
Quantum Attacks Without Superposition
Queries: The Offline Simon’s Algorithm

Xavier Bonnetain1,3(B), Akinori Hosoyamada2,4, Maŕıa Naya-Plasencia1,
Yu Sasaki2, and André Schrottenloher1

1 Inria, Paris, France
{xavier.bonnetain,maria.naya plasencia,andre.schrottenloher}@inria.fr

2 NTT Secure Platform Laboratories, Tokyo, Japan
{hosoyamada.akinori,sasaki.yu}@lab.ntt.co.jp

3 Collège Doctoral, Sorbonne Université, 75005 Paris, France
4 Nagoya University, Nagoya, Japan

Abstract. In symmetric cryptanalysis, the model of superposition
queries has led to surprising results, with many constructions being bro-
ken in polynomial time thanks to Simon’s period-finding algorithm. But
the practical implications of these attacks remain blurry. In contrast, the
results obtained so far for a quantum adversary making classical queries
only are less impressive.

In this paper, we introduce a new quantum algorithm which uses
Simon’s subroutines in a novel way. We manage to leverage the alge-
braic structure of cryptosystems in the context of a quantum attacker
limited to classical queries and offline quantum computations. We obtain
improved quantum-time/classical-data tradeoffs with respect to the cur-
rent literature, while using only as much hardware requirements (quan-
tum and classical) as a standard exhaustive search with Grover’s algo-
rithm. In particular, we are able to break the Even-Mansour construc-
tion in quantum time Õ(2n/3), with O(2n/3) classical queries and O(n2)
qubits only. In addition, we improve some previous superposition attacks
by reducing the data complexity from exponential to polynomial, with
the same time complexity.

Our approach can be seen in two complementary ways: reusing super-
position queries during the iteration of a search using Grover’s algorithm,
or alternatively, removing the memory requirement in some quantum
attacks based on a collision search, thanks to their algebraic structure.

We provide a list of cryptographic applications, including the Even-
Mansour construction, the FX construction, some Sponge authenticated
modes of encryption, and many more.

Keywords: Simon’s algorithm · Classical queries · Symmetric
cryptography · Quantum cryptanalysis · Even-Mansour construction ·
FX construction

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11921, pp. 552–583, 2019.
https://doi.org/10.1007/978-3-030-34578-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34578-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-34578-5_20

Quantum Attacks Without Superposition Queries 553

1 Introduction

Ever since Shor [39] introduced his celebrated quantum polynomial-time algo-
rithm for solving factorization and Discrete Logarithms, both problems believed
to be classically intractable, post-quantum cryptography has become a subject
of wide interest. Indeed, the security of classical cryptosystems relies on compu-
tational assumptions, which until recently, were made with respect to classical
adversaries; if quantum adversaries are to be taken into account, the landscape
of security is bound to change dramatically.

While it is difficult to assert the precise power of quantum computers, which
are yet to come, it is still possible to study quantum algorithms for cryptographic
problems, and to estimate the computational cost of solving these problems for a
quantum adversary. The ongoing project by NIST [35] for post-quantum asym-
metric schemes aims to replace the current mostly used ones by new standards.

In symmetric cryptography, the impact of quantum computing seems, at first
sight, much more limited. This is because the security of most of symmetric-key
schemes is not predicated on structured problems. Symmetric-key schemes are
required to be computed extremely efficiently, and designers must avoid such
computationally expensive operations. Grover’s quantum search algorithm [22],
another cornerstone of quantum computing, speeds up by a quadratic factor
exhaustive search procedures. This has led to the common saying that “doubling
the key sizes” should ensure a similar level of post-quantum security.

However, the actual post-quantum security of symmetric-key schemes
requires more delicate treatment. Recovering the secret key via exhaustive search
is only one of all the possible approaches. The report of the National Academy
of Sciences on the advent of quantum computing [34] also states that “it is pos-
sible that there is some currently unknown clever quantum attack” that would
perform much better than Grover’s algorithm. Indeed, cryptographers are mak-
ing significant progress on quantum attackers with superposition queries, which
break many symmetric-key schemes in polynomial time.

Quantum Generic Attacks in Q1 and Q2 Models. Quantum attacks can be
mainly classified into two types [20,23,25], Q1 model and Q2 model, assum-
ing different abilities for the attacker. In the Q1 model, attackers have an access
to a quantum computer to perform any offline computation, while they are only
allowed to make online queries in a classical manner. In the Q2 model, besides
the offline quantum computation, attackers are allowed to make superposition
queries to a quantum cryptographic oracle. Here, we briefly review previous
results in these models to introduce the context of our results.

The Q2 model is particularly interesting as it yields some attacks with a very
low cost. Kuwakado and Morii [29,30] showed that the Even-Mansour cipher
and the three-round Feistel networks, classically proven secure if their underly-
ing building blocks are ideal, were broken in polynomial time. This exponential
speedup, the first concerning symmetric cryptography, was obtained thanks to
Simon’s algorithm [40] for recovering a Boolean hidden shift. Later on, more
results have been obtained in this setting, with more generic constructions

554 X. Bonnetain et al.

broken [24,31], and an exponential acceleration of slide attacks, which target
ciphers with a self-similar structure. Versions of these attacks [6] for construc-
tions with modular additions use Kuperberg’s algorithm [27], allowing a bet-
ter than quadratic speed-up. All these attacks, however, run in the model of
superposition queries, which models a quantum adversary having some inher-
ently quantum access to the primitives attacked. As such, they do not give any
improvement when the adversary only has classical access.

Stated differently, the attacks in the Q1 model are particularly relevant due to
their impact on current data communication technology. However, the quantum
algorithms that have been exploited for building attacks in the Q1 model are very
limited and have not allowed more than a quadratic speed-up. The most used
algorithm is the simple quantum exhaustive search with Grover’s algorithm. A
possible direction is the collision finding algorithm that is often said to achieve
“2n/3 complexity” versus 2n/2 classically. However, even in this direction, there
are several debatable points; basic quantum algorithms for finding collisions
have massive quantum hardware requirements [9]. There is a quantum-hardware-
friendly variant [12], but then the time complexity becomes suboptimal.

In summary, attacks using Simon’s algorithm could achieve a very low com-
plexity but could only be applied in the Q2 model, a very strong model. In
contrast, attacks in the Q1 model are practically more relevant, but for now the
obtained speed-ups were not surprising.

Another model to consider when designing quantum attacks is whether the
attacker has or not a big amount of quantum memory available. Small quantum
computers seem like the most plausible scenario, and therefore attacks needing a
polynomial amount of qubits are more practically relevant. Therefore, the most
realistic scenario is Q1 with small quantum memory.

Our Main Contribution. The breakthrough we present in this paper is the first
application of Simon’s algorithm [40] in the Q1 model, which requires signif-
icantly less than O (

2n/2
)

classical queries and offline quantum computations,
only with poly(n) qubits, and no qRAM access (where n is the size of the secret).
Namely, we remove the superposition queries in previous attacks. The new idea
can be applied to a long list of ciphers and modes of operation. Let us illustrate
the impact of our attacks by focusing on two applications:

The first application is the key recovery on the Even-Mansour construction,
which is one of the simplest attacks using Simon’s algorithm. Besides the polyno-
mial time attacks in the Q2 model, Kuwakado and Morii also developed an attack
in the Q1 model with O (

2n/3
)

classical queries, quantum computations, qubits,
and classical memory [30]. The extension of this Q1 attack by Hosoyamada and
Sasaki [23] recovers the key with O (

23n/7
)

classical queries, O (
23n/7

)
quantum

computations, polynomially many qubits and O (
2n/7

)
classical memory (to bal-

ance classical queries and quantum computations). Our attack in the Q1 model
only uses polynomially many qubits, yet only requires O (

2n/3
)

classical queries,
O (

n32n/3
)

quantum computations and poly(n) classical memory.

Quantum Attacks Without Superposition Queries 555

The second application is the key recovery on the FX-construction
FXk,kin,kout

, which computes a ciphertext c from a plaintext p by c ← Ek(p ⊕
kin) ⊕ kout, where E is a block cipher, k is an m-bit key and kin, kout are two n-
bit keys. Leander and May proposed an attack in the Q2 model with O (

n2m/2
)

superposition queries, O (
n32m/2

)
quantum computations, poly(n) qubits and

poly(n) classical memory [31].1 They combined Simon’s algorithm and Grover’s
algorithm in a clever way, while it became inevitable to make queries in an adap-
tive manner. For the Q1 model, the meet-in-the-middle attack [23] can recover
the key with O (

23(m+n)/7
)

complexities. Our results can improve the previous
attacks in two directions. One is to reduce the amount of superposition queries in
the Q2 model to the polynomial order and convert the adaptive attack to a non-
adaptive one. The other is to completely remove the superposition queries. The
comparison of previous quantum attacks and our attacks on Even-Mansour and
the FX construction is shown in Table 1. Other interesting complexity trade-offs
are possible, as shown in detail in Sects. 4 and 5.

Table 1. Previous and new quantum attacks on Even-Mansour and FX, assuming that
m = O (n).

Target Model Queries Time Q-memory C-memory Reference

EM Q2 O (n) O (
n3

) O (n) O (
n2

)
[30]

Q1 O (
2n/3

) O (
2n/3

) O (
2n/3

) O (
2n/3

)
[30]

Q1 O (
23n/7

) O (
23n/7

) O (n) O (
2n/7

)
[23]

Q1 O (
2n/3

) O (
n32n/3

) O (
n2

) O (n) Section 5

FX Q2 O (
n2m/2

) O (
n32m/2

) O (
n2

)
0 [31]

Q2 O (n) O (
n32m/2

) O (
n2

) O (n) Section 4

Q1 O (
23(m+n)/7

) O (
23(m+n)/7

) O (n) O (
2(m+n)/7

)
[23]

Q1 O (
2(m+n)/3

) O (
n32(m+n)/3

) O (
n2

) O (n) Section 5

Our New Observation. Here we describe our new algorithm used in the Q1 model
with the Even-Mansour construction as an example. Recall that the encryption
Ek1,k2 of the Even-Mansour construction is defined as Ek1,k2(x) = P (x⊕k1)⊕k2,
where P is a public permutation and k1, k2 ∈ {0, 1}n are the secret keys. Roughly
speaking, our attack guesses (2n/3)-bit of k1 (denoted by k

(2)
1 in Fig. 1) by

using the Grover search, and checks if the guess is correct by applying Simon’s
algorithm to the remaining (n/3)-bit of k1 (denoted by k

(1)
1 in Fig. 1). If we

were in the Q2 model, we could recover k1 using the technique by Leander and
May [31] in time Õ(2n/3). However, their technique is not applicable in the Q1
setting since quantum queries are required.

