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Abstract. Two standard security properties of a non-interactive zero-
knowledge (NIZK) scheme are soundness and zero-knowledge. But while
standard NIZK systems can only provide one of those properties against
unbounded adversaries, dual-mode NIZK systems allow to choose dynam-
ically and adaptively which of these properties holds unconditionally. The
only known dual-mode NIZK schemes are Groth-Sahai proofs (which
have proved extremely useful in a variety of applications), and the FHE-
based NIZK constructions of Canetti et al. and Peikert et al, which are
concurrent and independent to this work. However, all these construc-
tions rely on specific algebraic settings.

Here, we provide a generic construction of dual-mode NIZK systems
for all of NP. The public parameters of our scheme can be set up in one of
two indistinguishable ways. One way provides unconditional soundness,
while the other provides unconditional zero-knowledge. Our scheme relies
on subexponentially secure indistinguishability obfuscation and subexpo-
nentially secure one-way functions, but otherwise only on comparatively
mild and generic computational assumptions. These generic assumptions
can be instantiated under any one of the DDH, k-LIN, DCR, or QR
assumptions.

As an application, we reduce the required assumptions necessary for
several recent obfuscation-based constructions of multilinear maps. Com-
bined with previous work, our scheme can be used to construct multi-
linear maps from obfuscation and a group in which the strong Diffie-
Hellman assumption holds. We also believe that our work adds to the
understanding of the construction of NIZK systems, as it provides a con-
ceptually new way to achieve dual-mode properties.

Keywords: Non-interactive zero-knowledge · Dual-mode proof
systems · Indistinguishability obfuscation

1 Introduction

Obfuscation and Structured Assumptions. Indistinguishability obfuscation
(iO) is a powerful cryptographic object, and along with one-way functions, it
implies almost every cryptographic primitive, from deniable encryption [42] to
functional encryption [26] and fully-homomorphic encryption [18]. However, it
is not currently known whether iO gives rise to structures in which algebraic
assumptions hold (such as DDH, DCR, LWE etc.). In this work, we are motivated
by the following open problem:
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Can structured objects (such as DDH groups) be bootstrapped from
unstructured objects (like generic one-way functions and iO)?

We make progress in this direction by developing the first construction of dual-
mode non-interactive zero-knowledge (NIZK) proof systems from unstructured
assumptions (iO, one-way functions and lossy trapdoor functions). This dual-
mode NIZK can be used in the constructions from [1,2,21], allowing us to answer
this question in the affirmative.

Zero-Knowledge Proof Systems. Zero-knowledge (ZK) proof systems [28,29]
are (implicitly or explicitly) at the heart of countless cryptographic construc-
tions. In a ZK proof system, a prover P tries to convince a verifier V of the
validity of a statement x. “Validity” usually means that x ∈ L for some lan-
guage L ∈ NP. In this case, P obtains a witness w to x ∈ L. For security, we
require soundness, which means that no dishonest prover can convince V of a
false statement x /∈ L. Additionally, we may want to protect P (and in particular
the used witness w) in several ways. For instance, the protocol is zero-knowledge
if it is possible to efficiently simulate (transcripts of) protocol runs even without
w. Alternatively, we can require the protocol to be witness-hiding or witness-
indistinguishable [23].

ZK proof systems can be interactive or non-interactive (the latter of which
means that the prover sends only one message to the verifier). In this work, we are
interested in non-interactive ZK (NIZK) proof systems [10]. There exist already
various NIZK proof systems, ranging from generic [22,24,42] to highly efficient
constructions based on concrete number-theoretic assumptions [24,32,44]. Some
of these systems only allow to prove x ∈ L for specific languages L, while others
can be used to prove statements from arbitrary languages L ∈ NP.

Dual-Mode Proof Systems. Some NIZK systems enjoy statistical security,
i.e., information-theoretic soundness or zero-knowledge guarantees. However,
interestingly, no NIZK system can be statistically sound and statistically zero-
knowledge simultaneously. Hence, a NIZK system can be secure only either
against unbounded malicious provers or against unbounded malicious verifiers.

Fortunately, there is a compromise that combines the best of both worlds:
Groth-Sahai proofs [32] are statistically sound or statistically zero-knowledge
depending on the choice of public parameters crs. Furthermore, both choices of
parameters are computationally indistinguishable. This “dual-mode” property
leads to comparatively simple proofs for complex protocols (e.g., for anonymous
credentials [4] or payment systems [33]). In the case of [2,21], a proof without
using dual-mode properties in fact does not seem obvious at all.1

1 A bit more technically, dual-mode NIZK proofs allow to use both witness extraction
or simulation trapdoors in different stages of the proof, depending on the chosen
mode. (This is helpful in case of [4,33] and crucial in [2,21].) Furthermore, in complex
settings with mutually dependent statements and witnesses, statistical properties are
easier seen to compose.
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Until recently, only Groth-Sahai proofs [32] (and their variants, e.g., [9,20,35])
were known to possess this dual-mode property.2 These proof systems all rely on
a very specific and structured algebraic setting (pairing-friendly cyclic groups). In
contrast, we rely on generic rather than algebraic techniques, resulting in a fun-
damentally new way of obtaining dual-mode proof systems.

Concurrent Work. Concurrently and independently to this work, [19,39] have
put forward breakthrough approaches to obtain dual-mode NIZKs from the LWE
assumption. These constructions rely on rich algebraic structures and are non-
blackbox. In contrast, our techniques are generic and our perspective is closer
to computational complexity, in that we investigate whether the existence of a
powerful non-algebraic object (iO) can lead to algebraic ones.

Our Contribution. In this paper, we give the first generic construction of
dual-mode NIZK proofs from (the combination of) the following ingredients:

– subexponentially secure indistinguishability obfuscation (iO, [3,26]),
– subexponentially secure one-way functions,
– a (selectively) subexponentially secure functional encryption scheme,
– lossy encryption [5,40], and
– lossy functions (LFs), a relaxation of lossy trapdoor functions [41] which we

introduce in this paper.

We stress that some of our ingredients are implied by (a combination of) others:
Functional encryption canbe constructed from iOandone-way functions [26].Con-
versely, subexponentially secure functional encryption implies subexponentially
secure iO and one-way functions (e.g., [8] and the references therein). Furthermore,
both LFs and lossy encryption are implied by lossy trapdoor functions [41].

As a side note, we remark that thus, a subexponential variant of any of the
DDH, k-LIN, QR, DCR, or LWE assumptions, along with subexponential iO
implies all of our ingredients.3

Of course, since we assume iO, our construction is far from practical. Still,
it has interesting theoretical applications. For instance, it allows to instantiate
dual-mode NIZK proofs in the recent works [1,2,21] without any additional
assumptions, and in particular without pairing-friendly groups. (Incidentally,
these works already assume what we need for our construction.)

In particular, combining our results with the scheme from [1], shows that it
is possible to obtain a very structured object (namely, a cyclic group in which
Diffie-Hellman and similar assumptions hold) solely from an unstructured and
generic object (iO), and a mildly structured object (a lossy trapdoor function).4

2 We do not consider NIZK proofs in the random oracle model (such as [37]) here.
3 See [11,25,41] for the corresponding instantiations of lossy trapdoor functions from

these concrete assumptions.
4 Indeed, except for a dual-mode NIZK proof system, all assumptions in [1] can be

instantiated from subexponentially secure iO and a subexponentially secure lossy
trapdoor function. We note, however, that [1] construct a group in which elements
have only a non-unique representation and no canonical form. Hence, their group
might not be considered a “standard group”, but still has a rich algebraic structure.
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Similarly, implementing [2,21] with our system (instead of with Groth-Sahai
proofs) yields a pairing-friendly group (with non-unique representation) from iO
and a DDH group (both subexponentially secure). Therefore, we also give an
answer to the following open problem (Fig. 1):

Can bilinear groups be bootstrapped from DDH groups and iO?

Fig. 1. Some implications on previous results. “iO”, “LTDF” and “SDDH” denote
subexponential versions of indistinguishability obfuscation, lossy trapdoor functions
and the “Strong DDH” (a q-type variant of the Diffie-Hellman assumption).

