65625; ~0.417366; ~0.233331; ~0.100313;
and ~0.023805. As N — oo with M = N, the distribution converges to a vertical line
at 1 —1/e.

The summand is 0 if & > (M + 5)/2, ie., if M — j < 2(k — j), since then
c¢(k — j,M — j) = 0. The summand is also 0 if k = j and M > j, since then
c(0,M —j)=0.

In particular, if j > N then SPprob(H) = 1 — j/M with probability 0; and
if j = N < M then SPprob(H) = 1 — j/M with probability 0. This calculation
shows that Theorem 14 includes Theorem 9.

The distribution of M — j here, for a uniform random hash function H, is
equal to the distribution of “K3” in [3, formula (2.21)], but the formulas are
different. The sum in [3, formula (2.21)] is an alternating sum with cancellation
between large terms. The sum in Theorem 14 is a sum of nonnegative terms;
this is important for our asymptotic analysis.

Figure 1 shows the cumulative distribution of SPprob(H) when M = N €
{1,2,4,8,16,32,64}. Each graph ranges from 0 through 1 horizontally, and from
0 through 1 vertically. At horizontal position p, the (maximum) vertical position
is the probability that SPprob(H) < p. We computed these probabilities using
Theorem 14.

Proof. We count the hash functions that (1) have exactly k > j outputs and (2)
have exactly j inputs with no second preimages.

Choose the j inputs. There are (AJ/I) ways to do this.

Choose a partition of the N outputs into

e j outputs that will be used (without second preimages) by the j inputs;

e k — j outputs that will be used (with second preimages) by the other M — j
inputs; and

e N — k outputs that will not be used.

There are N!/jl(k — j)!(N — k)! ways to do this.

Choose an injective function from the j inputs to the j outputs. There are
j! ways to do this.

Choose a function from the other M — j inputs to the other & — j outputs for
which each of these k — j outputs has at least two preimages. By Theorem 13,
there are (k — j)le(k — 4, M — j) ways to do this.

This produces a hash function that, as desired, has exactly k outputs and
has exactly j inputs with no second preimages. Each such function is produced
exactly once. Hence there are (1;4) c(k —j,M — j)N!/(N — k)! such functions.
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Finally, sum over k to see that there are

J<k<N

hash functions H that have exactly j inputs with no second preimages, i.e., hash
functions H that have SPprob(H) =1 — j/M. O

Theorem 15. Let a,b be positive integers. Let ¢ be a positive real number. As-
sume that b/a = ( + (2/(eS —1 — ). Then c(a,b) < (e — 1 —¢)*¢~*b!/al.

Our proof applies [5, Proposition VIII.7], which is an example of the “saddle-
point method” in analytic combinatorics. With more work one can use the saddle-
point method to improve bounds by a polynomial factor, but our main concern
here is exponential factors.

Proof. Define B(z) = Y_,+5 2" 2 /il = 1/242/6+27/24+- - . Note that 2 B(z) =
e —1—z, and that zB(z) = Y ,55(i — 2)2" "2 /i! = (2 — 2) B(z) + 1. Also define
A(z)=1;R=00;T=00; N=b—2a;n=a;and A =b/a — 2.

Check the hypotheses of [5, Proposition VIIL.7]: A and B are analytic func-
tions of the complex variable z, with all coefficients nonnegative; B(0) = 1/2 # 0;
the coefficient of z in B is nonzero; the radius of convergence of B is co; the radius
of convergence of A is also co; the limit of xB’(x)/B(x) as  — oo is 00; A is a
positive real number; N = An; and (B’(¢)/B(¢) =(—-2+1/B({) =b/a—2 =\

Now [5, Proposition VIIL7] states that the coefficient of 2V in A(2)B(2)" is
at most A(CQ)B(¢)"¢™Y; i.e., the coefficient of 272% in ((e* — 1 — 2)/2%)? is at
most B(¢)?¢%%7?; i.e., the coefficient of 2° in (e* —1—2)? is at most B(¢)2¢22°.
Hence c(a,b) < B(¢)?¢?*!/a! = (e¢ — 1 — ¢)*¢ ! /al. O

Theorem 16 (exponential convergence of SPprob). Let j be an integer
with 0<j <M. Let k be an integer with j <k <N. Define u = M/N, a = j/N,
and K = k/N. Let ¢ be a positive real number. Assume that (n — a)/(k — a) =
C+¢%/(ef —1—C). Then

M N! MINleNN
k—4 . M—7 <
<j)0( Js J)(N_k)!_ NN

where 7 = (e — 1 — ()~ /(P %a%(k — @)~ *(1 — k)17~

The proof combines Theorem 15 with the weak Stirling bound N! > (N/e)™.
See [14] for a proof that (N/e)Vv/2rNel/(12N+1) < N1 < (N/e)N/2rNel/12N,

Proof. Define a =k — j and b= M — j. Then a and b are positive integers, and
bla=(n—a)/(k—a)=(+C/(e —1-(), s0

C_1_ e
3. ) = ol by < A0
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by Theorem 15, so
M , L N MIN(e¢ —1—¢)*
(j)c(k_j’M_”)(N—k)!< j!Cb(a!(N—k)!)
< M!N!(eS —1—¢)®
~ (G/e)¢Plafe) (N — k) [e)N=F

by the weak Stirling bound. Now substitute j = aN, k = kN, a = (k — a)N,
and b= (u — a)N:
M N!
(5 a0t 9555
- MIN!(e€ —1—¢)r—N
= (alN/e) N¢w=eIN((1 — a)N /e)(s=eIN((N — kN) fe)N=rN
MIN!(e¢ — 1 — )N MIN!N

(N/e)NaaNC(;ka)N(,i _ a)(/ifoz)N(]_ _ ,{)meN - (N/e)N

as claimed. O

3.3 Maximization

This subsection formalizes and proves our claim that SPprob(H) is close to
1 —1/e for almost all length-preserving hash functions H: as N increases (with
M = N), the distributions plotted in Fig. 1 converge to a vertical line.

The basic idea here is that 7 in Theorem 16 is noticeably below e when
j/N is noticeably below or above 1/e. One can quickly see this by numerically
plotting 7 as a function of o and (: note that any choice of @ and ¢ (along with
p = 1) determines x = a + (1 — ) /(¢ + ¢2/(e¢ — 1 —()) and thus determines
7. The plot suggests that ( = 1 maximizes 7 for each «, and that moving «
towards 1/e from either side increases 7 up to its maximum value e. One could
use interval arithmetic to show, e.g., that 7/e < 0.998 for j/N > 0.4, but the
required number of subintervals would rapidly grow as j/N approaches 1/e. Our
proof also handles some corner cases that are not visible in the plot.

Theorem 17. Let u, a, &, C be positive real numbers with a < p; o < K < 1; and
(p—a)/(k—a) = (+(?/(e¢ —1—C). First, there is a unique positive real number
Z such that Z(e? —1)/(e? = Z) = (u—a) /(1 —a). Second, there is a unique real
number K such that o« < K <1 and (u—)/(K —«a) = Z+ Z%/(e? —1 - Z).
Third,

(e —1— ()" < (e —1— Z)K-«
Q/L—aaa(ﬁj _ a)rc—(x(l _ K:)l—ﬁ — Z/L—aaa(K _ O()K_o‘(l _ K)l—K .

Fourth, if u =1 then

(e —1— Z)K-« (e —1)t—«

Z;haaa(K _ a)Kfa(]_ _ K)17K - aa(]_ _ a)lfa'
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Proof. See full version of this paper online. O

Theorem 18. Let «a, k,(, A be positive real numbers. Assume that o < k < 1;
that (1—a)/(k—a) = (+C2/(e$—1—C); and that 1/e < A< a ora < A< 1/e.
Then
(ef=1-¢)r (e—1)'4
Cl—aaa(H _ a)n—a(l _ K)l—n — AA(l _ A)l—A'

Proof. See full version of this paper online. a

Theorem 19. Assume that M = N. Let A be a real number with 0 < A < 1.
Let H be a uniform random hash function. If A > 1/e, define E as the event that
SPprob(H) < 1—A. If A < 1/e, define E as the event that SPprob(H) > 1 — A.
Then E occurs with probability at most (T/e)N2rN?(N + 1)eY/N where

T = max{l + V2, (e — 1)'74/A%(1 — A)' =41

Any A # 1/e has T'/e < 1, and then the important factor in the probability
for large N is (T/e)N. For example, if A = 0.4 then T/e < 0.99780899, so
(T/e)N is below 1/22"" for N = 2256, As another example, if A = 0.37 then
T/e < 0.99999034, so (T/e)N is below 1/22" for N = 225,

Proof. See full version of this paper online. O

4 DSPR for Keyed Hash Functions

In this section we lift the discussion to the setting of keyed hash functions. We
model keyed hash functions as functions H : £ x X — ) that take a dedicated
key as additional input argument. One might also view a keyed hash function as
a family of hash functions where elements of the family H are obtained by fixing
the first input argument which we call the function key. We write Hy, def H(k,-)
for the function that is obtained from H by fixing the first input as k& € K.

We assume that I, like X and ), is a nonempty finite set of finite-length
bit strings. We define the compressing, expanding, and length-preserving cases
as the cases |X| > |V, |X| < |V|, and |X| = |Y| respectively, ignoring the size
of K.

We recall the definitions of preimage and second-preimage resistance for
keyed hash functions for completeness:

Definition 20 (PRE for keyed hash functions). The success probability of
adversary A against the preimage resistance of a keyed hash function H is

Suce™” (A) X py [ g X;k g K;2' — A(Hy(z), k) : He(z) = Hi(2)] .

Definition 21 (SPR for keyed hash functions). The success probability of
adversary A against the second-preimage resistance of a keyed hash function H is

Succy™ (A) & py [# R Xk g K;z' — A(z, k) : Hi(z) = Hi(a') Az # 2'].



48 Daniel J. Bernstein and Andreas Hiilsing

Our definition of DSPR for a keyed hash function H relies on the second-
preimage-exists predicate SPexists and the second-preimage-exists probability
SPprob for the functions Hy. If H is chosen uniformly at random then, for large
N and any reasonable size of IC, it is very likely that all of the functions Hy,
have SPprob(Hy) close to 1 — 1/e; see Theorem 19.

Definition 22 (DSPR for keyed hash functions). Let A be an algorithm
that always outputs 0 or 1. The advantage of A against the decisional second-
preimage resistance of a keyed hash function H is

Advy;™(A) % max {0,Prjz «—p X,k —pr K,b— A(z,k) : Py(x) =b] — p}

where Py, = SPexists(Hy) and p is the average of SPprob(Hy) over all k.

As an example, consider the keyed hash function H with X =) = {0, 1}256,

K ={0,1}, Ho(z) = «, and Hy(x) = (21, 22,...,2255,0) where the x; denote
the bits of x. Then Py(z) = k, SPprob(Hy) = k, and p = 1/2. A trivial adver-
sary that outputs k has success probability 1 and thus DSPR advantage 1/2,
the maximum possible DSPR, advantage: this function does not have decisional
second-preimage resistance.

It might seem natural to define SPprob(H) as the average mentioned in the
theorem. However, we will see later in the multi-target context that p is naturally
replaced by a more complicated quantity influenced by the algorithm.

4.1 DSPR Plus SPR Implies PRE

Before we show that DSPR is hard in the QROM (see Sect.5), we give
a generalization of Theorem 8 for keyed hash functions. This theorem states
that second-preimage and decisional second-preimage resistance together imply
preimage resistance.

As in Theorem 8, we first define the two reductions we use, and then give
a theorem statement analyzing success probabilities. The special case that K =
{()}, where () means the empty string, is the same as Theorem 8, modulo syn-
tactic replacements such as replacing the pair ((),x) with .

Definition 23 (SPfromP for keyed hash functions). Let H be a keyed hash
function. Let A be an algorithm. Then SPfromP(H,.A) is the algorithm that,
given (k,z) € K x X, outputs A(Hy(x), k).

Definition 24 (DSPfromP for keyed hash functions). Let H be a keyed
hash function. Let A be an algorithm. Then DSPfromP(H, A) is the algorithm
that, given (k,z) € K x X, outputs [v # A(Hg(x), k)].

Theorem 25 (DSPR A SPR = PRE for keyed hash functions). Let H
be a keyed hash function. Let A be an algorithm. Then

Sucei™ (A) < Adviy™(B) + 3 - Sucei ™ (C)
where B = DSPfromP (H, A) and C = SPfromP(H, A).
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Proof. To analyze the success probabilities, we split the universe of possible
events into mutually exclusive events across two dimensions: the number of
preimages of Hy(z), and whether A succeeds or fails in finding a preimage.
Specifically, define

Si % [[Hy (He(@))] = i A Hi (A(H(2), k) = Hi(@)]
as the event that there are exactly i preimages and that A succeeds, and define
F € [|H, (Hi(2))| = i A Hp(A(Hg(2), k) # Hy(2)]

as the event that there are exactly ¢ preimages and that A fails.

Note that there are only finitely many ¢ for which the events S; and F; can
occur, namely i € {1,2,..., M}. All sums below are thus finite sums.

Define s; and f; as the probabilities of .S; and F; respectively. The probability
space here includes the random choices of x and k, and any random choices
made inside A. The conditional probabilities mentioned below are conditional
probabilities given S;.

PRE success probability. By definition, Succij” (A) is the probability of
the event that Hy(x) = Hi(A(Hg(x),k)). This event is the union of S;, so
Suce® (A) =37, 8.

DSPR success probability. Define P, = SPexists(Hy). For the i = 1 cases,
we have Pg(xz) = 0 by definition of SPexists, so B is correct if and only if A
succeeds. For the ¢ > 1 cases, we have P;(z) = 1, so B is correct as long as A

does not output x. There are two disjoint ways for this to occur:
— A succeeds (case S;). Then A outputs z with conditional probability exactly
%, since x is information-theoretically hidden in a set of size i; so there is

conditional probability exactly % that A does not output x.
— A fails (case F;). Then A does not output x.

Together we get

Pr[B(z, k) = Py(x)] = s1 + Z : ; 131 + Zfi-
i>1 i>1

DSPR advantage. By definition Adv™ (B) = max{0, Pr[B(x, k) = Py(x)]—p}
where p is the average of SPprob(Hy) over all k.
By definition SPprob(Hy) is the probability over all choices of x that = has
a second preimage under Hy. Hence p is the same probability over all choices of
xand k;ie, p=>,0 ;8 + > ;o fi. Now subtract:
Advp™(B) = max{0, Pr[B(z, k) = P(x)] — p}
> Pr[B(x, k) = Py(x)] —p

:sl—i—zi_ilsi-l—z:fi—zsi—z:fi

i>1 i>1 i>1 i>1

= 81 72%81.
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SPR success probability. For the i = 1 cases, C never succeeds. For the ¢ > 1
cases, C succeeds if and only if A succeeds and returns a value different from
z. This happens with conditional probability % for the same reason as above.
Hence

Succi ™ (C) = Z - 1si.

- 1
i>1

Combining the probabilities. We have

! 1 i—1
AdyPsPR . SPR S 6 Zs; ;
vir (B) 4+ 3 - Succ " (C) > 51 Z 75 —1—32 P
i>1 i>1
31 —4
=51+ Z = 8
i1 !
> 51+ Z s; = Suce” (A)
i>1

as claimed.

The formal structure of the proof is concluded at this point, but we close
with some informal comments on how to interpret this proof. What happens is
the following. The cases where the plain reduction from SPR (C in the above)
fails are the S; cases, i.e., A succeeds when there is only one preimage. If the
probability that they occur (s1) gets close to A’s total success probability, the
success probability of C goes towards zero. However, s; translates almost directly
to the DSPR advantage of B. This is also intuitively what we want. For a brute-
force attack, one would expect s to be less than a 1 — p fraction of A’s success
probability. If it is higher, this allows to distinguish. On the extreme: If s = s,
then B’s DSPR advantage is exactly A’s success probability and the reduction is
tight. If s; = 0, B has no advantage over guessing, but C wins with at least half
the success probability of A (in this case our generic 1/3 bound can be tightened).
As mentioned above, in general one would expect s; to be a recognizable fraction
of s but clearly smaller than s. In these cases, both reductions succeed. a

5 DSPR is Hard in the QROM

So far we have highlighted relations between DSPR and other hash function
properties. However, all this is useful only if DSPR is a hard problem for the
hash functions we are interested in. In the following we show that DSPR is hard
for a quantum adversary as long as the hash function behaves like a random
function. We do this presenting a lower bound on the quantum query complexity
for DSPR.

To make previous results reusable, we first need a result that relates the
success probability of an adversary in a biased distinguishing game like the DSPR
game to its success probability in the balanced version of the game.
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Theorem 26. Let By denote the Bernoulli distribution that assigns probability
Ato 1, Xy for b e {0,1} a non-empty set,

Succy, (A) & py [b—nr Bax;x g Xp;9 — Alx) : g =1],

and dof
Advy (A) = max{0, Succ, (A) — \}
Then for p > 1/2 we have
Adv, (A) <p|Prjz «—pr X1 :1— A(z)] = Pr{z «<r X : 1 — A(z)]].

More specifically
1 1
1 > — 1 > —
Succy (A) = o Succ,, (A), Advy (A) > 2pAde (A),

and
% Prie —r & i1 A2)] — Prlo g X : 1 — A(@)]| = Adv, (4)

Proof. Let so=Pr[b=0Ag=0] =Pr[b=g|b=0]Pr[b=0] and s;=Pr[b=g | b=0].
Define s1=Prb=1Ag=1] =Prlb=g|b=1]Pr[b=1] and s;=Prlb=g|b=1],
accordingly. Then
1 1
2p 01 (A) = %((1 —Pp)so +psh)
1-p 1 1 1 1
= 556 + 55'1 < 586 + 55'1 = Sucey (A),

where we used p > 1/2. Now, for a zero advantage in the biased game the second
sub-claim is trivially true. For a non-zero advantage Adv, (A) we get

Adv, (A) = max{0, Succ, (A) — p}
Advy, (A) +p = Succ, (A)

%(Advp (A) + p) < Sucey (A)

1 1
%Advp (A) + 3 < Succy (A)

1 1
- < 1 _— =
2pAde (A) < Succy (A) 5 Adv

The last sub-claim follows from

Adv% (A) :max{O,Succ% (A) — %} < Succ% (A) — %‘
:‘ (Pr[z<—RX1:1<—A(m)]—|—Pr[m<—RXO;()<_A(x)})_%‘

N — N~

:‘ (Pr[;{;<—RX1:1<—.A(55)]+1_Pr[$<—RXO:1<_-’4($)])_%’

- % Pric —p X :1— A(@)] - Prle —r Xo: 1 — A(2)]]
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The main statement follows from plugging the last two sub-claims together. O

Our approach to show that DSPR is hard is giving a reduction from an
average-case distinguishing problem that was used in the full version of [9]. The
problem makes use of the following distribution D) over boolean functions.

Definition 27 [9]. Let F = {f :{0,1}™ — {0,1}} be the collection of all

boolean functions on {0,1}™. Let A € [0,1] and € > 0. Define a family of distri-
butions Dy on F such that f < D) satisfies

1 with prob. A,
fiom
' 0 with prob. 1 — A\

for any x € {0,1}™.

In [9] the following bound on the distinguishing advantage of any g-query
quantum adversary was shown.

Theorem 28 [9]. Let Dy be defined as in Definition 27, and A be any quantum
algorithm making at most q quantum queries to its oracle. Then

Advp,p, (A) & Pr [AT()=1]— Pr [AT()=1]| <8\
fe—Do f—Dx

We still have to briefly discuss how DSPR is defined in the (quantum-
accessible) random oracle model. Instead of giving a description of the hash
function H as implicitly done in Definition 5, we provide A with an oracle O
that implements a function F : X — ). As for most other notions that can be
defined for unkeyed hash functions, DSPR in the (Q)ROM becomes the same
for keyed and non-keyed hash functions. For keyed functions, instead of giving
a description of the keyed hash function H and a key k to the adversary A, we
provide A with an oracle that implements a function F : X — ) which now
models H for a fixed key k. Hence, the following result applies to both cases.
This can be seen as the key space might contain just a single key.

Now we got all tooling we need to show that DSPR is a hard problem.

Theorem 29. Letn € N, N =27 H: K x {0,1}" — {0,1}" as defined above
be a random, length-preserving keyed hash function. Any quantum adversary A
that solves DSPR making q quantum queries to H can be used to construct a
quantum adversary B that makes 2q queries to its oracle and distinguishes Dy
from Dy N with success probability

Advp, b, (B) > AdvETR(A).

D/~
Proof. By construction. The algorithm B generates an DSPR instance as in Fig. 2
and runs A on it. It outputs whatever A outputs. To answer an H query B
needs two f queries as it also has to uncompute the result of the f query after
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Given: Oracle access to f: X — {0,1}.

1. Sample z’ «+ X and gy’ « Y independently and uniformly at random.
2. Let g : X — Y\{v¥'} be a random function. We construct H : X — ) as
follows: for any x € X

Y if v =2’
xSy ifx £z Aflz)=1
g(z) otherwise.

Output: DSPR instance (H,z'). Namely an adversary is given x’ and oracle
access to H, and the goal is to decide if 2’ has a second preimage under H.

Fig. 2. Reducing distinguishing Do from D,,y to DSPR.

it was used. The random function g can be efficiently simulated using 2¢-wise
independent hash functions as discussed in [9].

Now, if f «pr Dy, (H,2') is a random DSPR challenge from the set of all
DSPR challenges with Py (z’) = 0 (slightly abusing notation as we do not know
a key for our random function). Similarly, if f «r Dy,y, (H,2') is a random
DSPR challenge from the set of all DSPR challenges.

A, (B) = Py [B70) =11 = Py [85/() = 1]

=[Py ) =10 Py ) = 1)

= [Pr[A"(z') = 1| Pu(a’) = 0] — (p- Pr[A"(2") = 1| Pu(2') = 1]
+(1 —p)-Pr[A(z) = 1| Py(a') = 0])’

=p-|Pr[A"(2') = 1| Pu(2') = 1] = Pr[A"(2') = 1 | Pu(a’) = 0]

> Advy™(A),

where the last inequality follows from Theorem 26.
(]

Theorem 30. Letn € N, N =2" H: Kx{0,1}" — {0,1}" as defined above be
a random, length-preserving keyed hash function. Any quantum adversary A that
makes no more than q quantum queries to its oracle can only solve the decisional
second-preimage problem with advantage

Advi™(A) < 32¢°/N.

Proof. Use Theorem 29 to construct an adversary B that makes 2q queries and
that has advantage at least Advy " (A) of distinguishing Do from D /. This
advantage is at most 8(1/N)(2¢)? = 32¢?/N by Theorem 28. O
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6 DSPR for Multiple Targets

Multi-target security considers an adversary that is given T independent targets
and is asked to solve a problem for one out of the T targets. This section defines
T-DSPR, a multi-target version of DSPR.

We draw attention to an unusual feature of this definition: the advantage of
an adversary A is defined as the improvement from p to ¢, where p and ¢ are
two probabilities that can both be influenced by A. The second probability q is
A’s chance of correctly predicting whether the input selected by A has a second
preimage. The first probability p is the chance that the input selected by A does
have a second preimage.

This deviates from the usual view of advantage as how much .4 improves upon
success probability compared to some trivial baseline attack. What we are doing,
for multi-target attacks, is asking how much A improves upon success probability
compared to the baseline attack against the same target that A selected. In most
of the contexts considered in the literature, the success probability of the baseline
attack is independent of the target, so this matches the usual view. DSPR is
different, because the success probability of the baseline attack depends on the
target.

One can object that this allows the baseline attack to be affected (positively
or negatively) by A’s competence in target selection. We give two responses to
this objection. First, our definition enables a proof (Theorem 33) that T-DSPR
is at most 7" times easier to break than DSPR. Second, our definition enables
an interactive multi-target generalization (Theorem 38) of our proof that DSPR
and SPR together imply PRE.

Definition 31 (T-DSPR). Let T be a positive integer. Let A be an algorithm
with output in {1,...,T} x {0,1}. The advantage of A against the T-target
decisional second-preimage resistance of a keyed hash function H is

de

Advg_DSPR(A) def max{0,q — p}

where

q= Pr[(xl,kl,...,a:T,kT) —r (X x k)T,

(4,b) — A(z1, k1,...,xr, kr) : Py, (x;) = bl;
p= Pr[(x ki, xp kr) g (X x K)T;

(4,b) — Alz1, kv,...,zp, kr) : Py, (x;) = 1];

and Py; = SPexists(Hy, ).

The only difference between the formulas for ¢ and p is that ¢ compares
Py, (x;) to b while p compares it to 1. If 7> 1 then an algorithm might be able
to influence p up or down, compared to any particular SPprob(Hy, ), through the
choice of j. Obtaining a significant T-DSPR advantage then means obtaining ¢
significantly larger than p, i.e., making a prediction of Py, (z;) significantly better
than always predicting that it is 1.
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As an extreme case, consider the following slow algorithm. Compute each
Py, (x5) by brute force; choose j where Py, (x;) = 0 if such a j exists, else j = 1;
and output Py, (x;). This algorithm has ¢ = 1 and thus T-DSPR advantage
1—p. The probability p for this algorithm is the probability that all of z1,...,zr
have second preimages. For most length-preserving functions, this probability is
approximately (1 — 1/e)T, which rapidly converges to 0 as T' increases, so the
T-DSPR advantage rapidly converges to 1.

Definition 32. Let A be an algorithm, and let T be a positive integer. Then
Plantr(A) is the following algorithm:

— Input (x,k) € X x K.

- Generate i —gr {1,...,T}.

Generate (w1,k1, ..., 27, kr) —pr (X x K)T.
- Overwrite (z;, k;) «— (z,k).

- Compute (j,b) — A(z1,k1,...,x7, kr).
Output b if j =1, or 1 if j #1i.

This uses the standard technique of planting a single-target challenge at a
random position in a multi-target challenge. With probability 1/7, the multi-
target attack chooses the challenge position; in the other cases, this reduction
outputs 1. The point of Theorem 33 is that this reduction interacts nicely with
the subtraction of probabilities in the DSPR and T-DSPR definitions.

The cost of Plantr(A) is the cost of generating a random number ¢ between
1 and T, generating T'— 1 elements of X x K, running 4, and comparing j to i.
The algorithm has essentially the same cost as A if X and K can be efficiently
sampled.

Theorem 33 (T-loose implication DSPR = T-DSPR). Let H be a keyed
hash function. Let T' be a positive integer. Let A be an algorithm with output in
{1,...,T} x {0,1}. Then

Advi PR (A) = T - Adv™™(B)
where B = Plantp(A).

Proof. By definition Advy; "***(A) runs A with T independent uniform random
targets (z1,k1,...,27, kr). Write (4,b) for the output of A(z1,k1,..., 27, kr).
Then Advy; ™ (A) = max{0, g—p}, where ¢ is the probability that Py, () = b,
and p is the probability that Py, (x;) = 1.

To analyze ¢ and p, we split the universe of possible events into four mutually
exclusive events:

Foo & b=0A Py (z;) = 0];
Eor &' [b=0A Py, (z;) = 1];
Eyg = [b=1A Py (x;) = 0];

) =1]

Then ¢ = Pr Egg + Pr F11 and p = Pr Eg1 + Pr Eq1, so ¢ — p = Pr Eyg — Pr Eg;.



56 Daniel J. Bernstein and Andreas Hiilsing

For comparison, Advy™™(B) runs B, which in turn runs A with T independent
uniform random targets (x1, k1, ..., 27, k7). One of these targets (x;, k;) is the
uniform random target (z, k) provided to B as a challenge; B randomly selects i
and the remaining targets. The output b’ of B(z, k) is b if j =i, and 1 if j # 4.

The choice of i is not visible to A, so the event that ¢ = j has probability
1/T. Furthermore, this event is independent of Eyg, Eo1, E19, F11: i-€., @ = j has
conditional probability 1/T given Egg, conditional probability 1/T given Eqq,
etc.

Write ¢’ for the chance that Py(x) =¥/, and p’ for the chance that Py(z) = 1.
Then Advy™(B) = max{0, ¢ —p'}. To analyze ¢’ and p’, we split into mutually
exclusive events as follows:

— Eyo occurs and ¢ = j. This has probability (PrEg)/T. Then (z;,k;) =
(w4, ki) = (2, k) so Py(x) = Py, (x;) = 0= b= 10". This contributes to ¢’ and
not to p’.

— Ep1 occurs and ¢ = j. This has probability (Pr Ey1)/T. Then (z;,k;) = (z, k)
so Py(x) = 1, while & = b = 0. This contributes to p’ and not to ¢'.

— All other cases: b’ =1 (since b’ = 0 can happen only if b =0 and i = j). We
further split this into two cases:

e Pi(x) = 1. This contributes to ¢’ and to p'.
e Py(z) = 0. This contributes to neither ¢’ nor p’.

To summarize, ¢ — p’ = (Pr Eoo)/T — (Pr Eo1)/T = (¢ — p)/T. Hence
max{0,q — p} = max{0,7(q" — p')} = Tmax{0,q' - p'};
ie., Advi ™" (A) = T - AdvF™(B). O

7 Removing Interactivity

The real importance of DSPR for security proofs is that it allows interactive
versions of preimage resistance to be replaced by non-interactive assumptions
without penalty. Interactive versions of preimage resistance naturally arise in,
e.g., the context of hash-based signatures; see Sect. 8.

The example discussed in this section is the T-openPRE notion already infor-
mally introduced in Sect.1.1.1. We first review T-SPR, a multi-target version
of second-preimage resistance. Then we formally define the interactive notion
T-openPRE and show that its security tightly relates to T-SPR and T-DSPR.

T-SPR is what is called multi-function, multi-target second-preimage resis-
tance in [9]. It was shown in [9] that a generic attack against 7-SPR has the
same complexity as a generic attack against SPR.

Definition 34 [9] (T-SPR). The success probability of an algorithm A against
the T-target second-preimage resistance of a keyed hash function H is
Succh ™™ (A) & Pr[(1, by, ar kr) g (X x K)T;
(j, .Z‘) — A(.’El, kl, eI, kT) :
Hy, (z) = Hy, (z;) A& # x;].
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T-openPRE is essentially what would be T-PRE (which we did not define)
but with the additional tweak that the adversary gets access to an opening
oracle. The adversary is allowed to query the oracle for the preimages of all but
one of the targets and has to output a preimage for the remaining one.

Definition 35 (T-openPRE). Let H be a keyed hash function. The success
probability of an algorithm A against the T-target opening-preimage resistance
of H is defined as

SuCC%;_OpenPRE (.A) d:ef PI’ [(33‘1, k17 ey X, kT) “—R (X X K:)T,
(ja Jfl) — Aopen(Hk1 ($1)7 kly B HkT (xT)a kT) :
Hy, (') = Hy, (z;) A j was no query of Al

where Open(i) = x;.

Now, it is of course possible to reduce PRE to T-openPRE. However, such
a reduction has to guess the index j for which A will output a preimage (and
hence does not make a query) correctly. Otherwise, if the reduction embeds its
challenge image in any of the other positions, it cannot answer A’s query for
that index. As A does not lose anything by querying all indices but j, we can
assume that it actually does so. Hence, such a reduction from PRE must incur
a loss in tightness of a factor 7. For some applications discussed below, T' can
reach the order of v/N. This implies a quarter loss in the security level.

Theorem 38 shows that T-openPRE is tightly related to the non-interactive
assumptions T-DSPR and T-SPR: if H is T-target decisional-second-preimage
resistant and T-target second-preimage resistant then it is 7T-target opening-
preimage-resistant. As before, we first define the reductions and then state a
theorem regarding probabilities.

Definition 36 (T-target SPfromP). Let H be a keyed hash function. Let A be
an algorithm using an oracle. Let T be a positive integer. Then SPfromPr(H, A)
1s the following algorithm:

— Input (z1,k1,..., 27, k1) € (X x K)T.
~ Output A" (Hy, (z1), k1, ..., Hy, (z7), kT), where Open(i) = x;.

This generalizes the standard SPfromP reduction: it handles multiple targets
in the obvious way, and it easily answers oracle queries with no failures since
it knows all the x; inputs. The algorithm SPfromPr(H,.A) uses T calls to H
(which can be deferred until their outputs are used) and one call to A.

Definition 37 (T-target DSPfromP). Let H be a keyed hash function. Let
A be an algorithm. Then DSPfromPr(H, A) is the following algorithm:

— Input (w1,k1,..., 27, k1) € (X x K)T.

— Compute (j,7") «— A" (Hy, (1), k1, . .., Hpp (x7), kT), where Open(i) = ;.
— Compute b — ((¢' # x;) V j was a query of A).

— Output (4,b).
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This is an analogous adaptation of our DSPfromP reduction to the interactive
multi-target context. Again oracle queries are trivial to answer. Note that the
case that A cheats, returning an index j that it used for an Open query, is a
failure case for A by definition; the algorithm DSPfromPr(H, .A) outputs 1 in
this case, exactly as if A had failed to find a preimage. In other words, this
algorithm returns 0 whenever A returns a solution that contains the preimage
that was already known by the reduction (but not given to A via Open), and 1
otherwise.

Theorem 38 (T-DSPR A T-SPR = T-openPRE). Let H be a keyed hash
function. Let T be a positive integer. Let A be an algorithm. Then

Succg—openPRE (.A) < Adv']];—DSPR(B) +3. SuCC%I“-SPR (C)
where B = DSPfromPr(H, A) and C = SPfromPr(H, A).

The core proof idea is the following. As noted above, the reductions attacking
T-SPR and T-DSPR can perfectly answer all of A’s oracle queries as they know
preimages. However, for the index for which 4 outputs a preimage (without
cheating), it did not learn the preimage known to the reduction. Hence, from
there on we can apply a similar argument as in the proof of Theorem 25. We
include a complete proof below to aid in verification.

Proof. Write (j, ') for the output of A" (Hy, (1), k1, ..., Hpp (v7), k7). Asin
the proof of Theorem 25, we split the universe of possible events into mutually
exclusive events across two dimensions: the number of preimages of Hy, (z;), and
whether A succeeds or fails in finding a preimage. Specifically, define

def _ . .
S; = Hijl(ij (xj))’ =i AHy, (2") = Hy, (z;) A j was no query of A} ;
as the event that there are exactly i preimages and that A succeeds, and define
def — . .
F;, = Hijl(ij (;pj))‘ =i A (Hy, (z') # Hy, (z;) V j was a query of A)}

as the event that there are exactly i preimages and that A fails. Note that there
are only finitely many ¢ for which the events S; and F; can occur.

Define s; and f; as the probabilities of S; and F; respectively. The probability
space here includes the random choices of (z1, k1,...,2r, kr), and any random
choices made inside A.

T-openPRE

T-openPRE success probability. By definition, Succy (A) is the prob-

ability that =’ is a non-cheating preimage of Hy, (x;); i.e., that Hy, (z) = Hy, ()

and j was not a query to the oracle. This event is the union of the events S;, so
T-openPRE .

Succy (A)=>, s

T-DSPR success probability. By definition B outputs the pair (j,b), where
b= ((z' # xj) Vj was a query of A).
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Define Py, = SPexists(Hy, ), and define g as in the definition of Adv{; > (B).
Then ¢ is the probability that B is correct, i.e., that b = Py, (x;). There are four
cases:

— If the event S; occurs, then there is exactly 1 preimage of Hy,(x;), so
Py, (z;) = 0 by definition of SPexists. Also, A succeeds: i.e., j was not a
query, and z’ is a preimage of Hy,(z;), forcing 2’ = x;. Hence b = 0 =
ij (.’EJ)

— If the event I} occurs, then again Py (z;) = 0, but now A fails: i.e., j was
a query, or o’ is not a preimage of Hy, (z;). Either way b = 1 # Py (x;).
(We could skip this case in the proof, since we need only a lower bound on
g rather than an exact formula for q.)

— If the event S; occurs for i > 1, then P, (x;) = 1 and A succeeds. Hence j
was not a query, and z' is a preimage of Hk (x;), so ' = z; with conditional
probablhty exactly 7. Hence b = 1 = P, (1:]) with conditional probability
exactly * T'

— If the event F; occurs for i > 1, then Py, (x;) = 1 and A fails. Failure means
that 2’ is not a preimage, so in particular 2’ # x;, or that j was a query.
Either way b= 1= Py, (x;).

To summarize, ¢ = s1 + Z¢>1 ; izlg, 4 D ist fie

T-DSPR advantage. Define p as in the definition of Advy (). Then
Advi ™™™ (B) = max{0, ¢ — p}.

The analysis of p is the same as the analysis of g above, except that we
compare Py, (x;) to 1 instead of comparing it to b. We have 1 = Py, (z;) exactly
for the events S; and F; with i > 1. Hence p =}, s; + >, fi. Subtract to
see that

‘ 1
Adv P (B) = max{0,qg — p} > q—p=s1— Y P
i>1

T-SPR success probability. By definition C outputs (j, 2’). The T-SPR suc-
cess probability Succl ™ (C) is the probability that 2’ is a second preimage of
x; under Hy,, i.e., that Hy, (2") = Hy, (z;) while 2’ # x;.

It is possible for C to succeed while A fails: perhaps A learns z; = Open(j)
and then computes a second preimage for x;, which does not qualify as an T-
openPRE success for A4 but does qualify as a T-SPR success for C. We ignore
these cases, so we obtain only a lower bound on Succy; ™™ (C); this is adequate
for the proof.

Assume that event S; occurs with ¢ > 1. Then 2’ is a preimage of Hy, (x;).
Furthermore, A did not query J, so x; is not known to A except via Hk (x;).
There are ¢ preimages, so &’ = x; with Condltlonal probability exactly ; 1 Hence
C succeeds with conditional probability ==

To summarize, Succ; > (C) > Zz>1 s
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Combining the probabilities. We conclude as in the proof of Theorem 25:

i>1 i>1
3i—4
=51 + Z . S;
i>1 !
> 51 + Z s; = Succg{ﬂ'o"e"pRE (A).
i>1

8 Applications to Hash-Based Signatures

The interactive notion of T-openPRE with a huge number of targets naturally
arises in the context of hash-based signatures. This was already observed and
extensively discussed in [9]. One conclusion of the discussion there is to use keyed
hash functions with new (pseudo)random keys for each hash-function call made
in a hash-based signature scheme.

When applying this idea to Lamport one-time signatures (L-OTS) [11], the
standard security notion for OTS of existential unforgeability under one chosen
message attacks (EU-CMA) becomes T-openPRE where A is allowed to make
T/2 queries. Using L-OTS in a many-time signature scheme such as the Merkle
Signature Scheme [13] and variants like [2,8,12] can easily amplify the difference
in tightness between a reduction that uses (7-)PRE and a reduction from 7T-SPR
and T-DSPR to 27°.

Indeed, the general idea of using T-SPR instead of (T-)PRE in security reduc-
tions for hash-based signatures already occurs in [9]. However, there the authors
make use of the assumption that for the used hash function every input has a
colliding value for all keys, i.e., SPprob(H) = 1 in our notation. This is unlikely
to hold for common length-preserving keyed hash functions as Sect.3 shows
SPprob(H) ~ 1 — 1/e for random H. However, as shown above, it is also not
necessary to require SPprob(H) = 1. Instead, it suffices to require (T-)DSPR.

For modern hash-based signatures like XMSS [7] L-OTS is replaced by vari-
ants [6] of the Winternitz OTS (W-OTS) [13]. For W-OTS the notion of EU-
CMA security does not directly translate to T-openPRE. Indeed, the security
reduction gets far more involved as W-OT'S uses hash chains. However, as shown
in [9] one can replace (T-)PRE in this context by T-SPR and the assumption
that SPprob(H) = 1. Along the lines of the above approach we can then replace
the assumption that SPprob(H) = 1 by T-DSPR.

References
1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Hoch, J.J., Kelsey,

J., Shamir, A., Zimmer, S.: New second-preimage attacks on hash functions. J.
Cryptol. 29(4), 657-696 (2016). https://www.di.ens.fr/~fouque/pub/jocl1l.pdf


https://www.di.ens.fr/~fouque/pub/joc11.pdf

10.

11.

12.

13.

14.
15.

16.

Decisional Second-Preimage Resistance: When Does SPR Imply PRE? 61

Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31-45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5_3

Charalambides, C.A.: Distributions of random partitions and their applications.
Methodol. Comput. Appl. Probab. 9(2), 163-193 (2007)

Dérrie, H.: 100 Great Problems of Elementary Mathematics. Courier Corporation
(2013)

Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009). http://ac.cs.princeton.edu/home/AC.pdf

Hiilsing, A.: W-OTS+ — shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173-188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7_10. https://eprint.iacr.org/2017/965

Hiilsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391, May 2018. https://rfc-editor.org/rfc/rfc8391.
txt

Hiilsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSS™7. In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194-208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4_14. https://eprint.iacr.org/2017/966

Hiilsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387-416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7_15. https://eprint.iacr.org/2015/1256

Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much
less than 2" work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474-490. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_28.
https://eprint.iacr.org/2004/304.pdf

Lamport, L.: Constructing digital signatures from a one way function. Techni-
cal report SRI-CSL-98, SRI International Computer Science Laboratory (1979).
https://lamport.azurewebsites.net /pubs/dig-sig.pdf

Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400-417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7_-27. https://cseweb.ucsd.edu/~daniele/papers/MMM.html
Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218-238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0_21. https://merkle.com/papers/Certified1979.pdf

Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26-29 (1955)
Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371-388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4.24. https://eprint.iacr.org/2004/035

Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). https://oeis.
org


https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
http://ac.cs.princeton.edu/home/AC.pdf
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2017/965
https://rfc-editor.org/rfc/rfc8391.txt
https://rfc-editor.org/rfc/rfc8391.txt
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://eprint.iacr.org/2017/966
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2015/1256
https://doi.org/10.1007/11426639_28
https://eprint.iacr.org/2004/304.pdf
https://lamport.azurewebsites.net/pubs/dig-sig.pdf
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://cseweb.ucsd.edu/~daniele/papers/MMM.html
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://merkle.com/papers/Certified1979.pdf
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://eprint.iacr.org/2004/035
https://oeis.org
https://oeis.org

62 Daniel J. Bernstein and Andreas Hiilsing

A Some Single-Variable Functions

This appendix proves features of some functions used in the proofs of theorems
in Sect. 3. The proofs in this appendix are split into small lemmas to support
verification, and proofs of the lemmas appear in the full version online. The
notation R~y means the set of positive real numbers.

Lemma 39. If x #0 then e > 1+ z.
Lemma 40. Any z € R has e® —2x > 2 —2log2 > 0.
Lemma 41. Ifz > 0 then e — 1+ 2 — 22 > 0.

Lemma 42. Define ¢1(x) = z(e* — 1)/(e* — x). Then 1 is increasing, and
maps R~q bijectively to R~g.

Lemma 43. Ifx # 0 then e + e % > 2.
Lemma 44. If x > 0 then e* —e™* — 2z > 0.
Lemma 45. If x > 0 then e® +e % —2 — 22 > 0.

Lemma 46. Define po(z) = xz(e® — 1)/(e* — 1 — x) for x > 0. Then pa is
increasing, and maps R~q bijectively to R~s.

Lemma 47. The ratio (e — 1)17%/2%(1 — 2)'=% for 0 < x < 1 increases for
0 <z < 1/e, has mazimum value e at x = 1/e, and decreases for 1/e < x < 1.

Lemma 48. The mazimum value of 1/(2x —1)?*~1(1 — z)2(=2)21=% for 1/2 <
z<lisl+v2.

Lemma 49. Define g5(x) = xze® — e* + 1. Then p5 decreases for x < 0, has
manimum value 0 at x = 0, and increases for x > 0.

Lemma 50. Let x be a positive real number. Define y = e* — 1 —x and z =
1/(z +2%/y); then 0 < z < 1/2. Define v = y*/x2*(1 — 2)17%; then v < e — 1.
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Abstract. Structure-preserving signatures on equivalence classes (SPS-
EQ) introduced at ASTACRYPT 2014 are a variant of SPS where a mes-
sage is considered as a projective equivalence class, and a new representa-
tive of the same class can be obtained by multiplying a vector by a scalar.
Given a message and corresponding signature, anyone can produce an
updated and randomized signature on an arbitrary representative from
the same equivalence class. SPS-EQ have proven to be a very versatile
building block for many cryptographic applications.

In this paper, we present the first EUF-CMA secure SPS-EQ scheme
under standard assumptions. So far only constructions in the generic
group model are known. One recent candidate under standard assump-
tions are the weakly secure equivalence class signatures by Fuchsbauer
and Gay (PKC’18), a variant of SPS-EQ satisfying only a weaker unforge-
ability and adaption notion. Fuchsbauer and Gay show that this weaker
unforgeability notion is sufficient for many known applications of SPS-
EQ. Unfortunately, the weaker adaption notion is only proper for a semi-
honest (passive) model and as we show in this paper, makes their scheme
unusable in the current models for almost all of their advertised appli-
cations of SPS-EQ from the literature.