Our core observation that realizes the above idea in the Q1 model is that, we
can judge whether a function f ⊕ g has a period (i.e., we can apply Simon’s
algorithm) without any quantum query to g, if we have the quantum state

1 Here we are assuming that m is in O (n), which is the case for usual block ciphers.

556 X. Bonnetain et al.

|ψg〉 := (
∑

x |x〉|g(x)〉)⊗cn (c is a small constant): If we have the quantum state
|ψg〉, then we can make the quantum state |ψf⊕g〉 := (

∑
x |x〉|(f ⊕ g)(x)〉)⊗cn

by making O (n) quantum queries to f . Once we obtain |ψf⊕g〉, by applying the
Hadamard operation H⊗n to each |x〉 register, we obtain the quantum state
(

∑

x1,u1

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉
)

⊗· · ·⊗
(

∑

xcn,ucn

(−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉
)

Then, roughly speaking, dim(Span(u1, . . . , ucn)) < n always holds if f ⊕ g has a
secret period s, while dim(Span(u1, . . . , ucn)) = n holds with a high probability
if f ⊕g does not have any period. Since the dimension of the vector space can be
computed in time O (

n3
)
, we can judge if f ⊕g has a period in time O (

n3
)
. Note

that we can reconstruct the quantum data |ψg〉 after judging whether (f ⊕ g)
has a period (with some errors) by appropriately performing uncomputations,
which help us use these procedures as a subroutine without measurement in
other quantum algorithms.

For the Even-Mansour construction, we set g : {0, 1}n/3 → {0, 1}n by
g(x) := Ek1,k2(x‖02n/3). Then we can make the quantum state |ψg〉 by clas-
sically querying x to g for all x ∈ {0, 1}n/3, which requires 2n/3 classical queries.
After obtaining the state |ψg〉, we guess k

(2)
1 . Suppose that here our guess is

k′ ∈ {0, 1}2n/3. We define fk′ : {0, 1}n/3 → {0, 1}n by fk′(x) := P (x‖k′). Then,
roughly speaking, our guess is correct if and only if the function fk′ ⊕ g has a
period k

(1)
1 . Thus we can judge whether the guess is correct without quantum

queries to g, by using our technique described above. Since k
(2)
1 can be guessed

in time Õ(2n/3) by using the Grover search, we can recover the keys by making
O(2n/3) classical queries and Õ(2n/3) offline quantum computations.

P

k
(2)
1

k
(1)
1

2n
3

n
3

k2

n

Grover search space

Apply Simon’s algorithm

Fig. 1. Idea of our Q1 attack on the Even-Mansour construction.

We will show how we can similarly attack the FX construction in the Q1
model, by guessing additional key bits (see Fig. 2).

Moreover, our attack idea in the Q1 model can also be used to reduce the
number of quantum queries of attacks in the Q2 model. The Leander and May’s
attack on the FX construction in the Q2 model [31] guesses the m-bit key k
of the FX construction FXk,kin,kout

and checks whether the guess is correct by

Quantum Attacks Without Superposition Queries 557

E

k
(2)
in

k
(1)
in

2n−m
3

n+m
3

kout

n

Grover search space

Apply Simon’s algorithm

k

m

Fig. 2. Idea of our Q1 attack on the FX construction.

using Simon’s algorithm, which requires O(2m/2) online quantum queries and
Õ(2m/2) offline quantum computations. Roughly speaking, the guess k′ for the
key k is correct if and only if (fk′ ⊕ g)(x) has the secret period kin, where
fk′(x) = Ek′(x) and g(x) = FXk,kin,kout

(x). In the Q2 model, we can make the
quantum state |ψg〉 = (

∑
x |x〉|g(x)〉)⊗cn by making O (n) quantum queries to g.

Thus, by our new attack idea described above, we can break the FX construction
with O (n) online quantum queries and Õ(2m/2) offline quantum computations,
which exponentially improves the attack by Leander and May from the viewpoint
of quantum query complexity.

This exponential improvement on the quantum query complexity is due to
the separation of offline queries and online computations: In the previous attack
on the FX construction in the Q2 model by Leander and May, we have to do
online queries and offline computations alternately in each iteration of the Grover
search. Thus the number of online quantum queries becomes exponential in the
previous attack. On the other hand, in our new attack, the online queries (i.e.,
the procedures to make the quantum state |ψg〉) are completely separated from
offline computations. This enables us to decrease the number of quantum queries
exponentially, while we still need exponentially many offline computations.

Paper Organization. Section 2 gives preliminaries. Section 3 describes our
main algorithms. Section 4 shows applications of our algorithms in the Q2 model.
Section 5 shows applications of our algorithms in the Q1 model. Section 6 dis-
cusses further applications of our algorithm. Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some quantum computing notions and review
Simon’s and Grover’s algorithms. We refer to [36] for a broader presentation.

558 X. Bonnetain et al.

2.1 The Quantum Circuit Model

It has become standard in the cryptographic literature to write quantum algo-
rithms in the circuit model, which is universal for quantum computing. We
only consider the logical level of quantum circuits, with logical qubits, not their
implementation level (which requires physical qubits, quantum error-correction,
etc). Although it is difficult to estimate the cost of a physical implementation
which does not yet exist, we can compare security levels as quantum operation
counts in this model. For example, Grover search of the secret key for AES-128
is known to require approximately 264 quantum evaluations of the cipher, and
284 quantum operations [21].

Qubits and Operations. A quantum circuit represents a sequence of quantum
operations, denoted as quantum gates, applied to a set of qubits. An individual
qubit is a quantum object whose state is an element of a two-dimensional Hilbert
space, with basis |0〉, |1〉 (analogs of the classical logical 0 and 1). Hence, the
state is described as a linear combination of |0〉, |1〉 with complex coefficients (a
superposition). We add to this a normalization condition: α|0〉+β|1〉 is such that
|α|2 + |β|2 = 1. When it is clear from context, we dismiss common normalization
factors.

When n qubits are given, the computational basis has 2n vectors, which
are all n-bit strings. The qubits start in a state |0〉, for example a fixed spin
or polarization. The sequence of quantum gates that is applied modifies the
superposition, thanks to constructive and destructive interferences. In the end,
we measure the system, and obtain some n-bit vector in the computational basis,
which we expect to hold a meaningful result.

All computations are (linear) unitary operators of the Hilbert space, and as
such, are reversible (this holds for the individual gates, but also for the whole
circuit). In general, any classical computation can be made reversible (and so,
implemented as a quantum circuit) provided that one uses sufficiently many
ancilla qubits (which start in the state |0〉 and are brought back to |0〉 after the
computation). Generally, on input |x〉, we can perform some computation, copy
the result to an output register using CNOT gates, and uncompute (perform
backwards the same operations) to restore the initial state of the ancilla qubits.
Uncomputing a unitary U corresponds to applying its adjoint operator U∗.

By the principle of deferred measurements, any measure that occurs inside
the quantum circuit can be deferred to the end of the computation.

Quantum Oracles. Many quantum algorithms require an oracle access. The dif-
ference they make with classical algorithms with this respect is that classical ora-
cles (e.g. cryptographic oracles such as a cipher with unknown key) are queried
“classically”, with a single value, while quantum oracles are unitary operators.
We consider oracle calls of the type:

|x〉
Of

|x〉
|y〉 |y ⊕ f(x)〉

Quantum Attacks Without Superposition Queries 559

which XOR their output value to an output register (ensuring reversibility). If
we consider that |y〉 starts in the state |0〉, then f(x) is simply written here. If
the function f can be accessed through Of , we say it has superposition oracle
access.

Quantum RAM. Additionally to the use of “plain” quantum circuits with univer-
sal quantum computation, many algorithms require quantum random-access, or
being able to access at runtime a superposition of memory cells. This is a strong
requirement, since this requires an extensive quantum hardware (the qRAM)
and a huge architecture that is harder to build than a quantum circuit with a
limited number of qubits. Shor’s algorithm, Simon’s algorithm, Grover’s algo-
rithm do not require qRAM, if their oracle calls do not either, contrary to, e.g.,
the algorithm for quantum collision search of [9], whose optimal speedup can be
realized only by using massive qRAM.

Our algorithm has no such requirement, which puts it on the same level of
practicality as Grover’s algorithm for attacking symmetric primitives.

2.2 Simon’s Algorithm

Simon’s algorithm [40] gives an exponential speedup on the following problem.

Problem 1 (Simon’s problem). Suppose given access to a function f : {0, 1}n →
{0, 1}n that is either injective, or such that there exists s ∈ {0, 1}n with:

∀x, f(x) = f(y) ⇐⇒ y = x or y = x ⊕ s,

then find α.

In other words, the function f has a hidden Boolean period. It is also easy to
extend this algorithm to a hidden Boolean shift, when we want to decide whether
two functions f and g are such that g(x) = f(x ⊕ s) for all x. In practice, f
can fall in any set X provided that it can be represented efficiently, but in our
examples, we will consider functions producing bit strings.

Solving this problem with classical oracle access to f requires Ω
(
2n/2

)

queries, as we need to find a collision of f (or none, if there is no hidden period).
Simon [40] gives an algorithm which only requires O (n) superposition queries.
We fix c ≥ 1 a small constant to ensure a good success probability and repeat
cn times Algorithm 1.

