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Abstract. Two of the most sought-after properties of Multi-party Com-
putation (MPC) protocols are fairness and guaranteed output delivery
(GOD), the latter also referred to as robustness. Achieving both, how-
ever, brings in the necessary requirement of malicious-minority. In a gen-
eralised adversarial setting where the adversary is allowed to corrupt
both actively and passively, the necessary bound for a n-party fair or
robust protocol turns out to be ta+tp < n, where ta, tp denote the thresh-
old for active and passive corruption with the latter subsuming the for-
mer. Subsuming the malicious-minority as a boundary special case, this
setting, denoted as dynamic corruption, opens up a range of possible cor-
ruption scenarios for the adversary. While dynamic corruption includes
the entire range of thresholds for (ta, tp) starting from (�n

2
� − 1, �n/2�)

to (0, n−1), the boundary corruption restricts the adversary only to the
boundary cases of (�n

2
� − 1, �n/2�) and (0, n − 1). Notably, both corrup-

tion settings empower an adversary to control majority of the parties, yet
ensuring the count on active corruption never goes beyond �n

2
� − 1. We

target the round complexity of fair and robust MPC tolerating dynamic
and boundary adversaries. As it turns out, �n/2� + 1 rounds are nec-
essary and sufficient for fair as well as robust MPC tolerating dynamic
corruption. The non-constant barrier raised by dynamic corruption can
be sailed through for a boundary adversary. The round complexity of 3
and 4 is necessary and sufficient for fair and GOD protocols respectively,
with the latter having an exception of allowing 3 round protocols in the
presence of a single active corruption. While all our lower bounds assume
pair-wise private and broadcast channels and are resilient to the pres-
ence of both public (CRS) and private (PKI) setup, our upper bounds
are broadcast-only and assume only public setup. The traditional and
popular setting of malicious-minority, being restricted compared to both
dynamic and boundary setting, requires 3 and 2 rounds in the presence
of public and private setup respectively for both fair as well as GOD
protocols.
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1 Introduction

Secure multi-party computation (MPC) [1–3], which is arguably the most gen-
eral problem in cryptography, allows a group of mutually distrustful parties
to compute a joint function on their inputs without revealing any information
beyond the result of the computation. While the distrust amongst the parties is
modelled by a centralized adversary A who can corrupt a subset of the parties,
the security of an MPC protocol is captured by a real-world versus ideal-world
paradigm. According to this paradigm, adversarial attacks in a real execution
of the MPC protocol can be translated to adversarial attacks in the ideal-world
where the parties interact directly with a trusted-third party who accepts pri-
vate inputs, computes the desired function and returns the output to the parties;
thereby trivially achieving correctness (function output is correctly computed on
parties’ inputs) and privacy (A learns nothing about the private inputs of honest
parties, beyond what is revealed by the output).

Two of the most sought-after properties of MPC protocols are fairness and
robustness (alternately, guaranteed output delivery a.k.a. GOD). The former
ensures that adversary obtains the output if and only if honest parties do, while
the latter guarantees that the adversary cannot prevent honest parties from
obtaining the output. Both these properties are trivially attainable in the pres-
ence of any number of passive (semi-honest) corruption where the corrupt parties
follow the protocol specifications but the adversary learns the internal state of
the corrupt parties. However, in the face of stringent active (malicious) cor-
ruption where the parties controlled by the adversary deviate arbitrarily from
the protocol; fairness and GOD can be achieved only if the adversary corrupts
atmost minority of the parties (referred to as malicious minority) [4]. Opening
up the possibility of corrupting parties in both passive and active style, the gen-
eralized feasibility condition for a n-party fair or robust protocol turns out to be
ta + tp < n, where ta, tp denote the threshold for active and passive corruption,
with the latter subsuming the former [5]. We emphasize that tp is a measure of
the total number of passive corruptions that includes the actively corrupt par-
ties; therefore the feasibility condition ta + tp < n implies ta ≤ �n/2� − 1. In its
most intense and diverse avatar, referred as dynamic-admissible, the adversary
can take control of the parties in one of the ways drawn from the entire range of
admissible possibilities of (ta, tp) starting from (�n

2 �−1, �n/2�) to (0, n−1). In a
milder setting, referred as boundary-admissible, the adversary is restricted only
to the boundary cases, namely (�n/2� − 1, �n/2�) and (0, n − 1). Subsuming the
traditional malicious-minority and passive-majority (majority of the parties con-
trolled by passive adversary) setting for achieving fairness and GOD as special
cases, both dynamic as well as boundary setting give the adversary more free-
dom and consequently more strength to the protocols. Notably, both empower
an adversary to control majority of the parties, yet ensuring the count on active
corruption never goes beyond �n

2 � − 1.
The study of protocols in dynamic and boundary setting is well motivated

and driven by theoretical and practical reasons. Theoretically, the study of gen-
eralized adversarial corruptions gives deeper insight into how passive and active
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strategies combine to influence complexity parameters of MPC such as efficiency,
security notion achieved and round complexity. Practically, the protocols in
dynamic and boundary setting offer strong defence and are more tolerant and
better-fit in practical scenarios where the attack can come in many unforeseen
ways. Indeed, deploying such protocols in practice is far more safe than tradi-
tional malicious-minority and passive-majority protocols that completely break
down in the face of boundary adversaries, let alone dynamic adversaries. For
instance, consider MPC in server-aided setting where instead of assuming only
actively corrupt clients and honest servers, the collusion of client-server is per-
mitted where some of the servers can be passively monitored. This model is quite
realistic as it does not contradict the reputation of the system (since the passive
servers follow protocol specifications and can thereby never be exposed/caught).
The option of allowing corruption in both passive and active styles is quite rele-
vant in such scenarios. Driven by the above credible reasons and extending the
study of exact round complexity of fair and robust protocols beyond the tradi-
tional malicious-minority setting [6–8], in this work, we aim to settle the same
for the regime of dynamic and boundary corruption.

Related Work. We begin with outlining the most relevant literature of round com-
plexity of fair and robust MPC protocols in the traditional adversarial settings
involving only single type of adversary (either passive or active). To begin with, 2
rounds are known to be necessary to realize any MPC protocol, regardless of the
type of adversary, no matter whether a setup is assumed or not as long as the setup
(when assumed) is independent of the inputs of the involved parties [9]. A 1-round
protocol is susceptible to “residual function attack” where an adversary can evalu-
ate the function on multiple inputs by running the computation with different val-
ues for his inputs with fixed inputs for the honest parties. The result of [6] shows
necessity of 3 rounds for fairness in the plain and CRS setting, when the number
of malicious corruptions is at least 2 (i.e. t ≥ 2), irrespective of the number of par-
ties, assuming the parties are connected by pairwise-private and broadcast chan-
nels. Complementing this result, the lower bound of [8] extends the necessity of 3
rounds for any t (including t = 1) as long as n/3 < t < n/2. The work of [7] shows 3
to be the lower bound for fairness in the presence of CRS, assuming broadcast-only
channels (no private channels).

In terms of the upper bounds, the works of [10,11] showed that 2-rounds are
sufficient to achieve robustness in the passive-majority setting. In accordance
with the impossibility of [4] and sufficiency of honest-majority shown by classical
result of [12], the upper bounds in the malicious setting involve t < n/2 parties.
These include the 3-round constructions of [7,13,14] based on tools such as Zaps,
multi-key FHE, dense crypto-systems. The protocol of [7] can be collapsed to
two rounds given access to a PKI. In the information-theoretic setting involving
t < n/4 malicious corruptions, the work of [15] presents a 3-round perfectly-
secure robust protocol. In the domain of small-number of parties, round optimal
protocols achieving fairness and robustness appear in [8,16].

Moving on to the setting of generalized adversary, there are primarily two
adversarial models that are most relevant to us. The first model initiated by
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[17] consider a mixed adversary (referred to as graceful degradation of corrup-
tions) that can simultaneously perform different types of corruptions. Feasibility
results in this model appeared in the works of [18–21]. The dynamic-admissible
adversary considered in our work is consistent with this model since it involves
simultaneous active and passive corruptions. The second model proposed by [22]
concerns protocols that are secure against an adversary that can either choose
to corrupt a subset of parties with particular corruption type (say, passively)
or alternately a different subset (typically smaller) of parties with a second cor-
ruption type (say, actively), but only single type of corruption occurs at a time.
Referred to as graceful degradation of security [22–28], such protocols achieve
different security guarantees based on the set of corrupted parties; for instance
robustness/information-theoretic security against the smaller corruption set and
abort/computational security against the larger corruption set. We note that
the boundary-admissible adversary when n is odd, involves either purely active
(since ta = tp holds when (ta, tp) = (�n/2�−1, �n/2�)) corruptions or purely pas-
sive corruptions (where (ta, tp) = (0, n− 1)); thereby fitting in the second model
(Infact, boundary-admissible adversary for odd n degenerates to the adversar-
ial model studied in “best-of-both-worlds” MPC [28]). However, in case of even
n, the boundary-admissible adversary with (ta, tp) = (�n/2� − 1, �n/2�) would
involve simultaneous passive and active corruption as tp = ta + 1 and fit in the
prior model. Lastly, both graceful degradation of security and corruptions were
generalized in the works of [5,29]. To the best of our knowledge, the interesting
and natural question of round complexity has not been studied in these stronger
adversarial models.