We then present a new EUF-CMA secure SPS-EQ scheme with a tight
security reduction under the SXDH assumption providing the notion of
perfect adaption (under malicious keys). To achieve the strongest notion
of perfect adaption under malicious keys, we require a common reference
string (CRS), which seems inherent for constructions under standard
assumptions. However, for most known applications of SPS-EQ we do
not require a trusted CRS (as the CRS can be generated by the signer
during key generation). Technically, our construction is inspired by a
recent work of Gay et al. (EUROCRYPT’18), who construct a tightly
secure message authentication code and translate it to an SPS scheme
adapting techniques due to Bellare and Goldwasser (CRYPTO’89).
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1 Introduction

Structure-preserving signatures (SPS) [4] are signatures where the messages,
public keys and signatures only consists of elements of groups equipped with an
efficient bilinear map, and the verification algorithm just consists of group mem-
bership checks and evaluation of pairing product equations (PPEs). SPS schemes
[2,4-8,43-45,60,63,64] are compatible with efficient pairing-based NIZK proofs
[50], and are a useful building-block for many cryptographic applications, such
as blind signatures [4,39], group signatures [4,68], traceable signatures [3], group
encryption [23], homomorphic signatures [66], delegatable anonymous credentials
[34], compact verifiable shuffles [24], network coding [10], oblivious transfer [48],
tightly secure encryption [56] and anonymous e-cash [17]. SPS schemes come
in various different flavors such as being able to sign elements in either one or
both source groups of the bilinear group or requiring certain conditions for mes-
sages (e.g., messages need to be Diffie-Hellman tuples [33,45]). They come with
different provable security guarantees, ranging from ones that are directly ana-
lyzed in the generic group model (GGM) to ones that can be constructed from
standard assumptions such as SXDH or SXDLin (typically within the Matrix-
Diffie-Hellman assumption framework [31]) and under different qualities of the
reduction (from very loose to tight reductions). A desirable goal is to construct
schemes with tight security reductions from standard assumptions which are at
the same time highly efficient. Some SPS schemes are also randomizable (e.g.,
[4,6]), meaning that a signature can be randomized to another unlinkable valid
signature on the same message.

Structure-preserving signatures on equivalence classes (SPS-EQ) [38,40,52]
are a variant of SPS where anyone can randomize not only signatures, but
a message-signature pair publicly, i.e., in addition to randomizing the signa-
ture also the message can be randomized. They have proven to be useful in
many applications such as attribute-based anonymous credentials [29,40,52],
delegatable anonymous credentials [27], self-blindable certificates [11], blind sig-
natures [37,39], group signatures [11,12,26,30], sanitizable signatures [22], ver-
ifiably encrypted signatures [51], access control encryption [36] or proving the
correctness of a shuffle in mix-nets (i.e., for anonymous communication or elec-
tronic voting) [59]. In many of these applications, the idea of randomizing sig-
natures and messages offers the same functionality as when using SPS schemes
combined with a NIZK proof, but without the need for any NIZK. Consequently,
this allows for the design of more efficient constructions.

More concretely, in an SPS-EQ scheme, given a signature on an equivalence
class defined over the message space, anyone can update the signature to another
representative of the same class. Defined on (G*)* (where G is of prime order
p), this equivalence relation ~x is as follows (£ > 1):

Me (G*) ~g N (G")' & IpeZ: M= uN

An SPS-EQ scheme signs an equivalence class [M]z for M € (G})* by signing
a representative M of [M]x. It then allows for switching to other representatives
of [M]gz and updating the signature without access to the secret key. Two
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important properties of SPS-EQ are unforgeability (EUF-CMA security) defined
on equivalence classes and perfect adaption (potentially even under malicious
signing keys), where the latter requires that updated signatures (output by the
algorithm ChgRep) are distributed identically to new signatures on the respective
representative (if signatures or even if signing keys are computed maliciously).
Latter together with the DDH assumption on the message space then yields a
notion of unlinkability, i.e., that original signatures and those output by ChgRep
cannot be linked. As it turns out, coming up with constructions that achieve
both notions simultaneously is a challenging task.

We note that, as observed in [39], every SPS-EQ yields a (randomizable) SPS
scheme by appending some fixed group element to the message vector before sign-
ing and which is checked on verification, to allow only one single representative
of each class. Recently, the concept of SPS-EQ has even been further extended
to consider also equivalence classes on the public keys, denoted as signatures
with flexible public key [11] and equivalence classes on messages and public keys
simultaneously, denoted as mercurial signatures [27]. This further extends the
scope of applications.

Prior Approaches to Construct SPS-EQ. The first instantiation of SPS-EQ
in [52] was secure only against random message attacks, and later Fuchsbauer et
al. [38,40] presented a revised scheme that achieves EUF-CMA security in the
generic group model (GGM). In [39], Fuchsbauer et al. present another EUF-
CMA secure scheme under a g-type assumption, which by construction does
not provide the perfect adaption notion and thus is not interesting for existing
applications of SPS-EQ. Recently, Fuchsbauer and Gay [35], presented a version
of SPS-EQ (called equivalence class signatures or EQS) which can be proven
secure under standard assumptions, i.e., in the Matrix-Diffie-Hellman assump-
tion framework [31]. In order to prove their scheme secure, they have introduced
a weakened unforgeability notion called existential unforgeability under chosen
open message attacks (EUF-CoMA), in which the adversary does not send group
element vectors to the signing oracle but vectors of Z; elements. Moreover, in
contrast to the original definition of SPS-EQ in [52] and the scheme of Fuchs-
bauer et al. [38,40], which allows to randomize a given signature (change the
representative) an arbitrary number of times, the scheme of Fuchsbauer and
Gay [35] distinguishes two types of signatures. The first type comes from the
signing algorithm and when randomized yields a signature of the second type,
which cannot be randomized any further. As argued by Fuchsbauer and Gay
in [35], for most of the known applications of SPS-EQ the combination of EUF-
CoMA notion and the one-time randomizability is sufficient. Actually, as argued
in [35], it is sufficient for all applications in the literature, except for the one to
round-optimal blind signatures from SPS-EQ [39].

The construction of Fuchsbauer and Gay in [35] does also rely on a weak-
ened notion of adaption (weaker than the original one from [39] in that it
only considers honestly generated keys and honestly computed signatures). We
will show that even though their weaker unforgeability notion is sufficient for
applications, the weaker adaption notion makes the scheme suitable only for
restricted applications, i.e., access control encryption (ACE) or attribute-based
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credentials (ABCs) with an honest credential issuer. Moreover, the application
to verifiably encrypted signatures in [51] requires another notion called perfect
composition, which [35] seem to assume implicitly. Unfortunately, their scheme
does not satisfy this notion. Consequently, for the interesting schemes providing
the perfect adaption notion from [39], the current state of affairs is that there is
only the EUF-CMA secure scheme from [38,40] secure in the GGM.

Tight Security for SPS-EQ Schemes. Tight security allows to choose cryp-
tographic parameters of a scheme in a way that is supported by a security proof,
without the need to sacrifice efficiency by compensating the security loss of a
reduction with larger parameters. Latter can be significant if the reduction is
very loose. In case of SPS, quite some progress has been made in recent years
on constructing tightly-secure SPS [7,8,43,55,60], though the state-of-the-art
tightly-secure schemes under standard assumptions are still less efficient than for
instance schemes proven secure in the generic group model (GGM). While tight
security is quite well studied within SPS (and other primitives such as encryp-
tion [41,54,55], signatures [25,46,54,55], identity-based encryption [25,57,58],
key exchange [13,46,53], or zero-knowledge proofs [41,55]), there are no such
results for SPS-EQ schemes so far.

1.1 Owur Contributions

Our contributions in this paper can be summarized as follows:

Analysis of FG18: Firstly, we revisit the concrete approach to construct EUF-
CoMA secure EQS from Fuchsbauer and Gay in [35], representing the only known
candidate towards perfectly adapting SPS-EQ under standard assumptions so
far. Thereby, we identify various problems with the applications of the scheme
presented in [35]. We stress that we do not present attacks on the scheme itself
(which is secure in their model), but show that their adaption notion is too
weak for most applications claimed in [35] (apart from access control encryp-
tion (ACE) [36]). Briefly summarizing, we first show that their scheme cannot
be used for the application to attribute-based credentials (ABCs) [38,40]. We
demonstrate an attack based on a trapdoor in the signing key that invalidates
the anonymity proof for ABCs. Secondly, we show an attack that demonstrates
that the scheme in [35] cannot be used even for applications that assume honest
generation of signing keys and in particular for ABCs under honest-keys [52]
and dynamic group signatures [30]. We stress that due to this too weak adap-
tion notion concrete instantiations presented in follow up works by Backes et
al. [11,12], that rely on the FG18 scheme from [35], are invalidated and need to
be reconsidered. Our results allow to repair their now broken claims in part.!
Thirdly, we show that the FG18 scheme does not satisfy another notion called
perfect composition [51], invalidating the use of their scheme for application to
verifiably encrypted signatures as discussed in [35]. Consequently, this means
that contrary to their claim, the EQS framework and scheme in [35] can only

! For the group signatures in [12] it will only work with our construction when relying
on a CRS, or by using the construction secure in the GGM in [38].
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be used for the construction of access control encryption (ACE) in [36] and for
all other applications no instantiations under standard assumptions remain. We
stress that one could relax the security models of the applications to make [35]
usable again, but such models where signatures and keys are assumed to be gen-
erated honestly, i.e., that only guarantee semi-honest (passive) security, limits the
practical applications. For example, one could consider ABCs with anonymity
against honest credential issuers and use the EQS from [35].

SPS-EQ from Standard Assumptions and Applications: As our main con-
tribution, we provide the first construction of SPS-EQ under standard assump-
tions and in particular the Matrix-Diffie-Hellman assumption framework. We
therefore have to revise the model of SPS-EQ in some aspects: (1) we introduce
tags, where the signing algorithm outputs a signature and a tag, randomization
(i.e., ChgRep) requires a signature and a tag, whereas for verification only the
signature is required; signatures that have been randomized using a tag can not
further be randomized, i.e., only a single randomization is possible. This defini-
tion is comparable to the one in [35], apart that FG18 does not use tags. We
stress that as demonstrated in [35], this restriction does not affect existing appli-
cations of SPS-EQ. (2) we require that signers generate their signing keys with
respect to a common reference string (CRS) for achieving the perfect adaption
notion in the malicious setting (prior works on SPS-EQ did not consider having
a CRS). We will show that this does not impact the applications discussed in [35]
with the exception of anonymous credentials in the malicious key model, as the
security models in all other applications assume honest generation of the sign-
ing keys and thus every signer can produce its own CRS as part of the signing
key. As we, however, cannot avoid a CRS in the malicious key setting, we are
not able to instantiate round-optimal blind signatures in the standard model
from SPS-EQ [39] under standard assumptions, which [35] could not achieve
either. On the positive side, however, it allows us to obtain the most efficient
round-optimal blind signatures in the CRS model from standard assumptions.

On the Use of a CRS. Although our scheme does not require a CRS for nearly
all of the applications of SPS-EQ, avoiding a CRS in the malicious setting would
be good. The use of a CRS in general seems to be debatable, as it needs to be
generated by some trusted third party that is hard to find in the real world.
Within recent years, we have seen a number of deployed real-world applications
that require a CRS when using zk-SNARKS (e.g., Zcash? being probably the
most prominent one) and which have used multi-party computation ceremonies
to construct the CRS in a way that no entity provably knows the trapdoor. A
number of such ceremonies has been run in real-world® and various works discuss
approaches to achieve it [16,20,21]. In the light of this, we do not consider it
unrealistic to generate a CRS for the use within practical applications of SPS-
EQ that require security under malicious keys, especially since the CRS does not
depend on the message length £ and so a single CRS can be used for all types

2 https://z.cash/.
3 See e.g., https://z.cash/blog/the-design-of-the-ceremony/ or https://www.zfnd.
org/blog/conclusion-of-powers-of-tau/.
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of SPS-EQ keys for different applications. Furthermore, it seems interesting to
investigate the application of recent approaches towards subversion resistant
(QA)-NIZK [1,14] or updatable CRS [49,69], though this typically comes at the
cost of rather strong knowledge assumptions. Clearly, ultimately it would be
good to find SPS-EQ in the malicious key model without a CRS, which we leave
as a challenging open problem.

1.2 Outline of Our Construction

Fuchsbauer and Gay [35] modify an affine MAC of Blazy et al. [18] to obtain a
linear structure-preserving MAC. Then, they make the scheme publicly verifi-
able using a known technique from Kiltz and Wee [65] already used previously in
context of SPS [64]. Unfortunately, the structure-preserving MAC has an inher-
ent problem in the security game, where both messages and Matrix Decision
Diffie-Hellman (MDDH) challenges belong to the same source group of the bilin-
ear group. This forces them to use the weaker EUF-CoMA instead of EUF-CMA
security. Consequently, as we are interested in EUF-CMA security, we need to
look for a different framework when trying to construct EUF-CMA secure SPS-
EQ schemes.

Therefore, we borrow a central idea from the recent work of Gay et al. [43].
In particular, they use a specific OR-proof [71] to then construct tightly secure
structure-preserving MACs based on the key encapsulation mechanism of Gay
et al. in [42]. More precisely, they make use of adaptive partitioning [54] to
randomize all tags in their MAC. Their work is based on the observation (core

lemma in [43]) that for all [t]; = [Ag]ir with r £ Z¥ chosen freshly for each

instance, fixed matrices Ag, Ay £ Doy i, and a NIZK proof 7 for t € span(Ag)U
span(Ay), the following values

ko'[th . (ko' +sT)[th (1)
are indistinguishable under the MDDH assumption, where kg « ng is a key,
and s € ng is a fresh random value for each instance. Actually, they show that
[ko ' t]; is pseudorandom.

In this paper, we are going to present an approach to obtain malleability
for this pseudorandom function, which we use as one part of our signature,
and the NIZK proof as another part. Therefore, we first add a tag (to allow a
homomorphism on the pseudorandom part) to our signature, such that everyone
who knows it can re-randomize the pseudorandom part. Second, we revise the
NIZK proof and give a proof for well-formedness of both the pseudorandom part
and the tag, such that it can be re-randomized and that we finally get a fresh
signature, including fresh pseudorandom part and a proof for it. More precisely,
we first show that for all [t]; = [Ag]ir: and [w]y = [Ag]irs for ry, 1o i Z’;
chosen freshly for each instance, and a NIZK proof 7 for t,w € span(Ag) U
span(A1) (to be discussed later), the following tuples are indistinguishable under
the MDDH assumption

(ko' [tl.ko ' [W]1) ,  ((ko' +s")[t]i, ko' [W]1). (2)
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We then use this MAC (for k = 1) to construct an SPS-EQ scheme on a message
[m]; € (G*). Our signature has a basic form like o = ko ' [t]; + k" [m];, with

a tag 7 = k¢ [w]; (which is only required for randomization), where ko L z2
and k < Zg. We can use (2) to add some randomness to the signature as

o =ko'[t]y + Kk [m]; + ¢ for ¢ Xl Zy,. At a high level, by adding randomness
to each signature, we can make every signature independent of each other. So,
we completely hide the values k, and an adversary has negligible chance to
compute a valid forgery. On the other hand, everyone can obtain a fresh tag,
using previous tag 7, and add it to the signature to obtain a fresh pseudorandom
part. From a high level perspective, we have a basic MAC which is additively
homomorphic and our signatures and tags are two instances of it, one on message
[m]; and another one on message zero. This allows deriving a signature on p[m];

for p £ Zy, i.e., to adapt the signature part to representative p[m];, using a
multiplication of the signature part with p and then add it to the fresh tag. Note
that, in our scheme we do not need to have access to the tag 7 in the verification
algorithm, but it is required for randomizing messages and signatures (changing
representatives in the language of SPS-EQ). We note that in the EUF-CMA
game, we model it in a way that on a signature query the challenger returns
both the signature and the tag, while the adversary only needs to output a
signature without the tag as its forgery attempt.

Now, we will discuss how to randomize the NIZK proof. At this point, there
is an obvious problem with the OR-proof used in [43] and we need to revise their
approach such that the proof is randomizable (proofs can be re-randomized
to look like fresh proofs) and malleable (statements for given proofs can be
updated), where latter is required to switch between representatives of a class.
In particular, to obtain these properties we change a part of the OR-proof and
replace it with a QA-NIZK. In the NIZK proof of [43], we have a permanent
CRS including [D]; € G3 and [z]> € G3, where z ¢ span(D) be parameters of
the system. On the other hand, their scheme has an updatable CRS including
[Zo]2 and [z1]2. Now, given the permanent CRS, the complements of the parts
of the updatable CRS are computed in each instance. The idea is that exactly
these CRS generate a sound system (i.e., one of the parts of the updatable CRS
is outside the span of [D]s) and in the other case we have a simulatable system
(i.e., both parts of the updatable CRS are in the span of [D]2). As the public
parameter [z]s is not in the span of [D]s, we can obtain soundness by letting

[Zo]2 = [D]2v and [z1]e = [z]2 — [20]2, for v £ Z,, where the sum of them is
equal to the value [z]2, i.e., [2o]2 + [21]2 = [2]2. So, it proves that at least one of
[Zo]2 and [z1]2 has a part in the span(z). The fact that this sum of the updatable
CRS is a fixed value is of course not good to enable the randomization of the
updatable CRS. To circumvent this state of affairs and obtain malleability, we
need to compute a NIZK proof 7 for t,w € span(Ag) U span(A;) with the
shared updatable CRS, for t and w, and adapt other proof parts, while we

4 We note that we can only instantiate our construction for k = 1, i.e., under the
SXDH assumption, and leave the construction of SPS-EQ under the more general
Matrix Decision Diffie-Hellman assumption as an interesting open problem.
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Table 1. Comparison of SPS-EQ and EQS Schemes when signing vectors of length ¢
and @ is the number of queries to the signing oracle. A means adaption. v'v' means
perfect adaption under honest and malicious keys; v/ means perfect adaption under
honest keys and under malicious keys in the honest parameters model (i.e., using a
CRS); ~ means adaption under honest keys and honest signatures.

Scheme |Signature| PK| Model Ass. Loss | A
(38] 2G| + 1|G2] l|Gz| |EUF-CMA |GGM - v
(strong)

35]  ||(4€+ 2)|G1| + 4]Ga2||(4€ + 2)|G2||[EUF-CoMA |D,4»-MDDH, | O(Q) | ~

(weak) D1-KerMDH
Section 5| 8|G1| + 9/Ga| 3(|Go| |EUF-CMA |SXDH O(log Q)| v
(strong)

remain sound. Our approach is to set [zg]z = [D]2v and [z;1]2 = [z]2v, and give a
proof using a one-time homomorphic QA-NIZK due to Jutla and Roy [62] that
Zo + z1 is in the linear subspace of D + z. This means that at least one of [zg]a
and [z1]2 has a part in span(z). Fortunately, after this change other parts of the
proof adapt properly, and only moving to using a QA-NIZK comes at the cost
of having computationally soundness instead of perfect soundness.’

For realizing the change representative algorithm ChgRep, our Prove algo-
rithm of the OR-proof computes two proofs with shared randomness and QA-
NIZK (where the second proof is part of the tag), which allows to randomize
the first proof and update its word. This yields to have randomized signatures
output by ChgRep to be distributed identical to a fresh signature for the new
representative, i.e., we obtain perfect adaption. As explained above, we use a
NIZK OR-proof and a QA-NIZK proof in the construction of the SPS-EQ. In
order to guarantee perfect adaption even in front of a signer that generates the
keys in a potentially malicious way (i.e., remembers a trapdoor), we need to have
a CRS for these proof systems.® Consequently, the perfect adaption of our SPS-
EQ is guaranteed in the common parameter model where the parameters include
a common reference string. However, we stress again that for most applications
the CRS generation can simply be part of the key generation and no trusted
setup is required.

Comparison with Other Schemes. In the following Table1 we provide a
comparison of previous SPS-EQ schemes with the one proposed in this paper.
We only consider schemes satisfying some reasonable adaption notion, i.e., we

5 Thus, we will formally have a NIZK argument, but in the text we will usually not
make a distinction between NIZK proofs and arguments.

5 Even if all involved proof systems provide zero-knowledge definitions in the style of
composable zero-knowledge [50], i.e., even if the adversary knows the trapdoor and
still simulated and honestly computed proofs cannot be distinguished, we still have
the problem of maliciously generated proofs and thus we cannot avoid a CRS.
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exclude the one under ¢-type assumptions in [39]. We note that while for [3§]
original and randomized signatures are identical, for [35] and our scheme pre-
sented in this paper we only consider sizes of randomized signatures, i.e., those
output by ChgRep and signatures without the tag respectively. For [35] we con-
sider a concrete setting where Uy o-MDDH reduces to the SXDLin assumption [2],
i.e., assuming DLin in G; and Gs, and D;-KerMDH in G5 reduces to the DDH
assumption in Gg. For our scheme k& = 1 and thus we have the £;-MDDH
assumption in G; and the £;-KerMDH assumption in Gs. Latter representing
the 1-KerLin assumption which by Lemma 1 is implied by DDH. Consequently,
our scheme is secure under SXDH, i.e., assuming DDH in G; and G».

2 Preliminaries

Notation. Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input 1* returns a description G = (G, p, P) of an additive cyclic group G of
order p for a A\-bit prime p, whose generator is P. We use implicit representation
of group elements as introduced in [31]. For a € Z,, define [a] = aP € G as the
implicit representation of a in G. We will always use this implicit notation of
elements in G, i.e., we let [a] € G be an element in G, and note that from [a] € G
it is generally hard to compute the value a (discrete logarithm problem in G).
Let BGGen be a PPT algorithm that returns a description BG =
(G1,G2,Gr,p, P, Py, e) of an asymmetric bilinear group where Gy, Go, G are
cyclic groups of order p , P, and P, are generators of G; and Go, respectively,
and e : G; X Gy — G is an efficiently computable (non-degenerate) bilinear map
and for s € {1,2,T} and a € Z,, analogous to above, we write [a]s = aPs € G;
as the implicit representation of a in G,. For two matrices (vectors) A, B define
e([A]1, [B]2) :== [AB]r € Gr. With B we denote the upper square matrix of B.

Let r <= & denotes sampling r from set S uniformly at random. We denote by
A the security parameter, and by e any negligible function of .

Assumptions. We recall the definition of the Matrix Decision Diffie-Hellman
assumption [31] and a natural computational analogue of it, called the Kernel-
Diffie-Hellman assumption [70].

Definition 1 (Matrix Distribution). Let k € N. We call Dy, a matriz distri-

bution if it outputs matrices in ZékH)Xk of full rank k in polynomial time.

Definition 2 (Di-Matrix Decision Diffie-Hellman Assumption). Let Dy,
be a matriz distribution. We say that the Dy-Matriz Diffie-Hellman (Dy-MDDH)
Assumption holds relative to BGGen in group G if for all PPT adversaries A,
we have:
AdvyP(A) = |Pr[A(BG, [Al,, [Aw],) = 1]
— Pr[A(BG, [A],, [u]s) = 1]| < €(N)

where the probability is taken over BG « BGGen(1}), A « Dy, w «— Z’;, u«—
Zk+1
q
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Definition 3 (Kernel Matrix Diffie-Hellman Assumption). Let Dy, be a
matriz distribution and s € {1,2}. We say that the Dy-Kernel Diffie-Hellman
Assumption (Dy-KerMDH) holds relative to BGGen in group G if for all PPT
adversaries A,

s

AdvE™MOH(4) = Pr[[c]3_s — A(BG,[A],):c"A=0Ac#£0| <e(\)

where A & D;..

Lemma 1 (D,-MDDH = Dy-KerMDH [70]). Let k € N and let Dy, be a mat-
rix distribution. For any PPT adversary A, there exists a PPT adversary B such
that Adviy 8" (A) < AdvpP2(B).

2.1 Structure-Preserving Signatures on Equivalence Classes

In this section, we recall the definition and the security model of SPS-EQ scheme,
as introduced in [52]. We note that in order to cover a broader range of potential
constructions, we rename the algorithm BGGen that generates the bilinear group
BG to ParGen generating public parameters par, i.e., now the parameters par
can potentially include additional values such as a common reference string.
Moreover, our construction is tag-based where the tag output by Sign is just used
as input to ChgRep, where no new tag is output, and required for randomization
(for normal SPS-EQ, every occurrence of the tag 7 is just ignored).

Definition 4 (SPS-EQ). A SPS-EQ scheme is tuple of PPT algorithms:

~ ParGen(1%). On security parameter X and returns par including an asymmetric
bilinear group BG. par is implicitly used as input by all of the algorithms.

— KeyGen(par, £): This algorithm takes pp and vector length £ > 1 as input and
outputs a key pair (sk, pk).

— Sign([m];,sk): This algorithm given a representative [m]; € (G})¢ for class
[m]r and a secret key sk outputs a signature o’ = (o,7) (potentially including
a tag 7).

— ChgRep([ml;, (o, 7), 1, pk): This algorithm on input a representative [m]; €
(G})* and signature o (and potentially a tag 7), a scalar u and pk as public
key, computes an updated signature o’ on new representative [m’]; = [pm];
and returns ([m'];, o).

- Verify([m];, (o, 7), pk): This verification algorithm when given a representative
[m];, a signature o (potentially including a tag ) and public key pk, outputs
1 if it accepts and 0 otherwise.

— VKey(sk, pk): This algorithm on input key pair (sk, pk) outputs 1 if secret key
and public key are consistent and 0 otherwise.

We recall correctness, EUF-CMA security and the notion of perfect adaption
(latter being a stronger notion than the original class-hiding notion which we
omit here).
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Definition 5 (Correctness). An SPS-EQ over (G})* correct if for any A\ € N,
any £ > 1, any par < ParGen(1"), any pair (sk,pk) < KeyGen(par,£), any
message [m)]; € (G})¢ and any p € Z, the following holds:

VKey(sk, pk) = 1, and
Pr[Verify([m];, Sign([m];,sk), pk) = 1] =1, and
Pr[Verify(ChgRep([m];, Sign([m];, sk), 11, pk), pk) = 1] = 1.

Definition 6 (EU-CMA). An SPS-EQ over (G})" is existentially unforgeable
under adaptively chosen-message attacks, if for all ¢ > 1 and PPT adversaries
A with access to a signing oracle O>€", there is a negligible function €(-):

par < ParGen(1%), . Sian
Pr | (sk, pk) < KeyGen(par,¥), : [l # [\1[/11]7? (?[I?*]l E*ij /I <e(N),
ign (sk, - erify([m]}, o*, =
(], o) = A9 (pk) YT
where Q38"® is the set of queries that A has issued to the signing oracle OS€".
Note that in the tag-based case this oracle returns (c;,7;).

Perfect adaption introduced in [39] by Fuchsbauer et al. requires signatures
output by ChgRep are distributed like fresh signatures on the new representative.
We present both variants here, as we will require them later. We do not yet adapt
them to the tag-based variant of SPS-EQ (this is done afterwards). Note that in
the following variant signatures are only required to verify (so may be maliciously
computed) while we only consider keys need to satisfy VKey.

Definition 7 (Perfect adaption of signatures). An SPS-EQ over (G})¢ per-
fectly adapts signatures if for all tuples (sk, pk, [m];, o, p) with:

VKey(sk,pk) =1 Verify([ml;,0,pk) =1 [m]; € (G))* peZ;

we have that ChgRep([m];, o, u, pk) and ([1 - m];, Sign([1 - m];, sk)) are iden-
tically distributed.

In the subsequent definition, the strongest adaption notion, one in addition to
potentially maliciously generated signatures one also considers maliciously gen-
erated keys (i.e., does not require that VKey needs to hold).

Definition 8 (Perfect adaption of signatures under malicious keys).
An SPS-EQ over (G})" perfectly adapts signatures under malicious keys if for
all tuples (pk, [ml;, o, 1) with:

(m}; € (G))* Verify([m];, o, pk) = 1 peZy

we have that ChgRep outputs ([u - ml;,0’) such that o’ is a random element
in the space of signatures, conditioned on Verify([u - m];, o', pk) = 1.

Perfect Adaption in Context of a CRS and for Tag-Based SPS-EQ.
If par contains a CRS (as in the case of our construction), we need to consider
this in the adaption notion. For Definition 7 we just replace (sk, pk, [m];, o, 1)
with (par, sk, pk, [m];, 0, 1) where par « ParGen(1?) is honestly generated. We
introduce it subsequently, for completeness.
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Definition 9 (Perfect adaption in the honest parameter model). An
SPS-EQ scheme (ParGen, Sign, ChgRep, Verify, VKey) perfectly adapts signatures
if for all (par, sk, pk, [m];, o, 7, u) with

VKey(sk,pk) =1 Verify(lm];, (c,7),pk) =1 [m]; € (G;)e w € Zy,
par « ParGen(1%)

the following are identically distributed:

(07 Cthep([m]la 0, T, W, pk)) and

((U/v -) < Sign(sk, [m]l)v Cthep([m]iv Sign(sk, [:u ) m]l)v 1, pk))

Definition 8 does not change and also considers a potentially malicious genera-
tion of the parameters which may include a CRS (which is not satisfied by our
construction). Moreover, we introduce an intermediate notion, where keys may
be generated maliciously, but par is generated honestly. We formally define it in
the following for completeness (this is satisfied by our construction).

Definition 10 (Perfect adaption of signatures under malicious keys in
the honest parameters model). An SPS-EQ over (G})* perfectly adapts sig-
natures under malicious keys in the honest parameter model if for all tuples
(par, pk, [m];, o, 7, p) with:

m]; € (G))*  Verify(lm];, (0,7),pk) =1 p€ Z,  par ParGen(1%)

we have that ChgRep outputs ([u - ml;, 0’) such that o’ is a random element
in the space of signatures, conditioned on Verify([u - m];, o', pk) = 1.

2.2 Non-Interactive Zero-Knowledge Proofs

Let R. be an efficiently computable relation of pairs (z,w) of words and wit-
nesses. Let £ be the language defined as £ = {z|3w : Rz(x,w) = 1}. We recall
the definition of a NIZK proof system [19] for a relation R, where we use the
formalization in [43] (based on [50]) for the sake of consistency. We note that we
focus on NIZK argument systems, where soundness only holds for computation-
ally bounded adversaries.

- PGen(l)‘, par): On input a security parameter A and parameters par outputs
a common reference string crs.

- PTGen(l’\, par): On input a security parameter A and parameters par outputs
a common reference string crs and a trapdoor td.

— PPro(crs, z,w): On input a common reference string crs, a statement z, and
a witness w such that Rz (z,w) = 1, returns a proof (2.

— PVer(crs, x, £2): On input a reference string crs and a proof {2, Returns accept
if 2 is valid and reject otherwise.

— PSim(crs, td, z): On input common reference string crs, and the trapdoor td
and word x and outputs a simulated proof f2.
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A NIZK argument system needs to satisfy the following properties:

— Perfect Completeness: For all possible public parameters par, all A € N,
all words x € £, and all witnesses w such that R, (z,w) = 1, we have

p [crs «— PGen(1*, par),

2 « PPro(crs, z, w) PVer(crs, z, 2) = 1] =1

— Computational Soundness: For all PPT adversaries A and for all words
x ¢ L we have:

py | €S PGen(1%, par),
10« Alcrs, x)

— Composable Zero-Knowledge: For all PPT adversaries A, we have

PVer(crs, x, 2) = O] ~ 1.

Pr[crs < PGen(1*,par) : A(1*,crs) = 1] =

Pr [ (crs,td) < PTGen(1*, par) : A(1* crs) =1].

Furthermore, for all for all © € £ with witness w such that Rz (xz,w) = 1, the
following are identically distributed:

PPro(crs,z,w) and PSim(crs,td, z)

where (crs,td) «+ PTGen(1*, par). Note that the composable zero knowledge
requires indistinguishability even for adversaries that get access to (crs, trap).

Quasi-Adaptive NIZK Proofs. Quasi-Adaptive NIZK (QA-NIZK) proofs
[8,28,47,61,62,65,67] are NIZK proofs where the generation of the common ref-
erence string (CRS), for a class of languages £,, parametrized by p, is allowed
to depend on the language parameter p. Moreover the common CRS includes a
fixed part par, generated by an algorithm pargen. Here, we recall the definitions
QA-NIZK proofs, as presented in [65].

Definition 11 (QA-NIZK). A non-interactive proof system (pargen, crsgen,
prove, verify, sim) is said to be a QA-NIZK proof system for an ensemble of dis-
tributions {Dpar} on collection of witness-relations R = {R,} with associated
language parameter p if the following holds (cf. [65]):

Perfect Completeness: For all A, all par output by pargen(l’\), all p output
by Dpar, all (z,y) with R,(z,y) = 1, we have

(crs, trap) < crsgen(par, p),

if =11 =
7« prove(crs, z, w) verify(crs, z, ) 1

Computational Adaptive Soundness: For all PPT adversaries A,

p < Dhpar, par — pargen(1*),
Pr | crs « crsgen(par, p),
(2, 7) — Ay (crs, par, p)

 verify(crs,z,m) =1 A
z ¢ L, -
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Perfect Zero-Knowledge: For all )\, all par output by pargen(1*), all p output
by Dpar, all (crs,trap) output by crsgen(par, p), all (z,y) with R,(z,y) = 1, the
distributions

prove(crs, z,w) and sim(crs,td, z)

are identical. Note that the formalization of perfect zero-knowledge is similar to
that of composable zero knowledge in [50] and requires indistinguishability even
for adversaries that get access to (crs, trap).

2.3 Malleable Proof Systems

Let R, be the witness relation associated to language L, then a con-
trolled malleable proof system [24] is accompanied by a family of efficiently
computable n-ary transformations T = (T,,T,,) such that for any n-tuple
{(z1,w1),...,(Tn, wn)} € R} it holds that (Ty(z1,...,zp), Tw(wi,...,wy)) €
R . (the famlly of admissible transformations is denoted by 7). Intuitively, such
a proof system allows when given valid proofs {{2;};c, for words {z;};c[,) with
associated witnesses {w;};e,) to publicly compute a valid proof (2 for word
x = Tp(x1,...,2,) corresponding to witness w := Ty, (w1,...,w,) using an
additional algorithm denoted as ZKEval. More formally, the additional algo-
rithms is defined as follows:

— ZKEval(crs, T, (w4, £2;)icn): takes as input common reference string crs, a
transformation T' € 7, words z1, . ..z, and corresponding proofs {2, ..., 2,
and outputs a new word z’ := Ty (z1,...,2,) and proof 2.

It is desirable that proofs computed by applying ZKEval are indistinguishable
from freshly computed proofs for the resulting word z’ := T,(x1,...,2,) and
corresponding witness w’ := T, (w1, ...,w,) (this property is called (strong)
derivation privacy). We recall the weaker notion of derivation privacy below.

Definition 12 (Derivation Privacy [24]). A NIZK proof system
{PGen, PTGen, PPro, PVer, PSim, ZKEval} being malleable with respect to a set

of transformations T defined on some relation R is derivation private, if for all
PPT adversaries A,

crs «— PGen(l"“),b {O, 1},

(Sta ((IH wi) )16 lq] 7T) — (CI‘S),

Return Lif (T'¢ 7 Vv 3i € [g] : (PVer(crs,z;, £2;) =0 V
Pr (xwa) ¢ R)7 < 6(/\)

Elseif b = 0 : £2 < PPro(crs, T, ((%i)ic[q))s Tw ((Wi)ic[q), :b=10*

Elseif b = 1: £2 « ZKEval(crs, T (x4, i) ic[q))
| b* — A(st, 2)
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3 Revisiting the FG18 Model and Applications

In this section we recall the construction in [35] (denoted FG18 henceforth) and
point out some issues regarding their signature adaption notion and the implic-
itly assumed notion of perfect composition from [51] for concrete applications.
We again stress that FG18 scheme is secure in FG18 model (honestly signature
and key generation or semi-honest), but we are going to show its problems in
the stronger model, which is current acceptable model. In order to make it more
convenient for the reader we adapt the notion used in [35] to the original SPS-EQ
notion (but keep their name EQS).

First, we recall that their scheme has a one-time randomizability property
and therefore FG18 need to modify the perfect adaption notion from [39] (Defi-
nition 7 in Sect.2.1) to exclude trivial distinguishers, i.e., they always consider
the pairs of original and adapted signatures in their distributions. We recall their
version in Definition 13. The most important difference” is that while the original
notion in Definition 7 considers maliciously generated signatures, the definition
in [35] is restricted to honestly generated signatures.

Definition 13 (Signature Adaption [35]). An EQS scheme (ParGen,Sign,
ChgRep, Verify, VKey) perfectly adapts signatures if for all (sk, pk, [m];, p) with

VKey(sk, pk) = 1 [m]; € (G)* ez
the following are identically distributed:
(p := Sign(sk, [m];), ChgRep(pk, p, 1)) and

(p := Sign(sk, [m];), ChgRep(pk, Sign(sk, [12 - m];), 1))

In Fig.1 we recall the FG18 scheme and then proceed to discuss problems of
Definition 13 and their scheme in context of applications.

3.1 Problem With Key Verification and the Need for a CRS

Fuchsbauer and Gay require for signature adaption that the respective EQS
scheme provides a VKey algorithm that checks consistency of keys sk and pk.
When looking at their keys pk := ([Bl2, {[K;Bla}icpq) and sk := (A, {K;}icr),
a potential VKey algorithm can check the consistency of pk with the part of the
secret key {K; }ice. They did not specify the VKey algorithm, but any reasonable
VKey would check if sk contains the trapdoor B, as honest keys would not contain
it. Now an interesting aspect is that this does not per se present a problem in
their definition, as they do not consider perfect adaption under malicious keys
(in the vein of Definition 8; cf. Sect. 2.1). However, the existence of the potential
trapdoor B and no means to proving the absence of it represents a problem with

" One syntactical difference is that for EQS they do not input the message [m]; in
their ChgRep algorithm, but this does not matter for our discussion.
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Setup(Pg) : Sign(sk, [m]; € (G})*) :
AE Dy, BED, U <& GL, S = AU
for i € [{] do for i € [{] do
K, & Zikx(k’+1) [Si]1 = [mi1S
endfor endfor
0
pk == ([Bl2, {[KiBJ2}ic(e)) _ T
sk := (A, {Ki}icpg) [Sex]s = Z[mi]lKi S

i=1

return p = ({[S:]1 }iciet1, [S]2)
ChgRep(pk, p = ({[Si]1 }iepe+1): [S]2), 1) : Ver(pk, [m]1, 0 = ({[si]1 }iepe+1), [8]2) :

return (pk,sk

r < (Zp)",[s]e = [Sler if [s]2 # [0]

for i€ [(+1] do and Vi € [{] : [s;]1 - [1]2 = [ma]1 - [s]2
[si]v = p[Si|ir . .

endfor and » [s/]1 - [KiBJ2 = [s{s1]1 - [B]2

return o = ({[si]1 }ice41), [8]2) retlj; )

else return 0

Fig. 1. EQS Scheme from [35].

the application of the FG18 scheme to attribute-based credentials (ABCs) (cf.
Section in [35]).

In the ABC construction from [40], the issuer generates an SPS-EQ key
pair and in the Issue protocol, the issuer needs to provide a ZKPoK that
VKey(sk, pk) = 1. Note that for FG18 no realization of this ZKPoK can prove
the absence of B (as the issuer could simply pretend to not knowing it and the
ZKPoK cannot cover this) and a malicious issuer may remember B. Now in
the anonymity proof of the ABC scheme (Theorem 8 in [40]), the reduction can
extract the signing key sk from the ZKPoK and in the transition from Game; to
Game,, for all calls to the oracle Op,r the computation of ChgRep is replaced
with Sign of the SPS-EQ), i.e., instead of adapting existing signatures fresh signa-
tures are computed. Now, this is argued under their signature adaption notion.
However, without additional means, by the strategy we discuss below (i.e., a way
to construct malicious signatures that verify), an adversary can detect with over-
whelming probability that the simulation deviates from the original anonymity
game and thus this proof breaks down when instantiated with EQS in [35]. The
reason is, that their adaption notion in Definition 13 is too weak to be useful to
constructing ABCs following the approach in [40].

Attack Strategy. Let us assume that the adversary who generates the key-
pair pk = ([B]2, {[K;Bl2}ic[q)) and sk = (A, {K;}c[¢) remembers the trapdoor
B. For simplicity we set k = 2 and ¥/ = 1 in Scheme 1 and so we have B =

b s . -
<b1> . Let us for the sake of exposition assume that the signer (credential issuer)
2
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wants to track a specific instance of signing (issuing) and generates all signatures
honestly, except for the one instance (lets say Alice’s credential). Latter signature
is computed differently by the issuer, but in a way that it is indistinguishable
for verifiers, i.e., it still verifies correctly. Actually, instead of computing Sy =

(Sl 52) as dictated by the Sign algorithm (cf. Fig. 1), he uses Sy41 (as in Sign)

S3 Sy

S1 —by Sy + by
Sz 4 b1 Sy — by
S}, instead of Syq; in the first part of the signature p. Note that we have

but also his trapdoor B to compute Slé-s-l = < ) . Then, he includes

SZHB = S’JrlB, and for a verifier this alternative signature computation is not
noticeable. When Alice wants to randomize p (i.e., run ChgRep in Fig. 1), she

(Sl — bg)Tl + (SQ + bg)’l“g)
(Sg + bl)’f’l + (54 — bl)TQ ’
Note that the signer knows K;, and so he can check for any given randomized
signature the following:

R 2 3 / — / _
chooses r «— Zz and obtains sj,;, = uSy ;v = p

Z[SNIKi =[s/1h (3)

which does not use pairing evaluations and thus does not eliminate B. Now it is
easy to see that all randomized signatures including the randomized signature
issued for Alice pass the original verification using Ver. However, the randomized
signature of Alice has an additional part (i.e., B) and so Eq. (3) cannot be
satisfied. So, the signer can easily distinguish the signature issued to Alice from
all other honestly computed signatures.

Trying to Fix the Problem. A modification of the FG18 scheme to prevent
this attack would be to put [B]2 in a common reference string (CRS) used by
all signers when generating their keys so that no signer knows B. As we show
subsequently, however, the adaption notion in Definition 13 used for FG18 still
remains too weak for ABCs and group signatures.

3.2 Distinguishing Signatures

Now, we show how a malicious signer can distinguish signatures even if keys
are generated honestly. In the case of dynamic group signatures (GS) in [30] (or
ABCs under honest keys), the adversary in the anonymity game is allowed to
compute signatures on its own and we will show how this enables the adversary to
track signatures, which breaks the anonymity proof. We stress that this attack
works independently of whether there is a trapdoor in the secret key, as the
GS in [30] rely on the BSZ model [15] and thus assume honest key generation
(mitigating the attack in Sect. 3.1 by construction).

Attack Strategy. First we show how a signer who remembers S during running
Sign can obtain the value of [r]s, which was used as a randomizer for the signature
during ChgRep, and then how he can use it to distinguish two signatures. Again,
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S1 S
/ S3 S4
let us set k = 2 and k¥’ = 1. So, we have S = s s | and when ChgRep
5 06
S7 Ss
81_ 7’151 + 7’252
multiplies [S]z on r = (:;), we receive [s]y = Zj = :122 1 ;222 . Taking
sa], |mS7+raSs],

[s]2 and S, we compute [g-]o — [&], and then multiply it to (g—f - g—:)_l to
obtain [rs]2. Now, we also can recover [r1]z and so we obtain [r]s.
Now, let the signer generate two signatures, say for Alice and Bob, where he

later wants to link the received randomized signature to one of them.

51 S2
The signer picks S = gz gz for Alice, and picks different S{, S§, S%, S,
S7 Sg
S1 5o
and sets S’ = gz gz for Bob in their respective signatures. When the signer
57 5%

receives [s]e, a candidate for a signature obtained from ChgRep, based on the
approach discussed above he obtains [r]2. Now he checks whether [s3]2 = [r155 +
r2S56]2 holds, in which case the randomized signature is related to Alice. On the
other hand, if [s3]e = [r1S5 + r255)2 holds, then the randomized signature is
related to Bob.

3.3 No Perfect Composition

Subsequently, in Definition 14 we recall the perfect composition notion from [51]
required to construct VES from SPS-EQ. This notion intuitively requires that
ChgRep executed with random coins fixed to 1 updates only the parts of the
given signature that are affected by updating the representative from [m]; to
u[m}; and not changing the randomness w previously used by Sign.

Definition 14 (Perfect Composition [51]). An SPS-EQ scheme (ParGen,
Sign, ChgRep, Verify, VKey) allows perfect composition if for all random tapes w
and tuples (sk, pk, [m];, o, u):

VKey(sk,pk) =1 o < Sign([m];,sk;w)  [m]; € (G})"  pezZ;
it holds that (pu[ml;, Sign(p[m];, sk;w)) = ChgRep([m];, o, 1, pk; 1).

Since this notion does not require any assumption on the distribution of original
and adapted signatures, the issues discussed so far do not yield to any problem.
However, it is quite easy to see that this notion is not satisfied by the FG18
scheme and this is actually an inherent problem for EQS (SPS-EQ) schemes
where signatures output by Sign and ChgRep have different forms. To illustrate



Structure-Preserving Signatures on Equivalence Classes 81

this for the FG18 scheme (cf. Fig. 1), signatures resulting from Sign contain a
matrix [S]a, whereas signatures output by ChgRep contain the vector [s]s := [S]ar
(where in context of Definition 14, r represents the all all-ones vector).