We obtain either:

• a list of cn random values of y;
• a list of cn random values of y in the hyperplane y · s = 0.

It becomes now easy to test whether s exists or not. If it doesn’t, the system
of equations obtained has full rank. If it does exist, we can find it by solving
the system. Judging whether there exists such an s and actually finding it (if it
exists) can be done in time O (

n3
)

by Gaussian elimination.

560 X. Bonnetain et al.

Algorithm 1. Quantum subroutine of Simon’s algorithm.
1: Start in the all-zero state |0〉|0〉 where the first register contains n qubits and the

second represents elements of X.
2: Apply Hadamard gates to obtain:

∑

x∈{0,1}n

|x〉|0〉

3: Query Of to obtain:

∑

x∈{0,1}n

|x〉|f(x)〉 =
∑

a∈X

⎛

⎝
∑

x∈{0,1}n|f(x)=a

|x〉
⎞

⎠ |a〉

4: Measure a (alternatively, we can defer this measurement), get a random value
a ∈ X and: ∑

x∈{0,1}n|f(x)=a

|x〉

5: Apply Hadamard gates:

∑

y∈{0,1}n

⎛

⎝
∑

x∈{0,1}n|f(x)=a

(−1)x·y

⎞

⎠ |y〉

6: Now measure the y register. There are two cases.
• Either f hides no period s, in which case we get a random y.
• Either f hides a period s, in which case the amplitude of |y〉 is:

∑

x∈{0,1}n|f(x)=a

(−1)x·y = (−1)x0·y + (−1)(x0⊕s)·y

which is zero if y · s = 1 and non-zero otherwise.
• In that case, measuring gives a random y such that y · s = 0.

Simon’s Algorithm in Cryptography. This algorithm has been used in many
attacks on modes of operation and constructions where recovering a secret
requires to find a hidden shift between two functions having bit-string inputs.
Generally, the functions to which Simon’s algorithm is applied are not injective,
and random collisions can occur. But a quick analysis (as done e.g. in [24]) shows
that even in this case, a mild increase of the constant c will increase the success
probability to a sufficient level. To be precise, the following proposition holds.

Proposition 1 (Theorem 2 in [24]). Suppose that f : {0, 1}n → X has a
period s = 0n, i.e., f(x ⊕ s) = f(x) for all x ∈ {0, 1}n, and satisfies

max
t�={s,0n}

Pr
x

[f(x ⊕ t) = f(x)] ≤ 1
2
. (1)

When we apply Simon’s algorithm to f , it returns s with a probability at least
1 − 2n · (3/4)cn.

Quantum Attacks Without Superposition Queries 561

2.3 Grover’s Algorithm

Grover’s algorithm [22] allows a quadratic speedup on classical exhaustive search.
Precisely, it solves the following problem:

Problem 2 (Grover’s problem). Consider a set X (the “search space”) whose
elements are represented on �log2(|X|)� qubits, such that the uniform superpo-
sition

∑
x∈X |x〉 is computable in O (1) time. Given oracle access to a function

f : X → {0, 1} (the “test”), find x ∈ X such that f(x) = 1.

Classically, if there are 2t preimages of 1, we expect one to be found in time
(and oracle accesses to f) O (|X|/2t). Quantumly, Grover’s algorithm finds one
in time (and oracle accesses to Of) Õ

(√|X|/2t
)
. In particular, if there is one

preimage of 1, the running time is Õ
(√|X|

)
. If the superposition oracle for f

uses a ancilla qubits, then Grover’s algorithm requires a + �log2(|X|)� qubits
only.

Grover’s algorithm works first by producing the superposition
∑

x∈|X| |x〉. It

applies Õ
(√|X|/2t

)
times an operator which, by querying Of “moves” some

amplitude towards the preimages of 1.

3 Simon’s Algorithm with Asymmetric Queries

In this section, we introduce a problem that can be seen as a general combina-
tion of Simon’s and Grover’s problems, and that will be solved by an according
combination of algorithmic ideas. The problem has many cryptographic applica-
tions, and it will be at the core of our improved Q2 and Q1 time-memory-data
tradeoffs.

Problem 3 (Asymmetric Search of a Period). Let F : {0, 1}m×{0, 1}n → {0, 1}�

and g : {0, 1}n → {0, 1}� be two functions. We consider F as a family of functions
indexed by {0, 1}m and write F (i, ·) = fi(·). Assume that we are given quantum
oracle access to F , and classical or quantum oracle access to g. (In the Q1 setting,
g will be a classical oracle. In the Q2 setting, g will be a quantum oracle.)

Assume that there exists exactly one i ∈ {0, 1}m such that fi ⊕ g has a
hidden period, i.e.: ∀x ∈ {0, 1}n, fi0(x) ⊕ g(x) = fi0(x ⊕ s) ⊕ g(x ⊕ s) for some
s. Furthermore, assume that:

max
i∈{0,1}m\{i0}
t∈{0,1}n\{0n}

Pr
x←{0,1}n

[(fi ⊕ g)(x ⊕ t) = (fi ⊕ g)(x)] ≤ 1
2

(2)

Then find i0 and s.

In our cryptographic applications, g will be a keyed function such that adver-
saries have to make online queries to evaluate it, while F will be a function such
that adversaries can evaluate it offline. For example, the problem of recovering

562 X. Bonnetain et al.

keys of the FX construction FXk,kin,kout
(x) = Ek(x⊕kin)⊕kout can be regarded

as a simple cryptographic instantiation of Problem 3: Set g(x) := FXk,kin,kout
(x)

and F (i, x) := Ei(x). Then, roughly speaking, the function fi ⊕ g has a period
kin if k = i, whereas it does not have any period if i = k and Condition (2)
holds. Thus we can know whether i = k by checking whether fi ⊕g has a period.

Justification of Condition (2). We added Condition (2) in Problem 3 because
the problem would be much harder to solve if we do not suppose any condition on
fi. Such assumptions are standard in the litterature of quantum attacks using
Simon’s algorithm (see for example [24, Sections 2.2 and 4] or [4, Section 3]).
This is reasonable for cryptographic applications, as a block cipher is expected
to behave like a random permutation, which makes the functions we construct in
our applications behave like random functions. This assumption is made in [24,
31], and such functions satisfy Condition (2) with an overwhelming probability.
Moreover, as remarked in [24], a cryptographic construction that fails to satisfy
Condition (2) would exhibit some poor differential properties which could be
used for cryptanalysis.

3.1 Existing Techniques to Solve the Problem

Here we explain existing algorithms to solve Problem 3 in both the Q1 model
and the Q2 model, with the algorithms to recover keys of the FX construction
as an example. Note that we consider the situation in which exponentially many
qubits are not available.

The Model Q1. In the Q1 model, when we are allowed to make only classical
queries to g := FXk,kin,kout

, there exists a Q1 algorithm to attack the FX con-
struction that uses a kind of meet-in-the-middle technique [23]. However, it does
not make use of the exponential speed-up of Simon’s algorithm, and its time
complexity and query complexity is O (

23(n+m)/7
)

(for m ≤ 4n/3).

The Model Q2. Problem 3 can be solved with O (
n2m/2

)
superposition queries

to F (i, x) = Ei(x) and g(x) = FXk,kin,kout
(x), and in time O (

n32m/2
)
, using the

Grover-meet-Simon algorithm of [31]. Indeed, we make a Grover search on index
i ∈ {0, 1}m. When testing whether a guess i for the key k is correct, we perform
O (n) queries to F and O (n) queries to g, to check whether fi ⊕ g has a hidden
period, hence whether the guess i is correct. Moreover, since superposition access
to F and g is allowed, we can test i in superposition as well.

3.2 An Algorithm for Asymmetric Search of a Shift

Here we describe our new algorithms to solve Problem 3. We begin with explain-
ing two observations on the Grover-meets-Simon algorithm in the Q2 model
described in Sect. 3.1, and how to improve it. Then we describe how to use the
idea to make a good algorithm to solve Problem 3 in the Q1 model.

Quantum Attacks Without Superposition Queries 563

Two Observations. Our first observation is that, when doing the Grover search
over i for Problem 3, each time a new i is tested, a new function fi is queried.
But, in contrast, the function g is always the same. We would like to take this
asymmetry into account, namely, to make less queries to g since it does not
change. This in turn has many advantages: queries to g can become more costly
than queries to fi.

Our second observation is that, for each i ∈ I, once we have a superposition
|ψg〉 =

⊗cn
(∑

x∈{0,1}n |x〉|g(x)〉
)

and given a quantum oracle access to fi, we
can obtain the information if fi ⊕ g has a period or not without making queries
to g.

From |ψg〉, we can make the state |ψfi⊕g〉 =
⊗cn

(∑
x∈{0,1}n |x〉

|fi(x) ⊕ g(x)〉
)

by making queries to fi. By applying usual Simon’s procedures
on |ψfi⊕g〉, we can judge if fi ⊕ g has a period. Moreover, by appropriately per-
forming uncomputations, we can recover |ψg〉 (with some errors) and reuse it in
other procedures.

With these observations in mind, below we give an intuitive description of
our algorithm Alg-PolyQ2 to solve Problem 3 in the Q2 model (we name our
algorithm Alg-PolyQ2 because it will be applied to make Q2 attacks with poly-
nomially many online queries in later sections). The main ideas of Alg-PolyQ2
are separating an online phase and offline computations, and iteratively reusing
the quantum data |ψg〉 obtained by the online phase.

Algorithm Alg-PolyQ2(informal)

1. Online phase: Make cn quantum queries to g to prepare |ψg〉.
2. Offline computations: Run the Grover search over i ∈ {0, 1}m. For each fixed

i, run a testing procedure test such that: (a) test checks if i is a good element
(i.e., fi ⊕ g has a period) by using |ψg〉 and making queries to fi, and (b)
after checking if i is good, appropriately performs uncomputations to recover
the quantum data |ψg〉.