1.1 Our Results

In this work, we target and resolve the exact round complexity of fair and robust
MPC protocols in both dynamic and boundary setting. This is achieved via 3
lower bounds that hold assuming both CRS and PKI setup and 5 upper bounds
that assumes CRS alone. In terms of network setting, while our lower bounds hold
assuming both pairwise-private and broadcast channels, all our upper bounds use
broadcast channel alone. All our upper bounds are generic compilers that trans-
form a 2-round protocol achieving unanimous abort (either all honest parties
obtain output or none of them do) or identifiable abort (corrupt parties are
identified in case honest parties do not obtain the output) against malicious
majority to a protocol achieving the stronger guarantees of fairness/robustness
against stronger adversaries (namely, dynamic and boundary adversaries). The
need for CRS in our constructions stems from the underlying 2-round protocol
achieving unanimous or identifiable abort. We leave open the question of con-
structing tight upper bounds or coming up with new lower bounds in the plain
model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary has
the freedom to choose from the entire range of corruption thresholds for (ta, tp)
starting from (�n/2� − 1, �n/2�) to (0, n − 1). Our first lower bound establishes
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that �n/2� + 1 rounds are necessary to achieve fairness against dynamic adver-
sary. Since robustness is a stronger security notion, the same lower bound holds
for GOD as well. This result not only rules out the possibility of constant-round
fair protocols but also gives the exact lower bound. We give two matching upper
bounds, one for fairness and the other for robustness, where the former is sub-
sumed by and acts as a stepping stone to the latter. These results completely
settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder bound-
ary adversarial setting where adversary is restricted to the boundary cases of
(�n/2�−1, �n/2�) and (0, n−1). Our two lower bounds of this setting show that 4
and 3 rounds are necessary to achieve robustness and fairness respectively against
the boundary adversary. Our first 4-round lower bound is particularly interest-
ing, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the
boundary cases reduce to pure active (ta = tp when (ta, tp) = (�n/2�−1, �n/2�))
and pure passive ((ta, tp) = (0, n−1)) corruptions. We note that security against
malicious-minority and passive-majority are known to be attainable indepen-
dently in just 2 rounds assuming access to CRS and PKI [7,10,11]. Hence, our
4-round lower bound encapsulates the difficulty in designing protocols tolerant
against an adversary who can choose among his two boundary corruption types
arbitrarily. (2) This lower bound can be circumvented in case of single malicious
corruption i.e. against a special-case boundary adversary restricted to corrup-
tion scenarios (ta, tp) = (1, �n/2�) and (ta, tp) = (0, n − 1). (We refer to such
an adversary as special-case boundary adversary with ta ≤ 1). This observation
augments the rich evidence in literature [16,30,31] which show the impact of sin-
gle corruption on feasibility results. With respect to our second lower bound for
fairness against boundary adversary, we first note that the 3-round lower bound
for fairness in the presence of CRS is trivial given the feasibility results of [6–8].
However, they break down assuming access to PKI. Thus, the contribution of our
second lower bound is to show that the 3-round lower bound holds for boundary
adversary even in the presence of PKI. We complement these two lower bounds
by three tight upper bounds. The upper bounds achieving robustness include a
4-round protocol for the general case and a 3-round protocol for the special-case
of one malicious corruption that demonstrates the circumvention of our first
lower bound. Lastly, our third upper bound is a 3-round construction achieving
fairness, demonstrating the tightness of our second lower bound.

Our results appear in the table below with comparison to the round com-
plexity in the traditional settings of achieving fairness and robustness. Since
PKI (private) setup subsumes CRS (public) setup which further subsumes plain
model (no setup), the lower and upper bounds are specified with their maximum
tolerance and minimum need respectively amongst these setup assumptions. The
results provide us further insights regarding how disparity in adversarial setting
affects round complexity. Note that the round complexity of fair protocols in
the CRS model against an adversary corrupting minority of parties maliciously,
remains unaffected in the setting of boundary adversary; which is a stronger
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variant of the former. On the other hand, this switch of adversarial setting causes
the lower bound of robust protocols in the model assuming both CRS and PKI to
jump from 2 to 4. Lastly, the gravity of dynamic corruption on round complexity
is evident in the leap from constant-rounds of 3, 4 in the boundary corruption
case to �n/2� + 1.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority Fair, GOD 2 [9] (private) [10,11] (plain)

Malicious-minority Fair, GOD 3 [7,8] (public) [13,14] (plain)

Fair, GOD 2 [9] (private) [7] (private)

Boundary Fair 3 [This] (private) [This] (public)

GOD 4 (3 when ta ≤ 1) [This] (private) [This] (public)

Dynamic Fair, GOD �n
2

� + 1 [This] (private) [This] (public)

1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds
and matching upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to
both CRS and PKI– (a) �n/2�+1 rounds are necessary to achieve fairness against
dynamic adversary. (b) 4 rounds are necessary to achieve robustness against a
boundary adversary. (c) 3 rounds are necessary to achieve fairness against a
boundary adversary.

The first lower bound (a) effectively captures the power of dynamic corrup-
tion stemming from the ambiguity caused by the total range of thresholds (ta, tp)
starting from (�n/2� − 1, �n/2�) to (0, n − 1). The proof navigates through this
sequence starting with maximal active corruption and proceeds to scenarios of
lesser active corruptions one at a time. An inductive argument neatly captures
how the value of tp growing alongside decreasing values of ta can be exploited
by adversarial strategies violating fairness, eventually dragging the round com-
plexity all the way upto �n/2� + 1. The lower bounds (b) and (c) are shown by
considering a specific set of small number of parties and assume the existence of
a 3 (2) round robust (fair) protocol for contradiction respectively. Subsequently,
inferences are drawn based on cleverly-designed strategies exploiting the prop-
erties of GOD and fairness. These inferences and strategies are interconnected
in a manner that builds up to a strategy violating privacy, thereby leading to a
final contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting com-
prising of two upper bounds each for fairness and GOD against dynamic and
boundary adversary respectively and lastly, an additional 3-round upper bound
for GOD against the special case of single malicious corruption by boundary
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adversary in order to demonstrate the circumvention of lower bound (b). Tight-
ness of this upper bound follows from lower bound (c) (that holds for single
malicious corruption) as GOD implies fairness. Our upper bounds can be viewed
as “compiled” protocols obtained upon plugging in any 2-round broadcast-only
protocols [10,11] achieving unanimous abort against malicious majority. While
the fair upper-bounds do not require any additional property from the underlying
2-round protocol, our robust protocols demand the property of identifiable abort
and function-delayed property i.e. the first round of the protocol is independent
of the function to be computed and the number of parties. Looking ahead, this
enables us to run many parallel instances of the round 1 in the beginning and run
the second round sequentially as and when failure happens to compute a new
function (that gets determined based on the identities of the corrupt parties).
Assumption wise, all our upper bound constructions rely on 2-round maliciously-
secure oblivious transfer (OT) in common random/reference string models. We
now give a high-level overview of the specific challenges we encounter in each of
our upper bounds and the techniques we use to tackle them.

Dynamic Adversary: The two upper bounds against dynamic adversary show
sufficiency of �n/2�+1 rounds to achieve fairness and robustness against dynamic
admissible adversary. The upper bound for fairness is built upon the protocol
of [5] that introduces a special-kind of sharing, which we refer to as levelled-
sharing where a value is divided into summands (adding upto the value) and each
summand is shared with varying degrees. The heart of the protocol of [5] lies in
its gradual reconstruction of the levelled-shared output (obtained by running an
MPC protocol with unanimous abort), starting with the summand corresponding
to the highest degree down to the lowest. The argument for fairness banks on
the fact that the more the adversary raises its disruptive power in an attempt
to control reconstruction of more number of summands, the more it looses its
eavesdropping capability and consequently learns fewer number of summands
by itself and vice versa. This discourages an adversary from misbehaving as
using maximal disruptive power reduces its eavesdropping capability such that
he falls short of learning the next summand in sequence without the help of
honest parties. The innovation of our fair protocol lies in delicately fixing the
parameters of levelled-sharing in a manner that optimal round complexity can
be attained whilst maintaining fairness.