4 Our OR-Proof and Core Lemma

Subsequently, we present the concrete instantiation of our malleable OR-proof
that we use for our SPS-EQ scheme. Firstly, PPro computes as a proof two copies
2, and {2 of an OR-proof for statements [z1]; and [z2]1, which use the same
randomness v and share a QA-NIZK proof 7 (denoted by 2). Consequently,
instead of ending up with two independent proofs, we end up with a single proof
2 = ($1 = ([Cril2, M1 1), 22 = ([Cail2, [H2,]1), [2i]2, ) for @ = 0,1 where
both proofs share [z;]2 and 7. We also have PVer and PSim which take two
statements and proofs with shared randomness and QA-NIZK denoted by 7 as
input. Our ZKEval is restricted to any two words [x1]; and [x2]; corresponding to
witnesses 1 and o where the associated proofs {2, and {25 have been computed
using the same randomness v and thus have shared [z;]2 and 7. The output of
ZKEval is a proof 2’ = (21, [2}]2, 7") for word [x}]1 corresponding to witness r’ =

r1+ry with ¢ £ Z,, chosen by ZKEval (i.e., 7 indexes a concrete transformation
in the family 7). Finally, we also provide a verification algorithm (PRVer) that
verifies a single OR-proof (as we use it in the SPS-EQ).

Our OR-Proof. Now, we present our malleable proof for OR language CX(“ A,
based upon the one in [43]. We recall their NIZK proof as well as the QA-NIZK
used by us in our NIZK proof in the full version. The language is

£XO7A1 = {[X]l € G%kE'I‘ S ZI; : [X]l = [AO]I ‘rV [Xh = [Al}l . I‘}

and par := (BG, [Ao]1,[A1]1) with BG «— BGGen(1*) and Ag, Ay <= Dy
for k € N. We henceforth denote our proof by PS and set £ = 1 and consider the
class of admissible transformations 7 := {(T¢, T:,f)}d,eZ; and TY ([x1]1, [x2]1) :=
[x1]1 + ¥[xz]1 and TY (ry,72) := 71 + ¥re. Observe that the output of ZKEval
is a proof with new randomness v' = av, s, = as1,0 + apsao + o and s§ =
asi 1+ ase 1 + O1 as well as new witness 7’ = ry + ¢rs.

Below, we show that the protocol in Fig. 2 is indeed a NIZK argument.

Theorem 1. The protocol in Fig. 2 is a malleable non-interactive zero-
knowledge argument for the language EXO’AI with respect to allowable trans-
formations T .

Proof. We need to prove three properties, perfect completeness, composable
zero-knowledge, computational soundness and derivation privacy.

Completeness: This is easy to verify.
Zero-Knowledge: The challenger sends an MDDH challenge ([D]s, [z]2) to the

adversary B. Then B picks Ay, A il Do, A i D, K £ ZE,XI and computes
[Pl]o =[z" + D"];K and C = KA.
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PGen(par, 1) :

DA LD,z & 72 \ span(D)

K & z2!
M:=D+2z
P.=M'K
C:=KA

crs = (par, [D]Qv [Z]27 [Ph» [X]lv [C]l)
return crs

PPro(crs, [x1]1, 71, [x2]1,72)

Let b e {0, 1},] S {1,2} s.t. [Xj]l = [Ab]lrj
R
v — Ly
[21-4], = v[D]:
[2b], := v[z]>
= v[P]2
R
51,0, 51,1, 52,0, 52,1 «— Zp
Ciu), = s1,5[D]s + r1[2zs]2

Mo p], == [A1_p]1 - s2,1-6 — [X2]10
2 := ([Cjil2, [TLj]1, [Zi]2, ™) je (1,23,ie 00,13
return 2

PVer(crs, [x1]1, [x2]1, 2) :

if e([A]1, ) = e([Cl1, [21]2 + [20]2)
and for all i € {0,1},5 € {1,2} it holds
e([Ad1,[Cyil2)
e([I;i]1,[D]3) + e([x;]1, [z:]3 )
return 1
else return 0

PRVer(crs, [x1]1, 27) :

if e([A]s,7') = e([Cly, [z1]2 + [20]2)
and for all ¢ € {0,1} it holds
e([Ail1,[C]2) =
e([I}]1, [D]3 ) + e([xi]1, [zi]s )
return 1
else return 0

PTGen(par, 1*) :

DAED wE 7,

K & 72
z:= Du
M:=D+4z
P=M'K
C:=KA

crs := (par, [D]y, [z], [P]2, [A]1, [C]1)
trap := (u, K)
return (crs, trap)

PSim(crs, trap, [x1]1, [x2]1) :

peia Zyp
[Zo], := v[D]2
[z1], := vz]2
7= v[P]2
R
81,0, 81,1, 82,0, 82,1 +— Zp
[C10], = s10[D]3
(M10], == [Aoqlis1,0 — [x1]1v
[C1,], = 51,1[D]y
(M1, o= [Ax]y - 11 — [xa]1(vu)
[C2,0], = s2,0[D]2
[1__[2‘0]1 = [AO].ISQT(] - [XQ]M}
[C21], = 521[D]3
(Ma1], == [A1]1 - s2,1 — [x2]1(vu)
2= ([Cyil2, Myal1, [2i]2, T)je (1,23 060,13
return (2

ZKEval(crs, [x1]1, [%2]1, £2) :

Parse 2 = (£21, (22, (]2, 7)
if PVer(crs, [x1]1, [x2]1,2) =0
return |
else ¥, v, Bo, B <~ 7.
and for all b € {0,1}
[z{,k = alzp)2
[Ci], == a[Cipl2 + at[Ca)2 + 55 [D]2
[IT;] L= oIl + ap[Tlp]i + Bo[Asls
T = T
0= (2, [2}]2,7)
return 2’

Fig. 2. Malleable NIZK argument for language EXOyAl

Then B sends ([Agl1,[A1]1,[2]2, [D]e, [Pl2, [A]1,[C]1) to A as crs. When B
receives a real MDDH tuple, where [z]a = [Du]s for some u € Z,, B simu-

lates crs as PTGen. In the other case, where [z], Xl G3, using the fact that the
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uniform distribution over Z2 and the uniform distribution over Z2\span(D) are
1/p-statistically close distributions, since D is of rank 1, we can conclude that
B simulates the crs as output by PGen, within a 1/p statistical distance. Now,
note that PPro and PSim compute the vectors [zo]2 and [z1]2 in the exact same
way, i.e., for all b € {0,1}, z, := Dv, where vg, v; are uniformly random over Z,
subject to v; = vou (recall z := Du).

Also for case j = 1, on input [x1]1 = [Apri]1, for some b € {0,1},
PPro(crs, [x1]1, [x2]1,71,72) computes [C1,1-p]2 and [[111-p]1 exactly as PSim,
that is: [Ch1-p]2 = s1,1-s[D]2 and [II11-p)1 = [A1_plis1,1-6 — [X1]101-p-
The algorithm PPro additionally computes [Cipla = s14[D]2 + r1[z]2 and
I )1 = [Ap]1516, With s1 il Zy. Since the following are identically dis-
tributed:

S1p and 51,6 — T10p

for 514 £ Z,,, we can re-write the commitment and proof computed by PPro
as [Ciplz = s1,5[D]2 — r1vp[D]2 + r1[ze]2 = [s1,,D]2 and [I11p]1 = [Ap]1s15 —
[Aprivp)e = [Apsip)1 — [X1Vp]2, which is exactly as the output of PSim.

For case j = 2 the argumentation is analogous.

Computational Soundness: Based on the computational soundness of the
QA-NIZK proofs [65], we have zg + z; ¢ span(D). So, there is a b € {0,1}
such that z, ¢ span(D). This implies that there exists a d* € Z2 such that
DTd! =0, and zl;rdl = 1. Furthermore, as the row vectors of D together with z;,

form a basis of Zg, we can write [Cj pla 1= [s;,D +1;2p]2 for some s;p,7; il L.
Multiplying the verification equation by d thus yields [Ayr;]i = [x;]1, which
proves a successful forgery outside EXO’ A, impossible.

Derivation Privacy: As can be seen, the algorithm ZKEval outputs a
proof with new independent randomness. So, the algorithm ZKEval and the
algorithm PPro, when only compute a single proof, have identical distribu-
tion, i.e., we have perfect derivation privacy. More precisely, under the CRS
([Aol1, [A1]1, [2]2, [D]2, [Pl2), a proof 2’ = (£21,[z}]2, ") for word [x}]; corre-
sponding to witness v’ has form [z]_,]2 = v'[D]s, [z}]2 = v'[z]2 and m = V/[P]s,
and [Cl; = DI + [z}, ;= [A)]s), [Ch_J2 = i ,[D]] and
IT,_, i = [A1_p)1 -8}, — [x]]10’ for new independent randomness 7/, v', s}, 81 _,
and so is a random element in the space of all proofs. Concluding, the proof
output by ZKEval is distributed identically to a fresh proof output by PPro. 0O

4.1 Owur Core Lemma

We now give a new core lemma, which we denote by Expj™®. Note that we set
k = 1, as it is sufficient for our construction of SPS-EQ. Consider following
experiments (for two cases 3 = 0 and 8 = 1), where F : Z, — Zg is a random
function computed on the fly:
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Expi™(A\), B €{0,1} :  TAGO() :

ctr:=0 ctr:=ctr+1

BG — BGGen(1™) 7 & 7,

Ao, A, £ Dy [t]; = [Aolir, [W]1 = [AcliT2

par := (BG, [th, [A1]1) 2= (2,82, [ZO]Qa [Z1}27 m) < PPro(crs, [t}hrla [W]la TQ)
crs «— PGen(par, 1*) (W], = (ko+ 8- F(ctr) " [t], [u"]1 := (ko + 8- k1) " [W]
ko, k1 i Zi Tag := ([t}b [W]lz 2= (Qla 2, [ZO}Qv [Zﬂz,ﬂ'), [ulhv [u”]l)
pp := (BG, [Ao]y, crs) return Tag

tag — A0 (pp) VERO(tag) :

return VERO(tag) Parse tag = ([t]1, 21, [Zo]2, [Z1]2, 7, [u']1)

if 1 < PVer(crs, [t]1, (£21, [20]2, [21]2, 7))
and Jetr’ < ctr: [u]y = (ko + 3 - F(ctr')) " [t]
return 1
else return 0

Lemma 2 (Core lemma). If the D;-MDDH (DDH) assumption holds in Gq
and the tuple of algorithms (PGen, PTGen, PPro, PVer) is a non-interactive zero-
knowledge proof system for Lx A, then going from experiment Expy™ to
Expi°™ can (up to negligible terms) only increase the winning chance of an adver-
sary. More precisely, for every adversary A, there exist adversaries B, B and
Ba such that

AdVSOTe(A) _ AdvaTe(‘A) S ASAOTQ,
where
AG = (2 4 2[log Q1) AdvEs(B) + (8[log Q] + 4)Advip 2" (By)

(8[log Q] +4) n ([log Q1)Q
p—1 D

2[log Q1 AdVEE (By) + [log Q] Ap, +

and the term Ap, is statistically small.

Due to the lack of space and the similarity of the proof to the approach in
[43] we present the full proof in the full version.

5 Owur SPS-EQ Scheme

In Fig. 3 we present our SPS-EQ scheme in the common parameter model under
simple assumptions. We set £ = 1 as we need randomizability and note that
our scheme is based on the malleable OR-proof presented in Sect.4. Observe
that in ChgRep the new randomness is v’ = aw, sj = apsi o + asa o + Gy and
s} = ausi 1+ apse 1 + B1 and the new witness is ' = ury + ¥ra.
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ParGen(1*) :

BG «— BGGen(1")

Ao, AL £ D,

crs «— PGen((BG, [Ag)1, [A1]1), 1Y)
par := (BGv [Ao]lv [Al]lv CI’S)
return par

Sign([m]y, sk) :

T1,7T2 <£ Zp

[t], :==[AoJim

[w], == [Ao]ir2

2 — PPro(crs, [t]1, 71, [W]1,72)
Parse Q = (91, QQ, [Zo]z, [Z1]27 71')
u; ‘= I{(—)r [t]l + KT[m]l

us = K(—]r [w]1

o= ([wl1, 21, [Zo]2, [z1]2, 7, [t]1)
7 1= ([uz]1, 22, [W]1)

return (o, 7)

Verify([m]y, (o, 7), pk) :

KeyGen(par, ¢) :

A LD
Ko < 722

K & 72

sk := (Ko, K)

pk := ([A]2, [KoA]z, [KA]2)
return (pk, sk)

Cthep([mha g, T, U, pk) :

™, [t]1)

Parse o = ([ul]l, (21, [Zo}z, [21]2,
Parse 7 = ([uz21, 22, [W]1)
2= (91, 927 [Zo]z, [21]2, 71')
if 1 # PVer(crs, [t]1, [w]1, 2)
or e([uz]{ , [Al2) # e([w]{ , [KoAl2)
or e([wi]], [A]>) #
e([t};r7 [KoAl2) + 8([m]1Tv [KAJ2)
return |
else v, a, Bo, B1 il Z,
[w]} = p[w]i + ¥uzls

Parse o = ([u1]1, 1, (202, [21]2, 7, [t]1)
Parse 7 € {([uz]1, 22, [w]1) U L}
if 1= PV?;’(CFS7 [t]lv (.Ql, [Z0}27 [Z1]2,7T))
2. if e_g[lllh ,[A]Q) = -

e([t]] . [KoAl) + e([m]] , [KAJ)

if 7# 1
3. if 1+ PVer(crs, [w]1, (£22, [20]2, [21]2, 7))
o if e([us]f, [Al2) = e([w]{ , [KoAl2)

return 1

return 1

else return 0

[t'], = plth + ¥Iwl = [Ag]i (ur1 + ¢r2)
for all b € {0,1}
[2i], = alzs]2

[Cb}? = ap[Cipl2 + a[Cap)2 + B[D]2
[H;)] = = ap[IIi p + ap[Iap)1 + Be[As)1
7 i=ar
Q = (017 [Zﬂ% 7r,)

o = ([ul], 2, [t']h)
return (u[m];, o)

Fig. 3. Our SPS-EQ scheme.

Theorem 2. If KerMDH and MDDH assumptions holds, our SPS scheme is
unforgeable.

Proof. We prove the claim by using a sequence of Games and we denote the
advantage of the adversary in the j-th game as Adv;.

Game 0: This game is the original game and we have:

EUF-CMA

= AdvspsEq

AdVO (.A)

Game 1: In this game, in Verify, we replace the verification in line (2:) with the
following equation:
[uili = Ko [t + KT [m"]s
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For any signature o = ([uj]1, 27, [z§]2, [27]2, 7, [t*]1) that passes the original
verification but not verification of Game 1 the value

[ui]; — Ko ' [t*]; - K [m*]y

is a non-zero vector in the kernel of A. Thus if A outputs such a signature, we
can construct an adversary B that breaks the D;-KerMDH assumption in Gs.
To do this we proceed as follows: The adversary B receives (BG, [A]s), samples
all other parameters and simulates Game 1 for 4. When B receives the forgery
from A as tuple o = ([uf]1, £2, [25]2, [2]]2, 7, [t*]1) for message [m*];, he passes
following values to its own challenger:

[ui]; — Ko ' [t*]; - K [m*];

We have:
|Adv; — Adv,| < Advi"PM(B)

Game 2: In this game, we set Ko = Ko +ko(a’)" (in key generation we can
pick kg € Zf, and Ky € ngz and set Ko; we have at A = 0). We compute
[w]i = K¢ [t + K'[m]; +a* (ko) [t] and [uz]s = Kg[w]; +a (ko) [w]i.
There is no difference to the previous game since both are distributed identically.

So, we have:
AdVQ = AdV1

Game 3: In this game, we add the part of F(ctr) for ctr = ctr + 1, where F is a
random function, and obtain [u;]; = K| [t} + K [m]; + at (ko + F(ctr)) " [t];
and [ug]; = K [w]1 +at (ko + k') " [w];. In the verification we have:

1 < PVer(crs, [t]1, (21, [20]2, [21]2, 7)) and
Jetr’ < ctr:
[u1]1 = K(—)r[t]l + aJ‘(ko + F(ctr’))T + KT[m]l
Let A be an adversary that distinguishes between Game 3 and Game 2. We
can construct an adversary B; that breaks the core lemma. B; receives par =
(BG, [Ag]1,crs) from Expie . By picks A <% Dy, a € orth(A), Ko <& 72%2,
K < 72%¢, and sends public key pk = ([Ao]i, [A]2, [KoAl2, [KAJ]2) to A. B
uses the oracle TAGO() to construct the signing algorithm. This oracle takes

no input and returns tag = ([t]1, [W1, 2 = (21, 22, [20]2, [z1]2, 7), [u']1, [u"]1).
Then B; computes [u1]; = K{[t]; +at[u/]; + K [m]y, [u); = K{[w]; +

at[u”];, and sends the signature o = ([w]1, (202, [z1]2, 7T, [t]1) and tag 7 =
([ug]1, £22,[w]1,) to A. When the adversary A sends his forgery ([m*]y,0*) =
(uy, [t*]1, 27, [Z5]2, [27]2, ™), B1 returns 0 if [u;]; = 0; otherwise he checks

whether there exists [u/*]; such that [u}]; — K| [t*]; — KT [m*]; = a*[u*];. If
it does not hold, then it returns 0 to A, otherwise B; computes [v/*];, and calls
the verification oracle VERO() on the tag tag* = ([t*]1, 27, [2§]2, [27]2, 7%, [u"*]1)
and returns the answer to A. Using the core lemma, we have:

AdV2 — AdV3 < .ACIVCB(Ere (Bl)
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Game 4: In this game, we pick rq1,72 from Zj instead of Z,. The difference of
advantage between Game 3 and Game 4 is bounded by the statistical distance
between the two distributions of 71, 72. So, under @ adversarial queries, we have:

‘AdV4 — AdV3| < %

Game 5: In this game, we pick ctr £ [1,Q], and we add a condition ctr’ = ctr
to verification. Actually, now we have this conditions:

1« PVer(pk, [t]1, (£21, [20]2, [21]2, 7)) and
Jetr’ < ctr: ctr’ = ctr and
[wi)i = Kq [th +a* (ko + F(ctr')) " + K [m]
Since the view of the adversary is independent of ctr, we have
Advy
Q
Game 6: In this game, we can replace K by K +v(at)" for v £ Zf,. Also,
we replace {F(i) : i € [1,Q],i # ctr} by {F(i) + w; : i € [1,Q],i # ctr}, for

w; Z2F and i # ctr. So, in each i-th query, where i # ctr, we compute

AdV5 =

[wi)i = Kq [th + (K" +atv)[m]i +a* (ko + F(i) + wi) [t
Also, for ctr-th query for the message [mg,]1, we compute
[wi)i =K [th + (K" +a*v)[mgli +a* (ko + F(ctr) +w;) [ty
So, A must compute the following:
[uili = K [t°] + (K" +a v )[m"]; +a* (ko + F(ctr) +w;) " [t*]s

Since m* # [mg, ]z (in different classes) by definition of the security game,
we can argue v' m* and v' mg, are two independent values, uniformly random
over Gy. So, A only can guess it with probability of %. So, we have

ctr
- er core 2
AdvEREETA(A) < AdvETMPH(B) + AdvEL“(B1) + ?Q.

Theorem 3. Our scheme satisfies perfect adaption under malicious keys in the
honest parameters model, i.e., Definition 10.

Proof. For any message [m];, and pk which is generated according to the
CRS ([A]2, [Ao]1, [A1]1,[2]2, [D]2, [P]2), a signature o = ([ui]1, 2, [t]1,) sat-
isfying the verification algorithm must be of the form o = (K [Ao]ir +
K [m]y,v[z]s, v[D]2, v[P]a, 50D "] +rv[z)s, 51[D ]2, [Ao]is0, [A1]i51 — [Ag]irv,
[Ag]17). A signature output by ChgRep has the form o = (K{ [Ao]i17'+K T [m]y,
v'[2]2,0'[D]2,v'[P]2, s5[DT] + 7'0'[z]a, 1 [D ]2, [Aglisg, [Aiisi — [Aolir'v,
[Ao]17’) for new independent randomness 7/, v’, s{;, s} and so is a random ele-
ment in the space of all signatures. Actually, the signature output by ChgRep is
distributed identically to a fresh signature on message [m]; output by Sign. O
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6 Applications

As already discussed in [35], there are no known applications of SPS-EQ where
signatures that have been randomized need to be randomized again by an entity
that does not know the original signature. Consequently, and as shown in [35],
tag-based schemes as the one introduced in this paper can be used within all the
known applications without restrictions. Now let us summarize and clarify how
our SPS-EQ scheme can be used in existing applications of SPS-EQ.

Using our scheme we can instantiate the group signatures in [30] and [11] as
well as access control encryption (ACE) in [36]. As already mentioned earlier,
both models assume honest key generation and so we can merge ParGen and
KeyGen of the SPS-EQ scheme and do not need a trusted party to generate the
CRS, i.e., it can be done by the signer during key generation.

Also we can instantiate attribute-based credentials [38,40,52] in the honest
key model or under malicious keys (for latter requiring a CRS), but not in
the malicious key model without a CRS. Due to an argumentation following a
reasoning related to the one in Sect. 3.3, our scheme cannot be used to instantiate
the verifiable encrypted signatures from [51].

Round-Optimal Blind Signatures in the CRS Model. What remains to
be discussed is the application to round-optimal blind signatures as introduced
in [37,39]. As already mentioned, as our SPS-EQ scheme does not provide the
strongest notion of perfect adaption under malicious keys, we are only able to
construct round-optimal blind signatures in the CRS model. In contrast to exist-
ing schemes in the CRS model relying on non-standard and non-static g-type
assumptions such as [9,33] which require around 30 group elements in the signa-
ture, the most recent scheme under standard assumptions, i.e., SXDH, by Abe
et al. [8] requires (42,40) elements in G; and Go respectively. In contrast to
other existing schemes which follow the framework of Fischlin [32], we can take
our SPS-EQ scheme to instantiate the framework in [39]. We note that when
we are in the CRS model, we can move the commitment parameters Q and Q
from [39] in the CRS, and thus obtain a round optimal blind signature scheme
under SXDH. This is the same assumption as used by Abe et al. in [8], but our
signature sizes are only (10,9) elements in G; and Go respectively, improving
over [8] by about a factor of 4 and even beating constructions proven secure
under ¢-type assumptions.
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Abstract. We propose two efficient public key encryption (PKE)
schemes satisfying key dependent message security against chosen cipher-
text attacks (KDM-CCA security). The first one is KDM-CCA secure
with respect to affine functions. The other one is KDM-CCA secure with
respect to polynomial functions. Both of our schemes are based on the
KDM-CPA secure PKE schemes proposed by Malkin, Teranishi, and
Yung (EUROCRYPT 2011). Although our schemes satisfy KDM-CCA
security, their efficiency overheads compared to Malkin et al.’s schemes
are very small. Thus, efficiency of our schemes is drastically improved
compared to the existing KDM-CCA secure schemes.

We achieve our results by extending the construction technique by
Kitagawa and Tanaka (ASIACRYPT 2018). Our schemes are obtained
via semi-generic constructions using an IND-CCA secure PKE scheme
as a building block. We prove the KDM-CCA security of our schemes
based on the decisional composite residuosity (DCR) assumption and
the IND-CCA security of the building block PKE scheme.

Moreover, our security proofs are tight if the IND-CCA security of the
building block PKE scheme is tightly reduced to its underlying compu-
tational assumption. By instantiating our schemes using existing tightly
IND-CCA secure PKE schemes, we obtain the first tightly KDM-CCA
secure PKE schemes whose ciphertext consists only of a constant number
of group elements.

Keywords: Key dependent message security - Chosen ciphertext
security

1 Introduction

1.1 Background

Key dependent message (KDM) security, introduced by Black, Rogaway, and
Shrimpton [3], guarantees confidentiality of communication even if an adversary
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can get a ciphertext of secret keys. KDM security is defined with respect to a
function family F. Informally, a public key encryption (PKE) scheme is said to be
F-KDM secure if confidentiality of messages is protected even when an adversary
can see a ciphertext of f(sky,--- ,ske) under the k-th public key for any f € F
and k € {1,--- , £}, where £ denotes the number of keys. KDM security is useful
for many practical applications including anonymous credential systems [7] and
hard disk encryption systems (e.g., BitLocker [4]).

In this paper, we focus on constructing efficient PKE schemes that satisfy
KDM security against chosen ciphertext attacks, namely KDM-CCA security, in
the standard model. As pointed out by Camenisch, Chandran, and Shoup [6] who
proposed the first KDM-CCA secure PKE scheme, KDM-CCA security is well
motivated since it resolves key wrapping problems that arise in many practical
applications. Moreover, in some applications of KDM secure schemes such as
anonymous credential systems, we should consider active adversaries and need
KDM-CCA security.

The first attempt to construct an efficient KDM secure PKE scheme was
made by Applebaum, Cash, Peikert, and Sahai [1]. They proposed a PKE scheme
that is KDM-CPA secure with respect to affine functions (Fu¢-KDM-CPA
secure) under a lattice assumption. Their scheme is as efficient as IND-CPA
secure schemes based on essentially the same assumption.

Malkin, Teranishi, and Yung [22] later proposed a more efficient KDM-CPA
secure PKE scheme under the decisional composite residuosity (DCR) assump-
tion [9,24]. Moreover, their scheme is KDM-CPA secure with respect to polyno-
mial functions (Fpe,-KDM-CPA secure), which is much richer than affine func-
tions. A ciphertext of their scheme contains d+ 1 group elements, where d is the
maximum degree of polynomial functions with respect to which their scheme is
KDM-CPA secure. As a special case of d = 1, their scheme is an F,-KDM-CPA
secure PKE scheme whose ciphertext consists of only two group elements.

Due to these works, we now have efficient KDM-CPA secure PKE schemes.
As we can see, the above F,-KDM-CPA secure schemes are as efficient as PKE
schemes that are IND-CPA secure under the same assumptions. However, the
situation is somewhat unsatisfactory when considering KDM-CCA secure PKE.

Camenisch et al. [6] proposed the first KDM-CCA secure PKE scheme
based on the Naor-Yung paradigm [23]. They showed that for any function
class F, an F-KDM-CPA secure PKE scheme can be transformed into an
F-KDM-CCA secure one assuming a non-interactive zero knowledge (NIZK)
proof system. They also showed a concrete instantiation based on the deci-
sional Diffie-Hellman (DDH) assumption on bilinear groups. A ciphertext of
their scheme contains O()\) group elements, where A is the security parame-
ter. Subsequently, Hofheinz [12] showed a more efficient KDM-CCA secure PKE
scheme. His scheme is circular-CCA secure, relying on both the DCR and DDH
assumptions, and decisional linear (DLIN) assumption on bilinear groups. A
ciphertext of his scheme contains more than 50 group elements. Recently, Libert
and Qian [20] improved the construction of Hotheinz based on the 3-party DDH
(D3DH) assumption on bilinear groups, and shortened the ciphertext size by
about 20 group elements.
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The first KDM-CCA secure PKE scheme using neither NIZK proofs nor
bilinear maps was proposed by Lu, Li, and Jia [21]. They claimed their scheme is
Far-KDM-CCA secure based on both the DCR and DDH assumptions. However,
a flaw in their security proof was later pointed out by Han, Liu, and Lyu [11].
Han et al. also showed a new F,g-KDM-CCA secure scheme based on Lu et
al.’s construction methodology, and furthermore constructed a Fyoy-KDM-CCA
secure PKFE scheme. Their schemes rely on both the DCR and DDH assumptions.
A ciphertext of their Fop-KDM-CCA secure scheme contains around 20 group
elements. A ciphertext of their Fpo,-KDM-CCA secure scheme contains O(d?)
group elements, where d is the maximum degree of polynomial functions.

Recently, Kitagawa and Tanaka [18] showed a new framework for construct-
ing KDM-CCA secure schemes, and they constructed an F,-KDM-CCA secure
PKE scheme based solely on the DDH assumption (without bilinear maps). How-
ever, their scheme is somewhat inefficient and its ciphertext consists of O(\)
group elements.

The currently most efficient KDM-CCA secure PKE scheme is that of
Han et al. Their schemes are much efficient compared to other KDM-CCA
secure schemes. However, there are still a large overhead compared to efficient
KDM-CPA secure schemes. Especially, its overhead compared to Malkin et al.’s
scheme is large even though Han et al.’s schemes are based on both the DDH
and DCR assumptions while Malkin et al.’s scheme is based only on the DCR
assumption.

In order to use a KDM-CCA secure PKE scheme in practical applications,
we need a more efficient scheme.

1.2 Our Results

We propose two efficient KDM-CCA secure PKE schemes. The first one is
Farr-KDM-CCA secure, and the other one is Fpol,-KDM-CCA secure. Both of
our schemes are based on the KDM-CPA secure scheme proposed by Malkin et
al. [22]. Although our schemes satisfy KDM-CCA security, its efficiency over-
heads compared to Malkin et al.’s schemes are very small. Thus, efficiency of
our schemes is drastically improved compared to the previous KDM-CCA secure
schemes.

We achieve our results by extending the construction technique by Kitagawa
and Tanaka [18]. Our schemes are obtained via semi-generic constructions using
an IND-CCA secure PKE scheme as a building block. By instantiating the under-
lying IND-CCA secure PKE scheme with the factoring-based scheme by Hofheinz
and Kiltz [16] (and with some optimization techniques), we obtain KDM-CCA
secure PKE schemes (with respect to affine functions and with respect to poly-
nomials) such that the overhead of the ciphertext size of our schemes compared
to Malkin et al.’s KDM-CPA secure scheme can be less than a single DCR~group
element. (See Figs.1 and 2.)

Moreover, our security proofs are tight if the IND-CCA security of the build-
ing block PKE scheme is tightly reduced to its underlying computational assump-
tion. By instantiating our schemes using existing tightly IND-CCA secure PKE
schemes [10,13], we obtain the first tightly KDM-CCA secure PKE schemes
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whose ciphertext consists only of a constant number of group elements. To the
best of our knowledge, prior to our work, the only way to construct a tightly
KDM-CCA secure PKE scheme is to instantiate the construction proposed by
Camenisch et al. [6] using a tightly secure NIZK proof system such as the one
proposed by Hofheinz and Jager [14]. A ciphertext of such schemes consists of
O(X) group elements, where A is the security parameter.

For a comparison of efficiency between our schemes and existing schemes, see
Figs. 1 and 2. In the figures, for reference, we include [22] on which our schemes
are based but which is not KDM-CCA secure. In the figures, we also show
concrete instantiations of our constructions. The details of these instantiations
are explained in Sect. 7.

We note that the plaintext space of the schemes listed in Figs. 1 and 2 except
for our schemes and Malkin et al.’s [22], is smaller than the secret key space,
and some modifications are needed for encrypting a whole secret key, which will
result in a larger ciphertext size in the resulting PKE schemes. On the other
hand, our and Malkin et al.’s schemes can encrypt a whole secret key without
any modification by setting s > 3. (We provide a more detailed explanation on
the plaintext space of our scheme in Sect. 5.1.)

Organization. In Sect.2, we give a technical overview behind our proposed
PKE schemes. In Sect. 3, we review definitions of cryptographic primitives and
assumptions. In Sect. 4, we introduce a new primitive that we call symmetric
key encapsulation mechanism (SKEM) and provide concrete instantiations. In
Sect. 5, we present our KDM-CCA secure PKE scheme with respect to affine
functions, and in Sect.6, we present our KDM-CCA secure PKE scheme with
respect to polynomials. Finally, in Sect.7, we give instantiation examples of
KDM-CCA secure PKE schemes.

2 Technical Overview

We provide an overview of our construction. Our starting point is the construc-
tion of KDM-CPA secure PKE proposed by Malkin et al. [22]. Their scheme
is highly efficient, but only KDM-CPA secure. Our basic idea is to construct
KDM-CCA secure PKE by adopting a construction technique used in the recent
work by Kitagawa and Tanaka [18] into Malkin et al.’s scheme. However, since
a simple combination of them does not work, we introduce a new primitive that
ties them together. We first review Malkin et al.’s scheme. Below, we explain
the overview by focusing on constructing a PKE scheme that is F,-KDM-CCA
secure. The actual Malkin et al.’s scheme is Fpol,-KDM-CPA secure, and we can
construct a Fpoy-KDM-CCA secure scheme analogously.

2.1 KDM-CPA Secure Scheme by Malkin et al.

Malkin et al.’s scheme is secure under the DCR, assumption and all procedures of

their scheme are performed on Z}., where N = P() is an RSA modulus with safe

o(N)

primes P and @ of the same length, and s > 2 is an integer. Below, let n = =
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[Scheme [Assumption [Ciphertext size [Tight?]
73] (not CCA) [DCR N ]
7] with [15, § 4] [DLIN O [Gi v

[13] (Circular) |DCR+DDH® & DLIN [6|Zys]| + 50|Gpi| + OHchasig
[21] (Circular) |DCR4DDH® & D3DH[6]Z ys| + 31|Gpi] + OHchasig

12 DCR+DDH® 9 Zyns| + 9 Zn2| + 2|Z 5] + |Zn] + OHae

19 DDH ON)[Gadn]

Ours (§ 5) DCR & CCAPKE 2 ZNS aF ‘thf‘ aF OHcca

with [17][+CRHF|DCR 2|Zns| + 2|ZN" + lencene

with [14 DCR 3|Zns| + 28]Z 2] + OHae v
with [11 DCR & DDH 3|Z s | + 3|Gadn] + OHae 7

Fig. 1. Comparison of KDM-CCA secure PKE schemes with respect to affine functions.
The last three rows are instantiation examples of our scheme. In the “Ciphertext size”
column, we use the following notations: N and N’ are RSA moduli, and s > 2 is the
exponent of N in the DCR setting; N = 2N + 1; For a group G, |G| denotes the size of
an element in GG; Gp; denotes a group equipped with a bilinear map, and Ggqn denotes a
DDH-hard group (without bilinear maps); |mpnf| denotes the output size of the underly-
ing projective hash function; OHc, (resp. OH.e) denotes the ciphertext overhead of the
underlying IND-CCA secure PKE (resp. authenticated encryption) scheme; OHchgsig
denotes an overhead caused by the underlying chameleon hash function and one-time
signature scheme; lenns denotes the output size of a collision resistant hash function;
For A-bit security, OH.e = A, lencns = 2A, and OHchesig can be smaller than |Zy|.
() DDH in the order—@ subgroup of Z%s. ¥ DDH in QR := {a® mod N|a € Z%}.

[Scheme [Assumption [Ciphertext size [Tight?]
23] (not CCA) |DCR CESNA

[12] DCR+DDH® (84% + 1)|Zys| + 9|Z 2| + 2|Zx | + |Zn| + OHae

Ours (§ 6) DCR & CCAPKE (d + 1) ZNS + |7I'phf| + OHcca

with [17]+ CRHF|DCR @+ D)\ Zne| T 2[Zn7] F encmt

with [14 DOR (2d T 1)[Zn<] + 28]Z 2] + OHae 7
with [11 DCR & DDH (24 + 1)[Zn+| + 3|Gadn] + OFne 7

Fig. 2. Comparison of KDM-CCA secure PKE schemes with respect to degree-d poly-
nomial functions. We use the same notation as in Fig. 1.

We can decompose Zj. as the internal direct product Gs-1 @ (—=1) @ G,, ® G2,
where (—1) is the subgroup of Z%. generated by —1 mod N*, and Gys-1, G,
and Gy are cyclic groups of order N*~!, n, and 2, respectively. Note that T :=
1+ N € Z%. has order N*~! and it generates G y=—1. Moreover, we can efficiently
compute discrete logarithms on G s-1. In addition, we can generate a random
generator of G,,.!

We can describe Malkin et al.’s scheme by using generators 7" and g of G ys-1
and G, respectively, and for simplicity we consider the single user setting for
now. Below, all computations are done mod N?® unless stated otherwise, and

! This is done by generating p < Zk- and setting g := ,U,ZNS_1 mod N?. Then, g is
a generator of G, with overwhelming probability.
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(1) (2) ;
Fake Mode: Hide Mode:

Standard Mode:

Enc(pk,f(sk)) Slm(Pk7 f) Enc(pk, O)
Use the secrecy of Use the secrecy
randomness (Re- of sk (Reduction
duction knows sk) does not know sk)

Fig. 3. The triple mode proof. “XX Mode: YY” indicates that in XX Mode, the chal-
lenger returns YY as the answer to a KDM query from an adversary.

we omit to write mod N®. When generating a key pair, we sample? a secret key
as ¢ «— Z, and compute a public key as h = ¢g*. When encrypting a message
m € Zyes-1, we first sample r < Z,, and set a ciphertext as (g, T™ - h"). If we
have the secret key z, we can decrypt the ciphertext by computing the discrete
logarithm of (T™ - h") - (¢")~* =1T™.

Triple Mode Proof Framework. We say that a PKE scheme is KDM secure if
an encryption of f(sk) is indistinguishable from that of some constant message
such as 0, where sk is a secret key and f is a function. Malkin et al. showed the
Fafi-KDM-CPA security of their scheme based on the DCR assumption via the
proof strategy that they call the triple mode proof.

In the triple mode proof framework, we prove KDM security using three main
hybrid games. We let f be a function queried by an adversary as a KDM query.
In the first hybrid called Standard Mode, the challenger returns an encryption of
f(sk). In the second hybrid called Fake Mode, the challenger returns a simulated
ciphertext from f and the public key corresponding to sk. In the final hybrid
called Hide Mode, the challenger returns an encryption of 0. See Fig. 3.

If we can prove that the behavior of the adversary does not change between
Standard Mode and Hide Mode, we see that the scheme is KDM secure. However,
it is difficult to prove it directly by relying on the secrecy of the secret key. This is
because a reduction algorithm needs the secret key to simulate answers to KDM
queries in Standard Mode. Then, we consider the intermediate hybrid, Fake
Mode, and we try to prove the indistinguishability between Standard Mode and
Fake Mode based on the secrecy of encryption randomness. We call this part
Step (1). If we can do that, by showing the indistinguishability between Fake
Mode and Hide Mode based on the secrecy of the secret key, we can complete
the proof. We call this part Step (2). Note that a reduction for Step (2) does not
need the secret key to simulate answers to KDM queries.

Using this framework, we can prove the KDM-CPA security of Malkin et al.’s
scheme as follows. Let f(x) = ax + bmod N*~! be an affine function queried
by an adversary, where a,b € Zpys-1. In Standard Mode, the adversary is given
(g", Te*+b . h7). In Fake Mode, the adversary is given (T~ - ¢", T® - h"). We can
prove the indistinguishability of these two hybrids using the indistinguishability

N -1

1. We ignore this issue in

2 In the actual scheme, we sample a secret key from [
this overview.
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of ¢" and T—% - ¢g". Namely, we use the DCR assumption and the secrecy of
encryption randomness r in this step. Then, in Hide Mode, the adversary is given
(g", h"™) that is an encryption of 0. We can prove the indistinguishability between
Fake Mode and Hide Mode based on the interactive vector (IV) lemma [5] that
is in turn based on the DCR assumption. The IV lemma says that for every
constant ¢1,ce € Zys—1, (T - g", T - h") is indistinguishable from (¢", h") if in
addition to r, x satisfying h = ¢g* is hidden from the view of an adversary. This
completes the proof of Malkin et al.’s scheme.

2.2 Problem When Proving KDM-CCA Security

Malkin et al.’s scheme is malleable thus is not KDM-CCA secure. In terms of the
proof, Step (2) of the triple mode proof does not go through when considering
KDM-CCA security. In Step (2), a reduction does not know the secret key and
thus the reduction cannot simulate answers to decryption queries correctly.

On the other hand, we see that Step (1) of the triple mode proof goes through
also when proving KDM-CCA security since a reduction algorithm knows the
secret key in this step. Thus, to construct a KDM-CCA secure scheme based on
Malkin et al.’s scheme, all we need is a mechanism that enables us to complete
Step (2) of the triple mode proof.

2.3 The Technique by Kitagawa and Tanaka

To solve the above problem, we adopt the technique used by Kitagawa and
Tanaka [18]. They constructed a KDM-CCA secure PKE scheme lMggm by com-
bining projective hash functions PHF and PHF’ and an IND-CCA secure PKE
scheme [.c,. Their construction is a double layered construction. Namely, when
encrypting a message by their scheme, we first encrypt the message by the inner
scheme constructed from PHF and PHF’, and then encrypt the ciphertext again
by Meca. The inner scheme is the same as the IND-CCA secure PKE scheme
based on projective hash functions proposed by Cramer and Shoup [8] except
that PHF used to mask a message is required to be homomorphic and on the
other hand PHF' is required to be only universal (not 2-universal).

The security proof for this scheme can be captured by the triple mode proof
framework. We first perform Step (1) of the triple mode proof based on the
homomorphism of PHF and the hardness of a subset membership problem on
the group behind projective hash functions. Then, we perform Step (2) of the
triple mode proof using the IND-CCA security of lNce,. In this step, a reduction
algorithm can simulate answers to decryption queries. This is because the reduc-
tion algorithm can generate secret keys for PHF and PHF’ by itself and access
to the decryption oracle for MNc;. When proving the CCA security of a PKE
scheme based on projective hash functions, at some step in the proof, we need to
estimate the probability that an adversary makes an “illegal” decryption query.
In the proof of the scheme by Kitagawa and Tanaka, this estimation can be done
in Hide Mode of the triple mode proof. Due to this, the underlying PHF’ needs
to be only universal.



104 F. Kitagawa et al.

If the secret key csk of Mg, is included as a part of the secret key of MNggm,
to complete the proof, we need to change the security game so that csk is not
needed to simulate answers to KDM queries in Step (1). It seems difficult unless
we require an additional property for secret keys of .., such as homomorphism.
Instead, Kitagawa and Tanaka designed their scheme so that csk is included in
the public key of MNygm after encrypting it by PHF. Then, by eliminating this
encrypted csk from an adversary’s view by using the security of PHF before Step
(2) of the triple mode proof, the entire proof goes through. Note that, similarly
to the proof for the construction by Cramer and Shoup [8], a reduction algorithm
attacking the security of PHF can simulate answers to decryption queries due
to the fact that the security property of PHF is statistical and an adversary for
Migm is required to make a proof that the query is “legal” using PHF'.

2.4 Adopting the Technique by Kitagawa and Tanaka

We now consider adopting the technique by Kitagawa and Tanaka into Malkin
et al.’s scheme. Namely, we add a projective hash function for proving that an
inner layer ciphertext of Malkin et al.’s scheme is well-formed, and also add an
IND-CCA secure PKE scheme [, as the outer layer. In order to prove the
KDM-CCA security of this construction, we need to make the secret key csk
of Mcea as part of the public key of the resulting scheme after encrypting it
somehow. Moreover, we have to eliminate this encrypted csk before Step (2) of
the triple mode proof. However, this is not straightforward.

One naive way to do this is encrypting csk by the inner scheme based on the
DCR assumption, but this idea does not work. Since the security of the inner
scheme is computational unlike a projective hash function, a reduction algorithm
attacking the inner scheme cannot simulate answers to decryption queries. One
might think the problem is solved by modifying the scheme so that the security
property of the inner scheme becomes statistical as a projective hash function,
but this modification causes another problem. In order to do this, similarly to
the DCR-based projective hash function by Cramer and Shoup [8], a secret key
of the inner scheme needs to be sampled from a space whose size is as large
as the order of Gy+-—1 ® G,, (that is, N*~! . n). However, the message space of
this scheme is Zs-1, and thus we cannot encrypt such a large secret key by this
scheme. The problem is more complicated when considering KDM-CCA security
in the multi-user setting. Therefore, we need another solution to hide the secret
key csk of Meca.

2.5 Solution: Symmetric Key Encapsulation Mechanism (SKEM)

To solve the above problem, we introduce a new primitive we call symmetric
key encapsulation mechanism (SKEM). It is a key encapsulation mechanism in
which we can use the same key for both the encapsulation algorithm Encap and
decapsulation algorithm Decap. Moreover, it satisfies the following properties.
Encap can take an arbitrary integer x € Z as an input secret key, but its com-
putation is done by x mod z, where z is an integer determined in the setup. Then,
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for correctness, we require Decap(z mod z,ct) = K, where (ct, K) < Encap(z).
Moreover, for security, the pseudorandommness of the session-time key K is
required to hold as long as x mod z is hidden from an adversary even if any
other information of z is revealed.

Using SKEM (Encap, Decap) in addition to an IND-CCA secure PKE scheme
Mcca and a projective hash function PHF, we can construct a KDM-CCA secure
PKE scheme based on Malkin et al.’s scheme as follows. When generating a key
pair, we first sample z [n-z] and compute h < ¢g*, where z is an integer that is
co-prime to n and satisfies n-z < N*~!. Then, we generate a key pair (ppk, psk)
of PHF and (cpk, csk) of MNeea, and (ct,K) < Encap(z), and encrypt psk and csk
to cts using the one-time key K. The resulting secret key is just = and public
key is h, psk, cpk, and (ct, cte).> When encrypting a message m, we encrypt it
in the same way as the Malkin et al.’s scheme and prove that those ciphertext
components are included in G,, by using PHF. Then, we encrypt them by M.
When decrypting the ciphertext, we first retrieve csk and psk from (ct, cte) and
z using Decap, and decrypt the ciphertext using x, psk, and csk.

We can prove the Fo-KDM-CCA security of this scheme basically based on
the triple mode proof framework. By doing the same process as Step (1) of the
triple mode proof for Malkin et al.’s scheme, we can change the security game
so that we can simulate answers to KDM queries using only = mod n. Moreover,
due to the use of the projective hash function PHF, we can change the security
game so that we can reply to decryption queries using only x mod n. Therefore,
at this point, we do not need x mod z to simulate the security game, and thus
we can use the security of the SKEM. We now delete csk and psk from cte
using the security of the SKEM. Then, by using the security of M., we can
accomplish Step (2) of the triple mode proof. Note that, similarly to the proof
by Kitagawa and Tanaka [18], we estimate the probability that an adversary
makes an “illegal” decryption query after Step (2) using the security of PHF.