A formal description of Alg-PolyQ2 is given in Algorithm 2. We fix a constant
c ≥ 1, to be set later depending on the probability of error wanted.

We show how to implement the testing procedure test in Algorithm 3 without
any new query to g, using only exactly 2cn superposition queries to F . To write
this procedure clearly, we consider a single function f in input, but remark that
it works as well if f is a superposition of fi (as will be the case when test is
called as the oracle of a Grover search).

In practice, Algorithm 3 works up to some error (see Remark 1), which is
amplified at each iteration of Algorithm 2. The complexity and success proba-
bility (including the errors) of Alg-PolyQ2 can be analyzed as below.

Proposition 2. Suppose that m is in O (n). Let c be a sufficiently large con-
stant.2 Consider the setting of Problem 3: let i0 ∈ {0, 1}m be the good ele-
ment such that g ⊕ fi0 is periodic and assume that (2) holds. Then Alg-PolyQ2
2 See Proposition 5 for a concrete estimate.

564 X. Bonnetain et al.

Algorithm 2. Alg-PolyQ2.
1: Start in the all-zero state.
2: Using cn queries to g, create the state:

|ψg〉 =

cn⊗
⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

The circuit now contains |ψg〉, the “g-database”, and additional registers on
which we can perform Grover search. Notice that |ψg〉 contains cn independent
(and disentangled) registers.

3: Create the uniform superposition over indices i ∈ {0, 1}m:

|ψg〉 ⊗
∑

i∈{0,1}m

|i〉

4: Apply Grover iterations. The testing oracle is a unitary operator test that takes in
input a register for |i〉 and the “g-database”, and tests in superposition whether
fi ⊕ g has a hidden period. If this is the case, it returns |b ⊕ 1〉 on input |b〉.
Otherwise it returns |b〉. (Algorithm 3 gives the details for test in the case that i is
fixed.)

|ψg〉
test

|ψg〉
|i〉 |i〉
|b〉 |b or b ⊕ 1〉

The most important feature of test is that it does not change the g-database
(up to some errors). The registers holding |ψg〉 are disentangled before and after
the application of test.

5: After O
(
2m/2

)
Grover iterations, measure the index i.

6: If the hidden shift is also wanted, apply a single instance of Simon’s algorithm (or
re-use the database and perform a slightly extended computation of test to retrieve
the result).

finds i0 with a probability in Θ(1) by making O (n) quantum queries to g and
O (

n2m/2
)

quantum queries to F .3 The offline computation (the procedures
excluding the ones to prepare the state |ψg〉) of Alg-PolyQ2 is done in time
O (

(n3 + nTF)2m/2
)
, where TF is the time required to evaluate F once.

See Section A in the full version of the paper [5] for a proof.

Remark 1. Intuitively, the error produced in each iteration of Algorithm 3 is
bounded by the maximum, on i, of: p(i) := Pr [dim(Span(u1, . . . , ucn)) < n] ,
when u1, . . . , ucn are produced with Simon’s algorithm, i.e. the probability that
3 In later applications, F will be instantiated with unkeyed primitives, and quantum

queries to F are emulated with offline computations of primitives such as block
ciphers.

Quantum Attacks Without Superposition Queries 565

Algorithm 3. The procedure test that checks if a function f ⊕ g has a period
against the g-database, without any new query to g.
1: We start with the g-database:

|ψg〉 =
cn⊗

⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

2: Using cn superposition queries to f , build the state:

|ψf⊕g〉 =
cn⊗

⎛

⎝
∑

x∈{0,1}n

|x〉|g(x) ⊕ f(x)〉
⎞

⎠

We will now perform, in a reversible way, the exact computations of Simon’s
algorithm to find if g ⊕ f has a hidden period or not (in which case f and g have
a hidden shift).

3: Apply
(
H⊗n ⊗ Im

)cn ⊗ I1 to |ψf⊕g〉 ⊗ |b〉, to obtain

⎛

⎝
∑

u1,x1∈{0,1}n

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉
⎞

⎠ ⊗ · · · (3)

· · · ⊗
⎛

⎝
∑

ucn,xcn∈{0,1}n

(−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉
⎞

⎠ ⊗ |b〉.

4: Compute d := dim(Span(u1, . . . , ucn)), set r := 0 if d = n and r := 1 if d < n, and
add r to b. Then uncompute d and r, and obtain

∑

u1,...,ucn
x1,...,xcn

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉 ⊗ · · · (4)

· · · ⊗ (−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉 ⊗ |b ⊕ r〉.
Note that r in (4) depends on u1, . . . , ucn and now the last register may be entangled
with the registers of u1, . . . , ucn.

5: Uncompute
(
H⊗n ⊗ Im

)cn ⊗ I1.
6: Using cn new superposition queries to f , revert |ψf⊕g〉 to |ψg〉.

There are two cases:
• If f ⊕ g has a hidden period, then r = 1 always holds. Hence, in the output

register, we always write 1.
• If f ⊕ g does not have a hidden period, then with high probability, r = 0.

Hence, in the output register, we write 0.

Simon’s algorithm returns the incorrect answer “fi ⊕ g is periodic” even though
fi ⊕ g is not periodic. From condition (2), we can show that p(i) ≤ 2(n+1)/2((1+
1
2)/2)cn/2 holds (see Lemma 1 in the full version of the paper [5]).

566 X. Bonnetain et al.

Remark 2. Alg-PolyQ2 finds the index i such that fi ⊕ g has a period, but does
not return the actual period of fi ⊕ g. However, we can find the actual period of
fi ⊕ g (after finding i with Alg-PolyQ2) by applying Simon’s algorithm to fi ⊕ g.

Summary. With Alg-PolyQ2, we realize an “asymmetric” variant of Simon’s algo-
rithm, in which we store a “compressed” database for a single function g, which
is not modified (up to some errors) while we test whether another function f
has a hidden shift with g, or not. An immediate application of this algorithm
will be to achieve an exponential improvement of the query complexity of some
Q2 attacks on symmetric schemes. Indeed, in the context where Simon’s algo-
rithm and Grover’s algorithm are combined, it may be possible to perform the
queries to the secret-key cryptographic oracle only once, and so, to lower the
query complexity to O (n).

3.3 Asymmetric Search with Q1 Queries

In Alg-PolyQ2, (online) queries to g and (offline) queries to F are separated,
and only cn superposition queries to g are made. Hence another tradeoff is at
our reach, which was not possible when g was queried in each Grover iteration:
removing superposition queries to g completely.

Algorithm 4. Producing the g-database |ψg〉.
Input: Classical query access to g
Output: The g-database:

|ψg〉 =

cn⊗
⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

1: Start with the all-zero state
cn⊗

|0〉|0〉
2: Apply Hadamard gates:

cn⊗ ∑

x∈{0,1}n

|x〉|0〉

3: For each y ∈ {0, 1}n, query (classically) g(y), then apply a unitary which writes
g(y) in the second register if the first contains the value y.

This requires now to query the whole codebook for g to prepare the quantum
state |ψg〉. Once |ψg〉 is built, the second offline phase runs in exactly the same
way. Building |ψg〉 costs roughly 2n time (and classical queries), while going
through the search space for f takes 2m/2 iterations (and quantum queries to
F). We call our new algorithm in the Q1 model Alg-ExpQ1 because it will be
applied to make Q1 attacks with exponentially many online queries in later
sections. The optimal point arrives when m = 2n.

Quantum Attacks Without Superposition Queries 567

Below we give an intuitive description of our algorithm Alg-ExpQ1 to
solve Problem 3 in the Q1 model. As described above, the difference between
Alg-ExpQ1 and Alg-PolyQ2 is the online phase to prepare |ψg〉.
Algorithm Alg-ExpQ1(informal)

1. Online phase: Make 2n classical queries to g and prepare the state |ψg〉.
2. Offline computations: Run the Grover search over i ∈ {0, 1}m. For each fixed

i, run a testing procedure test such that: (a) test checks if i is a good element
(i.e., fi ⊕ g has a period) by using |ψg〉 and making queries fi, and (b) after
checking if i is good, appropriately perform uncomputations to recover the
quantum data |ψg〉.

A formal description of Alg-ExpQ1 is the same as that of Alg-PolyQ2 (Algo-
rithm 2) except that we make 2n classical queries to g to prepare the quantum
state |ψg〉. See Algorithm 4 for formal description of the online phase.

The complexity and success probability (including the errors) of Alg-ExpQ1
can be analyzed as below.

Proposition 3. Suppose that m is in O (n). Let c be a sufficiently large con-
stant.4 Consider the setting of Problem 3: let i0 ∈ {0, 1}m be the good element
such that g ⊕ fi0 is periodic and assume that (2) holds. Then Alg-ExpQ1 finds i0
with a probability in Θ(1) by making O (2n) classical queries to g and O (

n2m/2
)

quantum queries to F .5 The offline computation (the procedures excluding the
ones to prepare the state |ψg〉) of Alg-ExpQ1 is done in time O (

(n3 + nTF)2m/2
)
,

where TF is the time required to evaluate F once.

A proof is given in Section A in the full version of the paper [5].

Finding Actual Periods. The above algorithm Alg-ExpQ1 returns the index i0
such that fi0 ⊕ g has a period, but does not return the actual period. Therefore,
if we want to find the actual period of fi0 ⊕ g after finding i0, we have to apply
Simon’s algorithm to fi0 ⊕ g again. Now we can make only classical queries to g,
though, we can use the same idea with Alg-ExpQ1 to make an algorithm SimQ1
that finds the period of fi0 ⊕ g. Again, let c be a positive integer constant.

Algorithm SimQ1

1. Make 2n classical queries to g and prepare the quantum state |ψg〉.
2. Make cn quantum queries to fi0 to obtain the quantum state

∣
∣ψfi0⊕g

〉
=⊗cn (

∑
x |x〉|fi0(x) ⊕ g(x)〉).