Open Problems. We note that the groups from [1,2,21] all enjoy non-unique
representations of group elements. That is, equality of group elements can be
tested, but there does not exist a canonical form. Removing this limitation
remains an open problem.

Our Techniques

Existing Generic Approaches. Before explaining our main ideas, we first
mention that generic constructions of NIZKs from iO already exist. Namely, [42]
present a NIZK construction that only assumes iO and one-way functions. Their
construction is (even perfectly) zero-knowledge. However, proofs are in their case
simply signatures of the corresponding statement x. Thus, their construction is
inherently limited to computational soundness, in the sense that it is not clear
how to tweak this construction to obtain statistical soundness.

Secondly, it is possible to construct a notion of trapdoor permutations from
iO that is in turn sufficient to construct statistically sound NIZK proofs [17]
(cf. [6,7,22,30]). However, it is not clear how to tweak this NIZK construction
to obtain statistical zero-knowledge.

The Hidden Bits Model. Similarly to [17], our starting point is also the
generic NIZK construction from [22]. This work presents a statistically sound
and perfectly zero-knowledge NIZK protocol in an ideal model of computation
called the “hidden bits model” (HBM).5 It will be helpful to first recall the HBM

5 Since their protocol is formulated in an ideal model of computation, it does not
contradict our remark above about the impossibility of simultaneously achieving
statistical soundness and statistical zero-knowledge. One of the two statistical prop-
erties will be lost when implementing this ideal model.
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before going further. In a nutshell, the HBM gives the prover P access to an ideal
random bitstring hrs = (hrs1, . . . , hrst) ∈ {0, 1}t. Next, P selects a subset I ⊆ [t]
and a proof π. Then, the verifier V is activated with I, π, the subset (hrsi)i∈I
of hrs that is selected by I, and of course the instance x. Finally, V is supposed
to output a verdict b ∈ {0, 1}.

Two Ways to Implement the HBM. Note that the power of the HBM
stems from the fact that hrs is ideally random (and cannot be tampered with
by P ), but only revealed in part to V . When implementing the HBM, we will
necessarily have to compromise on some of these properties. However, it will be
interesting to see what the consequences of such compromises are. Specifically,
when implementing the HBM in the HBM-based NIZK protocol of [22], we can
observe the following:

(a) if we implement the HBM such that hrs is truly random (or selected from a
small set of possible hrs values, each of which is individually truly random),
then the resulting NIZK protocol is statistically sound and computationally
zero-knowledge,

(b) if we implement the HBM such that the unopened bits (hrsi)i/∈I are sta-
tistically hidden from V , then the resulting NIZK protocol is statistically
zero-knowledge and computationally sound.

Known implementations of the HBM (e.g., [22,30,31]) follow (a), and thus enjoy
statistical soundness guarantees. Our main strategy will be to build a dual-mode
NIZK proof system by implementing the HBM in a way that allows to switch
(by switching public parameters) between (a) and (b).

A First Approach. Our first step will be to set up the hidden string hrs as

hrs = H(X) ⊕ crs

for a value X chosen freely by P , a yet-to-be-defined function H, and a truly
random “randomizing string” crs fixed in the public parameters. If H is a pseu-
dorandom generator (that admits a suitable partial opening process, see [31] for
an explicit formulation), this yields the core of existing HBM implementations.
In particular, if H has a small image, then we are in case (a) above, and the
resulting NIZK is statistically sound.

However, suppose we can switch (in a computationally indistinguishable way)
H(X) to have a large image, such that in fact H(X) ∈ {0, 1}t is close to uniformly
distributed for random X. We call such a “switchable” object a lossy function
(LF). An LF can be easily constructed, e.g., by universally hashing the output
of a lossy trapdoor function F . For suitable choices of parameters, H(X) :=
h(F (X)) is close to uniform if F is injective (and X random), and has a small
range if F does.

With H(X) close to uniform, we are in case (b) above, assuming that the
process itself of revealing hrsI does not reveal additional information about other
bit positions. Hence, we obtain a statistically zero-knowledge NIZK protocol, and
in summary even a dual-mode NIZK that can be switched between statistically
sound and statistically zero-knowledge modes of operation.
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Managing the Opening Process. The main problem with our first approach
is that it is not clear how to partially open a subset hrsI of hrs to a verifier V . Pre-
vious HBM implementations (e.g., [22,31]) devised elaborate ways to partially
open suitably designed pseudorandom generators (in the role of H above). We
cannot use those techniques for two reasons. First, their opening process might
reveal statistical information about the unopened parts of hrs. Second, these
techniques require specific H functions, and do not appear to work with “switch-
able” functions H as we need. Hence, we use the strong ingredients mentioned
above to design our own opening process.

We will use a functional encryption scheme FE. We will publicize a truly
random crs, a statement Z from a language L′ that is hard to decide, along
with an FE public key fmpk, and a corresponding secret key skf for the following
function f:

f(X, I, z, T ) :=

{
(T, I) if z is a witness toZ ∈ L′

(H(X)I , I) else.

An opening consists of an encryption

C = FE.Enc(fmpk, (X, I, 0, 0))

that will decrypt to f(X, I, 0, 0) = H(X)I under skf . The verifier will receive this
opening, retrieve H(X)I with skf , and compute hrsI = H(X)I ⊕ crsI .

Observe that this process has the following properties:

– If Z /∈ L′, then skf(C) = (H(X)I , I) always. Hence, if additionally H has a
small range, we are in case (a) above, and the corresponding NIZK protocol
is statistically sound.

– If Z ∈ L′ with witness z, then any prover who knows z can efficiently open
hrsI arbitrarily, by encrypting (0, I, z, T ) for T = crsI ⊕ hrsI and the desired
hrsI . Furthermore, such openings obviously do not contain any information
about potential other positions of hrs. This means we are in case (b) above,
and the corresponding NIZK protocol is statistically zero-knowledge.

By using FE’s security, it is possible to show that these two types of openings
are indistinguishable to a verifier. However, as formulated, they are of course
not indistinguishable to a prover yet. Hence, we will additionally publicize an
obfuscated algorithm PC that will get as input a statement x with witness w, and
random coins r. Depending on the mode (sound or zero-knowledge), PC(x,w, r)
will then either encrypt (X, I, 0, 0) or (0, I, z, T ), for pseudorandom X and T
derived from r.

A Taste of the Security Proof. For security, we will show that the public
parameters in both modes are computationally indistinguishable. The security
proof is somewhat technical, and we would like to highlight only one interesting
theme here. Namely, observe that the prover algorithm PC is inherently proba-
bilistic. In the proof, we need to modify PC’s behavior, and in particular decouple
its output distribution from its input w. Specifically, when aiming at statistical
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soundness, the output of PC will encrypt, and thus depend on w. But when
trying to achieve zero-knowledge, PC’s output should not reveal (in a statistical
sense) which witness w has been used.6

This decoupling process is particularly cumbersome to go through because
PC itself is public and can be run on arbitrary inputs. Any change that essen-
tially makes PC ignore its w input will be easily detectable. Hence, we add an
indirection that helps to remove dependencies on w. Specifically, we let PC first
compute a = LE.Enc(lpk, (x,w); r) using a lossy encryption scheme LE. If the
corresponding public key lpk is injective (i.e., leads to decryptable ciphertexts),
then a determines w. Hence, any case distinction (or hybrid argument) we make
for different values of w can alternatively be made for different values of a. On
the other hand, if lpk is lossy, then a will be statistically independent of the
plaintext (x,w).

Hence, a can be used as a single value that (a) can serve as a “fingerprint” of
(or in some sense even as a substitute for) w in the proof, but (b) can be easily
made independent of w by switching lpk into lossy mode. Equipped with this
gadget, we will structure the proof as a large hybrid argument over all values of
a (encrypted at this point with an injective lpk). In each step, we modify PC’s
behavior for one particular value of (x,w), and change the corresponding FE
ciphertext C from an encryption of (X, I, 0, 0) to (0, I, z, T ) for a pseudorandom
value T derived from a.

