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Preface

ASIACRYPT 2019, the 25th Annual International Conference on Theory and
Application of Cryptology and Information Security, was held in Kobe, Japan, during
December 8–12, 2019.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 307 submissions from all over the world. This was a sig-
nificantly higher number of submissions than recent Asiacrypt conferences, which
necessitated a larger Program Committee (PC) than we had originally planned. We
thank the seven additional PC members who accepted our invitation at extremely short
notice. They are Gorjan Alagic, Giorgia Azzurra Marson, Zhenzhen Bao, Olivier
Blazy, Romain Gay, Takanori Isobe, and Daniel Masny.

The PC selected 71 papers for publication in the proceedings of the conference. The
two program chairs were supported by a PC consisting of 55 leading experts in aspects
of cryptology. Each submission was reviewed by at least three Program Committee
members (or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. There were approximately 380 external reviewers, whose input was
critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 193 submissions to proceed to the second
round. The authors of those 193 papers were then invited to provide a short rebuttal in
response to the referee reports. The second round involved extensive discussions by the
PC members. Indeed, the total number of text items in the online discussion (including
reviews, rebuttals, questions to authors, and PC member comments) exceeded 3,000.

The three volumes of the conference proceedings contain the revised versions of the
71 papers that were selected, together with 1 invited paper. The final revised versions
of papers were not reviewed again and the authors are responsible for their contents.

The program of Asiacrypt 2019 featured excellent invited talks by Krzysztof
Pietrzak and Elaine Shi. The conference also featured a rump session which contained
short presentations on the latest research results of the field.

The PC selected the work “Wave: A New Family of Trapdoor One-Way Preimage
Sampleable Functions Based on Codes” by Thomas Debris-Alazard, Nicolas Sendrier,
and Jean-Pierre Tillich for the Best Paper Award of Asiacrypt 2019. Two more papers
were solicited to submit a full version to the Journal of Cryptology. They are “An LLL
Algorithm for Module Lattices” by Changmin Lee, Alice Pellet-Mary, Damien Stehlé,
and Alexandre Wallet, and “Numerical Method for Comparison on Homomorphically
Encrypted Numbers” by Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee
Lee, and Keewoo Lee.



The Program Chairs are delighted to recognize the outstanding work by Mark
Zhandry and Shweta Agrawal, by awarding them jointly the Best PC Member Award.

Many people have contributed to the success of Asiacrypt 2019. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions.

We are greatly indebted to Mitsuru Matsui, the general chair, for his efforts and
overall organization.

We thank Mehdi Tibouchi for expertly organizing and chairing the rump session.
We are extremely grateful to Lukas Zobernig for checking all the latex files and for

assembling the files for submission to Springer.
Finally we thank Shai Halevi and the IACR for setting up and maintaining the Web

Submission and Review software, used by IACR conferences for the paper submission
and review process. We also thank Alfred Hofmann, Anna Kramer, Ingrid Haas,
Anja Sebold, Xavier Mathew, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2019 Steven Galbraith
Shiho Moriai
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Streamlined Blockchains:
A Simple and Elegant Approach

(A Tutorial and Survey)

Elaine Shi(B)

Cornell University, Ithaca, USA
runting@gmail.com

Abstract. A blockchain protocol (also called state machine replication)
allows a set of nodes to agree on an ever-growing, linearly ordered log of
transactions.The classical consensus literature suggests twoapproaches for
constructing a blockchain protocol: (1) through composition of single-shot
consensus instances often called Byzantine Agreement; and (2) through
direct construction of a blockchain where there is no clear-cut bound-
ary between single-shot consensus instances. While conceptually simple,
the former approach precludes cross-instance optimizations in a practical
implementation. This perhaps explains why the latter approach has gained
more traction in practice: specifically, well-known protocols such as Paxos
and PBFT all follow the direct-construction approach.

In this tutorial, we present a new paradigm called “streamlined
blockchains” for directly constructing blockchain protocols.This paradigm
enables a new family of protocols that are extremely simple and natural:
every epoch, a proposer proposes a block extending fromanotarized parent
chain, and nodes vote if the proposal’s parent chain is not too old. When-
ever a block gains enough votes, it becomes notarized. Whenever a node
observes a notarized chain with several blocks of consecutive epochs at the
end, then the entire chain chopping off a few blocks at the end is final.

By varying the parameters highlighted in blue, we illustrate two vari-
ants for the partially synchronous and synchronous settings respectively.
We present very simple proofs of consistency and liveness. We hope that
this tutorial provides a compelling argument why this new family of pro-
tocols should be used in lieu of classical candidates (e.g., PBFT, Paxos,
and their variants), both in practical implementation and for pedagogical
purposes.

1 Introduction

In a blockchain protocol, a set of nodes seek to reach agreement on an ever-
growing, linearly ordered log. It is helpful to think of this log as an ordered chain
of blocks where each block may contain application-specific payload as well as
metadata pertaining to the consensus protocol, and hence the name blockchain.

In this tutorial, we consider how to construct a blockchain protocol in a
“permissioned” setting, assuming the existence of a public-key infrastructure
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11921, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-34578-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34578-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-34578-5_1


4 E. Shi

and that the public key of every consensus node is common knowledge. This is
the also the classical setting under which consensus has been studied for more
than three decades. Classically, this problem was often called “State Machine
Replication” [12,13,15] or “Byzantine Fault Tolerance” [3,9]. In this work, we
also refer to it as “consensus” for short.

Such permissioned blockchains can serve as the cornerstone not only for a pri-
vate, consortium blockchain, but also for building open-access “proof-of-stake”
systems. In a proof-of-stake setting, a set of nodes (called a committee) are
elected based on their stake in the system to vote in the consensus protocol. The
election is typically repeated over time, using the blockchain protocol itself to
agree on the next committee (and assuming the existence of an initial committee
that is common knowledge).

The goal of this tutorial is to illustrate a new paradigm called “streamlined
blockchains” that enables extremely simple and natural blockchain construc-
tions. This new paradigm emerged as a result of the community’s joint push at
building better consensus protocols in the past few years, motivated by large-
scale cryptocurrency applications. Elements of this idea were developed and
improved in a sequence of works, including Casper-FFT [16], Dfinity [8], Hot-
stuff [1], Pili [5] and Pala [4], but understanding of this line of work still appears
somewhat “scattered”.

In this tutorial, we hope to describe the simplest possible embodiments of
this idea, with concise and clean proofs that are suitable for pedagogy. We hope
that this tutorial helps to illustrate the most compelling advantage of this new
paradigm, i.e., its conceptual simplicity, making the resulting protocols desirable
for practical implementation. We also contrast this new paradigm with classical
blockchain constructions represented by Paxos [9], PBFT [3], and their variants.
We hope that this will shed light on how the community’s push in the past few
years has enabled a leap: we now have practical blockchain constructions that
are significantly simpler and fundamentally better than classical approaches.

1.1 Problem Statement

Slightly informally, we would like to construct a blockchain protocol satisfying
two properties for all but a negligible fraction of executions:

• Consistency: if two blockchains chain and chain′ are ever considered final by
two honest nodes, it must be that chain � chain′ or chain′ � chain where �
means “is a prefix of or equal to”.

• Liveness: if an honest node receives a transaction, the transaction will appear
in every honest node’s finalized blockchain in a bounded amount of time.

In a cryptocurrency application, all transactions contained in a final chain are
considered confirmed and the merchant may ship the product. If all nodes are
honest and always correctly follow the prescribed protocol, then designing a
blockchain protocol is trivial. We consider a setting where a subset of the nodes
can be corrupt; corrupt nodes are controlled by a single adversary and they can
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deviate from the protocol arbitrarily—such a fault model is commonly referred
to as Byzantine Faults in the classical distributed consensus literature.

In general, we can construct a blockchain protocol in two ways: (1) through
composition of single-shot consensus instances; and (2) direct construction of a
blockchain protocol where there is no clearly defined boundary between consen-
sus instances. From a historical perspective, the study of distributed consensus
in fact originated from the study of one-shot consensus protocols, often called
Byzantine Agreement [10]. While composing single-shot instances is a conceptu-
ally clean approach towards building a blockchain, cross-instance performance
optimizations are often challenging. This is arguably why later approaches such
as Paxos and PBFT and their variants—also coinciding with most deployed
systems—adopt the direct-construction approach. In this tutorial we will also
focus on the direct-construction approach.

1.2 Classical Blockchain Protocols: A Bi-modal Approach

Most approaches in the classical consensus literature adopt a bi-model approach.
We illustrate the idea assuming that fewer than n/3 nodes are corrupt where n
denotes the total number of nodes1.

1.2.1 Normal Mode: A Natural Voting Protocol
The normal mode is simple and natural and works by super-majority voting. We
shall explain the idea semi-formally, since this is the nice part of the protocol we
would like to preserve in our new paradigm. Recall that every block is part of a
blockchain and henceforth its index within the blockchain is called its position.
We assume that every block encodes its own position.

Imagine that a designated proposer proposes blocks, and nodes vote on the
proposed blocks by signing the block’s hash. Whenever a block gains votes from
at least 2n/3 distinct nodes, it becomes final. If in a blockchain every block is
final, then the chain is considered final too.

An important invariant is that an honest node never votes for two distinct
blocks at the same position (even if the proposer is corrupt and proposes multiple
blocks at the same position). This enforces consistency at every position, i.e., at
each position, there cannot be two different blocks both gaining at least 2n/3
votes. The proof of consistency is extremely simple: suppose that two different
blocks at the same position both gain at least 2n/3 votes. It must be that a
set of at least 2n/3 distinct nodes denoted S1 have voted for one, and a set
of at least 2n/3 distinct nodes denoted S2 have voted for the other. Obviously
|S1 ∩ S2| ≥ 2n/3 + 2n/3 − n = n/3. Since fewer than n/3 nodes are corrupt, it
must be that an honest node lives in the intersection S1 ∩ S2 and has voted for

1 Our exposition in spirit illustrates the ideas behind most classical blockchain con-
structions although our exposition is not necessarily faithful to any particular pro-
tocol. In fact, we give a simplified exposition of the technical ideas to maximally aid
understanding.
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both blocks at the same position—but this is ruled out by the aforementioned
invariant.

Such a normal-mode protocol is extremely simple and natural, and it gives
consistency as long as fewer than n/3 nodes are corrupt; and moreover, consis-
tency does not rely on the proposer being honest. However, if the proposer is
corrupt, e.g., if it stops making proposals or makes different proposals to dif-
ferent nodes, then liveness can be stalled and the blockchain can stop growing.
We note also that here, consistency is guaranteed without having to make any
network timing assumptions such as synchrony assumptions.

1.2.2 Recovery Mode: Ensuring Liveness
Given the aforementioned normal-mode protocol, the only remaining problem
is how to achieve liveness when the proposer is corrupt. We informally explain
how classical protocols deal with this problem without going into details, since
this is the complicated part of classical approaches that we would ideally like to
get rid of.

Most classical protocols such as Paxos, PBFT and their variants solve this
problem by falling back to a recovery mode (often called “view change”) when-
ever liveness is stalled. Typically the view change implements a mechanism to
rotate to the next proposer such that progress can be resumed. Thus a view can
be regarded as a phase of the protocol in which a specific node acts as the pro-
poser. Without going into details, and perhaps unsurprisingly, from a technical
standpoint the view change protocol must be a full-fledged consensus protocol
offering both consistency and liveness (c.f. the normal mode guarantees only
consistency assuming fewer than n/3 corrupt).

At an intuitive level, this perhaps explains why in most classical consensus
approaches, the view change is often much more complicated to understand
and subtle to implement correctly than the normal mode. In fact, the need for
such a recovery mode often imposes more requirements on the normal mode
too—and this is why most actual instantiations of this bi-modal idea such as
Paxos and PBFT introduce more iterations of voting in the normal mode (unlike
our earlier description that has only one iteration of voting). Very roughly, the
additional iterations of voting in the normal mode give amplified properties that
the recovery mode can make use of.

1.3 Streamlined Blockchains: A New Paradigm

Classical approaches are somewhat undesirable because most of the time we
expect that the protocol should operate in the normal mode (since faults should
not happen very often); however, the conceptual complications and the heavy-
lifting in implementation stem from the complicated recovery path. Ideally, we
would like to achieve the following holy grail:

Can we have a blockchain protocol that is (almost) as simple as the normal
mode?
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Amazingly, it turns out that this is in fact possible! All the protocols we
describe in this tutorial, for different settings, can be obtained by making
small tweaks to the aforementioned normal-path voting protocol. Through these
tweaks we now offer not just consistency but also liveness and thus there is no
need for a separate recovery mode! Specifically, the entire protocol always follows
a unified propose-vote paradigm as described below:

• Every epoch, a proposer proposes a block extending from a parent chain.
Every block encodes its own epoch.

• Nodes vote on the proposed block if they have seen the parent chain’s nota-
rization and if the parent chain is not too old (where “old” means that the
block contains a small epoch number, and we will specify the concrete param-
eter in the later sections).

• Whenever a block gains sufficiently many votes, it becomes notarized.
• Notarized does not mean final. Finality is determined as follows: if all blocks

in a blockchain are notarized and the chain ends at several blocks of consec-
utive epochs, then the entire chain chopping off the trailing few blocks are
considered final.

We show how to use this simple paradigm to obtain protocols under various
network assumptions, by modifying the parameters highlighted in blue, and by
slightly varying a couple other details such as how epochs are determined for
different settings.

So What Became of the View Change? As mentioned earlier, in classical
approaches the view change was necessary to attain liveness under a corrupt pro-
poser. So technically, how can we achieve both consistency and liveness without
the view change? In the streamlined blockchain paradigm described in this tuto-
rial, basically every epoch embeds a proposer-rotation opportunity, and thus
an implicit view change mechanism is already inherently baked in the proto-
col everywhere. This is arguably the coolest feature of this new paradigm: we
show that the traditionally complicated view change can be embedded into an
extremely simple paradigm by small tweaks to the normal-path voting protocol.

For this reason, another advantage of our streamlined blockchain protocols is
that they readily support two distinct proposer-rotation policies: the democracy-
favoring policy where one wishes to rotate proposer every block; and the classi-
cal stability-favoring policy (adopted by classical approaches such as Paxos and
PBFT) where we stick to the same proposer until it starts to misbehave. In new
cryptocurrency applications, the democracy-favoring policy may be more desired
due to better decentralization; however, a stability-favoring policy is likely more
friendly towards performance optimizations.

Throughout this paper, we use the democracy-favoring policy for exposition.
Some recent works [4,5] have shown how minor tweaks to the protocol can sup-
port a stability-favoring policy2.
2 Author’s note: even if the syntactical changes to the protocol are minor, it is impor-

tant that they be done correctly since some additional subtleties arise in the liveness
proof for a stability-favoring policy. See the recent works [4,5] for more explanation.
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2 A Blockchain Tolerating <1/3 Corruptions

Recall that we consider a network consisting of n nodes numbered 0, 1, . . . , n−1
respectively. We assume that there is a public-key infrastructure such that all
nodes’ public keys are common knowledge. In this section we shall assume that
fewer than n/3 nodes are corrupt. In our protocol, whenever a node multicasts
a message to everyone, it means it sends this message to every node.

Delay Parameter Δ. The protocol is parametrized with a parameter Δ which
captures our a-priori guess of the maximum message delay. We will prove that
consistency holds regardless even if our guess of Δ is wrong and network delays
are arbitrary. However, liveness only holds during “periods of synchrony”, i.e.,
periods in which honest messages are delivered in at most Δ rounds.

Remark 1. Although we assume that time progresses in discrete rounds in this
tutorial, all the results still hold if the round is infinitesimally small, i.e., if time
is continuous. We assume that all nodes have local clocks that increment per
round. Since clock offsets can be absorbed by the network delay, our consistency
proof holds even if clock offsets between nodes are arbitrarily large. However,
unsynchronized clocks may stall liveness by preventing a period of synchrony
from happening.

2.1 Valid Blockchain and Freshness

Our protocol will progress in epochs where each epoch contains 2Δ rounds, i.e.,
long enough for honest nodes to make a round trip during a period of synchrony.

Valid Blockchain. A blockchain, often denoted chain, is an ordered sequence
of blocks. Each block chain[�] where � ≥ 0 is of the format (e,TXs, h−1), where
e encodes the epoch number, TXs is application-specific payload (e.g., a set of
transactions to confirm), and h−1 is the parent block’s hash. In a valid blockchain
chain, the 0-th block must be a special genesis block of the form (0,⊥,⊥).

When we define a chain’s length denoted |chain|, it does not count the genesis
block. This way, the chain’s length is the same as the index of the last block.
Henceforth for � ≥ 0, we use the notation chain[: �] to denote the prefix of the
blockchain up to the �-th block and chain[: −�] is an alias for chain[: m−�] where
m := |chain| denotes the length of the blockchain. Similarly, chain[−�] is an alias
for chain[m − �].

For a blockchain chain to be valid, all the blocks must have strictly increasing
epoch numbers, and moreover for every � ≥ 0, the block chain[�].h−1 must be
equal to H(chain[: � − 1]). In our protocol, all protocol messages containing ill-
formed blockchains are immediately discarded.

Freshness. For a blockchain chain, the larger chain[−1].e is the fresher chain is.
Formally, we say that chain is fresher than chain′ if chain[−1].e > chain′[−1].e.
For a blockchain chain, chain[−1].e is also said to be the blockchain chain’s epoch
number.
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2.2 Protocol

Now, imagine that the protocol proceeds in epochs numbered 1, 2, . . .. Each epoch
is 2Δ rounds, i.e., the maximum round-trip delay during a period of synchrony. In
each epoch e ∈ {1, 2, . . . , }, we use a hash function H∗ (i.e., a random oracle) to
select a random node (H∗(e) mod n) to be the designated proposer—note that
here we are using a democracy-favoring proposer-rotation policy as an example.

The protocol proceeds as follows where we assume that a node always signs
every message it wants to send, and that every valid message must be tagged with
the purported sender; further, nodes discard messages with invalid signatures.
The notation “ ” denotes a wildcard field.

Notarization: A valid vote for chain from node i is a valid signature from
node i on H(chain) where H is a global hash function chosen at random from a
collision-resistant hash family upfront. A collection of at least 2n/3 votes from
distinct nodes on some chain is said to be a notarization for chain.

For each epoch e = 1, 2, . . .:

• Propose: At the beginning of the epoch, node (H∗(e) mod n) proposes
a new block B := (e,TXs, h−1) extending the freshest notarized chain in
its view denoted chain. Here TXs denotes a set of outstanding transactions
to confirm and h−1 = H(chain). The proposal, containing chain||B and a
notarization for chain, is signed and multicast to everyone—here chain is
referred to as the parent chain of B.

• Vote: Every node performs the following: when the first valid proposal of
the form chain||(e, , ) is received from node (H∗(e) mod n) with a valid
notarization on chain, vote on the proposal iff chain is at least as fresh as
the freshest notarized chain the node has observed at the beginning of the
previous epoch or if the current epoch e = 1.
To vote on chain||B, simply multicast a signature on the value H(chain||B)
to everyone.

Finalization: At any time, if a notarized chain has been observed ending at
three consecutive epochs, then chain[: −2] is considered final.

Remark 2 (Block and chain as aliases of each other). Suppose that there are no
hash collisions, then due to the structure of the blockchain where every block must
refer to its parent’s hash, in fact a block chain[�] and the chain chain[: �] can be used
interchangeably, since the block chain[�] uniquely defines the entire prefix chain[: �].
Therefore, henceforth whenever convenient, we use “a vote or a notarization for
chain[�]” and “a vote or notarization for chain[: �]” interchangeably.

Remark 3 (Practical considerations). The above protocol is described in a way
that maximizes conceptual simplicity. In practice, a couple of obvious optimiza-
tions can be made. First, the hash H can be computed incrementally by hashing
the parent block’s hash and the current block’s contents. Second, the proposer
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need not include the entire parent chain in the proposal, it suffices to include
the hash h−1 = H(chain). When a proposal is received, if the recipient has not
received a parent chain consistent with h−1, it buffers this proposal until it has
received a consistent parent chain.

2.3 Consistency Proof

We now present a very simple consistency proof. Recall that the adversary con-
trols strictly fewer than n/3 nodes. Throughout, we assume that the signature
and hash schemes are ideal, i.e., the adversary cannot forge honest nodes’ signa-
tures or find hash collisions. Technically we are removing from our consideration
the negligible fraction of bad executions in which an honest node’s signature is
forged or hash collisions are found—all the lemmas and theorems below hold for
all but the negligible fraction of such bad executions.

We say that some string is in honest view iff some honest node observes it at
some point during the execution. The following simply lemma is in fact already
proven in Sect. 1, but we restate it for completeness.

A simple fact is the following: if there is a notarization for chain in honest
view, there must be a notarization chain[: −1] in honest view since if not, no
honest node would have voted for chain and chain cannot gain notarization in
honest view. Applying this argument inductively, if there is a notarization of
chain in honest view then there must be a notarization of every prefix of chain
in honest view.

Lemma 2.1 (Uniqueness per epoch). There cannot be two different blocks of
epoch e both notarized in honest view.

Proof. Suppose that two different blocks B1 and B2 of epoch e both gained
notarization in honest view. Let S1 be the set of at least 2n/3 nodes who have
signed B1 and let S2 be the set of at least 2n/3 nodes who have signed B2. It
must be that |S1 ∩ S2| ≥ 2n/3 + 2n/3 − n = n/3. This means that at least one
honest node is in S1∩S2, and this honest node must have signed both B1 and B2

in epoch e. By our protocol definition, every honest node signs only one epoch-e
block in each epoch e. Thus we have reached a contradiction. ��
Theorem 2.2 (Consistency). Suppose that chain and chain′ are notarized chains
in honest view both ending at three consecutive epochs, it must be that chain[:
−2] � chain′[: −2] or chain′[: −2] � chain[: −2].

Proof. Suppose that chain ends with three blocks of epochs e − 2, e − 1, and
e, and chain′ ends with three blocks of epochs e′ − 2, e′ − 1, and e′. Without
loss of generality, assume that e′ ≥ e. For the sake of reaching a contradiction,
suppose that chain[: −2] and chain′[: −2] are not prefixes of each other. Due
to Lemma 2.1, chain′ cannot have a block at epochs e − 2, e − 1, or e; since
otherwise chain′[: −2] must contain the prefix chain[: −2] which ends at a block
of epoch e − 2. Therefore, there is some block in chain′ with an epoch number
greater than e. Let e′′ > e be the smallest epoch number greater than e in chain′,
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and let chain′[�] be the block in chain′ with epoch number e′′. It must be that
chain′[� − 1] has epoch smaller than e − 2.

Since (every prefix of) chain gained notarization in honest view, it must be
that at least 2n/3 distinct nodes have signed the block chain[−1] of epoch e − 1,
meaning that more than n/3 honest nodes have signed this block. Moreover,
honest nodes can only sign this block in epoch e−1. This means that more than
n/3 honest nodes have observed a notarization for chain[: −2] of epoch e − 2 in
epoch e − 1, i.e., before the beginning of epoch e—let S denote this set of more
than n/3 honest nodes. The set S therefore will not vote for chain′[�] in epoch
e′′ > e which extends from a parent chain of epoch less than e − 2; and thus
chain′[�] cannot have gained notarization in honest view. ��

2.4 Liveness Proof

Message Delivery Assumption During Periods of Synchrony. As men-
tioned earlier, a period of synchrony is a period with good network conditions
such that all messages sent by honest nodes are delivered to the recipients within
at most Δ rounds.

Without loss of generality, we shall assume that every honest node always
echos (i.e., multicasts) every fresh message as soon as it is observed. Thus, during
a period of synchrony, the following holds:

If an honest node has observed a message m n round t, then all honest nodes
must have observed m by the beginning of round t + Δ if not earlier.

Liveness Proof. Suppose a period of synchrony eventually takes place. We
now prove liveness during such a period of synchrony. Specifically, we prove
that during a period of synchrony, honest nodes’ finalized blockchains will grow
whenever there are 3 consecutive epochs with honest proposers (note that under
random proposer election, this takes O(1) number of epochs in expectation).

To see this, it suffices to show that every honest node will vote on the pro-
posal of an honest proposer—since an honest proposer makes a proposal at the
beginning of the epoch e, as long as every honest node votes on it, the honest
votes will have been received by all honest nodes by the beginning of epoch e+1;
and thus epoch (e + 1)’s proposer, if honest, will propose to extend a notarized
chain ending at epoch e + 1. We now prove this.

If an honest node i rejects a proposal from an honest proposer j, it must
be that the proposed block extends from a parent chain that is less fresh than
the freshest notarized chain (denoted chain∗) observed at the beginning of the
previous epoch. However, if i has observed chain∗ at the beginning of the previous
epoch, then due to the message delivery assumption during a period of synchrony,
by the beginning of this epoch, node j must have observed it and thus j cannot
have proposed to extend from a less fresh parent chain.
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Remark 4. Alternatively, we can modify the proposer rotation policy for the
same node to serve as a proposer for three consecutive epochs. In this case,
progress will be made whenever an honest proposer makes proposals for 3 con-
secutive epochs.

3 A Synchronous Blockchain Tolerating Minority
Corruptions

In the previous section, we presented a streamlined blockchain protocol whose
consistency guarantee holds with arbitrary network delays, but whose liveness
guarantee may hold only during periods of synchrony—such protocols are said
to be secure in a “partially synchronous” network [6]. Due to a well-known lower
bound by Dwork et al. [6], no partially synchronous protocol can tolerate n/3
or more corruptions, and therefore the protocol in the previous section is in fact
optimal in resilience.

In this section we illustrate another streamlined blockchain protocol that
tolerates up to minority corruptions. To achieve this, however, we must make
a synchrony assumption even for the consistency proof. Recall that earlier in
Sect. 2.4 we made the following synchrony assumption for proving liveness:

If an honest node has observed a message m in round t, then all honest nodes
must have observed m by the beginning of round t + Δ if not earlier.

In this section, we shall make this assumption for proving both consistency and
liveness.

Remark 5. The consensus problem would be trivial if all honest nodes must
observe every message m in the same round. In fact, in the synchronous setting,
the crux of the consensus problem is essentially to overcome the Δ difference in
the timing at which honest nodes observe the same message m.

3.1 Protocol

The protocol is almost identical as the one in Sect. 2 except for two modifications:
(1) the parameters for forming a notarization and for finalizations are chosen
differently; and (2) the finalization rule makes an additional check for conflicting
proposals. The protocol is described below and the difference from the earlier
protocol in Sect. 2 is highlighted in blue.



Streamlined Blockchains: A Simple and Elegant Approach 13

Notarization: A valid vote for chain from node i is a valid signature from node
i on H(chain) where H is a hash function chosen at random from a collision-
resistant hash family. A collection of at least n/2 votes from distinct nodes on
some chain is said to be a notarization for chain.

For each epoch e = 1, 2, . . .:

• Propose: At the beginning of the epoch, node (H∗(e) mod n) proposes
a new block B := (e,TXs, h−1) extending the freshest notarized chain in
its view denoted chain. Here TXs denotes a set of outstanding transactions
to confirm and h−1 = H(chain). The proposal, containing chain||B and a
notarization for chain, is signed and multicast to everyone—here chain is
referred to as the parent chain of B.

• Vote: Every node performs the following: when the first valid proposal of
the form chain||(e, , ) is received from node (H∗(e) mod n) with a valid
notarization on chain, vote on the proposal iff chain is at least as fresh as
the freshest notarized chain the node has observed at the beginning of the
previous epoch or if the current epoch e = 1.
To vote on chain||B, simply multicast a signature on the value H(chain||B)
to everyone.

Finalization: At any time, if a notarized chain has been observed ending at 6
blocks with consecutive epoch numbers, and moreover for each these 6 epoch
numbers, no conflicting proposal (from an eligible proposer) for a different
block has been seen, then the prefix chain[: −5] is final.

3.2 Consistency Proof

In comparison with Sect. 2.3, under minority corruption, the “uniqueness per
epoch” lemma (Lemma 2.1) no longer holds. Consistency now crucially relies on
the new finalization rule which additionally checks for conflicting proposals. We
thus present a different but nonetheless simple consistency proof. Henceforth we
use the notation chain〈e〉 to denote the block at epoch e in chain, and we use
chain〈: e〉 to denote the prefix of chain up to and including the block of epoch e.

Lemma 3.1 (No contiguous skipping). Suppose that a notarized chain with two
consecutive epoch numbers e and e+1 appear in honest view. Then, no notarized
chain in honest view whose ending epoch at least e can skip all of the epochs
e, e + 1, e + 2, e + 3 (i.e., one of these epochs must be contained in the notarized
chain).

Proof. Let chain be the notarized chain in honest view with two consecutive
epochs e and e + 1. It must be that at least one honest node i has voted for
chain〈: e + 1〉 during epoch e + 1, and thus i has observed a notarization for
chain〈: e〉 in epoch e + 1. Therefore all honest nodes must have observed a
notarization for chain〈: e〉 in epoch e + 2, i.e., by the beginning of epoch e + 3.
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Thus in any epoch e′ > e + 3 no honest node will vote to extend a parent chain
whose epoch is smaller than e.

Suppose chain′ is a notarized chain in honest view whose ending epoch is at
least e + 4 and moreover chain′ does not contain the epochs e, e + 1, e + 2, e + 3.
Let e′ be the smallest epoch in chain′ that is greater than e + 3. It must be
that at least one honest node voted on chain′〈: e′〉 during epoch e′ but this is
impossible because chain′〈: e′〉’s parent has epoch smaller than e. ��
Theorem 3.2 (Consistency). Suppose that an honest node i triggered the final-
ization rule on chain and an honest node j triggered the finalization rule on
chain′, then it must be that either chain[: −5] � chain′[: −5] or chain′[: −5] �
chain[: −5].

Note that i and j can be the same or different node in the above theorem.

Proof. Suppose that chain ends at 6 consecutive epochs e − 5, e − 4, . . . , e and
chain′ ends at 6 consecutive epochs e′−5, e′−4, . . . , e′. Without loss of generality,
assume that e′ ≥ e.

Since chain contains two consecutive epochs e−5 and e−4, due to Lemma 3.1,
chain′ cannot skip all of epochs e − 5, e − 4, e − 3, e − 2. Therefore there must
be a block in chain′ at epoch ẽ ∈ {e − 5, e − 4, e − 3, e − 2}. Thus, at least one
honest node must have voted for chain′〈ẽ〉 in epoch ẽ, and this honest node must
have observed a proposal for chain′〈ẽ〉 from an eligible proposer in epoch ẽ. This
means that all honest nodes must have observed a proposal for chain′〈ẽ〉 from
an eligible proposer by the beginning of ẽ + 2 ≤ e.

Notice that a notarization for chain cannot appear in honest view before
epoch e since honest nodes will only vote for chain in epoch e. Thus the final-
ization rule for chain must be triggered after epoch e starts, but by this time
all honest nodes have observed a proposal for chain′〈: ẽ〉. Therefore it must be
that chain′〈: ẽ〉 = chain〈: ẽ〉 since otherwise the finalization rule cannot trigger
on chain due to seeing a conflicting proposal for ẽ. ��

3.3 Liveness Proof

We can show that honest nodes’ finalized chains must grow whenever there
are 6 consecutive epochs all with honest proposers. The proof follows almost
identically as in Sect. 2.4, where we can prove that an honest proposer’s proposal
never gets rejected by honest recipients. The liveness claim therefore follows by
observing that an honest proposer does not propose two blocks of the same
epoch.

4 Additional Improvements and References

Optimistic Responsiveness. The protocols described earlier are preconfigured
with an anticipated delay parameter Δ, and a new block can only be confirmed
per Θ(Δ) rounds (also called an epoch earlier). In practice, if and whenever



Streamlined Blockchains: A Simple and Elegant Approach 15

the actual network delay δ is much smaller than Δ, it would be desirable to
confirm transactions as fast as the network makes progress, i.e., the confirmation
time should be dependent only on the actual delay δ and not on the a-priori
upper bound Δ. Protocols that achieve this property are said to be optimistically
responsive [14].

In Pala [4] and Pili [5], the authors show that with very minor tweaks to
protocols described in this tutorial, one can achieve optimistic responsiveness in
the partial synchronous and synchronous settings respectively. Later versions of
the Hotstuff [1] paper and subsequently Sync Hotstuff [2] also achieved optimistic
responsiveness.

Synchronous and Yet Partition Tolerant. The synchronous, honest-
majority protocol described in Sect. 3 makes a strong network synchrony assump-
tion for its consistency proof. Specifically, every honest node’s messages must be
delivered within Δ delay. In other words, if an honest node ever temporarily
drops offline and violates the Δ bound, it is treated as corrupt by the model
and the consensus protocol is no longer required to provide consistency and live-
ness guarantees for this node. In practice, typically no one can deliver 100%
uptime—since blockchains are long running, every node may become offline at
some point, and thus at the end time, the classical synchronous model will treat
everyone as corrupt! This means that protocols proven secure in the classical syn-
chronous model do not necessarily offer strong enough robustness for practical
deployment. A symptom of this is that almost all known synchronous consensus
protocols appear under-specified and unimplementable: typically these protocols
do not fully specify what a node should do if it receives messages out of sync,
e.g., after coming back online after a short outage (and it is dangerous to leave
this decision entirely to an ordinary implementer).

Recently, Guo, Pass, and Shi [7] propose a new model that allows one to cap-
ture a notion of “best-possible partition tolerance” while making mild network
timing assumptions. Specifically, in their model, a secure consensus protocol
must provide both consistency and liveness to all honest nodes, even those who
might have suffered from temporary outages but have come back online, as long
as at any point of time, there exists a set of honest and online nodes that are
majority in size. Moreover, this honest and online set may even churn rapidly over
time. Given Guo et al.’s model, a recent work called Pili showed how to achieve
this notion of best-possible partition tolerance through very minor tweaks to the
protocol described in Sect. 3 (and at the same time offering optimistic respon-
siveness too).

Reference Implementation. We refer the reader to an open-source imple-
mentation of Pala (https://github.com/thundercore/pala). This implementation
adopted a doubly-streamlined, and optimistically responsive variant of the pro-
tocol described in Sect. 2. We briefly explain the “doubly-streamlined” idea: in
the protocol in Sect. 2, a node must have received the parent chain’s notariza-
tion to vote on the next block—this can lead to pipeline stalls in settings with

https://github.com/thundercore/pala
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long delay and large bandwidth. Double streamlining is a generalization of the
protocol in Sect. 2 such that nodes can propose and vote on a block as long as
its k-th ancestor’s notarization has been received; however, for finalization, one
has to chop off roughly k blocks too.
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A Notations

Variable Meaning

chain Blockchain

chain[: �] Prefix of chain upto and including the �-th block

chain[: −�] Prefix of chain after removing the trailing � blocks

Δ maximum network delay between honest nodes (during a period of
synchrony)

e Epoch number, i.e., a collection of 2Δ rounds

n Number of nodes

h−1 Parent hash encoded in a block

TXs Application-specific payload in a block, e.g., a set of transactions to
confirm

H Collision-resistant hash function for hashing blockchains

H∗ A random oracle for proposer election
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Abstract. We present here a new family of trapdoor one-way functions
that are Preimage Sampleable on Average (PSA) based on codes, the
Wave-PSA family. The trapdoor function is one-way under two compu-
tational assumptions: the hardness of generic decoding for high weights
and the indistinguishability of generalized (U, U + V )-codes. Our proof
follows the GPV strategy [28]. By including rejection sampling, we ensure
the proper distribution for the trapdoor inverse output. The domain sam-
pling property of our family is ensured by using and proving a variant
of the left-over hash lemma. We instantiate the new Wave-PSA family
with ternary generalized (U, U + V )-codes to design a “hash-and-sign”
signature scheme which achieves existential unforgeability under adaptive
chosen message attacks (EUF-CMA) in the random oracle model.

1 Introduction

Code-Based Signature Schemes. It is a long standing open problem to build
an efficient and secure digital signature scheme based on the hardness of decoding
a linear code which could compete with widespread schemes like DSA or RSA.
Those signature schemes are well known to be broken by quantum computers and
code-based schemes could indeed provide a valid quantum resistant replacement.
A first answer to this question was given by the CFS scheme proposed in [15].
It consisted in finding parity-check matrices H ∈ F

r×n
2 such that the solution e

of smallest weight of the equation

eHᵀ = s. (1)

could be found for a non-negligible proportion of all s in F
r
2. This task was

achieved by using high rate Goppa codes. This signature scheme has however
two drawbacks: (i) for high rates Goppa codes the indistinguishability assump-
tion used in its security proof has been invalidated in [22], (ii) security scales only
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weakly superpolynomially in the keysize for polynomial time signature genera-
tion. A crude extrapolation of parallel CFS [23] and its implementations [10,35]
yields for 128 bits of classical security a public key size of several gigabytes and
a signature time of several seconds. Those figures even grow to terabytes and
hours for quantum-safe security levels, making the scheme unpractical.

This scheme was followed by other proposals using other code families such
as for instance [4,29,36]. All of them were broken, see for instance [40,42]. Other
signature schemes based on codes were also given in the literature such as for
instance the KKS scheme [33,34], its variants [7,27] or the RaCoSS proposal
[25] to the NIST. But they can be considered at best to be one-time signature
schemes and great care has to be taken to choose the parameters of these schemes
in the light of the attacks given in [13,31,41]. Finally, another possibility is to
use the Fiat-Shamir heuristic. For instance by turning the Stern zero-knowledge
authentication scheme [46] into a signature scheme but this leads to rather large
signature lengths (hundred(s) of kilobits). There has been some recent progress in
this area for another metric, namely the rank metric. A hash and sign signature
scheme was proposed, RankSign [26], that enjoys remarkably small key sizes, but
it got broken too in [20]. On the other hand, following the Schnorr-Lyubashevsky
[37] approach, a new scheme was recently proposed, namely Durandal [2]. This
scheme enjoys small key sizes and managed to meet the challenge of adapting
the Lyubashevsky [37] approach for code-based cryptography. However, there
is a lack of genericity in its security reduction to a rather convoluted problem,
namely PSSI+ (see [2, §4.1]).

One-Way Preimage Sampleable Trapdoor Functions. There is a very
powerful tool for building a hash-and-sign signature scheme. It is based on the
notion of one-way trapdoor preimage sampleable function [28, §5.3]. Roughly
speaking, this is a family of trapdoor one-way functions (fa)a such that with
overwhelming probability over the choice of fa (i) the distribution of the images
fa(e) is very close to the uniform distribution over its range (ii) the distribution
of the output of the trapdoor algorithm inverting fa samples from all possible
preimages in an appropriate way. This trapdoor inversion algorithm should sam-
ple its outputs e for any x in the domain of fa such that the distribution of e
is indistinguishable in a statistical sense from the input distribution of fa con-
ditioned by fa(e) = x. This notion and its lattice-based instantiation was used
in [28] to give a full-domain hash (FDH) signature scheme with a tight security
reduction based on lattice assumptions, namely that the Short Integer Solution
(SIS) problem is hard on average. Furthermore, this approach also allowed to
build the first identity based encryption scheme that could be resistant to a
quantum computer. We will refer to this approach for obtaining a FDH scheme
as the GPV strategy. This strategy has also been adopted in Falcon [24], a lat-
tice based signature submission to the NIST call for post-quantum cryptographic
primitives that was recently selected as a second round candidate.

This preimage sampleable primitive is notoriously difficult to obtain when the
functions fa are not trapdoor permutations but many-to-one functions. This is
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typically the case when one wishes quantum resistant primitives based on lattice
based assumptions. The reason is the following. The hard problem on which this
primitive relies is the SIS problem where we want to find for a matrix A in Z

n×m
q

(with m ≥ n) and an element s ∈ Z
n
q a short enough (for the Euclidean norm)

solution e ∈ Z
m
q to the equation

eAᵀ = s mod q. (2)

A defines a preimage sampleable function as fA(e) = eAᵀ and the input to fA
is chosen according to a (discrete) Gaussian distribution of some variance σ2.
Obtaining a nearly uniform distribution for the fA(e)’s over its range requires to
choose σ2 so large so that there are actually exponentially many solutions to (2).
It is a highly non-trivial task to build in this case a trapdoor inversion algorithm
that samples appropriately among all possible preimages, i.e. oblivious to the
trapdoor.

The situation is actually exactly the same if we want to use another candidate
problem for building this preimage sampleable primitive for being resistant to a
quantum computer, namely the decoding problem in code-based cryptography.
Here we rely on the difficulty of finding a solution e of Hamming weight exactly
w with coordinates in a finite field Fq for the equation

eHᵀ = s. (3)

where H is a given matrix and s (usually called a syndrome) a given vector
with entries in Fq. The weight w has to be chosen large enough so that this
equation has always exponentially many solutions (in n the length of e). As in
the lattice based setting, it is non-trivial to build trapdoor candidates with a
trapdoor inversion algorithm for fH (defined as fH(e) = eHᵀ) that is oblivious
to the trapdoor.

Our Contribution: A Code-Based PSA Family and a FDH Scheme.
Our main contribution is to give here a code-based one way trapdoor func-
tion that meets the preimage sampleable property in a slighty relaxed way: it
meets this property on average. We call such a function Preimage Sampleable
on Average, PSA in short. This property on average turns out to be enough
for giving a security proof for the signature scheme built from it. Our family
relies here on the difficulty of solving (3). We derive from it a FDH signature
scheme which is shown to be existentially unforgeable under a chosen-message
attack (EUF-CMA) with a tight reduction to solving two code-based problems:
one is a distinguishing problem related to the trapdoor used in our scheme, the
other one is a multiple targets version of the decoding problem (3), the so called
“Decoding One Out of Many” problem (DOOM in short) [44]. In [28] a signa-
ture scheme based on preimage sampleable functions is given that is shown to be
strongly existentially unforgeable under a chosen-message attack if in addition
the preimage sampleable functions are also collision resistant. With our choice
of w and Fq, our preimage sampleable functions are not collision resistant. How-
ever, as observed in [28], collision resistance allows a tight security reduction



24 T. Debris-Alazard et al.

but is not necessary: a security proof could also be given when the function is
“only” preimage sampleable. Here we will show that it is even enough to have
such a property on average. Moreover, in contrast with the lattice setting where
the size of the alphabet q grows with n, our alphabet size will be constant in our
proposal, it is fixed to q = 3.

Our Trapdoor: Generalized (U,U+V)-Codes. In [28] the trapdoor consists
in a short basis of the lattice considered in the construction. Our trapdoor will be
of a different nature, it consists in choosing parity-check matrices of generalized
(U,U + V )-codes. In our construction, U and V are chosen as random codes.
The number of such generalized (U,U + V )-codes of dimension k and length n
is of the same order as the number of linear codes with the same parameters,
namely qΘ(n2) when k = Θ (n). A generalized (U,U +V ) code C of length n over
Fq is built from two codes U and V of length n/2 and 4 vectors a,b, c and d in
F

n/2
q as the following “mixture” of U and V :

C = {(a � u + b � v, c � u + d � v) : u ∈ U, v ∈ V }
where x�y stands for the component-wise product, also called the Hadamard or
Schur product. It is defined as: x�y

�
=(x1y1, · · · , xn/2yn/2). Standard (U,U+V )-

codes correspond to a = c = d = 1n/2 and b = 0n/2, the all-one and the all-zero
vectors respectively.

The point of introducing such codes is that they have a natural decoding
algorithm DUV solving the decoding problem (3) that is based on a generic
decoding algorithm Dgen for linear codes. Dgen will be here a very simple decoder,
namely a variation of the Prange decoder [43] that is able to easily produce for
any parity-check matrix H ∈ F

r×n
q a solution of (3) for any w in the range

� q−1
q r, n − r

q �. Note that this algorithm works in polynomial time and that the
complexity of the best known algorithms is exponential in n for weights w of the
form w = ωn where ω is a constant that lies outside the interval [ q−1

q ρ, 1− ρ
q ] with

ρ
�
= r

n . DUV works by combining the decoding of V with Dgen with the decoding
of U by Dgen. The nice feature is that DUV is more powerful than Dgen applied
directly on the generalized (U,U +V )-code: the weight of the error produced by
DUV in polynomial time can be made to lie outside the interval � q−1

q r, n − r
q �.

This is in essence the trapdoor of our signature scheme. A tweak in this decoder
consisting in performing only a small amount of rejection sampling (with our
choice of parameters one rejection every 10 or 12 signatures, see the full paper
[18]) allows to obtain solutions that are uniformly distributed over the words of
weight w. This is the key for obtaining a PSA family and a signature scheme
from it.

Finally, a variation of the proof technique of [28] allows to give a tight security
proof of our signature scheme that relies only on the hardness of two problems,
namely

Decoding Problem: Solving at least one instance of the decoding problem (1)
out of multiple instances for a certain w that is outside the range � q−1

q r, n− r
q �



Wave: A New Family of Trapdoor One-Way PSF Based on Codes 25

Distinguishing Problem: Deciding whether a linear code is a permuted gen-
eralized (U,U + V ) code or not.

Hardness of the Decoding Problem. All code-based cryptography relies
upon that problem. Here we are in a case where there are multiple solutions of
(3) and the adversary may produce any number of instances of (3) with the same
matrix H and various syndromes s and is interested in solving only one of them.
This relates to the, so called, Decoding One Out of Many (DOOM) problem.
This problem was first considered in [32]. It was shown there how to adapt
the known algorithms for decoding a linear code in order to solve this modified
problem. This modification was later analyzed in [44]. The parameters of the
known algorithms for solving (3) can be easily adapted to this scenario where
we have to decode simultaneously multiple instances which all have multiple
solutions.

Hardness of the Distinguishing Problem. This problem might seem at
first sight to be ad-hoc. However, even in the very restricted case of (U,U + V )-
codes, deciding whether a code is a permuted (U,U + V )-code or not is an NP-
complete problem. Therefore the Distinguishing Problem is also NP-complete for
generalized (U,U+V )-codes. This theorem is proven in the case of binary (U,U+
V )-codes in [17, §7.1, Thm 3] and the proof carries over to an arbitrary finite
field Fq. However as observed in [17, p. 3], these NP-completeness reductions
hold in the particular case where the dimensions kU and kV of the code U
and V satisfy kU < kV . If we stick to the binary case, i.e. q = 2, then in
order that our (U,U + V ) decoder works outside the integer interval � r

2 , n − r
2�

it is necessary that kU > kV . Unfortunately in this case there is an efficient
probabilistic algorithm solving the distinguishing problem that is based on the
fact that in this case the hull of the permuted (U,U + V )-code is typically of
large dimension, namely kU − kV (see [16, §1 p. 1–2]). This problem can not be
settled in the binary case by considering generalized (U,U +V )-codes instead of
just plain (U,U +V )-codes, since it is only for the restricted class of (U,U +V )-
codes that the decoder considered in [16] is able to work properly outside the
critical interval � r

2 , n− r
2�. This explains why the ancestor Surf [16] of the scheme

proposed here that relies on binary (U,U + V )-codes can not work.
This situation changes drastically when we move to larger finite fields. In

order to have a decoding algorithm DUV that has an advantage over the generic
decoder Dgen we do not need to have a = c = d = 1n/2 and b = 0n/2 (i.e. (U,U +
V )-codes) we just need that a�c and a�d−b�c are vectors with only non-zero
components. This freedom of choice for the a,b, c and d thwarts completely the
attacks based on hull considerations and changes completely the nature of the
distinguishing problem. In this case, it seems that the best approach for solving
the distinguishing problem is based on the following observation. The generalized
(U,U + V )-code has codewords of weight slightly smaller than the minimum
distance of a random code of the same length and dimension. It is very tempting
to conjecture that the best algorithms for solving the Distinguishing Problem
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come from detecting such codewords. This approach can be easily thwarted by
choosing the parameters of the scheme in such a way that the best algorithms for
solving this task are of prohibitive complexity. Notice that the best algorithms
that we have for detecting such codewords are in essence precisely the generic
algorithms for solving the Decoding Problem. In some sense, it seems that we
might rely on the very same problem, namely solving the Decoding Problem,
even if our proof technique does not show this.

Large Weights Decoding and q = 3. In terms of simplicity of the decoding
procedure used in the signing process, it seems that defining our codes over the
finite field F3 is particularly attractive. In such a case, the biggest advantage of
DUV over Dgen is obtained for large weights rather than for small weights (there
is an explanation for this asset in Sect. 4.3). This is a bit unusual in code-based
cryptography to rely on the difficulty of finding solutions of large weight to the
decoding problem. However, it also opens the issue of whether or not it would be
advantageous to have (non-binary) code-based primitives rely on the hardness
of solving the decoding problem for large weights rather than for small weights.
Of course these two problems are equivalent in the binary case, i.e. q = 2, but
this is not the case for larger alphabets anymore and still everything seems to
point to the direction that large weights problem is by no means easier than its
small weight counterpart.

All in all, this gives the first practical signature scheme based on ternary codes
which comes with a security proof and which scales well with the parameters:
it can be shown that if one wants a security level of 2λ, then the signature size
is of order O(λ), the public key size is of order O(λ2), and the computational
effort is of order O(λ3) for generating a signature and O(λ2) for verifying it. It
should be noted that contrarily to the current thread of research in code-based
or lattice-based cryptography which consists in relying on structured codes or
lattices based on ring structures in order to decrease the key-sizes we did not
follow this approach here. This allows for instance to rely on the NP-complete
Decoding Problem which is generally believed to be hard on average rather that
on decoding in quasi-cyclic codes for instance whose status is still unclear with
a constant number of circulant blocks. Despite the fact that we did not use the
standard approach for reducing the key sizes relying on quasi-cyclic codes for
instance, we obtain acceptable key sizes (about 3.2 megabytes for 128 bits of
security) which compare very favorably to unstructured lattice-based signature
schemes such as TESLA for instance [1]. This is due in part to the tightness of
our security reduction.

2 Notation

General Notation. The notation x
�
= y defines x to be equal to y. We denote

by Fq the finite field with q elements and by Sw,n, or Sw when n is clear from
the context, the subset of F

n
q of words of weight w. For a and b integers with
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a ≤ b, we denote by �a, b� the set of integers {a, a + 1, . . . , b}. Furthermore, h3

will denote the function: h3(x)
�
=−x log3(x)−(1−x) log3(1−x) defined on [0, 1].

Vector and Matrix Notation. Vectors will be written with bold letters (such as
e) and uppercase bold letters are used to denote matrices (such as H). Vectors
are in row notation. Let x and y be two vectors, we will write (x,y) to denote
their concatenation. We also denote by xI the vector whose coordinates are
those of x = (xi)1≤i≤n which are indexed by I, i.e. xI = (xi)i∈I . We will
denote by HI the matrix whose columns are those of H which are indexed by
I. We may denote by x(i) the i-th entry of a vector x, or by A(i, j) the entry
in row i and column j of a matrix A. We define the support of x = (xi)1≤i≤n

as Supp(x)
�
={i ∈ {1, · · · , n} such that xi �= 0}. The Hamming weight of x is

denoted by |x|. By some abuse of notation, we will use the same notation to
denote the size of a finite set: |S| stands for the size of the finite set S. For a
vector a ∈ F

n
q , we denote by Diag(a) the n × n diagonal matrix A with its

entries given by a, i.e. A(i, i) = ai for all i ∈ �1, n� and A(i, j) = 0 for i �= j.

Probabilistic Notation. Let S be a finite set, then x ←↩ S means that x is assigned
to be a random element chosen uniformly at random in S. For two random vari-
ables X,Y , X ∼ Y means that X and Y are identically distributed. We will also
use the same notation for a random variable and a distribution D, where X ∼ D
means that X is distributed according to D. We denote the uniform distribution
on Sw by Uw. The statistical distance between two discrete probability distribu-
tions over a same space E is defined as: ρ(D0,D1)

�
= 1

2

∑
x∈E |D0(x) − D1(x)|.

Recall that a function f(n) is said to be negligible, and we denote this by
f ∈ negl(n), if for all polynomials p(n), |f(n)| < p(n)−1 for sufficiently large n.

Coding Theory. For any matrix M we denote by 〈M〉 the vector space spanned
by its rows. A q-ary linear code C of length n and dimension k is a subspace of
F

n
q of dimension k. A parity-check matrix H over Fq of size r × n is such that

C = 〈H〉⊥ =
{
x ∈ F

n
q : xHᵀ = 0

}
. When H is of full rank we have r = n − k.

The code rate, usually denoted by R, is defined as the ratio k/n. An information
set of a code C of length n is a set of k coordinate indices I ⊂ �1, n� such that
its complement indexes n − k independent columns on any parity-check matrix.
For any s ∈ F

n−k
q , H ∈ F

(n−k)×n
q , and any information set I of C = 〈H〉⊥, for

all x ∈ F
n
q there exists a unique e ∈ F

n
q such that eHᵀ = s and xI = eI .

3 The Wave-family of Trapdoor One-Way Preimage
Sampleable Functions

3.1 One-Way Preimage Sampleable Code-Based Functions

In this work we will use the FDH paradigm [9,14] using as one-way the syndrome
function:

fH : e ∈ Sw �−→ eHᵀ ∈ F
n−k
q



28 T. Debris-Alazard et al.

The corresponding FDH signature uses a trapdoor to choose σ ∈ f−1
w,H(h) where

h is the digest of the message to be signed. Here, the signature domain is Sw

and its range is the set of syndromes F
n−k
q according to H, an (n−k)×n parity

check matrix of some q-ary linear [n, k] code. The weight w is chosen such that
the one-way function fw,H is surjective but not bijective. Building a secure FDH
signature in this situation can be achieved by imposing additional properties
[28] to the one-way function (we will speak of the GPV strategy). This is mostly
captured by the notion of Preimage Sampleable Functions, see [28, Definition
5.3.1]. We express below this notion in our code-based context with a slightly
relaxed definition dropping the collision resistance condition and only assuming
that the preimage sampleable property holds on average and not for any possible
element in the function range. This will be sufficient for proving the security of
our code-based FDH scheme.

Definition 1 ( Trapdoor One-way Preimage Sampleable on Average
Code-based Functions). It is a pair of probabilistic polynomial-time algo-
rithms (Trapdoor, InvAlg) together with a triple of functions (n(λ), k(λ), w(λ))
growing polynomially with the security parameter λ and giving the length and
dimension of the codes and the weights we consider for the syndrome decoding
problem, such that

– Trapdoor when given λ, outputs (H, T ) where H is an (n − k) × n matrix
over Fq and T the trapdoor corresponding to H.

– InvAlg is a probabilistic algorithm which takes as input T and an element
s ∈ F

n−k
q and outputs an e ∈ Sw,n such that eHᵀ = s.

The following properties have to hold for all but a negligible fraction of H output
by Trapdoor.

1. Domain Sampling with uniform output:

ρ(eHᵀ
, s) ∈ negl(λ), where e ←↩ Sw,n and s ←↩ F

n−k
q .

2. Preimage Sampling on Average (PSA) with trapdoor:

ρ (InvAlg(s, T ), e) ∈ negl(λ), where e ←↩ Sw,n and s ←↩ F
n−k
q .

3. One wayness without trapdoor: for any probabilistic poly-time algorithm A
outputting an element e ∈ Sw,n when given H ∈ F

(n−k)×n
q and s ∈ F

n−k
q , the

probability that eHᵀ = s is negligible, where the probability is taken over the
choice of H, the target value s chosen uniformly at random, and A’s random
coins.

Remark 1. 1. The preimage property as defined in [28] would translate in our
setting in the following way. For any s ∈ F

n−k
q we should have

ρ (InvAlg(s, T ), es) ∈ negl(λ), where es ←↩
{
e ∈ Sw,n : eHᵀ = s

}
.
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As observed by an anonymous reviewer, we have

ρ (InvAlg(s, T ), e) =
∑

s

∑

e∈f−1
H

(s)

∣∣∣ 1
|Sw| − 1

qn−k P(InvAlg(s, T ) = e)
∣∣∣

=
∑

s

∑

e∈f−1
H

(s)

∣∣∣∣
1

|Sw| − 1

qn−k|f−1
H

(s)| + 1

qn−k|f−1
H

(s)| − 1
qn−k P(InvAlg(s, T ) = e)

∣∣∣∣

≥
∑

s

1
qn−k

∑
e∈f−1

H
(s)

∣∣∣∣
1

|f−1
H

(s)| − P(InvAlg(s, T ) = e)

∣∣∣∣ − ∑
s

∣∣∣∣
|f−1

H
(s)|

|Sw| − 1
qn−k

∣∣∣∣

=
∑

s∈F
n−k
q

1
qn−k ρ (InvAlg(s, T ), es) − ρ(eH

ᵀ
, s).

Therefore with the domain sampling property and our definition of the preim-
age sampling property the average of the ρ (InvAlg(s, T ), es)’s is negligible
too, whereas [28] requires that all terms ρ (InvAlg(s, T ), es) are negligible.
Note that our property that holds for the average implies that this property
holds for all but a negligible fraction of s’s. Indeed, if we have

1
qn−k

∑

s∈F
n−k
q

ρ (InvAlg(s, T ), es) = ε,

then
# {s : ρ (InvAlg(s, T ), es) ≥ √

ε}
qn−k

≤ √
ε.

As noted by the anonymous reviewer, this relaxed property is enough to apply
the GPV proof technique.

2. It turns out that this relaxed definition of preimage sampleable function is
enough to prove the security of the associated signature scheme using a salt
as given in the next paragraph. This relaxed definition is of independent
interest, since it can be easier to find trapdoor one-way functions meeting
this property than the more stringent definition given in [28].

Given a one-way preimage sampleable code-based function (Trapdoor, InvAlg)
we easily define a code-based FDH signature scheme as follows. We generate
the public/secret key as (pk, sk) = (H, T ) ← Trapdoor(λ). We also select a
cryptographic hash function Hash : {0, 1}∗ → F

n−k
q and a salt r of size λ0. The

algorithms Sgnsk and Vrfypk are defined as follows

Sgnsk(m): Vrfypk(m, (e′, r)):
r ←↩ {0, 1}λ0 s ← Hash(m, r)
s ← Hash(m, r) if e′Hᵀ = s and |e′| = w return 1
e ← InvAlg(s, T ) else return 0
return(e, r)

A tight security reduction in the random oracle model is given in [28] for the
associated signature schemes. It requires collision resistance. Our construction
uses a ternary alphabet q = 3 together with large values of w and collision resis-
tance is not met. Still, we achieve a tight security proof [18, §7] by considering
a reduction to the multiple target decoding problem.
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3.2 The Wave Family of PSA Functions

The trapdoor family of codes which gives an advantage for inverting fw,H is
built upon the following transformation:

Definition 2. Let a, b, c and d be vectors of F
n/2
q . We define

ϕa,b,c,d : (x,y) ∈ F
n/2
q × F

n/2
q → (a � x + b � y, c � x + d � y) ∈ F

n/2
q × F

n/2
q

We will say that ϕa,b,c,d is UV-normalized if

∀i ∈ �1, n/2�, aidi − bici = 1, aici �= 0.

For any two subspaces U and V of F
n/2
q , we extend the notation

ϕa,b,c,d(U, V )
�
= {ϕa,b,c,d(u,v) : u ∈ U,v ∈ V }

Proposition 1 (Normalized Generalized (U,U + V )-code). Let n be an
even integer and let ϕ = ϕa,b,c,d be a UV-normalized mapping. The mapping ϕ
is bijective with ϕ−1(x,y) = (d � x − b � y,−c � x + a � y).

For any two subspaces U and V of F
n/2
q of parity check matrices HU and

HV , the vector space ϕ(U, V ) is called a normalized generalized (U,U +V )-code.
It has dimension dim U + dimV and admits the following parity check matrix

H(ϕ,HU ,HV )
�
=

(
HUD −HUB

−HV C HV A

)

where A
�
=Diag(a), B

�
=Diag(b), C

�
=Diag(c) and D

�
=Diag(d).

In the sequel, a UV-normalized mapping ϕ implicitly defines a quadruple of
vectors (a,b, c,d) such that ϕ = ϕa,b,c,d. We will use this implicit notation and
drop the subscript whenever no ambiguity may arise.

Remark 2. – This construction can be viewed as taking two codes of length
n/2 and making a code of length n by “mixing” together a codeword u in U
and a codeword v in V as the vector formed by the set of aiui + bivi’s and
ciui + divi’s.

– The condition aici �= 0 is here to ensure that coordinates of U appear in all
the coordinates of the normalized generalized (U,U + V ) codeword. This is
essential for having a decoding algorithm for the generalized (U,U + V )-code
that has an advantage over standard information set decoding algorithms for
linear codes. The trapdoor of our scheme builds upon this advantage. It can
really be viewed as the “interesting” generalization of the standard (U,U +V )
construction.

– We have fixed aidi − bici = 1 for every i to simplify some of the expressions
in what follows. It is readily seen that any generalized (U,U + V )-code that
can be obtained in the more general case aidi − bici �= 0 can also be obtained
in the restricted case aidi − bici = 1 by choosing U and V appropriately.
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Defining Trapdoor and InvAlg. From the security parameter λ, we derive the
system parameters n, k, w and split k = kU +kV (see [18, §5.4] for more details).
The secret key is a tuple sk = (ϕ,HU ,HV ,S,P) where ϕ is a UV-normalized
mapping, HU ∈ F

(n/2−kU )×n/2
q , HV ∈ F

(n/2−kV )×n/2
q , S ∈ F

(n−k)×(n−k)
q is non-

singular with k = kU +kV , and P ∈ F
n×n
q is a permutation matrix. Each element

of sk is chosen randomly and uniformly in its domain.
From (ϕ,HU ,HV ) we derive the parity check matrix Hsk = H(ϕ,HU ,HV )

as in Proposition 1. The public key is Hpk = SHskP. Next, we need to produce
an algorithm Dϕ,HU ,HV

which inverts fw,Hsk . The parameter w is such that this
can be achieved using the underlying (U,U + V ) structure while the generic
problem remains hard. In Sect. 5 we will show how to use rejection sampling
to devise Dϕ,HU ,HV

such that its output is uniformly distributed over Sw when
s is uniformly distributed over F

n−k
q . This enables us to instantiate algorithm

InvAlg. To summarize:

sk ← (ϕ,HU ,HV ,S,P)
pk ← Hpk

(pk, sk) ← Trapdoor(λ)

∣
∣
∣
∣
∣
∣

InvAlg(sk, s)
e ← Dϕ,HU ,HV

(s
(
S−1

)ᵀ
)

return eP

As in [28], putting this together with a domain sampling condition –which we
prove in Sect. 6 from a variation of the left-over hash lemma– allows us to define
a family of trapdoor preimage sampleable functions, later referred to as the
Wave-PSA family.

4 Inverting the Syndrome Function

This section is devoted to the inversion of fw,H which amounts to solve:

Problem 1 (Syndrome Decoding with fixed weight). Given H ∈ F
(n−k)×n
q , s ∈

F
n−k
q , and an integer w, find e ∈ F

n
q such that eHᵀ = s and |e| = w.

We consider three nested intervals �w−
easy, w

+
easy� ⊂ �w−

UV, w+
UV� ⊂ �w−, w+� for

w such that for s randomly chosen in F
n−k
q :

– f−1
w,H(s) is likely/very likely to exist if w ∈ �w−, w+� (Gilbert-Varshamov

bound)
– e ∈ f−1

w,H(s) is easy to find if w ∈ �w−
easy, w

+
easy� for all H (Prange algorithm)

– e ∈ f−1
w,H(s) is easy to find if w ∈ �w−

UV, w+
UV� and H is the parity check

matrix of a generalized (U,U + V )-code. This is the key for exploiting the
underlying (U,U + V ) structure as a trapdoor for inverting fw,H.

4.1 Surjective Domain of the Syndrome Function

The issue is here for which value of w we may expect that fw,H is surjective.
This clearly implies that |Sw| ≥ qn−k. In other words we have:
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Fact 1. If fw,H is surjective, then w ∈ �w−, w+� where w− < w+ are the
extremum of the set

{
w ∈ �0, n� | (

n
w

)
(q − 1)w ≥ qn−k

}
.

For a fixed rate R = k/n, let us define ω− �
= lim

n→+∞ w−/n and ω+ �
= lim

n→+∞ w+/n.

Note that the quantity ω− is known as the asymptotic Gilbert-Varshamov dis-
tance. A straightforward computation of the expected number of errors e of
weight w such that eHᵀ = s when H is random shows that we expect an expo-
nential number of solutions when w/n lies in (ω−, ω+). However, coding theory
has never come up with an efficient algorithm for finding a solution to this prob-
lem in the whole range (ω−, ω+).

4.2 Easy Domain of the Syndrome Function

The subrange of (ω−, ω+) for which we know how to solve efficiently Problem 1
is given by the condition w/n ∈ [ω−

easy, ω
+
easy] where

ω−
easy

�
=

q − 1
q

(1 − R) and ω+
easy

�
=

q − 1
q

+
R

q
, (4)

where R is the code rate k/n. This is achieved by a slightly generalized version
of the Prange decoder [43]. Prange algorithm is able to complement any word
whose coordinates are fixed on an information set into a word of prescribed
syndrome. In practice, it outputs in polynomial time using linear algebra, a
word e of prescribed syndrome and of the form (e′′, e′) up to a permutation.
The word e′ ∈ F

k
q has its support on an information set and can be chosen.

The word e′′ ∈ F
n−k
q is random, thus of average weight q−1

q (n − k). By properly
choosing |e′| the algorithm average output relative weight can thus take any
value between q−1

q
n−k

n = ω−
easy and k + q−1

q
n−k

n = ω+
easy. This procedure, that

we call PrangeOne·, is formalized in Algorithm 1.

Proposition 2. When H is chosen uniformly at random in F
(n−k)×n
q and s

uniformly at random in F
n−k
q , for the output e of PrangeOne(H, s) we have

|e| = S + T where S and T are independent random variables, S ∈ �0, n − k�,
T ∈ �0, k�, S is the Hamming weight of a vector that is uniformly distributed
over F

n−k
q and P(T = t) = D(t). Let D =

∑k
t=0 tD(t), we have:

P (|e| = w) =
w∑

t=0

(
n−k
w−t

)
(q − 1)w−t

qn−k
D(t), E(|e|) = D + q−1

q (n − k) = D + nω−
easy

From this proposition, we deduce that any weight w in �ω−
easyn, ω+

easyn� can be
reached by this Prange decoder with a probabilistic polynomial time algorithm
that uses a distribution D such that D = w − ω−

easyn and which is sufficiently
concentrated around its expectation. It will be helpful in what follows to be
able to choose a probability distribution D as this gives a rather large degree
of freedom in the distribution of |e| that will come very handy to simulate an
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Algorithm 1. PrangeOne(H, s) — One iteration of the Prange decoder
Parameters: q, n, k, D a distribution over �0, k�

Require: H ∈ F
(n−k)×n
q , s ∈ F

n−k
q

Ensure: eH
ᵀ

= s
1: t ←↩ D
2: I ← InfoSet(H) � InfoSet(H) returns an information set of 〈H〉⊥

3: x ←↩ {x ∈ F
n
q | |xI | = t}

4: e ← PrangeStep(H, s, I,x)
5: return e

function PrangeStep(H, s, I,x) — Prange vector completion

Require: H ∈ F
(n−k)×n
q , s ∈ F

n−k
q , I an information set of 〈H〉⊥, x ∈ F

n
q

Ensure: eH
ᵀ

= s and eI = xI
P ← any n × n permutation matrix sending I on the last k coordinates
(A | B) ← HP ; (∗ | e′) ← xP � A ∈ F

(n−k)×(n−k)
q ; e′ ∈ F

k
q

e ←
((

s − e′Bᵀ) (
A−1

)ᵀ
, e′

)
P

ᵀ

return e

output distribution that is uniform over the words of weight w in the generalized
(U,U + V )-decoder that we will consider in what follows.

Enlarging the Easy Domain �w−
easy, w

+
easy�. Inverting the syndrome function

fw,H is the basic problem upon which all code-based cryptography relies. This

problem has been studied for a long time for relative weights ω
�
= w

n in (0, ω−
easy)

and despite many efforts the best algorithms [6,8,11,19,21,38,39,45] for solving
this problem are all exponential in n for such fixed relative weights. In other
words, after more than fifty years of research, none of those algorithms came up
with a polynomial complexity for relative weights ω in (0, ω−

easy). Furthermore,
by adapting all the previous algorithms beyond this point we observe for them
the same behaviour: they are all polynomial in the range of relative weights
[ω−

easy, ω
+
easy] and become exponential once again when ω is in (ω+

easy, 1). All
these results point towards the fact that inverting fw,H in polynomial time on a
larger range is fundamentally a hard problem.

4.3 Solution with Trapdoor

Let us recall that our trapdoor to invert fw,H is given by the family of normalized
generalized (U,U + V )-codes (Proposition 1 in Sect. 3.2). As we will see, this
family comes with a simple procedure which enables to invert fw,H with errors
of weight which belongs to �w−

UV, w+
UV� ⊂ �w−, w+� but with �w−

easy, w
+
easy� �

�w−
UV, w+

UV�. We summarize this situation in Fig. 1. We wish to point out here,
to avoid any misunderstanding that the procedure we give here is not the one
we use at the end to instantiate Wave, but is merely here to give the underlying
idea of the trapdoor. Rejection sampling will be needed as explained in the
following section to avoid any information leakage on the trapdoor coming from
the outputs of the algorithm given here.
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hard hardhardeasy
w

0 w−
easy w+

easy nw−
UV w+

UV

easy with (U,U+V) trapdoor

Fig. 1. Hardness of (U, U + V ) Decoding

It turns out that in the case of a normalized generalized (U,U + V )-code, a
simple tweak of the Prange decoder will be able to reach relative weights w/n
outside the “easy” region [ω−

easy, ω
+
easy]. It exploits the fundamental leverage of

the Prange decoder : it consists in choosing the error e satisfying eHᵀ = s as we
want in k positions when the code that we decode is random and of dimension k.
When we want an error of low weight, we put zeroes on those positions, whereas
if we want an error of large weight, we put non-zero values. This idea leads to
even smaller or larger weights in the case of a normalized generalized (U,U +V )-
code. To explain this point, recall that we want to solve the following decoding
problem in this case.

Problem 2 (decoding problem for normalized generalized (U,U+V )-codes). Given
a normalized generalized (U,U + V ) code (ϕ,HU ,HV ) (see Proposition 1) of
parity-check matrix H = H(ϕ,HU ,HV ) ∈ F

(n−k)×n
q , and a syndrome s ∈ F

n−k
q ,

find e ∈ F
n
q of weight w such that eHᵀ = s.

The following notation will be very useful to explain how we solve this problem.

Notation 1. For a vector e in F
n
q , we denote by eU and eV the vectors in F

n/2
q

such that (eU , eV ) = ϕ−1(e).

The decoding algorithm will recover eV and then eU . From eU and eV we recover
e since e = ϕ(eU , eV ). The point of introducing such an eU and a eV is that

Proposition 3. Solving the decoding Problem 2 is equivalent to find an e ∈ F
n
q

of weight w satisfying

eUH
ᵀ
U = sU and eV Hᵀ

V = sV (5)

where s = (sU , sV ) with sU ∈ F
n/2−kU
q and sV ∈ F

n/2−kV
q .

Remark 3. We have put U and V as superscripts in sU and sV to avoid any
confusion with the notation we have just introduced for eU and eV .

Proof. Let us observe that e = ϕ(eU , eV ) = (a�eU +b�eV , c�eU +d�eV ) =
(eUA+eV B, eUC+eV D) with A = Diag(a),B = Diag(b),C = Diag(c),D =
Diag(d). By using this, eHᵀ = s translates into

{
eUADᵀHᵀ

U + eV BDᵀHᵀ
U − eUCBᵀHᵀ

U − eV DBᵀHᵀ
U = sU

−eUACᵀHᵀ
V − eV BCᵀHᵀ

V + eUCAᵀHᵀ
V + eV DAᵀHᵀ

V = sV
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which amounts to eU (AD − BC)Hᵀ
U = sU and eV (AD − BC)Hᵀ

V = sV , since
A, B, C, D are diagonal matrices, they are therefore symmetric and commute
with each other. We finish the proof by observing that AD − BC = In/2. ��
Performing the two decoding in (5) independently with the Prange algorithm
gains nothing. However if we first solve in V with the Prange algorithm, and
then seek a solution in U which properly depends on eV we increase the range
of weights accessible in polynomial time for e. It then turns out that the range
[ω−

UV, ω+
UV] of relative weights w/n for which the (U,U + V )-decoder works in

polynomial time is larger than [ω−
easy, ω

+
easy]. This will provide an advantage to

the trapdoor owner.

Tweaking the Prange Decoder for Reaching Large Weights. When q = 2, small
and large weights play a symmetrical role. This is not the case anymore for q ≥ 3.
In what follows we will suppose that q ≥ 3. In order to find a solution e of large
weight to the decoding problem eHᵀ = s, we use Proposition 3 and first find an
arbitrary solution eV to eV HV

ᵀ = sV . The idea, now for performing the second
decoding eUHU

ᵀ = sU , is to take advantage of eV to find a solution eU that
maximizes the weight of e = ϕ(eU , eV ). On any information set of the U code,
we can fix arbitrarily eU . Such a set is of size kU and on those positions i we
can always choose eU (i) such that this induces simultaneously two positions in
e that are non-zero. These are ei and ei+n/2. We just have to choose eU (i) so
that we have simultaneously aieU (i) + bieV (i) �= 0 and cieU (i) + dieV (i) �= 0.
This is always possible since q ≥ 3 and it gives an expected weight of e:

E(|e|) = 2
(

kU +
q − 1

q
(n/2 − kU )

)

=
q − 1

q
n +

2kU

q
(6)

The best choice for kU is to take kU = k up to the point where q−1
q n + 2k

q = n,
that is k = n/2 and for larger values of k we choose kU = n/2 and kV = k − kU .

Why Is the Trapdoor More Powerful for Large Weights than for Small Weights?
This strategy can be clearly adapted for small weights. However, it is less power-
ful in this case. Indeed, to minimize the final error weight we would like to choose
eU (i) in kU positions such that aieU (i)+ bieV (i) = 0 and cieU (i)+ dieV (i) = 0.
Here as aidi − bici = 1 and aici �= 0 in the family of codes we consider, this is
possible if and only if eV (i) = 0. Therefore, contrarily to the case where we want
to reach errors of large weight, the area of positions where we can gain twice is
constrained to be of size n/2 − |eV |. The minimal weight for eV we can reach
in polynomial time with the Prange decoder is given by q−1

q (n/2 − kV ). In this
way the set of positions where we can double the number of 0 will be of size
n/2 − q−1

q (n/2 − kV ) = n
2q + q−1

q kV . It can be verified that this strategy would
give the following expected weight for the final error we get:

E(|e|) =
q − 1

q
n − 2

q − 1
q

kU if kU ≤ n

2q
+

q − 1
q

kV and
2(q − 1)2

(2q − 1)q
(n − k) else.
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5 Preimage Sampling with Trapdoor: Achieving a
Uniformly Distributed Output

We restrict our study to q = 3 but it can be generalized to larger q. To be a
trapdoor one-way preimage sampleable function, we have to enforce that the
outputs of our algorithm, which inverts our trapdoor function, are very close
to be uniformly distributed over Sw. The procedure described in the previous
section using directly the Prange decoder, does not meet this property. As we
will prove, by changing it slightly, we will achieve this task by still keeping the
property to output errors of weight w for which it is hard to solve the decoding
problem for this weight. However, the parameters will have to be chosen carefully
and the area of weights w for which we can output errors in polynomial time
decreases. Figure 2 gives a rough picture of what will happen. A calculation
available in [18] shows that leakage immunity can be efficiently achieved by
rejection sampling for w > w+

easy. At this moment, we do not know how to
achieve this efficiently for w < w−

easy.

hard hardhardeasy
w

0

w−
easy w+

easy

nw−
UV w+

UV

easy with (U,U+V) trapdoor

no leakage with (U,U + V ) trapdoor

Fig. 2. Hardness of (U, U + V ) Decoding with no leakage of signature

5.1 Rejection Sampling to Reach Uniformly Distributed Output

We will tweak slightly the generalized (U,U + V )-decoder from the previous
section by performing in particular rejection sampling on eU and eV in order
to obtain an error e satisfying eHᵀ = s that is uniformly distributed over the
words of weight w when the syndrome s is randomly chosen in F

n−k
3 . Solving the

decoding problem 2 of the generalized (U,U +V )-code will be done by solving (5)
through an algorithm whose skeleton is given in Algorithm 2. DecodeV(HV , sV )
returns a vector satisfying eV HV

ᵀ = sV , whereas DecodeU(HU , ϕ, sU , eV )
returns a vector satisfying eUHU

ᵀ = sU and such that |ϕ(eU , eV )| = w. Here
s = (sU , sV ) with sU ∈ F

n/2−kU

3 and sV ∈ F
n/2−kV

3 . What we want to achieve by
rejection sampling is that the distribution of e output by this algorithm is the
same as the distribution of eunif that denotes a vector that is chosen uniformly
at random among the words of weight w in F

n
3 . This will be achieved by ensuring

that:

1. the eV fed into DecodeU(·) at Step 5 has the same distribution as eunifV ,
2. the distribution of eU surviving to Condition 2 at Step 7 conditioned on the

value of eV is the same as the distribution of eunifU conditioned on eunifV .
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Algorithm 2. DecodeUV(HV ,HU , ϕ, s)
1: repeat
2: eV ← DecodeV(HV , sV )
3: until Condition 1 is met
4: repeat
5: eU ← DecodeU(HU , ϕ, sU , eV ) � We assume that |ϕ(eU , eV )| = w here.
6: e ← ϕ(eU , eV )
7: until Condition 2 is met
8: return e

There is a property of the decoders DecodeV(·) and DecodeU(·) derived from
Prange decoders that we will consider that will be very helpful here.

Definition 3. DecodeV(·) is said to be weightwise uniform if the output eV of
DecodeV(HV , sV ) is such that P(eV ) is a function of the integer |eV | when sV

is chosen uniformly at random in F
n/2−kV

3 . DecodeU(·) is m1-uniform if the
outputput eU of DecodeU(HU , ϕ, sU , eV ) is such that the conditional probability
P(eU |eV ) is a function of the pair of integers (|eV |,m1(ϕ(eU , eV )) where

m1(x)
�
=

∣
∣
{
1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1

}∣
∣ .

It is readily observed that P(eunifV ) and P(eunifU |eunifV ) are also only functions of
|eunifV | and (|eunifV |,m1(eunif)) respectively. From this it is readily seen that we
obtain the right distributions for eV and eU conditioned on eV by just ensuring
that the distribution of |eV | follows the same distribution as |eunifV | and that
the distribution of m1(e) conditioned on |eV | is the same as the distribution of
m1(eunif) conditioned on |eunifV |. This is shown by the following lemma.

Lemma 1. Let e be the output of Algorithm 2 when sV and sU are uniformly
distributed in F

n/2−kV

3 and F
n/2−kU

3 respectively. Assume that DecodeU(·) is
m1-uniform whereas DecodeV(·) is weightwise uniform. If for any possible y
and z, |eV | ∼ |eunifV | and P(m1(e) = z | |eV | = y) = P(m1(eunif) = z | |eunifV | =
y), then e ∼ eunif . The probabilities are taken here over the choice of sU and sV

and over the internal coins of DecodeU(·) and DecodeV(·).
Proof. We have for any x in Sw

P(e = x) = P(eU = xU | eV = xV )P(eV = xV )
= P(DecodeU(HU , ϕ, sU , eV ) = xU | eV = xV )

P(DecodeV(HV , sV ) = xV )

=
P(m1(e) = z | |eV | = y)

n(y, z)
P(|eV | = y)

n(y)
�
=P (7)

where n(y) is the number of vectors of F
n/2
3 of weight y and n(y, z) is the number

of vectors e in F
n
3 such that eV = xV and such that m1(e) = z (this last number
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only depends on xV through its weight y). Equation (7) is here a consequence of
the weightwise uniformity of DecodeV(·) on one hand and the m1-uniformity
of DecodeU(·) on the other hand. We conclude by noticing that

P =
P(m1(eunif) = z | |eunifV | = y)

n(y, z)
P(|eunifV | = y)

n(y)
(8)

= P(eunifU = xU | eunifV = xV )P(eunifV = xV ) = P(eunif = x)

Equation (8) follows from the assumptions on the distribution of |eV | and of the
conditional distribution of m1(e) for a given weight |eV |. ��

This shows that in order to reach a uniformly distribution for e over Sw it is
enough to perform a rejection sampling based on the weight |eV | for DecodeV(·)
and based on the pair (|eV |,m1(e)) for DecodeU(·). In other words, our decod-
ing algorithm with rejection sampling will use a rejection vector rV indexed by
the weights of eV for DecodeV(·) and a two-dimensional rejection vector rU

indexed by (|eV |,m1(e)) for DecodeU(·). This is described in Algorithm 3.

Algorithm 3. DecodeUV(HV ,HU , ϕ, s)
1: repeat
2: eV ← DecodeV(HV , sV )
3: until rand([0, 1]) ≤ rV (|eV |)
4: repeat
5: eU ← DecodeU(HU , ϕ, sU , eV )
6: e ← ϕ(eU , eV )
7: until rand([0, 1]) ≤ rU (|eV |, m1(e))
8: return e

Standard results on rejection sampling yield the following proposition:

Proposition 4. For any i, t ∈ �0, n/2� and s ∈ �0, t�, let

q1(i)
�
= P (|eV | = i) ; qunif1 (i)

�
= P

(|eunifV | = i
)

(9)

q2(s, t)
�
= P (m1(e) = s | |eV | = t) ; qunif2 (s, t)

�
= P

(
m1(eunif) = s | |eunifV | = t

)

(10)

rV (i)
�
=

1
M rs

V

qunif1 (i)
q1(i)

and rU (s, t)
�
=

1
M rs

U (t)
qunif2 (s, t)
q2(s, t)

with

M rs
V

�
= max

0≤i≤n/2

qunif1 (i)
q1(i)

and M rs
U (t)

�
= max

0≤s≤t

qunif2 (s, t)
q2(s, t)

Then if DecodeV(·) is weightwise uniform and DecodeU(·) is m1-uniform,
the output e of Algorithm 3 satisfies e ∼ eunif .
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5.2 Application to the Prange Decoder

To instantiate rejection sampling, we have to provide here (i) how DecodeV(·)
and DecodeU(·) are instantiated and (ii) how qunif1 , qunif2 , q1 and q2 are com-
puted. Let us begin by the following proposition which gives qunif1 and qunif2 .

Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be
integers. We have,

qunif1 (i) =

(
n/2

i

)

(
n
w

)
2w/2

i∑

p=0
w+p≡0 mod 2

(
i

p

)(
n/2 − i

(w + p)/2 − i

)

23p/2 (11)

qunif2 (s, t) =

(
t
s

)( n/2−t
w+s

2 −t

)
2

3s
2

∑

p

(
t
p

)( n/2−t
w+p

2 −t

)
2

3p
2

if w + s ≡ 0 mod 2 and 0 else (12)

Algorithm 4. DecodeV(HV , sV ) the Decoder outputting an eV such that
eV Hᵀ

V = sV .
1: J , I ← FreeSet(HV )
2: � ←↩ DV

3: xV ←↩
{
x ∈ F

n/2
3 | |xJ | = �, Supp(x) ⊆ I

}
� (xV )I\J is random

4: eV ← PrangeStep(HV , sV , I,xV )
5: return eV

function FreeSet(H)

Require: H ∈ F
(n−k)×n
3

Ensure: I an information set of 〈H〉⊥ and J ⊂ I of size k − d
1: repeat
2: J ←↩ �1, n� of size k − d
3: until rankHJ = n − k
4: repeat
5: J ′ ←↩ �1, n�\J of size d
6: I ← J � J ′

7: until I is an information set of 〈H〉⊥

8: return J , I

Algorithms DecodeV(·),DecodeU(·) are described in Algorithms 4 and 5.
These two algorithms both use the Prange decoder in the same way as we did
with the procedure described in Sect. 4.3 to reach large weights, except that here
we introduced some internal distributions DV and the Dt

U ’s. These distributions
are here to tweak the weight distributions of DecodeV(·) and DecodeU(·) in
order to reduce the rejection rate. We have:
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Algorithm 5. DecodeU(HU , ϕ, sU , eV ) the U-Decoder outputting an eU such
that eUH

ᵀ
U = sU and |ϕ(eU , eV )| = w.

1: t ← |eV |
2: k�=0 ←↩ Dt

U

3: k0 ← k′
U − k �=0 � k′

U
�
= kU − d

4: repeat
5: J , I ← FreeSetW(HU , eV , k �=0)

6: xU ←↩ {x ∈ F
n/2
3 | ∀j ∈ J , x(j) /∈ {− bi

ai
eV (i), − di

ci
eV (i)} and Supp(x) ⊆ I}

7: eU ← PrangeStep(HU , sU , I,xU )
8: until |ϕ(eU , eV )| = w
9: return eU

function FreeSetW(H,x, k �=0)

Require: H ∈ F
(n−k)×n
q ,x ∈ F

n
q and k �=0 ∈ �0, k�.

Ensure: J and I an information set of 〈H〉⊥ such that |{i ∈ J : xi = 0}| = k �=0 and
J ⊂ I of size k − d.

1: repeat
2: J1 ←↩ Supp(x) of size k �=0

3: J2 ←↩ �1, n�\Supp(x) of size k − d − k �=0.
4: J ← J1 � J2

5: until rankHJ = n − k
6: repeat
7: J ′ ←↩ �1, n�\J of size d
8: I ← J � J ′

9: until I is an information set of 〈H〉⊥

10: return J , I

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be

integers. Let d be an integer, k′
V

�
= kV − d and k′

U

�
= kU − d. Let XV (resp. Xt

U )
be a random variable distributed according to DV (resp. Dt

U ). We have,

q1(i) =
i∑

t=0

(
n/2−k′

V
i−t

)
2i−t

3n/2−k′
V

P(XV = t) (13)

q2(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k �=0∈K

(
t−k �=0

s

)( n/2−t−k0
w+s

2 −t−k0

)
2

3s
2

∑

p

(
t−k �=0

p

)( n/2−t−k0
w+p

2 −t−k0

)
2

3p
2

P(Xt
U = k�=0) if w − s even.

0 else

(14)

with K = {k�=0 | t + k′
U − n/2 ≤ k�=0 ≤ t} and k0

�
= k′

U − k�=0

A parameter d is introduced in Proposition 6 and in Algorithms 4 and 5.
When d is large enough ρ(e, eunif) will be typically very small as shown by
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Theorem 1. Let e be the output of Algorithm 3 based on Algorithms 4,5 where
the entry s is chosen uniformly at random in F

n−k
3 and eunif be a uniformly

distributed error of weight w. We have

PHU ,HV

(
ρ(e, eunif) > 3−d/2

)
≤ 3−d/2.

A much stronger result showing that ρ(e, eunif) is typically smaller than n23−d

will be given in the full paper [18]. It will be helpful to consider now the following
definition.

Definition 4 (Bad and Good Subsets). Let d ≤ k ≤ n be integers and
H ∈ F

(n−k)×n
3 . A subset E ⊆ �1, n� of size k − d is defined as a good set for H

if HE is of full rank where E denotes the complementary of E. Otherwise, E is
defined as a bad set for H.

The proof of this theorem relies on introducing a variant of the decoder based
on variants of the U and V decoders VarDecodeV(·) and VarDecodeU(·)
of algorithms DecodeV(·) and DecodeU(·) respectively that work as
DecodeV(·) and DecodeU(·) when J is a good set and depart from it when
J is a bad set. In the later case, the Prange decoder is not used anymore
and an error is output that simulates what the Prange decoder would do with
the exception that there is no guarantee that the error eV that is output
by VarDecodeV(·) satisfies eV HV = sV or that the eU that is output by
VarDecodeU(·) satisfies eUHU = sU . The eV and eU that are output are cho-
sen on the positions of J as DecodeV() and DecodeU() as would have done
it, but the rest of the positions are chosen uniformly at random in F3. It is clear
that in this case

Fact 2. VarDecodeV(·) is weightwise uniform and VarDecodeU(·) is
m1-uniform.

The point of considering VarDecodeV(·) and VarDecodeU(·) is that they
are very good approximations of DecodeV(·) and DecodeU(·) that meet the
uniformity conditions that ensure by using Lemma 1 that the output of Algo-
rithm 3 using VarDecodeV(·) and VarDecodeU(·) instead of DecodeV(·)
and DecodeU(·) produces an error e that is uniformly distributed over the
words of weight w. The outputs of VarDecodeV(·) and VarDecodeU(·)
only differ from the output of DecodeV(·) and DecodeU(·) when a bad set
J is encountered. These considerations can be used to prove the following
proposition.

Proposition 7. Algorithm 3 based on VarDecodeV(·) and VarDecodeU(·)
produces uniformly distributed errors eunif of weight w. Let e be the output of
Algorithm 3 with the use of DecodeV(·) and DecodeU(·). Let Junif be uni-
formly distributed over the subsets of �1, n/2� of size kV − d whereas JHV is
uniformly distributed over the same subsets that are good for HV . Let IunifxV ,� be
uniformly distributed over the subsets of �1, n/2� of size kU − d such that their



42 T. Debris-Alazard et al.

intersection with xV is of size 
 whereas IHU

xV ,� is the uniform distribution over
the same subsets that are good for HU . We have:

ρ
(
e; eunif

) ≤ ρ
(
JHV ;Junif

)

+
∑

xV ,�

ρ
(
IHU

xV ,�; I
unif
xV ,�

)
P (k�=0 = 
 | eV = xV ) P

(
eunifV = xV

)

Proof. The first statement about the output of Algorithm 3 is a direct conse-
quence of Fact 2 and Lemma 1. The proof of the rest of the proposition relies
on the following proposition [30, Proposition 8.10]:

Proposition 8. Let X,Y be two random variables over a common set A. For
any randomized function f with domain A using internal coins independent from
X and Y , we have:

ρ (f(X); f(Y )) ≤ ρ (X;Y ) .

Let us define for xV ∈ F
n/2
3 and xU ∈ F

n/2
3 ,

p(xV )
�
= P (eV = xV )

q(xV )
�
= P

(
eunifV = xV

)

p(xU |xV )
�
= P (eU = xU | eV = xV )

q(xU |xV )
�
= P

(
eunifU = xU | eunifV = xV

)

We have,

ρ
(
e; eunif

)
= ρ

(
eU , eV ; eunifU , eunifV

)

=
∑

xV ,xU

|p(xV )p(xU |xV ) − q(xV )q(xU |xV )|

=
∑

xV ,xU

|(p(xV ) − q(xV ))p(xU |xV ) + (p(xU |xV ) − q(xU |xV ))q(xV )|

≤
∑

xV ,xU

|(p(xV ) − q(xV ))p(xU |xV )| + |(p(xU |xV ) − q(xU |xV )q(xV )|

=
∑

xV

|(p(xV ) − q(xV ))| +
∑

xV ,xU

|p(xU |xV ) − q(xU |xV )| q(xV ) (15)

where in the last line we used that
∑

xU
|p(xU |xV )| = 1 for any xV . Thanks to

Proposition 8: ∑

xV

|p(xV ) − q(xV )| ≤ ρ
(
JHV ;Junif

)
(16)

as the internal distribution DV of DecodeV(·) is independent of JHV and Junif .
Let us upper-bound the second term of the inequality. The distribution of k�=0

is only function of the weight of the vector given as input to DecodeU(·) or
VarDecodeU(·). Therefore,

P (k�=0 = 
 | eV = xV ) = P
(
k�=0 = 
 | eunifV = xV

)
(17)
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From (17), using the notation p(xU |xV , 
)
�
= P(eU = xU | k�=0 = 
, eV = xV )

and q(xU |xV , 
)
�
= P(eunifU = xU | k�=0 = 
, eunifV = xV ), we obtain

p(xU |xV ) − q(xU |xV ) =
∑

�

(p(xU |xV , 
) − q(xU |xV , 
)) P (k�=0 = 
 | eV = xV )

(18)
The internal coins of DecodeU(·) and VarDecodeU(·) are independent of
IHU

xV ,� and IunifxV ,� and by using Proposition 8 we have for any xV and 
:

∑

xU

|p(xU |xV , 
) − q(xU |xV , 
)| ≤ ρ
(
IHU

xV ,�; I
unif
xV ,�

)
(19)

Combining Equations (15), (16), (18) and (19) concludes the proof. ��
The expectations of ρ

(
JHV ;Junif

)
and ρ

(
IHU

xV ,�; I
unif
xV ,�

)
are upperbounded by

Lemma 2. We have

ρ
(
JHV ;Junif

)
=

#{subsets of �1, n/2� of size k − d bad for H}
(

n/2
k−d

) (20)

ρ
(
IHU

xV ,�; I
unif
xV ,�

)
=

Nx,�
(|x|

�

)(
n/2−|x|
k−d−�

) (21)

E
{
ρ

(
JHV ;Junif

)} ≤ 3−d

2
(22)

E

{
ρ

(
IHU

xV ,�; I
unif
xV ,�

)}
≤ 3−d

2
(|x|

�

)(
n/2−|x|
k−d−�

) , (23)

where Nx,� is the number of subsets of �1, n/2� of size k − d such that their
intersection with Supp(x) is of size 
 and that are bad for H.

Proof. (20) and (21) follow from the fact that the statistical distance between the
uniform distribution over �1, s� and the uniform distribution over �1, t� (with t ≥
s) is equal to t−s

t . Let us index from 1 to
(

n/2
k−d

)
the subsets of size k−d of �1, n/2�

and let Xi be the indicator of the event “the subset of index i is bad”. We have

N =
∑(n/2

k−d)
i=1 Xi. For integers d < m we have (see [18, Lemma 6]) P(rankM <

m−d) ≤ 1
2·3d when M is chosen uniformly at random in F

(m−d)×m
3 . This implies

P(Xi = 1) ≤ 1
2·3d and E

{
ρ

(
JHV ;Junif

)}
= E

{
N

(n/2
k−d)

}

=
∑(n/2

k−d)
i=1

P(Xi=1)

(n/2
k−d)

≤
1

2·3d . This proves (22). (23) follows from similar arguments. ��
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Proof (of Theorem 1). By using Markov’s inequality we have, by Proposition 7
and Lemma 2

P

(
ρ(e, eunif) > 3−d/2

)
≤ 3d/2

E
{
ρ(e, eunif)

}

≤ 3d/2
E

{

ρ
(
JHV ;Junif

)
+

∑

xV ,�

ρ
(
IHU

xV ,�; I
unif
xV ,�

)
P (k�=0 = 
 | eV = xV )

P
(
eunifV = xV

)
}

≤ 3d/2

⎧
⎨

⎩

3−d

2
+

∑

xV ,�

3−d

2
(|x|

�

)(
n/2−|x|
k−d−�

)

⎫
⎬

⎭
≤ 3−d/2.

��

6 Achieving Uniform Domain Sampling

Hpk denotes the public parity-check matrix of a normalized generalized (U,U +
V )-code as described in Sect. 3.2. The random structure of Hpk makes the syn-
dromes associated to Hpk indistinguishable in a very strong sense from random
syndromes as the following proposition shows. This achieves the Domain Sam-
pling property of Definition 1. The following definition will be useful.

Definition 5 (number of V blocks of type I). In a normalized generalized
(U,U + V ) code of length n associated to (a,b, c,d), the number of V blocks of

type I, which we denote by nI , is defined as: nI
�
= |{1 ≤ i ≤ n/2 : bidi = 0}| .

Proposition 9. Let DH
w be the distribution of eHᵀ when e is drawn uniformly

at random among Sw and let U be the uniform distribution over F
n−k
3 . We have

EHpk

(
ρ(DHpk

w ,U)
)

≤ 1
2
√

ε with,

ε =
3n−k

2w
(

n
w

) +

n
2∑

j=0

3
n
2 −kV

(n
2
j

)
(

j∑

p=0:p≡w (mod 2)

(
j
p

)( n
2 −j

w+p
2 −j

)
2

3p
2

)2

2w+j
(

n
w

)2

+ 3
n
2 −kU

⎛

⎝
nI∑

j=0

(
nI

j

)(
n−nI

w−j

)2

(
n
w

)22j

⎞

⎠.

This bound decays exponentially in n in a certain regime of parameters:

Proposition 10. Let RU
�
= 2kU

n , RV
�
= 2kV

n , R
�
= k

n , ω
�
= w

n , ν
�
= nI

n , then under
the same assumptions as in Proposition 9, we have as n tends to infinity

EHpk

(
ρ(DHpk

w ,U)
)

≤ 2(α+o(1))n
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where α
�
= 1

2 min ((1 − R) log2(3) − ω − h2(ω), α1, α2) and

α1
�
= min

(x,y)∈R
1
2
(1 − RV ) log2 3 − ω − 2h2(ω) +

h2(x)
2

+ x

(

h2(y) +
3
2
y − 1

2

)

+(1 − x)h2

(
ω − x(1 − y)

1 − x

)

R �
= {(x, y) ∈ [0, 1) × [0, 1] : 0 ≤ ω − x(1 − y) ≤ 1 − x}

α2
�
= min

max(0,ω+ν−1)≤x≤min(ν,ω)

1
2
(1 − RU ) log2 3 − 2h2(ω) + νh2

(x

ν

)

+2(1 − ν)h2

(
ω − x

1 − ν

)

− x.

Remark 4. For the set of parameters suggested in [18], we have ε ≈ 2−354 and
α ≈ −0.02135. Note that the upper-bound of Proposition 9 is by no means

sharp, this comes from the 3
n
2 −kU

(
∑nI

j=0

(nI
j )(n−nI

w−j )2

(n
w)22j

)

term which is a very

crude upper-bound which is given here to avoid more complicated terms. It is
straightforward to come up with a much sharper bound by improving this part
of the upper-bound.

The proof of this proposition relies among other things on a variation of the
left-over hash lemma [5] that is adapted to our case: here the hash function to
which we apply the left-over hash lemma is defined as H(e) = eHᵀ

pk. H does not
form a universal family of hash functions (essentially because the distribution of
the Hpk’s is not the uniform distribution over F

(n−k)×n
3 ).

Lemma 3. Consider a finite family H = (hi)i∈I of functions from a finite set
E to a finite set F . Denote by ε the bias of the collision probability, i.e. the
quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F | (1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly
at random in E. Let U be the uniform distribution over F and D(h) be the
distribution of the outputs h(e) when e is chosen uniformly at random in E. We
have

Eh {ρ(D(h),U)} ≤ 1
2
√

ε.

To use this lemma we observe that

Lemma 4. Assume that x and y are random vectors of Sw that are drawn
uniformly at random in this set. We have

PHpk,x,y

(
xHᵀ

pk = yHᵀ
pk

)
≤ 1

3n−k (1 + ε) with ε given in Proposition 9.
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Proof. By Proposition 3, the probability we want to compute for is given by
P ((xU − yU )Hᵀ

U = 0 and (xV − yV )Hᵀ
V = 0) where the probability is taken

over HU ,HV ,x,y. To compute this, we use a standard result [18, Lemma 6]
that gives

P
(
yHᵀ = s

)
=

1
3r

, (24)

when y is a non-zero vector of F
n
3 , s an arbitrary element in F

r
3 and when H is

chosen uniformly at random in F
r×n
3 . We distinguish between the events:

E1
�
={xU = yU and xV �= yV }; E2

�
={xU �= yU and xV = yV }

E3
�
={xU �= yU and xV �= yV }; E4

�
={xU = yU and xV = yV }

Under these events we get thanks to (24) and k = kU + kV :

PHsk,x,y

(
xHᵀ

sk = yHᵀ
sk

)

=
4∑

i=1

PHsk

(
xHᵀ

sk = yHᵀ
sk|Ei

)
Px,y (Ei)

=
Px,y (E1)
3n/2−kV

+
Px,y (E2)
3n/2−kU

+
Px,y (E3)

3n−k
+ Px,y (E4)

≤ 1
3n−k

(
1 + 3n/2−kU P (E1) + 3n/2−kV P (E2) + 3n−k

P(E4)
)

,

where we used for the last inequality the trivial upper-bound P (E3) ≤ 1. Let us
now upper-bound (or compute) the probabilities of the events E1, E2 and E4. For
E4, recall that from the definition of normalized generalized (U,U + V )-codes
Px,y (E4) = P(x = y) = 1

2w(n
w) . For E2 we observe that P (E2) ≤ P (xV = yV ). To

upper-bound this probability, we first observe that for any error e ∈ Sj,n/2

P(xV = e) = P (xV = e | |xV | = j) P(|xV | = j) =
1

2j
(
n/2
j

)q1(j)

where qunif1 (j) denotes P(|eunifV | = j) and is computed in Proposition 5. From
this we deduce that

P(xV = yV ) =
n/2∑

j=0

∑

e∈F
n/2
3 :|e|=j

Px(xV = e)2 =
n/2∑

j=0

1

2j
(
n/2
j

)qunif1 (j)2

which gives:

P (E2) ≤
n/2∑

j=0

qunif1 (j)2

2j
(
n/2
j

) .
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The upper-bound on E1 is obtained in a similar way by using first that P(E1) ≤
P(xU �= yU ) and then the following bound

P(xU �= yU ) ≤
nI∑

j=0

(
nI

j

)

2−j

((
n−nI

w−j

)

(
n
w

)

)2

.

proven in [18, §C.2]. ��

7 Concluding Remarks and Further Work

We have presented Wave the first code-based “hash-and-sign” signature scheme
which follows the GPV strategy [28]. It allows to reduce the security of our
scheme to only two assumptions from coding theory. Both of those assumptions
relate closely to hard decoding problems. In the full paper [18], we provide a
precise quantification of the security of the scheme and provide parameters for
it. Note that the GPV strategy provides a very high level of security, but because
of the multiple constraints it imposes, very few schemes managed to comply to
it. For instance, only one such scheme based on hard lattice problems [24] was
proposed to the recent NIST standardization effort. The main purpose of our
work was to propose this new scheme and assess its security. Still, it has a few
issues and extensions that are of interest.

The Far Away Decoding Problem. The message security of Wave relates to the
hardness of finding a codeword far from a given word. A recent work [12] adapts
the best ISD techniques for low weight [8,38] and goes even further with a
higher order generalized birthday algorithm [47]. Interestingly enough, in the
non-binary case, this work gives a worst case exponent for the far away codeword
that is significantly larger than the close codeword worst case exponent. This
suggest that one could design code-based primitives with better parameters by
considering the far away codeword problem rather than the usual close codeword
problem.

Distinguishability. Deciding whether a matrix is a parity check matrix of a gen-
eralized (U,U +V )-code is also a new problem. As shown in [17] it is hard in the
worst case since the problem is NP-complete. In the binary case, (U,U+V ) codes
have a large hull dimension for some set of parameters which are precisely those
used in [17]. In the ternary case the normalized generalized (U,U + V )-codes
do not suffer from this flaw. The freedom of the choice on vectors a,b, c and d
is very likely to make the distinguishing problem much harder for generalized
(U,U + V )-codes than for plain (U,U + V )-codes. Coming up with non-metric
based distinguishers in the generalized case seems a tantalizing problem here.

On the Tightness of the Security Reduction. It could be argued that one of
the reasons of why we have a tight security-reduction comes from the fact that
we reduce to the multiple instances version of the decoding problem, namely
DOOM, instead of the decoding problem itself. This is true to some extent,



48 T. Debris-Alazard et al.

however this problem is as natural as the decoding problem itself. It has already
been studied in some depth [44] and the decoding techniques for linear codes
have a natural extension to DOOM as noticed in [44]. We also note that with our
approach, where a message has many possible signatures, we avoid the tightness
impossibility results given in [3] for instance.

Rejection Sampling. Rejection sampling in our algorithm is relatively unobtru-
sive: a rejection every few signatures with a crude tuning of the decoder. We
believe that it can be further improved. Our decoding has two steps. Each step is
parametrized by a weight distribution which conditions the output weight distri-
bution. We believe that we can tune those distributions to reduce the probability
of rejection to an arbitrarily small value and thus to avoid the rejection phase.

Improving Parameters. In order to predict accurately enough the output distri-
bution of the signature algorithm, we had to restrict the decoders by excluding
d positions from the information sets. Our result almost certainly applies when
d = 0. By either proving it or stating it as a conjecture we may reduce the block
size by more than 10%.

Instantiation. The scheme is instantiated in [18, §5,§8]. For 128 bits of security,
a signature takes 13 kilobits and a public key 3 megabytes. The rejection rate is
under 10%. An implementation is also available at http://wave.inria.fr.
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Abstract. At CRYPTO 2017, Roşca et al. introduce a new variant of
the Learning With Errors (LWE) problem, called the Middle-Product
LWE (MP-LWE). The hardness of this new assumption is based on the
hardness of the Polynomial LWE (P-LWE) problem parameterized by a
set of polynomials, making it more secure against the possible weakness
of a single defining polynomial. As a cryptographic application, they also
provide an encryption scheme based on the MP-LWE problem. In this
paper, we propose a deterministic variant of their encryption scheme,
which does not need Gaussian sampling and is thus simpler than the
original one. Still, it has the same quasi-optimal asymptotic key and
ciphertext sizes. The main ingredient for this purpose is the Learning
With Rounding (LWR) problem which has already been used to deran-
domize LWE type encryption. The hardness of our scheme is based on
a new assumption called Middle-Product Computational Learning With
Rounding, an adaption of the computational LWR problem over rings,
introduced by Chen et al. at ASIACRYPT 2018. We prove that this new
assumption is as hard as the decisional version of MP-LWE and thus
benefits from worst-case to average-case hardness guarantees.

Keywords: LWE · LWR · Middle-Product · Public key encryption

1 Introduction

Lattice-based cryptosystems attracted considerable research interest in recent
years due to their versatility, assumed quantum-resilience and efficiency. The
Learning With Errors problem, introduced by Regev [Reg05] in his pioneering
work, serves as a fundamental computational problem in lattice-based cryptog-
raphy. Informally, the LWE problem asks for the solution of a system of noisy
linear modular equations: Given positive integers n and q, an LWE sample con-
sists of (a, b = 〈a, s〉 + e mod q) for a fixed vector s ∈ Z

n, where a is sampled
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from the uniform distribution over Z
n
q and e is sampled from a probability dis-

tribution χ over R. The LWE problem exists in two versions: The search version
asks to recover the secret s given arbitrarily many LWE samples; The decision
version asks to distinguish between LWE samples and samples drawn from the
uniform distribution over Z

n
q × R.

As an very attractive property for cryptography, LWE enjoys worst-case to
average-case reductions [Reg05,Reg09,Pei09,BLP+13] from well-studied prob-
lems such as finding a set of short independent vectors (SIVP) or the decisional
variant of finding short vectors (GapSVP) in Euclidean lattices. A standard con-
jecture is to assume that there is no polynomial-time algorithm that solves these
problems (and their mildly approximated versions), even on quantum computers.
Thus, any solver of the average-case problems can be transformed into a solver
for any instance of the worst-case problem, which is presumed to be difficult.

The protocols relying on the hardness of LWE are inherently inefficient due
to the size of the public keys which usually contain m elements of Z

n
q , where m is

the number of samples which is usually larger than n log(n). To improve the effi-
ciency, structured variants of LWE have been proposed [SSTX09,LPR10,LS15].
One promising variant is the Polynomial Learning With Errors (P-LWE) prob-
lem, introduced by Stehlé et al. [SSTX09]. Given a monic irreducible polynomial
f ∈ Z[x] and an integer q ≥ 2, a P-LWE sample is given by (a, b = a·s+e mod q)
for a fixed polynomial s ∈ Zq[x]/f , where a is sampled from the uniform dis-
tribution over Zq[x]/f and e is sampled from a probability distribution χ over
R[x]/f . The P-LWE problem also admits worst-case to average-case connections
from well-studied lattice problems. Whereas the hardness reductions for LWE
start from the lattice problem in the class of general Euclidean lattices, the
class has to be restricted to ideal lattices in the case of P-LWE. These ideal
lattices correspond to the ideals in the polynomial ring Z[x]/f . Lyubashevsky
et al. [LPR10] propose another promising variant, namely the Ring Learning
With Errors (R-LWE) problem, where polynomial rings are replaced by the ring
of integers of some number fields. In the case of cyclotomic fields, the P-LWE
and R-LWE problems coincide up to some parameter losses. As a recent result,
Roşca et al. [RSW18] show that P-LWE and R-LWE are equivalent for a larger
class of polynomials. In addition, they also investigate other relations between
these structured variants.

Hedging Against Possible Weak Instances. Gaining in efficiency on the
positive side comes with a potential decrease in the security level guarantees on
the negative side. There are concrete examples of polynomials f on which the
P-LWE becomes computationally easy: for instance when f has a linear factor
over Z [CIV16]. Note that this case is excluded by restricting to irreducible
polynomials. A review on the known weak instances of P-LWE and R-LWE
is given by Peikert [Pei16]. To the best of our knowledge, it is still not fully
understood how to choose a good polynomial for instantiating P-LWE.

Motivated by the question of how to choose a good polynomial, Lyubashevsky
introduces the so-called R<n-SIS problem [Lyu16], a variant of the Short Inte-
ger Solution (SIS) problem, whose hardness does not depend only on a single
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polynomial, but on a set of polynomials. Inspired by this, Roşca et al.
[RSSS17] propose its LWE counterpart: the Middle-Product Learning With
Errors (MP-LWE) problem. The MP-LWE problem is defined as follows: Taking
two polynomials a and s over Zq of degrees less than n and n+d−1, respectively,
the middle-product a�ds is the polynomial of degree less than d given by the mid-
dle d coefficients of a·s. In other words, a�ds = �(a·s mod xn+d−1)/xn−1�, where
the floor rounding �·� denotes deleting all those terms with negative exponents
on x. Instead of choosing a and s from the ring Zq[x]/f as in the P-LWE setting,
they are now elements of Z

<n
q [x] and Z

<n+d−1
q [x]. Here, Z

<n
q [x] denotes the set

of all polynomials with coefficients in Zq of degree less than n for n ≥ 1. For
integers d, n and q with q ≥ 2 and 0 < d ≤ n as parameters, an MP-LWE sample
is given by (a, b = a �d s + e mod q), where s is a fixed element of Z

<n+d−1
q [x],

a is sampled from the uniform distribution over Z
<n
q [x] and e is sampled from a

probability distribution χ over R
<d[x]. As for the hardness of MP-LWE, Roşca

et al. [RSSS17] establish a reduction from the P-LWE problem parametrized by
a polynomial f to the MP-LWE problem defined independently of any such f .
Thus, as long as the P-LWE problem defined over some f (belonging to a huge
family of polynomials) is hard, the MP-LWE problem is also guaranteed to be
hard. As a cryptographic application, Roşca et al. [RSSS17] propose a public-key
encryption (PKE) scheme that is IND-CPA secure under the MP-LWE hardness
assumption, with keys of size Õ(λ) and running time Õ(λ), where λ is the secu-
rity parameter.

Learning With Rounding (LWR). In the worst-to-average case reduction of
LWE [Reg05] and P-LWE [SSTX09] the error e is sampled from discrete Gaussian
distributions. Such sampling procedure is in general costly, difficult to implement
and vulnerable to side-channel attacks, e.g. [DB15,BHLY16,Pes16,Saa18]. In
2012, Banerjee et al. [BPR12] introduce a deterministic variant of LWE, namely
the Learning With Rounding (LWR) problem. It is used to construct efficient
pseudorandom functions [BPR12], lossy trapdoor functions and deterministic
encryption schemes [AKPW13].

An LWR sample is given by (a, b = �〈a, s〉
p), where s ∈ Z
n
q is fixed and a

is sampled from the uniform distribution over Z
n
q . The rounding operator �x
p

denotes multiplying x by p/q and then rounding the result to the nearest integer
modulo p. Informally, this rounding operator corresponds to dividing the set of
elements of Zq into p chunks, each containing approximately q/p elements. The
definition can be adapted to a ring setting, denoted by R-LWR.

In the full version of their paper, published on the IACR Cryptology ePrint
Archive, Banerjee et al. [BPR11] show a reduction from LWE to LWR with arbi-
trarily many samples, which also works for the ring counterpart. Unfortunately,
the reduction requires q/p to be larger than the error size B (where B bounds
the magnitude of the LWE error with high probability) by a super-polynomial
factor, thus leading to a large modulus paired with a small error bound. This in
turn implies that the underlying worst-case lattice-problems are assumed to be
hard with super-polynomial approximation factors, which stands for a stronger
assumption. In practice, this also leads to inefficient protocols.
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Subsequent studies propose new reductions that work for a larger range of
parameters. Alwen et al. [AKPW13] give a reduction that allows a polynomial
modulus and modulus-to-error ratio. However, the modulus q in the reduction
depends on the number of LWR samples, thus the number of samples needs to be
fixed in prior by some polynomials. Further, the reduction imposes certain num-
ber theoretical restrictions on the modulus q. For example, power-of-two moduli
are not covered. In a recent work, Bogdanov et al. [BGM+16] use the Rényi
divergence to show a sample preserving reduction. The reduction is also dimen-
sion preserving for the special case that the modulus is prime. They also provide
a reduction from the search variant of R-LWE to the search variant of R-LWR. In
another work, Alperin-Sheriff and Apon [AA16] further improve the parameter
sets for the reduction. In particular, the reduction is dimension-preserving with a
polynomial-sized modulus. However, the ring setting analogue, a reduction from
decisional R-LWE to decisional R-LWR with a polynomial-sized modulus, is still
an open problem. Nevertheless, due to the simplicity and efficiency of R-LWR,
several schemes as SABER [DKRV18] and Round5 [BBF+19] basing their hardness
on R-LWR are currently participating in the NIST standardization process [NIS].

To overcome the lack of provable hardness for decisional R-LWR with practi-
cal parameters, Chen et al. [CZZ18] propose a new assumption, called the Com-
putational Learning With Rounding Over Rings (R-CLWR) assumption. They
show a reduction from decisional R-LWE to R-CLWR, where the secret in the
R-LWE sample is drawn uniformly at random from the set of all invertible ring
elements whose coefficients are small. They also show that one can construct an
efficient PKE scheme based on the hardness of R-CLWR in the random oracle
model.

Our Contributions. Our first main contribution is a new hardness assumption
which we refer to as the Middle Product Computational Learning With Rounding
(MP-CLWR) problem. On the one hand, the MP-CLWR problem uses rounding
in a similar way to R-LWR and hence avoids the error sampling. On the other
hand, the MP-CLWR problem is analogue to the MP-LWE problem whose hard-
ness does not depend on a specific polynomial. Thus, the MP-CLWR assumption
enjoys the desired properties from both, the security advantage of MP-LWE and
the simplicity advantage of LWR. We show that the MP-CLWR problem is at
least as hard as the decisional MP-LWE problem parametrized over a set of poly-
nomials (Sect. 4). To complete the reduction, we also bring in some new results
on random Hankel matrices which might be of independent interest (Sect. 3).
As a typical application, we propose a PKE scheme based on this MP-CLWR
assumption which is IND-CPA secure in the random oracle model (Sect. 5). The
attractiveness of our encryption scheme stems from the fact that we only have to
round the middle-product of two polynomials instead of sampling Gaussian error
during public key generation while guaranteeing the same security and having
the same asymptotic key and ciphertext sizes as [RSSS17] (Sect. 6). Furthermore,
we provide at the end of Sect. 6 a study of the concrete security of our scheme
by looking at the currently best known attacks against it.
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In the following, we give a brief overview of the MP-CLWR problem and
our proof for its hardness. An MP-CLWR sample is given by (a, b = �a �d s
p),
where a is sampled from the uniform distribution over Z

<n
q [x] and s is a fixed

element in Z
<n+d−1
q [x]. We define the MP-CLWR problem as the following game,

where we embed the MP-CLWR samples into two experiments. In both exper-
iments, three different parties appear: A challenger C, an adversary A and a
source S. The source S1 of the first experiment provides t different MP-CLWR
samples (ai, �ai �d s
p)i∈[t] and the source S2 of the second experiment provides
t rounded uniform samples (ai, �bi
p)i∈[t], where all ai and bi are independently
sampled from the corresponding uniform distribution. The challenger C now uses
these samples to compute an Input and a Target. It sends the Input to the adver-
sary A which itself computes an Output. The adversary wins the experiment if
Target = Output. The important point in this setting is that the challenger C and
the adversary A are in both experiments the same. The MP-CLWR assumption
captures that an adversary has no more advantage to compute the correct output
if it receives rounded middle-product samples than if it gets rounded uniform
samples. A formal definition of MP-CLWR is given in Sect. 4.1.

Our reduction from MP-LWE to MP-CLWR, shown in Theorem 2, is dim-
ension-preserving and works for polynomial-sized modulus q. In more details,
let d, n, p, q and t be positive integers with 0 < d ≤ n and q ≥ p ≥ 2. The
parameters d and n describe the order of the middle-product, t denotes the
number of samples and p defines the rounding. Let χ be an error distribution
over R

<d[x]. We show the following sequence of reductions:

MP-LWEq,n,d,χ MP-LWE×
q,n,d,χ

MP-CLWRp,q,n,d,t MP-CRLWEp,q,n,d,t,χ

Lemma 11

Lemma 12

Lemma 13

The first part of this sequence, Lemma 11, gives a reduction from decisional
MP-LWE to decisional MP-LWE×, where the latter one denotes the MP-LWE
problem where the secret is sampled uniformly at random from the set of ele-
ments having full rank Hankel matrix. The Hankel matrix plays an important
role during the reductions as one can use it to represent the middle-product.
In Sect. 3 we prove new results on random Hankel matrices, which might be of
independent interest. We give a lower bound of the probability that the Hankel
matrix of a random element has full rank and prove a uniformity property of the
middle-product. This property is used in Lemma 13, where we show a reduction
from the rounded middle-product LWE problem to the middle-product LWR
problem, for their computational versions. Note that using the Rényi divergence
asks for fixing the requested number of samples t a priori. This is a necessary
requirement which is also imposed in [BPR12,BGM+16,CZZ18].

Similarly to the encryption scheme of Chen et al. [CZZ18], we make use of
the reconciliation mechanism of Peikert [Pei14]. In order to show the correctness
of our scheme, we have to guarantee that the reconciliation method succeeds.
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We also use a probabilistic lifting function to lift elements from Zp[x] to elements
in Zq[x]. To prove the IND-CPA security of our scheme, we use the general leftover
hash lemma from [RSSS17]. We show that a lifted version of their family of hash
functions is still universal (Lemma 8).

Open Problems. As mentioned above, a reduction from decisional R-LWE
to decisional R-LWR with a polynomial-sized modulus is still an open problem.
This carries over to the middle-product setting, where it would also be of interest
to show a reduction from decisional MP-LWE to decisional MP-LWR. Such a
hardness result would help to build a secure encryption scheme based on the
decisional MP-LWR in the standard model. A search-to-decision reduction for
R-LWR or MP-LWR would be an alternative way to promise the security of such
protocols.

2 Preliminaries

Let q be a positive integer, then Zq denotes the ring of integers modulo q. For
any natural number n, we represent the set {1, . . . , n} by [n]. In order to ease
readability, a vector a will be denoted in a bold small letter and a matrix A in a
bold capital letter. By at and At we denote the transpose of the vector a and the
matrix A, respectively. For a positive integer n, we write Z

<n[x] to describe the
set of all polynomials in Z[x] with degree less than n. We identify each polynomial
a in Z

<n[x] with its coefficient column vector a = (a0, . . . , an−1)t. Further, we
denote by a its coefficient vector in reverse order, hence a = (an−1, . . . , a0)t.
For any n-dimensional vector a, we set the infinity norm ‖a‖∞ = maxi∈[n] |ai|
and the Euclidean norm ‖a‖2 =

√∑
i∈[n] a

2
i . If the index range is clear from the

context, we will write (ai)i instead of (ai)i∈[n].