3. Apply H⊗n to each |x〉 register to obtain the state

cn⊗
(

∑

x,u

(−1)x·u|u〉|fi0(x) ⊕ g(x)〉
)

.

4 See Proposition 5 for a concrete estimate.
5 Again, in later applications, F will be instantiated with unkeyed primitives, and

quantum queries to F are emulated with offline computations of primitives such as
block ciphers.

568 X. Bonnetain et al.

4. Measure all |u〉 registers to obtain cn vectors u1, . . . , ucn.
5. Compute the dimension d of the vector space V spanned by u1, . . . , ucn. If

d = n − 1, return ⊥. If d = n − 1, compute the vector v = 0n ∈ {0, 1}n that
is orthogonal to V .

Obviously the probability that the above algorithm SimQ1 returns the period of
fi0 ⊕g is the same as the probability that the original Simon’s algorithm returns
the period, under the condition that cn quantum queries can be made to the
function fi0 ⊕ g. Thus, from Proposition 1, the following proposition holds.

Proposition 4. Suppose that fi0 ⊕ g has a period s = 0n and satisfies

max
t�={s,0n}

Pr
x

[(fi0 ⊕ g)(x ⊕ t) = (fi0 ⊕ g)(x)] ≤ 1
2
. (5)

Then SimQ1 returns s with a probability at least 1−2n ·(3/4)cn by making O (2n)
classical queries to g and cn quantum queries to fi0 . The offline computation of
SimQ1 (the procedures excluding the ones to prepare the state |ψg〉) runs in time
O (

n3 + nTf

)
, where Tf is the time required to evaluate fi0 once.

Proposition 5 (Concrete cost estimates). In practice, for Propositions 2
and 3, c � m/ (n log2(4/3)) is sufficient.

Proof. We need to have 4�π/
(
4 arcsin

(
2−m/2

))�2(n+1)/2(3/4)cn/2 < 1/2.
In practice, arcsin(x) � x and the rounding has a negligible impact. Hence,

we need that m/2 + (n + 1)/2 + log2(π) + log2(3/4)cn/2 < −1.
This reduces to c > log2(4/3)−1 (m + 3 + 2 log2(π)) /n � m/ (n log2(4/3)n).

Remark 3. If m = n, this means c � 2.5, and if m = 2n, c � 5.

4 Q2 Attacks on Symmetric Schemes with Reduced
Query Complexity

This section shows that our new algorithm Alg-PolyQ2 can be used to construct
Q2 attacks on various symmetric schemes. By using Alg-PolyQ2 we can expo-
nentially reduce the number of quantum queries to the keyed oracle compared
to previous Q2 attacks, with the same time cost.

In each application, we consider that one evaluation of each primitive (e.g.,
a block cipher) can be done in time O (1), for simplicity. For our practical esti-
mates, we use the cost of the primitive as our unit, and consider that it is greater
than the cost of solving the linear equation system. In addition, we assume that
key lengths of n-bit block ciphers are in O (n), which is the case for usual block
ciphers.

Quantum Attacks Without Superposition Queries 569

4.1 An Attack on the FX Construction

Here we show a Q2 attack on the FX construction. As described in Sect. 3, the
FX construction builds an n-bit block cipher FXk,kin,kout

with (2n+m)-bit keys
(kin, kout ∈ {0, 1}n and k ∈ {0, 1}m) from another n-bit block cipher Ek with
m-bit keys as

FXk,kin,kout
(x) := Ek(x ⊕ kin) ⊕ kout. (6)

This construction is used to obtain a block cipher with long ((2n + m)-bit)
keys from another block cipher with short (m-bit) keys. Roughly speaking, in
the classical setting, the construction is proven to be secure up to O (

2(n+m)/2
)

queries and computations if the underlying block cipher is secure [26].
Concrete block ciphers such as DESX, proposed by Rivest in 1984 and ana-

lyzed in [26], PRINCE [8], and PRIDE [1] are designed based on the FX construc-
tion. To estimate security of these block ciphers against quantum computers, it
is important to study quantum attacks on the FX construction.

As briefly explained in Sect. 3, the previous Q2 attack by Leander and
May [31] breaks the FX construction by making O (

n2m/2
)

quantum queries,
and its time complexity is O (

n32m/2
)
.

Application of Our Algorithm Alg-PolyQ2. Below we show that, by applying
our algorithm Alg-PolyQ2, we can recover keys of the FX construction with only
O (n) quantum queries. The time complexity of our attack remains O (

n32m/2
)
,

which is the same as Leander and May’s.

Attack Idea. As explained in Sect. 3, the problem of recovering the keys k and
kin of the FX construction Fk,kin,kout

can be reduced to Problem 3: Define F :
{0, 1}m × {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n by

F (i, x) = Ei(x) ⊕ Ei(x ⊕ 1)
g(x) = FXk,kin,kout

(x) ⊕ FXk,kin,kout
(x ⊕ 1).

Then
fk(x) ⊕ g(x) = fk(x ⊕ kin) ⊕ g(x ⊕ kin) (7)

holds, i.e., fk ⊕ g(x) has a period kin (note that fk(x) = F (k, x)). If E is a
secure block cipher and Ei is a random permutation for each i, intuitively, fi ⊕g
does not have any period for i = k. Thus the problem of recovering k and kin

is reduced to Problem 3 and we can apply our algorithm Alg-PolyQ2. Formally,
the attack procedure is as follows.

Attack Description

1. Run Alg-PolyQ2 for the above F and g to recover k.
2. Apply Simon’s algorithm to fk ⊕ g to recover kin.
3. Compute kout = Ek(0n) ⊕ FXk,kin,kout

(0n).

Next we give a complexity analysis of the above attack.

570 X. Bonnetain et al.

Analysis. We assume that m = O (n), which is the case for usual block ciphers. If
E is a secure block cipher and Ei is a random permutation for each i ∈ {0, 1}m,
we can assume that fk ⊕ g = Ek ⊕ Ek(· ⊕ 1) ⊕ FXk,kin,kout

⊕ FXk,kin,kout
(· ⊕ 1)

is far from periodic for all i = k, and that assumption (2) in Problem 3 holds.
Hence, by Proposition 2, Alg-PolyQ2 recovers k with a high probability by

making O (n) quantum queries to g and O (
n2m/2

)
quantum queries to F , which

implies that k is recovered only with O (n) quantum queries made to FXk,kin,kout
,

and in time O (
n32m/2

)
. (Note that one evaluation of g (resp., F) can be done

by O (1) evaluations of FXk,kin,kout
(resp., E)).

From Proposition 1, the second step can be done with O (n) quantum queries
in time O (

n3
)
. It is obvious that the third step can be done efficiently.

In summary, our attack recovers the keys of the FX construction with a high
probability by making O (n) quantum queries to the (keyed) online oracle, and
it runs in time O (

n32m/2
)
.

Applications to DESX, PRINCE and PRIDE. DESX [26] has a 64-bit
state, two 64-bit whitening key and one 56-bit inner key. From Propositions 2
and 5, we can estimate that our attack needs roughly 135 quantum queries and
229 quantum computations of the cipher circuit.

PRINCE [8], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 155 quantum
queries and 233 quantum computations of the cipher circuit.

5 Q1 Attacks on Symmetric Schemes

This section shows that our new algorithm Alg-ExpQ1 can be used to construct
Q1 attacks on various symmetric schemes, with a tradeoff between online clas-
sical queries, denoted below by D, and offline quantum computations, denoted
below by T .

All the algorithms that we consider run with a single processor, but they
can use quantum or classical memories, whose amount is respectively denoted
by Q (number of qubits) and M . Again, we consider that one evaluation of each
primitive (e.g. a block cipher) can be done in time O (1), for simplicity, and we
assume that key lengths of n-bit block ciphers are in O (n).

5.1 Tradeoffs for the Even-Mansour Construction

The Even-Mansour construction [19] is a simple construction to make an n-bit
block cipher Ek1,k2 from an n-bit public permutation P and two n-bit keys k1, k2
(see Fig. 3). The encryption Ek1,k2 is defined as Ek1,k2(x) := P (x⊕k1)⊕k2, and
the decryption is defined accordingly.

In the classical setting, roughly speaking, the Even-Mansour construction is
proven secure up to O (

2n/2
)

online queries and offline computations [19]. In
fact there exists a classical attack with tradeoff TD = 2n, which balances at
T = D = 2n/2 [15].

Quantum Attacks Without Superposition Queries 571

x P

k1 k2

Ek1,k2(x)

Fig. 3. The Even-Mansour construction.

Previous Q1 Attacks on the Even-Mansour Construction. Kuwakado
and Morii gave a Q1 attack that recovers keys of the Even-Mansour construc-
tion with O (

2n/3
)

classical queries and qubits, and O (
2n/3

)
offline quantum

computations [30]. Their attack is based on a claw-finding algorithm by Bras-
sard et al. [9], and gives the tradeoff T 2D = 2n, with additional Q = D qubits.
The balanced point 2n/3 is significantly smaller than the classical balanced point
2n/2. However, if we want to recover keys with this attack in time T � 2n/2, we
need an exponential amount of qubits.

Main Previous Attacks with Polynomial Qubits. The best classical attacks allow
a trade-off of D · T = 2n (see [18] for other trade-offs involving memory). With
Grover we could recover the keys with a complexity of 2n/2 and 2 plaintexts-
ciphertext pairs, (P1, C1) and (P2, C2), by performing an exhaustive search over
the value of k1 that would verify P (P1 ⊕ k1) ⊕ P (P2 ⊕ k1) = C1 ⊕ C2. In [23],
Hosoyamada and Sasaki also gave a tradeoff D · T 6 = 23n for D ≤ 23n/7 under
the condition that only polynomially many qubits are available, by using the
multi-target preimage search by Chailloux et al. [12]. D and T are balanced at
D = T = 23n/7, which is smaller than the classical balanced point 2n/2. The
attack uses only polynomially many qubits, but requires M = D1/3 = 2n/7

classical memory. At the balanced point, this still represents an exponentially
large storage. Note that this is the only previous work that recover keys in time
T � 2n/2 with polynomially many qubits.