Next, we point that since the fair protocol consumes the optimal round com-
plexity of �n/2� + 1 even in the case of honest execution, the primary hurdle in
our second upper bound is to be able to carry out re-runs when an adversary
disrupts computation to achieve robustness without consuming extra rounds.
Banking on the player-elimination technique, we use identifiability to bar the
corrupt parties disrupting computation from participating thereafter. Having
parallel execution of Round 1 of all the required re-reruns helps us get closer
to the optimal bound. While these approaches aid to a great extent, the final
saviour comes in the form of a delicate and crucial observation regarding how
the thresholds of the levelled-sharing can be manipulated carefully, accounting
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for the cheaters identified so far. This trick exploits the pattern of reduced cor-
ruption scenarios obtained upon cheater identification and helps to compensate
for the rounds consumed in subprotocols that were eventually disrupted by the
adversary. The analysis of the round complexity of the protocol being subtle, we
use an intricate recursive argument to capture all scenarios and show that the
optimal lower bound is never exceeded. Lastly, we point that both upper bound
constructions against dynamic adversary assume equivocal non-interactive com-
mitment (such as Pedersen commitment [32]). The GOD upper bound addition-
ally assumes the existence of Non-Interactive Zero-Knowledge (NIZK) in the
common random/reference string model.

Boundary Adversary: The three upper bounds against boundary-admissible
adversary restricted to corruption scenarios either (ta, tp) = (�n/2� − 1, �n/2�)
or (ta, tp) = (0, n − 1) show that (a) 4 rounds are sufficient to achieve
robustness against boundary-admissible adversary (b) 3 rounds are sufficient
to achieve robustness against special-case boundary-admissible adversary when
ta ≤ 1 i.e. adversary corrupts with parameters either (ta, tp) = (1, �n/2�) or
(ta, tp) = (0, n − 1) (c) 3 rounds are sufficient to achieve fairness against
boundary-admissible adversary. At a high-level, all the three upper bounds begin
with a 2-round protocol secure against malicious majority that computes thresh-
old sharing of the output. Intuitively, this seems to serve as the only available
option as protocols customized for malicious minority typically breach privacy
when views of majority of the parties are combined (thereby will break down
against tp < n semi-honest corruptions). On the flip side, protocols customized
for exclusively passive majority may violate correctness/privacy in the presence
of even single malicious corruption. Subsequently, this natural route bifurcates
into two scenarios based on whether the adversary allows the computation of
the threshold sharing of output to succeed or not. In case of success, all the
three upper bounds proceed via the common route of reconstruction which is
guaranteed to be robust by the property of threshold sharing. The distinctness
of the 3 settings (accordingly the upper bounds) crops up in the alternate sce-
nario i.e. when the computation of threshold sharing of output aborts. While in
upper bound (c), parties simply terminate with ⊥ maintaining fairness enabled
by privacy of the threshold sharing; the upper bounds (a) and (b) demanding
stronger guarantee of robustness cannot afford to do so. These two upper bounds
exploit the fact that the corruption scenario has now been identified to be the
boundary case having active corruptions, thereby protocols tolerating malicious
minority can now be executed. While the above outline is inspired by the work
of [28], we point that we need to tackle the exact corruption scenarios as that of
the protocols of [28] only when n is odd. On the other hand when n is even, the
extreme case for active corruption accommodates an additional passive corrup-
tion (tp = ta +1). Apart from hitting the optimal round complexity, tackling the
distinct boundary cases for odd and even n in a unified way brings challenge for
our protocol. To overcome these challenges, in addition to techniques of identi-
fication and elimination of corrupt parties who disrupt computation, we employ
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tricks such as parallelizing without compromising on security to achieve the opti-
mum round complexity. Assumption wise, while both the robust constructions
(a) and (b) rely on NIZKs, the former additionally assumes Zaps (2-round,
public-coin witness-indistinguishable protocols) and public-key encryption.

2 Preliminaries

We consider a set of parties P = {P1, . . . Pn}. Our upper bounds assume the
parties connected by a broadcast channel and a setup where parties have access
to common reference string (CRS). Our lower bounds hold even when the parties
are additionally connected by pairwise-secure and authentic channels and for a
stronger setup, namely assuming access to CRS as well as public-key infrastruc-
ture (PKI). Each party is modelled as a probabilistic polynomial time Turing
(PPT) machine. We assume that there exists a PPT adversary A, who can cor-
rupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings,
the A is characterised by two thresholds (ta, tp), where he may corrupt upto
tp parties passively, and upto ta of these parties even actively. Note that tp is
the total number of passive corruptions that includes the active corruptions and
additional parties that are exclusively passively corrupt. We now define dynamic
and boundary admissible adversaries.

Definition 1 (Dynamic-admissible Adversary). An adversary attacking an
n-party MPC protocol with threshold (ta, tp) is called dynamic-admissible as long
as ta + tp < n and ta ≤ tp.

Definition 2 (Boundary-admissible Adversary). An adversary attacking
an n-party MPC protocol with threshold (ta, tp) is called boundary-admissible as
long as he corrupts either with parameters (a) (ta, tp) = (�n

2 � − 1, �n/2�) or (b)
(ta, tp) = (0, n − 1).

In our work, we also consider a special-case of boundary adversary with ta ≤ 1
where the adversary corrupts either with parameters (ta, tp) = (1, �n/2�) or
(ta, tp) = (0, n − 1).

Notation. We denote the cryptographic security parameter by κ. A negligible
function in κ is denoted by negl(κ). A function negl(·) is negligible if for every
polynomial p(·) there exists a value N such that for all m > N it holds that
negl(m) < 1

p(m) . Composition of two functions, f and g (say, h(x) = g(f(x))) is
denoted as g 	 f . We use [n] to denote the set {1, . . . n} and [a, b] to denote the
set {a, a + 1 . . . b} when a ≤ b or the set {a, a − 1, . . . b} when a > b. Lastly, for
dynamic-admissible adversary, we denote the set of active and passively corrupt
parties by D and E respectively, where |D| = ta and |E| = tp.

Roadmap. Our lower and upper bounds for dynamic and boundary corruption
appear in Sects. 3–4 and in Sects. 5–6 respectively. The security definitions and
proofs appear in the full version [33].



Beyond Honest Majority 465

3 Lower Bounds for Dynamic Corruption

In this section, we show that �n
2 � + 1 rounds are necessary to achieve MPC

with fairness against a dynamic-admissible A with threshold (ta, tp). This result
shows impossibility of constant-round fair and robust protocols in the setting of
dynamic corruption.

Theorem 1. No �n
2 �-round n-party MPC protocol can achieve fairness toler-

ating a dynamic-admissible adversary A with threshold (ta, tp) in a setting with
pairwise-private and broadcast channels, and a setup that includes CRS and PKI.

Proof. We prove the theorem by contradiction. Suppose there exists a �n
2 �-round

n-party MPC protocol π computing any function f(x1 . . . xn) (where xi denotes
the input of party Pi) that achieves fairness against a dynamic-admissible A with
corruption threshold (ta, tp) and in the presence of a setup with CRS and PKI.
At a high-level, our proof argument defines a sequence of hybrid executions of
π, navigating through all the possible admissible corruption scenarios assuming
ta+tp = n−1 and starting with the maximum admissible value of ta = �n/2�−1.
Our first hybrid under the spell of a dynamic-admissible adversary, corrupting
�n/2� − 1 parties actively and stopping their communication in the last round,
lets us conclude that the joint view of the honest and passively-corrupted parties
by the end of penultimate round must hold the output in order for π to satisfy
fairness. If not, while ceasing communication in the last round does not prevent
A from getting all the messages in the last round and thereby the output, the
honest parties do fail to compute the output due to the non-cooperation of ta
parties, violating fairness. The views of the passively corrupt parties need to be
taken into account as they follow protocol steps correctly and assist in output
computation. Leveraging the fact that drop of ta leads to rise of tp, we then
propose a new hybrid where ta is demoted by 1 and consequently tp grows big
enough to subsume the list of honest and passive-corruption from the previous
hybrid. As the view of the adversary in this hybrid holds the output by the end
of penultimate round itself, its actively-corrupt parties need not speak in the
penultimate round. Now fairness in the face of current strategy of the actively-
corrupted parties needs the joint view of the honest and passively-corrupted
parties by the end of �n/2� − 2 round to hold the output. This continues with
the set of honest and passively-corrupted parties growing by size one between
every two hybrids. Propagating this pattern to the earlier rounds eventually
lets us conclude that an adversary with threshold (ta, tp) = (0, n − 1) (no active
corruption case) can obtain the output at the end of Round 1 itself. This leads us
to a final strategy that violates privacy of π via residual attack. This completes
the proof sketch. We now prove the sequence of lemmas to complete the proof.

Lemma 1. In an execution of π where all parties behave honestly upto (and
including) Round (�n

2 � − i) for i ∈ [�n
2 � − 1], there exists a set of parties Si

with size (�n
2 � + i) whose combined view at the end of Round �n

2 � − i suffices to
compute the output.
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Proof. We prove the lemma by induction. Let P = {P1, P2, ..., Pn} denote the
set of parties and D(E) denote the set of actively (passively) corrupt parties
where D ⊆ E . Here |D| = ta and |E| = tp.