Roadmap. After recalling some preliminaries in Sect. 2, we present our proof
system in Sect. 3, followed by its analysis in Sect. 4. In the full version, we provide
a schematic overview over our main proof, a proof of a technical lemma, a recap of
the HBM-based NIZK from [22], and an analysis of the (statistical) extractability
of our scheme.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. For a
natural number n ∈ N, [n] denotes the set {1, . . . , n}. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial
in the (implicit) security parameter λ. A positive function f is negligible if for
any polynomial p there exists a bound B > 0 such that, for any integer k ≥ B,
f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming probability
when its probability is at least 1 − negl(λ) for a negligible function negl. Given
a finite set S, the notation x ←r S means a uniformly random assignment of
an element of S to the variable x. If A is a probabilistic algorithm, y ←r A(·)
denotes the process of running A on some appropriate input and assigning its
output to y. The notation AO indicates that the algorithm A is given oracle
access to O. We denote a ← A; b ← B(a); . . . for running the experiment where
a is chosen from A, after which b is chosen from B, which might depend on a
and so on. This determines a probability distribution over the outputs and we

6 Formally, to achieve zero-knowledge, we must achieve witness-indistinguishability.
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write Pr[a ← A; b ← B(a); . . . : C(a, b, . . .)] for the probability of the condition
C(a, b, . . .) being satisfied after running the experiment. For two distributions
D1,D2, we denote by Δ(D1,D2) the statistical distance. We also write D1 ≡
D2 when the distributions are identical, D1 ≈c D2 when the distributions are
computationally indistinguishable and D1 ≈ε D2 when Δ(D1,D2) ≤ ε.

2.1 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [27], is a tuple of
PPT algorithms PRF = (PRF.KeyGen,PRF.Eval). Let K denote the key space,
X denote the domain, and Y denote the range. The key generation algorithm
PRF.KeyGen on input of 1λ, outputs a random key from K and the evalua-
tion algorithm PRF.Eval on input of a key K and x ∈ X , evaluates the function
F : K×X 
→ Y. The core property of PRFs is that, on a random choice of key K,
no probabilistic polynomial-time adversary should be able to distinguish F (K, ·)
from a truly random function, when given black-box access to it. Puncturable
PRFs (pPRFs) have the additional property that some keys can be generated
punctured at some point, so that they allow to evaluate the PRF at all points
except for the punctured point. As observed in [13,14,36], it is possible to con-
struct such punctured keys for the original construction from [27], which can be
based on any one-way functions [34].

Definition 1 (Puncturable Pseudorandom Function [13,14,36]). A
puncturable pseudorandom function (pPRF) is with punctured key space Kp

is a triple of PPT algorithms (PRF.KeyGen,PRF.Puncture,PRF.Eval) such that:

– PRF.KeyGen(1λ) outputs a random key K ∈ K,
– PRF.Puncture(K,x), on input K ∈ K, x ∈ X , outputs a punctured key

K{x} ∈ Kp,
– PRF.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′, out-

puts an evaluation of the PRF.

We require PRF to meet the following conditions:

Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr[K ←r PRF.KeyGen(1λ),K{x} ←r PRF.Puncture(K,x) :
∀x′ ∈ X \ {x} : PRF.Eval(K,x′) = PRF.Eval(K{x}, x′)] = 1.

Pseudorandom at punctured points. For every stateful PPT adversary
A and every security parameter λ ∈ N, the advantage of A in Exp-s-pPRF
(described in Fig. 2) is negligible, namely:

Advs-cPRF(λ,A) :=
∣∣ Pr[Exp-s-pPRF(1λ,A) = 1] − 1

2

∣∣ ≤ negl(λ).
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Sub-exponential Security. We say that PRF is sub-exponentially secure when it
satisfies Definition 1 and in addition it satisfies: for every PPT adversary A, the
advantage Advs-cPRF(λ,A) ≤ 1

2λε , for some positive constant 0 < ε < 1.
Definition 1 corresponds to a selective security notion for puncturable pseudo-

random functions; adaptive security could be considered, but will not be required
in our work. For ease of notation we often write F (·, ·) instead of PRF.Eval(·, ·).

Fig. 2. Experiment Exp-s-pPRFA(λ) for the pseudo-randomness at punctured points.

2.2 Lossy Functions

We generalize the notion of LTDF (lossy trapdoor function) due to [41] and
introduce lossy functions. LTDFs (Lossy trapdoor functions) can be sampled
in two indistinguishable modes: an injective and a lossy mode. When sampling
injective functions, the setup also provides a trapdoor which can be used to
invert the function. Unlike LTDFs, for lossy functions we require that functions
can be sampled in two modes, but in which one mode is “more lossy” than the
other. Thus, instead of an injective and a lossy mode, we have a “less lossy”
and a “more lossy” mode, which we denote as “dense” and “lossy” modes. Since
we do not necessarily have injectivity in the dense setting, we also do not have
trapdoors as in LTDFs.

Definition 2 (Lossy Functions). A tuple LF = (Setup,Eval) of PPT algo-
rithms is a family of (n, k,m, i)-lossy functions if the following properties hold:

– Sampling functions: Both Setup(1λ, dense) of dense functions and
Setup(1λ, lossy) of lossy functions output a function index s. We require that
Eval(s, ·) is a deterministic function on {0, 1}n → {0, 1}m in both cases. In the
following, we use the shorthand notation s(·) := Eval(s, ·).

– Dense functions have images statistically close to uniformly random: for all
s ←r LF(1λ, dense), we have that:

Δ((s(Un), s), (Um, s)) ≤ 1
2i

.
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– Lossy functions have small image size: The image size of lossy functions is
bounded by 2k. In particular, for all s ←r Setup(1λ, lossy),

|{Eval(s, x) : x ∈ {0, 1}n}| ≤ 2k.

– Indistinguishability: The outputs of Setup(1λ, lossy) and Setup(1λ, dense)
are computationally indistinguishable, i.e. {Setup(1λ, lossy)} ≈c {Setup(1λ,
dense)}
We can generalise Definition 2 even further. Instead of asking that in dense

mode the evaluation of the function is statistically close to a uniformly random,
we may instead define the dense mode as having H∞(Eval(s, Un)) ≥ m+2 log

(
1
ε

)
.

Then, by the leftover hash lemma, we can combine LF with a 2-universal hash
function to ensure that the output is statistically close to uniformly random as
in Definition 2. For clarity, we do not use this generalization in our proofs.

Concrete Instantiations: The lossy trapdoor functions from [41] are also lossy
functions in the sense of Definition 2. Moreover, composed with 2-universal hash
functions, they satisfy the necessary parameters in our construction (see Sect. 3).
This would yield suitable lossy functions based on DDH and LWE.

2.3 Lossy Encryption

Definition 3. [5,40]: A lossy public-key encryption scheme is a tuple LE =
(Gen,Enc,Dec) of polynomial-time algorithms such that

– Gen(1λ, inj) outputs keys (pk, sk), keys generated by Gen(1λ, inj) are called
injective keys.

– Gen(1λ, lossy) outputs keys (pklossy,⊥), keys generated by Gen(1λ, lossy) are
called lossy keys.

– Enc(pk, ·, ·) : M × R → C.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all plaintexts x ∈ X,

Pr[(pk, sk) ←r Gen(1λ, inj); r ← R : Dec(sk,Enc(pk, x, r)) = x] = 1.

2. Indistinguishability of keys. Public keys pk are computationally indistin-
guishable in lossy and injective modes. Specifically, if proj : (pk, sk) → pk is
the projection map, then:

{proj(Gen(1λ, inj))} ≈c {proj(Gen(1λ, lossy))}.

3. Lossiness of lossy keys. For all (pklossy,⊥) ←r Gen(1λ, lossy), and all
x0, x1 ∈ M , the two distributions {r ←r R : (pklossy,Enc(pklossy, x0, r))}
and {r ←r R : (pklossy,Enc(pklossy, x1, r))} are statistically close, i.e. the
statistical distance is negligible in λ.
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We define a lossy encryption scheme LE to be μ-lossy if for all (pklossy,⊥) ←r

Gen(1λ, lossy) and for all x0, x1, we have that:

{r ←r R : (pklossy,Enc(pklossy, x0, r))} ≈μ {r ←r R : (pklossy,Enc(pklossy, x1, r))}

2.4 Functional Encryption

Definition 4. [12,38,43] A functional encryption scheme for a class of func-
tions F = F(1λ) over message space M = Mλ consists of four polynomial time
algorithms FE = (Setup,KeyGen,Enc,Dec):

1. Setup(1λ) – on input the security parameter λ outputs master public key
mpk and master secret key msk.

2. KeyGen(msk, f) – on input the master secret key msk and a description of
function f ∈ F and outputs a corresponding secret key skf .