2.1 Rounding

Let p and q be integers both larger than 1. We define the modular rounding
function �·
p : Zq → Zp as �x
p =

⌊(
p
q

)
· x
⌉
mod p. The rounding function

extends component-wise to vectors over Zq and coefficient-wise to polynomials
in Zq[x]. Note that we use the same notation as Banerjee et al. [BPR12] for the
purpose of coherence. It is also possible to use the floor rounding function �·�,
where each element is rounded down to the next smaller integer, as for instance
done by Chen et al. [CZZ18].

2.2 Reconciliation

Reconciliation is a method used by two parties to agree on a secret bit, where they
only share a common value up to an approximation factor. A first reconciliation
mechanism was presented by Ding et al. [DXL12] followed by other proposals
(e.g., [Pei14,ADPS16]). We use the notation of Peikert and exert the nearest
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integer rounding. For this purpose, we need the rounding function �·
2 : Zq → Z2

for p = 2 and define the reconciliation cross-rounding function 〈·〉2 : Zq → Z2 as

〈x〉2 =
⌊(

4
q

)
· x

⌉
mod 2.

For q even, the reconciliation algorithm REC takes as input two values y ∈ Zq

and b ∈ {0, 1} and outputs �x
2, where x is the closest element to y such that
〈x〉2 = b. A concrete definition of REC is given as follows. Define two disjoint
intervals I0 =

{
0, . . . ,

⌊
q
4

⌉ − 1
}

and I1 =
{−⌊ q

4

⌋
, . . . ,−1

}
. Let E be the set

given by
[− q

8 , q
8

) ∩ Z. Further, let y be an element of Zq and b be a bit. Then,

REC(y, b) =

{
0 , y ∈ Ib + E mod q,

1 , else.

We recall the following results about the cross-rounding function and the recon-
ciliation mechanism from Peikert [Pei14].

Lemma 1. For q even, if x ∈ Zq is uniformly random, then is �x
2 uniformly
random given 〈x〉2.
Lemma 2. For q even and x, y ∈ Zq such that |x − y| < q

8 , then

REC(y, 〈x〉2) = �x
2 .

In the case of q odd, thus 2 � q, the output bit of the reconciliation method is
biased. That is why Peikert [Pei14] introduced a randomized doubling function

DBL : Zq → Z2q, DBL(x) = 2x − e,

where e ← {−1, 0, 1} with probabilities p−1 = p1 = 1
4 and p0 = 1

2 .

Lemma 3. For q odd, if x ∈ Zq is uniformly random, x ← DBL(x), then is �x
2
uniformly random given 〈x〉2.
Lemma 4. For q odd and x, y ∈ Zq such that |x − y| < q

8 , let x ← DBL(x), then

REC(y, 〈x〉2) = �x
2 .

We extend all functions 〈·〉2, �·
2 and DBL(·) component-wise to vectors over Zq

and coefficient-wise to polynomials in Zq[x], as well as the mechanism REC to
vectors over Zq × {0, 1} and to polynomials in Zq[x] × {0, 1}[x].

Let p and q be integers such that 2 ≤ p ≤ q. We define a probabilistic lifting
function INV(·) : Zp → Zq that takes x ∈ Zp as input and chooses uniformly at
random an element u from the set {u ∈ Zq : �u
p = x}. As usual, INV(·) can be
extended coefficient-wise to Z

<n
q [x]. This lifting function becomes important in

the encryption scheme in Sect. 5. There, we use INV(·) to lift rounded polynomials
in Zp[x] to Zq[x] such that

⌊
INV(�a
p)

⌉
p
= �a
p. Note that INV(�a
p) = a + e

with ‖e‖∞ ≤ q
p .
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2.3 Probabilities

For a set S and a distribution χ over S, we denote by x ← χ the process
of sampling x ∈ S according to χ. With x ← U(S) we denote sampling x
according to the uniform distribution over S. In this work, the support S is
sometimes a subset of R. In such a case, we say a distribution χ is B-bounded
with probability at least δ for a real number B ≥ 0, if Prx←χ[|x| ≤ B] ≥ δ.
We say a B-bounded distribution χ is balanced if Prx←χ[|x| ≤ 0] ≥ 1

2 and at
the same time Prx←χ[|x| ≥ 0] ≥ 1

2 . For the parameter s > 0, we define the
Gaussian function ρs : R

n → (0, 1] as ρs(x) = exp(−π〈x, x〉/s2). Normalizing
this function yields the density function of the continuous Gaussian distribution
Ds of standard deviation s. A (finite) family H of hash functions h : X → Y is
called universal if

Prh←U(H) [h(x1) = h(x2)] =
1

|Y | ,

for all x1 �= x2 ∈ X. Roşca et al. [RSSS17] introduced the following variant of
the leftover hash lemma.

Lemma 5 (Generalized Leftover Hash Lemma). Let X,Y and Z be finite
sets, H be a universal family of hash functions h : X → Y and f : X → Z be an
arbitrary function. Then, for any random variable T taking values in X we have

Δ ((h, h(T ), f(T )), (h,U(Y ), f(T ))) ≤ 1
2

·
√

γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr [T = t].

Definition 1 (Statistical distance). Let P and Q be two discrete probability
distributions on a discrete domain E. Their statistical distance is defined as

Δ(P ;Q) =
1
2

∑
x∈E

|P (x) − Q(X)|.

The Rényi divergence [R61,vEH14] defines another measure of distribution
closeness and was first used in cryptography as a powerful alternative for the
statistical distance measure by Bai et al. [BLL+15]. In this paper, it suffices to
use the Rényi divergence of order 2.

Definition 2 (Rényi divergence of order 2). Let P and Q be two discrete
probability distributions such that Supp(P ) ⊂ Supp(Q). The Rényi divergence
of order 2 is defined as

RD2(P‖Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.

The Rényi divergence admits the following properties, proved in [vEH14].
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Lemma 6. Let P,Q be two discrete probability distributions with Supp(P ) ⊂
Supp(Q). Further, let (Pi)i, (Qi)i be two families of independent discrete prob-
ability distributions with Supp(Pi ) ⊂ Supp(Qi ) for all i. Then, the following
properties are fulfilled:

1. (Data Processing Inequality) RD2(P f‖Qf ) ≤ RD2(P‖Q) for any func-
tion f , where P f (resp. Qf ) denotes the distribution of f(y) induced by sam-
pling y ← P (resp. y ← Q),

2. (Multiplicativity) RD2 (
∏

i Pi‖
∏

i Qi) =
∏

i RD2(Pi‖Qi),
3. (Probability Preservation) Let E ⊂ Supp(Q) be an arbitrary event, then

Q(E) · RD2(P‖Q) ≥ P (E)2.

2.4 Middle-Product Learning With Errors

The use of the middle-product in lattice-based cryptography was introduced by
Roşca et al. [RSSS17] in the form of the so-called Middle-Product Learning With
Errors (MP-LWE) problem.

Definition 3 (Middle-Product). Let da, db, d, k be integers fulfilling the equa-
tion da + db − 1 = d+2k. The middle-product of a ∈ Z

<da [x] and b ∈ Z
<db [x] is

defined as

a �d b =
⌊

a · b mod xk+d

xk

⌋
,

where the floor rounding in this case means removing all terms with negative
exponents on x.

The middle-product fulfills additivity if one of its inputs is fixed. Associativity is
generally not achieved, instead only the following weaker associativity property
is guaranteed.

Lemma 7. Let d, k and n be positive integers. For all r ∈ Z
<k+1[x], a ∈ Z

<n[x]
and s ∈ Z

<n+d+k−1[x], we have

r �d (a �d+k s) = (r · a) �d s.

In order to prove the security of the encryption scheme in Sect. 5, we need the
following hash function family to be universal. Recall that INV(·) denotes the
probabilistic lifting function from Zp[x] to Zq[x] for two integers p and q with
2 ≤ p ≤ q.

Lemma 8. Let q, k, d, p and t be integers such that k, d ≥ 2 and 2 ≤ p ≤ q. For
(bi)i∈[t] ∈ (Z<d+k

p [x])t, we define

h(bi)i
:
(
{0, 1}<k+1[x]

)t

→ Z
<d
q [x]

to be the map that sends

(ri)i �→
∑
i∈[t]

INV(bi) �d ri.

The hash function family (h(bi)i
)(bi)i

is universal.



64 S. Bai et al.

Proof. The proof is very similar to the one of [RSSS17, Lemma 4.2]. We simply
replace bi by INV(bi), using the same argument to show that

Pr(bi)i←U((Z<d+k
p [x])t)

⎡
⎣∑

i∈[t]

INV(bi) �d ri =
∑
i∈[t]

INV(bi) �d r′
i

⎤
⎦ =

1
qd

,

with (ri)i �= (r′
i)i. ��

We now recall the Learning With Errors (LWE) problem in the polynomial and
middle-product setting, together with the hardness result of the latter one. The
reader is referred to the original paper by Roşca et al. [RSSS17] for more details.

Definition 4 (Decisional P-LWE). Let q and m be integers fulfilling q ≥ 2
and m > 0. Let f be a polynomial in Z[x] of degree m and χ be a distribu-
tion over R[x]/f . The decisional P-LWEf

q,χ problem asks to distinguish arbi-
trary many samples of the form (ai, bi = ai · s + ei mod q), where ei ← χ and
ai ← U(Zq[x]/f), from the same number of samples chosen uniformly from
Zq[x]/f × Rq[x]/f with non-negligible success probability over the choices of
s ← U(Zq[x]/f).

Definition 5 (Decisional MP-LWE). Let q, d and n be integers with q ≥ 2
and 0 < d ≤ n. Further, let χ be a distribution over R

<d[x]. The decisional
MP-LWEq,n,d,χ problem asks to distinguish arbitrary many samples of the form
(ai, bi = ai �d s + ei mod q) where ei ← χ and ai ← U(Z<n

q [x]), from the same
number of samples chosen uniformly from Z

<n
q [x] × R

<d
q [x] with non-negligible

success probability over the choices of s ← U(Z<n+d−1
q [x]).

If instead the secret s is chosen uniformly at random from the set of all elements
in Z

<n+d−1
q [x] having a Hankel matrix (see Sect. 3) of order d + n − 1 of full

rank d, denoted by s ← U
(
(Z<n+d−1

q [x])×
)
, we call the corresponding problem

MP-LWE×
q,n,d,χ. Note that the main difference is the imposed full-rank condition,

which plays an important role in Sect. 4.

Theorem 1 (Hardness of MP-LWE [RSSS17, Thm. 3.6]). Let q, d and n
be integers with 0 < d ≤ n and q ≥ 2. Further, let α ∈ (0, 1). For S > 0,
let F(S, d, n) denote the set of all monic polynomials f in Z[x] whose constant
coefficient is coprime to q, having degree m ∈ [d, n] and EF(f) < S. Then,
there exists a probabilistic polynomial-time reduction from P-LWEf

q,Dαq
for any

polynomial f ∈ F(S, d, n) to MP-LWEq,n,d,Dα′q
with α′ = αdS.

Recall that Dαq (resp. Dα′q) denotes the Gaussian distribution of width αq (resp.
α′q). Further, EF(f) is the expansion factor of f , introduced by Lyubashevsky
and Micciancio [LM06] and defined as

EF(f) = max
(‖g mod f‖∞

‖g‖∞
: g ∈ Z

2m−1[x] \ {0}
)

.
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3 Random Hankel Matrices

In this section, we show new results on the distribution of random Hankel matri-
ces. First, we recall the definition of Hankel and Toeplitz matrices for a given
polynomial, which we interpret as usual as a vector. We prove a lower bound for
the probability that the Hankel matrix of a polynomial which is chosen uniformly
at random has full rank. Finally, this result leads to a uniformity property of the
middle-product which plays a crucial part in the hardness reduction of the new
middle-product learning with rounding assumption in Sect. 4.2.

Hankel and Toeplitz matrices are not only used in the context of the middle-
product of two polynomials. More generally, as pointed out by Kaltofen and
Lobo [KL96], Toeplitz matrices are used as pre-conditioners in the process of
solving linear systems of equations having unstructured coefficient matrices. The
attractiveness of these structured matrices is twofold: First, it suffices to store
the first column and first row, in order to rebuild the whole matrix. Second, the
product of a Toeplitz matrix and a vector is in fact a convolution and can be
computed in superlinear time using the fast Fourier transformation.

Other than that, large-dimensional random matrices with additional alge-
braic structure, as Hankel and Toeplitz matrices, play an important role in
statistics, in particular in multivariate analysis. More concretely, Hankel matri-
ces arise in polynomial regressions and Toeplitz matrices appear as covariance of
stationary processes. In particular, the spectral distribution for their eigenvalues
is important and was studied by Bryc et al. [BDJ06].

Let q be any positive integer and a ∈ Z
<n+d−1
q [x] be a polynomial over Zq

with coefficient vector a = (a0, . . . , an+d−2)t. We define the Hankel matrix of a
of order d + n − 1 as

Hank(a) =

⎛
⎜⎜⎜⎝

a0 a1 . . . ad−1 . . . an−1

a1 a2 . . . ad . . . an

...
...

ad−1 ad . . . a2d−2 . . . an+d−2

⎞
⎟⎟⎟⎠ ∈ Z

d×n
q .

The Hankel matrix is fully determined by its first row and its last column. Its
rank is at most d. If it has full rank d we write rank(Hank(a)) = d. Further, we
recall the definition of Toeplitz matrices. Let a ∈ Z

<n+d−1
q [x] be a polynomial

over Zq with coefficient vector a = (a0, . . . , an+d−2)t. The Toeplitz matrix of a
of order d + n − 1 is given by

Toep(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . . . . an−1

an a0 a1
. . .

...

an+1 an
. . . . . . . . .

...
...

. . . . . . . . . a1 a2

...
. . . an a0 a1

an+d−2 . . . . . . an+1 an a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
d×n
q .



66 S. Bai et al.

The Toeplitz matrix is fully determined by its first row and its first column. There
exists a special relation between the Toeplitz matrix and the Hankel matrix. Let
Jn be the reflection matrix of order n defined as

Jn =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
...

...
...

...
...

1 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
n×n
q .

Then, for any polynomial a ∈ Z
<n+d−1
q [x] with coefficient vector a = (a′,a′′) in

Z
n
q × Z

d−1
q it yields Toep(a) · Jn = Hank(ã), where ã is the polynomial given

by the coefficient vector ã = (a′,a′′) with a′ denoting the vector a′ in reverse
order. Thus, we can use the result of Kaltofen and Lobo [KL96] about random
Toeplitz matrices to calculate the probability of a random Hankel matrix to have
full rank.

Lemma 9. Let q be a positive integer with unique prime power factorization
given by q =

∏
i∈[l] p

αi
i , where pi are primes and αi > 0. Let d and n be integers

with 0 < d ≤ n and choose b ← U(Z<n+d−1
q [x]). Then,

Pr [rank(Hank(b)) = d] ≥
∏
i∈[l]

(
1 − 1

pi

)
.

Proof. Case 1 (q is prime). Any Hankel matrix of order d + n − 1 can be rep-
resented as the matrix product of the corresponding Toeplitz matrix of order
d + n − 1 times the non-singular reflection matrix Jn of order n whose anti-
diagonal elements are 1’s and all other entries are 0’s. Thus, the rank of a
given Hankel matrix will be the same as the one of the corresponding Toeplitz
matrix. For the case d = n, it follows from Theorem 4 of [KL96] that the total
number of Hankel matrices of full rank d is exactly (q − 1)q2d−2. If we choose
b ← U(Z<n+d−1

q [x]), then

Pr [rank(Hank(b)) = d] =
(q − 1)q2d−2

q2d−1
= 1 − 1

q
.

For d < n, the d × n Hankel matrix has full rank d if at least the left d × d
submatrix, which is naturally a d × d Hankel matrix as well, has rank d. This
happens with probability at least 1 − 1

q .

Case 2 (q = pα). Initially, consider the case d = n. Any Hankel matrix A can
be represented as A = pQ+R, where both R and Q are Hankel matrices with
coefficients in Zp and Zpα−1 , respectively. This formula follows from integer divi-
sion by p with remainder, i.e., Euclidean division. Any element from Zpα , when
divided by p, has a reminder in Zp and quotient in Zpα−1 . This representation
is unique, thus preserves the structure of the matrix A. Since A is a Hankel
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matrix, so are Q and R. The matrix A has full rank in Zpα if and only if R has
full rank in Zp. Hence, we can deduce from the previous case that the number
of Hankel matrices of full rank equals (p − 1)p(α−1)(2d−1)+(2d−2). If we choose
b ← U(Z<n+d−1

q [x]), then

Pr [rank(Hank(b)) = d] =
(p − 1)p(α−1)(2d−1)+(2d−2)

pα(2d−1)
= 1 − 1

p
.

For d < n, using the same argument as before, the probability is at least 1 − 1
p .

Case 3 (q =
∏

i∈[l] p
αi
i ). For the case d = n, it follows from the Chinese remainder

theorem that the number of Hankel matrices of full rank d modulo q equals the
product of the number of Hankel matrices of full rank d modulo pαi

i which is
given by ∏

i∈[l]

(pi − 1)p(αi−1)(2d−1)+(2d−2)
i .

Thus, if we choose b ← U(Z<n+d−1
q [x]), then

Pr [rank(Hank(b)) = d] =
∏
i∈[l]

(
1 − 1

pi

)
.

Similarly as before, for d < n and b ← U(Z<n+d−1
q [x]), then

Pr [rank(Hank(b)) = d] ≥
∏
i∈[l]

(
1 − 1

pi

)
.

��
We denote by (Z<n+d−1

q [x])× the set of polynomials of Z
<n+d−1
q [x] with Hankel

matrix of full rank d. Note that for a ∈ Z
<n
q [x] and b ∈ Z

<n+d−1
q [x], the middle-

product can be represented as a matrix-vector product

a �d b = Hank(b) · a.

Lemma 10. Let d and n be two integers with 0 < d ≤ n and b a fixed element
of
(
Z

<n+d−1
q [x]

)×. If we choose a ← U(Z<n
q [x]), then a�d b is uniformly random

in Z
<d
q [x].

Proof. We can write a�db = Hank(b)·a. For any d ≤ n and full rank matrix A ∈
Z

d×n
q , the mapping from Z

n
q to Z

d
q given by multiplication with A is surjective.

As a is chosen uniformly at random and the Hankel matrix of b has full rank d,
the middle-product is also uniformly distributed. ��

4 Middle-Product Learning with Rounding

In this section, we define in the first subsection the new assumption and then
show in the second subsection its hardness by reducing the MP-LWE problem
to it.
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4.1 Definition of the MP-CLWR Assumption

In the following, we define the Middle-Product Computational Learning With
Rounding (MP-CLWR) assumption which is an adaption of the Ring Computa-
tional Learning With Rounding (R-CLWR) assumption from Chen et al. [CZZ18]
to the middle-product setting. For a detailed introduction and motivation of this
computational notion, see [CZZ18, Section 3].

In order to define this computational assumption, we need to introduce our
experiment setting. Within the experiment, three different parties in form of
algorithms appear: A challenger C interacting with an adversary A who is receiv-
ing its samples from a source S. All three algorithms are restricted to be prob-
abilistic and polynomial-time (PPT). As a first step, the source S generates
a sample (X, aux) using two sets called var and con. It then sends this sam-
ple to the challenger C, which computes, with the help of this sample, a tuple
(Input,Target). The adversary only receives the Input part of the tuple to compute
Output. The adversary wins the experiment if Output equals Target (Fig. 1).

Fig. 1. The experiment Exp(C,A,S).

The idea of the computational assumption is to consider two different exper-
iments with the same challenger C and adversary A but with different sources S1

and S2, which differ in the distribution var but have the same distribution con,
motivating the notation var for variable and con for constant. The new notion
guarantees that if A cannot compute Target from X1 generated by S1, then it is
not able to compute Target from X2 generated by S2 either.

We illustrate the new notion in Fig. 2 below. Let C be an arbitrary challenger.
If the success probability of any adversary A outputting the correct answer in
Exp1(C,A,S1) is negligible, then it is in Exp2(C,A,S2) as well.

Fig. 2. Experiment setting of the computational assumption.
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Now, we define our new MP-CLWR assumption which is an adaption of the
R-CLWR assumption from [CZZ18] to the middle-product setting. As an analog
of the notion of units in the original paper, we define (Z<n+d−1

q [x])× as the set
of all polynomials over Zq having degree less than n+d−1 and a Hankel matrix
of order d × n of full rank d. The integers d and n define the parameters of the
middle-product, q defines the general and p the rounding modulus. The number
of samples has to be fixed beforehand and is given by t.

Definition 6 (MP-CLWR assumption). Let d, n, p, q and t be positive inte-
gers fulfilling 0 < d ≤ n and q ≥ p ≥ 2. Choose s uniformly at random
over (Z<n+d−1

q [x])×. Denote by Xs the distribution of (a, �a �d s
p), where a ←
U(Z<n

q [x]), and denote by U the distribution of (a, �b
p), where a ← U(Z<n
q [x])

and b ← U(Z<d
q [x]). For i ∈ {1, 2} define the input for Si as (vari, con), where

var1 denotes the distribution X t
s , and var2 the distribution U t, and con is an

arbitrary distribution over {0, 1}∗ which is independent from var1 and var2.
For a fixed challenger C let PC,A be the probability for an adversary A to win
Exp1(C,A,S1), while QC,A be that for A to win Exp2(C,A,S2).

The MP-CLWRp,q,n,d,t assumption states that for any challenger C if QC,A is
negligible for any adversary A, so is PC,A. We call the difference |PC,A − QC,A|
the advantage of the adversary A.

Correspondingly, we also define the Middle-Product Computational Rounded
Learning With Errors (MP-CRLWE) assumption which is important in the hard-
ness reduction in Sect. 4.2 below.

Definition 7 (MP-CRLWE assumption). Let d, n, p, q and t be positive
integers fulfilling 0 < d ≤ n and q ≥ p ≥ 2. Choose s uniformly at random over
(Z<n+d−1

q [x])×. Let χe be the error distribution over R
<d[x]. Denote by Ys,χe

the
distribution of (a, �a �d s + e
p), where a ← U(Z<n

q [x]) and e ← χe and denote
by U the distribution of (a, �b
p) where a ← U(Z<n

q [x]) and b ← U(Z<d
q [x]). For

i ∈ {1, 2} define the input for Si as (vari, con), where var1 denotes the distri-
bution Yt

s,χe
, and var2 the distribution U t, and con is an arbitrary distribution

over {0, 1}∗ which is independent from var1 and var2. For a fixed challenger C
let P ′

C,A(χe) be the probability for an adversary A to win Exp1(C,A,S1), while
QC,A be that for A to win Exp2(C,A,S2).

The MP-CRLWEp,q,n,d,t,χe
assumption related to the error distribution χe

states that for any challenger C if QC,A is negligible for any adversary A, so is
P ′

C,A(χe). We call the difference
∣∣P ′

C,A(χe) − QC,A
∣∣ the advantage of the adver-

sary A.

4.2 Hardness of MP-CLWR

We now prove the hardness of MP-CLWR with the help of a reduction from
the decisional MP-LWE problem to the MP-CLWR problem. The decisional
version of MP-LWE itself can be reduced from the decisional P-LWE problem
for a large class of defining polynomials, see Theorem 1. As P-LWE benefits from
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worst-case to average-case reductions from lattice problems, our new MP-CLWR
assumption also enjoys the worst-case hardness.

Theorem 2 (Hardness of MP-CLWR). Let d, n, p, q and t be positive inte-
gers with 0 < d ≤ n and q ≥ p ≥ 2. Further, let q =

∏
i∈[l] p

αi
i be the prime power

factorization of q with some l > 0, where pi is prime and αi > 0 for all i ∈ [l].
Let χ be an error distribution over R

<d[x] which is balanced and B-bounded with
probability at least δ, fulfilling q > 2pBdt and δ ≥ 1 − 1

td . There is a reduction
from the decisional MP-LWEq,n,d,χ problem to the MP-CLWRp,q,n,d,t problem,
with t the number of samples fixed beforehand.

Assume that the advantage of an MP-CLWR solver is ε. Then, there is an
MP-LWE solver with advantage at least

(
1
e2

(ε + QC,A)2
)

·
∏
i∈[l]

(
1 − 1

pi

)
.

In order to prove the theorem, we show the following sequence of reductions:

MP-LWEq,n,d,χ MP-LWE×
q,n,d,χ

MP-CLWRp,q,n,d,t MP-CRLWEp,q,n,d,t,χ

Lemma 11

Lemma 12

Lemma 13

The first reduction is achieved by a standard technique.

Lemma 11. Let d, n, p, q and t be positive integers, such that it yields 0 < d ≤ n
and q ≥ p ≥ 2. Let χe be the error distribution over R

<d[x]. Further, let the
unique prime power factorization of q be given by q =

∏
i∈[l] p

αi
i with some l > 0,

where pi is prime and αi > 0 for all i ∈ [l]. If there is a PPT algorithm solving
MP-LWE×

q,n,d,χ with non-negligible advantage ε, then there is a PPT algorithm
solving MP-LWEq,n,d,χ with non-negligible advantage at least

ε ·
∏
i∈[l]

(
1 − 1

pi

)
.

Proof. Let (ai, bi)i∈[t] be the given input tuple of samples of MP-LWEq,n,d,χ,
where s ← U(Zn+d−1

q [x]). An adversary can take this tuple of samples (ai, bi)i
and query an oracle of MP-LWE×

q,n,d,χ on it. As showed in Lemma 9, the prob-

ability that the Hankel matrix of s has full rank d is at least
∏

i∈[l]

(
1 − 1

pi

)
.

Assuming that the oracle succeeds with non-negligible probability ε in general,
it will now succeed with probability at least ε ·∏i∈[l]

(
1 − 1

pi

)
, which completes

the proof. ��
The following lemma is an adaption of Lemma 12 in [CZZ18] into our context.
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Lemma 12 (MP-LWE to MP-CRLWE). Assume that the advantage of any
PPT algorithm to solve the decisional MP-LWE×

q,n,d,χ problem is less than ε, then
we have

∣∣P ′
C,A(χ) − QC,A

∣∣ < ε,

for any PPT adversary A and PPT challenger C. Thus, there is a reduction
from MP-LWE×

q,n,d,χ to MP-CRLWEp,q,n,d,t,χ, with t the number of samples
fixed beforehand.

Proof. In order to show this reduction, we will construct an adversary B to
solve the decisional MP-LWEq,n,d,χ problem. This adversary B will at the same
time play the role of the challenger C in the MP-CRLWE experiment. At the
beginning, B receives a tuple of samples (xi, yi)i∈[t]. It sets ai = xi and bi = �yi
p

for all i ∈ [t] and X = (ai, bi)i∈[t]. As a challenger of the experiment, B can
compute the corresponding Input and Target. B also verifies if the Output of A
equals the Target. If this is the case, B outputs 1, otherwise 0.

If (xi, yi)i are MP-LWE samples, then are (ai, bi)i samples from Ys,χ, used
in the MP-CRLWE assumption. Thus, Pr(B((xi, yi)i) = 1) = P ′

C,A(χ). On the
other hand, if (xi, yi)i is a tuple of uniform samples, then is (ai, bi)i also uni-
formly distributed. Hence, Pr(B((xi, yi)i) = 1) = QC,A. Assuming the hardness
of decisional MP-LWE, we have

∣∣P ′
C,A(χ) − QC,A

∣∣ < ε, for negligible ε and for
any adversary A. In particular, the MP-CRLWE assumption holds: If QC,A is
negligible, so is P ′

C,A for the same challenger C and adversary A using the equa-
tion above. ��
The following reduction is an adaption of Lemmas 8 and 9 in [CZZ18], based
on the results of [BGM+16], together with our results about random Hankel
matrices of Sect. 3.

Lemma 13 (MP-CRLWE to MP-CLWR). Let s ∈ (Z<n+d−1
q [x])×. Let Xs

and Ys denote the random variables of a single MP-CLWR sample (a, �a �d s
p)
and a single MP-CRLWE (a, �a �d s + e
p) sample, respectively. Further, let χ
be an error distribution which is balanced and B-bounded with probability at least
δ over Z

<d
q [x], where q > 2pBdt and δ ≥ 1 − 1

td . Then we have

(PC,A)2 ≤ P ′
C,A(χ) · e2,

where e is the Euler’s number.
Hence, there is a reduction from MP-CRLWEp,q,n,d,t,χ to MP-CLWRp,q,n,d,t.

Proof. Using Lemma 6 about the multiplicativity and the probability preserva-
tion property from the Rényi divergence, we have

(PC,A)2 ≤ P ′
C,A(χ) · RD2(Xs‖Ys)t.

In the following we show that the Rényi divergence of Xs and Ys fulfills

RD2(Xs‖Ys) ≤ (1 + 2pB/q)d

δd
.
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Following the definition of the Rényi divergence it yields

RD2(Xs‖Ys) = Ea←U(Z<n
q [x])

Pr
[
Xs = (a, �a �d s
p)

]

Pr
[
Ys = (a, �a �d s
p)

]

= Ea←U(Z<n
q [x])

1

Pre←χ

[
�a �d s + e
p = �a �d s
p

] .

First, we define the border elements in Zq with regard to B and p by

Borp,q(B) =
{

x ∈ Zq : �x + B
p �= �x
p

}
.

These are the elements in Zq which are close to the rounding boundary. It yields
|Borp,q(B)| ≤ 2Bp. For 0 ≤ t ≤ d, let us also define

Bads,t =
{
a ∈ Z

<n
q [x] : |{i ∈ [d] : (a �d s)i ∈ Borp,q(B)}| = t

}
.

In other words, Bads,t defines, for a given polynomial s and number of coefficients
t, the set of polynomials a in Z

<n
q [x] such that the middle-product a �d s has

exactly t coefficients close to the rounding boundary. Now we fix t and assume
a ∈ Bads,t. For any i ∈ [d] with (a �d s)i /∈ Borp,q(B), it yields

Prei

[
�(a �d s)i + ei
p = �(a �d s)i
p

]
≥ δ,

as ei is sampled from the distribution χ which is B-bounded with probability at
least δ. If (a �d s)i ∈ Borp,q(B), then

Prei

[
�(a �d s)i + ei
p = �(a �d s)i
p

]
≥ 1

2
,

because ei is sampled from a balanced distribution. Thus, the probabilities of
ei ∈ [−B, 0] or in [0, B] are each greater or equal to 1

2 and �(a �d s)i + ei
p �=
�(a �d s)i
p happens in exactly one of the two cases. Since each coefficient of e
is independently distributed and a �d s has exactly t coefficients in Borp,q(B),
it yields

Pre←χ

[
�a �d s + e
p = �a �d s
p

]
≥ 1

2t
· δd−t ≥ 1

2t
· δd.

By Lemma 10, we know that if a is uniform in Z
<n
q [x], so is a �d s ∈ Z

<d
q [x].

Thus, it yields

Pr [a ∈ Bads,t] ≤
(

d

t

)(
1 − |Borp,q(B)|

q

)d−t( |Borp,q(B)|
q

)t

.
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Hence,

RD2(Xs‖Ys) ≤ δ−d
∑
t∈[d]

2t · Pr [a ∈ Bads,t]

= δ−d
∑
t∈[d]

(
d

t

)(
1 − |Borp,q(B)|

q

)d−t(
2 · |Borp,q(B)|

q

)t

= δ−d

(
1 +

|Borp,q(B)|
q

)d

≤ δ−d

(
1 +

2pB

q

)d

.

From the results above, we can derive

RD2(Xs‖Ys)t ≤ (1 + 2pB/q)td

δtd
≤ (1 + 1/td)td

(1 − 1/td)td
≈ e2,

where δ ≥ 1 − 1
td and q > 2pBdt. ��

5 A Public Key Encryption Scheme Based on MP-CLWR

In this section, we present a Public Key Encryption (PKE) scheme whose secu-
rity is based on the hardness of the middle-product computational learning with
rounding problem (MP-CLWR, see Sect. 4.1). Its design is inspired by the PKE
scheme from Roşca et al. [RSSS17] based on the hardness of the middle-product
learning with errors (MP-LWE, see Sect. 2.4) problem and by the PKE scheme
from Chen et al. [CZZ18] based on the hardness of the ring computational learn-
ing with rounding problem. As a first step, we define the scheme and show its
correctness in Sect. 5.1. Subsequently, we prove its security based on the hardness
of MP-CLWR in Sect. 5.2.

5.1 Definition and Correctness

In this section, we define the PKE scheme and show its correctness under a proper
choice of parameters. We use the reconciliation rounding function �·
2 : Zq →
Z2, the reconciliation cross-rounding function 〈·〉2 : Zq → Z2, the randomized
doubling function DBL : Zq → Z2q and the reconciliation algorithm REC from
Sect. 2.2. As we only need the randomized doubling function DBL for q odd, we
set it to be the identity function for q even.

Recall that INV(·) denotes the probabilistic lifting function from Zp[x] to
Zq[x] for two integers p and q with 2 ≤ p ≤ q. We need INV(·) to lift
rounded polynomials in Zp[x] to Zq[x] such that

⌊
INV(�a
p)

⌉
p
= �a
p. Note

that INV(�a
p) = a + e with ‖e‖∞ ≤ q
p .

Let H denote a random oracle H : {0, 1}d → {0, 1}k. Further, let k, d, n, p, q
and t be positive integers with d + k ≤ n and q ≥ p ≥ 2. The plaintext space is
{0, 1}<k[x].



74 S. Bai et al.

1. KGen(1λ). Sample s ← U
(
(Z<n+d+k−1

q [x])×
)

such that Hank(s) has full
rank1. For i ∈ [t], choose ai ← U(Z<n

q [x]) and compute bi = �ai �d+k s
p.
Return pk = (ai, bi)i∈[t] and sk = s.

2. Enc(pk, μ). For i ∈ [t], sample ri ← U({0, 1}<k+1[x]) and set the first part of
the ciphertext as

c1 =
∑
i∈[t]

riai mod q.

Compute v =
∑

i∈[t] ri �d INV(bi) mod q. Set the second and third part of the
ciphertext as

c2 = 〈DBL(v)〉2 and c3 = H(�DBL(v)
2) ⊕ μ.

Return c = (c1, c2, c3).
3. Dec(sk, c). Compute w = c1 �d s and return μ′ = c3 ⊕ H(REC(w, c2)).

Lemma 14 (Correctness). Assume that p > 8t(k + 1). For every plaintext μ
and key pair (pk, sk) ← KGen(1λ), we have

Pr(Dec(sk,Enc(pk, μ)) = μ) = 1.

Proof. In order to prove the correctness of the scheme, we need to guarantee that
the reconciliation mechanism succeeds. Following Lemma 4 we have to show that
‖w − v‖∞ < q/8. Notice that we have

v =
∑

i∈[t]

ri �d INV(bi) =
∑

i∈[t]

ri �d (ai �d+k s+ ei) =
∑

i∈[t]

(riai) �d s+
∑

i∈[t]

ri �d ei

= c1 �d s+
∑

i∈[t]

ri �d ei = w +
∑

i∈[t]

ri �d ei,

where ‖ei‖∞ < q/p for i ∈ [t] is determined by the lifting function INV(·). Thus
it suffices to have ∥∥∥∥∥∥

∑
i∈[t]

ri �d ei

∥∥∥∥∥∥
∞

< q/8.

For i ∈ [t] each coefficient of ri �d ei can be seen as the inner product 〈u, v〉 of a
binary vector u of dimension k+1 and a vector v also of dimension k+1, where
each coefficient has magnitude ≤ q/p. Notice that we have

|〈u, v〉| ≤ ‖u‖2 · ‖v‖2 ≤ √
k + 1 ·

√
(k + 1) · q2/p2 = (k + 1)q/p.

Hence, it yields∥∥∥∥∥∥
∑
i∈[t]

ri �d ei

∥∥∥∥∥∥
∞

≤
∑
i∈[t]

‖ri �d ei‖∞ ≤ t(k + 1)q/p.

As p > 8t(k +1), we have t(k +1)q/p < q/8 which guarantees that the reconcil-
iation mechanism succeeds. ��
1 This can be done by sampling s ← U

(
Z
<n+d+k−1
q [x]

)
uniformly at random and

rejecting it if its Hankel matrix is not full rank.
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5.2 Provable Security

In this section, we prove the security of the PKE scheme defined above based on
the hardness of MP-CLWR.

Lemma 15 (Security). Let λ be the security parameter. Further, let k, d, n, p, q
and t be positive integers such that it yields d + k ≤ n and q ≥ p ≥ 2. Assume
that t ≥ (2 · λ+ (k + d+ n) · log q)/(k + 1). The PKE scheme above is IND-CPA
secure under the MP-CLWRp,q,n,d+k,t hardness assumption.

Proof. The IND-CPA security game is the following: A challenger C generates
a key pair (pk, sk), samples a random bit b and sends the public key pk to the
adversary A. The adversary chooses two messages m0,m1 and sends them to the
challenger C, which in turn encrypts mb and sends the corresponding ciphertext
c back to A. The adversary outputs a bit b′ as a guess of b and wins the game
if b = b′. The game is illustrated in Fig. 3.

Fig. 3. The IND-CPA security game.

If H was not queried on the value of �DBL(v)
2 ∈ {0, 1}d during the game, the
adversary A can only guess the (randomly chosen) bit b with success probability
1/2. In particular, we can use a successful adversary A of the IND-CPA security
game to construct a successful adversary A′ which outputs �DBL(v)
2, given the
first two parts (c1, c2) of any ciphertext c = (c1, c2, c3). These first two parts are
independent of the message to encrypt. We will call this the COMP-DBL game.

During the IND-CPA game, A′ answers the random oracle queries of A by
maintaining an input-output table for H. For each query, A′ first checks if H was
already programmed on the queried input. If yes, it outputs the corresponding
hash value, otherwise it chooses a fresh random value and sets H accordingly.
Assuming A has non-negligible advantage to win the IND-CPA security game, it
must have queried H on �DBL(v)
2, hence A′ can look up the pair (�DBL(v)
2 , r)
with r = H(�DBL(v)
2) in the random oracle table. The procedure is illustrated
in Fig. 4 below.
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Fig. 4. Using A of the IND-CPA security game to win the COMP-DBL game.

As a next step, we need to show that the advantage of A′ to win is negligible
under the MP-CLWR assumption. We will consider the following sequence of
games, where in all games ai ← U(Z<n

q [x]) for i ∈ [t] and the secret s is chosen
via s ← U

(
(Z<n+d+k−1

q [x])×
)
. Further, we sample ri ← U({0, 1}<k+1[x]) for

i ∈ [t] and set the first part of the ciphertext as c1 =
∑

i∈[t] riai mod q.
The adversary A′ receives in each game the tuple (1λ, pk, c1, c2) and its target

is to compute �DBL(v)
2, where v is specified by each game separately. Game 1
corresponds to the COMP-DBL game above.

G1 : Set bi = �ai �d+k s
p, pk = (ai, bi)i, v =
∑

i INV(bi) �d ri mod q, and
c2 = 〈DBL(v)〉2,

G2 : Set bi ← ⌊
U(Z<d+k

q [x])
⌉

p
, pk = (ai, bi)i, v =

∑
i INV(bi) �d ri mod q, and

c2 = 〈DBL(v)〉2,
G3 : Set bi ← ⌊

U(Z<d+k
q [x])

⌉
p
, pk = (ai, bi)i, v ← U(Z<d

q [x]), and c2 =
〈DBL(v)〉2.

Note that in the last game, c1 and c2 are independent and hence the probability
that A′ outputs �DBL(v)
2 ∈ {0, 1}d is exactly 1/2d, using Lemma 3.

Furthermore, the second and third game are within exponentially small sta-
tistical distance, using the generalized leftover hash lemma. In more detail, the
statistical distance of the two distributions of ((ai, bi)i, c1, v) in Game 2 and 3 is
given by

Δ

⎡
⎣
⎛
⎝(ai, bi)i,

∑
i∈[t]

riai,
∑
i∈[t]

ri �d INV(bi)

⎞
⎠ ,

⎛
⎝(ai, bi)i,

∑
i∈[t]

riai, v

⎞
⎠
⎤
⎦ ≤ 2−λ,
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where for all i ∈ [t] the polynomials ai, bi, ri and v are chosen uniformly at
random in Z

<n
q [x],

⌊
Z

<d+k
q [x]

⌉
p
, {0, 1}<k+1[x] and Z

<d
q [x], respectively. Note

that the randomness of (h(bi)i
)(bi)i

comes from the randomness of (bi)i and
since Lemma 8 shows that (h(bi)i

)(bi)i
is universal we can use Lemma 5. Thus,

the statistical distance is bounded above by
1
2

·
√

2−(k+1)t · qk+n+d.

Recall the data processing inequality of the statistical distance

Δ(P f , Qf ) ≤ Δ(P,Q)

for any function f , where P f (resp. Qf ) denotes the distribution of f(y) induced
by sampling y ← P (resp. y ← Q). Setting f = 〈DBL(·)〉, we get

Δ (((ai, bi)i, c1, c2), ((ai, bi)i, c1, u)) ≤ 2−λ.

The first and second game differ only in the way how the bi are computed.
In the first game, bi is a rounded middle-product sample and in the latter on,
it is a rounded uniform sample. We can interpret this situation as two different
experiments, see Fig. 5.

Fig. 5. Experiment setting of the security proof.

Recall from Definition 6 that X t
s denotes the distribution of (ai, �ai �d s
p)i,

where we choose the ai ← U(Z<n
q [x]) independently and sample a fixed secret

s ← U
(
(Z<n

q [x])×
)
. Further, we denote by U t the distribution of (ai, �bi
p)i,

where we choose the ai ← U(Z<n
q [x]) and the bi ← U(Z<d

q [x]) independently.
In addition, con is an arbitrary distribution over {0, 1}∗ which is independent
from X t

s and U t. The Input1 of the first experiment Exp1(C,A,S1) is given by
(1λ, pk, c1, 〈DBL(v)〉2), where v =

∑
i INV(bi) �d ri with bi = �ai �d+k s
p. On

the other hand, the Input2 of the second experiment Exp2(C,A,S2) is defined by
(1λ, pk, c1, 〈DBL(v)〉2), where we still have v =

∑
i INV(bi)�dri but this time with

bi ← ⌊
U(Z<d+k

q [x])
⌉

p
. The Target is in both cases the same, namely �DBL(v)
2.

According to the MP-CLWR assumption, if the success probability for any
A to output the requested �DBL(v)
2 is negligible when bi ← ⌊

U(Z<d+k
q [x])

⌉
p
, it

is also negligible when bi is an MP-LWR instance.
Combining the arguments above shows that the success probability of A′ is

negligible under the MP-CLWR assumption, completing the security proof of
our PKE scheme. ��
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6 Parameters and Comparison

As example parameters we set the dimension n ≥ λ, k = d = n/2, t = Θ(log(n)),
q = Θ(n4+c log(n)2) and p = Θ(n log(n)), where c is an arbitrary positive
constant and λ the underlying security parameter. Using these parameters,
the scheme is correct (Lemma 14) and secure under the MP-CLWRp,q,n,d+k,t

assumption (Lemma 15). This allows us to rely on the MP-LWEq,n,d+k,χ problem
(Theorem 2), where the error distribution χ is B-bounded with B = O(n2+c).
Using the P-LWEf

q,Dβq
to MP-LWEq,n,d+k,Dαq

reduction (Theorem 1), this in
turn prevents attack as [AG11], where β = Ω(

√
n/q) for any f monic of degree

n with constant coefficient coprime with q and expansion factor at least nc.
We now compare our encryption scheme with the one of [RSSS17]. Figure 6

shows the asymptotic parameters, key sizes and ciphertext sizes for both schemes.
The most important parameter is the value log(q) as it dominates the key and
ciphertext sizes of both schemes. Asymptotically, in both cases this value is
Θ(log(n)). For concrete parameters and security analysis, the interested reader
may refer to the full version2.

Fig. 6. Comparison of asymptotic parameters, key sizes and ciphertext sizes

In general, the sampling cost is one of the intense operations of an encryption
scheme. In the encryption scheme of [RSSS17], we need 2 · t+1 sampling subrou-
tines, including t from a rounded Gaussian distribution, during key generation
2 The full version of this paper can be found in the Cryptology ePrint Archive with

link: https://eprint.iacr.org/2019/1001.

https://eprint.iacr.org/2019/1001
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and t sampling subroutines during encryption. In contrast, in our case we only
need t+1 sampling subroutine during key generation and t sampling subroutines
during encryption. Additionally, in our case all sampling is performed over some
uniform distribution which is more efficient than Gaussian type sampling.

Further, in our encryption scheme we don’t need to restrict the modulus q to
be prime. Unlike [RSSS17], it works for all integer moduli which are sufficiently
large. This gives an advantage on the choice of parameters.
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Abstract. Cryptosystems based on Learning with Errors or related
problems are central topics in recent cryptographic research. One main
witness to this is the NIST Post-Quantum Cryptography Standardization
effort. Many submitted proposals rely on problems related to Learning
with Errors. Such schemes often include the possibility of decryption
errors with some very small probability. Some of them have a somewhat
larger error probability in each coordinate, but use an error correct-
ing code to get rid of errors. In this paper we propose and discuss an
attack for secret key recovery based on generating decryption errors, for
schemes using error correcting codes. In particular we show an attack on
the scheme LAC, a proposal to the NIST Post-Quantum Cryptography
Standardization that has advanced to round 2.

In a standard setting with CCA security, the attack first consists of
a precomputation of special messages and their corresponding error vec-
tors. This set of messages are submitted for decryption and a few decryp-
tion errors are observed. In a statistical analysis step, these vectors caus-
ing the decryption errors are processed and the result reveals the secret
key. The attack only works for a fraction of the secret keys. To be spe-
cific, regarding LAC256, the version for achieving the 256-bit classical
security level, we recover one key among approximately 264 public keys
with complexity 279, if the precomputation cost of 2162 is excluded. We
also show the possibility to attack a more probable key (say with prob-
ability 2−16). This attack is verified via extensive simulation.

We further apply this attack to LAC256-v2, a new version of LAC256
in round 2 of the NIST PQ-project and obtain a multi-target attack with
slightly increased precomputation complexity (from 2162 to 2171). One
can also explain this attack in the single-key setting as an attack with
precomputation complexity of 2171 and success probability of 2−64.
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1 Introduction

Lattice-based cryptography and the learning with errors problem (LWE) [24]
is now one of the main research areas in cryptography. Factoring and the dis-
crete logarithm problem have always been the fundamental basis in modern
cryptography, but due to the threat of quantum computers, this will change.
Lattice-based cryptography is the enabler for a rich collection of cryptographic
primitives, ranging from key exchange, KEMs, encryption and digital signature
to more advanced constructions like fully homomorphic encryption.

There are several reasons for using LWE or related problems as the under-
lying problem in cryptographic constructions. One is that constructions can be
computationally very efficient compared to existing solutions. Another motiva-
tion is that LWE-based constructions may be resistant to quantum computers.
It is also potentially the way how one can best provide constructions of fully
homomorphic encryption [5,7].

An important problem is to establish the difficulty of solving various LWE-
like problems, as it directly determines an upper bound on the security for
a construction. One can use reductions for LWE to worst-case lattice prob-
lems [6,23,24], but it may not always be applicable or it may not give useful
help in choosing optimal parameters. As of today, the security of a primitive
is often estimated from the computational complexity of lattice-basis reduction
algorithms like BKZ and its different versions.

Recent developments in several areas where problems may potentially be dif-
ficult even for a quantum computer, motivated several standardization projects,
and some time ago the NIST post-quantum standardization project [2] started.
In the specification of the analysis of submitted proposals, the most important
aspect was said to be their security. Typically, the computational complexity
for solving problems like LWE through lattice basis reduction is the guide when
explicitly suggesting parameters in the different constructions. Most proposals
have some proof of security, relating to some well known and difficult problems
in lattice theory, such as the shortest vector problem. Most lattice-based schemes
include also the possibility of having decryption errors with some small prob-
ability. Making this probability zero has a price, as the parameters should be
adjusted accordingly, resulting in a performance loss. So many schemes tolerate
a very small probability of decryption error, say something of size 2−128.

An approach used by some schemes to enhance the performance is to allow
a larger error probability in each position and then use error-correcting codes
to correct the errors that occurred. In essence, part of the message information
are parity-check bits that enable correction of up to a fixed number of errors.
Such schemes can thus have a larger error probability in each bit position, as it
requires that a number of them are in error for a decryption error to occur. Still,
the possibility of having decryption errors can be used in cryptanalysis and the
motivation for this paper is to further examine such possibilities.

We specifically focus on the proposal LAC, a scheme that has now advanced to
round 2 in the NIST project. LAC is perhaps the most extreme scheme among the
LWE-based schemes in the NIST project. It has a very small modulus, q = 251,
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which makes it very interesting. It leads to a rather large probability of error
in a single position (2−7.4), but then it uses a strong error correcting code to
correct up to 55 errors, resulting in a small overall probability of decryption
error (2−115). LAC has excellent performance and is indeed an elegant design.

In our attack we consider CCA (chosen-ciphertext attacks) security for PKE
(public-key encryption) schemes and use the algorithms as specified in the LAC
design document.

1.1 Related Works

The use of decryption errors in cryptanalysis has been frequently used in all areas
of cryptography, e.g., [4]. For lattice-based encryption systems and NTRU, some
works in this direction are listed [12,16–18].

More recently, Fluhrer [11] showed an attack on key-exchange protocols in a
key reuse setting and [9] extended the attack. In [3] a chosen-ciphertext attack
on the recent proposal HILA5 [25] was described, using decryption errors. These
attacks can be described as CCA type attacks on proposals without CCA trans-
forms.

Here we will only consider CCA attacks on schemes proposed for CCA
security. For such a case, an attack model for LWE-based schemes and a spe-
cific attack on ss-ntru-pke, another NIST submission, was given in the recent
paper [8]. We base the attack in this paper on the same model. For the specific
case of LAC, there has also been some discussion on the NIST forum, on how to
increase the probability of decryption errors [1].

For code-based schemes, Guo, Johansson and Stankovski [14] proposed a
key-recovery attack against the CCA-secure version of QC-MDPC. They used a
property that ‘colliding pairs’ in the noise and the secret can change the decryp-
tion failure rate. In the statistical analysis in this paper, we use some kind of
similar idea, identifying similar patterns between a part of the secret key and
error vectors.

1.2 Contributions

In this paper we describe an attack for secret key recovery based on generat-
ing decryption errors, where error correcting codes are used. It is applied on
the CCA version of the proposal LAC and it is a chosen-ciphertext attack. The
attack is described as a sequence of steps. The first step is a precomputation
phase where messages generating special error vectors are found. In the sec-
ond step we send these encrypted messages for decryption and some decryption
errors are observed. Finally, the major part of the attack is the last step, in
which a statistical analysis of the messages/errors causing the decryption errors
are analyzed. In particular, we identify a correlation between consecutive posi-
tions in the secret key and consecutive positions in error vectors that can be
used to restore the secret vector. The attack success is conditioned on a cer-
tain weight-property of the secret key, causing the decoding error probability to
be significantly higher than that in the average case. In particular, we describe
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the details of an attack to LAC256 with success probability1 larger than 2−64

with complexity less than 279, assuming a single precomputation of complexity
2162 encryptions. The statistical analysis is supported by extensive simulation
results2.

We also extend our approach to attacking a new version of LAC256 in round
2 of the NIST PQ-project. We design a new desired noise pattern that can lead
to a high decryption error probability. For instance, with the precomputation of
about 2120 for one chosen message/error, the error probability is simulated to
be 2−12.74, for a key with probability 2−64. Using this error pattern, one could
classically solve LAC256-v2 with complexity far less than that of the claimed
security level by our estimation.

1.3 Organization

The remaining of the paper is organized as follows. In Sect. 2 we describe the
LAC proposal from the NIST Post-Quantum standardization process. In Sect. 3,
we present the main attack procedure, which is followed by a section elaborating
the statistical analysis step, i.e., how to reconstruct the secret key from the
decryption failures. Section 5 shows how to apply the proposed attack to the
new LAC version in round 2 of the NIST PQ-project, and Sect. 6 includes related
discussions. Finally, we present the conclusion in Sect. 7.

2 Description of LAC

LAC [19] is a proposal in the NIST Post-Quantum competition, including three
versions for different security levels, i.e., LAC128, LAC192, and LAC256. We focus
in this paper only on attacking LAC256. Also, we consider only CCA security as
a CPA-version is almost trivially broken in a reaction attack model.

2.1 Some Basic Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2] and let R
denote the ring Zq[X]/(Xn+1). Consider the one-to-one correspondence between
polynomials in R and vectors in Z

n
q . Vectors will be represented with bold lower-

case letters, while matrices are written in uppercase. For a vector a, the transpose
vector is written aT .

The Euclidean norm of a polynomial a ∈ R is written as ‖a‖2 and defined

as
√∑

i a2
i , which is extended to vectors as ‖a‖2 =

√∑
i ‖ai‖22. The notation

a
$← χ(R) will be used to represent the sampling of a ∈ R according to the

1 Assuming for 264 users in the system is considered as a reasonable setting in the
NIST PQC project discussion forum [1].

2 The implementation is available at: https://github.com/MelodyJuly/A-Novel-CCA-
Attack-using-Decryption-Errors-against-LAC.

https://github.com/MelodyJuly/A-Novel-CCA-Attack-using-Decryption-Errors-against-LAC
https://github.com/MelodyJuly/A-Novel-CCA-Attack-using-Decryption-Errors-against-LAC
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distribution χ. Writing Samp(χ; seed) means computing an output following the
distribution χ using seed as the seed.

A distribution used in LAC is the centered binomial distribution, denoted
Ψn

σ . In particular, in LAC256 one uses Ψ1, which is the distribution on {−1, 0, 1},
where P (X = 0) = 1/2 and P (X = −1) = P (X = 1) = 1/4 for X

$← Ψ1. Note
that the mean is 0 and the variance is 1/2, so for Ψn

1 the variance is n/2. We
also denote U(R) the uniform distribution on R.

For cryptographic schemes of this type, the definition of security is to (at
least) fulfill the concept of indistinguishability under adaptive chosen ciphertext
attacks, denoted IND-CCA2. This is usually described through the advantage of
a certain security game where the adversary may adaptively ask for decryptions
of various ciphertexts, except the one that is given as the challenge. As our attack
is more direct and simply tries to recover the secret key, we do not further
introduce notions of security. We note however that all results given can be
translated to corresponding results in the form of advantage of security games
in the IND-CCA2 model.

2.2 The LAC Scheme

LAC is a concrete instantiation of a general construction proposed in [22] where
the novelty lies in the combination of a very small q together with a very strong
error correcting procedure, which allows to have many errors in different posi-
tions and still be able to correctly decrypt to the message used in encryption
with a very large probability.

The key generation algorithm of LAC is shown in Algorithm 1. The encapsu-
lation algorithm Enc is shown in Algorithm 2, and the decapsulation algorithm
Dec is shown in Algorithm 3. These algorithms call the CPA-secure schemes
described in Algorithms 4–5. For more details we refer to the original design
document [19].

Algorithm 1. LAC.KeyGen()

Output: A pair of public key and secret key (pk, sk).

1) seeda
$← S;

2) a ← Samp(U(R); seeda) ∈ R;

3) s
$← Ψn

σ ;

4) e
$← Ψn

σ ;
5) b ← as + e ∈ R;
6) return (pk := (seeda,b), sk := s);

Recall that our prime target LAC256, uses Ψ1, a distribution that is 1 (or
−1) with probability 1/4 and 0 with probability 1/2. We assume that lv = n.
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Algorithm 2. LAC.CCA.Enc(pk; seedm)

Output: A ciphertext and encapsulation key pair (c, K).

1)m ← Samp(U(M); seedm) ∈ M;
2) seed ← G(m) ∈ S;
3) c ← LAC.CPA.Enc(pk,m; seed);
4) K ← H(m, c) ∈ {0, 1}lk ;
5) return (c, K);

Algorithm 3. LAC.CCA.Dec(sk; c)

Output: An encapsulation key (K).

1)m ← LAC.CPA.Dec(sk, c);
2) K ← H(m, c);
3) seed ← G(m) ∈ S;
4) c′ ← LAC.CPA.Enc(pk,m; seed);
5) if c′ �= c then

K ← H(H(sk), c);

6) return K;

The underlying ring is of the form R = Zq[x]/(xn + 1), where n = 1024 and
q = 251. One important selling point of this scheme is its much smaller alphabetic
size, compared with other lattice-based proposals; this, however, also leads to
the main obstacle regarding to its decryption success probability. This scheme
targets the highest NIST security level of V, corresponding roughly to 256-bit
classical security.

An important part of the scheme is the use of the ECCEnc(m) subroutine.
This part uses a BCH code with length 1023 and dimension 520, which is capable
of decoding up to 55 errors and is employed for correcting errors. We assume a
decoder for the BCH code that will fail if the number of erroneous positions is
56 or more. All parameters are summarized in Table 1.

A characterizing property of the scheme (as for many other schemes) is the
fact that decryption may fail. A main question is to examine the probability of
such an event. This is done in the design document [19] and we briefly summarize
the results. The error term in LAC, denoted W, is of the form3

W = e1s − er + e2,

since the computation c′
m ← c2 − c1s gives

c′
m = (br) + e2 + �q

2
� · cm − (ar + e1)s = �q

2
� · cm + W.

3 The noise term is equivalent to the representation in [19] due to symmetry.
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Algorithm 4. LAC.CPA.Enc(pk = (seeda,b),m ∈ M; seed ∈ S)

Output: A ciphertext c.

1) a ← Samp(U(R); seeda) ∈ R;
2) cm ← ECCEnc(m) ∈ {0, 1}lv ;
3) (r, e1, e2) ← Samp(Ψn

σ , Ψn
σ , Ψ lv

σ ; seed);
4) c1 ← ar + e1 ∈ R;
5) c2 ← (br)lv + e2 + � q

2
� · cm ∈ Z

lv
q ;

6) return c := (c1, c2) ∈ R × Z
lv
q ;

Algorithm 5. LAC.CPA.Dec(sk = s; c = (c1, c2))

Output: A plaintext m.

1) u ← c1s ∈ R;
2) c′

m ← c2 − (u)lv ∈ Z
lv
q ;

3) for i = 0 to lv − 1 do
if q

4
≤ c′

mi < 3q
4

then
cmi ← 1

else
cmi ← 0

4) m ← ECCDec(cm);
5) return m;

Now a single position in W is essentially a sum of 2n random variables, each
drawn from a distribution obtained by multiplying two random variables from Ψ1.
The variance for such a random variable is 1/4. The sum is then approximated
by a Gaussian distribution with mean 0 and variance 2n/4. A single position is
in error if the contribution from W in that position is larger than � q

4� in absolute
value, so this gives an error probability in a single position which is roughly

δ = 1 − erf(62/
√

1024) ≈ 2−7.44.

Now, since the error correction procedure corrects up to 55 errors, it is argued in
[19] that one can then approximate the overall probability of a decryption error as

1024∑

i=56

(
1024

i

)
δi(1 − δ)1024−i ≈ 2−115.

Table 1. Proposed parameters of LAC256.

n q R Distribution BCH[ne, le, de, te] Security

1024 251
Zq [x]

〈xn+1〉 Ψ1 [1023, 520, 111, 55] V
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Since the stated decryption error probability is very small, the scheme does
appear to be quite safe against attacks trying to use the possibility of having
decryption errors.

3 The Attack

We first note that LAC is a scheme without protection against multi-target
attacks, meaning that precomputed information can be used on any public key.
This is because the public key is not included when the seed is computed for
generating the noise vectors in encryption. In the code, this is visible in the step
2) seed ← G(m) ∈ S; of Algorithm 2. It is also a bit unclear how to consider the
computational complexity of the precomputation part, as it is something that
only needs to be performed once and then never again. At least, as long as the
complexity is below 2256 encryptions (or 2128 in a quantum setting) it should
not violate the limits of a successful attack.

We will now present the attack on LAC256 and it is described in three steps;
a first step of precomputation; a second step of getting precomputed ciphertexts
decrypted and checking the decryption error probability; and a last phase of
performing a statistical analysis to recover the secret key.

3.1 Attack Step 1 - Precomputation

We construct a special set S of messages/error vectors by precomputation. To
be precise, we pick a random message m (seedm) and compute the seed through
the two steps from Algorithm 2:

1) m ← Samp(U(M); seedm) ∈ M;
2) seed ← G(m) ∈ S;

Then compute the noise vectors according to step 3 of Algorithm 4:

3) (r, e1, e2) ← Samp(Ψn
σ , Ψn

σ , Ψ lv
σ ; seed);

We are now only interested in keeping messages that give rise to noise vectors
of special form. In our attack we target only special properties of the e1 vector.
Let us first consider messages/errors including any combination where the error
vector e1 contains an interval of consecutive l1 all positive or all negative entries.
Assuming a randomly selected error vector, the probability of finding such an
interval starting in the first position is then

p = 2 × (1/4)l1 .

As we can start from any position, the probability that a random message/noise
vector fulfills the condition for S can be lower-bounded by

p0 = 2 × (1/4)l1 × 3/4 · n. (1)
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The reason is that if one searches for a desired pattern, an erroneous sequence
will on average use 3/4 · 1 + 1/4 · 3/4 · 2 + (1/4)2 · 3/4 · 3 + . . . ≈ 4/3 positions
until there is a possibility for a new desired sequence. We then know Eq. (1) by
p0 = p×3/4 ·n. The precomputation complexity is thus less than |S|/p0 runs of
the steps above. We denote the type of noise vectors of the above kind as TYPE
1 noise vectors. In particular, we will consider the length4 l1 ∈ {65, 85} when
describing the attack by examples.

We note that there are many other special forms of the noise that can be
useful in an attack. We define one more such set of special noise vectors related to
the e1 vector, being the case when e1 contains an interval of length l0 + l1 with
at least l1 either all positive or all negative entries and the remaining entries
all-zero. The probability of finding such an interval in e1 starting in the first
position is then

p′ = 2
l0+l1∑

i=l1

(
l0 + l1

i

)
× (1/4)i · (1/2)l1+l0−i.

Determining the probability of having such a subsequence starting from any
position is more complicated to compute, but would roughly result in a proba-
bility c · n · p′ for some not too small constant c. We denote the type of noise
vectors of the above kind as TYPE 2 noise vectors.

Basically, TYPE 2 noise vectors are much more likely to appear compared
to TYPE 1 noise vectors, so the required precomputation complexity will be
smaller, but at the same time it will give a smaller contribution to the correlation
used in the later statistical analysis part of the attack, for the same length.

After finishing this step, we have a stored set S of precomputed mes-
sages/error vectors with some special property for the e1 part.

3.2 Attack Step 2 - Submit Ciphertexts for Decryption

We now map the messages in S to ciphertexts and give them to the decryption
algorithm for each public key. We record the decryption error rate and keep track
of the set of error vectors creating a decryption error, denoted S ′. We will attack
and recover the secret key for keys5 where the decryption error rate is large.

As the enabling property for s to have a large decryption error rate, we
assume the property ∣∣∣

∣∣

n−1∑

i=0

si

∣∣∣
∣∣
≥ δ0,

4 We choose l1 ∈ {65, 85} to balance the complexity of precomputation and simu-
lations. One can definitely choose a smaller l1 to achieve a lower precomputation
complexity at the cost of increasing the attack effort.

5 In the real case, one can start with the key with the largest decryption error rate,
and then try different keys with error rates in the decreasing order.
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for δ0 a positive integer. One can approximate
∑n−1

i=0 si by a Gaussian distribu-
tion with mean 0 and variance n/2. With this approximation, if we set δ0 = 208
as an example, the secret s will have this property with probability about 2−64.

We now need to examine the decryption error probability for such a condition
on s. The error term in LAC is of the form

W = e1s − er + e2.

The decryption error occurs if among all the coefficients of W, at least 56 of
them are with absolute value larger than �q/4� = 62. In polynomial form, the
error w(x) is computed as

w(x) = e1(x)s(x) − e(x)r(x) + e2(x).

We only target the e1(x)s(x) term and consider the remaining as additional con-
tributing noise in each position, denoted N̂(x), for the moment. For simplicity,
we assume that all error vectors are of TYPE 1 and have the assumed consec-
utive ones in their first positions, i.e., e1(x) is of the form (e0, e1, . . . , en−1) =
(1, 1, . . . , 1, el1 , . . . , en−1). In vector form, the multiplication e1(x)s(x) can be
written as

(s0, s1, . . . , sn−1) ·

⎡

⎢⎢
⎢
⎣

e0 e1 e2 . . . en−1

−en−1 e0 e1 . . . en−2

...
...

...
. . .

...
−e1 −e2 −e3 . . . e0

⎤

⎥⎥
⎥
⎦

.

Since we assume (e0, e1, . . . , el1−1) = (1, 1, . . . , 1), the above is written

(s0, s1, . . . , sn−1) ·

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 1 . . . 1 el1 el1+1 . . . en−1

−en−1 1 1 . . . 1 el1 . . . en−2

−en−2 −en−1 1 . . . 1 1 . . . en−3

...
...

. . . . . .
...

...
. . .

...
−el1 −el1+1 . . . −en−1 1 1 . . . 1
−1 −el1 −el1+1 . . . −en−1 1 . . . 1
...

. . . . . . . . . . . .
. . . . . .

...
−1 . . . −1 −el1 −el1+1 . . . −en−1 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

We model the N̂(x) = −er + e2 part of the noise as a sum of randomly
generated variables (as also done in the LAC submission). Instead, we focus on
the e1s part, where we now have both e1 and s of special forms. We see that
for a particular key s, the contribution from the fixed part (e0, e1, . . . , el1−1) =
(1, 1, . . . , 1) to the multiplication e1s is a vector defined as follows.

Definition 1 (Contribution vector). The contribution vector cv(s) of
(e0, e1, . . . , el1−1) = (1, 1, . . . , 1) for a secret key s is defined as

(cv0, cv1, . . . , cvn−1),
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where

cvi =

⎧
⎨

⎩

∑i
k=0 si−k − ∑n−1

k=n−l1+1+i sk, if 0 ≤ i < l1 − 1,
∑l1−1

k=0 si−k, if l1 − 1 ≤ i ≤ n − 1.
(2)

The basic idea in the attack is that the contribution vector is a fixed con-
tribution that is the same for all e1 vectors of TYPE 1. Furthermore, assuming
the secret vector s of the form

∣∣∣
∑n−1

i=0 si

∣∣∣ ≥ δ0, it is easily verified that most
coefficients in the contribution vector cv(s) are quite large. With a large fixed
contribution in most coefficients, the probability of having a decryption error
will drastically increase.

It seems difficult to derive an accurate estimation on the error probability
due to the dependence between different positions in the error. One may try to
use experiments to determine the variance and have a Gaussian approximation.
But this distribution could be key-dependent and therefore somewhat unhelpful
in a general sense.

Example 1: We have two choices for l1 in implementation, i.e., l1 = 85 or 65.
In the first case, if we collect errors with 85 consecutive 1’s or −1’s, then this
event happens with probability about

2−85×2 × n × 3
2

≥ 2−160.

In the latter case, the probability is about 2−120. To collect |S| messages/error
vectors, we need 2160|S| (or 2120|S|) precomputation work. If we bound the
number of decryption oracle calls by 264, as suggested by NIST, then the overall
precomputation complexity is bounded by 2224 (or 2184).

Fig. 1. The contribution vector cv(s) for a key s with δ0 = 208 when l1 = 85.

Assume we target a secret key s having δ0 = 208 more 1 (−1) than −1 (1).
For a randomly chosen secret key s of this type we have plotted the contribution
vector in Fig. 1. In Fig. 2 the corresponding histogram for cv(s) is given. We
see that many coefficients in the contribution vector are quite large. Thus, the
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Fig. 2. The histogram of the contribution vector depicted in Fig. 1.

overall probability of having more than 56 coefficients with large absolute value
can be much larger than that in the official analysis of decryption errors.

The error probability is difficult to predict and requires further investigation.
In simulation, as shown in Table 2, we obtained decryption error probabilities of
2−6.6 for l1 = 85 and 2−12.2 for l1 = 65. This should be compared to the general
decryption error probability of 2−115!

Table 2. Decryption error probability Pe for a key s with δ0 = 208.

l1 Pe

85 2−6.6

65 2−12.2

To conclude this part of the attack, we submit a limited number of ciphertexts
of TYPE 1 (say with l1 = 65) for decryption (say 215) and if we detect several
errors (say around 215 ·2−12.2) we assume that δ0 is large. We then get many more
decryption failures in S ′ for this weak key and move to the statistical analysis
part. If few errors are detected, we move on to another public key.

3.3 Attack Step 3 - Statistical Analysis

This step assumes that we have identified a weak public key in the previous step.
After receiving the errors, caused by the vectors in S ′, we need to reconstruct the
secret key s. Since the reconstruction step is the most difficult task for attacking
LAC, we write it in the next section for fully describing the details.

Last, suppose that we have a guessed secret vector denoted by (s′, e′). If
(Δs,Δe) = (s, e) − (s′, e′) is small, we can recover it using lattice reduction
efficiently. Thus, we obtain the correct value of (s, e). To be more specific, we
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want to recover (s, e) from the public key (a,b = as + e). Let b′ = as′ + e′.
We have that b − b′ = aΔs + Δe. This is a new lattice problem with same
dimension but smaller noise, which can be solved with less computational effort.
In conclusion, we can handle with some small errors from the statistical testing.

4 Statistical Analysis

Assume that we have determined a weak key. We now collect the vectors (e1, r)
in S ′ that caused decryption errors and average all the collected vectors. Our
observation is that the parts e1s, −er, and e2 are all highly correlated with the
contribution vector. The intuition behind it is that for a larger absolute value
in the contribution vector, the probability of the corresponding position in W
exceeding 62 is larger, thereby implying that the values of e1s, −er, and e2
should be all larger.

We next derive two different approaches for the statistical analysis. The first
one is a theoretical approach that is easy to analyze, where we recover the secret
s by observing the correlation between e2 and the contribution vector. The
second one is a heuristic approach exploiting the fact that −er has a positive
contribution on almost all the coefficients. We then try to recover the e vector.
This heuristic approach shows stronger correlation in implementation.

4.1 Theoretical Arguments for Statistical Recovery
of the Contribution Vector

This subsection contains a recovery procedure which uses more theoretical argu-
ments. We first note that if we recover the contribution vector (or something
close to the contribution vector) then we can also almost trivially recover the
secret key. The procedure to be given uses the dependence between cv(s) and
the given e2 vector. We know from before that the probability of error in a
particular position i depends on the value of the contribution vector in this posi-
tion, which is here simply denoted cvi. The good thing for analysis is that e2 is
independent of the other parts involved in the error W. Now denote the value
of e2 in position i as Ei for simplicity. The observation we will examine is that
the larger the value of cvi is, the more likely it is that Ei = 1.

We denote the event of decryption error by D, meaning no less than 56
positions are in error. We know that the probability for an error in position
i in the set of vectors causing decryption failure is P (cvi + Ni + Ei > 62|D),
where Ni denotes the non-fixed part of W excluding Ei, that can be numerically
computed via the convolution of probability distributions.

Now let us examine P (Ei = 1|D) through

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i,D)
+ P (no error in pos. i|D)P (Ei = 1|no error in pos. i,D).
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We assume that P (Ei = 1|no error in pos. i,D) ≈ P (Ei = 1|no error inpos.i).
Also, P (Ei = 1|error in pos. i,D) ≈ P (Ei = 1|error in pos. i). Then we can
rewrite as

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i)
+ P (no error in pos.i|D) · P (Ei = 1|no error in pos. i).

(3)

Finally, we note that P (Ei = x|error in pos. i) = P (error in pos. i|Ei = x) ·
P (Ei = x)/P (error in pos. i), and compute P (Ei = 1|error in pos. i) by

P (Ni > 61 − cvi)
P (Ni > 61 − cvi) + 2P (Ni > 62 − cvi) + P (Ni > 63 − cvi)

. (4)

Similarly, P (Ei = x|no error in pos. i) = P (no error in pos. i|Ei = x) · P (Ei =
x)/P (no error in pos. i), and we compute P (Ei = 1|no error in pos. i) by

P (Ni ≤ 61 − cvi)
P (Ni ≤ 61 − cvi) + 2P (Ni ≤ 62 − cvi) + P (Ni ≤ 63 − cvi)

.

We get

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i)
+ (1 − P (error in pos.i|D)) · P (Ei = 1|no error in pos. i).

The probability P (error in pos.i|D) is difficult to derive analytically, as one
has to consider all combinations of error patterns with ≥ 56 errors. However, it
can be determined from simulation results quite efficiently, since its dependence
on cvi is strong. Figure 3 plots this correlation and shows that a bigger |cvi| leads
to a larger P (error in pos.i|D) in almost all the cases.

Let us now examine the difference between P (Ei = 1|D) for two dif-
ferent positions where the cvi values are close, say 10 and 11. Examining
P (error in pos.i|D) for cvi = 10 in simulation gives P (error in pos.i|D) ≈
0.023587 and the same for cvi = 11 gives P (error in pos.i|D) ≈ 0.027138.

With these values, one can compute the absolute difference ε of P (Ei = 1|D)
for cvi = 10 and cvi = 11, respectively. It would then require no more than 4/ε2

decryption failures to distinguish between different cvi values counting only the
frequency of Ei = 1, with high probability. For larger cvi values the difference
between probabilities for consecutive cvi values is increasing, so almost all entries
of cv(s) can be determined through the frequency of Ei = 1.

Note that we need to determine the cvi values for multiple positions, so we
conservatively choose the following formula to estimate the data complexity,

8 ln(nt)
ε2

, (5)

where nt is the number of tests bounded by n. Setting nt = n, we numerically
compute that it requires about 234.0 errors to distinguish all the cvi values larger
than 11 with probability close to 1, if l1 = 85.
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Fig. 3. The correlation of cvi v.s. P (error in pos.i|D). 700, 000 TYPE 1 errors are
collected and l1 = 85. The x axis represents the index i, for 0 ≤ i < n.

Now assume that we have recovered about 870 cvi values6 for all cvi ≥ 11. We
can then trivially recover the secret by using the inherent algebraic equations in
the definition of cvi, i.e., Eq. (2). We first notice that if two consecutive values of
cvi are with an absolute difference 2, then two positions in the secret s are known.
Based on these known positions, we then iteratively recover more positions in
s using the differences of known consecutive values of cvi. We last fully recover
the secret using a small number of guesses or other post-processing procedures
like lattice reduction algorithms.

This recovery approach works well in our simulation7. In the simulation, we
directly recover 594 positions using the algebraic structures discussed before.
We then use the obtained 877 equations corresponding to the 877 positions with
cvi value no less than 11, and write them into a mixed integer linear program-
ming model to maximize the value of

∣∣∣
∑n−1

i=0 si

∣∣∣. After running the optimization
procedure for around 100 seconds using a desktop with an Intel(R) Core(TM)
i7-7700 CPU, we successfully recover 995 positions among the 1024 unknown
entries of s. After guessing a few positions, it is easy to recover the key as most
of the remaining errors are located in the first 100 positions.

For l1 = 65, we similarly compute that it requires about 229.8 errors to
distinguish all the cvi values larger than 9 with probability close to 1. We can
then do a full key recovery similar to the approach discussed above.

6 For a key we chose in simulation, 877 positions are with a cvi value no less than 11.
7 In simulation, we assume that cvi is totally unknown for all cvi ≤ 10, which is pes-

simistic for an attacker. Actually, when the required decryption errors are obtained,
we can have good knowledge of the values cvi even if cvi ≤ 10.
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Table 3. Success probability Ps of estimating cv(s) for a key s with δ0 = 208.

Number of TYPE 1 errors Ps

228.0 0.47

229.5 0.58

230.3 0.65

Experimental Verification. We have launched extensive simulation (of about
40,000 CPU core hours) to obtain 230.3 TYPE 1 errors when setting l1 = 85.
Firstly, we verify that the correlation between the probability P (Ei = 1|D) and
the value cvi is very strong (see Fig. 4). Secondly, the experimental results match
our theoretical prediction well. For instance, as shown in Table 3, one can recover
47% of the values cvi with 228.0 TYPE 1 errors. The ratio increased to 65% (or
58%) when using 230.3 (or 229.5) TYPE 1 errors.

Fig. 4. The correlation of the frequency of (Ei = 1|D) v.s. cvi. 230.3 TYPE 1 errors
are collected and l1 = 85. The x axis represents the index i, for 0 ≤ i < n.

4.2 A Heuristic Approach

We have presented a simple key-recovery approach with theoretical arguments
and also experimental validation. We next propose an alternative heuristic
method, to demonstrate that better ways for key-recovery can probably be found.

We now look at the averaged values of −er for all the vectors in S ′ causing
errors. The strong correlation between this averaged vector and the contribu-
tion vector is shown in Fig. 5. Considering TYPE 1 errors and l1 = 85, we see
that the correlation is much stronger if ten times more (i.e., 300000 v.s. 30000)
decryption errors are provided, and the correlation is already very strong for
300000 error samples. Comparing Figs. 5 and 6, we also see that with a similar
number of decryption failures the correlation between the contribution vector
and the averaged vector is stronger if the error probability is smaller.

The remaining problem is to have an accurate estimation e′ of e.
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Fig. 5. The correlation of cvi v.s. the averaged values of −er w.r.t. different positions
for a key. The first subfigure plots the contribution vector and 300000 (30000) TYPE
1 errors are collected in the second (third) subfigure. We set l1 = 85. The x axis
represents the index i, for 0 ≤ i < n.

One approach is to guess a small subvector esec (say of length ls = 12) of
the e vector and to check the decryption error probability when the occurrences
of −esec (or near-collisions that are defined as a very close pattern) in part of
the ciphertexts in S are larger than a threshold th0. This probability should be
higher for the correct guess, and vice versa for the wrong guesses, among all the
guesses with the same numbers of ‘−1’, ‘1’, and ‘0’.

Fig. 6. The correlation of cvi v.s. the averaged values of −er w.r.t. different positions
for a key. 36690 TYPE 1 errors are collected and l1 = 65. The x axis represents the
index i, for 0 ≤ i < n.
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This idea is similar to that of colliding ‘ones’ from the key and the collected
ciphertexts proposed in [14]. The intuition behind it is that it is more probable
to show multiple (near-)collisions for a right guess because in a decryption error
from S ′, more than 56 positions are of a large positive value.

Let us for instance guess the first ls = 12 entries esec of e. We then record
the number of the ciphertexts in S ′ that more than th0 (near-)collisions to its
negative −esec in each chosen ciphertext r with index from l1 − ls to n are
found. We next need to know the number for the ciphertexts in S that the same
condition holds and compute the likelihood by the ratio of the two numbers. In
simulation, we can instead sample at random a large number (say 10,000,000)
of ciphertexts in S since the size of S could be too large. We then rank all
the guesses by these likelihood values. Note that the index interval should be
adjusted if the guessed consecutive entries start from a different position. We
select this index interval [l1 − ls, n] since the starting entries of the contribution
vector could be (with a high probability) negative.

We now have a list of subkeys near a certain position sorted according to
their key-ranks. We then shift to a nearby starting position and produce a new
list of subkeys with respect to the new position. Since the guessed subkeys with
respect to nearby positions could have large overlaps and the correlation becomes
stronger if the guessed length is longer, we can combine different subkeys to
generate a list of longer subkeys. We iteratively combine the subkeys to have an
estimation on the full e vector.

If we accurately recovered the e vector, then the secret s can be solved from
the public key (seeda,b). Even if some errors occur in the statistical test step,
they can be corrected by a further lattice reduction step.

Implementation Results. We present the implementation results with the
test interval [l1 − ls, n], where ls = 12 and l1 = 65. Thus, the starting positions
of the guessed keys with a high rank should be close to the initial position.
We checked all possible key patterns with length 12, five nonzero positions and
nonzero starting and end entries. The threshold th0 is set to be 18 and a near-
collision is found if in a ciphertext a pattern of length 12 whose inner product
with the guessed pattern is smaller than −4 occurs.

We use the collected 36690 decryption errors and test the ranks of 5 subvec-
tors in e of the select form and also of a starting position close to the initial
position. From Table 4 we see, among the 5 tested ‘true’ keys, that four keys are
with a relatively high rank. For example, the first row in the table states that
a key with two minus ones and three ones is ranked fourth among all the 1200
possible key patterns.
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Table 4. Key ranks of the ‘true’ keys.

Type Rank

[2, 3] 4/1200

[2, 3] 109/1200

[1, 4] 34/600

[1, 4] 87/600

We notice that most of the guesses with a high rank are a subvector of e with
the starting position (left or right) shifted8 for less than 30 positions. Thus, we
can reconstruct a longer (than length 12) subkey near the initial position with
high confidence. The further combination of the subkey patterns is straight-
forward but requires much more implementation effort.

The correlation would be much stronger if more decryption failures are col-
lected, as shown in Fig. 5. We conjecture that increasing the used number of
errors in implementation by a reasonable constant factor (say 10 or 20) would
lead to a full attack, and then the required number of data in the heuristic
approach could be much smaller than that of the theoretical approach.

4.3 The Complexity Analysis

As claimed in Sect. 4.1, when setting l1 = 65, the secret s can be fully recovered
using no more than 229.8 decryption failures in the theoretical approach. Thus,
the precomputation cost can be estimated as 2120+29.8/2−12.2 ≈ 2162. The heuris-
tic approach may reduce the precomputation cost further. For both approaches,
one needs to submit 215 ciphertexts to 264 decryption algorithms (public keys)
to determine the weak key, with complexity about 279. He also needs to perform
the statistical test whose complexity is negligible. It is common to exclude the
precomputation effort in the complexity analysis since the precomputation will
be done only once; therefore, we claim an overall attacking complexity of 279.

4.4 Discussions

In this part, we discuss possible extension of the new attack.

Increase the Weak-Key Probability. In implementation, weak keys with
probability of 2−64 are targeted. Based on the simulation results, we in Table 5
show the precomputation cost for generating a ciphertext regarding weak keys of
various probability p. If the TYPE 2 errors are chosen, then one can achieve an
error rate of about 2−12 for weak keys with a fairly large probability, say 2−16,
having the precomputation effort below the claimed 256-bit (classical) security

8 This shift operation can be viewed as being multiplied by xj for j ∈ Z over the ring
Zq [x]

(xn+1)
.
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level of LAC256. These keys can be risky, under the assumption that a similar
level of key information (correlation) can be extracted for a fixed number of
errors with similar error rates.

Table 5. Precomputation cost of generating a ciphertext for random keys with prob-
ability p to achieve an error rate of about 2−12.

p log2(C) l1 l0 δ0

2−64 120† 65 0 208

2−32 140 145 135 143

2−16 220 225 215 98
†This complexity can be lower if l0 �= 0

5 Attacking the LAC Version in Round 2 of the NIST
PQ-Project

The authors very recently revised the LAC proposal when it entered the round
2 of the NIST post-quantum standardization effort, see [20,21]. The introduced
modifications are a few:

– They employed a new coding scheme where the message is firstly encoded
with BCH codes and the codeword is further encoded with the D2 error
correcting codes. The BCH code now corrects much less number of errors (16
errors can be corrected), but the addition of the D2 encoder makes the overall
error probability roughly the same as before. Also, the message/key size is
decreased to 256 bits.

– The noise distribution is changed to have a constant weight and the same
number of ones as minus ones. For instance, the vectors of s, e, e1, r are
now sampled from Ψn,h

1 , containing exactly h/2 ones and h/2 minus ones,
and the distribution of e2 is unchanged. The authors9 made this change to
resist against the high Hamming weight CCA attacks [1,8], in which higher
decryption error rates are achieved via choosing high Hamming weight mes-
sages/errors through precomputation.

– Some 4 bits of each position in the second part of the ciphertext are dropped,
bringing some ciphertext compression. This however adds an additional noise
term uniformly distributed in [−7, 7].

Table 6 shows the concrete parameters of LAC256-v2 proposed in the NIST
round 2 submission. In LAC256-v2, lv is equal to 800; thus only the first 800 posi-
tions matter, and the D2 encoding/decoding combines two positions of distance
400 apart10. The decryption error probability is estimated to be 2−122.
9 In the round 2 submission [20], they also argued that ‘it is difficult to get any

information about the private key from these decryption failures’.
10 This part is verified from the reference implementation.



102 Q. Guo et al.

Table 6. Proposed parameters of LAC256-v2 in round 2.

n q R h lv Distribution ecc DER Security

1024 251
Zq [x]

〈xn+1〉 512 800 Ψ1, Ψ
n,h
1 BCH[511, 256, 33] + D2 2−122 V

We shortly present the steps of generalizing the previous attack to the new
version. The basic idea is that we split the enabling error patterns in two parts,
one part being the even positions having a positive contribution and the second
part being the odd positions having a negative contribution. The same goes for
the desired pattern in the secret vector s. We expect the contribution of the two
parts to have the same sign and the sum to be roughly doubled.

5.1 Attack Step 1 - Precomputation

We again construct a special set S of messages/error vectors by precomputation.
We are only interested in keeping messages that give rise to noise vectors of
special form of the e1 vector. Let us include combinations where the error vector
e1 contains an interval of consecutive l1 entries, where every even position in
the interval contains a 1 and every odd position contains a −1 (or vice versa).
Thus, l1 is even. The starting position of this interval is chosen from [801, n− l1],
leading to the largest contribution to the first lv = 800 positions11 of e1s.

Assuming a randomly selected error vector from the error distribution Ψn,h
1 ,

the probability of finding such an interval starting from a fixed position in
[801, n − l1] is then

p = 2 ×
(

h/2
l1/2

) · (
h/2
l1/2

)

(
n
l1

) · (
l1

l1/2

) .

The overall probability can be approximated by

p0 ≈ (n − 800 − l1)p. (6)

We denote the type of noise vectors of the above kind as TYPE 1b noise vectors.
Just as before, we can consider many other special forms of the noise that can

be useful in an attack, for example noise vectors similar to what we previously
defined as TYPE 2 noise vectors but split in even and odd parts. We also define
TYPE 2b errors that the error vector e1 contains an interval of consecutive
l1 + l0 entries, where all the even positions include l1/2 ones and l0/2 zeros, and
all the odd positions include l1/2 minus-ones and l0/2 zeros (or vice versa). The
starting position of this interval is chosen from [801, n − l1 − l0]. With the same
precomputation effort, this error pattern can lead to a much larger decryption
error probability compared with TYPE 1b errors.
11 Due to the mod (xn + 1) operation, the controlled interval is split into two con-

secutive parts in (l1 − 1) columns of the matrix generated by shifting e1. These
two parts will be multiplied by 1 or −1, respectively, leading to a reduced absolute
contribution.
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After finishing this step, we assume that we have a stored set S of precom-
puted messages/error vectors with the TYPE 1b (or TYPE 2b) property for the
e1 part. We could describe a TYPE 1b error as a TYPE 2b error with l0 = 0.

5.2 Attack Step 2 - Submit Ciphertexts for Decryption

Similar to the procedure in Sect. 3.2, we map the messages in S to ciphertexts
and submit them to the decryption algorithm for each public key. We keep track
of the set of error vectors causing a decryption error, denoted S ′, and record
the decryption error rate. We then attempt to recover the public key for keys
where the decryption error rate is large i.e., targeting users with error rates in a
decreasing order.

The weak key property for s that gives a large decryption error rate, is the
property ∣

∣∣∣∣∣

n/2−1∑

i=0

s2i

∣
∣∣∣∣∣
+

∣
∣∣∣∣∣

n/2−1∑

i=0

s2i+1

∣
∣∣∣∣∣
≥ δ0.

For a noise distribution with fixed n/4 ones and n/4 minus ones, it is easy to
compute the probability for the above condition. For example, if we set δ0 = 206,
the secret s will have the above property with probability about 2−64. Since∑n

i=0 si = 0, we further have
∣
∣∣∣∣∣

n/2−1∑

i=0

s2i

∣
∣∣∣∣∣
=

∣
∣∣∣∣∣

n/2−1∑

i=0

s2i+1

∣
∣∣∣∣∣
=

δ0
2

= 103.

We now examine the decryption error probability for such a weak secret s.
The error term in the new LAC is of the form

W = e1s − er + e2 + e3,

where e3 is a new error term due to the ciphertext compression.
We now get a decryption error occurring if among all 400 values after the D2

encoding/decoding of W, at least 17 of them are in error.
The D2 encoding/decoding means that the same binary value (message/key

bit) is encoded in two different code positions and the decoding means adding
the two positions together and checking if the sum is around 0 or around q.
For an error to occur, the sum of the noise in the two positions must have an
absolute value larger than �q/2� = 125.

In polynomial form, the error w(x) is computed as

w(x) = e1(x)s(x) − e(x)r(x) + e2(x) + e3(x).

We focus on e1(x)s(x) and consider the remaining as noise.
For simplicity, we assume that all error vectors are of TYPE 1b and have

the assumed sequence of even ones and odd minus ones in their last positions,
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i.e., e1(x) is of the form (e0, e1, . . . , en−1) = (e0, . . . , en−l1−1, 1,−1, . . . , 1,−1).
We examine the e1s part, where we again have both e1 and s of special forms.
For a particular key s, the contribution from the fixed part (en−l1 , . . . , en−1) =
(1,−1, . . . , 1,−1) to the multiplication e1s is the contribution vector now defined
as follows.

Definition 2 (Contribution vector for TYPE 1b errors). The contribu-
tion vector cv(s) of (en−l1 , . . . , en−1) = (1,−1, . . . , 1,−1) for a secret key s is
defined as

(cv0, cv1, . . . , cvn−1),

where

cvi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i+l1
k=i+1,k odd sk − ∑i+l1

k=i+1,k even sk, if 0 ≤ i < n − l1, i even,
∑i+l1

k=i+1,k even sk − ∑i+l1
k=i+1,k odd sk, if 0 ≤ i < n − l1, i odd,

∑n−1
k=i+1,k odd sk − ∑n−1

k=i+1,k even sk

−(
∑i+l1−n

k=0,k odd sk − ∑i+l1−n
k=0,k even sk), if n − l1 ≤ i ≤ n − 1, i even,

∑n−1
k=i+1,k even sk − ∑n−1

k=i+1,k odd sk

−(
∑i+l1−n

k=0,k even sk − ∑i+l1−n
k=0,k odd sk), if n − l1 ≤ i ≤ n − 1, i odd.

(7)

The new idea in this attack is that the contribution vector is a fixed con-
tribution as before for all e1 vectors of TYPE 1b, but now it will shift in sign
depending on whether i is even or odd.

Assuming the secret vector s of the form
∣∣∣
∑n/2−1

i=0 s2i

∣∣∣+
∣∣∣
∑n/2−1

i=0 s2i+1

∣∣∣ ≥ δ0,
we can verify that most coefficients in the contribution vector cv(s) are quite
large, but with shifting signs (see Fig. 7 for an instance). Again, with a large
fixed contribution in most coefficients, the probability of a decryption error will
be much larger than expected.

Fig. 7. The contribution vector cv(s) of a key s with δ0 = 206 when l1 = 86, for TYPE
1b errors. The first figure plots the whole vector and the second one plots its first 100
positions.
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Table 7. Decryption error probability Pe for a key s with δ0 = 206.

log2(Cpre) l1 l0 Pe

170 86 0 2−21.03

128 66 0 2−28.42

120 114 80 2−12.74

In LAC256-v2, the D2 encoding/decoding combines two positions of dis-
tance 400 apart, which means that the fixed contribution is of the same sign
in both positions and we have a large fixed contribution when summing the two
positions.

Example 2: For LAC256-v2 we tested three choices for l1 and l0 in implemen-
tation, i.e., for TYPE 1b errors with l1 = 86 and 66, and for TYPE 2b errors
with l1 = 114 and l0 = 80. We targeted a secret key s having δ0 = 206, and
the key probability can be estimated as 2−64. The simulated decryption error
probabilities (no less than 17 positions in error) are shown in Table 7, where the
first column describes the computational efforts (in log2(·)) of finding one desired
message/noise. We see that the decryption error probability can be higher than
2−13 with complexity of about 2120 for one message/noise.

We note that the error performance of the new LAC256-v2 in round 2 with
respect to our attack is slightly better than that of the old version, but is still
far from preventing this attack.

Fig. 8. The correlation of cv w.r.t. the TYPE 1b errors with l1 = 194 v.s.
P (error in pos.i|D). About 6, 500, 000 TYPE 2b errors are collected with l1 = 114
and l0 = 80.
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5.3 Attack Step 3 - Recovering S

This final step assumes an identified weak public key in the previous step. After
receiving the decryption errors, caused by the vectors in S ′, we reconstruct the
secret key s. The procedure is analogue to the procedure described in the previous
section. Throughout the section, we focus on TYPE 2b errors as they can lead
to a higher decryption error probability. Note that the distributions of the i-th
and the (i + 400)-th positions (of say e2) should be studied jointly due to the
implementation of the D2 error correcting codes.

The interesting main observation is that for TYPE 2b errors with l1 = 114
and l0 = 80, the distribution of P (Ei|D) is a function of the sum of the i-th and
the (i + 400)-th positions of the contribution vector for TYPE 1b errors with
l1 = 194, where Ei is the random variable representing the sum of the the i-th
and the (i + 400)-th positions of e2.

We plot the simulation results for verifying this correlation in the first and the
second subfigures of Fig. 9. Since about 238 encryptions have been performed,

Fig. 9. The correlation of cv w.r.t. the TYPE 1b errors with l1 = 194, P (Ei|D) and
P (Ei|error in pos.i, D). About 225.09 TYPE 2b errors are collected with l1 = 114 and
l0 = 80.



A Novel CCA Attack Using Decryption Errors Against LAC 107

it is beyond our computational capability to run an even larger experiment.
However, the correlation between the sum of two positions in the contribution
vector w.r.t. the TYPE 1b errors with l1 = 194 and P (error in pos.i|D) is much
stronger and can be verified with fewer decryption errors. This strong correlation
explains our main observation.

We show the latter strong correlation in Fig. 8 where the plots are obtained
from about 6, 500, 000 TYPE 2b errors. The left two subfigures, (a1) and (a2),
plot the correlation for the whole vector of length 400, and the right two, (b1)
and (b2), plot the last 40 entries.

We can now use the theory from Sect. 4.1 to study the data complexity for this
attack on LAC256-v2. We first obtain an equation with the same form as Eq. (3),
and the difficulty is then to numerically compute P (Ei = 1|error in pos. i) (or
P (Ei = 1|no error in pos. i)). Since we include l0 zeros in the controlled interval
to form TYPE 2b errors, the contribution (denoted by a random variable CV)
from the controlled intervals (of the i-th and (i + 400)-th positions) is no longer
a constant. We could approximate the distribution of CV by using a typical
choice, i.e., assuming half of the positions of s corresponding to the controlled
intervals are 0, and then compute the distribution via convolution. Then, P (Ei =
1|error in pos. i) can be computed as

∑

cv

P (CV = cv)P (Ei = 1|error in pos. i,CV = cv),

where similarly to Eq. (4), P (Ei = 1|error in pos. i,CV = cv) can be computed
as 4P (Ni>124−cv)

f(cv) , and f(cv) = P (Ni > 123−cv)+4P (Ni > 124−cv)+6P (Ni >

125 − cv) + 4P (Ni > 126 − cv) + P (Ni > 127 − cv). Here Ni is defined, similar
to that in Sect. 4.1, as the noise term after the D2 decoding excluding the CV
part and the Ei part. We compute P (Ei = 1|no error in pos. i) similarly, and
finally apply Eq. (5) to estimate the data complexity12. With this analysis, the
complexity to distinguish the sum of the i-th and the (i + 400)-th positions of
the contribution vector for TYPE 1b errors with l1 = 194 to be 89 or 90 is 234.73.

If we test P (Ei|error in pos.i,D) empirically, as shown in the last subfigure of
Fig. 9, we obtain a data complexity estimation of about 233.42, to distinguish the
sum to be 89 or 90. This empirical estimation verifies our theoretical estimation
to which we will stick in our later analysis.

In simulation, we obtained 151 equations corresponding to the index set I90

with size 151, where for i ∈ I90 the sum of the i-th and the (i+400)-th positions
of the contribution vector for TYPE 1b errors with l1 = 194 is no less than 90.
We do more rounds to collect more linear equations using error patterns derived
from TYPE 2b errors, i.e., replacing one position in the controlled interval by an
carefully selected position outside the interval. We ask the two positions to be
both even or odd and assign corresponding values of the same sign. Since only a
single index of the controlled positions is changed, the contribution vector or the
12 The analysis is conservative because we only consider one value of Ei conditioned

on the collected errors. In fact, we can use the full distribution, i.e., the probabilities
of Ei|D being 5 different possible values, to reduce the data complexity further.
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error probability keeps (or has a small difference) but more linear equations of
entries from s are obtained. One then performs about n/151 ≈ 7 times to collect
enough linear equations for a full recovery. In summary, the required number of
decryption errors is bounded by 238 and the overall precomputation complexity
is estimated to be 2171.

6 Discussions

On Multi-target Protection. Many proposals to the NIST post-quantum
standardization process have a multi-target protection technique, i.e., including
the public key as an input to a hash function for generating the noise seeds.
We see that for LAC256, the multi-target protection cannot thwart this attack
because this attack can work in the single-key setting that is independent of the
multi-target protection technique. Actually, this attack recovers the key with
precomputation complexity 2162 and success probability 2−64, when only a single
key is assumed.

Using the adaptive attack model in [13], for LAC256 with the multi-target
protection, one can prepare 215 ciphertexts for 264 users with complexity
2120+64+15 = 2199 if l1 = 65, to determine the weak keys. The dominant part in
the complexity analysis is a precomputation of 2199, far below the 2256 bound.
We can further reduce the complexity by balancing the computational efforts in
different steps.

Similar analysis applies to LAC256-v2.

On Other LAC Parameter Settings. On LAC128-v2 having a key with prob-
ability 2−64, with precomputation of 258 for one chosen ciphertext, we simulated
a decryption failure probability of around 2−28. This experimental data demon-
strate that LAC128-v2 could be vulnerable to the newly proposed attack in the
multi-target setting. This multi-target attack can be prevented via including the
multi-target protection technique discussed before. We believe that LAC192-v2
is more vulnerable to the multi-target attack than LAC128-v2 since one has a
less restricted bound for precomputation.

7 Conclusions and Future Works

We have presented a CCA attack on the scheme LAC256, a proposal to the NIST
Post-Quantum Cryptography Standardization project that has passed the first
round selection. This attack exploits the decryption failures and recovers one
weak key among about 264 public keys. This attack has two versions due to the
two different approaches to reconstruct the secret key from the decryption fail-
ures. With the first approach, we present an attack with complexity of 279, i.e.,
the cost of determining a weak key, if the required precomputation cost is bound
by 2162 encryptions. One can definitely achieve different trade-offs between the
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attacking complexity and the precomputation cost via choosing suitable param-
eters. The second approach is similar to the reaction attacks [10,14,15] on the
MDPC and LDPC based cryptosystems, which could heuristically decrease the
precomputation effort further. We also discuss the possibility of attacking a key
with a much larger probability, say 2−16. Last, we discuss the attack on a new
version of LAC256 in round 2 of the NIST PQC project. We claim a multi-target
attack with complexity bounded by 280 and precomputation of about 2171 to
recover a weak key among about 264 public keys. This attack also means a CCA
attack on LAC256-v2 with precomputation of 2171, and success probability 2−64,
in the single-key setting.

This attack can also be applied to other schemes. It is interesting future work
to check the performance of the attack with respect to different proposals in the
NIST Post-Quantum Cryptography Standardization project.

Acknowledgments. The authors would like to thank Xianhui Lu and the anonymous
reviewers from Asiacrypt 2019 for their helpful comments. This work was supported in
part by the Swedish Research Council (Grant No. 2015-04528), by the Swedish Founda-
tion for Strategic Research (Grant No. RIT17-0005), and by the Norwegian Research
Council (Grant No. 247742/070). Jing Yang was also supported by the scholarship
from the National Digital Switching System Engineering and Technological Research
Center, China. The computations/simulations were performed on resources provided
by UNINETT Sigma2 - the National Infrastructure for High Performance Computing
and Data Storage in Norway, and by Swedish National Infrastructure for Computing.

References

1. NIST Post-Quantum Cryptography Forum. https://groups.google.com/a/list.nist.
gov/forum/#!forum/pqc-forum. Accessed 11 Jan 2019

2. NIST Post-Quantum Cryptography Standardization. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization. Accessed 24 Sept 2018

3. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

4. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innova-
tions in Theoretical Computer Science, Cambridge, MA, USA, 8–10 January 2012,
pp. 309–325. Association for Computing Machinery (2012)

6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
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Abstract. Attribute based encryption (ABE) is an advanced encryp-
tion system with a built-in mechanism to generate keys associated with
functions which in turn provide restricted access to encrypted data. Most
of the known candidates of attribute based encryption model the func-
tions as circuits. This results in significant efficiency bottlenecks, espe-
cially in the setting where the function associated with the ABE key is
represented by a random access machine (RAM) and a database, with
the runtime of the RAM program being sublinear in the database size.
In this work we study the notion of attribute based encryption for ran-
dom access machines (RAMs), introduced in the work of Goldwasser,
Kalai, Popa, Vaikuntanathan and Zeldovich (Crypto 2013). We present
a construction of attribute based encryption for RAMs satisfying sublin-
ear decryption complexity assuming learning with errors; this is the first
construction based on standard assumptions. Previously, Goldwasser et
al. achieved this result based on non-falsifiable knowledge assumptions.
We also consider a dual notion of ABE for RAMs, where the database
is in the ciphertext and we show how to achieve this dual notion, albeit
with large attribute keys, also based on learning with errors.

1 Introduction

Attribute-based encryption (ABE) [54] is a powerful paradigm that provides a
controlled access mechanism to encrypted data. Unlike a traditional encryption
scheme, in an attribute-based encryption scheme, an authority can generate a
constrained key skP for a program P such that it can decrypt an encryption
of message μ, associated with attribute x, only if the condition P (x) = 0 is
satisfied. The last decade of research in this area [13,21,26,28,36,37,39,41,42,
45,50,54,56–58] has led to several useful applications including verifiable com-
putation [51] and reusable garbled circuits [35]. Special cases of ABE, such as
identity-based encryption [12,18,24,55], and generalizations of ABE, such as
functional encryption [14,25,49], have also been extensively studied.

Current known constructions of ABE offer different flavors of efficiency guar-
antees and can be based on various cryptographic assumptions. Barring few
c© International Association for Cryptologic Research 2019
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exceptions, all these constructions [13,38,39,42,46,56] model the program, asso-
ciated with the constrained keys, as circuits. Real-world programs, however, are
composed in the so-called Random Access Machine (RAM) model. In this paper,
we consider the natural question of constructing attributed-based encryption
scheme for RAM programs.

As in the circuit setting, an attribute-based encryption scheme for RAM
programs consists of the setup, key generation, encryption and decryption algo-
rithms. The key generation algorithm takes as input the master secret key, pro-
gram P , database D and produces an attribute key associated with (P,D). The
encryption algorithm takes as input attribute x, secret message μ and produces
a ciphertext. Decrypting this ciphertext using the key of (P,D) yields the secret
message μ if and only if PD(x) = 0.

Towards constructing attribute-based encryption for RAMs, a näıve approach
is to convert RAM programs generically to circuits: a RAM program initialized
with N words of memory and running in time T can be converted to a circuit of
size O((N + T ) · T ) and depth T . Thus, the approach via näıve RAM-to-circuit
conversion would incur a (N +T ) ·T multiplicative factor in the decryption time.
In this paper, we are interested in the common case when T is sublinear in N ,
e.g., imagine that the RAM is initialized with a large database with N entries
and the RAM program models a binary search on the database. Goldwasser et
al. [36] gave the first feasibility result of ABE for RAM programs with sub-linear
decryption time based on the existence of extractable witness encryption and
succinct non-interactive arguments of knowledge (SNARK). Recent works [10,
15,27], however, have brought into question the veracity of the assumptions of
extractable witness encryption and SNARKs.

Since building ABE for RAMs on solid cryptographic foundations is an
important problem, we ask the following natural question:

Is there an ABE for RAMs scheme with sublinear decryption overhead based
on standard assumptions? More specifically, we would like the decryption over-
head to be o(N) · poly(T, λ) where λ is the security parameter.

1.1 Our Results and Contributions

ABE for RAMs with Sub-linear Decryption Efficiency. We construct an
ABE scheme for RAMs with sub-linear decryption overhead from the Learn-
ing With Errors (LWE) assumption. Henceforth we assume that the scheme is
parameterized with N and T which denote the size of the database and the
upper bound on the runtime of the RAM respectively, and a security parameter
denoted by λ. Our construction achieves the following:

– There is an initial setup phase that generates a global public parameter of
size poly(T, λ) and master secret key of size poly(T, λ).

– Anyone that has access to the public parameters can encrypt a message μ to
an attribute x of size λ (For simplicity, we set the size of attribute x to be
λ. However, the size of the attribute can be set in advance and of any fixed
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polynomial in λ) — later x will serve as an input to a RAM program. The
encryption time and ciphertext size is upper bounded by poly(T, λ).

– An authority with master secret key can generate a decryption key skP,D given
the description of a RAM program P (where the description will include the
RAM’s next instruction circuit) and a long attribute vector denoted by D of
size N , and the size of the secret key skP,D is upper bounded poly(T,N, λ).

– Finally, given the ciphertext ctx that is associated with the attribute x, any-
one with the public parameters and the decryption key skP,D can decrypt
the plaintext message μ if PD(x) = 0; and importantly decryption time is
poly(T, λ), i.e., independent of the RAM’s initial memory size N . For security,
we show that an adversary learns nothing about the encrypted plaintext μ if
he does not possess any skP such that PD(x) = 0.

More formally, our main theorem is the following:

Theorem 1.1 (ABE for RAMs). Assuming the hardness of the Learning
With Errors problem (with sub-exponential modulus)1, there exists an ABE
scheme for RAMs with poly(T, λ) decryption efficiency, i.e., independent of N .

Moreover, (i) the cost of generating public parameters is poly(T, λ), i.e., inde-
pendent of N , (ii) the cost of generating secret keys is poly(N,T, λ) and, (iii)
the cost of generating ciphertexts is poly(T, λ).

Input-Specific Runtime. While the construction in the above theorem has decryp-
tion complexity proportional to the worst case running time of the RAM pro-
grams, we can transform this scheme into another scheme where the decryption
complexity is input-specific. This is performed by running log T copies of the
scheme by setting the worst case runtime of the first scheme to be 2, second
scheme to be 22, so on and the runtime of the (log T )-th scheme is set to be
T . This idea has been used in prior works (for instance [36]). Note that this
increases the size of the public parameters, keys and ciphertexts by a multiplica-
tive factor of log T .

On Fixing the Attribute Length. In our construction, the length of the attribute
is fixed at the time of setup. In particular, both the public parameters and the
attribute keys grow with the length of the attribute. Note that the attribute keys
already grow proportional to the length of the database and the database size
is typically larger than the attribute length. However, achieving public key sizes
independent of the attribute length would be interesting, especially given that
there are works [21] that have achieved this in the context of ABE for circuits.

Comparison with [36]. As mentioned earlier, [36] also achieves ABE for RAMs
with sub-linear decryption complexity from exotic assumptions. The only draw-
back in our scheme in comparison with [36] is that the parameters in the con-
struction of [36], specifically the public parameters, ciphertext size and the key
sizes do not grow with the maximum time bound. On the other hand, our param-
eters do grow with the maximum time bound T . There is evidence to suggest
1 All known lattice-based ABE for circuits [13] are based on the same assumption.
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that an ABE for RAMs scheme whose parameters do not grow with the max-
imum time bound can only be based on strong cryptographic assumptions. In
particular such a notion would imply succinct randomized encodings for Turing
machines [6,11]2; a notion, despite numerous attempts, we don’t yet know how
to build from well-studied assumptions.

Comparison with Circuit-Based Schemes. We compare the parameters
we obtain in our scheme with the parameters obtained in the naive approach of
RAM-to-circuit conversion and then applying previously known ABE for circuits
schemes. Refer to Fig. 1.

Schemes # of Zn×m
q # of Zm

q Size of Decryption
Public key Ciphertext Key of (P,D) complexity

of (x, µ)
Via ABE

for circuits [13] Õ(|x|) Õ(|x|) |P |+N +
(

Õ(1)

# of Z
n×m
q

)
Õ((T +N)T )

Via ABE

for circuits [21] Õ(1) Õ(|x|) |P |+N +
(

Õ(1)

# of Z
n×m
q

)
Õ((T +N)T )

Our Work for

RO-RAMs Õ(|x|+ T ) Õ(|x|+ T ) |P |+
(

Õ(TN)

# of Z
n×m
q

)
Õ(T )

Our Work for

RAMs Õ(|x|+ T ) Õ(|x|+ T ) |P |+
(
Õ(T (N+T ))

# of Z
n×m
q

)
Õ(T )

Fig. 1. We compare the parameters in our work with previous works. The lattice
dimension (n, m, q) is asymptotically the same in all three approaches. The Õ notation
suppresses poly-logarithmic factors (in N and T ). The encryptor takes an auxiliary
input x and the key generator takes as input a program P and a database D of size N .
The decryption complexity is calculated in terms of vector-matrix multiplication over
Zq. The attribute key is generated for a RAM program P with worst case runtime to
be T and it takes time t to compute on D. In previous works, an attribute key for P is
generated by first transforming it into a circuit of size (T + N) and depth T and then
generating an attribute key for the resulting circuit.

While the key sizes in our scheme are larger than the ones obtained via
circuit ABE schemes, our scheme has the following advantage over ABE for
circuit schemes: since the same decryption keys, once generated, can be applied
to (unbounded polynomially) many ciphertexts, the cost of key generation and
its size can be amortized over multiple decryption queries. This is especially
useful in scenarios, where a client can perform a one-time cost of generating
keys and sending it over to the server during the offline phase and during the
online phase, can verifiably delegate multiple computations by suitably sending
2 The works [6,11] show implication of ABE for Turing machines (as defined in [6])

to succinct randomized encodings (Appendix A.5 in [11]).
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encryptions of its inputs; note that in this scenario, we are only interested in
verifying whether the server has performed the computation correctly and not
hiding the computation itself.

Dual ABE for RAMs. We also consider an alternate notion of ABE for RAMs,
that we call dual ABE for RAMs. In this notion, the database is part of the
ciphertext and not the key. That is, the key generation procedure now only takes
as input the master secret key and the RAM program P while the encryption
procedure takes as input the database D, the auxiliary input x (in the technical
section, we consider x to be part of D) and the secret message μ. As before, we
require that it should be possible to recover μ if indeed PD(x) = 0.

We demonstrate a construction of dual ABE for RAMs, also based on the
learning with errors problem with the same decryption efficiency as stated in
Theorem 1.1. In more detail,

Theorem 1.2 (Dual ABE for RAMs). Assuming the hardness of the Learn-
ing With Errors problem (with sub-exponential modulus)3, there exists a dual
ABE scheme for RAMs with poly(T, λ) decryption efficiency, i.e., independent
of N .

Moreover, (i) the cost of generating public parameters is poly(N,T, λ), (ii)
the cost of generating secret keys is poly(N,T, λ) and, (iii) the cost of generating
ciphertexts is poly(N,T, λ).

On Large Attribute Keys. Unlike our construction of ABE for RAMs (Theo-
rem 1.1), our construction of dual ABE for RAMs has public keys that grow
proportional to the size of the database. Moreover, even the size of our attribute
keys depends on the database size. While this is not inherent and an undesirable
feature of our scheme, we see our work as a first step in achieving dual ABE
schemes beyond circuits; note that none of the previous ABE schemes achieved
sub-linear decryption property and our dual ABE construction is the first to do
so.

1.2 Technical Overview

We give an overview of the techniques employed in our main construction. We
later reuse some of the techniques used in our main construction to obtain a
construction in the dual setting.

Starting Point: Garbled RAMs. A natural idea to build ABE for RAMs is
to use garbled RAMs [29,30,32]. A garbled RAM allows for separately encoding
a RAM program4-database pair (P,D) and encoding an input x such that the
encodings only leak the output PD(x); computing both the encodings requires
a private key not revealed to the adversary. Notice that a garbled RAM scheme
implies a one-time, secret key ABE for RAM scheme; meaning that the adversary

3 All known lattice-based ABE for circuits [13] are based on the same assumption.
4 The formal definition of a RAM program can be found in the preliminaries.
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only gets to make a single ciphertext query and a single attribute key query.
Indeed, it is unclear how to remove the one-time restriction while simultaneously
achieve a public-key ABE for RAMs scheme by generically using garbled RAMs.
Hence, we circumvent this conundrum by diving into the innards of the existing
garbled RAMs schemes. The hope would be to adopt some of the techniques
used in constructing garbled RAMs to build an ABE for RAMs scheme.

Most of the current known constructions of garbled RAMs have the follow-
ing blueprint: to garble a RAM program P (associated with a step circuit C),
database D, generate T garbled circuits, where T is an upper bound on the run-
ning time of P . The ith garbled circuit performs the execution of the ith time step
of P . Also, every entry of the database D is suitably encoded using an appropri-
ate encoding scheme (for instance, in [32], an IBE (identity-based encryption)
key is associated with every entry of the database). The garbling of P consists
of all the T garbled circuits and the encoding of the database D. The encoding
of input x consists of wire labels of the first garbled circuit corresponding to the
input x.

To evaluate a garbling of P on an encoded database D and wire labels of x,
perform the following operations for i = 1, . . . , T − 1:

– If i = 1, evaluate the first garbled circuit on wire labels of x.
– If i > 1, evaluate the ith garbled circuit to obtain output encodings of the ith

step of execution of PD on x.
– Next, we compute the recoding step that converts the output encodings of the

ith step into the input encodings of the (i + 1)th step. These input encodings
will be fed to the (i + 1)th garbled circuit.

The output of the T th garbled circuit determines the output of execution of
PD(x).

From Garbled RAMs to ABE for RAMs: Challenges. Towards realizing
our hope of using garbled RAMs techniques to build an ABE for RAMs scheme,
we encounter the following fundamental issues:

– The garbling and encoding operations in a garbled RAM scheme are inher-
ently secret-key operations; they require a shared secret-key to compute gar-
bled program and database encodings respectively. Since our goal is to con-
struct public-key ABE for RAMs, the encryptor can perform neither the
garbling nor the encoding procedures.

– Garbling schemes typically do not offer any reusability property5; they are
useful only when a single computation needs to be hidden. It is unclear how to
use garbled circuits, an integral part of current garbled RAM constructions,
in the ABE setting, where multiple attribute keys need to be issued.

5 An exception is the reusable garbling scheme of Goldwasser et al. [35], however
their scheme only offers one-sided reusability: that is, their scheme only allows the
adversary to get a single garbled circuit which can be reused across multiple input
encodings. This is not useful in our setting since the adversary gets to query multiple
keys. Moreover, just like any garbling scheme, even reusable garbled circuits require
secret-key to perform the encoding operations.
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– Tied to the issue of using garbled circuits is also the issue of implementing
the recoding step. We need to implement a recoding step that can be reused
across different computations.

Our Solution in a Nutshell. The main technical contribution of this paper is
to identify a template to solve this problem and instantiate this template using
a novel combination of existing lattice-based techniques.

We describe our template of ABE for RAMs. This will be an over-
simplifcation of our actual scheme and is intended to help the reader towards
understanding our final construction. For now, focus on the setting when the
keys are only associated with read-only RAMs (i.e., they only read from the
memory and never write into the memory). This template can be easily adapted
to the setting where the program can also write to the memory.

– A key for a program P and a database D will consist of two parts: the first
part, denoted by skD, is associated with the database and the second part,
denoted by (StepKey1, . . . ,StepKeyT ), consists of T sets of recoding keys
with T being the maximum running time of PD(·).

– A ciphertext for an input x and a secret message μ consists of two parts
(ct(1)x , ct

(2)
x ) and an encryption of μ, namely ctμ (we will need a scheme that

satisfies some specific properties): the first part ct(1)x serves as encoding of the
initial input to the step circuit of the RAM program. We describe the role of
the second part ct

(2)
x when we describe the decryption operation below.

– The decryption of a ciphertext of (x, μ) using a key of (P,D) proceeds in the
following steps:

• Translation Step: First, using the second part of the ciphertext, i.e.,
using ct

(2)
x , and using the key associated with the database skD in the

attribute key, obtain a probabilistic encoding of D.
• The following operations are executed for time steps t = 1, . . . , T :

* Evaluation Step: Homomorphically evaluate on the input encodings
of the tth step to obtain the output encodings of the tth step. This is
akin to the evaluation of the tth garbled circuit in the garbled RAM
constructions.

* Recoding Step: Recode the output encodings of the tth step to obtain
the input encodings of the (t + 1)th step. This is akin to the recoding
step of the garbled RAM constructions.

The tth evaluation and the recoding steps are performed using the key
StepKeyt. Moreover, they interact with the probabilistic encoding of D
produced in the translation step.
If the output of the final T th step is an encoding of 0 then this is used
to decrypt the encryption of μ, given as part of the ciphertext, to obtain
the result μ.

We now show how to implement the above template using lattice-based tech-
niques. The starting point to our construction is the work of [13].
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Implementation of Our Template: Read-Only RAMs. We implement our
template using lattice-based techniques; as before, we first consider the read-only
setting. We start with the high level description of the encryption procedure:
let (ct(1)x , ct

(2)
x , ctμ) be the ciphertext associated with the input x and secret

message μ. The first part ct
(1)
x consists of lattice-based encodings of x, initial

state, initial read address and the initial read value of the RAM program. A
lattice-based encoding of a bit b is computed using s · (A + b · G) + e, where

s $←− Z
1×n
q ,A $←− Z

n×m
q and e ∈ Z

1×m
q is drawn from a suitable error distribution;

such lattice-based encodings has been studied by many works in the past [13,38].

We generate ctμ to be 〈s,u〉 + μ�q/2� + e∗, where u, s $←− Z
1×n
q and e∗ ∈ Zq is

drawn from a suitable error distribution.
We will postpone the discussion on the generation of ct(2)x and the attribute

keys. Instead, we first mention the main ideas incorporated in the translation,
evaluation and the recoding steps; this will then guide us towards identifying
the attribute keys and also ct

(2)
x that will let us execute these steps.

– Implementing the translation step: The goal of this step is to obtain a
lattice-based encoding of the database D; in particular, this encoding should
be computed with respect to the same secret s used in the lattice-based
encoding in ct

(1)
x . To do this, we generate ct

(2)
x and skD (belonging to the

attribute key) such that evaluating skD on ct
(2)
x yields encodings of the form

({s · (A∗
i + D[i]G) + ei})6. In more detail, ct(2)x contains auxiliary encodings

of many Boolean matrices such that given any matrix, using these auxiliary
encodings, we can compute an encoding of this specific matrix. That is, ct(2)x

will consist of encodings of the form s·(Bjk�+2�Mjk)+ejk� and s·B′
jk�+e′

jk�,

where s $←− Z
1×n
q , (Bjk�,B′

jk�)
$←− Z

n×m
q for j ∈ [n], k ∈ [m], � ∈ [log(q)] and

(ejk�,e
′
jk�) ∈ Z

1×m
q is drawn from a suitable error distribution. Here, Mjk is

a matrix with 1 in the (j, k)th entry and zeroes everywhere else. Now, observe
that using the additive homomorphic properties, we can compute an encod-

ing that is approximately s·

⎛
⎜⎜⎜⎜⎜⎝
∑
jk�

ajk�Bjk� + (1 − ajk�)B′
jk� + A′

i

︸ ︷︷ ︸
A∗

i

+D[i] · G

⎞
⎟⎟⎟⎟⎟⎠

,

where ajk� denotes the �th bit in the bit decomposition of the (j, k)th entry in
the matrix A′

i +D[i] ·G, with A′
i +D[i] ·G being part of skD. Finally, we note

that ct(2)x is independent of the size of the database D; this is necessary since
we require that the ciphertext is of of size independent of the database length.
We note that this technique of transforming encodings of bit decomposition
of matrices into encodings of matrices have been studied in the past albeit
for different reasons (see [19] for example).