Base Case ( i = 1): We consider an execution of the protocol π with a
dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(�n

2 � − 1, �n/2�) and an adversarial strategy A1 as follows. The set of actively
corrupt parties D behave honestly upto (and including) Round �n

2 � − 1 and
simply remain silent in the last round i.e. the �n

2 �th round. Since A receives
all the desired communication throughout the protocol, it follows directly from
the correctness of π that A must be able to compute the output. Since π is
assumed to be fair, the honest parties must also be able to compute the output
even without the �n

2 �th round communication from parties in D. We can now
conclude that the combined view of parties in P \D at the end of Round �n

2 �−1
must suffice to compute the output. Thus, the set S1 = P \ D of parties with
size n− ta = n− (�n

2 �− 1) = �n
2 �+1 hold a combined view at the end of Round

�n
2 � − 1 that suffices to compute the output. This completes the base case.

Induction Hypothesis (i = �). Suppose the statement is true for i = � i.e. if all
parties behave honestly upto (and including) Round (�n

2 �− �), then there exists
a set of parties, say S�, with |S�| = (�n

2 � + �) whose combined view at the end
of (�n

2 � − �)th round, suffices to compute the output.

Induction Step (i = � + 1). We consider an execution of the protocol π with
a dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(�n

2 � − � − 1, �n
2 � + �) and E = S� as defined in the induction hypothesis and an

adversarial strategy A�+1 as follows. The set of actively corrupt parties D behave
honestly upto (and including) Round (�n

2 �−�−1) and simply remain silent from
Round (�n

2 � − �) onwards. Since A receives all the desired communication upto
(and including) Round (�n

2 � − �) of π (as per an honest execution) on behalf of
parties in E , it follows directly from the induction hypothesis that the combined
view of the parties in E where |E| = �n

2 �+ � must suffice to compute the output.
Since π is assumed to be fair, the honest parties must also be able to compute the
output even though the parties in D stop communicating from Round (�n

2 � − �)
onwards. We can now conclude that the combined view of parties in P \D at the
end of Round (�n

2 � − � − 1) must suffice to compute the output. Thus, the set
S�+1 = P \ D of parties with size n − ta = n − (�n

2 � − � − 1) = �n
2 � + � + 1 hold

a combined view at the end of Round (�n
2 � − � − 1) that suffices to compute the

output. This completes the induction hypothesis and the proof of Lemma 1. �
Lemma 2. There exists an adversary A that is able to compute the output at
the end of Round 1 of π.

Proof. When i = �n
2 � − 1, Lemma 1 implies that if all parties behave honestly

in Round 1, then there exists a set S� n
2 �−1 of (�n

2 � + �n
2 � − 1) = n − 1 parties

whose combined view suffices to compute the output at the end of Round 1.
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Consequently, a dynamic-admissible adversary A corrupting the parties with
threshold (ta, tp) = (0, n− 1) and (D = ∅, E = S� n

2 �−1) must be able to compute
the output at the end of Round 1 itself. �
Lemma 3. Protocol π does not achieve privacy.

Proof. It follows directly from Lemma 2 that there exists an adversary A with
threshold (ta, tp) = (0, n − 1) corrupting a set of (n − 1) parties passively, say
E = {P1, . . . Pn−1}, that is able to compute the output at the end of Round
1 itself. Thus, A can obtain multiple evaluations of the function f by locally
plugging in different values for {x1, . . . , xn−1} while honest Pn’s input xn remains
fixed. This residual function attack violates privacy of Pn. As a concrete example,
let f be a common output function computing x1 ∧ xn, where xi (i ∈ {1, n})
denotes a single bit. During the execution of π, A behaves honestly with input
x1 = 0 on behalf of P1. However, the passively-corrupt P1 can locally plug-in
x1 = 1 and learn xn (via the output x1 ∧ xn). This is a clear breach of privacy,
as in the ideal world, A participating honestly with input x1 = 0 on behalf of P1

would learn nothing about xn; in contrast to the execution of π where A learns
xn regardless of his input. This completes the proof. �
We have thus arrived at a contradiction to our assumption that π securely com-
putes f and achieves fairness. This completes the proof of Theorem 1. �

4 Upper Bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-
admissible adversary A with threshold (ta, tp). The first upper bound achieves
fairness and is a stepping stone to the construction of the second upper bound
that achieves guaranteed output delivery. Both the upper bounds comprise of
�n/2�+1 rounds in the presence of CRS, tightly matching our lower bound result
of Sect. 3. We start with an important building block needed for both the fair
and GOD protocols.

4.1 Levelled-Sharing of a Secret

Our protocols in the dynamic corruption setting involve a special kind of shar-
ing referred as levelled sharing, which is inspired by and a generalized variant of
the sharing defined in [5]. The sharing is parameterized with two thresholds, α
and β with α ≥ β, that dictate the number of levels as α − β + 1. To share a
secret in (α, β)-levelled-shared fashion, α − β + 1 additive shares (levels) of the
secret, indexed from α to β are created and each additive share is then Shamir-
shared [34] using polynomial of degree that is same as its assigned index. Fur-
ther each Shamir-sharing is authenticated using a non-interactive commitment
scheme, to ensure detectably correct reconstruction. For technical reasons in the
simulation-based security proof, we need an instantiation of commitment scheme
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that allows equivocation of commitment to any message with the help of trap-
door and provides statistical hiding and computational binding. Denoting such
a commitment scheme by eNICOM (Equivocal Non-Interactive Commitment),
we present both the formal definition and an instantiation based on Pedersen’s
commitment scheme [32] in the full version [33]. While the sharing will involve
the entire population P in our fair protocol, it may be restricted to many dif-
ferent subsets of P, each time after curtailing identified actively corrupt parties.
The definition therefore is formalized with respect to a set Q ⊆ P.

Definition 3 ((α, β)-levelled sharing). A value v is said to be (α, β)-levelled-
shared with α ≥ β amongst a set of parties Q ⊆ P if every honest or passively
corrupt party Pi in Q holds Li as produced by fα,β

LSh (v) given in Fig. 1.

Fig. 1. Function fα,β
LSh for computing (α, β)-levelled sharing

In our protocols the function fα,β
LSh will be realized via an MPC protocol,

whereas, given the (α, β)-levelled-sharing, we will use a levelled-reconstruction
protocol LRecα,β() that enforce reconstruction of the summands one at a time
starting with sα. This levelled reconstruction ensures a remarkable property tol-
erating any dynamic-admissible adversary– if the adversary can disrupt recon-
struction of si, then it cannot learn si−1 using its eavesdropping power. This
property is instrumental in achieving fairness against the strong dynamic-
admissible adversary. The protocol is presented in Fig. 2. Its properties and
round complexity are stated below. Note that starting with the feasibility con-
dition ta + tp < n = |P|, expelling a set of actively corrupt parties, say B, makes
the following impact on ta, tp and P: ta = ta − |B|, tp = tp − |B| and P = P \ B.
Consequently, the updated ta, tp and P continue to satisfy ta + tp < |P|. Below,
we will therefore use the fact that ta + tp < |Q|, where Q denotes the relevant
set of parties (i.e. the set of parties remaining after possibly expelling a set of
identified actively corrupt parties).

Lemma 4. LRecα,β satisfies the following properties–

i. Correctness. Each honest Pi participating in LRecα,β with input Li as gen-
erated by fα,β

LSh (v), outputs either v or ⊥ except with negligible probability.
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Fig. 2. Protocol LRecα,β

ii. Fault-Identification. If an adversary disrupts the reconstruction of sj, then
|B| ≥ |Q| − j.

iii. Fairness. If an adversary disrupts the reconstruction of sj, then it does not
learn sj−1.

iv. Round Complexity. It terminates within α − β + 1 rounds.

Proof. i. Consider an honest Pi participating with input Li =
({sji, oji}j∈[α,β],

{cjk}j∈[α,β],Pk∈Q
)
. We observe Pi outputs v′ �= {v,⊥} only if at least one of

the summands, say sj(j ∈ [α, β]) is incorrectly set. This can happen only if Pi

adds at least one index k to Zj such that Pk sends an incorrect share s′
jk �= sjk.