3. Enc(mpk, x) – on input the master public key mpk and a string x, outputs a
ciphertext ct.

4. Dec(skf , ct) – on inputs the secret key skf and a ciphertext encrypting mes-
sage m ∈ M , outputs f(m).

A functional encryption scheme is perfectly correct for F if for all f ∈ F and
all messages m ∈ M:

Pr[(mpk,msk) ←r Setup(1λ) : Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1

In addition, for the proof of Theorem14, we need a stronger property from
the functional encryption schemes we use in our construction, which we call spe-
cial correctness of decryption keys. Special correctness requires that decrypting
any (potentially maliciously generated) ciphertext under the decryption key skf

yields a result which lies in the range of the function f . The functional encryp-
tion scheme based on iO and one-way functions from [26] satisfies this property.

Definition 5 (Special correctness of decryption keys). A functional
encryption scheme satisfies special correctness if for all λ ∈ N, for all ct, for
all f ∈ F , it holds that:

Pr

[
(mpk,msk) ←r Setup(1λ),
skf ←r KeyGen(msk, f) : Dec(skf , ct) ∈ Im(f) ∪ {⊥}

]
≥ 1 − negl(λ),

where Im(f) = {f(m) : m ∈ M} denotes the image of the function f .

Definition 6 (Selectively Indistinguishable Security). A functional
encryption scheme FE is selectively indistinguishable secure ( SEL-IND-FE-CPA)
if for all stateful PPT adversaries A, the advantage of A in the experiment
Exp-s-IND-FE-CPA described in Fig. 3 is negligible, namely:

AdvFEExp-s-IND-FE-CPA(λ, A) :=
∣
∣ Pr[Exp-s-IND-FE-CPAFE(1λ, A) = 1] − 1

2
]
∣
∣ ≤ negl(λ)
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Fig. 3. Experiment Exp-s-IND-FE-CPA for the selective indistinguishable security of
FE. The queries of A to oracle FE.KeyGen(msk, ·) are restricted to functions f such
that f(m0) = f(m1).

Definition 7 (Sub-exponential Selectively Indistinguishability Secu-
rity). A functional encryption scheme FE is sub-exponentially selectively indis-
tinguishability secure if it satisfies Definition 6 and in addition: for all PPT
adversaries A:

AdvFEExp-s-IND-FE-CPA(λ,A) ≤ 1
2λε , for some positive constant 0 < ε < 1.

2.5 Indistinguishability Obfuscation

Definition 8 (Indistinguishability Obfuscator[3,26]). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class Cλ if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have:

Pr[C ′(x) = C(x) : C ′ ←r iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher A, for all security
parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if
C0(x) = C1(x) for all inputs x, then:

AdviO(λ,A) := |Pr[A(iO(λ,C0)) = 1] − Pr[A(iO(λ,C1)) = 1]| ≤ negl(λ)

Sub-exponential Security. We say that iO is sub-exponentially secure when it
satisfies Definition 8 and also it satisfies that: for every (not necessary uniform)
PPT distinguisher A, the advantage AdviO(λ,A) is bounded by 1

2λε , for some
positive constant 0 < ε < 1.

2.6 Dual-Mode NIWI Proof Systems

A dual-mode non-interactive witness indistinguishable (DM-NIWI) proof sys-
tem [32] is a special type of non-interactive witness indistinguishable (NIWI)
proof system, in which the common reference string (CRS) generation is dual-
mode. The dual-mode property means that these systems have common reference
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string algorithms which generate indistinguishable CRS in “binding” or “hiding”
modes. The system satisfies statistical soundness and extractability in binding
mode and statistical witness indistinguishability in hiding mode.

Definition 9. A binary relation R is polynomially bounded if it is decidable
in polynomial time and there is a polynomial p such that |w| ≤ p(|x|), for all
(x,w) ∈ R. For any such relation and any x we set LR = {x| ∃w s.t. (x,w) ∈ R}.

Definition 10 (Dual-mode non-interactive witness indistinguishable
proof systems[32]). Let R be a polynomially-bounded binary relation R. A
dual-mode non-interactive witness indistinguishable (DM-NIWI) proof system
for language LR ∈ NP is a tuple of PPT algorithms DM-NIWI = (Setup,Prove,
Verify,Extract).

Setup(1λ,binding) on input the security parameter, outputs a common refer-
ence string crs which we call binding. It also outputs the corresponding extrac-
tion trapdoor tdext.
Setup(1λ,hiding) on input the security parameter, outputs a common refer-
ence string crs, which we call a hiding crs.
Prove(crs, x, w), on input crs, a statement x and a witness w, outputs a proof π.
Verify(crs, x, π), on input crs, a statement x and a proof π, outputs either 1
or 0.
Extract(tdext, x, π) on input the extraction trapdoor tdext, a statement x and a
proof π, it outputs a witness w.

We require the DM-NIWI to meet the following properties:

CRS indistinguishability. Common reference strings generated via Setup(1λ,
binding) and Setup(1λ,hiding) are computationally indistinguishable.More for-
mally, for all non-uniform PPT adversaries A, the advantage of A in the exper-
iment Exp-CRS-IND described in Fig. 4 is negligible, namely:

AdvDM-NIWI
Exp-CRS-IND(λ,A) :=

∣∣ Pr[Exp-CRS-INDDM-NIWI
0 (1λ,A) = 1]−

Pr[Exp-CRS-INDDM-NIWI
1 (1λ,A) = 1]

∣∣ ≤ negl(λ)

Fig. 4. Experiment Exp-CRS-INDDM-NIWI
b for CRS indistinguishability.
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Perfect completeness in both modes. For every (x,w) ∈ R, we have that:

Pr
[
crs ←r Setup(1λ,binding),
π ←r Prove(crs, x, w) : Verify(crs, x, π) = 1

]
= 1.

The same holds when instead of crs ←r Setup(1λ,binding), we have crs ←r

Setup(1λ,hiding).
Statistical soundness in binding mode. The system is statistically sound if

for every (possibly unbounded) adversary A, we have that

Pr

[

(crs, tdext) ←r Setup(1λ, binding),
(x, π) ←r A(crs)

: Verify(crs, x, π) = 1 ∧ x /∈ LR

]

= negl(λ).

Statistical extractability in binding mode. For any (x, π), it holds that:

Pr

[
(crs, tdext) ←r Setup(1λ, binding),
w ←r Extract(crs, tdext, x, π)

:

(
Verify(crs, x, π) = 1
=⇒ (x, w) ∈ R

)]

= 1 − negl(λ).

Note: In binding mode, statistical extractability implies statistical soundness.
Statistical witness-indistinguishability in hiding mode. We say that the

DM-NIWI system is statistically witness-indistinguishable if for every x, w0,
w1 with both (x,w0) ∈ R and (x,w1) ∈ R, proofs of x with witness w0 are
indistinguishable from proofs of x with witness w1. More formally, for every
interactive (potentially unbounded) adversary A:∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣
crs ←r Setup(1λ,hiding),
(x,w0, w1) ←r A(crs),
b ←r {0, 1},
π ←r Prove(crs, x, wb)

: A(crs, π) = b

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
≤ negl(λ),

where A is restricted to choosing (x,w0, w1), such that both (x,w0) ∈ R and
(x,w1) ∈ R.

Remark. Like with the original presentation of Groth and Sahai [32], we focus
our presentation on witness-indistinguishable (and not zero-knowledge) proof
systems. Unlike zero-knowledge, witness-indistinguishability has useful compo-
sitional properties (see [23]). If zero-knowledge is desired, however, a simple
transformation is possible: instead of proving x ∈ L, prove x ∈ L ∨ x̂ ∈ L̂
with our system, where L̂ is any fixed hard-to-decide language, and x̂ is a fixed
instance determined in crs. In binding mode, set up x̂ /∈ L̂, so that x ∈ L∨ x̂ ∈ L̂
implies x ∈ L. In hiding mode, set up x̂ ∈ L̂, in which case a witness to this fact
can be used as a simulation trapdoor to efficiently simulated proofs that achieve
statistical zero-knowledge.