2.6 Extension to the Multi-user Setting Using RKA Secure SKEM

The above overview of the proof considers KDM-CCA security in the single user
setting. We can extend it to the multi-user setting. When considering KDM-
CCA security in the multi-user setting, we modify the scheme so that we sample
a secret key x from [n- z-2¢] such that n-z-25 < N*~L. In the security proof, we
sample a single x from [n - z] and generate the secret key x; of the i-th user by
sampling A; < [n-z-2¢] and setting x; = x+ A;, where the addition is done over
Z. In this case, an affine function f of xy ...,z is also an affine function of only
x whose coefficients are determined by those of f and Aq,..., Ay. Moreover, the
statistical distance between a secret key generated in this way and that generated
honestly is at most 27¢. Then, we can proceed the security proof in the same
way as above, except for the part using the security of the SKEM.

3 In the actual construction, we derive key pairs (csk, cpk) and (ppk, psk) using K as a
random coin. This modification reduces the size of a public key.
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The secret key x; of the i-th user is now generated as z+ A; by using a single
source z. Thus, each user’s one-time key K; used to hide the user’s (psk, csk) is
derived from a single source x and a “shift” value A;. Standard security notations
do not capture such a situation.

To address this problem, we require a security property against related key
attacks (RKA security) for SKEM. However, a very weak form of RKA security
is sufficient to complete the proof. We show that such an RKA secure SKEM can
be constructed based only on the DCR assumption. Therefore, we can prove the
KDM-CCA security in the multi-user setting of our scheme based only on the
DCR assumption and the IND-CCA security of the underlying PKE scheme.

2.7 Differences in Usage of RKA Secure Primitive with Han et al.

We note that the previous most efficient KDM-CCA secure PKE schemes of Han
et al. [11] (and the scheme of Lu et al. [21] on which the constructions of [11] are
based), also use a “symmetric key” primitive that is “RKA secure”. Specifically,
Han et al. use a primitive called authenticated encryption with auxiliary-input
(ATAE, for short), for which they define confidentiality and integrity properties
both under some appropriate forms of affine-RKA. Here, we highlight the differ-
ences between our proposed schemes and the schemes by Han et al. regarding
the usage of a symmetric primitive with RKA security.

In our schemes, an RKA secure SKEM is used to derive the secret keys
(psk, csk) of the underlying projective hash function and IND-CCA secure PKE
scheme, and an SKEM ciphertext is put as part of a public key of the resulting
scheme. In a modified security game considered in our security proofs, a KDM-
CCA adversary sees multiple SKEM ciphertexts {ct;} (contained in the public
keys initially given to the adversary), where each ct; is computed by using x +
A; mod z as a secret key, where A; € [n - z - 2¢] is chosen uniformly at random.
Consequently, an SKEM used as a building block in our proposed schemes needs
to be secure only against “passive” addition-RKA, in which the shift values {A;}
are chosen randomly by the challenger (rather than by an RKA adversary). Such
an SKEM is easy to construct, and we will show several simple and efficient
instantiations based on the DCR assumption, the DDH assumption, and hash
functions with some appropriate form of “correlation-robustness” [2,17].

On the contrary, in the Han et al.’s schemes, an ATAE ciphertext is directly
contained as part of a ciphertext of the resulting scheme, and thus ATAE cipher-
texts are exposed to a CCA. This is a main reason of the necessity of the integrity
property for ATAE. Furthermore, in a modified security game considered in the
security proofs of their schemes, a KDM-CCA adversary is able to observe mul-
tiple ATAE ciphertexts that are computed under secret keys that are derived via
(some restricted from of) an affine function of a single (four-dimensional) vector
of elements in Zy through affine/poly-KDM queries, and thus their ATAE scheme
needs to be secure under standard “active” affine-RKA (where key derivation
functions are chosen by an RKA adversary, rather than the challenger). Han
et al.’s instantiation of ATAE is essentially the Kurosawa-Desmedt encryption
scheme [19] used as a symmetric encryption scheme, which is why they require
the DDH assumption in addition to the DCR assumption.
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2.8 Tightness of Our Construction

Our construction can be tightly instantiated by using a tightly IND-CCA secure
PKE scheme as a building block. In our security proof, we can accomplish Step
(1) of the triple mode proof by applying the DCR assumption only once via
the IV lemma [5]. In Step (2), we need only a single application of the IND-
CCA security of the outer scheme by requiring IND-CCA security in the multi-
challenge multi-user setting. Thus, if the underlying IND-CCA secure scheme
satisfies tight security in the setting, this step is also tight. In the estimation of
the probability of “illegal” decryption queries, we only use a statistical property,
and thus we do not lose any factor to the underlying assumption. The remaining
part of our proof is eliminating secret keys of projective hash function and IND-
CCA secure PKE encrypted by SKEM from an adversary’s view. To make the
entire proof tight, we have to accomplish this step tightly.

To achieve this, we show the RKA security of our SKEM can be tightly
reduced to the underlying assumptions. Especially, in the proof of the DCR
based construction, we show this using the IV lemma that is different from
that we use in Step (1) of the triple mode proof. Namely, in this work, we use
two flavors of the IV lemmas to make the security proof for the DCR-based
instantiation tight.

To the best of our knowledge, prior to our work, the only way to construct
tightly KDM-CCA secure PKE is instantiating the construction proposed by
Camenisch et al. [6] using a tightly secure NIZK proof system such as that
proposed by Hofheinz and Jager [14]. Schemes instantiated in such a way are
not so practical and a ciphertext of them consists of O(\) group elements, where
A is the security parameter. We observe that the DDH-based construction of
Kitagawa and Tanaka [18] can be tightly instantiated by using a tightly IND-
CCA secure PKE scheme as a building block, though they did not state that
explicitly. However, its ciphertext also consists of O(\) group elements. Thus, our
schemes are the first tightly KDM-CCA secure PKE scheme whose ciphertext
consists of a constant number of group elements.

3 Preliminaries
Here, we review basic notations, cryptographic primitives, and assumptions.

Notations. In this paper, z «— X denotes choosing an element from a finite set
X uniformly at random, and y <« A(x) denotes assigning to y the output of an
algorithm A on an input z. For an integer ¢ > 0, [¢] denote the set of integers
{1,...,£}. For a function f, Sup (f) denotes the support of f. For a finite set S,
|S| denotes its cardinality, and Ug denotes the uniform distribution over S.

A denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(\) is a negligible function if f(A\) tends to O faster than
L for every constant ¢ > 0. We write f(A) = negl(\) to denote f()) being a
negligible function.
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Let X and Y be distributions over a set S. The min-entropy of X, denoted
by Heo(X), is defined by Hoo (X) := —log, max,cs Pr[X = z]. The statistical
distance between X and Y, denoted by SD(X,Y), is defined by SD(X,Y) :=
13 csIPr[X = 2] = Pr[Y = 2]|. X and Y are said to be e-close if SD(X,Y) < e.

3.1 Assumptions

We review the algebraic structure and assumptions used in this paper.

Let N = PQ be an RSA modulus with len-bit safe primes P = 2p 4+ 1 and
Q = 2q + 1 where p and ¢ are also primes. Let n = pg. Throughout the paper,
we assume len > A, and we will frequently use the fact that SD(Uy,, U[¥]) =

]

Let s > 2 be an integer and T := 1 4+ N. We can decompose Z} . as the
internal direct product G ys-1 ® {(—1) ® G,, ® G2, where (—1) is the subgroup of
Zy - generated by —1 mod N*, and Gs-1, Gy, and G are cyclic groups of order
N*~1 n, and 2, respectively. Note that T =14+ N € Z’n« has order N*—1 and
it generates G ys—1. In addition, we can generate a random generator of G,, by
generating p Zy . and setting g := MQNSA mod N¥®. Then, g is a generator
of GG,, with overwhelming probability. We also note that the discrete logarithm
(base T') is easy to compute in G ps-1.

Let QR s := {x2|x € Z}‘Vs}. Then, we have QR ys = Gys-1 RG,,. We denote
(—1) ® QR+ by Jns. We can efficiently check the membership of Jn- by com-
puting the Jacobi symbol with respect to IV, without P and Q.

Let GGen be an algorithm, which we call the DCR group generator, that
given 1* and an integer s > 2, outputs param = (N, P,Q, T, g), where N, P, Q,
and T are defined as above, and ¢ is a random generator of G,,.

We adopt the definition of the DCR assumption [9,24] used by Hofheinz [12].

Definition 1 (DCR assumption). We say that the DCR assumption holds
with respect to GGen if for any integer s > 2 and PPT adversary A, we have
Advi? (\) = |Pr[A (N, g,¢" mod N*) = 1] — Pr[A(N,g,T - g" mod N*) = 1]| =
negl()), where (N, P,Q, T, g) «— GGen (1*,s) and r <~ [n].

We recall the interactive vector game [5].

Definition 2 (Interactive vector game). Let s > 2 be an integer and ¢ be
a polynomial of A\. We define the following IV, game between a challenger and
an adversary A.

1. The challenger chooses a challenge bit b <~ {0,1} and generates (N, P,Q, T, g)

— GGen (1)‘, s). If £ = 1, the challenger sends N and g1 := g to A. Otherwise,

the challenger generates o; < [%] and computes g; — ¢g“* mod N*® for

every i € [{], and sends N, g, and g1,...,ge to A.
2. A can adaptively make sample queries.

Sample queries A sends (a1,...,a) € vas,l to the challenger. The chal-
N—1

lenger generates r < [ ] and computes e; «— Tt % - g; mod N* for
every i € [{]. The challenger then returns (eq,...,ep) to A.
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3. A outputs b’ € {0,1}.

We say that \Vs ¢ is hard if for any PPT adversary A, we have AdVIs\,/z,A()\) =
2 |Pr[b =] — 3| = negl(\).

For any s and ¢, IV, is hard under the DCR assumption [5,22]. We show
the following lemmas related to IV, , that are useful to prove the tight security
of our constructions. The proofs of the lemmas are given in the full version.

Lemma 1. Let s > 2 be an integer. Let A be a PPT adversary that plays the
V1 game and makes at most gy, queries. Then, there exists a PPT adversary

B satisfying AdvY; 4(\) <2 Advig(N) + Lo

Lemma 2. Let s > 2 be an integer. Let £ be a polynomial of \. Let A be a PPT
adversary that plays the IV, game and makes exactly one sample query. Then,

there exists a PPT adversary B satisfying Ade@,A()\) <2 Advgflr;(/\) + 02|(ef).

3.2 Projective Hash Function

We review the notion of projective hash functions (PHF) introduced by Cramer
and Shoup [8] (which is also called hash proof systems in the literature). In this
work, we will use PHF's defined with respect to the DCR, group generator GGen.

Definition 3 (Projective hash function family). A PHF family PHF with
respect to GGen consists of a tuple (Setup, Iyes, ITno, SIC, P, IKC, A, 11, Pub) with
the following properties:

— Setup is a PPT algorithm that takes param = (N,P,Q,T,g) oulput by
GGen(1*,5) (for some s > 2) as input, and outputs a public parameter pp
that parameterizes the remaining components of PHF. (In the following, we
always make the existence of pp implicit and suppress it from the notation).

— Hyes, Iho, SKC, PK, and KC are sets parameterized by pp (and also by param).
Hyes and I, form an NP-language,* where for all ¢ € Iy, there exists a
witness T with which one can efficiently check the fact of ¢ € Iyes. An element
in Iyes (resp. Ilyo) is called an yes (resp. no) instance.

Furthermore, it is required that given pp, one can efficiently sample a uni-
formly random element from SK.

— A is an efficiently computable (deterministic) hash function that takes a secret
key sk € SKC and an yes or no instance ¢ € Iyes U Iln, as input, and outputs
a hash value ™ € K.

— w is an efficiently computable (deterministic) projection map that takes a
secret key sk € SK as input, and outputs a public key pk € PK.

— Pub is an efficiently computable algorithm that takes a public key pk € PIC,
an yes instance ¢ € Il s, and a witness r that c € Il as input, and outputs
a hash value ™ € K.

4 Strictly speaking, since Ilyes and II,, may not cover the entire input space of the
function Ag(+) introduced below, they form an NP-promise problem.
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— Projective property: For all sk € SK, the action of Ag(-) for yes instances
¢ € Il e is completely determined by pk = p(sk). Furthermore, for all ¢ € Ilyes
and a corresponding witness r, it holds that Ay (c) = Pub(u(sk), ¢, 7).

We next introduce the universal property for a PHF family. In this paper,
we consider the statistical and computational variants. Our definition of the
computational universal property is based on the “computational universal2”
property for a hash proof system introduced by Hofheinz and Kiltz [15]. We
adapt their definition to the “universall” case, and also relax the notion so that
we only require that guessing a hash value for a no instance is hard, rather than
requiring that a hash value of a no instance is pseudorandom.

Definition 4 (Statistical/computational universal). Let s > 2, GGen be
the DCR group generator, and PHF = (Setup, Iyes, ITno, SK, PK, KC, A, 1, Pub) be
a PHF family with respect to GGen. We say that PHF is

~ e-universal if for any param output by GGen(1*,s), any pp output by
Setup(param), any pk € PK, any ¢ € I, and any © € KC, we have
Pr |A = k) = pk| <e. 1
P [As(e) = mlu(sk) = pk] <e (1)
Furthermore, we simply say that PHF is universal if it is e-universal for some
negligible function e = e(X).

— computationally universal if for any PPT adversary A, the advantage
Advpye 4(A) in the following game played by A and a challenger is negligible
m A:

1. First, the challenger evecutes param = (N, P,Q, T, g) + GGen(1%,s) and
pp < Setup(param). The challenger then chooses sk < SK, and computes
pk < u(sk). Then, the challenger sends (N, T, g, pp, pk) to A.

2. A can adaptively make evaluation queries.

Evaluation queries A sends an yes or no instance ¢ € Iyes U Il to
the challenger. If ¢ € Il,es, the challenger returns m «— Ag(c) to A.
Otherwise (i.e. ¢ € I,,), the challenger returns L to A.

3. A outputs a pair (¢*,7*) € II,, x K. The advantage of A is defined by
Advipe 4 () = Pr[Ag(c*) = m*].

Remark 1 (Statistical implies computational). Tt is not hard to see that the (sta-
tistical) universal property implies the computational one (even against compu-
tationally unbounded adversaries). To see this, recall that the projective property
ensures that the action of Ag(+) for yes instances is determined by pk. Thus, the
evaluation results Ag(c) for yes instances ¢ € I,es do not reveal the information
of sk beyond the fact that pk = u(sk). Also, evaluation queries with no instances
¢ € Il,,, are answered with L. These imply that throughout the game, the infor-
mation of sk does not leak to an adversary beyond what is already leaked from
pk. Thus, at the point of outputting (¢*, 7*), sk is uniformly distributed over the
subset SK|pk := {sk’ € SK|u(sk’) = pk} from an adversary’s viewpoint, which is
exactly the distribution of sk in the probability defining the universal property.
Hence, if a PHF family is e-universal, the probability that Ag(c*) = 7* occurs
is upper bounded by e.
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3.3 Public Key Encryption

A public key encryption (PKE) scheme PKE is a four tuple (Setup, KG, Enc, Dec)
of PPT algorithms. Let M be the message space of PKE. The setup algorithm
Setup, given a security parameter 1%, outputs a public parameter pp. The key
generation algorithm KG, given a public parameter pp, outputs a public key
pk and a secret key sk. The encryption algorithm Enc, given a public key pk
and message m € M, outputs a ciphertext CT. The decryption algorithm Dec,
given a public key pk, a secret key sk, and a ciphertext CT, outputs a message
m € {L} UM. As correctness, we require Dec(pk, sk, Enc(pk,m)) = m for every
m € M, pp « Setup(1*), and (pk, sk) < KG(pp).

Next, we define key dependent message security against chosen ciphertext
attacks (KDM-CCA security) for PKE.

Definition 5 (KDM-CCA security). Let PKE be a PKE scheme, F function
family, and £ the number of keys. We define the F-KDM-CCA game between a
challenger and an adversary A as follows. Let SKC and M be the secret key space
and message space of PKE, respectively.

1. The challenger chooses a challenge bit b <~ {0,1} and generates pp «
Setup(1*) and ¢ key pairs (pky,ski) < KG(pp) (k € [¢]). The challenger sets
sk := (ski,...,ske) and sends (pkq,...,pky) to A. Finally, the challenger
prepares a list Ligm which is initially empty.

2. A may adaptively make the following queries polynomially many times.

KDM queries A sends (j, 1o, fl) € [{]x FxF to the challenger. We require
that f° and f' be functions such that f : SK* — M. The challenger
returns CT < Enc (pk;, f°(sk)) to A. Finally, the challenger adds (j,CT)
to Lkdm-

Decryption queries A sends (j, CT) to the challenger. If (§,CT) € Lydm,
the challenger returns L to A. Otherwise, the challenger returns m «—
Dec (pk;,sk;,CT) to A.

3. A outputs b' € {0,1}.

We say that PKE is F-KDM-CCA secure if for any polynomial £ = £(X\) and
PPT adversary A, we have Advﬁ"&f?eﬁ()\) =2 |Pr[b =] — 1| = negl(\).

The above definition is slightly different from the standard definition where
an adversary is required to distinguish encryptions of f(sky,...,ske) from encryp-
tions of some fixed message. However, the two definitions are equivalent if the
function class F contains a constant function, and this is the case for affine
functions and polynomials treated in this paper.

The definition of IND-CCA security (in the multi-user/challenge setting) is
recovered by restricting the functions used in KDM queries in the KDM-CCA
game to constant functions, and thus we omit the description of the security
game for it. We denote an adversary A’s IND-CCA advantage by Adv}ﬂ',ﬂ%ﬁ? A(A).
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4 Symmetric KEM and Passive RKA Security

In our proposed PKE schemes, we will use a secret key variant of a key encapsu-
lation mechanism (KEM) satisfying a weak form of RKA security with respect
to addition, as one of the main building blocks. Since several instantiations for
this building block from various assumptions are possible, in this section we for-
malize it as a stand-alone primitive called symmetric KEM (SKEM), together
with its RKA security in the form we use in the security proofs of the proposed
PKE schemes.

4.1 Definition

We first give the formal syntax and functional requirements of an SKEM, and
then give some remarks.

Definition 6 (Symmetric key encapsulation mechanism). An SKEM
SKEM s a three tuple (Setup, Encap, Decap) of PPT algorithms.

— The setup algorithm Setup, given a security parameter 1*, outputs a public
parameter pp and a pair of natural numbers (z,Z), where z represents the size
of the secret key space, and the secret key space is [z], and Z is an approzima-
tion of z. We assume that Z (but not necessarily z) can be efficiently derived
from pp. We also assume that pp specifies the session-key space K.

— The encapsulation algorithm Encap, given a public parameter pp and a secret
key sk € Z, outputs a ciphertext ct and a session-key K € KC.

— The decapsulation algorithm Decap, given a public parameter pp, a secret key
sk € Z, and a ciphertext ct, outputs a session-key K € K.

As the functional (syntactical) requirements, we require the following three prop-
erties to hold for all (pp, z, %) + Setup(1*):

1. (Approzimate samplability of secret keys:) SD(U,},Ujz)) < O(27*) holds.

2. (Correctness of decapsulation:) Decap(pp, sk mod z,ct) = K holds for every
sk € Z and (ct, K) < Encap(pp, sk).

3. (Implicit modular-reduction in encapsulation:) Encap(pp,sk;r) = Encap(pp,
sk mod z;7) holds for every sk € Z and randomness r for Encap.

Remark 2 (On the syntax and functional requirements).

— As mentioned above, when (pp, z, Z) is output by Setup(1*), the secret key
space under pp is [z]. For security reasons, however, in some constructions,
the exact order z cannot be made public even for an entity executing Encap
and Decap. (In particular, this is the case in our concrete instantiation from
the DCR assumption, in which we set z = @ and z = N; 1
instead require its approximation z to be public via pp.

— We allow Encap and Decap to take any integer sk € Z (rather than sk € [z]
or sk € [z]) as a secret key, but their “correctness guarantees” expressed by
the second and third items of the functional requirements, are with respect
to the modular-reduced value sk mod z. Such flexible interface is convenient

when an SKEM is used as a building block in the proposed PKE schemes.

). Hence, we
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— The third item in the functional requirements ensures that a ciphertext/
session-key pair (ct,K) generated by using sk € Z does not leak the infor-
mation of sk beyond sk mod z. This property plays an important role in the
security proofs of our proposed PKE schemes.

— Note that an SKEM can satisfy our syntactical and functional requirements
even if its ciphertext is empty. (Say, Encap and Decap output some determin-
istic function of pp and sk mod Z).

In the following, we give the formalization of passive RKA security. It is
essentially the definition of the same name defined for symmetric encryption by
Applebaum, Harnik, and Ishai [2], with the slight difference that we allow an
adversary to specify the upper bound B of the interval from which key-shifting
values {A} are chosen randomly by the challenger.

Definition 7 (Passive RKA security). Let SKEM = (Setup, Encap, Decap)
be an SKEM, and let ¢ be a natural number. Consider the following game between
a challenger and an adversary A:

1. First, the challenger chooses a challenge bit b <~ {0,1} and generates (pp, 2, Z)
« Setup(1*). Then, the challenger sends z to A.

2. A sends an integer B > Z specifying the upper bound of the interval from
which key-shifting values { Ay }repq are chosen, to the challenger.

3. The challenger samples sk < [z] and Ay < [B] for every k € [¢]. Then,
the challenger computes (ctg, KL) < Encap(pp,sk + Ax)® and also samples
K) «— K for every k € [{]. Finally, the challenger sends pp, (Ak)kejq, and
(Ctk, KZ)ICE[K] to A.

4. A outputs b € {0,1}.

We say that SKEM is passively RKA secure, if for any polynomial £ = £(\)
and PPT adversary A, we have AdvrSkQEM7Z7A(/\) =2-|Prb=1V] - %‘ = negl(A).

Remark 3 (Stretching a session-key with a pseudorandom generator). From the
definition, it is easy to see that a session-key of an SKEM can be stretched
by using a pseudorandom generator (PRG) while preserving its passive RKA
security. More specifically, let SKEM = (Setup, Encap, Decap) be an SKEM with
session-key space IC, and let PRG : K — K’ be a PRG such that K| < |K'|. Let
SKEM’ = (Setup, Encap’, Decap’) be the SKEM with session-key space K’ that
is obtained by naturally composing SKEM with PRG, namely, Encap’(pp, sk)
runs (ct, K) < Encap(pp, sk) and outputs (ct, PRG(K)), and Decap’(pp, sk, ct) :=
PRG(Decap(pp, sk, ct)). Then, if SKEM is passively RKA secure and PRG is a
secure PRG, then SKEM' is also passively RKA secure. Moreover, if the pas-
sive RKA security of SKEM is tightly reduced to some assumption and the
multi-instance version of the security of PRG is also tightly reduced to the same
assumption, then so is the passive RKA security of SKEM'. (Since the proof is
straightforward, we omit a formal proof of this simple fact). Note that we can
easily construct tightly secure PRG based on the DDH or DCR assumption.

5 The addition sk + Ay is done over Z.
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Setup(1*) : Encap(pp,sk € Z) : Decap(pp, sk € Z,ct) :
(N',P',Q',T',g') < GGen(1*,s) (N, T",g',H) < pp (N',T',¢', H) < pp
H& N aé[’v’;l] K « H(ct* mod N'*)
pp— (N',T',4', H) ct « ¢’“ mod N'¢ Return K.

Return L, 2= ¢(N/)7§:: N'—1 . K «— I—I(CtSk mod N’S)
(e 4 i) Return (ct, K).

Fig. 4. The DCR-based instantiation of an SKEM.

4.2 Concrete Instantiations

Our definition of passive RKA security for an SKEM is sufficiently weak so that
simple and efficient constructions are possible from the DCR or DDH assump-
tion, which are essentially the symmetric-key version of the ElGamal KEM. We
can also realize it from a hash function satisfying an appropriate form of “cor-
relation robustness” [2,17]. We ounly give a concrete instantiation based on the
DCR assumption here. The other instantiations are given in the full version.

Let s > 2, GGen be the DCR group generator, and H = {H : {0, 1} 25 len
— K} be a universal hash family. Then, we can construct an SKEM SKEM
= (Setup, Encap, Decap) whose session-key space is K, as described in Fig. 4.6

It is obvious to see that SKEM satisfies the three functional require-
ments of SKEM. Specifically, let (pp, z,z) be output by Setup. Then, we have
SD (U[z], U[g]) = SD(U[%N/)] , U[¥}) = 0(2_|en) < 0(2_)‘). The other two

properties of the functional requirements are also satisfied due to the fact that
in Encap and Decap, a secret key is treated only in the exponent of elements in
Gy (where n’ = (P'—1)(Q'—1)/4, and G, is the subgroup of Z},. of order n’).

The passive RKA security of SKEM is guaranteed by the following lemma,
which is proved via Lemma 2 and the leftover hash lemma. We provide the formal
proof in the full version.

Lemma 3. If the DCR assumption holds with respect to GGen, and ey :=
1./27G-D-@en—1) .|| = negl()\), then SKEM is passively RKA secure.

Specifically, for any polynomial £ = £(\) and PPT adversary A that attacks
the passive RKA security of SKEM, there exists a PPT adversary B such that
AdvEZew ¢ 4(N) < 2 AdvEG(A) + £+ (ep + O27).

5 KDM-CCA Secure PKE with Respect to Affine
Functions

In this section, we show a PKE scheme that is KDM-CCA secure with respect
to affine functions based on the DCR assumption.

6 Since the RSA modulus used in the SKEM has to be generated independently of
that in the main constructions presented in Sects.5 and 6, here we use characters
with a prime (e.g. N') for values in param.
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Setup,g(17) :
param = (N, P,Q, T, g) «— GGen(1*,s)
PPphf — Setuppue(param)
(ppskem7 'Z?z) — SEtupskem(lA)
PPeca — Setupce, (1%)

KGafF(ppaff) :
(N7 Tv 9, ppphf? PPskem> ppcca) “ PPaff
w L [N 3 o]
(Ct7 K) - Encap(ppskemvx)
Parse K as (rK¢, psk) € RXC x SK.

h < ¢%* mod N*

ppk < p1(psk)

(cpk, csk) — KGeea (PPeca; ™)

Return PK := (h, ct, ppk, cpk) and SK := z.
DeCaff(PK, SK, CT) :

(h, ct, ppk, cpk) « PK; z «— SK

K~ Decap(ppskem7 Z, Ct)

Parse K as (rK¢, psk) € RXC x SK.

(Cpk, CSk) — KGCCa(ppcca; TKG)

(u, v, ) < Deccca(cpk, csk, CT)

If (u,v) ¢ J% . then return L.

If m # Apsk(u? mod N*®) then return L.

Return m « logp (v - u=2% mod N*®).

PPasr < (N, T g, PPphfs PPskems PPcca)
Return pp,g.

EnCaff(PK,m S ZNs—l) :

(h, ct, ppk, cpk) « PK

r (L [N4 1]
u «— ¢g" mod N*
v« T™ .h" mod N*
7« Pub(ppk, u2 mod N*, 2r)
CT «— Enccea(cpk, (u, v, m))
Return CT.

Fig. 5. The proposed KDM-CCA secure PKE scheme M,¢ with respect to affine func-
tions. (The public parameter pp,g is omitted from the inputs to Enc,¢ and Decagr).

We first specify the DCR language with respect to which the underlying PHF
family used in our proposed scheme is considered. Then, we give our proposed
PKE scheme in Sect. 5.1. We also give two instantiations for the underlying PHF
family, the first one in Sect. 5.2 and the second one in Sect. 5.3.

DCR Language. Let s > 2, GGen be the DCR group generator, and param =
(N,P,Q,T,g) — GGen (1)‘, s). The set of yes instances Ilyes is the subgroup G,
of Jys, and the set of no instances 1, is Gys-1 ® G, \ G,. Note that we can
represent any yes instance ¢ € G,, as ¢ = g" mod N°?, where r € Z. Thus, such r
works as a witness for ¢ € Iles.

5.1 Proposed PKE Scheme

Let s > 2, and GGen be the DCR group generator. Let MNeca = (Setup.,, KGeea,
Enceca, Dececa) be a PKE scheme such that the randomness space of KGee, is
RXG. Let PHF = (Setupyps; Iyes, Ino, SKC, PIC, IC, A, 1, Pub) be a PHF family
with respect to GGen for the DCR language (defined as above). Let SKEM =
(Setupgem, Encap, Decap) be an SKEM whose session key space is RX¢ x SK.7
Finally, let ¢ = £()\) be any polynomial such that 27¢ = negl()\). Using these
building blocks, our proposed PKE scheme M, = (Setup,¢, KGatr, Encasr, Decas)
is constructed as described in Fig. 5. The plaintext space of My is Zs—1, where
N is the modulus generated in Setup,.

7 Strictly speaking, the concrete format of SK could be dependent on a public param-
eter pp,,s of PHF. However, as noted in Remark 3, the session-key space of an SKEM
can be flexibly adjusted by using a pseudorandom generator. Hence, for simplicity
we assume that such an adjustment of the spaces is applied.
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The correctness of M, follows from that of SKEM and MNcc,, and the projective
property of PHF.

We note that although our scheme has correctness and can be proved secure
for any s > 2, the plaintext space of our scheme is Z s-1, and thus if s = 2, then
the plaintext space Zy becomes smaller than the secret key space [% -z 25] ,
in which case KDM security for affine functions does not even capture circular
security. (Malkin et al.’s scheme [22] has exactly the same issue.) If Z - 2¢ is
smaller than N, then the secret key space can be contained in Zyz2, in which
case s > 3 is sufficient in practice.8

We also note that even if the building block SKEM SKEM and/or PKE
scheme MM, are instantiated also from the DCR assumption (or any other
factoring-related assumption), the DCR groups formed by (N,T,g) in pp.g
should not be shared with those used in SKEM and/or MNc,. This is because
in our security proof, the reduction algorithms for SKEM and [, will use the
information of P and @ behind N. (See our security proof below.) We also remark
that in our construction, N has to be generated by a trusted party, or by users
jointly via some secure computation protocol, so that no user knows its factor-
ization. (The same applies to our DCR-based SKEM.) This is the same setting
as in the previous DCR-based (KDM-)CCA secure PKE schemes [11,13,22].

Before proving the KDM-CCA security of Ny, we also note the difference
between the “inner scheme” of Mu¢ and Malkin et al.’s scheme [22]. Although
these schemes are essentially the same, there is a subtle difference. Specifically,
when generating h contained in PK of Mug, we generate it as h < ¢?* mod N*
while it is generated as h <« ¢” mod N° in Malkin et al.’s scheme. Moreover,
such additional squarings are performed on u in the decryption procedure of
our scheme. By these additional squarings, if it is guaranteed that an element u
appearing in the decryption procedure belongs to Jys: = Gys-1 @ (—1) ® Gy, it
can be converted to an element in Gys-1 ® G,,. Thus, we can consider a PHF
family on G ys-1 ® G,, rather than Gys-1 ® (—1) ® G,,, and as a result, we need
not worry about a case that an adversary for N, may learn  mod 2 through
decryption queries. This helps us to simplify the security proof. Note that we can-
not explicitly require that group elements contained in a ciphertext be elements
in Gys-1 ® Gy, since it is not known how to efficiently check the membership in
Gpys—1 ® G, without the factorization of N, while we can efficiently check the
membership in Jys using only N.

KDM-CCA Security. Let £ be the number of keys in the security game. We
will show that My is KDM-CCA secure with respect to the function family Fus
consisting of functions described as

flxr, ...,z = Z apzi + ag mod N5~
kel

where ag, . ..,a¢ € Zpys-1. Formally, we prove the following theorem.

8 Actually, if s = 3 and our DCR-based instantiation in Sect. 4.2 is used as the underly-
ing SKEM, then the RSA modulus N generated at the setup of our PKE construction
has to be &-bit larger than the RSA modulus generated at the setup of SKEM to

satisfy [M1 - Z- 2] C Zy2. We do not need this special treatment if s > 4.
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Theorem 1. Assume that the DCR assumption holds with respect to GGen,
SKEM s passively RKA secure, PHF is computationally universal, and M, is
IND-CCA secure. Then, My is Fa-KDM-CCA secure.

Specifically, for any polynomial £ = £(\) and PPT adversary A that attacks
the Fatr-KDM-CCA security of Mag and makes gudm = Grdm(A) KDM queries and
ddec = Gdec(A) decryption queries, there exist PPT adversaries Bacr, Bia, Blya
Beca, Bles, and Bey such that

Adv ki?c;aaﬂ rald) <2 (2 : Adv‘if{sdcr(A) + AdVrskleM,e,B,ka()\) + AdVrSkleM,é,B:ka()‘)
+ AV 5 () + AT 5, () + £+ (dsee - AdVihe 5, (V) +279))
+O(gam 27 + 027, (2)

Remark 4 (Tightness of the reduction). Note that our reductions to the DCR
assumption and the security of the building blocks are tight, except for the
reduction to the computational universal property of the underlying PHF family
PHF, which has the factor £-qqec. However, if PHF satisfies the statistical universal
property, the term Advpye 5, (M) can be replaced with a negligible function that
is independent of a computational assumption, and thus our reduction becomes
fully tight. Hence, if we use an SKEM and an IND-CCA PKE scheme with a
tight security reduction to the DCR assumption (or another assumption A), the
overall reduction to the DCR(& A) assumption becomes fully tight as well.

Proof of Theorem 1. We proceed the proof via a sequence of games argument
using 8 games (Game 0 to Game 7). For every ¢t € {0,...,7}, let SUC, be the
event that A succeeds in guessing the challenge bit b in Game t. Our goal is to
upper bound every term appearing in Adv:ii::c}C-:M’A()\) =2 ‘Pr SUCy] — | <
23 c 0,6 [Pr[SUC,] — Pr[SUC,41]| + 2 - [Pr[sUC;] —

Game 0: This is the original F,g-KDM-CCA game regarding [M,¢.

Game 1: Same as Game 0, except for how KDM queries are replied. When A
makes a KDM query (j, (a8, . 7a?) , (a(l)7 .. ag)) the challenger generates
v and 7 respectively by v «— T™ - u?% mod NS and 7 «— Apsk (u mod Ns),
instead of v < T™ - hj mod N*® and 7 < Pub (ppk u? mod N* 2r), where
" [N; } andu:g mod N¥.

v is generated identically in both games. Moreover, by the projective property
of PHF, Apskj (u2 mod Ns) = Pub (ppkj, u? mod N¥, 2r) holds, and thus 7 is also
generated identically in both games. Hence, we have |Pr[SUCy] — Pr[SUC,]| = 0.

Game 2: Same as Game 1, except for how the challenger generates {xy} kel

The challenger first generates x « [A-1.Z]. Then, for every k € [{], the

challenger generates Ay, « [% -z 25] and computes xp «— = + Ay, where
the addition is done over Z.
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|Pr[SUC;] — Pr[SUC]| < £-27¢ holds since the distribution of x;, in Game 2
and that in Game 1 are 2~ ¢-close for every k € [{].

Next, we will change the game so that we can respond to KDM queries
made by A using only x modn = x mod @. To this end, we make
some preparation. Observe that in Game 2, the answer to a KDM query

(j7 ((187 . ,ag) , (a(l), e a%)) is Enceea (cpkj7 (u,v,w)), where

b b
u=g¢" mod N° v = T2rele] %05 4,275 160 N 7 = Apsk, (u2 mod N*),

and r < [Ngl]. We also have

Zakxk+a0— Zai(m—kﬂk)—ﬁ—ag: Zak x+ZakAk+a0,

keld] kel keld] kel

where the addition is done over Z. Thus, by defining

= Z a? and B’= Z al Ay, + ab, (3)

kel

we have v = TA"#+B" . 422; mod N* = TA"*+B" . (472" mod N*. Note that A®
and B® are computed only from (af, ..., a}) and {Ak}iep-

Game 3: Same as Game 2, except that for a KDM query (j, (ao,...,ag),
(af,...,a;)) made by A, the challenger responds as follows. (The difference
from Game 2 is only in Step 3).

1. Compute A’ and B’ as in Eq. 3.

Generate r < [NZI].

I

2.
3. Compute v «— T~ J " mod N*.

4. Compute v «— TA° “+B -u?*i mod N*.

5. Compute 7 «— Apskj (u2 mod NS).

6. Return CT + Encce, (cpkj, (u,v,ﬂ)) and add (j,CT) to Lydm-

Under the hardness of 1V, the distributions of ¢" mod N°® and T*ATb
g" mod N*® are computationally indistinguishable. More specifically, there exists
a PPT adversary B;, that makes Qkdm sample queries in the IV,; game and
satisfies |Pr[SUC,] — Pr[SUCs]| = AdvY 1.8,(A). Due to Lemma 1, this means
that there exists another PPT adversary Bqe, such that |Pr[SUC,] — Pr[SUC3]| <
2 Advi%, (A) + O(qdm - 27").

In Game 3, the answer to a KDM query (4, (af,...,a9), (a,...,a})) is
Enceea (cpkj, (U,U,ﬂ)), where

Ab
u=T""2 -g" mod N¥,
V= TAba:+Bb . u2zj mod N*% = TBbfAbA] .g2r(z mod n) .gQTAj mod N57

= Apskj (u2 mod NS) ,
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r e [N; 1], and A’ and B’ are computed as in Eq. 3. Thus, we can reply to a

d(N)
-

KDM query made by A using only  mod n = x mod
We next change how decryption queries made by A are replied.

Game 4: Same as Game 3, except for how the challenger responds to decryption
queries made by A. For a decryption query (7, CT) made by A, the challenger
returns L to A if (§,CT) € Lidm, and otherwise responds as follows. (The
difference from Game 3 is adding Step 2 to the procedure).

1. Compute (u,v,7) < Decce, (cpk;, csky, CT). If (u,v) ¢ J3;., return L.
Otherwise, compute as follows.

2. Ifu ¢ (—1) ® Gy, return L. Otherwise, compute as follows.

3. Return L if 7 # Apskj (u2 mod Ns) and m «— logy (v -u~ 2% mod Ns)
otherwise.

We define the following event in Game i € {4,5,6,7}.

BDQ;: A makes a decryption query (j,CT) ¢ Lygm which satisfies the following
conditions, where (u,v,7) <« Deccc, (cpkj,cskj, CT).

— (u,v) € J%..

- u ¢ (—1)®G,. Note that Jys: = (=1) ® Gns-1 @ Gp.

= = Apsk, (u? mod N*).
We call such a decryption query a “bad decryption query”.

Games 3 and 4 are identical unless A makes a bad decryption query in each
game. Therefore, we have |Pr[SUC3] — Pr[SUC,]| < Pr[BDQ4]. Combining this with
the triangle inequality, we will also bound the terms in |Pr[SUC3] — Pr[SUC4]| <
> tea,5,6) [Pr(BDQ;] — Pr[BDQ;11]| + Pr[BDQ7].

We let (j,CT) be a decryption query made by A. We also let (u,v,7) «—
Deccca (cpkj, csky, CT). If the query is not a bad decryption query and u € Jys,
then (u? mod N*®) € G,,. Thus,

1?7 mod N° = (u?)**4 mod N*® = (u? mod N*)@ mod n) 4245 mod N*.

Thus, if the query is not a bad decryption query, the answer to it can be computed
by using only z mod n.

Furthermore, recall that due to the “implicit modular-reduction in encapsu-
lation” property of SKEM, for every k € [¢], the SKEM-ciphertext/session-key
pair (ctg, Ki) computed for generating the k-th public key PKj at the initial
phase, can be generated by using only xj mod z = x + Ay mod z.

Hence, due to the change in Game 4, now we have done the preparation for
“decomposing” x into its “mod n”-component and its “mod z”-component.

Game 5: Same as Game 4, except that the challenger generates 7 «- [n] and
T <~ [2] and then uses them for  mod n and = mod z, respectively.
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Note that when z <~ [2=1 . 7], the statistical distance between (z mod
n,z mod z) and (Z mod n,Z mod z) is bounded by SD(U[¥_E], Un.2)), because

if © < [n - z], then the distribution of (z modn,r mod z) and that of
(Z mod n,Z mod z) are identical due to the Chinese remainder theorem.’ Note
also that SD(U[¥_E],U[R.Z]) < SD(U[¥],U[H]) + SD(Um,U[z]). Here, the
former statistical distance is P}iﬁ?lﬁ = 0(27'*") < 0(27?), and the latter sta-
tistical distance is bounded by O(27*) due to the “approximate samplability of

a secret key” property of SKEM. Hence, we have |Pr[SUC,4] — Pr[SUC;]| < O(27?)
and |Pr[BDQ,] — Pr[BDQs]| < O(277).

Game 6: Same as Game 5, except that for every k € [£], the challenger generates
Ki < RXCx SK from which rKC € RKC and psk,, € SK are generated, instead
of using Kj, associated with cty.

By the passive RKA security of SKEM, the view of A in Game 6 is indistin-
guishable from that of Game 5. Namely, there exist PPT adversaries By, and 5],
that attack the passive RKA security of SKEM so that |Pr[SUC5] — Pr[SUCg]| =
AdvERem .5, (1) and [Pr[BDQs] — Pr(BDAg]| = Advigem s, (V) hold, respec-
tively. We provide the descriptions of them in the full version.

Game 7: Same as Game 6, except that the challenger responds to KDM queries
(4,CT) made by A with CT « Encec, (cpkj, (0,0,0)).

We can consider straightforward reductions to the security of the underlying
PKE scheme M., for bounding |Pr[SUCs] — Pr[SUC7|| and |Pr[BDQg] — Pr[BDQ]|.
Note that the reduction algorithms can check whether A makes a bad decryption
query or not by using decryption queries for MNe,, and ¢(N) and {pskk}kem
that could be generated by the reductions themselves. Thus, there exist PPT
adversaries Be, and B, such that |Pr[SUCs] — Pr[SUC;]| = Adv',-',‘i:fzgcca (M) and

|Pr[BDQg] — Pr[BDQ;]| = AdvieF 5 (M)

In Game 7, the challenge bit b is information-theoretically hidden from the
view of A. Thus, we have |Pr[SUC;] — 3| = 0.

Finally, Pr[BDQ-] is bounded by the computational universal property of PHF.
More specifically, there exists a PPT adversary B, such that Pr[BDQ;] < £ ggec -
Adviye ., (A) + O(27""). We provide the description of Be, in the full version.

From the above arguments, we conclude that there exist PPT adversaries
Bacr, Bikas Blisy Becas Bleas and B, satisfying Eq. 2. O (Theorem 1)

rka?

5.2 Basic Construction of Projective Hash Function

For the PHF family for the DCR language used in our construction My, we pro-
vide two instantiations: the basic construction PHF ¢ that achieves the statistical

% Here, we are implicitly assuming that n = pq and z are relatively prime. This occurs
with overwhelming probability due to the DCR assumption. We thus ignore the case
of n and z are not relatively prime in the proof for simplicity.
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universal property in this subsection, and its “space-efficient” variant PH Fg?ﬁh

that achieves only the computational universal property in the next subsection.

Let s > 2, and GGen be the DCR group generator. The basic construc-
tion PHF.¢ = (Setup, Iyes, IIno, SKC, PIC, IC, A, i1, Pub) is as follows. (The con-
struction here is basically the universal PHF family for the DCR setting by
Cramer and Shoup [8], extended for general s > 2). Recall that IIs = G,
and IT,, = Gys—1 ® G, \ G, for the DCR language. Given param output
from GGen(1*,5s), Setup outputs a public parameter pp that concretely speci-
fies (SK, PKC, K, A, pi, Pub) defined as follows. We define SK := [Ns’l . N4_1],
PK = G, and K = Gy.:-1 ® G,. For every sk € [N*~1.2&-1] and
c € Gys1 ® G, we also define u and A as pu(sk) := g mod N°* and
Ag(c) := ¢ mod N*.

Projective Property. Let sk € [NS*I . N4_1], pk = ¢ mod N*, and ¢ = g"
mod N?®, where r € Z is regarded as a witness for ¢ € G,,. We define the
public evaluation algorithm Pub as Pub(pk,c,r) := pk” mod N*. We see that
pk” = (¢)" = (¢")™ = As(c) mod N*, and thus PHF ¢ satisfies the projective

property.

Universal Property. We can prove that PHF,¢ satisfies the statistical universal
property. The proof is almost the same as that for the statistical universal prop-
erty of the DCR-based projective hash function by Cramer and Shoup [8]. We
provide the formal proof in the full version.

5.3 Space-Efficient Construction of Projective Hash Function

The second instantiation is a “space-efficient” variant of the first construction.
Specifically, it is obtained from PHF,¢ by “compressing” the output of the func-
tion A in PHF,¢ with a collision resistant hash function.

More formally, let H = {H :{0,1}* — {0,1}'*"} be a collision resis-
tant hash family. Then, consider the “compressed”-version of the PHF fam-
ily PHFE" = (Setup’, Iyes, [0, SKC, PIC, K := {0, 1}!"ent A, 1, Pub’), in which
Setup’ picks H <~ H in addition to generating pp «— Setup, A’ is defined sim-
ply by composing A and H by AL () := H(A«(+)), Pub’ is defined similarly
by composing Pub and H, and the remaining components are unchanged from
PHF 5. PHFQ?FSh preserves the projective property of PHF,¢ and it is possible
to show that the “compressed” construction PHFZ;}Sh satisfies the computational
universal property.