6 A∗
i + D[i]G will be denoted by Ei in the technical sections.
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An astute reader would notice that the translation step takes time propor-
tional to the database size and thus, would violate the sub-linear decryption
property! We avoid this problem by only translating only those database
entries that are going to read during the evaluation of PD(x); note that P,D
and x are public and hence, the entries that are going to be read can be
correctly identified.

– Implementing the evaluation step: This step would be a direct adap-
tation of the lattice-based evaluation procedure of [13]. Given approxi-
mate encodings ({s · (Ai + biG)}), for bits b1, . . . , bn, and for any cir-
cuit C with a single-bit output, the evaluation procedure of [13] (we will
use the notation later for this procedure as CtEval) allows for obtaining
({s · (AC + C(b1, . . . , bn)G)ei}). The matrix AC is obtained by homomor-
phically evaluating the matrices (A1, . . . ,An) using the circuit C (later, we
will refer to this procedure as PubEval). We use the procedure of [13] to
homomorphically evaluate the step circuit.

– Implementing the recoding step: We use lattice trapdoors [33] to convert
output encodings of one time step into input encodings of the next time step.
To give a flavor of how the lattice trapdoors are generated, we will take a
simple case: suppose we need to translate an encoding of the read address
i ∈ [N ] output by the τ th evaluation step, we first sample a matrix Aval,τ and
then generate Trd,τ

i such that the following holds:

[
Ard,τ + iG||A∗

i + D[i] · G](Trd,τ
i

I

)
= Aval,τ + D[i] · G (1)

where Ard,τ is the matrix computed during the τ th evaluation step. Recall
that A∗

i + Di · G is output by encryptor. Moreover, Aval,τ + bG will serve
as the matrix that is used to encode the read value for the (τ + 1)th step.
(Later we will see that in order to make the security proof work, we also
additionally need an anchor matrix A and this will be taken into account
when we generate the trapdoor matrices; see the technical sections for more
details). All the lattice trapdoors generated during the tth step will be part
of StepKeyt.

Implementation of Our Template: Handling Write Operations. To han-
dle RAM programs that also write to the memory, we do the following: first, we
view the database as an append-only data structure, with initial size to be N .
That is, every time the program wishes to write to some memory location i, it
instead appends this value to the end of the database, say at the (N + τ)th loca-
tion. However, this procedure introduces an additional issue. Before we describe
the issue, we point out that the current lattice-based techniques disallow us from
rewriting to the same location twice7 and thus, our only other option is to use
the append-only data structure.
7 This would tantamount to obtaining two approximate encodings of the form s(Ai +

bi ·G) and s(Ai + b′
i ·G), where bi is the old value and b′

i is the newly written value;
assuming b′

i �= bi, having these two encodings is sufficient to break LWE.
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Suppose the ith location is written during the τ th step. This means that the
(N + τ)th location would now encode the latest value corresponding to the ith

location. If at a later point in time, i.e., in time step � τ , the ith location needs to
be read, there is no mechanism in place that prevents an adversarial evaluator to
use the old encoding of the ith memory location to perform an illegal evaluation.

To solve this problem, we introduce an auxiliary circuit Cup which keeps
track of all the writes done so far and thus, for any given location i, can correctly
identify the latest encoding to be used. In particular, the evaluation step from
the read-only setting needs to be revised to also take into account the circuit
Cup. That is, first the step circuit is homomorphically evaluated to obtain the
location i to be read next and then the circuit Cup is executed to correctly
identify the (N + τ)th encoding that contains the value associated with location
i, where τ is the time step where the ith memory location was last written to.
The translation and the recoding steps will be defined along the same lines as
that of the read-only setting; we defer the details to the technical sections.

Careful readers may notice that the run-time of circuit Cup is O(T ), which
implies the decryption time would additionally incur a multiplicative overhead
of T . However, we can resolve this issue by first compiling a RAM into a last-
write-aware RAM. Given a RAM P , we can compile it into another machine
denoted RAM P ′ where the next-instruction circuit is replaced with a “next-
instruction RAM” that not only emits the next address to access, but also when
the next address was last written. We show such a compilation algorithm that
incurs only logarithmic overhead. The idea is to maintain a balanced search tree
(e.g., a 2–3 tree) that records for each logical address, when the last write was.
Moreover, in this balanced search tree, each parent also keeps track of the last
written times of its children. Now, when the next-instruction circuit of RAM
P decides to access some logical address addr, P ′ would search for addr in this
search tree to find out when addr was last written. Note that every search-tree
operation touches constant number of tree-paths, and since the parent knows
the last-written times of the children, during the search-tree operation, every
memory access always knows its last-written time.

The construction for the dual setting, where the database is part of the
ciphertext as against the attribute key, is obtained by a simple modification
of the above template. In particular, the translation step is not necessary for
the dual setting and hence, will be removed. The other steps, evaluation and
recoding steps, will be defined along the same lines as the above template.

1.3 Related Work

The constructions of ABE systems has a rich literature. The seminal result of
Goyal, Pandey, Sahai and Waters [42] presented the first construction of ABE
for boolean formulas from bilinear DDH assumption. Since then, several promi-
nent works achieved stronger security guarantees [46], better efficiency or design
guarantees [1,9,58] and achieving stronger models of ABE for a restricted class
of functions [43]. The breakthrough work of Gorbunov, Vaikuntanathan and
Wee [38] presented the first construction of ABE for all polynomial-sized circuits
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assuming learning with errors. Following this, several works [13,21] improved this
result in terms of efficiency and also considering stronger security models [38].
In addition to [36], there are a few works that consider ABE in other models of
computation. Waters [57] proposed a construction of functional encryption for
regular languages and subsequently, Agarwal and Singh [4] constructed reusable
garbled finite automata from LWE. Ananth and Sahai [8] construct functional
encryption for Turing machines assuming sub-exponentially secure functional
encryption for circuits; later this assumption was weakened to polynomially
secure functional encryption by [3,7,31,44]. Deshpande et al. [23] present an
alternate construction of attribute based encryption for Turing machines under
the same assumptions.

2 Preliminaries

Notations. Let λ denote the security parameter, and ppt denote probabilistic
polynomial time. Bold uppercase letters are used to denote matrices M, and bold
lowercase letters for vectors v (row vector). We use [n] to denote the set {1, ..., n}.
We say a function negl(·) : N → (0, 1) is negligible, if for every constant c ∈ N,
negl(n) < n−c for sufficiently large n. Let X and Y be two random variables
taking values in Ω. Define the statistical distance, denoted as Δ(X,Y ) as

Δ(X,Y ) :=
1
2

∑
s∈Ω

|Pr[X = s] − Pr[Y = s]|

Let X(λ) and Y (λ) be distributions of random variables. We say that X and Y

are statistically close, denoted as X
s≈ Y , if d(λ) := Δ(X(λ), Y (λ)) is a negligible

function of λ. We say two distributions X(λ) and Y (λ) are computationally
indistinguishable, denoted as X

c≈ Y if for any ppt distinguisher D, it holds that
|Pr[D(X(λ)) = 1] − Pr[D(Y (λ)) = 1]| = negl(λ).

2.1 Random Access Machines

We recall the definition of RAM program from [32]. A RAM computation con-
sists of a RAM program P and a database D. The representation size of P
is independent of the length of the database D. P has random access to the
database D and we represent this as PD. On input x, PD(x) outputs the answer
y. In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input
internal state from the previous step, location to be read, value at that location
and it outputs the new state, location to be written into, value to be written
and the next location to be read. More formally, for every τ ∈ T , where T is the
upper running time bound

(stτ , rdτ ,wtτ ,wbτ ) ← C(stτ−1, rdτ−1, bτ )
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where we have the following:

– stτ−1 denotes the state from the (τ − 1)-th step and stτ denotes the state in
the τ -th step.

– rdτ−1 denotes the location to be read from, as output by the (τ − 1)-th step.
– bτ denotes the bit at the location rdτ−1.
– rdτ denotes the location to be read from, in the next step.
– wtτ denotes the location to be written into.
– wbτ denotes the value to be written at τ -th step at the location wtτ .

At the end of the computation, denote the final state to be stend. If the compu-
tation has been performed correctly, stend = y. In this work, we are interested
only in RAM programs with boolean outputs.

2.2 Attribute-Based Encryption for RAMs

We state the syntax and security definition of (key-policy) public-key attribute-
based encryption (ABE) for RAMs. It consists of a tuple of ppt algorithms
Π = (Setup,KeyGen,Enc,Dec) with details as follows:

– Setup, Setup(1λ, 1T ): On input security parameter λ and upper time bound
T , setup algorithm outputs public parameters pp and master secret key msk.

– Key Generation, KeyGen(msk, P,D): On input a master secret key msk, a
RAM program P and database D, it outputs a secret key skP,D.

– Encryption, Enc(pp, x, μ): On input public parameters pp, an input x and
a message μ, it outputs a ciphertext ctx.

– Decryption, Dec(skP,D, ctx): This is modeled as a RAM program. In partic-
ular, this algorithm will have random access to the binary representations of
the key skP,D and the ciphertext ctx. It outputs the corresponding plaintext
μ if PD(x) = 0; otherwise, it outputs ⊥.

Definition 2.1 (Correctness). We say that the ABE for RAMs scheme
described above is correct, if for any message μ, any RAM program P , any
database D and any input x where PD(x) = 0, we have Dec(skP,D, ctx) = μ,
where (msk, pp) ← Setup(1λ, 1T ), skP,D ← KeyGen(msk, P,D) and ctx ←
Enc(pp, x, μ).

We define the efficiency and security properties below.

Efficiency. We define two efficiency properties associated with an ABE for
RAMs scheme: namely sub-linear decryption and input-specific runtime prop-
erty. The latter property implies the former.

Sub-linear Decryption: This property states that the complexity of decryp-
tion is p(λ, T ) for some fixed polynomial p, where T is the maximum runtime
bound specified as part of the setup. We call this sub-linear decryption for the
following reason: suppose T is sufficiently sublinear in |D| (for instance, poly-
logarithmic in |D|) then the decryption time is sub-linear in |D|. More specifi-
cally, suppose p(λ, T ) = λc′ · T c and if T << |D| 1

c , for some constants c′, c ∈ N,
then the decryption complexity is sub-linear in |D|.
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Definition 2.2 (Sublinear Decryption). An ABE for RAMs scheme ABE
is said to satisfy sublinear decryption property if the following holds: for any
database D, message μ, program P , input x, (i) (msk, pp) ← Setup(1λ, 1T ), (ii)
skP,D ← KeyGen(msk, P,D), (iii) ctx ← Enc(pp, x, μ) and, (iv) the decryption
Dec of the functional key skP,D on input the ciphertext ctx takes time poly(T, λ),
where T is the running time of PD(x).

Input-specific Runtime: This property states that the time to decrypt a
ciphertext ct of (D,μ) using an attribute key of skP is p(λ, t) for some fixed
polynomial p, where t is the execution time of P on input database D. Note that
t could be much smaller than T , where T is the maximum bound on the running
time of the P .

Definition 2.3 (Input-specific Runtime). An ABE for RAMs scheme ABE
is said to satisfy input-specific runtime property if the following holds: for any
database D, message μ, program P , input x, (i) (msk, pp) ← Setup(1λ, 1T ), (ii)
skP,D ← KeyGen(msk, P,D), (iii) ctx ← Enc(pp, x) and, (iv) the decryption Dec
of the functional key skP,D on input the ciphertext ctx takes time poly(t, λ),
where t is the running time of PD(x).

Remark 2.4. While the above properties focus on the decryption complexity,
we can also correspondingly define efficiency measures for setup, key generation
and encryption. Since the focus of this work is on decryption complexity, we
postpone the discussion of these properties to future works.

Security. Our definition of security for ABE for RAMs will be simulation-based
and in the selective setting; along the same lines as that of ABE for circuits.
Informally speaking, the adversary is allowed to make multiple RAM program
and database queries and submit an input query x∗ such that for every pro-
gram/database (P,D) queried, we have PD(x∗) �= 0. The adversary is also
allowed to submit the challenge message μ. We require that the adversary can-
not distinguish the two worlds: (i) when the attribute keys and ciphertext are
computed as per the scheme, (ii) when the attribute keys and ciphertext can be
simulated even without given μ.

Definition 2.5. An ABE scheme Π for RAMs is simulation-based selectively
secure if there exists ppt simulator S = (S1,S2,S3) such that for any ppt

admissible adversary A = (A1,A2), the two distributions {ExptrealA (1λ)}λ∈N

c≈
{ExptidealS (1λ)}λ∈N are computationally indistinguishable
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1. x∗ ← A1(1
λ)

2. (pp,msk) ← Setup(1λ, 1T )

3. μ ← AKeyGen(msk,·,·)
2 (pp)

4. ctx∗ ← Enc(pp, x∗, μ)

5. α ← AKeyGen(msk,·,·)
2 (pp, ctx∗)

6. Output (pp, μ, α)

(a) ExptrealA (1λ)

1. x∗ ← A1(1
λ)

2. pp ← S1(1
λ, 1T , x∗)

3. μ ← AS3(x
∗,·,·)

2 (pp)
4. ctx∗ ← S2(pp, x

∗, 1|μ|)
5. α ← AS3(x

∗,·,·)
2 (pp, ctx∗)

6. Output (pp, μ, α)

(b) ExptidealS (1λ)

We call adversary A = (A1,A2) admissible, if the query (Pi,Di) made by
A2 satisfies PDi

i (x∗) �= 0. In the ideal experiment ExptidealS (1λ): S1 is used to
generate simulated public parameters, S2 generates challenge ciphertext, and S3

answers secret key queries.

Dual Setting. We also consider the dual setting of the syntax described above,
where the database is associated with ciphertext. We term this notion as dual
ABE for RAMs. As in the above definition, the dual scheme consists of algo-
rithms (Setup,KeyGen,Enc,Dec). The algorithms Setup and Dec are defined the
same way as above. We define KeyGen and Enc as follows.

– KeyGen(msk, P ): On input a master secret key msk, a RAM program P , it
outputs a secret key skP .

– Enc(pp,D, x, μ): On input public parameters pp, a database D, an input x
and a message μ, it outputs a ciphertext ctD,x.

We omit the descriptions of the correctness, efficiency and security properties
of dual ABE for RAMs as they are defined analogously. Due to space limit, the
construction and its security proof are presented in the full version.

2.3 Learning with Errors

The learning with errors assumption was introduced by Regev [53]. This assump-
tion has been influential in basing the security of many cryptographic primitives
and most notably, fully homomorphic encryption.

Definition 2.6 (LWE). For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the Learning With Errors problem LWEn,q,χ is to distinguish
between the following pairs of distributions (e.g. as given by a sampling oracle
O ∈ {Os ,O$}):

{A, sA + x} and {A,u}
where A $← Z

n×m
q , s $← Z

n
q , u $← Z

m
q , and x ← χm.
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In this work we only consider the case where the modulus q ≤ 2n. Recall that
GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice
and a parameter d, between the case where the lattice has a vector shorter than
d, and the case where the lattice does not have any vector shorter than γ · d.

There are known reductions between LWEn,q,χ and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).

Theorem 2.7 ([17,47,48,52,53]). For any function B = B(n) ≥ Õ(
√

n) there
exists a B-bounded distribution ensemble χ = χ(n) over the integers s.t. for all
q = q(n), letting γ = Õ(

√
bq/B), it holds that LWEn,q,χ is at least as hard as the

quantum hardness of GapSVPγ . Classical hardness GapSVPγ follows if q(n) ≥
2n/2 or for other values of q for Ω̃(

√
n) dimensional lattices and approximation

factor q/B · poly(n�log q�).

2.4 Trapdoors and Discrete Gaussians

Let n, q ∈ Z, and m = n�log q� and g = (1, 2, 4, . . . , 2�log q�−1). The gadget
matrix [48] G is defined as the diagonal concatenation of vector g n times.
Formally, G = g ⊗ In ∈ Z

n×m
q . For any t ∈ Z, the function G−1 : Z

n×t
q →

{0, 1}m×t expands each entry a ∈ Zq of the input matrix into a column of size
�log q� consisting of the bit-representation of a. For any matrix A ∈ Z

n×t
q , it

holds that G · G−1(A) = A mod q.
The (centered) discrete Gaussian distribution over Z

m with parameter τ ,
denoted DZm,τ , is the distribution over Z

m where for all x, Pr[x] ∝ e−π||x||2/τ2
.

The following lemmas have been established in a sequence of works.

Lemma 2.8 (Trapdoor Generation [33,48]). Let q, n,m be positive inte-
gers with q ≥ 2 and sufficiently large m = Ω(n log q). There exists a ppt
algorithm TrapGen(1n, q,m) that with overwhelming probability outputs a pair
(A ∈ Z

n×m
q ,TA ∈ Z

m×m) such that the distribution of A is statistically close
to uniform distribution over Z

n×m
q and ||TA|| ≤ O(

√
n log q).

Lemma 2.9 ([2,22,33]). Given integers n ≥ 1, q ≥ 2 there exists some m =
m(n, q) = O(n log q) There are sampling algorithms as follows:

– There is a ppt algorithm SampleLeft(A,B,TA,u, s), that takes as input: (1)
a rank-n matrix A ∈ Z

n×m
q , and any matrix B ∈ Z

n×m1
q , (2) a “short”

basis TA for lattice Λ⊥
q (A), a vector u ∈ Z

n
q , (3) a Gaussian parameter

s > ||T̃A|| · ω(
√

log(m + m1)); then outputs a vector r ∈ Z
m+m1 distributed

statistically close to DΛu
q (F),s where F := [A||B].

– There is a ppt algorithm SampleRight(A,B,R,TB,u, s), that takes as input:
(1) a matrix A ∈ Z

n×m
q , and a rank-n matrix B ∈ Z

n×m
q , a matrix R ∈

Z
m×m
q , where sR := ||R|| = supx:||x||=1 ||Rx||, (2) a “short” basis TB for

lattice Λ⊥
q (B), a vector u ∈ Z

n
q , (3) a Gaussian parameter s > ||T̃B|| · sR ·
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ω(
√

log m); then outputs a vector r ∈ Z
2m distributed statistically close to

DΛu
q (F),s where F := [A||AR + B].

Based on the above sampling algorithms, we have the following lemma:

Lemma 2.10 ([40]). Given integers n ≥ 1, q ≥ 2 there exists some m =
m(n, q) = O(n log q), β = β(n, q) = O(n

√
log q) and s > ||T̃A|| · ω(

√
log(m))

such that for all m ≥ m∗ and all k, we have the following two distributions are
statistically close

(A,TA,B,U,V) ≈ (A,TA,B,U′,V′)

where (A,TA) ← TrapGen(q, n,m), (A′,B) $← Z
n×m
q and U ← DZ2m×k ,V =

A · U, V′ $← Z
n×k
q and U′ ← SampleLeft(A,B,TA,V′, s).

We conclude with a variant of Leftover Hash Lemma [2,13]:

Lemma 2.11. Suppose that m > (n + 1) log q + ω(log n) and that q > 2 is
prime. Let S be an m × k matrix chosen uniformly in {0, 1}m×k where k = k(n)
is polynomial in n. Let A and B be matrices chosen uniformly in Z

n×m
q and

Z
n×k
q respectively. Then, for all vectors e in Z

m
q , the distribution (A,AS,eS) is

statistically close to the distribution (A,B,eS).

2.5 Homomorphic Evaluation Procedures

The following is an abstraction of the evaluation procedure in recent LWE based
FHE and ABE schemes that developed in a long sequence of works [2,5,13,34,
40,48]. We use a similar formalism as in [16,19,20].

Theorem 2.12. There exist efficient deterministic algorithms PubEval and
CtEval such that for all n, q, � ∈ N, and for any sequence of matrices
(D1, . . . ,D�) ∈ (Zn×n�log q�

q )�, for any depth-d Boolean circuit f : {0, 1}� →
{0, 1} and for every x = (x1, . . . , x�) ∈ {0, 1}�, the following properties hold:

– PubEval(f, {Di ∈ Z
n×n�log q�
q }i∈[�]): On input matrices {Di}i∈[d] and a func-

tion f ∈ F , the public evaluation algorithm outputs Df ∈ Z
n×n�log q�
q as the

result.
– TrapEval(f,x,A ∈ Z

n×�log q�
q , {Ri}i∈[�]): the trapdoor evaluation algorithm

outputs Rf , such that

PubEval(f, {ARi + xiG}i∈[�]) = ARf + f(x)G

Furthermore, we have ||Rf || ≤ δ · maxi∈[�] ||Ri||.
– CtEval(f,x, {ci}�

i=1): On input vectors {ci}�
i=1 ∈ Z

m
q , an attribute x and

function f , the ciphertext evaluation algorithm outputs cf(x) ∈ Z
n�log q�
q , such

that

CtEval(f,x, {sT(Di + xiG) + ei}i∈[�]) = sT(Df + f(x)G) + e′

where x = (x1, . . . , x�) and Df = PubEval(f, {Di ∈ Z
n×n�log q�
q }i∈[�]). Fur-

thermore, we require ||e′|| ≤ δ · maxi∈[�] ||ei||.
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3 ABE for RAMs: Read-Only Case

In this part, we describe our ABE construction for read-only RAMs. A RAM
program P , with random access to database D and input x, is said to be read-
only if it only reads from D and never writes to it. The step circuit for read-only
RAM will be defined as follows:

(stτ , rdτ ) ← C(stτ−1, rdτ−1, bτ )

where stτ denotes the state information at τ -th step, rdτ denotes the read address
at τ -th step and bτ is the read value.

Parameters of the Scheme. In the description below, the parameters we use
are specified in Table 1.

Table 1. Read-only ABE parameters

Parameters Description Setting

N Maximum database length poly(λ)

T Maximum running time poly(λ)

Lst State bit-length poly(λ)

Lrd Address bit-length log N

We use notation {rdτ
i }i∈[Lrd] to denote the bit representation of read address

rdτ ∈ [N ].

3.1 Subroutines TranslatePK, StepEvalPK and StepEvalCT

Before proceeding to our ABE construction, we first describe the syntax of three
following subroutines that are used in the construction:

– ListMxDB ← TranslatePK (MxPKaux, D): On input auxiliary encoding public
key MxPKaux and database D = {Di}i∈[N ], the translation algorithm outputs
encoding matrices ListMxDB for the database.

– (StepKeyτ , ListMxPKτ ) ← StepEvalPK (C, τ, ListMxPKτ−1,msk,D): On input
the step circuit C, step index τ , matrices ListMxPKτ−1 for the (τ − 1)-th
step and master secret key msk, the key evaluation outputs the τ -th step key
StepKeyτ and encoding matrices ListMxPKτ for the τ -th step.

– ListVecCTτ ← StepEvalCT (C, τ, ListVecCTτ−1, StepKeyτ ,D): On input the
step circuit C, step index τ , ciphertext ListVecCTτ−1 of the (τ −1)-th step, τ -
th attribute key and databae D, the ciphertext evaluation outputs the cipher-
text ListVecCTτ of the τ -th step.
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In the following description, we set function f :{0, 1}Lst →Z to be f
(
{xi}Lst

i=1

)
=∑

xi ·2i. The construction of StepEvalPK and StepEvalCTwith respect to step cir-
cuit C are as follows:

TranslatePK (MxPKaux,D): the translation algorithm does the following:

– Parse MxPKaux as
{
Bjk�,B′

jk�

}
j∈[n],k∈[m],�∈�log q�

.

– Sample N random matrices {A′
i}i∈[N ] from uniform distribution over Z

n×m
q .

– For i ∈ [N ], set Ai = A′
i + D[i]G.

– For i ∈ [N ], compute the encoding of i-th entry Ei as

Ei =
∑

j,k,�

(
ajk�

(
Bjk� + 2�Mj,k

)
+ ājk�B

′
jk�

)
= Ai +

∑

j,k,�

(
ajk�Bjk� + ājk�B

′
jk�

)

where Mj,k ∈ {0, 1}n×m is matrix with 1 on the (j, k)-th element and 0
elsewhere, ajk� is �-th bit of the bit-decomposition of (j, k)-th element ajk

in matrix Ai, and ājk� is its complement. For ease of notation, we set Bi =∑
j,k,�

(
ajk�Bjk� + ājk�B′

jk�

)
.

Output matrices ListMxDB = {(A′
i,Bi,Ei)}i∈[N ].

StepEvalPK (C, τ, ListMxPKτ−1,msk = TA,D): the key evaluation algorithm
does the following:

– Parse the encoding matrices ListMxPKτ−1 as
(
A, ListMxPK,

{
Ast,τ−1

i

}
i∈[Lst]

,
{
Ard,τ−1

i

}
i∈[Lrd]

, Aval,τ−1

)

– Compute
({

Ast,τ
i

}
i∈[Lst]

,
{
Ard,τ

i

}
i∈[Lrd]

)
=PubEval (ListMxPKτ−1, C), where

algorithm PubEval is defined in Theorem 2.12.
– Sample Aval,τ $← Z

n×m
q . For i ∈ [N ], compute Trd,τ

i as

Trd,τ
i ← SampleLeft(A,TA,Ard,τ + iG,Aval,τ − A′

i − Bi, s)

whereArd,τ = PubEval

(
f,

{
Ard,τ

i

}
i∈[Lrd]

)
, andListMxPK = {A′

i,Bi,Ei}i∈[N ]

is computed from algorithm TranslatePK (MxPKaux, D). We have that

[
A||Ard,τ + iG||A′

i + Bi + D[i]G
](Trd,τ

i

I

)
= Aval,τ + D[i]G

– Set StepKeyτ =
{
Trd,τ

i

}
i∈[N ]

and

ListMxPKτ =
(
A, ListMxPK,

{
Ast,τ

i

}
i∈[Lst]

,
{
Ard,τ

i

}
i∈[Lrd]

, Aval,τ

)
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Output (StepKeyτ , ListMxPKτ ).

StepEvalCT (C, τ, ListVecCTτ−1, StepKeyτ ,D): the ciphertext evaluation algo-
rithm does the following:

– Parse the ciphertext ListVecCTτ−1 as
(

{ctijk, ct′ijk}i∈[n],j∈[m],
k∈[log q]

,
{
ctst,τ−1

i

}
i∈[Lst]

,
{
ctrd,τ−1

i

}
i∈[Lrd]

, ctval,τ−1

)

along with its associated value ListSTτ−1 =
({stτ−1}i∈[Lst], {rdτ−1}i∈[Lrd],

valτ−1
)
.

– Ciphertext evaluation: Compute({
ctst,τi

}
i∈[Lst]

,
{
ctrd,τ

i

}
i∈[Lrd]

)
=CtEval (ListMxPKτ−1, ListSTτ−1, C), where

algorithm CtEval is defined in Theorem 2.12.
– Ciphertext translation and recoding steps: Compute

ctval,τ =
(
ĉt, ctrd,τ , ctrdτ

)(Trd,τ
rdτ

I

)

where ctrd,τ = CtEval

({
ctrd,τ

i

}
i∈[Lrd]

, {rdτ
i }i∈[Lrd], f

)
and

ctrdτ =
∑
j,k,�

(
ajk�ctjk� + ājk�ct

′
jk�

)

ajk� is �-th bit of the bit-decomposition of (j, k)-th element ajk in matrix
Ardτ = A′

rdτ + D[rdτ ]G.

Output ListVecCTτ =

(
{ctijk, ct′ijk}i∈[n],j∈[m],

k∈[log q]

,
{
ctst,τi

}
i∈[Lst]

,
{
ctrd,τ

i

}

i∈[Lrd]
, ctval,τ

)
.

We note that StepEvalCT incorporates the translation, evaluation and the recod-
ing steps described in the technical overview.

3.2 Construction

In our construction below, we assume the initial states are all 1, the initial read
address is always the first index of database.

Our read-only ABE for RAMs construction Π = (Setup,KeyGen,Enc,Dec)
can be described as follows:

Setup, Setup(1λ, T ): On input security parameter λ and time bound T , the
setup algorithm computes:

– (A,TA) ← TrapGen(1n, 1q,m), the anchor matrix and its associated trap-
door.
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– ∀i ∈ [Lst], sample Ast,0
i

$← Z
n×m
q , encoding matrix for the initial state.

– ∀i ∈ [Lrd], sample Ard,0
i

$← Z
n×m
q , encoding matrix for the initial read address.

– ∀j ∈ [n], k ∈ [m], � ∈ �log q�, sample
(
Bjk�,B′

jk�

)
$← Z

n×m
q , encoding matrix

for the database.
– For i ∈ [λ], sample Aval,0

i
$← Z

n×m
q , encoding matrix for the initial read value.

– Sample u
$← Z

n
q , encoding vector for the plaintext.

Set MxPKaux =
{(

Bjk�,B′
jk�

)}
j∈[n],k∈[m],�∈�log q�

. Output msk = (pp,TA)

and

pp =
(
A,MxPKaux,

{
Ast,0

i

}
i∈[Lst]

,
{
Ard,0

i

}
i∈[Lrd]

,
{
Aval,0

i

}
i∈[λ]

,u

)

Key Generation, KeyGen(msk, P,D): On input master secret key msk, RAM
program P with step circuit C and database D, it does the following:

– First compute the translation algorithm

ListMxDB ← TranslatePK (MxPKaux, D)

where ListMxDB = {(A′
i,Bi,Ei)}i∈[N ]. Set

ListMxPK0 =
(
A, ListMxDB,

{
Ast,0

i

}
i∈[Lst]

,
{
Ard,0

i

}
i∈[Lrd]

,
{
Aval,0

i

}
i∈[λ]

)

– For τ ∈ [T ], compute

(ListMxPKτ ,StepKeyτ ) ← StepEvalPK (C, τ, ListMxPKτ−1,TA,D)

– Compute tst,T as

tst,T ← SampleLeft(A,TA,Ast,T
1 ,u, s)

such that [
A||Ast,T

1

]
· tst,T = u

Output skP,D =
(
P,D, ListMxDB, {StepKeyτ}τ∈[T ], t

st,T
)
.

Encryption, Enc(pp, x, μ): On input public parameters pp, input x ∈ {0, 1}λ,
message μ, the encryption algorithm does the following:

– Sample vector s
$← Z

n
q and error vectors ê, e∗ from Gaussian distribution

DZm .
– ∀i ∈ [Lst], compute ctst,0i = s

(
Ast,0

i + G
)

+ êRst,0
i , encoding of the initial

state, where Rst,0
i ← {0, 1}m×m.
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– ∀i ∈ [Lrd], compute ctrd,0
i = s

(
Ard,0

i + rd0i G
)

+ êRrd,0
i , encoding of the initial

read address, where Rrd,0
i ← {0, 1}m×m and {rd0i }i∈[Lrd] is the bit representa-

tion of 1.
– For i ∈ [λ], compute ctval,0i = s

(
Aval,0

i + x[i]G
)

+ êRval,0
i , encoding of the

initial read value, where Rval,0
i ← {0, 1}m×m.

– ∀j ∈ [n], k ∈ [m], � ∈ �log q�, compute

ctjk� = s
(
Bjk� + 2�Mj,k

)
+ êRjkl, ct′jk� = sB′

jk� + êR′
jkl

auxiliary encodings, where Rjk�,R′
jk� ← {0, 1}m×m.

– Compute ĉt = sA + ê and ct∗ = suT + μ�q/2� + e∗.
– Set

ListVecCT0 =

({
ctst,0i

}

i∈[Lst]
,

{
ctrd,0

i

}

i∈[Lrd]
,

{
ctval,0i

}

i∈[λ]
{ctijk, ct

′
ijk}i∈[n],j∈[m],

k∈[log q]

)

Output ciphertext ctx =
(
ĉt, ct∗, ListVecCT0,x

)
.

Decryption, Dec(skP,D, ctx): On input secret key skP,D, ciphertext ctx , the
decryption algorithm does the following:
– Output ⊥ if PD(x) �= 0.
– For τ ∈ [T ], compute,

ListVecCTτ ← StepEvalCT (C, τ, ListVecCTτ−1,StepKeyτ ,D)

Check if
∣∣∣
∣∣∣
(
[ĉt||ctst,T1 ] · (tst,T )T

)
− ct∗

∣∣∣
∣∣∣
∞

< q/4 and if so, output 0, otherwise
output 1.

3.3 Analysis of Correctness, Efficiency and Parameters

In this part, we show that the ABE construction described above is correct
(c.f. Definition 2.1), then analysis decryption time and set lattice parameters
afterwards.
Lemma 3.1. The ABE construction for read-only RAMs satisfies correctness
as defined in Definition 2.1.

Proof. Let the ciphertext be ctx and secret key be skP,D, such that PD(x) = 0.
At the τ -th step, by evaluating the ciphertext using algorithm StepEvalCT with
respect to the step circuit, we have

{
ctst,τi

}
i∈[Lst]

,
{
ctrd,τ

i

}
i∈[Lrd]

are encryption

of state and read address at the τ -th step respectively. Unfolding ciphertext
ctval,τ (ignoring the error terms), we obtain

ctval,τ =
(
ĉt, ctrd,τ , ctrdτ

)(Trd,τ
k

I

)

≈ s
[
A||Ard,τ + rdτG||Erdτ

](Trd,τ
i

I

)

≈ Aval,τ + D[rdτ ]G
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Thus, ciphertext ctval,τ encodes the read value of database at rdτ index, which
can be used in the next step evaluation.

Suppose at step T , we have PD = 0, then ctst,t1 encrypts state value 0. Thus,
(
[ĉt||ctst,t1 ] · tst,t) − ct∗ = s

[
A||Ast,τ

1

] · (tst,t)T + et − ct∗

= et − μ�q/2� − e∗

By setting parameters appropriately as below, our ABE scheme is correct. ��

Parameters Setting. If the step circuit being evaluated has length d, then the
noise in ciphertext grows in the worst case by a factor of O(md). Thus, to support
a RAM program with maximum running time T (the unit of time corresponds
to one step), we set (n,m, q) as

– Lattice dimension n is an integer such that n ≥ (Td log n)1/ε, for some fixed
0 < ε < 1/2.

– Modulus q is set to be q = 2nε

, since the noise in the ciphertexts grows
by a factor of O(mTd). Hence, we need q to be on the order of Ω(BmTd),
where B = O(n) is the maximum magnitude of noise (from discrete Gaussian
distribution) added during encryption. To ensure correctness of decryption
and hardness of LWE, we set q = 2nε

.
– Lattice column parameter m is set to be m = Θ(n log q) to make the leftover

hash lemma hold.

The parameter s used in algorithms SampleLeft and SampleRight are set as s >√
n log q · ω(

√
log m), as required by Lemma 2.9.

For security we rely on the hardness of the LWE problem, which requires
that the ratio q/B is not too large, where B = O(n) is the maximum magni-
tude of noise (from discrete Gaussian distribution) added during encryption. In
particular, the underlying problem is believed to be hard even when q/B is 2nε

.

Efficiency Analysis. The (space/time) complexity of our construction can be
analyzed by the following aspects. The polynomial n(·, ·) denotes the lattice
dimension.

– The public parameters contain (Lst + Lrd + nmT ) random n × m matrices in
Zq, which is Õ(n(λ, T )2 · n2T 2) in bit complexity. The master secret key is
one m × m matrix.

– The secret key for program and database pair (P,D) contains T (N +1) small
m × m matrices, which is Õ(n(λ, T )2 · NT ) in bit complexity.

– The ciphertext for input x contains (Lst+Lrd+nmT +λ) dimension-m vectors
in Zq, which is Õ(n(λ, T ) · λn2T 2) in bit complexity.

– Decryption involves matrix-vector multiplication. The time complexity of
decryption is Õ(T ).

Next, we would like to show the following: if a program PD on input x takes
time at most T then correspondingly, the decryption of secret key for PD on
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input an encryption of message μ associated with attribute input x takes time
p(λ, T ), for a fixed polynomial p.

We analyze the time to decrypt an encryption of database x associated with
message μ using a key of RAM program/database with runtime bounded by
T . The essential algorithm StepEvalCT, which may be computed T times, in
decryption algorithm can be divided into two steps, as analyzed below

– Step circuit: The runtime of CtEval with respect to step circuit C is a
polynomial in (λ,Lst, Lrd). Observe that Lst is the length of the state, which
is independent of the input length, and Lrd = log N . Thus, the runtime of
CtEval is upper bounded by a polynomial in (λ,Lst).

– Recoding part: In this step, we compute CtEval with respect to the gadget
circuit f , then the translation part, and last multiplication. This part is upper
bounded by a polynomial in (λ,Lrd).

From the above observations, it follows that the runtime of the decryption algo-
rithm is a polynomial in (λ, T ), where the polynomial is independent of the
length of the database. In particular, notice that if T is polylogarithmic in the
input length then the decryption time is sub-linear in the input length.

3.4 Security Proof

In this part, we show the security of our ABE for read-only RAM construc-
tion, assuming the hardness of LWE assumption. We first describe algorithms
(Sim.Setup,Sim.Enc,Sim.StepEvalPK) in the following:

– Sim.Setup produces “programmed” public parameters. That is, every pubic
matrix produced as part of algorithm Sim.Setup has hardwired in it, a bit of
the challenge ciphertext, initial state, read address, etc.

– Sim.Enc produces a simulated encryption of the message.
– Sim.StepEvalPK takes as input the (τ − 1)-th layer of simulated public

keys Sim.ListMxPKτ−1 and produces the τ -th layer of simulated public keys
Sim.ListMxPKτ and τ -th layer of step keys Sim.StepKeyτ .

These simulated algorithms can be constructed as follows:

Sim.Setup(1λ,x∗): On input the challenge input x∗, the simulated setup algo-
rithm does:

– Compute (A,TA) ← TrapGen(1n, 1q,m) and sample u
$← Z

n
q .

– ∀i ∈ [Lst], set Ast,0
i = ARst,0

i − G, where Rst,0
i ← {0, 1}m×m.

– ∀i ∈ [Lrd], set Ard,0
i = ARrd,0

i − G, where Rrd,0
i ← {0, 1}m×m.

– ∀j ∈ [n], k ∈ [m], � ∈ �log q�, set

Bjk� = ARjk� − 2�Mj,k, B′
jk� = AR′

jk�

where (Rjk�,R′
jk�) ← {0, 1}m×m.

– ∀i ∈ [λ], set Aval,0 = ARval,0
i − x∗[i]G, where Rval,0

i ← {0, 1}m×m.
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Let Sim.MxPKaux =
(
Bjk�,B′

jk�

)
j∈[n],k∈[m],�∈�log q�

, and denote trapdoor matrix

for initial step as

ListMxTD0 =
({

Rst,0
i

}
i∈[Lst]

,
{
Rrd,0

i

}
i∈[Lrd]

, Rval,0

)

Output msk = (pp,TA) and

Sim.pp =
(
A,Sim.MxPKaux,

{
Ast,0

i

}
i∈[Lst]

,
{
Ard,0

i

}
i∈[Lrd]

,
{
Aval,0

i

}
i∈[λ]

,u

)

Sim.Enc(Sim.pp,x∗, 1|μ|, (A,u), (b, b′)): On input simulated public parame-
ters Sim.pp, challenge input x∗ and message length |μ| and LWE instance
((A,u), (b, b′)), the simulated encryption algorithm does

– ∀i ∈ [Lst,0], compute ctst,0i = bRst,0
i , where Rst,0

i is generated in Sim.Setup.
– ∀i ∈ [Lrd,0], compute ctrd,0

i = bRrd,0
i , where Rrd,0

i is generated in Sim.Setup.
– ∀i ∈ [λ], compute ctval,0i = bRval,0

i , where Rval,0
i is generated in Sim.Setup.

– ∀j ∈ [n], k ∈ [m], � ∈ �log q�, compute ctjk� = bRjk�, ct′jk� = bR′
jk� where(

Rjk�,R′
jk�

)
is generated in Sim.Setup.

– Set ĉt = b and ct∗ = b′.
– Define ListVecCT0 in the same way as the real scheme.

Output challenge ciphertext ctx∗ =
(
ĉt, ct∗, ListVecCT0, x

∗).

Sim.StepEvalPK(C, τ,Sim.ListMxPKτ−1,Sim.pp,D): On input the step circuit C

of program P satisfying PD(x∗) = 1, step index τ , simulated (τ − 1)-th layer
of simulated public keys Sim.ListMxPKτ−1, simulated public parameters Sim.pp
and database query D, if τ = 1, compute the translation algorithm

ListMxDB ← TranslatePK (MxPKaux, D)

where ListMxDB = {(A′
i,Bi,Ei)}i∈[N ]. Set

ListMxPK0 =
(
A, ListMxDB,

{
Ast,0

i

}
i∈[Lst]

,
{
Ard,0

i

}
i∈[Lrd]

,
{
Aval,0

i

}
i∈[λ]

)

Otherwise, it does:

– Compute
({

Ast,τ
i

}
i∈[Lst]

,
{
Ard,τ

i

}
i∈[Lrd]

)
= PubEval (Sim.ListMxPKτ−1, C),

and then Ard,τ = PubEval

(
f,

{
Ard,τ

i

}
i∈[Lrd]

)
, where Ard,τ encodes the actual

read address rdτ of PD(x∗) at τ -th step.
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– Sample Trd,τ
rdτ =

(
Trd,τ

rdτ ,0,T
rd,τ
rdτ ,1

)
← DZm×m and set Aval,τ = A

(
Trd,τ

rdτ ,0 + Rrd,τ

Trd,τ
rdτ ,1 + Ri

)
, where Rrd,τ =TrapEval (f ◦ C,Sim.ListMxPKτ−1, ListMxTDτ−1)

and Ri =
∑

jk�

(
djk�Rjk� + d̄jk�R′

jk�

)
and algorithm TrapEval is defined in

Theorem 2.12.
– For i ∈ [N ] − {rdτ}, compute Trd,τ

i as

Trd,τ
i ← SampleRight

(
A, (i − rdτ )G,Rrd,τ ,TG,Aval,τ − A′

i − Bi, s
)

such that

[
A||ARrd,τ + (i − rdτ )G||Ei

](Trd,τ
i

I

)
= Aval,τ + D[i]G

where {A′
i,Bi,Ei} is computed by algorithm TranslatePK.

– As PD(x∗) = 1, so Ast,T
1 is the encoding of 1, i.e. Ast,T

1 = ARst,T
1 − G.

Compute tst,T as

tst,T ← SampleRight(A,G,Rst,T
1 ,TG,u, s)

such that [
A||ARst,T

1 − G
]

· tst,T = u

Set Sim.StepKeyτ =
{
Trd,τ

i

}
i∈[N ]

. Output (Sim.StepKeyτ ,Sim.ListMxPKτ ).

Theorem 3.2. Assuming the hardness of LWE assumption (with parameters as
specified above), our ABE construction is secure (c.f. Definition 2.5).

Proof. Let Q be the number of key queries made by the adversary. We first
describe a sequence of hybrids in the following:

Hybrid Hyb1: This corresponds to the real experiment:
– A specifies challenge attribute input x∗ and message μ.
– Challenger computes Setup(1λ) to obtain the public parameters pp and

secret key msk. Then challenger generates the challenge ciphertext ct∗ ←
Enc(pp,x∗, μ). It sends ct∗ and pp to A.

– For γ ∈ [Q], adversary A specifies the programs/database (Pγ ,Dγ) such
that P

Dγ
γ (x∗) = 1. Challenger generates the attribute keys for (Pγ ,Dγ),

for γ ∈ [Q], skPγ ,Dγ
← KeyGen(msk, Pγ ,Dγ).

– Let b be the output of adversary. Output b.
Hybrid Hyb2: Hyb2 is the same as Hyb1 except that it uses Sim.Setup(1λ,x∗)
to generate Sim.pp.
Hybrid {Hyb3,i,j}i∈[Q],j∈[T ]: Simply put, in hybrid Hyb3,i,j , for γ < i, the
secret key for query (Pγ ,Dγ) is simulated. For query (Pi,Di), upto the j-th
step, the step keys are simulated. For τ > j, the step keys are normally gen-
erated. For query (Pγ ,Dγ), where γ > i, the secret key is normally generated.
We describe it in details below:
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– Adversary specifies challenge attribute input x∗ and message μ.
– Challenger computes Sim.Setup(1λ) to obtain the public parameters pp

and secret key msk. Then challenger generates the challenge ciphertext
ct∗ ← Enc(pp, x∗, μ). It sends ct∗ and pp to A.

– For γ ∈ [Q], adversary A specifies the program/database (Pγ ,Dγ) such
that P

Dγ
γ (x∗) = 1. Challenger generates the secret key skPγ ,Dγ

as

skPγ ,Dγ
= (Pγ ,Dγ , {StepKeyτ}τ∈[T ], t

st,T )

• For γ < i, answer secret key query Pγ as
1. For every τ ∈ [T ], compute

(Sim.ListMxPKτ ,Sim.StepKeyτ )
← Sim.StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

2. Set skγ = ({Sim.StepKeyτ}τ∈[T ]).
• For γ = i, answer secret key query (Pi,Di) as

1. For τ < j, generate

(Sim.ListMxPKτ ,Sim.StepKeyτ )
← Sim.StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

2. For τ ≥ j, generate

(ListMxPKτ , StepKeyτ ) ← StepEvalPK(C,Sim.ListMxPKτ−1, Sim.pp)

Set ski = ({Sim.StepKeyτ}τ<i, {StepKeyτ}τ≥i).
• For γ > i, answer secret key query (Pγ ,Dγ) as

1. For every τ ∈ [T ], generate

(ListMxPKτ , StepKeyτ ) ← StepEvalPK(C,Sim.ListMxPKτ−1, Sim.pp)

2. Set skγ = ({StepKeyτ}τ∈[T ]).
Hybrid Hyb4: Hyb4 is the same as Hyb3,Q,T except that the anchor public
key A is sampled randomly from Z

n×m
q . In Hyb3,Q,T the secret keys for all

queries are simulated without using msk = TA.
Hybrid Hyb5: Hyb5 is the same as Hyb4 except that it uses algorithm Sim.Enc
to generate the challenge ciphertext.

Due to the space limit, we show the indistinguishability proof between adjacent
hybrids in the full version. ��
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Abstract. The Luby-Rackoff construction, or the Feistel construction,
is one of the most important approaches to construct secure block ciphers
from secure pseudorandom functions. The 3- and 4-round Luby-Rackoff
constructions are proven to be secure against chosen-plaintext attacks
(CPAs) and chosen-ciphertext attacks (CCAs), respectively, in the classi-
cal setting. However, Kuwakado and Morii showed that a quantum super-
posed chosen-plaintext attack (qCPA) can distinguish the 3-round Luby-
Rackoff construction from a random permutation in polynomial time.
In addition, Ito et al. recently showed a quantum superposed chosen-
ciphertext attack (qCCA) that distinguishes the 4-round Luby-Rackoff
construction. Since Kuwakado and Morii showed the result, a problem
of much interest has been how many rounds are sufficient to achieve
provable security against quantum query attacks. This paper answers
to this fundamental question by showing that 4-rounds suffice against
qCPAs. Concretely, we prove that the 4-round Luby-Rackoff construc-
tion is secure up to O(2n/12) quantum queries. We also give a query upper
bound for the problem of distinguishing the 4-round Luby-Rackoff con-
struction from a random permutation by showing a distinguishing qCPA
with O(2n/6) quantum queries. Our result is the first to demonstrate the
security of a typical block-cipher construction against quantum query
attacks, without any algebraic assumptions. To give security proofs,
we use an alternative formalization of Zhandry’s compressed oracle
technique.

Keywords: Symmetric-key cryptography · Post-quantum
cryptography · Provable security · Quantum security · The compressed
oracle technique · Quantum chosen plaintext attacks · Luby-Rackoff
constructions

1 Introduction

Post-quantum public-key cryptography has been one of the most actively
researched areas in cryptography since Shor developed the polynomial-time inte-
ger factoring quantum algorithm [30]. NIST is working on a standardization
c© International Association for Cryptologic Research 2019
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process for post-quantum public-key schemes such as public-key encryption, key-
establishment, and digital signature schemes [27].

On the other hand, for symmetric key cryptography, it was said that the
security of symmetric-key schemes would not be much affected by quantum
computers. However, a series of recent results has shown that some symmetric
key schemes are also broken in polynomial time by using Simon’s algorithm [31]
if quantum adversaries have access to quantum circuits that implement keyed
primitives [6,8,11–13,17,18,20,21,29], though they are proven or assumed to be
secure in the classical setting. Thus, the post-quantum security of symmetric-key
schemes also needs to be studied.

Although many quantum query attacks on symmetric-key schemes have
been proposed, post-quantum provable security of symmetric-key schemes has
attracted little attention. There are two possible post-quantum security notions
for symmetric-key schemes: standard security and quantum security [33]. The
standard security assumes adversaries have quantum computers, but have access
to keyed oracles in a classical manner. On the other hand, the quantum security
assumes adversaries can make queries to keyed primitives in quantum superposi-
tions. If a scheme is proven to have quantum security, then it will remain secure
even in a far future where all computations and communications are done in
quantum superpositions. Therefore, it is a problem of much interest whether a
classically secure symmetric-key scheme also has quantum security.

The Luby-Rackoff Construction. The Luby-Rackoff construction, or the
Feistel construction, is one of the most important approaches to construct effi-
cient and secure block ciphers, which are pseudorandom permutations (PRPs),
from efficient and secure pseudorandom functions (PRFs). A significant number
of block ciphers including commonly used ones such as DES [25] and Camellia [3]
has been designed on the basis of this construction.

For families of functions fi := {fi,k : {0, 1}n/2 → {0, 1}n/2}k∈K that are
parameterized by k in a key space K (1 ≤ i ≤ r), the r-round Luby-Rackoff
construction LRr(f1, . . . , fr) is defined as follows: First, keys k1, . . . , kr are chosen
independently and uniformly at random from K. For each input x0 = x0L‖x0R,
where x0L, x0R ∈ {0, 1}n/2, the state is updated as

x(i−1)L‖x(i−1)R �→ xiL‖xiR := x(i−1)R ⊕ fi,ki
(x(i−1)L)‖x(i−1)L (1)

for i = 1, . . . , r in a sequential order (see Fig. 1). The output is the final state
xr = xrL‖xrR. Then the resulting function becomes a keyed permutation over
{0, 1}n with keys in (K)r.

In the classical setting, if each fi is a secure PRF, LRr becomes a secure
PRP against chosen-plaintext attacks (CPAs) for r ≥ 3 and a secure PRP
against chosen-ciphertext attacks (CCAs) for r ≥ 4 [23], i.e., LRr becomes a
strong PRP. However, in the quantum setting, Kuwakado and Morii showed that
LR3 can be distinguished in polynomial time from a truly random permutation
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Fig. 1. The i-th round state update.

by a quantum superposed chosen-plaintext attack [20] (qCPA).1 Moreover, Ito
et al. recently showed that LR4 can be distinguished in polynomial time by a
quantum superposed chosen-ciphertext attack (qCCA) [17]. On the other hand,
for any r, no post-quantum security proof of LRr is known. A very natural ques-
tion is then whether such a proof is feasible for some r, and if so, the minimum
number of r such that we can prove the post-quantum security of LRr needs to
be determined.

1.1 Our Contributions

As the first step to giving post-quantum security proofs for the Luby-Rackoff
constructions, this paper shows that the 4-round Luby-Rackoff construction LR4

is secure against qCPAs. In particular, we give a security bound of LR4 against
qCPAs when all round functions are truly random functions. We also give a query
upper bound for the problem of distinguishing LR4 from a random permutation
by showing a distinguishing attack. Concretely, we show the following theorems
(see Table 1 for comparing security proofs and attacks for LR4).

Theorem 1 (Lower bound and upper bound, informal). If all round func-
tions are truly random functions, then the following claims hold.

1. LR4 cannot be distinguished from a truly random permutation by qCPAs up to
O(2n/12) quantum queries.

2. A quantum algorithm exists that distinguishes LR4 from a truly random per-
mutation with a constant probability by making O(2n/6) quantum chosen-
plaintext queries.

Theorem 2 (Construction of PRP from PRF, informal). Suppose that
each fi is a secure PRF against efficient quantum query attacks, for 1 ≤ i ≤ 4.
Then LR4(f1, f2, f3, f4) is a secure PRP against efficient qCPAs.

Technical Details. To give a quantum security proof for LR4 in the case that
all round functions are truly random, we use the compressed oracle technique

1 Strictly speaking, the attack by Kuwakado and Morii works only when all round
functions are keyed permutations. Kaplan et al. [18] showed that the attack works
for more general cases.
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developed by Zhandry [37]. To be precise, we give an alternative formalization
of the technique and use it.

One challenging obstacle to giving security proofs against quantum super-
posed query adversaries is that we cannot record transcripts of quantum queries
and answers. Although it is trivial to store query-answer records in the classical
setting, it is highly non-trivial to store them in the quantum setting, since mea-
suring or copying (parts of) quantum states will lead to perturbing them, which
may be detected by adversaries.

Table 1. Comparison of security proofs and attacks for the 4-round Luby-Rackoff con-
struction LR4 when all round functions are truly random. In the quantum CPA/CCA
settings, adversaries can make quantum superposed queries.

Attack setting Classical
CPA

Classical
CCA

Quantum CPA Quantum
CCA

Security proof Secure up to
O(2n/4)
queries [23]

Secure up to
O(2n/4)
queries [23]

Secure up to
O(2n/12) queries
[Ours] (Sect. 4)

No proofs
(Insecure)

Distinguishing
attack

O(2n/4)
queries [28]

O(2n/4)
queries [28]

O(2n/6) queries
[Ours] (Sect. 5)

O(n) queries
[17]

Zhandry’s compressed oracle technique enables us to overcome the obstacle
when oracles are truly random functions. The technique is so powerful that it
can be used to show quantum indifferentiability of the Merkle-Damg̊ard domain
extender and quantum security for the Fujisaki-Okamoto transformation [37], in
addition to the (tight) lower bounds for the multicollision-finding problems [22].
His crucial observation is that we can record queries and answers without affect-
ing quantum states by appropriately forgetting previous records. In addition,
he observed that transcripts of queries can be recorded in an compressed man-
ner, which enables us to simulate random functions (random oracles) extremely
efficiently.

The compressed oracle technique is a powerful tool, although the formal-
ization of the technique is (necessarily) somewhat complex. A simpler alter-
native formalization would be better to have when we apply the technique to
complex schemes that use multiple random functions, such as the Luby-Rackoff
construction.

Zhandry’s formalization enables us to both record transcripts and compress
recorded data. We need the compression to efficiently simulate random func-
tions but not when we focus on information theoretic security of cryptographic
schemes.

With this in mind, we modify the construction of Zhandry’s compressed stan-
dard oracle and give an alternative formalization of Zhandry’s technique without
compression of the database. Moreover, we scrutinize the properties of our modi-
fied oracle and observe that its behaviors can be described in an intuitively clear
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manner by introducing some errors. We also explicitly describe error terms,
which enables us to give mathematically rigorous proofs. We name our alter-
native oracle the recording standard oracle with errors, because it records tran-
scripts of queries and its behavior is described with errors. We believe that our
alternative formalization and analyses for our oracle’s behavior help us under-
stand Zhandry’s technique better, which will lead to the technique being applied
even more widely. See Sect. 3 for details on our alternative formalization.

By heavily using our recording standard oracle with errors, we complete
the security proof of LR4 against quantum superposed query attacks, taking
advantage of classical proof intuitions to some extent. First, we consider LR3,
the 3-round Luby-Rackoff construction, which is easy to distinguish from a truly
random permutation, and a slightly modified version of it, where the last-round
state update of LR3 is modified. Our observation is that even quantum (chosen-
plaintext) query adversaries seem to have difficulty noticing the modification,
and we are actually able to show that this is indeed the case. Intuitively, the
proof is possible since even quantum query adversaries cannot feasibly produce
collisions on the input of the third round. Second, we prove that a family of
random permutations (i.e., a function P : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 such
that P (x, ·) is a truly random permutation over {0, 1}n/2 for each x) is hard to
distinguish from a truly random function. To show the first hardness result, we
use our recording standard oracle with errors. On the other hand, for the second
hardness result, we can show it by just combining some previous results. Once
we prove these two hardness results, the rest of the proof can be done easily
without any argument specific to the quantum setting. Our proof is much more
complex than the classical one, though, we give rigorous and careful analyses.
See Sect. 4 for details on the security proof of LR4.

In contrast to the high complexity of the provable security result, our quan-
tum distinguishing attack is a simple quantum polynomial speed-up of existing
classical attacks. See Sect. 5 for details on the quantum distinguishing attack.

1.2 Related Works

Other than the ones introduced above, security proofs against quantum query
adversaries for symmetric key schemes include a proof for standard modes of
operations by Targhi et al. [2], one for the Carter-Wegman message authen-
tication codes (MACs) by Boneh and Zhandry [5], one for NMAC by Song
and Yun [32], and one for Davies-Meyer and Merkle-Damg̊ard constructions
by Hosoyamada and Yasuda [16]. Zhandry showed the PRP-PRF switching
lemma in the quantum setting [35] and demonstrated that quantum-secure PRPs
can be constructed from quantum-secure PRFs by using a technique of format
preserving encryption [36]. Czajkowski et al. showed that the sponge construc-
tion is collapsing (collapsing is a quantum extension of the classical notion of
collision-resistance) when round functions are one-way random permutations or
functions [9].2 Alagic and Russell proved that polynomial-time attacks against
2 Note that the condition in which the round function of the sponge construction is

one-way is unusual in the context of classical symmetric-key provable security.
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symmetric-key schemes that use Simon’s algorithm can be prevented by replac-
ing XOR operations with modular additions on the basis of an algebraic hardness
assumption [1]. However, Bonnetain and Naya-Plasecia showed that the coun-
termeasure is not practical [7]. For standard security proofs (against quantum
adversaries that make only classical queries) for symmetric-schemes, Mennink
and Szepieniec proved security for XOR of PRPs [24]. Czajkowski et al. [10]
recently showed that the compressing technique can be extended to quantum ora-
cles with non-uniform distributions such as a random permutation, and showed
quantum indifferentiability of the sponge construction.

2 Preliminaries

This section describes notations and definitions. In this paper, all algorithms
(or adversaries) are assumed to be quantum algorithms, and make quantum
superposed queries to oracles. For any finite sets X and Y , let Func(X,Y ) denote
the set of all functions from X to Y . For any n-bit string x, we denote the left-half
n/2-bits of x by xL and the right-half n/2-bits by xR, respectively. We identify
the set {0, 1}m with the set of the integers {0, 1, . . . , 2m − 1}.

2.1 Quantum Computation

Throughout this paper, we assume that readers have basic knowledge about
quantum computation and finite dimensional linear algebra (see textbooks such
as [19,26] for an introduction). We use the computational model of quantum cir-
cuits. We measure complexity of quantum algorithms by the number of queries,
and the number of basic gates in addition to oracle gates. In this paper, basic
gates denote the gates in the standard basis of quantum circuits Q [19]. Let
‖ · ‖ and ‖ · ‖tr denote the norm of vectors and the trace norm of operators,
respectively. In addition, let td(·, ·) denote the trace distance. For Hermitian
operators ρ, σ on a Hilbert space H, td(ρ, σ) = 1

2‖ρ − σ‖tr holds. For a mixed
state ρ of a joint quantum system HA ⊗ HB , let trB(ρ) (resp., trA(ρ)) denote
the partial trace of ρ over HB (resp., HA). Moreover, for a pure state |ψ〉 of
the joint quantum system HA ⊗ HB , we write trB(|ψ〉) (resp., trA(|ψ〉)) instead
of trB(|ψ〉 〈ψ|) (resp., trA(|ψ〉 〈ψ|)), for simplicity. Similarly, for a pure state |ψ〉
and a mixed state ρ of a quantum system H, we write td(|ψ〉 , ρ) and td(ρ, |ψ〉)
instead of td(|ψ〉 〈ψ| , ρ) and td(ρ, |ψ〉 〈ψ|), respectively. For an integer n ≥ 1,
In and H⊗n denote the identity operator on n-qubit systems and the n-qubit
Hadamard operator, respectively. If n is clear from the context, we just write I
instead of In, for concision. By abuse of notation, for an operator V , we some-
times use the same notation V to denote V ⊗ I or I ⊗ V for simplicity, when it
will cause no confusion. In addition, for a vector |φ〉 and a positive integer m,
we sometimes use the same notation |φ〉 to denote |φ〉 ⊗ |0m〉 or |0m〉 ⊗ |φ〉 for
simplicity, when it will cause no confusion.
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Quantum Oracle Query Algorithms. Following previous works (see [4], for
example), any quantum oracle query algorithm A that makes at most q queries
to oracles is modeled as a sequence of unitary operators (U0, . . . , Uq), where each
Ui is a unitary operator on an �-qubit quantum system, for some integer �. Here,
U0 can be regarded as the initialization process, and for 1 ≤ i ≤ q − 1, Ui is
the process after the i-th query. Uq can be regarded as the finalization process.
We only consider quantum algorithms that take no inputs and assume that the
initial state of A is |0�〉.

Stateless Oracles. For a function f : {0, 1}m → {0, 1}n, the quantum oracle of
f is defined as the unitary operator Of : |x, y〉 �→ |x, y ⊕ f(x)〉 . When we run A
relative to the oracle Of , the unitary operators U0, Of , . . . , Uq−1, [3]Of , Uq act
sequentially on the initial state |0�〉. (We consider that Of acts on the first (m+
n)-qubits of A’s quantum register.) Finally, A measures the resulting quantum
state UqOfUq−1 · · · OfU0 |0�〉, and returns the measurement result as the output.
f may be chosen in accordance with a distribution at the beginning of each game.
Let us denote the event that A runs relative to the oracle Of and returns an
output α by α ← AOf () or by AOf () → α.

Stateful Oracles. In this paper, we also consider more general cases in which
quantum oracles are stateful, i.e., oracles have �′-qubit quantum states for an
integer �′ ≥ 0.3 In these cases, an oracle O is modeled as a sequence of unitary
operators (O1, . . . ,Oq) that acts on the first (m + n)-qubits of A’s quantum
register in addition to O’s quantum register. When we run A relative to the
oracle O, the unitary operators U0 ⊗ I�′ ,O1, . . . , (Uq−1 ⊗ I�′),Oq, (Uq ⊗ I�′) act
in a sequential order on the initial state |0�〉 ⊗ |initO〉, where |initO〉 is the initial
state of O. Finally, A measures the resulting quantum state (Uq ⊗I�′)Oq(Uq−1⊗
I�′) · · · O1(U0 ⊗ I�′) |0�〉 ⊗ |initO〉, and returns the measurement result as the
output. If O has no state and Oi = Of holds for each i, the behavior of A relative
to O precisely matches that of A relative to the stateless oracle Of . Thus, our
model of stateful oracles is an extension of the typical model of stateless oracles
described above. O may be chosen in accordance with a distribution at the
beginning of each game. We denote the event that A runs relative to the oracle
O and returns an output α by α ← AO() or by AO() → α.

Quantum Distinguishing Advantages. Let A be a quantum algorithm that
makes at most q queries and outputs 0 or 1 as the final output, and let O1

and O2 be some oracles. We consider the situation in which O1 and O2 are

3 Here we do not mean that our model captures all reasonable stateful quantum ora-
cles. We use our model of stateful quantum oracles just for intermediate arguments
to prove our main results, and the claims of the main results are described in the
typical model of stateless oracles.
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chosen randomly in accordance with some distributions. We define the quantum
distinguishing advantage of A by

Advdist
O1,O2

(A) :=
∣
∣
∣
∣
Pr
O1

[AO1() → 1
] − Pr

O2

[AO2() → 1
]
∣
∣
∣
∣
. (2)

When we are interested only in the number of queries and do not consider
other complexities such as the number of gates (i.e., we focus on information
theoretic adversaries), we use the notation

Advdist
O1,O2

(q) := max
A

{

Advdist
O1,O2

(A)
}

, (3)

where the maximum is taken over all quantum algorithms that make at most q
quantum queries.

Quantum PRF Advantages. RF denotes the quantum oracle of random func-
tions, i.e., the oracle such that a function f ∈ Func({0, 1}m, {0, 1}n) is chosen
uniformly at random, and an oracle access to Of is given to adversaries.

Let F = {Fk : {0, 1}m → {0, 1}n}k∈K be a family of functions. Let us use
the same symbol F to denote the oracle such that k is chosen uniformly at
random, and an oracle access to OFk

is given to adversaries. In addition, let A
be an oracle query algorithm that outputs 0 or 1. Then we define the quantum
pseudorandom-function (qPRF) advantage by AdvqPRF

F (A) := Advdist
F,RF(A).

Similarly, we define AdvqPRF
F (q) by AdvqPRF

F (q) := maxA
{

AdvqPRF
F (A)

}

,

where the maximum is taken over all quantum algorithms A that make at most
q quantum queries.

Quantum PRP Advantages. By RP we denote the quantum oracle of random
permutations, i.e., the oracle such that a permutation P ∈ Perm({0, 1}n) is
chosen uniformly at random, and an oracle access to OP is given to adversaries.

Let P = {Pk : {0, 1}n → {0, 1}n}k∈K be a family of permutations. We use
the same symbol P to denote the oracle such that k is chosen uniformly at ran-
dom, and an oracle access to OPk

is given to adversaries. Let A be an oracle
query algorithm that outputs 0 or 1, and we define the quantum pseudorandom-
permutation (qPRP) advantage by AdvqPRP

P (A) := Advdist
P,RP(A). Similarly, we

define AdvqPRP
P (q) by AdvqPRP

P (q) := maxA
{

AdvqPRP
P (A)

}

, where the max-
imum is taken over all quantum algorithms A that make at most q quantum
queries.

Security Against Efficient Adversaries. An algorithm A is called efficient
if it can be realized as a quantum circuit that has a polynomial number of basic
gates and oracle gates in n. A set of functions F (resp., a set of permutations
P) is a quantumly secure PRF (resp., a quantumly secure PRP) if the following
properties are satisfied:
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1. Uniform sampling f
$←− F (resp., P

$←− P) and evaluation of each f (resp.,
each P ) can be implemented on quantum circuits that have a polynomial
number of basic gates in n.

2. AdvqPRF
F (A) (resp., AdvqPRP

P (A)) is negligible (i.e., for any positive integer
c, it is upper bounded by n−c for all sufficiently large n) for any efficient
algorithm A.

2.2 The Luby-Rackoff Constructions

The Luby-Rackoff construction [23] is a construction of n-bit permutations from
n/2-bit functions by using the Feistel network.

Fix r ≥ 1, and for 1 ≤ i ≤ r, let fi := {fi,k : {0, 1}n/2 → {0, 1}n/2}k∈K be a
family of functions parameterized by key k in a key space K. Then, the Luby-
Rackoff construction for f1, . . . , fr is defined as a family of n-bit permutations
LRr(f1, . . . , fr) := {LRr(f1,k1 , . . . , fr,kr

)}k1,...,kr∈K with the key space (K)r. For
each fixed key (k1, . . . , kr), LRr(f1,k1 , . . . , fr,kr

) is defined by the following pro-
cedure: First, given an input x0 ∈ {0, 1}n, divide it into n/2-bit strings x0L and
x0R. Second, iteratively update n-bit states as

(x(i−1)L, x(i−1)R) �→ (xiL, xiR) := (x(i−1)R ⊕ fi,ki
(x(i−1)L), x(i−1)L) (4)

for 1 ≤ i ≤ r. Finally, return the final state xr := xrL‖xrR as the output (see
Fig. 2).

Fig. 2. The 3-round Luby-Rackoff construction.

The resulting function LRr(f1,k1 , . . . , fr,kr
) : x0 �→ xr becomes an n-

bit permutation owing to the property of the Feistel network. Each fi,ki

is called the i-th round function. When we say that an adversary is given
an oracle access to LRr(f1, . . . , fr), we consider the situation in which keys
k1, . . . , kr are first chosen independently and uniformly at random, and then
the adversary runs relative to the stateless oracle OLRr(f1,k1 ,...,fr,kr )

: |x〉 |y〉 �→
|x〉 |y ⊕ LRr(f1,k1 , . . . , fr,kr

)(x)〉. When each round function is chosen from
Func([3]{0, 1}n/2, {0, 1}n/2) uniformly at random (i.e., each fi is the set of all
functions Func({0, 1}n/2, {0, 1}n/2) for all i), we use the notation LRr for short.
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3 An Alternative Formalization for the Compressed
Oracle Technique

Many security proofs in the classical random oracle model (ROM), implic-
itly rely on the fact that transcripts of queries and answers can be recorded.
However, such proofs do not necessarily work in the quantum random oracle
model (QROM) [4], since recording transcripts may significantly perturb quan-
tum states, which might be detected by adversaries. To solve this issue, Zhandry
introduced the “compressed oracle technique” [37] to enable us to record tran-
scripts of queries and answers even in QROM. In addition to recording tran-
scripts, Zhandry’s technique enables us to simulate the random oracle extremely
efficiently by compressing databases of transcripts.

Zhandry’s technique was originally developed for QROM, in which adver-
saries can make direct queries to random functions, but it can also be applied
when adversaries can make queries to random functions only indirectly. In par-
ticular, one may think that the technique is applicable to giving a security proof
for the Luby-Rackoff constructions when all round functions are truly random.

The compressed oracle technique is very insightful and promising, but its
formal description is somewhat (necessarily) complex. A simpler formalization
would be better to have when we want to apply the technique to complex schemes
that use multiple random functions, such as the Luby-Rackoff construction.

In provable security, especially for symmetric-key mode of operations, we
often focus on security against information theoretic adversaries. When we are
interested in such security, we do not care about efficient simulation of a random
oracle, and thus do not have to compress databases. With this in mind, we
modify the construction of Zhandry’s compressed standard oracle and give an
alternative formalization of his technique without compressing databases that
can be used when we focus on (quantum) information theoretic security.

We also study the behavior of our oracle in detail and show that its properties
can be described intuitively by introducing the notion of errors. Since our oracle
records transcripts of queries and its behavior is described with errors, we call
our oracle recording standard oracle with errors and denote it by RstOE.

We believe that our alternative formalization and analyses for its behavior
help us understand Zhandry’s technique better, which will lead to the technique
begin applied even more widely.

In Sect. 3.1 we give an overview of the original technique by Zhandry, and
describe which part of it can be improved. Then, in Sect. 3.2 we describe our
alternative formalization for the technique.

3.1 An Overview of the Original Technique

First, Zhandry observed that the oracle Of can be implemented with an encoding
of f and an operator stO that is independent of f . In this subsection, we consider
that each function f : {0, 1}m → {0, 1}n is encoded into the (n2m)-qubit state
|f〉 = |f(0)‖f(1)‖ · · · ‖f(2m − 1)〉. The operator stO is the unitary operator that
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acts on (n + m + n2m)-qubit states defined as

stO : |x〉 |y〉 ⊗ |α0〉 · · · |α2m−1〉 �→ |x〉 |y ⊕ αx〉 ⊗ |α0〉 · · · |α2m−1〉 , (5)

where αx ∈ {0, 1}n for each 0 ≤ x ≤ 2m − 1. We can easily confirm that
stO |x〉 |y〉 |f〉 = |x〉 |y ⊕ f(x)〉 |f〉 holds. Here, we consider that |x〉 |y〉 corre-
sponds to the first (m + n)-qubits of adversaries’ registers.

When f is chosen uniformly at random and A runs relative to stO and |f〉
(i.e., A runs relative to the quantum oracle of a random function), the whole
quantum state before A makes the (i + 1)-st quantum query becomes

|φf,i+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) |0�〉 |f〉 (6)

with probability 1/2n2m . Here, we assume that A has �-qubit quantum states.
Random choice of f can be implemented by first making the uniform super-

position of functions
∑

f
1√

2n2m
|f〉 = H⊗n2m |0n2m〉 and then measuring the

state with the computational basis. So far we have considered that a random
function f is chosen at the beginning of games, but the output distribution of
A will not be changed even if we measure the |f〉 register at the same time as
A’s register. Thus, below we consider that all quantum registers including those
of functions are measured only once at the end of each game.

Then the whole quantum state before A makes the (i+1)-st quantum query
becomes

|φi+1〉 =
∑

f

|φf,i+1〉 = (Ui ⊗ I)stO · · · stO(U0 ⊗ I)

⎛

⎝|0�〉 ⊗
∑

f

1√
2n2m

|f〉
⎞

⎠ .

(7)

Next, we change the basis of the y register and αi registers in (5) from
the standard computational basis {|u〉}u∈{0,1}n to one called the Fourier basis
{H⊗n |u〉}u∈{0,1}n

4 by Zhandry [37]. In what follows, we use the symbol “̂”
to denote the encoding of classical bit strings into quantum states by using the
Fourier basis instead of the computational basis, and we ambiguously denote
H⊗n |u〉 by |û〉 for each u ∈ {0, 1}n. Then, it can be easily confirmed that

stO |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂2m−1〉 = |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂x ⊕ y〉 · · · |α̂2m−1〉 (8)

holds. Intuitively, the direction of data writing changes when we change the
basis: When we use the standard computational basis, data is written from the
function registers to adversaries’ registers as in (5). On the other hand, when we
use the Fourier basis, data is written in the opposite direction as in (8). With
the Fourier basis, |φi+1〉 can be written as

|φi+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I)
(

|0�〉 ⊗ |̂0n2m〉
)

. (9)

4 Note that the Hadamard operator H⊗n corresponds to the Fourier transformation
over the group (Z/2Z)⊕n.
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Here, note that
∑

f |f〉 = H⊗n2m |0n2m〉 = |̂0n2m〉 holds. In particular, the reg-

ister of the functions are initially set as |̂0n2m〉, and at most one data is written
(in superpositions) when an adversary makes a query. Thus

|φi+1〉 =
∑

xyz ̂D

a′
xyz ̂D

|xyz〉 ⊗ |D̂〉 (10)

holds for some complex numbers a′
xyz ̂D

such that
∑

xyz ̂D |a′
xyz ̂D

|2 = 1, where
each x is an m-bit string that corresponds to A’s query register, y is an n-bit
string that corresponds to A’s answer register, z corresponds to A’s remaining
register, and D̂ = α̂0‖ · · · ‖α̂2m−1 is a concatenation of 2m many n-bit strings.

Zhandry’s key observation is that, since stO adds at most one data to the
D̂-register in each query, α̂x �= 0n holds for at most i many x, and thus D̂ can
be regarded as a database with at most i many non-zero entries. (Note that
D̂ may contain fewer than i non-zero entries. For example, if a state |x〉 |ŷ〉 is
successively queried to stO twice, then the database will remain unchanged since
stO · stO = I.) We use the same notation D̂ to denote the database and call it
the Fourier database since now we are using the Fourier basis for D̂. Each entry
of the database D̂ has the form (x, α̂x), where x ∈ {0, 1}m, α̂x ∈ {0, 1}n, and
α̂x �= 0n.

Intuitively, if the Fourier database D̂ contains an entry (x, α̂x), it means
that A has queried x to a random function f and holds some information about
the value f(x). Hence D̂ can be seen as a record of transcripts for queries and
answers. However, it is still not clear what kind of information A has about the
value f(x), since we are now using the Fourier basis. To clarify this information,
let the Hadamard operator H⊗n act on each α̂x in D̂ and obtain another (super-
position of) database D. Then, intuitively, D satisfies the condition in which
“(x, αx) ∈ D corresponds to the condition that A has queried x to the oracle
and received the value αx in response.” We call D a standard database.

In summary, Zhandry observed that the quantum random oracle can be
described as a stateful quantum oracle CstO. The whole quantum state of an
adversary A and the oracle just before the (i + 1)-st query is

|φi+1〉 =
∑

xyzD

axyzD |xyz〉 ⊗ |D〉 , (11)

where each D is a standard database that contains at most i entries. Initially,
the database D is empty. Intuitively, when A makes a query |x, y〉 to the oracle,
CstO does the following three-step procedure.5

The three-step procedure of CstO.

1. Look for a tuple (x, αx) ∈ D. If one is found, respond with |x, y ⊕ αx〉.
5 Note that this three-step procedure is a quoted verbatim from the original paper [37]

of version 20180814:183812, except that the symbol y′ and 0 are used instead of αx

and 0n, respectively, in the original procedure.
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2. If no tuple is found, create new registers initialized to the state 1√
2n

∑

αx
|αx〉.

Add the registers (x, αx) to D. Then respond with |x, y ⊕ αx〉.
3. Finally, regardless of whether the tuple was found or added, there is now a

tuple (x, αx) in D, which may have to be removed. To do so, test whether
the registers containing αx contain 0n in the Fourier basis. If so, remove the
tuple from D. Otherwise, leave the tuple in D.

Intuitively, the first and second steps correspond to the classical lazy sam-
pling, which do the following procedure: When an adversary makes a query x to
the oracle, look for a tuple (x, αx) in the database. If one is found, respond with
αx (this part corresponds to the first procedure of CstO). If no tuple is found,
choose αx uniformly at random from {0, 1}n (this part corresponds to creating
the superposition 1√

2n

∑

αx
|αx〉 in the second step of CstO), respond with αx,

and add (x, αx) to the database.
The third “test and forget” step is crucial and specific to the quantum setting.

Intuitively, the third step forgets data that is no longer used by the adversary
from the database. By appropriately forgetting information, we can record tran-
scripts of queries and answers without perturbing quantum states.

Formalization with Compression. On the basis of above clever intuitions,
Zhandry gave a formalized description of the compressed standard oracle CstO
(although we do not give the explicit description here). Note that, since each
database D has at most i entries before the (i+1)-st query, D can be encoded in
a compressed manner by using only O(i(m + n)) qubits. With this observation,
CstO is formalized in such a way that it has O(i(m + n))-qubit states before the
(i + 1)-st query for each i, which enables us to simulate a random oracle very
efficiently on the fly, without an a priori bound on the number of queries (which
required computational assumption before Zhandry’s work).

3.2 Our Alternative Formalization

Next we give our alternative formalization. The original oracle CstO maintains
only a O(i(m + n))-qubit state by compressing databases. On the other hand,
in our alternative formalization, we do not consider any compression to focus
on recording transcripts of queries, and our oralce always has (n + 1)2m-qubit
states.

From now on, we represent each function f : {0, 1}m → {0, 1}n as (n+1)2m-
bit strings (0‖f(0))‖(0‖f(1))[3]‖ · · · ‖(0‖f(2m − 1)). Remember that the whole
quantum state before A makes the (i + 1)-st query is described as

|φi+1〉 = (Ui⊗I)stO(Ui−1⊗I)stO · · · stO(U0⊗I)

⎛

⎝|0�〉 ⊗
∑

f

1√
2n2m

|f〉
⎞

⎠ . (12)

At each query, unlike the original technique that adds/deletes at most one entry
to/from each database, we first “decode” superpositions of databases to super-
positions of functions when an adversary makes a query, then respond to the
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adversary, and finally “encode” again superpositions of functions to superposi-
tions of databases. Below we describe our encoding.

Encoding Functions to Databases: Intuitive Descriptions. Modifying the
idea of Zhandry, we apply the following operations to the |f〉-register of |φi+1〉.
1. Let the Hadamard operator H⊗n act on the f(x) register for all x. Now the

state becomes ∑

xyz ˜D

a′
xyz ˜D

|xyz〉 ⊗ |D̃〉 (13)

for some complex numbers a′
xyz ˜D

, where each D̃ = (0‖α̂0)‖ · · · ‖(0‖α̂2m−1) is a
concatenation of 2m many (n + 1)-bit strings, and α̂x �= 0n at most i-many x.

2. For each x, if α̂x �= 0n, flip the bit just before α̂x. Now each D̃ changes to the
bit strings (b0‖α̂0)‖ · · · ‖(b2m−1‖α̂2m−1), where bx ∈ {0, 1}, and bx = 1 if and
only if α̂x �= 0n.

3. For each x ∈ {0, 1}n, let the n-bit Hadamard transformation H⊗n act on |α̂x〉
if and only if bx = 1. Then the quantum state becomes

|ψi+1〉 :=
∑

xyzD

axyzD |xyz〉 ⊗ |D〉 (14)

for some complex numbers axyzD, where each D is a concatenation of 2m

many (n + 1)-bit strings (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1) such that bx �= 0 holds
for at most i many x, and intuitively bx �= 0 means that A has queried x to
a random function f and has information that f(x) = αx.

Encoding Functions to Databases: Formal Descriptions. The above
three operations can be formally realized as actions of unitary operators on
|f〉-registers. The first one is realized as IH := (I1 ⊗ H⊗n)⊗2m . The second one
is realized as Utoggle := (I1 ⊗|0n〉 〈0n|+X ⊗ (In −|0n〉 〈0n|))⊗2m , where X is the
1-qubit operator such that X |0〉 = |1〉 and X |1〉 = |0〉. The third one is realized
by the operator CH := (CH⊗n)⊗2m , where CH := |0〉 〈0| ⊗ In + |1〉 〈1| ⊗ H⊗n.

We call the action of unitary operator Uenc := CH·Utoggle·IH and its conjugate
U∗
enc encoding and decoding, respectively. By using our encoding and decoding,

the recording standard oracle with errors is defined as follows.

Definition 1 (Recording standard oracle with errors). The recording
standard oracle with errors is the stateful quantum oracle such that queries are
processed with the unitary operator RstOE defined by RstOE := (I ⊗ Uenc) · stO ·
(I ⊗ U∗

enc).

Note that |ψi+1〉 = (Ui ⊗ I)RstOE(Ui−1 ⊗ I)RstOE · · ·RstOE(U0 ⊗ I)(|0�〉 ⊗
|0(n+1)2m〉) and |φi+1〉 = (I ⊗ U∗

enc) |ψi+1〉 hold for each i.
Next, we introduce notations related to our recording standard oracle with

errors that are required to describe properties of RstOE.
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Notations Related to RstOE. We call a bit string D = (b0‖α0)‖ · · · ‖
[5](b2m−1‖α2m−1), where bx ∈ {0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m,
is a valid database if αx �= 0n holds only if bx �= 0. We call D an invalid database
if it is not a valid database. Note that, in a valid database, bx can be 0 or 1
if αx = 0n. We identify a valid database D with the partially defined function
from {0, 1}m to {0, 1}n of which the value on x ∈ {0, 1}m is defined to be y if
and only if bx �= 0 and αx = y. We use the same notation D for this function.
Moreover, we identify D with the set {(x,D(x))}x∈dom(D) ⊂ {0, 1}m × {0, 1}n.
We say that an entry of x is in D if (x, y) ∈ D for some y. Unless otherwise
noted, we always assume that D is valid.

We say that a valid database D is compatible with a function f : {0, 1}m →
{0, 1}n if D(x) = f(x) holds for each x in the domain of D. For each valid
database D, let comp(D) denote the set of functions that are compatible with D.

If ‖ |ψ〉 − |ψ′〉 ‖ is in O(ε) for two vectors |ψ〉 , |ψ′〉, and some parameter ε
(which will be a function of n in later applications), then we say that |ψ〉 is
equal to |ψ′〉 with an error in O(ε), or just write |ψ〉 = |ψ′〉 with an error in
O(ε).

The following proposition describes the core properties of RstOE.

Proposition 1 (Core Properties). Let D be a valid database. Then, the
following properties hold.

1. Suppose that |D| ≤ i holds. Then

U∗
enc |D〉 =

∑

f∈comp(D)

√

1
|comp(D)| |f〉 (15)

holds with an error in O(
√

i2/2n).
2. Suppose that there is no entry of x in D. Then, for any y and α,

RstOE |x〉 |y〉 ⊗ |D ∪ (x, α)〉 = |x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉
with an error in O(1/

√
2n). More precisely,

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉
= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1√
2n

|x, y ⊕ α〉
⎛

⎝|D〉 −
⎛

⎝
∑

γ∈{0,1}n

1√
2n

|D ∪ (x, γ)〉
⎞

⎠

⎞

⎠

− 1√
2n

∑

γ

1√
2n

|x, y ⊕ γ〉 ⊗ (|D ∪ (x, γ)〉 − |Dinvalid
γ 〉)

+
1
2n

|x〉 |0̂n〉 ⊗
⎛

⎝2
∑

δ∈{0,1}n

1√
2n

|D ∪ (x, δ)〉 − |D〉
⎞

⎠ (16)

holds, where |Dinvalid
γ 〉 is a superposition of invalid databases for each γ, and

|0̂n〉 = H⊗n |0n〉.
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3. Suppose that there is no entry of x in D. Then, for any y,

RstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n

|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉

with an error in O(1/
√

2n). To be more precise,

RstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n

|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1√
2n

|x〉 |0̂n〉 ⊗
⎛

⎝|D〉 −
∑

γ∈{0,1}n

1√
2n

|D ∪ (x, γ)〉
⎞

⎠

(17)

holds, where |0̂n〉 = H⊗n |0n〉.
Proposition 1 can be shown by straightforward calculations. For completeness,
a proof of Proposition 1 is given in Section A in this paper’s full version [14].

An Intuitive Interpretation of Proposition 1. The first property is a sub-
sidiary one, which will be useful in later applications. When we ignore error
terms, the second and third properties correspond to the first and second proce-
dures of CstO, respectively: When an adversary makes a query x to the oracle,
RstOE looks for a tuple (x, α) in the database. If one is found, respond with α
(the second property in the above proposition). If no tuple is found, create the
superposition 1√

2n

∑

αx
|αx〉, respond with αx, and add (x, αx) to the database

(the third property in the above proposition).
Note that we do not need any “test and forget” step to describe the second

and third properties in Proposition 1. Thus we can intuitively capture time
evolutions of databases with only the (classical) lazy-sampling-like arguments.

To get rid of the “test and forget” step, we have to introduce some errors. The
error increases as the number of adversaries’ queries q increases, but it remains
negligible as long as q � 2n/2. Thus the error will not be problematic when we
focus on the situation q � 2n/2, which is the case for showing the security bound
of the 4-round Luby-Rackoff construction.

In later applications, similarly to classical proofs, we introduce good and
bad transcripts. The explicit formulas of the second and third properties will
be used to show that, intuitively, adversaries cannot distinguish two oracles if
transcripts are “good”. Moreover, the first property and the descriptions with
errors of the second and third properties will be used to show that the probability
that transcripts become “bad” is negligible.

4 Security Proofs

The goal of this section is to show the following theorem, which gives the quan-
tum query lower bound for the problem of distinguishing the 4-round Luby-
Rackoff construction LR4 from random permutations RP, when all round func-
tions are truly random functions.
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Theorem 3. Let q be a positive integer. Let A be an adversary that makes at
most q quantum queries. Then, AdvqPRP

LR4
(A) is in O

(√

q6/2n/2
)

.

Since we can efficiently simulate truly random functions against efficient
quantum algorithms [34], the following corollary follows from Theorem 3.

Corollary 1. Let fi be a quantumly secure PRF for each 1 ≤ i ≤ 4. Then,
the 4-round Luby-Rackoff construction LR4(f1, f2, f3, f4) is a quantumly secure
PRP.

In the rest of this section, we assume that all round functions in the Luby-
Rackoff constructions are truly random functions, and we focus on the number
of queries when we consider computational resources of adversaries. To have
a good intuition on our proof in the quantum setting, it would be better to
intuitively capture how LR3 is proven to be secure against classical CPAs, how the
quantum attack on LR3 works, and what problem will be hard even for quantum
adversaries. Thus, before giving a formal proof for the above theorem, in what
follows we give some observations about these questions, and then explain where
to start.

An Overview of a Classical Security Proof for LR3. Here we give an
overview of a classical proof for the security of LR3 against chosen plaintext
attacks in the classical setting. For simplicity, we consider a proof for PRF
security of LR3.

Let bad2 be the event that an adversary makes two distinct plaintext queries
(x0L, x0R)[3] �= (x′

0L, x′
0R) to the real oracle LR3 such that the corresponding

inputs x1L and x′
1L to the second round function f2 are equal, i.e., inputs to f2

collide. In addition, let bad3 be the event that inputs to f3 collide, and define
bad := bad2 ∨ bad3.

If bad2 (resp., bad3) does not occur, then the right-half (resp., left-half) n/2
bits of LR3’s outputs cannot be distinguished from truly random n/2-bit strings.
Thus, unless the event bad occurs, adversaries cannot distinguish LR3 from ran-
dom functions.

If the number of queries of an adversary A is at most q, we can show that the
probability that the event bad occurs when A runs relative to the oracle LR3 is
in O(q2/2n/2). Thus we can deduce that LR3 is indistinguishable from a random
function up to O(2n/4) queries.

Quantum Chosen Plaintext Attack on LR3. Next, we give an overview of
the quantum chosen plaintext attack on LR3 by Kuwakado and Morii [20]. Note
that we consider the setting in which adversaries can make quantum superpo-
sition queries. The attack distinguishes LR3 from a random permutation with
only O(n) queries.

Fix α0 �= α1 ∈ {0, 1}n/2 and for i = 0, 1, define gi : {0, 1}n/2 → {0, 1}n/2

by gi(x) = (LR3(αi, x))R ⊕ αi, where (LR3(αi, x))R denote the right half n/2-
bits of LR3(αi, x). In addition, define G : {0, 1} × {0, 1}n/2 → {0, 1}n/2 by
G(b, x) = gb(x). Then, g0(x) = g1(x ⊕ s) can be easily confirmed to hold for any
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x ∈ {0, 1}n/2, where s = f1(α0) ⊕ f1(α1). Thus G(b, x) = G((b, x) ⊕ (1, s)) holds
for any b and x, i.e., the function G has the period (1, s).

If we can make quantum superposed queries to G, then we can find the period
(1, s) by using Simon’s period finding algorithm [31], making O(n) queries to G.
In fact G can be implemented on an oracle-querying quantum circuit CLR3 by
making O(1) queries to LR3.6

Roughly speaking, Simon’s algorithm outputs the periods with a high prob-
ability by making O(n) queries if applied to periodic functions, and outputs the
result that “this function is not periodic” if applied to functions without periods.

If we are given the oracle of a random permutation RP, the circuit CRP

will implement an almost random function, which does not have any period
with a high probability. Thus, if we run Simon’s algorithm on CRP, with a high
probability, it does not output any period. Therefore, we can distinguish LR3

from RP by checking if Simon’s period finding algorithm outputs a period.

Observation: Why the Classical Proof Does Not Work? Here we give an
observation about why quantum adversaries can distinguish LR3 from random
permutations even though LR3 is proven to be indistinguishable from a random
permutation in the classical setting.

We observe that quantum adversaries can make the event bad2 occur: Once
we find the period 1‖s = 1‖f1(α0)⊕f2(α1) given the real oracle LR3, we can force
collisions on the input of f2. Concretely, take x ∈ {0, 1}n/2 arbitrarily and set
(x0L, x0R) := (α0, x), (x′

0L, x′
0R) := (α1, x ⊕ s). Then the corresponding inputs

to f2 become f1(α0) ⊕ x for both plaintexts. Thus the classical proof idea does
not work in the quantum setting.

Quantum Security Proof for LR4: The Idea. As we explained above, the
essence of the quantum attack on LR3 is finding collisions for inputs to the
second round function f2. On the other hand, finding collisions for inputs to
the third round function f3 seems difficult even for quantum (chosen-plaintext)
query adversaries.

Having these observations, our idea is that even quantum adversaries would
have difficulty in noticing that the third state update (x2L, x2R) �→ (x2R ⊕
f3(x2L), x2L) of LR3 is modified as (x2L, x2R) �→ (F (x2L, x2R), x2L), where F :
{0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 is a random function. We denote this modified
function by LR′

3 (see Fig. 3) and begin by showing that it is hard to distinguish
LR′

3 from LR3.
We will show this by combining the classical proof idea and our recording

standard oracle with errors. Roughly speaking, we define “bad” databases as
the ones that contain “collisions at left-half inputs to the third round function”.
Then we show that the probability that we measure bad databases is very small,
and that adversaries cannot distinguish LR′

3 from LR3 when databases are not
bad.
6 Here we have to truncate outputs of O without destroying quantum states, which is

pointed out to be non-trivial in the quantum setting [18]. However, this “truncation”
issue can be overcome by using a technique described in [15].
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Fig. 3. LR′
3

Next, let FamP({0, 1}n/2) be the set of functions F : {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 such that F (x, ·) is a permutation for each x. If P is chosen uniformly at
random from FamP({0, 1}n/2), we say that P is a family of random permutations
(FRP). Then, we intuitively see that FRP is hard to distinguish from a random
function RF from {0, 1}n to {0, 1}n/2.

Once we show the above two properties, i.e.,

1. LR′
3 is hard to distinguish from LR3, and

2. FRP is hard to distinguish from RF,

we can prove Theorem 3 with simple and easy arguments. In other words, those
two properties are technically the most difficult parts to show in our proof for
Theorem 3. To show the first property, we use our recording standard oracle with
errors. On the other hand, to show the second property, we can just combine
some previous results.

Organization of the Rest of Section 4. Section 4.1 shows that LR′
3 is hard

to distinguish from LR3. Section 4.2 shows that FRP is hard to distinguish from
RF. Section 4.3 proves Theorem 3 by combining the results in Sects. 4.1 and 4.2.

4.1 Hardness of Distinguishing LR′
3 from LR3

Here we show the following proposition.

Proposition 2. Let q be a positive integer. Let A be an adversary that makes
at most q quantum queries. Then, Advdist

LR3,LR′
3
(A) is in O

(√

q3/2n/2
)

.

First, let us discuss the behavior of the quantum oracles of LR3 and LR′
3.

Quantum Oracle of LR3. Let Ofi
denote the quantum oracle of each round

function fi. In addition, let us define the unitary operator OUP.i that computes
the state update of the i-th round by

OUP.i : |x(i−1)L, x(i−1)R〉 |yL, yR〉
�→ |x(i−1)L, x(i−1)R〉 |(yL, yR) ⊕ (fi(x(i−1)L) ⊕ x(i−1)R, x(i−1)L)〉 .

OUP.i can be implemented by making one query to fi (see Fig. 4).
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Fig. 4. Implementation of OUP.i. fi will be implemented by using the recording stan-
dard oracle with errors.

Now OLR3 can be implemented as follows by using {OUP.i}1≤i≤3:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.
2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 . (18)

3. Compute the state (x2L, x2R) by querying |x1L, x1R〉 |0n〉 to OUp.2, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (19)

4. Query |x2L, x2R〉 |yL, yR〉 to OUp.3, and obtain

|x〉 |y ⊕ LR3(x)〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (20)

5. Uncompute Steps 2 and 3 to obtain

|x〉 |y ⊕ LR3(x)〉 . (21)

6. Return |x〉 |y ⊕ LR3(x)〉.
The above implementation is illustrated in Fig. 5.

Quantum Oracle of LR′
3. The quantum oracle of LR′

3 is implemented in the
same way as LR3, except that the third round state update oracle OUP.3 is
replaced with another oracle O′

UP.3 defined as

O′
UP.3 : |x2L, x2R〉 |yL, yR〉 �→ |x2L, x2R〉 |(yL, yR) ⊕ (F (x2L, x2R) ⊕ x2R, x2L)〉 .

O′
UP.3 is implemented by making one query to OF , i.e., the quantum oracle of

F (see Fig. 6).

Fig. 5. Implementation of LR3.
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Fig. 6. Implementation of O′
UP.3. F will be implemented by using the recording stan-

dard oracle with errors.

Below, we show the claim of the proposition by using the recording standard
oracle with errors for f1, f2, f3, and F . We consider that the oracles of these
functions are implemented as the recording standard oracle with errors, and
we use D1,D2,D3, and DF to denote (valid) databases for f1, f2, f3, and F ,
respectively. In particular, after the i-th query of an adversary to LR3, the joint
quantum states of the adversary and functions can be described as

∑

xyzD1D2D3

axyzD1D2D3 |xyz〉 ⊗ |D1〉 |D2〉 |D3〉 (22)

for some complex numbers axyzD1D2D3 such that
∑

xyzD1D2D3
|axyzD1D2D3 |2 =

1. Here, x, y, and z correspond to the adversary’s query, answer, and output
registers, respectively. (If the oracle is LR′

3, then the register |D3〉, which corre-
sponds to f3, is replaced with |DF 〉, which corresponds to F .)

Next, we define good and bad databases for LR3 and LR′
3. Intuitively, we say

that a tuple (D1,D2,D3) (resp., (D1,D2,DF )) for LR3 (resp., LR′
3) is bad if and

only if it contains the information that some inputs to f3 (resp., the left halves of
some inputs to F ) collide. Roughly speaking, we define good and bad databases
in such a way that a one-to-one correspondence exists between good databases
for LR3 and those for LR′

3, so that adversaries will not be able to distinguish LR′
3

from LR3 as long as databases are good.

Good and Bad Databases for LR3. Here we introduce the notion of good
and bad for each tuple (D1,D2,D3) of valid database for LR3. We say that
(D1,D2,D3) is good if, for each entry (x2L, γ) ∈ D3, there exists exactly one
pair ((x0L, α), (x1L, β)) ∈ D1 × D2 such that β ⊕ x0L = x2L. We say that
(D1,D2,D3) is bad if it is not good.

Good and Bad Databases for LR′
3. Next we introduce the notion of good and

bad for each tuple (D1,D2,DF ) of valid database for LR′
3. We say that a valid

database DF is without overlap if each pair of distinct entries (x2L, x2R, γ) and
(x′

2L, x′
2R, γ′) in DF satisfies x2L �= x′

2L. We say that (D1,D2,DF ) is good if DF

is without overlap, and for each entry (x2L, x2R, γ) ∈ DF , there exists exactly
one pair ((x0L, α), (x1L, β)) ∈ D1 × D2 such that β ⊕ x0L = x2L and x2R = x1L.
We say that (D1,D2,DF ) is bad if it is not good.
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Compatibility of DF with D3. Let DF be a valid database for F without
overlap and D3 be a valid database for f3. We say that DF is compatible with
D3 if the following conditions are satisfied:

1. If (x2L, x2R, γ) ∈ DF , then (x2L, x2R ⊕ γ) ∈ D3.
2. If (x2L, γ) ∈ D3, there is a unique x2R and (x2L, x2R, x2R ⊕ γ) ∈ DF .

For each valid DF without overlap, the unique valid database exists for f3, which
we denote by [DF ]3.

Remark 1. For each good database (D1,D2,D3) for LR3, a unique DF with-
out overlap exists such that [DF ]3 = D3 and (D1,D2,DF ) is a good database
for LR′

3, by the definition of good databases. Similarly, for each good database
(D1,D2,DF ) for LR′

3, (D1,D2, [DF ]3) becomes a good database for LR3.

Next we define regular and irregular quantum states for the oracles OLR3 and
OLR′

3
. Roughly speaking, we will treat irregular states as some small error terms,

and focus on regular states.

Regular and Irregular States of Oracles. Recall that, in addition to
database registers, the quantum oracle OLR3 uses ancillary 2n-qubit registers
to compute the intermediate state after the first and second rounds (see (19)
and (20)). We say that a state vector |D1〉 |D2〉 |D3〉⊗|x1〉⊗|x2〉 for OLR3 , where
|x1〉 ⊗ |x2〉 is the ancillary 2n qubits, is irregular if x1 �= 0n ∨ x2 �= 0n holds, or
at least one of the three databases (D1, D2, or D3) is invalid. We say that the
state vector is regular if it is not irregular. We define regular and irregular states
for OLR′

3
similarly.

Next we define some modified versions of LR3 and LR′
3, which we denote by

LR3-det and LR′
3-det, respectively (“det” is an abbreviation of “detection of bad

database”).

The oracles LR3-det and LR′
3-det. The oracle LR3-det is defined in the same

way as LR3, except that the oracle checks whether the database is bad (or the
state of the oracle is irregular) after each query, and writes the result to an
additional qubit. Note that we define regular and irregular states for LR3-det in
the same way as for LR3. Additional qubits are prepared before an adversary A
runs (q additional qubits are sufficient if A is a q query adversary). If i �= j, the
results of “detection of bad database” for the i-th and j-th queries are written
in distinct qubits.

Intuitively, LR3-det behaves as follows when A makes the i-th query:

1. Check if the j-th additional qubit is 1 for 1 ≤ j ≤ i − 1 (i.e., check if the
database has been bad before the i-th query). If so, do nothing. If not, go to
the next step.

2. Make a query to OLR3 .
3. Check if the database is bad, or the quantum state of OLR3 is irregular. If so,

flip the i-th additional qubit.
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Next, we formally explain how the above procedures can be realized as a
unitary operator. Let Πbad be the projection to the space spanned by the vectors
of bad databases, and irregular state vectors. In addition, let Π

[i−1]
flipped be the

projection onto the space spanned by the vectors such that the j-th additional
qubit is 1 for some 1 ≤ j ≤ i − 1.

Formally, for the i-th query, the behavior of the quantum oracle of LR3-det
is described by the unitary operator

OLR3-det :=
(

(Πbad ⊗ Ii−1 ⊗ X + (I − Πbad) ⊗ Ii−1 ⊗ I1)

· (OLR3 ⊗ Ii−1 ⊗ I1)
)

· ((I − Π
[i−1]
flipped) ⊗ I1) + Π

[i−1]
flipped ⊗ I1, (23)

where Ii−1 is the identity operator which acts on the first (i − 1) additional
qubits. In addition, I1 and X are the identity operator and the operator such
that X |0〉 = |1〉 and X |1〉 = |0〉, respectively, which act on the i-th additional
qubit.

LR′
3-det is constructed from LR′

3 in the same way as LR3-det is constructed
from LR3-det as above. The behaviors of the oracles of LR′

3-det and LR3-det
depend on i, though for simplicity, we always use the notations OLR′

3-det
and

OLR3-det without i.
Below we first show that LR3-det is hard to distinguish from LR′

3-det, and
second show that LR3-det (resp., LR′

3-det) is hard to distinguish from LR3 (resp.,
LR′

3).

Hardness of Distinguishing LR3-det from LR′
3-det. Let |ψi〉 and |ψ′

i〉 be
the state just before the i-th query to LR3-det and LR′

3-det, respectively. By
abuse of notation, we let |ψ(q+1)〉 , |ψ′

(q+1)〉 denote the quantum states (Uq ⊗
I)OLR3-det |ψq〉 and (Uq ⊗ I)OLR′

3-det
|ψ′

q〉, respectively.
We need the following lemma. Intuitively, the lemma claims that no adversary

can distinguish LR3-det from LR′
3-det if databases are “good”.

Lemma 1. For each j, let |ψgood
j 〉 and |ψ′good

j 〉 denote (I − Π
[i−1]
flipped) |ψj〉 and

(I − Π
[i−1]
flipped) |ψ′

j〉, respectively. Let trD123 and trD12F denote the partial trace
over databases and additional qubits for LR3-det and LR′

3-det, respectively. Then,
trD123

(

|ψgood
i 〉

)

= trD12F

(

|ψ′good
i 〉

)

holds for 1 ≤ i ≤ q + 1.

Proof Intuition. Lemma 1 can be shown by straightforward algebraic calculations
using the strict formulas of the second and third properties in Proposition 1. The
equality holds owing to the one-to-one correspondences between good databases
for LR3 and those for LR′

3 (see Remark 1). More precisely, for every x, y, x′, y′ ∈
{0, 1}n and for every good databases (D1,D2,DF ), (D′

1,D
′
2,D

′
F ) for LR′

3, the
“probability” (in the quantum meaning) that

OLR′
3

changes the vector |x, y〉 |D1,D2,DF 〉 to |x′, y′〉 |D′
1,D

′
2,D

′
F 〉 (24)
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is equal to the probability that

OLR3 changes the vector |x, y〉 |D1,D2, [DF ]3〉 to |x′, y′〉 |D′
1,D

′
2, [D

′
F ]3〉 , (25)

where (D1,D2, [DF ]3) and (D′
1,D

′
2, [D

′
F ]3) are the good databases for LR3

that correspond to (D1,D2,DF ) and (D′
1,D

′
2,D

′
F ), respectively. By linear-

ity of unitary operations, this equality shows that if trD123

(

|ψgood
j 〉

)

=

trD12F

(

|ψ′good
j 〉

)

(i.e., the good probabilities before the j-th queries are equal)

then trD123

(

|ψgood
j+1 〉

)

= trD12F

(

|ψ′good
j+1 〉

)

(i.e., the good probabilities are still
equal after the j-th queries) holds. A complete proof of Lemma 1 is given in
Section B in this paper’s full version [14].

We also need the following lemma, which intuitively claims that “good” states
change to “bad” states only with a negligible probability.

Lemma 2. For each j,
∥
∥
∥Πbad · OLR3 |ψgood

j 〉
∥
∥
∥ and

∥
∥
∥Πbad · OLR′

3
|ψ′good

j 〉
∥
∥
∥ are in

O(
√

j/2n/2).

Proof Intuition. Here we give a proof intuition for LR3. Owing to the second
and third properties of Proposition 1 with errors, we can use classical lazy-
sampling intuition (see explanations belowProposition1).Roughly speaking, good
databases change to bad if and only if a fresh query is made to f1 or f2, and the cor-
responding input to f3 collides with some existing record in the database for f3.

Since each database of |ψgood
j 〉 has at most (j − 1) entries and outputs of

f1 and f2 are (n/2)-bits, the input to f3 that corresponds to a fresh input to
f1 or f2 collides with one of the existing records in D3 with a probability at

most O(j/2n/2). This corresponds to the claim that
∥
∥
∥Πbad · OLR3 |ψgood

j 〉
∥
∥
∥

2

≤
O(j/2n/2) holds. This argument actually ignores some errors, but the errors
will be in O(

√

1/2n/2) due to Proposition 1. The claim for LR′
3 can be shown

similarly. A complete proof of Lemma 2 is given in Section C in this paper’s full
version [14].

The following proposition guarantees that LR3-det is hard to distinguish from
LR′

3-det.

Proposition 3. Advdist
LR3-det,LR′

3-det
(A) is in O

(√

q3/2n/2
)

.

Proof Intuition. Due to Lemma 1, A cannot distinguish LR3-det from LR′
3-det

as long as databases are good. Thus, intuitively, the distinguishing advantage
is upper bounded by the square root of the probability that databases become
bad while A makes q queries, which is further upper bounded by

∑

1≤j≤q ‖Πbad ·
OLR3-det |ψgood

j 〉 ‖+
∑

1≤j≤q ‖Πbad ·OLR′
3-det

|ψ′good
j 〉 ‖. From Lemma 2, this can be

upper bounded by
∑

1≤j≤q O(
√

j/2n/2)+
∑

1≤j≤q O(
√

j/2n/2) = O(
√

q3/2n/2).
A complete proof of Proposition 3 is given in Section D in this paper’s full
version [14].
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Hardness of Distinguishing LR3-det and LR′
3-det from LR3 and LR′

3.
The following proposition guarantees that LR3-det and LR′

3-det are hard to dis-
tinguish from LR3 and LR′

3, respectively.

Proposition 4. Advdist
LR3,LR3-det (A) and Advdist

LR′
3,LR′

3-det
(A) are in

O
(√

q3/2n/2
)

.

Proof Intuition. We give a proof intuition for LR3-det and LR3. Since the
databases of round functions for LR3-det are the same as those for LR3, A cannot
distinguish LR3-det from LR′

3-det as long as databases are good. Thus, roughly
speaking, the distinguishing advantage is upper bounded by the square root of
the probability that databases become bad while A makes q queries. Owing to
Lemma 2, we can show the claim in the same way as the proof intuition for
Proposition 3. The claim for LR′

3-det and LR′
3 can be shown in a similar way.

A complete proof of Proposition 4 is given in Section E in this paper’s full
version [14].

Proof of Proposition 2. Finally, we show Proposition 2.

Proof (of Proposition 2). Advdist
LR3,LR′

3
(A) is upper bounded by Advdist

LR3,LR3-det

(A)[3] + Advdist
LR3-det,LR′

3-det
(A) + Advdist

LR′
3-det,LR

′
3
(A). Thus, the claim of Propo-

sition 2 follows from Propositions 3 and 4. ��

4.2 Hardness of Distinguishing FRP from RF

Recall that FamP({0, 1}n/2) is the set of functions F : {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 such that F (x, ·) is a permutation for each x, and if P is chosen uni-
formly at random from FamP({0, 1}n/2), we say that P is a family of random
permutations (FRP). The following proposition claims that FRP is hard to dis-
tinguish from RF.

Proposition 5. For any quantum adversary A that makes at most q quantum
queries, Advdist

FRP,RF(A) ≤ O
(√

q6/2n/2
)

holds.

Proof Intuition. This proposition can be proven by just combining the two
previous results: The first one is the indistinguishability of a random func-
tion and a random permutation shown by Zhandry [35], and the second one
is the equivalence of oracle-indistinguishability and indistinguishability, which
was first shown by Zhandry [33] and later generalized by Song and Yun [32]. If
a function F : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 is a random function RF (resp.,
a family of random permutations FRP), F (x, ·) is a random function (resp.,
a random permutation) for each x ∈ {0, 1}n/2. Roughly speaking, F can be
regarded as an “oracle” that returns a random function (resp., random permu-
tation) for each x. Then, from the equivalence of indistinguishability and oracle-
indistinguishability, indistinguishability of RF and FRP (which is, intuitively,
“oracle”-indistinguishability of a random function and a random permutation)
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follows from the indistinguishability of a random function and a random per-
mutation from {0, 1}n/2 to {0, 1}n/2, which is already shown as the first result
above. See Section F in this paper’s full version [14] for a formal proof.

4.3 Proof of Theorem 3

This subsection finishes our proof of Theorem 3, by using the results given in
Sects. 4.1 and 4.2.

Proof (of Theorem 3). First, let us modify LR4 in such a way that the
state updates of the third and fourth rounds are replaced with (x2L, x2R) �→
(x3L, x3R) := (F (x2L, x2R), x2L) and (x3L, x3R) �→ (x4L, x4R) := (F ′(x3L, x3R),
x3L), respectively, where F, F ′ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 are random
functions. Let us denote the modified function by LR′′

4 . In addition, by LR′′
2(F, F ′)

we denote the function defined by (xL, xR) �→ (F ′(F (xL, xR), xL), F (xL, xR)) (see
Fig. 7).

Fig. 7. LR′′
4 and LR′′

2 (F, F ′).

Then, by applying Proposition 2 twice we can show that

Advdist
LR4,LR′′

4
(q) ≤ O

(√

q3

2n/2

)

(26)

holds.
Let us modify LR′′

2(F, F ′) in such a way that F is replaced with a family of
random permutations P , and denote the resulting function by LR′′

2(P, F ′). Then,
from Proposition 5 it follows that Advdist

LR′′
2 (F,F ′),LR′′

2 (P,F ′)(q) ≤ O(
√

q6/2n/2)
holds. Next, let us define a function G by G(xL, xR) = F ′(xL, xR)‖P (xL, xR),
where F ′ is a random function and P is a family of random permutations (see
Fig. 8). Then, the function distribution of LR′′

2(P, F ′) is the same as that of G.
(Note that P (xL, xR) �= P (xL, x′

R) always holds if xR �= x′
R. Thus, if (xL, xR) �=

(x′
L, x′

R), the corresponding inputs to F ′ will be distinct.) Therefore we have
that Advdist

LR′′
2 (P,F ′),G(q) = 0 holds. Moreover, from Proposition 5 Advdist

RF,G(q) ≤
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Fig. 8. LR′′
2 (P, F ′) and G.

O
(√

q6/2n/2
)

holds. Therefore Advdist
LR′′

2 (P,F ′),RF(q) ≤ O
(√

q6/2n/2
)

follows,
which implies that

Advdist
LR′′

4 ,RF(q) ≤ O

(√

q6

2n/2

)

(27)

holds.
Hence, from (26) and (27), it follows that Advdist

LR4,RF(A) ≤ O
(√

q6/2n/2
)

holds for any quantum adversary A that makes at most q quantum queries.
In addition, Advdist

RP,RF(A) ≤ O(q6/2n) follows from a quantum version of the
PRP-PRF switch [35]. (See Proposition 7 in this paper’s full version [14] for
details.) Therefore Advdist

LR4,RP(A) ≤ O
(

q6/2n/2
)

follows for any quantum adver-
sary A that makes at most q quantum queries, which completes the proof of the
theorem. ��
Remark 2. In the above proof, we went back and forth between random functions
and (families of) random permutations, which may seem unnatural. The moti-
vation for our proof strategy was to avoid complex arguments that are specific
to the quantum setting as much as possible.

5 A Query Upper Bound

Here we give a query upper bound for the problem of distinguishing LR4 from
a random permutation by showing a distinguishing attack. Again, we consider
the case that all round functions of LR4 are truly random functions, and show
the following theorem.

Theorem 4. A quantum algorithm A exists that makes O(2n/6) quantum
queries and satisfies AdvqPRP

LR4
(A) = Ω(1).

Proof Intuition. Intuitively, our distinguishing attack is just a quantum version
of a classical collision-finding-based distinguishing attack [28]. A classical attack
distinguishes LR4 from a random permutation by finding a collision of a func-
tion that takes values in {0, 1}n/2, which requires O(

√
2n/2) = O(2n/4) queries

in the quantum setting. However, finding a collision of the function requires only
O( 3

√
2n/2) = O(2n/6) queries in the quantum setting, which enables us to make

a O(2n/6)-query quantum distinguisher. (Note that, we can generally find a col-
lision of random functions from {0, 1}n/2 to {0, 1}n/2 with O( 3

√
2n/2) = O(2n/6)
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quantum queries [35].) See Section G in this paper’s full version [14] for a com-
plete proof.

6 Concluding Remarks

This paper showed that Ω(2n/12) quantum queries are required to distinguish
the (n-bit block) 4-round Luby-Rackoff construction from a random permuta-
tion by qCPAs. In particular, the 4-round Luby-Rackoff construction becomes a
quantumly secure PRP against qCPAs if round functions are quantumly secure
PRFs. We also gave a qCPA that distinguishes the 4-round Luby-Rackoff con-
struction from a random permutation with O(2n/6) quantum queries. To give
security proofs, we gave an alternative formalization of the compressed oracle
technique by Zhandry and applied it.

An important future work is to give the tight bound for the problem of distin-
guishing the 4-round Luby-Rackoff construction from a random permutation.7

It would be interesting to see if the provable security bound improves when we
increase the number of rounds. Also, analyzing the security of the Luby-Rackoff
constructions against qCCAs is left as an interesting open question. It would
be a challenging problem since we have to treat inverse (decryption) queries to
quantum oracles. Oracles that allow inverse quantum queries are usually much
harder to deal with than the ones that allow only forward quantum queries, and
some other new techniques would be required for the analysis.

Acknowledgments. The authors thank Qipeng Liu and anonymous reviewers for
pointing out an issue of Proposition 5 in a previous version of this paper.
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applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 21

16. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block
ciphers: Davies-Meyer and Merkle-Damg̊ard constructions. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 10

17. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-
ciphertext attacks against Feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12612-4 20

18. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

19. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation.
American Mathematical Society, Boston (2002)

20. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: ISIT 2010, Proceedings, pp. 2682–2685.
IEEE (2010)

21. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012, Proceedings, pp. 312–316. IEEE (2012)

https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-12612-4_20
https://doi.org/10.1007/978-3-030-12612-4_20
https://doi.org/10.1007/978-3-662-53008-5_8


174 A. Hosoyamada and T. Iwata

22. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 189–218. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 7

23. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions (abstract). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS,
vol. 218, pp. 447–447. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-
39799-X 34

24. Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 367–383. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 21

25. National Bureau of Standards: Data encryption standard. FIPS 46, January 1977
26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:

10th Anniversary Edition (2010)
27. NIST: Announcing request for nominations for public-key post-quantum crypto-

graphic algorithms. National Institute of Standards and Technology (2016)
28. Patarin, J.: New results on pseudorandom permutation generators based on the

des scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 25

29. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

30. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, Proceedings, pp. 124–134. IEEE (1994)

31. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

32. Song, F., Yun, A.: Quantum security of NMAC and related constructions - PRF
domain extension against quantum attacks. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 283–309. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 10

33. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, Pro-
ceedings, pp. 679–687. IEEE (2012)

34. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

35. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015)

36. Zhandry, M.: A note on quantum-secure PRPs. IACR Cryptology ePrint Archive
2016, p. 1076 (2016)

37. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 9

https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/978-3-319-59879-6_21
https://doi.org/10.1007/3-540-46766-1_25
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9


Indifferentiability of Truncated Random
Permutations

Wonseok Choi(B), Byeonghak Lee(B), and Jooyoung Lee(B)

KAIST, Daejeon, Korea
{krwioh,lbh0307,hicalf}@kaist.ac.kr

Abstract. One of natural ways of constructing a pseudorandom func-
tion from a pseudorandom permutation is to simply truncate the output
of the permutation. When n is the permutation size and m is the number
of truncated bits, the resulting construction is known to be indistinguish-
able from a random function up to 2

n+m
2 queries, which is tight.

In this paper, we study the indifferentiability of a truncated random
permutation where a fixed prefix is prepended to the inputs. We prove
that this construction is (regularly) indifferentiable from a public random
function up to min{2n+m

3 , 2m, 2�} queries, while it is publicly indifferen-
tiable up to min{max{2n+m

3 , 2
n
2 }, 2�} queries, where � is the size of the

fixed prefix. Furthermore, the regular indifferentiability bound is proved
to be tight when m + � � n.

Our results significantly improve upon the previous bound of
min{2m

2 , 2�} given by Dodis et al. (FSE 2009), allowing us to construct,
for instance, an n

2
-to-n

2
bit random function that makes a single call to

an n-bit permutation, achieving n
2
-bit security.

Keywords: Random permutation · Random function · Truncation ·
Indifferentiability · Chi-square method

1 Introduction

A block cipher is typically modeled as a pseudorandom permutation in a prov-
able security setting: no distinguisher should be able to distinguish the block
cipher from a truly random permutation by making a certain number of encryp-
tion and decryption queries in a black-box manner. However, for some modes of
operation, one might want the block cipher to behave like a pseudorandom func-
tion. A variety of cryptographic protocols (such as signature schemes, random
number generators, key derivation schemes, etc.) provide provable security in
the random oracle model. This observation motivates the problem of construct-
ing a pseudorandom function from pseudorandom permutations. Sometimes this
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problem is called “Luby-Rackoff backward” [2]: the Feistel network transforms a
set of (not necessarily one-to-one) functions into a permutation, and this prob-
lem considers its opposite direction. In this direction, two approaches are natural
and straightforward; one is to xor multiple independent random permutations
and the other is to simply truncate the output of the permutation.

In this work, we will focus on the security of a truncated random permutation.
One advantage of this construction (over xoring multiple permutations) is its
minimality; it is based on a single permutation, using only a single call to the
permutation. We will study the security of a truncated random permutation
in the indifferentiability framework. In this framework, we will fix some of the
input bits to the permutation, since otherwise one can easily differentiate the
construction from a public random function F by making a backward query v to
the simulator S, and then checking out if F(S−1(v)) = v. Later we will discuss
this attack in more detail.

Truncated Permutation. Let n, �, m be positive integers such that �,m < n.
Our construction is precisely defined as

TRP[P]
def= Trm(P(c ‖ ·)),

where c ∈ {0, 1}� is an �-bit prefix, P is an n-bit permutation (modeled as a
random permutation oracle), and

Trm : {0, 1}n −→ {0, 1}n−m

x �−→ xR,

when x ∈ {0, 1}n is written as xL ‖ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.
(So Trm truncates the first m bits of the input.) In this way, we obtain an
(n − �)-to-(n − m) bit function from an n-bit permutation.