2.7 Hidden Bits Non-interactive Zero-Knowledge

In our construction, we rely on a NIZK protocol in the hidden bits model. The
hidden-bits model was introduced by [22] and is an idealized setting in which
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the bits of the common reference string are hidden from the verifier (but not
from the prover). We call this the hidden reference string hrs.

When the prover computes a proof, it can choose which bits of hrs to reveal
to the verifier. Denote the revealed bit set by I, then by hrsI we will refer to
the corresponding revealed bits of the hrs. Our construction can be based on
the hidden-bits NIZK from [22], which proves graph Hamiltonicity and there-
fore covers any NP statement. Nevertheless, our construction is generic enough
to be based on any hidden-bits NIZK with statistical soundness and perfect
zero-knowledge (if we only had statistical ZK, then we would only get statis-
tical correctness of DM-NIWI). The hidden-bits NIZK from [22] satisfies both
statistical soundness and perfect ZK.

Definition 11. [22] A pair of PPT algorithms NIZKH = (PH ,VH) is a NIZK
proof system in the hidden-bits model if it satisfies the following properties:

1. Completeness: there exists a polynomial r denoting the length of the hidden
random string, such that for every (x,w) ∈ R we have that:

Pr
PH ,hrs←{0,1}t(|x|,λ)

[(π, I) ← PH(x,w, hrs) : VH(x, hrsI , I, π) = 1] = 1

where I ⊆ [t(|x|, λ)] and hrsI = {hrs[i] : i ∈ I}.
2. Statistical Soundness: for every x /∈ L we have that:

Pr
hrs←{0,1}t(|x|,λ)

[∃π, I : VH(x, hrsI , I, π) = 1] <
1

2λ+|x| .

3. Perfect Zero-Knowledge: there exists a PPT algorithm SH such that:

D0 := {(hrsI , π, I) : hrs ← {0, 1}t(|x|,λ), (π, I) ← PH(x,w, hrs)}(x,w)∈R ≡
≡ {SH(x)}(x,w)∈R =: D1

For ease of notation, we denote by ΔNIZKH

ZeroKnowledge(λ) := Δ(D0,D1) the sta-
tistical distance between distributions D0 and D1. In the case of perfect ZK,
ΔNIZKH

ZeroKnowledge(λ) := Δ(D0,D1) = 0.

3 Construction

In Fig. 5, we describe our DM-NIWI candidate. Our scheme uses a hidden-bits
NIZK proof system NIZKH = (PH ,VH) as a building block. To distinguish com-
mon reference strings and proofs between the two proof systems, we denote by
lowercase (π, hrs) the proofs and hidden reference strings for NIZKH . In contrast,
the common reference string and proofs of DM-NIWI are denoted as CRS and Π,
respectively.

The CRS of DM-NIWI contains the public key lpk of a lossy encryption scheme
LE, a lossy function H, uniformly random Z and crs, a functional decryption
function skf and an obfuscated program PC. Prover program PC(x,w, r) first
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encrypts (x,w) using randomness r to obtain a = LE.Enc(lpk, (x,w); r). Then
it computes either a HidingProof or a BindingProof depending on the mode and
outputs as proof a FE ciphertext C and a hidden-bits proof π. The verifier
decrypts C using skf and then uses the hidden-bits verifier to check proof π.

Notation and Parameters. For security parameter λ, we denote by p(|x| + λ)
the ciphertext size of LE. By p2(|x|, λ), we denote the size of the ran-
domness needed to compute FE ciphertexts, while p3(|x|, λ) denotes the
size of the random tape needed by the hidden-bits simulator SH . Recall
that t(|x|, λ) is the polynomial from Definition 11. Then LF must be a(
p1(|x|, λ), λ, t(|x|, 2λ + |x|), p(|x| + λ) + λ

)
-lossy function. Consider the subex-

ponential security level of iO,FE and PRF to be 1
2κε , for some constant 0 < ε < 1.

Then κ must be chosen as (p(|x| + λ) + λ)(1/ε).

4 Security Proof

Theorem 12. Let PRF be a subexponentially-secure puncturable pseudo-random
function, iO be a subexponentially-secure obfuscator, PRG a secure pseudo-random
generator, LE a secure lossy encryption scheme and FE a subexponentially-secure
selectively-IND-CPA functional encryption scheme, then the scheme DM-NIWI =
(DM-NIWI.Setup,DM-NIWI.Prover,DM-NIWI.Verifier) described in Fig. 5 is a
secure dual-mode non-interactive witness-indistinguishable system.

4.1 Completeness

Lemma 13. The DM-NIWI system in Fig. 5 is perfectly complete.

Proof. Completeness follows from the completeness of the hidden-bits NIZKH ,
the perfect ZK of NIZKH , the perfect correctness of FE and the functionality of
iO (the fact that for all programs C, we have that iO(C) is functionally equivalent
to C). Consider any (x,w) ∈ R and (C, π) = DM-NIWI.Prover(CRS, x, w, r). We
want to show that DM-NIWI.Verifier(C, π,CRS) = 1 with probability 1.

Case 1: CRS ←r DM-NIWI.Setup(1λ,binding) Since (C,Π) is a proof computed
by the honest prover, we know that (π, I) ← PH(x,w, hrs), where hrs is derived
from a, the lossy encryption of (x,w). From the perfect correctness of FE, we
have that indeed (T ⊕ crs)I = hrsI . Therefore, from the perfect correctness of
NIZKH , it follows that VH(I, (T ⊕ crs)I , x, π) accepts with probability 1.

Case 2: CRS ←r DM-NIWI.Setup(1λ,hiding) Since (C,Π) is a proof computed
by the honest prover, we know that (hrsI , π, I) ← SH(x; r3), where r3 is the
random tape used by the hidden-bits simulator SH . By the perfect correctness
of FE, decrypting C yields indeed hrsI ⊕crsI , therefore we can recover hrsI . Now,
since NIZKH has perfect zero-knowledge, it follows that VH(I, (T ⊕ crs)I , x, π)
accepts with probability 1 (or otherwise simulated proofs would not be identically
distributed to real ones).
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Fig. 5. Dual-mode NIWI scheme DM-NIWI = (Setup,Prover,Verifier). LF is a class
of lossy functions, PRG.Setup outputs pseudo-random generators from {0.1}λ to
{0, 1}2λ+|x|, FE is a functional encryption scheme, LE is a lossy encryption scheme,
iO is an indistinguishability obfuscator and (PH ,VH) is the hidden-bits model NIZK
from [22]. Parameter κ is chosen so that the sub-exponential security level is sufficient.

4.2 Soundness

Theorem 14. When in binding mode, the DM-NIWI system in Fig. 5 is statis-
tically sound.

Proof. Here we use the soundness of the hidden-bits scheme, coupled with the
lossiness of function H.
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Since crs is uniformly random, computing hrs := H(PRF(K1, a)) ⊕ crs will
yield another uniformly random string and will allow us to use the soundness of
the hidden-bits system. Moreover, we leverage the lossiness of H to ensure that
an adversary cannot influence the hrs sufficiently enough as to be able to cheat.
This is because the honest verifier applies H automatically when it functionally
decrypts ciphertext C.

More formally, fix some x ∈ {0, 1}n \ L. We prove that with overwhelming
probability over the common reference string, there is no proof Π which will
be accepted by the verifier. This is a selective notion which we later amplify to
obtain the security notion from Definition 10.