This occurs when (s′
jk, o′

jk) received from Pk is such that cjk opens to s′
jk via

o′
jk but s′

jk �= sjk. It now follows directly from the binding of eNICOM that this
violation occurs with negligible probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding
property of eNICOM that reconstruction of sj would fail only if |Zj | ≤ j. Next,
note that as per the steps in Fig. 2, each honest Pi would output B = Q\Zj if
reconstruction of sj fails. We can thus conclude that |B| = |Q|−|Zj | ≥ |Q|−j.

iii. To prove fairness, we first prove that if an adversary can disrupt the recon-
struction of sj , then it cannot learn sj−1 using its eavesdropping power. Since
as per the protocol, the honest parties do not participate in the reconstruction
of sj−1 when they fail to reconstruct sj , the security of sj−1 follows from the
information-theoretic security of Shamir-sharing and the statistical security
(hiding) of eNICOM.
An adversary can disrupt reconstruction of sj only if |Zj | ≤ j. It is easy to
check that Zj would constitute the non-actively corrupt parties (honest and
purely passive parties) i.e. Q \ D ⊆ Zj . Thus, |Q \ D| = |Q| − ta ≤ |Zj | ≤ j.
Lastly, to maintain ta + tp < |Q|, it must hold that tp ≤ |Q| − ta − 1 ≤ j − 1.
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Thus, the adversary corrupting tp ≤ j − 1 parties cannot learn sj−1 using its
eavesdropping power.

iv. LRecα,β involves reconstruction of summands sα down to sβ , each of which
consumes one round; totalling upto α − β + 1. �

4.2 Upper Bound for Fair MPC

The key insight for this protocol comes from [5] that builds on an MPC protocol
with abort security to compute the function output in (n− 1, 1)-levelled-sharing
form, followed by levelled-reconstruction to tackle dynamic corruption. Fairness
is brought to the system by relying on the fairness of the levelled-reconstruction.
In particular, the adversary is disabled to reconstruct (i − 1)th summand, as
a punitive action, when it disrupts reconstruction of the ith summand for the
honest parties. In the marginal case, if the adversary disrupts the MPC protocol
for computing the levelled-sharing and does not let the honest parties get their
output, we disable it to reconstruct the (n − 1)th summand itself.

In a (α, β)-levelled-reconstruction, the parameters α and β dictate the round
complexity. The closer they are the better round complexity we obtain. The α
and β in [5] are n − 2 apart, shooting the round complexity of reconstruction to
n − 1. We depart from the construction of [5] in two ways to build a (�n

2 � + 1)-
round fair protocol. Firstly and prominently, we bring α and β much closer,
cutting down �n

2 � summands from the levelled-secret sharing and bringing down
the number of levels to just n− 1−�n

2 � from n− 1 of [5]. Second, we plug in the
round-optimal (2-round) MPC protocol of [10,11] achieving unanimous abort
against malicious majority in the CRS model for computing the levelled-sharing
of the output, making overall a (�n

2 � + 1)-round fair protocol. We discuss the
first departure in detail below.

Our innovation lies in fixing the best values of α and β without flouting
fairness. The value of α and β, in essence determines the indispensable sum-
mands that we cannot do without. Every possible non-zero threshold for active
corruption maps to a crucial summand that the adversary using its correspond-
ing admissible passive threshold cannot learn by itself, whilst the pool of non-
disruptive set of parties, i.e. the set of honest and purely passive parties, can.
This unique summand, being the ‘soft spot’ for the adversary, forces him to
cooperate until the reconstruction of the immediate previous summand. As soon
as the adversary does so, the honest parties turn self-reliant to compute the
output, upholding fairness. We care only about the non-zero possibilities for the
threshold of active corruption, as an all-passive adversary holds no power at its
disposal to disrupt, leading to robust output reconstruction by all. For the min-
imum non-zero value of 1 active corruption, the unique summand is sn−2 that
the adversary cannot learn using its admissible eavesdropping capacity of n − 2,
yet the set of non-disruptive parties, which is of size n − 1, can. On the other
extreme, for the maximum value of �n

2 � − 1, the unique summand is s� n
2 � that

the adversary cannot learn using its admissible eavesdropping capacity of �n
2 �,

yet the set of non-disruptive parties, which is of size �n
2 � + 1, can. This sets the
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values of α and β as n − 2 and �n
2 � respectively, making the number of crucial

summands only �n
2 � − 1. The distance between these two parameters captures

the number of possible corruption scenarios with non-zero active corruption.
In the table below (Table 1), we display for each admissible adversarial cor-

ruption (this set subsumes the crucial summands that we retain), whether the
adversary and the set of non-disruptive parties respectively by themselves, can
learn the summand, using its maximum eavesdropping capability and putting
together their shares respectively. The pattern clearly displays the following
feature: irrespective of the corruption scenario that the adversary follows, its
maximum power to disrupt and eavesdrop remains one summand apart i.e. if
it can disrupt ith summand with its maximum disruptive capability (and fall
short of its power for failing the (i − 1)th one), then its maximum eavesdrop-
ping capability does not allow it to learn (i − 1)th summand by itself. Our fair
protocol πdyn

fair tolerating dynamic corruption appears in Fig. 3. Assumption wise,
πdyn
fair relies on 2-round maliciously-secure OT in the common random/reference

string model (when πua is instantiated with protocols of [10,11]) and eNICOM
(used in LRecα,β() and instantiated using Pedersen’s commitment scheme).

Table 1. Levelled-reconstruction where (a = Y/N, b = Y/N) under si indicates if A and
non-active parties respectively can reconstruct si or not (Y = Yes, N = No)

(ta = |D|, tp = |E|) |P \ D| sn−2 sn−3 sn−4 sn−i−1 s�n/2�+1 s�n/2�
(0, n − 1) n (Y, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(1, n − 2) n − 1 (N, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(2, n − 3) n − 2 (N, N) (N, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i, n − i − 1) n − i (N, N) (N, N) (N, N) . . . (N, Y) . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(�n/2� − 1, �n/2�) �n/2� + 1 (N, N) (N, N) (N, N) . . . . . . . . . (N, N) (N, Y)

Fig. 3. Fair MPC against dynamic-admissible adversary
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We state the formal theorem below.

Theorem 2. Assuming the presence of a 2-round MPC protocol πua achieving
unanimous abort against malicious majority, protocol πdyn

fair with n parties satisfies
correctness, achieves fairness and has a round complexity of �n/2� + 1 rounds.

Proof. Correctness of πdyn
fair follows directly from correctness of πua and

LRecn−2,� n
2 � (Lemma 4). The security proof appears in the full version [33].

Round complexity of πdyn
fair includes 2 rounds of πua and the round complexity of

LRecn−2,� n
2 � which is

(
n − 2 − �n

2 � + 1
)

= �n/2� − 1 (Lemma 4); totalling upto
�n/2� + 1 rounds. �

4.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as
soon as failure occurs which can surface either in the underlying MPC or dur-
ing reconstruction of any of the summands of the output. Taking inspiration
from the player-elimination framework [35,36], we maintain a history of devi-
ating/disruptive behaviour across the runs and bar the identified parties from
further participating. Such a paradigm calls for sequential runs and brings great
challenge when round complexity is the concern. We hit the optimal round com-
plexity banking on several ideas and interesting observations. First, we turn the
underlying MPC protocol for computing (α, β)-levelled-sharing of the output to
achieve identifiability so that any disruptive behaviour can be brought to notice.
Slapping NIZK on the 2-round broadcast-only construction of [10] readily equips
it with identifiability, without inflating the round complexity. Second, we lever-
age the function-delayed property of a modified variant of the protocol of [10]
(proposed by [13]) where the first round messages are made independent of the
function to be computed and the number of parties. This enables us to run many
parallel instances (specifically �n/2�) of the round 1 in the beginning and run
the second round sequentially as and when failure happens to compute a new
function each time as follows– (a) it hard-cores default input for the parties
detected to be disruptive so far and (b) the output now is levelled-shared with
new thresholds α and β each of which are smaller than the previous run by a
function of the number of fresh catch, say δ. The latter brings the most crucial
impact on the round complexity. Recall that the distance between α and β that
impacts the round complexity, is directly coupled with the number of possible
corruption scenarios with non-zero active corruption. Starting with the initial
value of �n

2 �−1, each catch by δ reduces number of possible corruption scenarios
(with non-zero active corruption) and the distance between α and β by δ.

In the protocol, we maintain a number of dynamic variables which are
updated during the run– (a) L: the set of parties not identified to be actively cor-
rupt and thus referred as alive; this set is initialized to P; (b) C: the set of parties
identified as actively corrupt; this set initialized to ∅; (c) n: the parameter that
dictates the number of corruption scenarios as �n

2 � and the possible corruption
cases as {(0, n − 1), . . . , (�n/2� − 1, �n/2�)}; this is initialized to n that dictates
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the initial number of corruption cases as �n
2 � and the possible corruption cases as

{(0, n − 1), . . . , (�n/2� − 1, �n/2�)}. After every failure and a fresh catch of a set
B of active corruptions, the sets L, C and n are updated as L = L\B, C = C ∪B
and n = n− 2|B|. The reduction of n by 2|B| denotes counting the reduction for
active as well as passive corruptions. For every value of n, the formula for the
total number of corruption scenarios, the values for (α, β) (that speaks about
the indispensable summands as discussed in the fair protocol) and the number
of corruption scenarios with non-zero active corruption (which denotes the dis-
tance between (α, β)) remain the same– namely �n

2 �, (n− 2, �n/2�) and �n
2 � − 1.