In order to prove that this construction is indifferentiable from a public ran-
dom function F, one should present a simulator S that emulates P having access
to F so that it is infeasible to distinguish two systems (F,S[F]) and (TRP[P],P).

As far as we know, the indifferentiability of TRP has been studied only in
[6], where the adversarial differentiating advantage is upper bounded by

(qF + qS)2

2n
+

qF qS

2m
+

qS

2�
,

where qF and qS denote the number of function queries and the number of
simulator queries, respectively.

Our Contribution. In the indifferentiability framework, we consider two dif-
ferent notions; (regular) indifferentiability and public indifferentiability. With
respect to regular indifferentiability, we present a simulator S such that any
distinguisher is able to distinguish (F,S[F]) and (TRP[P],P) with probability
at most (

(qF + qS)3

2n+m−1

) 1
2

+
(3 ln qF + 3(n − m) + 1)qS

2m−1
+

5qS

2�−1
.

We also prove that the regular indifferentiability bound is tight when m+� � n.
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With respect to public indifferentiability, we present a simulator S such that
any distinguisher is able to distinguish (F,S[F]) and (TRP[P],P) with probability
at most (

(qF + qS)3

2n+m−1

) 1
2

+
qS

2�−1

if qF + qS < 2m, and (
5(qF + qS)2

2n+1

) 1
2

+
qS

2�−1
,

otherwise. Figure 1 compares our bounds and the bound from [6] in terms of
the threshold number of queries q (in log base 2), where q = qF + qS ; TRP
is regularly indifferentiable (resp. publicly indifferentiable) from a public ran-
dom function up to min{2n+m

3 , 2m, 2�} (resp. min{max{2n+m
3 , 2

n
2 }, 2�}) queries,

improving upon the previous bound of min{2m
2 , 2�}.

Our results allow us to construct an n-to-n bit random function that makes
a single call to a wider 2n-bit permutation, achieving n-bit security. This con-
struction is comparable to the sum of two independent permutations, P1 ⊕ P2,
that makes two calls to the underlying n-bit permutations P1 and P2 to achieve
n-bit security. For each simulator query, our simulator makes at most one call
to the public random function F, while the simulator for P1 ⊕ P2 (given in [3])
might possibly make n calls to F.

By letting qS = 0, an indifferentiability bound of TRP is reduced to an
indistinguishability bound of TRP. Without any simulator query, we can make
our computation even tighter, recovering the optimal indistinguishability bound
of TRP given in [8]. See Appendix A.

We remark that efficient and secure construction of a fixed-input-length ran-
dom oracle (FIL-RO) can be of practical relevance. As a FIL-RO, TRP founds
various applications; a public finalization function for MACs, a non-compressing
primitive for compression functions [21], a key derivation function, etc. A key
derivation function in GCM-SIV was also proposed to use TRP [9,10], although
later studies offered alternatives [12,21]. We already have large and secure per-
mutations at hand, including KECCAK and GIMLI, that can be used to con-
struct a FIL-RO with reasonable size and security.

Related Work. The sum of two random permutations was first considered by
Bellare et al. [2] in the indistinguishability framework. Subsequently, a series of
works improved this seminal result [1,4,14,19,20], culminating with the proof
by Dai et al. [5] that the sum of two n-bit random permutations is (fully) secure
up to 2n queries.

In the indifferentiability model, Mandal et al. [15] proved that the sum of
two public random permutations is secure up to 2

2n
3 queries, and later Mennink

and Preneel [19] pointed out a flaw in their security proof and fixed it. Lee [13]
proved that the sum of k independent random permutations is secure up to
2

(k−1)n
k queries. Finally, Bhattacharya and Nandi [3] proved that the sum of two

random permutations is secure up to 2n queries.
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m

log2 q

n
2

2n
3

n
2

n

n

Fig. 1. Our regular and public indifferentiability bounds for TRP as a function of
m (ignoring �). For all parameters below the dashed line (resp. the dotted line), TRP
is regularly indifferentiable (resp. publicly indifferentiable) from a public random func-
tion. The solid and dash-dotted lines represent the indistinguishability bound [8] and
the previous indifferentiability bound [6], respectively.

Truncating a random permutation was first considered by Hall et al. [11],
where they proved the security of TRP (with � = 0) up to min{2n+m

2 , 2
2(n−m)

3 }
queries in terms of indistinguishability. Bellare and Impagliazzo [1] improved
this bound up to min{22m, 2

n+m
2 }. Recently, Gilboa et al. [8] proved that TRP is

indistinguishable from a random function up to 2
n+m

2 queries. This bound turns
out to be tight as they also present matching attacks. Mennink [18] generalized
truncation functions used in TRP, and showed that the security of such con-
structions (in terms of indistinguishability) cannot exceed that of the original
TRP.

As mentioned before, Dodis et al. [6] proved the security of TRP up to
min{2m

2 , 2�} queries in terms of indifferentiability, and used it to build the MD6
hash function. Precisely, the MD6 hash function uses TRP with n = 5696, � = 960
and m = 4672.

2 Preliminaries

Notation. Throughout this work, we fix positive integers n, m, � such that
m, � < n to denote the size of the underlying permutation P, the number of
truncated bits and the prefix size of TRP, respectively. We also fix c ∈ {0, 1}� to
denote the prefix of TRP. We will write C = {c ‖ x : x ∈ {0, 1}n−�}.
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Regular and Public Indifferentiability. In the indifferentiability frame-
work, a distinguisher is given two systems (C[P],P) and (F,S[F]), where P is an
ideal primitive, C[P] is a bigger construction using P as a building block, F is
another ideal primitive with the same interface as C[P], and S[F] is a probabilistic
Turing machine with the same interface as P that has oracle access to F. The goal
of the simulator S[F] is to emulate the ideal primitive P so that no distinguisher
can tell apart the two systems (F,S[F]) and (C[P],P) with a significant probabil-
ity, based on their responses to queries that the distinguisher may send. We say
that the construction C[P] is indifferentiable from the ideal primitive F if the exis-
tence of such a simulator is proved. The indifferentiability guarantees universal
composability of C[P]: if C[P] is indifferentiable from F, then C[P] can replace F in
any cryptosystem, and the resulting cryptosystem is at least as secure under the
assumption that P is ideal as under the assumption that F is ideal.

More precisely, in an information-theoretic sense, a construction C with oracle
access to an ideal primitive P is said to be (qF , qS , ε)-regular indifferentiable from
an ideal primitive F if there exists a simulator S with oracle access to F such that
for any distinguisher A making exactly qF queries to the outer construction (C[P]
or F) and exactly qS queries to the inner primitive (P or S[F]),1 it holds that

Advreg
C,S(A)

def=
∣∣∣Pr [1 ← AC[P],P

]
− Pr

[
1 ← AF,S[F]

]∣∣∣ < ε.

See [17] for more detail on indifferentiability.
Public indifferentiability has been introduced in [7,22] and formalized in [16]

as a variant of indifferentiability, where the simulator knows all queries made by
the distinguisher to the primitive it tries to simulate. This weaker notion is useful
to argue the security of cryptosystems where all the queries to the ideal primitive
are public (as e.g., in many digital signature schemes). The adversarial public-
differentiating advantage Advpub

C,S(A) is similarly defined for any distinguisher A,
and hence (qF , qS , ε)-public indifferentiability.

The χ2
Method. We give here all the necessary background on the χ2 method [5]

that we will use throughout this paper.
We fix a set of random systems, a deterministic distinguisher A that makes

q oracle queries to one of the random systems, and a set Ω that contains all
possible answers for oracle queries to the random systems. For a random system
S and i ∈ {1, . . . , q}, let ZS,i be the random variable over Ω that follows the
distribution of the i-th answer obtained by A interacting with S. Let

Zi
S

def= (ZS,1, . . . , ZS,i),

and let
pi

S(z)
def= Pr

[
Zi

S = z
]

for z ∈ Ωi. For i < q and z = (z1, . . . , zi−1) ∈ Ωi−1 such that pi−1
S (z) > 0, the

probability distribution of ZS,i conditioned on Zi−1
S = z will be denoted pzS,i(·),

1 We can assume that A is deterministic since it is computationally unbounded.
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namely for z ∈ Ω,

pzS,i(z)
def= Pr

[
ZS,i = z | Zi−1

S = z
]
.

For two random systems S0 and S1, and for i < q and z = (z1, . . . , zi−1) ∈
Ωi−1 such that pi−1

S0
(z), pi−1

S1
(z) > 0, the χ2-divergence for pzS0,i(·) and pzS1,i(·)

is defined as follows.

χ2
(
pzS1,i(·), pzS0,i(·)

) def=
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z) − pzS0,i(z)

)2
pzS0,i(z)

.

We will simply write χ2 (z) = χ2
(
pzS1,i(·), pzS0,i(·)

)
when the random systems

are clear from the context. If the support of pi−1
S1

(·) is contained in the support
of pi−1

S0
(·), then we can view χ2

(
pzS1,i(·), pzS0,i(·)

)
as a random variable, denoted

χ2
(
Zi−1

S1

)
, where z follows the distribution of Zi−1

S1
.

Then A’s distinguishing advantage is upper bounded by the total variation
distance of pq

S0
(·) and pq

S1
(·), denoted ‖pq

S0
(·) − pq

S1
(·)‖, and we also have

‖pq
S0
(·) − pq

S1
(·)‖ ≤

(
1
2

q∑
i=1

Ex
[
χ2

(
Zi−1

S1

)])1/2

. (1)

See [5] for the proof of (1).

3 Indifferentiability of TRP

We will assume that a distinguisher A has access to an oracle O with three types
of queries; O(x, 0) for x ∈ {0, 1}n−�, O(u,+) and O(v,−) for u, v ∈ {0, 1}n,
which are called a function query, a forward query and a backward query, respec-
tively. Forward and backward queries will be also called simulator queries. In the
real world, an n-bit permutation P is chosen uniformly at random, and queries
O(u,+) and O(v,−) are answered with P(u) and P−1(v), respectively, and a
query O(x, 0) is answered with TRP[P](x). In the simulated world, an (n − �)-
to-(n − m) bit function F is chosen uniformly at random, and a query O(x, 0) is
answered with F(x) for any x ∈ {0, 1}n−�. On the other hand, queries O(u,+)
and O(v,−) will be answered by a simulator S that has oracle access to F.

3.1 Regular Indifferentiability of TRP

We define a simulator S without using any information on the adversarial queries
of type O(·, 0). Simulator S is stateful, keeping variables O(u) and O−1(v) for
every u and v ∈ {0, 1}n, all initialized as ⊥, meaning “undefined”,2 as well as
sets D, R, and Ry for each y ∈ {0, 1}n−m, all initialized as empty. It behaves as
follows.
2 We uses O to denote both oracle interfaces and variables by slight abuse of notation.
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– On a forward query O(u,+), S does the following.
1. If O(u) = ⊥, then

(a) obtain y = F(x) via an oracle query to F if u = c ‖ x for some
x ∈ {0, 1}n−�, and choose y uniformly at random from {0, 1}n−m

otherwise;
(b) choose w uniformly at random from {0, 1}m \ Ry;
(c) assign w ‖ y and u to O(u) and O−1(w ‖ y), respectively;
(d) update D, R and Ry as D∪{u}, R∪{w‖y} and Ry∪{w}, respectively.

2. Return O(u).
– On a backward query O(v,−), S does the following.

1. If O−1(v) = ⊥, then
(a) choose u uniformly at random from {0, 1}n \ (D ∪ C);
(b) assign u and v to O−1(v) and O(u), respectively;
(c) update D, R and Ry as D ∪{u}, R∪{v} and Ry ∪{w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m.
2. Return O−1(v).

By definition, our simulator consistently answers redundant queries. So we can
assume that A makes no redundant query; if A obtains O(u,+) = v (resp.
O(v,−) = u), then it would not make a query O(v,−) (resp. O(u,+)). A will
not make a function query F(x) once it has made a forward query O(c ‖ x,+).
On the other hand, A is allowed to make a forward query O(c ‖ x,+) after it
obtains F(x).

Theorem 1. Let S be the simulator defined as above, and let qF and qS be
positive integers such that qF +qS ≤ 2n−1. Then for any distinguisher A making
qF queries to the outer construction and qS queries to the inner primitive,

AdvregTRP,S(A) ≤
(
(qF + qS)3

2n+m−1

) 1
2

+
(3 ln qF + 3(n − m) + 1)qS

2m−1
+

5qS

2�−1
.

Proof. We can assume that qS ≤ 2m−1 since otherwise the upper bound trivially
holds.

Let S0 = (F,S[F]) and S2 = (TRP[P],P) denote the simulated world and the
real world, respectively. We cannot directly apply the χ2 method to S0 and S2

since the support of pi−1
S2

(·) is not contained in the support of pi−1
S0

(·) (and vice
versa) for any i = 1, . . . , q; S does not return any element of C on a backward
query O(·,−). For this reason, we introduce an intermediate world, denoted S1,
that has the same oracle interface as S0 and S2.

This random system uses two flags, denoted bad1 and bad2, all initialized
as false, and a sampling procedure P∗ as a subroutine. The procedure P∗ keeps
variables P∗(u) and (P∗)−1(v) for every u and v ∈ {0, 1}n, all initialized as ⊥,
meaning “undefined”, and also keeps sets D∗ and R∗, all initialized as empty.
This procedure accepts oracle queries of types P∗(·,+) and P∗(·,−).
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– On a query P∗(u,+), P∗ does the following.
1. If P∗(u) = ⊥, then

(a) choose v uniformly at random from {0, 1}n \ R∗;
(b) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(c) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v}, respectively.

2. Return P∗(u).
– On a query P∗(v,−), P∗ does the following.

1. If (P∗)−1(v) = ⊥, then
(a) choose u uniformly at random from {0, 1}n \ D∗;
(b) if u ∈ C, then set bad1 to true, and choose u uniformly at random

from {0, 1}n \ (D∗ ∪ C);
(c) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(d) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v}, respectively.

2. If (P∗)−1(v) = u′(�= ⊥) where v = w ‖ y for w ∈ {0, 1}m and y ∈
{0, 1}n−m, then
(a) set bad2 to true;
(b) choose u uniformly at random from {0, 1}n \ (D∗ ∪ C);
(c) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(d) choose v′ uniformly at random from

{w ‖ y : w ∈ {0, 1}m} \ R∗;

(e) assign v′ and u′ to P∗(u′) and (P∗)−1(v′), respectively;
(f) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v′}, respectively.

3. Return (P∗)−1(v).

Note that {0, 1}n \ (D∗ ∪C) is always nonempty since qF +qS +2n−� ≤ 2n. Using
this sampling procedure, oracle queries to S1 are answered as follows.

– On a function query O(x, 0), S1 obtains w‖y = P∗(c‖x,+) where w ∈ {0, 1}m

and y ∈ {0, 1}n−m, and returns y.
– On a forward query O(u,+), S1 obtains v = P∗(u,+) and returns v.
– On a backward query O(v,−), S1 obtains u = P∗(v,−) and returns u.

So S1 behaves like the real world S2 with the inner permutation replaced by
the sampling procedure P∗. Again, P∗ behaves like a truly random permutation
except that it never samples any element of C on a backward query P∗(·,−).

Note that P∗(v,−) is queried on an element v such that (P∗)−1(v) �= ⊥ only
when (P∗)−1(v) is fixed via a function query O(x, 0) for some x ∈ {0, 1}n−�

(since we are assuming that a distinguisher never makes redundant queries).
When P∗(c ‖ x) = v is fixed via a function query, a distinguisher would not
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obtain any information on the leftmost m bits of v. Namely, when v = w ‖ y
for w ∈ {0, 1}m and y ∈ {0, 1}n−m, the distinguisher has P∗(u) = � ‖ y for
unknown �. When a backward query P∗(v,−) is made later during the attack,
w is replaced by a new element w′ and (P∗)−1(v) is also given a new element u′

outside D∗. In this way, every oracle query will add a new element to D∗ and R∗.
Let q = qF + qS denote the total number of queries. Then we have

Advreg
TRP,S(A) ≤ ‖pq

S0
(·) − pq

S2
(·) ‖

≤ ‖pq
S0

(·) − pq
S1

(·) ‖ + ‖pq
S1

(·) − pq
S2

(·) ‖. (2)

Once A obtains the first i − 1 answers z = (z1, . . . , zi−1) via oracle queries,
they (partially) determine all the corresponding evaluations of P∗. For a fixed
j ∈ {1, . . . , i − 1}, the j-th query is associated with (uj , vj , σj), where

– if zj has been obtained by a function query on x, then σj = 0, uj = c‖x, and
vj = � ‖ zj (with � meaning “unknown”).

– if zj has been obtained by a forward query on u, then σj = +, uj = u, and
vj = zj .

– if zj has been obtained by a backward query on v, then σj = −, uj = zj , and
vj = v.

With this notation, we will consider random variables Vy, Sy, Fy for each y ∈
{0, 1}n−m, where

Vy = |{uj : vj = w ‖ y for some w ∈ {0, 1}m}| ,
Sy = |{uj : σj ∈ {+,−} and vj = w ‖ y for some w ∈ {0, 1}m}| ,
Fy = Vy − Sy.

In words,

– Vy counts the number of elements u where P∗(u) has been determined by A’s
function/simulator queries and P∗(u) = w ‖ y for some w ∈ {0, 1}m,

– Sy counts the number of elements u where P∗(u) has been determined by A’s
simulator queries and P∗(u) = w ‖ y for some w ∈ {0, 1}m,

– Fy counts the number of elements u where P∗(u) has been partially deter-
mined only by A’s function queries and P∗(u) = � ‖ y with unknown
� ∈ {0, 1}m.

Let V =
∑

y∈{0,1}n−m Vy. At any point during the attack, V = |D∗| = |R∗|.
Suppose that z determines P∗(u) = �‖y for u ∈ {0, 1}n and y ∈ {0, 1}n−m (with
unknown �). Then for w ∈ {0, 1}m such that z does not determine (P∗)−1(w‖y),
the conditional probability that � = w given z is 1/Sy. (Note that we can define a
set of candidate permutations which are compatible with (uj , vj , σj) for all j < i;
the distribution of the next query answer z from S1 is the same as the distribution
one would get by drawing one of those compatible permutations uniformly at
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random conditioned on backward queries not falling in C, and using it to answer
the query in the obvious way.

Upper bounding ‖pq
S1

(·) − pq
S2

(·) ‖. The procedure P∗ behaves exactly like a
truly random permutation without any of the bad flags being set to true. So we
can upper bound ‖pq

S1
(·) − pq

S2
(·) ‖ by the probability that either bad1 or bad2

is set to true.
For i = 1, . . . , qS , let E1,i (resp. E2,i) be the event that the i-th simulator

query set bad1 (resp. bad2) to true. Since |C| = 2n−� and |D∗| ≤ q ≤ 2n−1, we
have

Pr [E1,i] =
|C|

2n − |D∗| ≤ 2n−�

2n−1
=

1
2�−1

for each i = 1, . . . , qS .
When the i-th simulator query O(v,−) is made (in the backward direction)

with v = w ‖ y, the conditional probability that bad2 is set to true (conditioned
on the previous queries) is upper bounded by

Fy

2m − Sy
,

where Fy and Sy can be viewed as random variables determined by the previous
queries. Since y can be chosen adversarially and Sy ≤ 2m−1, the conditional
probability that the i-th simulator query sets bad2 to true is upper bounded by

maxy∈{0,1}n−m Fy

2m−1
.

Therefore, we have

Pr [E2,i] ≤ Exi

[
maxy∈{0,1}n−m Fy

]
2m−1

,

where the expectation is taken over the interaction of A and S1 until the i-th
simulator query is made. We also have

Exi

[
max

y
Fy

]
≤ qF

2n−m−2
+ 3 ln qF + 3(n − m) + 1. (3)

The proof of (3) is deferred to the end of this section. Overall, we have

‖pq
S1
(·) − pq

S2
(·)‖ ≤ Pr

[
qS∨
i=1

(E1,i ∨ E2,i)

]

≤
qS∑
i=1

Pr [E1,i] +
qS∑
i=1

Pr [E2,i]

≤ qS

2�−1
+

qF qS

2n−3
+

(3 ln qF + 3(n − m) + 1)qS

2m−1

≤ 5qS

2�−1
+

(3 ln qF + 3(n − m) + 1)qS

2m−1
, (4)

where the last inequality holds since qF ≤ 2n−�.
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Upper bounding ‖pq
S0
(·) − pq

S1
(·)‖. For the intermediate system S1, we can

easily check that the support of pi−1
S1

(·) is contained in the support of pi−1
S0

(·) for
i = 1, . . . , q, allowing us to use the χ2 method.

Let Ω = {0, 1}n ∪ {0, 1}n−m. For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such
pi−1

S1
(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z) − pzS0,i(z)

)2
pzS0,i(z)

.

The previous queries z ∈ Ωi−1 will determine the type of the next query. We will
distinguish four cases: a function query, a “fresh” forward query, a forward query
on an element where a function query already has been made, and a backward
query.

Suppose that the i-th query is a function query. For any z ∈ {0, 1}n−m, we
have

pzS0,i(z) =
1

2n−m
,

pzS1,i(z) =
2m − Vz

2n − V

since V = |R∗| and Vz = |{v ∈ R∗ : v = w ‖ z for some w ∈ {0, 1}m}|. Therefore
we have

χ2(z) =
∑

z∈{0,1}n−m

(2n−mVz − V )2

2n−m(2n − V )2
. (5)

Suppose that the i-th query is a forward query O(u,+), where either u /∈ C or
u = c ‖x for some x ∈ {0, 1}n−� and O(x, 0) has not been queried. Let z = w ‖ y
for w ∈ {0, 1}m and y ∈ {0, 1}n−m, where (P ∗)−1(w ‖ y) is not fixed by z. Then
it is easy to see that

pzS0,i(z) =
1

2n−m
· 1
2m − Sy

.

In S1, ⊥‖y is chosen with probability (2m−Vy)/(2n−V ) conditioned on z (with ⊥
meaning “undetermined”), and then ⊥ becomes w with probability 1/(2m −Sy).
Therefore we have

pzS1,i(z) =
2m − Vy

2n − V
· 1
2m − Sy

,

and hence,

χ2(z) =
∑

y∈{0,1}n−m

(2n−mVy − V )2

2n−m(2n − V )2
, (6)

since the number of w ∈ {0, 1}m such that (P ∗)−1(w ‖ y) is fixed by z is Sy for
each y ∈ {0, 1}m.
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Suppose that the i-th query is a forward query O(u,+), where u = c ‖ x for
some x ∈ {0, 1}n−� and y = O(x, 0) has been obtained by a previous function
query. Let z = w ‖ y where w ∈ {0, 1}m. Then we have

pzS0,i(z) = pzS1,i(z) =
1

2m − Sy
,

and hence
χ2(z) = 0. (7)

Suppose that the i-th query is a backward query O(v,−). It is easy to see
that

pzS0,i(z) = pzS1,i(z) =
1

2n − |D∗ ∪ C|
for any z ∈ {0, 1}n \ (D∗ ∪ C), and hence

χ2(z) = 0. (8)

By (5), (6), (7), (8), we have

‖pq
S0
(·) − pq

S1
(·)‖ ≤

(
1
2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤
⎛
⎝1
2

q∑
i=1

Ex

⎡
⎣ ∑

y∈{0,1}n−m

(2n−mVy − V )2

2n−m(2n − V )2

⎤
⎦
⎞
⎠

1
2

. (9)

Since
∑

y∈{0,1}n−m Vy = V ≤ qF + qS and V ≤ 2n−1, we have

∑
y∈{0,1}n−m

(2n−mVy − V )2

2n−m(2n − V )2
=

∑
y∈{0,1}n−m

22n−2mV 2
y − 2n−m+1VyV + V 2

2n−m(2n − V )2

=
2n−m

(2n − V )2

⎛
⎝ ∑

y∈{0,1}n−m

V 2
y − V 2

2n−m

⎞
⎠

≤ 1
2n+m−2

⎛
⎝ ∑

y∈{0,1}n−m

Vy

⎞
⎠

2

≤ (qF + qS)2

2n+m−2
,

and by (9),

‖pq
S0
(·) − pq

S1
(·)‖ ≤

(
q∑

i=1

(qF + qS)2

2n+m−1

) 1
2

=
(
(qF + qS)3

2n+m−1

) 1
2

. (10)

By (2), (4), (10), the proof is complete. ��
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When qS = 0, we can obtain a tighter upper bound on ‖pq
S0
(·) − pq

S1
(·)‖

than the one obtained above, recovering the optimal indistinguishability bound
of TRP given in [8]. See Appendix A.

Proof of (3). For any function query O(x, 0) and for any y ∈ {0, 1}n−m, the
probability that O(x, 0) = y is upper bounded by

2m

2n − (qF + qS)
≤ 1

2n−m−1
.

Let X be a random variable that follows the binomial distribution with param-
eters qF and p = 1/2n−m−1, namely,

Pr [X = j] =
(

qF

j

)
pj(1 − p)qF −j

for j = 0, . . . , qF . Then for any y ∈ {0, 1}n−m, we have

Pr [Fy ≥ j] ≤ Pr [X ≥ j] .

By the Chernoff bound, we have

Pr [X ≥ j] ≤ e− j−pqF
3 ≤ p

2qF

for any j ≥ 2pqF + 3 ln 2qF

p . Therefore we have

Ex
[
max

y
Fy

]
=
∑
j≥1

Pr
[
max

y
Fy ≥ j

]

≤ 2pqF + 3 ln
2qF

p
+

∑
j>2pqF +3 ln

2qF
p

Pr
[
max

y
Fy ≥ j

]

= 2pqF + 3 ln
2qF

p
+

∑
j>2pqF +3 ln

2qF
p

Pr

⎡
⎣ ∨

y∈{0,1}n−m

Fy ≥ j

⎤
⎦

≤ 2pqF + 3 ln
2qF

p
+

∑
y∈{0,1}n−m

∑
j>2pqF +3 ln

2qF
p

Pr [X ≥ j]

≤ 2pqF + 3 ln
2qF

p
+ 2n−m · qF · p

2qF

≤ qF

2n−m−2
+ 3 ln qF + 3(n − m) + 1.

3.2 Public Indifferentiability of TRP

We define a simulator S which is stateful, keeping variables O(u) and O−1(v)
for every u and v ∈ {0, 1}n, all initialized as ⊥, meaning “undefined”, as well as
sets D, R, and Ry for each y ∈ {0, 1}n−m, all initialized as empty. It also uses a
special symbol � (not in {0, 1}n−m). We will call oracle queries O(u,+) (resp.
O(v,−)) fresh if O(u) = ⊥ (resp. O−1(v) = ⊥).
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– On a fresh forward query O(u,+), S does the following.
1. If u = c ‖ x for some x ∈ {0, 1}n−� (i.e., u ∈ C), then obtain y = F(x) via

an oracle query to F.
(a) If Ry �= {0, 1}m, then

i. choose w uniformly at random from {0, 1}m \ Ry;
ii. assign w ‖ y and u to O(u) and O−1(w ‖ y), respectively;
iii. update D, R and Ry as D ∪ {u}, R ∪ {w ‖ y} and Ry ∪ {w},

respectively;
iv. return O(u).

(b) If Ry = {0, 1}m, then return � ‖ y.
2. If u /∈ C, then

(a) choose v uniformly at random from {0, 1}n \ R;
(b) assign v and u to O(u) and O−1(v), respectively;
(c) update D, R and Ry as D ∪{u}, R∪{v} and Ry ∪{w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m;
(d) return O(u).

– On a fresh backward query O(v,−), S does the following.
1. Choose u uniformly at random from {0, 1}n \ (D ∪ C).
2. Assign v and u to O(u) and O−1(v), respectively.
3. Update D, R and Ry as D ∪ {u}, R ∪ {v} and Ry ∪ {w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m.
4. Return O−1(v).

– On a forward query O(u,+) (resp. a backward query O(v,−)) which is not
fresh, S returns O(u) (resp. O−1(v)).

In the public indifferentiability model, the simulator knows all queries made by
the distinguisher to F. When a distinguisher makes a function query O(x, 0), S
will behave exactly in the same manner as it would have done with a forward
query O(c ‖ x,+), except returning the response.

Theorem 2. Let S be the simulator defined as above, and let qF and qS be
positive integers such that qF +qS ≤ 2n−1. Then for any distinguisher A making
qF queries to the outer construction and qS queries to the inner primitive,

AdvpubTRP,S(A) ≤

⎧⎪⎨
⎪⎩
(

(qF +qS)3

2n+m−1

) 1
2
+ qS

2�−1 if qF + qS < 2m,(
5(qF +qS)2

2n+1

) 1
2
+ qS

2�−1 otherwise.

Proof. By the definition of the simulator, we can assume that A makes a for-
ward query O(c ‖ x,+) and then truncates the leftmost m bits (or �) of the
response when it wants to obtain O(x, 0); this modification would not degrade
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the adversarial distinguishing advantage. So we can remove the oracle interface
O(·, 0) in both the simulated world and the real world. Instead, the number of
forward queries and backward queries should be upper bounded by qF + qS and
qS , respectively. We can still assume that A does not make redundant queries.

Let S0 = S[F] and S2 = P denote the simulated world and the real world,
respectively. As in the regular indifferentiability proof, we introduce an interme-
diate world, denoted S1, that has the same oracle interface as S0 and S2. This
random system uses a flag, denoted bad and initialized as false, and keeps sets
D and R, all initialized as empty. Oracle queries to S1 are answered as follows.

– On a forward query O(u,+), S1 does the following.
1. Choose v uniformly at random from {0, 1}n \ R.
2. Update D and R as D ∪ {u} and R ∪ {v}, respectively.
3. Return v.

– On a backward query O(v,−), S1 does the following.
1. Choose u uniformly at random from {0, 1}n \ D.
2. if u ∈ C, then set bad to true, and choose u uniformly at random from

{0, 1}n \ (D ∪ C).
3. Update D and R as D ∪ {u} and R ∪ {v}, respectively.
4. Return u.

So S1 behaves like a truly random permutation except that it does not sample
any element of C on a backward query O(·,−). Let q = qF + qS denote the total
number of queries. Then we have

Advpub
TRP,S(A) ≤ ‖pq

S0
(·) − pq

S2
(·) ‖

≤ ‖pq
S0

(·) − pq
S1

(·) ‖ + ‖pq
S1

(·) − pq
S2

(·) ‖. (11)

We will consider a random variable Vy for each y ∈ {0, 1}n−m, where

Vy = |{v ∈ {0, 1}n : v = w ‖ y ∈ R for some w ∈ {0, 1}m}| .
We also define random variables

V =
∑

y∈{0,1}n−m

Vy,

H = |{y : Vy = 2m}| .
It is easy to see that V = |D| = |R| at any point during the attack.

Upper bounding ‖pq
S1

(·) − pq
S2

(·) ‖. The system S1 behaves exactly like the
real world S2 without the bad flag bad being set to true. So we can upper bound
‖pq

S1
(·) − pq

S2
(·) ‖ by the probability that bad is set to true.

For i = 1, . . . , qS , let Ei be the event that the i-th backward query sets bad
to true. Since |C| = 2n−� and |D| ≤ q ≤ 2n−1, we have

Pr [Ei] =
|C|

2n − |D| ≤ 2n−�

2n−1
=

1
2�−1
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for each i = 1, . . . , qS . Therefore, we have

‖pq
S1
(·) − pq

S2
(·)‖ ≤ Pr

[
qS∨
i=1

Ei

]
≤

qS∑
i=1

Pr [Ei] ≤ qS

2�−1
. (12)

Upper bounding ‖pq
S0
(·) − pq

S1
(·)‖. For the intermediate system S1, we can

easily check that the support of pi−1
S1

(·) is contained in the support of pi−1
S0

(·) for
i = 1, . . . , q, allowing us to use the χ2 method. Any element of {�} × {0, 1}n−m

is returned only in S0.
Let Ω = {0, 1}n ∪ ({�} × {0, 1}n−m). For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1

such pi−1
S1

(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z) − pzS0,i(z)

)2
pzS0,i(z)

.

The previous queries z ∈ Ωi−1 determine random variables H, V (= i − 1)
as well as the type of the next query. We will distinguish three cases: a forward
query O(u,+) for u ∈ C, a forward query O(u,+) for u /∈ C, and a backward
query O(v,−).

Suppose that the i-th query is a forward query O(u,+), where u ∈ C. If
z = � ‖ y for y ∈ {0, 1}n−m such that |Ry| = 2n−m, then

pzS0,i(z) =
1

2n−m
,

pzS1,i(z) = 0.

If z ∈ {0, 1}n \ R, then

pzS0,i(z) =
1

2n−m
· 1
2m − Vy

,

pzS1,i(z) =
1

2n − V
.

Since the number of elements y ∈ {0, 1}n−m such that |Ry| = 2n−m is H, we
have

χ2(z) =
H

2n−m
+

∑
z∈{0,1}n\R

(2n−mVy − V )2

(2n − V )2(2n − 2n−mVy)
. (13)

For each y ∈ {0, 1}n−m, the number of elements w ∈ {0, 1}m such that w ‖ y ∈
{0, 1}n \R is 2m −Vy. Furthermore,

∑
y∈{0,1}n−m Vy = V and Vy ≤ 2m for every

y ∈ {0, 1}n−m. Therefore we have
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∑
z∈{0,1}n\R

(2n−mVy − V )2

(2n − V )2(2n − 2n−mVy)
=

∑
y∈{0,1}n−m

(2n−mVy − V )2

2n−m(2n − V )2

=
2n−m

(2n − V )2

⎛
⎝ ∑

y∈{0,1}n−m

V 2
y − V 2

2n−m

⎞
⎠

≤ 1
2n+m−2

∑
y∈{0,1}n−m

V 2
y

≤ min{V 2, 2mV }
2n+m−2

≤ min{q2, 2mq}
2n+m−2

. (14)

Since H ≤ � V
2m � and V ≤ q, we have H

2n−m = 0 if q < 2m, and H
2n−m ≤ q

2n

otherwise. By (13) and (14), we conclude that

χ2(z) ≤
⎧⎨
⎩

q2

2n+m−2 if q < 2m,

5q
2n otherwise.

(15)

Suppose that the i-th query is a forward query O(u,+), where u /∈ C. For
any z ∈ {0, 1}n \ R we have

pzS0,i(z) = pzS1,i(z) =
1

2n − V
,

and hence
χ2(z) = 0. (16)

Suppose that the i-th query is a backward query O(v,−). For any z ∈ {0, 1}n\
(D ∪ C) we have

pzS0,i(z) = pzS1,i(z) =
1

2n − |D ∪ C| ,

and hence
χ2(z) = 0. (17)

By (15), (16), (17), we have

‖pq
S0
(·) − pq

S1
(·)‖ ≤

(
1
2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤

⎧⎪⎪⎨
⎪⎪⎩

(
q3

2n+m−1

) 1
2

if q < 2m,

(
5q2

2n+1

) 1
2

otherwise.

(18)

By (11), (12), (18), the proof is complete. ��
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4 Tightness of Regular Indifferentiability

We can prove that our regular indifferentiability bound is tight with respect
to the total number of queries q = qF + qS when m + � � n. Note that if
m+ � � n then min{m, �} ≤ n+m

3 . We will assume that the number of F-queries
that a simulator makes for each query of the distinguisher is a polynomial in n,
denoted poly(n).

First, suppose that m ≤ �. In this case, we consider a distinguisher A that
begins the attack by obtaining y = F(x) for a random element x via a function
query to F. Then A makes 2m backward queries at w ‖ y, where w ∈ {0, 1}m.
With high probability, A should be able to obtain c ‖ x for some x ∈ {0, 1}n−�

as a response if the simulator faithfully reproduces (TRP[P],P). Furthermore, it
should be the case that F(x) = y, while it is infeasible for the simulator to find
a preimage of y under F (without any information of the adversarial function
query) using at most 2m queries to F if poly(n)·2m � 2n−�. So we conclude that
if m+ � � n then there is no simulator which is secure against any distinguisher
that makes about 2m simulator queries.

Next, suppose that � ≤ m. In this attack, a distinguisher A randomly chooses
an element y ∈ {0, 1}n−m, and makes 2� backward queries at w ‖ y, where
w ∈ {0, 1}m. With high probability, A will obtain c‖x for some x ∈ {0, 1}n−� as
a response if the simulator behaves like a random permutation. Furthermore, it
should be the case that F(x) = y. In this way, A is able to find a preimage of y
under F using at most 2� queries to F, which is infeasible if poly(n) ·2� � 2n−m.
So we conclude that if m + � � n then there is no simulator which is secure
against any distinguisher that makes about 2� simulator queries. Note that the
second attack holds even in the public indifferentiability setting.

A Indistinguishability of TRP

A hypergeometric random distribution HGN,M,q, parameterized by N , M , and
q, is a probability distribution that describes the probability that exactly k
elements are selected from a subset of M “good” elements when q elements are
selected from the universe of N elements without replacement; this probability
is precisely

(
M
k

)(
N−M
n−k

)
/
(
N
n

)
.

If a distinguisher makes no simulator query (namely, qS = 0) when it inter-
acts with S1 in the regular indifferentiability setting, then Vy would follow the
hypergeometric distribution with N = 2n, M = 2m and q = i − 1(= V ). In this
case, it is well known that

Ex[Vy] =
V

2n−m
,

Var[Vy] =
2m(2n − 2m)(2n − V )V

22n(2n − 1)
.
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Since
Var[Vy] = Ex[V 2

y ] − Ex[Vy]2,

and

∑
y∈{0,1}n−m

Var[Vy] ≤ 2n−m

(
2m(2n − 2m)(2n − V )V

22n(2n − 1)

)

≤ 2m(2n − 2m)V
2n+m

≤ V ≤ qF ,

we have

Ex

[∑
y

(2n−mVy − V )2

2n−m(2n − V )2

]
≤ 1

2n+m−2

∑
y∈{0,1}n−m

(
Ex

[
V 2

y

]− Ex [Vy]
2
)

≤ qF

2n+m−2
.

Plugging this into (9), we obtain the indistinguishability bound of TRP as follows.

Advind
TRP(A) ≤ q

2
n+m−1

2

,

for any distinguisher A making q queries.
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Abstract. S-boxes are functions with an input so small that the sim-
plest way to specify them is their lookup table (LUT). How can we
quantify the distance between the behavior of a given S-box and that of
an S-box picked uniformly at random?

To answer this question, we introduce various “anomalies”. These real
numbers are such that a property with an anomaly equal to a should be
found roughly once in a set of 2a random S-boxes. First, we present
statistical anomalies based on the distribution of the coefficients in the
difference distribution table, linear approximation table, and for the first
time, the boomerang connectivity table.

We then count the number of S-boxes that have block-cipher like struc-
tures to estimate the anomaly associated to those. In order to recover
these structures, we show that the most general tool for decomposing
S-boxes is an algorithm efficiently listing all the vector spaces of a given
dimension contained in a given set, and we present such an algorithm.

Combining these approaches, we conclude that all permutations that
are actually picked uniformly at random always have essentially the same
cryptographic properties and the same lack of structure.

Keywords: S-box · Vector space search · BCT · Shannon effect ·
Anomaly · Boolean functions

1 Introduction

S-boxes are small functions with an input small enough that they can be specified
by their lookup tables. If F is an S-box with an n-bit input then it is feasible
to describe it using only the sequence F (0), F (1), ..., F (2n − 1) since, in the vast
majority of the cases, 3 ≤ n ≤ 8. S-boxes can therefore correspond to arbitrarily
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complex functions. In practice, such components are the only source of non-
linearity of many symmetric primitives. Most prominently, the AES [1] uses an
8-bit bijective S-box.

The aim of a block cipher is to simulate a pseudo-random permutation (PRP),
meaning that it should not be possible for an attacker given a black box access
to a block cipher with a secret key and to a permutation picked uniformly at
random to figure out which is which. In this context, it might a priori make
intuitive sense for block cipher designers to use (pseudo-)random components
to design their algorithm. However, this approach would have substantial short-
comings in practice. For example, a random S-box is a priori hard to implement
in hardware, random components are unlikely to yield an easy to analyze cipher,
their mediocre properties may imply a higher number of rounds (which would
slow the cipher down), and the seeds used to generate its random components
would have to be published.

Instead, in practice, S-boxes are constructed taking multiple design require-
ments into account. For example, the mathematical properties of this compo-
nent can be leveraged to prove that an algorithm is safe from differential [2] or
linear [29] cryptanalysis. At the same time, the S-box may be intended to be
implemented in hardware or in a bit-sliced fashion, in which case it is necessary
to give it a specific structure that will ease such implementations.

While it is easy to compare the properties of two given S-boxes (we can
simply compute them and then rank them), it is not trivial to quantify how
different they are from an S-box picked uniformly at random with regard to
each of their properties. Informally, the comparison with such an “ideal” object
will quantify the distance between an S-box and random ones: if the property of
the studied S-box is unlikely to occur by chance, then it means that the S-box
is much better (or much worse) than average. In this paper, we build upon a
framework introduced in [6] to provide both definitions and practical means to
compute such probabilities.

Let S2n be the set of all n-bit permutations and let F ∈ S2n . As mentioned
above, there are two sets of properties that are relevant when investigating S-
boxes: how good their cryptographic properties are and whether or not they
have some structure. Hence, in order to compare F with a random S-box, we
need to be able to answer the following two questions.

1. What is the probability that an S-box picked uniformly in S2n has differen-
tial/linear properties at least as good as those of F?

2. How can we recover the structure of F (if it has any)?

Answering the first question can also help us better understand the properties of
random permutations and thus to better estimate the advantage of an adversary
trying to distinguish a (round-reduced) block cipher from a random permutation.

On the other hand, the second one is related to so-called white-box cryptog-
raphy, i.e. to implementation techniques that will hide a secret from an attacker
with a total access to the implementation of the algorithm. In practice, in order
to try and hide for instance an AES key, the attacker will only be given access
to an implementation relying on big lookup tables that hide the details of the
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computations. Recovering the original structure of these tables can also be seen
as a particular case of S-box reverse-engineering in the sense of [6].

1.1 Our Contributions

A Key Concept: Anomalies. We answer the two questions asked above using
different variants of a unique approach based on what we call anomalies. Intu-
itively, an anomaly is a real number that quantifies how unlikely a property
is. For example, there are very few differentially-6 uniform 8-bit permutations,1

meaning that the anomaly of this property should be high. However, we could
argue that what matters in this case is not just the number of differentially-6
uniform permutations but the number of permutations with a differential uni-
formity at most equal to 6. In light of this, we define anomalies as follows.

Definition 1 (Anomaly). Let F ∈ S2n and let P be a function mapping
S2n to a partially ordered set. The anomaly of P (F ) is defined as A (P (F )) =
− log2 (Pr [P (G) ≤ P (F )]), where the probability is taken over G ∈ S2n . We can
equivalently write

A (P (F )) = − log2

(∣∣{G ∈ S2n , P (G) ≤ P (F )
}∣∣

|S2n |

)
.

The negative anomaly of P (F ) is A (P (F )) = − log2 (Pr [P (G) ≥ P (F )]).

Regardless of P , we always have 2−A(P (F )) +2−A(P (F )) = 1+Pr [P (G) = P (F )].
In the example given above, P is simply the function returning the differential

uniformity of a permutation. The anomaly of the differential uniformity then gets
higher as the differential uniformity of F decreases under the median differential
uniformity as there are fewer permutations with a low differential uniformity. At
the same time, the negative anomaly of the differential uniformity increases as
the differential uniformity increases above its median value. To put it differently,
the anomaly of P (F ) quantifies how many S-boxes are at least as good2 as F
in terms of P , and the negative one how many are at least as bad as F . In
this paper, we study different anomalies and design new tools that allow their
estimation for any S-box.

A property with a high anomaly can be seen as distinguisher in the usual
sense, i.e. it is a property that differentiates the object studied from one picked
uniformly at random. However, unlike usual distinguishers, we do not care about
the amount of data needed to estimate the probabilities corresponding to the
anomalies.

1 We formally define differential uniformity later. All that is needed in this discussion
is that the differential uniformity is an integer which is better when lower.

2 In this paper, the properties P considered are better when lower.
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Statistical Anomalies. In [6] and [34], the notions of “differential” and “linear”
anomalies were introduced. Definition 1 is indeed a generalization of them. They
are based on properties P that correspond to how good the differential and
linear properties are. In Sect. 2, we generalize this analysis to take into account
the corresponding negative anomalies, and we introduce the use of the so-called
Boomerang Connectivity Table (BCT) [17] for this purpose. To this end, we
establish the distribution of the coefficients of the BCT of a random permutation.
As an added bonus, this new result allows a better estimation of the advantage
of an adversary in a boomerang attack.

Structural Anomalies. Anomalies can also be related to the presence of a struc-
ture. For example, for n-bit Boolean functions, the existence of a simple circuit
evaluating a function is unlikely:

“almost all functions” of n arguments have “an almost identical” complex-
ity which is asymptotically equal to the complexity of the most complex
function of n arguments.

This statement of Lupanov [28] summarizes the so-called Shannon effect [39].
In other words, the existence of a short description is an unlikely event for a
Boolean function. Here, we generalize this observation to permutations of F

n
2

and construct anomalies that capture how “structured” an S-box is.
In Sect. 3, we present an estimation of the number of permutations that can

be constructed using common S-box generation methods (multiplicative inverse,
Feistel networks...) and derive the corresponding anomalies. In order to identify
these anomalies, it is necessary to recover said structures when they are unknown.
We present a simple approach applicable to inversion-based S-boxes that we
successfully apply to the 8-bit S-box of the leaked German cipher Chiasmus. In
other cases, we show that the detection of structures with a high anomaly can
be performed using a vector space search.

Vector Space Search. We provide an efficient algorithm performing this search:
given a set S of elements of {0, 1}n and an integer d, this algorithm returns all
the vector spaces of dimension d that are fully contained in S. We present it in
Sect. 4. While such an algorithm is needed when looking for a structure in an
S-box, we expect it to find applications beyond this area.

1.2 Mathematical Background

Boolean Functions. Let F2 = {0, 1}. In what follows, we consider the following
subsets of the set of all functions mapping F

n
2 to itself.

– Recall that the set of all n-bit permutations is denoted S2n . It contains 2n!
elements. The compositional inverse of F ∈ S2n is denoted F−1.

– The set of all n-bit linear permutations is denoted L2n . Its size is such that
|L2n | =

∏n−1
i=0 (2n − 2i).
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For elements of F
n
2 , “+” denotes the characteristic-2 addition, i.e. the XOR. In

cases that might be ambiguous, we use “⊕” to denote this operation.
Let F ∈ S2n be an S-box. Many of its cryptographic properties can be

described using 2n × 2n tables: the LAT, DDT and BCT. They are defined
below.

The Linear Approximation Table (LAT) of F is the table WF with coefficients
WF (a, b) =

∑
x∈F

n
2
(−1)a·x+b·F (x) where x·y =

⊕n−1
i=0 xi×yi is the scalar product

of two elements x = (x0, ..., xn−1), y = (y0, ..., yn−1) ∈ F
n
2 . Its maximum for

b �= 0 is the linearity of F and is denoted �(F ). The LAT is used to study linear
cryptanalysis [29,40]. The set of the coordinates of the coefficients equal to 0
plays a special role, as shown in [15]. It is called the Walsh zeroes of F and is
denoted ZF = {(a, b) ∈ (Fn

2 )2 | WF (a, b) = 0} ∪ {(0, 0)}.
The Difference Distribution Table (DDT) of F is the table δF with coeffi-

cients δF (a, b) = # {x ∈ F
n
2 , F (x + a) + F (x) = b}. Its maximum for a �= 0 is the

differential uniformity of F and is denoted u(F ). The DDT is needed to study
differential cryptanalysis [3].

Recently, Cid et al. introduced a new tool which they called Boomerang
Connectivity Table (BCT) [17]. It is again a 2n × 2n table BF defined by

BF (a, b) = #
{
x ∈ F

n
2 , F−1 (F (x) + b) + F−1 (F (x + a) + b) = a

}
.

Its maximum value for a, b �= 0 is the boomerang uniformity of F and is denoted
βF . As hinted by its name, the BCT is relevant when studying boomerang
attacks [41]. Unlike the DDT and LAT, it is necessary that F is a permuta-
tion for the BCT to be well defined.

Statistics. Some of our results rely on both the binomial and Poisson distribu-
tion. We denote with Binomial(n, p) the binomial distribution with parameters
p and n which correspond respectively to the probability of an event and to the
number of trial. It is defined as follows:

Pr [X = i] = Binomial(i;n, p) = pi(1 − p)n−i

(
n

i

)
.

It has a mean equal to np and a variance of np(1 − p). The Poisson distribution
with parameter λ is defined by

Pr [X = i] = Poisson(i;λ) =
e−λλi

i!
.

The mean value and variance of this distribution are both λ. A binomial distri-
bution with small p can be closely approximated by a Poisson distribution with
λ = np.

2 Statistical Properties

Let us consider a permutation F that is picked uniformly at random from S2n

and let us consider one of its tables, i.e. its DDT, LAT or BCT. The coefficients
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in this table may be connected to one another: for example the sum of the coef-
ficients in a row of the DDT have to sum to 2n. Yet, in practice, the coefficients
act like independent and identically distributed random variables. In Sect. 2.1),
we recall what the distributions of the DDT and LAT coefficients are and we
establish the distribution of the BCT coefficients.

Then, Sect. 2.2 presents how the knowledge of these distributions can be
used to bound the probability that a random permutation has differential/lin-
ear/boomerang properties at least as good as those of the S-box investigated.
Additionally, we explain in Sect. 2.3 how our newly gained knowledge of the dis-
tribution of the BCT coefficients allows a better estimation of the advantage of
the attacker in a boomerang attack.

2.1 Coefficient Distributions

In [18], the authors established and experimentally verified the distribution fol-
lowed by the DDT and LAT coefficients. The distribution of the LAT coefficients
was first established in [33] and then provided a different expression in [18]. A
more thorough study of the DDT coefficient can be found in [32]. We recall these
results in the following two theorems.

Proposition 1 (DDT coefficient distribution [18]). The coefficients in the
DDT of a random S-Box of S2n with n ≥ 5 are independent and identically
distributed random variables following a Poisson distribution Poisson(2−1).

Proposition 2 (LAT coefficient distribution [18,33]). The coefficients in
the LAT of a random permutation3 of S2n are independent and identically dis-
tributed random variables with the following probability distribution:

Pr [WF (i, j) = 4z] =

(
2n−1

2n−2+z

)2
(

2n

2n−1

) .

The situation is the same for the BCT. In order to establish the distribution
of the non-trivial coefficients of the BCT of a random permutation, we first recall
an alternative definition of the BCT that was introduced in [26].

Proposition 3 (Alternative BCT definition [26]). Let F ∈ S2n be a per-
mutation. For any a, b ∈ F

n
2 , the entry BF (a, b) of the BCT of F is given by the

number of solutions in F
n
2 × F

n
2 of the following system of equations{

F−1(x + b) + F−1(y + b) = a

F−1(x) + F−1(y) = a .
(1)

We use this theorem to obtain the distribution of the coefficients in the BCT.

3 The distribution of the coefficients in the LAT of random functions (not permuta-
tions) is also provided in [18].



202 X. Bonnetain et al.

Theorem 1 (BCT coefficient distribution). If F is picked uniformly at
random in S2n , then its coefficients with a, b �= 0 can be modeled like independent
and identically distributed random variables with the following distribution:

Pr [BF (a, b) = c] =
∑

2i1+4i2=c

P1(i1)P2(i2) ,

where P1 and P2 are stochastic variable following binomial distributions: P1(i) =
Binomial

(
i; 2n−1, 1

2n−1

)
and P2(i) = Binomial

(
i; 22n−2 − 2n−1, 1

(2n−1)2

)
.

Proof. For any x, y ∈ F
n
2 such that x �= y, we define

Sx,y = {(x, y), (y, x), (x + b, y + b), (y + b, x + b)} ,

which is of cardinality 4 unless x + y = b, in which case it only contains 2
elements. These sets are such that a pair (x, y) is a solution of System (1) if and
only if all the elements in Sx,y are as well. In order to prove this theorem, we
will partition the set of all pairs of elements of F

n
2 into such sets Sx,y.

To this end, we consider the following equivalence relation: (x, y) ∼ (x′, y′) if
and only if the multisets Sx,y and Sx′,y′ are identical. The corresponding equiva-
lence classes are of size 4 except when x+y = b, in which case they contain only 2
elements. There are in total 2n−1 classes of size 2. As there are 2n(2n−1) ordered
pairs of elements in F

n
2 , we deduce that there are

(
2n(2n − 1) − 2 × 2n−1

)
/4

classes of cardinality 4, i.e. 22n−2 − 2n−1.
Then, in order for System (1) to have exactly c solutions, we need that there

exists i1 solutions in classes of size 4 and i2 in classes of size 2, where 2i1+4i2 = c.
We deduce that

Pr [BF (a, b) = c] =
∑

2i1+4i2=c

P1(i1)P2(i2) ,

where P1(i1) (respectively P2(i2)) is the probability that there exists i1 classes
of size 4 (resp. 2) that are solutions of System (1). Let us now prove that the
distributions of P1(i1) and P2(i2) are as stated in the theorem.

Size 2. In this case, it holds that y = x + b so that the lines of System (1)
are identical. We assume that F−1(x) + F−1(x + b) = a holds with probability
1/(2n − 1) as F−1(x) + F−1(x + b) can take any value in F

n
2\{0}. Since there

are 2n−1 such pairs, P1(i1) corresponds to a binomial distribution with 2n−1

repetitions of a Bernoulli trial that succeeds with probability (2n − 1)−1.

Size 4. The two equations of System (1) are now independent. Using the same
reasoning as above, we assume that each line holds with probability 1/(2n −
1). Since there are 22n−2 − 2n−1 such pairs, P2(i2) corresponds to a binomial
distribution with parameters 22n−2 − 2n−1 and (2n − 1)−2. 	
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2.2 Anomalies in Table Coefficients Distributions

Building upon the general approach presented in [6], we can define several
anomalies using the distribution of the coefficients in the tables of a permuta-
tion F ∈ S2n . We will then be able to estimate the values of the corresponding
anomalies using the distributions derived in the previous section.

Maximum Value. For any table, the maximum absolute value of all coefficients
is a natural property to use to construct an anomaly as the integers are ordered.
Let maxT : S2n → N be the function mapping a permutation F ∈ S2n to the
maximum absolute value of the non-trivial coefficients in a table T . Then we can
use the distributions in Propositions 1 and 2 as well as Theorem 1 to estimate
the associated anomalies:

A (maxT (F )) = − (2n − 1)2 log2

⎛
⎝maxT (F )∑

i=0

pi

⎞
⎠ ,

where pi is the probability that T (a, b) = i. Indeed, there are only (2n − 1)2

non-trivial coefficients in the DDT, LAT and BCT as the first row and column
are fixed in each case. The (negative) anomalies corresponding to the differen-
tial uniformity, linearity and boomerang uniformity for n = 8 are given in the
appendix of the full version of this paper [10].

Maximum Value and Number of Occurrences. In S28 , the anomaly of a differ-
ential uniformity of 8 is equal to 16.2 but, for a differential uniformity of 6, it
is 164.5. In order to have a finer grained estimate of how unlikely the proper-
ties of an S-box are, we combine the maximum coefficient in one of its tables
with its number of occurrences as was first done in [6]. For a 2n × 2n table of
integers T , let MO be the function such that MO(T ) = (c,m) where c is the
maximum absolute value in T and m is its number of occurrences (where the
first row and column are ignored). The set N × N in which the output of MO
lives can be ordered using the lexicographic ordering, i.e. (x, y) ≤ (x′, y′) if and
only if x < x′ or x = x′ and y ≤ y′. We then define the differential, linear and
boomerang anomalies of F as respectively

Ad(F ) = A (MO(δF ))) , A�(F ) = A (MO(WF )) , and Ab(F ) = A (MO(BF )) .

This definition of the differential and linear anomalies matches with the one
given in [34]. The boomerang anomaly was not used before. We also introduce
the negative differential, linear and boomerang anomalies as the corresponding
negative anomalies.

We estimate these anomalies for a table T using the following expression:

A
(
MO(T ) ≤ (c,m)

)
= − log2

⎛
⎝ m∑

k=0

(
(2n − 1)2

k

)
× pk

c ×
( c−1∑

j=0

pj

)(2n−1)2−k

⎞
⎠ ,
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where pi is the probability that T (a, b) = |i|. For the corresponding negative
anomaly, we use the following relation:

2A(MO(T )≤(c,m)) + 2A(MO(T )≤(c,m)) = 1 +
(

(2n − 1)2

m

)
pm

c

( c−1∑
j=0

pj

)(2n−1)2−m

.

2.3 Tighter Advantage Estimations for Boomerang Attacks

The coefficient distribution we established in Theorem 1 can also be used to
compute the expected value of a BCT coefficient. This in turn implies a better
understanding of the advantage an adversary has in a boomerang attack.

Theorem 2. The expected value for each BCT coefficient of a random permu-
tation of S2n converges towards 2 as n increases.

Proof. Let F ∈ S2n be picked uniformly at random. The expected value
E of BF (a, b) is

∑2n

c=0 Pr [BF (a, b) = c] c. Using Theorem 1, we express
Pr [BF (a, b) = c] using two binomial distributions P1 and P2 so that

E =
2n∑

c=0

c ×
( ∑

2i1+4i2=c

P1(i1)P2(i2)

)

=
2n∑

c=0

2n−1∑
i1=0

2n−2∑
i2=0

(2i1 + 4i2)P1(i1)P2(i2) × [2i1 + 4i2 = c] ,

where the expression between the brackets is equal to 1 if 2i1 + 4i2 = c, and 0
otherwise. Reordering the sums, we obtain the following expected value:

E =
2n−1∑
i1=0

2n−2∑
i2=0

(2i1 + 4i2)P1(i1)P2(i2)

︸ ︷︷ ︸
E(n)

2n∑
c=0

[2i1 + 4i2 = c]

︸ ︷︷ ︸
≤1

. (2)

We then approximate the binomial distributions P1 and P2 by Poisson dis-
tributions, namely P1(i) ≈ Poisson(i; 2−1) = e− 1

2 2−i/(i!) and P1(i) ≈
Poisson(i; 4−1) = e− 1

4 4−i/(i!). We get

E(n) =
2n−1∑

i1=0

2n−2∑

i2=0

(2i1 + 4i2)
e− 1

2 2−i1

i1!

e− 1
4 4−i2

i2!

=
2n−1∑

i1=1

e− 1
2 ( 1

2
)i1−1

(i1 − 1)!

2n−2∑

i2=0

e− 1
4 ( 1

4
)i2

i2!
+

2n−1∑

i1=0

e− 1
2 ( 1

2
)i1

i1!

2n−2∑

i2=1

e− 1
4 ( 1

4
)i2−1

(i2 − 1)!
.

As all sums converge towards 1 as n increases, the limit of E(n) is 2. On the
other hand, we remark that E ≤ E(n) because of Eq. (2), and that

E ≥
2n−2∑
i1=0

2n−3∑
i2=0

(2i1 + 4i2)P1(i1)P2(i2)
2n∑

c=0

[2i1 + 4i2 = c]

︸ ︷︷ ︸
=1

= E(n − 1) ,

so E(n − 1) ≤ E ≤ E(n). As E(n) converges to 2 as n increases, so does E. 	
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The expected probability of a boomerang characteristic E−1
k (Ek(x) ⊕ b) ⊕

E−1
k (Ek(x ⊕ a) ⊕ b) = a is thus 21−n and not 2−n as we might expect.

2.4 Experimental Results

Verification. To check the validity of our approach to estimate the statistical
anomalies, we picked 221 permutations from S28 uniformly at random. We then
counted the number Nt of permutations F such that A(F )� = t, and we obtained
the following results (only anomalies above 19 are listed):

A�(F ) : N19 = 1, N21 = 1 A
�
(F ) : N19 = 1

Ad(F ) : See below A
d
(F ) : N20 = 1

Ab(F ) : N19 = 3 A
b
(F ) : N20 = 2 .

We deduce that the anomalies other than Ad(F ) behave as we expect: in a set
of size 2t, we can expect to see about 1 permutation with an anomaly of t.

However, for Ad(F ), our results do not quite match the theory. Indeed, we
have found too many permutations with a high differential anomaly for it to be
a coincidence:

Ad(F ) : N19 = 7, N20 = 8, N21 = 2, N22 = 1, N23 = 2,

N24 = 1, N25 = 1, N26 = 1, N28 = 1 .

Recall that our estimates of the table-based anomalies rely on the assumption
that the coefficients behave like independent random variables. While we experi-
mentally found this assumption to yield accurate models in practice for all tables,
it fails to accurately predict the behavior of the maximum value and its number
of occurrences in the case of the DDT.

S-boxes from the Literature. We computed the statistical anomalies we defined
above for several 8-bit S-boxes from the literature that we obtained from [36].
The results are given in Table 1. We also list the number NV of vector spaces of
dimension n contained in Zs; its importance will appear later in Sect. 3.

The statistical anomalies of the AES S-box, i.e. of the multiplicative inverse,
are unsurprisingly very large. But they are too large: an anomaly cannot be
higher than log2(|S2n |). Our estimates do not hold for objects with properties
as extreme as those of the inverse.

We can derive other results from this table. For example, 2-round SPNs have a
high negative boomerang anomaly but 3-round ones loose this property. Classical
3-round Feistel networks, as used in ZUC S0, have a boomerang uniformity which
is maximum [12] so it is not surprising to see that they have a boomerang
anomaly so high that we could not compute it. Even though the S-box of Zorro
has a modified Feistel structure (it uses a sophisticated bit permutation rather
than a branch swap), it still has a high negative boomerang anomaly.
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Table 1. The statistical anomalies and number of vector spaces for some S-boxes from
the literature.

Type Cipher Ad(s) A
d
(s) A�(s) A

�
(s) Ab(s) A

b
(s) NV (s)

Inverse AES 7382.13 0.00 3329.43 0.00 9000.05 0.00 2

Logarithm BelT 74.79 0.00 122.97 0.00 0.98 0.40 2

TKlog Kuznyechik 80.63 0.00 34.35 0.00 14.18 0.00 3

SPN (2S) CLEFIA S0 2.56 0.19 25.62 0.00 0.00 15.60 6

Enocoro 1.92 0.36 3.26 0.15 0.00 15.60 6

Twofish p0 1.36 0.70 3.16 0.17 0.00 33.84 6

Twofish p1 1.34 0.72 3.16 0.17 0.00 25.82 6

SPN (3S) Iceberg 17.15 0.00 3.58 0.10 0.02 3.87 2

Khazad 16.94 0.00 3.16 0.17 0.98 0.40 2

Feistel Zorro 2.19 0.27 3.37 0.13 0.00 25.82 2

ZUC S0 16.15 0.00 3.16 0.17 0.00 NaN 368

Hill climbing Kalyna pi0 104.22 0.00 235.77 0.00 29.67 0.00 2

Kalyna pi1 122.64 0.00 268.07 0.00 29.67 0.00 2

Kalyna pi2 129.87 0.00 239.28 0.00 5.99 0.00 2

Kalyna pi3 122.64 0.00 242.92 0.00 26.44 0.00 2

Random Turing 0.18 1.94 1.84 0.17 0.98 0.40 2

MD2 1.36 0.70 0.10 2.41 0.98 0.40 2

newDES 0.44 0.73 0.32 1.95 0.14 1.86 2

Unknown Skipjack 0.18 1.94 54.38 0.00 0.98 0.40 2

As expected, the S-boxes that were generated using a random procedure have
low positive and negative statistical anomalies. The S-box of MD2 was obtained
using the digits of π, that of the newDES from the American declaration of
independence, and that of Turing from the string “Alan Turing”.

The correlation between the different statistical anomalies seems complex.
On the one hand, there are S-boxes with very different linear and differential
anomalies despite the fact that the square of the LAT coefficients corresponds
to the Fourier transform of the DDT (see e.g. Skipjack). As evidenced by the
anomalies of the S-boxes of Kalyna, which were obtained using a hill climbing
method optimizing the differential and linear properties [25], these improvements
lead to an observable increase of the boomerang anomaly but it can be marginal.

3 Identifying Structures

In this section, we go through the most common S-box structures, and present for
each of them the density of the set of such S-boxes (up to affine-equivalence) and
the methods that can be used to identify them. In practice, S-boxes operating
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on at least 6 bits usually fall into two categories: those that are based on the
inverse in the finite field F2n , and those using block cipher structures.

In both cases, the permutations are usually composed with affine permu-
tations. In the context of white-box cryptography, it is common to compose
functions with secret affine permutations so as to obfuscate the logic of the
operations used. Hence, for both decomposing S-boxes and attacking white-box
implementation, it is necessary to be able to remove these affine layers.

While recovering a monomial structure is simple even when it is masked by
affine permutations (see Sect. 3.1 and our results on the S-box of Chiasmus), it
is not the case with block cipher structures. In this section, we show how the the
recovery of the pattern used in [7] to remove the affine layers of the Russian S-box
can be efficiently automatized (Sect. 3.2), and applied to both SPNs (Sect. 3.3)
and Feistel network (Sect. 3.4). The core algorithm needed for these attacks is
one returning all the vector spaces contained in a set of elements of F

n
2 . We will

present such an algorithm in Sect. 4.
These techniques allow us to identify the structural anomalies in S-boxes. In

order to estimate the anomaly associated with each structure, we upper bound
the number of permutation that can be built using each of those that we consider.
The corresponding anomalies are summarized in Sect. 3.5.

3.1 Multiplicative Inverse

Such permutations have a very simple structure: there exists two affine per-
mutations A : F

n
2 → F2n and B : F2n → F

n
2 such that the permutations F

can be written F = B ◦ G ◦ A, where G is the permutation of F2n defined by
G(x) = x2n−2. Their use was introduced in [31]; the AES [1] uses such an S-box.

In practice, the implementation of G requires the use of an encoding of the
elements of F2n as elements of F

n
2 . Usually, it is achieved by mapping x =

(x0, ..., xn−1) ∈ F
n
2 to

∑n−1
i=0 xiα

i, where α ∈ F2n is the root of an irreducible
polynomial with coefficients in F2 of degree n. However, this encoding can be
seen as being part of A and B.

Density of the set. There is only one function x �→ x2n−2. However, there are
fewer than (|L2n |2n)2 distinct permutations affine-equivalent to it. Indeed, (x ×
m)2

n−2 = x2n−2×m2n−2, meaning that for a given pair (A,B) of permutations of
L2n we can define 2n−1 pairs (Ai, Bi) ∈ (L2n)2 such that Bi◦G◦Ai = Bj ◦G◦Aj

for all i, j. The same reasoning applies to the Frobenius automorphisms because
(x2i)2

n−2 = (x2n−2)2
i

. In the end, there are at most

|L2n |2︸ ︷︷ ︸
LA and LB

× 22n︸︷︷︸
cA and cB

× 1
(2n − 1)︸ ︷︷ ︸

multiplication

× n︸︷︷︸
Frobenius

=
2n

n
× (|L2n |)2

distinct permutations affine-equivalent to the multiplicative inverse.
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How to recognize them? The Chinese cipher SMS4 [20] uses an 8-bit S-box whose
structure was not explained. This prompted Liu et al. to try and recover said
structure [27]. They successfully identified it as being affine equivalent to the
multiplicative inverse using an ad hoc method.

There is a simple test that can be applied to check if a permutation is affine-
equivalent to the multiplicative inverse when the input/output size is even.

Lemma 1. Let s : x �→ x2n−2 be a permutation of F2n and F ∈ S2n with n even
be such that F = B ◦ s ◦ A where A : x �→ LA(x) + cA and B : x �→ LB(x) + cB

are affine permutations. Let {(ai, bi)} be the set of all coordinates such that
δF (ai, bi) = 4. Then it holds that bi = LB

(
LA(ai)2

n−2
)

for all i, meaning that
ai �→ bi and s are identical up to translations.

Proof. We have that (x + a)e + xe = b has as many solutions as (y + 1)e +
ye = b/ae, meaning that all rows of its DDT contain the same coefficients:
δs(a, b) = δs(1, b/ae). In the case of the inverse for n even, δs(1, c) ∈ {0, 2} for
all c �= 1 and δs(1, 1) = 4. Such a function was called locally-APN in [9].

In our case, we have that δF (a, b) = δs

(
LA(a), L−1

B (b)
)
. Using the property

we just established with e = 2n−2, we get δF (a, b) = δs

(
1, L−1

B (b)/(LA(a))2
n−2
)
,

where the second coordinate simplifies into L−1
B (b) × LA(a). As a consequence,

δF (a, b) = 4 if and only if L−1
B (b) = (LA(a))2

n−2, which is equivalent to b =
LB

(
LA(a)2

n−2
)
.

In [38] and [37], two separate teams independently recovered the secret block
cipher Chiasmus from an encryption tool called GSTOOL. Chiasmus is a German
designed 64-bit block cipher which uses two S-boxes S and S−1. Schuster had
the intuition that it was built similarly to the AES S-box. He was right. Using
Lemma 1 and the linear equivalence algorithm of [4], we found that the S-box of
Chiasmus is also based on a finite field inversion. However, unlike in the AES, it
uses two affine mappings with non-zero constants. A script generating the S-box
of Chiasmus is provided in the appendix of the full version of this paper [10].
The S-box itself can be found in a SAGE [19] module [36].

We could also have recovered this structure using directly the algorithm of
Biryukov et al. [4] or the more recent one of Dinur [21]. However, the above
approach and these algorithms share the same shortcoming when it comes to
identifying the structure in an unknown S-box F ∈ S2n : if we do not know the
exact S-box to which F might be affine-equivalent then they cannot be applied.
Even if we know that it might be affine-equivalent to an SPN or a Feistel network,
we cannot find the corresponding affine masks.

To solve this problem, we identify patterns in the LAT of the permutations
with specific structures that are present regardless of the subfunctions they con-
tain. As a consequence, they can always be detected.

3.2 TU-Decomposition

The TU-decomposition is a general structure that was first introduced in [7]
where it was shown that the S-box of the latest Russian standards has such
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a structure. Later, it was encountered again in the context of the Big APN
problem, a long standing open question in discrete mathematics. Indeed, the
only known solution to this problem is a sporadic 6-bit APN permutation that
was found by Dillon et al. [13] and which was proved in [35] to yield a TU-
decomposition. This structure was then further decomposed to obtain the so-
called open butterfly. As we will show below, some Feistel and SPN structures
also share this decomposition. Thus, the tools that can find TU-decomposition
can also be used to identify these structures even in the presence of affine masks.

Definition 2 (TUt-decomposition). Let n and t be integers such that 0 < t <
n. We say that F ∈ S2n has a TUt-decomposition4 if there exists:

– a family of 2n−t permutations Ty ∈ S2t indexed by y ∈ F
n−t
2 ,

– a family of 2t permutations Ux ∈ S2n−t indexed by x ∈ F
t
2, and

– two linear permutations μ : F
n
2 → (Ft

2 × F
n−t
2 ) and η : (Ft

2 × F
n−t
2 ) → F

n
2

such that F = η ◦ G ◦ μ, where G is the permutation of F
t
2 × F

n−t
2 such that

G(x, y) =
(
Ty(x), UTy(x)(y)

)
. This structure is presented in Fig. 1a.

In other words, F ∈ S2n has a TUt-decomposition if and only if it is affine-
equivalent to G ∈ S2n with the following property: if G�t is the restriction of
G to its t bits of highest weight then x �→ G�t(x||a) is a permutation for all
a ∈ F

n−t
2 .

μ

η

T

U

t n − t

t n − t

n

n

(a) TUt-decomposition.

μ

η

T

U

α−1

α

β−1

β

β

γ

γ−1

γ−1

δ

δ−1

μ′

η′

T ′

U ′

(b) Composing its components with linear permutations.

Fig. 1. Two functionally equivalent permutations.

4 This is a simplified version of the TUt-decomposition compared to [15]. Indeed, in
that paper, the authors only impose that Ty ∈ S2n−t ; Ux may have collisions. Since
we are only considering bijective S-boxes here, we consider that Ux ∈ S2t .
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Density of the Set. In order to define a permutation with a TUt-decomposition,
we need to choose 2n−t permutations of S2t , 2t permutations of S2n−t and two
linear permutations operating on n bits. However, several of the permutations
generated in this way will be identical. Indeed, we can compose each Ty with
a t-bit linear permutation α ∈ L2t to obtain a permutation T ′

y = Ty ◦ α. If we
use T ′

y and compose μ with α−1, then we obtain the same overall permutation
as when Ty and μ are used. More equivalent modifications can be made using
linear permutations β ∈ L2n−t , γ ∈ L2t and δ ∈ L2n−t , as summarized in Fig. 1b.
Hence, the total number of n-bit permutations with TUt-decompositions is at
most

#TUt ≤ |S2t |2
n−t︸ ︷︷ ︸

Ty

× |S2n−t |2t︸ ︷︷ ︸
Ux

( |L2n |
|L2t | × |L2n−t |

)2

︸ ︷︷ ︸
μ and η

.

This quantity is only a bound as permutations that are self affine-equivalent
lead to identical permutations with different μ and η. We used this bound to
compute the anomaly associated to the presence of a TUt-decomposition in a
permutation. It is given in Sect. 2.

How to recognize them? Let F ∈ S2n be a permutation. As was established in
Proposition 6 of [15], the presence of a TUt-decomposition is equivalent to the
presence of a specific vector space of zeroes of dimension n in ZF . Let us first
recall the corresponding proposition in the particular case of permutations.

Proposition 4 ([15]). Let F ∈ S2n and let ZF be its Walsh zeroes. Then F
has a TUt-decomposition without any affine layers if and only if ZF contains the
vector space {

(0||a, b||0), a ∈ F
t
2, b ∈ F

n−t
2

}
.

The advantage of Proposition 4 is that the pattern described depends only on
the presence of a TUt-decomposition and not on the specifics of the components
T and U . Furthermore, recall that if G = L2◦F ◦L1 for some linear permutations
L1 and L2 then WG(a, b) = WF

(
(L−1

1 )T (a), LT
2 (b)

)
.

Corollary 1. Let F ∈ S2n and let ZF be its Walsh zeroes. Then F has a TUt-
decomposition with linear permutations μ and η if and only if{(

(μ−1)T (0, a), ηT (b, 0)
)
, a ∈ F

t
2, b ∈ F

n−t
2

} ⊂ ZF .

It is therefore sufficient to look for all the vector spaces of dimension n
contained in ZF to see if F has TUt-decomposition. If we find a vector space that
is not the Cartesian product of a subspace of {(x, 0), x ∈ F

n
2} with a subspace

of {(0, y), y ∈ F
n
2} then F does not have a TUt-decomposition but there exists

a linear function L of F
n
2 such that F + L does [15]. Regardless, the key tool

that allows the search for TU-decomposition is an efficient algorithm returning
all the vector spaces of a given dimension that are contained in a set of elements
of F

n
2 . Indeed, finding such vector spaces will allow us to recover all the values

of (μ−1)T (0, a) and ηT (b, 0) for (a, b) ∈ F
t
2 × F

n−t
2 , from which we will deduce



Anomalies and Vector Space Search: Tools for S-Box Analysis 211

information about μ and η. We present such an algorithm in Sect. 4 and we used
it as a subroutine of program finding a TUt-decomposition automatically (see
the appendix of the full version [10]).

As observed in [15], the number of vector spaces of dimension n in ZF is the
same as the number of vector spaces of dimension n in the set of the coordinates
of the zeroes in the DDT. Thus, we could equivalently present our results in
terms of DDT.

3.3 Substitution-Permutation Networks

An n-bit SPN interleaves the parallel application of k possibly distinct m-bit S-
boxes with n-bit linear permutations, where k × m = n. We use the common [8]
notation AS to denote a linear layer followed by an S-box layer. A SAS structure
is depicted in Fig. 2a.

S S

S S

⊕ ⊕
a dc b

x y

t u

(a) A two-round SPN (SAS).

F0

F1

F2

⊕

⊕

⊕

x y

(b) A 3-round Feistel network.

Fig. 2. Two block-cipher-like S-box structures.

Let us estimate the number of r-round SPNs. As the S-box layers are inter-
leaved with linear layers, we need to consider not the size of S2m but instead
the number of linear equivalence classes, which is at most |S2m |/|L2m |2. The
number of permutations with a A(SA)r structure is then at most

#A(SA)r ≤
( |S2m |

|L2m |2
)rn/m

× |L2n |r+1 .

The corresponding anomalies for some values of n are given in Sect. 3.5.

How to recognize them? First of all, the algebraic degree of a 2-round SPN is at
most equal to n − 2 [11]. Hence, if a permutation is of degree n − 1, it cannot
have such a structure.

In Theorem 3, we will establish the existence of specific vector space of zeroes
in the LAT of a 2-round SPN. However, in order to properly state this theorem,
we first need to introduce the following notion.
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Definition 3 (m-Valid minors). Let k,m and n be integers such that n =
k × m. Let L ∈ L2n be a linear permutation. We define it using a k2 block
matrices Li,j of dimension m × m:

L =

⎡
⎣ L0,0 ... L0,k−1

... ...
Lk−1,0 ... Lk−1,k−1

⎤
⎦ .

We call a minor of the matrix L m-valid if there exists a pair I, J of subsets of
{0, ..., k − 1} which are of the same size 0 < |I| = |J | < k and such that the rank
of LI,J = [Li,j ]i∈I,j∈J is equal to m.

In other words, an m-valid minor of L is a non-trivial minor of L that is obtained
by taking complete m-bit chunks of this matrix, and which has maximum rank.

Theorem 3. Let F ∈ S2n be an ASASA structure built using L as its central
linear layer and two layers of m-bit S-boxes. For each I, J � {0, ..., k−1} defining
an m-valid minor of L, there exists a vector space of zeroes of dimension n in ZF .

Proof. Because of Corollary 1, we restrict ourselves to the SAS structure. If we
let the input blocks corresponding to the indices in I take all 2m|I| possible
values, then the output blocks with indices in J will also take all 2m|J| = 2m|I|

possible values. There is thus a corresponding TUm|I|-decomposition and hence
a corresponding vector space in ZF .

This verification is less efficient than the dedicated cryptanalysis methods
presented in [30]. However, the aim here is not so much to recover the ASASA
structure used, it is rather to identify the S-box as having such a structure in the
first place. Using the following corollary, we can immediately understand why
NV =

(
2×2
2

)
= 6 for several S-boxes in Table 1: it is a direct consequence of their

2-round SPN structure and of the strong diffusion of their inner linear layer.

Corollary 2. Let F ∈ S2n be the SAS structure built using L as its linear layer
and two layers of m-bit S-boxes, where n = k×m. If L is MDS over the alphabet
of S-box words, then ZF contains at least

(
2k
k

)
vector spaces of dimension n.

Proof. As L is MDS, all its minors and in particular those corresponding to the
definition of m-minors have a maximum rank. There are

∑k
i=1

(
k
i

) × (ki) such
m-minors, to which we add the “free” vector space {(x, 0), x ∈ F

n
2} which is

always present: there are at least
∑k

i=0

(
k
i

)2
=
(
2k
k

)
vector spaces in ZF .

3.4 Feistel Networks

The Feistel structure is a classical block cipher construction which is summarized
in Fig. 2b. The number of permutations that are affine-equivalent to r-round
Feistel networks that use permutations as the round functions is at most equal to
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|S2n/2 |r︸ ︷︷ ︸
round funcs.

× 1

(2n)�n
2 �︸ ︷︷ ︸

constants

× |L2n |2︸ ︷︷ ︸
outer layers

× 1
|L2n/2 |2︸ ︷︷ ︸

branch transforms

.

Indeed, we can apply n/2-bit linear permutations L and L′ to each branch and,
provided that the round functions are modified, we can cancel them out by
applying L−1 and (L′)−1 on the output branches. We can also add constants
freely to the output of the first �r/2� round functions, as explained in [5].

How to recognize them? There are efficient function-recovery techniques for up to
5-round Feistel networks [5]. However, as soon as affine masks are added, the cor-
responding techniques can no longer be applied. Still, as with the SPN structure,
Feistel networks with few rounds exhibit specific vector spaces in their Walsh
zeroes as was already observed for 4-round Feistel network in [7]. This means
that it is possible to detect such structures using the vector spaces in their Walsh
zeroes.

Theorem 4 ([7]). Let F be a 4-round Feistel network such that round functions
2 and 3 are permutations. Then WF (x||y, 0||y) = 0 for all x, y in F

n/2
2 .

This observation also holds for a 3-round Feistel. In fact, there are more vector
spaces in such a structure.

Theorem 5. Let F0, F1 and F2 be functions of F
n/2
2 such that F1 ∈ S2n/2 . Let

F ∈ F
n
2 be the 3-round Feistel network using F0, F1 and F2 as its round functions.

Then the set ZF contains the following vector spaces of dimension n:

1. {(x, 0), x ∈ F
n
2}, {(0, y), y ∈ F

n
2},

2.
{
(x||0, y||0), (x, y) ∈ F

n/2
2 × F

n/2
2

}
,

3.
{
(x||y, x||0), (x, y) ∈ F

n/2
2 × F

n/2
2

}
,
{
(x||0, x||y), (x, y) ∈ F

n/2
2 × F

n/2
2

}
,

4.
{
(x||y, 0||y), (x, y) ∈ F

n/2
2 × F

n/2
2

}
,
{
(0||y, x||y), (x, y) ∈ F

n/2
2 × F

n/2
2

}
,

the fourth category being present if F0 and F2 are in ∈ S2n/2 .

The proof of this theorem follows from direct applications of results in [15] and
of these observations:

– if the 3-round Feistel network implies a specific vector space, it also implies
the one with the coordinates swapped because its inverse is also a 3-round
Feistel network,

– (x, y) �→ F (x, y) ⊕ (x, 0) is a permutation if F1 ∈ S2n/2 , and
– (x, y) �→ F (x, y) ⊕ (0, y) has a TUn/2-decomposition if F2 ∈ S2n/2 .

The details are provided in the appendix of the full version [10].
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3.5 Structural Anomalies

In light of our results, we can quantify the anomaly associated to the presence of
various structures. In this case, the mapping P considered maps S2n to {0, 1}:
a permutation has a specific structure or it does not. The anomaly associated to
a given structure is then

Astructure = − log2

(∣∣{G ∈ S2n , G has the structure}∣∣
|S2n |

)
,

meaning that the set sizes we extracted above allow us to quantify the anomalies
associated to the TUt-decomposition, the SPN structure, the Feistel network and
the TKlog (see below for the latter). The corresponding anomalies are summa-
rized in Table 2 for different values of n.

The existence of a TU-decomposition with t = 1 for F ∈ S2n is equivalent
to the presence of a component with a linear structure [15], i.e. to the existence
of a ∈ F

n
2 such that the Boolean function x �→ a ·F (x) has a probability 1 differ-

ential. Thus, the corresponding row of Table 2 gives the anomaly corresponding
to linear structures.

We can also compute the anomaly associated to the TKlog structure [34]
used in the S-box of Streebog and Kuznyechik [22,23] called π ∈ S28 . A TKlog
is a 2m-bit permutation parametrized by an affine function κ : F

m
2 → F22m such

that κ(x) = Λ(x) ⊕ κ(0) for some linear function Λ. This function must be such
that Im(Λ) ∪ F2m spans F22m . The TKlog also depends on a permutation s of
S2m−1. It is defined as follows⎧⎪⎨
⎪⎩

π(0) = κ(0),
π
(
α(2m+1)j

)
= κ(2m − j), for 1 ≤ j < 2m − 1,

π
(
αi+(2m+1)j

)
= κ(2m − i) + α(2m+1)s(j), for i < 2m + 1, j < 2m − 1 ,

(3)
where α is a root of a primitive polynomial p of degree 2m, so that α2m+1 is a
multiplicative generator of F

∗
2m . The number of TKlog, is then given by

2m−1∏
i=m

(22m − 2i)

︸ ︷︷ ︸
Λ

× |S2m−1|︸ ︷︷ ︸
s

× (φ(22m − 1)/(2m)
)

︸ ︷︷ ︸
#primitive polynomials

× 22m︸︷︷︸
κ(0)

where φ is Euler’s totient function. As for the inverse function, the encoding of
the elements of F22m as binary strings can be considered to be part of the outer
affine layers.
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Table 2. Upper bounds on the anomalies of the affine-equivalence to some structures.
For the TKlog, “AE” corresponds to permutations affine-equivalent to some TKlog
and “pure” to TKLog themselves. S/r is the number of S-boxes used in each round,
i.e. the number that are applied in parallel.

Structure Parameters n = 6 n = 8 n = 12 n = 16

x �→ x2n−2 – 236.1 1570.6 42981.2 953548.5

TKlog “pure” 258.7 1601.5 42870.7 952207.7

AE 184.3 1469.0 42574.2 951683.2

TU-dec. t = 1 8.8 95.7 1997.7 32699.7

t = n/2 13.0 201.1 5215.3 91571.2

SPN ASASA, S/r = 2 192.7 1435.4 41913.5 947036.0

ASASASA, S/r = 2 158.2 1342.3 41316.3 943662.7

Feistel 3-round, Fi ∈ S2n/2 205.5 1443.3 41898.2 946980.9

4-round, Fi ∈ S2n/2 220.8 1487.6 42194.2 948664.9

4 Vector Spaces Extraction Algorithms

Let S be a set of elements of F
n
2 . In this section, we describe an algorithm

which extracts all the vector spaces of dimension at least d that are completely
contained in S. As established in the previous section, the ability to solve this
problem will allow us to identify TU-decompositions, some SPNs, and 3,4-round
Feistel networks even in the presence of affine encodings. It can also test the CCZ-
equivalence [16] of a function to a permutation, as was done by Dillon et al. [13]
to find the first APN permutation operating on an even number of bits.

Our results can be interpreted using both the ordering relation over the inte-
gers and by reasoning over the respective position of the zeroes of the elements
in F

n
2 . The following lemma links these two views.

Definition 4 (Most Significant Bit). Let x ∈ F
n
2 and let us write x =

(x[0], ..., x[n − 1]) where x[0] is the least significant bit. We denote MSB(x) the
greatest index i such that x[i] = 1.

Lemma 2. For any x ∈ F
n
2 , it holds that

x < x ⊕ a ⇔ x[MSB(a)] = 0 ,

where the order relation is obtained by interpreting x and x ⊕ a as the binary
representations of integers.

4.1 A Simple Approach and How Ours Improves It

Let us first present a naive approach to solving this problem. At its core, this
approach is a tree search that builds the complete vector spaces iteratively.
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Starting from a specific element x ∈ S and vector space Vx = {0, x}, we
loop over all the elements y such that y > x and check whether (x ⊕ y) ∈ S, in
which case we build Vx,y = Vx ∪ {y ⊕ v, v ∈ Vx}. We then repeat this process
by looking for z > y such that (z ⊕ v) ∈ S for all v ∈ Vx,y. This process can
then be iterated until complete bases (x, y, z, ...) of vector spaces are found. Our
approach is based on the same principles but it significantly outperforms this
naive algorithm by solving its two main shortcomings.

First, the basis of a vector space is not unique. The condition that it be
ordered, which is implied by the algorithm sketched above, is not sufficient to
ensure uniqueness. This implies that the algorithm will be slowed down by the
exploration of the branches that actually correspond to identical spaces, and
that a post processing checking for duplicated spaces will be needed. Our algo-
rithm will solve this problem and return exactly one basis for each vector space
contained in S. These bases are called Gauss-Jordan Bases (GJB) and are intro-
duced in Sect. 4.2.

Second, at each iteration, we need to consider all z ∈ S such that z is strictly
larger than the largest vector already in the basis being built. In our approach,
we update at each iteration a set that contains all the elements z that could be
used to construct a larger basis using a process which we call vector extraction
(see Sect. 4.3). Like in the algorithm above, this set only contains elements that
are strictly greater than the previous bases elements. However, it is also strictly
larger than all the elements in the vector space spanned by this basis and its
size is reduced by at least a factor 2 at each iteration. Using vector extractions,
we can also skip the test that (z ⊕ v) ∈ S for all v in the current vector space
which will increase the speed of our algorithm.

Besides, in each iteration, we use a heuristic method to consider only a subset
of this set of z which is based on the number and positions of its zeroes, the Bigger
MSB Condition.

In summary, we improve upon the algorithm above in the following ways:

– we construct exactly one basis per vector space contained in S (using GJB,
see Sect. 4.2),

– we significantly reduce the number of vectors that can be considered in the
next iterations (using vector extractions, see Sect. 4.3), and

– we further decrease the number of vectors that need to be explored at a given
iteration using a specific filter (using the Bigger MSB condition, see Sect. 4.4).

Finally, the vector space extraction algorithm itself is presented in Sect. 4.5.
An algorithm extracting affine spaces which uses the former as a subroutine is
presented along with an actual implementation of the vector space algorithm in
the appendix of the full version [10].

In [14], Canteaut et al. introduced an algorithm which, given an n-bit Boolean
function f , lists all the affine spaces of dimension m such that f is constant (or
affine) on them. Our algorithm can easily perform the same task. Indeed, f is
affine on a subspace U if and only if {x||f(x), x ∈ U} is an affine subspace,
meaning that our affine space search algorithms can list all such spaces.
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Using our implementation (see [10]), we only need about 12 min to reprove
their Fact 22 which deals with a 14-bit Boolean function while they claim a
runtime of 50 h in this case. Our machine is more recent and thus likely faster
than theirs but not by a factor 250: our algorithm is inherently more efficient.
It is also far more versatile, as we have established above.

4.2 Gauss-Jordan Bases

These objects are those which our vector space search will actually target. They
were described in the context of Boolean functions in [14].

Definition 5 (GJB [14]). For any vector space V of dimension d, the Gauss-
Jordan Basis (GJB) of V is the set {v0, ..., vd−1} such that 〈v0, ..., vd−1〉 = V
which is the smallest such set when sorted in lexicographic order.

For any space V there is exactly one GJB. Indeed, we can write down all of its
bases, sort the elements in each of them in increasing order and then sort the
reordered bases in lexicographic order. This implies that vi < vi+1 for all i. Some
key properties of GJBs are given by the following lemma.

Lemma 3. GJBs have the following properties.

1. If {v0, ..., vi} is the GJB of 〈v0, ..., vi〉 then {v0, ..., vi−1} is a GJB.
2. The basis {v0, ..., vd−1} is a GJB if and only if{

∀j ∈ {0, ..., d − 2}, MSB(vj) < MSB(vj+1)
∀i ∈ {1, ..., d − 1},∀j ∈ {0, ..., i − 1}, vi[MSB(vj)] = 0 .

(4)

3. If {v0, ..., vd−1} is a GJB then, for all j ∈ {0, ..., d−1}, 〈v0, ..., vd−1〉 contains
exactly 2j elements x such that MSB(x) = MSB(vj).

Proof. We prove each point separately.

Point 1. A basis of 〈v0, ..., vi−1〉 lexicographically smaller than {v0, ..., vi} could
be used to build a basis of 〈v0, ..., vi〉, lexicographically smaller than its GJB,
which is impossible.

Point 2. We prove each direction of the equivalence separately.

⇒ Suppose that {v0, ..., vd−1} is indeed a GJB. Then MSB(vj) = MSB(vj+1)
would imply that MSB(vj ⊕ vj+1) < MSB(vj) which, in particular, would
imply that vj ⊕vj+1 < vj . This would contradict that {v0, ..., vd−1} is a GJB.
Similarly, MSB(vj) > MSB(vj+1) would imply vj > vj+1 which is also a
contradiction. We deduce that MSB(vj) < MSB(vj+1) for any 0 ≤ j < d − 1.
Suppose now that vi[MSB(vj)] = 1 for some j < i. We deduce from Lemma 2
that vi ≥ vi ⊕ vj , which is again a contradiction because {v0, ..., vd−1} is
minimal. We have thus established that if {v0, ..., vd−1} is a GJB then it
must satisfy the conditions in Eq. (4).
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⇐ Let us now assume that these conditions hold. In this case, we have that
vi < vi ⊕ ⊕j∈I vj for any subset I of {0, ..., i − 1} because the MSB of⊕

j∈I vj is always strictly smaller than MSB(vi) and because of Lemma 2.
Thus, adding vi at the end of {v0, ..., vi−1} yields a GJB of 〈v0, ..., vi〉. A
simple induction then gives us the result.

Point 3. Using the first point of this lemma allows us to proceed via a simple
induction over the size of the basis. If the basis is simply {v0} then the lemma
obviously holds. Then, adding an element vd to the end of a GJB of size d will
add 2d elements x such that MSB(x) = MSB(vd). 	


The last point of Lemma 3 allows a significant speed up of the search for
such GJBs. To describe it, we introduce the following concept.

Definition 6 (MSB spectrum). Let S be a set of elements in F
n
2 . The MSB

spectrum of S is the sequence {Ni(S)}0≤i<n such that

Ni(S) = # {x ∈ S,MSB(x) = i} .

Corollary 3 (MSB conditions). If a set S of elements from F
n
2 contains a

vector space of dimension d, then there must exist a strictly increasing sequence
{mj}0≤j≤d−1 of length d such that

Nmj
(S) ≥ 2j .

4.3 Vector Extractions

We now present a class of functions called extractions which will play a crucial
role in our algorithms. We also prove their most crucial properties.

Definition 7 (Extraction). Let a �= 0 be some element of F
n
2 . The extraction

of a, denoted Xa, is a function mapping a subset S of F
n
2 to Xa(S), where x ∈

Xa(S) if and only if all of the following conditions are satisfied:

x ∈ S , (x ⊕ a) ∈ S , a < x < (x ⊕ a) .

In particular, Xa(S) ⊆ S. Our algorithm will iterate such extractions to construct
smaller and smaller sets without loosing any GJBs. This process is motivated
by the following theorem.

Theorem 6. Let {v0, ..., vi−1} be elements of some subset S of F
n
2 such that

0 ∈ S and such that vj+1 ∈ (Xvj
◦ ... ◦ Xv0)(S) for all j < i. Then it holds that

vi ∈ (Xvi−1 ◦ ...◦Xv0)(S) if and only if 〈v0, ..., vi〉 ⊆ S and {v0, ..., vi} is the GJB
of this vector space.

Proof. In order to prove the theorem, we proceed by induction over i using the
validity of the theorem over bases of size i as our induction hypothesis. At step
i, we assume that v0, ..., vi are elements of S and that vj+1 ∈ (Xvj

◦ ... ◦ Xv0)(S)
for all j < i.
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Initialization i = 1. By definition of vector extraction, v1 ∈ Xv0(S) if and only
if v1 ∈ S, and v0 ⊕ v1 ∈ S, v0 < v1 < v0 ⊕ v1. As we assume 0, v0 ∈ S, this is
equivalent to {0, v0, v1, v0⊕v1} = 〈v0, v1〉 being contained in S and to {v0, v1}
being a GJB.

Inductive Step i > 1 Let vi ∈ (Xvi−1 ◦ ... ◦ Xv0)(S). From the induction
hypothesis, we have that {v0, ..., vi−1} is a GJB. Using the second point
of Lemma 3, we have that its extension {v0, ..., vi} is a GJB if and only
if vi[MSB(vj)] = 0 (which is equivalent to vi < vi ⊕ vj) for all 0 ≤ j < i and
MSB(vi) > MSB(vi−1).
By definition of Xvj

, we have that vi < vi ⊕ vj for all j such that 0 ≤ j < i,
so {v0, ..., vi} is a GJB if and only if MSB(vi) > MSB(vi−1). We have
vi−1 < vi < vi ⊕ vi−1, which implies in particular vi−1 < vi ⊕ vi−1, so
that vi[MSB(vi−1)] = 0. Thus, vi > vi−1 holds if and only if MSB(vi) >
MSB(vi−1). 	


Corollary 4. If {e0, ..., ed−1} is the GJB of a vector space V such that V ⊆
S ⊆ F

n
2 then, for all 0 < j ≤ d − 1, we have

〈ej , ej+1, ..., ed−1〉 ⊆ (Xej−1 ◦ ...Xe1 ◦ Xe0

)
(S) .

Evaluating Xa imposes a priori to look whether x ⊕ a belongs in S for all
x ∈ S such that x < x⊕a. This verification can be implemented efficiently using
a binary search when S is sorted. We can make it even more efficient using the
following lemma.

Lemma 4. Let S be a set of elements in F
n
2 and let a ∈ S. Then we have

Xa(S) =
n⋃

i=MSB(a)+1

Xa ({x ∈ S,MSB(x) = i})

4.4 Bigger MSB Condition

The following lemma provides a necessary condition for some e0 ∈ S to be the
first element of a GJB of size d.

Lemma 5 (Bigger MSB condition). If e0 is the first element in a GJB of
size d of elements of a set S of elements in F

n
2 , then S ′ defined as

S ′ = {x ∈ S,MSB(x) > MSB(e0)}
must satisfy the MSB condition of Corollary 3 for dimension d − 1, i.e. there is
a strictly increasing sequence {mj} of length d − 1 such that

# {x ∈ S,MSB(x) = mj} > 2j .

This lemma provides an efficient filter to know whether x can be the start of
a GJB of size d which depends only on the MSB of x, so that it does not need to
be evaluated for all x ∈ S but only once for each subset of S with a given MSB.
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4.5 Vector Space Extraction Algorithm

Algorithm 1. GJBExtraction algorithm.
1: function GJBExtraction(S, d)
2: L ← {}
3: for all a ∈ φd (S) do
4: sa ← Xa(S)
5: if |sa| ≥ 2d−1 − 1 then
6: L′ ← GJBExtraction (sa, max(d − 1, 0))
7: for all B ∈ L′ do
8: Add the GJB ({a} ∪ B) to L
9: end for

10: end if
11: end for
12: return L
13: end function

If we let φd be the identity then we can directly deduce from Theorem 6 and
Corollary 4 that GJBExtraction (as described in Algorithm 1) returns the
unique GJBs of each and every vector space of dimension at least equal to d that
is included in S.

This algorithm can be seen as a tree search. The role of φd is then to cut
branches as early as possible by allowing us to ignore elements that cannot
possibly be the first element of a base of size d by implementing the Bigger MSB
Condition of Lemma 5:

a ∈ φd(S) if and only if ∃{mj}0≤j<d,

{
mj+1 > mj > MSB(a) ,

# {x ∈ S,MSB(x) = mj} > 2j .

Note that we only need to try and build such a sequence of increasing mj

once for each value of MSB(x) for x ∈ S. It is possible to check for the existence
of such a sequence in a time proportional to |S|.

5 Conclusion

We have presented a comprehensive list of anomalies quantifying how unlikely
the properties of a given S-box are. These can be of a statistical nature and we
have pioneered the use of the BCT for this purpose. They can also correspond
to the presence of a specific structure, many of which are particular cases of the
TU-decomposition. To find TU-decompositions, we presented an efficient vector
space algorithm which can be of independent interest. We have also showed
how finding TU-decompositions can help bypass affine masks for several S-box
structures.

We can apply our results to π, the 8-bit S-box used by both Streebog [22]
and Kuznyechik [23]. It has very high anomalies (see Table 3) which means that
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the set of S-boxes with as strong a structure as the TKlog found in π is very
small. This observation is coherent with the claim of [34] that the structure of
π was deliberately inserted by its designers.

Table 3. Some of the anomalies of π.

Statistical Structural

Differential Linear Boomerang TU4 TKlog

80.6† 34.4 14.2 201.1 1601.5
† This anomaly might be overestimated (Sect. 2.4).

We finally list some open problems that we have identified while working on
this paper.

Open Problem 1. How can we better estimate the differential anomaly?
Open Problem 2. Why are there so many vector spaces in ZF when F is a

3-round Feistel network of S28?
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Abstract. In this paper we report on a new record class group com-
putation of an imaginary quadratic field having 154-digit discriminant,
surpassing the previous record of 130 digits. This class group is central
to the CSIDH-512 isogeny based cryptosystem, and knowing the class
group structure and relation lattice implies efficient uniform sampling
and a canonical representation of its elements. Both operations were
impossible before and allow us to instantiate an isogeny based signature
scheme first sketched by Stolbunov. We further optimize the scheme using
multiple public keys and Merkle trees, following an idea by De Feo and
Galbraith. We also show that including quadratic twists allows to cut
the public key size in half for free. Optimizing for signature size, our
implementation takes 390ms to sign/verify and results in signatures of
263 bytes, at the expense of a large public key. This is 300 times faster
and over 3 times smaller than an optimized version of SeaSign for the
same parameter set. Optimizing for public key and signature size com-
bined, results in a total size of 1468 bytes, which is smaller than any
other post-quantum signature scheme at the 128-bit security level.

Keywords: Isogeny based cryptography · Digital signature · Class
group · Group action · Fiat-Shamir

1 Introduction

Isogeny based cryptography was first proposed in 1997 by Couveignes [9] in a
talk at the “séminaire de complexité et cryptographie” at the ENS, but his ideas
on how class group actions could be used in cryptography were not published at
that time. The same ideas were independently rediscovered in 2006 by Rostovt-
sev and Stolbunov [31]. Both Couveignes as well as Rostovtsev and Stolbunov
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described a Diffie-Hellman like key agreement scheme (usually called CRS) using
the class group of the endomorphism ring of ordinary elliptic curves. Rostovtsev
and Stolbunov also describe an isogeny based identification scheme. However,
none of these schemes can be considered practical.

A different approach was taken by Jao and De Feo who introduced SIDH
(Supersingular Isogeny Diffie–Hellman) [22]. SIDH does not rely on class group
actions as CRS, but exploits the simple fact that dividing out an elliptic curve by
two (large) non-intersecting subgroups is commutative. SIDH uses supersingular
curves, mainly for two reasons: firstly, constructing a supersingular elliptic curve
with given group order is trivial, and secondly, their endomorphism ring is non-
commutative which thwarts attacks by Kuperberg’s algorithm [25]. SIDH forms
the basis of a practical key-exchange protocol called SIKE [21], which is one of
the main contenders in NIST’s post-quantum standardization project [29].

A major improvement of CRS was made by Castryck et al. [6] by instantiat-
ing the scheme for supersingular curves over Fp and by restricting the endomor-
phism ring to Fp-rational endomorphisms. This subring behaves very much like
in the ordinary curve setting, so the CRS approach applies. The main advan-
tage is that the class group action can be computed very efficiently since by
construction, the supersingular curves have many small rational subgroups. The
resulting cryptosystem is called CSIDH for Commutative Supersingular Isogeny
Diffie-Hellman and is pronounced “sea-side”.

Both SIDH and CSIDH result in efficient key-agreement schemes, but a prac-
tical isogeny based signature scheme is much harder to achieve. The first attempt
was made by Stolbunov in his PhD thesis [35]; the signature scheme consists of
the Fiat-Shamir transform applied to a standard three pass isogeny based identi-
fication scheme. The scheme can be securely instantiated under two assumptions:
firstly, it should be possible to sample uniformly in the class group (this could be
efficiently approximated) and secondly, each element in the class group has an
efficiently computable canonical representation. Especially the second assump-
tion is a major obstacle to instantiate Stolbunov’s signature scheme.

This problem was partly remedied by De Feo and Galbraith in the signature
scheme SeaSign [11] by employing “Fiat–Shamir with aborts”. The main idea is,
instead of using a canonical representation for each class group element, to use
a majorly redundant representation and to apply rejection sampling to make
the distribution of the class group elements, which are part of the signature,
independent of the secret key. The drawback is that this redundant representa-
tion makes evaluating the class group action much less efficient. Several versions
of SeaSign were presented offering trade-offs between signature size, public-key
size, and secret-key size. Although signature sizes of less than one kilobyte at
the 128-bit security level are possible, the scheme is again not practical taking
several minutes to sign. Decru et al. [12] improved all variants of SeaSign, but
the fastest parameter set still requires 2 min to sign a message.

A different approach was taken by Yoo et al. [38] who transform an SIDH-
based zero-knowledge proof proposed by De Feo et al. [15] into a digital signature
scheme. The resulting signatures however are rather large at ∼120 KB which is
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much larger than other post-quantum signature schemes. A similar approach was
described by Galbraith et al. [17] who were able to compress the signatures down
to roughly 10 KB. None of the above signature schemes is therefore practical,
either due to lack of efficiency or due to the large signatures.

It is well known (see for instance Couveignes [9], Stolbunov’s PhD [35] or
Section 9.2 of [11]), that knowing the class group structure would resolve the two
main problems with Stolbunov’s signature scheme. Firstly, uniform sampling is
now trivial, but more importantly, each element has an efficiently computable
canonical representation. This immediately implies that rejection sampling is no
longer necessary, thereby majorly speeding up the resulting signature scheme.

The computation of the class group of a quadratic imaginary number field is
a classical problem in computational number theory, and the current best algo-
rithms [4,20,23] are improvements of an algorithm due to Hafner and McCur-
ley [18]. These algorithms have complexity L1/2(Δ) with Δ the discriminant of
the number field. The largest publicly known class group computation was for a
130-digit discriminant by Kleinjung [23].

The main contributions in this paper are as follows:

– We compute the class group structure and a relation lattice of the class group
of the quadratic imaginary field corresponding to the CSIDH-512 parameter
set having a 154-digit discriminant. This computation is described in Sect. 3.

– We present an efficient algorithm to compute the class group action of random
class group elements by solving an approximate CVP-problem in the relation
lattice. This strategy is described in Sect. 4 and is a combination of Babai
nearest plane algorithm [1] and a random walk approach due to Doulgerakis,
Laarhoven and de Weger [14]. Compared to native CSIDH which starts from
an efficient representation, our algorithm is only 15% slower.

– In Sect. 5, we introduce CSI-FiSh (Commutative Supersingular Isogeny based
Fiat-Shamir signatures, pronounce “sea-fish”) which is based on Stolbunov’s
signature scheme [35] combined with optimisations similar to the ones
described for SeaSign [11]. We also show that the public key size can be cut
in half for free by including not only the curve, but also its quadratic twist.
This implicitly doubles the number of curves in the public key for free, with-
out affecting the security of the scheme. Finally, we prove that the resulting
signature scheme is secure in the quantum random oracle model.

– We provide an efficient open-source implementation of CSI-FiSh and report
on the implementation results in Sect. 6. As for SeaSign, CSI-FiSh allows for
various trade-offs: the smallest signatures are 263 bytes and are also the fastest
(∼390 ms to sign/verify), but require a large public key of 2MB. Slightly larger
signatures of 461 bytes require a public key of 16 KB which is comparable
to multivariate schemes such as LUOV [3], but take ∼670 ms to compute.
Optimizing for public key and signature size combined, results in a total size
of 1468 bytes which is smaller than any other post-quantum signature scheme
at the 128-bit security level.
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2 Preliminaries

We denote by [a, b] with a, b ∈ Z, a ≤ b the set {a, . . . , b}. When considering
reals instead of integers [a, b] denotes the interval a ≤ r ≤ b with r ∈ R, whereas
[a, b[ denotes a ≤ r < b. The cardinality of a set S is denoted by #S.

2.1 Elliptic Curves and Isogenies

The go-to general reference on elliptic curves is Silverman [33]. A good intro-
duction to isogeny based cryptography can be found in the lecture notes by
De Feo [10].

Let E be an elliptic curve over a finite field Fp with p a large prime, and
let 0E denote the point at infinity on E. The curve E is called supersingular iff
#E(Fp) = p + 1, and ordinary otherwise. Given two elliptic curves E and E′,
an isogeny φ is a morphism φ : E → E′ (i.e. can be expressed as fractions of
polynomials) such that φ(0E) = 0E′ . An isomorphism is an isogeny that has
an inverse (which is also a morphism), and two elliptic curves are isomorphic
iff they have the same j-invariant, which is a simple algebraic expression in the
coefficients of the curve. Since an isogeny defines a group homomorphism from
E to E′, its kernel is a subgroup of E. Vice-versa, any subgroup S ⊂ E(Fpk)
determines a (separable) isogeny φ : E → E′ with ker φ = S, i.e. E′ = E/S. The
equation for E′ and the isogeny φ can be computed using Vélu’s formulae [36]
using O(#S(k log p)2) bit-operations. As such, it is only practical to handle fairly
small subgroups S defined over small extensions of Fp.

The ring of endomorphisms End(E) consists of all isogenies from E to itself,
and EndFp

(E) denotes the ring of endomorphisms defined over Fp. For an ordi-
nary curve E/Fp we have End(E) = EndFp

(E), but for a supersingular curve
over Fp we have a strict inclusion EndFp

(E) � End(E). In particular, it is
known that for a supersingular curve over Fp its full endomorphism ring End(E)
is an order in a quaternion algebra, whereas EndFp

(E) is only an order in the
imaginary quadratic field Q(

√−p). In the following we will denote this order
O = EndFp

(E).
The ideal class group of O is the quotient of the group of fractional invert-

ible ideals in O by the principal fractional invertible ideals, and will be denoted
Cl(O). Given an O-ideal a, we can consider the subgroup defined by the inter-
section of the kernels of the endomorphisms in a, i.e. Sa =

⋂
α∈a ker α. Since

this is a subgroup of E, we can divide out by Sa and denote the isogenous curve
E/Sa by a � E. This isogeny is well-defined and unique up to Fp-isomorphism
and the group Cl(O) acts via the operator � on the set E of Fp-isomorphism
classes of elliptic curves with Fp-rational endomorphism ring O. One can show
that Cl(O) acts freely and transitively on E , i.e. E is a principal homogeneous
space for Cl(O).

In what follows we will assume that the class group Cl(O) is cyclic of order
N = #Cl(O) generated by the class of an ideal g. The more general case of non-
cyclic class groups is a trivial extension and is not required in the application
we consider.
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2.2 CSIDH

Castryck et al. [6] proposed an efficient commutative group action � by crafting
supersingular elliptic curves with many small Fp-rational subgroups. Given that
#E(Fp) = p + 1 for a supersingular curve, it is immediate that if p is chosen to be
of the form 4 · �1 · · · �n −1, with �i small distinct odd primes, we have #E(Fp) =
4·�1 · · · �n. Such curves therefore have, for each i ∈ [1, n], an Fp-rational subgroup
of order �i. Since p = −1 mod �i, we have that in Q(

√−p) the rational prime �i

splits as (�i) = 〈�i, π −1〉〈�i, π +1〉, where π =
√−p represents the Fp-Frobenius

endomorphism. Note that the first ideal factor li = 〈�i, π −1〉 corresponds to the
subgroup of order �i defined over Fp, and that the action of this ideal can be
computed entirely over Fp. Once this subgroup is determined, Vélu’s formulae
require O(�i(log p)2) bit operations. However, for small �i, finding a generator of
this small subgroup requires (at least one) full-size scalar multiplication which
dominates the cost of Vélu’s formulae.

CSIDH considers the action of ideals of the form
∏n

i=1 l
ei
i where the exponents

are chosen uniformly from some interval [−B,B]. This can be done by computing
sequentially the action of li exactly ei times. Since the cost of each such action
is dominated by the cost to determine the correct subgroup, we assume that the
overall cost of computing such action is mostly determined by the �1-norm of its
exponent vector, i.e. |e1| + · · · + |en|.

The base curve is taken to be E0 : y2 = x3 + x over Fp and instead of using
the j-invariant, each isomorphism class of a curve with given endomorphism ring
EndFp

(E) = O = Z[π] is represented by a single coefficient A ∈ Fp defining the
curve EA : y2 = x3 + Ax2 + x. Denote A the set of all such coefficients A, then
we obtain a class group action � : Cl(O) × A → A or equivalently, assuming the
class group is cyclic of order N , a group action [] : ZN × A → A. To simplify
notation in the remainder of the paper, we will identify a curve EA with its
isomorphism class represented by the corresponding coefficient A.

Note however that in CSIDH, the order (and structure) of the class group are
unknown, so only the action of ideals of the form

∏n
i=1 l

ei
i with ei smallish are

computable. This restriction brings up various questions: firstly, given the range
of exponent vectors [−B,B]n, do the ideals

∏n
i=1 l

ei
i cover the whole class group,

and secondly, assuming the exponents are chosen uniformly in [−B,B], is the
resulting distribution of

∏n
i=1 l

ei
i uniform over Cl(O). It is clear that knowing the

class group structure voids both questions as surjectivity and uniformity become
trivial to attain. The only remaining problem then is to efficiently compute the
action [a] given a random exponent a ∈ ZN (see Sect. 4 for an efficient solution).

2.3 Computational Problems

The main hardness assumption underlying group actions based on isogenies, is
that it is hard to invert the group action:

Definition 1 (Group Action Inverse Problem (GAIP)). Given a curve
E, with End(E) = O, find an ideal a ⊂ O such that E = a � E0.
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Another advantage of knowing the class group structure and therefore uni-
form sampling, is that the GAIP is random self-reducible: given a problem
instance E, we can shift this over a uniformly random b to obtain E′ = b � E,
which is uniformly distributed in A. Given a solution c for E′, it is easy to see
that cb−1 is then a solution to the original problem.

The CSI-FiSh signature scheme relies on the hardness of random instances of
a multi-target version of the inversion problem, which is shown to reduce tightly
to the normal GAIP by [11] in the case that the class group structure is known.

Definition 2 (Multi-TargetGAIP (MT-GAIP)).Given k curvesE1, . . . , Ek

with End(E1) = · · · = End(Ek) = O, find an ideal a ⊂ O such that Ei = a � Ej

for some i, j ∈ {0, · · · , k} with i 
= j.

The best classical algorithm to solve the GAIP problem is a simple meet-
in-the-middle approach, where one finds a collision between two breadth-first
trees starting at E and E′ respectively. The time complexity of this approach is
O(

√
#Cl(O)). The best quantum algorithm for the GAIP problem reformulates

it as a hidden shift problem [7] and then applies Kuperberg’s algorithm [25,26],
which runs in time 2O(

√
log N). Translating this subexponential complexity to

concrete security estimates is a highly non-trivial endeavour and we refer to [5,
6,30] for precise details.

In this paper we will only focus on the CSIDH-512 parameter set, which uses
74 small primes �i (so n = 74) and samples the exponents uniformly from the
interval [−5, 5] (so B = 5). The CSIDH authors assume that sampling exponent
vectors in [−5, 5] covers a subset of size ∼2256, which, as we will see, is a bit less
than half of the total size of the class group. Class group elements (represented
by their exponent vectors) require roughly 32 bytes, and each isomorphism class
requires 64 bytes (one coefficient in Fp). The average time taken to perform one
such group action [6] is roughly 40ms on a 3.5 GHz processor. This parameter
set aimed to provide 128-bit classical security and to achieve NIST security level
1 quantumly [6]. However, recent works propose quantum attacks and claim that
CSIDH-512 does not reach the NIST security level 1 [5,30].

3 Class Group Computation

In order to uniformly sample and canonically represent class group elements,
a class group computation of Hafner-McCurley type [18] was performed which,
besides computing generators of the class group, also expresses the ideal classes
of prime ideals with small norm in terms of these generators. This computation
relied on the programs from [23], which work over the maximal order and thus
we obtain generators for Cl(OQ(

√−p)), where p is the 512-bit prime used in
CSIDH-512. This class group turns out to be cyclic and the class number is not
divisible by 3. Since the conductor of the suborder O is (2) and 2 does not split
in OQ(

√−p), we get #Cl(O) = 3#Cl(OQ(
√−p)) so that Cl(O) is also cyclic. Using

the information from the computation over the maximal order, it is easy to find
a generator of Cl(O) and to express the li as powers of this generator. In total,
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the computation took an estimated effort of 52 core years on an inhomogenous
cluster of number crunchers and desktop machines, consisting of around 800
cores with the “average” core running at around 3.3 GHz.

The class group computation consists of the following steps.

Relation Collection. Given a bound F (we chose F = 7000000), let F be the
set of prime ideals of degree one with norm less than F and the prime ideal (2);
the latter is only included for technical reasons. A relation is a decomposition
(a+

√−p) =
∏

p∈F pea,p with a, ea,p ∈ Z. Such relations can be found by factoring
the ideal (a +

√−p) for random a ∈ Z which essentially amounts to factoring
its norm a2 + p. Since most a do not give rise to a relation, there exist many
methods to speed up the search for relations. We used a sieving approach [23]
and the large prime variation with up to three large primes; these details do not
matter in the following and are suppressed.

The goal of this step is to generate sufficiently many relations such that the
subsequent steps are able to determine the class group. In practice, this usually
means that we can stop collecting relations when the number of relations slightly
exceeds the number of prime ideals contained in their decompositions (which is
at most #F). However, a bigger excess often reduces the running time of the
subsequent steps significantly.

This step is one of the two main steps in terms of computational effort.
Fortunately, it is trivially parallelized and has moderate memory requirements.
In our computation it took an estimated time of 43 core years to collect 319.5
million relations over an extended factor base of size 32.7 million.

Building the Matrix. In this step the set of relations is converted into a matrix
over Z with rows corresponding to prime ideals and columns corresponding to
relations; the matrix entry belonging to the prime ideal p ∈ F and relation
(a +

√−p) is ea,p. This matrix is overdetermined and very sparse. We now
assume that the ideal classes of the prime ideals in F generate the class group.
In practice, it is very likely that this assumption holds; moreover, it follows
from GRH if F is chosen appropriately. Under the assumption above, one has a
surjection Z

#F/Λ → Cl(OQ(
√−p)) where Λ is the lattice spanned by the columns.

If the matrix has full rank, the covolume of Λ is a multiple of the class number.
By performing elementary column operations as well as removing certain rows
and columns one can reduce this matrix significantly while keeping it slightly
overdetermined and sparse; this is done to reduce the complexity of the next
steps.

In terms of running time this step is negligible but it has higher memory
requirements and is not easily parallelisable. We reduced our set of 319.5 million
relations over a factor base of size 32.7 million to a slightly overdetermined
matrix with roughly 222 thousand rows.

Matrix Step. By dropping some columns from the matrix above one can obtain
a square matrix and use the (block) Wiedemann algorithm modulo many small
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primes to compute its determinant over Z (cf. [8,37]). If the determinant is
non-zero, it is a (usually) huge multiple of the class number. By repeating the
determinant calculation for another square matrix obtained by dropping another
set of columns one gets a second huge multiple of the class number. Their greatest
common divisor is much smaller, thus can be factored, and for each of its prime
factors one can check whether it is a divisor of the class number using quadratic
forms.

This is the other main step, it is also easy to parallelize and has moderate
memory requirements. For both determinant computations, we computed the
determinant modulo roughly 7000 different 64-bit primes, which took roughly 4.3
core years per determinant. By taking the gcd of the determinants and removing
an extra factor of 2, we obtained that

#Cl(OQ(
√−p)) = 37 × 1407181 × 51593604295295867744293584889

× 31599414504681995853008278745587832204909 .

The class group of the order O therefore has cardinality 3 ·#Cl(OQ(
√−p)) which

is approximately equal to 2257.136.

Final Computations. In this step the r-Sylow group of Cl(OQ(
√−p)) is com-

puted for each r dividing the class number together with the images of all
involved prime ideals in this Sylow group. For small r this is easy and for large
r the kernel of one of the square matrices from the previous step can be com-
puted modulo r, e.g., using the Lanczos or Wiedemann algorithm. Finally, tying
everything together a set of generators of the class group and for each involved
prime ideal a representation in terms of these generators is obtained.

This step is negligible in terms of running time and has only moderate mem-
ory requirements. It turns out that the ideal l1 = 〈3, π − 1〉 generates Cl(O), the
discrete logs of the other li are available in our GitHub repository [2].

Remark 3 Notice that all odd primes up to 373 split in Q(
√−p) thus improving

the probablity that the ideal (a +
√−p) gives rise to a relation. This facilitates

the class group computation for our choice of p but the gain is much less than a
factor of 2 compared to an average prime of the size of p.