We want to bound Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1].
We can rewrite this probability as:

Pr
Z ←r {0, 1}2λ+|x|

crs ←r {0, 1}t(|x|,2λ+|x|)

H,PC, fmpk, fmsk, skf

[∃(π,C) : Verifier((π,C), (H, fmpk, lpk, skf , crs, Z,PC)) = 1]

Now, we condition on the event E that Z does not have a PRG preimage, which
happens with probability 1− 1

2λ+|x| . From the functionality of iO and the special
correctness of the FE scheme (see Definition 5), the adversary must produce
a ciphertext which decrypts to a value in the range of the function f . If Z
has no preimage, then being in the range of the function f is equivalent to
being of the form H(X)I , for some X (recall that H(X)I denotes the subset I
of the bits of H(X)). Note that both the functional equivalence of iO and the
special correctness of the functional encryption scheme are statistical properties.
Therefore, the probability above is less or equal than:

Pr
crs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π,X, I) : VH(x, (crs ⊕ H(X))I , I, π) = 1]

The next step is to bound the number of possible values of hrs. Recall that
hrs := H(PRF(K1, a)) ⊕ crs. From the lossiness of H, we know that there are at
most 2k images of H, where k is the second parameter of H (see Definition 2).
Thus, we can compute an union bound over all these images H(X), bounding
the above probability by:

2k × Pr
crs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, (crs ⊕ H(X))I , I, π) = 1]

Now, recall that we denote crs ⊕ H(X) as hrs. Since crs is uniformly randomly
distributed, so is hrs, and we can rewrite the probability above as:

2k × Pr
hrs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1]

Finally, by using the soundness of the hidden-bits NIZK, we know that:

Pr
hrs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1] ≤ 1
22λ+|x|
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Therefore, we can conclude that:

Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1] ≤ 1
22λ+|x|−k

.

The only remaining step is to amplify the security from the selective variant
we have just proven to the adaptive one from Definition 10. We eliminate the
restriction that x is fixed by computing a union bound over all possible values of
x. In particular, for H parameter k = λ, we conclude that for every unbounded
adversary A:

Pr

[
(CRS, tdext) ←r Setup(1λ, binding),
(x, Π) ←r A(CRS)

: Verifier(CRS, x, Π) = 1 ∧ x /∈ LR

]

=
1

2λ
.

As a last check, we must ensure that event ¬E still happens with negligible
probability. If we compute the same union bound as above, the probability of
¬E is now bounded by 1

2λ . Therefore, the system is statistically sound.

4.3 Witness Indinstinguishability

Theorem 15. In hiding mode, the DM-NIWI system from Fig. 5 is statistically
witness-indistinguishable.

Proof. By using the statistical lossiness of LE, we show that no (potentially
unbounded) adversary A can break the witness-indistinguishability of DM-NIWI.
Recall that the lossiness of LE implies that for all (lpk,⊥) ← LE.Gen(1λ, lossy),
and for all x,w0, w1, encryptions of (x,w0) are statistically indistinguishable
from encryptions of (x,w1). More formally:

D0 := {r ← R : (lpk, LE.Enc(lpk, (x,w0), r))} ≈ 1
2λ

≈ 1
2λ

{r ← R : (lpk, LE.Enc(lpk, (x,w1), r))} =: D1.

The goal is to show that for every hiding CRS and for every (x,w0, w1), with
both (x,w0) ∈ R and (x,w1) ∈ R, proofs for (x,w0) are statistically indistin-
guishable from proofs for (x,w1). Fix (x,w0, w1) and let D′

b be the following
distribution:

D′
b :=

{

CRS ←r DM-NIWI.Setup(1λ, hiding) : π ←r DM-NIWI.Prove(CRS, x, wb)
}

(1)

We want to prove that we have that D′
0 ≈ 1

2λ
D′

1. To achieve this, we exhibit
a probabilistic function F which on input Db outputs D′

b, i.e. F (Db) = D′
b,

without needing to know bit b. If such an F exists, then D0 ≈ 1
2λ

D1 implies that
F (D0) ≈ 1

2λ
F (D1). Function F works as follows:

1. F obtains public key lpk from Db. Then F esentially computes DM-NIWI.
Setup(1λ) and chooses all the parameters itself, except for lpk which comes
from Db.
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In more detail, F chooses the PRG, a dense function H, keys K1,K2,K3, mas-
ter keys (fmpk, fmsk) and functional key skf just as in DM-NIWI.Setup(1λ).
It also draws uniformly random strings z and crs. It then sets Z = PRG(z)
and uses all these parameters to construct program ProgProvhiding,crs, which
it obfuscates obtaining PC.

2. For hiding CRS, we have that PC obfuscates ProgProvhiding,crs. Therefore,
F can compute the output of DM-NIWI.Prove(CRS, x, wb) even without
knowing bit b: F has access to ciphertext ct from distribution Db. Cipher-
text ct can originate from either (x,w0) or (x,w1). F simply computes
(C, π) ←r HidingProofcrs(x, ct) and uses (C, π) to construct distribution D′

b.
Observe that this is only possible because HidingProofcrs(x, ct) crucially only
has x and ct as inputs and does not directly depend on witnesses w0, w1

themselves.

We have shown that F (D0) ≈ 1
2λ

F (D1), for every (x,w0, w1) and for all hiding

CRS ←r DM-NIWI.Setup(1λ,hiding). This concludes witness-indistinguishability
as defined in Definition 10. (In Definition 10, the adversary can choose (x,w0, w1)
after seeing the CRS, but since F (D0) ≈ 1

2λ
F (D1) for every (x,w0, w1) and for

every hiding CRS, the adversary will not have advantage greater that 1
2λ ).

4.4 CRS Indistinguishability

Theorem 16. The DM-NIWI system from Fig. 5 satisfies computational indis-
tinguishability between common reference strings generated in binding mode and
common reference strings generated in hiding mode.

Proof. The proof proceeds by a sequence of games where G0 is defined exactly
as Exp-CRS-IND0(1λ,A) (see Fig. 4). G0 corresponds to the experiment in which
adversary A against crs indistinguishability receives common reference strings in
binding mode. A high-level summary is provided in Fig. 6. For any game Gi, we
denote by Advi(A) the advantage of A in Gi, that is, Pr[Gi(1λ,A) = 1], where
the probability is taken over the random coins of Gi and A. At a high level, we
use four hybrid games G0,G1,G2 and G3. The proof is in three phases:

1. In the first phase, we transition from G0 to G1. Game G1 is defined to be
the same as G0, except for the following two changes: First, we switch the
mode of the lossy function H from lossy to dense. This is done with the end
goal of ensuring that the output of H is uniformly distributed at specific
values of a. Secondly, we use the security of the PRG to change Z from
being uniformly random to being in the image of the PRG. This is done by
setting Z = PRG(z). To anticipate, this will provide us with a trapdoor for
replacing functional ciphertext encoding X with ciphertexts encoding hrsI .
The fact that G0 ≈c G1 is proven in Lemma 17.

2. In the second phase, we transition from G1 to G2. Game G2 is defined to be
precisely the same as G1, except that DM-NIWI.Setup(1λ) computes PC =
iO(ProgProvhiding,crs). This transition only makes changes in the program
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ProgProv. By iterating over all values of a, for each a we replace real proofs
by simulated proofs from the hidden-bits simultator SH .
We carefully leverage PRF security, the injective mode of LE and the density
of H to ensure that for a specific a∗, its corresponding hrs∗ is of the form
β ⊕crs, for uniformly random β. Then we use functional encryption security
to replace the functional ciphertext corresponding to a∗ to one which only
leaks hrsI . But at this stage, since only hrsI is encoded in the ciphertext, we
can use the zero knowledge of the hidden-bits NIZK to replace real proofs
by simulated ones. We formally prove that G1 ≈c G2 in Theorem 19.

3. In the third stage, we define G3 to be the same as Exp-CRS-IND1(1λ,A).
The only difference between G2 and G3 is that in the later, the public key
of the lossy encryption scheme LE is switched from injective to lossy mode.
We prove that G2 ≈c G3 in Lemma 18.

Lemma 17 (From G0 to G1). For every PPT adversary A, it holds that
|Adv0(A) − Adv1(A)| ≤ negl(λ).

Proof. The only differences between G0 and G1 are the fact that Z is changed
from Z ←r {0, 1}2λ+|x| to Z ← PRG(z) and function H is changed from H ←
LF.Setup(1λ, lossy) to H ← LF.Setup(1λ,dense). The lemma follows from the
security of the PRG and from the computational indistinguishability of the modes
of the lossy function LF. Namely, if A can distinguish between G0 and G1, there
exists either a PPT adversary B1 that can break the security of the PRG or a
PPT adversary B2 that can distinguish with non-negligible advantage between
the lossy and dense modes of LF.