In the marginal case, n becomes either 1 or 2, the former when n is odd and all
active corruptions are exposed making (ta, tp) = (0, 0) and the latter when n is
even and (ta, tp) = (0, 1). With no active corruption in L, the Round 2 of the
MPC can be run to compute the output itself (instead of its levelled-sharing)
robustly in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better
understanding, we present below a snapshot of how the corruption scenarios
shrinks after every catch of δ active corruptions. The first column indicates
a set of possible corruption scenarios, with (ta, tp) varying from (0, n − 1) to
(�n/2� − 1, �n/2�). If δ cheaters are identified, the first δ rows can simply be
discarded as it is established that ta ≥ δ. The number of feasible corruptions
is thus slashed by δ. Next, these δ identified cheaters are eliminated, which
reduces each (ta, tp) of the rows that sustained (ta = δ onwards) by δ as shown
by column 2. Finally, the column 3 displays column 2 with n updated as n− 2δ.
The formal description of the protocol πdyn

god appears in Fig. 4. Assumption wise,
πdyn
god relies on 2-round maliciously-secure OT in the common random/reference

string model, NIZK (when πidua is instantiated with function-delayed variant of
the protocol of [10] satisfying identifiability) and eNICOM (instantiated using
Pedersen’s commitment scheme).

(ta, tp) (ta, tp) (ta, tp)

after δ cheater identification after updating n = n − 2δ

(0, n − 1) – –

(1, n − 2) – –

. . . . . . . . .

(δ, n − δ − 1) (0, n − 2δ − 1) (0, n − 1)

(δ + 1, n − δ − 2) (1, n − 2δ − 2) (1, n − 2)

. . . . . . . . .

(�n/2� − 1, �n/2�) (�n/2� − 1 − δ, �n/2� − δ) (�n/2� − 1, �n/2�)

We now analyze the round-complexity and correctness of πdyn
god below.

Lemma 5. πdyn
god terminates in �n/2� + 1 rounds.
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Proof. Consider an execution of πdyn
god (initialized with n = n). The outline of the

proof is as follows: We give an inductive argument to prove the following - ‘If
Step 2 is executed with parameter n, then Step 2 terminates within �n

2 � rounds’.
Assuming this claim holds, it follows directly that during the execution with
n = n, Step 2 would terminate within �n

2 � rounds; thereby implying that the
round complexity of πdyn

god is atmost �n
2 � + 1 (adding the round for Step 1). We

now prove the above claim by strong induction on n ≥ 1.

Base Case ( n = 1, 2): It follows directly from description in Fig. 4 that Step 2
terminates in �n/2� = 1 round when n = 1, 2.

Induction Hypothesis ( n ≤ �): Assume Step 2 terminates in �n/2� rounds for
n ≤ �.

Fig. 4. Robust MPC against dynamic-admissible adversary

Induction step ( n = � + 1): Consider an execution of Step 2 with parameter
n = � + 1. We analyze the following 3 exhaustive scenarios - (1) Suppose neither
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πidua nor LRecn−2,�n
2 � fails. (2) Suppose πidua aborts. (3) Suppose πidua does not

abort but LRecn−2,�n
2 � fails. We show that in each of them, Step 2 terminates

within �n/2� = � �+1
2 � rounds; thereby completing the induction step.

Suppose neither πidua nor LRecn−2,�n
2 � fails. Then Step 2 involves following num-

ber of rounds– 1 (for Round 2 of πidua) + number of rounds in LRecn−2,�n
2 �

i.e. (n − 2 − �n
2 � + 1) = �n

2 � = �(� + 1)/2� in total.
Suppose πidua aborts. Then B must comprise of at least one active party, implying

that δ ≥ 1, where δ = |B| and subsequently n is updated to n = (n − 2δ) ≤
(�+1−2) = (�−1). Note that Step 2 now involves following number of rounds–
1 (for Round 2 of πidua) + number of rounds in which Step 2 terminates when
re-run with updated parameter n i.e. �n/2� by induction hypothesis. Thus,
the total number of rounds in Step 2 is (1 + �n/2�) ≤ (1 + � �−1

2 �) = � �+1
2 �.

Suppose πidua does not abort but reconstruction LRecn−2,�n
2 � fails. Say adversary

disrupts reconstruction of summand sn−r in Round r of Step 2 (Round r − 1
of LRecn−2,�n/2�), where r ∈ [2, �n/2�]. It follows from fault identification
property of Lemma 4 that |B| ≥ |L|−(n−r) ≥ r (since |L| ≥ n always holds).
Consequently, δ = |B| ≥ r and updated parameter n = n − 2δ ≤ � + 1 − 2r.
We now analyze the round complexity. Note that Step 2 involves following
number of rounds– r (Reconstruction failed in Round r ≥ 2 of Step 2 run with
n = � + 1) + number of rounds in which Step 2 terminates when re-run with
updated parameter n i.e. �n/2� by induction hypothesis. Thus total number
of rounds in Step 2 is (r + �n/2�) ≤ (r + � �+1−2r

2 �) = � �+1
2 �.

We point that induction hypothesis for n = n − 2δ with δ ≥ 1 can be applied
as n ≥ 1 holds always in πdyn

god due to the following: the maximal value of δ is
�n/2� − 1 i.e. the maximum possible number of actively corrupt parties. This
completes the proof. �
Theorem 3. Assuming the presence of a 2-round protocol πidua achieving iden-
tifiable abort against malicious majority and having function-delayed property;
protocol πdyn

god with n parties satisfies correctness, achieves guaranteed output
delivery and has a round-complexity of �n/2� + 1 rounds.

Proof. Correctness of πdyn
god follows directly from correctness of πidua and correct-

ness of LRecn−2,�n
2 � (Lemma 4). The formal security proof appears in the full

version [33]. Round complexity follows from Lemma 5. �

5 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating
boundary-admissible adversaries and in the presence of CRS and PKI setup.
Recall that such an adversary is restricted to corruption scenarios either
(ta, tp) = (�n/2� − 1, �n/2�) or (ta, tp) = (0, n − 1). We show that three and
four rounds are necessary to achieve fairness and GOD respectively against a
boundary-admissible adversary. It is to be noted that GOD is the de facto notion
achieved in the pure passive corruption setting of (ta, tp) = (0, n − 1).
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5.1 Impossibility of 3-Round Robust MPC

In this section, we show that it is impossible to design a 3-round robust MPC
protocol against boundary-admissible adversary with threshold (ta, tp) assuming
both CRS and PKI. Notably, this lower bound is indeed surprising as the indi-
vidual security guarantees translate to GOD against malicious-minority [7] and
passive-majority [10,11] for odd n (as ta = tp wrt (ta, tp) = (�n/2� − 1, �n/2�)),
both of which are known to be attainable in just 2 rounds in the presence of CRS
and PKI. Furthermore, it turns out interestingly that this lower bound does not
hold against a boundary-admissble adversary with ta ≤ 1 (i.e. boundary adver-
sary corrupting with either (ta, tp) = (1, �n/2�) or (ta, tp) = (0, n − 1)), and can
be circumvented for this special case. In fact, we demonstrate a 3-round robust
protocol in Sect. 6.3, against this special-case boundary-admissible adversary.

Theorem 4. Assume parties have access to pairwise-private and broadcast
channels, and a setup that includes CRS and PKI. Then, there exist functions
f for which there is no 3-round protocol computing f that achieves guaranteed
output delivery against boundary-admissible adversary.

Proof. We prove the theorem for n = 5 parties. Let P = {P1, . . . P5} denote
the set of parties, where the adversary A may corrupt either with parametes
(ta, tp) = (2, 2) or (ta, tp) = (0, 4). Here, the corruption scenarios translate to
upto 2 active corruptions or upto 4 pure passive corruptions. We prove the
theorem by contradiction. Suppose there exists a 3-round protocol π comput-
ing a common output function f that achieves GOD against such a boundary-
admissible adversary.

At a high level, we discuss three adversarial strategies A1,A2 and A3, where
Ai is launched in an execution Σi of protocol π. While A1,A2 involve the case of
active corruption of {P1} and {P1, P2} respectively, A3 deals with the strategy
of pure passive corruption of {P1, P3, P4, P5}. The executions are assumed to
be run for the same input tuple (x1, x2, x3, x4, x5) and the same random inputs
(r1, r2, r3, r4, r5) of the parties. Let x̃i denote the default input of Pi. (Same ran-
dom inputs are considered for simplicity and without loss of generality. The same
arguments hold for distribution ensembles as well.) First, when A1 is launched
in Σ1 we conclude that the output ỹ at the end of the execution should be
based on default input of P1 and actual inputs of the remaining parties i.e.
ỹ = f(x̃1, x2, x3, x4, x5). Next, strategy Σ2 involving actively corrupt {P1, P2}
is designed such that corrupt P2 obtains the same view in Σ2 as an honest P2

in Σ1 and therefore computes the output ỹ at the end of Σ2. (Here, view of Pi

includes xi, ri, the messages received during π and the knowledge related to CRS
and PKI setup.) Lastly, a carefully designed strategy A3 by semi-honest parties
{P1, P3, P4, P5} allows A to obtain ỹ = f(x̃1, x2, x3, x4, x5), in addition to the
correct output i.e. y = f(x1, x2, x3, x4, x5) at the end of execution Σ3. This is a
contradiction as it violates the security of π and can explicitly breach the privacy
of honest P2. This completes the proof overview.