4 Class Group Action

In this section we discuss how to compute the action of ideals represented as ga,
where g is a generator of the class group. In practice, it will often be the case
that one of the li generates the class group already, and in fact, for the CSIDH-
512 class group we can even take g = l1 = 〈3, π − 1〉. Recall that for isogenies,
there is no analogue of the standard square-and-multiply for exponentiation, so
a different approach is required. Since we can only compute the group action
efficiently for the prime ideals li = 〈li, π − 1〉, our approach is to first use lattice
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reduction algorithms to rewrite ga as a product of the li with small exponents.
After this step, the action can be computed efficiently with Vélu’s Formulae.

More concretely, the ideal la1 corresponds to the exponent vector e =
[a, 0, · · · , 0], that needs to be reduced modulo the relation lattice:

L := {z = (z1, . . . , zn) ∈ Z
n :

n∏

i=1

lzi
i = (1)} .

The lattice L has rank n and volume N = #Cl(O) since by definition it is the
kernel of the surjective group homomorphism that maps Z

n → Cl(O) : z =
(z1, . . . , zn) �→ ∏n

i=1 l
zi
i . Note that the relation lattice follows directly from the

class group computation described in Sect. 3.
Since the complexity of a CSIDH action is mainly determined by the �1-norm

of the exponent vector, we want to solve the Closest Vector Problem (CVP) in
L for the �1-norm given the target vector e. Indeed, any vector z ∈ L which
is close to e for the �1 norm will result in an equivalent vector e − z such that
‖e − z‖1 is small and thus efficiently computable.

A first approximation for solving the CVP for the �1-norm is to use either
Babai’s rounding or nearest plane algorithm [1]. Given a set of basis vectors
B := {b1, . . . ,bn}, denote with B� := {b�

1, . . . ,b
�
n} the corresponding Gram-

Schmidt orthogonalization vectors. Let P(B) denote the parallelepiped

P(B) =

{
n∑

i=1

αibi | αi ∈ [−1/2, 1/2[

}

,

then Babai rounding returns a lattice vector in e + P(B) and Babai’s nearest
plane in e + P(B�). This shows that e − z is either in P(B) or in P(B�)
depending on the choice of algorithm. Given a basis B and corresponding Gram-
Schmidt basis B�, it is therefore easy to bound ‖e − z‖1. This also shows that
a basis with short and almost orthogonal vectors will give better results. In our
experiments, we only used Babai’s nearest plane algorithm since it is superior
to Babai rounding.

Several notions of reductions and corresponding algorithms exist such as
LLL [28], BKZ [32] or HKZ [24]. Since the lattice L is fixed for a given class
group, a considerable effort can be spent in reducing the lattice basis during a
precomputation. To analyze the impact of the quality of the basis, we computed
three reductions: BKZ-40, BKZ-50 and HKZ. For each reduced basis, we then
ran Babai nearest plane resulting in Table 1, where the average �1-norm and
standard deviation are given for a sample size of 104 random exponents.

The above table should be compared with the expected �1-norm and standard
deviation of vectors sampled according to the CSIDH distribution, i.e. uniform
random in [−B,B]n. For B = 5 and n = 74, we obtain μ = n2(5 + 4 + 3 + 2 +
1)/11 = 201.81 and σ = 13.76, but note (2B + 1)74 < N/2.2 so less than half of
the class group is covered by CSIDH.

To lower the �1-norm further, we can employ an algorithm due to Doulgerakis,
Laarhoven and de Weger [14] (originally described in [27]). The idea of this
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Table 1. �1-norm and �2-norm of Babai’s nearest plane method and evaluation times
of CSIDH-action on three different bases

BKZ-40 BKZ-50 HKZ

�1-norm μ = 240.67 μ = 239.35 μ = 237.50

σ = 18.82 σ = 18.35 σ = 18.26

�2-norm μ = 35.13 μ = 34.93 μ = 34.67

σ = 2.47 σ = 2.43 σ = 2.38

Action evaluation time (106 cycles) μ = 148.59 μ = 148.41 μ = 147.16

σ = 12.91 σ = 12.57 σ = 12.46

algorithm is pretty simple: given a list S of short vectors in the lattice L, it tries
to construct a vector that is closer to e than the current vector z by considering
z ± s for all s ∈ S. This procedure is then repeated on small random shifts of
the target vector. The resulting DLW algorithm is described in Algorithm 1.

Algorithm 1 DLW algorithm - randomized slicer for solving CVP
Input: A list S ⊂ L of short vectors, target vector e ∈ Z

n, number of iterations M
Output: Approximate closest lattice vector z to e
1: z ← 0
2: for i = 0, . . . , M − 1 do
3: Randomize e with random small lattice vector to obtain e′

4: for s ∈ S do
5: if ‖e′ − s‖1 < ‖e′‖1 then
6: e′ ← e′ − s and restart for loop in line (4)
7: end if
8: end for
9: if ‖e′‖1 < ‖e − z‖1 then

10: z ← e − e′

11: end if
12: end for
13: return z

We ran Algorithm 1 for varying sizes of lists of short vectors and varying
number of iterations; the results can be found in Table 2.

Our experiments indicate that (on our setup) the fastest approach is to use
the Babai nearest plane method with 2 iterations of the DLW algorithm, with
a list of 10000 short vectors. In this case, the reduction takes 7.2 · 106 cycles on
average, and evaluating the CSIDH action takes on average 128.1 · 106 cycles. In
comparison, standard CSIDH-512 uses vectors sampled uniformly from [−5, 5]74

(which does not sample uniformly from Cl(O)) and takes on average 117.7 · 106

cycles. Hence, the additional cost of sampling uniformly is only 15%.
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Table 2. �1-norm, �2-norm and evaluation time (reduction + action) of the DLW
algorithm combined with Babai’s nearest plane method on an HKZ basis

List size Iterations �1-norm �2-norm Time of reduction + action

1000 1 223.54 ± 13.29 34.07 ± 2.45 140.17 ± 10.32

1000 3 221.38 ± 11.82 33.79 ± 2.26 138.02 ± 10.24

1000 10 216.84 ± 10.14 33.21 ± 2.03 137.66 ± 9.82

3000 1 219.02 ± 12.02 33.65 ± 2.34 138.09 ± 10.25

3000 3 214.96 ± 10.33 33.03 ± 2.09 136.78 ± 9.46

3000 10 208.75 ± 8.55 32.12 ± 1.81 136.95 ± 8.73

10000 1 213.96 ± 10.92 33.09 ± 2.30 135.55 ± 9.53

10000 3 207.97 ± 9.10 32.08 ± 1.93 135.41 ± 8.82

10000 10 201.26 ± 7.47 31.05 ± 1.66 144.26 ± 7.94

5 The Signature Scheme

In this section we propose CSI-FiSh, an efficient isogeny based signature scheme.
The basis of CSI-FiSh was already sketched by Stolbunov in his thesis [35, 2.B].
He applies the Fiat-Shamir transform [16] to an isogeny based identification
scheme by Couveignes [9] and independently by Stolbunov [34].

Fig. 1. The basic identification scheme for challenge c = 1.

5.1 The Basic Identification Scheme

The identification scheme is illustrated in Fig. 1 and works as follows: the public
key of the prover consists of E1 = a � E0 with a a random element in Cl(O)
and E0 the base curve specified by the system parameters. Assuming that Cl(O)
is cyclic with generator g, we can write a = ga with a random in ZN and
N = #Cl(O). The prover samples a random element b = gb with b ∈R ZN and
commits to the (isomorphism class of the) curve E = gb�E0 = [b]E0. The verifier
then chooses a random bit c ∈ {0, 1} and sends this to the prover. If c = 0, the
prover responds with r = b, and the verifier checks that E = [r]E0, if c = 1, the
prover responds with r = b − a mod N and the verifier checks that E = [r]E1.
Note that reducing modulo N is required to avoid any leakage on a and that
the check can be written as E = [r]Ec. A detailed description of the protocol is
displayed in Fig. 2.
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refiireVrevorP

b ←R ZN

E ← [b]E0

E−−→
c

$←− {0, 1}

r ← b − c · a mod N

c←−−−−

r−−−−→
return E

?= [r]Ec

Fig. 2. The identification scheme of Couveignes and Stolbunov.

Theorem 4. The Couveignes-Stolbunov protocol (Fig. 2) is a complete and
secure Sigma protocol proving knowledge of a solution of a GAIP instance. That
is, it enjoys completeness, special soundness and special Honest-Verifier Zero
Knowledge.

Proof. Completeness. Suppose the protocol is followed honestly, and suppose
E1 = [a]E0. In the case c = 0 the verifier checks if E = [b]E0, which is true by
construction of E. In the case c = 1 the verifier checks if E = [b − a]E1 which
holds because

[b − a]E1 = [b − a][a]E0 = [b]E0 = E .

Special Soundness. Suppose (E, 0, r0) and (E, 1, r1) are two transcripts
that are accepted by the verifier. Then we have

E = [r0]E0 = [r1]E1 ,

from which it follows that [r0−r1]E0 = E1. Hence, it is trivial to extract r0−r1,
which is a solution to the GAIP problem.

Special Honest-Verifier Zero Knowledge. Consider the simulator that,
given a bit c picks a random r ∈ ZN , computes E = [r]Ec and outputs the tran-
script (E, c, r). Then it is clear that the transcripts generated by the simulator
are indistinguishable from transcripts of honest executions of the protocol with
challenge equal to c: both the real transcripts and the simulated transcripts have
uniformly random distributed values of r, and E = [r]Ec. �

5.2 Optimizing the Sigma Protocol

Hashing. To reduce the communication cost (and hence the signature size after
applying the Fiat-Shamir transform) it suffices for the Prover to send H(E)
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rather than E, for some collision resistant hash function H. The verifier then
computes H([r]Ec) and checks that it is equal to the hash value sent by the
prover. If we are doing t rounds of the protocol in parallel to amplify soundness,
it suffices to send a single hash of the concatenation of all the E(i) for i from 1
to t. Clearly the completeness and the Honest-Verifier Zero Knowledge properties
of the scheme are not affected by this change. For special soundness, the collision
resistance of H implies that if

H([r(1)1 ]E
c
(1)
1

|| · · · ||[r(t)1 ]E
c
(t)
1

) = H([r(1)2 ]E
c
(1)
2

|| · · · ||[r(t)2 ]E
c
(t)
2

)

then [r(i)1 ]E
c
(i)
1

= [r(i)2 ]E
c
(i)
2

for all i from 1 to t. Hence, if we model H as a
random oracle it is sufficient for H to have output length 2λ, with λ the security
level.

Larger Challenge Spaces. A well-known approach [11] to lower the soundness
error is to increase the challenge space. To do this we move from the GAIP
problem to the MT-GAIP problem. We now have S − 1 public keys instead of
one, i.e. the public key now consists of the S-tuple (E0, E1 = [a1]E0, . . . , ES−1 =
[aS−1]E0) (note that E0 can be left out, it is just there to illustrate the notation)
and the prover proves to the verifier that he knows an s ∈ ZN such that [s]Ei =
Ej for some pair of curves in the public key (with i 
= j). The prover still chooses
a random exponent b ∈R ZN and computes E(i) = [b]E0. The verifier now sends
a challenge c ∈ [0, S[, and the response consists of r = b − ac mod N . The
verifier then recomputes [r]Ec and verifies that this is equal to E(i). Theorem 4
generalizes to the new identification scheme. In particular, since the challenge
space now contains S elements the soundness error drops to 1/S.

Theorem 5. The adapted identification scheme is a complete and secure Sigma
protocol proving knowledge of a solution of an MT-GAIP instance.

Proof. The proof is completely analogous to the proof of Theorem 4. �

Doubling the Challenge Space with Twists. To increase the size of the
challenge space even further, we exploit the fact that given a curve E = [a]E0,
its quadratic twist Et (which can be computed very efficiently) is Fp-isomorphic
to [−a]E0 [6]. Therefore, we can almost double the set of public key curves going
from E0, E1, ..., ES−1 to E−S+1, · · · , E0, · · · , ES−1, where E−i = Et

i , without
any increase in communication cost. Hence, the soundness error drops to 1

2S−1 .
Theorem 5 still applies, but instead of a reduction from a random MT-GAIP
instance, we now have a reduction from a random MT-GAIP instance subject to
E−i = Et

i (we call this twisted MT-GAIP). However, there is a simple reduction
from this problem to MT-GAIP, which shows this optimization does not affect
security.

Theorem 6. Given an adversary A that solves a random instance of twisted
MT-GAIP in time T and with probability ε, there exists an adversary BA that
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solves a random instance of MT-GAIP in time T + O(S) with probability at least
ε/2.

Proof. We describe the adversary BA. Suppose B is given a random MT-GAIP
instance E1, · · · , Ek, then he chooses k random bits b1, · · · , bk and defines curves

Ẽi =

{
Ei if bi = 0
Et

i if bi = 1
,

then he sets Ẽ0 = E0 and Ẽ−i = Ẽi
t

for all i in {1, · · · , k}. This is a ran-
dom twisted MT-GAIP instance that B then sends to A. With probability ε, A
responds with (a, i, j) such that i 
= j and Ẽi = [a]Ẽj . Now we consider 2 cases:

◦ i = −j. In this case we have Ẽi = [a]Ẽi
t
, which implies Ẽi = [a/2]E0, so

B outputs ((−1)b|i|a/2, |i|, 0), which is a valid solution to his MT-GAIP
instance (#Cl(O) is known to be odd, so the inverse of 2 always exists).

◦ |i| 
= |j|. In this case we have sign(i)(−1)b|i| = sign(j)(−1)b|j| with probability
1
2 . In this case we have an equation of the form Ei = [±a]Ej or Et

i =
[±a]Et

j . Therefore B can output a valid solution to his MT-GAIP problem
(±a, |i|, |j|).

Shorter Public Keys. The previous section explains how one can improve
the communication cost and the proving and verification time by considering
multiple public key curves Ei = [ai]E0 for i ∈ {1, · · · , S − 1}. The drawback
of this approach is that the public key now consists of S − 1 curves, so its size
blows up as S increases. Note that at most t of these public key curves are
used during each verification (where t is the number of parallel executions of the
protocol to amplify soundness). Therefore, instead of including all the curves
E1, · · · , ES−1 in the public key, the public key can just be a commitment to
those curves. The improvement in total communication cost comes from the fact
that the response of the prover now only has to include the opening of at most
t curves Ec1 , · · · , Ect

. If the commitment scheme is binding, then a cheating
prover cannot open the commitment to an incorrect curve, so the security of
the scheme is preserved. We use a Merkle tree construction to implement the
binding commitments, because this allows for the efficient opening of a subset
of the curves.

In particular, suppose for simplicity that S − 1 = 2d and let

hd,i = H(Ei||2d + i||MerkleKey) ,

where MerkleKey ∈ {0, 1}λ is a key which is chosen uniformly at random during
key generation and included in both the secret and public keys. Then we define
each internal node of the Merkle tree as the hash of its children, concatenated
with its position in the tree and the MerkleKey :

hk,i = H(hk+1,2i−1||hk+1,2i||2k + i||MerkleKey) .
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It is an easy exercise to show that if we model H as a random oracle, the root of
the Merkle tree is a binding commitment: An adversary making q queries to the
random oracle has at most probability q+1

2λ of breaking the binding property. Note
that the MerkleKey is not strictly required to prove soundness, but it prevents
an adversary from attacking multiple public keys at the same time. A similar
approach of reducing the public key size was proposed by [11]. They use the more
complicated and slightly less efficient construction of [19], which is designed to
be provably secure in the standard model. Since the Fiat-Shamir transform relies
on the (Q)ROM anyway, there is no reason to use this approach.

5.3 Signatures

The above identification schemes can be turned into (non-interactive) signature
schemes using the Fiat-Shamir transform [16], where the challenges ci ∈ {−S +
1, · · · , S − 1} are simply obtained by hashing the ephemeral keys E(i) for i =
1, . . . , t together with the message m, i.e. (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m).
The signature then consists of (r1, . . . , rt, c1, . . . , ct), and the verifier recomputes
the E(i) = [ri]Eci

and checks that indeed (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m).
Figure 3 details the “simple” variant and corresponds to the identification scheme
using multiple public keys. The “Merkle” variant reduces the size of the public
key by using a Merkle tree as described above.

To achieve security level λ, we require t = λ/ log2 S and the resulting sig-
nature size is t(�log2 N� + �log2 S�) bits for the simple variant. The “Merkle”
variant needs to include the openings of Merkle paths in the signature, the total
size of these openings depends on the leaves that are opened. For example, in the
extremely unlikely case that all the t challenges are identical only one Merkle
path needs to be opened. Both signing and verification require t CSIDH actions
(including the time to construct a small representant of the ideal).

The results on Fiat-Shamir in the QROM of Don et al. [13] readily apply to
our setting:

Theorem 7. Assume the hash functions used are modeled as quantum random
oracles, then CSI-FiSh is sEUF-CMA secure.

Proof. The basic sigma protocol (without hashing) has special soundness and
unique responses (for each i there exists only one value of ri ∈ ZN such that
[ri]Eci

= E(i)). Hence, Theorem 25 of [13] implies that the scheme also has
the Quantum Proof of Knowledge property. The protocol also has more than λ
bits of min entropy and perfect HVZK, so Theorem 22 of [13] implies that the
Fiat-Shamir scheme is sEUF-CMA secure in the QROM.

For the variant with hashing, it is known that Quantum random oracles are
collapsing, so it is immediate that the sigma protocol has quantum computa-
tionally unique responses. Hence, the claim again follows from Theorems 25 and
22 of [13].
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Algorithm 2 KeyGen
Input: E0, class number N = #Cl(O)
Output: sk,pk
1: for i ∈ {1, · · · , S − 1} do
2: ai ←R ZN

3: Ei = [ai]E0

4: end for
5: pk = [Ei : i ∈ {1, · · · , S − 1}]
6: return (sk = a,pk)

Algorithm 3 Sign
Input: msg, sk = a
Output: σ = (r1, . . . , rt, c1, . . . , ct)
1: a0 ← 0
2: for i = 1, . . . , t do
3: bi ←R ZN , E(i) = [bi]E0

4: end for
5: (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m)
6: for i = 1, . . . , t do
7: ri = bi − sign(ci)a|ci| mod N
8: end for
9: return σ = (r1, . . . , rt, c1, . . . , ct)

Algorithm 4 Verify
Input: msg, E0,pk = [Ei : i ∈ {1, · · · , S − 1}], σ
Output: Valid / invalid
1: Parse σ as (r1, . . . , rt, c1, . . . , ct)
2: Define E−i = Et

i for all i ∈ {1, · · · , S − 1}.
3: for i = 1, . . . , t do
4: E(i) = [ri]Eci

5: end for
6: (c′

1, . . . , c
′
t) = H(E(1)|| . . . ||E(t)||m)

7: if (c1, . . . , ct) == (c′
1, . . . , c

′
t) then

8: return Valid
9: else
10: return Invalid
11: end if

Fig. 3. The “simple” variant of the CSI-FiSh signature scheme.
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6 Implementation Results

6.1 Parameter Choices

Slow Hash Functions. Because the QROM security proof is very non-tight
it would not be practical to choose parameters in such a way that security is
guaranteed by the proof. Instead, as is customary, we assume that the probablity
of a successful attack is at most Q × E, where Q is the number of hash function
evaluations that an attacker makes, and E is the soundness error of the zero
knowledge proof. So usually one would choose the parameters S and t such that
S−t ≤ 2−λ. In our implementation we choose a hash function that is a factor 2k

slower than a standard hash function (e.g. SHA-3), therefore it suffices to take
our parameters such that S−t ≤ 2−λ+k. We pick k in such a way that the time
spent evaluating the slow hash function is small compared to the total signing
and verification time. Since we can take smaller parameters this optimization
slightly reduces both the signature size and the signing and verification time.

Proposed Parameter Sets. We have implemented several parameter sets for
both the “simple” variant and the “Merkle” variant. For the simple variant the
secret key is always small and the variable S controls a trade-off between on the
one hand small public keys and fast key generation (when S is small), and on the
other hand small signatures and fast signing and verification (when S is large).
When we use the “Merkle” variant the public key is always small, but the secret
key size increases with increasing value of S, because we store the entire Merkle
tree to avoid having to recompute the public keys during signing.

Table 3. Parameter choices and benchmark results for the “simple” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

21 56 16 16 B 128 B 1880 B 100 ms 2.92 s 2.92 s

22 38 14 16 B 256 B 1286 B 200 ms 1.98 s 1.97 s

23 28 16 16 B 512 B 956 B 400 ms 1.48 s 1.48 s

24 23 13 16 B 1 KB 791 B 810 ms 1.20 s 1.19 s

26 16 16 16 B 4 KB 560 B 3.3 s 862 ms 859 ms

28 13 11 16 B 16 KB 461 B 13 s 671 ms 670 ms

210 11 7 16 B 64 KB 395 B 52 s 569 ms 567 ms

212 9 11 16 B 256 KB 329 B 3.5 m 471 ms 469 ms

215 7 16 16 B 2 MB 263 B 28 m 395 ms 393 ms
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6.2 Implementation Details and Benchmarking Results

Our proof-of-concept implementation is available on GitHub [2]. To evaluate the
CSIDH action, we use the 20180826 version of the proof-of-concept implementa-
tion by Castryck et al. [6]. Our implementation depends on the eXtended Keccak
Code Package for the implementation of SHAKE256, which we have used as hash
function, commitment scheme and to expand randomness. The implementation
of the Babai nearest plane step depends on the GMP library for its high preci-
sion arithmetic. Since we rely on the implementation of Castryck et al. [6], the
implementation is not constant-time. Implementing an optimized constant-time
implementation of CSI-FiSh is outside the scope of this paper and is left for
future work.

Table 4. Parameter choices and benchmark results for the “Merkle” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

28 13 11 8 KB 32 B 1995 B 13 s 671 ms 371 ms

210 11 7 32 KB 32 B 2086 B 52 s 567 ms 567 ms

212 9 11 128 KB 32 B 2022 B 3.5 m 467 ms 467 ms

215 7 16 1 MB 32 B 1953 B 28 m 399 ms 402 ms

218 6 14 8 MB 32 B 1990 B 3.8 h 335 ms 326 ms

All our benchmarking experiments are performed on a Dell OptiPlex 3050
machine with Intel Core i5-7500T CPU @ 2.70 GHz. The benchmarking results
are displayed in Tables 3 and 4.

Remark 8. Like most discrete logarithm based signature schemes, it is possible
to precompute the ephemeral keys in CSI-FiSh, i.e. all CSIDH actions can be
computed offline, and the online phase then only consists of t modular subtrac-
tions, which are extremely fast.

7 Conclusions and Open Problems

We computed the class group of the imaginary quadratic field that is at the heart
of the CSIDH-512 cryptosystem, and exploited the knowledge of the relation
lattice to instantiate the first efficient isogeny based signature scheme called
CSI-FiSh. The scheme is flexible in that it allows trade-offs between signature
sizes, key sizes and the time to sign/verify. One parameter set of CSI-FiSh gives
the smallest combined size of public key and signature, compared to any other
existing post-quantum secure signature scheme at the 128-bit security level.

Should the CSIDH-512 parameters turn out to be insufficiently secure, then
the class group computation in this paper can be repeated for a larger prime.
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Even though the computation for the CSIDH-512 parameters already broke pre-
vious records, the effort of 52 core years is relatively small compared to other
record computations such as for factoring and DLP, which often take thousands
of core years. Our computation took less than a month with the resources avail-
able to us. Hence, there is still quite some room to compute class groups for
increased parameters. Moreover, the class group can be computed in quantum
polynomial time. Hence, it seems likely that quantum computers that can com-
pute large class groups will be available well before there are quantum computers
that can break CSIDH-512.

The main open problem, given that the class group is cyclic of order N , is to
devise an identification scheme where the challenge is taken from ZN , instead of
binary or from the small set ]−S, S[. Note that the prover can simply mimick the
discrete logarithm based constructions since he can now work in the ring ZN , and
thus can create the typical response expressing a combination of the ephemeral
key, secret key and challenge. The major problem however is how the verifier
can verify this combination to be correct, since the group action still only allows
to add a known constant in ZN . The impact of such an identification scheme
would be major: the signature size could possibly be as small as 64 bytes, the
public key also 64 bytes and signing would require only one CSIDH action taking
around 40 ms.

Acknowledgements. We would like to thank the department of Electrical Engineer-
ing at KU Leuven for providing the necessary computing power through the HTCondor
framework. Many thanks also to Léo Ducas for computing the HKZ basis of the relation
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Abstract. We present two new Verifiable Delay Functions (VDF) based
on assumptions from elliptic curve cryptography. We discuss both the
advantages and drawbacks of our constructions, we study their secu-
rity and we demonstrate their practicality with a proof-of-concept
implementation.

1 Introduction

A Verifiable Delay Function (VDF), first formalized in 2018 by Boneh, Bonneau,
Bünz and Fisch [10], is a function f : X → Y that takes a prescribed wall-clock
time to evaluate, independently of the parallelism of the architecture employed,
and such that its output can be verified efficiently. In a nutshell, it is required
that anyone can evaluate f in T sequential steps, but no less, even with a large
number of processors; on top of that, given an input x and an output y, anyone
must be able to verify that y = f(x) in a short amount of time, desirably in
polylog(T ).

An example of a delay function lacking efficient verification is a chained one-
way function:

s → H(s) → H(H(s)) → · · · → H(T )(s) = a.

This clearly takes T steps to evaluate, even on a parallel computer, however the
only feasible way to verify the output is to re-evaluate the function. Two related
known crypto primitives are the time-lock puzzles defined by Rivest, Shamir,
and Wagner in [65] and proofs of sequential work [20,53]. The problem with the
former is that it is not publicly verifiable while the latter is not a function (i.e.,
it does not have a unique output).

A VDF based on univariate permutation polynomials over finite fields is
presented in [10], along with other candidate constructions, none being entirely
satisfactory (see next section). The same work listed as an open problem to find
theoretically optimal VDFs based on simple assumptions closer to those typi-
cally found in other asymmetric protocols. Pietrzak [59] and Wesolowski [75]
responded to the challenge by proposing two practical VDFs based on exponen-
tiation in a group of unknown order. Both VDFs are surveyed in [11].
c© International Association for Cryptologic Research 2019
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Our Contribution. We present a new framework for VDFs, and two instantia-
tions of this framework using isogenies of supersingular elliptic curves and bilin-
ear pairings. Both our constructions are optimal and perfectly sound. We observe
that the construction based on univariate permutation polynomials of Boneh et
al. [10] also has both properties, but its security relies on an ad hoc limit assump-
tion on the amount of parallelism available to the adversary. Moreover, unlike
the VDF constructions of Pietrzak [59] and Wesolowski [75], ours are inher-
ently non-interactive, the output being efficiently verifiable without attaching a
proof. By using mathematical tools also used in other cryptographic contexts,
our constructions benefit from pre-existing research in these areas both from an
efficiency and security point of view. Finally, while the use of isogenies does not
magically make our functions post-quantum (in fact they can be broken with a
discrete logarithm computation), one of our two constructions still offers some
partial resistance to quantum attacks; we call this property quantum annoyance.

The main drawback of our proposals is that, given current knowledge, the
only secure way to instantiate our VDFs requires a trusted setup, or, said other-
wise, that our VDFs can be easily backdoored. Indeed, both our setups require to
start from a supersingular elliptic curve with unknown endomorphism ring. No
general algorithm is known to compute the endomorphism ring of supersingular
elliptic curves, however the only known ways to generate supersingular curves
involve a random isogeny walk from a curve with small discriminant (e.g., j = 0
or j = 1728), and it has been shown that knowledge of the isogeny walk permits
computing the endomorphism ring in polynomial time [30,46]. Hence, the only
way to instantiate our VDFs involves a trusted setup that performs a random
isogeny walk and then forgets it. We stress that trusted setups also appear in
other constructions, and that does not rule them out for practical applications;
in fact, the Ethereum cryptocurrency is currently considering standardization of
a VDF based on a trusted RSA setup [28]. Furthermore, while it is clear that a
trusted setup is necessary in the RSA setting, this looks much less like a fatality
in our case: it is totally believable that in the near future a way is found to
generate random supersingular curves with unknown endomorphism ring, thus
bypassing the need for the trusted setup. Finally, a distributed trusted setup
with n − 1 threshold security can be efficiently constructed in our case purely
from isogeny assumptions, whereas the RSA setting requires heavy multi-party
computation machinery and very large bandwidth.

Another limitation on the utility of our VDFs is that the time required to
setup public parameters is of the same order of magnitude as that required to
evaluate the function; furthermore, validating public parameters requires the
same amount of time as evaluating the function, and the evaluator is required
to use O(T ) storage for evaluating in optimal time. While these drawbacks are
acceptable in applications that require delays in the order of minutes or hours
(the majority of applications in blockchains), they prevent our VDFs from being
used with very long delays. In our implementation, we propose some possible
tradeoffs that mitigate these problems, however further research is needed to
better address them.
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Related Work. Isogenies and pairings were first used together for cryptographic
purposes in several patents [14,41,42]. In particular, a patent by Broker, Charles
and Lauter [14] describes a generalization of BLS signatures [12], where the secret
scalar is replaced by a walk in an isogeny graph. We will construct our VDFs
using a similar structure in Sect. 3.

More recently, Koshiba and Takashima [47,48] have provided a framework
and security definitions for some cryptographic protocols involving pairings and
isogenies, called isogenous pairing groups. They also present key-policy attribute-
based encryption schemes based on their framework.

Our new VDF construction does not fit within any of the previous frame-
works: while the isogeny is secret there, here it is public. Moreover the isogeny
involved in our construction has very large degrees to achieve the delay property;
using isogenies of such degree would make any of the previous protocols unnec-
essarily slow. Security properties required for VDFs differ significantly in nature
from traditional cryptographic protocols, and none of the computational assump-
tions previously used in isogeny-based cryptography, including those in [47], is
relevant to our construction.

Outline. This paper is organized as follows. In Sect. 2 we formalize Verifiable
Delay Functions and we go through some of the proposed solutions. Section 3
to Sect. 5 provide a description of our VDFs, together with a review of the
basic theory of supersingular isogeny graphs. Section 6 gives security proofs and
reviews the available attacks against our proposals. Finally Sect. 7 provides an
optimized implementation of our VDFs, and related benchmarks.

2 Verifiable Delay Functions

In this section, we recall previous work on Verifiable Delay Functions (VDF).

2.1 Definition

We recall here the formal definition of a Verifiable Delay Function, following [10].
A VDF consists of three algorithms:

1. Setup(λ, T ) → (ek, vk): is a procedure that takes a security parameter λ, a
delay parameter T , and outputs public parameters consisting of an evaluation
key ek and a verification key vk.

2. Eval(ek, s) → (a, π): is a procedure to evaluate the function on input s. It
produces the output a from s, and a (possibly empty) proof π. This procedure
is meant to be infeasible in time less than T .

3. Verify(vk, s, a, π) → {true, false}: is a procedure to verify that a is indeed the
correct output for s, with the help of the proof π.

A VDF shall satisfy three security properties: Correcteness, stating that a
honest evaluator always passes verification, Soundness, stating that a lying eval-
uator never passes verification, and Sequentiality, stating that it is impossible to
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correctly evaluate the VDF in time less than T − o(T ), even when using poly(T )
parallel processors. We will give formal security definitions in Sect. 6, but see
also [10].

According to [10], the Setup routine should run in time poly(λ); here we
slightly relax this constraint and allow it to run in poly(T, λ). Eval must be
doable in time T ; Verify in time poly(λ). A VDF is said to be optimal when T
is allowed to be in o(2λ) without harming security; note that it does not make
sense to have T ∈ O(2λ), since in that case it is cheaper to break soundness than
to run Eval.

2.2 Applications

We highlight a few applications of VDFs:

– Constructing a trustworthy randomness beacon, like the one introduced
by Rabin in [62], where a public service produces a continuous stream of
guaranteed unbiased randomness. The classic approach consisting in extract-
ing randomness from entropy pool sources, such as stock prices or proof-of-
work blockchains à la Bitcoin, has been shown to be manipulable by active
attackers [58]. For example, while the price of a particular stock may seem
unpredictable to a passive observer, a powerful trader can influence the mar-
ket trend, making the random output biased. Here is where VDFs are useful:
if the beacon is calculated by applying a VDF with a long enough delay to
the entropy source, the malicious trader would not have the time to try to
“adjust” the market at his own advantage.
The other common solution based on the “commit-and-reveal” paradigm with
multiparty randomness has also been shown to have flaws. Indeed a mali-
cious party with the intention of manipulating the output might refuse to
reveal his commitment after seeing the other opened commitments, forcing
to restart the protocol. This can be mitigated by threshold techniques, as
shown in [68], or by replacing commitments with VDFs, as shown by Lenstra
and Wesolowski [51].

– VDFs may be used to reduce the energy consumption of blockchains based on
proofs-of-work. An elegant idea by Cohen [19] combines proofs-of-resources
with incremental VDFs in order to achieve Consensus from Proof of
Resources. In particular, he describes a technique based on proof of space
where the mining reward is roughly equal to the value of the space owned,
without each miner running a large parallel computation. At high level this
works as follows. Suppose a miner controls N out of S units of the total space
and splits his proof π (proving control of the N units) into N pieces π1, π2...πN .
The miner then computes Hi = HASH(πi) ∈ [0, N ] and τ = min(H1, ...,HN ).
At this point the miner evaluates a VDF with time delay proportional to τ .
The first miner that successfully computes the output is the “winner” and
has the block assigned. For a miner that controls N units of the total space
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this will happen with a probability that is about N/S. The Chia blockchain1

has been designed to work with this model.

For a description of other applications of VDFs, such as proof of replication
or computational timestamping, we refer to [10].

2.3 Existing Constructions

So far, few constructions meet the requirements of a VDF; we summarize them
below.

Modular Square Roots. One of the earlier examples of a VDF can be found in
the 1992 paper by Dwork and Naor [29]. The underlying idea is rather simple:
given a prime number p such that p = 3 mod 4, a (canonical) square root a =
√

s mod p can be computed using the formula a = s
p+1
4 . This requires about

log(p) sequential squaring operations. On the other hand, verifying correctness
only requires to check that a2 = s. While there is a gap between the evaluation
and the verification operations, this simple approach has two issues: first, the
gap is only polynomial in the delay parameter T = log(p), secondly, due to the
possibility of parallelizing field multiplications, this gap vanishes asymptotically
if the evaluator is provided with large amounts of parallelism (see also Table 1).
Lenstra and Wesolowski introduced with Sloth [51] the possibility of chaining
square root operations. The problem with this construction, though, is that it
does not achieve asymptotically efficient verification.

Time-Lock Puzzles. Time-lock puzzles were introduced by Rivest, Shamir, and
Wagner [65] to provide encryption that can only be decrypted at a set time in
the future. They use a classical RSA modulus N = pq; the encryption key is
then a = s2

T

mod N for some starting value s. Now, it is clear that any party
knowing ϕ(N) can compute the value of a quickly (they can reduce the exponent
e = 2T mod ϕ(N)). But for everyone else the value of a is obtained by computing
T sequential squaring operations.

The main reason why this construction cannot be classified as a VDF is
that there is not an efficient way to perform public verification without giving
away the factorization of N . This issue has recently been solved, independently,
by Pietrzak and Wesolowski. We briefly present their constructions next; for a
more in-depth survey, see [11].

Wesolowski’s VDF. In 2018, Wesolowski presented a VDF based on groups
of unknown order [75]. His work leverages the time lock puzzle described above,
introducing a way to publicly verify the output a = s2

T

. He defines an interactive
protocol where, after seeing the output a, the verifier sends to the prover a
random prime � < B, where B is some small bound. The prover replies with the
value b = s�2T /��; the verifier then checks that a = b�sr, where r = 2T mod �.
1 https://chia.net/.

https://chia.net/
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Table 1. VDF comparison—Asymptotic VDF comparison: T represents the delay
factor, λ the security parameter, s the number of processors. For simplicity, we assume
that T is super-polynomial in λ. All times are to be understood up to a (global across
a line) constant factor.

VDF Sequential Eval Parallel Eval Verify Setup Proof size

Modular square
root

T T 2/3 T 2/3 T —

Univariate
permutation
polynomialsa

T 2 > T − o(T ) log (T ) log (T ) —

Wesolowski’s
VDF

(1 + 2
log (T )

)T (1 + 2
s log (T )

)T λ4 λ3 λ3

Pietrzak’s VDF (1 + 2√
T

)T (1 + 2

s
√

T
)T log (T ) λ3 log (T )

This work T T λ4 Tλ3 —

This work
(optimized)

T T λ4 T log(λ) —

aAccording to [10, § 5.1], one must limit the evaluator to O(T 2) parallel processors for
the bound on parallel Eval to hold. VDFs based on permutation polynomials can be
evaluated in time O

(
log2(T )

)
using O(T 3.8) parallel processors.

Because the verifier only uses public randomness, this protocol can be made non-
interactive using the Fiat–Shamir heuristic. Wesolowski’s proposal shines for the
shortness of the proof (only one group element) and the speed of the verification
(only two group exponentiations).

Wesolowski suggests two ways of instantiating groups of unknown order. The
first one is using RSA groups (Z/NZ)∗, like in Rivest–Shamir–Wagner, and thus
requires a trusted third party to produce the modulus N . The second is using
class groups of imaginary quadratic number fields [15,52]. While the former
instantiation is better studied in public key cryptography, the second has the
advantage of not requiring a trusted setup.

Pietrzak’s VDF. Concurrently with Wesolowski, Pietrzak [59] introduced
another protocol to verify Rivest–Shamir–Wagner time-lock puzzles. Pietrzak’s
verification procedure is an interactive recursive protocol, where the prover out-
puts a proof π consisting of O(log(T )) group elements, and the verifier needs
about O(log(T )) time to do the verification. The main advantage of his con-
struction is that the prover only needs about O(

√
T ) group multiplications to

build π. Pietrzak presents his protocol using RSA groups, but class groups like
in Wesolowski’s VDF can also be used (although this affects slightly the compu-
tational assumptions needed for soundness).
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Univariate Permutation Polynomials. Boneh, Bonneau, Bünz and Fisch explored
in their seminal paper [10] an approach based on permutation polynomials over
finite fieldsFp. In full generality, their proposal is aweaker formofVDF,where a cer-
tain amount of parallelism is needed to give an advantage to the evaluator (see [10,
Definition 5]). The gist of their approach is that, given a permutation polynomial
of degree T , inverting such polynomial implies computing polynomial GCDs. This
operation takesO(log(p))multiplications of dense polynomials of degreeO(T ), and
it is conjectured that it cannot be done in less than T steps on at most O(T 2) proces-
sors (see [10, Assumption 2]). On the other hand, any such polynomial can be eval-
uated, and thus verified, using O(log(T )) operations on O(T ) processors, which is
exponentially smaller. Moreover, there exists a family of permutation polynomials,
due to Guralnick and Müller [37], that can be evaluated in O(log(T )) operations
without parallelism, and it is conjectured in [10] that the derived VDF is secure.

The drawbacks of this construction are that the parallelism of the evaluator
needs to be polynomially bounded in T , and that it is based on assumptions
that have been seldom studied in a cryptographic setting.

Incrementally Verifiable SNARK. For completeness we need to mention that
a theoretical, albeit impractical, VDF can be constructed using Incrementally
Verifiable SNARKs. Again, we refer to [10] for a deeper analysis of the topic.

We compare the asymptotic performance of the VDFs above and of our pro-
posal in Table 1. Outside of modular square roots, all VDFs constructions meet
the requirements of an optimal VDF, however each has its qualitative strengths
and weaknesses: permutation polynomials require to bound the parallelism of
the evaluator, and are based on little studied assumptions; VDFs derived from
time-lock puzzles are interactive, have no perfect soundness, and may or may
not require a trusted setup; ours need a trusted setup, and require an effort to
validate public parameters comparable to evaluating the VDF.

3 A New VDF Construction Framework

We start by describing a framework for defining VDFs inspired by the BLS
signature scheme based on pairing groups [12]. Recall that BLS uses a pairing
friendly elliptic curve E/Fp, with a non-degenerate bilinear pairing eN : X1 ×
X2 → Fpk , where X1,X2 are subgroups of prime order N , and the extension
degree k is called the embedding degree. The secret key in BLS is a scalar s < N ,
and the public key is a pair of points P, sP ∈ X1. To sign a message m, the
signer computes a hash Q = H(m) ∈ X2, and gives back the signature sQ. The
verifier then checks that en(P, sQ) = en(sP,Q).

The BLS signature is also naturally a Verifiable Random Function fs : X2 →
X2, where only the owner of the trapdoor s can evaluate fs, while anyone can
verify the result [56]; however, it is not a VDF, because both evaluation and verifi-
cation are in polylog(N). Our generalization, instead, has efficient instantiations
based on isogeny graphs of supersingular elliptic curves, where the evaluation
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can be made exponentially slower than the verification. If the trapdoor is kept
secret, one obtains a signature/identification protocol based on walks in isogeny
graphs; if the trapdoor is made public, one obtains a VDF.2 We will present our
instantiations in Sect. 5.

Let X1,X2, Y1, Y2, G be groups of prime order N , let eX : X1 × X2 → G
and eY : Y1 ×Y2 → G be non degenerate bilinear pairings. Furthermore, assume
that there is a pair of bijections φ : X1 → Y1 and φ̂ : Y2 → X2 that satisfy the
following diagram,

X1 × Y2 Y1 × Y2

X1 × X2 G

φ × 1

1 × φ̂ eY

eX

Note that the diagram implies φ and φ̂ are group isomorphisms.
We shall assume that the pairings eX , eY can be evaluated in time polylog(N),

whereas both φ and φ̂ can be evaluated in sequential time T , where T is some
parameter independent from N (but still in o(N)).

Let P be any generator of X1, the public parameters of our system are
going to be (N,X1,X2, Y1, Y2, G, eX , eY , P, φ(P )). From this setup, we derive
two primitives:

An Identification Protocol. The maps φ and φ̂ are the trapdoor. The verifier
gives an element Q ∈ Y2 to the prover, the proof is the element φ̂(Q). Then, the
verifier checks that

eX(P, φ̂(Q)) = eY (φ(P ), Q).

It should be apparent that BLS signatures correspond to the special case
where X1 = Y1 and X2 = Y2 are orthogonal groups with respect to an elliptic
pairing eX = eY , and φ = φ̂ = [s] is the multiplication endomorphism by a
secret scalar s.

The same abstract scheme already appears in a patent by Broker, Charles and
Lauter [14], although their implementation is different, and likely less efficient.
We shall see in Sect. 6 that our instantiation presents the minor advantage over
BLS signatures of being partially resistant to quantum attacks.

A VDF. The maps φ and φ̂ are also part of the public parameters. The VDF is
the map φ̂, Eval simply amounts to evaluating it at points Q ∈ Y2. To verify the
output, one checks that

eX(P, φ̂(Q)) = eY (φ(P ), Q).

It should be clear that, because the map R �→ eX(P,R) is an isomorphism,
verification succeeds if and only if the output is correct; this will be used to prove
2 Note that this is different from a trapdoor VDF, as defined by Wesolowski [75], where

the trapdoor is used to efficiently compute the evaluation.
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correctness and soundness in Sect. 6. By hypothesis, Eval takes T sequential
steps, while the pairings can be evaluated in time polylog(N).

4 Preliminaries on Supersingular Curves

Before describing the instantiations, we review some basic facts on supersingular
curves, pairings and isogenies. For details on elliptic curves over finite fields
see [66,67,73], for their use in cryptography see [9,23,32], for ideal class groups
of quadratic imaginary fields see [22], for maximal orders of quaternion algebras
see [71,72].

Let E be an elliptic curve defined over a finite field Fq of characteristic p.
Recall that the order of E(Fq) is #E(Fq) = q + 1 − t, where t is the trace of
the Frobenius endomorphism π. Then, a curve is supersingular if and only if p
divides t. Every supersingular curve is isomorphic to a curve defined over Fp2 , so,
for a fixed prime p, there is only a finite number of supersingular curves, up to
isomorphism.

An isogeny of E is an algebraic group morphism from E to some other curve
E′. For separable isogenies,3 the degree is the size of their kernel; isogenies of
degree � are called �-isogenies. A separable isogeny is said to be cyclic if its kernel
is; we will mostly deal with cyclic isogenies in this work.

For any �-isogeny φ : E → E′, there is a unique �-isogeny φ̂ : E′ → E,
called the dual of φ, such that φ ◦ φ̂ = [�] on E′ and φ̂ ◦ φ = [�] on E. This
shows that being �-isogenous is a symmetric relation, and that being isogenous
is an equivalence relation. Further, a theorem of Tate states that two curves are
isogenous over Fq if and only if they have the same number of points over Fq, thus
in particular a supersingular curve can only be isogenous to other supersingular
curves.

One can define several bilinear pairings on supersingular curves. In this paper
we will use the Weil pairing eN : E[N ] × E[N ] → μN for describing the proto-
col, although the (reduced) Tate pairing is better suited for implementation
purposes. The pairings will have embedding degree 2 or 1, depending on the
VDF, construction. Most importantly, both pairings will satisfy the compatibility
condition

eN (φ(P ), Q) = eN (P, φ̂(Q))

for any isogeny φ : E → E′ and points P ∈ E[N ], Q ∈ E′[N ]. See [9, Chap-
ters IX–X] for more details.

Graphs of supersingular isogenies have been studied by Mestre [55], Pizer [60,
61], Kohel [45], Delfs and Galbraith [26], among others. We distinguish two
important families: graphs of �-isogenies and curves defined over a prime field
Fp (i.e., expressed by rational fractions with coefficients in Fp), and graphs of
�-isogenies defined over the algebraic closure F̄p (or, equivalently, over Fp2). In
the following, we shall assume that p > 3.

3 An isogeny is separable if it induces a separable extension of function fields. We will
only use separable isogenies in this work.
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Graphs over Fp. For the first case, Delfs and Galbraith showed that one obtains
the same kinds of undirected graphs as for ordinary curves. In this case t = 0
and #E(Fp) = p + 1, thus there is a unique isogeny class containing all super-
singular curves defined over Fp. To give a more precise classification, follow-
ing Kohel [45], we say that an isogeny φ : E → E′ is horizontal whenever
EndFp

(E) � EndFp
(E′); Delfs and Galbraith showed that there are one or two

horizontal isogeny classes of supersingular curves over Fp, according to whether
p = ±1 mod 4. Precisely:

– If p = 1 mod 4, then End(E) � Z[
√−p] for all curves, and the isogeny class

contains h curves, up to Fp-isomorphism, where h is the class number of the
imaginary quadratic field Q(

√−p).
– If p = −1 mod 4, then End(E) is isomorphic to one of Z[

√−p] or Z[(1 +√−p)/2]; the horizontal isogeny class associated to Z[(1 +
√−p)/2] is called

the surface and contains h curves up to Fp-isomorphism; the horizontal
isogeny class associated to Z[

√−p] is called the floor, and contains h or 3h
curves, according to whether p = 7 mod 8 or p = 3 mod 8 respectively.

The connectivity of the �-isogeny graphs will now depend on the chosen
degree �. Specifically:

– If � is an odd prime and
(−p

�

)
= −1 (i.e., −p is not a square modulo �), no

�-isogeny of supersingular curves is defined over Fp, i.e., the �-isogeny graph
is made of isolated vertices.

– If � is an odd prime and
(−p

�

)
= 1, every curve has exactly two horizontal �-

isogenies, thus each horizontal isogeny class is partitioned into a finite number
of cycles.

– If � = 2 and p = 1 mod 4, then every curve has exactly one horizontal �-
isogeny.

– If � = 2 and p = −1 mod 4, then every curve on the floor has exactly one
non-horizontal �-isogeny going to a curve on the surface, whereas for curves
on the surface:

• If p = 7 mod 8, they have exactly two horizontal �-isogenies, plus one
non-horizontal going to the floor, dual to the one coming from the floor;

• If p = 3 mod 8, they have three non-horizontal isogenies going to three
curves on the floor, dual to the ones coming from the floor.

In the rest of this work, we will only be interested in cycles of horizontal
isogenies, thus either � odd and

(−p
�

)
= 1, or � = 2, p = 7 mod 8 and the curves

on the surface.

Graphs over Fp2 . Over Fp2 there is more than one isogeny class, indeed the trace
t of a supersingular curve can take any of the values 0,±p,±2p. The values t = 0
and t = ±p produce exceptional classes made of only one element, and are thus
not interesting for cryptography. The cases t = ±2p produce two distinct classes,
each with �p/12	 + cp elements, where 0 ≤ cp ≤ 2 is a constant depending only
on p mod 12; these two classes are isomorphic in the sense that each curve in one
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is F̄p-isomorphic to exactly one curve in the other, and thus we typically speak
of supersingular graphs over F̄p and over Fp2 indistinctly.

For any prime � �= p, the �-isogeny graph of supersingular curves over Fp2 is
an (�+1)-regular multi-graph, undirected outside of the two special vertices j =
0, 1728. In Fp2 we do not encounter the concept of horizontal isogenies anymore:
every endomorphism ring is isomorphic to a maximal order in a quaternion
algebra, and to every maximal order corresponds exactly a pair of (Fp2/Fp-Galois
conjugate) supersingular curves.

It is still true, however, that we may find inside the graph a sub-structure
inherited from the graph of supersingular curves defined over Fp. One may be
tempted to think that the Fp2 -graph contains the Fp-graph as a subgraph, how-
ever the situation is slightly subtler: indeed, supersingular curves over Fp are
isogenous to their quadratic twists, thus the Fp-graph contains pairs of ver-
tices that become isomorphic in Fp2 . Hence, the �-isogeny graph of curves and
isogenies defined over Fp is a double cover (outside the ramification points at
j = 0, 1728) of the Fp-subgraph contained in the �-isogeny graph over Fp2 . Fear
not: this technical detail will be completely irrelevant to us.

5 Two Instantiations with Supersingular Elliptic Curves

We now give two instantiations of the VDF described in Sect. 3, using supersin-
gular elliptic curves for the pairing groups, and isogenies of prime power degree
for the maps φ, φ̂. We will see in Sect. 6 that the choice of the curves severely
affects the security of the protocol, however we ignore this issue for the moment.
In this section we will describe the VDFs using the Weil pairing, however for
implementation purposes we will use the Tate pairing in Sect. 7.

5.1 VDF from Supersingular Curves over Fp

Our first construction uses supersingular curves defined over a prime field Fp.
It shares similarities with the key exchange protocol CSIDH [16] and with the
VDF based on class groups of imaginary quadratic fields by Wesolowski [75].

Let p be a prime such that p + 1 contains a large prime factor N . Let � be
one of:

– � = 2, only if p = 7 mod 8, or
– a small prime such that

(−p
�

)
= 1.

Let E/Fp be a supersingular elliptic curve, and denote by eN (·, ·) the Weil
pairing on E[N ]. When � = 2 we shall add the requirement that E[2] ⊂ E(Fp),
implying that E is on the surface. By construction #E(Fp) = p + 1, and E(Fp)
contains exactly one cyclic subgroup of order N , that we shall use as X2 =
E[N ] ∩ E(Fp).

Let u ∈ Fp be any non quadratic residue. We define a map

υ : E → Ẽ

(x, y) �→ (u2x, u3y)
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Setup(λ, T )
1. Choose primes N, p with the properties above, according to the security pa-

rameter λ;
2. Select a supersingular curve E/Fp;
3. Choose a direction on the horizontal �-isogeny graph, and compute a cyclic

isogeny φ : E → E′ of degree �T , and its dual φ̂;
4. Choose a generator P of X1 = υ−1(Ẽ[N ] ∩ Ẽ(Fp)), and compute φ(P );
5. Output (ek, vk) = φ̂, (E, E′, P, φ(P ))

)
.

Eval(φ̂, Q ∈ Y2)
1. Compute and output φ̂(Q).

Verify(E, E′, P, Q, φ(P ), φ̂(Q))
1. Verify that φ̂(Q) ∈ X2 = E[N ] ∩ E(Fp);
2. Verify that eN (P, φ̂(Q)) = eN (φ(P ), Q).

Fig. 1. Instantiation of the Verifiable Delay Function over Fp

to a quadratic twist Ẽ of E, i.e., to a curve that is isomorphic to E over Fp2

but not over Fp. By construction, Ẽ has the same order #Ẽ(Fp) = p + 1, and it
contains exactly one cyclic subgroup X̃1 = Ẽ[N ]∩Ẽ(Fp); we shall then set X1 to
υ−1(X̃1). Finally, the restriction of the Weil pairing to X1×X2 is non-degenerate,
as wanted.4

The map φ will be instantiated with an isogeny of degree �T , and the map φ̂
with its dual. In practice, we assume that these isogenies are stored as a sequence
of T isogenies of degree � (e.g., specified by their kernels), so that evaluating φ

and φ̂ can be done in time polynomial in � and linear in T . For a representation
that is more compact by a (large) constant factor, see Sect. 7.

Because of the way we have chosen �, the graph of (horizontal) �-isogenies
containing E is a cycle of length dividing the class number h, thus an isogeny
of degree �T is obtained by choosing a direction on the cycle and composing T
isogeny steps each of degree �. The isogeny φ : E → E′ defines an image curve
E′/Fp having the same group structure as E; in particular we define the cyclic
groups Y1 = υ−1(Ẽ′[N ] ∩ Ẽ′(Fp)) and Y2 = E′[N ] ∩ E′(Fp), where Ẽ′ = υ(E′)
is a quadratic twist of E′.

Note that it is easy to sample uniformly from any of the groups X1,X2, Y1, Y2,
in a way that does not reveal discrete logarithms:5 one simply takes random
points on the curves or on their twists and multiplies by the cofactor (p + 1)/N .
The algorithms defining the VDF are described in Fig. 1.

The similarity with Wesolowski’s VDF is evident here: all �-isogenies with the
same direction correspond to an ideal a of norm � inside the quadratic imaginary
order O � EndFp

(E), which is also a representative of an ideal class in Cl(O).

4 We note that a distorsion map X1 → X2 may be used to define a self-pairing on
X1, however efficient distortion maps only exist for very few supersingular curves.
Fortunately, we will not need distorsion maps.

5 In the elliptic curve cryptography literature, this is typically called hashing into the
groups.
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Composing isogenies corresponds to multiplying ideals, thus φ corresponds to
aT and φ̂ corresponds to a−T in Cl(O). While Wesolowski raises elements to
the power 2T , we only do the equivalent of raising to the power T , because no
analogue of the square-and-multiply algorithm is known for composing isogenies.
Of course, the fundamental difference is in the way we verify the computation.

5.2 VDF from Supersingular Curves over Fp2

Our second VDF is very similar to the previous one, but uses supersingular
curves defined over Fp2 , thus sharing some similarities with the Charles–Goren–
Lauter hash function [17], and with SIDH [25,38]. It deviates slightly from the
paradigm presented in Sect. 3 in that the inputs are not taken in a cyclic group,
and evaluation is slower than the previous one by a factor of about 2 (see Sect. 7),
but has some advantages over it that will be discussed in Sect. 6.

Like before, we choose a prime p such that p+1 contains a large prime factor
N , and a small prime �, e.g., � = 2.6 We again choose a supersingular elliptic
curve E/Fp (this will be necessary to define the orthogonal groups X1,X2),
however we see it as a curve over Fp2 , so that t = −2p and #E(Fp2) = (p + 1)2.

Like before, we define X1 = υ−1(Ẽ[N ] ∩ Ẽ(Fp)) and X2 = E[N ] ∩ E(Fp),
where Ẽ = υ(E) is a quadratic twist of E over Fp. The maps φ, φ̂ are again a
cyclic isogeny of degree �T and its dual, however, over Fp2 , there are (�+1)�T−1

possible choices for them, instead of just two; we will select one of them by doing
a non-backtracking7 random walk in the full �-isogeny graph.

On the image curve E′, we define Y1 = φ(X1) and Y2 = φ(X2). However,
we are now faced with a difficulty: there is no known efficient way to sample
from Y2 or Y1, indeed E′ is generally defined over Fp2 and it has therefore no
Fp-twists. To bypass this problem, we deviate from the abstract description of
Sect. 3, obtaining an N -to-1 map instead of a bijection. Let π be the Frobenius
endomorphism of E/Fp, the trace map on E/Fp2 is the map

Tr : E/Fp2 → E/Fp,

P �→ P + π(P ).

In particular, the trace map sends E[N ] to X2, and satisfies

eN (P, Tr(R)) = eN (P, (1 + π)(R)) = eN ((1 − π)(P ), R) = eN ([2]P, R) = eN (P, R)2

for all P ∈ X1 and R ∈ E[N ]. We thus define our VDF as

f : E′[N ] → X2,

Q �→ (Tr ◦ φ̂)(Q);

verification is done by checking a pairing equation as before. The algorithms are
described in Fig. 2.
6 For this VDF, there is no practical reason to choose any other prime than � = 2.
7 An isogeny walk is called non-backtracking if no isogeny step is followed by its dual,

or, equivalently, if the full walk corresponds to a cyclic isogeny.
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Setup(λ, T )
1. Choose primes N, p with the properties above, according to the security pa-

rameter λ;
2. Select a supersingular curve E/Fp;
3. Perform a random non-backtracking walk of length T in the �-isogeny Fp2 -graph,

defining a cyclic �T -isogeny φ : E → E′ and its dual φ̂;
4. Choose a generator P of X1 = υ−1(Ẽ[N ] ∩ Ẽ(Fp)), and compute φ(P );
5. Output (ek, vk) = φ̂, (E, E′, P, φ(P ))

)
.

Eval(φ̂, Q ∈ E′[N ])
1. Compute and output (Tr ◦φ̂)(Q).

Verify(E, E′, P, Q, φ(P ), (Tr ◦φ̂)(Q))
1. Verify (Tr ◦φ̂)(Q) ∈ X2 = E[N ] ∩ E(Fp);
2. Verify that eN (P, (Tr ◦φ̂)(Q)) = eN (φ(P ), Q)2.

Fig. 2. Instantiation of the Verifiable Delay Function over Fp2

A bijective VDF over Fp2 . If a bijection is wanted, an alternative VDF using
the Fp2 -graph would swap roles by having E′ defined over Fp, and E over Fp2 .
During the Setup phase, a basis (P,R) of X1 × X2 is sampled by evaluating
φ̂/2T on a basis of Y1 × Y2, and it is added to the verification key vk. Then,
sampling Q in Y2 is easy, and verifying that φ̂(Q) ∈ X2 can be done by checking
that eN (R, φ̂(Q)) = 1. However this protocol is less efficient, because verification
requires two pairing computations instead of one.

5.3 Properties of the VDFs

In slight disagreement with the definitions of [10], the Setup routines presented
here take O(T ) time to compute the isogenies φ, φ̂, and produce evaluation keys
of size O(T ). While the size of the evaluation key can be reduced by redoing
parts of the computation in Eval (see Sect. 7), the only known way to verify the
public parameters is to, essentially, rerun the Setup.

We also note that, although T can be arbitrary (we discuss bounds on T
in the next section), neither of our VDFs is incremental in the sense of [10],
meaning that a single parameter set produced by Setup shall support more than
one delay T . A possible workaround is to have Setup include some intermediate
curves in the verification key, so that a single Setup can be used for many delay
parameters up to T , at the cost of increasing the size of the verification key.

Finally, the VDF over Fp is decodable in the sense of [10], meaning that given
the output φ̂(Q) one can compute the input Q (although not more efficiently than
evaluating φ̂); the VDF over Fp2 , on the other hand, is obviously not decodable
because it is non-injective.
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6 Security and Parameter Sizes

We now give formal security definitions and proofs, following [10]. A VDF must
satisfy three security properties: correctness, soundess, and sequentiality, as
defined below. In [10], soundness is a weaker property where the evaluator is
allowed a negligible cheating probability; we introduce here the stronger notion
of perfect soundness, which is achieved by our VDFs.

Definition 1 (Correctness, soundness). The VDFs of Sect. 5 are correct
if, for any λ, T , public parameters (ek, vk) ← Setup(λ, T ), and all input Q, if
R ← Eval(ek, Q) then Verify(vk, Q,R) outputs true.

They are perfectly sound if for all λ, T , public parameters (ek, vk) ←
Setup(λ, T ), and all input Q, if R �= Eval(ek, Q) then Verify(vk, Q,R) outputs
false.

Theorem 1. The VDFs of Sect. 5 are correct and perfectly sound.

Proof. The map R �→ eN (P,R) is a group isomorphism between the output
space X2 ⊂ E[N ] and the multiplicative subgroup μN ⊂ Fp2 . Hence, verification
succeeds if and only if the output is correct.

Sequentiality is the defining property of VDFs, and is much subtler to define.
Intuitively, we want it to be impossible to evaluate the VDF faster than running
Eval, even given an unbounded amount of parallel resources, and even if the
adversary is allowed a large amount of precomputation after the public param-
eters are generated. We must of course exclude trivial cases where, for example,
the adversary precomputes a list of input-output pairs, hence we model security
as a game where the adversary is allowed a polynomial amount of precompu-
tation, after which he receives a random input point Q and must produce the
output φ̂(Q) (or Tr ◦ φ̂(Q)) faster than Eval with non-negligible probability. We
also introduce here a new definition: if the adversary cannot break sequentiality,
even when he is allowed a quantum precomputation before seeing the point Q,
we say that the VDF is quantum annoying.

Definition 2 (Sequentiality, quantum annoyance). The VDFs of Sect. 5
are sequential if no pair of randomized algorithms A0, which runs in total time
poly(T, λ), and A1, which runs in parallel time less than T , can win with non-
negligible probability the following sequentiality game

1. (ek, vk) $← Setup(λ, T ), where the random input tape to Setup is filled with
uniformly distributed bits,

2. A ← A0(λ, ek, vk, T ),
3. Q

$← Y2, uniformly sampled,
4. Q′ ← A1(A, vk, Q),

where winning is defined as outputting Q′ = φ̂(Q) (or Q′ = Tr ◦ φ̂(Q)).
Moreover, if A0 is allowed a quantum computation in poly(T, λ), we say that

the VDFs are quantum annoying.
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We leave aside the question of formally defining a computational model where
“running in parallel time less than T” has a definite meaning; see [10,75] for
details.

We shall see soon that Setup must use secret randomness to select the starting
curve E/Fp; after that, Setup is only left with choosing the isogeny φ : E → E′

and the generator P ∈ E[N ], and both choices can done using public random-
ness. Furthermore A0 is allowed poly(T ) computation, so it can compute φ̂ and
evaluate φ on P (and also evaluate φ̂ on polynomially many points of Y2). Hence,
choice of E/Fp aside, Setup can be absorbed into A0; this justifies defining the
following problem, which is a simple rewording of the sequentiality hypothesis:

Definition 3. (Isogeny shortcut problem (over k)). Let E/Fp be a curve
uniformly sampled in the set of all supersingular curves defined over a finite field
Fp. Given an isogeny φ : E → E′ of degree �T to a curve E′/k, with k = Fp or
k = Fp2 ; being allowed a precomputation taking total time poly(T, λ), evaluate
φ̂(Q) on a random point Q ∈ E′[N ] ∩ E′(k) in parallel time less than T .

6.1 Attacks

We now discuss three natural attack strategies on the isogeny shortcut problem,
and we use them to set parameter sizes. We summarize their complexities in
Table 2.

Pairing Inversion. The simplest attack exploits the same properties as the ver-
ification. It works both against the VDFs and the generalization of BLS signa-
tures sketched in Sect. 3. Given P, φ(P ), Q, to compute φ̂(Q) (or (Tr ◦ φ̂)(Q)) it
is enough to solve the pairing inversion problem eN (P, · ) = eN (φ(P ), Q). Note
that this attack must be repeated for each new input Q.

The hardness of the pairing inversion problem impacts the size of N and p.
Given that our curves have embedding degrees 2 or 1, the best algorithm at our
disposal is the Number Field Sieve for Fp2 , with (heuristic) complexity Lp(1/3).
The current record for computing discrete logarithms in Fp2 is for a prime p of
almost 300 bits [2], while for a security of 128 bits it is recommended to take p
of around 1500 bits, and N of 256 bits. We will use the complexity of this attack
to set parameter sizes in Sect. 7.3.

Computing Shortcuts. A different path to breaking our VDFs consists in finding
a “simpler” isogeny from E to E′, agreeing with φ on E[N ], but taking less
parallel time to compute. This kind of attacks can be decomposed in two steps:
first find a “simpler” isogeny ψ : E → E′ (e.g., of lower degree), then find an
endomorphism ω ∈ End(E) such that ω ◦ ψ̂ agrees with φ̂ on E′[N ].

Concerning the first step, when deg φ is super-polynomial in p, a lower degree
isogeny ψ : E → E′ always exists; indeed Pizer [60,61] has shown that �-isogeny
graphs of supersingular curves over F̄p are optimal expanders for any prime �,
and thus have diameter in O(log(p)), implying that there is an �-isogeny walk
connecting E to E′ of degree polynomial in p. However, it may be difficult to
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compute such an isogeny in general: the best generic algorithm in the case of
Fp2 -graphs is a birthday paradox method [26,33], that finds a collision in O(

√
p)

isogeny steps on average. Note that the only quantum speedup known for this
problem is a generic Grover search, giving a square-root acceleration at best [8].

For curves over Fp, computing the structure of the class group Cl(End(E))
allows an attacker to find an equivalent isogeny ψ, of (smooth) lower degree.
A similar computation is at the hearth of the signature scheme CSI-FiSh [6],
and has recently been demonstrated to be doable for primes of around 500 bits.
Nevertheless, the asymptotically best algorithm, due to Jao and Soukharev [40],
computes an equivalent isogeny of smooth subexponential degree using Lp(1/2)
operations, and is thus not better than the pairing inversion attack mentioned
above. We will sketch later how a similar attack can be performed in polynomial
time on a quantum computer.

After computing a “simpler” isogeny ψ : E → E′, we are left with the
problem of finding ω such that ω ◦ ψ̂ = φ̂ on E′[N ]. This problem can be solved
by computing discrete logarithms in E[N ], which is again not easier than the
pairing inversion problem; however, this attack needs only be performed once on
the public parameters, and can then be used to speed up any evaluation.

So far, we have only discussed the computation of shortcuts in the generic
case; however, when E or E′ are special curves, there are much better ways to
solve this problem, that would lead to a complete break of our VDFs. We discuss
this issue in Subsect. 6.2.

Parallel Isogeny Evaluation. Finally, the last attack path would be to find a
better parallel algorithm for evaluating isogenies of degree �T . All known algo-
rithms require to go through each of the T intermediate curves, one after the
other. Barring shortcut techniques as described above, it seems unlikely that an
algorithm “skipping” intermediate curves could exist. This is not dissimilar from
the case of VDFs based on groups of unknown order, where one argues that in
order to compute g2

T

all intermediate values g2
i

must be computed. After all,
a 2-isogeny is only a simple generalization of the multiplication-by-2 map of
an elliptic curve, it thus seems believable that a chain of 2-isogenies must be
evaluated sequentially passing through all intermediate curves.

It is certainly possible to aggregate steps in blocks, e.g., replace two 2-
isogenies with one 4-isogeny, as it is typically done in implementations of
SIDH/SIKE [21]. This is analogous to replacing n squarings with a single power-
of-2n in group-based VDFs; previous work on parallel modular exponentiation
suggests that, in some complexity models, there may be a small asymptotic gain
in doing so [4], however the viability of these algorithms has never been validated
in practice. At any rate, algorithms for parallel modular exponentiation would
need to be adapted for isogeny evaluation, and we believe that, in this respect,
isogeny-based VDFs can only be as weak as group-based VDFs, but no more.
This is certainly the newest and most unusual problem in the area of elliptic
curve cryptography, and the one that needs more investigation.
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Bounds on T . None of the attacks so far has set an upper bound on T . By the
birthday paradox, we shall take T smaller than the square root of the size of the
isogeny graph, because a loop in the isogeny walk could be optimized away from
Eval. Given that the size of the isogeny graphs is O(

√
p) and O(p) respectively,

we obtain bounds of O( 4
√

p) for Fp, and O(
√

p) for Fp2 .
However, these bounds are much higher than the best attacks, that are subex-

ponential in p. Thus T is effectively only bounded by the theoretical limit of being
subexponential in λ.

On Future Attack Improvements. While the isogeny shortcut problem is new,
we argue that improvements to any of the three attack strategies outlined above
would have important consequences in cryptography, beyond our VDF construc-
tions. Pairing inversion is a well-known problem in classical cryptography, and
an attack on it will affect a large number of pairing-based protocols [34]. Short-
ening an isogeny walk from a curve leads to an endomorphism of this curve; this
is believed to be hard computational task, which underlies the security of other
cryptosystems [17,36]. Finally, faster parallel isogeny computations will benefit
other isogeny-based cryptographic protocols, such as key exchange [1,16,38] and
signatures [24,76].

Quantum Security. We briefly analyze our proposals in the post-quantum setting.
Obviously, Shor’s algorithm breaks the pairing inversion problems in polynomial
time, thus our VDFs cannot be considered post-quantum. However, looking at
Definition 2, we see that this attack can only be applied after the input point
Q is given to A1; thus our VDFs have a chance of being quantum annoying as
defined there. In a plausible future where quantum computers do exist, but are
very expensive and slow, it may still be more interesting to evaluate the VDF
in the legitimate way, rather than attack the pairing inversion problem with
Shor’s algorithm. We argue that, given current knowledge, our VDF over Fp2 is
quantum annoying, whereas the one over Fp is not.

Indeed, as long as the input point Q is unknown, the only strategy currently
available for A0 is to compute an isogeny shortcut, as described previously. In
the Fp2 case, this would involve finding a cycle in the isogeny graph through
E/Fp and E′/Fp2 , a problem that is believed to be quantum-resistant when E
and E′ are generic supersingular curves [30,35].

For the Fp case, on the other hand, it is enough to compute the structure
of Cl(End(E)), along with a basis of “short” generators, a task doable in poly-
nomial time on a quantum computer using Kitaev’s generalization of Shor’s
algorithm [44]. Then an isogeny ψ : E → E′ of lower degree defined over Fp can
be computed by solving a closest vector problem: although polynomial-time lat-
tice reduction algorithms (both classical and quantum) can only reach isogeny
degrees exponential in log(p), this may be enough to break some large delay
parameters, and it can be very efficient in practice, as showcased by the signa-
ture scheme CSI-FiSh [6]. Finally, since ψ and φ are both defined over Fp, the
subgroup X2 = E[N ]∩E(Fp) is an eigenspace for the endomorphism ψ̂ ◦φ; then
a discrete logarithm computation in X2 finds a scalar s such that [s] ◦ ψ̂ = φ̂
on Y2.
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Table 2. Complexity of the known attacks on the sequentiality of our VDFs, assuming
the endomorphism rings of the supersingular curves are unknown (see Subsect. 6.2 for a
polynomial time classical attack when the endomorphism rings are known). Computing
shortcuts targets public parameters independently of the input to the VDFs, and can
be thus be run as a pre-computation. Pairing inversion attacks a single input point,
and must be re-run for every new input.

Classical Quantum

Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1/2) O(
√

p) polylog(p) O( 4
√

p)

Pairing inversion Lp(1/3) Lp(1/3) polylog(p) polylog(p)

Security of the Identification Protocol. For completeness, we briefly come back
to the security of the generalization of the BLS identification protocol sketched
in Sect. 3.

We are not interested in sequentiality in this case, thus shortcut attacks are
not relevant here. Instead, key recovery is equivalent to the problem of finding a
secret isogeny φ : E → E′, given E,E′, a basis (P,Q) of E[N ], and φ(P ), φ(Q).
This problem is much more similar to classical problems in isogeny based cryp-
tography, and is obviously harder than the isogeny shortcut problem.

The best known classical attacks, both for the Fp and the Fp2 case, are in the
square root of the graph size (respectively, O( 4

√
p) and O(

√
p)). But key recovery

is hard even for quantum computers: the best attack for the Fp case is Kuper-
berg’s algorithm for the Hidden Shift Problem [5,7,13,18,39,49,50,63], which
finds φ in exp(

√
log(p)) quantum operations; whereas in the Fp2 case quantum

computers give a square-root speedup via Grover’s algorithm at best [8].
Hence, both identification protocols have a security property similar to the

quantum annoyance defined in Definition 2: any forgery requires running a new
instance of Shor’s algorithm, while key recovery is infeasible on quantum com-
puters. This may be a useful replacement for basic BLS signatures in contexts
where Shor’s algorithm is slow and expensive, and signatures must be produced
fast.

Finally, we remark that our protocol, unlike BLS, is succinct, in the sense
that the secret isogeny is potentially sub-exponentially larger than the proof
of knowledge. At present, this seems rather limited, since our protocol is not
zero-knowledge, however we hope that further research may add more useful
properties to it.

6.2 Shortcut Attacks on Special Curves

We now come back to the shortcut attacks analyzed previously. We saw that the
best algorithms available in the general case have exponential or sub-exponential
complexity, and are in general not better than a simple pairing inversion attack.
However, when the endomorphism ring of the starting curve E is known, a much
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better algorithm exists, completely breaking sequentiality of our VDFs. We now
present a sketch of the attack, and the only known solution to avoid it.

Attack Overview. We shall suppose that the delay parameter T is super-linear
in log(p). To simplify our description we also assume that E is the curve defined
by the equation y2 = x3 +x, with j-invariant j = 1728. However, the attack can
be generalized to an arbitrary curve provided we know its endomorphism ring.
It can also be applied to our VDF over Fp, because an attacker is not bound to
keep all computations in Fp.

The attack has two main steps. First, we compute an alternative isogeny
ψ : E → E′ with a powersmooth and reasonably small degree (polynomial in p).
This is achieved by adapting a strategy used in [30,57] to compute a collision
to Charles–Goren–Lauter (CGL) hash function [17]. Second, we compute an
endomorphism ω ∈ End(E) such that the actions of ω ◦ ψ̂ and φ̂ are identical on
E[N ]. By expressing ω on a set of generators of End(E), we are able to evaluate
ω ◦ ψ̂ efficiently on E[N ], and thus we can answer evaluation queries in a time
much shorter than T .

Computing Shortcuts. Let φ : E = E0 → ET = E′ be given as a composition
of degree � isogenies. We now show how to compute an alternative isogeny ψ :
E → E′ with much shorter degree.

A natural idea to solve this problem is to translate this problem to an analo-
gous problem in the quaternion algebra Bp,∞ ramified at p and at infinity, solve
the problem in the quaternion algebra, and translate the solution back to the
geometric setting. Indeed End(E0) is isomorphic to a maximal order O0 of Bp,∞,
and by assumption on E this isomorphism is fully known. Translating the prob-
lem back and forth (from isogenies to their corresponding ideals and conversely)
can be done using techniques dating back to Waterhouse [74], and the “quater-
nion isogeny” algorithm of Kohel, Lauter, Petit and Tignol (KLPT) [46] can be
used to solve the problem in the quaternion algebra. Unfortunately, the trans-
lation algorithms require to compute torsion points of order deg φ, which have
exponential size in general.

We adapt an idea used in the collision algorithm of [30,57] to avoid this
problem. Let φi : E0 → Ei correspond to the first i steps of the isogeny. Let
Ii be the corresponding ideal, and let n(Ii) = �i denote its norm. Assume we
have already computed an ideal Ji in the class of Ii with powersmooth norm.
We sketch how to compute an ideal in the class of Ii+1 with powersmooth norm.

1. Compute the � + 1 ideals Ki+1,k, k = 0, . . . , � with norm n(Ji)� such that
Ki+1,k mod n(Ji)O0 = Ji (algorithms for this task are provided in [43]).

2. Apply the powersmooth quaternion isogeny algorithm to each Ki+1,k to
obtain new ideals Ji+1,k in the same classes respectively.

3. Translate each ideal Ji+1,k to an isogeny ψi+1,k.
4. Identify the (usually unique) k such that the image of ψi+1,k has j-invariant

ji+1 = j(Ei+1).
5. Let Ji+1 = Ji+1,k.
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To obtain the desired isogeny ψ, we repeat those steps for i = 1, . . . , T −1. When
i = T − 1, we additionally set ψ = ψT,k.

The heuristic bounds and the experiments in [46] show that the degree of ψi is
polynomial in p (more precisely O(p7/2)) and the computation can be completed
in time poly(T, log(p)). The isogeny ψ : E → E′ has powersmooth degree much
smaller than that of φ, and can therefore be evaluated much faster.

Matching Image Points on the N -Torsion. Let ι : E → E : (x, y) → (−x, iy)
where i2 = −1, and let π : E → E : (x, y) → (xp, yp). We have End(E) =
〈1, ι, 1+π

2 , ι+πι
2 〉, so the endomorphism θ := ψ̂ ◦φ can be written as θ = a0+a1ι+

a2π + a3πι with a0, a1, a2, a3 ∈ Z[1/2].Moreover we have

ai = 〈θ, αi〉 := (θ ◦ α̂i + αi ◦ θ̂)/2

for αi = 1, ι, π, πι respectively, and these coefficients can be computed using a
variant of Schoof’s algorithm [45, Theorem 81], by evaluating those maps on
small torsion points and applying the Chinese remainder theorem. Note that
|ai| ≤ deg θ deg αi, so this computation can be performed in time poly(T, log p).

If we now set ω = rθ̂, where r = �T /(a2
0 + a2

1 + pa2
2 + pa2

3), then ω ◦ ψ̂ = φ̂.
But ω can be evaluated at any point of E as

ω(Q) =
∑

[rai mod N ] α̂i(Q),

at a cost of only O(log(N)) operations. Thus we can replace Eval(Q) with the
evaluation of ψ̂ followed by the evaluation of ω, for a total costs of only polylog(p),
which is less than T by hypothesis.

Countering the Attack. The KLPT algorithm only works when the starting
curve E has an endomorphism ring that is, in their words, extremal and spe-
cial. Extremal means that E is defined over Fp, a condition common to all
instantiations of our VDF; however only few curves are also special, for example
j(E) = 1728, or other curves with complex multiplication by an order with small
discriminant.

The KPLT algorithm extends to a non-special curve E, when a path E → E0

to a special curve E0 is known. Unfortunately, all known methods to select
random supersingular curves do so by starting a random walk from some special
curve; hence, there is no known way to produce a random supersingular curve
E/Fp without producing a backdoor E → E0.

At present, the only way to counter the attack presented here is to use a
trusted setup to produce a random curve E/Fp, i.e., having a trusted authority
(or many trusted authorities engaged in a multi-party protocol) compute a walk
E0 → E from a special curve E0, and then throw the backdoor away.

A Note on Ordinary Curves. It is natural to ask whether it is possible to obtain
VDFs from ordinary isogeny graphs. Although it is conceivable to have a variant
of our VDF over Fp using ordinary curves, no secure instantiation is currently
known. Indeed, all known ordinary pairing-friendly curves are obtained using
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variations of the CM method, and thus have small quadratic discriminant and
small isogeny class. In this case it is possible to compute the structure of End(E),
and do a shortcut attack similar to the one above.

We proceed in two steps as before. We first find an isogeny ψ : E → E′ of
small powersmooth degree; since the isogeny class is small, this can even be done
by exhaustive search.

Then, we are left with the problem of finding ω ∈ End(E) such that ω◦ψ̂ = φ̂
when restricted to E[N ]. We proceed as before: using Schoof’s algorithm we
compute θ = ψ̂ ◦ φ = a + bπ for some a, b ∈ Q, then we set ω = �T θ̂/(a2 + pb2),
and we replace Eval by ω ◦ ψ̂.

A family of ordinary pairing friendly elliptic curves with generic discriminant
would provide the perfect instantiation for our VDFs, as it would not be vul-
nerable to any known shortcut attack, and thus would not need a trusted setup.
Unfortunately, all known constructions of pairing-friendly elliptic curves use com-
plex multiplication and hence produce curves with small discriminants [31].

7 Implementation

Our proposed VDFs can be easily implemented using the fundamental blocks
already available for pairing-based and isogeny-based cryptography. A drawback
of our method being the long setup time and the large evaluation key, we present
here an implementation that improves both by orders of magnitude.

7.1 Eval

We focus on 2-isogenies, as they are the most obvious candidate for an implemen-
tation. There are two standard ways to compute a 2-isogeny walk from a curve
E : y2 = f(x). The first is to factor the 2-division polynomial f(x) to obtain
all the points of order 2, then use Vélu’s formulas [70] to test all directions and
step in the wanted one. Since Vélu’s formulas also produce the generator of the
dual isogeny to the direction one is coming from, this root can be quotiented
out from f(x), and thus we are left with solving one square root per curve. The
second way is to take a point at random on E and multiply it by the cofactor
#E/2. If we obtain a 2-torsion point defining the wanted direction, then we com-
pute it and we move to the next curve; otherwise we try with a different point.
Both ways require O(log(p)) operations in the base field for one step, and thus
O(T log(p)) operations to compute the full isogeny walk. After the isogeny φ is
computed, the list of the kernel points can be stored so to be able to evaluate
φ in O(T ) operations. However, this implies storing T points and curves, which
may require a large storage.

Fortunately, using isogeny evaluation techniques pioneered in SIDH [25], and
applied in [27] to the CGL hash function [17], it is possible to absorb the log(p)
factor and shorten the evaluation key size by the same amount. For this, we
choose a prime of the form p = 2nfN − 1, so that all curves in the isogeny
graph have rational points of order 2n−1 or 2n (depending on whether we use
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Fp-graphs or Fp2 -graphs). This way, a single point Pi on Ei can be used to define
n (or n−1) consecutive steps in the graph, and the corresponding isogeny can be
evaluated in n log(n) operations using the optimal strategy techniques from [25].

More in detail, in the Fp2 case, the curve Ei has group structure E(Fp2) �
(Z/(p + 1)Z)2, and is usually not defined over Fp. We can compute a point Pi

of order 2n by taking a point at random and multiplying by fN , then verifying
that Pi has the wanted order. We check that Pi does not start a backtracking
isogeny and we use it to advance n steps in the graph, then we start again.

In the Fp case, because we chose a curve on the surface, the group structure
is E(Fp) � Z/p+1

2 Z×Z/2Z (see [54]), hence the highest order we can get for Pi

is 2n−1. Such point Pi will define 2n−2 horizontal isogeny steps in the “positive”
direction determined by the ideal (π − 1) ⊂ End(E), plus one last step that is
either in the same direction, or going to the floor. To avoid “getting stuck” on
the floor, we use Pi to advance n − 2 steps, then start again.

Using these techniques, only ≈ T/n points need to be computed and the full
walk is computed in O(T log n) operations. One has the choice between storing
all the intermediate 2-torsion points, or storing only the higher order points Pi.
In the first case, we use O(T ) storage and evaluation time; in the second case,
we use O(T/n) storage and O(T log n) evaluation time. Since n ≈ log p, the
slowdown in the second case is likely to be negligible in front of other factors,
such as data transfer delays, or speedups due to dedicated hardware.

In practice, we use a projective (x, z)-only Montgomery model for our
curves, for which small degree isogeny formulas are the most efficient [21].
Points defined over Fp2 are then stored in 4 log2(p) bits, and a curve is rep-
resented by y2 = x3 + ax2 + x using 2 log2(p) bits. The isogeny φ̂ is decom-
posed in small degree isogenies, and each one is represented by its kernel and
its image curve. If we choose to represent φ̂ as a composition of 2-isogenies,
its representation is stored in 2T log2(p) bits. If we decide to represent it as
a composition of 2n-isogenies, storing kernels and curve coefficients requires
T/n(4 log2(p) + 2 log2(p)) = 6T log2(p)/n bits.

7.2 Verify

For verification, we apply standard optimization techniques for the pairing com-
putation. We use Tate pairings instead of Weil pairings, thus the verification
equation (e.g., in the Fp-case)

fφ̂(Q)(P )(p
2−1)/N = fQ(φ(P ))(p

2−1)/N

can be checked by computing two Miller loops and one final exponentiation.
We stress that, while most of the implementation efforts on pairing have

focused on ordinary elliptic curves with smaller field sizes, such as BN curves [3],
our situation is somewhat different. In particular, our curves have large rho-
value ρ = log(p)/ log(N), and thus the Tate pairing is to be preferred to the ate
pairing, because it features a shorter Miller loop.



Verifiable Delay Functions from Supersingular Isogenies and Pairings 271

We use common optimizations for the Miller loop, such as quadratic twist
tricks. In the final exponentiation, we benefit from the special form of the prime
p, indeed

p2 − 1
N

= (p − 1)
p + 1
N

= (p − 1)2nf = (2nfN − 2)2nf = 2n+1f(2n−1fN − 1).

7.3 Benchmarks

To validate our proposals, we implemented a (non-optimized) proof of concept
in SageMath [69]. For a 128-bit secure VDF, we choose a prime N of 256 bits,
and set n = 1244, f = 63 to obtain a 1506-bit prime p = 2124463N − 1. To the
present day, discrete logarithm computations in the subgroup of order N of Fp2 ,
using the best available variants of NFS, are believed to require more than 2128

computations.
We ran benchmarks on an Intel Core i7-8700 processor clocked at 3.20 GHz.

We measure the throughput of evaluation as a number of 2-isogeny steps per
millisecond, testing for various delay parameters and averaging over them; this
gives a rough idea of the degree of the isogeny needed to achieve the wanted
delay. Since the duration of setup also depends on the degree of the isogeny,
we use the same methodology to measure it. For verification, we simply give
the (average) running time for a single verification, as this is the most pertinent
measure. Currently, our pairing implementation is faster over Fp because these
curves benefit of the distortion map to compute the pairing entirely over Fp. Over
Fp2 , points are twice larger and many additional vertical lines and inversions are
needed to compute the pairing. The results are given in Table 3.

Table 3. Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20 GHz, with Sage-
Math 8.5

Protocol Step ek size Time Throughput

Fp graph Setup 238 kb – 0.75 isog/ms

Evaluation – – 0.75 isog/ms

Verification – 0.3 s –

Fp2 graph Setup 491 kb – 0.35 isog/ms

Evaluation – – 0.23 isog/ms

Verification – 4 s –

We stress that these numbers only show that our VDFs are practical, however
they do not say much on how they compare to other VDF proposals. Indeed,
while setup and verification can be compared on the basis of their speed (in
software), it is mostly meaningless to compare evaluation this way.

The meaningful comparison is on circuit surface and clock frequency for a
single step of the evaluation loop. At this stage, it is impossible for us to give
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such numbers, however we can give some qualitative arguments to compare our
VDFs to the competitors. At the 128 bits security level, the unit step in RSA-
based VDFs is a squaring modulo an RSA modulus of more than 2000 bits. This
unit step is roughly comparable to one multiplication in our field Fp. In the
simplest case, the unit step in our VDFs is the evaluation of a 2-isogeny over
Fp (or Fp2); using the best formulas for Montgomery curves [64], this requires 2
parallel runs of 2 multiplications each. Thus we expect the circuit for one unit
step of our VDF to have roughly double the surface and half the clock frequency.
Similar considerations also apply to VDFs based on class groups.

8 Conclusion and Perspectives

We presented two new candidate Verifiable Delay Functions, based on assump-
tions from pairing-based and isogeny-based cryptography. Our VDFs are practi-
cal, and offer several advantages over previous proposals.

At present, our constructions require a trusted setup to generate initial
parameters. It is an important open problem to find an algorithm to generate
random supersingular curves in a way that does not reveal their endomorphism
ring, and we encourage the community to work on it. As long as such an algo-
rithm is missing, it is interesting to look for efficient multi-party algorithms for
doing isogeny walks.

It would also be interesting to reduce the cost of validating public parame-
ters, ideally to a time independent from the delay parameter T . Relatedly, our
VDFs have large storage requirements for the evaluator; in our implementation
we presented a way to mitigate this issue, however this creates a compromise
between storage and evaluation time, that needs to be carefully considered by
the evaluator, depending on the intended application. More research on practical
ways to mitigate the price of the large storage is desirable.

Here we only sketched the shortcut attack against insecure instances using
special curves. It would be interesting to do a more detailed analysis of its
complexity, of its limitations, and of its possible generalizations; we leave this as
future work. We also encourage research on alternative ways to break the Isogeny
Shortcut Problem, for example finding ways to parallelize isogeny evaluation.

Finally, our VDFs can be seen as a generalization of BLS signatures: if the
isogeny is kept secret, we obtain a proof of knowledge of an isogeny walk between
two curves, that can be used for identification or signatures. At the moment, the
only advantage over BLS signatures is a weak form of quantum resistance; we
hope that further research would add useful properties to our protocol enabling
more applications.
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Abstract. This paper aims to address the open problem, namely, to find
new techniques to design and prove security of supersingular isogeny-
based authenticated key exchange (AKE) protocols against the widest
possible adversarial attacks, raised by Galbraith in 2018. Concretely,
we present two AKEs based on a double-key PKE in the supersingular
isogeny setting secure in the sense of CK+, one of the strongest security
models for AKE. Our contributions are summarised as follows. Firstly,
we propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH
assumption. By applying modified Fujisaki-Okamoto transformation, we
obtain a [OW-CCA, OW-CPA] secure KEM, 2KEMsidh. Secondly, we pro-
pose a two-pass AKE, SIAKE2, based on SI-DDH assumption, using
2KEMsidh as a building block. Thirdly, we present a modified version
of 2KEMsidh that is secure against leakage under the 1-Oracle SI-DH
assumption. Using the modified 2KEMsidh as a building block, we then
propose a three-pass AKE, SIAKE3, based on 1-Oracle SI-DH assump-
tion. Finally, we prove that both SIAKE2 and SIAKE3 are CK+ secure
in the random oracle model and supports arbitrary registration. We also
provide an implementation to illustrate the efficiency of our schemes.
Our schemes compare favourably against existing isogeny-based AKEs.
To the best of our knowledge, they are the first of its kind to offer secu-
rity against arbitrary registration, wPFS, KCI, and MEX simultaneously.
Regarding efficiency, our schemes outperform existing schemes in terms
of bandwidth as well as CPU cycle count.

Keywords: Authenticated key exchange · Key encapsulation
mechanism · Supersingular elliptic curve isogeny · Post quantum

1 Introduction

Authenticated Key Exchange. Allowing two parties to agree on a common
shared key over a public but possibly insecure channel, key exchange (KE) is
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a fundamental cryptographic primitive. Many studies have investigated how to
achieve KE protocols that provide authentication [4,6,12,27] and how to imple-
ment authenticated key exchange (AKE) with high efficiency [2,12,13,21,27–
29] based on classical assumptions. Different of security models have been pro-
posed, including BR model [4], CK model [6] and eCK model [27]. Introduced
in [22] and reformulated by Fujioka et al. [12], currently, CK+ security model is
known as one of the ‘strongest’ and most ‘desirable’ security notions. The CK+

model not only covers the security requirement in CK model, but also captures
some advanced attacks such as the key compromise impersonation (KCI) attack,
the maximal exposure (MEX) attack and the breaking of weak perfect forward
secrecy (wPFS).

Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). Apart
from lattice, code, hash and multivariate cryptography, supersingular elliptic
curve isogeny is one of the most attractive candidates for post-quantum cryp-
tography. The best-known protocol is Jao and De Feo’s supersingular isogeny
Diffie-Hellman key exchange (SIDH) [8] based on the hard problem of comput-
ing isogenies between supersingular elliptic curves. There are several interesting
topics concerning SIDH in the literature. For example, computational efficiency
[7,10,23], key compression [5], adaptive attacks on SIDH [17], relationship of the
underlying complexity problems [9,19,32], signature schemes [16,31,35] and its
standardization [20,24].

Recently, several work [14,15,26] have studied the important problem of
designing AKE schemes from the basic SIDH primitive. As pointed out by Gal-
braith [15], there are several challenges in adapting the security proof of exist-
ing well-designed AKE schemes (most of them are based on discrete logarithm
assumption) to the SIDH case:

– Many AKE schemes based on discrete logarithm assumption, such as MQV
[28] and HMQV [22], require a richer algebraic structure the supersingular
isogeny does not possess.

– The protocols involving long-term/static secret keys are vulnerable to the
adaptive attack [17] aiming at the case where the static public key is used.
More precisely, suppose that in a protocol Alice sets EA as her static public
key, and EY is an ephemeral public value sent by Bob. Galbraith et al. [17]
showed that adversary Bob can send (EY , R′, S′) with maliciously-crafted
points R′ and S′ to gradually learn Alice’s static secret key.

– The gap assumption that holds in the discrete logarithm setting is crucial
for security proof. However, the gap assumption does not hold in the SIDH
setting when polynomial queries are submitted to an unlimited decisional
solver.

The State of the Art of SIDH AKE. Recently, there are many exciting
results on the generic and non-generic constructions of AKE over supersingu-
lar curves [14,15,26]. Galbraith [15] and Longa [26] showed how to adapt the
generic constructions of secure AKE from basic primitives like IND-CCA encryp-
tion/KEMs, MACs, PRFs etc, including the schemes proposed by Boyd, Cliff,
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Nieto and Paterson [2] (abbreviated as BCNP scheme), by Fujioka, Suzuki,
Xagawa and Yoneyama [13] (abbreviated as FSXY scheme) and by Guilhem,
Smart and Warinschi [18] (abbreviated as GSW scheme), to the SIDH setting
by inserting an IND-CCA secure KEM based on SIDH. Particularly, Longa [26]
showed how to use SIDH as basic building blocks to construct AKE schemes.
However, these transformations lead either to more isogeny computations or
increase in rounds of communication. The detailed analyses are examined and
summarized in Table 1 of [15]. Here we make a more concrete comparison among
these AKE schemes in the SIDH setting in Table 1.

With respect to non-generic constructions, Galbraith proposed two SIDH-
AKE protocols [15], one of which is based on the Jeong-Katz-Lee [21] scheme
TS2 (we call it Gal 1) and another is an SIDH variant of NAXOS scheme (we call
it Gal 2). Very recently, Fujioka et al. [14] gave two Diffie-Hellman like isogeny-
based AKEs, which we denote as FTTY 1 where the session key is extracted from
the combination of two Diffie-Hellman values, and FTTY 2 where the session key
is extracted from four Diffie-Hellman values, respectively. Unfortunately, all of
these schemes only provide security against adversaries with limited capabilities,
such as wPFS security (details are given in Sect. 1.3). Several known attacks are
not taken into account, including arbitrary registrant for static public keys, the
KCI attack, or the MEX attack. In an AKE system, the adversary-controlled
parties may register arbitrary public keys and arbitrary registrant allows any
party to register arbitrary public keys (even the same key with some other party)
without any validity checks. In fact, neither Gal 1-2 nor FTTY 1-2 scheme allows
the arbitrary registrant for the static public key. Otherwise, with malicious static
public keys, a target secret key can be learned bit by bit, which implies that Gal
1-2 and FTTY 1-2 are not resistant to the adaptive attack. Moreover, Gal 1 is
not resistant to the KCI attack and Gal 2 is not resistant to the MEX attack.
Detailed analyses on those attacks against Gal 1-2 and FTTY 1-2 are given in
the related works.

Thus, “to find new techniques to design and prove security of AKE protocols
in the SIDH setting, . . . give a full analysis of AKE that includes the widest
possible adversarial goals.”, a quote from Galbraith [15], is the main problem to
be addressed in the area of SIDH-based AKE. In this paper, we are motivated
to address such an open problem.

1.1 Our Contributions

In this paper, we present two AKEs based on a double-key PKE in the SIDH
setting and show that both of them allow arbitrary registrant and are CK+

secure in the random oracle model. Our results are summarized as follows.

– We propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH
assumption. The strong OW-CPA security is exactly the [OW-CPA,·] secu-
rity formalized in [34] which states that the PKE is still OW-CPA secure even
if part of the public key is generated by the adversary. This construction may
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be of independent interest. Through the modified Fujisaki-Okamoto transfor-
mation [34], we obtain a [OW-CCA, OW-CPA] secure KEM, 2KEMsidh, to be
used as the building block of our AKE.

– With 2KEMsidh as the basic tool, we propose a two-pass AKE, SIAKE2, based
on SI-DDH assumption. SIAKE2 is CK+ secure in the random oracle model
and supports arbitrary registration.

– We propose 1-Oracle SI-DH assumption, a strong version of the SI-DDH
assumption. Contrary to its analogue, Oracle Diffie-Hellman problem [1] in
the discrete logarithm setting, the 1-Oracle SI-DH problem only allows one
query to the oracle. We revisit 2PKEsidh and provide a modified version of
2KEMsidh, and show that under the 1-Oracle SI-DH assumption both of them
are still secure against leakage.

– Using the modified 2KEMsidh as the basic tool, we propose a three-pass AKE,
SIAKE3, based on 1-Oracle SI-DH assumption. We prove that it supports
arbitrary registration and is also CK+ secure in the random oracle model.

From Table 1, we can observe that both SIAKE2 and SIAKE3 achieve the
security against multiple possible adversaries, which to the best of our knowledge
covers the most extensive adversarial goals, including arbitrary registrant, wPFS,
KCI and MEX.

Table 1. Comparison of existing AKE protocols on supersingular isogeny. Key Reg.
represents registering the static public key. “Arbi” means arbitrary registrant is allowed
while “Honest” means only honest registrants is allowed. Assump. is the abbreviation
of assumptions. “1-OSIDH” is the abbreviation of 1-Oracle SI-DH assumption. Rd
denotes the number of protocol’s communication round. Init isog and Resp isog
represent the number of isogeny computation that the initiator and responder have to
perform respectively. Mess Size denotes the total message size. “�” indicates that the
scheme can resist this kind of attack while “×” indicates it cannot. n is the security
parameter.

Scheme Key Reg. Assum. Model wPFS KCI MEX Rd Init isog Resp isog Mess Size

Gal 1 [15] Honest SI-CDH CK � × × 2 3 3 108n

Gal 2 [15] Honest SI-CDH BR � � × 2 4 4 108n

FTTY 1 [14] Honest SI-DDH CK � × × 1 3 3 72n

FTTY 2 [14] Honest di-SI-DDH CK+ � � � 1 5 5 72n

GSW [18] Arbi. SI-DDH CK � × × 3 6 6 186n

BCNP [2,26] Arbi. SI-DDH CK � � × 2 6 6 148n

FSXY [13,26] Arbi. SI-DDH CK+ � � � 2 6 6 148n

SIAKE2 Arbi. SI-DDH CK+ � � � 2 6 5 114n

SIAKE3 Arbi. 1-OSIDH CK+ � � � 3 5 5 80n

1.2 Technique Overview

Our core ideas and techniques are illustrated in Fig. 1. Let E0 be the starting
curve, and (P1, Q1), (P2, Q2) be the base points. EA1 , EB2 , EX and EY are four
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intermediate curves which are part of static or ephemeral public keys. EA1Y ,
EXB2 and EXY are three final computing curves.

Let UA, UB be two parties in the AKEs. The SIDH works as follows: UA

chooses a secret, computes the isogeny φX : E0 → EX with kernel GX and pub-
lishes X = (EX , φX(P2), φX(Q2)). UB chooses a secret, computes the isogeny
φY : E0 → EY with kernel GY and publishes Y = (EY , φY (P1), φY (Q1)). They
both can compute EXY

∼= EX/φX(GY ) ∼= EY /φY (GX). The strategy to provide
authentication with the static and ephemeral components is that every user regis-
ters a static public key such that UA’s static public key is pkA1 = (EA1 , φA1(P2),
φA1(Q2)) while UB ’s static public key is pkB2 = (EB2 , φB2(P1), φB2(Q1)).

Fig. 1. Illustration of the core idea of SIAKE2 and SIAKE3. The red dashed lines illus-
trate the core ideas of Gal 1 scheme [15]. In SIAKE2, EX and EX0 are two independent
curves. In SIAKE3, EX = EX0 and the dashed double arrow is included. (Color figure
online)

As shown in Fig. 1, there is a natural way to extract a session key from
four Diffie-Hellman values EA1B2 , EA1Y , EXB2 and EXY (Actually, this is what
FTTY2 scheme does). However, it is risky to take EA1B2 into account. Let us
recall the adaptive attack from Galbraith, Petit, Shani and Ti [17]. A malicious
user UB who registers his static public key EB2 with specified points R′, S′, can
learn one bit of the static secret key of UA if he can also query the session key.
As shown in Fig. 1 with dashed lines, Galbraith [15] involves EA1B2 and EXY

for the session key. Under the adaptive attack [17], adversary could gradually
learn the static secret key by malicious registrations. Thus, EA1B2 could not be
included in the session key when arbitrary registrant is allowed.
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Although now only EA1Y , EXB2 , and EXY are involved in the session key,
the adaptive attack can still be launched if the CK+ adversary (in case E2 in
Table 2) sends EY with specified points R′, S′ to UA. With the ephemeral secret
key for EX and the session key, the adversary could still extract one bit of
the static secret key. The problem can be tackled by a check of “validity” of
Y = (EY , R, S). Our solution is to employ the “re-encryption” technique used
in Fujisaki-Okamoto (FO) transformation [11]. Precisely, C = (Y, y1, y0) is the
ciphertext under public key pkA1 and X, where Y = (E0/〈P2 + [y]Q2〉, φY (P1),
φY (Q1)), y1 = h(j(EA1Y )) ⊕ m1, y0 = h(j(EXY )) ⊕ m0 and y = G(m1,m0)
for a hash function G, and the encapsulated key is KB = H(m1,m0, C). As
a byproduct, we obtain the chosen ciphertext (CCA) secure KEM by the FO
transformation and the “validity” of Y = (EY , R, S) can be checked by UA using
y = G(m1,m0) so that the adaptive attack fails to work.

Now the CCA secure KEM with “re-encryption” avoids the adaptive attack,
but it is still not sufficient for CK+ security. The CK+ adversary has the capa-
bility to adaptively send messages and adaptively query the session state and
session key of non-test sessions. The capability of adaptively sending messages
in the test session means that the adversary is allowed to choose one-part of
the challenge public key X∗ for (Y ∗, y∗

1 , y∗
0), while the capability of querying

the session state and session key of non-test sessions implies that the adver-
sary is also allowed to query the decapsulation oracle which decapsulates the
ciphertext under several other public keys X ′. This feature has been analyzed
by [34] and formalized as [OW-CCA, ·] security. The modified Fujisaki-Okamoto
[34] states that putting the public key in the hashing step when generating the
encapsulated key would be sufficient. Precisely, KB encapsulated in (Y, y1, y0) is
H(X,m1,m2, C).

The last challenge that we are facing is the relationship between X and Y,
which leads to the difficulty in simulating the CK+ game. In the test session,
on the one hand X is part of the public key (pkA1 ,X) under which the cipher-
text (Y, y1, y0) is computed. On the other hand X is part of the ciphertext
(X,x1, x0) in which KA is encapsulated under public key (pkB2 , Y ). Precisely,
in the test session X = ((EX , R2, S2), x1, x0) is sent by AKE adversary A, and
the simulator S obtains challenge ciphertext (Y ∗, y∗

1 , y∗
0) from the [OW-CCA, ·]

challenger (which means the secret y in Y ∗ is unknown). But to simulate the
CK+ game, especially to maintain the consistency of hash lists, S should learn
h(j(EX/〈R2 + [y]S2〉)) to extract KA encapsulated in (X,x1, x0).

We propose two solutions for this problem. One method is to add an extra
X0 such that X0 is part of the public key (pkA1 ,X0) under which the ciphertext
(Y, y1, y0) is computed, while X is part of the ciphertext (X,x1) under public key
EB2 (we omit Y ). The other solution is to strengthen the underlying assumption
as 1-Oracle SI-DH assumption such that h(j(EX/〈R2 +[y]S2〉)) could be leaked.

In consequence, the two solutions lead to two AKEs, namely, SIAKE2 and
SIAKE3.

– Solution 1: We add an extra X0 to take the position of X as part of the
public key (pkA1 ,X0) under which the ciphertext (Y, y1, y0) is computed,
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remove x2 and set (X,x1) as the ciphertext under public key EB2 rather than
(EB2 , Y ). Then the value of h(j(EX/〈R2 + [y]S2〉)) is not needed during the
security proof. The drawback of this solution is that K ′

A can not be included
in the session state of UB . Solution 1 leads to SIAKE2.

– Solution 2: We strengthen the underlying SI-DDH assumption to the 1-
Oracle SI-DH assumption to allow the leakage of h(j(EX/〈R2 +[y]S2〉)). The
1-Oracle SI-DH assumption can be considered as a hashed SI-DDH assump-
tion where a one-time hashed SI-CDH oracle is allowed. Note that considering
〈R2 + [y]S2〉 = 〈[u]R2 + [y][u]S2〉 for any integer 1 ≤ u ≤ �e2

2 and coprime to
�2, we employ a simple trick of tailoring the hash function as h(Y, j(EXY ))
in x2 and h(X, j(EXY )) in y2. This solution results in SIAKE3.

1.3 Related Works and Their Analysis

Galbraith [15] proposed two SIDH variants of AKE, namely, Gal 1 from Jeong-
Katz-Lee protocol [21] and Gal 2 from NAXOS protocol [27]. Considering the
adaptive attack on static secret keys, Gal 1 protocol only allows honest regis-
trants of static public keys and it is also vulnerable to the KCI attack. So far,
neither has there been any concrete MEX attack on Gal 1, nor any formal proofs
to show Gal 1 is resistant to the MEX attack. Gal 2 protocol is provably secure
in BR model, which only allows honest registrants of static public keys (if the
adversary gets the ephemeral secret key, like x, the adaptive attack still works),
and can not resist the MEX attack.

Very recently, Fujioka et al. [14] gave two Diffie-Hellman like isogeny-based
AKEs, namely, FTTY 1 and FTTY 2. FTTY 1 protocol, which is quite similar
to Gal 1 scheme, is CK secure in the quantum random oracle model, but it only
allows honest registrants and cannot resist the KCI attack. FTTY 2 is secure in
CK+ model, but it also only allows honest registrants.

Below we illustrate in detail the (in)capability of Gal 1-2 and FTTY 1-2 on
resisting the adaptive attacks (if the arbitrary registrant is allowed), the KCI
attack, and the MEX attack.

Adaptive Attacks If Arbitrary Registrant Is Allowed. Suppose that in a
protocol Alice sets EA1 , φA1(P2), φA1(Q2) as her static public key. The goal of
a malicious adversary is to compute Alice’s static secret key. As illustrated in
Fig. 1, the session key of Gal 1 is extracted from EXY and EA1B2 . By applying
the adaptive attacks [17], a malicious adversary can register (EB2 , R

′, S′) with
specified points R′ and S′, rather than φB2(P1) and φB2(Q1), as the static public
key for Bob. By checking whether the session key computed by Alice (which can
be obtained from SessionKeyReveal query) is equal to that computed by Bob,
one bit of Alice’s static secret key is determined. The adversary gradually learns
Alice’s static secret key by registering several valid static public keys according
to adaptive attacks. Such an attack can be applied to FTTY 1 directly and it
also works for FTTY 2 if the adversary also has the ephemeral secret key x of
Alice (which can be obtained by querying SessionStateReveal), which means that
FTTY 2 also does not allow arbitrary registrant. Gal 2 does not allow arbitrary
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registrant either, since if the adversary has the ephemeral secret key x of Alice
(which can be obtained from SessionStateReveal query), by honestly registering
static public key for Bob, then sending (EY , R′, S′) with specified points R′ and
S′, and checking whether the session key computed by Alice is equal to that
computed by Bob, the adversary is able to learn one bit of Alice’s static secret
key.

KCI Attacks. KCI attacks state that if a static secret key is revealed, an
adversary can try to impersonate any other honest parties in order to fool the
owners of the exposed secret keys. Neither Gal 1 nor FTTY 1 are resistant to
the KCI attack since each session key is extracted from EXY and EA1B2 , and by
generating EY , φY (P1), φY (Q1) and sending it to Alice on behalf of Bob, with
Alice’s static secret key the adversary could compute the session key even if
Bob’s static secret key is unknown.

MEX Attacks. In MEX, an adversary aims to distinguish the session key from
a random value under the disclosure of the ephemeral secret key of (at least)
one party of the test session. Gal 2 is not resistant to the MEX attack since
its session key is extracted from EXY , EXB2 , and EA1Y , thus it is easy for an
adversary to compute those curves with the ephemeral secret key corresponding
to EX and EY .

2 Preliminaries

2.1 SIDH and Crypto-Friendly Description

We recall briefly the SIDH protocol using the same notation as [8,20]. Let p
be a large prime of the form p = �e1

1 �e2
2 · f ± 1, where �1 and �2 are two small

primes, and f is an integer cofactor. Then we can construct a supersingular
elliptic curve E0 defined over Fp2 with order |E0(Fp2)| = (�e1

1 �e2
2 · f)2. Let Zm be

the ring of residue classes modulo m. The subgroup E0[m] of m-torsion points is
isomorphic to Zm×Zm for m ∈ {�e1

1 , �e2
2 }. Let P1, Q1 be two points that generate

E0[�e1
1 ] and P2, Q2 be two points that generate E0[�e2

2 ]. The public parameters
are (E0;P1, Q1;P2, Q2; �1, �2, e1, e2).

The SIDH, as depicted in Fig. 2, works as follows. Alice chooses her secret
key ka from Z�

e1
1

and computes the isogeny φA : E0 → EA whose kernel is the
subgroup 〈RA〉 = 〈P1 + [ka]Q1〉. She then sends to Bob her public key which

E0 EA = E0/〈RA〉

EB = E0/〈RB〉 EAB = E0/〈RA, RB〉

φA

φB φAB

φBA

Fig. 2. SIDH
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is EA together with the two points φA(P2), φA(Q2). Similarly, Bob chooses his
secret key kb from Z�

e2
2

and computes the isogeny φB : E0 → EB with kernel
subgroup 〈RB〉 = 〈P2 + [kb]Q2〉. He sends to Alice his public key which is EB

together with the two points φB(P1), φB(Q1). To get the shared secret, Alice
computes the isogeny φBA : EB → EBA with kernel subgroup generated by
φB(P1) + [ka]φB(Q1). Similarly, Bob computes the isogeny φAB : EA → EAB

with kernel subgroup generated by φA(P2) + [kb]φA(Q2). Since the composed
isogeny φAB ◦φA has the same kernel 〈RA, RB〉 as φBA ◦φB , Alice and Bob can
share the same j-invariant j(EAB) = j(EBA).

It will be helpful to have a crypto-friendly description of SIDH for the
presentation of our AKEs. We follow the treatment of Fujioka et al. [14]. In
what follows we assume {t, s} = {1, 2}, and denote the public parameters by
g = (E0;P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We define the sets of supersingu-
lar curves and those with an auxiliary basis as

SSECp = {supersingular elliptic curvesE overFp2 with E(Fp2) 
 (Z�
e1
1 �

e2
2 f )2};

SSECA = {(E;P ′
t , Q

′
t)|E ∈ SSECp, (P ′

t , Q
′
t) is basis of E[�et

t ]};
SSECB = {(E;P ′

s, Q
′
s)|E ∈ SSECp, (P ′

s, Q
′
s) is basis of E[�es

s ]}.

Let a = ka and b = kb, then we define,

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA,

where RA = Ps + [ka]Qs, φA : E0 → EA = E0/〈RA〉;
gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB ,

where RB = Pt + [kb]Qt, φB : E0 → EB = E0/〈RB〉;
(gb)a = j(EBA),where RBA = φB(Ps) + [ka]φB(Qs),

φBA : EB → EBA = EB/〈RBA〉;
(ga)b = j(EAB), where RAB = φA(Pt) + [kb]φA(Qt),

φAB : EA → EAB = EA/〈RAB〉.
Using this notation, the SIDH looks almost exactly like the classical Diffie-
Hellman. That is, the public parameters are g and e. Alice chooses a secret
key a and sends ga to Bob, while Bob chooses a secret key b and sends gb to
Alice. The shared key is, as we expect, j = (gb)a = (ga)b.

2.2 Standard SIDH Assumptions

We describe two standard assumptions about supersingular isogeny based on the
crypto-friendly notation. Let s �= t and s, t ∈ {1, 2}.

Definition 1 (SI-CDH Assumption [8,14]). The SI-CDH problem is that,
given public parameters g and e, and ga, gb where a ← Z�ess , b ← Z�

et
t
, compute

the j-invariant (ga)b = (gb)a. For any PPT algorithm A, we define the advantage
of solving SI-CDH problem as

Advsicdh
A = Pr[j′ = (ga)b|j′ ← A(g, e, ga, gb)].
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The SI-CDH assumption states: for any PPT algorithm A, the advantage of
solving SI-CDH problem is negligible.

Definition 2 (SI-DDH Assumption [8,14]). Let g and e be that defined in
SI-CDH assumption. Let D0 and D1 be two distributions defined as:

D1 :={e, g, ga, gb, (ga)b|a ← Z�ess , b ← Z�
et
t

}
D0 :={e, g, ga, gb, (gs)t|a, s ← Z�ess , b, t ← Z�

et
t

}

The SI-DDH problem is that given a random sample from Db depending on
b ← {0, 1}, guess b. The advantage of solving SI-DDH problem for any PPT
algorithm A is

Advsiddh
A = Pr[b′ = b|b′ ← A(db ← Db), b ← {0, 1}] − 1/2.

The SI-DDH assumption states: for any PPT algorithm A, the advantage of
solving SI-DDH problem is negligible.

2.3 CK+ Security Model

We recall the CK+ model introduced by [22] and later refined by [12], which
is a CK model [6] integrated with the weak PFS, resistance to KCI and MEX
properties. We focus on 3-pass and 2-pass protocols in this paper. For simplicity,
we only show the model specified to 2-pass protocols. As for 3-pass protocol, we
can extend it by adding an extra message in the matching session identifier and
Send definitions.

In an AKE protocol, Ui denotes a party indexed by i, who is modeled as
a probabilistic polynomial time (PPT) interactive Turing machine. We assume
that each party Ui owns a static pair of secret-public key (ski, pki), where the
static public key is related to Ui’s identity by a certification authority (CA).
No other actions by the CA are required or assumed. In particular, we make no
assumption on whether the CA requires a proof-of possession of the private key
from a registrant of a public key, and we do not assume any specific checks on
the value of a public key.

Session. Each party can be activated to run an instance called a session.
A party can be activated to initiate the session by an incoming message
of the form (Π, I, UA, UB) or respond to an incoming message of the form
(Π,R, UB , UA,XA), where Π is a protocol identifier, I and R are role identifiers
corresponding to initiator and responder. Activated with (Π, I, UA, UB), UA is
called the session initiator. Activated with (Π,R, UB , UA,XA), UB is called the
session responder.

According to the specification of AKE, the party creates randomness which
is generally called ephemeral secret key, computes and maintains a session state,
generates outgoing messages, and completes the session by outputting a session
key and erasing the session state. Note that Canetti-Krawczyk [6] defines session
state as session-specific secret information, but leaves it up to a protocol to
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specify which information is included in a session state. LaMacchia et al. [27]
explicitly set all random coins used by a party in a session as session-specific
secret information and call it ephemeral secret key. Here we require that the
session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initia-
tor UA creates a session state and outputs XA, then may receive an incoming
message of the forms (Π, I, UA, UB ,XA,XB) from the responder UB, and may
compute the session key SK. On the contrary, the responder UB outputs XB ,
and may compute the session key SK. We say that a session is completed if its
owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If
UA is the initiator, the session identifier is sid = (Π, I, UA, UB ,XA) or sid =
(Π, I, UA, UB ,XA,XB), which denotes UA as an owner and UB as a peer. If
UB is the responder, the session is identified by sid = (Π,R, UB , UA,XA,XB),
which denotes UB as an owner and UA as a peer. The matching session of
(Π, I, UA, UB ,XA,XB) is (Π,R, UB , UA,XA,XB) and vice versa.

Adversary. Adversary A is modeled as follows to capture real attacks in open
networks, including the control of communication and the access to some of the
secret information.

– Send(message): A sends messages in one of the forms: (Π, I, UA, UB), (Π,R,
UB , UA,XA), or (Π, I, UA, UB ,XA,XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session
key SK for sid.

– SessionStateReveal(sid): A obtains the session state of the owner of sid if the
session is not completed. The session state includes all ephemeral secret keys
and intermediate computation results except for immediately erased informa-
tion, but does not include the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the
static secret, session states and session keys stored at UA). In addition, from
the moment that UA is corrupted, all its actions may be controlled by A.

Freshness. Let sid∗ = (Π, I, UA, UB ,XA,XB) or (Π, I, UA, UB ,XA,XB) be a
completed session between honest users UA and UB. If the matching session
of sid∗ exists, denote it by sid

∗
. We say session sid∗ is fresh if A does not

query: (1) SessionStateReveal(sid∗), SessionKeyReveal(sid∗), and SessionStateRe-

veal(sid
∗
), SessionKeyReveal(sid

∗
) if sid

∗
exists; (2) SessionStateReveal(sid∗) and

SessionKeyReveal(sid∗) if sid
∗

does not exist.

Security Experiment. The adversary A could make a sequence of the queries
described above. During the experiment, A makes the query of Test(sid∗), where
sid∗ must be a fresh session. Test(sid∗) select random bit b ∈ {0, 1}, and return
the session key held by sid∗ if b = 0; and return a random key if b = 1. The
experiment continues until A returns b′ as a guess of b. The adversary A wins
the game if the test session sid∗ is still fresh and b′ = b. The advantage of the
adversary A is defined as Advck+

Π (A) = Pr [A wins] − 1
2 .
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Definition 3. We say that a AKE protocol Π is secure in the CK+ model if the
following conditions hold:
Correctness: If two honest parties complete matching sessions, then they both
compute the same session key except with negligible probability.
Soundness: For any PPT adversary A, AdvCK+

Π (A) is negligible for the test
session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid
∗
does not exist.

2. the ephemeral secret key of the owner of sid∗ is given to A, if sid
∗
does not

exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid

∗

are given to A, if sid
∗
exists.

4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid
∗
are given

to A, if sid
∗
exists.

5. the static secret key of the owner of sid∗ and the static secret key of the peer
of sid∗ are given to A, if sid

∗
exists.

6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗

are given to A, if sid
∗
exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of
exposure of static and ephemeral secret keys listed in Definition 3, and these ten
cases cover wPFS, resistance to KCI, and MEX attacks.

Table 2. The behavior of AKE adversary in CK+ model. sid
∗

is the matching session
of sid∗, if it exists. “Yes” means that there exists sid

∗
and “No” means not. skA (resp.

skB) means the static secret key of A (resp. B). ekA (resp. ekB) is the ephemeral
secret key of A (resp. B) in sid∗ or sid

∗
if there exists. “

√
” means the secret key may

be revealed to adversary, “×” means the secret key is not revealed. “-” means the secret
key does not exist.

Event Case sid∗ sid
∗

skA ekA ekB skB Security

E1 1 A No
√ × - × KCI

E2 2 A No × √
- × MEX

E3 2 B No × -
√ × MEX

E4 1 B No × - × √
KCI

E5 5 A or B Yes
√ × × √

wPFS

E6 4 A or B Yes × √ √ × MEX

E7-1 3 A Yes
√ × √ × KCI

E7-2 3 B Yes × √ × √
KCI

E8-1 6 A Yes × √ × √
KCI

E8-2 6 B Yes
√ × √ × KCI
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2.4 2-Key PKE and KEM

In this section, we provide the definitions of 2-key PKE and 2-key KEM, as well
as the modified Fujisaki-Okamoto transformation proposed by Xue et al. [34].

A 2-key PKE with a plaintext space M and a ciphertext space C consists of
a quadruple of PPT algorithms 2PKE=(KeyG1, KeyG0, Enc, Dec) described as
follows:

– KeyG1(n, pp): on input a security parameter n and public parameter pp, out-
put a pair of public and secret keys (pk1, sk1).

– KeyG0(n, pp): on input a security parameter n and public parameter pp, out-
put a pair of public and secret keys (pk0, sk0).

– Enc(pk1, pk0,m; r): on input public keys pk1, pk0 and a plaintext m ∈ M,
output a ciphertext C ∈ C.