Fig. 6. An overview of the games used in the proof of Theorem 16, changes between
consecutive games are highlighted with gray boxes.

Lemma 18 (From G2 to G3). For every PPT adversary A, it holds that
|Adv2(A) − Adv3(A)| ≤ negl(λ).

Proof. The only change between G2 and G3 is that the (lpk, lsk) keys of LE are
changed from injective to lossy. The lemma follows directly from the fact that
{proj(LE.Gen(1λ, inj))} ≈c {proj(LE.Gen(1λ, lossy))}, where proj : (lpk, lsk) →
lpk and from the fact that lsk is not used anywhere in the construction.
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Theorem 19 (From G1 to G2). For every PPT adversary A, there exist PPT
adversaries B1,B2,B3, such that:

|Adv0(A) − Adv1(A)| ≤ 2p(|x|+λ)
(
8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2)+

AdvFEExp-s-IND-FE-CPA(κ,B3) + ΔNIZKH

ZeroKnowledge(λ) +
1

2p(|x|+λ)+λ

)
.

Proof. The proof strategy is to iterate over all values of a = LE.Enc(lpk, (x,w), r)
and make changes to the obfuscation of the program ProgProv. We define a series
of hybrids H1,a∗ , for all a∗ ∈ {0, 1}p(|x|+λ) in Fig. 7. Briefly, hybrid H1,a∗ is defined
as follows:
Hybrid H1,a∗ is defined in the same way as game G1, except that:

1. DM-NIWI.Setup is changed such that the computation of the public param-
eter PC = iO(ProgProvbinding,crs) is replaced by PC = iO(ProgProv1,a∗).

2. Program ProgProv1,a∗ on inputs x,w, r is the program which first computes
a = LE.Enc(lpk, (x,w), r). Then it compares a with hardcoded value a∗ and
for a < a∗, it computes (C, π) = HidingProofcrs(x, a), while for a ≥ a∗ it
computes (C, π) = BindingProofcrs(x,w, a). It then returns proof (C, π).

Note that hybrid H1,0p(|x|+λ) is the same as game G1, while hybrid H1,1p(|x|+λ)

is the same as game G2 = Exp-CRS-IND1(1λ,A). Just as before, for every hybrid
Hi, we denote by Advi(A) the advantage of A in Hi, that is, Pr[Gi(1λ,A) = 1].
In Theorem 20, we formally prove that every two consecutive hybrids H(1, a∗)
and H(1, a∗ + 1) are computationally indistinguishable, i.e. H(1,a∗−1) ≈c H(1,a∗),
for every a∗ ∈ [2p(|x|+λ)].

Fig. 7. Hybrid H(1,a∗) for the proofs of Theorems 19 and 20. Note that the Prover,
Verifier, BindingProof, HidingProof and function f are the same as defined in Fig. 5 and
are not represented again for succinctness. Changes between hybrids H(1, a∗) and game
G1 are highlighted in light gray.
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Theorem 20 (From H(1,a∗) to H(1,(a∗+1))). For every PPT adversary A, there
exist PPT adversaries B1,B2,B3, such that:

|Adv(1,a∗)(A) − Adv(1,(a∗+1))(A)| ≤ 8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2)+

AdvFEExp-s-IND-FE-CPA(κ,B3) + ΔNIZKH

ZeroKnowledge(λ) +
1

2p(|x|+λ)+λ
.

Proof. We prove this through a sequence of hybrids H(1,a∗) up to H(15,a∗),
where hybrid H(15,a∗) is identical to hybrid H(1,(a∗+1)). In terms of notation,
hybrid H(i,a∗) will have PC = iO(ProgProvi,a∗,crs). The proof strategy is to
leverage the properties of iO,FE,PRFs, LE and H in order to replace actual
proofs computed by the hidden-bits prover PH to simulated proofs computed
by SH . Notice that in H(1,a∗), proofs corresponding to a are computed by sub-
program BindingProofcrs(x,w, a), while in H(15,a∗) they are computed by subpro-
gram HidingProofcrs(x,w). This is the only difference between the two hybrids.
In order to replace subprogram BindingProofcrs() by HidingProofcrs() we define
a series of subprograms HybridProofi,a∗,crs, for i ∈ [15]. As expected, every
hybrid H(i,a∗) will be defined to be identical to H1,a∗ , except that for a = a∗,
(C, π) = HybridProofi,a∗,crs(x,w, a). The hybrids are described in Fig. 7. For a
detailed decription of subprograms HybridProofi,a∗,crs, see Fig. 9. More figures
are provided in the full version (Fig. 8).

Hybrid H(2,a∗). In this hybrid, the subprogram HybridProof2,a∗,crs is changed
so that key K1 is punctured at point a∗. This is a standard punctured pro-
gramming technique. Once we puncture the key, only K1{a∗} is hardcoded
in the program, along with the evaluation of r∗

1 ← PRF(K1, a
∗), but not K1

Fig. 8. Hybrids H(i,a∗) for the proofs of Theorems 19 and 20. Note that the
Prover, Verifier, BindingProof, HidingProof and function f are the same as defined
in Fig. 5 and are not represented again for succinctness. For i = 1, subpro-
gram HybridProof1,a∗,crs = BindingProofcrs and for i = 15, HybridProof15,a∗,crs =
HidingProofcrs. All ProgProvi,a∗,crs(x, w, r) are padded so that they have equal sizes.
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itself. Observe that key K1 is punctured in ProgProv2,a∗,crs and all its sub-
programs as well. In H(i,a∗), i ∈ [15] subprograms BindingProofcrs(x,w, a) and
HidingProofcrs(x,w, a) are never called on inputs a �= a∗, so they never need the
evaluation of PRF(K1, a

∗).

This puncturing can be done since a∗ is a parameter of the hybrid (we are
enumerating over all values of a). Since the programs are functionally equivalent,
this change is computationally indistinguishable by the security of iO. Observe
that when we hardcode a value in a subprogram HybridProofi,a∗,crs, it is under-
stood that this value is also hardcoded in ProgProvi,a∗,crs. A full description of
HybridProof2,a∗,crs can be found in Fig. 9. This shows the following lemma:

Lemma 21 (From H(1,a∗) to H(2,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(1,a∗)(A) − Adv(2,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(3,a∗). Here subprogram HybridProof3,a∗,crs is changed so that r∗
1 is

now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K1{a∗} by a uniformly random). A
full description of subprogram HybridProof3,a∗,crs can be found in Fig. 9. This
shows the following lemma:

Lemma 22 (From H(2,a∗) to H(3,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(2,a∗)(A) − Adv(3,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(4,a∗). Subprogram HybridProof2,a∗,crs is changed so that key K2 is
punctured at point a∗. This is by the same argument as in Lemma 21 and uses
the security of iO. Once we puncture the key, only K2{a∗} is hardcoded in all
subroutines of ProgProv4,a∗,crs, along with the evaluation of r∗

2 ← PRF(K2, a
∗),

but not K2 itself. This shows the following lemma:

Lemma 23 (From H(3,a∗) to H(4,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(3,a∗)(A) − Adv(4,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(5,a∗). Here subprogram HybridProof5,a∗,crs is changed so that r∗
2 is

now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K2{a∗} by a uniformly random). The
full description of HybridProof5,a∗,crs can be found in the full version. This shows
the following lemma:

Lemma 24 (From H(4,a∗) to H(5,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(4,a∗)(A) − Adv(5,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(6,a∗). Subprogram HybridProof6,a∗,crs precomputes and hardcodes the
(C∗, π∗) corresponding to a∗. For this we make the crucial observation that for
every a, there exists only one corresponding (x,w). This follows from the perfect
correctness of the lossy encryption scheme LE, because LE is in injective mode
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Fig. 9. Descriptions of HybridProofi,a∗,crs, for i = 1 . . . 4. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. When we hard-
code a value in a subprogram HybridProofi,a∗,crs, it is understood that this value is also
hardcoded in ProgProvi,a∗,crs. If a key K is punctured in HybridProofi,a∗,crs, we under-
stand that it is punctured in ProgProvi,a∗,crs and all its subprograms as well. Note that
HybridProof1,a∗,crs is the same as BindingProofcrs.