Table 2. Tradeoffs for Q1 attacks on the Even-Mansour construction. In this table we
omit to write order notations, and ignore polynomial factors in the first and last rows.

Reference Classical
attack

Grover [23] [30] [Ours]

Tradeoff of
D and T

D · T = 2n T = 2n/2,
D = constant

D · T 6 = 23n

(D ≤ 23n/7)

D = 2n/3,
T = 2n/3

D · T 2 = 2n

Num. of
qubits

– poly(n) poly(n) 2n/3 poly(n)

Classical
memory

D poly(n) D1/3 poly(n) poly(n)

Balanced
point of D

and T

2n/2 – 23n/7 – 2n/3

572 X. Bonnetain et al.

Application of Alg-ExpQ1. We explain how to use our algorithm Alg-ExpQ1
to attack the Even-Mansour construction. The tradeoff that we obtain is T 2 ·
D = 2n, the same as the attack by Kuwakado and Morii above. It balances at
T = D = 2n/3, but we use only poly(n) qubits and poly(n) classical memory. See
Table 2 for comparison of attack complexities under the condition that poly(n)
many qubits are available.

Attack Idea. The core observation of Kuwakado and Morii’s polynomial-time
attack in the Q2 model [30] is that the n-bit secret key k1 is the period of the
function Ek1,k2(x)⊕P (x), and thus Simon’s algorithm can be applied if quantum
queries to Ek1,k2 are allowed. The key to this exponential speed up (compared
to the classical attack) is to exploit the algebraic structure of Ek1,k2 (the hidden
period of the function) with Simon’s algorithm.

On the other hand, the previous Q1 (classical query) attacks described above
use only generic multi-target preimage search algorithms that do not exploit any
algebraic structures. Hence being able to exploit the algebraic structure in the
Q1 model should give us some advantage.

Our algorithm Alg-ExpQ1 realizes this idea. It first makes classical online
queries to emulate the quantum queries required by Simon’s algorithm (the g-
database above) and then runs a combination of Simon’s and Grover’s algorithms
offline (Grover search is used to find the additional m-bit secret information). A
naive way to attack in the Q1 model would be to immediately combine Kuwakado
and Morii’s Q2 attack with Alg-ExpQ1. However, we would have to query the
whole classical codebook to emulate quantum queries, which is too costly (and
there is no Grover search step).

Our new attack is as follows: We divide the n-bit key k1 in k
(1)
1 of u bits and

k
(2)
1 of n − u bits and apply Simon’s algorithm to recover k

(1)
1 , while we guess k

(2)
1

by the Grover search (see Fig. 4). Then, roughly speaking, Alg-ExpQ1 recovers
the key by making D = 2u classical queries and T = 2(n−u)/2 offline Grover
search iterations (note that the offline computation cost for Simon’s algorithm
is poly(n) and we ignore polynomial factors here for simplicity), which yields the
tradeoff D · T 2 = 2n, only with poly(n) qubits and poly(n) classical space.

P

k
(2)
1

k
(1)
1

n − u

u

k2

n

Grover search space

Apply Simon’s algorithm

Fig. 4. Idea of our Q1 attack on the Even-Mansour construction.

Quantum Attacks Without Superposition Queries 573

Attack Description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 ≤ u ≤ n. Define F : {0, 1}n−u × {0, 1}u → {0, 1}n by

F (i, x) = P (x‖i), (8)

and define g : {0, 1}u → {0, 1}n by g(x) = Ek1,k2(x‖0n−u).
Note that F (k(2)

1 , x) ⊕ g(x) has the period k
(1)
1 since F (k(2)

1 , x) ⊕ g(x) =
P (x‖k

(2)
1) ⊕ P ((x ⊕ k

(1)
1)‖k

(2)
1) ⊕ k2. Our attack is described as the following

procedure:

1. Run Alg-ExpQ1 for the above F and g to recover k
(2)
1 .

2. Recover k
(1)
1 by applying SimQ1 to f

k
(2)
1

and g.
3. Compute k2 = Ek1,k2(0

n) ⊕ P (k1).

Analysis. Below we assume that u is not too small, e.g., u ≥ n/ log2 n. This
assumption is not an essential restriction since, if u is too small, then the com-
plexity of the first step becomes almost the same as the Grover search on k1,
which is not of interest.

If P is a random permutation, we can assume that fi ⊕ g = P (·||i) ⊕
Ek1,k2(·||0n−u) is far from periodic for all i = k

(2)
1 , and that assumption (2)

in Problem 3 holds.
Hence, by Proposition 3, Alg-ExpQ1 in Step 1 recovers k

(2)
1 with a high prob-

ability by making O (2u) classical queries to g and the offline computation of
Alg-ExpQ1 runs in time O (

n32(n−u)/2
)
. Here, notice that one evaluation of g

(resp. F) can be done in O (1) evaluations of Ek1,k2 (resp. P). In addition,
from Proposition 4, SimQ1 in Step 2 recovers k

(1)
1 with a high probability by

making O (2u) classical queries to g and the offline computation of Alg-ExpQ1
runs in time O (

n3
)
. Step 3 requires O (1) queries to Ek1,k2 and O (1) offline

computations.
In summary, our attack recovers keys of the Even-Mansour construction with

a high probability by making D = O (2u) classical queries to Ek1,k2 and doing
T = O (

n32(n−u)/2
)

offline computations, which balances at T = D = Õ(2n/3).
By construction of Alg-ExpQ1 and SimQ1, our attack uses poly(n) qubits and
poly(n) classical memory.

Applications to Concrete Instances. The Even-Mansour construction is a
commonly used cryptographic construction. The masks used in Even-Mansour
are often derived from a smaller key, which can make a direct key-recovery using
Grover’s algorithm more efficient. This is for example the case in the CAESAR
candidate Minalpher [38]. In general, we need to have a secret key of at least
two thirds of the state size for our attack to beat the exhaustive search.

The Farfalle construction [2] degenerates to an Even-Mansour construction
if the input message is only 1 block long (Fig. 5). Instances of this construction
use variable states and key sizes. The Kravatte instance [2] has a state size of
1600 bits, and a key size between 256 and 320 bits, which leads to an attack at

574 X. Bonnetain et al.

a whopping cost of 2533 data and time, while the direct key exhaustive seach
would cost at most 2160. Xoofff [16] has a state size of 384 bits and a key size
between 192 and 384 bits. Our attack needs 2128 data, which is exactly the data
limit of Xoofff. Hence, it is relevant if the key size is greater than 256.

m pc pd pe z

k k′

Fig. 5. One-block Farfalle.

5.2 Tradeoffs for the FX Construction

The FX construction [26] FXk,kin,kout
, computes a ciphertext c from a plaintext

p by c ← Ek(p ⊕ kin) ⊕ kout, where E is a block cipher, k is an m-bit key
and kin, kout are two n-bit keys. In the classical setting, there exists a classical
attack with tradeoff TD = 2n+m, which balances at T = D = 2(n+m)/2 (see, for
example, [17] for more details and memory trade-offs).

Previous Q1 Attacks on the FX Construction. Applying Grover as we
did before on Even-Mansour on the keys kin and k, we can recover the keys with
only two pairs of plaintext-ciphertext and a time complexity of 2(n+m)/2, while
only needing a polynomial number of qubits.

In [23], Hosoyamada and Sasaki proposed a tradeoff D · T 6 = 23(n+m) for
D ≤ min{2n, 23(n+m)/7} with a polynomial amount of qubits, by using the multi-
target preimage search by Chailloux et al. [12]. The balance occurs at D = T =
23(n+m)/7 (if m ≤ 4n/3), which is smaller than the classical balanced point
2(n+m)/2. The attack requires M = D1/3 classical memory, thus the attack still
requires exponentially large space at the balanced point. This was the only Q1
attack with time T � 2(n+m)/2 and a polynomial amount of qubits.

Application of Alg-ExpQ1. We explain how to apply our algorithm Alg-ExpQ1
to the FX construction. Our new tradoff is T 2 · D = 2n+m for D ≤ 2n, which
balances at T = D = 2(n+m)/3 (for m ≤ 2n), using only poly(n) qubits and
poly(n) classical memory. See Table 3 for comparison of attack complexities under
the condition that only poly(n) qubits are available.

Attack Idea. Recall that, in the Q1 attack on the Even-Mansour construction
in Sect. 5.1, we divided the first key k1 to two parts k

(1)
1 and k

(2)
1 and applied

Simon’s algorithm to k
(1)
1 while we performed Grover search on k

(2)
1 .

In a similar manner, for the FX construction FXk,kin,kout
we divide the n-bit

key kin in k
(1)
in of u bits and k

(2)
in of (n − u) bits. We apply Simon’s algorithm to

recover k
(1)
in while we perform Grover search on k in addition to k

(2)
in (see Fig. 6).

Quantum Attacks Without Superposition Queries 575

Table 3. Tradeoffs for Q1 attacks on the FX construction. In this table we omit to
write order notations, and ignore polynomial factors in the first and last rows.

Reference Classical attack Grover [23] [Ours]

Tradeoff of
D and T

D · T = 2n+m

(D ≤ 2n)

T = 2(n+m)/2

D = constant

D · T 6 = 23(n+m)

(D ≤ min{2n, 23n/7})

D · T 2 = 2n+m

(D ≤ 2n)

Num. of
qubits

– poly(n) poly(n) poly(n)

Class.

memory

D poly(n) D1/3 poly(n)

Balanced
point of D
and T

2(n+m)/2

(m ≤ n)

– 23(n+m)/7

(m ≤ 4n/3)

2(n+m)/3

(m ≤ 2n)

E

k
(2)
in

k
(1)
in

n − u

u

kout

n

Grover search space

Apply Simon’s algorithm

k

m

Fig. 6. Idea of our Q1 attack on the FX construction.