– Dec(sk1, sk0, C): on input secret keys sk1, sk0 and a cipheretext C ∈ C, output
a plaintext m.

Correctness. For (pk1, sk1) ← KeyG1(n, pp), (pk0, sk0) ← KeyG0(n, pp) and
C ← Enc(pk1, pk0,m; r), then we have Dec(sk1, sk0, C) = m.

Game [OW-CPA, ·] on pk1 Game [·,OW-CPA] on pk0
01 (pk1, sk1) ← KeyG1(n, pp); 07 (pk0, sk0) ← KeyG0(n, pp);
02 (state, pk∗

0) ← A1(pk1); 08 (state, pk∗
1) ← B1(pk0);

03 m ← M; 09 m ← M;
04 c∗ ← Enc(pk1, pk∗

0 ,m); 10 c∗ ← Enc(pk∗
1 , pk0,m);

05 m′ ← A2(state, c∗); 11 m′ ← B2(state, c∗);
06 return m′ ?= m 12 return m′ ?= m

Fig. 3. The [OW-CPA, ·] (resp. [·, OW-CPA]) game of 2PKE for adversaries A (resp. B).

The security games of 2PKE are formalized in Fig. 3. We define the advantage
of A winning in the game [OW-CPA, ·] as Adv[OW-CPA,·]

2PKE (A) = Pr[[OW-CPA, ·]A ⇒
1], and the advantage of B in the game [·, OW-CPA] as Adv[·,OW-CPA]

2PKE (B) =
Pr[[·,OW-CPA]B ⇒ 1], respectively.

The 2-key key encapsulation (2-key KEM) 2KEM is defined similarly.

– KeyGen1(n, pp): on input a security parameter n and public parameter pp,
output a pair of public-secret keys (pk1, sk1). In order to show the randomness
that is used, we denote key generation algorithm as KeyGen1(n, r).

– KeyGen0(n, pp): on input a security parameter n and public parameter pp,
output a pair of public and secret keys (pk0, sk0).

– Encaps(pk1, pk0): on input public keys pk1, pk0, output a ciphertext c and
encapsulated key k in key space K. Sometimes, we explicitly add the ran-
domness r and denote it as Encaps(pk1, pk0; r).

– Decaps(sk1, sk0, c): on input secret keys sk1, sk0 and a ciphertext c, output a
key k.
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Correctness. For (pk1, sk1) ← KeyGen1(n, pp), (pk0, sk0) ← KeyGen0(n, pp)
and (c, k) ← Encaps(pk1, pk0), it holds that Decaps(sk1, sk0, c) = k.

Game [OW-CCA, ·] on pk1 Game [·, OW-CPA] on pk0
01 (pk1, sk1) ← KeyGen1(n, pp); 07 (pk0, sk0) ← KeyGen0(n, pp);
02 L0 = {(−,−,−)}; 08(state, pk∗

1) ← B1(pk0);
03 (state, pk∗

0) ← AOcca,Oleak0
1 (pk1); 09 (c∗, k∗) ← Encaps(pk∗

1 , pk0);
04 (c∗, k∗) ← Encaps(pk1, pk∗

0); 10 k′ ← B2(state, c∗);
05 k′ ← AOcca,Oleak0

2 (state, c∗); 11 return k′ ?= k∗

06 return k′ ?= k∗

Fig. 4. The [OW-CCA, ·] (resp. [·, OW-CPA]) game of 2KEM for adversaries A (resp.
B). The oracles Oleak0 and Occa are defined in the following.

The security games of 2KEM are formalized in Fig. 4. On the i-th query
of Oleak0 , the challenger generates (pki

0, sk
i
0) ← KeyGen0(ri

0), sets L0 = L0 ∪
{(pki

0, sk
i
0)} and returns (pki

0, sk
i
0) to adversary A. Occa(pk′

0, c
′) works as follows:

If pk′
0 ∈ [L0]1 and (c′, pk′

0) �= (c∗, pk∗
0), compute and return the corresponding

k′ ← Decaps(sk1, sk
′
0, c

′), otherwise return ⊥.
We define the advantage of A winning in the game [OW-CCA,·] as

Adv[OW−CCA,·]
2KEM (A) = Pr[[OW-CCA, ·]A ⇒ 1],

and the advantage of B winning in the game [·, OW-CPA] as:

Adv[·,OW-CPA]
2KEM (B) = Pr[[·,OW-CPA]B ⇒ 1].

According to [34], the modified Fujisaki-Okamoto transformation in Fig. 5
builds a [OW-CCA, OW-CPA] secure 2-Key KEM from any [OW-CPA, OW-CPA]
secure 2-key PKE. Note that in [34] they consider the decryption failure, but we
do not take the decryption failure into account here since the encryption scheme
based on SI-DDH is perfectly correct.

Lemma 1 (Theorem 7 [34]). For any [OW-CCA, ·] adversary C, or [·, OW-
CPA] adversary D against 2KEM with at most qH queries to random oracle H,
there are [OW-CPA, ·] adversary A, or [·, OW-CPA ] adversary B against 2PKE,
that make at most qH (resp. qG) queries to random oracle H (resp. G) s.t.

Adv[OW-CCA,·]
2KEM (C) ≤ qH

2n
+ qH · Adv[OW-CPA,·]

2PKE (A),

Adv[·,OW-CPA]
2KEM (D) ≤ Adv[·,OW-CPA]

2PKE (B).
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KeyGen1(n) KeyGen0(n)
(pk′

1, sk
′
1) ← KeyG1 (pk′

0, sk
′
0) ← KeyG0

s1 ← {0, 1}n sk0 = sk′
0

sk1 = (sk′
1, s1) pk0 = pk′

0

pk1 = pk′
1 return (K, c)

Encaps(pk1, pk0); Decaps(sk1, sk0, c)
m ← M m′ = Dec(sk′

1, sk
′
0, c)

c ← Enc(pk1, pk0,m;G(m)) c′ = Enc(pk1, pk0,m′;G(m′))
K = H(pk0,m, c) if c �= c′, let m′ = s1
return (K, c) return K = H(pk0,m′, c)

Fig. 5. The modified Fujisaki-Okamoto from [OW-CPA, OW-CPA] secure 2-key PKE
to [OW-CCA, OW-CPA] secure 2-key KEM 2KEM.

3 [OW-CCA, OW-CPA] Secure KEM from SIDH

We now propose a [OW-CCA, OW-CPA] secure 2-key KEM from supersingu-
lar isogeny. It is the core building block for our AKEs. At first, we propose a
[OW-CPA, OW-CPA] 2-key PKE from supersingular isogeny, and then apply the
modified Fujisaki-Okamoto transformation to obtain a 2-key KEM.

Choose p = �e1
1 �e2

2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above. Let h : {0, 1}∗ →
{0, 1}n be a random hash function from pair-wise independent hash function
families H. Let g = (E0;P1, Q1, P2, Q2) and e = (�1, �2, e1, e2) be public param-
eters. Let {s, t} = {1, 2}. The [OW-CPA, OW-CPA] 2-key PKE 2PKEsidh is built
as follows.

– KeyG1(n,pp): on input security parameter and public parameter, randomly
choose a secret a1 ← Z�ess and compute ga1 . Then output

sk1 := a1, pk1 := ga1 .

– KeyG0(n,pp): on input security parameter and public parameter, randomly
choose a secret a0 ← Z�ess and compute ga0 . Then output

sk0 := a0, pk0 := ga0 .

– Enc(pk1, pk0,m): on input public keys and a message m = m1||m0 ∈ {0, 1}2n,
randomly choose b ← Z�

et
t

and compute gb, h((ga1)b)⊕m1 and h((ga0)b)⊕m0.
The ciphertext is

c :=
(
gb, h

(
(ga1)b

) ⊕ m1, h
(
(ga0)b

) ⊕ m0

)
.

– Dec(sk1, sk0, c): on input secret keys sk1 = a1, sk0 = a0 and ciphertext
c = (c1, c2, c3), compute m1 := c2 ⊕ h (ca1

1 ) and m0 := c3 ⊕ h (ca0
1 ). The

plaintext is m = m1||m0.

The correctness of 2PKEsidh is straightforward due to the correctness of SIDH.



Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 293

Lemma 2. Under the SI-DDH assumption, 2PKEsidh is [OW-CPA, OW-CPA]
secure. Precisely, for any PPT [OW-CPA, ·] (resp. [·, OW-CPA]) adversary A
(resp. C), there exists algorithm B (resp. D) such that

Adv[OW-CPA,·]
2PKEsidh

(A) ≤ 2Advsiddh
B + 1/2n + negl,

(resp. Adv[·,OW-CPA]
2PKEsidh

(C) ≤ 2Advsiddh
D + 1/2n + negl).

Proof. We reduce the [OW-CPA, ·] security to the underlying SI-DDH assump-
tion. It is analogous for the [·, OW-CPA] security. We prove the [OW-CPA, ·]
security via a sequence of games.
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote
the event that the adversary wins the games as Succ0.
Game 1: In this game we modify [OW-CPA, ·] challenge game by requiring that
the adversary wins the game if m′

1 = m1. We denote this event as Succ1 (In Game
i (i ≥ 1), we denote this event as Succi). Note that in Game 0, the adversary
wins only if both m′

1 = m1 and m′
0 = m0. Thus, we have Pr[Succ0] ≤ Pr[Succ1].

Game 2: In this game, we modify the computation of challenge ciphertext.
Specifically, (gb)a1 is replaced by a random j-invariant j∗. We construct an
algorithm B to solve the SI-DDH problem given an instance (g, g1, g2, j), if there
exists an algorithm A to distinguish Game 1 and Game 2.

B(e, g, g1, g2, j)

01 pk1 ← g1
02 pk∗

0 , state ← A(pk1)
03 m1 ← {0, 1}n

04 c∗1 = g2, c
∗
2 = h(j) ⊕ m1, c

∗
3 ← {0, 1}n

05 c∗ = (c∗1, c
∗
2, c

∗
3)

06 m′
1||m′

0 ← A(state, c∗)
07 If m′

1 = m1, b
′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, j) is an SI-DDH tuple, B perfectly simulates Game 1, else B
perfectly simulates Game 2. In the SI-DDH challenge, we have

Advsiddh
B = Pr[b = b′] − 1/2

= 1/2(Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0])
= 1/2(Pr[b′ = 1|Game 1] − Pr[b′ = 1|Game 2])
= 1/2(Pr[Succ1] − Pr[Succ2]).

Game 3: In this game, we modify the computation of the challenge ciphertext.
Specifically, h(j∗) is replaced by a random string h∗. Now c∗

2 is a completely
random string. Thus, the advantage to compute m1 is Pr[Succ3] = 1/2n. Note
that, since h is a pairwise independent hash function, by the leftover hash lemma,
|Pr[Succ2] − Pr[Succ3]| is negligible.

To sum them up, we have that Pr[Succ0] ≤ 2Advsiddh
B + 1/2n + negl. ��
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Remark 1: By setting pk0 and sk0 to be empty and the ciphertext to be c1, c2,
the scheme is exactly the ElGamal scheme and is OW-CPA secure under the
SI-DDH assumption.

Applying the modified Fujisaki-Okamoto in Fig. 5, we get a [OW-CCA, OW-
CPA] secure 2-key KEM 2KEMsidh in Fig. 6. Let G : {0, 1}2n → {0, 1}∗ and
H : {0, 1}∗ → {0, 1}2n be hash functions. Note that there is a subtle difference
between the Fig. 6 and the modified Fujisaki-Okamoto in Fig. 5 that the “re-
encryption” only needs to check the correctness of c1.

KeyGen1 KeyGen0
a1 ← Z�

es
s
, s1 ← {0, 1}2n a0 ← Z�

es
s

pk1 := ga1 , sk1 := (a1, s1) pk0 := ga0 , sk0 := a0

Encaps(pk1, pk0) Decaps(sk1, sk0)
m1,m0 ← {0, 1}n, b := G(m1,m0) m′

1 := c2 ⊕ h(ca11 )
c1 = gb, c2 = h((ga1)b) ⊕ m1 m′

0 := c3 ⊕ h(ca01 )
c3 = h((ga0)b) ⊕ m0 b := G(m′

1,m
′
0)

c := (c1, c2, c3) If c1 �= gb, m1||m0 = s1
K := H(pk0,m1||m0, c) K := H(pk0,m1||m0, c)

Fig. 6. The [OW-CCA, OW-CPA] secure 2KEMsidh.

Theorem 1. Under the SI-DDH assumption, 2KEMsidh is [OW-CCA, OW-CPA]
secure in the random oracle model. Precisely, for any PPT [OW-CCA, ·] (resp.
[·, OW-CPA]) adversary A (resp. C) with at most qH queries to H oracle, there
exists algorithm B (resp. D) solving SI-DDH problem such that

Adv[OW-CCA,·]
2KEMsidh

(A) ≤ qH

22n
+ qH ·

(
2Advsiddh

B + 1/2n + negl
)

,

(resp. Adv[·,OW-CPA]
2KEMsidh

(C) ≤ 2Advsiddh
D + 1/2n + negl).

Proof. According to Lemma 1, the [OW-CCA, OW-CPA] security of 2KEMsidh

is guaranteed by the [OW-CPA, OW-CPA] security of 2PKEsidh. By applying
Lemma 2, the [OW-CCA, OW-CPA] security is finally reduced to the underlying
SI-DDH assumption. ��
Remark 2: By setting pk0 and sk0 to be empty, the message space to be {0, 1}n,
the input of G to be (m1,−) and the ciphertext to be c1, c2, the scheme is exactly
the FO transformed ElGamal scheme and is OW-CCA secure under the SI-DDH
assumption.

4 Two-Pass SIAKE

In this section, we propose a two-pass AKE based on SI-DDH assumption. The
two-pass AKE SIAKE2 is shown in Fig. 7.
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UA UB

skA1 := (a1 ∈ Z�
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z�

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z�
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z�

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z�
e1
1
, n1 ← g(rA, a1)

x ← G(n1), x0 ← Z�
e1
1
. rB ← Z�

e2
2
, m1||m0 ← g(rB , b2)

X0 := gx0 y ← G(m1,m0)

X := gx, x1 := h((gb2)x) ⊕ n1 X,x1, X0 Y := gy, y1 := h((ga1)y) ⊕ m1

KA := H(n1, X, x1) y0 := h((gx0)y) ⊕ m0

m′
1 := y1 ⊕ h((gy)a1) Y, y1, y0 KB := H(X0,m1,m0, Y, y1, y0)

m′
0 := y0 ⊕ h((gy)x0)

y′ ← G(m′
1,m

′
0) n′

1 := x1 ⊕ h((gx)b2 , x′ ← G(n′
1)

If Y �= gy
′
, m′

1||m′
0 := sA1 If X �= gx

′
, n′

1 := sB2

K′
B := H(X0,m

′
1,m

′
2, Y, y1, y0) K′

A := H(n′
1, X, x1)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′

A,KB)

Fig. 7. A Compact 2-pass AKE SIAKE2 Based on SI-DDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, X0, Y, y1, y0
)
.

Public Parameters: Let e = (�1, �2, e1, e2) and g = (E0;P1, Q1, P2, Q2). Let
g : {0, 1}∗ → {0, 1}2n, h : {0, 1}n → {0, 1}n, G : {0, 1}2n → {0, 1}∗, H :
{0, 1}∗ → {0, 1}2n, Ĥ : {0, 1}∗ → {0, 1}n be hash functions.

Register: Any user registers two sets of public-secret keys. One set of keys is
assigned by the user as initiator, and another set is assigned as responder. For
user UA, it first chooses skA1 := (a1 ∈ Z�

e1
1

, sA1 ← {0, 1}2n) and computes
pkA1 := ga1 , then chooses skA2 := (a2 ∈ Z�

e2
2

, sA2 ← {0, 1}2n) and computes
pkA2 := ga2 .

Phase 1: User UA randomly chooses rA, x0 ← Z�
e1
1

as two ephemeral random-
ness. Let n1 ← g(rA, a1), x := G(g(rA, a1)). Then UA computes X0 := gx0 ,
X := gx, x1 := h((gb2)x) ⊕ n1, and sends X0,X, x1 to UB . UA computes
KA := H(n1,X, x1).

Phase 2: User UB randomly chooses rB ← Z�
e2
2

as the ephemeral randomness
and computes m1||m0 ← g(rB , sb), y ← G(m1,m0), and Y := gy. On receiving
(X0,X, x1) from UA, UB computes y1 := h((ga1)y) ⊕ m1, y0 := h((gx0)y) ⊕ m0,
KB := H(X,m1,m0, Y, y1, y0), and sends (Y, y1, y0) to UA. UB decrypts X,x1

to extract n′
1 and x′ ← G(n′

1). If X �= gx, set n′
1 := sB2. Let K ′

A := H(n′
1,X, x1).

The session key is SK := Ĥ(sid,K ′
A,KB) where sid is

(
UA, UB , pkA1 , pkB2 ,X,

x1, X0, Y, y1, y0

)
.
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Phase 3: On receiving (Y, y1, y0) from UB, UA computes m′
1 := y1 ⊕ h((gy)a1),

m′
0 := y0 ⊕ h((gy)x0) to extract y′ ← G(m′

1,m
′
0). If Y �= gy, set m′

1||m′
0 := sA1.

Let K ′
B := H(X0,m

′
1,m

′
0, Y, y1, y0). The session key is SK := Ĥ(sid,KA,K ′

B)
where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1,X0, Y, y1, y0

)
.

The session state owned by UA consists of the ephemeral secret key rA, x0,
the decapsulated key K ′

B and the encapsulated key KA. The session state owned
by UB consists of the ephemeral secrete key rB and the encapsulated key KB ,
but not the decapsulated key K ′

A.

Theorem 2. Under the SI-DDH assumption, SIAKE2 is CK+ secure in the ran-
dom oracle model. Precisely, if the number of users is N and there are at most l
sessions between any two users, for any PPT adversary A against SIAKE2 with
q times of hash oracle queries, there exists B s.t.

AdvCK+

SIAKE2
(A) ≤ 1/2 + N2 · l · q ·

(
4AdvsiddhB +

q + 1
2n

+ negl

)
.

Proof sketch: Obviously, UA sends X0 and a OW-CCA secure ciphertext X,x1

under public key pkB2 to UB . UB responds with a [OW-CCA, OW-CPA] secure
ciphertext Y, y1, y0 under public keys pkA1 and X0 to UA. We first assume that
the AKE adversary only has the capability to Send message and does not query
SessionKeyReveal and SessionStateReveal on non-test sessions. Then under the
assumption of [OW-CPA, OW-CPA] security, SIAKE2 is secure. Take the event E3

(one of the behaviors presented in Appendix A Table 6) as an example, where
the adversary may send X0 in the test session and he/she knows b2 but not
a1 or rB . Since the adversary does not know a1 and y, the [OW-CPA, OW-
CPA] security guarantees that KB encapsulated in (Y, y1, y0) is secure (thus SK
is random assuming Ĥ is a random oracle) even the adversary chooses part
of the public key X0. Note that to simulate the CK+ game and reduce the
advantage of the AKE adversary to the advantage of solving underlying [OW-
CPA, ·] game, the simulator does not hold the static secret key a1 of UA. It is safe
if the adversary does not make SessionKeyReveal and SessionStateReveal queries.
However if the adversary makes SessionKeyReveal queries that involves UA, the
simulator fails to compute the encapsulated key and session key. Nevertheless,
when the underlying KEM is [OW-CCA, OW-CPA] secure, the simulator could
query the strong decapsulation oracle to get the encapsulated key and session
key, so the reduction works. In other events, the proof proceeds similarly.

Proof. We give representative security proof in two cases E5 and E3 in Table 2,
where one is wPFS and the other is the MEX attack. The other cases can be
easily extended or modified from the proof of E3, so they are omitted here.
Table 3 presents the outline of reduction.

wPFS E5. The proof of this case proceeds via a sequence of games, i.e. Game 0
to 2. In this case, the test session sid∗ (with owner as responder or initiator) has
a matching session sid

∗
. Both static secret keys of the initiator and the responder

are leaked to A. We denote the event that the AKE adversary A outputs b′ such
that b = b′ as Succi in Game i.
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Table 3. The outline of security reduction for SIAKE2.

Assumption 2-Key PKE 2-Key KEM Cases in Table 2

SI-DDH [·, OW-CPA], pk0 = gx0 [·, OW-CPA], pk0 = gx0 E5

SI-DDH [OW-CPA, ·], pk1 = ga1 [OW-CCA, ·], pk1 = ga1 E3, E4, E6, E7-2, E8-1

SI-DDH OW-CPA OW-CCA, pk1 = gb2 E1, E2, E7-1, E8-2

Game 0: This is the original CK+ game in case E5. In the test session, the
adversary owns all the static secret keys, i.e. a1, a2, b1, b2 asssuming the test
session is between UA and UB .
Game 1: In this game, we change the way to generate m1||m0 in the test session
by replacing m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Since g is a random
oracle, Pr[Succ0] − Pr[Succ1] ≤ N2 · l · q

2n .
Game 2: In this game, we change the session key in the test session by replacing
Ĥ(sid,K ′

A,KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.
We construct an algorithm B to solve the [·, OW-CPA] security of 2KEMsidh,

if there exists an algorithm A to distinguish Game 1 and Game 2.
On receiving the public key pk0 from the [·, OW-CPA] challenger, to simulate

the CK+ game, B randomly chooses two parties UA, UB and the i-th session
as a guess of the test session with success probability 1/N2l. B computes and
sets all the static secrets and public key pairs by himself for all N users UP as
both responder and initiator. Particularly, B sets the static secret and public key
pair (pkB2 , skB2) for UB as responder, and sets pkA1 for UA as initiator. B sends
pkA1 to [·, OW-CPA] challenger and receives the challenge ciphertext C∗. Then B
simulates all the communications and SessionStateReveal and SessionKeyReveal
as those in Game 1 except the test session. In the test session, B sets X0 = pk0

and responds (Y, y1, y0) = C∗.
Finally, B checks the hash list queried by A. If there exists some

(UA, UB , pkA1 , pkB2 ,X, x1,X0, C
∗,KA,KB) in the list such that KA is the key

encapsulated in (X,x1) (since (X,x1) is honestly generated by B, it can compute
KA), B chooses a random one and outputs KB , otherwise ⊥. Denote flag as the
event that A explicitly queries (UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) to
the oracle Ĥ such that KA is the key encapsulated in (X,x1) and KB is the key
encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1
and Game 2. Thus,

Pr[Succ1] − Pr[Succ2] ≤ Pr[flag] ≤ N2 · l · Adv[·,OW-CPA]
2PKEsidh

(C).

By Lemma 2, Pr[Succ0] ≤ 1/2 + N2 · l ·
(

q
2n + 2Advsiddh

B + 1/2n + negl
)
.

MEX E3. In this case, the test session sid∗ with its owner as responder does
not have a matching session which means that X,x1,X0 is sent by adversary.
And the randomness rB are leaked to A. It is more complicated than E5. At
first, (X,x1,X0) in the test session is generated by A rather than B. However,
(X,x1) is the ciphertext under public key pkB2 , and the encapsulated key KA can
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be extracted with skB2 . Furthermore, the challenge public key that the security
relies upon is the static public key, and this will affect the simulation of answering
SessionStateReveal and SessionKeyReveal queries. Fortunately, 2PKEsidh provides
a strong decapsulation oracle to answer those queries.

The proof also proceeds via a sequence of games, i.e., Game 0 to 2. We denote
the event that A outputs b′ such that b = b′ as Succi in Game i.
Game 0: This is the original CK+ game in case E3. In the test session, rB is
leaked to the adversary assuming the test session is between UA and UB.
Game 1: In this game, we change the way to generate m1||m0 in the test session
by replacing m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Although rB is leaked
to A, since g is a random oracle, A will not find this change without querying
g with rB , b2. We denote Askg as the event A queries g with rB , b2. If event
Askg happens, we can extract b2 and utilize it to solve the underlying SI-DDH
problem. Precisely, given (g, g1, g2, j), B randomly chooses UB as a guess of the
responder in the test session with success probability 1

2N . B sets pkB2 := g2.

When event Askg happens, B uses b2 to output j
?= gb2

1 .

Pr[Succ0] − Pr[Succ1] ≤ 2N · Advsiddh
B .

Game 2: In this game, we change the session key in the test session by replacing
Ĥ(sid,K ′

A,KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.
We construct an algorithm B to solve the [OW-CCA, ·] security of 2KEMsidh,

if there exists an algorithm A to distinguish Game 1 and Game 2.
On receiving the public key pk1 from the [OW-CPA, ·] challenger, to simulate

the CK+ game, B randomly chooses two parties UA, UB and the i-th session as
a guess of the test session with success probability 1/N2l. B computes and sets
all the static secret and public key pairs on his own for all N users UP as both
responder and initiator except the static public key for UA as initiator.

– Specifically, B sets the static secret and public key pair (pkA2 , skA2) that
invloves UA as responder, and sets pk1 (receiving from the [OW-CPA, ·] chal-
lenger) for UA as initiator.

– In the test session, on receiving (X,x1,X0) from A, B sends pk∗
0 = X0 to

the [OW-CCA, ·] challenger and receives the challenge ciphertext C∗. Then B
returns C∗ to A as response.

– B simulates all the communications and SessionStateReveal and SessionKeyRe-
veal queries as those in Game 1 except that involves UA as initiator (since B
does not know skA1).

– For those SessionStateReveal and SessionKeyReveal queries involves UA as
initiator (for example, UA honestly sends out X ′, x′

1,X
′
0 and receives

(Y ′, y′
1, y

′
0)), B queries the O oracle with (X ′

0;Y
′, y′

1, y
′
0) provided by the [OW-

CCA, ·] challenger to extract the encapsulated key and maintains the consis-
tency of the Ĥ list with SessionStateReveal and SessionKeyReveal queries.

Finally, B checks the hash list queried by A. If there exists some
(UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) in the list such that KA is the key
encapsulated in (X,x1) (since (X,x1) is honestly generated by B, it can compute
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KA), B chooses a random one and outputs KB , otherwise ⊥. Denote flag as the
event that A explicitly queries (UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) to
the oracle Ĥ such that KA is the key encapsulated in (X,x1) and KB is the key
encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1
and Game 2. Thus,

Pr[Succ1] − Pr[Succ2] ≤ Pr[flag] ≤ N2 · l · Adv[OW-CCA,·]
2KEMsidh

(C).

By Theorem 1, to sum up,

Pr[Succ0] ≤ 1/2 + N2 · l · q ·
(
4Advsiddh

B + 1/2n + negl
)

. ��

5 Three-Pass SIAKE

We first enhance the SI-DDH assumption to 1-Oracle SI-DH assumption, and
analyze its reliability. Based on this assumption, we propose the three-pass
SIAKE3.

5.1 1-Oracle SI-DH and Implied 2-Key KEM

The 1-Oracle SI-DH assumption is inspired by the Oracle Diffie-Hellman assump-
tion over classical group given by Abdalla, Bellare and Rogaway [1] for analyzing
DHIES. Let G :=< g > and |G| = p be a prime. The Oracle Diffie-Hellman
assumption states that, given (g, ga, gb, h), it is difficult to decide whether
h = H(gab) or not (where H is a hash function), even the solver could make
polynomial queries to an oracle HB(·) which will return H(vb) with v ∈ G sat-
isfying v �= ga. Under the Oracle Diffie-Hellman assumption, the DHIES scheme
is chosen ciphertext secure [1].

However, the Oracle Diffie-Hellman assumption can not be directly extended
in the supersingular isogeny setting. As we have presented several times before,
the adaptive attack [17] would allow extraction of every bit of b with polynomial
queries to HB(·) with specified points, implying the analogue of Oracle Diffie-
Hellman problem in the supersingular isogeny setting could be solved. Moreover,
in the classical group, if v �= ga, then vb �= (ga)b. However, in the supersingular
isogeny setting, even if v �= ga ∈ SSECA, it is possible that vb is equal to (ga)b.

Fortunately, only one query to HB(·) with v �= ga is needed for our purpose and
the adaptive attack does not work. Furthermore, when HB(v) = H(v, vb), even if
v �= ga, the case H(v, vb) = H(ga, (ga)b) occurs with negligible probability.

Definition 4 (1-Oracle SI-DH Assumption). Let H : {0, 1}∗ → {0, 1}n

be a hash function. Let e and g be public parameters as defined in SI-DDH
assumption. Let D0 and D1 be two distributions:

D1 :={e, g, ga, gb,H(ga, (ga)b)|a ← Z�ess , b ← Z�
et
t

}
D0 :={e, g, ga, gb, h|a ← Z�ess , b ← Z�

et
t

, h ← {0, 1}n}
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The 1-Oracle SI-DH problem is, given a random sample from Db depending on
b ← {0, 1}, and a one-time oracle HB, guessing b. The one-time oracle HB can
be queried only one time with y ∈ SSECA and y �= ga, and it will return H(y, yb).
The advantage of A to solve the 1-Oracle SI-DH problem is

Adv1osidh
A = Pr[b′ = b|AHB(·)(db ← Db) = b′, b ← {0, 1}] − 1/2.

The 1-Oracle SI-DH assumption states that for any PPT algorithm A, Adv1osidh
A

is negligible.

We emphasize that the adversary is allowed to query the hashed SIDH oracle
HB only once with y �= ga. If there are polynomial queries, the 1-Oracle SI-DH
problem can be solved by the adaptive attack in [17]. Please also notice that the
hash function involves ga or y as input besides the j-invariant. Otherwise the
1-Oracle SI-DH problem is easy. Let ga = (EA, φA(Pt), φA(Qt)). Since 〈φA(Ps)+
[y]φA(Qs)〉 = 〈[u]φA(Ps)+[y][u]φA(Qs)〉 for any integer 1 ≤ u ≤ �es

s and coprime
to �s, the attacker sets EY = EA, R = [u]φA(Ps), S = [u]φA(Qs) and y =
(Y,R, S). Then (ga)b and yb will produce the same j-invariant. However, when
taking ga or y as input of H, any query with y �= ga to HB will get a completely
different value.

1-Gap SI-DH problem is similar to the SI-CDH problem but the adversary
is given access to a highly restricted SI-DDH oracle.

Definition 5 (1-Gap SI-DH Assumption). Let e and g be public parameters.
The 1-Gap SI-DH problem is that, given ga, gb (where a ← Z�ess , b ← Z�

et
t
), and

an oracle Osiddh(y, ·), compute the j-invariant (ga)b = (gb)a. Here, y ∈ SSECA

is chosen by the adversary A at any time before its first queries to Osiddh(y, ·).
Osiddh(y, j) will return 1 if j = yb, and 0 otherwise. For any PPT algorithm A,
we define the advantage of solving 1-Gap SI-DH problem as

Adv1gsidh
A = Pr[j′ = (ga)b|AOsiddh(y,·)(g, e, ga, gb) → (y, j′)].

The 1-Gap SI-DH assumption states: for any PPT algorithm A, the advantage
of solving 1-Gap SI-DH problem is negligible.

We emphasize that if the adversary is allowed to query Osiddh(·, ·) with unlimited
numbers of y, 1-Gap SI-DH problem can be solved using the adaptive attack in
[17]. However, here Osiddh(·, ·) oracle only allows to be queried once with y of
adversary’s choice.

Discussion. These two assumptions are “non-standard” for supersingular
isogeny. The adaptive attack [17] and its extension can not easily break these
new assumptions. We encourage more works on the analysis of the hardness of
these two problems.

The following theorem shows that the 1-Gap SI-DH assumption implies the
1-Oracle SI-DH assumption when the hash function H is modeled as a random
oracle.
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Theorem 3. For any algorithm A against the 1-Oracle SI-DH problem there
exists an algorithm B against the 1-Gap SI-DH problem such that

Adv1osidhA,H (n) ≤ qH · Adv1gsidhB (n),

where qH is the number of times to query Osiddh(y, ·).
Proof. Let A be any algorithm solving the 1-Oracle SI-DH problem. We con-
struct an algorithms B to solve the 1-Gap SI-DH problem using A as a sub-
routine in Fig. 8. The challenge is how to maintain the hash list so as to keep the
consistency with the one-time Oracle HB . Actually, the limited oracle Osiddh(·, ·)
would help B to fix it.

Algorithm BOsiddh(·,·) e, g, ga, gb
)

01 h0, h1 ← {0, 1}n One time HB(y)
02 b ← {0, 1} 01 Choose y as the base of Osiddh

03 Run AHB(·),H(g, ga, gb, hb) 02 if ∃(y, j′, h′) ∈ LH ∧ Osiddh(y, j′) = 1
04 a. For one-time query HB 03 return h′

05 do as one-time HB 04 else h′′ ← {0, 1}n, LH = LH ∪ {y, j′, h′′}
06 b. For the H-query 05 return h′′

07 do as H(x, j′) H(x, j′)
08 c. Let b′ be the output of A 01 if ∃(x, j′, h′) ∈ LH return h′

09 return (·, j, ·) ← LH 02 otherwise h ← {0, 1}n, LH = LH ∪ {(x, j′, h)}
10 return j 03 return h

Fig. 8. Algorithm B for attacking the 1-Gap SI-DH problem.

Note that in Fig. 8, if HB(y) is asked at first and returns a random h, then
when (y, j′) is queried to H such that Osiddh(y, j′) = 1, it will return h. If H(y, j′)
is asked at first and returns a random h, then when y is asked to HB such that
Osiddh(y, j′) = 1, it will return that h.

Let Ask be the event that (ga, (ga)b) is queried to H and Ask be the comple-
ment of Ask. If Ask does not happen, there is no way to tell whether hb is equal
to H(ga, (ga)b) or not. Thus we have that

Adv1osidh
A,H = Pr[AHB(·)(b ← Db) = b] − 1/2

= Pr[AHB(·)(b ← Db) = b ∧ Ask] + Pr[AHB(·)(b ← Db) = b ∧ Ask] − 1/2

= Pr[AHB(·)(b ← Db) = b ∧ Ask]

≤ Pr[Ask] ≤ qH · Adv1gsidh
B .

��
We now modify the 2PKEsidh and denote the new scheme as 2PKE1osidh. The

key generation algorithms are the same. In the encryption algorithm, h
(
(gb)a1

)

is replaced by h
(
gb, (gb)a1

)
and h

(
(gb)a0

)
is replaced by h

(
gb, (gb)a0

)
. Thus

the ciphertext is c :=
(
gb, h

(
gb, (gb)a1

) ⊕ m1, h
(
gb, (gb)a0

) ⊕ m0

)
.
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Lemma 3. The following holds.

– Under the 1-Oracle SI-DH assumption, the scheme 2PKE1osidh is [OW-CPA,
·] secure even H(pk∗

0 , pk∗b
0 ) is given to the adversary besides the challenge

ciphertext c∗ = (c∗1 = gb, c1, c2).
– If the [OW-CPA, ·] game is changed as that pk∗

0 is generated by the challenger
and the corresponding sk∗

0 is leaked to the adversary, then under the SI-DDH
assumption, 2PKE1osidh satisfies this [OW-CPA, ·] security even H(pk∗

0 , pk∗b
0 )

is given to the adversary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– Under the SI-DDH assumption, the scheme 2PKE1osidh is [·, OW-CPA] secure.

Proof. The [·, OW-CPA] security is the same with that in Lemma 2. We reduce the
[OW-CPA, ·] security with leakage to the underlying 1-Oracle SI-DH assumption.
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote
the event that the adversary wins the games as Succ0.
Game 1: In this game, we modify the computation of challenge ciphertext.
Specifically, h(gb, (gb)a1 is replaced by a random bit h ← {0, 1}n. We con-
struct an algorithm B to solve the 1-Oracle SI-DH problem given an instance
(g, g1, g2, h), and a one-time oacle HB(·), if there exists an algorithm A to dis-
tinguish Game 0 and Game 1.

BHB(·)(e, g, g1, g2 = gb, h)

01 pk1 ← g1
02 pk∗

0 , state ← A(pk1)
03 m1 ← {0, 1}n, m0 ← {0, 1}n

04 Query HB with pk∗
0 and get pk∗b

0

04 c∗1 = g2, c
∗
2 = h ⊕ m1, c

∗
3 = h(pk∗

0 , pk
∗b
0 ) ⊕ m0

05 c∗ = (c∗1, c
∗
2, c

∗
3)

06 m′
1||m′

0 ← A(state, C∗)
07 If m′

1 = m1, b
′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, h) is a 1-Oracle SI-DH tuple, B perfectly simulates Game 0, else
B perfectly simulates Game 1. In the 1-Oracle SI-DH challenge, we have

Adv1osidh
B = Pr[b = b′] − 1/2

= 1/2(Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0])
= 1/2(Pr[b′ = 1|Game 0] − Pr[b′ = 1|Game 1])
= 1/2(Pr[Succ0] − Pr[Succ1]).

Note that in this game, the [OW-CPA, ·] advantage is less than 1/2n. To Sum
up, we have that, Pr[Succ0] ≤ 2Advsiddh

B + 1/2n. ��
Similarly, we make the same modification to the 2KEMsidh and denote the

new scheme as 2KEM1osidh.

Theorem 4. The following holds in the random oracle model.
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– Under the 1-Oracle SI-DH assumption, the scheme 2KEM1osidh is [OW-CCA,
·] secure in the random oracle model, even h(pk∗

0 , pk∗b
0 ) is given to the adver-

sary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– If the [OW-CCA, ·] game is changed as that pk∗

0 is generated by challenger
and the corresponding sk∗

0 is leaked to the adversary, then under the SI-DDH
assumption, 2KEM1osidh satisfies this [OW-CPA, ·] security even H(pk∗

0 , pk∗b
0 )

is given to the adversary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– Under the SI-DDH assumption, the scheme 2KEM1osidh is [·, OW-CPA]

secure.

5.2 A Three-Pass AKE Based on 1-Oracle SI-DH Assumption

The three-pass AKE SIAKE3 is shown in Fig. 9. The public parameters and
register are the same with those for SIAKE2.

Phase 1: User UA chooses ephemeral randomness rA. Let n1||n0 ← g(rA, a1)
and x ← G(n1, n0). Then UA computes X := gx, x1 := h(gb2 , (gb2)x) ⊕ n1, and
sends X,x1 to UB.

Phase 2: User UB chooses ephemeral randomness rB ← Z�
e2
2

, computes
m1||m0 ← g(rB , b2), y ← G(m1,m0), and Y := gy. On receiving (X,x1,X0)
from UA, if X := pkB2 , aborts, else UB computes y1 := h(ga1 , (ga1)y) ⊕ m1,
y0 := h(X, (gx)y)⊕m0,KB := H(X,m1,m0, Y, y1, y0), and sends (Y, y1, y0) toUA.

Phase 3: On receiving (Y, y1, y0) from UB , if Y := pkA1 , aborts, else UA decrypts
Y, y1, y0 to extract m′

1||m′
0 and y′ ← G(m′

1,m
′
0). If Y �= gy, then m′

1||m′
0 :=

sA1. UA computes K ′
B := H(X,m′

1,m
′
0, Y, y1, y0) and the session key as SK :=

Ĥ(sid,KA,K ′
B), where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1, x0, Y, y1, y0

)
.

Phase 4: If X := pkB2 , then aborts, else UB decrypts X,x1, x0 to extract
n′

1, n
′
0 and r′ ← G(n′

1, n
′
0). If X �= gr

′
, then n′

1||n′
0 := sB2. Let K ′

A :=
H(Y, n′

1, n
′
0,X, x1, x0). The session key is computed as SK := Ĥ(sid,K ′

A,KB)
where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1, Y, y1, y0, x0

)
.

The session state of UA consists of rA, K ′
B and KA. The session state of UB

consists of rB , KB and K ′
A.

Theorem 5. Under the 1-Oracle SI-DH assumption, SIAKE3 is CK+ secure in
the random oracle model. Precisely, if the number of users is N and there are at
most l sessions between any two users, for any PPT adversary A against SIAKE3

with q times of hash oracle queries, there exists B s.t.

AdvCK+

SIAKE3
(A) ≤ 1/2 + N2 · l · q ·

(
4Adv1osidhB +

q + 1
2n

+ negl

)
.

Please refer full paper [33] for the concrete proof. We only give the proof sketch
here: Obviously, UA sends [OW-CCA, OW-CPA] secure X,x1, x0 under public keys
pkB2 and Y to UB. UB responds with [OW-CCA, OW-CPA] secure ciphertexts
Y, y1, y0 under public keys pkA1 and X0 to UA. The proof of wPFS security is
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UA UB

skA1 := (a1 ∈ Z�
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z�

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z�
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z�

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z�
e1
1
, n1||n0 ← g(rA, a1) rB ← Z�

e2
2
, m1||m0 ← g(rB , b2)

x ← G(n1, n0) y ← G(m1,m0)

X := gx, x1 := h(gb2 , (gb2)x) ⊕ n1 X,x1 Y := gy, y1 := h(ga1 , (ga1)y) ⊕ m1

If X := pkA1 ,⊥
If Y := pkB2 ,⊥ Y, y1, y0 y0 := h(X, (gr)y) ⊕ m0

x0 := h(Y, (gy)x) ⊕ n0 KB := H(X,m1,m0, Y, y1, y0)
KA := H(Y, n1, n0, X, x1, x0) x0

m′
1 := y1 ⊕ h((gy)a1) n′

1 := x1 ⊕ h((gx)b2

m′
0 := y0 ⊕ h(X, (gy)x) n′

0 := x0 ⊕ h(X, (gx)y)
y′ := G(m′

1,m
′
0) r′ :← G(n′

1, n
′
0)

If Y �= gy
′
, m′

1||m′
0 := sA1 If X �= gr

′
, n′

1||n′
0 := sB2

K′
B := H(X,m′

1,m
′
2, Y, y1, y0) K′

A := H(Y, n′
1, n

′
0, X, x1, x0)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′

A,KB)

Fig. 9. A Compact 3-pass AKE SIAKE3 based on SIDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, x0, Y, y1, y0
)
. The boxed arguments are the main differences with SIAKE2.

Besides, the input of h includes the first part of the public key.

exactly the same as that of SIAKE2, but different for other security cases. The
main observation is the same: since the underlying KEM is [OW-CCA, ·] secure,
the simulator could query the strong decapsulation oracle to get the encapsulated
key and session key and simulate the SessionKeyReveal and SessionStateReveal.
However, this is not sufficient. Take E3 for example, given Y ∗, y∗

1 , y∗
0 as the

challenge ciphertext, the simulator obviously does not know the randomness of
Y ∗, but in the test session Y ∗ is the public key of (X,x1, x0). Fortunately, the
underlying 1-Oracle SI-DH assumption provides this capability to encapsulate
one ciphertext.

6 Implementation and Comparison

We implement SIAKE2 and SIAKE3, and compare their performance with [13],
[2,26] and the lattice-based Kyber-AKE [3].

We adopt the curve SIKEp751 in SIKE [20] that is proceeding the sec-
ond round of NIST’s post-quantum standardization. The performance is bench-
marked on an Intel(R) Core i7-6567U CPU @3.30 GHz processor supporting the
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Skylake micro-architecture. Kyer-AKE is an AKE based on lattice and others
are all considered in the SIDH setting. The comparison of bandwidth is shown
in Table 4. The comparison of efficiency is shown in Table 5.

Table 4. Comparison of message sizes. “-” stands for no messages to be transmitted.
The message sizes are counted in byte.

Scheme A → B B → A A → B total(byte)

Kyber-AKE [3] 2272 2368 4640

FSXY [13] 1160 1160 – 2320

BCNP [2,26] 1160 1160 – 2320

SIAKE2 1160 628 – 1788

SIAKE3 596 628 32 1176

Table 5. Comparison of cycle counts. Cycle counts are rounded to 106 cycles by taking
the average of 1,000 trials.

Scheme A(initial) B A(end) B(end) total

FSXY [13] 6,238 14,779 10,124 31,141

BCNP-Lon [2] 11,146 20,092 9,563 40,801

SIAKE2 6,828 13,917 6,641 27,386

SIAKE3 5,966 4,429 4,922 9,575 24,892

7 Conclusion and Open Problem

We propose two AKEs based on supersingular isogeny assumptions. Both of
them achieve CK+ security and support arbitrary registration in the classical
random oracle model. However, to fully explain their quantum-resistance, their
security in the quantum random oracle model should be analyzed. We leave it
as an open problem and future work.
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faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2018)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

13. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
AsiaCCS 2013, pp. 83–94 (2013)

14. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny
Diffie–Hellman authenticated key exchange. In: Lee, K. (ed.) ICISC 2018. LNCS,
vol. 11396, pp. 177–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12146-4 12

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-030-12146-4_12
https://doi.org/10.1007/978-3-030-12146-4_12


Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 307

15. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018/266

16. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

17. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

18. Guilhem, C.D.S., Smart, N.P., Warinschi, B.: Generic forward-secure key agree-
ment without signatures. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol.
10599, pp. 114–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69659-1 7

19. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. IACR Cryptology ePrint Archive 2017/774

20. Jao, D., Azarderakhsh, R., Campagna, M., et al.: Supersingular Isogeny
Key Encapsulation. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

21. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

23. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and
scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Com-
put. 67, 1594–1609 (2018)

24. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an option: standardization issues for post-quantum key agreement. In:
Workshop on Cybersecurity in a Post-Quantum World (2015)

25. LeGrow, J.: Post-quantum security of authenticated key establishment protocols.
Master’s thesis, University of Waterloo (2016)

26. Longa, P.: A note on post-quantum authenticated key exchange from supersingular
isogenies. IACR Cryptology ePrint Archive 2018/267

27. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

28. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: Selected Areas in Cryptography (1995)

29. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key-distribution
systems. IEICE Trans. (1976–1990) 69(2), 99–106 (1986)

30. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 29

31. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. In: INCoS 2012, pp. 292–296 (2012)

32. Urbanik, D., Jao, D.: SoK: the problem landscape of SIDH. IACR Cryptology
ePrint Archive 2018/336

https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-76900-2_29


308 X. Xu et al.

33. Xu, X., Xue, H., Wang, K., Liang, B., Au, H., Tian, S.: Strongly secure authenti-
cated key exchange from supersingular isogenies, IACR Cryptology ePrint Archive
2018/760

34. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via
double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11273, pp. 158–189. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 6

35. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7 9

https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9


Obfuscation



Dual-Mode NIZKs from Obfuscation

Dennis Hofheinz(B) and Bogdan Ursu

Karlsruhe Institute of Technology, Karlsruhe, Germany
{dennis.hofheinz,bogdan.ursu}@kit.edu

Abstract. Two standard security properties of a non-interactive zero-
knowledge (NIZK) scheme are soundness and zero-knowledge. But while
standard NIZK systems can only provide one of those properties against
unbounded adversaries, dual-mode NIZK systems allow to choose dynam-
ically and adaptively which of these properties holds unconditionally. The
only known dual-mode NIZK schemes are Groth-Sahai proofs (which
have proved extremely useful in a variety of applications), and the FHE-
based NIZK constructions of Canetti et al. and Peikert et al, which are
concurrent and independent to this work. However, all these construc-
tions rely on specific algebraic settings.

Here, we provide a generic construction of dual-mode NIZK systems
for all of NP. The public parameters of our scheme can be set up in one of
two indistinguishable ways. One way provides unconditional soundness,
while the other provides unconditional zero-knowledge. Our scheme relies
on subexponentially secure indistinguishability obfuscation and subexpo-
nentially secure one-way functions, but otherwise only on comparatively
mild and generic computational assumptions. These generic assumptions
can be instantiated under any one of the DDH, k-LIN, DCR, or QR
assumptions.

As an application, we reduce the required assumptions necessary for
several recent obfuscation-based constructions of multilinear maps. Com-
bined with previous work, our scheme can be used to construct multi-
linear maps from obfuscation and a group in which the strong Diffie-
Hellman assumption holds. We also believe that our work adds to the
understanding of the construction of NIZK systems, as it provides a con-
ceptually new way to achieve dual-mode properties.

Keywords: Non-interactive zero-knowledge · Dual-mode proof
systems · Indistinguishability obfuscation

1 Introduction

Obfuscation and Structured Assumptions. Indistinguishability obfuscation
(iO) is a powerful cryptographic object, and along with one-way functions, it
implies almost every cryptographic primitive, from deniable encryption [42] to
functional encryption [26] and fully-homomorphic encryption [18]. However, it
is not currently known whether iO gives rise to structures in which algebraic
assumptions hold (such as DDH, DCR, LWE etc.). In this work, we are motivated
by the following open problem:
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11921, pp. 311–341, 2019.
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Can structured objects (such as DDH groups) be bootstrapped from
unstructured objects (like generic one-way functions and iO)?

We make progress in this direction by developing the first construction of dual-
mode non-interactive zero-knowledge (NIZK) proof systems from unstructured
assumptions (iO, one-way functions and lossy trapdoor functions). This dual-
mode NIZK can be used in the constructions from [1,2,21], allowing us to answer
this question in the affirmative.

Zero-Knowledge Proof Systems. Zero-knowledge (ZK) proof systems [28,29]
are (implicitly or explicitly) at the heart of countless cryptographic construc-
tions. In a ZK proof system, a prover P tries to convince a verifier V of the
validity of a statement x. “Validity” usually means that x ∈ L for some lan-
guage L ∈ NP. In this case, P obtains a witness w to x ∈ L. For security, we
require soundness, which means that no dishonest prover can convince V of a
false statement x /∈ L. Additionally, we may want to protect P (and in particular
the used witness w) in several ways. For instance, the protocol is zero-knowledge
if it is possible to efficiently simulate (transcripts of) protocol runs even without
w. Alternatively, we can require the protocol to be witness-hiding or witness-
indistinguishable [23].

ZK proof systems can be interactive or non-interactive (the latter of which
means that the prover sends only one message to the verifier). In this work, we are
interested in non-interactive ZK (NIZK) proof systems [10]. There exist already
various NIZK proof systems, ranging from generic [22,24,42] to highly efficient
constructions based on concrete number-theoretic assumptions [24,32,44]. Some
of these systems only allow to prove x ∈ L for specific languages L, while others
can be used to prove statements from arbitrary languages L ∈ NP.

Dual-Mode Proof Systems. Some NIZK systems enjoy statistical security,
i.e., information-theoretic soundness or zero-knowledge guarantees. However,
interestingly, no NIZK system can be statistically sound and statistically zero-
knowledge simultaneously. Hence, a NIZK system can be secure only either
against unbounded malicious provers or against unbounded malicious verifiers.

Fortunately, there is a compromise that combines the best of both worlds:
Groth-Sahai proofs [32] are statistically sound or statistically zero-knowledge
depending on the choice of public parameters crs. Furthermore, both choices of
parameters are computationally indistinguishable. This “dual-mode” property
leads to comparatively simple proofs for complex protocols (e.g., for anonymous
credentials [4] or payment systems [33]). In the case of [2,21], a proof without
using dual-mode properties in fact does not seem obvious at all.1

1 A bit more technically, dual-mode NIZK proofs allow to use both witness extraction
or simulation trapdoors in different stages of the proof, depending on the chosen
mode. (This is helpful in case of [4,33] and crucial in [2,21].) Furthermore, in complex
settings with mutually dependent statements and witnesses, statistical properties are
easier seen to compose.
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Until recently, only Groth-Sahai proofs [32] (and their variants, e.g., [9,20,35])
were known to possess this dual-mode property.2 These proof systems all rely on
a very specific and structured algebraic setting (pairing-friendly cyclic groups). In
contrast, we rely on generic rather than algebraic techniques, resulting in a fun-
damentally new way of obtaining dual-mode proof systems.

Concurrent Work. Concurrently and independently to this work, [19,39] have
put forward breakthrough approaches to obtain dual-mode NIZKs from the LWE
assumption. These constructions rely on rich algebraic structures and are non-
blackbox. In contrast, our techniques are generic and our perspective is closer
to computational complexity, in that we investigate whether the existence of a
powerful non-algebraic object (iO) can lead to algebraic ones.

Our Contribution. In this paper, we give the first generic construction of
dual-mode NIZK proofs from (the combination of) the following ingredients:

– subexponentially secure indistinguishability obfuscation (iO, [3,26]),
– subexponentially secure one-way functions,
– a (selectively) subexponentially secure functional encryption scheme,
– lossy encryption [5,40], and
– lossy functions (LFs), a relaxation of lossy trapdoor functions [41] which we

introduce in this paper.

We stress that some of our ingredients are implied by (a combination of) others:
Functional encryption canbe constructed from iOandone-way functions [26].Con-
versely, subexponentially secure functional encryption implies subexponentially
secure iO and one-way functions (e.g., [8] and the references therein). Furthermore,
both LFs and lossy encryption are implied by lossy trapdoor functions [41].

As a side note, we remark that thus, a subexponential variant of any of the
DDH, k-LIN, QR, DCR, or LWE assumptions, along with subexponential iO
implies all of our ingredients.3

Of course, since we assume iO, our construction is far from practical. Still,
it has interesting theoretical applications. For instance, it allows to instantiate
dual-mode NIZK proofs in the recent works [1,2,21] without any additional
assumptions, and in particular without pairing-friendly groups. (Incidentally,
these works already assume what we need for our construction.)

In particular, combining our results with the scheme from [1], shows that it
is possible to obtain a very structured object (namely, a cyclic group in which
Diffie-Hellman and similar assumptions hold) solely from an unstructured and
generic object (iO), and a mildly structured object (a lossy trapdoor function).4

2 We do not consider NIZK proofs in the random oracle model (such as [37]) here.
3 See [11,25,41] for the corresponding instantiations of lossy trapdoor functions from

these concrete assumptions.
4 Indeed, except for a dual-mode NIZK proof system, all assumptions in [1] can be

instantiated from subexponentially secure iO and a subexponentially secure lossy
trapdoor function. We note, however, that [1] construct a group in which elements
have only a non-unique representation and no canonical form. Hence, their group
might not be considered a “standard group”, but still has a rich algebraic structure.
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Similarly, implementing [2,21] with our system (instead of with Groth-Sahai
proofs) yields a pairing-friendly group (with non-unique representation) from iO
and a DDH group (both subexponentially secure). Therefore, we also give an
answer to the following open problem (Fig. 1):

Can bilinear groups be bootstrapped from DDH groups and iO?

Fig. 1. Some implications on previous results. “iO”, “LTDF” and “SDDH” denote
subexponential versions of indistinguishability obfuscation, lossy trapdoor functions
and the “Strong DDH” (a q-type variant of the Diffie-Hellman assumption).

Open Problems. We note that the groups from [1,2,21] all enjoy non-unique
representations of group elements. That is, equality of group elements can be
tested, but there does not exist a canonical form. Removing this limitation
remains an open problem.

Our Techniques

Existing Generic Approaches. Before explaining our main ideas, we first
mention that generic constructions of NIZKs from iO already exist. Namely, [42]
present a NIZK construction that only assumes iO and one-way functions. Their
construction is (even perfectly) zero-knowledge. However, proofs are in their case
simply signatures of the corresponding statement x. Thus, their construction is
inherently limited to computational soundness, in the sense that it is not clear
how to tweak this construction to obtain statistical soundness.

Secondly, it is possible to construct a notion of trapdoor permutations from
iO that is in turn sufficient to construct statistically sound NIZK proofs [17]
(cf. [6,7,22,30]). However, it is not clear how to tweak this NIZK construction
to obtain statistical zero-knowledge.

The Hidden Bits Model. Similarly to [17], our starting point is also the
generic NIZK construction from [22]. This work presents a statistically sound
and perfectly zero-knowledge NIZK protocol in an ideal model of computation
called the “hidden bits model” (HBM).5 It will be helpful to first recall the HBM

5 Since their protocol is formulated in an ideal model of computation, it does not
contradict our remark above about the impossibility of simultaneously achieving
statistical soundness and statistical zero-knowledge. One of the two statistical prop-
erties will be lost when implementing this ideal model.
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before going further. In a nutshell, the HBM gives the prover P access to an ideal
random bitstring hrs = (hrs1, . . . , hrst) ∈ {0, 1}t. Next, P selects a subset I ⊆ [t]
and a proof π. Then, the verifier V is activated with I, π, the subset (hrsi)i∈I
of hrs that is selected by I, and of course the instance x. Finally, V is supposed
to output a verdict b ∈ {0, 1}.

Two Ways to Implement the HBM. Note that the power of the HBM
stems from the fact that hrs is ideally random (and cannot be tampered with
by P ), but only revealed in part to V . When implementing the HBM, we will
necessarily have to compromise on some of these properties. However, it will be
interesting to see what the consequences of such compromises are. Specifically,
when implementing the HBM in the HBM-based NIZK protocol of [22], we can
observe the following:

(a) if we implement the HBM such that hrs is truly random (or selected from a
small set of possible hrs values, each of which is individually truly random),
then the resulting NIZK protocol is statistically sound and computationally
zero-knowledge,

(b) if we implement the HBM such that the unopened bits (hrsi)i/∈I are sta-
tistically hidden from V , then the resulting NIZK protocol is statistically
zero-knowledge and computationally sound.

Known implementations of the HBM (e.g., [22,30,31]) follow (a), and thus enjoy
statistical soundness guarantees. Our main strategy will be to build a dual-mode
NIZK proof system by implementing the HBM in a way that allows to switch
(by switching public parameters) between (a) and (b).

A First Approach. Our first step will be to set up the hidden string hrs as

hrs = H(X) ⊕ crs

for a value X chosen freely by P , a yet-to-be-defined function H, and a truly
random “randomizing string” crs fixed in the public parameters. If H is a pseu-
dorandom generator (that admits a suitable partial opening process, see [31] for
an explicit formulation), this yields the core of existing HBM implementations.
In particular, if H has a small image, then we are in case (a) above, and the
resulting NIZK is statistically sound.

However, suppose we can switch (in a computationally indistinguishable way)
H(X) to have a large image, such that in fact H(X) ∈ {0, 1}t is close to uniformly
distributed for random X. We call such a “switchable” object a lossy function
(LF). An LF can be easily constructed, e.g., by universally hashing the output
of a lossy trapdoor function F . For suitable choices of parameters, H(X) :=
h(F (X)) is close to uniform if F is injective (and X random), and has a small
range if F does.

With H(X) close to uniform, we are in case (b) above, assuming that the
process itself of revealing hrsI does not reveal additional information about other
bit positions. Hence, we obtain a statistically zero-knowledge NIZK protocol, and
in summary even a dual-mode NIZK that can be switched between statistically
sound and statistically zero-knowledge modes of operation.
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Managing the Opening Process. The main problem with our first approach
is that it is not clear how to partially open a subset hrsI of hrs to a verifier V . Pre-
vious HBM implementations (e.g., [22,31]) devised elaborate ways to partially
open suitably designed pseudorandom generators (in the role of H above). We
cannot use those techniques for two reasons. First, their opening process might
reveal statistical information about the unopened parts of hrs. Second, these
techniques require specific H functions, and do not appear to work with “switch-
able” functions H as we need. Hence, we use the strong ingredients mentioned
above to design our own opening process.

We will use a functional encryption scheme FE. We will publicize a truly
random crs, a statement Z from a language L′ that is hard to decide, along
with an FE public key fmpk, and a corresponding secret key skf for the following
function f:

f(X, I, z, T ) :=

{
(T, I) if z is a witness toZ ∈ L′

(H(X)I , I) else.

An opening consists of an encryption

C = FE.Enc(fmpk, (X, I, 0, 0))

that will decrypt to f(X, I, 0, 0) = H(X)I under skf . The verifier will receive this
opening, retrieve H(X)I with skf , and compute hrsI = H(X)I ⊕ crsI .

Observe that this process has the following properties:

– If Z /∈ L′, then skf(C) = (H(X)I , I) always. Hence, if additionally H has a
small range, we are in case (a) above, and the corresponding NIZK protocol
is statistically sound.

– If Z ∈ L′ with witness z, then any prover who knows z can efficiently open
hrsI arbitrarily, by encrypting (0, I, z, T ) for T = crsI ⊕ hrsI and the desired
hrsI . Furthermore, such openings obviously do not contain any information
about potential other positions of hrs. This means we are in case (b) above,
and the corresponding NIZK protocol is statistically zero-knowledge.

By using FE’s security, it is possible to show that these two types of openings
are indistinguishable to a verifier. However, as formulated, they are of course
not indistinguishable to a prover yet. Hence, we will additionally publicize an
obfuscated algorithm PC that will get as input a statement x with witness w, and
random coins r. Depending on the mode (sound or zero-knowledge), PC(x,w, r)
will then either encrypt (X, I, 0, 0) or (0, I, z, T ), for pseudorandom X and T
derived from r.

A Taste of the Security Proof. For security, we will show that the public
parameters in both modes are computationally indistinguishable. The security
proof is somewhat technical, and we would like to highlight only one interesting
theme here. Namely, observe that the prover algorithm PC is inherently proba-
bilistic. In the proof, we need to modify PC’s behavior, and in particular decouple
its output distribution from its input w. Specifically, when aiming at statistical
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soundness, the output of PC will encrypt, and thus depend on w. But when
trying to achieve zero-knowledge, PC’s output should not reveal (in a statistical
sense) which witness w has been used.6

This decoupling process is particularly cumbersome to go through because
PC itself is public and can be run on arbitrary inputs. Any change that essen-
tially makes PC ignore its w input will be easily detectable. Hence, we add an
indirection that helps to remove dependencies on w. Specifically, we let PC first
compute a = LE.Enc(lpk, (x,w); r) using a lossy encryption scheme LE. If the
corresponding public key lpk is injective (i.e., leads to decryptable ciphertexts),
then a determines w. Hence, any case distinction (or hybrid argument) we make
for different values of w can alternatively be made for different values of a. On
the other hand, if lpk is lossy, then a will be statistically independent of the
plaintext (x,w).

Hence, a can be used as a single value that (a) can serve as a “fingerprint” of
(or in some sense even as a substitute for) w in the proof, but (b) can be easily
made independent of w by switching lpk into lossy mode. Equipped with this
gadget, we will structure the proof as a large hybrid argument over all values of
a (encrypted at this point with an injective lpk). In each step, we modify PC’s
behavior for one particular value of (x,w), and change the corresponding FE
ciphertext C from an encryption of (X, I, 0, 0) to (0, I, z, T ) for a pseudorandom
value T derived from a.

Roadmap. After recalling some preliminaries in Sect. 2, we present our proof
system in Sect. 3, followed by its analysis in Sect. 4. In the full version, we provide
a schematic overview over our main proof, a proof of a technical lemma, a recap of
the HBM-based NIZK from [22], and an analysis of the (statistical) extractability
of our scheme.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. For a
natural number n ∈ N, [n] denotes the set {1, . . . , n}. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial
in the (implicit) security parameter λ. A positive function f is negligible if for
any polynomial p there exists a bound B > 0 such that, for any integer k ≥ B,
f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming probability
when its probability is at least 1 − negl(λ) for a negligible function negl. Given
a finite set S, the notation x ←r S means a uniformly random assignment of
an element of S to the variable x. If A is a probabilistic algorithm, y ←r A(·)
denotes the process of running A on some appropriate input and assigning its
output to y. The notation AO indicates that the algorithm A is given oracle
access to O. We denote a ← A; b ← B(a); . . . for running the experiment where
a is chosen from A, after which b is chosen from B, which might depend on a
and so on. This determines a probability distribution over the outputs and we

6 Formally, to achieve zero-knowledge, we must achieve witness-indistinguishability.
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write Pr[a ← A; b ← B(a); . . . : C(a, b, . . .)] for the probability of the condition
C(a, b, . . .) being satisfied after running the experiment. For two distributions
D1,D2, we denote by Δ(D1,D2) the statistical distance. We also write D1 ≡
D2 when the distributions are identical, D1 ≈c D2 when the distributions are
computationally indistinguishable and D1 ≈ε D2 when Δ(D1,D2) ≤ ε.

2.1 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [27], is a tuple of
PPT algorithms PRF = (PRF.KeyGen,PRF.Eval). Let K denote the key space,
X denote the domain, and Y denote the range. The key generation algorithm
PRF.KeyGen on input of 1λ, outputs a random key from K and the evalua-
tion algorithm PRF.Eval on input of a key K and x ∈ X , evaluates the function
F : K×X 
→ Y. The core property of PRFs is that, on a random choice of key K,
no probabilistic polynomial-time adversary should be able to distinguish F (K, ·)
from a truly random function, when given black-box access to it. Puncturable
PRFs (pPRFs) have the additional property that some keys can be generated
punctured at some point, so that they allow to evaluate the PRF at all points
except for the punctured point. As observed in [13,14,36], it is possible to con-
struct such punctured keys for the original construction from [27], which can be
based on any one-way functions [34].

Definition 1 (Puncturable Pseudorandom Function [13,14,36]). A
puncturable pseudorandom function (pPRF) is with punctured key space Kp

is a triple of PPT algorithms (PRF.KeyGen,PRF.Puncture,PRF.Eval) such that:

– PRF.KeyGen(1λ) outputs a random key K ∈ K,
– PRF.Puncture(K,x), on input K ∈ K, x ∈ X , outputs a punctured key

K{x} ∈ Kp,
– PRF.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′, out-

puts an evaluation of the PRF.

We require PRF to meet the following conditions:

Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr[K ←r PRF.KeyGen(1λ),K{x} ←r PRF.Puncture(K,x) :
∀x′ ∈ X \ {x} : PRF.Eval(K,x′) = PRF.Eval(K{x}, x′)] = 1.

Pseudorandom at punctured points. For every stateful PPT adversary
A and every security parameter λ ∈ N, the advantage of A in Exp-s-pPRF
(described in Fig. 2) is negligible, namely:

Advs-cPRF(λ,A) :=
∣∣ Pr[Exp-s-pPRF(1λ,A) = 1] − 1

2

∣∣ ≤ negl(λ).
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Sub-exponential Security. We say that PRF is sub-exponentially secure when it
satisfies Definition 1 and in addition it satisfies: for every PPT adversary A, the
advantage Advs-cPRF(λ,A) ≤ 1

2λε , for some positive constant 0 < ε < 1.
Definition 1 corresponds to a selective security notion for puncturable pseudo-

random functions; adaptive security could be considered, but will not be required
in our work. For ease of notation we often write F (·, ·) instead of PRF.Eval(·, ·).

Fig. 2. Experiment Exp-s-pPRFA(λ) for the pseudo-randomness at punctured points.

2.2 Lossy Functions

We generalize the notion of LTDF (lossy trapdoor function) due to [41] and
introduce lossy functions. LTDFs (Lossy trapdoor functions) can be sampled
in two indistinguishable modes: an injective and a lossy mode. When sampling
injective functions, the setup also provides a trapdoor which can be used to
invert the function. Unlike LTDFs, for lossy functions we require that functions
can be sampled in two modes, but in which one mode is “more lossy” than the
other. Thus, instead of an injective and a lossy mode, we have a “less lossy”
and a “more lossy” mode, which we denote as “dense” and “lossy” modes. Since
we do not necessarily have injectivity in the dense setting, we also do not have
trapdoors as in LTDFs.

Definition 2 (Lossy Functions). A tuple LF = (Setup,Eval) of PPT algo-
rithms is a family of (n, k,m, i)-lossy functions if the following properties hold:

– Sampling functions: Both Setup(1λ, dense) of dense functions and
Setup(1λ, lossy) of lossy functions output a function index s. We require that
Eval(s, ·) is a deterministic function on {0, 1}n → {0, 1}m in both cases. In the
following, we use the shorthand notation s(·) := Eval(s, ·).

– Dense functions have images statistically close to uniformly random: for all
s ←r LF(1λ, dense), we have that:

Δ((s(Un), s), (Um, s)) ≤ 1
2i

.
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– Lossy functions have small image size: The image size of lossy functions is
bounded by 2k. In particular, for all s ←r Setup(1λ, lossy),

|{Eval(s, x) : x ∈ {0, 1}n}| ≤ 2k.

– Indistinguishability: The outputs of Setup(1λ, lossy) and Setup(1λ, dense)
are computationally indistinguishable, i.e. {Setup(1λ, lossy)} ≈c {Setup(1λ,
dense)}
We can generalise Definition 2 even further. Instead of asking that in dense

mode the evaluation of the function is statistically close to a uniformly random,
we may instead define the dense mode as having H∞(Eval(s, Un)) ≥ m+2 log

(
1
ε

)
.

Then, by the leftover hash lemma, we can combine LF with a 2-universal hash
function to ensure that the output is statistically close to uniformly random as
in Definition 2. For clarity, we do not use this generalization in our proofs.

Concrete Instantiations: The lossy trapdoor functions from [41] are also lossy
functions in the sense of Definition 2. Moreover, composed with 2-universal hash
functions, they satisfy the necessary parameters in our construction (see Sect. 3).
This would yield suitable lossy functions based on DDH and LWE.

2.3 Lossy Encryption

Definition 3. [5,40]: A lossy public-key encryption scheme is a tuple LE =
(Gen,Enc,Dec) of polynomial-time algorithms such that

– Gen(1λ, inj) outputs keys (pk, sk), keys generated by Gen(1λ, inj) are called
injective keys.

– Gen(1λ, lossy) outputs keys (pklossy,⊥), keys generated by Gen(1λ, lossy) are
called lossy keys.

– Enc(pk, ·, ·) : M × R → C.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all plaintexts x ∈ X,

Pr[(pk, sk) ←r Gen(1λ, inj); r ← R : Dec(sk,Enc(pk, x, r)) = x] = 1.

2. Indistinguishability of keys. Public keys pk are computationally indistin-
guishable in lossy and injective modes. Specifically, if proj : (pk, sk) → pk is
the projection map, then:

{proj(Gen(1λ, inj))} ≈c {proj(Gen(1λ, lossy))}.

3. Lossiness of lossy keys. For all (pklossy,⊥) ←r Gen(1λ, lossy), and all
x0, x1 ∈ M , the two distributions {r ←r R : (pklossy,Enc(pklossy, x0, r))}
and {r ←r R : (pklossy,Enc(pklossy, x1, r))} are statistically close, i.e. the
statistical distance is negligible in λ.
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We define a lossy encryption scheme LE to be μ-lossy if for all (pklossy,⊥) ←r

Gen(1λ, lossy) and for all x0, x1, we have that:

{r ←r R : (pklossy,Enc(pklossy, x0, r))} ≈μ {r ←r R : (pklossy,Enc(pklossy, x1, r))}

2.4 Functional Encryption

Definition 4. [12,38,43] A functional encryption scheme for a class of func-
tions F = F(1λ) over message space M = Mλ consists of four polynomial time
algorithms FE = (Setup,KeyGen,Enc,Dec):

1. Setup(1λ) – on input the security parameter λ outputs master public key
mpk and master secret key msk.

2. KeyGen(msk, f) – on input the master secret key msk and a description of
function f ∈ F and outputs a corresponding secret key skf .

3. Enc(mpk, x) – on input the master public key mpk and a string x, outputs a
ciphertext ct.

4. Dec(skf , ct) – on inputs the secret key skf and a ciphertext encrypting mes-
sage m ∈ M , outputs f(m).

A functional encryption scheme is perfectly correct for F if for all f ∈ F and
all messages m ∈ M:

Pr[(mpk,msk) ←r Setup(1λ) : Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1

In addition, for the proof of Theorem14, we need a stronger property from
the functional encryption schemes we use in our construction, which we call spe-
cial correctness of decryption keys. Special correctness requires that decrypting
any (potentially maliciously generated) ciphertext under the decryption key skf

yields a result which lies in the range of the function f . The functional encryp-
tion scheme based on iO and one-way functions from [26] satisfies this property.

Definition 5 (Special correctness of decryption keys). A functional
encryption scheme satisfies special correctness if for all λ ∈ N, for all ct, for
all f ∈ F , it holds that:

Pr

[
(mpk,msk) ←r Setup(1λ),
skf ←r KeyGen(msk, f) : Dec(skf , ct) ∈ Im(f) ∪ {⊥}

]
≥ 1 − negl(λ),

where Im(f) = {f(m) : m ∈ M} denotes the image of the function f .

Definition 6 (Selectively Indistinguishable Security). A functional
encryption scheme FE is selectively indistinguishable secure ( SEL-IND-FE-CPA)
if for all stateful PPT adversaries A, the advantage of A in the experiment
Exp-s-IND-FE-CPA described in Fig. 3 is negligible, namely:

AdvFEExp-s-IND-FE-CPA(λ, A) :=
∣
∣ Pr[Exp-s-IND-FE-CPAFE(1λ, A) = 1] − 1

2
]
∣
∣ ≤ negl(λ)
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Fig. 3. Experiment Exp-s-IND-FE-CPA for the selective indistinguishable security of
FE. The queries of A to oracle FE.KeyGen(msk, ·) are restricted to functions f such
that f(m0) = f(m1).

Definition 7 (Sub-exponential Selectively Indistinguishability Secu-
rity). A functional encryption scheme FE is sub-exponentially selectively indis-
tinguishability secure if it satisfies Definition 6 and in addition: for all PPT
adversaries A:

AdvFEExp-s-IND-FE-CPA(λ,A) ≤ 1
2λε , for some positive constant 0 < ε < 1.

2.5 Indistinguishability Obfuscation

Definition 8 (Indistinguishability Obfuscator[3,26]). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class Cλ if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have:

Pr[C ′(x) = C(x) : C ′ ←r iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher A, for all security
parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if
C0(x) = C1(x) for all inputs x, then:

AdviO(λ,A) := |Pr[A(iO(λ,C0)) = 1] − Pr[A(iO(λ,C1)) = 1]| ≤ negl(λ)

Sub-exponential Security. We say that iO is sub-exponentially secure when it
satisfies Definition 8 and also it satisfies that: for every (not necessary uniform)
PPT distinguisher A, the advantage AdviO(λ,A) is bounded by 1

2λε , for some
positive constant 0 < ε < 1.

2.6 Dual-Mode NIWI Proof Systems

A dual-mode non-interactive witness indistinguishable (DM-NIWI) proof sys-
tem [32] is a special type of non-interactive witness indistinguishable (NIWI)
proof system, in which the common reference string (CRS) generation is dual-
mode. The dual-mode property means that these systems have common reference
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string algorithms which generate indistinguishable CRS in “binding” or “hiding”
modes. The system satisfies statistical soundness and extractability in binding
mode and statistical witness indistinguishability in hiding mode.

Definition 9. A binary relation R is polynomially bounded if it is decidable
in polynomial time and there is a polynomial p such that |w| ≤ p(|x|), for all
(x,w) ∈ R. For any such relation and any x we set LR = {x| ∃w s.t. (x,w) ∈ R}.

Definition 10 (Dual-mode non-interactive witness indistinguishable
proof systems[32]). Let R be a polynomially-bounded binary relation R. A
dual-mode non-interactive witness indistinguishable (DM-NIWI) proof system
for language LR ∈ NP is a tuple of PPT algorithms DM-NIWI = (Setup,Prove,
Verify,Extract).

Setup(1λ,binding) on input the security parameter, outputs a common refer-
ence string crs which we call binding. It also outputs the corresponding extrac-
tion trapdoor tdext.
Setup(1λ,hiding) on input the security parameter, outputs a common refer-
ence string crs, which we call a hiding crs.
Prove(crs, x, w), on input crs, a statement x and a witness w, outputs a proof π.
Verify(crs, x, π), on input crs, a statement x and a proof π, outputs either 1
or 0.
Extract(tdext, x, π) on input the extraction trapdoor tdext, a statement x and a
proof π, it outputs a witness w.

We require the DM-NIWI to meet the following properties:

CRS indistinguishability. Common reference strings generated via Setup(1λ,
binding) and Setup(1λ,hiding) are computationally indistinguishable.More for-
mally, for all non-uniform PPT adversaries A, the advantage of A in the exper-
iment Exp-CRS-IND described in Fig. 4 is negligible, namely:

AdvDM-NIWI
Exp-CRS-IND(λ,A) :=

∣∣ Pr[Exp-CRS-INDDM-NIWI
0 (1λ,A) = 1]−

Pr[Exp-CRS-INDDM-NIWI
1 (1λ,A) = 1]

∣∣ ≤ negl(λ)

Fig. 4. Experiment Exp-CRS-INDDM-NIWI
b for CRS indistinguishability.
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Perfect completeness in both modes. For every (x,w) ∈ R, we have that:

Pr
[
crs ←r Setup(1λ,binding),
π ←r Prove(crs, x, w) : Verify(crs, x, π) = 1

]
= 1.

The same holds when instead of crs ←r Setup(1λ,binding), we have crs ←r

Setup(1λ,hiding).
Statistical soundness in binding mode. The system is statistically sound if

for every (possibly unbounded) adversary A, we have that

Pr

[

(crs, tdext) ←r Setup(1λ, binding),
(x, π) ←r A(crs)

: Verify(crs, x, π) = 1 ∧ x /∈ LR

]

= negl(λ).

Statistical extractability in binding mode. For any (x, π), it holds that:

Pr

[
(crs, tdext) ←r Setup(1λ, binding),
w ←r Extract(crs, tdext, x, π)

:

(
Verify(crs, x, π) = 1
=⇒ (x, w) ∈ R

)]

= 1 − negl(λ).

Note: In binding mode, statistical extractability implies statistical soundness.
Statistical witness-indistinguishability in hiding mode. We say that the

DM-NIWI system is statistically witness-indistinguishable if for every x, w0,
w1 with both (x,w0) ∈ R and (x,w1) ∈ R, proofs of x with witness w0 are
indistinguishable from proofs of x with witness w1. More formally, for every
interactive (potentially unbounded) adversary A:∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣
crs ←r Setup(1λ,hiding),
(x,w0, w1) ←r A(crs),
b ←r {0, 1},
π ←r Prove(crs, x, wb)

: A(crs, π) = b

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
≤ negl(λ),

where A is restricted to choosing (x,w0, w1), such that both (x,w0) ∈ R and
(x,w1) ∈ R.

Remark. Like with the original presentation of Groth and Sahai [32], we focus
our presentation on witness-indistinguishable (and not zero-knowledge) proof
systems. Unlike zero-knowledge, witness-indistinguishability has useful compo-
sitional properties (see [23]). If zero-knowledge is desired, however, a simple
transformation is possible: instead of proving x ∈ L, prove x ∈ L ∨ x̂ ∈ L̂
with our system, where L̂ is any fixed hard-to-decide language, and x̂ is a fixed
instance determined in crs. In binding mode, set up x̂ /∈ L̂, so that x ∈ L∨ x̂ ∈ L̂
implies x ∈ L. In hiding mode, set up x̂ ∈ L̂, in which case a witness to this fact
can be used as a simulation trapdoor to efficiently simulated proofs that achieve
statistical zero-knowledge.

2.7 Hidden Bits Non-interactive Zero-Knowledge

In our construction, we rely on a NIZK protocol in the hidden bits model. The
hidden-bits model was introduced by [22] and is an idealized setting in which
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the bits of the common reference string are hidden from the verifier (but not
from the prover). We call this the hidden reference string hrs.

When the prover computes a proof, it can choose which bits of hrs to reveal
to the verifier. Denote the revealed bit set by I, then by hrsI we will refer to
the corresponding revealed bits of the hrs. Our construction can be based on
the hidden-bits NIZK from [22], which proves graph Hamiltonicity and there-
fore covers any NP statement. Nevertheless, our construction is generic enough
to be based on any hidden-bits NIZK with statistical soundness and perfect
zero-knowledge (if we only had statistical ZK, then we would only get statis-
tical correctness of DM-NIWI). The hidden-bits NIZK from [22] satisfies both
statistical soundness and perfect ZK.

Definition 11. [22] A pair of PPT algorithms NIZKH = (PH ,VH) is a NIZK
proof system in the hidden-bits model if it satisfies the following properties:

1. Completeness: there exists a polynomial r denoting the length of the hidden
random string, such that for every (x,w) ∈ R we have that:

Pr
PH ,hrs←{0,1}t(|x|,λ)

[(π, I) ← PH(x,w, hrs) : VH(x, hrsI , I, π) = 1] = 1

where I ⊆ [t(|x|, λ)] and hrsI = {hrs[i] : i ∈ I}.
2. Statistical Soundness: for every x /∈ L we have that:

Pr
hrs←{0,1}t(|x|,λ)

[∃π, I : VH(x, hrsI , I, π) = 1] <
1

2λ+|x| .

3. Perfect Zero-Knowledge: there exists a PPT algorithm SH such that:

D0 := {(hrsI , π, I) : hrs ← {0, 1}t(|x|,λ), (π, I) ← PH(x,w, hrs)}(x,w)∈R ≡
≡ {SH(x)}(x,w)∈R =: D1

For ease of notation, we denote by ΔNIZKH

ZeroKnowledge(λ) := Δ(D0,D1) the sta-
tistical distance between distributions D0 and D1. In the case of perfect ZK,
ΔNIZKH

ZeroKnowledge(λ) := Δ(D0,D1) = 0.

3 Construction

In Fig. 5, we describe our DM-NIWI candidate. Our scheme uses a hidden-bits
NIZK proof system NIZKH = (PH ,VH) as a building block. To distinguish com-
mon reference strings and proofs between the two proof systems, we denote by
lowercase (π, hrs) the proofs and hidden reference strings for NIZKH . In contrast,
the common reference string and proofs of DM-NIWI are denoted as CRS and Π,
respectively.

The CRS of DM-NIWI contains the public key lpk of a lossy encryption scheme
LE, a lossy function H, uniformly random Z and crs, a functional decryption
function skf and an obfuscated program PC. Prover program PC(x,w, r) first
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encrypts (x,w) using randomness r to obtain a = LE.Enc(lpk, (x,w); r). Then
it computes either a HidingProof or a BindingProof depending on the mode and
outputs as proof a FE ciphertext C and a hidden-bits proof π. The verifier
decrypts C using skf and then uses the hidden-bits verifier to check proof π.

Notation and Parameters. For security parameter λ, we denote by p(|x| + λ)
the ciphertext size of LE. By p2(|x|, λ), we denote the size of the ran-
domness needed to compute FE ciphertexts, while p3(|x|, λ) denotes the
size of the random tape needed by the hidden-bits simulator SH . Recall
that t(|x|, λ) is the polynomial from Definition 11. Then LF must be a(
p1(|x|, λ), λ, t(|x|, 2λ + |x|), p(|x| + λ) + λ

)
-lossy function. Consider the subex-

ponential security level of iO,FE and PRF to be 1
2κε , for some constant 0 < ε < 1.

Then κ must be chosen as (p(|x| + λ) + λ)(1/ε).

4 Security Proof

Theorem 12. Let PRF be a subexponentially-secure puncturable pseudo-random
function, iO be a subexponentially-secure obfuscator, PRG a secure pseudo-random
generator, LE a secure lossy encryption scheme and FE a subexponentially-secure
selectively-IND-CPA functional encryption scheme, then the scheme DM-NIWI =
(DM-NIWI.Setup,DM-NIWI.Prover,DM-NIWI.Verifier) described in Fig. 5 is a
secure dual-mode non-interactive witness-indistinguishable system.

4.1 Completeness

Lemma 13. The DM-NIWI system in Fig. 5 is perfectly complete.

Proof. Completeness follows from the completeness of the hidden-bits NIZKH ,
the perfect ZK of NIZKH , the perfect correctness of FE and the functionality of
iO (the fact that for all programs C, we have that iO(C) is functionally equivalent
to C). Consider any (x,w) ∈ R and (C, π) = DM-NIWI.Prover(CRS, x, w, r). We
want to show that DM-NIWI.Verifier(C, π,CRS) = 1 with probability 1.

Case 1: CRS ←r DM-NIWI.Setup(1λ,binding) Since (C,Π) is a proof computed
by the honest prover, we know that (π, I) ← PH(x,w, hrs), where hrs is derived
from a, the lossy encryption of (x,w). From the perfect correctness of FE, we
have that indeed (T ⊕ crs)I = hrsI . Therefore, from the perfect correctness of
NIZKH , it follows that VH(I, (T ⊕ crs)I , x, π) accepts with probability 1.

Case 2: CRS ←r DM-NIWI.Setup(1λ,hiding) Since (C,Π) is a proof computed
by the honest prover, we know that (hrsI , π, I) ← SH(x; r3), where r3 is the
random tape used by the hidden-bits simulator SH . By the perfect correctness
of FE, decrypting C yields indeed hrsI ⊕crsI , therefore we can recover hrsI . Now,
since NIZKH has perfect zero-knowledge, it follows that VH(I, (T ⊕ crs)I , x, π)
accepts with probability 1 (or otherwise simulated proofs would not be identically
distributed to real ones).
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Fig. 5. Dual-mode NIWI scheme DM-NIWI = (Setup,Prover,Verifier). LF is a class
of lossy functions, PRG.Setup outputs pseudo-random generators from {0.1}λ to
{0, 1}2λ+|x|, FE is a functional encryption scheme, LE is a lossy encryption scheme,
iO is an indistinguishability obfuscator and (PH ,VH) is the hidden-bits model NIZK
from [22]. Parameter κ is chosen so that the sub-exponential security level is sufficient.

4.2 Soundness

Theorem 14. When in binding mode, the DM-NIWI system in Fig. 5 is statis-
tically sound.

Proof. Here we use the soundness of the hidden-bits scheme, coupled with the
lossiness of function H.
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Since crs is uniformly random, computing hrs := H(PRF(K1, a)) ⊕ crs will
yield another uniformly random string and will allow us to use the soundness of
the hidden-bits system. Moreover, we leverage the lossiness of H to ensure that
an adversary cannot influence the hrs sufficiently enough as to be able to cheat.
This is because the honest verifier applies H automatically when it functionally
decrypts ciphertext C.

More formally, fix some x ∈ {0, 1}n \ L. We prove that with overwhelming
probability over the common reference string, there is no proof Π which will
be accepted by the verifier. This is a selective notion which we later amplify to
obtain the security notion from Definition 10.

We want to bound Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1].
We can rewrite this probability as:

Pr
Z ←r {0, 1}2λ+|x|

crs ←r {0, 1}t(|x|,2λ+|x|)

H,PC, fmpk, fmsk, skf

[∃(π,C) : Verifier((π,C), (H, fmpk, lpk, skf , crs, Z,PC)) = 1]

Now, we condition on the event E that Z does not have a PRG preimage, which
happens with probability 1− 1

2λ+|x| . From the functionality of iO and the special
correctness of the FE scheme (see Definition 5), the adversary must produce
a ciphertext which decrypts to a value in the range of the function f . If Z
has no preimage, then being in the range of the function f is equivalent to
being of the form H(X)I , for some X (recall that H(X)I denotes the subset I
of the bits of H(X)). Note that both the functional equivalence of iO and the
special correctness of the functional encryption scheme are statistical properties.
Therefore, the probability above is less or equal than:

Pr
crs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π,X, I) : VH(x, (crs ⊕ H(X))I , I, π) = 1]

The next step is to bound the number of possible values of hrs. Recall that
hrs := H(PRF(K1, a)) ⊕ crs. From the lossiness of H, we know that there are at
most 2k images of H, where k is the second parameter of H (see Definition 2).
Thus, we can compute an union bound over all these images H(X), bounding
the above probability by:

2k × Pr
crs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, (crs ⊕ H(X))I , I, π) = 1]

Now, recall that we denote crs ⊕ H(X) as hrs. Since crs is uniformly randomly
distributed, so is hrs, and we can rewrite the probability above as:

2k × Pr
hrs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1]

Finally, by using the soundness of the hidden-bits NIZK, we know that:

Pr
hrs ←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1] ≤ 1
22λ+|x|
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Therefore, we can conclude that:

Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1] ≤ 1
22λ+|x|−k

.

The only remaining step is to amplify the security from the selective variant
we have just proven to the adaptive one from Definition 10. We eliminate the
restriction that x is fixed by computing a union bound over all possible values of
x. In particular, for H parameter k = λ, we conclude that for every unbounded
adversary A:

Pr

[
(CRS, tdext) ←r Setup(1λ, binding),
(x, Π) ←r A(CRS)

: Verifier(CRS, x, Π) = 1 ∧ x /∈ LR

]

=
1

2λ
.

As a last check, we must ensure that event ¬E still happens with negligible
probability. If we compute the same union bound as above, the probability of
¬E is now bounded by 1

2λ . Therefore, the system is statistically sound.

4.3 Witness Indinstinguishability

Theorem 15. In hiding mode, the DM-NIWI system from Fig. 5 is statistically
witness-indistinguishable.

Proof. By using the statistical lossiness of LE, we show that no (potentially
unbounded) adversary A can break the witness-indistinguishability of DM-NIWI.
Recall that the lossiness of LE implies that for all (lpk,⊥) ← LE.Gen(1λ, lossy),
and for all x,w0, w1, encryptions of (x,w0) are statistically indistinguishable
from encryptions of (x,w1). More formally:

D0 := {r ← R : (lpk, LE.Enc(lpk, (x,w0), r))} ≈ 1
2λ

≈ 1
2λ

{r ← R : (lpk, LE.Enc(lpk, (x,w1), r))} =: D1.

The goal is to show that for every hiding CRS and for every (x,w0, w1), with
both (x,w0) ∈ R and (x,w1) ∈ R, proofs for (x,w0) are statistically indistin-
guishable from proofs for (x,w1). Fix (x,w0, w1) and let D′

b be the following
distribution:

D′
b :=

{

CRS ←r DM-NIWI.Setup(1λ, hiding) : π ←r DM-NIWI.Prove(CRS, x, wb)
}

(1)

We want to prove that we have that D′
0 ≈ 1

2λ
D′

1. To achieve this, we exhibit
a probabilistic function F which on input Db outputs D′

b, i.e. F (Db) = D′
b,

without needing to know bit b. If such an F exists, then D0 ≈ 1
2λ

D1 implies that
F (D0) ≈ 1

2λ
F (D1). Function F works as follows:

1. F obtains public key lpk from Db. Then F esentially computes DM-NIWI.
Setup(1λ) and chooses all the parameters itself, except for lpk which comes
from Db.
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In more detail, F chooses the PRG, a dense function H, keys K1,K2,K3, mas-
ter keys (fmpk, fmsk) and functional key skf just as in DM-NIWI.Setup(1λ).
It also draws uniformly random strings z and crs. It then sets Z = PRG(z)
and uses all these parameters to construct program ProgProvhiding,crs, which
it obfuscates obtaining PC.

2. For hiding CRS, we have that PC obfuscates ProgProvhiding,crs. Therefore,
F can compute the output of DM-NIWI.Prove(CRS, x, wb) even without
knowing bit b: F has access to ciphertext ct from distribution Db. Cipher-
text ct can originate from either (x,w0) or (x,w1). F simply computes
(C, π) ←r HidingProofcrs(x, ct) and uses (C, π) to construct distribution D′

b.
Observe that this is only possible because HidingProofcrs(x, ct) crucially only
has x and ct as inputs and does not directly depend on witnesses w0, w1

themselves.

We have shown that F (D0) ≈ 1
2λ

F (D1), for every (x,w0, w1) and for all hiding

CRS ←r DM-NIWI.Setup(1λ,hiding). This concludes witness-indistinguishability
as defined in Definition 10. (In Definition 10, the adversary can choose (x,w0, w1)
after seeing the CRS, but since F (D0) ≈ 1

2λ
F (D1) for every (x,w0, w1) and for

every hiding CRS, the adversary will not have advantage greater that 1
2λ ).

4.4 CRS Indistinguishability

Theorem 16. The DM-NIWI system from Fig. 5 satisfies computational indis-
tinguishability between common reference strings generated in binding mode and
common reference strings generated in hiding mode.

Proof. The proof proceeds by a sequence of games where G0 is defined exactly
as Exp-CRS-IND0(1λ,A) (see Fig. 4). G0 corresponds to the experiment in which
adversary A against crs indistinguishability receives common reference strings in
binding mode. A high-level summary is provided in Fig. 6. For any game Gi, we
denote by Advi(A) the advantage of A in Gi, that is, Pr[Gi(1λ,A) = 1], where
the probability is taken over the random coins of Gi and A. At a high level, we
use four hybrid games G0,G1,G2 and G3. The proof is in three phases:

1. In the first phase, we transition from G0 to G1. Game G1 is defined to be
the same as G0, except for the following two changes: First, we switch the
mode of the lossy function H from lossy to dense. This is done with the end
goal of ensuring that the output of H is uniformly distributed at specific
values of a. Secondly, we use the security of the PRG to change Z from
being uniformly random to being in the image of the PRG. This is done by
setting Z = PRG(z). To anticipate, this will provide us with a trapdoor for
replacing functional ciphertext encoding X with ciphertexts encoding hrsI .
The fact that G0 ≈c G1 is proven in Lemma 17.

2. In the second phase, we transition from G1 to G2. Game G2 is defined to be
precisely the same as G1, except that DM-NIWI.Setup(1λ) computes PC =
iO(ProgProvhiding,crs). This transition only makes changes in the program
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ProgProv. By iterating over all values of a, for each a we replace real proofs
by simulated proofs from the hidden-bits simultator SH .
We carefully leverage PRF security, the injective mode of LE and the density
of H to ensure that for a specific a∗, its corresponding hrs∗ is of the form
β ⊕crs, for uniformly random β. Then we use functional encryption security
to replace the functional ciphertext corresponding to a∗ to one which only
leaks hrsI . But at this stage, since only hrsI is encoded in the ciphertext, we
can use the zero knowledge of the hidden-bits NIZK to replace real proofs
by simulated ones. We formally prove that G1 ≈c G2 in Theorem 19.

3. In the third stage, we define G3 to be the same as Exp-CRS-IND1(1λ,A).
The only difference between G2 and G3 is that in the later, the public key
of the lossy encryption scheme LE is switched from injective to lossy mode.
We prove that G2 ≈c G3 in Lemma 18.

Lemma 17 (From G0 to G1). For every PPT adversary A, it holds that
|Adv0(A) − Adv1(A)| ≤ negl(λ).

Proof. The only differences between G0 and G1 are the fact that Z is changed
from Z ←r {0, 1}2λ+|x| to Z ← PRG(z) and function H is changed from H ←
LF.Setup(1λ, lossy) to H ← LF.Setup(1λ,dense). The lemma follows from the
security of the PRG and from the computational indistinguishability of the modes
of the lossy function LF. Namely, if A can distinguish between G0 and G1, there
exists either a PPT adversary B1 that can break the security of the PRG or a
PPT adversary B2 that can distinguish with non-negligible advantage between
the lossy and dense modes of LF.

Fig. 6. An overview of the games used in the proof of Theorem 16, changes between
consecutive games are highlighted with gray boxes.

Lemma 18 (From G2 to G3). For every PPT adversary A, it holds that
|Adv2(A) − Adv3(A)| ≤ negl(λ).

Proof. The only change between G2 and G3 is that the (lpk, lsk) keys of LE are
changed from injective to lossy. The lemma follows directly from the fact that
{proj(LE.Gen(1λ, inj))} ≈c {proj(LE.Gen(1λ, lossy))}, where proj : (lpk, lsk) →
lpk and from the fact that lsk is not used anywhere in the construction.
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Theorem 19 (From G1 to G2). For every PPT adversary A, there exist PPT
adversaries B1,B2,B3, such that:

|Adv0(A) − Adv1(A)| ≤ 2p(|x|+λ)
(
8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2)+

AdvFEExp-s-IND-FE-CPA(κ,B3) + ΔNIZKH

ZeroKnowledge(λ) +
1

2p(|x|+λ)+λ

)
.

Proof. The proof strategy is to iterate over all values of a = LE.Enc(lpk, (x,w), r)
and make changes to the obfuscation of the program ProgProv. We define a series
of hybrids H1,a∗ , for all a∗ ∈ {0, 1}p(|x|+λ) in Fig. 7. Briefly, hybrid H1,a∗ is defined
as follows:
Hybrid H1,a∗ is defined in the same way as game G1, except that:

1. DM-NIWI.Setup is changed such that the computation of the public param-
eter PC = iO(ProgProvbinding,crs) is replaced by PC = iO(ProgProv1,a∗).

2. Program ProgProv1,a∗ on inputs x,w, r is the program which first computes
a = LE.Enc(lpk, (x,w), r). Then it compares a with hardcoded value a∗ and
for a < a∗, it computes (C, π) = HidingProofcrs(x, a), while for a ≥ a∗ it
computes (C, π) = BindingProofcrs(x,w, a). It then returns proof (C, π).

Note that hybrid H1,0p(|x|+λ) is the same as game G1, while hybrid H1,1p(|x|+λ)

is the same as game G2 = Exp-CRS-IND1(1λ,A). Just as before, for every hybrid
Hi, we denote by Advi(A) the advantage of A in Hi, that is, Pr[Gi(1λ,A) = 1].
In Theorem 20, we formally prove that every two consecutive hybrids H(1, a∗)
and H(1, a∗ + 1) are computationally indistinguishable, i.e. H(1,a∗−1) ≈c H(1,a∗),
for every a∗ ∈ [2p(|x|+λ)].

Fig. 7. Hybrid H(1,a∗) for the proofs of Theorems 19 and 20. Note that the Prover,
Verifier, BindingProof, HidingProof and function f are the same as defined in Fig. 5 and
are not represented again for succinctness. Changes between hybrids H(1, a∗) and game
G1 are highlighted in light gray.
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Theorem 20 (From H(1,a∗) to H(1,(a∗+1))). For every PPT adversary A, there
exist PPT adversaries B1,B2,B3, such that:

|Adv(1,a∗)(A) − Adv(1,(a∗+1))(A)| ≤ 8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2)+

AdvFEExp-s-IND-FE-CPA(κ,B3) + ΔNIZKH

ZeroKnowledge(λ) +
1

2p(|x|+λ)+λ
.

Proof. We prove this through a sequence of hybrids H(1,a∗) up to H(15,a∗),
where hybrid H(15,a∗) is identical to hybrid H(1,(a∗+1)). In terms of notation,
hybrid H(i,a∗) will have PC = iO(ProgProvi,a∗,crs). The proof strategy is to
leverage the properties of iO,FE,PRFs, LE and H in order to replace actual
proofs computed by the hidden-bits prover PH to simulated proofs computed
by SH . Notice that in H(1,a∗), proofs corresponding to a are computed by sub-
program BindingProofcrs(x,w, a), while in H(15,a∗) they are computed by subpro-
gram HidingProofcrs(x,w). This is the only difference between the two hybrids.
In order to replace subprogram BindingProofcrs() by HidingProofcrs() we define
a series of subprograms HybridProofi,a∗,crs, for i ∈ [15]. As expected, every
hybrid H(i,a∗) will be defined to be identical to H1,a∗ , except that for a = a∗,
(C, π) = HybridProofi,a∗,crs(x,w, a). The hybrids are described in Fig. 7. For a
detailed decription of subprograms HybridProofi,a∗,crs, see Fig. 9. More figures
are provided in the full version (Fig. 8).

Hybrid H(2,a∗). In this hybrid, the subprogram HybridProof2,a∗,crs is changed
so that key K1 is punctured at point a∗. This is a standard punctured pro-
gramming technique. Once we puncture the key, only K1{a∗} is hardcoded
in the program, along with the evaluation of r∗

1 ← PRF(K1, a
∗), but not K1

Fig. 8. Hybrids H(i,a∗) for the proofs of Theorems 19 and 20. Note that the
Prover, Verifier, BindingProof, HidingProof and function f are the same as defined
in Fig. 5 and are not represented again for succinctness. For i = 1, subpro-
gram HybridProof1,a∗,crs = BindingProofcrs and for i = 15, HybridProof15,a∗,crs =
HidingProofcrs. All ProgProvi,a∗,crs(x, w, r) are padded so that they have equal sizes.
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itself. Observe that key K1 is punctured in ProgProv2,a∗,crs and all its sub-
programs as well. In H(i,a∗), i ∈ [15] subprograms BindingProofcrs(x,w, a) and
HidingProofcrs(x,w, a) are never called on inputs a �= a∗, so they never need the
evaluation of PRF(K1, a

∗).

This puncturing can be done since a∗ is a parameter of the hybrid (we are
enumerating over all values of a). Since the programs are functionally equivalent,
this change is computationally indistinguishable by the security of iO. Observe
that when we hardcode a value in a subprogram HybridProofi,a∗,crs, it is under-
stood that this value is also hardcoded in ProgProvi,a∗,crs. A full description of
HybridProof2,a∗,crs can be found in Fig. 9. This shows the following lemma:

Lemma 21 (From H(1,a∗) to H(2,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(1,a∗)(A) − Adv(2,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(3,a∗). Here subprogram HybridProof3,a∗,crs is changed so that r∗
1 is

now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K1{a∗} by a uniformly random). A
full description of subprogram HybridProof3,a∗,crs can be found in Fig. 9. This
shows the following lemma:

Lemma 22 (From H(2,a∗) to H(3,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(2,a∗)(A) − Adv(3,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(4,a∗). Subprogram HybridProof2,a∗,crs is changed so that key K2 is
punctured at point a∗. This is by the same argument as in Lemma 21 and uses
the security of iO. Once we puncture the key, only K2{a∗} is hardcoded in all
subroutines of ProgProv4,a∗,crs, along with the evaluation of r∗

2 ← PRF(K2, a
∗),

but not K2 itself. This shows the following lemma:

Lemma 23 (From H(3,a∗) to H(4,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(3,a∗)(A) − Adv(4,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(5,a∗). Here subprogram HybridProof5,a∗,crs is changed so that r∗
2 is

now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K2{a∗} by a uniformly random). The
full description of HybridProof5,a∗,crs can be found in the full version. This shows
the following lemma:

Lemma 24 (From H(4,a∗) to H(5,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(4,a∗)(A) − Adv(5,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(6,a∗). Subprogram HybridProof6,a∗,crs precomputes and hardcodes the
(C∗, π∗) corresponding to a∗. For this we make the crucial observation that for
every a, there exists only one corresponding (x,w). This follows from the perfect
correctness of the lossy encryption scheme LE, because LE is in injective mode
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Fig. 9. Descriptions of HybridProofi,a∗,crs, for i = 1 . . . 4. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. When we hard-
code a value in a subprogram HybridProofi,a∗,crs, it is understood that this value is also
hardcoded in ProgProvi,a∗,crs. If a key K is punctured in HybridProofi,a∗,crs, we under-
stand that it is punctured in ProgProvi,a∗,crs and all its subprograms as well. Note that
HybridProof1,a∗,crs is the same as BindingProofcrs.

and because a = LE.Enc(lpk, (x,w); r). To compute this hybrid, we use lsk to
decrypt a∗ and obtain the corresponding (x∗, w∗). Thus, if a∗ is known in advance
this means (x∗, w∗) is also known in advance. Since crs is a parameter of the
circuit and also known in advance, we can compute hrs∗ ← H(r∗

1)⊕crs, (π∗, I∗) ←
PH(x∗, w∗, hrs∗) and C∗ = FE.Enc(fmpk, (r∗

1 , I∗, 0, 0); r∗
2). We hardcode (C∗, π∗)

and these are also the returned values when HybridProof6,a∗,crs is invoked on
(x∗, w∗, a∗). Since ProgProv6,a∗,crs is functionally equivalent to ProgProv5,a∗,crs,
this step is justified by iO security. The full description of HybridProof6,a∗,crs can
be found in the full version. From all the above, we have the following lemma:

Lemma 25 (From H(5,a∗) to H(6,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(5,a∗)(A) − Adv(6,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(7,a∗). To obtain subprogram HybridProof7,a∗,crs, we use the selective
security of the functional encryption scheme FE to switch ciphertext C∗ = FE.
Enc(fmpk, (r∗

1 , I∗, 0, 0); r∗
2) to ciphertext C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗

I∗); r∗
2).

We argue that these two ciphertexts are indistinguishable. Consider decryption
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key skf used by the verifier, this key is associated to function f. But from the
definition of f, it holds that:

f(r∗
1 , I∗, 0, 0) = f(0, I∗, z, T ∗

I∗).

Since r∗
2 used for encryption has been previously switched to a uniformly

random, we can therefore reduce the gap between these two games to the
SEL-IND-FE-CPA game. Also note that we are only able to use the selective

security of the FE scheme because all the values above are known in advance
and are derived from a. The full description of HybridProof7,a∗,crs can be found
in the full version. We have therefore proven the following lemma:

Lemma 26 (From H(6,a∗) to H(7,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that:

|Adv(6,a∗)(A) − Adv(7,a∗)(A)| ≤ AdvFEExp-s-IND-FE-CPA(κ,B).

HybridH(8,a∗). Subprogram HybridProof8,a∗,crs is defined like HybridProof7,a∗,crs,
except that the computation of hrs∗ changes. Instead of computing hrs∗ ← T ∗⊕crs,
where T ∗ ← H(r∗

1), we compute T ∗ ←r {0, 1}p1(|x|,λ) and let hrs∗ ← T ∗ ⊕crs. This
step is justified by the dense mode of H. From Definition 2, we know that for uni-
formly random r∗

1 , we have H(r∗
1) statistically indistinguishable from a uniformly

random. Moreover, by choosing the security parameter in LF.Setup (1λ,dense) to
be large enough, we can offset the 2p(|x|+λ) factor coming from enumerating over
all values of a. The full description of HybridProof8,a∗,crs can be found in the full
version. We have therefore proven the following lemma:

Lemma 27 (From H(7,a∗) to H(8,a∗)). For every (potentially unbounded)
adversary A, it holds that:

|Adv(7,a∗)(A) − Adv(8,a∗)(A)| ≤ 1
2p(|x|+λ)+λ

.

Hybrid H(9,a∗). In this hybrid, we use the zero-knowledge property of the
hidden-bits NIZK system to replace real proofs by simulated ones. Subprogram
HybridProof9,a∗,crs is defined like HybridProof8,a∗,crs, but now the precomputation
of the program involves choosing a uniformly random r∗

3 ←r {0, 1}p3(|x|,λ). Poly-
nomial p3(|x|, λ) represents the size of the random tape needed by the hidden-bits
simulator SH . Proofs are now simulated, i.e. (hrs∗I∗ , π∗, I∗) ← SH(x∗; r∗

3)
We now argue that this hybrid is statistically indistinguishable from the

previous one. The reason this works is that we already used FE security to
ensure that only the revealed bits of the hrs∗I∗ are encoded in ciphertext C∗ and
also that hrs∗ is uniformly random. This, coupled with the fact that in H(9,a∗)
only the value of the real proof (C∗, π∗) is hardcoded means we can use the ZK
property of NIZKH . In HybridProof9,a∗,crs we can hardcode only the simulated
proof, and there is no need to include the simulator code in ProgProv9,a∗,crs.

The full description of HybridProof9,a∗,crs can be found in the full version,
along with the proof of the following lemma:
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Lemma 28 (From H(8,a∗) to H(9,a∗)). Let a∗ = LE.Enc(lpk, (x∗, w∗); r). Then
it holds that either:

1. if (x∗, w∗) ∈ R, then H(8,a∗) and H(9,a∗) are statistically close. Namely, for
every (potentially unbounded) adversary A,

|Adv(8,a∗)(A) − Adv(9,a∗)(A)| ≤ ΔNIZKH

ZeroKnowledge(λ).

2. if (x∗, w∗) /∈ R, then H(8,a∗) and H(9,a∗) are computationally indistinguish-
able. Namely, for every PPT adversary A, there exists PPT adversary B,
such that:

|Adv(8,a∗)(A) − Adv(9,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(10,a∗). In subprogram HybridProof10,a∗,crs, the only change made is
that r∗

2 is changed from a uniformly random value (as in hybrid H(9,a∗)) to r∗
2 ←

PRF(K2, a
∗). This change is justified by the pseudo-randomness of PRF(K2, ·)

at punctured point a∗. The full description of HybridProof10,a∗,crs can be found
in the full version. We have the following lemma:

Lemma 29 (From H(9,a∗) to H(10,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(9,a∗)(A) − Adv(10,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(11,a∗). In subprogram HybridProof11,a∗,crs, the only change made is
that r2 is not precomputed anymore (as in hybrid H(10,a∗)).

Value r2 ← PRF(K2, a
∗) is now compted on the fly. This means C must also

be computed on the fly in this hybrid. These changes are justified by the fact
that the two programs are functionally equivalent and thus their obfuscations
computationally indistinguishable. The full description of HybridProof11,a∗,crs can
be found in the full version. This shows the following lemma:

Lemma 30 (From H(10,a∗) to H(11,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A) − Adv(11,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(12,a∗). In subprogram HybridProof12,a∗,crs, we puncture key K3 at
K3{a∗} and only hardcode this punctured key in our programs. This change
is justified by the fact that the two programs are functionally equivalent and
thus their obfuscations computationally indistinguishable. The full description
of HybridProof12,a∗,crs can be found in the full version. This shows the following:

Lemma 31 (From H(11,a∗) to H(12,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A) − Adv(11,a∗)(A)| ≤ AdviO(κ,B).
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Hybrid H(13,a∗). Subprogram HybridProof13,a∗,crs is changed so that r∗
3 is not a

hard-wired uniformly random value anymore, but is chosen as r∗
3 ← PRF(K3, a

∗).
This change is justified by the pseudo-randomness of PRF(K3, ·) at punctured
point a∗. The full description of HybridProof13,a∗,crs can be found in the full
version. From the above, we have:

Lemma 32 (From H(12,a∗) to H(13,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(12,a∗)(A) − Adv(13,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(14,a∗). In subprogram HybridProof14,a∗,crs the key K3 is not punctured
anymore at a∗. This means that r3 ← PRF(K3, a) is not hardwired anymore. As
a consequence, the simulated proofs are also not hardcoded. Since this program
is functionally equivalent to HybridProof14,a∗,crs, we justify this change by the
security of iO. The full description of HybridProof14,a∗,crs can be found in the full
version. From the above, we have:

Lemma 33 (From H(13,a∗) to H(14,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(13,a∗)(A) − Adv(14,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(15,a∗). In subprogram HybridProof15,a∗,crs the key K1 is not punctured
anymore at a∗. Key K1 is not even used anymore in this subprogram, therefore
this program is functionally equivalent to HybridProof14,a∗,crs. We thus justify
this change by the security of iO. The full description of HybridProof15,a∗,crs can
be found in the full version. From all the above, we have:

Lemma 34 (From H(14,a∗) to H(15,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(14,a∗)(A) − Adv(15,a∗)(A)| ≤ AdviO(κ,B).
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Abstract. In this work, we study the fascinating notion of output-
compressing randomized encodings for Turing Machines, in a shared ran-
domness model. In this model, the encoder and decoder have access to a
shared random string, and the efficiency requirement is, the size of the
encoding must be independent of the running time and output length of
the Turing Machine on the given input, while the length of the shared
random string is allowed to grow with the length of the output. We show
how to construct output-compressing randomized encodings for Turing
machines in the shared randomness model, assuming iO for circuits and
any assumption in the set {LWE, DDH, Nth Residuosity}.

We then show interesting implications of the above result to basic fea-
sibility questions in the areas of secure multiparty computation (MPC)
and indistinguishability obfuscation (iO):
1. Compact MPC for Turing Machines in the Random Oracle

Model. In the context of MPC, we consider the following basic feasi-
bility question: does there exist a malicious-secure MPC protocol for
Turing Machines whose communication complexity is independent of
the running time and output length of the Turing Machine when exe-
cuted on the combined inputs of all parties? We call such a protocol
as a compact MPC protocol. Hubácek and Wichs [HW15] showed
via an incompressibility argument, that, even for the restricted set-
ting of circuits, it is impossible to construct a malicious secure two
party computation protocol in the plain model where the communi-
cation complexity is independent of the output length. In this work,
we show how to evade this impossibility by compiling any (non-
compact) MPC protocol in the plain model to a compact MPC pro-
tocol for Turing Machines in the Random Oracle Model, assuming
output-compressing randomized encodings in the shared randomness
model.

2. Succinct iO for Turing Machines in the Shared Randomness
Model. In all existing constructions of iO for Turing Machines, the
size of the obfuscated program grows with a bound on the input
length. In this work, we show how to construct an iO scheme for
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Turing Machines in the shared randomness model where the size
of the obfuscated program is independent of a bound on the input
length, assuming iO for circuits and any assumption in the set {LWE,
DDH, Nth Residuosity}.

1 Introduction

In this work, we study the fascinating notion of output-compressing randomized
encodings for Turing machines. We explore the implication of such encodings
to a natural and surprisingly unexplored form of secure multiparty computa-
tion for Turing Machines, and also to indistinguishability obfuscation for Turing
Machines.

Output-compressing randomized encodings were introduced in the works of
Ananth and Jain [AJ15] and Lin, Pass, Seth and Telang [LPST16] as a gen-
eralization of randomized encodings [IK00] and succinct randomized encodings
[KLW15,BGL+15,CHJV15]. Recall that in an output-compressing randomized
encoding scheme for Turing machines, there exists an encode algorithm that
takes as input a Turing machine M and an input x. It outputs an encoding
˜Mx such that the decode algorithm, given this encoding ˜Mx, can compute the
output M(x). The efficiency requirement is that for any machine M and input
x, the size of the encoding is poly(|M |, |x|, λ), for some fixed polynomial poly,
where λ is the security parameter. In particular, the size of the encoding should
be independent of the output length and the running time of the machine M on
input x.1 In those papers, the authors defined both indistinguishability based
and simulation based security notions. In this work, we will focus on the stronger
notion of simulation based security. This notion requires an output-compressing
randomized encoding scheme to have a corresponding simulator Sim, that, for
any Turing machine M and input x, given just the output M(x), along with the
size of the machine |M | and the input length |x|, outputs a simulated encoding
˜Mx that is indistinguishable from a real encoding of the machine M and input x.2

As stated here, this goal is impossible in the standard model due to an “incom-
pressibility” argument as shown by Lin et al. [LPST16]. Such incompressibility
arguments have been a source of impossibility proofs in many areas of cryptogra-
phy such as functional encryption, garbled circuits and secure multiparty com-
putation [BSW11,AIKW13,CIJ+13,AGVW13,HW15] and this is perhaps the
reason why simulation secure output compressing randomized encodings have
not been well-studied so far.

Our starting observation is that the above impossibility fails to hold in a
shared randomness model, where the size of the randomness can grow with

1 The size can depend logarithmically on the output length and running time.
2 We actually consider a stronger notion where part of the input need not be hidden,

and we require that the size of the encoding should not grow with this revealed part.
This is a generalization of the notion of partial garbling schemes introduced by Ishai
and Wee [IW14].
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the output length. More formally, both the encoder and decoder share a ran-
dom string (whose size can grow with the output length) and we require two
properties: (1) For any machine M and input x, the size of the encoding is
poly(|M |, |x|, λ), for some fixed polynomial poly. (2) There exists a simulator
Sim, that, for any Turing machine M and input x, given just the output M(x),
along with the length of the machine |M | and the input length |x|, outputs a pair
of a simulated encoding ˜Mx and a shared random string that is indistinguishable
from the pair of a real encoding and a uniformly random string.

Our first main result is that we can, in fact, construct output-compressing
randomized encodings for Turing machines in the shared randomness model,
assuming indistinguishability obfuscation (iO) for circuits along with any
assumption in {Decisional Diffie Hellman (DDH), Learning With Errors (LWE),
N th Residuosity} where the size of the shared randomness equals the output
length. Recall that iO is necessary because output-compressing randomized
encodings for Turing machines implies iO for circuits as shown by Lin et al.
[LPST16] (it is easy to see that this implication to iO remains true even in the
shared randomness model). We describe the techniques used in our construction
in Sect. 2.1. We then use this new tool to tackle basic feasibility questions in the
context of two fundamental areas in Cryptography: secure multiparty computa-
tion (MPC) and indistinguishability obfuscation (iO).

Compact MPC for Turing Machines with Unbounded Output in the
Random Oracle model. The first basic feasibility question we address is the
following: Consider a set of n mutually distrusting parties with inputs x1, . . . , xn

respectively that agree on a Turing machine M . Their goal is to securely com-
pute the output M(x1, . . . , xn) without leaking any information about their
respective inputs, where we stress that the output can be of any unbounded
polynomial size. Crucially, we require that the communication complexity of
the protocol (the sum of the length of the messages exchanged by all the par-
ties) is poly(|M |, |x1|, . . . , |xn|, λ) for some fixed polynomial poly where λ is the
security parameter. In particular, the communication complexity should be inde-
pendent of the output length and the running time of the machine M on input
(x1, . . . , xn). We call such an MPC protocol to be compact. Indeed, this commu-
nication efficiency requirement is the most natural efficiency requirement in the
context of MPC for Turing machines.

Remarkably, this extremely basic question, in the context of Turing machines,
has never been considered before to the best of our knowledge (see related work
below for comparison with previous work). At first glance, one may think that
Fully Homomorphic Encryption (FHE), one of the most powerful primitives in
Cryptography, should help solve this problem. The reason being that, at least in
the two party setting, FHE allows one party to encrypt its input and send it to
the other party, who can then homomorphically evaluate the function to be com-
puted “under the hood” and compute an encryption of the final output. However,
its then not clear how this evaluator would learn the output since he does not have
the decryption key. Sending the encryption of the final output to the other party
would also blow up the communication complexity. This is related to the question
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posed by Hubácek and Wichs [HW15], where they consider a circuit based model,
a special case of our notion. That is, they consider n parties who wish to securely
evaluate a circuit on their joint inputs such that the communication complexity of
the protocol is independent of the output length of the circuit. They show how to
achieve semi-honest secure two party computation with this efficiency requirement
assuming iO for circuits and a somewhere statistically binding (SSB) hash func-
tion. Further, they showed that in the context of malicious adversaries,3 in the
standard model, it is impossible to construct a secure computation protocol with
such efficiency requirement even for just two party computation.

Our approach to this problem is motivated by an unwillingness to give up on
malicious secure compact MPC. To that end we must find a way to evade the
impossibility result, and we do so by considering the well-studied programmable
random oracle (RO) model [BR93,Nie02,DSW08,Wee09,CJS14,CDG+18]. We
stress that the RO model is typically exploited in pursuit of efficiency improve-
ments, but here we are seeking to use it to establish basic feasibility results.
Indeed, the RO model has enabled important feasibility results in the past which
were impossible in the plain model, for example unconditional non-interactive
zero-knowledge arguments for NP with sub-linear communication [IMS12] and
Universal Samplers [HJK+16]. In addition, a straightforward modification of
the impossibility argument in [HW15] shows the programmable RO model is
the weakest model in which we can hope to obtain simulation-secure compact
MPC. In the programmable RO model, the simulator is allowed to choose the
RO’s responses to the adversary adaptively, based on the adversary’s previous
messages. If we restrict the simulator to choosing the RO’s responses selectively,
before any interaction with the adversary, then this model is not sufficient to
achieve compact MPC. This also rules out the possibility of compact MPC in
the CRS model.4 Aside from its theoretical interest in terms of basic feasibility,
our work motivates the following question: is there a weaker notion of security
for MPC for which compact MPC is realizable in the plain model? A full answer
to this question is outside the scope of this paper, but we believe that this is
an excellent topic for future work. As a starting point, in the full version of our
paper we sketch a simple example where the techniques in our paper can still
yield meaningful security guarantees in the plain model.

More specifically, we show how to construct a compact constant round MPC
protocol for Turing machines in the RO model secure against malicious adver-
saries, assuming iO for circuits and any assumption in {DDH, LWE, Nth Resid-
uosity}. Recall that by compact, we mean that the communication complexity of
the protocol is independent of the output length and running time of the Turing
machine being evaluated on the joint inputs of the parties. We obtain this result
by using output-compressing randomized encodings in the shared randomness

3 Their impossibility in fact even ruled out the simpler setting of honest but determin-
istic adversaries - such an adversary behaves honestly in the protocol execution but
fixes its random tape to some deterministic value.