We assume that the communication done in Round 2 and Round 3 of π
is via broadcast alone. This holds without loss of generality since the parties
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can engage in point-to-point communication by exchanging random pads in the
first round and then use these random pads to unmask later broadcasts. We
use the following notation: Let p1i→j denote the pairwise communication from
Pi to Pj in round 1 and br

i denotes the broadcast by Pi in round r, where
r ∈ [3], {i, j} ∈ [5]. These values may be function of CRS and the PKI setup as
per the protocol specifications. Let V�

i denotes the view of party Pi at the end
of execution Σ� (� ∈ [3]) of π. Below we describe the strategies A1,A2 and A3.

A1: A corrupts {P1} actively here. P1 behaves honestly in Round 1 and simply
remains silent in Round 2 and Round 3.

A2: A corrupts {P1, P2} actively here. The active misbehavior of P1 is same as in
A1 i.e. P1 behaves honestly in Round 1 and stops communicating thereafter.
On the other hand, P2 participates honestly upto Round 2 and remains silent
in Round 3.

A3: A corrupts {P1, P3, P4, P5} passively here. The semi-honest parties behave as
per protocol specification throughout the execution Σ3 to obtain the correct
output. The passive strategy of {P1, P3, P4, P5} is to ignore the Round 3
message from honest P2 and locally compute the output based on the scenario
of execution Σ2 i.e. imagining that P1 stopped after Round 1 and P2 stopped
after Round 2.

We now present a sequence of lemmas to complete the proof.

Lemma 6. At the end of Σ1, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.

Proof. Firstly, since Σ1 involves active behavior only by P1, it follows directly
from correctness and robustness of π that the output computed at the end of
Σ1, say y′ should be based on actual inputs xi for i ∈ {2, 3, 4, 5}. Now, there are
two possibilities with respect to input of P1 i.e. y′ is based on either x1 (i.e. the
input used by P1 in Round 1 of Σ1) or x̃1 (default input). In case of the latter,
the lemma holds directly. We now assume the former for contradiction.

Suppose the output y′ is based on x1 rather than x̃1. Since P1 stops communi-
cating after Round 1, we can conclude that the combined views of {P2, P3, P4, P5}
must suffice to compute the output y′ = f(x1, . . . , x5) at the end of Round 1
itself. If this holds, we argue that π cannot be secure as follows: Suppose π is
such that when all parties participate honestly in Round 1, the combined view
of {P2, P3, P4, P5} suffices to compute the output at the end of Round 1 itself.
Then, in an execution of π, an adversary corrupting {P2, P3, P4, P5} purely pas-
sively (corresponding to (ta, tp) = (0, 4)) can learn the output on various inputs
of its choice, keeping x1 fixed. This residual attack breaches privacy of honest
P1 (A concrete example of such an f appears in the full version [33]). We have
thus arrived at a contradiction. This completes the proof that y′ must be based
on x̃1, rather than x1 and consequently y′ = ỹ = f(x̃1, x2, x3, x4, x5) must be
the output computed at the end of Σ1. �
Lemma 7. At the end of Σ2, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.
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Proof. Recall that A2 is similar to A1 involving active P1, except that P2 is active
as well with the strategy of behaving honestly upto Round 2 and remaining silent
in Round 3. Since executions Σ1 and Σ2 proceed identically upto Round 2, it
is easy to check that the view of corrupt P2 in Σ2 is same as honest P2 in
Σ1. It now follows directly from Lemma 6 that P2 computes the output ỹ =
f(x̃1, x2, x3, x4, x5). By correctness and robustness of π computing the common
output function f , it must hold that all parties output ỹ at the end of Σ2. �
Lemma 8. The combined view of parties {P3, P4, P5} at the end of Round 2 of
Σ2 suffices to compute the output of Σ2 i.e. ỹ.

Proof. We note that as per A2, both {P1, P2} do not communicate in Round
3; implying that the combined view of honest parties {P3, P4, P5} at the end of
Round 2 of Σ2 must suffice to compute the output of Σ2 i.e. ỹ (Lemma 7). �
Lemma 9. An adversary executing strategy A3 obtains the value ỹ =
f(x̃1, x2, x3, x4, x5), in addition to the correct output y = f(x1, x2, x3, x4, x5)
at the end of Σ3.

Proof. Firstly, Σ3 must lead to computation of correct output i.e. y =
f(x1, x2, x3, x4, x5) by all parties since A3 involves only semi-honest corrup-
tions. Next, it is easy to check that the combined view of adversary corrupting
{P1, P3, P4, P5} passively at the end of Round 2 of Σ3 subsumes the combined
view of honest parties {P3, P4, P5} at the end of Round 2 of Σ2. It now follows
directly from Lemma 8 that the adversary can obtain the output ỹ as well.

In more detail, A launching A3 in Σ3 can compute the output as per the
scenario of Σ2 as follows- Let b3i for i ∈ {2, 3, 4, 5} denotes the message broadcast
by honest Pi (as per its next-message function) in Round 3 in case P1 behaves
honestly in Round 1 but is silent in Round 2. Locally compute {b33, b34, b35} (b3i is
a function of Pi’s (i ∈ {3, 4, 5}) view at the end of Round 2) by imagining that
P1 did not send Round 2 message and compute ỹ by ignoring the message sent
by honest P2 in Round 3. Thus, by following strategy A3, A obtains multiple
evaluations of f i.e. both y and ỹ which violates the security of π. (We give a
concrete example of such an f that breaches privacy of honest P2 in the full
version.) This completes the proof of the lemma. �

Thus, we have arrived at a contradiction to our assumption that π is secure;
completing the proof of Theorem 4. �

We present a natural extension of the above proof for n > 5, a concrete
example of f and a brief intuition of why the above lower bound argument does
not hold when malicious corruption ta ≤ 1 in the full version [33].

5.2 Impossibility of 2-Round Fair MPC

We begin with the observation that the existing 3-round lower bounds of [6–8]
for fair malicious-minority MPC do not carry over in our setting. The lower
bound of both [6,7] break down when the parties have access to a PKI (as



Beyond Honest Majority 479

acknowledged/demonstrated in their work). The result of [8], assuming access
to pairwise-private and broadcast channels, also breaks down when parties have
access to a PKI (elaborated in the full version [33]). The proof, originally given
without the mention of CRS, seems to withstand a CRS.

We now present our lower bound formally.

Theorem 5. There exist functions f for which there is no 2-round n-party MPC
protocol that achieves fairness against boundary-admissible adversary, in a set-
ting with pairwise-private and broadcast channels, and a setup that includes CRS
and PKI.

Proof. We prove the theorem for n = 3 parties, where boundary-admissible
adversary A chooses corruption parameters either (ta, tp) = (1, 1) or (ta, tp) =
(0, 2). Here, the corruption scenarios translate to either upto 1 active corruption
or upto 2 purely passive corruptions. Let {P1, P2, P3} denote the set of parties
with Pi having input xi. Suppose by contradiction, π is a 2-round MPC protocol
computing f that achieves fairness against A. To be more specific, π is fair if
(ta, tp) = (1, 1) and achieves GOD otherwise (as GOD is the de-facto security
guarantee incase of no active corruptions i.e. (ta, tp) = (0, 2)). On a high-level,
we first exploit fairness of π to conclude that the combined view of a set of
2 parties suffices for output computation at the end of Round 1. (Here, view
of Pi includes xi, its randomness ri, the messages received during π and the
knowledge related to CRS and PKI setup.) Next, considering a strategy where
the adversary A corrupts this set of 2 parties purely passively leads us to conclude
that A can compute the output at the end of Round 1 itself; leading upto a final
contradiction. We now present a sequence of claims to complete the formal proof.

Lemma 10. Protocol π must be such that the combined view of {P2, P3} at the
end of Round 1 suffices for output computation.

Proof. The proof of the lemma is straightforward. Assume A corrupting P1

actively (with (ta, tp) = (1, 1)) with the following strategy: P1 behaves hon-
estly in Round 1 and simply remains silent in Round 2. It is easy to check that
P1 would obtain the output due to correctness of π, as he receives the entire pro-
tocol communication as per honest execution. Since π is fair, the honest parties
{P2, P3} must also obtain the output at the end of π; even without P1’s com-
munication in Round 2. Thus, we conclude that the combined view of {P2, P3}
at the end of Round 1 suffices for output computation. �
Lemma 11. There exists an adversarial strategy such that the adversary obtains
the output at the end of Round 1.