Then, roughly speaking, by applying Alg-ExpQ1 we can recover the key by
making D = 2u classical queries and T = 2(n−u)/2 offline Grover iterations
(note that the offline computation cost for the Simon’s algorithm is poly(n)
and we ignore polynomial factors here for simplicity), which yields the tradeoff
D · T 2 = 2(n+m) for D ≤ 2n, with only poly(n) qubits and poly(n) classical
memories.

Attack Description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 ≤ u ≤ n. Define F : {0, 1}m+(n−u) × {0, 1}u → {0, 1}n by

F (i‖j, x) = Ei(x‖j)(i ∈ {0, 1}m, j ∈ {0, 1}n−u), (9)

and define g : {0, 1}u → {0, 1}n by g(x) = FXk,kin,kout
(x‖0n−u).

Note that F (k‖k
(2)
in , x)⊕ g(x) has the period k

(1)
in since F (k‖k

(2)
in , x)⊕ g(x) =

Ek(x‖k
(2)
in) ⊕ Ek((x ⊕ k

(1)
in)‖k

(2)
in) ⊕ kout. Our attack procedure runs as follows:

1. Run Alg-ExpQ1 for the above F and g to recover k and k
(2)
in .

2. Recover k
(1)
in by applying SimQ1 to f

k‖k
(2)
in

and g.
3. Compute kout = FXk,kin,kout

(0n) ⊕ Ek(kin).

576 X. Bonnetain et al.

Analysis. We assume that m = O (n), which is the case for usual block ciphers. In
the same way as in the analysis for the attack on the Even-Mansour construction
in Sect. 5.1, if E is a (pseudo) random permutation family and u is not too small
(e.g. u ≥ n/ log2 n), we observe that the assumption (2), rephrased as:

max
t∈{0,1}n\{0n}

Pr
x∈{0,1}n

[
Ei (x||j) ⊕ Ei (x ⊕ t||j) ⊕ Ek

(
x ⊕ k

(1)
in ||k(2)

in

)

⊕Ek

(
x ⊕ t ⊕ k

(1)
in ||k(2)

in

)
= 0

]
≤ 1/2 (10)

holds for all (i, j) = (k, k
(2)
1) with overwhelming probability.

This again implies that the claims of Propositions 3 and 4 hold for Alg-ExpQ1
in Step 1 and SimQ1 in Step 2, respectively.

Thus our attack recovers keys of the FX construction with a high prob-
ability by making D = O (2u) classical queries to FXk,kin,kout

and doing
T = O (

n32(m+n−u)/2
)

offline computations for D ≤ 2n, which balances at
T = D = Õ(2(n+m)/3) if m ≤ 2n. Our attack uses only poly(n) qubits and
poly(n) classical memory by construction of Alg-ExpQ1 and SimQ1.

Application to Concrete Instances. DESX [26] has a 64-bit state, two 64-
bit whitening key and one 56-bit inner key. From Propositions 2 and 5, we can
estimate that our attack needs roughly 242 classical queries and 240 quantum
computations of the cipher circuit.

PRINCE [8], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 245 quantum
queries and 243 quantum computations of the cipher circuit.

We can also see some encryption modes as an instance of the FX construction.
This is for example the case of the XTS mode [32], popular for disk encryption. It
is generally used with AES-256 and two whitening keys that depend on the block
number and another 256-bit key. Hence, with the full codebook of one block, we
can obtain the first key and the value of the whitening keys of the corresponding
block. Once the first key is known, the second can easily be brute-forced from a
few known plaintext-ciphertext couples in other blocks.

Adiantum [14] is another mode for disk encryption that uses a variant of
the FX construction with AES-256 and Chacha. There is however one slight
difference: the FX masking keys are added with a modular addition instead
of a xor. The FX construction is still vulnerable [6], but we will need to use
Kuperberg’s algorithm [28] instead of Simon’s algorthm. As before, with the full
codebook on one block, we can recover the AES and Chacha keys in a time
slightly larger than 2256.

5.3 Other Applications

Chaskey. The lightweight MAC Chaskey [33] is very close to an Even-Mansour
construction (see Fig. 7). Since the last message block (m2 in Fig. 7) is XORed

Quantum Attacks Without Superposition Queries 577

to the key K1, we can immediately apply our Q1 attack and recover K1 and
the value of the state before the xoring of the last message block. As π is a per-
mutation easy to invert, this allows to retrieve K. The Chaskey round function
applies on 128 bits. It contains 16 rounds with 4 modular additions on 32 bits,
4 XORs on 32 bits and some rotations. With a data limit of 248, as advocated
in the specification, our attack would require roughly 2(128−48)/2 × 219 = 259

quantum gates, where the dominant cost is solving the 80-dimensional linear
system inside each iteration of Grover’s algorithm.

K π π

m1 m2 K1 K1

Trunkt Tag
128

Fig. 7. Two-block Chaskey example.

Sponges. Our attack can be used on sponges if there is an input injected on
a fixed state. In general, it has two drawbacks: the nonce has to be fixed, and
the cost of the attack is at least 2c/2 with c the capacity of the sponge, which is
often the classical security parameter. However, there are some cases where our
attack is of interest.

In particular, our attack needs a set of values that contains an affine space. If
a nonce was injected the same way the messages are, then we only need to know
the encryptions of identical messages, with a set of nonces that fills an affine
space. Nonce-respecting adversaries are generally allowed to choose the nonce,
but here, the mere assumption that the nonce is incremented for each message
(which is the standard way nonces are processed in practice) is sufficient: A set
of 2k consecutive values contains an affine space of (Z/(2))k−1.

This is the case in the Beetle mode of lightweight authenticated encryp-
tion [13], whose initialization phase is described as (K1 ⊕ N)‖K2 �→ f((K1 ⊕
N)‖K2), where K1, N ∈ {0, 1}r, K2 ∈ {0, 1}c, and f is a (r+ c)-bit permutation
(Fig. 8).

Here, the nonce is directly added to the key K1, but as the key has the same
length as the state, the attack would still work if the nonce was added after the
first permutation. In Beetle[Light+], the rate is r = 64 bits and the capacity
c = 80 bits. The rate is sufficiently large to embed 48 varying bits for the nonce;
in that case, by making 248 classical queries and 248 Grover iterations, we can
recover the secret K1||K2. In Beetle[Secure+], r = c = 128 bits. We can recover
K1||K2 with 285 messages and Grover iterations.

578 X. Bonnetain et al.

f
K1 ⊕ N

K2

r

c

Fig. 8. Beetle state initialization.

6 Discussion

In this section, we discuss on the application of our attack idea to related-
key attacks, to some slide attacks, and to an extension of Problem 3. See also
Section B in the full version of the paper [5] for discussions on adaptive attacks
and non-adaptive attacks.

6.1 Related Keys

Consider a block cipher Ek with a key and block size of n bits. In the related-key
setting, as introduced in [41], we are not only allowed to make chosen plaintext or
ciphertext queries to a secret-key oracle hiding k, but also to query Ek⊕�(m) for
any n-bit difference � and message m. Classically, this is a very powerful model,
but it becomes especially meaningful when the block cipher is used inside a mode
of operation (e.g. a hash function) in which key differences can be controlled by
the attacker. It is shown in [41] that a secret key recovery in this model can
be performed in 2n/2 operations, as it amounts to find a collision between some
query Ek⊕�(m) and some offline computation E�′(m) (we can use more than a
single plaintext m to ensure an overwhelming success probability).

Rötteler and Steinwandt [37] noticed that, if a quantum adversary has super-
position access to the oracle that maps � to Ek⊕�(m), it can mount a key-recovery
in polynomial time using Simon’s algorithm. Indeed, one can define a function:

f(x) = Ek⊕x(m) ⊕ Ex(m)

which has k as hidden period, apply Simon’s algorithm and recover k. This attack
works for any block cipher, even ideal. In contrast, in the Q2 quantum attacker
model, we know that some constructions are broken, but it does not seem to be
the case for all of them.

With our algorithm Alg-ExpQ1, we are able to translate this related-key
superposition attack into an attack where the related-key oracle is queried only
classically, but the attacker has quantum computing power. We write k = k1||k2
where k1 has n/3 bits and k2 has 2n/3 bits. We query E(k1||k2)⊕(�1||0)(m) for
a fixed m and all n/3-bit differences �1. Then we perform a Grover search on
k2. The classical security level in presence of a related-key oracle of this form,
which is 2n/2, is reduced quantumly to 2n/3. This shows that the transition to
a quantum setting has an impact on the related-key security even if the oracle
remains classical.

Quantum Attacks Without Superposition Queries 579

As a consequence, we could complete the security claims of the 16-round
version of the block cipher Saturnin [10], a submission to the ongoing NIST
lightweight cryptography competition6. The authors of Saturnin gave security
claims against quantum attackers meeting the best generic attacks. No claims
were given regarding the Q1 model for related-key attacks. Our result gives the
best generic quantum related-key attack on ideal block ciphers without super-
position queries, and sets the level of security that should be expected from a
block cipher in this setting: the key can be recovered in quantum time Õ (

2n/3
)

for a block cipher of n bits (and using 2n/3 classical related-key queries). The
corresponding security level for Saturnin16, which has blocks of 256 bits, lies at
2256/3 = 285: we can say that in the Q1 related-key setting, Saturnin16 should
have no attack with time complexity lower than 285.

6.2 Slide Attacks

Quantum slide attacks are a very efficient quantum counterpart of the classical
slide attacks [3]. They have been introduced in [24], with a polynomial-time
attack on 1-round self-similar ciphers. In many cases, our algorithm does not
improve these attacks, because they are already too efficient and do not rely on
a partial exhaustive search. Still, some of them use a partial exhaustive search.
This is the case of the slide attack against 2 round self-similar ciphers of [31]
and the slide attacks against whitened Feistels of [7].