This “compressing technique” is applicable to not only the specific instanti-
ation PHF .4, but also more general PHF families PHF, so that if the underlying
PHF is (statistically) universal and satisfies some additional natural properties
(that are satisfied by our instantiation in Sect.5.2) and H is collision resistant,
then the resulting “compressed” version PHF"ash js computationally universal.
In the full version, we formally show the additional natural properties, and the
formal statement for the compressing technique as well as its proof.



122 F. Kitagawa et al.

The obvious merit of using PHF"" instead of PHF ¢ is its smaller output size.

The disadvantage is that unfortunately, the computational universal property of
PHF;‘?fSh is only loosely reduced to the collision resistance of H. Specifically, the
advantage of a computational universal adversary is bounded only by the square
root of the advantage of the collision resistance adversary (reduction algorithm).
For the details, see the full version.

6 KDM-CCA Secure PKE with Respect to Polynomials

In this section, we show a PKE scheme that is KDM-CCA secure with respect
to polynomials based on the DCR assumption. More specifically, our scheme is
KDM-CCA secure with respect to modular arithmetic circuits (MAC) defined
by Malkin et al. [22].

Our scheme is based on the cascaded ElGamal encryption scheme used by
Malkin et al., and uses a PHF family for a language that is associated with it,
which we call the cascaded FElGamal language. Furthermore, for considering a
PHF family for this language, we need to make a small extension to the syntax
of the functions p, and thus we also introduce it here as well.

After introducing the cascaded ElGamal language as well as the extension to
a PHF family below, we will show our proposed PKE scheme, and explain the
instantiations of the underlying PHF family.

Augmenting the Syntax of PHFs. For our construction in this section, we use a
PHF family whose syntax is slightly extended from Definition 3. Specifically, we
introduce an auxiliary key ak € AK that is used as part of a public parameter pp
output by Setup, where AK itself could also be parameterized by param output
by GGen. Then, we allow this ak to (1) affect the structure of the witnesses for
Il,es, and (2) be taken as input by the projection map p so that it takes ak € AK
and sk € SK as input. We simply refer to a PHF family with such augmentation
as an augmented PHF family.

For an augmented PHF family, we have to slightly adapt the definition of
the statistical/computational universal property from Definition 4. Specifically,

— for the definition of the e-universal property, in addition to param, pp, pk €
PK, ¢ € Il,,, and 7 € K, we also take the universal quantifier for all ak € AK
for considering the probability in Eq. 1.

— for the definition of the computational universal property, we change the
initial phase (Step 1) of the game to allow an adversary to choose ak € AK

in the following way:
1. First, the challenger executes param = (N, P,Q, T, g) « GGen(1*,s), and

sends (N, T, g) to A. A sends ak € AK to the challenger. The challenger
then executes pp «— Setup(param), chooses sk £ SK, and computes pk «—
u(ak, sk). Then, the challenger sends (pp, pk) to A.
The remaining description of the game and the definition of the adversary’s
advantage are unchanged.

We note that the implication of the statistical universal property to the compu-
tational one, is also true for an augmented PHF family.
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Setupp°|y(1’\) : KGpoly (PPpoly)
param = (N, P,Q,T,g) «— GGen(l)‘, s) (N,T,g, PPphf > PPskem> PPcca) < PPpoly
PPphf < Setupp,(param) oL [Nz 9f)
(ppskem7 2, 2) - Setupskem(lk) (Ct, K) — Encap(ppskem7 x)
PPeca — Setupeca (1) Parse K as (K6, psk) € RXC x SK.
PPpoly — (N, T, g5 PPphf» PPskems PPcca) h «— g%® mod N*
Return pppgy- ppk «— p(h,psk) //h is used as an aux. key

(Cpka CSk) — KGCCa(ppcca; TKG)
Return PK := (h,ct, ppk, cpk) and SK := z.
Encpoly (PK,m € Zs) : Decpoly (PK, SK, CT) :
(h, ct, ppk, cpk) «— PK (h, ct, ppk, cpk) « PK; z « SK
Vi € [d]: 7 < [NL]; y; — g™ mod N= | K« Decap(ppgem, ; ct)
‘ 4 ‘ Parse K as (rKC psk) € RK¢ x SK.

Ud < Yd KG

Vi € [d - 1]: Uj < Yi * h"i+1 mod N* (Cpk, CSk) - KGCCa(ppcca;T )

r— (2r1,...,2rq) ({u7}z€[d] ,v, ) « Deccca(cpk, csk, CT)

U — (15 mqr.cli Ns, ... ;ufl mod N¥) If ({“}ie[d] ,v) & J‘iNtl then return L.
v T™.h" mod N u— (u? mod N*,...,u2 mod N¥)

7« Pub(ppk,u,r) If m # Apsk(u) then return L.

CT «— Enccaa (CPk7 ({ui}ie[d] » Uy 7r)) Yq — Ug

Return CT. Vi € [d—1]: yi < u; - (yir1) " 2® mod N

Return m < logp (v - yfh mod N¥).

Fig. 6. The proposed KDM-CCA secure PKE scheme [M,0, with respect to polynomials.
(The public parameter pp,, is omitted from the inputs to Encpoly and Decyoly).

Cascaded ElGamal Language. Let s > 2, GGen be the DCR group generator,
and param = (N,P,Q,T,g) <« GGen (1*,5). Let d = d(\) be a polynomial.
Let the auxiliary key space AK be defined as G,, and let ak € AK (which
will be a public key of the underlying cascaded ElGamal encryption scheme
in our concrete instantiations of PHFs). The set of yes instances Ilyes is G2,
and the set of no instances is (Gy--1 ® G,,)¢\ G¢. Any yes instance ¢ € G%
can be expressed in the form ¢ = (¢1,...,¢q) such that ¢4 = ¢"¢ mod N* and
c; = g" - ak”"*" mod N for every i € [d — 1], where 7 = (r1,...,74) € Z%. Thus,
such r works as a witness for ¢ € Il under ak € AK.

The Proposed PKE Scheme. Let s > 2, and GGen be the DCR. group genera-
tor. Let d = d()\) be a polynomial. Let Mcca = (Setupess KGeeas Enceca, Dececa)
be a PKE scheme such that the randomness space of KGea is RXC. Let
PHF = (Setuppus, Ilyes; Ino; SK, PK, K, pi, A, Pub) be an augmented PHF fam-
ily with respect to GGen for the cascaded ElGamal language (defined as above).
Let SKEM = (Setupgem, Encap, Decap) be an SKEM whose session-key space is
RKCxSK.10 Finally, let ¢ = £(\) be any polynomial such that 27¢ = negl()\). Our
proposed PKE scheme MMyoly = (Setup,qyy; KGpoly, Encpoly, Decpoly) is constructed
as described in Fig. 6. The plaintext space of Myl is Zys—1, where IV is the RSA
modulus generated in Setup,qy-

For the scheme MM,oly, the same remarks as those for M, apply. Namely, the
correctness and the security proof work for any s > 2, while to capture circular

10 The same format adjustment as in M, can be applied. See the footnote in Sect. 5.1.



124 F. Kitagawa et al.

security, we should use s > 3. Furthermore, if we use a statistically universal
PHF family, the KDM-CCA security of Myoy is tightly reduced to the DCR
assumption and the security properties of the building blocks M., and SKEM.

Mooty is KDM-CCA secure with respect to the class of circuits M.AC4, con-
sisting of circuits satisfying the following conditions.

— Inputs are variables and constants of Zs—1.

— Gates are 4+, —, or - over Zys—1 and the number of gates is polynomial in .

— Each circuit in MAC4 computes a polynomial whose degree is at most d. For
a circuit C € MAC,4, we denote the polynomial computing C by fc.

The formal statement for the security of l,qy is as follows. Its proof goes
similarly to that of Theorem 1, and we provide it in the full version.

Theorem 2. Assume that the DCR assumption holds with respect to GGen,
SKEM s passively RKA secure, PHF is computationally universal, and M, is
IND-CCA secure. Then, Myoly is MACq-KDM-CCA secure.

Specifically, for any polynomial £ = £(\) and PPT adversary A that attacks
the MAC;-KDM-CCA security of Mpoly and makes gudm = qdm(A) KDM queries
and qdec = qdec(A) decryption queries, there exist PPT adversaries Bycr, Brkas

! s Beca, Blea, and Bey such that

rka’

AdVETR aeaa(N) <2 (2 - AdviT,, (V) + AdvERew o 5,, () + AdvERem o5, ()

poly >

+ AV 5 (V) + ADVET 5, (M) + £ (qaee - AdvEle 5, () +279))
=+ O(d * Qkdm ° 27Ien) =+ 0(27)\).

Instantiations of PHF Families. We propose two instantiations of an augmented
PHF family used in M,oy: The basic construction and its space-efficient variant,
which are constructed similarly to those provided in Sects. 5.2 and 5.3, respec-
tively. We provide the details in the full version.

The basic construction PHF ), is a simple extension of PHF ., so that they
become identical in case d = 1. The output size of the function A in PHF,
consists of d elements of Zys, and its statistical universal property is shown
very similarly to that for PHF,%. The space-efficient construction PH ngf;) is the
combination of PHF,, and a collision resistant hash function, and is identical
to PHF"" in case d = 1. Although it is only computationally universal, the

remarkable advantage of PH Fgf,f;,‘ is that its output size is independent of d.

7 Instantiations

We give some instantiation examples of F,g-KDM-CCA secure PKE schemes
and Fpoy-KDM-CCA secure PKE schemes from our proposed schemes Myg in
Sect. 5 and [Mpoy, in Sect. 6. These instantiations are summarized in Figs. 1 and 2
in Sect.1.2. In all of the following instantiations, the plaintext space of the
resulting schemes is Zpys-1, where N is the RSA modulus generated in the setup
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algorithm and s > 3, and we assume that the underlying SKEM is instantiated
with the one presented in Sect. 4.2.

The first instantiations are obtained by instantiating the underlying PHF
family with the “space-efficient” PHF families (PHF3" for MM,¢ and PHFEf),S;1 for
Mpoly), and the underlying IND-CCA secure PKE scheme with the scheme based
on the factoring assumption proposed by Hofheinz and Kiltz [16]. The KDM-
CCA security of the resulting PKE schemes is not tightly reduced to the DCR
assumption, but a ciphertext of the Fa-KDM-CCA secure scheme consists of
only two elements of Zys, two elements of Zy: (caused by the Hofheinz-Kiltz
scheme), and a hash value output by a collision-resistant hash function, where
N’ is the RSA modulus generated in the Hofheinz-Kiltz scheme. Note that if
s > 3, the size of two elements of Zy- plus the size of a hash value is typically
(much) smaller than one element of Z ! Furthermore, the improvement on the
ciphertext size of Fpoy-KDM-CCA secure scheme from the previous works is
much more drastic. For KDM security with respect to degree-d polynomials, a
ciphertext of our instantiation consists of (d + 1) elements of Zy-, two elements
of Zy+, and a hash value, and its size overhead compared to Malkin et al.’s
scheme [22] is independent of d. In contrast, the ciphertext size of the previous
best construction of Han et al. [11] is O(d?) elements of Zy- and more (and in
addition its security relies on both the DCR and DDH assumptions).

The second instantiations are PKE schemes obtained by instantiating the
underlying PHF family with the “basic” PHF families (PHF.¢ for M, and
PHF oy for Mgoly), and the underlying IND-CCA secure PKE scheme with the
scheme proposed by Hofheinz [13]. Hofheinz’ scheme is tightly IND-CCA secure
under the DCR assumption, and its ciphertext overhead is 28 group elements
plus the ciphertext overhead caused by authenticated encryption. The advantage
of the second instantiations is that we obtain the first tightly Fae-KDM-CCA
secure PKE scheme and a tightly Fpol,-KDM-CCA PKE scheme based solely on
the DCR assumption. The disadvantage is the relatively large ciphertext size.

The third instantiations are obtained by replacing the underlying PKE
scheme in the second ones with the PKE scheme proposed by Gay, Hofheinz,
and Kohl [10]. Gay et al.’s scheme is tightly IND-CCA secure under the DDH
assumption, and its ciphertext overhead is just three group elements of a DDH-
hard group plus the ciphertext overhead caused by authenticated encryption.
By the third instantiations, relying on both the DCR and DDH assumptions, we
obtain a tightly Fag-KDM-CCA secure PKE scheme whose ciphertext consists
of essentially only three elements of Zys and three elements of the DDH-hard
group. We also obtain a tightly F,oy-KDM-CCA secure PKE scheme with much
smaller ciphertexts than our second instantiation achieving the same security.
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Abstract. Non-committing encryption (NCE) was introduced by
Canetti et al. (STOC ’96). Informally, an encryption scheme is non-
committing if it can generate a dummy ciphertext that is indistinguish-
able from a real one. The dummy ciphertext can be opened to any mes-
sage later by producing a secret key and an encryption random coin
which “explain” the ciphertext as an encryption of the message. Canetti
et al. showed that NCE is a central tool to achieve multi-party compu-
tation protocols secure in the adaptive setting. An important measure of
the efficiently of NCE is the ciphertext rate, that is the ciphertext length
divided by the message length, and previous works studying NCE have
focused on constructing NCE schemes with better ciphertext rates.

We propose an NCE scheme satisfying the ciphertext rate O(log\)
based on the decisional Diffie-Hellman (DDH) problem, where X is the
security parameter. The proposed construction achieves the best cipher-
text rate among existing constructions proposed in the plain model, that
is, the model without using common reference strings. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH
problem was the one proposed by Choi et al. (ASTACRYPT ’09) that
has ciphertext rate O()). Our construction of NCE is similar in spirit
to that of the recent construction of the trapdoor function proposed by
Garg and Hajiabadi (CRYPTO ’18).

Keywords: Non-committing encryption - Decisional Diffie-Hellman
problem - Chameleon encryption

1 Introduction

1.1 Background

Secure multi-party computation (MPC) allows a set of parties to compute a
function of their inputs while maintaining the privacy of each party’s input.
Depending on when corrupted parties are determined, two types of adversarial
settings called static and adaptive have been considered for MPC. In the static
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setting, an adversary is required to declare which parties it corrupts before the
protocol starts. On the other hand, in the adaptive setting, an adversary can
choose which parties to corrupt on the fly, and thus the corruption pattern can
depend on the messages exchanged during the protocol. Security guarantee in
the adaptive setting is more desirable than that in the static setting since the
former naturally captures adversarial behaviors in the real world while the latter
is somewhat artificial.

In this work, we study non-committing encryption (NCE) which is introduced
by Canetti, Feige, Goldreich, and Naor [4] and known as a central tool to achieve
MPC protocols secure in the adaptive setting. NCE is an encryption scheme that
has a special property called non-committing property. Informally, an encryption
scheme is said to be non-committing if it can generate a dummy ciphertext that
is indistinguishable from real ones, but can later be opened to any message
by producing a secret key and an encryption random coin that “explain” the
ciphertext as an encryption of the message. Cannetti et al. [4] showed how to
create adaptively secure MPC protocols by instantiating the private channels in
a statically secure MPC protocol with NCE.

Previous Constructions of NCE and their Ciphertext Rate. The ability to open
a dummy ciphertext to any message is generally achieved at the price of effi-
ciency. This is in contrast to ordinary public-key encryption for which we can
easily obtain schemes the size of whose ciphertext is n + poly(\) by using hybrid
encryption methodology, where n is the length of an encrypted message and A is
the security parameter. The first NCE scheme proposed by Canetti et al. [4] only
needs the optimal number of rounds (that is, two rounds), but it has ciphertexts
of O(\?)-bits for every bit of an encrypted message. In other words, the cipher-
text rate of their scheme is O(\?), which is far from that of ordinary public-key
encryption schemes. Subsequent works have focused on building NCE schemes
with better efficiency.

Beaver [1] proposed a three-round NCE scheme with the ciphertext rate
O () based on the decisional Diffie-Hellman (DDH) problem. Damgard and
Nielsen [8] generalized Beaver’s scheme and achieved a three-round NCE scheme
with ciphertext rate O(\) based on a primitive called simulatable PKE which in
turn can be based on concrete problems such as the DDH, computational Diffie-
Hellman (CDH), and learning with errors (LWE) problems. Choi, Dachman-
Soled, Malkin, and Wee [7] further improved these results and constructed a
two-round NCE scheme with ciphertext rate O (A) based on a weaker variant
of simulatable PKE called trapdoor simulatable PKE which can be constructed
the factoring problem.

The first NCE scheme achieving a sub-linear ciphertext rate was proposed
by Hemenway, Ostrovsky, and Rosen [20]. Their scheme needs only two rounds
and achieves the ciphertext rate O (logn) based on the ¢-hiding problem which
is related to (and generally believed to be easier than) the RSA problem, where
n is the length of messages. Subsequently, Hemenway, Ostrovsky, Richelson,
and Rosen [19] proposed a two-round NCE scheme with the ciphertext rate
poly(log A) based on the LWE problem. Canetti, Poburinnaya, and Raykova [5]
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Table 1. Comparison of existing NCE schemes. The security parameter is denoted
by A, and the message length n. Common-domain TDP can be instantiated based
on the CDH and RSA problems. Simulatable and trapdoor simulatable PKE can be
instantiated based on many computational problems realizing ordinary PKE. ) This
scheme uses common reference strings.

Rounds|Ciphertext rate|Assumption
Canetti et al. [4] 2 o) Common-domain TDP
Beaver [1] 3 O\ DDH
Damgard and Nielsen [8]| 3 O\ Simulatable PKE
Choi et al. [7] 2 O\ Trapdoor simulatable PKE
Hemenway et al. [19] 2 poly(logA) |LWE, Ring-LWE
Hemenway et al. [20] 2 O (logn)  |P-hiding
Canetti et al. [5]™) 2 1+ 0(1) |Indistinguishability obfuscation
This work 2 O (log A) DDH

showed that by using indistinguishability obfuscation, an NCE scheme with the
asymptotically optimal ciphertext rate (that is, 1 + o(1)) can be constructed.
Their scheme needs only two rounds but was proposed in the common reference
string model.

Despite the many previous efforts, as far as we know, we have only a single
NCE scheme satisfying a sub-linear ciphertext rate based on widely and classi-
cally used problems, that is, the scheme proposed by Hemenway et al. [19] based
on the LWE problem. Since NCE is an important cryptographic tool in con-
structing MPC protocols secure in the adaptive setting, it is desirable to have
more constructions of NCE satisfying a better ciphertext rate.

1.2 Owur Contribution

We propose an NCE scheme satisfying the ciphertext rate O (logA) based on
the DDH problem. The proposed construction achieves the best ciphertext rate
among existing constructions proposed in the plain model, that is, the model
without using common reference strings. The proposed construction needs only
two rounds, which is the optimal number of rounds for NCE. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH problem
was the one proposed by Choi et al. [7] that satisfies the ciphertext rate O ().
We summarize previous results on NCE and our result in Table 1.

We first show an NCE scheme that we call basic construction, which sat-
isfies the ciphertext rate poly(logA\). Then, we give our full construction sat-
isfying the ciphertext rate O (log\) by extending the basic construction using
error-correcting codes. Especially, in the full construction, we use a linear-rate
error-correcting code which can correct errors of weight up to a certain constant
proportion of the codeword length.

Our construction of NCE utilizes a variant of chameleon encryption.
Chameleon encryption was originally introduced by Déttling and Garg [10] as
an intermediate tool for constructing an identity-based encryption scheme based
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on the CDH problem. Roughly speaking, chameleon encryption is public-key
encryption in which we can use a hash value of a chameleon hash function and
its pre-image as a public key and a secret key, respectively. We show a vari-
ant of chameleon encryption satisfying oblivious samplability can be used to
construct an NCE scheme with a sub-linear ciphertext rate. Informally, oblivi-
ous samplability of chameleon encryption requires that a scheme can generate
a dummy hash key obliviously to the corresponding trapdoor, and sample a
dummy ciphertext that is indistinguishable from a real one, without using any
randomness except the dummy ciphertext itself.

Need for the DDH Assumption. A key and a ciphertext of the CDH based
chameleon encryption proposed by Déttling and Garg [10] together form multiple
Diffie-Hellman tuples. Thus, it seems difficult to sample them obliviously unless
we prove that the knowledge of exponent assumption [2,18] is false. In order to
solve this issue, we rely on the DDH assumption instead of the CDH assumption.
Under the DDH assumption, a hash key and a ciphertext of our chameleon
encryption are indistinguishable from independent random group elements, and
thus we can perform oblivious sampling of them by sampling random group
elements directly from the underlying group.

Public Key Size. As noted above, we first give the basic construction satisfying
the ciphertext rate poly(log A), and then extend it to the full construction satis-
fying the ciphertext rate O (log A\). In addition to satisfying only the ciphertext
rate poly(log A), the basic construction also has a drawback that its public key
size depends on the length of a message quadratically.

A public key of the basic construction contains ciphertexts of our obliviously
samplable chameleon encryption. The size of those ciphertexts is quadratic in
the length of an input to the associated chameleon hash function similarly to the
construction by Déottling and Garg [10]. Since the input length of the chameleon
hash function is linear in the message length of the basic construction, the public
key size of the basic construction depends on the message length quadratically.

Fortunately, we can remove this quadratic dependence by a simple block-wise
encryption technique. Thus, in the full construction, we utilize such a block-wise
encryption technique in addition to the error-correcting code. By doing so, we
reduce not only the ciphertext rate to O (log A), but also the public key size to
linear in the length of a message as in the previous constructions of NCE.

Relation with Trapdoor Function by Garg and Hagjiabadi [14]. There has been a
line of remarkable results shown by using variants of chameleon encryption, start-
ing from the one by Cho, Déttling, Garg, Gupta, Miao, and Polychroniadou [6].
This includes results on identity-based encryption [3,9-11], secure MPC [6,16],
adaptive garbling schemes [15,17], and so on. Garg and Hajiabadi [14] showed
how to realize trapdoor function (TDF) based on the CDH problem using a
variant of chameleon encryption called one-way function with encryption.!

! Their technique is further extended by Garg, Gay, and Hajiabadi [13] and Déttling,
Garg, Ishai, Malavolta, Mour, and Ostrovsky [12].
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Our construction of NCE can be seen as an extension of that of TDF by
Garg and Hajiabadi. Our formulation of chameleon encryption is based on that
of one-way function with encryption. Concretely, we define chameleon encryption
so that it has recyclability introduced by Garg and Hajiabadi as a key property
in their work.

1.3 Paper Organization

Hereafter, in Sect. 2, we first review the definition of NCE. Then, in Sect. 3, we
provide high-level ideas behind our construction of NCE. In Sect. 4, we formally
define and construct obliviously samplable chameleon encryption. In Sect. 5,
using obliviously samplable chameleon encryption, we construct an NCE scheme
that we call the basic construction satisfying the ciphertext rate poly(log ).
Finally, in Sect. 6, we improve the basic construction and provide the full con-
struction that achieves the ciphertext rate O (log \).

2 Preliminaries

Let PPT denote probabilistic polynomial time. In this paper, A always denotes
the security parameter. For a finite set X, we denote the uniform sampling of x

from X by z & x. y<—A(z;7) denotes that given an input x, a PPT algorithm
A runs with internal randomness r, and outputs y. A function f is said to be
negligible if f(\) = 27“M, and we write f(\) = negl()\) to denote that f
is negligible. Let Ham (x) denotes the Hamming weight of x € {0,1}". E[X]
denotes expected value of X. [n] denotes {1,...,n}.

Lemma 1 (Chernoff bound). For a binomial random variable X. If E [X] <
2
w, then for all § >0, Pr[X > (14 0)u)] < e~ 755 holds.

We provide the definition of the DDH assumption and its variants used in
the proof of Theorem 1. We first introduce the leftover hash lemma.

Lemma 2 (Leftover hash lemma). Let X and Y are sets. Let H := {H :
X — Y} be a universal hash family. Then, the distributions (H,H(x)) and (H,y)

are ,/%—close, where H & H, x S X, andy Sy,

We review some computational assumptions. Below, we let G be a cyclic
group of order p with a generator g. We also define the function dh(:,-) as
dh (g“7 gb) := g for every a,b € Z,,. We start with the decisional Diffie-Hellman
(DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption). We say that the
DDH assumption holds if for any PPT adversary A,

|Pr [A (917927dh (91792)) = 1] —Pr [A (91792793) = 1” = negl ()‘)

holds, where g1, g2, g3 &G,
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We introduce a lemma that is useful for the proof of oblivious samplability of
our chameleon encryption. We can prove this lemma by using the self reducibility
of the DDH problem.

Lemma 3. Let n be a polynomial of A. Let g;y & for every i € [n] and
be{0,1}. We set M := (gi,b)ie[n],be{o,l} € G*xn,
Then, if the DDH assumption holds, for any PPT adversary A, we have

[Pr[A(M,M?) =1] = Pr[A(M, R) = 1]| = negl () ,
where MP = (gﬁb)ie[n]7b€{071} € G>*" gnd R «— G2*n,

We next define the hashed DDH assumption which is a variant of the DDH
assumption.

Definition 2 (Hashed DDH Assumption). Let H = {Hg : G — {0,1}*} be
a family of hash functions. We say that the hashed DDH assumption holds with
respect to H if for any PPT adversary A,

|PI’ [A(HGaglaQQve) = 1] —Pr [A(HGaglv.927e,) = 1” = negl (>‘)

holds, where Hg & H,gl,gg,<i G, e = Hg (dh (g1, 92)), and € & {0, 1}4.

In this work, we use the hashed DDH assumption with respect to a hash
family H whose output length ¢ is small enough such as ¢ = poly(logA) or
O (log A). In this case, by using a family of universal hash functions H, we can
reduce the hardness of the hashed DDH problem to that of the DDH problem
by relying on the leftover hash lemma. Formally, we have the following lemma.

Lemma 4. Let H = {Hg : G — {0,1}¢} be a family of universal hash functions,
where £ = poly(log \). Then, if the DDH assumption holds, the hashed DDH
assumption with respect to H also holds by the leftover hash lemma.

Non-Committing Encryption. A non-committing encryption (NCE) scheme is a
public-key encryption scheme that has efficient simulator algorithms (Simy, Sim;)
satisfying the following properties. The simulator Sim; can generate a simulated
public key pk and a simulated ciphertext CT'. Later Sim, can explain the cipher-
text CT as encryption of any plaintext. Concretely, given a plaintext m, Simy
can output a pair of random coins for key generation 7" and encryption rE",
as if pk was generated by the key generation algorithm with the random coin
r&e" and CT is encryption of m with the random coin 7E.

Some previous works proposed NCE schemes that are three-round protocols.
In this work, we focus on NCE that needs only two rounds, which is also called
non-committing public-key encryption, and we use the term NCE to indicate it
unless stated otherwise. Below, we introduce the definition of NCE according to
Hemenway et al. [19].

Definition 3 (Non-Committing Encryption). A non-committing encryp-
tion scheme NCE consists of the following PPT algorithms (Gen,Enc,Dec,
Siml,Simg).
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- Gen (1& rGe”): Given the security parameter 1*, using a random coin ¢, it
outputs a public key pk and a secret key sk.

- Enc (pkz,m;rE"C): Given a public key pk and a plaintext m € {0, 1}, using a
random coin 75", it outputs a ciphertext CT.

— Dec (sk,CT): Given a secret key sk and a ciphertext CT, it outputs m or L.

— Simq (1’\): Given the security parameter 12, it outputs a simulated public key
pk, a simulated ciphertext CT, and an internal state st.

- Simy (m, st): Given a plaintext m and a state st, it outputs random coins for

key generation r®" and encryption rE".

We require NCE to satisfy the following correctness and security.

Correctness. NCE is called v-correct, if for any plaintext m,
Pr[(pk, sk) < Gen (1)‘; TGen) ,CT «—Enc (pk’, m; ,rEnc) :
m' = Dec (sk,CT);m =m'] > 7.

When v = 1 —negl (\), we call it correct. Note that v cannot be equal to 1 in
the plain model (i.e., the model without using common reference strings).

Security. For any stateful PPT adversary A, we define two experiments as

follows.
Expycza | Expageca
(pk, sk) < Gen (1A; rGe”) (pk,CT, st) < Sim; (1")
m A (pk) m «— A(pk)

CT —Enc (pk" m; rEnc) (TGen7 TE"C) < Simy (m, st)
out«— A (C’T7 pGen. TEnC) out — A (C’T7 rGen, TEnc)

We say that NCE is secure if
Advice, 4 (A) := ’Pr [out =11n Expﬁ%‘f&] —Pr [out =11in Exp{]géf‘ﬂ ‘ = negl (\)

holds for every PPT adversary A.

3 Ideas of Our Construction

In this section, we provide high-level ideas behind our construction of NCE.

As a starting point, we review the three-round NCE protocol proposed by
Beaver [1], which contains a fundamental idea to build NCE from the DDH prob-
lem. Next, we show how to extend it and construct a two-round NCE scheme
whose ciphertext rate is O (A). Then, we show how to reduce the ciphertext
rate to O (log A), and obtain our main result. Finally, we state that our result-
ing construction can be described by using a variant of chameleon encryption,
and it can be seen as an extension of trapdoor function proposed by Garg and
Hajiabadi [14].
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Sender Receiver
Input: m € {0,1}
z& 40,1} x & {0,1}
Pz & v/ Qix & Ly
A, =g (Ao, A1) By = g™
A i G Bix&G
(eo,e1),(Bo,B1) ex= A™
€1 _x i G
if B,’* = e, w
w:i=zdm if w# L
else w:= 1 Output: m = w H x

Fig. 1. The description of Beaver’s protocol [1].

3.1 Starting Point: Beaver’s Protocol

Beaver’s NCE protocol essentiality executes two Diffie-Hellman key exchange
protocols in parallel. This protocol can send a 1-bit message. The ciphertext
rate is @ (\). We describe the protocol below and in Fig. 1.

Stepl. Let G be a group of order p with a generator g. The sender picks a
random bit z & {0,1} and an exponent p, & Zy, and then sets A, = g~=.

The sender also generates a random group element A;_, B! obliviously,
i.e., without knowing the discrete log of A;_,. The sender sends (A, A1) to
the receiver and stores the secret sk = (z, p,). The random coin used in this
step is (z, po, A1—2).

Step2. The receiver picks a random bit x & {0,1} and an exponent ay & L,
and then sets By = g®<. The receiver also obliviously generates Bj_ &G

Moreover, the receiver computes e, = A,** and obliviously samples e;_ &
G. The receiver sends ((By, B1), (eg,e1)) to the sender. The random coin
used in this step is (X, ayx, B1—x, €1—x)-
Step3. The sender checks whether x = z holds or not, by checking if B,”* = e,
holds. With overwhelming probability, this equation holds if and only if x = z.
If x = z, the sender sends w :=z ® m, and otherwise quits the protocol.
Step4. The receiver recovers the message by w @ x.

We next describe the simulator for this protocol.

Simulator. The simulator simulates a transcript (Ag, 41), ((Bo, B1), (€0, €1)),

and w as follows. It generates pg, p1, ag, @1 & Z, and sets
((AO; Al)v (BO7 Bl)a (eOa el)) = ((gpov gpl)a (gaov gal)v (gpoaov gplal))'

The simulator also generates w & {0,1}.



136 Y. Yoshida et al.

The simulator can later open this transcript to both messages 0 and 1. In
other words, for both messages, the simulator can generate consistent sender
and receiver random coins. For example, when opening it to m = 0, the
simulator sets x = z = w, and outputs (w, py, A1—w) and (W, @y, B1—w, €1—w)
as the sender’s and receiver’s opened random coins, respectively.

Security. Under the DDH assumption on G, we can prove that any PPT adver-
sary A cannot distinguish the pair of transcript and opened random coins
generated in the real protocol from that generated by the simulator. The
only difference of them is that e;_, is generated as a random group element
in the real protocol, but it is generated as A;_,*'™* = ¢gP1—x*—x in the sim-
ulation. When the real protocol proceeds to Step. 4, we have x = z with
overwhelming probability. Then, the random coins used by the sender and
receiver (and thus given to A) does not contain exponents of A;_, and By_,
that is, p1_x and a3_4. Thus, under the DDH assumption, A cannot distin-

guish randomly generated e;_y & G from Ay 1 = gPr—x®1—x_ Thus, this
protocol is a secure NCE protocol.

This protocol succeeds in transmitting a message only when z = x, and
otherwise it fails. Note that even when z # x, the protocol can transmit a
message because in Step. 3, the sender knows the receiver’s secret x. However,
in that case, we cannot construct a successful simulator. In order to argue the
security based on the DDH assumption, we have to ensure that either one pair
of exponents (pg, ag) or (p1, @) is not known to the adversary, but when z # x,
we cannot ensure this.

Next, we show how to extend this protocol into a (two-round) NCE scheme
and obtain an NCE scheme with the ciphertext rate O (A).

3.2 Extension to Two-Round NCE Scheme

As a first attempt, we consider an NCE scheme NCE], that is a natural extension
of Beaver’s three-round NCE protocol. Intuitively, NCE1; is Beaver’s protocol in
which the role of the sender and receiver is reversed, and the sender sends a
message even when z and x are different. Specifically, the receiver generates the
public key pk = (Ap, A1) and secret key (z,p,), and the sender generates the
ciphertext CT = ((Bo, Bl), (eo, el), ’UJ), where (Ao, A1)7 (Bo, Bl), (eo, el), and
w:=x @ m are generated in the same way as those in Beaver’s protocol. When
decrypting the CT', the receiver first recovers the value of x by checking whether
B?: = e, holds or not, and then computes w & x.

Of course, NCEi;, is not a secure NCE scheme in the sense that we cannot
construct a successful simulator when z # x for a similar reason stated above.
However, we can fix this problem and construct a secure NCE scheme by running
multiple instances of NCE}, .

In NCEL, , if z coincides with x, we can construct a simulator similarly to
Beaver’s protocol, which happens with probability % Thus, if we run multiple
instances of it, we can construct simulators successfully for some fraction of them.
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Receiver Sender
Input: m € {0, 1}*
z & {0, 1} x & {0,1}"
Vi € [n], pi & Z, Vi € [n],0u & Z,
Aizi =g” Bix =g
$ A10,...,Ano $
Aigz =G (A1,1, . ,An,l) Bii-x =G

. — L Qg
€ x; = ALXL

$
€i1—x; < G

. BLO“-BnO €1,0,---,€n,0
if Biz,”" =€z ( A I TR w o w=H(x)@&m

B1717-~-,Bn,1 el,l,-n,en,l

X = Z;
else x; :=1—1z;
Output: m = w & H(x)

Fig. 2. The description of NCEjip.

Based on this observation, we construct an NCE scheme NCEj;, as follows. We
also describe NCE;i, in Fig. 2.
Let the length of messages be p and n = O (). We later specify the concrete

relation of p and n. The receiver first generates z;---z, = z & {0,1}™. Then,
for every i € [n], the receiver generates a pubic key of NCEi,,, (A;0,4;1) in
which the single bit randomness is z;. We let the exponent of A;,, be p;, that
is, A; ;, = g”. The receiver sends these n public keys of NCEL,  as the public key

of NCEyi, to the sender. The secret key is (z, p1,. .., Pn).

When encrypting a message m, the sender first generates xj ---x, = X &
{0,1}™. Then, for every i € [n], the sender generates ((B;0,Bi1), (€:,0,€:,1)) in
the same way as NCEL;  (and thus Beaver’s protocol) “encapsulates” x; by using
the i-th public key (A; 0, A;1). We call it i-th encapsulation. Finally, the sender
generates w = m @ H(x), where H is a hash function explained later in more
detail.

The resulting ciphertext is

Bl,O)"'aBTL,O el,07~--7en,0 w

Bia,...,Bp1/)  \ei1,...,en1) "’
Decryption is done by recovering each x; in the same way as NCE
puting w @ H(x).

The simulator for this scheme runs as follows. It first generates z; ---z, =
z& {0,1}™ and xy - - - %, = X & {0,1}". Then, for every index ¢ € [n] such that
z; = X;, it simulates the ¢-th public key and encapsulation in the same way as
the simulator for NCE{;, (and thus Beaver’s protocol). For every index i € [n]
such that z; # x;, it simply generates i-th public key and encapsulation in the

1

15, and com-

same way as NCE;;, does in the real execution. Finally, it generates w & {0, 1}~
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Although the ciphertext generated by the simulator is not “fully non-
committing” about x, it loses the information of bits of x such that x; = z;.
Thus, if we can program the output value of the hash function H freely by pro-
gramming only those bits of x, the simulator can later open the ciphertext to
any message, and we see that NCEi;, is a secure NCE scheme.

To realize this idea, we first set n = 8u in order to ensure that the simu-
lated ciphertext loses the information of at least p-bits of x with overwhelming
probability. This is guaranteed by the Chernoff bound. Moreover, as the hash
function H, we use a matrix R € {0,1}**" such that randomly picked u out
of n column vectors of length p are linearly independent. The ciphertext rate
of NCEqi, is O (M), that is already the same as the best rate based on the DDH
problem achieved by the construction of Choi et al. [7].

3.3 Reduce the Ciphertext Rate

Finally, we show how to achieve the ciphertext rate O (log\) by compressing
the ciphertext of NCE;j,. This is done by two steps. In the first step7 we reduce
the size of the first part of a ciphertext of NCEyi,, that is, {B;, b} ] be{0,1}"
this step, we compress it into just a single group element. Then, 1n the second
step, we reduce the size of the second part of a ciphertext of NCE,j,, that is,
{eivb}ie[n],be{o,l}' In this step, we compress each e; ; into a O (log \)-bit string.
By applying these two steps, we can achieve the ciphertext rate O (log \).

The second step is done by replacing each group element e; ;, with a hash value
of it. In NCE1;,, they are used to recover the value of x; by checking Bp L =€
We can successfully perform this recovery process with overwhelming probablhty
even if e; 5 is hashed to a poly(log A)-bit string. Furthermore, with the help of an
error-correcting code, we can reduce the length of the hash value to O (log A)-bit.

In the remaining part, we explain how to perform the first step.

Compressing a Matriz of Group Elements into a Single Group Element. We
realize that we do not need all of the elements {B; p}ic[n),be{0,1} to decrypt
the ciphertext. Although the receiver gets both B; ¢ and B, ; for every i € [n],
the receiver uses only B, ,,. Recall that the receiver recovers the value of x; by
checking whether BZ L, = €iz, holds. This recovery of x; can be done even if the
sender sends only B; 4, and not B; 1_,.

This is because, similarly to the equation Bp ! = e;,, with overwhelming
probability, the equation Bp % = €iz holdsif and only if z; = x;. For this reason,
we can compress the first part of the ciphertext on NCEji, into (By x,,-- -, Bnx,)-

We further compress (B x,, - - -, Bnx, ) into a single group element generated
by multiplying them, that is, y = Hje[n] Bj x;- In order to do so, we modify the
scheme so that the receiver can recover x; for every ¢ € [n] using y instead of
B, ,. Concretely, for every ¢ € [n], the sender computes e; «, as

Cix = H Az X5
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where o is the exponent of Bj,, for every j € [n] generated by the sender. The
sender still generates e;1_4, as a random group element for every i € [n]. In
this case, with overwhelming probability, the receiver can recover x; by checking
whether e; ,, = y”* holds.

However, unfortunately, it seems difficult to prove the security of this con-
struction. In order to delete the information of x; for indices ¢ € [n] such that
z; = X; as in the proof of NCE,;,, we have to change the distribution of e; 1y,
from a random group element to ] e A;ﬁ_xi so that e; o and e;; are sym-
metrically generated. However, we cannot make this change by relying on the
DDH assumption since all a; are given to the adversary as a part of the sender
random coin. Thus, in order to solve this problem, we further modify the scheme
and construct an NCE scheme NCE as follows.

The Resulting NCE Scheme NCE. In NCE, the receiver first generates z & {0,1}
and {A; b }ie[n],be{0,1} in the same way as NCE;;,. Moreover, instead of the sender,
the receiver obliviously generates B;j = g“ for every i € [n] and b € {0, 1},
and adds them into the public key. Moreover, for every i € [n], the receiver adds

{BY, = ASTT Y el be 0,1} st (5b)#(i1—20)

to the public key. In order to avoid the leakage of the information of z from the
public key, for every i € [n], we have to add

{A71, Yiemlveto.1} st (0)£(iz)

to the public key. However, the receiver cannot do it since the receiver gen-
erates A;1_,, obliviously. Thus, instead, the receiver adds the same number
of random group elements into the public key. At the beginning of the secu-
rity proof, we can replace them with {Ag{’fzi }iein] bef0,1} s.t. (j,b)£(i,z;) DY rely-
ing on the DDH assumption, and eliminate the information of z from the
public key. For simplicity, below, we suppose that the public key includes
{Aﬁi’izi}je[n],be{o,l} s.t. (j,b)#(i,z;) instead of random group elements.

When encrypting a message m by NCE, the sender first generates x & {0,1}"
and computes y = [] Bj ;. Then, for every i € [n], the sender computes
€, as

J€[n]

Qjx; i
Cix; = H Ai,xi =y
JEn]

just multiplying A, Sl A% included in the pubic key. Recall that A; i =

2,X4
gPi. Note that A e is not included in the public key, but we do not need it to
compute e; 4, . The sender generates e;, as a random group element for every
i € [n] as before. The resulting ciphertext is

€1,0,---,€n0
Y, PR Rx@m | .
€1,1,---,€n,1
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The receiver can recover x; by checking whether e; ,, = y”* holds, and decrypt
the ciphertext.

By defining the simulator appropriately, the security proof of NCE proceeds
in a similar way to that of NCE;;,. In NCE, for indices i € [n] such that z; = x;, we
can eliminate the information of x;. We can change e; 1_, from a random group
element to [[ e AZ 1, by relying on the fact that Al 17, is indistinguishable
from a random group element by the DDH assumption. By this change, e; g
and e; ; become symmetric and the ciphertext loses the information of x;. Then,
the remaining part of the proof goes through in a similar way as that of NCEji,
except the following point. In NCE, the first component of the ciphertext, that is,
y = Il epn) Bix, has the information of x. In order to deal with the issue, in our

real construction, we replace y with ¢"[] jen] Bjx;,
longer leaks any information of x. Moreover, after y is fixed, for any x’ € {0,1}",
we can efficiently find r’ such that y = ¢ Hje[n] Bjx . This is important to

ensure that the simulator of NCE runs in polynomial time.

where r & Zyp. Then, y no

3.4 Abstraction by Chameleon Encryption

We can describe NCE by using obliviously samplable chameleon encryption. If we
consider {Bivb}z‘e[n]7be{0,1} as a hash key k of chameleon hash function, the first
element of the ciphertext ¢ [] i€ B «; can be seen as the output of the hash
H (k,x; r). Moreover, group elements contained in the public key are considered
as ciphertexts of an chameleon encryption scheme. Oblivious samplability of
chameleon encryption makes it possible to deal with the above stated issue of
sampling random group elements instead of {AZ 12 }iemlbef01} st (jb)#(iz:)
for every i € [n].

Relation with Trapdoor Function of Garg and Hajiabadi. We finally remark that
the construction of NCE can be seen as an extension of that of trapdoor function
(TDF) proposed by Garg and Hajiabadi [14].

If we do not add the random mask ¢" toy =[]
lation part of a ciphertext of NCE, that is,

( (el,o, s aen,()))

Y €1,1,---,€n,1

is the same as an output of the TDF constructed by Garg and Hajiabadi. The
major difference between our NCE scheme and their TDF is the secret key. A
secret key of their TDF contains all discrete logs of {A;}icn)befo,1}, that is,
{pi,b}icin)pefo,1}- On the other hand, a secret key of our NCE scheme contains
half of them corresponding to the bit representation of z, that is, {p; 2, }ien]- Garg
and Hajiabadi already stated that their TDF can be inverted with {p; ., }icm
for any z € {0,1}", and use this fact in the security proof of a chosen ciphertext

security of a public-key encryption scheme based on their TDF. By explicitly
using this technique in the construction, we achieve non-committing property.

e B «;, the key encapsu-
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We observe that construction techniques for TDF seem to be useful for
achieving NCE. Encryption schemes that can recover an encryption random
coin with a message in the decryption process, such as those based on TDF's, is
said to be randomness recoverable. For randomness recoverable schemes, receiver
non-committing property is sufficient to achieve full (that is, both sender and
receiver) non-committing property. This is because an encryption random coin
can be recovered from a ciphertext by using a key generation random coin.

4 Obliviously Samplable Chameleon Encryption

Chameleon encryption was originally introduced by Déttling and Garg [10]. In
this work, we introduce a variant of chameleon encryption satisfying oblivious
samplability.

4.1 Definiton
We start with the definition of the chameleon hash function.

Definition 4 (Chameleon Hash Function). A chameleon hash function con-
sists of the following PPT algorithms (K, H, H_l). Below, we let the input space
and randomness space of H be {0,1}"™ and Ry, respectively, where n = O()).

- K (1>‘): Given the security parameter 1*, it outputs a hash key k and a trap-
door t.

- H (k,x;r): Given a hash key k and input x € {0,1}™, using randomness r € Ry,
it outputs a hash value y.

— H71(t,(x,r),x): Given a trapdoor t, an input to the hash x, randomness for
the hash r and another input to the hash X', it outputs randomness r’.

A chameleon hash function is required to satisfy the following trapdoor collision
property.?

Trapdoor Collision. For all x,x' € {0,1}" and hash randomness r € Rn,
H(k,x;r) = H(k,x';r') holds, where (k,t) —K(1*),r —H71(t, (x,r),x).
Moreover, if r is sampled uniformly at random, then so ist’.