4 See the full version of the paper for a full presentation of this argument, based on
Theorem 4.3 in [HW15].
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model to compile any non-compact malicious secure constant round MPC proto-
col (even just for circuits) in the plain model into a compact constant round MPC
protocol for Turing machines in the RO model while preserving the round com-
plexity. We again stress that to the best of our knowledge, this is the first MPC
protocol for Turing machines where the communication complexity is bounded
by a polynomial in the description length of the machine and the input lengths
of all the parties. We also observe that as a corollary of our work, we obtain
the first malicious secure compact MPC protocol in the circuit based model of
Hubácek and Wichs [HW15], in the RO model. We describe the techniques used
in our construction in Sect. 2.2.

Succinct iO for Turing Machines for Bounded Inputs in the Shared
Randomness Model. The problem of bootstrapping from iO for circuits to
iO for Turing machines has been the subject of intense study over the last few
years. In 2015, in three concurrent works [KLW15,BGL+15,CHJV15]5 showed
how to construct iO for Turing machines where the size of the obfuscation grows
with a bound on the input length to the Turing machine. In this work, we ask
the following question: can we construct iO for Turing machines in the shared
randomness model where the obfuscator and evaluator have a shared random
string that grows with the input bound but the size of the obfuscation does not?

Lin et al. [LPST16] showed that output-compressing randomized encodings
are closely related to iO for Turing machines. That is, they showed that simula-
tion secure output-compressing randomized encodings in the plain model implies
iO for Turing machines with unbounded inputs.6 In particular, this implies iO for
Turing machines with bounded inputs where the size of the obfuscation does not
grow with the input bound. As we know, simulation secure output-compressing
randomized encodings are impossible in the plain model. However, in turns out
that this implication does not carry over in the shared randomness model. That
is, if we start with output-compressing randomized encodings in the shared ran-
domness model and apply the transformation in [LPST16], in the resulting iO
scheme, the size of the obfuscation does in fact grow with the input bound. The
key obstacle is that in the transformation, the obfuscation consists of an output-
compressing randomized encoding that is the root of a GGM-like tree [GGM86].
This encoding, on evaluation, outputs another output-compressing randomized
encoding corresponding to its child node and the process is repeated. In order
to evaluate the obfuscated program on an input of length n, the evaluator has
to traverse the obfuscated program up to a depth of length n. As a result, the
machine being encoded in the root needs the shared randomness for each layer,
up to a depth of length n. Hence, the size of the machine encoded in the root

5 Recently, concurrent to our work, [AL18,AM18,GS18] also showed how to construct
iO for Turing machines where, similar to [KLW15,BGL+15,CHJV15], the size of the
obfuscation grows with a bound on the input length to the Turing machine.

6 Lin et al. [LPST16] in fact showed that a weaker notion of distributional indistin-
guishability based secure output-compressing randomized encodings suffices to imply
iO for Turing machines with unbounded inputs. However, they also supplement this
by showing that it is impossible, in general, to construct such encodings.
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grows with the input bound and so does the size of the obfuscated program.
Note that this approach fails even if the size of the shared randomness for the
encoding is just 1 bit (independent of the length of the output).

We show how to overcome this obstacle by taking a completely different app-
roach. In our solution, the obfuscated program consists of an output-compressing
randomized encoding in which, crucially, neither the machine being encoded nor
the input to the machine, depends on the input bound of the obfuscation scheme.
Hence, the size of the encoding, and therefore, also the size of the obfuscation,
does not grow with the input bound. We elaborate more about the techniques
used in our construction in Sect. 2.3. Concretely, letting n denote the input
bound, we obtain iO for Turing machines M in the shared randomness model
where the size of the obfuscation is poly1(|M |, λ) for some fixed polynomial poly1,
and where the obfuscator and evaluator have a shared random string of length
poly(n, λ) for some fixed polynomial poly. Our assumptions are again iO for
circuits and any assumption in {DDH, LWE, Nth Residuosity}.

On Reuse of the Shared Randomness. We note that it is possible for mul-
tiple output-compressing randomized encodings to reuse the shared randomness
in a limited way. Namely, if we have several output-compressing randomized
encodings, and we can construct hybrids such that only one randomized encod-
ing needs to be simulated at a time, then all of the encodings can share the
same CRS. This applies to the succinct iO construction: multiple circuits can be
obfuscated using a single shared random string. Moreover, modulo a preprocess-
ing phase which can be shared among all obfuscations, the time to obfuscate M
is independent of the output length or running time of M .

1.1 Our Results

In this paper, we achieve the following results.

(1) Output-compressing randomized encodings.
We prove the following theorem:

Theorem 1 (Informal). There exists an output-compressing randomized
encoding scheme for Turing machines in the shared randomness model assuming
the existence of:

– iO for circuits (AND)
– A ∈ {DDH, LWE, Nth Residuosity}.
Further, the length of the shared randomness is equal to the output length.

(2) Compact MPC for Turing machines with unbounded output in
the RO model.
We prove the following theorem:

Theorem 2 (Informal). For any n, t > 0, there exists a constant round com-
pact MPC protocol amongst n parties for Turing machines in the Programmable
Random Oracle model that is malicious secure against up to t corruptions assum-
ing the existence of:
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– Output-compressing randomized encodings in the shared randomness model
(AND)

– Constant round MPC protocol amongst n parties in the plain model that is
malicious secure against up to t corruptions.

Once again, recall that by compact, we mean that the communication com-
plexity of the protocol is independent of the output length and running time of
the Turing machine being evaluated on the joint inputs of the parties. Here, we
note that the above compiler even works if the underlying MPC protocol is for
circuits. That is, we can convert any constant round protocol for circuits into
a constant round protocol for Turing machines (with an input bound) by first
converting the Turing machine into a (potentially large) circuit.

Also, we can instantiate the underlying MPC protocol in the following man-
ner to get a round optimal compact MPC: append a non-interactive zero knowl-
edge argument based on DLIN in the common random string model [GOS06]
to either the two round semi-malicious MPC protocol of [MW16] that is based
on LWE in the common random string model or the ones of [GS18,BL18] that
are based on DDH/N th residuosity in the plain model, to get two round mali-
cious secure MPC protocols in the common random string model. We can then
implement the common random string required for the underlying protocol via
the RO. We thus achieve the following corollary:

Corollary 1. Assuming the existence of:

– iO for circuits (AND)
– DDH, or LWE, or Nth Residuosity (AND)
– DLIN,

there exists a compact, round optimal (two round) MPC protocol π for Turing
machines in the Programmable Random Oracle model that is malicious secure
against a dishonest majority.

Our result also gives a malicious secure compact MPC protocol in the circuit-
based setting of [HW15] in the RO model. We also achieve other interesting
corollaries by instantiating the underlying MPC protocol in the setting of super-
polynomial simulation or in the setting of concurrent executions. We elaborate
on both the above points in Sect. 6.

(3) Succinct iO for Turing machines for bounded inputs in the shared
randomness model.
We prove the following theorem:

Theorem 3 (Informal). There exists an iO scheme for Turing machines in the
shared randomness model where the size of the obfuscated program is independent
of the input bound assuming the existence of:

– iO for circuits,
– DDH, or LWE, or Nth Residuosity.
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1.2 Related Work

Lin, Pass, Seth and Telang [LPST16] construct OCREs from compact functional
encryption (which is implied by iO), in the common reference string model.
This is different from the shared randomness model in that the CRS which is
shared among all parties must be generated in a specific fashion: in particular,
[LPST16] require that the CRS be a specific function secret key. This model
requires more trust be placed in the trusted setup phase. We note that our
construction of compact MPC requires strong OCREs in the shared randomness
model; [LPST16] does not consider strong OCREs, but even if a construction
did exist in the common reference string model, to the best of our knowledge, it
would not be sufficient to construct compact MPC.

A series of works [OS97,GHL+14,GGMP16,Mia16,HY16,LO17] consider
MPC for RAM programs. However, in all of them, the communication com-
plexity of the protocol grows with the running time of the RAM program. As
a result, the communication complexity of the protocol in the Turing machine
model would also grow with the output length. We stress that in our work, we
require that the communication complexity can grow with neither output length
nor running time of the Turing machine.

Ananth et al. [AJS17] construct an iO scheme for Turing machines in
which, for any machine M and input bound L, the size of the obfuscation is
|M | + poly(L, λ). However, in our setting, we require that the size be indepen-
dent of this bound L.

2 Technical Overview

2.1 Output Compressing Randomized Encodings

We will now discuss a high-level overview of our output-compressing randomized
encoding (OcRE) scheme in the shared randomness model. Let M be a family
of Turing machines with output size bounded by o-len. An OcRE scheme for
M in the shared randomness model consists of a setup algorithm, an encoding
algorithm and a decoding algorithm. The setup algorithm takes as input security
parameter λ together with a string rnd of length o-len, and outputs a succinct
encoding key ek of size poly(λ).7 This encoding key is used by the encoding
algorithm, which takes as input a machine M ∈ M, an input x ∈ {0, 1}∗, and
outputs an encoding ˜Mx. Finally, the decoding algorithm can use ˜Mx and rnd to
recover M(x). For efficiency, we require that the encoding time depends only on
|M |, |x| and security parameter λ. In particular, the size of the encoding should
not grow with the output length o-len or the running time of M on x.8

7 We will assume o-len is at most 2λ.
8 Strictly speaking, it is allowed to depend polylogarithmically on the running time of

M on input x; for this overview, we will ignore this polylogarithmic dependence on
the running time.
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The starting point of our construction is the succinct randomized encoding
scheme of [KLW15], which is an encoding scheme for boolean Turing machines,
and the size of the encoding depends only on |M |, |x| and security parameter
λ. We want to use this tool as a building block to build an encoding scheme
for general Turing machines (i.e. with multi-bit output) where the size of the
encoding still only depends on |M |, |x| and λ. As a first step, let us consider
the following approach. The encoding algorithm outputs an obfuscated program
Prog[M,x], which has M and x hardwired, takes input j ∈ [o-len], and out-
puts a KLW encoding of Mj , x (the randomness for computing the encoding
is obtained by applying a PRF on j). Here, Mj is a boolean Turing machine
which, on input x, outputs the jth bit of M(x). The decoding algorithm runs
Prog for each j ∈ [o-len], obtains o-len different encodings, and then decodes
each of them to obtain the entire output bit by bit. Clearly, this construction
satisfies the efficiency requirement. This is because the size of the program Prog
depends only on |M |, |x|, and hence the size of the encoding only depends on
|M |, |x|, λ. As far as security is concerned, it is easy to show that this scheme
satisfies indistinguishability-based security; that is, if (M0, x0) and (M1, x1) are
two pairs such that M0(x0) = M1(x1), |M0| = |M1|, |x0| = |x1|, then the obfus-
cation of Prog[M0, x0] is computationally indistinguishable from the obfuscation
of Prog[M1, x1]. Unfortunately, recall that our goal is simulation security, and
it is not possible to simulate an obfuscation of Prog[M,x], given only M(x) as
input. In particular, if y = M(x) is a long pseudorandom string (whose length
can be much longer than the size of Prog[M, ]), then should be hard to compress
y to a short encoding (as shown by Lin et al. [LPST16]).

As noted in the previous section, we will evade the “incompressibility” argu-
ment by allowing the shared randomness to have size that grows with the out-
put length. Our goal will be to allow the simulator to embed the output of the
machine M in this randomness. Our second attempt is as follows. The setup
algorithm computes a short commitment ek to the shared randomness (say with
a Merkle tree), and outputs ek as the encoding key. The encoding algorithm
computes an obfuscation of Prog[M,x, ek], which has M , x, ek hardwired, takes
as input an index j, a bit b (which is supposed to be the jth bit of the shared
randomness), and an opening π that the bit b is indeed the jth bit of the shared
random string. The program checks the proof π, and then computes a KLW
encoding of (Mj , x).

While the bit b is essentially ignored in the real-world encoding, it is used by
the simulator in the ideal world. In the ideal world, the simulator, on receiving
M(x), masks it with a pseudorandomly generated one-time pad and outputs
the resultant string as the shared randomness, and the short commitment ek
is computed as in real world. For the encoding, it outputs an obfuscation of
Prog-sim[ek], which takes as input (j, b, π), checks the proof π, unmasks the bit
b to obtain M(x)j and simulates the KLW randomized encoding using M(x)j .
This program has behavior identical to Prog[M,x, ek] as long as the adversary
only gives openings to the original bits of the shared randomness.
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There is a simple problem with this idea: obfuscation only guarantees indis-
tinguishability of programs that are functionally equivalent, and although the
security of a Merkle tree would make it computationally infeasible for an adver-
sary to come up with an opening to a wrong value, these inputs do in fact exist.
To fix this problem, we use a special iO-compatible family of hash functions called
‘somewhere-statistically binding (SSB) hash’, introduced by [HW15]. Intuitively,
this primitive is similar to a merkle tree except for two additional features. First,
it allows a given position to be statistically “bound”, where for that index it is
only possible to give an opening for the correct bit. So there are three algorithms,
Setup,Open, and Verify, as in the case of a Merkle tree, but Setup additionally
takes as input a position to bind. If j is the bound position for H then there
is no opening π for a bit b �= xj such that Verify(π, b, j,H(x)) accepts. Second,
this bound position is hidden, so we can change it without being detected. Using
this new hash allows us to make a series of hybrids where we change the shared
randomness one bit at a time without giving up indistinguishability.

2.2 Compact MPC for Turing Machines in the Random Oracle
Model

We now describe the techniques used in our round preserving compiler from
any non-compact constant round malicious secure MPC protocol in the plain
model to a compact constant round malicious secure MPC protocol in the RO
model, using output-compressing randomized encodings in the shared random-
ness model.

To begin with, consider any constant round MPC protocol π in the plain
model. For simplicity, lets assume that every party broadcasts a message in
each round. In order to make it compact, our main idea is a very simple one:
use output-compressing randomized encodings to compress the messages sent by
every party in each round so that they are independent of the output length and
running time of the machine. That is, instead of sending the actual message of
protocol π, each party just sends an output-compressing randomized encoding
of a machine and its private input that generates the actual message.

More precisely, consider a party P with input x that intends to send a message
msg1 in the first round as part of executing protocol π. Let’s denote M to be the
Turing machine that all the parties wish to evaluate. Let M1 denote the algorithm
used by the first party to generate this message msg1 in the first round. Now,
instead of sending msg1, P sends an encoding of machine M1 and input (x, r)
where r is the randomness used by party P in protocol π. The recipient first
decodes this encoding to receive P’s first round message of protocol π - msg1.
Without loss of generality, let’s assume that the length of randomness r is only
proportional to the input length (else, internally, M1 can apply a pseudorandom
generator). In terms of efficiency, the description of the machine M1 only depends
on M , and so it is easy to see that the size of the encoding does not depend on
the non-compact message msg1. A natural initial observation is that in order to
construct a simulator for the protocol, we need to generate simulated encodings.
However, as we know that simulation secure output-compressing randomized
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encodings are impossible, we will resort to using our new encodings constructed
in the shared randomness model.

Need for Random Oracle. Recall that in the introduction we ruled out the
possibility of malicious-secure compact MPC in the CRS model. As a result, it
must be the case that our protocol is not a compact and secure MPC protocol in
the CRS model. We illustrate what goes wrong with a naive use of our output-
compressing randomized encodings. After receiving a message in the first round
from every other party, P first decodes all these messages to compute a transcript
trans for protocol π. P then computes an encoding of machine M2 and input
(x, r, trans) where M2 is the machine used to generate the next message msg2 and
sends this in round 2. Looking ahead to the security proof, the simulator will have
to generate a simulated encoding of this message and also simulate the shared
randomness. To do that, the simulated shared randomness will have to depend on
M2(x, r, trans). Notice that the simulator will have to decide the simulated CRS
before beginning the protocol execution. This is not possible, however, because
the value trans depends on the adversary’s input and randomness, both of which
are not even picked before the adversary receives the CRS.

We use the programmable RO model to circumvent this. Now, in each round,
along with its encoding, P also sends a short index. The recipient first queries
the RO on this index to compute the shared randomness that is then used to
decode. Looking ahead to the proof, the simulator can pick a random index
that the RO has not been queried on so far and “program” the RO’s output
to be the simulated shared randomness. This can be executed after receiving
the transcript of the previous round and before sending the pair of index and
simulated encoding in any round.

Strong Output-Compressing Randomized Encodings. Next, it turns out
that, in fact, just standard output-compressing randomized encodings do not
suffice for the above transformation. To see why, consider any round j. Let
trans denote the transcript of the underlying protocol π at the end of round
(j − 1). Now, in round j, party P sends an encoding of machine Mj and input
(x, r, trans), where Mj is the machine used to generate the jth round message.
However, the size of trans could depend on the output length of the protocol
because trans denotes the transcript of the underlying non-compact protocol π.
A natural attempt to solve would be to let trans be the transcript of the new
compact protocol up to this point instead of the underlying protocol, and to
let Mj decode the transcript when forming the next message. This also turns
out to be problematic, though, since we now need a randomized encoding of a
machine Mj which accesses the RO. As a result, since the size of the encoding
in each round grows with the input to the machine being encoded, the size of
the messages in each round also does depend on the output length. Thus we are
seemingly back to square one, since our transformation still yields a non-compact
protocol.

In order to solve this issue, we make the crucial observation that the part
of the input to the machine being encoded that actually grows with the output
length of the protocol is actually public information. That is, we do not care
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about any privacy for this part of the input and only require that the size of
the encoding does not grow with this public input. Corresponding to this, we
define a new stronger version of output-compressing randomized encodings in the
shared randomness model, which we call strong output-compressing randomized
encodings. In more detail, the encoding algorithm takes as input a machine M , a
private input x1 and a public input x2 and outputs an encoding. Informally, the
efficiency requirement is that the size of the encoding is poly(|M |, |x1|) for a fixed
polynomial poly and does not depend on x2, in addition to being independent of
the output length and running time. Further, security requires that, in addition
to the output M(x1, x2), the simulator is also given the public input x2 and the
tuple of honest encoding and honest shared randomness should be indistinguish-
able from the tuple of simulated encoding and simulated shared randomness.
Thus, if we use strong output-compressing randomized encodings, we overcome
the issue. Our construction of strong output-compressing randomized encodings
is very similar to the construction in Sect. 2.1 except that we replace the succinct
notion called succinct partial randomized encodings. More details can be found
in Sect. 5.

Another subtle detail is that, while proving security, in the sequence of
hybrids, it is essential that we first switch the encodings to be simulated before
switching the messages of the protocol π from real to simulated. This is because
we can not afford to send honest encodings of simulated messages of protocol π
as the description of the simulator’s machine to generate these messages could
grow with the output bound. One interesting consequence of the above point is
that our transformation is oblivious to whether the underlying simulator rewinds
or runs in super-polynomial time. As a result, our construction naturally extends
even to the setting of concurrent security if the underlying protocol is concur-
rently secure.

Notice that our compiler to solve this very basic feasibility question is in
fact, remarkably simple, which further highlights the power of simulation secure
output-compressing randomized encodings in the shared randomness model. We
refer the reader to Sect. 6 for more details about our compact MPC protocol and
proof.

Implication in the Circuit Model of [HW15]. First, recall that in the setting
of Hubácek and Wichs [HW15], the goal is to construct an MPC protocol for
circuits where the communication complexity is independent of the output length
of the circuit. At first glance, it might seem that our construction trivially implies
a result in the circuit setting as well. However, this is not quite directly true.
Observe that in our protocol, the communication complexity grows with the
description of the Turing machine and so, when we convert the circuit to the
Turing machine model, the communication complexity grows with the size of the
circuit. In the case of a circuit, the output length can in fact be proportional
to the size of the circuit. To circumvent this, we will consider a Turing machine
representation of a Universal circuit, that takes as input a circuit C and an
input x and evaluates C(x). Now, notice that the size of this universal circuit,



354 S. Badrinarayanan et al.

and by extension, the size of the Turing machine evaluated, is independent of
the circuit being evaluated. Further, we will set the circuit being computed - C,
to be part of the “public” input to each strong output-compressing randomized
encoding that is computed in each round of the protocol. Since all parties have
knowledge of C, we don’t need to hide this input. As a result, neither the machine
being encoded nor the private input depend on the circuit being evaluated and
this solves the problem. That is, the communication complexity of the resulting
compiled protocol is independent of the output length of the circuit.

2.3 Succinct iO for Turing Machines in the Shared Randomness
Model

We now describe the techniques used in our construction of iO for Turing
machines in the shared randomness model where the size of the obfuscated pro-
gram does not grow with a bound on the input length. We will denote such obfus-
cation schemes as succinct iO schemes in this section. First, we recall from the
introduction that the transformation of Lin et al. [LPST16] to go from output-
compressing randomized encodings to succinct iO does not work in the shared
randomness model. Briefly, the reason was that if we want to support Tur-
ing machines with input length n, then there must be n chunks of the shared
randomness, and the ‘top-level’ encoding in the LPST scheme must contain a
commitment to each of the n chunks, and as a result, the size grows with n.

Therefore, our obfuscation scheme will have a completely different structure.
Recall that [KLW15] showed an obfuscation scheme where the size of obfuscation
of M with input bound n grows with the security parameter, input bound and
machine size (but does not depend on the running time of M on any input). We
will use such weakly-succinct obfuscation scheme to obtain succinct iO.

Consider a program P that takes as input a Turing machine M , input bound
n, and outputs a weakly-succinct obfuscation of M with input bound n (the
randomness for obfuscation can be generated using a pseudorandom generator).
The size of the output grows with n, size of M and security parameter λ. But the
important thing to note here is that the size of program P does not grow with
input bound n. Therefore, we can use output-compressing randomized encodings
to construct succinct iO. The obfuscation algorithm simply outputs an encoding
of program P with inputs (M,n). Clearly, the size of this encoding does not grow
with n (using the efficiency property of ocre). The proof of security follows from
the security of the obfuscation scheme and the output-compressing randomized
encoding scheme.

Finally, an informed reader might recall that the LPST construction required
the security parameter to grow at each level, while in our case, we can work with a
single security parameter. The reason for this is because their security reduction
loses a factor of 2 for each level, and therefore the security parameter must grow
at each level. In our case, we have a different proof structure, and the switch
from encoding of P,M0 to P,M1 in the security proof is a single-step jump.
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Organization. We first describe some preliminaries in Sects. 3 and 4. In Sect. 5,
we describe the construction of strong output-compressing randomized encod-
ings for Turing machines in the shared randomness model. Then, in Sect. 6,
we construct compact MPC protocols in the random oracle model. Finally, we
defer to the full version of the paper our construction of succinct iO for Turing
machines and succinct partial randomized encodings.

3 Preliminaries

We will use λ to denote the security parameter throughout the rest of the paper.
For any string s of length n, let s[i] denote the ith bit of s. Without loss of
generality, we assume all Turing machines are oblivious.

We defer to the full version of our paper for some additional preliminaries,
including the definition of secure multiparty computation in the random oracle
model.

4 Randomized Encodings: Definitions

4.1 Succinct Partial Randomized Encodings

In this section, we introduce the notion of succinct partial randomized encodings
(spRE). This is similar to the notion of succinct randomized encodings, except
that the adversary is allowed to learn part of the input. For efficiency, we require
that if the machine has size m, and � bits of input are hidden, then the size of
randomized encoding should be polynomial in the security parameter λ, � and
m. In particular, the size of the encoding does not depend on the entire input’s
length (this is possible only because we want to hide � bits of the input; the
adversary can learn the remaining bits of the input). This notion is the Turing
Machine analogue of partial garbling of arithmetic branching programs, studied
by Ishai and Wee [IW14].

A succinct partial randomized encoding scheme SPRE for a class of boolean
Turing machines M consists of a preprocessing algorithm Preprocess, encoding
algorithm Encode, and a decoding algorithm Decode with the following syntax.

Preprocess(1λ, x2 ∈ {0, 1}∗): The preprocessing algorithm takes as input security
parameter λ (in unary), string y ∈ {0, 1}∗ and outputs a string hk.

Encode(M ∈ M, T ∈ N, x1 ∈ {0, 1}∗, hk ∈ {0, 1}p(λ)): The encoding algorithm
takes as input a Turing machine M ∈ M, time bound T ∈ N, partial input
x1 ∈ {0, 1}∗, string hk ∈ {0, 1}p(λ), and outputs an encoding ˜M .

Decode(˜M,x2, hk): The decoding algorithm takes as input an encoding ˜M , a
string x2 ∈ {0, 1}∗, string hk and outputs y ∈ {0, 1,⊥}.

Definition 1. Let M be a family of Turing machines. A randomized encoding
scheme SPRE = (Preprocess,Encode,Decode) is said to be a succinct partial
randomized encoding scheme if it satisfies the following correctness, efficiency
and security properties.
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– Correctness: For every machine M ∈ M, string x = (x1, x2) ∈ {0, 1}∗,
security parameter λ and T ∈ N, if hk ← Preprocess(1λ, x2), then
Decode(Encode(M,T, x1, hk), x2) = TM(M,x, T ).

– Efficiency: There exist polynomials pprep, penc and pdec such that for every
machine M ∈ M, x = (x1, x2) ∈ {0, 1}∗, T ∈ N and λ ∈ N, if
hk ← Preprocess(1λ, x2), then |hk| = pprep(λ), the time to encode ˜M ←
Encode(M,T, x1, hk) is bounded by penc(|M |, |x1|, log T, λ), and the time to
decode ˜M is bounded by min(Time(M,x, T ) · pdec(λ, log T ).

– Security: For every PPT adversary A = (A1,A2), there exists a PPT simu-
lator S such that for all PPT distinguishers D, there exists a negligible func-
tion negl(·) such that for all λ ∈ N, Pr[1 ← D(Expt-SPRE-RealSPRE,A(λ))] −
Pr[1 ← D(Expt-SPRE-IdealSRE,A,S(λ))] ≤ negl(λ), where Expt-SPRE-Real and
Expt-SPRE-Ideal are defined in Fig. 1. Moreover, the running time of S is
bounded by some polynomial pS(|M |, |x1|, log T, λ).

Fig. 1. Simulation Security Experiments for partial randomized encodings

Our construction of succinct partial randomized encodings is closely related
to the succinct randomized encodings scheme by [KLW15] and we defer the
details to the full version of our paper.

4.2 Strong Output-Compressing Randomized Encodings
in the Shared Randomess Model

The notion of succinct randomized encodings (defined in the full version of our
paper) was originally defined for boolean Turing machines. We can also con-
sider randomized encodings for Turing machines with long outputs. Using (stan-
dard) succinct randomized encodings, one can construct randomized encodings
for Turing machines with multi-bit outputs, where the size of encodings grows
linearly with the output size. In a recent work, Lin et al. [LPST16] introduced a
stronger notion called output-compressing randomized encodings, where the size
of the encoding only depends sublinearly on the output length. Lin et al. also
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showed that simulation based security notions of output-compressing random-
ized encodings are impossible to achieve. In this work, we consider a stronger
notion of output-compressing randomized encodings in the shared randomness
model where the encoder and decoder have access to a shared random string
(denoted by crs). Here, the machine also takes another public input x2 along
with a private input x1 with the requirement that the size of the encoding
should only grow polynomially in the size of the machine and the private input
x1. In particular, it does not grow with x2 or the running time of the machine
or its output length. We define it formally below.

A strong output-compressing randomized encoding scheme S.OcRE = (Setup,
Encode,Decode) in the shared randomness model consists of three algorithms
with the following syntax.

Setup(1λ, 1o-len, crs ∈ {0, 1}o-len): The setup algorithm takes as input security
parameter λ, output-bound o-len and a shared random string crs of length
o-len. It outputs an encoding key ek.

Encode((M, tmf(·)), x = (x1, x2), T, ek): The encoding algorithm takes as input
an oblivious Turing Machine M with tape movement function tmf(·), input
x consisting of a private part x1 and a public part x2, time bound T ≤ 2λ (in
binary) and an encoding key ek, and outputs an encoding ˜Mx.

Decode(˜Mx, x2, crs): The decoding algorithm takes as input an encoding ˜Mx, a
public input x2, the shared random string crs and outputs y ∈ {0, 1}∗ ∪ {⊥}.

Definition 2. A strong output-compressing randomized encoding scheme
S.OcRE = (Setup,Encode,Decode) in the shared randomness model is said to be
secure if it satisfies the following correctness, efficiency and security requirements.

– Correctness: For all security parameters λ ∈ N, output-length bound o-len ∈ N,
crs ∈ {0, 1}o-len, machine M with tape movement function tmf(·), input x =
(x1, x2), time bound T such that |M(x)| ≤ o-len, if ek ← Setup(1λ, 1o-len, crs),
˜Mx ← Encode((M, tmf(·)), x, T ek), then Decode(˜Mx, x2, crs) = TM(M,x, T ).

– Efficiency: There exist polynomials p1, p2, p3 such that for all λ ∈ N, o-len ∈
N, crs ∈ {0, 1}o-len:
1. If ek ← Setup(1λ, 1o, crs), |ek| ≤ p1(λ, log o).
2. For every Turing machine M , time bound T , input x = (x1, x2) ∈

{0, 1}∗, if ˜Mx ← Encode(M,x, T, ek), then |˜Mx| ≤ p2(|M |, |x1|, log |x2|,
log T, log o, λ).

3. The running time of Decode(˜Mx, x2, crs) is at most min (T,Time(M,x)) ·
p3(λ, log T ).

– Security: For every PPT adversary A = (A1,A2), there exists a simulator
S such that for all PPT distinguishers D, there exists a negligible function
negl(·) such that for all λ ∈ N,

Pr[1 ← D(Expt-S.OcRE-RealS.OcRE,A(λ))]
− Pr[1 ← D(Expt-S.OcRE-IdealS.OcRE,A,S(λ))] ≤ negl(λ),

where Expt-S.OcRE-Real and Expt-S.OcRE-Ideal are defined in Fig. 2.
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Fig. 2. Simulation Security Experiments for strong output-compressing randomized
encodings in the shared randomness model

Remark: In particular, note that strong output-compressing randomized encod-
ings (S.OcRE) implies output-compressing randomized encodings (OcRE) by set-
ting the public input x2 to be ⊥.

5 Strong Output-Compressing Randomized Encodings
in the CRS Model

In this section, we show a construction of strong output-compressing randomized
encodings in the common random string (CRS) model. Formally, we show the
following theorem:

Theorem 4. Assuming the existence of iO for circuits and somewhere statisti-
cally binding (SSB) hash and Puncturable PRFs and Succinct partial randomized
encodings for single-bit output Turing machines, There exists a strong output-
compressing randomized encoding scheme for Turing machines in the shared ran-
domness model.

Instantiating the SSB hash and the succinct partial randomized encodings,
we get the following corollary:

Corollary 2. Assuming the existence of iO for circuits and any A ∈ {DDH,
LWE, Nth Residuosity}, There exists a strong output-compressing randomized
encoding scheme for Turing machines in the shared randomness model.

Notation and Primitives Used: We will be using the following cryptographic
primitives for our construction:

– Indistinguishability obfuscation for circuits (Ckt.Obf, Ckt.Eval).
– Succinct partial randomized encodings for single-bit output Turing machines

(SPRE.Preprocess, SPRE.Encode, SPRE.Decode). Without loss of generality,
we assume that the algorithm SPRE.Encode uses λ bits of randomness - it can
internally apply a PRG on this randomness if a larger amount is required.
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– Somewhere statistically binding hash(SSB.Gen, SSB.Open, SSB.Verify).
– A Puncturable PRF (F1, PPRF.Puncture1) that takes inputs of size λ and

outputs 1 bit.
– A Puncturable PRF (F2, PPRF.Puncture2) that takes inputs of size λ and

outputs λ bits.

5.1 Construction

S.OcRE.Setup(1λ, 1o, crs ∈ {0, 1}o): The setup algorithm does the following:
1. Choose hash function H ← SSB.Gen(1λ, o, 0).9

2. Compute h = H(crs) and set ek = (h,H).
S.OcRE.Encode(M,x = (x1, x2), T, ek = (h,H)): The encoding algorithm does

the following:
1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key KSPRE for the puncturable PRF F2.
3. Let Mi denote the turing machine that, on input x, runs the machine

M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

4. Compute ˜Prog ← Ckt.Obf(Prog, 1λ) where the program Prog is defined in
Fig. 3. Note that the size of the program Prog is padded appropriately so
that it is equal to the size of the program Prog-sim defined later in Fig. 4.

5. Output ˜Mx = ( ˜Prog, t,H).
S.OcRE.Decode(˜Mx = ( ˜Prog, t,H), x2, crs): For each i ∈ [o], the decoding algo-

rithm computes bit outi as follows:

Fig. 3. Circuit Prog

9 We modify the syntax of the SSB hash system slightly to allow the binding index
to range from 0, . . . , o and without loss of generality, just set SSB.Gen(1λ, o, 0) =
SSB.Gen(1λ, o, 1). That is, when the binding index is set as 0, we actually don’t care
at what index the hash system is bound at and will not actually use the statistically
binding property. This is just to be consistent with the definition of the SSB hash
system.
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1. Parse crs = (crs[1], crs[2], . . . , crs[o]), where each crs[j] is a bit.
2. Compute SSB proof for each crs[j]; that is, compute π[j] =

SSB.Open(H, crs, j).
3. For j = 1 to t, do:

(a) Compute ˜Mi[j] = Ckt.Eval( ˜Prog, (i, crs[i], π[i], j)).
4. Let ˜Mi = (˜Mi[1] ˜Mi[2] . . . ˜Mi[t]). Compute outi = SPRE.Decode(˜Mi, x2).

Finally, it outputs (out1 out2 . . . outo).

Correctness and Succinctness. Correctness follows from the correctness of
(SPRE.Encode,SPRE.Decode) and (Ckt.Obf, Ckt.Eval).

Below we show the three efficiency properties required by the definition.

1. If ek ← Setup(1λ, 1o, crs), |ek| = �hash(λ) + �fn(λ), where �hash and �fn are
from SSB.

2. For every Turing machine M , time bound T , input x = (x1, x2) ∈ {0, 1}∗,
if ˜Mx ← Encode(M,x, T, ek), then |˜Mx| = (|prog| + |t|) ≤ |Prog| + poly(λ).
Prog is padded to be the same length as the programs used in the hybrids
and Prog-sim, so |Prog| is the maximum of the length of these programs. By
inspecting the values hardwired in each of these programs we get |Prog| ≤
p(|h|, |M |, |x1|, |hk|, k, log o, t), where k is the maximum size of the keys of
F1 and F2. By the efficiency of SPRE, the definition of SSB hashes and the
definition of puncturable PRFs we get that |Prog| ≤ p2(λ, |M |, |x1|, log o) and
thus |˜Mx| ≤ p2(λ, |M |, |x1|, log |x2|, log o) for some fixed polynomial p2.

3. The running time of Decode(˜Mx, x2, crs) is at most O(o×t1+o×t×t2) where
t1 is the running time of SPRE.Decode(˜Mi, x2) and t2 is the running time of
Ckt.Eval( ˜Prog, (i, crs[i], π[i], j)). By the efficiency of the SPRE scheme and the
iO scheme we have Decode(˜Mx, x2, crs) ≤ min (T,Time(M,x)) · p3(λ, log T ).

5.2 Proof of Security

Description of Simulator. The simulator S.OcRE.Sim gets as input the value
M(x) (which is the output of the machine M on input x) and the public part of
the input x2, and it must simulate the shared random string crs and an encoding
˜Mx of the machine M and x. We now describe the simulator.

S.OcRE.Sim(1|M|,1|x1|,x2,1λ,M(x),T) :
The simulator does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key Kcrs for the puncturable PRF F1 and a key Ksim for the punc-

turable PRF F2.
3. Then, for each i, compute crs[i] = M(x)i ⊕ wi where wi = F (Kcrs, i) and

M(x)i denotes the ith bit of M(x). The shared random string is set to be
(crs[1] crs[2] . . . crs[o]).

4. Choose a hash function H ← SSB.Gen(1λ, o, 0) and compute h = H(crs).



Output Compression, MPC, and iO for Turing Machines 361

5. Compute ˜Prog-sim ← Ckt.Obf(Prog-sim, 1λ), where Prog-sim is defined in
Fig. 4.

6. Let Mi denote the turing machine that, on input x, runs the machine
M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, z, hk; r)|) using any random string r and any input z
such that |z| = |x1|.

7. Set ˜Mx = ( ˜Prog-sim, t).

Fig. 4. Simulated program Prog-sim

Hybrids. We will show that the real and ideal worlds are indistinguishable via
a sequence of (o+2) hybrid experiments Hyb0 to Hybo+1 where Hyb0 corresponds
to the real world and Hybo+1 corresponds to the ideal world. For each i ∈ [o], in
hybrid Hybi∗ , the first i∗ bits of the CRS are computed as encryptions of output
bits (with the w’s as one time pads). The encoding of M , x does not compute
the SRE for i ≤ i∗. More formally:

Hybrid Hybi∗ :
The challenger does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key Kcrs for the puncturable PRF F1 and two keys Ksim,KSPRE for

the puncturable PRF F2.
3. Then, for each i ≤ i∗, compute crs[i] = M(x)i ⊕ wi where wi = F1(Kcrs, i)

and M(x)i denotes the ith bit of M(x).
4. For each i > i∗, pick crs[i] uniformly at random.
5. The shared random string is set to be (crs[1] crs[2] . . . crs[o]).
6. Choose a hash function H ← SSB.Gen(1λ, o, i∗) and compute h = H(crs). Set

ek = h.
7. Compute P̃rog-i∗ ← Ckt.Obf(Prog-i∗, 1λ), where Prog-i∗ is defined in Fig. 5.
8. Let Mi denote the turing machine that, on input x, runs the machine

M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

9. Set ˜Mx = (P̃rog-i∗, t).
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Fig. 5. Hybrid program Prog-i∗

Hybrid Hybo+1:
Identical to Hybo except that the value x1 is not hardwired into Prog-i∗.

We include the proof of hybrid indistinguishability in the full version of the
paper.

6 Compact MPC

We consider the problem of constructing a malicious secure compact MPC pro-
tocol for Turing machines. Consider a set of n mutually distrusting parties with
inputs x1, . . . , xn respectively that agree on a TM M . Their goal is to securely
compute the output M(x1, . . . , xn) without leaking any information about their
respective inputs where the output can be of any unbounded polynomial size.
We first define the notion of a compact MPC protocol. Let λ denote the security
parameter and let Comm.Compl(π) denote the communication complexity (sum
of the lengths of all messages exchanged by all parties) of any protocol π. Let
Time(M, x) denote the running time of turing machine M on input x.

Definition 3. An MPC protocol π is said to be compact if there exists a
fixed polynomial poly such that for all machines M and inputs (x1, . . . , xn),
Comm.Compl(π) = poly(|M |, |x1|, . . . , |xn|, λ, log(Time(M, x))). In particular,
the communication complexity is independent of the output length and the run-
ning time of the machine on the inputs of all the parties.

In this section, we give a round preserving compiler from any constant round
(non-compact) malicious secure MPC protocol in the plain model to a malicious
secure compact MPC protocol for Turing machines in the random oracle (RO)
model.
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Formally, we prove the following theorem:

Theorem 5. For all n, t > 0, assuming the existence of:

– A (constant) k round10 MPC protocol amongst n parties in the plain model
that is malicious secure against up to t corruptions (AND)

– Strong OCRE in the shared randomness model,

there exists a k round compact MPC protocol π amongst n parties for Turing
machines in the Programmable Random Oracle model that is malicious secure
against up to t corruptions.

Here, we note that the above compiler even works if the underlying MPC
protocol is for circuits. That is, we can convert any constant round protocol
for circuits into a constant round protocol for Turing machines (with an input
bound) by first converting the Turing machine into a (potentially large) circuit.

Corollaries:
We can instantiate the strong OCRE from our construction in Sect. 5. We now
discuss several corollaries on instantiating the underlying MPC protocol with
various protocols in literature based on different models.

1. Instantiating the MPC protocol with the round optimal11 plain model con-
struction of [BGJ+18] that is secure against a dishonest majority based on
DDH/Nth Residuosity, we get a four round compact MPC protocol π for Tur-
ing machines in the RO model that is secure against a dishonest majority
assuming iO for circuits and DDH/Nth Residuosity.

2. We can also instantiate the underlying MPC protocol with protocols that
are secure in the Common Random String model by using the RO’s output
on some fixed string to implement the common random string. In particular,
combining the two round semi-malicious MPC protocol of [MW16] that is
based on LWE in the common random string model or the ones of [GS18,
BL18] that are based on DDH/N th residuosity in the plain model, with a non-
interactive zero knowledge argument based on DLIN in the common random
string model [GOS06], we get two round malicious secure MPC protocols in
the common random string model. As a result, we have the following corollary:

Corollary 3. Assuming the existence of iO for circuits and A where A ∈
{LWE,DDH,N th Residuosity} and DLIN, there exists a round optimal (two
round) compact MPC protocol π for Turing machines in the Programmable Ran-
dom Oracle model that is malicious secure against a dishonest majority.

3. We note that our transformation works even on instantiating the underly-
ing constant round MPC protocol with ones that are secure in the setting
of super-polynomial simulation [Pas03,BGI+17] or in the concurrent (self-
composable) setting [GGJS12,BGJ+17] to yield compact versions of the same
in the RO model.

10 Observe that our round preserving compiler in fact works for any MPC protocol
where the number of rounds is independent of the machine being evaluated.

11 Recall that in the plain model, the optimal round complexity is 4.
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Implication to [HW15] Model. Finally, we observe that our transformation
also has an implication to the circuit-based model of Hubácek and Wichs [HW15]
as elaborated in Sect. 2.2. Thus, we get the following corollary:

Theorem 6. For all n, t > 0, assuming the existence of a constant round MPC
protocol amongst n parties in the plain model that is malicious secure against
up to t corruptions, and strong OCRE in the shared randomness model, there
exists a constant round MPC protocol π amongst n parties for all polynomial
sized circuits in the RO model that is malicious secure against up to t corruptions
where the communication complexity of the protocol is independent of the output
length of the circuit. That is, there exists a fixed polynomial poly such that,
for all circuits C and all inputs (x1, . . . , xn) ∈ Domain(C), Comm.Compl(π) =
poly(|x1|, . . . , |xn|, λ).

6.1 Construction

Notation and Primitives Used:

– Let λ denote the security parameter and RO be a random oracle that takes
as input a tuple (r, 1len) where |r| = λ and outputs a string of length len.

– Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively (with |xi| =
λ for each i ∈ [n]) who wish to evaluate any turing machine M on their joint
inputs.

– Let S.OcRE = (S.OcRE.Setup,S.OcRE.Encode,S.OcRE.Decode) be a strong
OCRE scheme in the shared randomness model.

– Let πplain be a t round MPC protocol for turing machines in the plain model
that is malicious secure against a dishonest majority. For simplicity, we
assume that the protocol works using a broadcast channel - that is, in each
round, every party broadcasts a message to all other parties.

– Let NextMsgk(·) denote the algorithm used by any party to compute the kth

round of protocol πplain and let Out(·) denote the algorithm used by any party
to compute the final output. Also, without loss of generality, assume that in
protocol πplain, each party uses randomness randi of length λ.12

Remark: To ease the exposition, we assume that the Random Oracle can output
arbitrarily long strings by also taking the desired output length as input to
the oracle. In reality, let’s say it outputs strings of length p(λ) where p is a
polynomial. Then, in the protocol below, each party can output a starting query
index ri,j and an offset oi,j to indicate that the shared random string is actually
the concatenation of RO(ri,j), . . . ,RO(ri,j + oi,j). Note that |oi,j | ≤ λ.

12 Internally, we can apply a PRG to expand this to any length of randomness we
require. Here, we are implicitly assuming that the protocol requires each party to
use uniformly random strings. This is true of almost every constant round MPC
protocol.
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Protocol: The protocol is described below.

1. Round 1:
Each party Pi does the following:

– Pick a random string ri,1 ∈ {0, 1}λ. Let leni,1 = |NextMsg1(xi; randi)|.
– Compute crsi,1 = RO(ri,1, 1leni,1).
– Compute eki,1 = S.OcRE.Setup(1λ, 1leni,1 , crsi,1).
– Compute msgi,1 = S.OcRE.Encode(NextMsg1, ((xi, randi),⊥), 2λ, eki,1).
– Output (msgi,1, ri,1, leni,1).

2. Round 2 ... t:
For each subsequent round k, each party Pi does the following:

– Let τk−2 denote the transcript of the underlying protocol πplain after round
(k − 2). τ0 = ⊥.

– Set τk−1 = τk−2.
– For each party Pj , (j �= i) do the following:

• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).
• Compute crsj,k−1 = RO(rj,k−1, 1lenj,k−1).
• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).
• Append msgplainj,k−1 to τk−1.

– Pick a random string ri,k ∈ {0, 1}λ. Let leni,k = |NextMsgk(xi; randi,
τk−1)|.

– Compute crsi,k = RO(ri,k, 1leni,k).
– Compute eki,k = S.OcRE.Setup(1λ, 1leni,k , crsi,k).
– Compute msgi,k =S.OcRE.Encode(NextMsgk, ((xi, randi), τk−1), 2λ, eki,k).
– Output13 (msgi,k, ri,k, leni,k).

3. Output Computation:
Each party Pi does the following:

– Let τt−1 denote the transcript of the underlying protocol πplain after round
(t − 1).

– Set τt = τt−1.
– For each party Pj , (j �= i) do the following:

• Parse its previous round message as (msgj,t, rj,t, lenj,t).
• Compute crsj,t = RO(rj,t, 1lenj,t).
• Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).
• Append msgplainj,t to τt.

– Output Out(xi, randi, τt).

Efficiency of the Protocol:
The size of the messages sent in round k by each party Pi is 3 ·
max{|(msgi,k, ri,k, leni,k)|}i,k. By the definition of strong output-compressing
randomized encodings, |msgi,k| ≤ p2(|NextMsgk|, |(xi, randi)|, log T, λ) where p2
is a polynomial. |randi| = λ, |NextMsgk| = p3(|M |) where M is the origi-
nal functionality and p3 is a polynomial. Also, we know T is at most 2λ. So
|msgi,k| ≤ p3(|M |, |xi|, λ) for some polynomial p3. We know that |ri,k| = λ and

13 Note that to send leni,k, the length of the message is log leni,k and so at most λ.
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|leni,k| ≤ λ. Therefore, the size of the messages sent in round k by each party Pi

is at most p3(|M |, |xi|, λ).
Since πplain is a constant-round protocol, the total communication complexity

of our protocol π is at most p(n, |M |, |x1|, . . . , |xn|, λ) for a fixed polynomial p.

6.2 Security Proof

In this section, we formally prove Theorem6.
Consider an adversary A who corrupts t parties where t < n. Let’s
say the simulator Simplain for protocol πplain consists of 4 algorithms
(Simplain

1 ,Simplain
2 ,Simplain

3 ,Simplain
Out ) where: Simplain

1 (j, ·) outputs the adversary’s
view for the jth of the first t1 rounds, Simplain

2 queries the ideal functionality to
receive the output, Simplain

3 (j, ·) outputs the adversary’s view for the jth round
of the last (t − t1) rounds and Simplain

Out (i, ·) computes the output of honest party
Pi.14 Also, let’s denote the size of Simplain(·) by s(λ).

Description of Simulator. The strategy of the simulator Sim for our protocol
π against a malicious adversary A is described below.

1. Round 1 ... t1:
For each round k and each honest party Pi, Sim does the following:

– Let τk−2 denote the transcript of the underlying protocol πplain after round
(k − 2). τ0 = ⊥.

– Set τk−1 = τk−2.
– For each party Pj , (j �= i), if k > 1, do the following:

• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).
• Compute crsj,k−1 = RO(rj,k−1, 1lenj,k−1).
• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).
• Append msgplainj,k−1 to τk−1.

– Compute msgplaini,k = Simplain
1 (k, τk−1, st) where st denotes the state of

Simplain.
– Pick a random string ri,k ∈ {0, 1}λ.
– Compute (msgi,k, crsi,k)←S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

– Set RO(ri,k, 1|crsi,k|) = crsi,k.
– Output15 (msgi,k, ri,k, |crsi,k|).

2. Query to Ideal Functionality:
Sim queries Simplain

2 (τk1 , st) and receives an output y in return.
3. Round (t1 + 1) ... t:

For each round k and each honest party Pi, Sim does the following:
– Let τk−2 denote the transcript of the underlying protocol πplain after round

(k − 2). τ0 = ⊥.

14 Simplain
1 also outputs some state that is fed as input to the subsequent algorithms

and similarly for Simplain
2 , Simplain

3 .
15 As before, note that to send the message |crsi,k|, the length of the string is log |crsi,k|.
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– Set τk−1 = τk−2.
– For each party Pj , (j �= i), if k > 1, do the following:

• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).
• Compute crsj,k−1 = RO(rj,k−1, 1lenj,k−1).
• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).
• Append msgplainj,k−1 to τk−1.

– Compute msgplaini,k = Simplain
3 (k, y, τk−1, st) where st denotes the state of

Simplain.
– Pick a random string ri,k ∈ {0, 1}λ.
– Compute

(msgi,k, crsi,k) ← S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).
– Set RO(ri,k, 1|crsi,k|) = crsi,k.
– Output (msgi,k, ri,k, |crsi,k|).

4. Output Computation:
Sim does the following:

– For each honest party Pi, do:
• Let τt−1 denote the transcript of the underlying protocol πplain after

round (t − 1).
• Set τt = τt−1.
• For each party Pj , (j �= i) do the following:

* Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).
* Compute crsj,k−1 = RO(rj,k−1, 1lenj,k−1).
* Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).
* Append msgplainj,t to τt.

• If Simplain
Out (i, y, τt, st) = ⊥, send ⊥ to the ideal functionality and stop.

– Instruct the ideal functionality to deliver output to the honest parties.

Remarks: Note that if Simplain is a rewinding simulator, our simulator Sim will
also be a rewinding simulator.

We include the full proof of indistinguishability in the full version of the
paper.
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Abstract. A cryptographic watermarking scheme embeds a message
into a program while preserving its functionality. Recently, a number of
watermarking schemes have been proposed, which are proven secure in
the sense that given one marked program, any attempt to remove the
embedded message will substantially change its functionality.

In this paper, we formally initiate the study of collusion attacks for
watermarking schemes, where the attacker’s goal is to remove the embed-
ded messages given multiple copies of the same program, each with a
different embedded message. This is motivated by practical scenarios,
where a program may be marked multiple times with different messages.

The results of this work are twofold. First, we examine existing cryp-
tographic watermarking schemes and observe that all of them are vulner-
able to collusion attacks. Second, we construct collusion resistant water-
marking schemes for various cryptographic functionalities (e.g., pseu-
dorandom function evaluation, decryption, etc.). To achieve our second
result, we present a new primitive called puncturable functional encryp-
tion scheme, which may be of independent interest.
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1 Introduction

A watermarking scheme allows one to embed some information into a program1

without significantly changing its functionality. It has many natural applications,
including ownership protection, information leaker tracing, etc.

The formal definition of watermarking schemes for programs is first presented
by Barak et al. in [BGI+01]. Subsequently, new properties of watermarking
schemes are presented in [HMW07,NW15,CHV15]. They are briefly summarized
below.

• Unremovability: This is the essential security property for watermarking
schemes, which requires that it should be hard to remove or modify the
embedded information in a marked program without destroying it.

• Public Extraction: Anyone should be able to extract the embedded infor-
mation in a marked program. In other words, the extraction key will be made
public.

• Public Marking: Anyone should be able to embed information into a pro-
gram. In other words, the marking key will be made public.

• Unforgeability: Only the authorized entity who holds the marking key
should be able to embed information into a program. Obviously, it requires
keeping the marking key secret and is not compatible with the “public mark-
ing” property.

• Message-Embedding: This property allows one to embed a given string
(instead of merely a mark symbol) into the watermarked program.

Despite being a natural concept and perceived to have a wide range of appli-
cations, watermarking schemes provably secure against arbitrary removal strate-
gies were not presented until 2015. In [CHN+16] (which is a merged version of
[NW15] and [CHV15]), Cohen et al. construct a publicly extractable watermark-
ing scheme for the evaluation algorithm of pseudorandom functions (PRFs) from
indistinguishability obfuscators. Based on the watermarkable PRF families, they
also construct watermarkable public key encryption (PKE) schemes and water-
markable signature schemes. However, Cohen et al.’s schemes do not achieve
standard unforgeability. Subsequently, Yang et al. [YAL+18] improve the water-
markable PRF in [CHN+16] to achieve both standard unforgeability and public
extraction simultaneously.

In another line of research, initiated by Boneh et al. in [BLW17], water-
markable PRFs are constructed from variants of constraint-hiding constrained
PRFs (e.g., privately programmable PRF and translucent puncturable PRF).
Boneh et al.’s scheme is constructed from privately programmable PRF, which
is instantiated from indistinguishability obfuscator in [BLW17]. Subsequently,
based on a translucent puncturable PRF, Kim and Wu [KW17] present the first
construction of watermarkable PRF from standard lattice assumptions. Then,

1 In this paper, we focus on watermarking schemes for programs and only consider
those with provable security against arbitrary removal strategies. We refer readers
to Sect. 1.2 for an extended introduction to the area.
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Peikert and Shiehian [PS18] construct privately programmable PRF from LWE,
which provides another way to instantiate watermarkable PRF from standard
assumptions. Recently, in [QWZ18] and [KW19], watermarkable PRFs with pub-
lic marking are constructed from constraint-hiding constrained PRF and punc-
turable extractable PRF respectively, both of which can be instantiated from
standard lattice assumptions.

Besides, a very simple yet elegant construction of watermarking scheme for
any PKE scheme is presented by Baldimtsi et al. [BKS17]. However, their scheme
does not support multi-message-embedding inherently. That is, each program
can only be marked with at most one message during the life-time of the scheme.

Collusion Resistance of Watermarking Schemes. In practical applications, it is
usually required that unremovability of watermarking schemes should hold under
“collusion attacks”, where the attacker can access several copies of the same pro-
gram embedded with different information. As a concrete example, consider the
following scenario. A software development company developed a program and
would like to outsource its testing to several organizations. To prevent these orga-
nizations from leaking the program, the company will employ a watermarking
scheme to embed the name of the target organization into the copy being sent.
Here, the watermarking scheme should enable the company to trace program
leakers even when a few target organizations collude.

However, for all previous watermarking schemes [CHN+16,BLW17,KW17,
BKS17,PS18,YAL+18,QWZ18,KW19], the unremovability is only proved
against an adversary who attempts to remove or modify the embedded mes-
sage given a single marked program2, and it is unknown whether they are secure
against collusion attacks. Thus, the following question arises naturally:

Can we build collusion resistant watermarking scheme?

1.1 Our Results

In this paper, we explore the existence of watermarking schemes secure against
collusion attacks. First, we observe that unfortunately, all existing watermark-
ing schemes are vulnerable to collusion attacks (we elaborate this in Sect. 2).
Then, we consider how to develop watermarkable cryptographic primitives secure
against the collusion attacks. Specifically, our contributions are as follows.

• We present the notion of collusion resistant watermarking scheme to capture
collusion attacks. It requires a stronger unremovability (namely, collusion
resistant unremovability) that allows the adversary to obtain watermarked
circuits embedded with different messages for the same functionality.

2 In a concurrent work [GKM+19], collusion resistant watermarking schemes for
public-key cryptographic primitives are presented. However, their constructions are
under a relaxed notion of functionality-preserving. In this work, we achieve col-
lusion resistance while preserving the original “statistical functionality-preserving”
proposed in [CHN+16].
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• We give a construction of collusion resistant watermarkable PRF, which is
the first watermarkable cryptographic primitive provably secure against the
collusion attacks. To achieve this, we introduce a new message-embedding
technique in the watermarking setting and propose a new primitive, namely,
puncturable functional encryption scheme, which we believe will find addi-
tional applications in constructing advanced cryptographic primitives.

• Based on our construction of collusion resistant watermarkable PRF, we also
construct watermarkable PKE schemes and watermarkable signature schemes,
both of which have collusion resistant unremovability.

We compare the main features achieved by current watermarking schemes
and our watermarking schemes in Table 1. We remark that in addition to col-
lusion resistance, our schemes can achieve many desirable features, including
public extraction, unforgeability, and message-embedding.

Table 1. The comparison.

Unforgeability Public
extraction

Public
marking

Message
embedding

Collusion
resistance

[CHN+16] PRF ✗ ✓ ✗ ✓ ✗

PKE ✗ ✓ ✗ ✓ ✗

Signature ✗ ✓ ✗ ✓ ✗

[YAL+18] PRF ✓ ✓ ✗ ✓ ✗

[BLW17] PRF ✓ ✗ ✗ ✓ ✗

[KW17] PRF ✓ ✗ ✗ ✓ ✗

[QWZ18] PRF ✗ ✗ ✓ ✓ ✗

[KW19] PRF ✓ ✗ ✗ ✓ ✗

PRF ✓† ✗ ✓ ✓ ✗

[BKS17] PKE ✓ ✗ ✗ ✗ -

PKE ✓ ✓ ✗ ✗ -

This work PRF ✓ ✓ ✗ ✓ ✓

PKE ✓ ✓ ✗ ✓ ✓

Signature ✓ ✓ ✗ ✓ ✓

†: Weaker versions of unforgeability are achieved for this scheme.

The presented collusion resistant watermarking schemes are built on sev-
eral cryptographic primitives, which can be constructed from indistinguishability
obfuscator and standard lattice assumptions.

Theorem 1.1 (Informal). Assuming the worst-case hardness of appro-
priately parameterized GapSVP and SIVP problems and the existence of
indistinguishability obfuscator, there exist collusion resistant watermarkable
PRF/PKE/signature schemes.

Remark 1.1. It is worth noting that our constructions of collusion resistant
watermarking schemes rely on the existence of indistinguishability obfuscator.
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However, this seems essential, at least for collusion resistant watermarkable PRF.
To see this, recall that as proved in [BGI+01], watermarking scheme perfectly
preserving the functionality of the watermarked program does not exist. Thus,
a marked key of PRF must evaluate differently with the original key on some
inputs, i.e., the marked key can be viewed as a constrained key of the original
key. Besides, the marked key should hide its constrained inputs, since otherwise,
the attacker is likely to remove the embedded messages via resetting outputs on
constrained inputs. Therefore, we can approximately view a collusion resistant
watermarkable PRF as a collusion resistant constraint-hiding constrained PRF,
which, as shown in [CC17], can imply indistinguishability obfuscator. Nonethe-
less, we are not able to formalize this intuition. It is an interesting open problem
to give a formal construction of indistinguishability obfuscator from collusion
resistant watermarkable PRF.

1.2 Related Works

Additional Related Works on Watermarking Schemes. In this paper, we
concentrate on watermarking schemes provably secure against arbitrary removal
strategies. There are also numerous works (see [CMB+07] and references therein)
attempting to use ad hoc techniques to watermark a wide class of digital objects,
such as images, audios, videos, etc. However, these constructions lack rigorous
security analysis and are (potentially) vulnerable to some attacks.

In another line of research [NSS99,YF11,Nis13], watermarking schemes for
cryptographic objects (e.g., the key, the signature, etc.) are constructed and rig-
orously analyzed. However, their security definition considers a restricted adver-
sary that will not change the format of the watermarked objects.

Puncturable Symmetric Key Functional Encryption. One byproduct of
this work is a new primitive called puncturable functional encryption. A simi-
lar primitive, which is called puncturable symmetric key functional encryption,
is also studied in previous works [BV15,KNT18]. In particular, it is used to
construct the indistinguishability obfuscator in these works.

We stress that these two types of primitives are incomparable. First, while
succinctness is the key property for a puncturable symmetric key functional
encryption scheme, it is not required in our puncturable functional encryption
scheme. Thus, our scheme cannot be used in constructions of indistinguishability
obfuscators. On the other hand, our puncturable functional encryption scheme
will puncture a secret key on a ciphertext, but in a puncturable symmetric key
functional encryption scheme, secret keys are punctured on a message or on a
tag. Thus, their schemes are also inapplicable to our setting.

Traitor Tracing Scheme. The notion of collusion resistant watermarking
scheme is somewhat similar to the notion of traitor tracing scheme, which aims
at tracing secret key leakers among a set of users holding functionally equiv-
alent secret keys in a broadcast encryption setting. Since first presented in
[CFN94], traitor tracing has been formally studied for a long time (see e.g.,
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[BSW06,BN08,BZ14,NWZ16,GKW18,CVW+18] and references therein for an
overview of previous works).

Generally, in a traitor tracing scheme, there is a common public key pk and
each user holds a different secret key. Data encrypted under the common public
key can be decrypted by all users in the system. Moreover, there exists a tracing
algorithm, which outputs a set of users on input a “pirate decoder” that can
decrypt ciphertexts under pk. It is guaranteed that the tracing algorithm can
identify at least one of the users in the coalition that produces the pirate decoder.

Comparing Watermarking and Traitor Tracing. Both (collusion resistant) water-
marking and traitor tracing will issue copies of a program (or a key), which are
embedded with some information, to users and aim at recovering the embedded
information from a functionally-similar program/key generated by them. How-
ever, solutions to the traitor tracing problem do not yield watermarking schemes
directly, since these two notions also have several inherent differences.

First, in a traitor tracing scheme, secret keys of users are issued by a center,
while in a watermarking scheme, user can choose their watermarked programs
themselves. Another difference is that in a traitor tracing scheme, secret keys of
all users are functionally equivalent, while in a watermarking scheme, programs
with different functionalities can be watermarked in the same watermarking
scheme. Besides, traitor tracing schemes focus on tracing secret key leakers in an
encryption scheme, while watermarking schemes aim at marking general purpose
programs (although we only know how to watermark some specific cryptographic
functionalities currently).

A Closer Look at How to Construct Traitor Tracing Schemes. In [BSW06], Boneh
et al. present a classic paradigm to construct traitor tracing schemes, which is
also used or adapted in many subsequent works [BZ14,NWZ16,GKW18]. The con-
struction proceeds in two steps.

First, a private linear broadcast encryption (PLBE) scheme is constructed.
Recall that a PLBE scheme has a sequence (sk1, . . . , skN ) of N secret keys for
a public key and each ciphertext is labeled with an integer in [0, N ]. A secret
key ski is only able to decrypt a ciphertext with label j when j < i. Thus, a
ciphertext with label 0 can be decrypted by all secret keys, while a ciphertext
with label N can not be decrypted by any secret key. Also, it is required that
it is computationally infeasible to distinguish a ciphertext with label j and that
with label j − 1 if skj is not given.

A PLBE scheme implies a traitor tracing scheme [BSW06,GKW18]. More
concretely, the traitor tracing scheme supports a user set of size N and the ith
user in that set is given secret key ski. Broadcast messages will be encrypted
with label 0. When tracing colluders from a pirate decoder, the tracing algo-
rithm feeds the decoder with ciphertexts labeled with 0 to N sequentially and
outputs i if there exists a “large gap” in decryption success probability between
ciphertexts labeled with i−1 and those labeled with i. Note that the decoder can
decrypt with a high success probability on ciphertext labeled with 0 (due to the
usefulness of the decoder) and can decrypt with a negligible success probability
on ciphertext labeled with N (due to the security of PLBE), thus, there must
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exists a large gap in decryption success probability between i − 1 and i for some
i ∈ [N ]. Also, as no one could distinguish ciphertexts labeled with i−1 and that
labeled with i without ski, the large gap must occur between i − 1 and i such
that the colluders possess ski. Therefore, the tracing algorithm can recover at
least one of the colluders.

1.3 Roadmap

The rest of the paper is organized as follows. We give an overview of our con-
struction in Sect. 2. Then in Sect. 3, we review notations used in this work.
We present the formal definition of collusion resistant watermarkable PRF in
Sect. 4. Then in Sect. 5, we define and construct puncturable functional encryp-
tion, which is employed to construct collusion resistant watermarkable PRF. We
show our main construction of collusion resistant watermarkable PRF in Sect. 6
and present constructions of collusion resistant watermarking schemes for public
key primitives in Sect. 7. Finally, in Sect. 8, we conclude our work with a few
possible future works.

2 Technical Overview

In this section, we provide an overview of our construction of collusion resis-
tant watermarkable PRF. Our starting point is the watermarking scheme WM0

presented in [CHN+16] (or more accurately, its variant in [YAL+18]). We first
explain why WM0 (and all previous watermarking schemes) are not collusion
resistant and describe the main challenges in achieving collusion resistance. Then
we give a high-level idea on how to address these challenges.

A Brief Overview of WM0. Roughly speaking, WM0 works as follows. The
extraction key/marking key pair of WM0 is a public key/secret key pair (pk, sk)
of a PKE scheme. To embed a message msg into a PRF key k, the marking
algorithm outputs an obfuscation of the following circuit, which evaluates the
function PRF(k, ·) correctly at all points, except for some “punctured points”.

C(x) =

{
f(μ) ⊕ msg if μ = Dec(sk, x) ∈ V
PRF(k, x) otherwise.

Here, Dec is the decryption algorithm of the underlying PKE scheme, V is a set
defined by the PRF key k and f is a suitable function.

When extracting the embedded message from a watermarked circuit, the
extraction algorithm first samples a string μ ∈ V and encrypts it with the public
key pk. Next, it evaluates the circuit on the ciphertext and obtains an output
z. Finally, it computes msg = z ⊕ f(μ). The above extraction procedure will be
repeated multiple times and the extraction algorithm will output the majority
result or an “UNMARKED” symbol if no majority is found.
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Security of the scheme relies on the fact that punctured points (i.e. those
decrypted to a string in V) are hidden3. As a result, the adversary, who is only
allowed to alter the marked circuit slightly, is not able to change the output
values on a large enough fraction of punctured points, and thus the extraction
algorithm can still extract the correct message.

Why WM0 is Not Collusion Resistant? However, if watermarked circuits
embedded with different messages for the same PRF key k are given, one can
easily locate all punctured points via comparing the outputs of the circuits. In
addition, it is easy to modify or remove the embedded messages via resetting
outputs on all punctured points.

In more detail, given two circuits C1 and C2 that are generated by embedding
different messages, say msg1 and msg2, into the same PRF key k, an attacker
can output a circuit C∗ embedded with a new message msg∗ as follow:

C∗(x) =

{
C1(x) ⊕ msg1 ⊕ msg∗ if C1(x) �= C2(x).
C1(x) otherwise.

It is not hard to see that C∗ will compute the PRF with key k correctly on almost
all inputs except that it will output f(μ) ⊕ msg∗ on an input whose decryption
μ is in V. Therefore, the attacker can compromise the unremovability of WM0

via a collusion attack4.
Since nearly all5 previous watermarking schemes are constructed following

the blueprint proposed in [CHN+16], we can use a similar strategy to show that
they are not collusion resistant. We stress that all collusion attacks are based on
the fragility of the way messages are embedded and do not take advantage of
the concrete instantiations of the schemes.

The Challenge in Achieving Collusion Resistance. To better explain why
WM0 is not able to achieve collusion resistance, we describe WM0 in a modular
manner.

In a high level, on input a PRF key k and a message msg, the marking
algorithm of WM0 works as follows:

1. Generates two sequences X = (x1, . . . , xl) and Y = (y1, . . . , yl), where xi

and yi are in the input space and the output space of the watermarked PRF
respectively. More concretely, in WM0, for each pair (xi, yi), xi = Enc(pk, μ)
and yi = f(μ) for some μ ∈ V.

3 One could find some punctured points via generating them from public information,
but cannot distinguish a random punctured point from a random point in the input
space.

4 We remark that this will not affect the claimed security of WM0. The attacks only
show that WM0 is not applicable in scenarios where collusion attacks are a legit
threat.

5 The watermarking scheme proposed in [BKS17] is constructed in a different app-
roach, however, it cannot embed different messages into the same program.
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2. Encodes the message msg into a sequence Z = (z1, . . . , zl) =
encode(X ,Y,msg), where zi is also in the output space of the watermarked
PRF. In more detail, messages are encoded into Z via a simple “exclusive
or” operation in WM0, i.e., zi = yi ⊕ msg for i ∈ [1, l].

3. Outputs a circuit that computes the PRF with k correctly on inputs outside
X and outputs zi on input xi (here, xi is called a punctured point).

Correspondingly, we can abstract the extraction algorithm of WM0, which
takes as input a watermarked circuit C, as follows:

1. Samples a set of pairs {xi, yi} in X × Y.
2. Evaluates zi = C(xi) for each xi.
3. Recovers the message msg = decode({xi, yi, zi}). Here, the decoding algo-

rithm outputs the majority of yi ⊕ zi.

The key observation underlying our collusion attack is that the simple “xor”
encoding scheme is fragile in the collusion setting. First, for two different mes-
sages msg and msg′, let (z1, . . . , zl) = encode(X ,Y,msg) and (z′

1, . . . , z
′
l) =

encode(X ,Y,msg′), then we have zi �= z′
i for i ∈ [1, l]. This makes it easy to

locate all punctured points in X by comparing outputs of circuits embedded with
different messages. In addition, it is easy to overwrite the encoded message in a
codeword Z = (z1, . . . , zl). For example, one can reset zi = zi ⊕ Δ for i ∈ [1, l]
to xor the encoded message with Δ.

In [KW17,QWZ18,KW19], different message encoding schemes are applied.
However, all of them inherit the aforementioned weakness to some extent, and
thus are not robust against collusion attacks.

To solve this problem, we need to develop a robust message encoding scheme,
where decode can recover the original embedded messages even if a collusion
attacker can locate some punctured points6 and will reset outputs on its located
punctured points. Next, we explore how to develop a robust message encoding
scheme and integrate it with the other part of WM0.

Addressing the Challenge: A Robust Message Encoding Scheme. We
design our encoding scheme via using ideas from the realm of traitor tracing.
In particular, our scheme is inspired by the well-known framework presented in
[BSW06] (we recall this framework in Sect. 1.2).

The message space of our encoding scheme is [1, N ]7. The input of the encod-
ing algorithm is two sequences X = (x1, . . . , xl),Y = (y1, . . . , yl) and a message
msg ∈ [1, N ]. Here, we divide the whole sequence X into N parts, namely,
X1, . . . ,XN , each of which is labeled with an index in [1, N ] (we elaborate how
to define Xi later). To encode a message msg, the encoding algorithm sets zi = yi

if xi ∈ X1 ∪ X2 ∪ . . . Xmsg and sets zi to be the correct PRF output otherwise.
The output of the encoding algorithm is the sequence (z1, . . . , zl).

6 This seems unavoidable since circuits embedded with different messages should be
run differently on some points to enable message extraction.

7 Here, we assume that N is polynomial in the security parameter and will show how
to remove this restriction later.
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We also modify the decoding algorithm. It takes as input a set of tuples
(xi, yi, zi), where (xi, yi) is sampled from X × Y and zi is the output of the
tested circuit on input xi, and works as follows:

1. Set p0 = 1 and pN+1 = 0.
2. For ind ∈ [1, N ], estimate the fraction pind of “correctly reprogrammed”

points in set Xind, where a point xi is “correctly reprogrammed” if yi = zi.
This can be accomplished via testing polynomially-many points in Xind.

3. If there exists ind ∈ [0, N ] such that |pind −pind+1| is noticeable (i.e., a “large
gap” at ind is found), output the message msg = ind. Here, msg = 0 denotes
the code is not decodable (i.e., the circuit is unmarked).

Next, we argue why our new message encoding scheme is robust under col-
lusion attacks. Observe that, given a few (say 2) circuits C1 and C2 embedded
with messages msg1 and msg2 respectively (w.l.o.g. assuming msg1 < msg2),
the attacker can locate punctured points in Xind for ind ∈ (msg1,msg2] by
comparing outputs of C1 and C2. However, we note that

• If the attacker cannot distinguish punctured points in Xind1 and Xind2 for
ind1, ind2 ∈ (msg1,msg2], it cannot make |pind1 − pind2 | noticeable via reset-
ting outputs on located punctured points.

• If the attacker cannot distinguish a punctured point xi ∈ Xind from a random
point for ind �∈ (msg1,msg2], it will not be able to reset the output on such xi.
Thus, we have pind = 1 for ind ∈ [1,msg1] and pind = 0 for ind ∈ (msg2, N ].

Consequently, if the aforementioned indistinguishability properties are guaran-
teed, the large gap(s) must occur at either msg1 or msg2 (or at both points),
i.e., the decoding algorithm could output the embedded message(s).

One problem of the above solution is that the message space is restricted
to be a polynomial-size set. This is because the decoding algorithm needs to
scan all indices linearly to find a large gap. Addressing this problem, we employ
the refined binary search presented in [BCP14,NWZ16] to search the “large
gap”. The search algorithm can find all (polynomially-many) large gap points
from an exponentially large interval in a pre-defined polynomial time, as long
as |pind1 − pind2 | is negligible for all (adaptively chosen) interval [ind1, ind2) ⊆
[0, N + 1] not containing a large gap point. In this way, we can set the message
space to be [1, N ] for an exponentially large N .

Towards Integrating Our New Encoding Scheme with WM0. Next, we
integrate our encoding scheme with the remaining part of WM0. First, we will
specify how to label punctured points with indices. Then, we will show how to
achieve indistinguishability properties required by our robust message encoding
scheme. More precisely, we will argue that for a collusion attacker, who can
locate some punctured points via comparing outputs of watermarked circuits
embedded with different messages, both the unlocated punctured points and
labels of the located punctured points are hidden.

Labeling Punctured Points with Indices. Recall that in WM0, the domain of
the PRF is the ciphertext space of a PKE scheme and punctured points are



Collusion Resistant Watermarking Schemes for Cryptographic Functionalities 381

encryptions of plaintexts in a set V. To label a punctured point with an
index ind, we append ind to the underlying plaintext, i.e., we define Xind =
{Enc(pk, μ‖ind)}μ∈V , where pk is the public key of the underlying PKE scheme
and serves as WM0’s extraction key.

Hiding Punctured Points and Labels. Next, we explore how to hide unlocated
punctured points and labels of located punctured points. For simplicity, we con-
sider an adversary who gets two watermarked circuits C1 and C2 for the same
PRF key k, which are embedded with messages msg1 and msg2 respectively,
where msg1 < msg2. Recall that our message encoding scheme is able to recover
the embedded messages if the following two properties are guaranteed:

• Pseudorandomness of punctured points in Xind for an adaptively chosen ind �∈
(msg1,msg2].

• Indistinguishability between punctured points in Xind1 and Xind2 for adap-
tively chosen ind1, ind2 ∈ (msg1,msg2].

Unfortunately, the PKE scheme employed in WM0, which is a puncturable
encryption scheme, does not provide the desired properties. To see this, consider
an input x from Xind, where ind ∈ (msg1,msg2]. Since C1(x) �= C2(x), a secret
key that can decrypt x must be included in both C1 and C2 (otherwise, the
circuit cannot recognize it and deal with it properly). However, the puncturable
encryption scheme cannot guarantee indistinguishability on ciphertexts that are
decryptable.

To bridge the gap, we present a new cryptographic primitive that we call
puncturable functional encryption and replace puncturable encryption used in
WM0 with it. Roughly speaking, a puncturable functional encryption scheme
enhances a functional encryption scheme with the puncturing capability and
enjoys both security of functional encryption schemes and that of puncturable
encryption schemes. Especially, similar to a functional encryption, it has the
“adaptive indistinguishability” property, which could ensure indistinguishability
of ciphertexts as long as no secret key distinguishing them is provided. Also,
similar to a puncturable encryption, it has the “ciphertext pseudorandomness”
property, which could ensure pseudorandomness of a ciphertext given a secret
key punctured on it.

Now, for two punctured points x1 and x2 in Xind1 and Xind2 respectively,
where ind1, ind2 ∈ (msg1,msg2], since none of them will be reprogrammed
in C1 while both of them will be reprogrammed in C2, secret keys hardwired
in C1 and C2 do not need to distinguish them. Thus, their indistinguishabil-
ity comes from the adaptive indistinguishability of the puncturable functional
encryption scheme directly. Meanwhile, for a punctured points x in Xind for
ind �∈ (msg1,msg2], since C1(x) = C2(x), we can regard C1 and C2 as the same
circuit when considering pseudorandomness of x. Thus, the pseudorandomness
of x can be reduced to the ciphertext pseudorandomness of the puncturable func-
tional encryption scheme, just as what has been argued in the original security
proof (in the non-collusion setting) for WM0.
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Constructing Puncturable Functional Encryption. To construct a punc-
turable functional encryption scheme, we employ a functional encryption scheme,
a puncturable encryption scheme, and a statistical sound non-interactive zero-
knowledge (NIZK) proof. We integrate them via a “two-layer encryption” app-
roach.

More precisely, a plaintext is first encrypted into an inner ciphertext using the
functional encryption scheme. Then the NIZK proof is employed to prove that
the inner ciphertext is properly encrypted. Finally, both the inner ciphertext and
the proof is encrypted into an outer ciphertext under the puncturable encryption
scheme. When decrypting a ciphertext, the decryption algorithm first decrypts the
outer ciphertext. It aborts if the proof is invalid and outputs the decryption of
the inner ciphertext otherwise. Main security properties of the constructed punc-
turable functional encryption (namely, adaptively indistinguishability and cipher-
text pseudorandomness) reduce to corresponding security properties of underlying
functional encryption and puncturable encryption respectively.

3 Notations

Let a be a string, we use ‖a‖ to denote the length of a. Let S be a finite set, we

use ‖S‖ to denote the size of S, and use s
$← S to denote sampling an element s

uniformly from set S. For a string a and a set S of strings, we use a‖S to denote the
set {x : ∃s ∈ S, x = a‖s}. For n elements e1, . . . , en, we use {e1, . . . , en} to denote
a set containing these elements and use (e1, . . . , en) to denote an ordered list of
these elements. We write negl(·) to denote a negligible function, and write poly(·)
to denote a polynomial. For integers a ≤ b, we write [a, b] to denote all integers from
a to b. For two circuits C1 and C2, we write C1 ≡ C2 to denote that for any input x,
C1(x) = C2(x). Following the syntax in [BLW17], for a circuit family C indexed by
a few, say m, constants, we write C[c1, . . . , cm] to denote a circuit with constants
c1, . . . , cm.

ChernoffBound.Wemake use of theChernoffbound in our security proof. There
are various forms of the Chernoff bound, here we use the one from [Goe15].

Lemma 3.1 (Chernoff Bounds). Let X =
∑n

i=1 Xi, where Xi = 1 with prob-
ability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
μ = E(X) =

∑n
i=1 pi. Then

Pr[X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ for all δ > 0;

Pr[X ≤ (1 − δ)μ] ≤ e− δ2
2 μ for all 0 < δ < 1.

Besides, we also employ some cryptographic primitives and their definitions are
recalled in the full version of this paper.
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4 Definition of CollusionResistantWatermarkable PRF

In this section, we give the formal definition of the collusion resistant watermark-
able PRF, which is adapted from definitions of watermarkable PRF in previous
works [CHN+16,BLW17,KW17]. The main difference between our definition and
previous ones is that the unremovability holds against an adversary that can obtain
polynomially-many (instead of one) watermarked circuits for the same PRF key
from the challenge oracle. Besides, the extraction algorithm takes an additional
parameter q, which can be roughly viewed as the number of colluders, as input.
The correctness and the unforgeability hold for arbitrary positive integer q; for the
unremovability, a large enough q is needed. In particular, if q is larger than the
number of colluders, the extraction algorithm can extract a non-empty subset of
the coalition, while using a smaller q may lead to an error symbol.

Remark 4.1. Our definition of collusion resistant unremovability implicitly
requires that the adversary is only allowed to obtain a bounded number (i.e., q)
of watermarked circuits from the challenge oracle. Thus, it falls into the category
of “bounded collusion resistance”. Nonetheless, in our definition, the bound q does
not need to be fixed in the setup phase and may be varied in different extraction
procedures. In fact, if the extractor has a way to know the number of colluders
in advance, the scheme remains secure against an arbitrary number of colluders.
Besides, since the extraction algorithm is able to detect if a smaller q is used, in
practice, the extractor can re-execute the extraction algorithm with a larger q after
receiving an error message from the extraction algorithm.

Definition 4.1 (Watermarkable PRFs [CHN+16,BLW17,KW17, adapted]).
Let PRF = (PRF.KeyGen,PRF.Eval) be a PRF family with key space K, input space
{0, 1}n and output space {0, 1}m. The watermarking scheme with message space
M for PRF (more accurately, the evaluation algorithm of PRF) consists of three
algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the mark
key MK and the extraction key EK.

• Mark. On input the mark key MK, a secret key k ∈ K of PRF, and a message
msg ∈ M, the marking algorithm outputs a marked circuit C.

• Extract. On input the extraction key EK, a circuit C, and a parameter q, the
extraction algorithm outputs either a set L ⊆ M or a symbolUNMARKED or an
error symbol ⊥.

Definition 4.2 (Watermarking Correctness). Correctness of the watermark-
ing scheme requires that for any k ∈ K, msg ∈ M, and any polynomial q ≥ 1, let
(MK,EK) ← Setup(1λ), C ← Mark(MK,k,msg), we have:

• FunctionalityPreserving. C(·) andPRF.Eval(k, ·) compute identically on all
but a negligible fraction of inputs.

• Extraction Correctness. Pr[Extract(EK, C, q) �= {msg}] ≤ negl(λ).



384 R. Yang et al.

Before presenting the security definition of collusion resistant watermarkable
PRF,we first introduce oracles the adversaries can query during the security exper-
iments. Here, the marking oracle is identical to the one defined in previous works,
while we redefine the challenge oracle to capture the scenario that the adversary
can obtain multiple circuits embedded with different messages for the same secret
key.

• Marking Oracle OM
MK(·, ·). On input a message msg ∈ M and a PRF key

k ∈ K, the oracle returns a circuit C ← Mark(MK,k,msg).
• Challenge Oracle OC

MK(·). On input a polynomial-size set M of messages
from M, the oracle first samples a key k∗ ← PRF.KeyGen(1λ). Then, for each
msg∗

i ∈ M, it computes C∗
i ← Mark(MK,k∗,msg∗

i ). Finally, it returns the set
{C∗

1, . . . , C
∗
Q}, where Q = ‖M‖.

Definition 4.3 (Collusion Resistant Unremovability). The watermarking
scheme for a PRF is collusion resistant unremovable if for any polynomial q, for
all polynomial-time (PPT) and unremoving-admissible adversaries A, we have
Pr[ExptURA,q(λ) = 1] ≤ negl(λ), where we define the experiment ExptUR and
unremoving-admissibility as follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Next, A submits a set M∗ of Q messages in M to the challenge oracle and gets a

set C∗ of circuits back.
4. Then, A is further allowed to make multiple queries to the marking oracle.
5. Finally A submits a circuit C̃. The experiment outputs 0 if

(a) q < Q and either Extract(EK, C̃, q) is a non-empty subset of M∗ or it equals
to the error symbol ⊥.

(b) q ≥ Q and Extract(EK, C̃, q) is a non-empty subset of M∗.
Otherwise, the experiment outputs 1.

Here, an adversary A is unremoving-admissible if there exists circuit C∗
i ∈ C∗ that

C∗
i and C̃ compute identically on all but a negligible fraction of inputs.

Definition 4.4 (δ-Unforgeability). The watermarking scheme for a PRF is δ-
unforgeable if for any polynomial q ≥ 1 and for all PPT and δ-unforging-admissible
adversariesA, we havePr[ExptUFA,q(λ) = 1] ≤ negl(λ), wherewe define the exper-
iment ExptUF and unforging-admissiability as follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Finally,A submits a circuit C̃. The experiment outputs 0 if Extract(EK, C̃, q) =

UNMARKED; otherwise, the experiment output 1.

Here, let Q′ be the number of queries A made to the marking oracle, then an adver-
sary A is δ-unforging-admissible if for all i ∈ [1, Q′], its submitted circuit C̃ and the
circuit Ci compute differently on at least a δ fraction of inputs, where Ci is the output
of the marking oracle on the ith query.
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5 Puncturable Functional Encryption

In this section, we define puncturable functional encryption and give a concrete
construction. A puncturable functional encryption scheme can achieve functional-
ities and security of both puncturable encryption schemes and functional encryp-
tion schemes. Besides, as we will use the puncturable functional encryption scheme
together with an indistinguishability obfuscator, we also require it to have an “iO-
compatible correctness”, which demands a decryption consistency for different
secret keys. More precisely, when using two secret keys sk1, sk2 for functions f1,
f2 respectively, for any string ct in the ciphertext space, either both secret keys will
fail in decrypting it or there exists a plaintext μ in the plaintext space that decrypt-
ing ct under sk1 and sk2 will lead to f1(μ) and f2(μ) respectively.

5.1 Definition of Puncturable Functional Encryption

Definition 5.1 (Puncturable Functional Encryption). A puncturable func-
tional encryption scheme for a family of function F8 with plaintext space {0, 1}m

and ciphertext space {0, 1}n consists of five algorithms:

• Setup.Oninput the security parameterλ, the setupalgorithmoutputs themaster
public key/master secret key pair (mpk,msk).

• KeyGen. On input the master secret key msk and a function f ∈ F , the key
generation algorithm outputs a secret key sk for f .

• Enc. On input the master public key mpk and a message msg ∈ {0, 1}m, the
encryption algorithm outputs the ciphertext ct.

• Dec. On input a secret key sk and a ciphertext ct ∈ {0, 1}n, the decryption algo-
rithm outputs a string msg or a decryption failure symbol ⊥.

• Puncture. On input a secret key sk and two ciphertexts ct1, ct2, the puncture
algorithm outputs a punctured secret key sk′.

Next, we describe properties of puncturable functional encryption schemes.

Definition 5.2 (Properties of Puncturable Functional Encryption). A
puncturable functional encryption scheme PFE = (Setup, KeyGen, Enc, Dec,
Puncture)withplaintext space{0, 1}m, ciphertext space{0, 1}n and supported func-
tion family F is required to have the following properties.

• Correctness. For any message msg ∈ {0, 1}m and any f ∈ F , let
(mpk,msk) ← Setup(1λ), sk ← KeyGen(msk, f), and ct ← Enc(mpk,msg),
then we have Pr[Dec(sk, ct) = f(msg)] = 1.

• Sparseness. For any f ∈ F , let (mpk,msk) ← Setup(1λ), sk ←
KeyGen(msk, f), and ct

$← {0, 1}n, then we have Pr[Dec(sk, ct) �=⊥] ≤ negl(λ).

8 In this work, we concentrate on schemes supporting function family F of polynomial-
size circuit with output space {0, 1}m.
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• Punctured Correctness. For any f ∈ F , any strings ct0, ct1 ∈ {0, 1}n and
any unbounded adversary A, we have

Pr

⎡
⎢⎢⎢⎣

(mpk,msk) ← Setup(1λ);
sk ← KeyGen(msk, f);
sk′ ← Puncture(sk, {ct0, ct1});
ct ← A(mpk,msk, sk, sk′);

:
ct �∈ {ct0, ct1}∧

Dec(sk, ct) �= Dec(sk′, ct)

⎤
⎥⎥⎥⎦ ≤ negl(λ)

• iO-Compatible Correctness. For each master public key/master secret key
pair (mpk,msk), the ciphertext space can be divided into two disjoint parts,
namely, the valid ciphertext set V(mpk,msk) and the invalid ciphertext set
I(mpk,msk), which satisfy V(mpk,msk) ∪ I(mpk,msk) = {0, 1}n and V(mpk,msk) ∩
I(mpk,msk) = ∅. The iO-compatible correctness requires that:
1. For any f ∈ F and any unbounded adversary A, we have:

Pr

⎡
⎢⎣

(mpk,msk) ← Setup(1λ);
sk ← KeyGen(msk, f);
ct ← A(mpk,msk, sk);

:
ct ∈ I(mpk,msk)∧
Dec(sk, ct) �=⊥

⎤
⎥⎦ ≤ negl(λ)

2. For any f1, f2 ∈ F and any unbounded adversary A, we have:

Pr

⎡
⎢⎢⎢⎣

(mpk,msk) ← Setup(1λ);
sk1 ← KeyGen(msk, f1);
sk2 ← KeyGen(msk, f2);
ct ← A(mpk,msk, sk1, sk2);

:

ct ∈ V(mpk,msk)∧
(∀msg ∈ {0, 1}m,

Dec(sk1, ct) �= f1(msg)∨
Dec(sk2, ct) �= f2(msg))

⎤
⎥⎥⎥⎦ ≤ negl(λ)

• Adaptive Indistinguishability. For any PPT adversary A1, A2, we have:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(mpk,msk) ← Setup(1λ);

(st,msg0,msg1) ← AOmsk(·)
1 (mpk);

b ← {0, 1};
ct ← Enc(mpk,msgb);
b′ ← A2(st, ct);

: b = b′

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1/2 + negl(λ)

where Omsk takes as input a function f ∈ F and outputs a secret key sk ←
KeyGen(msk, f); for all f submitted to the oracle Omsk, f(msg0) = f(msg1);
and the Omsk can only be queried two times. Note that in our security proof for
collusion resistant watermarkable PRF, we only require a two-key security, thus
we just define this type of adaptive indistinguishability here.
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• Ciphertext Pseudorandomness. For any PPT adversary A1, A2, we have:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(st,msg, f) ← A1(1λ);

(mpk,msk) ← Setup(1λ);
sk ← KeyGen(msk, f);
ct0 ← Enc(mpk,msg);

ct1
$← {0, 1}n;

sk′ ← Puncture(sk, {ct0, ct1});
b ← {0, 1};
b′ ← A2(st,mpk, sk′, ctb, ct1−b);

: b = b′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1/2 + negl(λ)

5.2 Construction of Puncturable Functional Encryption

In this section, we present our construction of puncturable functional encryption.
Letλbe the security parameter. Letn,m, l, n′ bepositive integers that are poly-

nomial in λ. Our construction is based on the following three building blocks:

• A functional encryption scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
with plaintext space {0, 1}m, ciphertext space {0, 1}n and encryption random-
ness space R. Also, we require that it supports a family F of polynomial-size
circuit with output space {0, 1}m.

• A statistically sound NIZK proof system NIZK = (NIZK.KeyGen,NIZK.Prove,
NIZK.Verify) for L, where

L = {(mpk, ct) : ∃(msg, r), ct = FE.Enc(mpk,msg; r)}.

and require that the proof size is n′ when proving a statement in L.
• A puncturable encryption scheme PE = (PE.KeyGen,PE.Puncture,PE.Enc,
PE.Dec) with plaintext space {0, 1}n+n′

and ciphertext space {0, 1}l.

We construct PFE = (PFE.Setup,PFE.KeyGen,PFE.Puncture,PFE.Enc,PFE.
Dec) for F , which has a plaintext space {0, 1}m and a ciphertext space {0, 1}l, as
follows:

• Setup. On input a security parameter λ, the setup algorithm generates
(mpk,msk) ← FE.Setup(1λ), crs ← NIZK.KeyGen(1λ), and (pk, sk) ←
PE.KeyGen(1λ). Then it outputs the master public key MPK = (mpk, crs, pk)
and the master secret key MSK = (msk, sk,mpk, crs) of PFE.

• KeyGen. On input a master secret key MSK = (msk, sk,mpk, crs) of
PFE and a function f ∈ F , the key generation algorithm generates fsk ←
FE.KeyGen(msk, f) and outputs a secret key SK = (fsk, sk,mpk, crs) of PFE.

• Enc. On input a master public key MPK = (mpk, crs, pk) of PFE and a mes-
sage msg ∈ {0, 1}m, the encryption algorithm first samples r ∈ R. Then,
it computes ct = FE.Enc(mpk,msg; r), and π ← NIZK.Prove(crs, (mpk, ct),
(msg, r)). Finally, it outputs CT ← PE.Enc(pk, ct‖π).
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• Dec. On input a secret key SK = (fsk, sk,mpk, crs) of PFE and a ciphertext
CT ∈ {0, 1}l, the decryption algorithm first decrypts CT with the secret key
of PE and gets ct‖π ← PE.Dec(sk, CT ). It aborts and outputs ⊥ if ct‖π =⊥ or
NIZK.Verify(crs, (mpk, ct), π) = 0. Otherwise, it outputs FE.Dec(fsk, ct).

• Puncture. On input a secret key SK = (fsk, sk,mpk, crs) of PFE and two
ciphertexts CT1, CT2 ∈ {0, 1}l, the puncture algorithm generates sk′ ←
PE.Puncture(sk, {CT1, CT2}) and outputs SK ′ = (fsk, sk′,mpk, crs).

Theorem 5.1. If FE is a secure functional encryption for F with perfect correct-
ness and (two-key) adaptive security, NIZK is a NIZK proof system with adaptively
statistical soundness and adaptive zero-knowledge for languageL, andPE is a secure
puncturable encryption scheme, thenPFE is a secure puncturable functional encryp-
tion as defined in Sect. 5.1.

We give proof of Theorem 5.1 in the full version of this paper.

6 Construction of CollusionResistantWatermarkable PRF

In this section, we show how to obtain collusion resistant watermarkable PRF fam-
ilies. In particular, we construct a collusion resistant watermarking scheme for any
puncturable PRF with weak key-injectivity and constrained one-wayness.

Let λ be the security parameter. Let δ be a positive real value and d = λ/δ =
poly(λ). Let n,m, l, κ be positive integers that are polynomial in λ and n = l +
poly(λ). Let

PRF = (PRF.KeyGen,PRF.Eval,PRF.Constrain,PRF.ConstrainEval)

be a family of puncturable PRF with key space K, input space {0, 1}n, and output
space {0, 1}m. Our watermarking scheme for PRF is built on the following building
blocks.

• A puncturable functional encryption scheme PFE = (PFE.Setup,PFE.KeyGen,
PFE.Puncture,PFE.Enc,PFE.Dec) with plaintext space {0, 1}(d+1)·l+κ, cipher-
text space {0, 1}n and encryption randomness space R. Also, we require
that it supports a family F of polynomial-size circuits with output space
{0, 1}(d+1)·l+κ.

• A family of prefix puncturable PRF F = (F.KeyGen,F.Eval,F.Constrain,F.
ConstrainEval) with input space {0, 1}(d+1)·l and output space K.

• An indistinguishability obfuscator iO for all polynomial-size circuits.
• TwopseudorandomgeneratorsG : {0, 1}l → {0, 1}n andG′ : {0, 1} l

2 → {0, 1}l.
• A family of collision-resistant hash function H with input space {0, 1}d·m and

output space {0, 1}l.

We construct WM = (WM.Setup,WM.Mark,WM.Extract), which has a mes-
sage space {0, 1}κ\{0κ} = [1, 2κ − 1], as follows:
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• Setup. On input a security parameter λ, the setup algorithm first samples
H

$← H and generates K ← F.KeyGen(1λ). Then it generates (mpk,msk) ←
PFE.Setup(1λ) and sk ← PFE.KeyGen(msk, ID), where ID : {0, 1}(d+1)·l+κ →
{0, 1}(d+1)·l+κ is the identity function, i.e., for any x ∈ {0, 1}(d+1)·l+κ,
ID(x) = x. Next, it computes E ← iO(Ext[mpk,K]), where Ext is defined in
Fig. 19. Finally, the output of the setup algorithm is (MK,EK) where MK =
(sk,K,H) and EK = (H, E).

• Mark. On input a mark key MK = (sk,K,H), a secret key k ∈ K for PRF
and a message msg, the marking algorithm outputs a circuit C ← iO(M[sk,K,H,
k,msg]), where M is defined in Fig. 110.

• Extract.On input an extraction key EK = (H, E), a circuit C, and a parameter
q, the extraction algorithm first computes ε = 1/((κ + 1) · q + 1), T = λ/ε2,
and S = q · (κ + 1) and sets a variable counter = 0. Then it computes
L = Trace(0, 2κ, 1, 0, ε, T, E,H, C), where Trace(·) is defined in Fig. 1.
In this procedure, the algorithm also maintains the variable counter and
increase it by 1 each time the function Test(·) defined in Fig. 1 is invoked. The
algorithm aborts and outputs ⊥ once counter > S. In case the algorithm does
not abort, it checks the set L returned by Trace. It outputs ⊥ if L = ∅ and
outputs UNMARKED if L = {0}. Otherwise, it outputs L.

Theorem 6.1. If PRF is a secure puncturable PRF with weak key-injectivity and
constrained one-wayness,PFE is a secure puncturable functional encryption scheme
as defined in Sect. 5.1, F is a secure prefix puncturable PRF, G and G′ are pseudo-
random generators, H is a family of collision-resistant hash function, and iO is a
secure indistinguishability obfuscator, then WM is a secure watermarking scheme
with collusion resistant unremovability and δ-unforgeability, as defined in Sect. 4,
for PRF.

We present the proof of Theorem 6.1 in the full version of this paper.
Here, we provide a brief overview on how to prove the collusion resistant unre-

movability of WM. For simplicity, we consider an adversary who only gets two cir-
cuits C1 and C2 for the same secret key k embedded with messages msg1 and msg2
respectively, where msg1 < msg2, and omit its advantage in viewing the public key
and querying the marking oracle.

Following the syntax used in Sect. 2, we denote an input encrypted from
t1‖ . . . ‖td‖b‖ind satisfying b = H(PRF.Eval(k,G(t1)), . . . ,PRF.Eval(k,G(td))) as
a punctured point labeled with an index ind. Also, we use Xind to denote the set of
all punctured points labeled with the index ind.

First, as shown in [BCP14,NWZ16], the Trace algorithm can output a non-
empty subset of {msg1,msg2} if the adversary cannot distinguish (1) two punc-
turedpoints labeledwithdifferent indices adaptively chosen from(msg1,msg2] and

9 The circuit Ext, as well as all circuits Ext(·) appeared in the security proofs for WM
will be padded to the same size.

10 The circuit M, as well as all circuits M(·) appeared in the security proof for WM will be
padded to the same size.
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Ext

Constant: mpk, K
Input: a1, . . . , ad, b, ind, r

1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PFE . Enc(mpk, t1‖ . . . ‖td‖b‖ind; r).
3. k′ = F . Eval(K, t1‖ . . . ‖td‖b).
4. y = PRF . Eval(k′, x).
5. Output (x, y).

M

Constant: sk, K, H, k, msg
Input: x

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind �=⊥) ∧ (ind ≤

msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) y = PRF . Eval(k′, x).
(c) Output y.

3. Otherwise, output PRF . Eval(k, x).

Trace

Input: ind1, ind2, p1, p2, ε, T, E, H, C
1. Δ = |p1 − p2|.
2. If Δ ≤ ε: return ∅.
3. If ind2 − ind1 = 1: return {ind1}.
4. ind3 = � ind1+ind2

2
	.

5. p3 = Test(ind3, T, E, H, C).
6. Return Trace(ind1, ind3, p1, p3, ε, T,

E, H, C)∪Trace(ind3, ind2, p3, p2, ε, T,
E, H, C).

Test

Input: ind, T, E, H, C
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1} l

2 and

r
$← R.

(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).
(d) (x, y) = E(a1, . . . , ad, b, ind, r).
(e) If C(x) = y: Acc = Acc + 1.

3. Return Acc
T

.

Fig. 1. The circuit Ext, the circuit M, the function Trace, and the function Test

(2) apuncturedpoint labeledwithan indexadaptively chosenoutside (msg1,msg2]
and a random point.

For two punctured points in Xind1 and Xind2 respectively, where ind1, ind2 ∈
(msg1,msg2], both of them are properly punctured and reprogrammed in C2 while
none of them are punctured in C1, thus the decryption (in both C1 and C2) do not
need to distinguish them. So, their indistinguishability comes from the adaptive
indistinguishability of PFE.

The adaptive indistinguishability ofPFE also implies indistinguishability of two
punctured points in Xind1 and Xind2 when both ind1 and ind2 are in [1,msg1] or
both of them are in (msg2, 2κ − 1]. This could reduce the problem of claiming the
pseudorandomness of a punctured point labeled with an index adaptively chosen
from [1,msg1] (or (msg2, 2κ − 1]) to the problem of claiming the pseudorandom-
ness of a punctured points from X1 (resp. X2κ−1), where the latter claim can be
implied by the ciphertext pseudorandomness of PFE. In this way, pseudorandom-
ness of punctured points in Xind for ind �∈ (msg1,msg2] is proved.

It is worth noting that when arguing indistinguishability between a punctured
point from X1 and a random input, we also need to show that the marked circuits
are able to hide puncturedpoints that are punctured and identically reprogrammed
in all circuits. This indicates that our construction of watermarkable PRF involves
a collusion resistant constraint-hiding constrained PRF implicitly.
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7 Collusion ResistantWatermarking Schemes for Other
Cryptographic Functionalities

In this section,we showhow to constructwatermarking schemes for advanced cryp-
tographic functionalities, including the decryption algorithm of a PKE scheme
and the signing algorithm of a signature scheme. The constructions are based on
the observation that the PKE scheme (and the signature scheme) constructed in
[SW14] has a decryption algorithm (resp. signing algorithm) that is nothing more
than a puncturable PRF evaluation. The observation was initially presented in
[NW15,CHN+16] and was used to construct the watermarkable PKE scheme and
the watermarkable signature scheme therein.

Here, as an example, we give a detailed description for how to construct collu-
sion resistant watermarkable PKE schemes and omit the construction for collusion
resistant watermarkable signature schemes. We start by presenting the formal def-
inition of watermarkable PKE scheme. Then we give our construction based on
a puncturable PRF, an indistinguishability obfuscator, a puncturable functional
encryption scheme, and some standard cryptographic primitives.

7.1 The Definition

The collusion resistant watermarkable PKE scheme can be defined similarly as col-
lusion resistant watermarkable PRF, with the main difference being that in the
challenge oracle, the adversary is further given the public key corresponding to the
watermarked secret key.

Definition 7.1 (Watermarkable PKEs [CHN+16, adapted]). Let PKE =
(PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme with secret key space SK. The
watermarking scheme with message space M forPKE (more accurately, the decryp-
tion algorithm of PKE) consists of three algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the mark
key MK and the extraction key EK.

• Mark.On input the mark key MK, a secret key sk ∈ SK ofPKE, and a message
msg ∈ M, the marking algorithm outputs a marked circuit C.

• Extract. On input the extraction key EK, a circuit C, and a parameter q, the
extraction algorithm outputs either a set L ⊆ M or a symbolUNMARKED or an
error symbol ⊥.

Definition 7.2 (Watermarking Correctness). Correctness of the watermark-
ing scheme requires that for any sk ∈ SK, msg ∈ M, and any polynomial q ≥ 1,
let (MK,EK) ← Setup(1λ), C ← Mark(MK, sk,msg), we have:

• FunctionalityPreserving. C(·) andPKE.Dec(sk, ·) compute identically on all
but a negligible fraction of inputs.

• Extraction Correctness. Pr[Extract(EK, C, q) �= {msg}] ≤ negl(λ).
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Before presenting the security definition of the collusion resistant watermark-
able PKE, we first introduce oracles the adversaries can query during the security
experiments. Note that in the challenge oracle, the adversary is further given the
challenge public key.

• Marking Oracle OM
MK(·, ·). On input a message msg ∈ M and a secret key

key sk ∈ SK, the oracle returns a circuit C ← Mark(MK, sk,msg).
• ChallengeOracleOC

MK(·).On input apolynomial-size setM ofmessages from
M, the oracle first generates a key pair (sk∗, pk∗) ← PKE.KeyGen(1λ). Then,
for each msg∗

i ∈ M, it computes C∗
i ← Mark(MK, sk∗,msg∗

i ). Finally, it returns
the set {C∗

1, . . . , C
∗
Q}, where Q = ‖M‖, and the public key pk∗.

Definition 7.3 (Collusion Resistant Unremovability). The watermarking
scheme for a PKE is collusion resistant unremovable if for any polynomial q, for all
PPT and unremoving-admissible adversaries A, we have Pr[ExptURA,q(λ) = 1] ≤
negl(λ), where we define the experiment ExptUR and unremoving-admissibility as
follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Next, A submits a set M∗ of Q messages in M to the challenge oracle and gets a

set C∗ of circuits as well as a public key pk∗ back.
4. Then, A is further allowed to make multiple queries to the marking oracle.
5. Finally A submits a circuit C̃. The experiment outputs 0 if

(a) q < Q and either Extract(EK, C̃, q) is a non-empty subset of M∗ or it equals
to the error symbol ⊥.

(b) q ≥ Q and Extract(EK, C̃, q) is a non-empty subset of M∗.
Otherwise, the experiment outputs 1.

Here, an adversary A is unremoving-admissible if there exists circuit C∗
i ∈ C∗ that

C∗
i and C̃ compute identically on all but a negligible fraction of inputs.

Definition 7.4 (δ-Unforgeability). The watermarking scheme for a PKE is δ-
unforgeable if for any polynomial q ≥ 1 and for all PPT and δ-unforging-admissible
adversariesA, we havePr[ExptUFA,q(λ) = 1] ≤ negl(λ), wherewe define the exper-
iment ExptUF and unforging-admissiability as follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Finally,A submits a circuit C̃. The experiment outputs 0 if Extract(EK, C̃, q) =

UNMARKED; otherwise, the experiment output 1.

Here, let Q′ be the number of queries A made to the marking oracle, then an adver-
sary A is δ-unforging-admissible if for all i ∈ [1, Q′], its submitted circuit C̃ and the
circuit Ci compute differently on at least a δ fraction of inputs, where Ci is the output
of the marking oracle on the ith query.
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7.2 The Construction

Let λ be the security parameter. Let δ be a positive real value and d = λ/δ =
poly(λ). Let n,m, l, κ be positive integers that are polynomial in λ and n =
l + poly(λ). Our watermarkable PKE scheme is built from the following building
blocks:

• Afamily of puncturablePRFPRF = (PRF.KeyGen,PRF.Eval,PRF.Constrain,
PRF.ConstrainEval) with key space K, input space {0, 1}n, and output space
{0, 1}m.

• A puncturable functional encryption scheme PFE = (PFE.Setup,PFE.KeyGen,
PFE.Puncture,PFE.Enc,PFE.Dec) with plaintext space {0, 1}(d+1)·l+κ, cipher-
text space {0, 1}n and encryption randomness space R. Also, we require that it
supports a familyF of polynomial-size circuitwith output space {0, 1}(d+1)·l+κ.

• A family of prefix puncturable PRF F = (F.KeyGen,F.Eval,F.Constrain,
F.ConstrainEval) with input space {0, 1}(d+1)·l and output space K.

• An indistinguishability obfuscator iO for all polynomial-size circuits.
• Three pseudorandom generators G : {0, 1}l → {0, 1}n, G′ : {0, 1} l

2 → {0, 1}l,
and G̃ : {0, 1}λ → {0, 1}n.

• A family of collision-resistant hash function H with input space {0, 1}d·m and
output space {0, 1}l.

For completeness,wefirst recall howPKEschemePKE is constructed in [SW14].

• KeyGen. On input a security parameter λ, the key generation algorithm first
samples k

$← K. Then, it computes P ← iO(Encrypt[k]), where Encrypt is
defined inFig. 2 and is properlypadded.Finally, the outputof thekeygeneration
algorithm is (pk, sk) where pk = P and sk = k.

• Enc.On input apublic keypk = Pandamessagemsg ∈ {0, 1}m, the encryption

algorithm samples r
$← {0, 1}λ and outputs P(msg, r).

• Dec. On input a secret key sk = k and a ciphertext ct = (x, z), the decryption
algorithm outputs msg = PRF.Eval(k, x) ⊕ z.

Encrypt

Constant: k
Input: msg, r

1. x = G̃(r).
2. z = PRF . Eval(k, x) ⊕ msg.
3. Output ct = (x, z).

Fig. 2. The circuit Encrypt.

Next, we construct the watermarking scheme WM = (WM.Setup,WM.Mark,
WM.Extract) for the above constructed PKE scheme, which has a message space
{0, 1}κ\{0κ} = [1, 2κ − 1], as follows:
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• Setup. On input a security parameter λ, the setup algorithm first samples
H

$← H and generates K ← F.KeyGen(1λ). Then it generates (mpk,msk) ←
PFE.Setup(1λ) and sk ← PFE.KeyGen(msk, ID), where ID : {0, 1}(d+1)·l+κ →
{0, 1}(d+1)·l+κ is the identity function, i.e., for any x ∈ {0, 1}(d+1)·l+κ, ID(x) =
x. Next, it computes E ← iO(Ext[mpk,K]), where Ext is defined in Fig. 3 and is
properly padded. Finally, the output of the setup algorithm is (MK,EK)where
MK = (sk,K,H) and EK = (H, E).

• Mark. On input a mark key MK = (sk,K,H), a secret key k ∈ K
for PKE and a message msg, the marking algorithm outputs a circuit C ←
iO(M[sk,K,H, k,msg]), where M is defined in Fig. 3 and is properly padded.

• Extract.On input an extraction key EK = (H, E), a circuit C, and a parameter
q, the extraction algorithm first computes ε = 1/((κ + 1) · q + 1), T = λ/ε2,
and S = q · (κ + 1) and sets a variable counter = 0. Then it computes
L = Trace(0, 2κ, 1, 0, ε, T, E,H, C), where Trace(·) is defined in Fig. 3.
In this procedure, the algorithm also maintains the variable counter and
increase it by 1 each time the function Test(·) defined in Fig. 3 is invoked. The
algorithm aborts and outputs ⊥ once counter exceeds S. In case the algorithm
does not abort, it checks the set L returned by Trace. It outputs ⊥ if L = ∅ and
outputs UNMARKED if L = {0}. Otherwise, it outputs L.

Theorem 7.1. If PRF is a secure puncturable PRF with weak key-injectivity and
constrained one-wayness,PFE is a secure puncturable functional encryption scheme
as defined in Sect. 5.1, F is a secure prefix puncturable PRF, G, G′ and G̃ are pseu-
dorandom generators, H is a family of collision-resistant hash function, and iO is
a secure indistinguishability obfuscator, thenWM is a secure watermarking scheme
with collusion resistant unremovability and δ-unforgeability for PKE.

Proof. Proof of Theorem 7.1 can be proceeded similiarly as the proof of Theo-
rem 6.1, so we omit its details here.

One subtle issue in the proof is that the adversary can additionally obtain a
public key from the challenge oracle, which is an obfuscated circuit containing the
challenge key k∗. So, we need to further argue that the public key will not leak
additional information of k∗. Recall that through the whole security proof, either
k∗ or its equivalent version or its contrained version punctured on a random point
will appear in the view of the adversary. In the first case, the public key will not
provide additional information about k∗. In the second case, k∗ can be replaced
with its equivalent version in the public key and due to the indistinguishability of
iO, this cannot be detected by the adversary. In the third case, k∗ can be replaced
with its contrained version in the public key. Since the probability that the random
punctrued point falls in the range of G̃ is negligible, by the indistinguishability of
iO, this will also not affect the adversary’s advantage.

Remark 7.1. Weremark that the above strategy is not fully applicable in thewater-
markable signature setting. This is because in the verification key of the signature
scheme constructed in [SW14], the pseudorandom random function will compute
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Ext

Constant: mpk, K
Input: a1, . . . , ad, b, ind, r

1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PFE . Enc(mpk, t1‖ . . . ‖td‖b‖ind; r).
3. k′ = F . Eval(K, t1‖ . . . ‖td‖b).
4. y = PRF . Eval(k′, x).
5. Output (x, y).

M

Constant: sk, K, H, k, msg
Input: ct = (x, z)

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind �=⊥) ∧ (ind ≤

msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) y = PRF . Eval(k′, x).
(c) Output y ⊕ z.

3. Otherwise, output PRF . Eval(k, x) ⊕ z.

Trace

Input: ind1, ind2, p1, p2, ε, T, E, H, C
1. Δ = |p1 − p2|.
2. If Δ ≤ ε: return ∅.
3. If ind2 − ind1 = 1: return {ind1}.
4. ind3 = � ind1+ind2

2
	.

5. p3 = Test(ind3, T, E, H, C).
6. Return Trace(ind1, ind3, p1, p3, ε, T,

E, H, C)∪Trace(ind3, ind2, p3, p2, ε, T,
E, H, C).

Test

Input: ind, T, E, H, C
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1} l

2 and

r
$← R.

(b) Sample z1, . . . , zd, z
∗ $← {0, 1}m.

(c) t1 = G′(a1), . . . , td = G′(ad).
(d) b = H(C(G(t1), z1) ⊕ z1, . . . ,

C(G(td), zd) ⊕ zd).
(e) (x, y) = E(a1, . . . , ad, b, ind, r).
(f) If C(x, z∗)⊕z∗ = y: Acc = Acc+1.

3. Return Acc
T

.

Fig. 3. The circuit Ext, the circuit M, the function Trace, and the function Test for the
watermarkable PKE scheme.

on all points in its domain (rather than points in the range of a pseudorandom gen-
erator), thus, we cannot argue indistinguishability between a verification key gen-
erated from a normal key and that generated from a constrained key. To circum-
vent this problem, we modify the construction of signature scheme slightly and use
a watermarked PRF key in the obfuscated circuit of the verification key. But this
will lead to aweakerwatermarkable signature scheme,whichneeds themarking key
of the watermarking scheme when generating a signing key/verification key pair of
the signature scheme.

8 Conclusion and FutureWorks

In this work, we initiate the study of collusion resistant watermarking by defining
and constructing collusion resistant watermarking schemes for common crypto-
graphic functionalities, including PRF, PKE, and signature.

Onemaynote thatwatermarking schemes constructed in thiswork only achieve
a negl(·)-unremovability, which guarantees that no attacker can remove or modify
the embedded message in a watermarked program via altering the program on a
negligible fraction of inputs. A stronger form of unremovability, which is called ε-
unremovability, considers attackers that can alter the watermarked program on a
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ε fraction of inputs for some non-negligible ε. In this setting, since the attacker is
able to reset the outputs on a non-negligible fraction of inputs, internal variables
generated during the extraction procedure may significantly depart from what
is expected. In previous works with ε-unremovability (e.g., [CHN+16,QWZ18,
KW19]), this issue is tackled by repeating some sub-procedure multiple times and
deciding based on majority. Unfortunately, in our construction, as the extraction
algorithm needs to analyze the fraction of reprogrammed points in a set, it seems
implausible to use the “repeating-and-choosing-majority” trick. How to construct
collusion resistant watermarking schemes with ε-unremovability for non-negligible
ε is an interesting open problem.

Another interesting direction is to explore the possibility of instantiating a col-
lusion resistant watermarkable PRF from standard assumptions. As discussed in
Sect. 1.1, a collusion resistant watermarkable PRF can be approximately viewed
as a collusion resistant constraint-hiding constrained PRF, which can imply indis-
tinguishability obfuscator. However, we have not provided a formal reduction. It
is interesting to formally construct an indistinguishability obfuscator from a collu-
sion resistantwatermarkablePRFor construct a collusion resistantwatermarkable
PRF from standard assumptions.

Besides, it is also interesting to construct collusion resistant watermarking
schemes with other desirable features, e.g., constructing collusion resistant water-
marking schemes with public marking.
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Abstract. A universal circuit (UC) is a general-purpose circuit that can
simulate arbitrary circuits (up to a certain size n). At STOC 1976 Valiant
presented a graph theoretic approach to the construction of UCs, where
a UC is represented by an edge universal graph (EUG) and is recursively
constructed using a dedicated graph object (referred to as supernode).
As a main end result, Valiant constructed a 4-way supernode of size 19
and an EUG of size 4.75n logn (omitting smaller terms), which remained
the most size-efficient even to this day (after more than 4 decades).

Motivated by the emerging applications of UCs in various privacy pre-
serving computation scenarios, we revisit Valiant’s universal circuits, and
propose a 4-way supernode of size 18, and an EUG of size 4.5n log n. As
confirmed by our implementations, we reduce the size of universal cir-
cuits (and the number of AND gates) by more than 5% in general, and
thus improve upon the efficiency of UC-based cryptographic applications
accordingly. Our approach to the design of optimal supernodes is com-
puter aided (rather than by hand as in previous works), which might be of
independent interest. As a complement, we give lower bounds on the size
of EUGs and UCs in Valiant’s framework, which significantly improves
upon the generic lower bound on UC size and therefore reduces the gap
between theory and practice of universal circuits.

1 Introduction

A universal circuit (UC)1 refers to a circuit that can be programmed to simulate
any Boolean circuit C up to a given size. That is, a UC takes as input program
bits pC (that encodes C) in addition to an input x, and produces as output
UC(x, pC) = C(x). This is analogous to a central processing unit (CPU) that
carries out the computations specified by the instructions of a computer program.

1 As a slight abuse of abbreviation, we use UC as the shorthand for universal circuit,
and the readers should not confuse it with universal composability.

c© International Association for Cryptologic Research 2019
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1.1 Applications of Universal Circuits

Universal circuits have received sustained research interests and have been found
useful in various privacy-preserving computation applications. We recall a few
below, whose efficiency would benefit from the improvement of universal circuits.

Program Obfuscation. Garg et al. [11] used UCs to construct universal
branching programs which was in turn used to build a candidate indistinguisha-
bility obfuscation (iO). More recently Zimmerman [36] proposed an approach to
obfuscation by viewing UC as a keyed program for circuit families.

Private Function Evaluation. Universal circuits are an essential tool to trans-
form a multi-party computation (MPC) protocol into one for private function
evaluation (PFE). UC-based PFE was studied in [21] and was later improved
and extended in [6,23]. A general framework for PFE protocols that allows for
instantiations from various concrete protocols in different settings was proposed
in [26] and was then extended to malicious adversary setting in [27]. Further-
more, the actively secure non-interactive secure computation (NISC) technique
[1] can be applied to UC to realize actively secure non-interactive PFE, which
is beyond the reach of the framework of [26,27].

Batched Execution of 2PC. Another interesting application of UC is efficient
batch execution for secure two-party computation (2PC). The batch execution
techniques [18,22] were originally intended for amortizing the cost of maliciously
secure garbled circuits for the same function, and UCs can now enable batched
execution for circuits of different functions (realized by the same UC).

Universal Models of Computation. Valiant’s UCs motivated the design
of universal parallel computers [10,25]. Both depth-optimized [7] and size-
optimized [31] approaches to UCs were adapted in [5] to universal quantum
circuits.

Other Applications. UCs were used to hide the functions in verifiable com-
putation [8] and multi-hop homomorphic encryption [15], to hide queries in
database management systems (DBMSs) [9,28] and to reduce verifier’s prepro-
cessing costs in NIZK argument [14]. Attrapadung [4] used UCs to transform
the attribute-based encryption (ABE) schemes for any polynomial-size circuits
[12,16] into ciphertext-policy ABE. UCs were also used to build the ABE scheme
in [13].

1.2 Related Works

Valiant viewed a Boolean circuit as a directed acyclic graph (DAG) and intro-
duced an edge-universal graph (EUG) that edge embeds arbitrary DAGs (of a
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certain size) in a way that is analogous (and can be translated) to a universal cir-
cuit and its simulation of arbitrary circuits. Following Valiant and his follow-up
works [17,19,23,31], we assume WLOG that the circuit has s inputs, t outputs,
g gates of fan-in and fan-out 2, and let n = s+g be the main parameter. Valiant
gave a recursive construction of EUGs (and UCs) based on a k-way supern-
ode (a graph object based on EUG, abbreviated as SN) parameterized by some
constant k. As the main results, Valiant constructed a 2-way supernode of size
5 and a 4-way supernode of size 19, which gives rise to EUGs of size 5n log n
and 4.75n log n respectively (and UCs of size approximately four times that of
the corresponding EUGs, all omitting non-dominant terms). Later Cook and
Hoover [7] gave a depth-preserving construction of UC with optimal depth O(d)
but larger size O(n3d/ log n), where d is the depth of circuit simulated. More
recently, there have been ongoing efforts of implementations and optimizations
of UC under Valiant’s framework. Kolesnikov and Schneider [21] proposed a
practical UC with size-complexity roughly 0.25n log2 n and gave a first imple-
mentation of UC-based PFE under the Fairplay 2PC framework [24]. Despite
not being asymptotically optimal their construction [21] outperforms Valiant’s
UC for small scale circuits. Lipmaa et al. [23,29] further brought down the size
of Valiant 4-way UC from 19n log n to 18 log n by reducing the number of XOR
gates (while keeping the same number of AND gates). Moreover, Lipmaa et al.
gave a general construction of k-way supernode and showed that their design
has smallest size when k = 3.147. Independent of Lipmaa et al.’s work [23], Kiss
and Schneider [19] mainly focused on PFE, a prominent application of UC, for
which the size of UC (and especially the number of AND gates) is significantly
optimized. Further, they [19] borrowed building blocks from [21] and proposed
hybrid constructions of UCs for circuits with long inputs and outputs. Günther
et al. [17] implemented Valiant’s 4-way UC and then provided a hybrid UC
construction with further improved practical efficiency by combining Valiant’s
2-way and 4-way UCs.