For example, we can see a 2 round self-similar cipher as an example of iterated
FX cipher, as in Fig. 9. Define functions pi, Fi, and g as

pi((b, x)) =
{

(0, Ei(x)) if b = 0
(1, x) if b = 1 , Fi((b, x), y) =

{
y ⊕ x if b = 0

Ei(y) ⊕ x if b = 1 ,

and g((b, x)) = iFX(x). We have the property that iFX(Ek2(x⊕k1))⊕(x⊕k1) =
Ek2(iFX(x)) ⊕ x. Hence, we have the hidden period (1, k1) in the function
fk2((b, x)) = Fk2 ((b, x), g(pk2(b, x))). To apply our attack, we need to compute∑

x,b |x〉|b〉|fi((b, x))〉 from the state
∑

x |x〉|iFX(x)〉. We first need to add one
qubit to obtain

∑
x |x〉(|0〉+ |1〉)|iFX(x)〉. Then, conditioned on the second regis-

ter to be 0, we transform x into E−1
i (x). Next, conditioned on the second register

to be 1, we transform iFX(x) into Ei(iFX(x)). Finally, we add the first regis-
ter to the third. Hence, we can apply our attack, and retrieve k1 and k2 using
O (|k1|) queries and O (|k1|32|k2|/2) time, assuming |k1| = Ω(|k2|).

m Ek2
... Ek2

k1 k1 k1 k1

iFX(m)

Fig. 9. Iterated-FX cipher.

6 https://csrc.nist.gov/Projects/Lightweight-Cryptography.

https://csrc.nist.gov/Projects/Lightweight-Cryptography

580 X. Bonnetain et al.

The above problem of recovering keys can be generalized as the following
problem, which can be solved by the same strategy as above.

Problem 4 (Constructing and Finding a Hidden Period). Let g : {0, 1}n →
{0, 1}� be a function, i ∈ I, pi : {0, 1}n → {0, 1}n be a permutation and Fi :
{0, 1}n × {0, 1}� → {0, 1}� be a function such that Fi(x, ·) is a permutation.
Assume that there exists i0 ∈ I such that fi0(x) = Fi0 (x, g(pi0(x))) has a
period, i.e.: ∀x ∈ {0, 1}n, fi0(x) = fi0(x ⊕ s) for some s. Assume that we are
given quantum oracle access to Fi and pi and classical or quantum oracle access
to g. (In the Q1 setting, g will be a classical oracle. In the Q2 setting, g will be
a quantum oracle.) Then find i0 and s.

This problem assumes that g is a keyed function, and that we can reversibly
transform (x, g(x)) into a couple (y, fi(y)), with fi a periodic function if i = i0.
We can see this transformation as a generalization of the CCZ equivalence [11],
where the function mapping the graph of g and the graph of fi do not need
to be an affine function. There may also be more than one solution (in which
case we just want to find one), or there may be none, just as Grover’s algorithm
can handle cases with many expected solutions, or distinguish whether there is
a solution or not. Note that Problem 3 is a special case of the above problem,
in the case where pi is the identity, and Fi is only the xoring of g and another
function.

7 Conclusion

In this paper, we have introduced a new quantum algorithm, in which we make
use of Simon’s algorithm in an offline way. The idea of making poly(n) superposi-
tion queries to the oracle (with, as input, a uniform superposition), storing them
as some compressed database on n2 qubits, and reusing them during the itera-
tions of a Grover search, yielded surprising results. This idea, initially targeting
the query complexity of some Q2 attacks on cryptographic schemes, enabled us
to find new quantum-time/classical-data tradeoffs. Our result has three conse-
quences, each of which answers a long-standing question in post-quantum cryp-
tography.

Simon’s Algorithm Can Be Used in an Offline Setting. We provided the first
example of use of Simon’s algorithm (or more precisely, its core idea) in an
offline setting, without quantum oracle queries.

Improving More Than the Time Complexity. Consider the example of our attack
on the Even-Mansour construction in quantum time Õ (

2n/3
)

and classical
queries O (

2n/3
)
. With the same number of queries, the classical attack requires

O (
22n/3

)
time and O (

2n/3
)

classical memory to store the queries. In our attack,
we do not need this storage. To the best of our knowledge, this is the first time
that a quantum Q1 attack provides a quadratic speedup while the needs of
hardware are also reduced.

Quantum Attacks Without Superposition Queries 581

Q2 Attacks Make a Difference. Schemes which do not have an attack in the
superposition model cannot be attacked by our algorithm. We showed that their
algebraic structure, which makes the superposition attack possible, indeed made
a practical difference when it came to Q1 attacks. We believe that this question
needs further investigation.

Acknowledgements. The authors thank Léo Perrin for proofreading this article and
Elena Kirshanova for helpful remarks. This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no 714294 - acronym QUASYModo).

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 4

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Far-
falle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801

3. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

4. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 20

5. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline simon algorithm.
IACR Cryptology ePrint Archive 2019, 614 (2019). https://eprint.iacr.org/2019/
614

6. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-
2 19

7. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Selected Areas in Cryptography - SAC 2019. Lecture Notes in Computer Sci-
ence, Springer (2020)

8. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

9. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

10. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms
for post-quantum security (2019). https://project.inria.fr/saturnin/files/2019/05/
SATURNIN-spec.pdf

11. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs Codes Crypt. 15(2), 125–156 (1998)

https://doi.org/10.1007/978-3-662-44371-2_4
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-319-72565-9_20
https://eprint.iacr.org/2019/614
https://eprint.iacr.org/2019/614
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/BFb0054319
https://project.inria.fr/saturnin/files/2019/05/SATURNIN-spec.pdf
https://project.inria.fr/saturnin/files/2019/05/SATURNIN-spec.pdf

582 X. Bonnetain et al.

12. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

13. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight
and secure authenticated encryption ciphers. IACR Trans. Crypt. Hardw. Embed.
Syst. 2018(2), 218–241 (2018). https://doi.org/10.13154/tches.v2018.i2.218-241

14. Crowley, P., Biggers, E.: Adiantum: length-preserving encryption for entry-level
processors. IACR Trans. Symmetric Cryptol. 2018(4), 39–61 (2018). https://doi.
org/10.13154/tosc.v2018.i4.39-61

15. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

16. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of xoodoo and xoofff.
IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.13154/
tosc.v2018.i4.1-38

17. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 10

18. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of Iterated Even-
Mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 439–457. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45611-8 23

19. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–162 (1997). https://doi.org/10.1007/
s001459900025

20. Gagliardoni, T.: Quantum Security of Cryptographic Primitives. Ph.D. thesis,
Darmstadt University of Technology, Germany (2017). http://tuprints.ulb.tu-
darmstadt.de/6019/

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
212–219. ACM (1996). http://doi.acm.org/10.1145/237814.237866

23. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 11

24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

25. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view/536

https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.13154/tches.v2018.i2.218-241
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-662-45611-8_23
https://doi.org/10.1007/978-3-662-45611-8_23
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
http://tuprints.ulb.tu-darmstadt.de/6019/
http://tuprints.ulb.tu-darmstadt.de/6019/
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-662-53008-5_8
http://tosc.iacr.org/index.php/ToSC/article/view/536

Quantum Attacks Without Superposition Queries 583

26. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68697-5 20

27. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.
1137/S0097539703436345

28. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. In: TQC 2013, LIPIcs, vol. 22, pp. 20–34. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

29. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher
and the random permutation. In: IEEE International Symposium on Information
Theory, ISIT 2010, Proceedings, pp. 2682–2685. IEEE (2010)

30. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and Its
Applications, ISITA 2012, pp. 312–316. IEEE (2012)

31. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

32. Martin, L.: XTS: a mode of AES for encrypting hard disks. IEEE Secur. Privacy
8(3), 68–69 (2010). https://doi.org/10.1109/MSP.2010.111

33. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 19

34. National Academies of Sciences, Engineering, and Medicine: Quantum Com-
puting: Progress and Prospects. The National Academies Press, Washington,
DC (2018). https://www.nap.edu/catalog/25196/quantum-computing-progress-
and-prospects

35. National Institute of Standards and Technlology: Submission requirements
and evaluation criteria for the post-quantum cryptography standardiza-
tion process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

36. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information.
AAPT (2002)

37. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process.
Lett. 115(1), 40–44 (2015). https://doi.org/10.1016/j.ipl.2014.08.009

38. Sasaki, Y., et al.: Minalpher v1.1. CAESAR competition (2015). https://
competitions.cr.yp.to/round2/minalpherv11.pdf

39. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134.
IEEE Computer Society (1994)

40. Simon, D.R.: On the power of quantum computation. In: 35th Annual Symposium
on Foundations of Computer Science, pp. 116–123 (1994)

41. Winternitz, R.S., Hellman, M.E.: Chosen-key attacks on a block cipher. Cryptolo-
gia 11(1), 16–20 (1987). https://doi.org/10.1080/0161-118791861749

https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1109/MSP.2010.111
https://doi.org/10.1007/978-3-319-13051-4_19
https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects
https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1016/j.ipl.2014.08.009
https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://doi.org/10.1080/0161-118791861749

	Quantum Attacks Without Superposition Queries: The Offline Simon's Algorithm
	1 Introduction
	2 Preliminaries
	2.1 The Quantum Circuit Model
	2.2 Simon's Algorithm
	2.3 Grover's Algorithm

	3 Simon's Algorithm with Asymmetric Queries
	3.1 Existing Techniques to Solve the Problem
	3.2 An Algorithm for Asymmetric Search of a Shift
	3.3 Asymmetric Search with Q1 Queries

	4 Q2 Attacks on Symmetric Schemes with Reduced Query Complexity
	4.1 An Attack on the FX Construction

	5 Q1 Attacks on Symmetric Schemes
	5.1 Tradeoffs for the Even-Mansour Construction
	5.2 Tradeoffs for the FX Construction
	5.3 Other Applications

	6 Discussion
	6.1 Related Keys
	6.2 Slide Attacks

	7 Conclusion
	References