Next, we define the chameleon encryption.

Definition 5 (Chameleon Encryption). Chameleon encryption (CE) con-
sists of a chameleon hash function (K, H, H_l) and the following PPT algorithms
(E1, E2, D). Below, we let the input space and randomness space of H are {0,1}"
and Ry, respectively, where n = O(X\). We also let the randomness space of E;
and Ey be Re. Moreover, we let the output space of Ex be {0,1}¢, where £ be a
polynomial of X.

2 Usually, a chameleon hash function is required to be collision resistant, but we omit
it since it is implied by the security of chameleon encryption defined later.
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- E1 (k, (4, 0); p): Given a hash key k and indezx ¢ € [n] and b € {0,1}, using a
random coin p € Re, it outputs a ciphertext ct.

- Ex (k,y; p): Given a hash key k and a hash value y, using a random coin
p € RE, it outputs e € {0,1}*.

— D (k, (x,r),ct): Given a hash key k, a pre-image of the hash (x,r) and a cipher-
text ct, it outputs e € {0,1}* or L.

Chameleon encryption must satisfy the following correctness and security.

Correctness. For all k output by K(1*),i € [n],x € {0,1}",r € Ry,
and p € Re,Ex(k,y;p) = D(k,(x,r),ct) holds, where y«—H(k,x;r) and
ct— Ey(k, (i,%); 0).

Security. For any stateful PPT adversary A, we define the following experi-

ments.
EXpCEA Expee.a
x r i) .A(1>‘) (x,r, 1) — A (1Y)
(1)‘) (k,t) — K (1%)
ctHEl( (i,1 —x;);p)| ct—Ex(k, (7,1 —x;);p)
e—Ea(k, H(k,x;1);p) | e {0,1}
out — A (k, ct,e) out A (k,ct, e)

We say CE 1is secure if

Adveg 4 (A) == ‘Pr lout =1 in ExpgaA]
— Prlout=11n ExpéE7A]| = negl (\)

holds for every PPT adversary A.

Remark 1 (On the recyclability). The above definition of chameleon encryption
is slightly different from that of Déttling and Garg [10] since we define it so that
it satisfies a property called recyclability introduced by Garg and Hajiabadi [14]
when defining a primitive called one-way function with encryption that is similar
to chameleon encryption.

More specifically, in our definition, there are two encryption algorithms E;
and E,. E; outputs only a key encapsulation part and E; outputs only a ses-
sion key part. In the original definition by Dottling and Garg, there is a single
encryption algorithm that outputs the key encapsulation part and a message
masked by the session key part at once. Importantly, an output of E; does not
depend on a hash value y. This makes possible to relate a single output of E;
with multiple hash values. (In other words, a single output of E; can be recycled
for multiple hash values.) We need this property in the construction of NCE and
thus adopt the above definition.

We then introduce our main tool, that is, obliviously samplable chameleon
encryption (obliviously samplable CE).
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Definition 6 (Obliviously Samplable Chameleon Encryption). LetCE =
(K,H,H™1 E1,E», D) be a chameleon encryption scheme. We define two associ-

ated PPT algorithms K and EI as follows.

- K (1/\) : Given the security parameter 1, it outputs only a hash key k without
using any randomness other than k itself.
-E (k, (1, b)) : Given a hash key k and index i € [n] and b € {0,1}, it outputs

a ciphertext ct without using any randomness except ct itself.

For any PPT adversary A, we also define the following experiments.

0s-0 o0s-1

EXPCE,A ‘ EXpCE,.A
(k,t) — K(1%) |k« K(1*)
out —— A9C) (k)| out — AOC+) (E)

The oracles O(-,-) and O(-,-) are defined as follows.

- O(i,b): Given an index © € [n] and b € {0,1}, it returns ct — Ey (k, (i,0);p)
using uniformly random p.
— O(i,b): Given an indez i € [n] and b € {0,1}, it returns G—E, (R (4, b))

We say that CE is obliviously samplable if
Advgs 4 (M) == |Pr [out = 1 in Expgs 4] — Pr [out = 1 in Expgs 4] | = negl (\)
holds for every PPT adversary A.

We define another correctness of obliviously samplable CE necessary to assure
the correctness of our NCE.

Definition 7 (Correctness under Obliviously Sampled Keys). An obliv-
iously samplable CE (CE,K, Ey) is correct under obliviously sampled keys if for
all k output by R,z’ € [n],x € {0,1}",r € Ry, and p € Re,Ez (R(i, b);p) =

D (K, (x, 1), ct) holds, where y «—H (R X; r) and ct«— E; </k\, (i,%4); p).

4.2 Construction

We construct an obliviously samplable CE CE = (K, H,H™!, Ei,Es, D,R,a)
based on the hardness of the DDH problem.

Let G be a cyclic group of order p with a generator g. In the construction,
we use a universal hash family H = {Hg : G — {0,1}*}. Below, let Hg be a
hash function sampled from H uniformly at random, and it is given to all the
algorithms implicitly.
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K (1))
— For all ¢ € [n], b € {0,1}, sample o & Zy, and set g, 1= g*t.
— Output
K:— <g7 (91,0»---,971,0)) and t:— (Oé1,07 e 7an,0> ] (1)
9171,...,gn’1 04171,...70["71
H(k,x;r):

— Sample r & Ru = Zyp and output y = g" Hie[n] Gix; -
H71 (t? (X’ r)7X/) :
— Parse t as in Eq. 1.
= Output r':=r+ 37,0 (@i, — i)
Ex (k, (i,0);p):
— Parse k as in Eq. 1.
— Sample p & Re = Z, and compute c:= g*.
Compute ¢; p:= (g:p)” and ¢; 1p:= L.
— For all j € [n] such that j # i, compute ¢;o:= (g;0)” and ¢;1:= (g;j1)"

— Output
cti= (e (SO0 ) 2)
C1,1y---9Cn,1

E> (k,y; p):

— Output e — Hg (y?).
D (k, (x,r),ct):

— Parse ct as in Eq. 2.

— Output e« Hg (c’ Hie[n] Ci,xi)-

K (1%
~ For all ¢ € [n] and b € {0,1}, sample g, &g,
~ Output i:: (g, 91,05+ -1 9n,0

91,1591 ) )"
E; (E (i, b)) :

— Set ¢; 1-p =1, and sample ¢& G and Cib &g,

— For all j € [n] such that j # i, sample ¢; o 2 G and o Se
— Output ct:= G 21,0, o ’E"’O '
Cl,1y--+5Cn,1
Theorem 1. CE is an obliviously samplable CE scheme assuming the hardness
of the DDH problem.

The trapdoor collision property, correctness, and correctness under oblivi-
ously sampled keys of CE directly follow from the construction of CE. Below, we
first prove the security of CE under the hashed DDH assumption with respect to
‘H. We then prove the oblivious samplability of CE under the DDH assumption.
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Security. Let A be an adversary against the security of CE. We construct a
reduction algorithm A" which solves the hashed DDH problem using .A.

Given (Hg, g1, g2, €), A’ first runs (x, r, i) « A(1%), and generates k as follows.
For all (j,b) € [n] x {0,1} such that (j,b) # (i,%;), A" samples o ; & Z, and

sets gj,p = 9%, gix, =01/ (Qr [ gjvxj) and

91,05+ --5,9n,0
k:=|{g, ’ ’ .
(g (91,17 e 7gn,1))
Next, A’ generates ct as follows. A’ first sets c:=go and ¢; 4, := L. Then for
all (7,0) € [n] x {0,1} such that (5,b) # (i,%x;), A’ sets ¢;jp:=g2%*. A’ sets the

ciphertext to
ct:= (C, (01,07 R 7C’I’L,0>> )
C1,15-+-5Cn,1
Finally, A’ outputs what A (k, ct, e) does.
k and ct generated by A’ distribute identically to those output by K (1*)

and Ej (k, (4,1 —x;); p), respectively. A’ perfectly simulates Exng’A to Aife =
Hg (dh (g1, g2)) because we have

E2 (k?yap) = H(G dh gr H Gix;»C = HG (dh (91592)) = €.
1€[n]

On the other hand, if e & {0,1}¢, A’ perfectly simulates ExpéEyA to the adver-
sary. Thus, it holds that Advcg, 4 (A) = negl (A) under the hash DDH assumption
with respect to H.

This completes the security proof of CE.

Oblivious Samplability. Let A be an PPT adversary that attacks oblivious
samplability of CE and makes g queries to its oracle. We prove that the probability
os-1

that A outputs 1 in Exp@é‘& is negligibly close to that in Expgg 4. The detailed
description of these experiments is as follows.

Expgz:gl: A is given a hash key k output by K and can access to the oracle
O(i,b) = Eq1 (k, (3,b); p), where ¢ € [n], b € {0,1}, and p < Z,. Concretely,
O(i,b) behaves as follows.

— Sample p uniformly from Z,, and let c:=g”. For all j # i, let
¢jo:=(g5,0)” and ¢;1:= (g;1)", and let ¢;p:= (gi5)" and ¢;1-p:=L.
C1,05+--yCn,0
’ Cl,1,---,Cn,1
E><p8§§’1 4 A is given a hash key k output by K and can access to the oracle

6(i,b) = E(E,(i,b)), where ¢ € [n] and b € {0,1}. Concretely, 6(i,b)
behaves as follows.

Return ct:= (¢
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— Let ¢;,1— := L, and sample ¢, ¢; 5, and ¢; o and ¢; 1 for all j # 4 uniformly

~ _(Cio0,...,6
from G. Return ct:= (c, (A 0 ’ZL’O)).

C1,15-++5Cn,1

We define Exp j for every j € {0,...,¢} that are intermediate experiments
between Expgg‘_& and Expgz‘j“ as follows. Below, for two experiments Exp X and
Exp Y, we write Exp X ~ Exp Y to denote that the probability that A outputs

1 in Exp X is negligibly close to that in Exp Y.

Exp j: This experiment is exactly the same as Exp@é’& except how queries made
by A are answered. For the j'-th query (i,b) € [n] x {0,1} made by A, the
experiment returns E; (k, (7,b); p) if j < 5/, and E; (k, (4, b)) otherwise.

We see that Exp 0 and Exp ¢ are exactly the same experiment as Expgz‘& and
Expgg"i‘, respectively. Note that A is given k output by K (1)‘) and can access to

the oracle E\l (k, (i,b)) in Exp ¢, but on the other hand, A is given k output by
K (1A) and can access to the oracle E (E, (i, b)) in ExpSE')L. However, this is not

a problem since k output by K (1’\) and k output by K (1)‘) distribute identically
in our construction. For every j € [g], Exp j — 1 &~ Exp j directly follows from
Lemma 3. Therefore, we have Expgz'& ~ Expgzjh under the DDH assumption.
From the above arguments, CE satisfies oblivious samplability under the DDH
assumption.

This completes the proof of Theorem 1.

5 Basic Construction of Proposed NCE

In this section, we present our NCE scheme with ciphertext rate poly(log\)
from an obliviously samplable CE. We call this construction basic construction.
In Sect. 6, improving the basic construction, we describe our full construction of
NCE which achieves ciphertext rate O (log ).

5.1 Construction

We use three parameters u, n, and £, all of which are polynomials of A and
concretely determined later.

Let CE = (K, H,H™1 E;, E,, D, R, EI) be an obliviously samplable CE scheme.

We let the input length of H be n and let the output length of E; (and thus D)
be £. We also let the randomness spaces of H and E; be Ry and RE, respectively.
Below, using CE, we construct an NCE scheme NCE = (Gen, Enc, Dec, Simy, Sim,)
whose message space is {0, 1}*.

In the construction, we use a matrix R € {0,1}**™, such that randomly
picked g out of n column vectors of length p are linearly independent. A random
matrix satisfies such property except for negligible probability [21].

We first describe (Gen, Enc, Dec) and show the correctness of NCE below. We
also describe a protocol when using NCE in Fig. 3.
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zE 0,1} k = K (1)
Vi € [n], pi < Re.

ctiz, = Ex(k, (4,2:); pi)
Ctin s, — Ei(k, (i,1—2))

ct ..
K, 1,05
cti1,..

Input: m € {0, 1}*

x & {0,1)"
r i RH.

y < H(k,x;r)

.,Ctro
., Ctn1

Vi € [n],

€ix; = D (ka (X7 I’), Cti,xz)

€i1—x; i {0, 1}[

if ez, = B2 (k,y; pi) O(ﬁ“”£”>w) w=Rx®m
6171, e ,eml
X; 1= Z;
else x; :=1—z;
Output: m = w ® Rx
Fig. 3. The description of NCE.
Gen (1’\; rGe”):
— Sample k — K (1*) and z & {0,1}™.
— For all ¢ € [n], sample p; & Re.
— For all 4 € [n] and b € {0,1}, compute
Ei(k,(3,0);0i) (b=2z
Ctz,b N = .
E1 (k,(Z,b ) (b;ézl)
— Output

cti0,...,Cty,
pk = (k, (Ct?(l) ct: ?)) and sk:= (z,(p1,..-,pn))-
Aye-e,Cly,

The random coin 7¢" used in Gen is (k,z, {piticim) {ct,i,l_zi}ie[n]).

Enc (pk:, m; TE“C)

— Sample x & {0,1}™ and r & Ra.

— Compute y < H (k, x; r).

— For all ¢ € [n] and b € {0,1}, compute

€;p

s

— Compute w «— Rx & m.

{

D (k, (x,r),ctip)
{0,1}¢

3)
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— Output

€1,0,---,€n,0
CT:= |y, ’ I . 4
(y <91,1,~~~,en,1> w) @)
The random coin 75" used in Enc is (X7 r {ei,l—xi}ie[n])~
Dec (sk,CT):

— Parse sk and C'T as the Egs. 3 and 4, respectively.
— For all i € [n], set

S (eiz, = B2 (k,y; p:))
' 1—2z; (otherwise) '

— Output m:= Rx ® w.

By setting ¢ = poly(log A), NCE is correct. Formally, we have the following
theorem.

Theorem 2. Let ¢ = poly(log \). If CE is correct under obliviously sampled keys,
then NCE is correct.

Proof. Due to the correctness under obliviously sampled keys of CE, the recovery
of x; fails only when z; # x; happens and e; 1y, & {0,1}* coincides with
Es (k,y; p;). Thus, the probability of decryption failure is bounded by

Pr [m # Dec (sk,CT)]
n

<Pr [Hi € [n]veﬁl—xi ﬁ {07 1}€;ei71—xi =E (kay;pi)} < 0"

Note that at the last step, we used the union bound. Since n = O (A), the
probability is negligible by setting ¢ = poly(log A\). Therefore NCE is correct.

Intuition for the Simulators and Security Proof. The description of the simula-
tors (Simyq, Simy) of NCE is somewhat complex. Thus, we give an overview of the
security proof for NCE before describing them. We think this will help readers
understand the construction of simulators.

In the proof, we start from the real experiment Expﬁ%‘?’h, where A is an PPT
adversary attacking the security of NCE. We then change the experiment step by
step so that, in the final experiment, we can generate the ciphertext C'T" given
to A without the message m chosen by A, which can later be opened to any
message. The simulators (Simy, Simy) are defined so that they simulate the final
experiment.

In ExpNRC‘Elft, CT is of the form

L €1,0,---,€n0
CT:= (y7 (e1,17~--7en,1> ,Rx@m) .
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Informally, (y, <21’0’ o ’2"’[))) encapsulates x € {0,1}", and Rx®m is a one-
1,1+ €n1

time encryption of m € {0,1}* by x. If we can eliminate the information of x
from the encapsulation part, C'T becomes statistically independent of m. Thus,
if we can do that, the security proof is almost complete since in that case, CT
can be simulated without m and later be opened to any message. While we
cannot eliminate the entire information of x from the encapsulation part, we can
eliminate the information of u out of n bits of x from the encapsulation part,
and it is enough to make CT statistically independent of m. Below, we briefly
explain how to do it.

We first change <Ct1’0’ -5 Chao

cty1,...,¢Cty1
ated as ct; , — Eq (k, (4, 0); pip), and set p; := p; 5., where z € {0,1}" is a random
string generated in Gen. We can make this change by the oblivious samplability
of CE.

Next, by using the security of CE, we try to change the experiment so that
for every i € [n], e; o and e;1 contained in CT are symmetrically generated in
order to eliminate the information of x; from the encapsulation part. Concretely,
for every i € [n], we try to change e; 1_x, from a random string to

> contained in pk so that every ct; ; is gener-

e —D(k, (x,r),ctii—x) = Ex(ky; piji—x;) -

Unfortunately, we cannot change the distribution of every e; 1_4, because
some of p; 1y, is given to A as a part of 7®". Concretely, for i € [n] such that
Z; # Xi, Pi = Piz; = Pi,1—x; is given to A and we cannot change the distribution
of €;1_«;. On the other hand, for i € [n] such that z; = x;, we can change the
distribution of e; 1 _;.

In order to make clear which index i € [n] we can change the distribution
of e;1_4,, in the proof, we replace z with zZ = x @ z. Then, we can say that
for i € [n] such that z; = 0, we can change the distribution of €;1_,. Since z
is chosen uniformly at random, due to the Chernoff bound, we can ensure that
the number of such indices is greater than p with overwhelming probability by
setting n and p appropriately. Namely, we can eliminate the information of p
out of n bits of x from CT'. At this point, CT becomes statistically independent
of m, and we almost complete the security proof. Note that y itself does not have
any information of x. To make this fact clear, in the proof, we add another step
using the trapdoor collision property of CE after using the security of CE.

To complete the proof formally, we have to ensure that C'T" can later be
opened to any message efficiently (i.e., in polynomial time). This is possible by
using a matrix R € {0, 1}#*™ such that randomly picked p out of n column
vectors of length u are linearly independent. For more details, see the formal
security proof in Sect.5.2.

We now show the simulators (Simy, Sim).

Siml (1A):
— Sample (k,t) < K (1*).
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— For all ¢ € [n] and b € {0,1}, sample p;; & Re and compute
cti,p — Ex (k, (4, 0); pip)-

— Sample z & {0,1}",x & {0,1}" 3, and r & Ry

— Compute y < H (k,0™;r) and sample w & {0, 1}~

— For all i € [n] and b € {0,1}, compute

erp Ez (k,y; i) (b:Xi\/ziZO).
| {0,1)f (b#xiNz; =1)

— Output

cti0,.--,Ctyo L €1,05---,€n,0
pk T (k, <Ct171, . 7Ctn,1>) ’ CT:= (y’ (el,l, e ,en,1> 7w> ’
and st:= (t,z,x,r).
Simy (m, st):

— Sample x" at random from {0, 1}" under the condition that Rx' = m & w
and x; = x’; hold for every i € [n] such that z; = 1.

— Compute r' «— H™1(t,(0",r),x') and 2 :=z @ X

— Output

TGen = (k7 Z/7 {pivz/l}ie[n]’ {Cti'rl_z/z}ie[n]) and TEnC = (X/, I’/7 {ei7l_xli}i€[n]) .

5.2 Security Proof

In this section, we prove the security of NCE. Formally, we prove the following
theorem.

Theorem 3. Let p = O (\) and n = 8u. If CE is an obliviously samplable CE,
then NCE 1is secure.

Proof. Let A is a PPT adversary attacking the security of NCE. We define a
sequence of experiments Exp 0, ..., Exp 6. Below, for two experiments Exp X and
Exp YV, we write Exp X =~ Exp Y (resp. Exp X = Exp Y) to denote that the
probability that A outputs 1 in Exp X is negligibly close to (resp. the same as)
that in Exp Y.

Exp 0: This experiment is exactly the same as Exp&?;. The detailed description

is as follows. R s
1. The experiment first samples k «+— K (1)‘) and z < {0,1}". Then, for all

i € [n], it samples p; & Re. Next, for all ¢ € [n] and b € {0, 1}, it computes

Ctip {El (k, (4, 0);pi) (b= 12))

o~

Ey (k, (4, 0)) (b#2z)

3 Sim; and Sim do not use x; for ¢ such that z; = 0, but for simplicity, we generate
whole x.
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It sets

cty0,...,Ctp
o (o G )) o )

Finally, it runs m « A (pk). Note that " is used in the next step.

2. The experiment samples x & {0,1}" and r & Ry. It then computes
y—H(k,x;r). For all ¢ € [n] and b € {0, 1}, it also computes

1y D (k, (x,r),ct;p) (b:xi).
0y (b #x)

It sets

L €1,0,---5,€n,0 Enc __ )
or= (% (el,l,...,en 1) i ) and = (X’ k {e”lfx’}ie[”])'

Finally, it outputs out — A (CT,r¢n, rEnc),

Exp 1: This experiment is the same as Exp 0 except the followings. First, pk
is generated together with a trapdoor of the chameleon hash function t as
(k,t) —K (1*) instead of k —K (1*). Moreover, all ciphertexts of chameleon

encryption ct; ;, are computed by E;, instead of E Specifically, for every

i € [n] and b € {0,1}, the experiment samples p; 3 & Re and compute

ctyp — Eq (k, (4, 0); pip). Also, it sets reen — (k, z, {Pi,z,}ie[n], {Cti,lfzi}ie[n])'
Lemma 5. Assuming the oblivious samplability of CE, Exp 0 ~ Exp 1 holds.

Proof. Using A, we construct a reduction algorithm A’ ©7C) that attacks the
oblivious samplability of CE and makes n oracle queries.

1. On receiving a hash key k*, A’ generates p; & Re for every i € [n] and sets
. t ...,ct
the public key as pk = (k*, (C 1,055 € "’0)>, where

Ctl’l,...,Cth
o [EO G (b =2)
: O* (i, b) (b # z;)

A7) also sets ren = (k,z, {piticimp {Ct@l—zi}ie[n]). Then, A’° ) runs
A(pk) and obtains m.

2. A'9"07) simulates the step 2. of Exp 0 and Exp 1, and outputs what A does.
Note that the step 2. of Exp 0 is exactly the same as that of Exp 1.

0s-0 os-1

When playing Expgg 4 and Expeg 4, A’ perfectly simulates Exp 0 and Exp 1
for A, respectively. By the oblivious samplability of CE,

|Prfout = 1 in Exp 0] — Prfout = 1 in Exp 1]| = Advgg 4 (A) = negl ())

holds. This proves Exp 0 ~ Exp 1.
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Exp 2: This experiment is the same as Exp 1, except that we replace z contained
in 76" by 2/ :=z @ x.

Because z distributes uniformly at random, so does z’. Therefore, the distri-
bution of the inputs to A does not change between Exp 1 and Exp 2, and thus
Exp 1 = Exp 2 holds.

Exp 3: The essential difference from Exp 2 in this experiment is that when z; =
0,e;1-x, is computed by Ez (k,y; pi,1—x,) instead of uniformly sampled from
{0, 1}~
Additionally, each e;y, is replaced to Ej (k,y;p;x,) from D (k, (x,r),ct;y,),
though this does not change the distribution due to the correctness of CE.
After all, for every i € [n] and b € {0, 1}, the experiment computes

€ b

s

Ex (k,y;pip) (b=x;Vz; =0)
{0,1}4 (b#xz/\zlzl)

Lemma 6. If CE is correct and secure, Exp 2 =~ Exp 3 holds.

Proof. This proof is done by hybrid arguments. We define Exp 2; for every
j € {0,...,n} that are intermediate experiments between Exp 2 and Exp 3 as
follows.

Exp 2,: This experiment is exactly the same as Exp 2 except how e; 3 is generated
for every i € [n]. For j < i <n,e;; is generated asin Exp 2. For 1 < i < j,e;
is generated as in Exp 3.

Exp 2 is equal to Exp 2, and Exp 2,, is equal to Exp 3. In the following, we show
Exp 2;_1 ~ Exp 2; for all j € [n].

In the case of z; = 1, except negligible probability, e; ., distributes identi-
cally in Exp 2;_1 and Exp 2; because E; (k,y;pj’xj) =D (k, (x, r),ctj’xj) holds
with overwhelming probability due to the correctness of CE. Moreover, e; 1, is
generated in the same way in both experiments. Thus Exp 2;_; ~ Exp 2; holds.

In the case of z; = 0, we show Exp 2;_; ~ Exp 2; by constructing a reduction
algorithm A’ that uses A and attacks the security of CE. The description of A’
is as follows.

1. A’ samples x & {0,1}™ and r & Ru, outputs (x,r, j), and receives (k*, ct*, e*).

Then, A’ generates pk as follows. A’ first samples z & {0,1}™ and sets 2/ =
x @ z. For every (i,b) € [n] x {0,1} such that (i,0) # (4,1 — x;), A" samples

Pib & Re and computes ct; , < Ey (k, (4,0); psp). A’ sets ctji_,, :=ct?,

* Ct,7...,Ctn, *
pk:: (k ,< 1,0 O)) and TGen = (k aZ/a{pi,zg}ie['n]»{Cti,lfz’i}ieln]) .

cti,1,...,Ctu1

Finally, A" runs m < A (pk). Note that p; = pj . @z; = pjx; since we con-
sider the case of z; = 0, and thus A’ generates pi,z by itself for every i € [n].
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2. A’ computes y < H(k*,x;r). For j < i <n, A’ computes e;; as in Exp 2, and
for 1 < i < j, it does as in Exp 3. For i = j, A’ computes e;, — Ez (k,y; pjx; )
and sets e; 14, :=e". Finally, A’ sets

CT := (y’ (el’o’ e ,e,b,()) , Rx® m) and rE" = (X> r {ei,lfxz}z‘e[n]) ’

€1,1,---,€n,1
Gen ..Enc
and outputs out < A (CT, r&e rEnc).

When playing Expén A simulates Exp 2;_; for A. Also, when playing
Exng’A,7 A’ simulates Exp 2; for A. By the security of CE,

|Prlout =1 in Exp 2;_1] — Prout = 1 in Exp 2;]| = Advcg, 4/ (A) = negl (A)
holds. From the above, we have

|Pr[out =1 in Exp 2] — Pr[out =1 in Exp 3]|

< Z |Prlout = 1 in Exp 2;_1] — Prfout = 1 in Exp 2;]| = negl (X).
j€ln]

We can conclude Exp 2 =~ Exp 3.

Exp 4: This experiment is the same as Exp 3 except how y and r are computed. In
this experiment, y is computed as y < H (k, 0™; r). Moreover, the randomness
r contained in rE™ is replaced with r’ « H™1 (t, (07, r),x).

Due to the trapdoor collision property of CE, the view of A does not change
between Exp 3 and Exp 4. Thus, Exp 3 = Exp 4 holds.

Exp 5: This experiment is the same as Exp 4, except that Rx is replaced with w &
{0, 1}#. Moreover, the experiment computes r’ as r' + H™! (t, (0",r) ,x), and
replaces x in 7E" with x’, where x’ is a uniformly random string sampled from
{0,1}"™ under the following two conditions:

— Rx' = w holds.
—x'; = x; holds for every i € [n] such that z; = 1.

Before showing Exp 4 =~ Exp 5, we review a basic lemma on inversion sampling.
Lemma 7. For a function f : X — Y, we define two distributions D,
and Dy as Dy = {(J;,y) |1:i/'\,’,y:f(ac)} and Dy = {(x’,y) |xiX,}

y = f(x), 2’ & f~Yy), where f~(y) denotes the set of pre-images of y. Then,
D1 and D5 are identical.

Furthermore, we define a distribution D3 as Dy = {(xﬂy) | yiJA}

o & f~Yy). If f has a property that f(x) distributes uniformly at random
over Y if the input x distributes uniformly at random over X, Dy and D3 are
identical.
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Lemma 8. Exp 4 =~ Exp 5 holds.

Proof. According to the Chernoff bound on z,

52

Pr [Ham (z) > (1 +§)g < e 2%

3

holds for any § > 0. By taking d =1 — 27", we have
Pr[Ham (z) > n — u] <27 = negl (\).

Below, we show that (x, Rx) in Exp 4 has the same distribution as (X', w) in Exp 5
in the case of Ham (z) < n — p, and complete the proof of this lemma.

We first introduce some notations. For an integer ordered set Z C [n], we
define Rz as the restriction of R to Z, that is Rz = (ri]---|r|z), where R =
(r1]---|rn). We define xz in a similar way.

Fix any z which satisfies Ham (z) < n — p and set Z = {iy, € [n] | z;, = 0}.
Because |Z| > p, Rz is full rank due to the choice of R. Hence, Rz -u is uniformly
random over {0, 1}# if u is uniformly random over {0, 1}/Z.

Then, from Lemma7 when setting & :={0,1}*],Y:={0,1}*, and f(u) =
Rz - u, the distribution of (xz, Rz - xz) and (u,w) are the same, where x &
{0,1}™,u & fHw) = {u' €{0,1}¥ | Rz v/ = w}, and w & {0,1}#. More-
over, we have Rx = Rz -xz ® Riy\z - Xo)\z- Since x’ sampled in Exp 5 is a
bit string generated by replacing ip-th bit of x with k-th bit of u for every
k € [|Z]], we see that (x, Rx) has the same distribution as (X', w @ Rpu)\z - Xn]\7)-
(X', w® Rip\7 - X[n)\z) also has the same distribution as (X', w) because w is sam-
pled uniformly at random, and thus (x, Rx) has the same distribution as (x’, w).
This completes the proof of Lemma 8.

Note that we can sample the above u in polynomial time, by computing
a particular solution v € {0, 1}|I| of Rz -v = w, and add a vector sampled
uniformly at random from the kernel of Rz.

Exp 6: This experiment is the same as Exp 6 except that w is replaced with
w @ m. By this change, C'T is of the form

e Lo, €
CT := Y, ,05 s €n,0 AR
€11,.---,€n1

Enc

Moreover, x’' contained in r="¢ is sampled so that Rx’ = m & w holds.

Since w is uniformly at random, so is w ® m. Thus, Exp 5 = Exp 6 holds.

We see that Exp 6 is the same as Exp{l‘égﬂ. Put all the above arguments

together, we have
Advyce, 4 (A) < [Prout =1 in Exp 0] — Prout =1 in Exp 6]| = negl ()).

Hence NCE is secure. This completes the proof of Theorem 3.
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5.3 Ciphertext Rate

Finally, we evaluate the ciphertext rate of NCE. From Theorem 2, in order to make
NCE correct, it is sufficient to set £ = poly(log A). Moreover, from Theorem 3, in
order to make NCE secure, it is sufficient to set u = O (\) and n = 8. In this
setting, the ciphertext length of NCE is |CT| = A+ 2nf+ u. Note that we assume
a group element of G is described as a A-bit string. Then, the ciphertext rate of
NCE is evaluated as

CT|  A+2nl+p
o o

O (¢) = poly(log ).

6 Full Construction of Proposed NCE

In the basic construction, we construct an NCE scheme with correctness v =
1 — negl (\), by setting ¢ = poly(log A) which is the output length of E; (and
thus D) of the underlying CE. Of course, if we set £ to O (log \), we can make the
ciphertext rate of the resulting NCE scheme O (log A). However, this modification
also affects the correctness of the resulting NCE scheme. 7 is no longer = 1 —
negl (\), and is at most 1 — 1/poly()).

Fortunately, we can amplify the correctness of the scheme to 1 —negl (\) from
enough large constant without changing the ciphertext rate. For that purpose,
we use a constant-rate error-correcting code which can correct errors up to some
constant fraction. Concretely, we modify the scheme as follows. In the encryption,
we first encode the plaintext by the error-correcting code and parse it into NV
blocks of length p. Then, we encrypt each block by the «-correct NCE scheme
for a constant v using different public keys. The decryption is done naturally,
i.e., decrypt each ciphertext, concatenate them, and decode it. The ciphertext
rate is still O (log \) because the rate of error-correcting code is constant.

This block-wise encryption technique not only amplifies the correctness but
also reduces the public key size. In the basic construction, the size of a public
key depends on the length of a message quadratically. However, by applying the
block-wise encryption technique, it becomes linear in the length of a message.

The description of the full construction is as follows. Let ECC =
(Encode, Decode) be a constant-rate error-correcting code which can correct
errors up to e-fraction of the codeword where € > 0 is some constant.

Specifically, given a message m € {0,1}*™  Encode outputs a codeword

— - —— —
CW € {0,1}#N. If Ham (CW - C’W’) < euN, Decode (CW') — m. The rate
of ECC is some constant N/M.

Let NCE = (Gen, Enc, Dec,Sim;,Sim;) be an NCE scheme whose message
space is {0,1}#, ciphertext rate is O (logA), and correctness is v = 1 — 5. We

— _— = = —— — —
construct NCE = (Gen, Enc, Dec, Simy, Simy) as follows. The message space of NCE
is {0, 1}#M.
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—
CEI) <1>‘; TGe">:
— Parse the given random coin to 7%
— For all ¢ E [N], generate key pairs (pk;, sk;) < Gen (1A;riGe").
—
- Output pk = (pk1,...,pkn) and sk:= (ski,...,skn).

= (rfe", . ,TIGVG”).

Enc (pk m;rE )
—5
— Parse rfc = (rf"c TJEV”C).

— Compute CW Encode( ) and parse CW = (CWq,...,CWy).
— For all i € [N], compute CT; — Enc (pk:z, CW;; rZE"C)

— Output CT = (CTy,...,CTnN).
— = —
Dec ( sk, CT ):
— For all ¢ € [N], Compute CW/ — Dec (sk;, CT;).
—_—
— Concatenate them as CW’':= (CW{,...,CW}).
—_—
— Output m « Decode (C’W’).
—
Sim; (1*):
— For all i € [N], compute (pk;, CT;, st;) < Sim; (1’\)7

— — —
— Output  pk:= (pk1,...,pkn), CT:=(CTy,...,CTy), and st:=
(st1,...,stn).
c —
Simy (m, st):

— Compute CW « Encode (m) and parse (CW1q,...,CWy) « CW.
— For all i € [N], compute (rf", rE") — Sim, (CW;, st;).
— —

Gen = (r?en : Enc = (rfnc Enc)'

— Output r r$e") and r TN

Correctness. We can prove the correctness of NCE by the Chernoff bound. For-
mally, we have the following theorem. See the full version for the proof.

Theorem 4. Let ECC be an constant-rate error-correcting code which can correct
errors up to e-fraction of a codeword. Let NCE be a y-correct NCE scheme, where
v = 1— 5. If the number of parsed codeword N > poly(log \), the above NCE is
correct.

Security. For the security of Iﬁ, we have the following theorem. Since we can
prove it via a straightforward hybrid argument, we omit it.

Theorem 5. If NCE is an secure NCE scheme, then NCE is also secure.

Ciphertext Rate. Since rate of the error-correcting code N/M is constant, the
ciphertext rate of NCE is N‘CTl =0 ) =0 (log\).
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Abstract. Re-randomizable RCCA-secure public key encryption (Rand-
RCCA PKE) schemes reconcile the property of re-randomizability of
the ciphertexts with the need of security against chosen-ciphertexts
attacks. In this paper we give a new construction of a Rand-RCCA PKE
scheme that is perfectly re-randomizable. Our construction is structure-
preserving, can be instantiated over Type-3 pairing groups, and achieves
better computation and communication efficiency than the state of the
art perfectly re-randomizable schemes (e.g., Prabhakaran and Rosulek,
CRYPTO’07). Next, we revive the Rand-RCCA notion showing new
applications where our Rand-RCCA PKE scheme plays a fundamen-
tal part: (1) We show how to turn our scheme into a publicly-verifiable
Rand-RCCA scheme; (2) We construct a malleable NIZK with a (vari-
ant of) simulation soundness that allows for re-randomizability; (3) We
propose a new UC-secure Verifiable Mix-Net protocol that is secure in
the common reference string model. Thanks to the structure-preserving
property, all these applications are efficient. Notably, our Mix-Net proto-
col is the most efficient universally verifiable Mix-Net (without random
oracle) where the CRS is an uniformly random string of size indepen-
dent of the number of senders. The property is of the essence when such
protocols are used in large scale.

1 Introduction

Security against chosen ciphertext attacks (CCA) is considered by many the gold
standard for public key encryption (PKE). Since the seminal paper of Micali,
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Rackoff and Sloan [30], the research community has spent a great effort on
this fundamental topic by both interconnecting different security notions and
producing a large body of efficient public encryption schemes.

Challenging the overwhelming agreement that CCA security is the right
notion of security for PKE, a paper of Canetti, Krawczyk and Nielsen [6] showed
that for many use cases a weaker security notion than CCA security is already
sufficient. More in details, the paper introduced the notion of Replayable CCA
(RCCA) and showed that the notion is sufficient to realize a variant of the
public key encryption functionality in the universal composability (UC) model
of Canetti [3] where only replay attacks, namely attacks in which the data could
be maliciously repeated, can be mounted by the adversary.

In a nutshell, the main fundamental difference between RCCA security and
CCA security is that, in a RCCA secure scheme (which is not CCA secure)
an adversary is able to maul the challenge ciphertext to obtain new decrypt-
able ciphertexts, the only limitation is that the adversary still cannot break
the integrity of the underlying plaintext. To explain this with an example, in a
RCCA secure PKE scheme an adversary might append an extra 0 at the end
of the ciphertext and still be able to obtain a valid decryption of the mauled
ciphertext (to the same plaintext), on the other hand, for a CCA secure PKE,
this attack should by definition result into an invalid decryption.

Later, Groth [21] showed that the capability to maul a ciphertext to obtain a
new ciphertext which decrypts to the same plaintext should be seen as a feature
and not a weakness. In his paper, he introduced the notion of re-randomizable
RCCA (Rand-RCCA) PKE, namely a RCCA-secure PKE which comes with an
algorithm that re-randomizes the ciphertexts in a way that cannot be linked.

PKE schemes that are both re-randomizable and RCCA-secure have been
shown to have several applications, such as: anonymous and secure message
transmissions (see Prabhakaran and Rosulek [34]), Mix-Nets (see Faonio and
Fiore [14], and Pereira and Rivest [32]), Controlled Functional Encryption (see
Naveed et al. [31]), and one-round message-transmission protocols with reverse
firewalls (see Dodis, Mironov, and Stephens-Davidowitz [11]).

When it comes to constructing these objects, if we look at the literature it
is striking to observe that there are extremely efficient constructions of schemes
that are only RCCA-secure but not re-randomizable (e.g., Cramer-Shoup [8] or
Phan-Pointcheval [33]), or are re-randomizable but only CPA-secure (e.g., ElGa-
mal [12]). In contrast, when the two properties are considered in conjunction, a
considerable gap in the efficiency of the schemes seems to arise. More in concrete,
the most efficient Rand-RCCA scheme in the standard model of [34] has cipher-
texts of 20 groups elements,! while, for example, the celebrated Cramer-Shoup
PKE [8] has ciphertexts of only 4 groups elements.

In the following paragraphs we state the main contributions of our work.

1 A recent work of Faonio and Fiore [14] takes this down to 11 group elements at
the price of achieving a strictly weaker notion of re-randomizability, in the random
oracle model.
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Rand-RCCA PKE. Our first contribution is a new structure-preserving? Rand-
RCCA PKE scheme which significantly narrows the efficiency gap described
above. The scheme is secure under the Matrix Diffie-Hellman Assumption
(MDDH) in bilinear groups, and for its strongest instantiation, namely, under
the Symmetric External Diffie-Hellman Assumption (SXDH), has ciphertexts of
6 groups elements (3 elements in Gy, 2 elements in Gy and 1 element in Gr).

From a practical perspective, the advantage of a re-randomizable PKE over
a standard (non-re-randomizable) PKE strikes when the re-randomizable PKE
scheme is part of a larger protocol. To this end, we notice that the structure-
preserving property is indeed vital as it allows for modularity and easy integra-
tion, which are basic principles for protocol design. However, we can substanti-
ate further our assertion by giving three applications where structure-preserving
Rand-RCCA PKE schemes are essential.

Publicly-Verifiable Rand-RCCA PKE. Our first application is a publicly-
verifiable (pv) Rand-RCCA PKE scheme. A PKE scheme is publicly verifiable
when the validity of a ciphertext can be checked without the secret key. This
property is for example convenient in the setting of threshold decryption with
CCA security [4,36], as the task, roughly speaking, reduces to first publicly check
the validity of the ciphertext and then CPA-threshold-decrypt it. Very roughly
speaking, we can obtain our pv-Rand-RCCA PKE scheme by appending a Groth-
Sahai (GS) NIZK proof [23] of the validity of the ciphertext. We notice that the
ciphertext of our Rand-PKE scheme contains® an element in Gp. The verifica-
tion equation does not admit a GS NIZK proof, but only NIWI. We overcome
this problem by constructing an additional commitment type for elements in G.
This gives us a new general technique that extends the class of pairing product
equations which admit GS NIZK proofs, enlarging therefore the notion of struc-
ture preserving. The latter is a contribution of independent interest which might
have applications in the field of structure-preserving cryptography in general.

Controlled-Malleable NIZKs. Our second application is a general frame-
work for true-simulation extractable (tSE) and re-randomizable (more generally,
controlled-malleable) NIZK systems. The notion of tSE-NIZK was introduced
by Dodis et al. [10] and found a long series of applications (see for example
[9,16,18]). Briefly, the notion assures soundness of the NIZK proofs even when
the adversary gets to see simulated NIZK proofs for ¢rue statements of its choice.
In comparison with simulation-extractable (SE) NIZKs (see [22,35]), tSE-NIZKs
are considerably more efficient and keep many of the benefits which motivated
the introduction of SE-NIZKs*. However, if one would like a controlled malleable

2 A scheme is structure preserving if all its public materials, such as messages, public
keys, etc. are group elements and the correctness can be verified via pairing-product
equations.

3 In the lingo of structure-preserving cryptography, the scheme is not strongly struc-
ture preserving.

4 As an example, tSE-NIZKs are sufficient for the CCA2-secure Naor-Yung PKE of
Sahai [35], simulation-sound (SS) NIZKs were introduced in the same paper with
exactly this application in mind.
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tSE-NIZK, the only available scheme is an SE-NIZK obtained through the gen-
eral result of Chase et al. [7], which is not very efficient. As main result, we
scale down the framework of Chase et al. to true-simulation extractability, and
by using our new Rand-RCCA PKE we construct a new re-randomizable tSE-
NIZK scheme. Compared to [7], our scheme can handle a more restricted class
of relations and transformations,® but our proofs are significantly more efficient.
For example, for simple re-randomizable NIZK proofs our tSE NIZKs have an
overhead of the order of tens more pairing operations for verification, opposed
to an overhead of the order of hundreds more pairing operations for verification
of the simulation-extractable with controlled malleability NIZK systems of [7].
The overhead is computed as the difference with the adaptive sound Groth-Sahai
NIZK proof for the same statement.

Mix-Net. Our third application is a universally verifiable and UC-secure Mix-
Net based on our pv-Rand-RCCA PKE scheme. Recently, Faonio and Fiore [14]
gave a new paradigm to obtain UC-secure verifiable Mix-Net protocols based on
Rand-RCCA PKE scheme. Their construction makes use of a non-publicly ver-
ifiable Rand-RCCA PKE scheme and obtains a weaker notion of security called
optimistic (ala Golle et al. [20]). More in details, the mixing paradigm of [14]
is conceptually simple: a mixer receives a list of Rand-RCCA ciphertexts and
outputs a randomly permuted list of re-randomized ciphertexts together with
a simple NIZK proof that they informally dub “loose shuffling”. Such “loose
shuffling” proof guarantees that if all the ciphertexts correctly decrypt then the
output list is a shuffle of the input one. Hence, in their scheme, cheating can
be caught at decryption time, that is after the last mixer returned its list. The
problem is that, cheating might be caught too late, thus, their scheme is only
optimistic secure. Namely, the scheme is an universal verifiable mix-net opti-
mized to quickly produce a correct output when all the mixers run the protocol
correctly. If instead one or more mixers cheat, then no privacy is guaranteed but
one can “back up” to a different, slow, mix-net execution.

In this paper, we show that by leveraging the public verifiability of the Rand-
RCCA PKE scheme we can obtain a simple design for Mix-Net protocols. In
fact, since it is possible to publicly check that a mixer did not invalidate any
ciphertext, the proof of loose shuffling turns out to be, indeed, a proof of shuffle.

Interestingly, our use of publicly verifiable ciphertexts come with additional
benefits. As mentioned in the paragraph above, our pv-RCCA-PKE scheme can
support threshold decryption very easily, and more efficiently than Faonio and
Fiore [14]. Finally, our protocol can be fully instantiated in the standard model,
whereas the one in [14] rely on non-programmable random oracles.

5 Yet, our framework is powerful enough for the application of controlled-malleable
CCA security of Chase et al. Interestingly, we can obtain another pv-Rand-RCCA
PKE through their paradigm, although less efficient than our construction. We
believe that analyzing what other kinds of CM-CCA notions are supported by our
scheme is interesting future work.
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Most notably, our protocol is the first efficient universally verifiable Miz-Net
in the common random string model, namely where the common reference string
is a (small) uniformly random string. In fact, a popular approach to achieve a
universally verifiable Mix-Net is to use a NIZK proof of shuffle. However, the
most efficient protocols for this task either rely on random oracles to become non-
interactive (such as the protocol of Bayer and Groth [1] or Verificatum [39]), or
need a structured common reference string (as is the case for the most efficient
state-of-the-art NIZK proof of shuffle of Fauzi et al. [17]). Furthermore, the
common reference string of [17] has size that depends on the number of senders
(which in practical scenarios can be huge), whereas our common reference string
is made by a number of group elements that is linear in the number of mixers.

Our Mix-Net protocol is proved secure based only on general properties of
the pv-Rand-RCCA PKE scheme, and can be instantiated with other schemes
in literature (for example with the schemes in [7,29]).