and because a = LE.Enc(lpk, (x,w); r). To compute this hybrid, we use lsk to
decrypt a∗ and obtain the corresponding (x∗, w∗). Thus, if a∗ is known in advance
this means (x∗, w∗) is also known in advance. Since crs is a parameter of the
circuit and also known in advance, we can compute hrs∗ ← H(r∗

1)⊕crs, (π∗, I∗) ←
PH(x∗, w∗, hrs∗) and C∗ = FE.Enc(fmpk, (r∗

1 , I∗, 0, 0); r∗
2). We hardcode (C∗, π∗)

and these are also the returned values when HybridProof6,a∗,crs is invoked on
(x∗, w∗, a∗). Since ProgProv6,a∗,crs is functionally equivalent to ProgProv5,a∗,crs,
this step is justified by iO security. The full description of HybridProof6,a∗,crs can
be found in the full version. From all the above, we have the following lemma:

Lemma 25 (From H(5,a∗) to H(6,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(5,a∗)(A) − Adv(6,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(7,a∗). To obtain subprogram HybridProof7,a∗,crs, we use the selective
security of the functional encryption scheme FE to switch ciphertext C∗ = FE.
Enc(fmpk, (r∗

1 , I∗, 0, 0); r∗
2) to ciphertext C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗

I∗); r∗
2).

We argue that these two ciphertexts are indistinguishable. Consider decryption
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key skf used by the verifier, this key is associated to function f. But from the
definition of f, it holds that:

f(r∗
1 , I∗, 0, 0) = f(0, I∗, z, T ∗

I∗).

Since r∗
2 used for encryption has been previously switched to a uniformly

random, we can therefore reduce the gap between these two games to the
SEL-IND-FE-CPA game. Also note that we are only able to use the selective

security of the FE scheme because all the values above are known in advance
and are derived from a. The full description of HybridProof7,a∗,crs can be found
in the full version. We have therefore proven the following lemma:

Lemma 26 (From H(6,a∗) to H(7,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that:

|Adv(6,a∗)(A) − Adv(7,a∗)(A)| ≤ AdvFEExp-s-IND-FE-CPA(κ,B).

HybridH(8,a∗). Subprogram HybridProof8,a∗,crs is defined like HybridProof7,a∗,crs,
except that the computation of hrs∗ changes. Instead of computing hrs∗ ← T ∗⊕crs,
where T ∗ ← H(r∗

1), we compute T ∗ ←r {0, 1}p1(|x|,λ) and let hrs∗ ← T ∗ ⊕crs. This
step is justified by the dense mode of H. From Definition 2, we know that for uni-
formly random r∗

1 , we have H(r∗
1) statistically indistinguishable from a uniformly

random. Moreover, by choosing the security parameter in LF.Setup (1λ,dense) to
be large enough, we can offset the 2p(|x|+λ) factor coming from enumerating over
all values of a. The full description of HybridProof8,a∗,crs can be found in the full
version. We have therefore proven the following lemma:

Lemma 27 (From H(7,a∗) to H(8,a∗)). For every (potentially unbounded)
adversary A, it holds that:

|Adv(7,a∗)(A) − Adv(8,a∗)(A)| ≤ 1
2p(|x|+λ)+λ

.

Hybrid H(9,a∗). In this hybrid, we use the zero-knowledge property of the
hidden-bits NIZK system to replace real proofs by simulated ones. Subprogram
HybridProof9,a∗,crs is defined like HybridProof8,a∗,crs, but now the precomputation
of the program involves choosing a uniformly random r∗

3 ←r {0, 1}p3(|x|,λ). Poly-
nomial p3(|x|, λ) represents the size of the random tape needed by the hidden-bits
simulator SH . Proofs are now simulated, i.e. (hrs∗I∗ , π∗, I∗) ← SH(x∗; r∗

3)
We now argue that this hybrid is statistically indistinguishable from the

previous one. The reason this works is that we already used FE security to
ensure that only the revealed bits of the hrs∗I∗ are encoded in ciphertext C∗ and
also that hrs∗ is uniformly random. This, coupled with the fact that in H(9,a∗)
only the value of the real proof (C∗, π∗) is hardcoded means we can use the ZK
property of NIZKH . In HybridProof9,a∗,crs we can hardcode only the simulated
proof, and there is no need to include the simulator code in ProgProv9,a∗,crs.

The full description of HybridProof9,a∗,crs can be found in the full version,
along with the proof of the following lemma:
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Lemma 28 (From H(8,a∗) to H(9,a∗)). Let a∗ = LE.Enc(lpk, (x∗, w∗); r). Then
it holds that either:

1. if (x∗, w∗) ∈ R, then H(8,a∗) and H(9,a∗) are statistically close. Namely, for
every (potentially unbounded) adversary A,

|Adv(8,a∗)(A) − Adv(9,a∗)(A)| ≤ ΔNIZKH

ZeroKnowledge(λ).

2. if (x∗, w∗) /∈ R, then H(8,a∗) and H(9,a∗) are computationally indistinguish-
able. Namely, for every PPT adversary A, there exists PPT adversary B,
such that:

|Adv(8,a∗)(A) − Adv(9,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(10,a∗). In subprogram HybridProof10,a∗,crs, the only change made is
that r∗

2 is changed from a uniformly random value (as in hybrid H(9,a∗)) to r∗
2 ←

PRF(K2, a
∗). This change is justified by the pseudo-randomness of PRF(K2, ·)

at punctured point a∗. The full description of HybridProof10,a∗,crs can be found
in the full version. We have the following lemma:

Lemma 29 (From H(9,a∗) to H(10,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(9,a∗)(A) − Adv(10,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(11,a∗). In subprogram HybridProof11,a∗,crs, the only change made is
that r2 is not precomputed anymore (as in hybrid H(10,a∗)).

Value r2 ← PRF(K2, a
∗) is now compted on the fly. This means C must also

be computed on the fly in this hybrid. These changes are justified by the fact
that the two programs are functionally equivalent and thus their obfuscations
computationally indistinguishable. The full description of HybridProof11,a∗,crs can
be found in the full version. This shows the following lemma:

Lemma 30 (From H(10,a∗) to H(11,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A) − Adv(11,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(12,a∗). In subprogram HybridProof12,a∗,crs, we puncture key K3 at
K3{a∗} and only hardcode this punctured key in our programs. This change
is justified by the fact that the two programs are functionally equivalent and
thus their obfuscations computationally indistinguishable. The full description
of HybridProof12,a∗,crs can be found in the full version. This shows the following:

Lemma 31 (From H(11,a∗) to H(12,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A) − Adv(11,a∗)(A)| ≤ AdviO(κ,B).
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Hybrid H(13,a∗). Subprogram HybridProof13,a∗,crs is changed so that r∗
3 is not a

hard-wired uniformly random value anymore, but is chosen as r∗
3 ← PRF(K3, a

∗).
This change is justified by the pseudo-randomness of PRF(K3, ·) at punctured
point a∗. The full description of HybridProof13,a∗,crs can be found in the full
version. From the above, we have:

Lemma 32 (From H(12,a∗) to H(13,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(12,a∗)(A) − Adv(13,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(14,a∗). In subprogram HybridProof14,a∗,crs the key K3 is not punctured
anymore at a∗. This means that r3 ← PRF(K3, a) is not hardwired anymore. As
a consequence, the simulated proofs are also not hardcoded. Since this program
is functionally equivalent to HybridProof14,a∗,crs, we justify this change by the
security of iO. The full description of HybridProof14,a∗,crs can be found in the full
version. From the above, we have:

Lemma 33 (From H(13,a∗) to H(14,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(13,a∗)(A) − Adv(14,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(15,a∗). In subprogram HybridProof15,a∗,crs the key K1 is not punctured
anymore at a∗. Key K1 is not even used anymore in this subprogram, therefore
this program is functionally equivalent to HybridProof14,a∗,crs. We thus justify
this change by the security of iO. The full description of HybridProof15,a∗,crs can
be found in the full version. From all the above, we have:

Lemma 34 (From H(14,a∗) to H(15,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(14,a∗)(A) − Adv(15,a∗)(A)| ≤ AdviO(κ,B).
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