Proof. The proof follows directly from Lemma 10 – A corrupting {P2, P3} purely
passively ((ta, tp) = (0, 2)) would obtain the output at the end of Round 1. �
Lemma 12. Protocol π does not achieve privacy.
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Proof. It is implied from Lemma 11 that A corrupting {P2, P3} purely passively
can obtain multiple evaluations of the function f by locally plugging in different
values for {x2, x3} while honest P1’s input x1 remains fixed. This ‘residual func-
tion attack’ violates privacy of P1. We refer to the argument in Lemma 3 for a
concrete example. �

We have arrived at a contradiction, concluding the proof of Theorem 5. It is
easy to check that this argument can be extended for higher values of n. �

6 Upper Bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-
admissible adversary A with threshold (ta, tp). We first present a robust upper
bound in 4 rounds for the general case. Next, we present a 3-round robust proto-
col for the special case of single active corruption, which circumvents our lower
bound of Sect. 5.1. Our fair 3-round upper bound can be arrived at by simpli-
fying the robust general-case construction and appears in full version [33]. Note
that even the fair construction is robust in the corruption scenario of no active
corruptions i.e. (ta, tp) = (0, n − 1). The security guarantees differ only in case
of corruption scenario involving malicious corruptions. All the above three con-
structions are round-optimal, following our lower bound results of Sects. 5.1 and
5.2. We start with a building block commonly used across all our constructs.

6.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [28,37] used in our
upper bounds against the boundary-admissible A.

Definition 4 (α-authenticated sharing). A value v is said to be α-
authenticated-shared amongst a set of parties P if every honest or passively
corrupt party Pi in P holds Si as produced by fα

ASh(v) given in Fig. 5.

Fig. 5. Authenticated secret-sharing
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In our upper bounds, the function fα
ASh is realized via MPC protocols. The

reconstruction will be done via protocol ARecα (Fig. 6) amongst the parties. We
state the relevant properties below (proof appears in the full version [33]):

Fig. 6. Protocol for reconstruction of an authenticated-secret

Lemma 13. The pair (fα
ASh,ARec

α) satisfies the following:

i. Privacy. For all v ∈ F, the output (S1, . . . , Sn) ← fα
ASh(v) satisfies the

following– ∀{i1, . . . iα′} ⊂ [n] with α′ ≤ α, the distribution of {Si1 , . . . , Siα′ }
is statistically independent of v.

ii. Correctness. For all v ∈ F, the value v′ output by all honest parties at
the end of ARecα(S′

1, . . . S
′
n) satisfies the following– For all (S1, . . . , Sn) ←

fα
ASh(v) and (S′

1, . . . , S
′
n) such that S′

i = Si corresponding to atleast α + 1
parties Pi, it holds that Pr[v′ �= v] ≤ negl(κ) for a computational security
parameter κ.

iii. Round complexity. ARecα terminates in one round.

6.2 Upper Bound for Robust MPC: The General Case

In a setting where either at most n − 1 passive corruption or at most (�n
2 � − 1)

active corruption takes place, [28] presents a protocol relying on two types of
MPC protocol. An actively-secure protocol against malicious majority is used
to compute an authenticated-sharing of the output with threshold (�n

2 � − 1).
When this protocol succeeds, the output is computed via reconstruction of the
authenticated-sharing. On the other hand, a failure is tackled via running a
honest-majority (malicious minority) actively-secure protocol, relying on the
conclusion that the protocol is facing a malicious-minority. When n is odd, we
need to tackle the exact corruption scenarios as that of the protocols of [28]. On
the other hand when n is even, the extreme case for active corruption accom-
modates an additional passive corruption. Apart from hitting optimal round
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complexity, tackling the distinct boundary cases for odd and even n in a unified
way brings challenge for our protocol.

We make the following effective changes to the approach of [28]. First, we
invoke a 2-round actively-secure protocol πidua with identifiable abort against
malicious majority (can be instantiated with protocols of [10,11] augmented with
NIZKs) to compute �n

2 �-authenticated-sharing of the output. When we expel
the identified corrupt parties in case of failure (which may occur in corruption
scenario (ta, tp) = (�n/2�− 1, �n/2�)), the remaining population always displays
honest-majority, no matter whether n is odd or even. (For instance, elimination
of 1 corrupt party results in t′ ≤ (tp − 1) = �n/2� − 1 total corruptions among
n′ = (n− 1) remaining parties which satisfies n′ ≥ 2t′ +1.) The honest-majority
protocol πgod is then invoked to compute the function f where the inputs of
the identified parties are hard-coded to default values. The change in the degree
of authenticated sharing ensures that an adversary choosing to corrupt in the
boundary case of �n

2 � − 1 active corruption and zero (when n is odd) or one
(when n is even) additional purely passive corruption, cannot learn the output
by itself collating the information it gathers during πidua. Without the change,
the adversary could ensure that πidua leads to a failure for the honest parties and
yet could learn outputs from both πidua and πgod with different set of adversarial-
inputs. Lastly, the function and input independence property of Round 1 of the
3-round honest-majority protocol of [7,13] allows us to superimpose this round
with the run of πidua. Both these instantations of πgod are also equipped to tackle
the probable change in population for the remaining two rounds (when identified
corrupt parties are expelled) and the change in the function to be computed

Fig. 7. Robust MPC against boundary-admissible adversary
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(with hard-coded default inputs for the identified corrupt parties). Our protocol
appears in Fig. 7. Assumption wise, πbou

god relies on 2-round maliciously-secure OT
in the common random/reference string model, NIZK (when πidua is instantiated
with function-delayed variant of the protocol of [10] satisfying identifiability),
Zaps and public-key encryption (when πgod is instantiated with protocol of [13]).

We state the formal theorem below.

Theorem 6. Assuming the presence of a 2-round protocol πidua achieving identi-
fiable abort against malicious majority and a 3-round robust protocol πgod against
malicious minority (with special property of Round 1 being function and input-
independent), the 4-round MPC protocol πbou

god (Fig. 7) satisfies correctness and
achieves guaranteed output delivery against boundary-admissible A.

Proof. Correctness of πbou
god follows directly from that of πidua, πgod and ARec�n/2�

(Lemma 13). We prove its security in the full version [33]. �
We conclude this section with a simplification to πbou

god that can be adopted
if additional access to PKI is assumed. In such a case, parallelizing Round 1
of πgod with Round 1 of πidua can be avoided and the 2-round robust protocol
of [7] against malicious minority assuming CRS and PKI setup can be used to
instantiate πgod (which would be run in Rounds 3-4 of πbou

god). Both our 4-round
constructions with CRS (Fig. 7) and its simplified variant with CRS and PKI are
tight upper bounds, in light of the impossibility of Sect. 5.1 that holds in the
presence of CRS and PKI.

6.3 Upper Bound for Robust MPC: The Single Corruption Case

Building upon the ideas of Sects. 6.2 and 4.3, a 3-round robust MPC πbou,1
god

against the special-case boundary-admissible adversary can be constructed as
follows. Similar to πbou

god , Round 1 and 2 involve running protocol πidua realizing
�n/2�-authenticated secret-sharing of the function output. When πidua does not
result in abort, πbou,1

god proceeds to reconstruction of output; identical to πbou
god

and thereby terminating in 3 rounds. However, when πidua results in output ⊥,
we exploit the advantage of atmost one malicious corruption by noting that
once the single actively-corrupt party is expelled, the parties involved thereafter
comprise only of the honest and purely passive parties. We adopt the idea of
Sect. 4.3 and re-run Round 2 of πidua among the remaining parties to compute the
function output directly, with input of the expelled party substituted with default
input. This step demands the function-delayed property of πidua i.e. Round 1 is
independent of the function to be computed and the number of parties. In order
to accommodate this re-run, two instances of Round 1 of πidua are run in Round
1 of πbou,1

god . It is easy to see that robustness is ensured as πidua is robust in the
absence of actively-corrupt parties. Lastly, we point that similar to Sect. 4.3, we
use the modified variant of the 2-round protocol of [10] to instantiate πidua that
is function-delayed and achieves identifiability. The formal description of πbou,1

god

appears in Fig. 8. This upper bound is tight, following the impossibility of 2-
round fair MPC (that holds for single malicious corruption) proven in Sect. 5.2
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as GOD implies fairness. Assumption wise, πbou,1
god relies on 2-round maliciously-

secure OT in the common random/reference string model and NIZK (when πidua

is instantiated with above mentioned variant of the protocol of [10]).

Fig. 8. Robust MPC against special-case boundary-admissible adversary

We state the formal theorem below.

Theorem 7. Assuming the presence of a 2-round protocol πidua achieving identi-
fiable abort against malicious majority and having function-delayed property, the
3-round MPC protocol πbou,1

god (Fig. 8) satisfies correctness and achieves guaran-
teed output delivery against special-case boundary-admissible A with corruption
parameters either (ta, tp) = (1, �n/2�) or (ta, tp) = (0, n − 1).

Proof. Correctness of πbou,1
god follows directly from correctness of πidua, and correct-

ness of ARec�n/2� (Lemma 13). We prove its security in full version [33]. �
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