Controlled-Malleable Smooth Projective Hash Functions. At the core
of our Rand-RCCA PKE scheme is a new technique that can be seen as a re-
randomizable version of smooth projective hash functions (SPHFs) [8]. Given
the pervasive use of SPHF's in cryptographic constructions, we believe that our
technique may find more applications in the realm of re-randomizable crypto-
graphic primitives. For this reason, we formalize our technique as a primitive
called controlled-malleable SPHF. Briefly, we define it as an SPHF with tags
that allows to re-randomize both instances and tags (inside appropriate spaces),
and for which soundness (i.e., smoothness) holds even if the adversary can see a
hash value for an invalid instance. We elaborate on this notion in the full version
of this paper [15].

Comparison with Related Work. If we consider the state of the art of Rand-
RCCA PKE schemes, the most relevant works are the work of Groth, which
introduced the notion of Rand-RCCA PKE scheme [21], the aforementioned
scheme of Prabhakaran and Rosulek [34], the Rand-RCCA PKE scheme of Chase
et al. derived from their malleable NIZK systems [7], and two recent works of
Libert, Peters and Qian [29] and of Faonio and Fiore [14]. In Table1 we offer a
comparison, in terms of security and functionality properties, of our schemes of
Sect. 3 (PKE1) and Sect. 4 (PKE,) against previous schemes.

From a technical point of view, the scheme of [34] and our scheme PKEq,
although both based on the Cramer-Shoup paradigm, have little in common.
The main differences are: (1) a different design to handle the tags (see next
section); (2) a different approach for the re-randomization of the ciphertext.
In particular, the Rand-PKE scheme of [34] uses the double-strand technique
of Golle et al. [19] to re-randomize the ciphertext, while our re-randomization
technique, as far as we know, is novel. Furthermore, the scheme of [34] works
in two special groups, G and G that are the subgroups of quadratic residues
of Z3,,1 and Zj, 5 respectively, for a prime ¢ such that (¢,2¢+ 1,49+ 3) is a
sequence of primes (a Cunningham Chain of the first kind of length 3).

In Table 2 we compare the efficiency of our new schemes (in the most efficient
instantiation with & = 1) with the most efficient ones among the Rand-RCCA
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Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE
schemes. For group setting, — means any group where the assumption holds; Cunn.
refers to a pair of groups whose prime orders form a Cunningham chain (see [34]);
Bil. stands for bilinear groups. For model, GGM refers to generic group and NPRO
refers to non-programmable random oracle. * the structure-preserving property of the
two schemes in this paper is not strict, since ciphertexts contain some elements in Gr.

PKE Group | Assumption | Model | Struc. | Pub. | Re-Rand
Setting Pres. | Ver.

[21] Groth - DDH GGM perfect
[34] PRO7 Cunn. DDH std perfect
[7,29] CKLM12, LPQ17| Bilin. SXDH std v v’ | perfect
[14] FF18 - DDH NPRO weak

PKEL Bilin. | Dx-MDDH std v perfect
PIE2 Bilin. | Dp,-MDDH | std v N perfect

schemes: the ones in [34] and [14] for the case of secret verifiability, and the
scheme in [29] for publicly verifiable Rand-RCCA encryption.

Among the schemes with private verifiability, the most efficient one is that
n [14], but its re-randomizability property is weak and the security is in the
random oracle model. Among the other two, our scheme PKE; is more efficient
than that in [34], because the special groups G required in [34] are large, at
least 3072 bits for a security level of 128 bits. Turning to comparing with pub-
licly verifiable schemes, the computational costs for the scheme in [29], in the
table, are roughly approximate, because not all the exact computations in the
algorithms of the scheme (involving Groth-Sahai proofs) are explicitly described.
The size of the ciphertexts reported in [29] is 34|G| + 18|Gs|. After personal
communication with the authors, we realized that this number is not correct;
the correct one is 42|G1| + 20|Gs|. Our scheme PKE5 is the most efficient Rand-
RCCA scheme with public verifiability up to date: ciphertext size is comparable
to that in [29] whereas the computational costs are significantly lower. Even
for ciphertext size, ours is comparable to [29] only due to the size of the 4 Gr
elements in our scheme. Besides that, our ciphertexts have many fewer group
elements, which is conceptually simpler and, we believe, leaves hope for further
improvements. For the two publicly verifiable schemes, the number of pairings
required for decryption can be decreased, at the cost of increasing the number
of exponentiations, by applying the batching techniques in [24]. The resulting
number would be 22P for PXE; and something between 40P and 50 P for the
scheme in [29].

Technical Overview. We recall that the main technical contributions of this
paper are: (1) a new technique for Rand-RCCA PKE scheme (which we also
formalize in terms of SPHFSs), (2) a new general technique that extends signif-
icantly the class of pairing product equations which admits GS NIZK proofs,
and (3) a new technique for standard-model UC-secure verifiable Mix-Nets. For
space reason, in this technical overview we concentrate on (1).
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Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes;
only the last two rows include schemes with public verifiability. For our schemes we
consider k = 1, so based on SXDH assumption. We use G for the special groups used in
[34], G for standard DDH groups as considered in [14], and then groups in asymmetric
bilinear pairings e : G1 xG2 — Gr as considered both in [29] and in this work. Similarly,
we denote as F, E, FEh, B>, ET the cost of an exponentiation in groups G, @, G1,Go,Gr,
respectively. Finally, P denotes the cost of computing a bilinear pairing.

[PKE | Enc =~ Rand [ Dec [ | [ |pk| |
PRO7 22 F 32F 20G 11G

FF18 16 £ 18 F 11G 11G

PKE1 4F1+5Eo 2B +5P 8F1+4F>+4P 3G1+2G2+Gr TG1+7Go+2GT
LPQ17 T9E1+64F> 1E,+142P 42G1+20G> 11G1+16Go
PKE2 |35E14+31FE:+6Er+5P| 2F1446P |12G1+11G2+4Gr 8G1+8G>

A common technique of many CCA-secure PKE schemes in the standard
model consists in explicitly labeling each ciphertext produced by the encryp-
tion algorithm with a unique tag. Some notable examples of CCA-secure PKE
schemes that use tags are the Cramer-Shoup PKE [§8], the tag-based PKE of
Kiltz [27], and IBE-to-CCA transform of Canetti, Halevi and Katz [5].

Unfortunately, unique tags are not a viable option when designing a re-
randomizable PKE scheme. In fact, a ciphertext and its re-randomization would
share the same tag, and so they could be trivially linked by an attacker. The main
consequence is that many well-known techniques in CCA security cannot be eas-
ily exported in the context of Rand-RCCA security. A remarkable exception is
the work on Rand-RCCA PKE of Prabhakaran and Rosulek [34]. In this work,
the authors managed to reconcile tags and re-randomizability with an ingenious
technique: the tag for a new ciphertext is computed as a re-randomizable encod-
ing of the plaintext itself, the tag is then encrypted and attached to the rest of
the ciphertext. The decryptor first decrypts the tag and then uses it to check the
validity of the payload ciphertext. More in details, the PKE scheme follows the
Cramer-Shoup paradigm, therefore their tag (more accurately, a part of their
tag) is a Z, element (for a properly chosen ¢). Unfortunately, the restriction on
the type of the tags implies that the scheme can be instantiated only in special
groups G of prime order ¢ where the DDH assumption simultaneously holds for
both Z,; and G. Conclusively, the main drawback is a quite large ciphertext size.

We use bilinear-pairing cryptography to overcome the problem of the tags
in Z4. Our starting point is the structure-preserving CCA-PKE of Camenisch et
al. [2]. Briefly, their PKE scheme is based on the Cramer-Shoup paradigm, with
the main twist of performing the validity check in Gp. This trick allows to move
the tags from Z, to the source group. We give a brief description of the ideas
underlying our PKE scheme. We use the implicit notation of Escala et al. [13],
that uses additive notation for groups and where elements in G;, are denoted as
[a]; := aP; where P; is a generator for G;. The PKE scheme of [2] uses Type-1
pairing groups (where Gy = G2) which are less efficient and secure than Type-3
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pairing groups (where no efficient isomorphism from G to G; is known to exist).
As a first step, we convert their scheme to Type-3 pairing groups; however, for
simplicity, in this overview we present the Type-1 version.

Following the blue print of Cramer and Shoup, a ciphertext of the PKE
scheme of Camenisch et al. consists of three elements: a vector [c]; € G} which
we call the instance (for the DLIN problem described by a matrix [D]; € G3*?),
an element [p]; which we call the payload, and an element [7]p which we call the
hash. Together, the instance and the payload form the tag, that we denote as
[x]1 = [(c",p) T]i. The hash is, briefly speaking, a tag-based designated-verifier
zero-knowledge proof of the randomness of [c]; (namely, that [c]; = [D]; - r).
The main difference is that in Cramer-Shoup PKE the tag is computed as a
collision-resistant hash of [x];, while in our scheme the is the value [x]; itself.
More in details, the public key material consists of [D*]; = [(DT,(a'D)") ],
[f"D]r, and [F D]y, where a, f € Z3 and F € Z3** are uniformly random, and
the encryption algorithm on message [m]; computes the tag as [x]; = [D*]; -
r+[(07,m)T];, and the proof of consistency as ([f'D]z + [(F'D)" - x]7) - r,
where the addend [(FTD)T - x| can be efficiently computed using the pairing.
Using the terminology of SPHF's, the hash of the instance [c]; and tag [x]; is
produced using the projective hash algorithm which takes as input the witness r
for [c]; € span([D]), the tag [x]; and the projection key ([f D]z, [F'D];). The
decryption procedure can re-compute the hash as e(f " [c]1, [1]1)+e([x]1, F "[c]1),
without the knowledge of the witness r but only using the hash key (f,F).

To validly re-randomize a ciphertext, the goal would be to compute, using
only public information, a new ciphertext where the tag is of the form [x'] =
[D*](r + ) + [(0T,m)T]; (and therefore the instance is of the form [c¢/] =
[D](r++t)) and the hash is of the form ([fT D]z +[(F'D) " x']7)(r++). However,
computing such a re-randomization of the hash is actually infeasible since the
scheme is CCA secure.

To overcome this problem, our idea is to reveal enough information about
the secret key so as to allow re-randomizability while keeping the scheme secure.
To this end, our first observation is to rewrite the equation defining the re-
randomized hash considering what we know about x’. Specifically, we use the
fact that (FTD)'x’ = (F'D)"(x + D*t) = (F'D)'x+ (F'D)" D*#. So the
re-randomized hash can be decomposed in three addends as:

[f'D + (F'D) x]r(r+1) + [(F'D)"(D't)r + [(F'D)" (D*)]rr

Notice that the first and the second addends can be easily computed knowing
the randomizer ¥, the hash [7]7 and thanks to the pairing function. So only the
third addend is missing.

The second key observation is that we can include the value [FD*]; in the
public key. It is easy to check that, due to the bilinearity of the pairing function,
we can compute the missing part as a function of tag x, the randomizer  and
this extra piece of information. The third addend can be rewritten as:

[(FTD)"(D*t)]7r = [DTFD*#|7r = [(r'D")(FD*)i]r = [x" (FD*t)|r
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(The last equation can be computed using the pairing e ([x]1, [FD*]t)). However,
at first look, it is not clear why the scheme should still be secure. To understand
it, let us strip away all the computational pieces of the scheme, keeping only the
information-theoretic core. In a nutshell, the (one-time simulation) soundness
property of the hash boils down to the fact that the function f(x) =f+F-x is
pair-wise independent, meaning that, with knowledge of f(x) one cannot predict
f(x') for x # x better than guessing it. However, once we publish the value FD*
we lose this property. Indeed, given f(x) and FD*, now we can easily compute
the function f over all the points in the affine space {x’ | x' = x+D*r,r € Zg}.
On one hand, this is good as it allows us to re-randomize. On the other hand,
we should prove that one cannot do more than this honest manipulation. Our
main technical lemma shows that for any x’ outside this affine space we still
have pair-wise independence, i.e., the value f(x’) is unpredictable.

2 Preliminaries and Definitions

A function is negligible in A if it vanishes faster than the inverse of any polyno-
mial in A\, we write f(A) € negl(\) when f is negligible in A\. An asymmetric
bilinear group is a tuple G is a tuple (¢, G1, Go, Gr, e, P1, P2), where Gy, Gy and
G are groups of prime order g, the elements P, Py are generators of G, Go
respectively, e : G; X Gy — G is an efficiently computable, non-degenerate bilin-
ear map, and there is no efficiently computable isomorphism between G; and
Go. Let GGen be some probabilistic polynomial time algorithm which on input
1%, where ) is the security parameter returns a description of an asymmetric
bilinear group G. Elements in G;, are denoted in implicit notation as [a]; := aP;,
where ¢ € {1,2,T} and Pr := e(P1,P2). Every element in G; can be written as
[a); for some a € Z,, but note that given [a];, a € Z, is in general hard to com-
pute (discrete logarithm problem). Given a,b € Z, we distinguish between [ab];,
namely the group element whose discrete logarithm base P; is ab, and [a]; - b,
namely the execution of the multiplication of [a]; and b, and [a]; - [b]2 = [a - b],
namely the execution of a pairing between [a]; and [b]2. Vectors and matrices are
denoted in boldface. We extend the pairing operation to vectors and matrices as
e([A]1, [B]2) = [AT -B]r. span(A) denotes the linear span of the columns of A.

Let ¢,k be positive integers. We call Dy, a matrix distribution if it out-
puts (in PPT time, with overwhelming probability) matrices in Zng. We define
Dy, := Dj41,k- Our results will be proven secure under the following decisional
assumption in G, for some v € {1,2}.

Definition 1 (Matrix Decisional Diffie-Hellman Assumption in G,
[13]). The Dy -MDDH assumption holds if for all non-uniform PPT adver-
saries A,

[Pr{A(G, [Aly, [Aw],) = 1] = Pr[A(G, [A],, [z],) = 1]| € negl()),

where the probability is taken over G = (q,G1,Gq,Gr,e, P1,Ps) «— GGen(17),
A —Dyjp,w— Z’;, 2], — Gf/ and the coin tosses of adversary A.
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Experiment Expi3cs(N):
prm — Setup(1*),b* —s {0,1}
(pk, sk) «— KGen(prm)
(Mo, M1) « AP (pk)
C «— Enc(pk, My~ )
b — ADecQ(sk,-) (pk, C)
return (b = b*)

Oracle Dec®(sk, -):
Upon input C;
M «— Dec(sk, C);
if M' € {Mo, M1} then output o
else output M’

Fig. 1. The RCCA Security Experiment.

2.1 Re-randomizable RCCA PKE

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:
(I) Setup(1*) upon input the security parameter \ produces public parameters
prm, which include the description of the message and ciphertext space M,C.
(IT) KGen(prm) upon input the parameters prm, outputs a key pair (pk, sk); (III)
Enc(pk, M) upon inputs a public key pk and a message M € M, outputs a cipher-
text C € C; (IV) Dec(pk, sk, C) upon input the secret key sk and a ciphertext C,
outputs a message M € M or an error symbol L; (V) Rand(pk,C) upon inputs a
public key pk and a ciphertext C, outputs another ciphertext C’.

The RCCA security notion is formalized with a security experiment similar
to the CCA security one except that in RCCA the decryption oracle (called
the guarded decryption oracle) can be queried on any ciphertext and, when
decryption leads to one of the challenge messages My, My, it answers with a special
symbol ¢ (meaning “same”).

Definition 2 (Replayable CCA Security, [6]). Consider the experiment
Exp®°®® in Fig. 1, with parameters X, an adversary A, and o PKE scheme PKE.
We say that PKE is indistinguishable secure under replayable chosen-ciphertext
attacks (RCCA-secure) for any PPT adversary A:

Advi(f%,cg()\) = |Pr [EprA?%Kg()\) =1] - % € negl()\).

We formally define perfect re-randomizability in the full version of this paper
[15]. Here we give a simplified description of the notion. The notion of perfect re-
randomizability consists of three conditions: (i) the re-randomization of a valid
ciphertext and a fresh ciphertext (for the same message) are equivalently dis-
tributed; (ii) the re-randomization procedure maintains correctness, meaning the
randomized ciphertext and the original decrypt to the same value, in particular,
invalid ciphertexts keep being invalid; (iii) it is hard to find a valid ciphertext
that is not in the support of the encryption scheme. The last condition, cou-
pled with the first one, implies that for any (possibly malicious) ciphertext that
decrypts correctly the distribution of the re-randomized ciphertext and a fresh
ciphertext are statistically close. This stronger property is particularly useful in
applications, like our Mix-Net of Sect. 6, where we need to re-randomize adver-
sarially chosen ciphertexts.
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der-priv

Exp :
prmg —s Setupg(11); b* —s {0,1};

(crs, tpe, tps) < Init(prmg);

(z,w, 7, T) < A(crs, tps); Assert V(crs,z,7) = 1;
If b* = 0 then 7’ s P(crs, T (), Tw (w));

else ' «s ZKEval(crs, 7, T);

b A(r');

Output b = b*.

Fig. 2. The security experiments for the derivation privacy.

Definition 3 (Public Verifiability). PKXE = (Setup, KGen, Enc, Dec, Rand) is
a public key scheme with publicly verifiable ciphertexts if there is a determinis-
tic algorithm Ver which, on input (pk,C) outputs an error symbol L whenever
Dec(pk,sk,C) = L, else it outputs valid.

2.2 Malleable NIZKs

Recall that a non-interactive zero-knowledge proof system (NIZK) is a tuple
(Init,P,V) of PPT algorithms. Briefly, the algorithm Init upon input group
parameters outputs a common reference string and, possibly, trapdoor infor-
mation (we will consider algorithms that outputs a trapdoor tp. for extraction
and a trapdoor tp, for simulation). We use the definitional framework of Chase
et al. [7] for malleable proof systems. For simplicity of the exposition we consider
only the unary case for transformations (see the aforementioned paper for more
details). Let T' = (T}, T.) be a pair of efficiently computable functions, that we
refer as a transformation.

Definition 4 (Admissible transformations, [7]). An efficient relation R is
closed under a transformation T = (T, Ty) if for any (z,w) € R the pair
(Ty(x), Ty(w)) € R. If R is closed under T then we say that T is an admissible
for R. Let T be a set of transformations, if for every T € T, T is admissible for
R, then T is allowable set of transformations.

Definition 5 (Malleable NIZK, [7]). Let NIZK = (Init,P,V) be a NIZK
for a relation R. Let T be an allowable set of transformations for R. The proof
system is malleable with respect to 7 if there exists an PPT algorithm ZKEval
that on input (crs, T, (x, 7)), where T € T and V(crs,z,w) = 1 outputs a valid
proof @' for the statement x' = T, (x).

We would like the property that two NIZK proofs where one is derived from the
other cannot be linked. This is formalized with the notion of derivation privacy.

Definition 6. Let NIZK = (Init,P,V,ZKEval) be a malleable NIZK argument
for a relation R and an allowable set of transformations T. We say that NTZK
1s derivation private if for any PPT adversary A we have that

AdVdA?\;%rZi‘,'C()\) = ‘Pr [Expifj\}?zi‘;c(l)‘) = 1} — %‘ € negl()\)
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Setup(1*): Enc(pk, [M]1):

G «s GGen(1*) where Sample r,s «—s Z’;;

G =(¢,G1,G2,Gr,e,P1, P2); [uls < [D]i -1, [p]s < [a" D]y - r + M

M = Gu; (x]1 = ([u]o, [p]1) T

C =G x G§*! x Gr; [Vle < [E]2-s;

Output prm = (G, M, C). [r1]r = [fT D)7 -r + e([F D1 - r, [v]2)

[t2]r = [g"E]r - s + e([x]1,[G"E]2 - 5)

KGen(prm): Set m = w1 + m2;

Sample D, E —s Dy; Output € = ([x), [v]e, [7]1);

Sample a, f, g «s ZFTL
F s ZEPRH and G s ZEFPFH2 Dec(sk, C):

Set D*=(D",(a’D)")T; Parse C = ([x]1, [V]2, 7);
Set sk = (a,f, g, F, G) and parse [x"]1 = ([u']1, [p)1);
Set pk = set My «— [p]1 — [a" u]y;
( [D]l’ [E]Zv [aTD]h set [7T1]T — [(f + FV)TU]T;
[f "Dz, [F D1, [g"E]r,[G E], set [ma]r — [(g + Gx) " v]r;
[GD™]1, [FE]2 ); If m # 71 + 72 then output L
Output (pk, sk). else output [M;.
Rand(pk, C):

Parse C = ([x]1, [V]2, [7]7), [x |1 = ([u']1, [ph);
Sample #,8 «s ZF

X1 — [x1 + [D"]1 - §
V]2 — [v ]2 + [E]2 - §
[fi)r = [£7 D]T 1‘+<’([FTD]1 , [¥]2) + e([u]y, [FE]2 - 8);
[fo]r = [g Elr -8+ e([®]1,[GT Eb §) +e([GD"]i - £, [v]2);
Output the ciphertext C = ([X]1, [V]2, [#]7), with [#]r <« [7]r + [F1]r + [F2] 7.

Fig. 3. Our Rand-RCCA encryption scheme PKE; based on the Di-MDDH assump-
tion for k € N*.

where Exp®®™ P is the game described in Fig. 2. Moreover we say that NTZK
is perfectly derivation private (resp. statistically derivation private) when for
any (possibly unbounded) adversary the advantage above is 0 (resp. negligible).

Finally, we assume that an adversary cannot find a verifying proof for a valid
statement which is not in the support of the proof generated by the proving
algorithm. We notice that this property is true for both GS proof systems and
for quasi-adaptive proof system of Kiltz and Wee [28]. In particular, for GS
proofs, for any commitment to the witness, the prover generates a proof that is
uniformly distributed over the set of all the possible valid proofs. On the other
hand, the proofs of Kiltz and Wee are unique, therefore the condition is trivially
true.

3 Our Rand-RCCA PKE Scheme

We present our scheme in Fig.3. We refer to the introduction for an informal
exposition of our techniques. We notice that the check in the decryption proce-
dure can be efficiently computed using the pairing function and the knowledge
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of £ F, g, G. In the next paragraphs we first show correctness of the scheme,
secondly, we give an information-theoretic lemma which is the basic core of the
security of our PKE scheme, then we proceed with the RCCA-security of the
scheme.

Correctness of Decryption. For correctness of decryption, it is easy to see
that for a honestly generated ciphertext ([x]1,[V]e, [7]r) < s Enc(pk, [M]1), the
first line of decryption [p]; — [aTu]; yields [M];. Hence, we are left with showing
that the test [7]7 = [(f + Fv) ulr + [(g + Gx) Tv]r is satisfied:

g=m+m=f"D)r+ (F'Dr)'v+(g'E)s+x' (G'E)s
=(f+Fv)Tu+(g+Gx)'v (1)

Before analyzing the perfect re-randomizability and RCCA security of the
scheme we state and prove a powerful information-theoretic lemma. Very infor-
mally speaking, the lemma proves that the smooth projective hash proof system
at the core of our scheme remains sound even if the adversary gets to see a proof
for an instance of its choice. As we want to allow for re-randomization, we relax
the notion of soundness by requiring that the instance forged by the adversary
does not lie in the set of possible re-randomizations of its query.

Lemma 1. Let k be a positive integer. For any matrices D € Z’;+1Xk,E €
Z’;“Xk and any (possibly unbounded) adversary A:

( u g ‘)Sp;n(D)( ) f s Zk+1 F 3 Zk+1><k+1. /
Pr| (v—v*) & span(E a oM e T <1/q,
s — (F+Fv)Tu (z,u,v) «—s A°0)(D,E,D ' f,D'F,FE)

where the adversary outputs a single query v* to O(-) which returns f +F - v*.

Proof. Let K = (f, F) € Z}T*k*2. We can rewrite the information that the
adversary sees about f, F in matrix form:

(D,E,D'f,D'F,FE,f+F -v*) = (D,E,DTK,K (g) K (J)) .

We now have to argue that z = u'K <3’> is independent of the adversary’s

view when u ¢ span(D) and (v — v*) & span(E). Without loss of generality
we assume the matrices D, E to be full rank. Otherwise this means there is a
redundancy in the information provided to the adversary and this clearly does
not give him more chances of being successful. Define the following matrices:

S = _ (0,1, 1
_ k+1xk+1 _ ) ) k+2xk+2
D = (D, u) € Zg"* E_<E7v*7v>eZq ke,

By the condition that u ¢ span(D) and (v — v*) ¢ span(E), D and E are
invertible matrices.
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Let us consider the matrix Z = DTKE e Zy k42 and the information
that the adversary has on this matrix. Note that for zj41 x+2, namely the term
in last row and last column of Z, the following holds:

T (1
Zk+1,k+2 =10 K <V) = Z.

Since the view of the adversary contains invertible matrix E, knowledge of DTK
(in the view of the adversary) is equivalent to knowledge of DTKE, which are
the first k£ rows of Z.

Similarly, let E be the first & + 1 columns of E, since D is invertible and
is known by the adversary, knowledge of KE (in the view of the adversary) is
equivalent to knowledge of DTKE, the first £ 4+ 1 columns of Z. Therefore, the
view of the adversary includes all the matrix Z except for zpy1xgi2-

On the other hand, since D and E are invertible matrices, if we see Z =
DTKE € Z’;"’le"‘Q as a system of equations with unknown K, there exists a
unique solution K for any choice of Z, namely, K = (]~)T)’1ZE’1.

Therefore, from the point of view of the adversary, every value of zx11xk42 €
Zg is equally likely, since K «s ZET**+2 is sampled uniformly at random. This
concludes the proof.

Security. For space reason we prove perfect re-randomizability in the full ver-
sion of this paper [15]. We prove that the security of the scheme reduces to the
Di-MDDH assumption. Below we state the main theorem:

Theorem 1. For any matriz distribution Dy such that the Dy-MDDH assump-
tion holds for the groups G1 and Gy generated by GGen, the Rand-PKE scheme
PKE1 described above is RCCA-secure.

Proof. We start by describing a sequence of hybrid games. For readability pur-
poses, we underline the main differences between each consecutive hybrid. In
hybrids Hy and from Hjz until H; we progressively change the way the decryp-
tion procedure works. In the description of the games, the changes correspond
to the underlined formulae. We summarize the main changes in Fig. 4.

Hybrid H,. This hybrid experiment is equivalent to the RCCA experiment
described in Fig.1 but the oracle Dec® is instantiated with a slightly different
decryption procedure. Decryption proceeds exactly as in the description of the
PKE scheme, except that, before setting each variable M, 7wy, w5 it additionally
checks if the variable was not set already. For future reference, we label these
commands as the decryption rule (*).

Notice that, in this hybrid, this change is merely syntactical, as at each
invocation of the decryption procedure all the three variables are unset. The
hybrid Hy is equivalent to the experiment Expp,f%,cg()\) of Fig. 1.

Hybrid H;. The hybrid H; is the same as Hy but it computes the chal-
lenge ciphertext C* = ([x*]1,[v*]e, [7*]r) by using the secret key. Let x* be
() T,p*) " and ©* = 7w} + 73.
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[u*]; « D]y -r*, [p*]1 —a' -[u*]; + [Mp-]; where r* s Z’;

[v*]2 < [E]2 - s* where s* <3 Z’;
[ri]lr — e([u'], [fl2 + F - [v7]o), [m3]r < e([g] + G- [x"]1, [v']2).

Notice that [7]]r and [73]r can be efficiently computed using the secret key
and the pairing function. The only differences introduced are in the way we com-
pute [p*]; and [r*]r. However, notice that such differences are only syntactical,
as, by the correctness of the scheme, we compute exactly the same values the
hybrid Hy would compute.

Hybrid H,. The hybrid Hs is the same as H; but the challenger, upon
challenge messages [Mo]1, [M1]1 € Gy, computes the challenge ciphertext C* =
([x*]1, [v¥]2, [7*]7) where x* is ((u*)",p*)" by sampling :

u* —3 Z’;“ \ span(D) v* —s$ Z’;H \ span(E).

The hybrids H; and Hs are computationally indistinguishable. This follows by
applying the Dp-MDDH Assumption on [D, u*]; in Gy and [E, v*]s in Go, respec-
tively, and then a standard statistical argument to show that sampling u* uni-
formly at random in Z’;‘H is statistically close to sampling it at random in
ZE+1\ span(D). The reduction is straightforward and is omitted.

From now on, we prove that each pair of consecutive hybrids is statistically
close. In particular, this means that the hybrids (and in principle also the adver-
sary) are allowed to run in unbounded time.

Hybrid Hj. The hybrid Hjs is the same as Hy but adds the following decryption
rules that upon input a ciphertext ([u], [p]1, [V]2, [7]T):

(i) If u = Dr for some r € Z’;, then compute

[mi]T <~ [(fTD +VTFTD)]T -r M)y < [p]1 — [aTD]l T

(ii) If v = Es for some s € Z’;, letting x = (u”,p) ", then compute:

[ma]r — (8 ' E+x'G'E)]r-s

Specifically, in the first rule the decryption of M and 7; are computed using the
public key components [a' D], [f ' D]r and [F'D]; instead of the secret key
components a,f, F for all the ciphertexts with u € span(D). Recall that this
strategy is not efficient, but it is possible because the simulator does not need
to run in polynomial time (since we want to argue the games are statistically
close). If v = Es, then by the second rule, the hybrid computes the proof 7y
using only the components [g' E|7 and [G " E]; of the public key.

We notice that, again by correctness of the PKE scheme, the computation
of 7, m and M in the hybrids Hs and Hj is equivalent. In particular, let 7} be
the proof as computed in Hy, then [rf]7 = [(f + Fv) "u]r = [(f + Fv) 'Dr|r =
[(fTD + v F'D)]r - r = [m1]r. (An equivalent derivation holds for my and M.)
The difference is then only syntactical.
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Procedure Dec*(sk, C):
Parse C = ([x]1, [V]z, [r]r) and [x"]1 = ([u"]1, [p]
(i) If u € span(D), let u = Dr then
M — [p —a' Dr]y;
[r1]r <« [(fTD 4+ v F ' D)r|r;
(ii) If v € span(E), let v = Es then
[m2lr < [(gg E +x" G E)s]r;
(iii) If u & span(D) and (v — v* & span(E) or v* unset) then output L.
(iv) If v & span(E) and (x —x* & span(D*) or u* unset) then output L.
(v) If x —x" € span(D*) and v — v* € span(E) then
M« o;
[mi]r — [7*]r + [(fTD + ¥ F D)X]r
[malr — [(gg E + X' G'E)X|r
(%) If [M]; is unset set [M]; < [p]; —a [u];
(*) If [m1]r is unset set [m1]r — [(f + Fv) ulr;
(*) If [ma]r is unset set [m2]r — [(gy + Gx) V]r;
If [7]r = [m1]r + [m2]r output M else L.

Fig. 4. The decryption procedure in the hybrids experiment. The decryption proce-
dure of the hybrid Ho executes only the rules (*) and the last decryption check. The
decryption procedure of the hybrid Hs additionally executes (i) and (ii). The decryp-
tion procedure of the hybrid H4 additionally executes (iii). The decryption procedure
of the hybrid Hs additionally executes (iv). The decryption procedure of the hybrid Hg
additionally executes (V). The decryption procedure of the hybrid H7 stops to execute
the rules (*).

Hybrid H,. The hybrid Hy is the same as Hs but adds the following decryption
rule, on input a ciphertext C = ([ul1, [p]1, [V]2, [7]7):

(iii) If u & span(D) and (v — v* ¢ span(E) or v* is unset) then output L.

Recall that the challenge ciphertext is C* = ([u*]y, [p*]1, [V*]2, [7]T). Notice that
we check either if v — v* & span(E) or v* is unset. We do so to handle simul-
taneously the decryption queries before and after the challenge ciphertext is
computed. In particular, before the challenge ciphertext is computed the decryp-
tion rule simply checks if u & span(D) (as in the classical Cramer-Shoup proof
strategy).

We show in Lemma 3 that Hy, is statistically close to Hs. Here we continue
describing the hybrid games.

Hybrid Hj. The hybrid Hj is the same as Hy but adds the following decryption
rule, on input a ciphertext C = ([x]1, [v]2, [7]7):

(iv) If v & span(E) and (x — x* ¢ span(D*) or x* is unset) then output L.

We show that Hj is statistically close to Hy4 in the full version of this paper
[15]. The proof of the lemma is almost identical to the proof of Lemma 3.
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Hybrid Hg. The hybrid Hg is the same as Hs but adds the following decryption
rule, on input a ciphertext C = ([x]1, [V]2, [7]7):

(v) If x — x* € span(D*) and v — v* € span(E) then let ¥,§ be such that
x —x* =% =Dt and v—v* = v = ES§, and compute [m]7, [r2]r as follows:

[m]r— 77 + [ETD+V FTD)X]p, [m]r— [(GE+ % GTE)V]r,

This hybrid is equivalent to H;s. The conditions of the decryption rule (v) imply
that, if the proof m is correct, then the ciphertext C is a re-randomization of C*.

Hybrid H;. The hybrid Hy; is the same as Hg but its decryption procedure
does not execute the rules (*) introduced in the hybrid Hy.

In Lemma4 we show that H; and Hg are identically distributed, while in
the following we prove that the challenge bit b* is perfectly hidden.

Lemma 2. Pr[H; =1] = 1.

Proof. We notice that in H; the decryption procedure does not use the secret
key a to perform the decryption; this can be easily confirmed by inspection of the
decryption procedure in Fig. 4. Notice also that given the value a’ D the random
variable a' -u* is uniformly distributed. Thus, both the challenge ciphertext C*
and the answers of the decryption oracle are independent of the bit b*.

Lemma 3. The hybrids Hy and Hs are statistically close.

Proof. We prove the statement with a hybrid argument over the number of
decryption queries of the adversary. Let the hybrid Hs ; be the experiment that
answers the first i-th oracle queries as in Hy (namely, considering the decryption
rule (iii)) and answers the remaining queries as in Hs. Let @p be the number
of decryption queries performed by the adversary A. It is easy to check that
Hg’o = H3 and Hg’QD = H4.

On the other hand Hs; and Hjs ;1 differ when the (i + 1)-th ciphertext
C = (([ul1, [p]1), [V]2, [7]T) is such that “u & span(D) and ((v — v*) & span(E)
or v* is unset)”, but the decryption oracle (as it would be computed in Hj)
outputs a value different from L. In particular, the latter implies that the proof
[w]r verifies correctly. Let Sound; be such event. To conclude the proof of the
lemma we prove that Pr[Sound;] < 1/q. Then a standard union bound gives
us that the statistical distance between Hy and Hj is at most @Qp/q, which is
negligible.

We reduce an adversary A that causes event Sound; to occur into an adversary
A’ for the game of Lemma 1. Namely, we define an adversary A’ for the exper-
iment in the lemma which internally simulates the experiment Hs ;41 running
with the adversary A.

Adversary A/(D,E,f'D,F"D,FE) with oracle access to O:

1. Sample a «s Z§+1,g g Z];'H,G P Zl{;+1><k+2.
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2. Set the public key as:

_ [D]17 [E]Q’ [aTDh’ [fTD]Tr [FTD]la
Pk = ( g "Elr, [GTE], [GD"],, [FE), >

as described by the key generation algorithm and set the secret key sk =
(a, g, Q).

3. Run the adversary A with input the public key pk. Answer the j-th decryption
oracle query with ciphertext C = ([u]1, [p]1, [V]2, [7]T) as follows:
(a) If j < i and u € span(D) compute, let u = Dr:

M]; « [p—aTD 1)1, [m1]T — [(fTD—f—vT -FTD)}T -r,
[malr — (g +G-x)" - v]r

If # = m + w2 then answer with [M];, else answer L;
(b) If u ¢ span(D) answer L;
(c) If j =i+ 1 then stop and return (7 — (g + Gx) v, u,v).
4. Eventually, A outputs M1, [Mi]1. Sample v* «s ZE+!\ span(E), and sample
u* s Z’;H \ span(D), query the oracle O with the element v* and receive
II=f+F v* Set p* =a'u* + M and x* = ((u*)",p*) ", and:

[7*]r <—[HT ‘ut 4+ (g+ Gx*)Tv}T (2)

and send to the adversary the challenge ciphertext C* = ([c*]1, [p*]1,[V]2,
[7*]7).
5. Answer the j-th decryption oracle query with ciphertext C = ([u]1, [p]1, [V]2,
[7]T) as follows:
(a) If j < i and u € span(D) execute the same as in step 3a.
(b) If j <i and u ¢ span(D) do as follows:
i if (v* —v) € span(E) let v = v* 4+ E~, compute

[m1]r < [(IT + FEy) "ulr, [ma]r — (8" + Gx)"v]r

if 7 = m; + 72 then answer [p —a' - u]; else answer L.
ii. if (v* —v) & span(E) then output L.
(c) If j =i + 1 then stop and return (7 — (g + Gx)"v,u,v).

We show that the adversary perfectly simulates the hybrid Hs; up to the
i-th decryption query. By inspection, it is easy to check that up to step 3, the
simulation is perfect®.

More interestingly, at step 4 the adversary A’ uses its oracle to compute II =
f + Fv*. Thanks to this information the adversary can compute the challenge
ciphertext exactly as the hybrid experiment would do as shown in Eq. 2. After
this step, the adversary A’ can easily answer the decryption queries whenever
j <iand u € span(D) or u ¢ span(D) and (v* — v) ¢ span(E). We show

5 The adversary computes 72 in step 3 as the original decryption procedure would do,
but by the modification in H; we are assured that this is equivalent.
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that the answers for the decryption queries where j < i, u ¢ span(D) and
(v* —v) € span(E) are distributed exactly as in the hybrid experiment, in fact:

(I + FEy)'u=f'u+ (Fv*) u+ (FEy)'u=fTu + (F(v* + E7))Tu=(f + Fv) u

Finally, by definition of Sound;, the adversary A at the (j + 1)-th query outputs
a ciphertext that would correctly decrypt in the hybrid experiment and where
u ¢ span(D) and (v* — v) ¢ span(E) with probability Pr [Sound;]. Since the
ciphertext correctly decrypts, it means that 7 = (f + Fv)'u + (g + Gx) v,
therefore the output of A’ is a valid guess for the experiment of Lemma 1. How-
ever, the adversary A’ can win with probability at most 1/¢, and thus the lemma
follows.

Lemma 4. The hybrids Hg and Hy are identically distributed.

Proof. We prove this lemma by showing that in Hg the decryption procedure
never executes the lines with rules (*). To do this, for any ciphertext queried
to the decryption oracle we partition over all possible cases and show that the
decryption procedure used for the oracle queries either sets the values M, 7y, o
(and thus the rules (*) are not executed) or it stops before reaching those rules
as it outputs L or o. Let C = ([x]1, [v]2, [7]7) be the ciphertext queried to the
oracle, where [x]; = ([u]y, [p]1). We consider all the possible alternatives:

— u € span(D): notice that in this case, by the rule (i), M and m; are set;

— v € span(E): notice that in this case, by rule (i), s is also set. Therefore,
since in this branch M, 1, o are set, the rules (*) are not executed.

— v ¢ span(E): in this case we enter rule (iv) and thus decryption stops
and outputs 1. To see why this rule is entered, notice that either u* is
unset, or, if it is set, then u* ¢ span(D), and so x — x* & span(D*).

— u ¢ span(D), in this case the output could be either ¢ or L, more in details:

— v* is unset: by rule (iii) decryption stops and outputs L.

— v*is set and (v — v*) € span(E): by rule (iii) decryption outputs L.

- v*is set and (v — v*) € span(E):

— (x — x*) ¢ span(D*): notice that since v* ¢ span(E) then it must
be that v & span(E). Hence, rule (iv) is entered and decryption out-
puts L.

- (x — x*) € span(D*): rule (v) is entered, decryption outputs ¢, so
M, 71, o are set, and thus the rules (*) are not executed.

4 Owur Publicly-Verifiable Rand-RCCA PKE

Here we show that our RCCA scheme from the previous section can be turned
into a publicly verifiable one. Very informally, the idea is to append a malleable
proof (essentially a GS proof) that [7]r is well formed. The decryption procedure
of the publicly verifiable scheme can simply check the validity of the proof and
then CPA-decrypt the ciphertext [x];. Let PKE; = (KGeny, Ency, Decy, Rand;)
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KGenz (prm): Enca (pk, [M]1):
(pk’,sk’) «s KGen'(prm), crs < Init(prm); r,s —s Zg;
Parse sk’ = (a,f,F, g, G); ([x]1, [V]2, [7]T) « Enc(pk, [M]1; T, s);
Set sk = (a, crs), pk = (pk’, crs); IT s P(ers, ([x]1, [v]2), ([7]r, 1, 8));
Output (pk, sk). Output C = ([x]1, [V]2, IT).
Decs(sk, C):
Rands (pk, C): Parse C = ([x]1, [v]2, IT);
Parse C = ([x]1, [V]2, IT), if V(ers, ([x]1,[v]2), 1) =1
T «s 7T, (with associated f,§ € ZF) output (—a', 1) - [x];
X=x+D" 1 else output L.
{f:v—i_E'é; Ver(pk, C) :
II = ZKEval(crs, T, ([x]1, [v]2), 1T); JP:L?CL: (), [V]2, IT);
Output ([&]1, [¥]z, 7). Output V(ers, ([x]1, [v]2), IT).

Fig. 5. Our publicly-verifiable re-randomizable RCCA encryption scheme PKE2. The
NIZK is for the relation Rpie, and transformation Tpie, -

be the scheme of Sect.3 and let NZZK = (Init,P,V,ZKEval) be a malleable
NIZK system for membership in the relation defined below:

RP/C51 = {([X]lv [V]Q)a ([W]Tvra S) : [ﬂT = [(f + FV)Tu—i— (g + GX)TV}T} )

and with allowable set of transformations:

T ([x]1; [Vl2) = (X1, [V]2)
Tpke, = T': EIrsGZ : Tw([7]r,r,8) = ([* ]T,r-l—rs—l—s)

(1. [Vl [#l) = Rand: (pk, ([l V]2, [l ): £.9)

We write T' « s Tpig, for the operation that samples the uniquely defined
r,§ associated to the transformation 7. The pv-Rand-PKE scheme PKE; =
(Init, KGeng, Ency, Deca, Randy, Ver) is described in Fig. 5. We defer the proof of
the following theorem in the full version of this paper [15].

Theorem 2. If the NIZK is adaptive sound and perfect derivation private then
the pv-Rand-PKE scheme PKE2 described in Fig. 5 is publicly verifiable, perfect
re-randomizable and RCCA-secure.

Malleable NIZK. The equations we would like to prove do not admit Groth-
Sahai NIZK proofs [23], but only NIWI. We overcome this problem by developing
a new technique that extends the class of pairing product equations which admit
GS NIZK proofs. This technique is per se a result of independent interest.
More in detail, we produce an additional commitment to [7]r, using a new
commitment type defined over Gy with good bilinear properties. This allows us
to construct a NIZK proof that the ciphertext is valid with perfect completeness
and soundness and composable zero-knowledge. The latter notion refers to the
fact that if the common reference string is defined in a “witness indistinguish-
able mode”, the proof system is perfect zero-knowledge. By replacing [rr| in
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Exptse-cm :
prmg s Setqu(l)‘); Set Q. «— 0; SIM(z,w):
(crs, tpe, tps) < Init(prmg); if (z,w) € R then
(z,7) — Alcrs, R)STMO; 2 — Ext(tpe, z, m, R); m «— Sim(tps, ©);
Output 1 if V(crs,z, ) = 1 and either: Q. — Q. U{x};
(a) z # o and Yw s.t. z = f(w) we have (z,w) € R or
(b) 2 =0 and Va' € Q,,VT € T we have T,(x) # .

Fig. 6. The security experiments for the NIZK argument system.

the ciphertext by its commitment, in the witness indistinguishable mode we can
simulate a proof of validity of the ciphertext by setting # = 0 and in an unde-
tectable manner. The proof will be correctly distributed because of the perfect
zero-knowledge property in these modes.

All the details on how to compute the proof are given in the full version
of this paper [15]. Beyond GS Proofs, it also makes use of the QANIZK proof
of membership in linear spaces [25,26,28]. The size of the ciphertexts for the
SXDH instantiation of the publicly verifiable scheme is 12|G| 4 11|G2| + 4|Gr|.
The number of pairings for verification is 32 for the GS proof and 14 for the
argument of linear spaces, which can be reduced to 8 + 14 by batch verifying the
GS equation using the techniques of [24].

5 Malleable and True-Simulation Extractable NIZK

In this section we show an application of our Rand-RCCA scheme to build a
malleable and true-simulation extractable NIZK.

True-Simulation Extractability. We recall the notion of true-simulation f-
extractability (f-tSE-NIZK, for short) of Dodis et al. [10]. The notion is a weak-
ening of the concept of simulation extractability where the extractor can com-
pute a function of the witness and the adversary sees simulated proofs only
for true statements. Here, we give a variation of the notion that allows for re-
randomizability (and malleability). Consider the experiment described in Fig. 6,
the main difference respect to the notion of [10], is that the winning condition
(b) allows the extractor to give up and output a special symbol o. The restriction
is that the extractor can safely do this without losing the game only when the
proof m produced by the adversary is derived from a simulated proof.

Definition 7. Let f be an efficiently computable function, let NIZK =
(Init, P,V) be a NIZK argument for a relation R, and consider the experiment
Exp***™" described in Fig. 6. We say that NTZK is true-simulation controlled-
malleable f-extractable (f-tSE-cm) iff there exists a PPT algorithm Ext such
that for all PPT A we have that

AdVZS,E;:/m\/IZK(A) =Pr [EXP}:\SE;?}\/IZIC(F) = 1] € negl()).
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Construction. The construction follows the blueprint of Dodis et al. [10] with
the twist that we use a Rand RCCA-PKE scheme instead of a CCA-PKE scheme.
Our compiler works for a special class of tuples, consisting of a function f, an
NP relation R and a transformation 7, that we define below:

Definition 8. A tuple (f,R,T), where f is efficiently computable, R is an NP-
relation and T is an admissible transformation for R, is suitable if:

1. there exists an efficiently computable decision procedure g such that for any
(x,w) the function g(x, f(w)) =1 if and only if (x,w) € R;

2. For any T € T and any (z,w) € R the transformation of the witness is
invariant respect to the function f, namely f(w) = f(Tw(w)).

The restrictions above still allow for many interesting malleabilities. For example,
the condition (2) clearly applies to re-randomizable NIZKs, as in this case T, ()
is the identity function. Condition (1) holds in all those cases where the relation
R can be sampled together with a trapdoor information that allows to compute
w from z. The condition (1) applies also to the NIZKs of [10]. More importantly,
the conjunction of (1) and (2) allows to efficiently check the condition (b) of the
security experiment, which makes the tSE-cm NIZK primitive easier to use.
Let PKE = (KGen, Enc, Dec, Rand) be a Rand-RCCA PKE scheme, we addi-
tionally assume there exists an integer ¢ € N such that the random coins of both
the encryption procedure and the re-randomization procedure are in Zf; and
that, for any pk,M, given Rand(pk, Enc(pk,M; po); p1) = Enc(pk,M; po + p1) where
Po,P1 € Zg. Notice that the schemes in Sects. 3 and 4 have this property. Let R
be a NP relation and 7 be a set of allowable transformations for the relation R.
Let NZZK' = (Init’,P’,V’, ZKEval’) be a malleable NIZK argument for R’ with

the allowable set of transformations 7" as described below:

R"={((pk,¢,2), (w, p)) : (x,w) €R A c= Enc(pk, f(w);p)}

. T, (pk,c,x) = (pk, Rand(pk, ¢; ), T, (z))
I _ [ . T s &y ) yGP)y L )
7 _{T 3T T (w,p) = (Tyw(w),p+p), TET

We also assume that any transformation 77 € 7’ can be efficiently parsed as
a tuple (p,T) and viceversa. We define a malleable NIZK argument NZZK =
(Init, P, V, ZKEval) for the relation R with allowable set of transformations 7 in
Fig. 7. Notice that the co-domain of the function f for which we can prove f-tSE
soundness is the message space of the underlying Rand-RCCA PKE scheme. We
remark that, although our scheme is presented with a message space M = G,
we could easily extend our construction to encrypt vectors in Gli" X Ggl.

Theorem 3. For any suitable (f,R,T) the proof system NIZK is a malleable
NIZK for R with allowable transformations T, and if NTZK' is perfectly (resp.
statistically) derivation private (Def. 6) and PKE is perfectly re-randomizable
then NTZK is perfectly (resp. statistically) derivation private.

Theorem 4. For any suitable (f, R, T) the proof system NI ZK described above
1s true-simulation controlled-malleable f-extractable.
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Init(prm): V(crs, z, 7):
(crs’, tpl) « Init’ (prm); Output V' (crs’, (pk, C,z), ")

(pk, sk) < KGen(prm);
Crs < (Crs’, pk), tpe < sk,tps « (pk, tp;) ZKEvaI(crs, T, (Iv ’/T)):

Output (crs, tpe, tps). Let 7 = (C, '), p s Z¢;
P(crs, z,w): Let T' = (p,T);

C « Enc(pk, f(w);r); ¢ « Rand(pk, C; p);

7'« P’(crs', (pk, C, z), (w,7)); 7' —s ZKEval'(crs’, T", (z,7"));

Output 7 = (C, 7). Output (C, #').

Fig. 7. Our f-tSE-cm NZZK compiler.

The proofs of Theorems 3 and 4 are in the full version of this paper [15]. We
give an intuition for the proof of Theorem 4, which proceeds with a two-steps
hybrid argument. We start with the true-simulation extractability experiment,
we can switch to an experiment where each simulated proof for NZZK contains
an encryption of the f(w). This step can be easily argued using the RCCA
security of the scheme. In particular, the guarded decryption oracle and the
suitability of (f,R,7T) are necessary to check the winning condition of the tSE
experiment. In the second step, we switch to valid proofs for NZZK’, instead of
simulated proofs, the indistinguishability follows trivially by the zero-knowledge
of NTZK'. At this point we are in an experiment where the proofs provided by
the STM are not simulated, so the standard adaptive soundness of NZZK' is
sufficient to bound the winning probability of the adversary.

Instantiation. For any suitable (f,R,7) where the co-domain of f is Gy,
we can instantiate the tSE-cm NIZK scheme with the pv-Rand-RCCA Scheme
PKE,. The public verifiability enables for a simpler malleable NIZK proof for the
associated R’. In fact, we can subdivide the proof in: (1) a malleable GS proof
11, for R with transformations 7, in particular II; contains GS commitments
[cw]1 of the witness; (2) a malleable GS proof II; to prove that commitments
[cw]1 and [cyr]1 open to w,w’ an w’ = f(w); (3) a malleable proof II5 to prove
w' = (—aT 1) - [x], in particular, from the linearity of GS commitments the
relation for the last proof is a linear subspace relationship. The verification checks
the proofs Iy, I, I13 and verifies the validity of the ciphertext C.

For the case where f is the identity function, namely, re-randomizable NIZK,
the proof I, is trivial as we can set [cy]1 = [Cu]1. The overhead in proof size
between a adaptive sound re-randomizable GS proof for R based on SXDH and
an tSE-cm NIZK based on SXDH is equal to 13|G1| + 11|G2| + 4|Gr|.

6 An UC-Secure Mix-Net

In this section we propose an application of pv-Rand-PKE schemes with RCCA
security to Mix-Net protocols. Our starting point is a recent work of Faonio and
Fiore [14] who build an UC-secure Optimistic Mix-Net using a new paradigm
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that relies on a specific re-randomizable and RCCA-secure PKE scheme. Here
we extend the main idea of [14] and use the power of public verifiability in order
to obtain a full fledged Mix-Net protocol (not only optimistic secure).

The Universal Composability Model. We review some basic notions of
the Universal Composability model and the extension to auditable protocols of
Faonio and Fiore. In a nutshell, a protocol IT UC-realizes an ideal functional-
ity F with setup assumption G if there exists a PPT simulator S such that no
PPT environment Z can distinguish an execution of the protocols IT which can
interact with the setup assumption G from a joint execution of the simulator S
with the ideal functionality F. The environment Z provides the inputs to all the
parties of the protocols, decides which party to corrupt (we consider static cor-
ruption, where the environment decides the corrupted parties before the protocol
starts), and schedules the order of the messages in the networks. When specifying
an ideal functionality, we use the “delayed outputs” terminology of Canetti [3].
Namely, when a functionality F sends a public delayed output M to party Pp,
we mean that M is first sent to the simulator and then forwarded to Pp, only
after acknowledgement by the simulator. Faonio and Fiore consider a variation
of the UC model where, roughly speaking, a bulletin board functionality BB
acts as global setup assumption. More in details, the bulletin board is present in
both the ideal world and the real world, so that the simulator does not have any
advantage over the real-world adversary and all the parties of the protocol can
register their message on the board. An auditable protocol is a tuple (11, Audit)
where I is a protocol and Audit is a PPT algorithm. The model additionally
includes an external off-line party, the auditor. The auditor is an incorruptible
party which, whenever is called on an input %', runs the audit algorithm Audit
on this input and the transcript written in the bulletin boards and forwards its
output to the environment. In the ideal world, the auditor always replies accord-
ing to the output of the ideal functionality, for example, if the ideal functionality
has output y and the auditor is called on input ', the auditor replies with valid
if and only if y = v/'.

Defining Mix-Net Protocols. Our protocol UC-realizes the ideal function-
ality Fmix described in Fig.8 with setup assumptions: the ideal functionality
Frpec for threshold decryption of our PKE scheme and the ideal functionality
for a common-reference string Fcrs (and the bulletin board of the auditable
framework of Faonio and Fiore). The functionality Fuix (similarly to [14]) is
slightly weaker than the one considered by Wikstrém in [37,38]. The difference
is that the corrupted senders can replace their inputs, however, they loose this
ability when the first honest mixer sends its message mix. On the other hand,
in the ideal functionality of Wikstrom, the senders can cast their messages only
during the inputs submission phase.

Building Blocks. The main building blocks of our mix-net construction are:

(i) An linear pv-Rand-RCCA PKE scheme PKE. We say that a pv-Rand-
RCCA PKE scheme is linear if there exist a group G (for example G = G,)
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Functionality Fuix:

The functionality has n sender parties Pg, and m mixer parties Py, :

Input: On message (input,M;) from Pg, (or the adversary if Ps,; is corrupted) reg-
ister the index ¢ in the list of the senders and register the entry (7,M;) in the
database of the inputs. Notify the adversary that the sender Ps, has sent its
input.

Mix: On message mix from Py, (or the adversary if Py, is corrupted), register the
index 7 in the list of the mixers and notify the adversary.

Delivery: If all the senders are in the list of the senders and at least one honest
mixer is in the list of the mixers send a public delayed output O < Sort((M;) en])
to all the mixers.

Fig. 8. Ideal Functionality for Mixing.

and parameters ¢, ¢, ¢"” € N such that (1) every key pair (pk,sk) we can

parse pk = ([P], pk) and sk = (S, sk), where [P] € G***" and S € Z(z;'xe7

(2)

any ciphertext C € C can be parsed as ([y],C) where [y] € G’, (3) for any
ciphertext C such that Ver(pk, C) = 1 the decryption procedure is linear, i.e.,

we have Dec(sk,C) = S-[y] (4) let C' = Rand(pk, C;r,r) where C' = ([y’],
be a re-randomization of ¢ = ([y],C) and r € Z{ then ([y] —[y']) = [P]

¢
r.

We notice that both the scheme PKE; in Sect.4 and the pv-Rand-RCCA
PKE scheme of [7,29] are linear. Indeed, our abstraction is made to include

the three schemes under the same template.

(ii) An All-but-One label-based NIZK. An ABO label-based NZZKyq
(Initsq, Psa, Vsa) for knowledge of the plaintext of the linear PKE. M

ore

in details a ABO label-based NZZK is a NIZK system with labels where
there exists an algorithm ABOInit(prm, 7) which creates a common reference
string crs together with a trapdoor tps such that for any label 7/ # 7 the
trapdoor allows for zero-knowledge while for 7 the proof system is adaptive
sound. A ABO label-based NZZK in the random-string model can be easily

obtained from GS NIZK proof system.

(i) An adaptive sound NIZK. NZZK,, = (Inityx, Py, Vax) for proving mem-
bership in the relation Ry = {([P],[y]) : [y] € span([P])}. We recall that

GS proof system is in the random-string model.

(iv) An ideal functionality Frpec for threshold decryption of the pv-Rand-
RCCA PKE PKE scheme. More in details, Frpec takes as parameters the
definition of the PKE scheme and group parameters prm for the key gener-
ation. The functionality initializes a fresh key pair and accepts input of the
form (dec,C) from the mixers: when a mixer sends a message of this kind,
we say that the mixer asks for the decryption of C. When all the mixers
have sent a message of the form (dec,C) the functionality sends a public

delayed output Dec(sk, C): in this case we say that the mixers agreed on
decryption of C. In the full version of this paper [15] we show a protocol
the functionality Frpec in the Fcrs-hybrid world.

the
for
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(v) An ideal functionality for the common reference string of the above NIZKs.

The functionality initializes m different CRS {crsi }i—1,. m, one for each
mixer,” for NTZKx and a CRS crsgq for NZTZKsq. We stress that all the
CRSs can be sampled as uniformly random strings in the real protocol.

Also we recall that our auditable protocol uses a Bulletin Board functionality.
We do not mention it as a “building block” because every auditable protocol, as
defined by [14], necessarily needs a bulletin board as setup assumption.

Our Mix-Net Protocol. Following the design rationale of Faonio and Fiore,
given two lists of ciphertexts £ = (Cy,...,Cp) and £ = (C/,...,C}), we define

rv¥n
the checksum of these lists as the output of the following procedure:

Procedure CkSum(L, £'):
1. For all j € [n] parsele = ([y;],C;) and €} = ([yjf],ég);
2. Output >_,[y;] — [vj].
We describe our mix-net protocol II between n sender parties Pg, and m mixer
parties Pys, and with resources the ideal functionalities Frpec and Fcrs:

Inputs Submission. Every sender Pg,, with j € [n], encrypts its message M;
by computing C; « Enc(pk,M;;r), and creates a NIZK proof of knowledge
wjd « Pga(crssa, J, (pk, C), (Mj, 7)) (the label for the proof is j). The party Pg,
posts (Cj,73%) on the bulletin board.

Mix. Once all the senders are done with the previous phase, let Lo = (Co ;) cn]
be the list of ciphertexts they posted on the bulletin board. To simplify the
exposition of the result, we assume that all the NIZK proofs {ﬂ';-d}je[n] and
all the ciphertexts in Ly verify.

For i = 1 to m, the mixer Py, waits for the Py, , to complete and does:

1. Sample a permutation 7; «s Sy;

2. Read from the BB the message (£;_1,7™,) posted by Pas,_, (or read
Ly if this is the first mixer), and parse £; 1 = (Ci—1,) jen);

3. Build the list £; <« (C;;)jen of shuffled and re-randomized cipher-
texts by sampling randomness r;,r; and computing C; ;) < Rand
(Pk, Cim1,5515,75)- ,

4. Compute a NIZK proof 7P « s Ppy(crsiy,
Z] rj)a

5. Post in the BB the tuple (L£;, 7).

Verification. Once all mixers are done, every mixer Py, executes:

1. Read the messages (£;,7*) posted by every mixer on the BB, as well
as the messages (Co j, wjd) posted by the senders;

2. For all i € [m] and for all j € [n] check that Ver(pk,C; ;) = 1;

([P], CkSum(L;_1, L;)),

" We could modify our protocol to let the mixers share the same CRS, at the price of
requiring N'ZZKny be simulation sound. Since in most applications the number of
mixers is small, we go for the simpler option of one crs per mixer.
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3. For all i € [m], check Vg (crsi , ([P], CkSum(L;_1,L;)), ™) =1 ;
4. If one of the checks does not verify abort and write invalid in the BB.
Decrypt. All the mixers Py, execute the following in parallel (using the ideal
functionality Frpec to compute decryptions):

L. let £,, = (C})jepn) be the list of ciphertexts returned by the last mixer.
For j =1 to n, ask Frpec for the decryption of C;. Once all the mixers
agreed on the decryption, receive M; « Dec(sk, C}) from the functionality;

2. Post Sort({M;);c[n)) on the BB.

Audit Message. The mixers Pjs, post the message valid on the BB.

Algorithm Audit: the algorithm reads from the BB and computes the verifica-
tion step of the protocol above (notice that this only relies on public information).

Theorem 5. The auditable protocol (II, Audit) described above UC-realizes Fiix
with setup assumptions Frpec and Fcrs.

Proof (Sketch). We prove the theorem via a sequence of hybrid experiments. In
the last experiment we define a simulator and highlight its interaction with the
ideal functionality.

In the proof, we let A* be the index of the first honest mixer. Also, we consider
two sets ¥, and Whige, both consisting of tuples (X,Y) € G3. For %, (resp. Phige)
we define a corresponding map i, : G1 — Gy (resp. ¥nide) such that ¥, (X)
(resp. Yhide(X)) is equal to Y if (X, Y) € Wi, (resp. (X,Y) € Phige), otherwise X.
We assume that all the NIZK proofs verify and that all the ciphertexts verify
(as otherwise the protocol would abort without producing any output).

For space reason, in this proof sketch, we group together the hybrid experi-
ments according to their function in the overall strategy.

Hybrids H; to H3: In the first step we program the CRSs of both the NIZKs
so that we can simulate the proof of the A*-th mixer and of all the senders
but one corrupted sender (whose index is hidden to the adversary by the CRS
indistinguishability). For this step we can use the zero-knowledge property of the
NIZKs. In the second and third step we use perfect-rerandomizability and RCCA
security to introduce a change in the output of the h*-th mixer. Specifically, the
mixer Py, . outputs ciphertexts which are fresh encryptions of random and
independent messages Hy,...,H,. Moreover, we populate the set W4 with the
pairs (Mp-_1,j,H;)jcn) to associate H; with My« ; «— Dec(sk,Cp«_1 ), and then
we simulate the ideal functionality Frpec to output Phige(M) instead of M. This
way the modification is not visible by looking at the decrypted ciphertexts.

Hybrid Hy: Let V,, (resp. V,+) be the decryption of the list of ciphertexts
output by the last mixer Pyy,, (resp. by the first honest mixer Py, .. ). The hybrid
H, aborts if V,,, # V. Using the perfect adaptive soundness of NZZ,, and
the RCCA security and the public-verifiability of our PKE, we can show that
this abort can happen only with negligible probability. We adapt the security
argument of Faonio and Fiore [14] to our pv-Rand-PKE and our NIZK proof
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of “checksum”. The idea is that the proofs of checksum 7% |, ..., 7 establish
a linear relationship between the plaintexts encrypted in the list of ciphertexts
output by Pys,. and the plaintexts in the list of ciphertext output by Pyy,,. The
reduction to RCCA security can install a challenge ciphertext in the first list
and then learn information about the underlying plaintext by decrypting the
second list. The idea is that the condition V,,, # Vj~ guarantees that the RCCA
decryption oracle would not answer ¢ on ciphertexts from the second list, and
the linear relationship guaranteed by the proofs allows to extract the information
on the challenge ciphertext.

Hybrid Hjs: Simulate the ideal functionality Frpec in different way. Whenever
the mixers agree on the decryption of a ciphertext C € L,,, simulate the func-
tionality Frpec by outputting a message chosen uniformly at random (without
re-introduction) from the list Vp,«_;. Notice, we don’t need to compile the list
Uhide anymore as the mixers would only agree to decrypt ciphertexts from the
last list £,, and Vi, = Vi = Phide Vi —1)-

We can prove that H5 and H, are identically distributed. In fact in Hy, after
the first honest mixer outputs L+, an unbounded environment Z knows that
in Whide the element H; for j € [n] is mapped to some other value in V4-_; but,
from its view, it cannot know to which value. Such information is revealed only
during decryption time. In other words, we could sample the permutation 7«
(uniformly at random) at decryption time.

It is easy to check that, at this point of the hybrid argument, the list of
ciphertexts received by the first honest mixers is (a permutation of) the output
of the protocol. Moreover, the ordering of the ciphertexts in the former list and
in the latter list are uncorrelated. With the next hybrids we make sure that the
inputs of the honest senders are not discarded along the way from the first mixer
to first honest mixer.

Hybrids Hg to H;: Notice that at this point the output of the mix-net is
already distributed uniformly over the set of all the possible permutations of
the inputs. However, the input messages of the honest senders are still (at least
information theoretically) in the view of the adversary, as the honest senders
still encrypt their inputs. In the next hybrids we switch into a hybrid experiment
where all the honest senders encrypt dummy messages from a set Mg, that we
call the set of honest simulated messages. To do so we first program the map
¥in to map the simulated messages to the (real) honest ones, and we simulate
the functionality Frpec to pick messages M chosen uniformly at random (without
re-introduction) from the list Vy+_1 and return ¢;,(M) instead of M. Then in the
second step we switch and encrypt the simulated messages, relying on RCCA
security.

Hybrid Hs to Hg: In the last two hybrids we make sure that (1) the malicious
senders do not copy the ciphertexts of the honest senders, for this step we rely on
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the ABO soundness of the NZZK4 proof system, and (2) the malicious mixers
do not duplicate or remove the messages of the honest senders, this argument is
almost the same as in the step Hy.

We can proceed to present the simulator S. For space reason, here we describe
the most important parts.

Extraction of the Inputs: Let £;~_1 be the list produced by the malicious
mixer Py, . . For any j, the simulator S decrypts M; « Dec(sk, Cj«_1 ;) and
if 1\7[j ¢ My then it submits it as input to the ideal functionality Fuix.

Decryption Phase: The simulator S receives from the ideal functionality Fix
the sorted output (M9,...,M%). Whenever the mixers agree on the decryption
of a ciphertext, it simulates the ideal functionality Frpec by outputting a
message from the sorted output randomly chosen (without reinsertion).

We notice that the hybrid compiles the map v, by setting a correspondence
between the inputs of the honest senders and the simulated ones, and, during
the decryption phase, uses the map v, to revert this correspondence. On the
other hand, the simulator does not explicitly set the map, as it does not know
the inputs of the honest senders (which are sent directly to the functionality).
However, at inputs submission phase the simulator picks a simulated input for
any honest sender, and at decryption phase it picks a message from the ordered
list in output, which contains the inputs of the honest senders. By doing so, the
simulator is implicitly defining the map ;,. The second difference is that the
simulator picks the outputs from the list (M7,...,M2) while the hybrid Hy uses
the list ¥in(Vh«—1). However, recall that the simulator extracts the corrupted
inputs from the same list Vy«_1, and that, by the change introduced in Hy, we
are assured that all the inputs of the honest senders will be in the list 1, (Vp—1).
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Abstract. Proving the security of complex protocols is a crucial and
very challenging task. A widely used approach for reasoning about such
protocols in a modular way is universal composability. A perfect model
for universal composability should provide a sound basis for formal proofs
and be very flexible in order to allow for modeling a multitude of dif-
ferent protocols. It should also be easy to use, including useful design
conventions for repetitive modeling aspects, such as corruption, parties,
sessions, and subroutine relationships, such that protocol designers can
focus on the core logic of their protocols.

While many models for universal composability exist, including the
UC, GNUC, and II'TM models, none of them has achieved this ideal goal
yet. As a result, protocols cannot be modeled faithfully and/or using
these models is a burden rather than a help, often even leading to under-
specified protocols and formally incorrect proofs.

Given this dire state of affairs, the goal of this work is to provide a
framework for universal composability which combines soundness, flex-
ibility, and usability in an unmatched way. Developing such a security
framework is a very difficult and delicate task, as the long history of
frameworks for universal composability shows.

We build our framework, called iUC, on top of the II'TM model, which
already provides soundness and flexibility while lacking sufficient usabil-
ity. At the core of iUC is a single simple template for specifying essen-
tially arbitrary protocols in a convenient, formally precise, and flexible
way. We illustrate the main features of our framework with example
functionalities and realizations.
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1 Introduction

Universal composability [4,25] is an important concept for reasoning about the
security of protocols in a modular way. It has found wide spread use, not only
for the modular design and analysis of cryptographic protocols, but also in other
areas, for example for modeling and analyzing OpenStack [16], network time
protocols [11], OAuth v2.0 [14], the integrity of file systems [8], as well as privacy
in email ecosystems [13].

The idea of universal composability is that one first defines an ideal protocol
(or ideal functionality) F that specifies the intended behavior of a target proto-
col/system, abstracting away implementation details. For a concrete realization
(real protocol) P, one then proves that “P behaves just like F” in arbitrary
contexts. Therefore, it is ensured that the real protocol enjoys the security and
functional properties specified by F.

Several models for universal composability have been proposed in the litera-
ture [4,5,7,9,10,15,18,23-25]. Ideally, a framework for universal composability
should support a protocol designer in easily creating full, precise, and detailed
specifications of various applications and in various adversary models, instead
of being an additional obstacle. In particular, such frameworks should satisfy at
least the following requirements:

Soundness: This includes the soundness of the framework itself and the general
theorems, such as composition theorems, proven in it.

Flexibility: The framework must be flexible enough to allow for the precise design
and analysis of a wide range of protocols and applications as well as security
models, e.g., in terms of corruption, setup assumptions, etc.

Usability: It should be easy to precisely and fully formalize protocols; this is also
an important prerequisite for carrying out formally/mathematically correct
proofs. There should exist (easy to use) modeling conventions that allow a
protocol designer to focus on the core logic of protocols instead of having
to deal with technical details of the framework or repeatedly taking care of
recurrent issues, such as modeling standard corruption behavior.

Unfortunately, despite the wide spread use of the universal composability app-
roach, existing models and frameworks are still unsatisfying in these respects as
none combines all of these requirements simultaneously (we discuss this in more
detail below). Thus, the goal of this paper is to provide a universal composability
framework that is sound, flexible, and easy to use, and hence constitutes a solid
framework for designing and analyzing essentially any protocol and application
in a modular, universally composable, and sound way. Developing such a secu-
rity framework is a difficult and very delicate task that takes multiple years if
not decades as the history on models for universal composability shows. Indeed,
this paper is the result of many years of iterations, refinements, and discussions.

Contributions: To achieve the above described goal, we here propose a new
universal composability framework called iUC (“IITM based Universal Compos-
ability”). This framework builds on top of the IITM model with its extension to
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so-called responsive environments [1]. The IITM model was originally proposed
in [18], with a full and revised version — containing a simpler and more general
runtime notion — presented in [22].

The IITM model already meets our goals of soundness and flexibility. That
is, the II'TM model offers a very general and at the same time simple runtime
notion so that protocol designers do not have to care much about runtime issues,
making sound proofs easier to carry out. Also, protocols are defined in a very
general way, i.e., they are essentially just arbitrary sets of Interactive Turing
Machines (ITMs), which may be connected in some way. In addition, the model
offers a general addressing mechanism for machine instances. This gives great
flexibility as arbitrary protocols can be specified; all theorems, such as composi-
tion theorems, are proven for this very general class of protocols. Unfortunately,
this generality hampers usability. The model does not provide design conven-
tions, for example, to deal with party IDs, sessions, subroutine relationships,
shared state, or (different forms of) corruption; all of this is left to the protocol
designer to manually specify for every design and analysis task, distracting from
modeling the actual core logic of a protocol.

In essence, iUC is an instantiation of the II'TM model that provides a conve-
nient and powerful framework for specifying protocols. In particular, iUC greatly
improves upon usability of the II'TM model by adding missing conventions for
many of the above mentioned repetitive aspects of modeling a protocol, while
also abstracting from some of the (few) technical aspects of the underlying model;
see below for the comparison of iUC with other frameworks.

At the core of iUC is one convenient template that supports protocol design-
ers in specifying arbitrary types of protocols in a precise, intuitive, and compact
way. This is made possible by new concepts, including the concept of entities
as well as public and private roles. The template comes with a clear and intu-
itive syntax which further facilitates specifications and allows others to quickly
pick up protocol specifications and use them as subroutines in their higher-level
protocols.

A key difficulty in designing iUC was to preserve the flexibility of the orig-
inal ITTM model in expressing (and composing) arbitrary protocols while still
improving usability by fixing modeling conventions for certain repetitive aspects.
We solve this tension between flexibility and usability by, on the one hand,
allowing for a high degree of customization and, on the other hand, by pro-
viding sensible defaults for repetitive and standard specifications. Indeed, as
further explained and discussed in Sect.3 and also illustrated by our case study
(cf. Sect. 4), iUC preserves flexibility and supports a wide range of protocol types,
protocol features, and composition operations, such as: ideal and global function-
alities with arbitrary protocol structures, i.e., rather than being just monolithic
machines, they may, for example, contain subroutines; protocols with joint-state
and/or global state; shared state between multiple protocol sessions (without
resorting to joint-state realizations); subroutines that are partially globally avail-
able while other parts are only locally available; realizing global functionalities
with other protocols (including joint-state realizations that combine multiple
global functionalities); different types of addressing mechanisms via globally
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unique and/or locally chosen session IDs; global functionalities that can be
changed to be local when used as a subroutine; many different highly customiz-
able corruption types (including incorruptability, static corruption, dynamic cor-
ruption, corruption only under certain conditions, automatic corruption upon
subroutine corruptions); a corruption model that is fully compatible with joint-
state realizations; arbitrary protocol structures that are not necessarily hierar-
chical trees and which allow for, e.g., multiple highest-level protocols that are
accessible to the environment.

Importantly, all of the above is supported by just a single template and two
composition theorems (one for parallel composition of multiple protocols and one
for unbounded self composition of the same protocol). This makes iUC quite user
friendly as protocol designers can leverage the full flexibility with just the basic
framework; there are no extensions or special cases required to support a wide
range of protocol types.

We emphasize that we do not claim specifications done in iUC to be shorter
than the informal descriptions commonly found in the universal composability
literature. A full, non-ambiguous specification cannot compete with such infor-
mal descriptions in terms of brevity, as these descriptions are often underspeci-
fied and ignore details, including model specific details and the precise corruption
behavior. iUC is rather meant as a powerful and sound tool for protocol design-
ers that desire to specify protocols fully, without sweeping or having to sweep
anything under the rug, and at the same time without being overburdened with
modeling details and technical artifacts. Such specifications are crucial for being
able to understand, reuse, and compose results and to carry out sound proofs.

Related Work: The currently most relevant universal composability models are
the UC model [4] (see [3] for the latest version), the GNUC model [15], the IITM
model [18] (see [22] for the full and revised version), and the CC model [23]. The
former three models are closely related in that they are based on polynomial
runtime machines that can be instantiated during a run. In contrast, the CC
model follows a more abstract approach that does not fix a machine model or
runtime notion, and is thus not directly comparable to the other models (includ-
ing iUC). Indeed, it is still an open research question if and how typical UC-style
specifications, proofs, and arguments can be modeled in the CC model. In what
follows, we therefore relate iUC with the UC and GNUC models; as already
explained and further detailed in the rest of the paper, iUC is an instantiation
of the IITM model.

While both the UC and GNUC models also enjoy the benefits of established
protocol modeling conventions, those are, however, less flexible and less expres-
sive than iUC. Let us give several concrete examples: conventions in UC and
GNUC are built around the assumption of having globally unique SIDs that are
shared between all participants of a protocol session, and thus locally managed
SIDs cannot directly be expressed (cf. Sects. 3, 4, and 4.3 for details including
a discussion of local SIDs). Both models also assume protocols to have disjoint
sessions and thus their conventions do not support expressing protocols that
directly share state between sessions, such as signature keys (while both models
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support joint-state realizations to somewhat remedy this drawback, those real-
izations have to modify the protocols at hand, which is not always desirable; cf.
Sect. 4.3). Furthermore, in both models there is only a single highest-level proto-
col machine with potentially multiple instances, whereas iUC supports arbitrar-
ily many highest-level protocol machines. This is very useful as it, for example,
allows for seamlessly modeling global state without needing any extensions or
modifications to our framework or protocol template (as illustrated in Sect.4).
In the case of GNUC, there are also several additional restrictions imposed on
protocols, such as a hierarchical tree structure where all subroutines have a single
uniquely defined caller (unless they are globally available also to the environ-
ment) and a fixed top-down corruption mechanism; none of which is required in
iuC.

There are also some major differences between UC/GNUC and iUC on a tech-
nical level which further affect overall usability as well as expressiveness. Firstly,
both UC and GNUC had to introduce various extensions of the basic computa-
tional model to support new types of protocols and composition, including new
syntax and new composition theorems for joint-state, global state, and realiza-
tions of global functionalities [5,7,12,15]. This not only forces protocol designers
to learn new protocol syntax and conventions for different types of composition,
but also indicates a lack of flexibility in supporting new types of composition
(say, for example, a joint-state realization that combines several separate global
functionalities, cf. Sect.4.3). In contrast, both composition theorems in iUC as
well as our single template for protocols seamlessly support all of those types
of protocols and composition, including some not considered in the literature so
far (cf. Sect. 4.3). Secondly, there are several technical aspects in the UC model
a protocol designer has to take care of in order to perform sound proofs: a run-
time notion that allows for exhaustion of machines, even ideal functionalities,
and that forces protocols to manually send runtime tokens between individ-
ual machine instances; a directory machine where protocols have to register all
instances when they are created; “subroutine respecting” protocols that keep
sessions disjoint. Technical requirements of the GNUC model mainly consist of
several restrictions imposed on protocol structures (as mentioned above) which
in particular keep protocol sessions disjoint. Unlike UC, the runtime notion of
GNUC supports modeling protocols that cannot be exhausted, however, GNUC
introduces additional flow-bounds to limit the number of bits sent between cer-
tain machines. In contrast, as also illustrated by our case study, iUC does not
require directory machines, iUC’s notion for protocols with disjoint sessions is
completely optional and can be avoided entirely, and iUC’s runtime notion allows
for modeling protocols without exhaustion, without manual runtime transfers,
and without requiring flow bounds (exhaustion and runtime transfers can of
course be modeled as special cases, if desired).

The difference in flexibility and expressiveness of iUC compared to UC and
GNUC is further explained in Sect. 3 and illustrated by our case study in Sect. 4,
where we model a real world key exchange protocol exactly as it would be
deployed in practice. This case study is not directly supported by the UC and
GNUC models (as further discussed in Sect.4.3). A second illustrative example
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is given in the full version of this paper [2], where we show that iUC can capture
the SUC model [10] as a mere special case. The SUC model was proposed as
a simpler version of the UC model specifically designed for secure multi party
computation (MPC), but has to break out of (some technical aspects of) the UC
model.

Structure of This Paper: We describe the iUC framework in Sect.2, with a
discussion of the main concepts and features in Sect.3. A case study further
illustrates and highlights some features of iUC in Sect. 4. We conclude in Sect. 5.
Full details are given in our full version [2].

2 The iUC Framework

In this section, we present the iUC framework which is built on top of the IITM
model. As explained in Sect. 1, the main shortcoming of the IITM model is a lack
of usability due to missing conventions for protocol specifications. Thus, proto-
col designers have to manually define many repetitive modeling related aspects
such as a corruption model, connections between machines, specifying the desired
machine instances (e.g., does an instance model a single party, a protocol ses-
sion consisting of multiple parties, a globally available resource), the application
specific addressing of individual instances, etc. The iUC framework solves this
shortcoming by adding convenient and powerful conventions for protocol spec-
ifications to the II'TM model. A key difficulty in crafting these conventions is
preserving the flexibility of the original IITM model in terms of expressing a
multitude of various protocols in natural ways, while at the same time not over-
burdening a protocol designer with too many details. We solve this tension by
providing a single template for specifying arbitrary types of protocols, including
real, ideal, joint-state, global state protocols, which needed several sets of con-
ventions and syntax in other frameworks, and sometimes even new theorems.
Our template includes many optional parts with sensible defaults such that a
protocol designer has to define only those parts relevant to her specific protocol.
As the iUC framework is an instantiation of the IITM model, all composition
theorems and properties of the IITM model carry over.

The following description of the iUC framework is kept independently of the
II'TM model, i.e., one can understand and use the iUC framework without know-
ing the IITM model. More details of the underlying II'TM model are available
in the full version [2]. Here we explain the IITM model not explicitly, but rather
explain relevant parts as part of the description of the iUC framework. We start
with some preliminaries in Sect. 2.1, mainly describing the general computational
model, before we explain the general structure of protocols in iUC in Sect. 2.2,
with corruption explained in Sect. 2.3. We then present our protocol template in
Sect. 2.4. In Sect. 2.5, we explain how protocol specifications can be composed in
iUC to create new, more complex protocol specification. Finally, in Sect. 2.6, we
present the realization relation and the composition theorem of iUC. As men-
tioned, concrete examples are given in our case study (cf. Sect.4). We provide
a precise mapping from iUC protocols to the underlying IITM model in the full
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version, which is crucial to verify that our framework indeed is an instantiation
of the IITM model, and hence, inherits soundness and all theorems of the IITM
model. We note, however, that it is not necessary to read this technical map-
ping to be able to use our framework. The abstraction level provided by iUC is
entirely sufficient to understand and use this framework.

2.1 Preliminaries

Just as the IITM model, the iUC framework uses interactive Turing machines
as its underlying computational model. Such interactive Turing machines can
be connected to each other to be able to exchange messages. A set of machines
Q = {My,..., M} is called a system. In a run of Q, there can be one or more
instances (copies) of each machine in Q. One instance can send messages to
another instance. At any point in a run, only a single instance is active, namely,
the one to receive the last message; all other instances wait for input. The active
instance becomes inactive once it has sent a message; then the instance that
receives the message becomes active instead and can perform arbitrary com-
putations. The first machine to run is the so-called master. The master is also
triggered if the last active machine did not output a message. In iUC, the envi-
ronment (see next) will take the role of the master. Jumping ahead, in the iUC
framework a special user-specified CheckID algorithm is used to determine
which instance of a machine receives a message and whether a new instance is
to be created (cf. Sect.2.4).

To define the universal composability security experiment (cf. Fig.1 and
Sect.2.5), one distinguishes between three types of systems: protocols, envi-
ronments, and adversaries. Intuitively, the security experiment in any universal
composability model compares a protocol P with another protocol F, where F
is typically an ideal specification of some task, called ideal protocol or ideal func-
tionality. The idea is that if one cannot distinguish P from F, then P must be
“as good as” F. More specifically, the protocol P is considered secure (written
P < F) if for all adversaries A controlling the network of P there exists an
(ideal) adversary S, called simulator, controlling the network of F such that {A4,
P} and {8, F} are indistinguishable for all environments €. Indistinguishability
means that the probability of the environment outputting 1 in runs of the sys-
tem {&,.A, P} is negligibly close to the probability of outputting 1 in runs of the
system {€,S,F} (written {€, A, P} ={€,S,F}).

In the security experiment, systems are connected as follows (cf. arrows in
Fig. 1): Every (machine in a) protocol has an I/O interface that is used to connect
to other protocol machines, higher-level protocols, or an environment, which, in
turn, can simulate higher-level protocols. Every (machine in a) protocol also has
a network interface to connect to a network adversary. We sometimes let the
environment subsume the network adversary. That is, the environment performs
both roles: on the left-hand side of Fig. 1, instead of having the systems £ and
A we can have an environment £’ that connects to both the I/O interface and
the network interface of P.

The iUC framework includes support for so-called responsive environments
and responsive adversaries introduced in [1]. Such environments/adversaries can
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Fig. 1. The setup for the universal composability experiment (P < F) and internal
structure of protocols. Here £ is an environment, 4 and S are adversaries, and P and
F are protocols. Arrows between systems denote connections/interfaces that allow for
exchanging messages. The boxes M; in P are different machines modeling various tasks
in the protocol. Note that the machines in P and the way they are connected is just
an example; other protocols can have a different internal structure.

be forced to answer certain messages on the network interface of the protocol
immediately, without interfering with the protocol in between. These messages
are called restricting messages. This mechanism is very handy to, e.g., exchange
meta information such as the corruption state of a protocol participant or obtain
cryptographic keys from the adversary; see our full version [2] and [1] for a more
detailed discussion.

We require environments to be universally bounded, i.e., there is a fixed
polynomial in the security parameter (and possibly external input) that upper
bounds the runtime of an environment no matter to which protocol and adver-
sary it is connected to. A system Q is called environmentally bounded if for
every (universally bounded) environment £ there is a polynomial that bounds
the runtime of the system Q connected to £ (except for potentially a negligi-
ble probability). This will mostly be required for protocols; note that natural
protocols used in practice are typically environmentally bounded, including all
protocols that run in polynomial time in their inputs received so far and the
security parameter. This is the same runtime notion used in the II'TM model.
Compared to other models, this notion is very general and particularly simple
(see [22] for a discussion).

We define Env(Q) to be the set of all universally bounded (responsive) envi-
ronments that connect to a system Q via network and I/O interfaces. We fur-
ther define Adv(P) to be the set of (responsive) adversaries that connect to
the network interface of a protocol P such that the combined system {A, P} is
environmentally bounded.

2.2 Structure of Protocols

A protocol P in our framework is specified via a system of machines {Mq, ...,
M;}. Each machine M; implements one or more roles of the protocol, where
a role describes a piece of code that performs a specific task. For example, a
(real) protocol Psig for digital signatures might contain a signer role for signing
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Fig. 2. Examples of static and dynamic structures of various protocol types. Fig is an
ideal protocol, Psie a real protocol, ngg a so-called joint-state realization, and Fcgrs a
global state protocol. On the left-hand side: static structures, i.e., (specifications of)
machines/protocols. On the right-hand side: possible dynamic structures (i.e., several

machine instances managing various entities).

messages and a verifier role for verifying signatures. In a run of a protocol,
there can be several instances of every machine, interacting with each other
(and the environment) via I/O interfaces and interacting with the adversary
(and possibly the environment) via network interfaces. An instance of a machine
M; manages one or more so-called entities. An entity is identified by a tuple
(pid, sid, role) and describes a specific party with party ID (PID) pid running
in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of M; according to the
specification of M;. Entities can send messages to and receive messages from
other entities and the adversary using the I/O and network interfaces of their
respective machine instances. In the following, we explain each of these parts in
more detail, including roles and entities; we also provide examples of the static
and dynamic structure of various protocols in Fig. 2.

Roles: As already mentioned, a role is a piece of code that performs a specific
task in a protocol P. Every role in P is implemented by a single unique machine
M;, but one machine can implement more than one role. This is useful for shar-
ing state between several roles: for example, consider an ideal functionality Fi,
for digital signatures consisting of a signer and a verifier role. Such an ideal
protocol usually stores all messages signed by the signer role in some global
set that the verifier role can then use to prevent forgery. To share such a set
between roles, both roles must run on the same (instance of a) machine, i.e., Fgig
generally consists of a single machine Mg;gner veritier implementing both roles.
In contrast, the real protocol Psiz uses two machines Mgigner and Myerisier 88
those roles do not and cannot directly share state in a real implementation (cf.
left-hand side of Fig. 2). Machines provide an I/O interface and a network inter-
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face for every role that they implement. The I/O interfaces of two roles of two
different machines can be connected. This means that, in a run of a system, two
entities (managed by two instances of machines) with connected roles can then
directly send and receive messages to/from each other; in contrast, entities of
unconnected roles cannot directly send and receive messages to/from each other.
Jumping ahead, in a protocol specification (see below) it is specified for each
machine in that protocol to which other roles (subroutines) a machine connects
to (see, e.g., also Fig.3a where the arrows denote connected roles/machines).
The network interface of every role is connected to the adversary (or simula-
tor), allowing for sending and receiving messages to and from the adversary. For
addressing purposes, we assume that each role in P has a unique name. Thus,
role names can be used for communicating with a specific piece of code, i.e.,
sending and receiving a message to/from the correct machine.

Public and Private Roles: We, in addition, introduce the concept of public and
private roles, which, as we will explain, is a very powerful tool. Every role of a
protocol P is either private or public. Intuitively, a private role can be called /used
only internally by other roles of P whereas a public role can be called/used by
any protocol and the environment. Thus, private roles provide their functionality
only internally within P, whereas public roles provide their functionality also to
other protocols and the environment. More precisely, a private role connects via
its I/O interface only to (some of the) other roles in P such that only those
roles can send messages to and receive messages from a private role; a public
role additionally provides its I/O interface for arbitrary other protocols and the
environment such that they can also send messages to and receive messages from
a public role. We illustrate the concept of public and private roles by an example
below.

Using Other Protocols as Subroutines: Protocols can be combined to construct
new, more complex protocols. Intuitively, two protocols P and R can be com-
bined if they connect to each other only via (the I/O interfaces of) their public
roles. (We give a formal definition of connectable protocols in Sect.2.5.) The
new combined protocol Q consists of all roles of P and R, where private roles
remain private while public roles can be either public or private in Q; this is
up to the protocol designer to decide. To keep role names unique within Q,
even if the same role name was used in both P and R, we (implicitly) assume
that role names are prefixed with the name of their original protocol. We will
often also explicitly write down this prefix in the protocol specification for better
readability (cf. Sect.2.4).

Examples Illustrating the Above Concepts: Figure 3a, which is further explained
in our case study (cf. Sect.4), illustrates the structure of the protocols we use
to model a real key exchange protocol. This protocol as a whole forms a pro-
tocol in the above sense and at the same time consists of three separate (sub-)
protocols: The highest-level protocol Pxg has two public roles initiator and
responder executing the actual key exchange and one private role setup that
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Fig. 3. The static structures of the ideal key exchange functionality Fxg (right side)
and its realization Pkg (left side), including their subroutines, in our case study. Arrows
denote direct connections of I/O interfaces; network connections are omitted for sim-
plicity. Solid boxes (labeled with one or two role names) denote individual machines,
dotted boxes denote (sub-)protocols that are specified by one instance of our template
each (cf. Sect.2.4).

generates some global system parameters. The protocol Pkg uses two other pro-
tocols as subroutines, namely the ideal functionality Fgie.ca for digital signatures
with roles signer and verifier, for signing and verifying messages, and an
ideal functionality Fca for certificate authorities with roles registration and
retrieval, for registering and retrieving public keys (public key infrastructure).
Now, in the context of the combined key exchange protocol, the registration
role of Fca is private as it should be used by Fiz.ca only; if everyone could
register keys, then it would not be possible to give any security guarantees in
the key exchange. The retrieval role of Fca remains public, modeling that
public keys are generally considered to be known to everyone, so not only Pkg
but also the environment (and possibly other protocols later using Pkg) should
be able to access those keys. This models so-called global state. Similarly to role
registration, the signer role of Fs_ca is private too. For simplicity of pre-
sentation, we made the verifier role private, although it could be made public.
Note that this does not affect the security statement: the environment knows the
public verification algorithm and can obtain all verification keys from Fca, i.e.,
the environment can locally compute the results of the verification algorithm.
Altogether, with the concept of public and private roles, we can easily decide
whether we want to model 