Table 1. A comparison of previous results and ours in terms of the sizes of 4-way
supernodes, EUGs, UCs and the number of AND gates, omitting non-dominant terms.

|SN(4)| |EUG2(n)| |UCg
s,t| #(AND gates)

Valiant’s UC [31] 19 4.75n logn 19n logn 4.75n logn

Kolesnikov et al. [21] N/A 0.25n log2 n n log2 n 0.25n log2 n

Lipmaa et al. [23] 19 4.75n logn 18n logn 4.75n logn

Our result 18 4.5n logn 17.75n logn 4.5n log n

Valiant’s 4-way universal circuits remained to date the most efficient con-
struction (i.e., 4.75n log n). Motivated by aforementioned UC-based crypto-
graphic applications, the efficiency improvement efforts towards making them
practical and the trend of circuit size towards 10-million-gate or even billion-
gate scale (e.g., [3,35]), it is natural to raise the following question:
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Can we build more efficient UCs with better constant factors (i.e., smaller
than 4.75) and is there a tighter bound on the size of EUG in Valiant’s frame-
work?

1.3 Our Contributions

We propose an algorithm that automates the search for optimal k-way supern-
odes (practical for k ≤ 4), which yields a 4-way supernode of size 18 and depth
13 (as shown in Fig. 1), improving upon the counterpart by Valiant [31] of size 19
and depth 14. Plugging it into Valiant’s framework immediately brings down the
size complexity of Valiant’s UC (resp., EUG) from 19n log n (resp., 4.75n log n)
to 18n log n (resp., 4.5n log n), where the size of UC 18n log n can be further
reduced to 17.75n log n using the techniques from [23]. In general, our 4-way
supernode achieves an overall improvement of more than 5% in graph (circuit)
size, along with a reduction of over 6% in graph (circuit) depth as a by-product.
We refer to Table 1 for a detailed comparison with related works. As far as
secure computation scenarios such as MPC and PFE are concerned, a practical
efficiency indicator would be the number of AND gates (i.e., excluding XOR
gates) and in this respect our work is also currently the best (more than 5%
improvement over previous works). We implement our UC [33], evaluate its per-
formance with a comparison to existing implementations (see Table 3) based on
circuits of basic functions suitable for MPC and FHE, suggested by Tillich and
Smart [30].

Furthermore, our supernode can be plugged into Valiant’s 4-way UC or any
applications that use the 4-way supernode as a blackbox to achieve improvements
accordingly. For example, our 4-way supernode was used in the recent hybrid UC
[2], which was based on the hybrid UC from [17] by replacing Valiant’s 4-way
counterpart. The engineering efforts of adapting the existing implementations
to ours are affordable by replacing the supernode components, thanks to the
modularity of Valiant’s framework.

in1

in2

in3

in4

P1 P2 P3 P4

out1

out2

out3

out4

Fig. 1. A 4-way supernode that consists of 18 nodes (excluding inputs and outputs).

Our approach to the design of supernodes is computer aided (rather than by
hand as in previous works), which could be of independent interest. Although not
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specific to 4-way supernodes, the time complexity of our algorithm when used in
search of optimal k-way supernodes for k ≥ 5 becomes impractically large. We
stress that the implementations of k-way UC for k ≥ 5, even if they exist with
smaller size, are less desirable in practice. This is because the complexity of the
conversion from an arbitrary circuit to the corresponding UC (which includes
EUG generation, edge embedding, etc.) blows up dramatically with respect to
k. This justifies why Valiant’s 2-way UCs were implemented in [19] earlier than
its 4-way counterpart in [17] despite that the latter has slightly smaller circuit
size. Still, for theoretical interests, we give a lower bound on the size of k-
way supernodes (over all k’s) as a complement, which in turn implies a lower
bound on the size of universal circuit in Valiant’s framework. That is, the size of
an EUG2(n) (resp., UC) is lower bounded by 3.644n log n (resp., 14.576n log n).
We note that a generic lower bound on UC size Ω(n log n) was folklore, where
the hidden constant (implicit in [32, Theorem 8.1]) is quite small (about 1 as
sketched in Sect. 4.1). We attribute this gap (14.576 vs. 1) to that either the
generic bound is not tight or Valiant’s approach to UC construction, despite its
generality and modularity, might be only asymptotically optimal (i.e., not having
a good constant factor). Given that most existing UC constructions were built
upon Valiant’s framework, we believe that our lower bound can be of practical
relevance. Finally, it is left as an interesting open problem whether the gap
between our construction and proved lower bound, 4.5n log n vs. 3.644n log n,
can be further reduced.

2 Preliminaries and Valiant’s UC Construction

In this section, we give basic notations and definitions about universal circuits
and explain Valiant’s construction of universal circuits for completeness and
accessibility. We refer to [23] for an excellent exposition on Valiant’s framework.

2.1 Notations and Definitions

Notations. |G| (resp., |C|) refers to the size of a graph G (resp., circuit C),
namely, the number of nodes (resp., gates) in G (resp., C). In this paper, we
stick to the graph theoretical (rather than the standard electronics) terminology,
where a circuit is represented by a Directed Acyclic Graph (DAG), inputs, out-
puts and gates are considered as nodes and wires are seen as edges of the DAG.
Cg
s,t denotes a circuit with s inputs, t outputs and size up to g, and UCg

s,t denotes
a universal circuit which simulates arbitrary Cg

s,t. DAGd(n) is a DAG of size n
and fan-in (and fan-out) d. Valiant [31] introduced Edge-Universal Graph (EUG)
as defined in Definition 2 below. Loosely speaking, Universal Circuits to circuits
are like Edge-Universal Graphs to Directed Acyclic Graphs. We use EUGd(n)
to denote an edge-universal graph that edge-embeds arbitrary DAGd(n). Note
that we have |UCg

s,t| > g (resp., |EUGd(n)| > n) because UCg
s,t (resp., EUGd(n))

simulates (resp., edge-embeds) any Cg
s,t (resp., DAGd(n)). We refer to the nodes

of EUGd(n) which are mapped from the corresponding vertices in DAGd(n) as
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“poles” and other nodes which are used to simulate the structure of DAGd(n) as
common nodes.

Definition 1 (Universal Circuit). A circuit UCg
s,t is called a universal circuit,

if for any circuit with s inputs, t outputs, size up to g (denoted by Cg
s,t), there

exists a set of program bits p ∈ {0, 1}m such that UCg
s,t can be programmed to

realize Cg
s,t, i.e., ∀x ∈ {0, 1}s,UCg

s,t(x, p) = Cg
s,t(x).

Definition 2 (Edge-Universal Graphs). An edge-embedding � of G =
(V,E) into G∗ = (V ∗, E∗) is a mapping that maps V into V ∗ one to one, and E
into directed paths in G∗ (i.e., (i, j) ∈ E maps to a path from �(i) to �(j)) that
are pairwise edge-disjoint. A graph G∗ is an edge-universal graph for DAGd(n) if
it has distinguished poles P1, . . . , Pn such that every G ∈ DAGd0(n0), with d0 ≤ d
and n0 ≤ n, can be edge-embedded into G∗ by a mapping � such that �(i) = Pi

for each i ∈ V. This should hold for any labeling of G.

UCg
s,t EUG2(n)

n = s+ g

EUG1(n) EUG1(�n/k� − 1) . . .

Fig. 2. A high-level view of Valiant universal circuit construction [23].

2.2 From Edge-Universal Graphs to Universal Circuits

As depicted in Fig. 2, Valiant’s UC construction consists of the following steps:

1. Construct a UCg
s,t from an EUG2(n), where n = g + s;

2. Construct an EUG2(n) from an EUG1(n);
3. Construct an EUG1(n) given an EUG1(�n/k� − 1) for some constant k;
4. Repeat Step 3 recursively until reaching an EUG of some small size that can

be trivially constructed.

Construct UCg
s,t from EUG2(n). To build a universal circuit UCg

s,t from a
EUG2(n)2, each node in EUG2(n) should be implemented by Boolean gates and
each edge is a wire of UCg

s,t. The details are as follows.

– Each pole is implemented by a universal gate (UG). A 2-input UG supports
any of the 16 possible gate types represented by the 4 control bits of the gate
table (c1, c2, c3, c4). It computes function ug: {0, 1}2 × {0, 1}4 → {0, 1} as
follows:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4 (1)

A UG can be implemented with 3 AND and 6 XOR gates [23]. The control
bits c1, c2, c3, c4 are part of the program bits of the universal circuit.

2 Definition 2 puts no limits on the fan-in/fan-out of EUG, but Valiant’s UC construc-
tion requires the underlying EUG to be a DAG2.
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– Each common node with indegree and outdegree both 2 can be implemented
by an X-switching gate [20], that computes fX : {0, 1}2 × {0, 1} → {0, 1}2
(Fig. 3a). The inputs of an X-switching gate are forwarded to its outputs,
switched or not switched, depending on control bit c. This block can be imple-
mented with 1 AND gate and 3 XOR gates (Fig. 3c).

– Each common node with indegree 2 and outdegree 1 can be implemented by a
Y-switching gate [20], that computes fY : {0, 1}2 × {0, 1} → {0, 1} (Fig. 3b).
A Y-switching gate takes as input two bits and produces one of them as
output, depending on control bit c. This block can be implemented with 1
AND gate and 2 XOR gates (Fig. 3d).

– Each common node with indegree 1 and outdegree 2 (i.e., splitter gate) is
replaced by two outgoing wires to copy its input to the two outputs.

– Each common node with indegree 1 and outdegree 1 is replaced by a wire.

x0 x1

x0 x1

c = 0
or

x0 x1

x1 x0

c = 1

(a) X-switching Gate

x0 x1

x0

c = 0
or

x0 x1

x1

c = 1

(b) Y-switching Gate

x0
x1

c

xc

xc

(c) Circuit of X-switching Gate

x0
x1

c

xc

(d) Circuit of Y-switching Gate

Fig. 3. Switching gates and their circuit implementations.

This completes the construction of UCg
s,t from EUG2(n). It remains to show

how UCg
s,t simulates a given circuit Cg

s,t (as intended for a universal circuit),
where simulation is essentially setting the input wires and the program (and
control) bits for all universal gates and switching gates.
Simulate Cg

s,t Using UCg
s,t . Following [17,23,31], we assume WLOG that the

circuits have fan-in/fan-out bounded by two, and it is well-known that any circuit
of unbounded fan-in/fan-out can be transformed into a functionally equivalent
one by paying reasonable prices in size (Cg

s,t ⊂ C2g+t,2
s,t ). [31, Cor 3.1].

We model the circuit Cg
s,t as a graph GC = (VC , EC) where each input wire

and each gate are represented as a node and each wire is represented by an edge
in the graph. The derived graph is a DAG2(n) with n = s+ g. By Definition 2, it
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is possible to embed GC into an EUG2(n), such that for every edge (vi, vj) ∈ EC ,
there is a path from vi to vj that is edge-disjoint to other paths. These paths
constitute set Q = {Q1, Q2, . . . , Q|EC |}, which will be used to determine the
control bits of the switching gates in UCg

s,t, the universal circuit corresponding
to the EUG2(n) above. We set the control bits and input wires as follow.

– Control bits of switching gates. For an X-(/Y-)switching gate GS of
UCg

s,t, we denote by NS the corresponding node in EUG2(n). If a path Qi ∈ Q
passes through NS , we set the control bit of GS to satisfy the direction of Qi

through NS .3 If no paths go through NS , we can set arbitrary binary value
for the control bit of GS .

– Control bits of universal gates and input wires of universal circuit.
For a universal gate GU of UCg

s,t, we denote by NU the corresponding pole in
EUG2(n). If NU represents a gate of the given circuit Cg

s,t, we set the control
bits of GU to realize the gate. If NU represents an input of Cg

s,t, we can set
arbitrary binary values for the control bits of GU and set the output wire of
GU as an input wire of UCg

s,t.

This completes the simulation. Now we analyze the complexity of UCg
s,t.

Lemma 1. |UCg
s,t| ≤ 4|EUG2(n)| + 5n, where n = s + g

Proof. From the construction of UCg
s,t, we know that the size of UCg

s,t is related to
the numbers of X-switching gates (denoted by nX), Y-switching gates (denoted
by nY ) and the universal gates (exactly n), which can be expressed as: |UCg

s,t| =
4nX + 3nY + 9n ≤ 4(nX + nY + n) + 5n ≤ 4|EUG2(n)| + 5n, as switching gates
(which amount to nX + nY ) are part of the common nodes in EUG2(n).

In Valiant’s supernode design, the fan-in/fan-out of every common node is two,
meaning that there are no Y-switching gates and splitters in the corresponding
UC (i.e., nY = 0). In that case, the inequality in Lemma 1 can be used as an
equality. Later, the supernode designed by Lipmaa et al. [23] additionally utilized
Y-switching gates and splitters to reduce the number of XOR gates, which we
will elaborate in the next section. In summary, we reduce the construction of UC
to that of EUG2(n), which will be our focus for the remainder of this section.

2.3 Edge-Universal Graphs: From EUG1(n) to EUG2(n)

Next we show how to construct from EUG1(n) to EUG2(n).

Lemma 2 (Lemma 2.1 from [31]). For any DAGd(n) = (V,E), E can be
regarded as the union of d disjoint set Ei, i.e., E = ∪d

i=1Ei, such that each
(V,Ei) is a DAG1(n).

3 Since NS is a common node, it cannot be an endpoint of a path. For a X-switching
gate GS , there may be two paths passing through NS , for which only a single control
bit is needed as paths in Q are edge-disjoint by definition.
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Lemma 3 ([23]). An EUG2(n) can be constructed from two instances of
EUG1(n).

Proof. An EUG2(n) is constructed from two EUG1(n), which can be achieved by
merging every two poles in the same positions of the two EUG1(n). Then we prove
that any DAG2(n) = (V,E) can be edge-embedded into the EUG2(n). By Lemma
2 we can divide E into two sets E1 and E2 such that each (V,Ei) is a DAG1(n),
and therefore we can embed each in a separate EUG1(n). The edge-embedding
from (V,E) to EUG2(n) is the combination of two edge-embeddings from (V,Ei)
to the respective EUG1(n). This completes the EUG2(n) construction.

As we mentioned before, when constructing a UCs,t
g we need the EUG2(n) to

be a DAG2. So the EUG1(n) used to construct this EUG2(n) also needs to be a
DAG2 and the indegree (outdegree) of poles of EUG1(n) should be 1. Therefore,
when we talk about Valiant’s construction, the edge-universal graphs EUG1(n)
and EUG2(n) should meet the requirements above.

2.4 Edge-Universal Graphs: From EUG1(�n/k� − 1) to EUG1(n)

Now that we reduce the construction of UCg
s,t to the design of EUG1(n). What

we will show next is a reduction of EUG1(n) to itself of smaller sizes (which can
be done recursively until reaching an EUG1 of trivial size we have on hand). The
recursion relies on an essential building block called supernode (see Definition
3) and we use it to reduce EUG1(n) to EUG1(n/k) in each step.

Definition 3 (Supernode). A k-way supernode SN(k) is an edge-universal-
graph with k inputs {in1, . . . , ink}, k outputs {out1, . . . , outk}, k poles P =
{P1, . . . , Pk} and m other nodes (called common nodes), such that any graph G =
(V,E) ∈ DAG1(3k), where V = {in1, . . . , ink} ∪ {P1, . . . , Pk}∪{out1, . . . , outk},
and every edge e = (v1, v2) ∈ E satisfies the conditions below:

1. If v1 ∈ {in1, . . . , ink} then v2 ∈ P .
2. If v2 ∈ {out1, . . . , outk} then v1 ∈ P .
3. v1 /∈ {out1, . . . , outk}.
4. v2 /∈ {in1, . . . , ink}.
can be edge embedded into SN(k). The size4 of SN(k) is the defined as m + k.

As an example, Fig. 1 is a 4-way supernode. Given a k-way supernode, we can
reduce the problem of EUG construction to itself (of smaller sizes) in a recursive
way. This is stated as the theorem below and for self-containedness we sketch
its main idea (visualized in Fig. 4) and refer to the appendix for a full proof.
That is, given an EUG1(�n

k � − 1) and SN(k), we construct a EUG1(n) as follows.
We connect �n

k � k-way supernodes together by merging the inputs and outputs

4 As a slight abuse of definition, the size of a supernode is different from that of a
graph by excluding input and output nodes. As we will see, it comes in handy when
composing the components to build a large EUG and calculating its size.
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of two adjacent supernodes one by one (e.g. merge out11 and in2
1 into one5). We

divide those merged nodes into k groups and invoke EUG1(�n
k � − 1) for each

group (see Fig. 4).

Theorem 1 ([23,31]). Given an EUG1(�n
k �−1) and a k-way supernode SN(k),

there exists an explicit construction of EUG1(n) of size

k · |EUG1(�n

k
� − 1)| + �n

k
� · |SN(k)|.

SN(k)1

out11

in2
1

. . .

SN(k)2

. . .

•• •
•
•
•

•
•
•

. . .

SN(k)� n
k

�

EUG1(�n
k
� − 1)1 EUG1(�n

k
� − 1)k

Fig. 4. Valiant’s construction of EUG1(n) based on EUG1(�n
k
� − 1) and SN(k).

With SN(k) we recursively reduce the problem to itself of smaller sizes, and
we just need an EUG1 of small size, say EUG1(k), at initialization. Note that
EUG1(k) is already implied by and can be extracted from SN(k). In summary,
SN(k) can be used to build EUGs of arbitrary size. We refer to this approach
to UC construction (from supernodes) as Valiant’s construction (or Valiant’s
framework) and see Fig. 4 for the high-level overview. Clearly, the complexity of
Valiant’s framework is related to the size of the supernode used, which will be
analyzed in the next subsection.

2.5 Circuit Complexity in Valiant’s Framework

Valiant’s approach to universal circuits remains the most efficient to date, and
thus we consider the complexity of UC and EUG constructed in Valiant’s frame-
work. The following equations are from Theorem 1 and Lemma 3:

|EUG2(n)| = 2|EUG1(n)| − n, (2)
5 ini

j (outij) denotes the j-th input (output) of the i-th supernode (denoted by SN(k)i).
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|EUG1(n)| = k|EUG1(�n

k
� − 1)| + �n

k
�|SN(k)|. (3)

By using recurrence relation above, we get

|EUG2(n)| =
2|SN(k)|
k log k

n log n − O(n), (4)

|CircuitEUG2(n)| =
2|CircuitSN(k)|

k log k
n log n − O(n), (5)

where CircuitEUGd(n) denotes the circuit counterpart of EUG2(n) in Eq. 4. The
size of UC can be estimated by combining Eq. 4 with Lemma 1 [31]:

|UCg
s,t| =

8|SN(k)|
k log k

n log n − O(n),where n = s + t + 2g. (6)

Next, we consider depth and from Fig. 4 we know:

depth(EUG1(n)) = �n

k
�depth(SN(k)) + (�n

k
� − 1)

=
n

k
(depth(SN(k)) + 1) + O(1).

(7)

Combining with Lemma 3, we have:

depth(UCg
s,t) = depth(CircuitEUG1(n))

= �n

k
�depth(CircuitSN(k)) + (�n

k
� − 1)depth(X-switching).

(8)

The depth of the circuit of SN(k) is 3×depth(SN(k))6 as the X- and Y-switching
gates are both of depth 3 (see Fig. 3). Thus, its depth complexity is:

depth(UCg
s,t) =

3 × depth(SN(k)) + 3
k

n + O(1). (9)

Table 2. The known results of UC size and depth.

k Supernode size Supernode depth |UCg
s,t| depth(UCg

s,t)

2-way 5 5 20n logn [31] 9n

3-way 12 7 20.19n log n [17] 8n

Valiant’s 4-way 19 14 19n logn [17,31] 11.25n

Our 4-way 18 13 18n logn 10.5n

We summarize in Table 2 known results about the size and depth of supernode
and corresponding UCs. As we can see, the size and depth of Valiant’s universal
circuits crucially depend on the respective size and depth of the underlying k-way
supernode. This motivates our search for a smaller supernode for some practical
value of k.
6 Similar to the size of supernode, we define the depth of SN(k) as the length of the

longest path minus 2 (i.e., excluding inputs and outputs), denoted by depth(SN(k)).
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3 A New Design of Supernode via Automated Search

In this section, we introduce an automated approach to the design of supern-
odes. As a main end result, we get a better 4-way supernode with an overall
improvement of more than 5% on the efficiency of UC constructions and their
applications, stated as the theorem below. We refer to the external link [34] for a
lengthy (computer generated) proof that Fig. 1 gives a 4-way supernode, where
all effective DAGs are exhausted and their edge-embeddings into the supernode
are provided. As we will show, it is already size optimal (as a 4-way supernode)
as 4-way supernodes of size 17 do not exist.

Theorem 2 (4-way SN and EUG, revisited). The graph in Fig. 1 is a 4-
way supernode with 18 nodes (excluding inputs and outputs), which implies an
EUG2(n) of size 4.5n log n − O(n) and depth 3.5n + O(1).

3.1 Construction of Supernodes

While giving constructions of 2-way and 4-way supernodes in his work [31],
Valiant gave no details on how the constructions were obtained. Lipmaa et al.
[23] formalized and explained the k-way supernode construction methodology in
a modular and intuitive way. As depicted in the right-hand of Fig. 5, a general
design of k-way supernode consists of two layers of permutation-networks (PNs)
at both ends and an EUG augmented with k − 1 additional nodes in between.
For k = 4, the size of SN(4) following the general design is

2|PN| + |EUG1(k)| + k − 1 = 10 + 7 + 3 = 20.

Looking back, Valiant’s 4-way supernode can be regarded as an optimized version
of the general design by saving a node from one of the permutation networks
(see the comparison in Fig. 5). One might think that by exploiting the symmetry
it is possible to save two nodes (one from each permutation network) to get a
4-way supernode of smaller size (i.e., 18). Unfortunately, this intuition does not
work because the resulting graph would not be a supernode any more, which was
refuted by our supernode testing algorithm (presented in the next subsection).
It remained open if one can construct more size-efficient supernodes. Next we
will present an algorithm for testing whether a graph is supernode or not, and
an automated searching algorithm for more size-efficient supernodes.

3.2 Supernode Test for Graphs

As the first step, we propose a method to check whether a graph (with k inputs,
k outputs, k poles and m common nodes) is a k-way supernode or not. A k-way
supernode is an edge-universal-graph that edge embeds any graph G ∈ DAG1(3k)
(see Definition 3) and thus it seems necessary to enumerate all G ∈ DAG1(3k).
For efficiency, we observe that it suffices to enumerate over a special type of
graph called pole-complete graphs, and the remaining graphs can be omitted
as they are already implied. As we will see in the next section, the notion of
pole-complete graphs will also be useful for proving the lower bound.



Valiant’s Universal Circuits Revisited 413

in1 in2 in3 in4

P1

P2

P3

P4

out1 out2 out3 out4

one node
optimized

in1 in2 ink

Permutation network

x1 x2 xk

xπ(1)xπ(2) xπ(k)

. . .

. . .

p1

xπ(1)

y1

pi

xπ(i)

yi

pk

xπ(k)

yk

EUG(k)

Permutation network

out1 out2 outk

yπ(1)yπ(2) yπ(k)

y1 y2 yk

. . .

. . .

Fig. 5. A comparison of Valiant’s SN(4) and the general design of SN(k) from [23].

Definition 4 (Pole-complete Graph). For G = (V,E) ∈ DAG1(3k) with k
inputs, k outputs, and k poles P1, . . . , Pk that are topologically ordered, we say
that G is pole-complete if

1. Every edge of G satisfies the four properties stated in Definition 3;
2. For any pole p ∈ {P1, . . . , Pk}, there exist e1 = (v1, v2), e2 = (v3, v4) ∈ E such

that v2 = p and v3 = p.

We denote by Fk the number of all the k-way pole-complete graphs G ∈
DAG1(3k).

Informally, for any G = (V,E) ∈ DAG1(3k) to be edge-embedded into the can-
didate supernode (Definition 3), we can see G as a set of paths. We call G
pole-complete if for each path its start-node is an input (from {in1, . . . , ink}),
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the middle-nodes (poles) are topological sorted, and its end-node is an output.
“Pole-complete” means that all the k poles are in the paths.

Lemma 4. A graph G0 with k inputs {in1, . . . , ink}, k outputs {out1, . . . , outk},
and k poles P = {P1, . . . , Pk} is a SN(k) if any pole-complete graph G ∈
DAG1(3k) can be edge-embedded into G0.

Proof. First, we observe that if graph G = (V,E) can be edge-embedded into
graph G0, then so can any subgraph G′ = (V ′, E′) of G since the edge-embedding
of G′ is implied by that of G by ignoring those edges e ∈ E \ E′ (recall E′ ⊂
E). Next, we prove that for any graph G′ = (V ′, E′) ∈ DAG1(3k) satisfying
Definition 3 but is not pole-complete, there exists a pole-complete G ∈ DAG1(3k)
such that G′ is a subgraph of G. We construct such G by adding edges into G′.
As mentioned before, G′ ∈ DAG1(3k) can be regarded as a set of several paths.
Since G′ is not pole-complete, there must be one or more isolated poles not in the
paths, or there are one or more paths start (or end) with poles, called starting
poles (or ending poles). We put all isolated poles in a path and add the path to
G′. Then, for each starting pole (or ending pole), we add an edge that connects
an isolated input to (or output from) it. Note that we can always find such
isolated input/output nodes as the number of input/output nodes equals to the
number of poles. At last, we construct a supergraph of G′ which is pole-complete.

We use a depth-first-search algorithm to find an edge-embedding of pole-
complete G, and repeat the process on all pole-complete ones. In a pole-complete
graph, the precursor-node (abbreviated as pre-node) of the first pole P1 should
reside in the k inputs, denoted by ini, and the pre-node of P2 should be in
{P1, in1, . . . , ini−1, ini+1, . . . , ink}, with k possibilities as well. Therefore, the
pre-node of every pole each has k different possibilities and there are kk possi-
bilities to enumerate. Then, we connect inputs and the poles to form several (no
greater than k) paths. Finally, we enumerate the arrangement of outputs for the
paths to get the pole-complete graph G.

3.3 Search for More Size-Efficient k-way Supernodes

As given in Definition 3, we define the size of a supernode SN(k) as the sum of
the numbers of poles and common nodes and we find it convenient to compute
the size of EUG in Valiant’s framework (see Footnote 4). Thus, the supern-
ode of size n has n + 2k nodes (k inputs, k outputs, k poles and n − k com-
mon nodes). To search for SN(k) of size n, we number the nodes in SN(k) as
N1, N2, . . . , Nn+2k with N1, N2, . . . , Nk as inputs, Nn+k+1, Nn+k+2, . . . , Nn+2k

as outputs and Nk+1, Nk+2, . . . , Nn+k as poles and common nodes (collectively
referred to as middle nodes). The idea of searching for a SN(k) of size n is to
enumerate the pre-nodes of each node in the graph, and output if it is a supern-
ode (using the supernode test method from the last subsection). For example,
if the inputs have no pre-nodes, we can just set the k inputs as isolated nodes
at initialization. For a middle node Ni (k < i < n + k + 1), the number of its
pre-nodes can be one (if Ni is a pole) or two (otherwise), so we must consider
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both possibilities. Upon the enumeration of Nj as Ni’s pre-node candidate, we
should check whether Nj is legal or not, in particular, if Nj ’s out-degree is 2
or Nj is an input or pole and its out-degree is 1, then Nj is not a pre-node
of Ni (because the SN(k)’s fan-out is 2 and the out-degree of an input or pole
must be 1). This condition for Nj is described as “Nj ’s out-degree is not full”
in line 8 and line 18 of Algorithm 3.3. At last, we add the k outputs as the
successor nodes of the nodes whose out-degree is not full. The steps above allow
for an automated search over all candidates. However, the above search is not
efficient as it enumerates all candidates, many of which could have been ruled
out from supernode tests. So we add the pruning method to improve efficiency.
After choosing a middle node as the j-th pole, we check whether graph G we
construct can be a part of SN(k) or not, for which we need to enumerate all the
DAG1(k + j) (with k inputs and j poles, see Definition 3) and check whether
those DAG1(k + j)s can be edge-embedded into G or not. We refer to Algorithm
3.3 for the pseudocode of search for supernode SN(k) of size n, where the pruning
method is invoked in line 10.

3.4 New Constructions

in3

in2

in1

P1 P2 P3

out3

out2

out1

Fig. 6. A 3-way supernode that consists of 12 nodes.

We run the automated tool on a PC to search for k-way supernodes. We
start with 3-way supernodes (the case of k = 2 is trivial). The search for SN(3)
of size 11 failed, and an outcome of SN(3) of size 12 is illustrated in Fig. 6, which
is already known in literature [17].

We proceed to the case k = 4. For the 4-way supernode of size 17, the search
exits in a couple of minutes without any outcome, meaning that no such exist.
For the 4-way supernode of size 18, the search runs in a number of minutes
and returns the outcomes7, which are depicted in the Fig. 1. This beats the best
previously known result by Valiant [31] of size 19. As a result, we improve the
size of EUG2(n) from 4.75n log n to 4.5n log n (omitting smaller terms).

Moving from k = 4 to k = 5 seems a tiny step. However, for k = 5 the search
algorithm is not terminating due to the substantially higher time complexity. For
the 4-way supernode of size 18, we search for 6859734 candidate graphs (already
7 The search algorithm outputs a few hundred of outcomes many of which are isomor-

phic to each other, but our verification is by hand and is certainly not exhaustive.
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Algorithm 1. The search algorithm for SN(k) of size n

Require: k, n
Ensure: All k-way supernodes of size n (if exists)
1: Initialize the graph G
2: ADDNODE(G,k + 1)
3:
4: function Addnode(G, i)
5: if i ≥ k + n then
6: if #(G’s pole)< k then
7: for j = 1 → i − 1 do
8: if Nj ’s outdegree is not full then
9: Addedge(Nj , Ni) to G

10: if G passes the pruning method test then
11: ADDNODE(G,i + 1)
12: end if
13: end if
14: end for
15: end if
16: for j = 1 → i − 1 do
17: for k = 1 → j − 1 do
18: if (Nj ’s outdgree is not full) and (Nk’s outdgree is not full) then
19: Addedge(Nj , Ni) to G
20: Addedge(Nk, Ni) to G
21: ADDNODE(G, i + 1)
22: end if
23: end for
24: end for
25: else
26: Add the output nodes for G;
27: if G is a Supernode then
28: output G;
29: end if
30: end if
31: end function

after pruning) and for each candidate we should enumerate 5056 DAG1(3 × 4)s
to decide whether it is a supernode or not. That justifies why it takes several
minutes to get the results. Nevertheless, for k = 5 we target at supernodes of size
26 (any 5-way supernode with size 27 or more yields an EUG2(n) of size greater
than 4.5n log n), then the number of candidate graphs grows rapidly to almost
247, and for each candidate we need to enumerate about 218 DAG1(3×5)s, where
the product 265 is beyond the reach of a PC. We did try other methods (e.g.
SAT solvers) to improve the efficiency for k = 5. But the attempt failed due to
the difficulty of finding out the SAT formula determining whether a DAG can
be embedded into a supernode candidate or not.
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Fig. 7. The 4-way split supernode construction from [23], where each green node can
be implemented by a Y-switching gate.

By replacing each common node with an X-switching gate and each pole with
a universal gate, we immediately convert the EUG2(n) to a universal circuit of
size 18n log n + O(n) and thus improve upon the Valiant’s UC of size 19n log n.
However, while our UC size seems the same as 18n log n achieved by Lipmaa et
al. [23], their UC construction was based on Valiant’s supernode and decreased
its total number of gates by replacing 4 X-switching gates with 4 Y-switching
gates (see Fig. 7). In other words, their construction reduces only the number
of XOR gates (and that of AND gates remain the same as [31]) and thus the
improvement may not be appreciated by applications such as MPC and PFE
with UC, where XOR gates can be evaluated for free [21]. Further, we can use
the same idea from [23] to save some XOR gates. For example, based on our
supernode we change an X-switching gate to Y-switching gate (the black node
in Fig. 8), and the size of universal circuit now becomes 17.75n log n + O(n),
which is better than [23].

in1
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P1 P2 P3 P4

out1

out2

out3

out4

Fig. 8. Our 4-way supernode can be improved (in the sense of circuit size) by replacing
an X-switching gate with a Y-Switching gate at the black node.

At last, our 4-way UCs are also shallower than the counterparts in literature
[23,31]. The depth of Valiant’s SN(4) is 14 but ours is 13. From Eqs. 7 and 9, we
know that the depth of the EUG (resp. UC) based on our 4-way supernode is
3.5n (resp. 10.5n), which is better than (and improves by 6.67%) Valiant’s 3.75n
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(resp. 11.25n). However, if one only cares about depth, then he would just use
3-way supernode of depth 7 (see Fig. 6) to get a UC of depth 8n. Otherwise said,
the depth improvement on 4-way UC is considered as a by-product (instead of
a main advantage) of our UC construction.

3.5 Implementation and Performance Evaluation

As we mentioned before, the universal circuits based on our 4-way supernode
have smaller circuit size than other constructions especially for large n (when
emulating large-size circuits). We implement our 4-way construction [33] and
compare it with the implementations of Valiant’s 2-way [19], 4-way and their
hybrid [17]. Table 3 evaluates the performances based on circuits of basic func-
tions suitable for MPC and FHE, provided by Tillich and Smart [30]. In partic-
ular, Table 3 compares the number of AND gates in our universal circuits with
other works8, where our work is tabulated in the last column of Table 3 and the
statistics of other works are picked from [17, Table 5].

Table 3. A comparison (in terms of the number of AND gates) of the (Kiss et al.’s
2-way, Günther et al.’s 4-way and hybrid, and our 4-way) UC implementations to
simulate sample circuits from [30].

Circuit n = g + s 2-way UC [19] 4-way UC [17] Hybrid UC [17] Our 4-way UC

Credit Checking 82 1.50 · 103 1.51 · 103 1.49 · 103 1.50 · 103
Mobile Code 160 3.65 · 103 3.88 · 103 3.61 · 103 3.82 · 103
ADD-32 342 9.58 · 103 9.55 · 103 9.44 · 103 9.30 · 103
MULT-32X32 12202 6.54 · 105 6.50 · 105 6.35 · 105 6.24 · 105
AES-exp 38518 2.39 · 106 2.38 · 106 2.31 · 106 2.27 · 106
DES-exp 32207 1.98 · 106 1.94 · 106 1.90 · 106 1.87 · 106
SHA-256 201206 1.49 · 107 1.46 · 107 1.44 · 107 1.39 · 107

As seen from Table 3, our construction has no advantage over (and is even
worse than) the implementations of Kiss et al.s and Günther et al.’s for small
circuits (n up to up to a few hundreds). But with the growth of circuit size, our
construction starts to outperform the rest by a few percentage points. Curiously,
in the case of SHA-256, the number of AND gates in our 4-way universal circuit
is about 1.39 · 107 and Valiant’ 4-way is 1.46 · 107. Their ratio is about 0.952,
which is very close to 18/19 and therefore confirms our analysis that the constant
factor (in the of number of AND gates, as well as the size of the EUG) has been
improved from 4.75 to 4.5. Even taking into consideration the optimization (e.g.,
using the hybrid of 2-way and 4-way) [17], our construction still has its advantage
[2].
8 Recall that the number of AND gates of Lipmaa et al.’s circuits (Fig. 7) remains

the same with Valiant’s 4-way construction since it saves only XOR gates, so the
comparison does not include the Lipmaa et al.’s work.



Valiant’s Universal Circuits Revisited 419

4 A Lower Bound on Circuit Size in Valiant’s Framework

Our search algorithm is intended for arbitrary k-way supernodes, but the time
complexity is too large to be practical for k ≥ 5. In this section, we aim to find
a lower bound (for all k’s) on the size of Valiant’s EUG (and UC), which is in
turn based on that of the supernode.

4.1 A Generic Lower Bound on Circuit Size

Valiant showed a generic bound Ω(n log n) to argue the asymptotic optimal-
ity of his construction [31], where constant behind Ω could be extracted from
Wegener’s book [32, Theorem 8.1] by carefully checking its (somewhat nested)
proof. We mention that this could be seen directly from a counting argument
which we informally sketch below (and stress that it is not a proof and refer
to [32] for formal details). That is, consider an arbitrary Cg

s,t with inputs and
gates topologically sorted (inputs followed by gates), i.e., in1, · · · , inn, gs+1, · · · ,
gn=s+g, and assume that they are c different symmetric gates (e.g., XOR and
AND) of fan-in 2. Then, for each gi (i > s) there are

(
i−1
2

)
choices of inputs and

therefore the logarithm of the cardinality:

log |Cg
s,t| ≥ log

( (n!)2 · ( c
2 )n−s

n!

)
= n log n − O(n),

where the n! in the denominator accounts for that the topological sorting of
inputs and gates are not unique (but up to the permutation of the nodes).
Finally, the input length of the universal circuit is lower bounded by log |Cg

s,t|
and so is the size of UC. Apparently, there are some loose steps, such as the
order of gates cannot be arbitrarily permuted but this does not affect the lower
bound by a factor of more than 2. A major lossy step is that we only require the
size of the UC (of fan-in 2) to be at least the same as that of the input (in order
for every input to contribute to the output the UC must be a connected DAG).
In fact, a UC would need much more gates than its inputs to accomplish the
simulation, and therefore additional knowledge about a specific UC framework
could be helpful to improve this generic bound.

There remains a substantial gap between the constant factor in the generic
(not specific to Valiant’s UC framework) lower bound (i.e., 1) and that of known
constructions (19 for Valiant’s UC [31] and reduced to 18 in this work). Further,
the generic bound sheds no light on the lower bound on the size of Valiant’s
EUG. Motivated by that most existing UCs are constructed under Valiant’s
framework, we aim to find a better (much lifted) lower bound on the size of
EUG (and UC) in Valiant’s framework.

4.2 Size of k-way Supernode

Recall that sizes of EUG and UC can both be based on that of the supernode
(see Eqs. 4 and 6 reproduced below):

|EUG2(n)| =
2|SN(k)|
k log k

n log n − O(n),
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|UCg
s,t| =

8|SN(k)|
k log k

n log n − O(n),

where the smaller term O(n) is often omitted. Thus, our task is to lower bound
2|SN(k)|
k log k by some constant. Recall that Fk denotes the number of all the k-way

pole-complete graphs (Definition 4). We use the following lemma to reduce our
task to the approximation of Fk.

Lemma 5. |SN(k)| ≥ �log(Fk) + k�.
Proof. Every pole-complete graph G can be configured (by setting the con-
trol bits) to be edge-embedded into SN(k), and the common nodes should be
switching gates. Therefore, for an SN(k) we need set the control bits of its
|SN(k)| − k common nodes to cater for all pole-complete graphs (amount to
Fk), i.e., 2|SN(k)|−k ≥ Fk, where |SN(k)| is an integer. This completes the proof.

|EUG2(n)| = 2|SN(k)|
k log k n log n − O(n) ≥ 2�log(Fk)+k�

k log k n log n − O(n)

Our next job is to lower bound g(k) def= 2�log(Fk)+k�
k log k as a function of k ∈ N+.

4.3 A Guess for the Constant Factor

In order to lower bound g(k), it would be ideal to give an approximation of
Fk and then take the minimum over all k’s. However, a general closed-form
expression for Fk seems difficult. We further define Ai,k in Definition 5 and
give the relation between Fk and Ai,k in Lemma 6. We also provide a recursion
formula for Ai,k in Lemma 7, which facilitates the computation of Ai,k (by
dynamic programming) for small values of i and k. With the above, we are able
to compute g(k) for k up to a few thousand (see Table 4 for values when k < 100).
Based on the values computed, we have the guess that g(k) > 3.644, where
g(k) is monotonically decreasing for k ≤ 69 and monotonically increasing for
k ≥ 69 with minimum g(k) ≈ 3.6442 achieved at k = 69. The former (monotonic
decreasing) statement is verified by computing all g(k) for all k ≤ 69 and a proof
of the latter (monotonic increasing) is deferred to the next subsection.

Definition 5. Let Ai,k denote the number of ways to spread k different balls
into i (i ≤ k) identical boxes with the condition that no boxes are empty.

Lemma 6. Fk =
∑k

i=1(
k!

(k−i)! )
2Ai,k.

Proof. If G = (V,E) ∈ DAG1(3k) is a k-way pole-complete graph, by Definition
4, we know that G can be regarded as a set of paths. It remains to sum up the
numbers of pole-complete graphs for 1 ≤ i ≤ k paths: the number of ways to
“put” k poles into i paths is Ai,k by Definition 5, and there are k!

(k−i)! ways to
link i start-nodes (resp., end-nodes) to k inputs (resp., outputs) for these paths.
Thus, ( k!

(k−i)! )
2Ai,k different pole-complete graphs for each value of i and we sum

up (for i = 1 to i = k) to get the final result.
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Lemma 7. 1. A1,k = 1,∀k ∈ N
+;

2. Ai,k =
∑k−i

j=0

(
k−1
j

)
Ai−1,k−j−1.

Proof. The first statement is trivial and we just need to prove the second one.
Recall that in Definition 5 balls are all distinct while boxes are identical. We
assume WLOG that ball #1 is in box #1, and let j be the number of other balls
(in addition to ball #1) in box #1, where j ≤ k − i is required to make sure
that no boxes are empty. After choosing these j balls (

(
k−1
j

)
different choices),

it remains to put the rest k − j − 1 balls into the remaining i − 1 boxes, which
can be done in Ai−1,k−j−1 different ways by definition.

We compute the values of g(k) and other functions of k for k up to a few
thousand, and list only partial results (up to k = 99) in Table 4 due to lack of
space, from which we guess g(k) > 3.644 (recall that g(69) is actually greater
than 3.644). Note that it is tight at k = 2 (g(2) = 5) but not tight at k = 4 as
g(4) = 4.25 but the constant factor of our size optimal UC is 4.5.

Table 4. The values of �log(Fk) + k� and g(k) for k < 100.

k 2 3 4 5 . . . 68 69 70 . . . 98 99

�log(Fk) + k� 5 11 17 23 . . . 755 768 782 . . . 1182 1197

g(k) =
2�log(Fk)+k�

k log k
5 4.63 4.25 3.96 . . . 3.6478 3.6442 3.6453 . . . 3.6468 3.6477

4.4 The Lower Bound

We proceed to the proof of g(k) = 2�log(Fk)+k�
k log k > 3.644 for k ≥ 69. We give

its proof in Lemma 8 but only for k ≥ 1478, and gap (values of g(k) for 70 ≤
k ≤ 1477) is verified by computer. Note that there is nothing special with 1478,
which is attributed to the loss of tightness by some inequality applied in its proof
(such that 3.644 can only be obtained when k = 1478 in the right-hand of the
inequality).

Lemma 8. g(k) = 2�log(Fk)+k�
k log k > 3.644 for all k ≥ 1478.

Proof. From Lemma 6, we have

Fk =
k∑

i=1

(
k!

(k − i)!
)2Ai,k ≥

k∑

i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k + Ak,k)(k!)2,

and Ak,k = 1, Ak−1,k =
(
k
2

)
= (k−1)k

2 (Definition 5). Thus, Fk ≥ ( (k−1)k
2 +1)(k!)2.

It follows from Stirling’s formula k! ≥ √
2πk(ke )k that

Fk ≥ (2πk)
( (k − 1)k

2
+ 1

)(
k

e

)2k

,
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and therefore

g(k) ≥ 2 log(Fk) + k

k log k
≥ 2 log(πk((k − 1)k + 2)(ke )2k) + k

k log k

= 4 − (4 log e − 1)k − log(πk((k − 1)k + 2))
k log k

def= h(k),

where by taking the derivative we know that h(k) in the right-hand is monoton-
ically increasing for k ≥ 2, as also visualized in Fig. 9, and the conclusion follows
by finding the threshold T such that h(k) ≥ h(T ) ≈ 3.644 for all k ≥ T . By
enumeration we find out T = 1478. Recall that values of g(k) for 70 ≤ k ≤ 1477
have been verified by computer.

Fig. 9. The graph of h(k) as a function of k.

Combining Eq. 4, Lemmas 5 and 8, we have the following theorem:

Theorem 3. We have the following lower bound on the size of EUG2(n):

|EUG2(n)| > 3.644n log n,

for all sufficiently large n.

5 Concluding Remarks

We revisit Valiant’s graph theoretic approach to the construction of universal
circuits, and show that its supernode can be improved in both size and depth,
which yields more efficient universal circuits (with a more than 5% improve-
ment). We give a lower bound on the size of UC to complement our explicit
constructions, which reduces the gap between theory and practice of UCs.
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A Proofs Omitted in the Main Body

A.1 Proof of Theorem 1

To prove the graph in Fig. 4 is an EUG1(n), we need to prove that any DAG1(n) =
(V,E) can be edge-embedded into it. At first, we sort the nodes of a given
DAG1(n) in their topological order: V1, V2, . . . , Vn. And the edge-embed mapping
� can be defined as: �(Vi) is the i-th pole of the supernodes from top to bottom,
or formally, the (i mod k)-th pole of SN(k)� i

k �. For each node Vi in the DAG1(n),
it may have a precursor-node (denote by V pre

i ) and a successor-node (denote by
V suc
i ). Then we assign the [Vi]in-th input and the [Vi]out-th output of SN(k)� i

k �

(in� i
k �

[Vi]in
and out

� i
k �

[Vi]out
) to Vi to make sure that [Vi]in = [V pre

i ]out, [Vi]out =
[V suc

i ]in and no inputs and outputs of supernodes are reused. The method for
assignment can be find in [17]. At last, for every edge (Vi, Vj) ∈ E (i < j
due to the topological sorting), we give an edge-disjoint path from �(Vi) to
�(Vj) as follow. Due to V suc

i = Vj and V pre
j = Vi, we know that [Vi]out =

[Vj ]in, which means out
� i
k �

[Vi]out
and in

� j
k �

[Vj ]in
are both in the edge-universal graph:

EUG1(�n
k � − 1)[Vi]out

, so there is an edge-disjoint path from out
� i
k �

[Vi]out
to in

� j
k �

[Vj ]in
.

As SN(k)� i
k � is a supernode, there must be a edge-disjoint path from �(Vi) to

out
� i
k �

[Vi]out
. Similarly, the edge-disjoint path from in

� j
k �

[Vj ]in
to �(Vi) can also be

found. We connect these three paths to complete edge-embedding.
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Abstract. We study the broadcast message complexity of secure multi-
party computation (MPC), namely, the total number of messages that
are required for securely computing any functionality in the broadcast
model of communication.

MPC protocols are traditionally designed in the simultaneous broad-
cast model, where each round consists of every party broadcasting a
message to the other parties. We show that this method of communica-
tion is sub-optimal; specifically, by eliminating simultaneity, it is, in fact,
possible to reduce the broadcast message complexity of MPC.

More specifically, we establish tight lower and upper bounds on the
broadcast message complexity of n-party MPC for every t < n corrup-
tion threshold, both in the plain model as well as common setup models.
For example, our results show that the optimal broadcast message com-
plexity of semi-honest MPC can be much lower than 2n, but necessarily
requires at least three rounds of communication. We also extend our
results to the malicious setting in setup models.

1 Introduction

The ability to securely compute on private datasets of individuals has wide
applications of tremendous benefits to society. Secure multiparty computation
(MPC) [2,8,19,25] provides a solution to the problem of computing on private
data by allowing a group of mutually distrusting parties to jointly evaluate any
function over their private inputs in a manner that reveals nothing beyond the
output of the function.

Broadcast Message Complexity. Traditionally, the most popular commu-
nication model for the design of MPC protocols is the broadcast model, where
parties communicate with each other by sending messages over an authenticated
broadcast channel. Indeed, starting from [19], most computationally secure pro-
tocols in the literature are designed in the broadcast model.

Viewing a broadcast channel as a resource, in this work, we initiate the
study of the broadcast message complexity of MPC, namely, the number of mes-
sages that are required for securely computing any functionality in the broadcast
model. Specifically, we ask the following basic question:
c© International Association for Cryptologic Research 2019
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What is the broadcast message complexity of n-party MPC w.r.t. t < n
corruptions (for every t)?

At first, it may seem that the above question can be easily resolved by appealing
to the known bounds on the round complexity of MPC. For example, in the case
of semi-honest corruptions (for any t � 1), two rounds are known to be necessary
[21]. Then, it may seem that the broadcast message complexity in this case must
be at least 2n since each of the n parties must presumably send a message in each
of the two rounds. In this work, we show that the above intuition is incorrect.

Simultaneity is Wasteful. MPC protocols are traditionally designed in the
simultaneous broadcast model, where in each round, every party sends a message.
We show that this model is wasteful, and that by eliminating simultaneity, it is
possible to reduce the number of required messages.

Specifically, we consider the general setting where in each round, any subset of
parties may send a message. In this setting, we show that the broadcast message
complexity of MPC can be much lower than in the simultaneous broadcast model.

1.1 Our Results

We study the broadcast message complexity of MPC in the plain model, as well
as common setup models, including the public-key infrastructure (PKI) model
and the common reference string (CRS) model. We provide a tight characteriza-
tion of broadcast message complexity as well as the number of rounds necessary
for achieving optimal number of broadcasts. In particular, our results show that
two rounds are insufficient for achieving optimal broadcasts; instead, at least
three rounds are necessary. We elaborate on our results below.

I. Broadcast Message Complexity. We first investigate the broadcast mes-
sage complexity of semi-honest MPC in the plain model. We provide a tight
characterization that varies with the number of corrupted parties t and the
number of output parties |O|, where O denotes the set of parties who can learn
the output.

Theorem 1 (Informal). For any t < n − 1 semi-honest, static corruptions
and |O| > 1 (resp., |O = 1|) output parties, n+ t+1 (resp., n+ t) broadcasts are
necessary and sufficient for MPC in the plain model. For t = n − 1 corruptions,
the broadcast message complexity is n + t (resp., n + t − 1) when |O| > 1 (resp.,
|O = 1|).

A few remarks about the above theorem are in order: (1) Our lower bound
also holds in the CRS model. (2) Our positive result is based on any two-round
semi-honest oblivious transfer (OT), which is the optimal assumption for t � n/2.
In the CRS model, it can be extended to achieve UC security against malicious
corruptions based on two-round malicious-secure OT.

We next show that the broadcast message complexity of MPC is lower in the
PKI model, where the parties first post their respective public keys on a bulletin
board.
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Theorem 2 (Informal). For any t � n − 1 semi-honest, static corruptions
and |O| > n − t (resp., |O| � n − t) output parties, n + t (resp., n + t − 1)
broadcasts are necessary and sufficient for MPC in the bare PKI model.

We, in fact, provide two different positive results in this model:

– Our first construction works in the honest majority setting (i.e., t < n/2) and
achieves security even against malicious adversaries. It does not require any
additional assumptions beyond public-key encryption, and is therefore opti-
mal in that sense. Interestingly, we achieve this result by drawing a connection
to the security notion of guaranteed output delivery.

– Our second construction works for any t < n corruptions and achieves security
against semi-honest adversaries based on any two-round semi-honest OT. In
the CRS model, this construction can be extended using standard techniques
to achieve UC security against malicious adversaries.

II. Round Complexity. While two rounds are known to be necessary and
sufficient for semi-honest MPC, we show that they are insufficient for achieving
optimal broadcast message complexity. In particular, we show that three rounds
are necessary and sufficient. This result holds both in the plain model as well as
the PKI and CRS models.

Theorem 3. Three rounds are necessary and sufficient for semi-honest MPC
with optimal broadcast message complexity.

We, in fact, prove two strengthenings of the above theorem:

– We show that three rounds are also sufficient for achieving security against
malicious adversaries, either in the PKI model for t < n/2 corruptions or in
the CRS model for t < n corruptions.

– We show that in the plain model, any three round protocol that achieves
optimal broadcast message complexity must necessarily utilize a unique com-
munication pattern, where a communication pattern specifies which parties
speak in which round(s). We also prove an analogous result in the PKI model.

The table below provides a summary of our lower bounds for broadcast mes-
sage complexity and round complexity.

Model Corruptions Rounds Output parties Broadcasts

Plain 1 � t < n − 1 3 |O| > 1
|O| = 1

n + t + 1
n + t

Plain t = n − 1 3 |O| > 1
|O| = 1

2n − 1
2n − 2

PKI 1 � t � n − 1 3 |O| > n − t
|O| � n − t

n + t
n + t − 1
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III. Application to P2P Model. While we focus on broadcast message com-
plexity in this work, our positive results can also be used to obtain MPC proto-
cols in the point-to-point (P2P) communication model with optimal P2P message
complexity for any corruption threshold.

The P2P message complexity of (computationally secure) MPC was recently
studied by Ishai et al. [22] who established lower and upper bounds for t = n − 1.
Subsequently, [23] extended their lower bound to any t < n, but left open the prob-
lem of obtaining a matching upper bound for general t. We show that our construc-
tion from Theorem 2 for general t < n can be used to resolve this open problem.

Theorem 4 (Informal). Assuming the existence of two-round semi-honest OT,
for any t < n semi-honest, static corruptions and |O| output parties, (n+t+|O|−2)
messages are sufficient for MPC in the P2P communication model.

1.2 Technical Overview

Starting Ideas. Recall that two rounds are known to be necessary for MPC, even
for achieving security against semi-honest adversaries [21]. Further, in all known
two-round MPC protocols in the broadcast model [3,5,6,14,16–18,24], each party
broadcasts a message in each round, resulting in a total of 2n messages.

At first, it may seem that this is inherent. Indeed, consider the scenario where
one of the n parties, say Pi, does not send any message in the first round, and
instead only sends a message in the second round. Can we construct a secure
protocol in the plain model with this communication pattern? The answer is no,
and to see this, recall that the security guarantee of semi-honest MPC stipulates
that an adversary can only learn a single function output corresponding to a fixed
set of inputs. To achieve this guarantee, a protocol transcript must somehow “fix”
an input of each party. In the above scenario, since Pi only sends a message in
the second round, its input cannot be fixed.1 Therefore, an adversarial Pi can
launch the following residual function attack: it first completes an execution of
the protocol to obtain a transcript, and then replaces its message in the transcript
with a freshly computed message w.r.t. a different input. It now computes its
output function to learn a new output, w.r.t. the same set of inputs of the other
parties, thereby violating MPC security.

The above still leaves open the possibility of designing a protocol where Pi

only sends a message in the first round. In this case, Pi’s input can indeed be
fixed by the honest party messages sent in the second round. Unfortunately, it
turns out that this is still not sufficient, even against the minimal corruption
threshold of t = 1. The reason is that an adversary can simply “spoof” all the
other parties Pj (where j �= i). That is, after obtaining a protocol transcript,
the adversary can simply replace the messages of all the other parties Pj with
freshly computed messages w.r.t. different inputs, while keeping Pi’s message
intact. Now, the adversary is able to learn multiple outputs w.r.t. a fixed input
of Pi, thereby violating MPC security.
1 Recall that the messages sent by honest parties in any round are independent of

each other.



430 S. Garg et al.

Towards a Template. Our main insight is that by increasing the round com-
plexity, we can decrease the broadcast message complexity. To explain the basic
idea, let us consider a toy scenario with n = 5 and t = 2. Our goal here is to
obtain a template that requires n + t + 1 = 8 messages, as per Theorem 1.
Clearly, to achieve this broadcast message complexity, two parties must send
only one message each. Now, consider the following communication pattern:

R1. In the first round, P4 and P5 send a message.
R2. In the second round, P1, P2 and P3 send a message.
R3. In the third round, P1, P2 and P3 send a message.

Since t = 2, at least one of P1, P2, P3 must be honest. Let Pi be that party.
Then, Pi’s message in the third round must fix the inputs of all the other parties.
Therefore, it would seem that this template should already work. Unfortunately,
this is not the case as the spoofing attack we discussed earlier is also applicable
here. Indeed, an adversary can simply spoof P1, P2, P3 and launch a residual
function attack on the inputs of P4 or P5 in a similar manner as above.

Upon closer inspection, we find that the reason for the spoofing attack in the
above template is that while Pi can fix the input of all the parties, Pi’s input
itself is not fixed by any other party. Indeed, this is why the spoofing attack
includes spoofing of Pi as well.

To address this issue, we modify the above template by exchanging rounds
one and two. That is, we consider the following template:

R1. In the first round, P1, P2 and P3 send a message.
R2. In the second round, P4 and P5 send a message.
R3. In the third round, P1, P2 and P3 send a message.

In the technical sections, we show that the above template indeed works. The
key point is that now, not only can Pi fix the inputs of all the other adversarial
and honest parties, but crucially, the other honest parties, who send messages
in round two, can also fix Pi’s input (which must be used to compute its first
round message). This raises several questions:

– Does the above idea generalize to any n and t?
– How can we prove a lower bound on the broadcast message complexity?
– Does the lower bound stay intact in the public-key model, or does it change?
– Are three rounds really necessary?
– Is the above communication pattern necessary, or can we also achieve security

with other communication patterns?
– How can we construct protocols with optimal broadcast message complexity?

In the technical sections, we show that the above idea indeed generalizes to
any n and t; the specific details vary depending upon the number of output
parties and the number of corruptions, as well as whether we are working in the
plain model or the public-key model.

We now proceed to address the remaining questions.
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Lower Bounds on Broadcast Message Complexity. Our proof for lower
bound on broadcast message complexity in Sect. 3 is simple and relies on establish-
ing the minimum number of parties who must send two messages in the protocol.

We start by proving that in the plain model, for t < n − 1 and |O| > 1
output parties, the number of parties that broadcast more than one message
in the protocol must be strictly greater than the number of corrupted parties.
Let us consider a toy example with n = 5 and t = 2, where all parties receive
the output. Let us assume for contradiction that the number of parties that
broadcast more than one message is equal to the number of corrupted parties.
For example, suppose that P1, P2, P3 broadcast a single message, while P4 and P5

broadcast more than one messages. Now, consider an adversary that corrupts
both P4 and P5. Let P1 be the first party to broadcast its message amongst
P1, P2, P3. Note that in this case, the message of P1 does not depend on the
messages (or inputs) of P2 and P3. The adversary can simply spoof P2 and P3

and launch a residual function attack on the inputs of P1 as discussed before.
Therefore, in order to prevent such attacks at least three parties must broadcast
at least two messages each.

As we show in the technical section, the above idea generalizes to any n and
t < n − 1 and any |O| > 1 output parties. Now, in an n-party protocol, each
party must broadcast at least one message for its input to be included in the
computation. Thus, the total broadcast message complexity in this setting must
be at least 2(t + 1) + 1(n − (t + 1)) = n + t + 1. We use this result to establish
lower bounds for |O| = 1 output party when t < n − 1 parties are corrupted.

We prove our lower bound for t = n − 1 in the plain model and for any t < n
in the PKI model using a similar approach as above. However the optimal lower
bound in this case is lower than in the plain model; intuitively, this is because
in this case, spoofing attacks are not possible. Specifically, we establish that the
number of parties that broadcast more than one messages in this case must be
greater than or equal to the number of corrupted parties. This means that the total
broadcast message complexity in this case must be at least 2(t)+1(n− t) = n+ t.

Lower Bounds on Round Complexity. In Sect. 4, we prove that at least
three rounds are necessary for achieving optimal broadcast message complexity.
Our proof generalizes the intuition discussed earlier for the toy example:

– We first show that any party that broadcasts a single message must not do so
in the last round of the protocol. Roughly, this is because in this case, there
is no opportunity for the input of this party to be “fixed” by messages of the
other parties. Indeed, an adversary can otherwise simply corrupt this party
and launch a residual function attack on the inputs of all the other honest
parties in the manner as discussed earlier in the toy example.

– Given the observation, we show that two round MPC with optimal message
complexity is impossible. Roughly, this is because, in any such two round
protocol, all the parties that send a single message must necessarily do so in
the first round. However, in this case, the adversary can launch a residual
function attack on the inputs of any one of the honest parties that broadcast
their only message in the first round, as discussed earlier in the toy example.
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Interestingly, this lower bound also holds in the public-key model, regardless
of the number of corruptions.

In Sect. 4.3, we also prove that in the plain model, there is a unique communi-
cation pattern that must be used to achieve optimal broadcast message complex-
ity. This communication pattern is a generalization of the one discussed above;
roughly, we prove that the parties who send one message must speak in the second
round, while the parties who send two messages must speak in the first and the
third rounds! In the public-key model, we do not establish uniqueness of commu-
nication pattern; instead, we show that there is a specific class of communication
patterns that must be used to achieve optimal broadcast message complexity.

Upper Bounds. To establish positive results on optimal broadcast message
complexity, we provide multiple transformations.

Let us first focus on t < n/2 corruptions. In this setting, we establish our
positive result in the PKI model by drawing a connection with the notion of
guaranteed output delivery, which, roughly speaking, concerns with ensuring that
the honest parties are able to compute the output even if the corrupted parties
abort the computation prematurely. More Specifically,

– We show a general compiler from any two round MPC protocol with “strong”
guaranteed output delivery (namely, where in the second round, for any t <
n/2, only t + 1 honest parties are required to send a message in order for
all the honest parties to compute output2) against fail-stop adversaries into a
three round semi-honest protocol with optimal broadcast message complexity.

– Further,we show that if the underlying two roundprotocol additionally achieves
security with abort against malicious adversaries, then our resulting three
round protocol also achieves security against malicious adversaries security.

Instantiating our compiler with the recent protocol of Ananth et al. [1] (which
satisfies both of the aforementioned properties) yields a malicious-secure MPC
protocol with optimal broadcast message complexity based on public-key encryp-
tion. Finally, we remark that this transformation inherently fails in the plain
model since two round MPC over broadcast channels with guaranteed output
delivery is impossible in the plain model, even in the semi-honest setting [20].

Let us now consider the case where t < n. We show a general transforma-
tion from any two round MPC that achieves security against dishonest majority
into a three round MPC with optimal broadcast message complexity. The trans-
formation is simple and works by having a subset of parties (say S1) send out
encrypted secret shares of their private states to the other parties (say S2), who
can compute upon these states to generate messages on behalf of the parties in
S1. In order for this approach to work, it is crucial that at least one party in
S2 is honest, and indeed, this is why we require that the underlying two-round
protocol achieves security against dishonest majority. This transformation works
both in the plain model as well as the public-key model. Instantiating it with

2 When n = 2t + 1, this is the same as guaranteed output delivery. However, for
n > 2t + 1, this is a strengthening of guaranteed output delivery.
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the two-round protocols of [3,18], we obtain a protocol with optimal broadcast
message complexity based on OT.

Finally, we also show that our positive results in the PKI model can be used
to obtain tight upper bounds on P2P message complexity (for any corruption
threshold), resolving an open question from [22,23]. We note that if we use a
naive transformation from a broadcast model protocol to a P2P model protocol
(as discussed above), the resulting protocol would also require the public-key
infrastructure used by the underlying protocol. To overcome this, we show alter-
native, direct transformations from our specific broadcast model protocols to
obtain P2P model protocols with optimal P2P message complexity. We refer the
reader to Sect. 7.2 for more details.

1.3 Related Work

To the best of our knowledge, no prior work has studied the broadcast message
complexity of MPC.

P2P Message Complexity. The most closely related work to ours is the recent
work of Ishai et al. [22] who study the message complexity of computationally-
secure MPC in the P2P model (i.e., where the parties only rely on P2P channels).
For t = n − 1 corruptions and |O| output parties, they show that 2n + |O| − 3
P2P messages are necessary and sufficient for semi-honest MPC, even in the
correlated randomness setup model. Mittal [23] extended their lower bound to
any t < n corruptions and showed that at least (n + t + |O| − 2) P2P messages
are necessary for |O| output parties. However, they left open the problem of
obtaining a matching upper bound, which we resolve in this work.

We note that the lower bounds on P2P message complexity can be used to
derive some lower bounds on broadcast message complexity. The basic idea is
simple and works by transforming any broadcast model protocol Π into a P2P
model protocol Π ′ executed over a “chain” communication pattern, where the
parties are arranged as per their speaking order in Π.3 At each step, each party
computes its new message and sends it together with the aggregated transcript
it received from the previous party to the next party on the chain. The last
party on the chain computes the output. We give a formal description of this
transformation in the full version our paper.

However, this approach has two important shortcomings. First, it does not
give optimal lower bounds in the plain model. Second, it only works in extremal
cases where the number of output parties |O| in Π are either |O| = 1 or |O| = n.4

In particular, it is unclear how to obtain P2P message complexity k − 1 if the

3 If multiple parties speak in the same round in Π, they can be arranged in any order.
4 In the case of |O| = 1, we simply add the output party as the last node on the chain.

With this approach, we obtain a protocol with P2P message complexity k, starting
from a protocol with broadcast message complexity k. For the case of |O| = n, we
can actually do better, and simply delete the last message (since the last node on
the chain can compute it on its own), resulting in a protocol with P2P message
complexity k − 1.
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number of output parties is 1 < |O| < n. This is because, in this case, the
underlying protocol Π in the broadcast model may not contain an output party
in the last round.

To obtain a full picture with optimal lower bounds, our work instead provides
a direct approach to proving lower bounds on broadcast message complexity.
Previously, the P2P message complexity of MPC in the information-theoretic
setting with a bounded fraction of corrupted parties was studied in [9,12,13], in
different models.

Other Works. We also mention the works of [4,7,11,15] who consider MPC pro-
tocols that achieve sublinear communication complexity by assigning the compu-
tation to a small random subset of parties in the honest majority setting. They
do not give any specific bounds on the P2P or broadcast message complexity of
MPC.

2 Preliminaries

2.1 Secure Multi-party Computation

A secure multi-party computation protocol is a protocol executed by n parties
P1, · · · , Pn for a n-party functionality F .

Communication Model. We consider two kinds of protocols: (1) ones that
only rely upon an authenticated broadcast channel, (2) and ones that only rely
upon private point-to-point channels. We discuss each case separately:

– Broadcast model: In almost all prior work in the broadcast model of com-
munication, in each round of the protocol, all parties broadcast a message.
We consider a generalization of this setting, where in any round, any sub-
set of parties may broadcast a message. We define the broadcast message
complexity as follows:

Definition 1 (Broadcast Message Complexity). The broadcast message
complexity of a protocol is the total number of broadcast messages sent by all the
parties in the protocol. The broadcast message complexity of MPC for a func-
tionality f is the minimum number of broadcast messages required for securely
computing f .

– Point-to-point model: While our focus is on the broadcast message complex-
ity, we also consider protocols in the point-to-point (P2P) communication
model (i.e., where the parties only use private point-to-point channels, and
no broadcasts). We define the P2P message complexity as follows:

Definition 2 (P2P Message Complexity). The P2P message complexity of
a protocol is the total number of private messages sent by all the parties in the
protocol. The P2P message complexity of MPC is the minimum number of P2P
messages required for securely computing any functionality.
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Security. One of the primary goals in secure computation is to protect the
honest parties against dishonest behavior from the corrupted parties. This is
usually modeled using a central adversarial entity, that controls the set of cor-
rupted parties and instructs them on how to operate. That is, the adversary
obtains the views of the corrupted parties, consisting of their inputs, random
tapes and incoming messages, and provides them with the messages that they
are to send in the execution of the protocol. In our protocols we only consider
static adversaries, meaning that the adversary selects the set of parties that it
wants to corrupt at the start of the protocol. We discuss the following security
models in this work:

– Security against Semi-honest Adversaries: A semi-honest adversary
always follows the instructions of the protocol. This is an “honest but curious”
adversarial model, where the adversary might try to learn extra information
by analyzing the transcript of the protocol later.

Definition 3. Let f be an n-party functionality. We say that a protocol Π t-
securely computes F in the presence of a semi-honest, non-uniform PPT adver-
sary A that corrupts a subset A of t parties, if there exists a PPT simulator
algorithm S such that for every security parameter λ, and all input vectors
x ∈ {0, 1}λ×n = {x1, . . . , xn}, it holds that:

{S(1λ, {xi}i∈A, f(x)), f(x)} ≈c {viewΠ
A(1λ,x), outΠA(1λ,x)}

– Security Against Fail-Stop Adversaries: A fail-stop adversary instructs
the corrupted parties to follow the protocol as a semi-honest adversary, but
it may also instruct a corrupted party to halt early (only sending some of
its messages in a round). The decision to abort or not may depend on its
view. Fail-stop adversaries may be rushing or non-rushing. We consider the
following security notions against fail-stop adversaries:

Guaranteed Output Delivery: Secure computation against fail-stop adver-
saries with guaranteed output delivery ensures that the honest parties always
learn the function output (computed over the inputs of “active” parties) even if
some parties prematurely abort the protocol. It is well known that guaranteed
output delivery is impossible to realize for general functions in the dishonest
majority setting [10].

Strong Guaranteed Output Delivery: Note that guaranteed output delivery
ensures that the honest parties can always reconstruct the output as long as all
the honest parties send messages in the last round. We require a stronger variant
of this notion, where it suffices for any t + 1 honest parties to broadcast messages
in the last round. Observe that if n = 2t+1 (i.e., if there are exactly t+1 honest
parties in the system), then this notion is equivalent to the standard notion
of guaranteed output delivery. However for n > 2t + 1, this notion is strictly
stronger than standard guaranteed output delivery.



436 S. Garg et al.

2.2 MPC with Strong Guaranteed Output Delivery

For our semi-honest construction in the honest majority setting (i.e., for t < n/2)
with optimal message complexity, we make use of a two round MPC protocol
that achieves strong guaranteed output delivery against fail-stop adversaries. As
defined above, in a protocol that achieves strong guaranteed output delivery, it
suffices for any t + 1 honest parties to broadcast a message in the last round.
Thus, the message complexity of such a two round protocol is n+t+1. Although
note that with n+t+1 messages, this protocol only achieves security with abort,
since the adversary can always corrupt the parties that send messages in the
last round. However, this weakened security is sufficient for us. We show how to
reduce the message complexity of this protocol to n + t by adding an additional
round.

Interestingly, we observe that if such a two round protocol also achieves
security with abort against malicious adversaries, then our resulting protocols
with optimal message complexity in the PKI model for t < n/2 can also be
proved maliciously secure, without requiring any additional assumptions. We
observe that the two round MPC protocol from Corollary 7 of Ananth et al. [1]
satisfies both these properties that we require. We give a sketch of the proof for
the following theorem in the full version our paper.

Theorem 5 (Implicit from [1]). Assuming the existence of public-key encryp-
tion, there exists a two-round secure MPC protocol that achieves strong guaran-
teed output against t < n/2 fail-stop corruptions and achieves security with abort
against t < n/2 malicious corruptions in the PKI model.

2.3 Functionalities of Interest

Our lower bounds rely on residual function attacks (as described earlier), where
only one honest party’s input is fixed, and the adversary can evaluate the func-
tion on multiple different inputs (by changing the inputs of other parties). For
most functionalities, this is a non-trivial information that cannot be simulated.
In fact, it usually leads to a complete break in the privacy of the honest party
whose input is fixed. For concreteness, we present our lower-bounds using one
such functionality called the multi-party OT functionality defined in [22]. This
functionality is a variant of oblivious transfer where each party has three-input
bits. At the end, based on the first input bits of all parties, the output parties
only learn one of the input bits of all parties.

Definition 4 (MOT Functionality). For n > 2 and nonempty O ⊆ [n], let
MOT : Xn → Y n be the n−party functionality defined as follows:

– The input domain of each party is X = {0, 1}3 and the output domain is
Y = {0, 1}n+1.

– Given input (ci, x
0
i , x

1
i ) from each party Pi, the functionality lets c = c1 ⊕

. . . ⊕ cn and outputs (c, xc
1, . . . , x

c
n) to all parties Pj , j ∈ O (the output of

party Pj for j /∈ O is the fixed string 0n+1).
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For simplicity, the proofs of all the lower bounds in this work are described
with respect to the MOT functionality. However, it should be easy to see that
all our proofs extend to any such non-trivial functionality.

3 Lower Bounds on Broadcast Message Complexity

In this section, we provide lower bounds on the broadcast message complexity
of MPC in the plain model and the bare public-key model. We show that the
broadcast message complexity is different in the two models, and further depends
on the number of corruptions t and the number of output parties |O|, where O
is the set of parties who learn the output.

3.1 Plain Model

We first investigate the lower bounds on broadcast message complexity of semi-
honest MPC protocols in the plain model. We start by proving our lower bound
for t < n − 1 corruptions and |O| > 1 output parties. In this case, we first
show that for a secure MPC protocol, at least t+1 parties must broadcast more
one messages in Lemma 1. Using this result, it is easy to see that even if these
t + 1 parties send two messages each, the total number of messages required are
2(t+1)+1(n− (t+1)) = n+ t+1, since each party in an n-party protocol must
broadcast at least one message. Finally we show how this result can be used to
get a lower bound for |O| = 1 output party.

We now formally state the following two theorems, for 1 � t < (n − 1), and
t = n − 1, respectively. In this subsection, we only give a proof for Theorem 6.
The proof of Theorem 7, which follows similarly to Theorem 6, except that it
does not rely on spoofing attacks, is deferred to the full version our paper.

Theorem 6. In the plain model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against 1 � t < (n − 1) semi-honest,
static corruptions is n + t + 1 if the number of output parties is |O| > 1, and
n + t if |O| = 1.

Theorem 7. In the plain model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against t = n − 1 semi-honest, static
corruptions is 2n − 1 if the number of output parties is |O| > 1, and 2n − 2 if
|O| = 1.

Proof of Theorem 6. We divide the proof into two cases, depending upon the
number of output parties.

Case1 : |O| > 1. Let Π be a secure n-party broadcast channel MPC protocol for
the MOT functionality in the plain model with |O| > 1, that is secure against a
semi-honest adversary that corrupts 1 � t < (n−1) parties. Let S1 be the set of
parties that broadcast a single message in Π and S>1 be the set of parties that
broadcast more than one messages. We start by proving the following lemma.
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Lemma 1. There must be at least t + 1 parties in Π that broadcast more that 1
message, i.e., |S>1| � t + 1

Proof. Let us assume for the sake of contradiction that |S>1| � t. Let A be an
adversary who corrupts all the parties in S>1 and no other party, i.e., all parties
in S1 are honest. Since |S>1| � t, this is a valid adversary.

Let P ∗ ∈ S1 be the first party to broadcast a message amongst all parties in
S1. We note that there might be more than one such party in S1 that broadcast
their messages simultaneously in a round. In that case, w.l.o.g. we let P ∗ be the
lexicographically first party amongst those. Let S∗

1 = S1 \ {P ∗} be the set of
all other parties in S1. Let P denote the set of all parties in Π and let (xi, ri)
denote the input and randomness of party Pi ∈ P. We now describe the strategy
of A.

– A runs an honest execution of Π where it sets xj = 000 for every corrupted
party Pj ∈ S>1. Let transΠ be the transcript of this execution.

– Let Pk be any party in S∗
1 . A then runs two mental experiments where in

the first experiment it sets xj = 000 for every Pj ∈ S∗
1 and in the second

experiment it sets xk = 100 and xj = 000 for every Pj ∈ S∗
1 \ {Pk}. Let

P ∗ broadcast its message in round � and let trans<�
Π be the transcript of

honest execution up to round �. Given trans<�
Π , the message sent by P ∗ in

the honest execution and the new set of inputs, A uses the next message
function of the remaining parties Pj ∈ P \ {P ∗} to compute their messages
from round � onwards. Let transΠ1 and transΠ2 denote the transcripts of the
two mental experiments. Note that since |O| > 1, there is at least one output
party in the set P \ {P ∗}. It uses the output function of any output party
Pi ∈ O ∩ (S>1 ∪ S∗

1 ) to compute outputs y1 = OutΠ(i, xi, ri, transΠ1) and
y2 = OutΠ(i, xi, ri, transΠ2).

Claim. y1 = (c∗, xc∗
1 , . . . , xc∗

n ), where xi = 000 for each Pi ∈ P \ {P ∗} and c∗ is
the first input bit of party P ∗.

Proof. Since P ∗ is the first party to broadcast a message amongst all parties in
S1, its message does not depend on messages from any other party in S1. Thus
transΠ1 represents honestly computed transcript of Π where the inputs of all
parties in S∗

1 have been replaced with 000. Therefore, from the correctness of Π,
we get y1 = (c∗, xc∗

1 , . . . , xc∗
n ). 
�

Claim. y2 = ((1 − c∗), x(1−c∗)
1 , . . . , x

(1−c∗)
n ) where xk = 100 for any one party

Pk ∈ S∗
1 and xi = 000 for each Pi ∈ P \ {P ∗, Pk}.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that the two outputs y1 and y2 reveal both
the input bits of the honest party P ∗. Such a protocol is clearly not secure.
Therefore our assumption is wrong and there must be at least t + 1 parties in
Π that broadcast more that 1 messages. This concludes the proof of Lemma 1.
We now use this lemma to prove the first part of Theorem 6. 
�
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Let us assume for the sake of contradiction that there exists a semi-honest
secure MPC protocol Π in the plain model, that has a broadcast message com-
plexity of n + t for |O| > 1 output parties. From Lemma 1, we know that at
least t + 1 parties must broadcast at least 2 messages. This means that there
is at least one party out of the remaining n − (t + 1) parties, that doesn’t send
a message, i.e., the output of the protocol is independent of this party’s input.
But we know that for correctness of output of the MOT functionality, every
party’s input is necessary for computation. Therefore the output computed by
this protocol is incorrect. Thus, our assumption is wrong and such a protocol
with broadcast complexity n + t cannot exist.

Case2 : |O| = 1. We now prove the second part of Theorem 6. Let us assume
for the sake of contradiction that there exists an n-party broadcast channel MPC
protocol for any non-trivial functionality in the plain model with |O| = 1, that
is secure against a semi-honest adversary that corrupts 1 � t < (n − 1) parties
and has a broadcast message complexity of n+ t−1. This protocol can be easily
transformed into another protocol Π ′ with the same corruption threshold, where
|O| = n. This can be obtained by adding a round at the end of Π where the
output party broadcasts the output. Clearly, every party learns the output in
Π ′ and it only has a broadcast message complexity of n + t. But from the first
part of Theorem 6, we know that such a protocol with a broadcast message
complexity of n + t cannot exist. Therefore, our assumption is wrong and the
minimum broadcast message complexity for such a protocol with one output
party is n + t. This completes the proof of Theorem 6. 
�

3.2 PKI Model

We now investigate the lower bounds on broadcast message complexity of semi-
honest MPC protocols against 1 � t � (n − 1) corruptions in the PKI model.
We observe that the lower bound for |O| � n − t output parties follows similar
to the proof of Theorem 7 using the lower bounds of Mittal in [23] on the P2P
message complexity.

For |O| > n − t parties, we start by showing that in a secure MPC protocol
in the PKI model, at least t parties must broadcast more than one message each
in Lemma 2. The proof of this lemma is very similar to the proof of Lemma 1,
except that now it is not possible for the adversary to spoof other parties in the
PKI model. Using this result, as before it is easy to see that even if these t parties
send two messages each, the total number of messages required are 2(t)+1(n−t) =
n + t, since each party must broadcast a message in an n-party protocol. We now
formally prove the following theorem.

Theorem 8. In the PKI model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against 1 � t � (n − 1) semi-honest,
static corruptions is n + t if the number of output parties is |O| > n − t, and
n + t − 1 if |O| � n − t.
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Proof. The lower bound for |O| � n − t and |O| = n output parties can be
derived from the lower bound given in [23]. Intuitively, it can be shown that, if
there exists a broadcast protocol in this setting with n+ t−2 broadcast message
complexity, and |O| � n − t output parties, then the lower bound given in [23]
on the P2P message complexity will be violated. Similarly the bound of n + t
messages for |O| = n output parties also holds. We defer the full proof for this
setting to the full version of our paper.

But this still leaves open the question about broadcast message complexity
of MPC with 1 � t � n − 1 semi-honest corruptions and n − t < |O| < n output
parties in th PKI model. We know prove the lower bound of n + t messages for
n − t < |O| < n output parties. The following proof also works for |O| = n
output parties. We prove this bound for the MOT functionality, but this proof
can be easily extended for any non-trivial functionality. Let Π be an secure n-
party broadcast channel MPC protocol for the MOT functionality in the PKI
model with |O| > t + 1, that is secure against a semi-honest adversary that
corrupts 1 � t � (n − 1) parties. Let S1 be the set of parties that broadcast a
single message in Π and S>1 be the set of parties that broadcast more than one
messages. We start by proving the following lemma.

Lemma 2. There must be at least t parties in Π that broadcast more that 1
message, i.e., |S>1| � t.

Proof. Let us assume for the sake of contradiction that |S>1| = (t−1). Let Plast ∈
S1 be the last party to broadcast a message amongst all parties in S1. Note that
there might be more than one such parties in S1 that broadcast their messages
simultaneously in a round. In that case we let Plast be the lexicographically last
party amongst those. Let A be an adversary who corrupts Plast and all the parties
in S>1. Since |S>1| = (t − 1), this is a valid adversary. Let P ∗ be any honest
party. From the above definition of A, we know that P ∗ ∈ S1. Let P denote the
set of all parties in Π and let (xi, ri) denote the input and randomness of party
Pi ∈ P. We now describe the strategy of A.

– A runs an honest execution of Π where it sets xj = 000 for every corrupted
party Pj ∈ S>1 ∪ {Plast}. Let transΠ be the transcript of this execution. It uses
the output function of any corrupted output party Po ∈ O ∩ (S>1 ∪ {Plast})
to compute the output (c, xc

1, . . . , x
c
n) = OutΠ(o, xo, ro, transΠ). Since |O| >

n − t, there is at least one corrupt output party.
– A then runs a mental experiment where it sets xlast = 100. Let Plast broadcast

its message in round � and let trans<�
Π be the transcript of honest execution

up to round �. Given trans<�
Π and the new sets of inputs, A uses the next

message function of all the corrupted parties to compute their messages from
round � onwards. Let trans′Π denote the transcript of the mental experiment.
It uses the output function of the output party Po to compute the output
y′ = OutΠ(o, xo, ro, trans

′
Π).

Claim. y′ = ((1 − c), x1−c
1 , . . . , x1−c

n ), where xlast = 100.
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Proof. Since Plast is the last party to broadcast a message amongst all parties
in S1, messages of other parties (honest parties) in S1 do not depend on Plast’s
message. Thus trans′Π represents an honestly computed transcript of Π where
only the input of Plast has been replaced with 100. Therefore, from the correctness
of Π, y′ = ((1 − c), x1−c

1 , . . . , x1−c
n ). 
�

From the above claim, we see that the output of the honest execution and y′

reveal both the input bits of the honest party P ∗. Such a protocol is clearly not
secure. Therefore our assumption is wrong and there must be at least t parties
in Π that broadcast more that 1 messages. 
�
We now use this lemma to prove Theorem 8. Let us assume for the sake of
contradiction that there exists a semi-honest secure MPC protocol Π in the
PKI model for 1 � t � n − 1, that has a broadcast message complexity of
n+ t−1. From Lemma 2, we know that at least t parties must broadcast at least
2 messages. Since 2×(t) = 2t and (n+t−1)−(2t) = n−t−1, there is at least one
party that doesn’t send a message, i.e., the output of the protocol is independent
of this party’s input. But we know that for correctness of output of the MOT
functionality, every party’s input is necessary for computation. Therefore the
output computed by this protocol is incorrect. Thus, our assumption is wrong
and such a protocol with broadcast complexity n + t − 1 cannot exist. This
completes the proof of Theorem 8. 
�

4 Lower Bounds on Round Complexity

In this section, we investigate the minimal round complexity of semi-honest MPC
with optimal broadcast message complexity. The following theorem summarizes
our results.

Theorem 9. Three-rounds are necessary for semi-honest MPC with optimal
broadcast message complexity. This result holds regardless of the model (plain or
bare public key), the number of corruptions or the number of output parties.

We divide this proof into two parts. In Sect. 4.1, we consider MPC protocols
in the plain model with 1 � t < (n − 1) corruptions. Later in Sect. 4.2, we
consider MPC protocols in the plain model with t = n − 1 corruptions and in
the PKI model with 1 � t < n corruptions.

4.1 Plain Model : 1 � t < (n − 1)

We start by proving in Lemma 3, that the last round in a secure MPC protocol
in the plain model with t < n − 1 semi-honest corruptions cannot consist of
messages from parties that broadcast a single message in the protocol.

Next we use this result to show that at least three rounds are necessary
for optimal message complexity in the plain model with t < n − 1 semi-honest
corruptions. Intuitively, assuming for contradiction that there exists such a two-
round protocol with optimal message complexity, from Lemma 3 we know that
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all the parties that send a single message in the protocol must broadcast their
message in the first round, and all the other parties broadcast their messages
in both the first and second rounds. The adversary can now launch a residual
function attack on the inputs of any one party that sends a single message by
spoofing all other honest parties. This is possible because the message of this
honest party that sends its only message in the first round, does not depend
on the messages (or the inputs) of any other party. The adversary can keep
recomputing the remaining transcript using different inputs of other parties to
compute different outputs of the function.

We now give a formal proof for the MOT functionality, but it is easy to
see that this proof can be extended to any non-trivial functionality. Let Π be
a secure n-party broadcast channel MPC protocol for the MOT functionality
in the plain model with minimum broadcast message complexity, that is secure
against a semi-honest adversary who may corrupt up to 1 � t < (n − 1) parties.
Let S1 be the set of parties that broadcast a single message in Π and S2 be the
set of parties that broadcast two messages. We start by proving the following
lemma.

Lemma 3. The last round in Π does not consist of messages from parties that
broadcast a single message in the protocol.

Proof. Let us assume for the sake of contradiction that there is a party Plast ∈ S1

that broadcasts its message in the last round �. Let A be an adversary who
corrupts any output party Po ∈ O. Let P denote the set of all parties in Π and
let (xi, ri) denote the input and randomness of party Pi ∈ P. We now describe
the strategy of A.

– A runs an honest execution of Π where it sets xo = 000 for the corrupt output
party Po. Let transΠ be the transcript of this execution.

– A then runs two mental experiments where in the first experiment it sets
the input of party Plast, xlast = 000 and in the second experiment it sets
xlast = 100. Let trans<�

Π denote the transcript of the honest execution of Π,
up to round �. Given trans<�

Π and the new inputs, A computes Plast’s new
messages in the two mental experiments. Let transΠ1 and transΠ2 denote the
final transcripts of the two mental experiments. It uses the output function
of the output party Po to compute outputs y1 = OutΠ(o, xo, ro, transΠ1) and
y2 = OutΠ(o, xo, ro, transΠ2).

Claim. y1 = (c, xc
1, . . . , x

c
n), where xlast = 000 and c is the xor of the first input

bits of all other parties in P.

Proof. Since Plast broadcasts its message only in the last round, the messages of
all other parties in the protocol are independent of its message. Thus transΠ1 rep-
resents an honestly computed transcript of Π where the input of Plast is replaced
with 000. Therefore, from the correctness of Π, we get that y1 = (c, xc

1, . . . , x
c
n).

�
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Claim. y2 = ((1 − c), x(1−c)
1 , . . . , x

(1−c)
n ) where xlast = 100 and 1 − c is the xor of

the first input bits of all other parties in P.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that the two outputs y1 and y2 reveal both
the input bits of all the honest parties Pi ∈ P \ {Plast, Po}. Such a protocol is
clearly not secure. Therefore our assumption is wrong and there must be at least
t + 1 parties in Π that broadcast more that 1 messages. 
�
We now use this lemma to prove the first part of Theorem 9.
We prove this theorem separately for the following cases:

Case 1: |O| = 1. From Theorem 6, we know that the broadcast message com-
plexity of Π is n+ t, i.e., |S1| = n− t and |S2| = t. Let us assume for the sake of
contradiction that there are only 2 rounds in Π. From Lemma 3, we know that
in a 2 round protocol, all the parties in S1 must broadcast their messages in the
first round. Let Po be the output party.

Let A be an adversary who corrupts all parties in S2. Since |S2| = t, this is a
valid adversary. Let P denote the set of all parties in Π and let (xi, ri) denote the
input and randomness of party Pi ∈ P. We now describe the strategy of A. A runs
an honest execution of Π where it sets xi = 000 for every corrupted party Pi ∈ S2.
Let transΠ be the transcript of this execution. We now have the following cases:

Po ∈ S2 : The adversary computes the output of the honest execution y =
(c, xc

1, . . . , x
c
n) = OutΠ(o, xo, ro, transΠ).

It then runs a mental experiment where it sets the input of Po, xo = 100.
Given the first round messages of all other parties from the honest execution,
it computes the new first round message of Po and the second round messages
of all parties in S2. Let trans′Π denote the transcript of the mental experiment.
It uses the output function of the output party Po to compute the new output
y′ = OutΠ(o, xo, ro, trans

′
Π).

Po ∈ S1 : A runs two mental experiments, where it sets xo = 000 and xo = 100
respectively. It computes Po’s messages in the two mental experiments using
these new inputs. It also computes the second round messages of all corrupted
parties given Po’s new message and the remaining first round messages from
honest execution. Let transΠ1 and transΠ2 denote the transcripts in the two
mental experiments. It then uses the output function of Po to compute outputs
y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).
We now analyze these two cases separately:

Analysis for Po ∈ S2.

Claim. y′ = ((1 − c), x(1−c)
1 , . . . , x

(1−c)
n ).

Proof. Since all honest parties only broadcast a message in the first round,
their messages are independent of the messages from any other party. Thus
trans′Π represents an honestly computed transcript of Π where the input of
xo has been replaced with 100. Therefore, from the correctness of Π, y′ =
((1 − c), x(1−c)

1 , . . . , x
(1−c)
n ) 
�
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From the above claim, we can see that y and y′ reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Analysis for Po ∈ S1.

Claim. y1 = (c, xc
1, . . . , x

c
n), where xo = 000 and c is the xor of the first input

bits of all other parties in P.

Proof. Since all parties in S1 broadcast their message in the first round, their mes-
sages are independent of the messages from any other party. Thus transΠ1 repre-
sents an honestly computed transcript of Π where the input of Po is replaced with
000. Therefore, from the correctness of Π, we get that y1 = (c, xc

1, . . . , x
c
n). 
�

Claim. y2 = ((1 − c), x(1−c)
1 , . . . , x

(1−c)
n ) where xo = 100 and c is the xor of the

first input bits of all other parties in P.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that y1 and y2 reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Case 2: |O| > 1. From Theorem 6, we know that the broadcast message com-
plexity of Π is n + t + 1, i.e., |S1| = n − t − 1 and |S2| = t + 1. Let us assume
for the sake of contradiction that there are only 2 rounds in Π. From Lemma 3,
we know that in a 2 round protocol, all the parties in S1 must broadcast their
messages in the first round.

Let A be an adversary who corrupts all but one party in S2. Let Premain be the
remaining honest party in S2. Since |S2| = t + 1, this is a valid adversary. Let P
denote the set of all parties in Π and let (xi, ri) denote the input and randomness
of party Pi ∈ P. We now describe the strategy of A. A runs an honest execution
of Π where it sets xi = 000 for every corrupted party Pi ∈ S2 \ {Premain}. Let
transΠ be the transcript of this execution. We can have the following cases:

One of the Parties in S2 Is an Output Party: It then runs two mental
experiments where in the first experiment, it sets the input xremain = 000 and in
the second experiment it sets xremain = 100. Given the new input and first round
messages of all other parties from the honest execution, it computes the new first
and second round messages of Premain and the second round messages of all other
parties in S2. Let transΠ1 and transΠ2 denote the transcripts of the two mental
experiments. It uses the output function of the output party Po ∈ S2 to compute
outputs y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).

None of the Parties in S2 Is an Output Party: Let Po ∈ S1 be an output
party. A runs two mental experiments where in the first experiment, it sets
xo = 000 and xremain = 000 and in the second experiment it sets xo = 100
and xremain = 000. Given the new sets of inputs and the first round messages
of all other parties from the honest execution, it computes the new first round
messages of Po and Premain. It also computes the new second round messages
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of all parties in S2. Let transΠ1 and transΠ2 denote the transcripts in the two
mental experiments. It then uses the output function of Po to compute outputs
y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).

Remark. Note that if t = n − 2, since |O| > 1, at least one of the parties in S2

will always be an output party. The second case can only occur if there are at
least 3 honest parties. Therefore, if the adversary spoofs two honest parties Po

and Premain, it can still compromise the privacy of at least one honest party.
We analyze the two cases separately:

Analysis for the case when one of the parties in S2 is an output party:

Claim. y1 = (c, xc
1, . . . , x

c
n), where xremain = 000 and c is the xor of first input

bits of all parties other than Premain in the honest execution.

Proof. Since all parties in S1 broadcast their messages in the first round, their
messages are independent of the messages from any other party. Thus transΠ1

represents an honestly computed transcript of Π where the input of Premain has
been changed is replaced with 000. Therefore, from the correctness of Π, we get
that y1 = (c, xc

1, . . . , x
c
n). 
�

Claim. y2 = ((1 − c), x(1−c)
1 , . . . , x

(1−c)
n ), where c is the xor of first input bits of

all parties other than Premain in the honest execution.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that y1 and y2 reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Analysis for the case when none of the parties in S2 is an output party:

Claim. y1 = (c, xc
1, . . . , x

c
n), where xo = 000, xremain = 000 and c is the xor of

first input bits of all parties other than Premain and Po in the honest execution.

Claim. y2 = ((1 − c), x(1−c)
1 , . . . , x

(1−c)
n ), where xo = 100, xremain = 000 and c is

the xor of first input bits of all parties other than Premain and Po in the honest
execution.

The proofs of these claims are similar to the proofs of the two claims in the
previous case. From the above claims, we can see that y1 and y2 reveal both
the input bits of all the other honest parties. Such a protocol is clearly insecure.
Therefore our assumption is wrong there must be at least 3 rounds in Π in this
case. This completes the proof for the first part of Theorem 9.
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4.2 Plain Model : t = n − 1 and PKI Model : 1 � t � n − 1

Similar to the previous subsection, we start by proving that even in this setting,
the last round round of a secure MPC protocol cannot consist of messages from
parties that broadcast a single message in the protocol. The rest of the proof
also works very similar to the one in the previous subsection. We now give a
formal proof for the lower bound on number of rounds in the plain model with
t = n − 1 corruptions. The proof for PKI model with 1 � t � n − 1 corruptions
follows similarly.

Let Π be any n-party broadcast channel MPC protocol for any non-trivial
functionality in the plain model with minimum broadcast message complexity,
that is secure against a semi-honest adversary who may corrupt up to t = (n−1)
parties. Let S1 be the set of parties that broadcast a single message in Π and
S2 be the set of parties that broadcast two messages. Let O be the set of output
parties. We start with the following lemma.

Lemma 4. The last round in Π does not consist of messages from parties that
broadcast a single message in the protocol.

The proof of this lemma is similar to the proof of Lemma 3. Now we prove
Theorem 9. Let us assume for the sake of contradiction that there are only 2
rounds in Π. From Lemma 4, we know that in a 2 round protocol, all the parties
in S1 must broadcast their messages in the first round. We have the following
cases:

Case 1: |O| = 1. From Theorem 7, we know that the broadcast message com-
plexity of Π is 2n − 2, i.e., |S1| = 2 and |S2| = n − 2. Let Po ∈ O be the only
output party.

Claim. In this case Po ∈ S1.

Proof. If we have protocol with broadcast message complexity 2n−2, where the
output party sends a message in the last round, we can always get a protocol
with broadcast message complexity 2n−3 where the output party does not send
a message in the last round. Instead it computes the last round message offline
and learns the output. But this clearly violates the lower bound of 2n−2 on the
broadcast message complexity of such protocols. Therefore Po does not send a
message in the last round and hence Po ∈ S1. 
�

Now let A be an adversary who corrupts all parties in S2 and the output party
Po. Note that since A only corrupts t parties, this is a valid adversary. Clearly
in this case, the message of the honest party does not depend on the messages
of any of the corrupted parties. After running an honest execution of Π, the
adversary can simply change the inputs of the corrupted parties while keeping
the message of the honest party same and learn multiple different outputs. Thus,
Π is clearly insecure and it must have at least three-rounds.

Case 2: |O| > 1. From Theorem 7, we know that the broadcast message com-
plexity of Π is 2n − 1, i.e., |S1| = 1 and |S2| = n − 1. Since there are at least 2
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output parties, one of them is definitely in S2. Let A be an adversary that chooses
to corrupt all the parties in S2. Clearly in this case, the honest party sends its
message in the first round and therefore its message is not dependent on the mes-
sages from any of the corrupted parties. After running an honest execution of Π,
the adversary can simply change the inputs of the corrupted parties while keeping
the message of the honest party same and learn multiple different outputs. Thus,
Π is clearly insecure and there must be at least three-rounds in Π.

4.3 Communication Pattern

Since our broadcast model of communication allows for only a subset of parties
to send a message in each broadcast round, there are a number of possible com-
munication patterns in which parties may broadcast their messages. However,
not all these combinations are viable for obtaining a secure MPC protocol. In the
previous section, we already established that all protocols with minimum broad-
cast message complexity must comprise of at least three-rounds. We inspect the
exact communication patterns for secure MPC protocols with optimal broadcast
message complexity.

Plain Model: 1 � t � n − 1 We show that any MPC protocol with optimal
broadcast message complexity in the plain model must follow a unique commu-
nication pattern. We state the formal result and give a proof in the full version
our paper.

PKI Model: 1 � t � n − 1 We show that any MPC protocol with optimal
broadcast message complexity in the PKI model must use a communication
pattern from a specific class of communication patterns (which is a strict subset
of all possible communication patterns). We call it a class of communication
patterns because there are more than one communication patterns that fall into
the same category of communication patterns that can be use to obtain a secure
MPC protocol. We state the formal result and give a proof in the full version
our paper.

5 Positive Result in the PKI Model : t < n
2

In this section we describe a general compiler to get a three-round semi-honest
MPC protocol secure against t < n

2 corruptions with optimal broadcast message
complexity in the PKI model from any two round MPC protocol with strong
guaranteed output delivery against t < n

2 fail-stop corruptions in the PKI model.
Using the two-round protocol from Theorem 5, that also achieves security with
abort against t < n

2 malicious adversaries, our resulting three round protocol
with optimal broadcast message complexity is also secure against malicious cor-
ruptions.
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5.1 Overview

To enable the honest output parties to learn the output in an MPC protocol that
satisfies strong guaranteed output delivery against t < n

2 fail-stop corruptions
and security with abort against t < n

2 malicious corruptions, only t + 1 honest
parties are required to participate in the last round. It is easy to observe that
such a protocol would provide security with abort against t < n

2 malicious cor-
ruptions if any t+1 parties participate in the last round. This already gives us a
maliciously secure MPC protocol with broadcast message complexity of n+t+1.
To further reduce the broadcast message complexity, we add an extra round in
the middle where one of the parties sends it first and second message at the same
time. This gives us a three-round maliciously secure MPC protocol against t < n

2
corruptions and minimal broadcast message complexity for |O| > n − t output
parties. This protocol can also be transformed into a protocol for |O| � n − t
output parties. Her we describe a compiler for |O| > n − t output parties. In
the full version of our paper we discuss how this can be extended to |O| � n − t
output parties in this setting. Let Φ be a two-round protocol that achieves strong
guaranteed output delivery against t < n

2 fail-stop corruptions and security with
abort against t < n

2 malicious corruptions, then the transformed three-round
protocol has the following template:

R1: Parties P1, . . . , Pn−1 send their first round messages of Φ in the first round.
R2: Party Pn sends its first and second round messages of Φ in the second round.
R3: Parties P1, . . . , Pt send their second round messages of Φ in the third round.

This gives us the following theorem statement.

Theorem 10. Let Φ be a two-round MPC protocol with strong guaranteed output
delivery against t < n

2 fail-stop corruptions and security with abort against t < n
2

malicious corruption with |O| = n output parties in the PKI model. Then there
exists a general compiler that transforms Φ into a three-round maliciously secure
MPC protocol with minimum broadcast message complexity in the PKI model
that tolerates t < n

2 corruptions.

Applying Theorem 10 to the protocol from Theorem 5, we get the following.

Corollary 1. Assuming public-key encryption, there exists a three-round mali-
ciously secure MPC protocol with minimum broadcast complexity in the PKI
model that tolerates up to t < n

2 corruptions.

5.2 Our Compiler for |O| > n − T

Let P = {P1, . . . , Pn} be the set of parties in the protocol and let {x1, . . . , xn},
{r1, . . . , rn}, {pk1, . . . , pkn} and {sk1, . . . , skn} be their respective inputs, ran-
domness, public keys and secret keys. Let λ be the security parameter.
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Round 1. Each party Pi for i ∈ [n − 1] does the following:
It computes the first round message Φ1

i using its input xi, randomness ri,
secret key ski and public keys of all parties: Φ1

i ← NextMsg1Φ(1λ, i, xi, ski,
{pk1, . . . , pkn},⊥; ri) and broadcasts M1

i := Φ1
i to all other parties.

Round 2. Party Pn does the following:

1. Computes the first round message Φ1
n using its input xn and randomness rn:

Φ1
n ← NextMsg1Φ(1λ, n, xn, ski, {pk1, . . . , pkn},⊥; rn)

2. For i ∈ [n − 1], it parses M1
i as Φ1

i and sets trans1Φ := {Φ1
i }i∈[n].

3. Computes the second round message Φ2
n using its input xn, randomness rn

and previous round transcript trans1Φ:
Φ2

n ← NextMsg2Φ(1λ, n, xn, ski, {pk1, . . . , pkn}, trans1Φ; rn)
4. Broadcasts M2

n := (Φ1
n, Φ2

n)

At the end of Round 2. Each party Pi for i ∈ [n − 1] does the following:
For j from 1 to n − 1, parses M1

j as Φ1
j . It parses M2

n as (Φ1
n, Φ2

n). Finally it sets
trans1Φ := {Φ1

j}j∈[n].

Round 3. Each party Pi for i ∈ [t] does the following:
It computes the second round message Φ2

i ← NextMsg2Φ(1λ, i, xi, ski, {pk1, . . . ,
pkn}, trans1Φ; ri) using its input xi, randomness ri and previous round transcript
trans1Φ and broadcasts M3

i := (Φ2
i ) to all other parties.

Output Phase. Each party Pi for i ∈ [n] does the following:
For j ∈ [t], it parses M3

j as (Φ2
j ). Then it sets trans2Φ := {{Φ2

j}j∈[t], Φ
2
n}. Finally

it runs the output phase of Φ, OutΦ(i, xi, ri, ski, {pk1, . . . , pkn}, trans1Φ, trans2Φ) to
learn the output.

This completes the description of our compiler. We provide a proof of security
in the full version our paper.

6 Positive Result in the PKI Model : t < n

In this section we describe a general compiler to get a three-round semi-honest
MPC protocol against t < n corruptions with optimal broadcast message com-
plexity in the PKI model from any two-round semi-honest MPC with dishonest
majority in the plain model.

6.1 Overview

We start with any two round N -party semi-honest MPC protocol Φ, secure
against N −1 corruptions, where N = (n− t+2)× (t+1). Let P = {P1, . . . , Pn}
be the set of parties in our protocol Π and {x1, . . . , xn} be their respective inputs.
Let the n-party functionality that they compute on these inputs be f(x1, . . . , xn).
We consider an N -party functionality F such that

F (x1, . . . , xt, x(t+1)1 , . . . , x(t+1)(t+1)
, . . . , x(n−1)1 , . . . , x(n−1)(t+1)

, xn)

:= f(x1, . . . , xt, x(t+1)1 ⊕ . . . ⊕ x(t+1)(t+1)
, . . . , x(n−1)1 ⊕ . . . ⊕ x(n−1)(t+1)

, xn)
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The main idea behind this compiler is to first let n − t − 1 parties in Π split
their inputs into t+1 additive shares each. Then the n parties together compute
the N -input function F using Φ. Here we describe a compiler for |O| > n − t
output parties. In the full version we show how this can be extended to the case
where the number of output parties are |O| � n − t. In the full version our
paper, we also show how to extend these protocols to the malicious setting. The
transformed three-round protocol for |O| > n−t output parties has the following
template:

R1: Parties P1, . . . , Pn−1 participate in the first round.
R2: Only Party Pn participates in the second round.
R3: Parties P1, . . . , Pt participate in the third round.

This gives us the following theorem statement.

Theorem 11. Let Φ be a two-round semi-honest MPC protocol with dishonest
majority and |O| = n output parties in the plain model. Then there exists a
general compiler that transforms Φ into a three-round MPC protocol with mini-
mum broadcast message complexity in the PKI model that tolerates up to t < n
semi-honest corruptions.

Applying Theorem 11 to the protocol from Theorem 5.1 from [18], we get
the following Corollary.

Corollary 2. Assuming the existence of two-message semi-honest OT, there
exists a three-round semi-honest MPC protocol with minimum broadcast com-
plexity in the PKI model that tolerates up to t < n corruptions.

6.2 Our Compiler

Next, we describe the compiler for |O| > n − t output parties in detail.

Building Blocks. The main primitives required in this construction are: (1) A
two-round semi-honest MPC protocol Φ for N parties in the plain/CRS model
that only uses broadcast channels. (2) An additive secret sharing scheme. We
denote this by SS := (Share,Reconstruct). (3) A public-key encryption scheme
E := (Gen,Enc,Dec).

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn}, {r1, . . . , rn}, {pk1, . . . , pkn} and {sk1, . . . , skn} be their respective
inputs, randomness, public keys and secret keys. Let λ be the security parameter.

Round 1. Each party Pi for i ∈ [t] does the following:

It computes the first round message Φ1
i ← NextMsg1Φ(1λ, i, xi,⊥; ri) using its

input xi and randomness ri and broadcasts M1
i := (Φ1

i ) to all other parties.
Each party Pi for i ∈ {t + 1, . . . , n − 1} does the following:

1. Uses an additive secret sharing scheme SS to compute t+1 shares of its input
xi and randomness ri using some random string si as follows:
{xi1 , . . . , xit , xin} ← Share(1λ, xi; si) and {ri1 , . . . , rit , xin} ← Share(1λ, ri; si)
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2. Encrypts each input and randomness share xij and rij under public key pkj

for j ∈ {1, . . . , t, n}: cij ← Enc(pkj , (xi,j , ri,j); si)
3. Computes the first round message Φ1

ij
using each of its input and randomness

share xij and rij for j ∈ {1, . . . , t, n}: Φ1
ij

← NextMsg1Φ(1λ, ij , xij ,⊥; rij )
4. Broadcasts M2

i := ({cij , Φ
1
ij

}j∈{1,...,t,n}) to all other parties.

Round 2. Party Pn does the following:

1. Computes the first round message Φ1
n using its input xn and randomness rn.

Φ1
n ← NextMsg1Φ(1λ, n, xn,⊥; rn)

2. For j from t + 1 to n − 1:
(a) Parses M2

j as {cjk , Φ1
jk

}k∈[t+1].
(b) Decrypts cjn to obtain xjn and rjn : (xjn , rjn) := Dec(ski, cjn)

3. Sets trans1Φ := {{Φ1
j}j∈{1,...,t,n}, {Φ1

jk
}j∈{t+1,...,n−1},k∈[t+1]}

4. Computes the second round message Φ2
n using its input xn, randomness rn

and previous round transcript trans1Φ: Φ2
n ← NextMsg2Φ(1λ, n, xn, trans1Φ; rn)

5. For each j ∈ {t + 1, . . . , n − 1}, it computes the second round message Φ2
jn

using input and randomness share xjn and rjn and previous round transcript
trans1Φ: Φ2

jn
← NextMsg2Φ(1λ, jn, xjn , trans1Φ; rjn)

6. Broadcasts M2
n := (Φ1

n, Φ2
n, {Φ2

jn
}j∈{t+1,...,n−1})

At the end of Round 2. Each party Pi for i ∈ [t] does the following:

1. For j from t + 1 to n − 1, it parses M2
j as {cjk , Φ1

jk
}k∈{1,...,t,n} and decrypts

cji to obtain xji and rji : (xji , rji) := Dec(ski, cji)
2. For j from 1 to t, it parses M1

j as (Φ1
j ).

3. Parses M2
n as (Φ1

n, Φ2
n, {Φ2

jn
}j∈{t+1,...,n−1})

4. Sets trans1Φ := {{Φ1
j}j∈{1,...,t,n}, {Φ1

jk
}j∈{t+1,...,n−1},k∈{1,...,t,n}}

Round 3. Each party Pi for i ∈ [t] does the following:

1. Computes the second round message Φ2
i using its own input xi, randomness

ri and previous round transcript trans1Φ: Φ2
i ← NextMsg2Φ(1λ, i, xi, trans

1
Φ; ri)

2. For each j ∈ {t + 1, . . . , n − 1}, it computes the second round message Φ2
ji

using input and randomness share xji and rji and previous round transcript
trans1Φ. For each j ∈ {t + 1, . . . , n}: Φ2

ji
← NextMsg2Φ(1λ, ji, xji , trans

1
Φ; rji)

3. Broadcasts M3
i := (Φ2

i , {Φ2
ji

}j∈{t+1,...,n})

Output Phase. Each party Pi for i ∈ [n] does the following: For j from
1 to t, it parses M3

j as (Φ2
j , {Φ2

kj
}k∈{t+1,...,n−1}). Then it sets trans2Φ :=

{{Φ2
j}j∈{1,...,t,n}, {Φ2

jk
}j∈{t+1,...,n−1},k∈{1,...,t,n}}. Finally, it runs the output

phase of Φ, OutΦ(i, xi, ri, trans
1
Φ, trans2Φ) to learn the output.

This completes the description of the compiler. We prove its security in the
full version our paper.
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7 Extensions

The protocols presented in the previous sections can be extended in various ways
to obtain different protocols with additional properties.

7.1 Protocol in the Plain Model for 1 � t < n − 1:

Such a three-round protocol can be obtained by slightly modifying the compiler
from Sect. 6.2. In the first round, parties P1, . . . , Pt behave exactly as they do in
the previous compiler, additionally they also send their public keys. Pn also sends
its first message of the underlying protocol in the first round along with its public
key. Parties Pt+1, . . . , Pn−1 compute their messages exactly as do are doing in
the previous compiler. The only difference is that now they send these messages
in the second round. Then in the third round, parties P1, . . . , Pt behave exactly
as they do in the previous compiler. Additionally Pn also sends its remaining
message in the third round. This compiler can also be instantiated using two-
round protocols from [3,18]. The resulting protocol has a broadcast message
complexity of n + t + 1 messages which is optimal for |O| > 1 output parties.
The broadcast message complexity of this protocol can be reduced by one if there
is a single output party. If one less party broadcasts a message in the third round
and instead computes this message and output offline, we get a protocol with
broadcast message complexity of n + t, which is also optimal for |O| = 1 output
party. Similar to the previous one, this result can also be extended to achieve
malicious security in the CRS model while preserving the optimal broadcast
message complexity. This can be done by instantiating the above compiler using
the two-round maliciously secure protocol from the work of Garg et al. in [18]
based on two-round OT in the CRS model with simulation-based security against
malicious receivers and semi-honest senders along with an equivocation property.
We give a similar to extension to obtain a protocol for t = n − 1 in the plain
model with optimal message complexity in the full version our paper.

7.2 P2P Message Complexity

In [22,23], Ishai et al. and Mittal give a lower bound of n + t − 1 messages
on the P2P message complexity of MPC for |O| = 1 output party with t < n
corruptions. While Ishai et al. do give a construction for t = n − 1, the work of
Mittal in [23] does not give a positive result for this lower bound for t < n − 1.
In this section we give a protocol with optimal P2P message complexity. At
first, it might seem that the positive results discussed in our work in broadcast
setting would directly give a protocol with optimal P2P message complexity by
applying a simple. But this is in fact not true. If we apply this transformation
to our protocol in the plain model, we only get a protocol with P2P message
complexity of n + t for |O| = 1, which is not optimal. If we instead apply this
transformation to our protocols from the PKI model, we do get a protocol with
optimal P2P message complexity, but the resulting protocol is also in the PKI
model, which is not optimal in the assumptions. Below we describe an extension
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to our protocols from the PKI model to obtain protocols that are optimal in
the assumptions as well as the P2P message complexity. The protocol given in
Sect. 6.2 can transformed as follows:

– P1 computes its first round message as described in that protocol and forwards
it to party P2 along with the public key.

– For i ∈ {2, . . . , t}, Party Pi computes its first round message as described in
that protocol and forwards it to party Pi+1 along with its public key and all
the messages received from Pi−1.

– Now that party Pt+1 has access to the public keys of the first t parties, it
computes its first round message as described in that protocol except that it
does not encrypt the shares for party Pn, instead the shares for Pn are kept
in the clear. It forwards its message along with all the messages received from
Pt to Pt+2.

– For i ∈ {t + 2, . . . , n − 1}, party Pi computes its message exactly as Pt does
above and forwards it along with all the messages received from Pi−1 to Pi+1.

– Party Pn computes its message exactly as it does in the described protocol,
except that it does not need to decrypt the shares, instead it receives all the
shares in the clear from Pn−1. It forwards its message along with all the other
messages (except the secret shares intended for Pn) received from Pn−1 to P1.

– For i ∈ {1, . . . , t − 1}, Party Pi computes its second message as described
in that protocol and forwards it to party Pi+1 along with all the messages
received from Pi−1.

– At the end Party Pt can compute the output.

This gives us an n+ t−1 message P2P protocol without any setup assumptions.
This protocol can be trivially extended to obtain a protocol with |O| output
parties that has n+ t+ |O|−2 messages. This can be done by having Pt forward
the output of the protocol to all the other output parties, using |O|−1 additional
messages.
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Abstract. Two of the most sought-after properties of Multi-party Com-
putation (MPC) protocols are fairness and guaranteed output delivery
(GOD), the latter also referred to as robustness. Achieving both, how-
ever, brings in the necessary requirement of malicious-minority. In a gen-
eralised adversarial setting where the adversary is allowed to corrupt
both actively and passively, the necessary bound for a n-party fair or
robust protocol turns out to be ta+tp < n, where ta, tp denote the thresh-
old for active and passive corruption with the latter subsuming the for-
mer. Subsuming the malicious-minority as a boundary special case, this
setting, denoted as dynamic corruption, opens up a range of possible cor-
ruption scenarios for the adversary. While dynamic corruption includes
the entire range of thresholds for (ta, tp) starting from (�n

2
� − 1, �n/2�)

to (0, n−1), the boundary corruption restricts the adversary only to the
boundary cases of (�n

2
� − 1, �n/2�) and (0, n − 1). Notably, both corrup-

tion settings empower an adversary to control majority of the parties, yet
ensuring the count on active corruption never goes beyond �n

2
� − 1. We

target the round complexity of fair and robust MPC tolerating dynamic
and boundary adversaries. As it turns out, �n/2� + 1 rounds are nec-
essary and sufficient for fair as well as robust MPC tolerating dynamic
corruption. The non-constant barrier raised by dynamic corruption can
be sailed through for a boundary adversary. The round complexity of 3
and 4 is necessary and sufficient for fair and GOD protocols respectively,
with the latter having an exception of allowing 3 round protocols in the
presence of a single active corruption. While all our lower bounds assume
pair-wise private and broadcast channels and are resilient to the pres-
ence of both public (CRS) and private (PKI) setup, our upper bounds
are broadcast-only and assume only public setup. The traditional and
popular setting of malicious-minority, being restricted compared to both
dynamic and boundary setting, requires 3 and 2 rounds in the presence
of public and private setup respectively for both fair as well as GOD
protocols.
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1 Introduction

Secure multi-party computation (MPC) [1–3], which is arguably the most gen-
eral problem in cryptography, allows a group of mutually distrustful parties
to compute a joint function on their inputs without revealing any information
beyond the result of the computation. While the distrust amongst the parties is
modelled by a centralized adversary A who can corrupt a subset of the parties,
the security of an MPC protocol is captured by a real-world versus ideal-world
paradigm. According to this paradigm, adversarial attacks in a real execution
of the MPC protocol can be translated to adversarial attacks in the ideal-world
where the parties interact directly with a trusted-third party who accepts pri-
vate inputs, computes the desired function and returns the output to the parties;
thereby trivially achieving correctness (function output is correctly computed on
parties’ inputs) and privacy (A learns nothing about the private inputs of honest
parties, beyond what is revealed by the output).

Two of the most sought-after properties of MPC protocols are fairness and
robustness (alternately, guaranteed output delivery a.k.a. GOD). The former
ensures that adversary obtains the output if and only if honest parties do, while
the latter guarantees that the adversary cannot prevent honest parties from
obtaining the output. Both these properties are trivially attainable in the pres-
ence of any number of passive (semi-honest) corruption where the corrupt parties
follow the protocol specifications but the adversary learns the internal state of
the corrupt parties. However, in the face of stringent active (malicious) cor-
ruption where the parties controlled by the adversary deviate arbitrarily from
the protocol; fairness and GOD can be achieved only if the adversary corrupts
atmost minority of the parties (referred to as malicious minority) [4]. Opening
up the possibility of corrupting parties in both passive and active style, the gen-
eralized feasibility condition for a n-party fair or robust protocol turns out to be
ta + tp < n, where ta, tp denote the threshold for active and passive corruption,
with the latter subsuming the former [5]. We emphasize that tp is a measure of
the total number of passive corruptions that includes the actively corrupt par-
ties; therefore the feasibility condition ta + tp < n implies ta ≤ �n/2� − 1. In its
most intense and diverse avatar, referred as dynamic-admissible, the adversary
can take control of the parties in one of the ways drawn from the entire range of
admissible possibilities of (ta, tp) starting from (�n

2 �−1, �n/2�) to (0, n−1). In a
milder setting, referred as boundary-admissible, the adversary is restricted only
to the boundary cases, namely (�n/2� − 1, �n/2�) and (0, n − 1). Subsuming the
traditional malicious-minority and passive-majority (majority of the parties con-
trolled by passive adversary) setting for achieving fairness and GOD as special
cases, both dynamic as well as boundary setting give the adversary more free-
dom and consequently more strength to the protocols. Notably, both empower
an adversary to control majority of the parties, yet ensuring the count on active
corruption never goes beyond �n

2 � − 1.
The study of protocols in dynamic and boundary setting is well motivated

and driven by theoretical and practical reasons. Theoretically, the study of gen-
eralized adversarial corruptions gives deeper insight into how passive and active
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strategies combine to influence complexity parameters of MPC such as efficiency,
security notion achieved and round complexity. Practically, the protocols in
dynamic and boundary setting offer strong defence and are more tolerant and
better-fit in practical scenarios where the attack can come in many unforeseen
ways. Indeed, deploying such protocols in practice is far more safe than tradi-
tional malicious-minority and passive-majority protocols that completely break
down in the face of boundary adversaries, let alone dynamic adversaries. For
instance, consider MPC in server-aided setting where instead of assuming only
actively corrupt clients and honest servers, the collusion of client-server is per-
mitted where some of the servers can be passively monitored. This model is quite
realistic as it does not contradict the reputation of the system (since the passive
servers follow protocol specifications and can thereby never be exposed/caught).
The option of allowing corruption in both passive and active styles is quite rele-
vant in such scenarios. Driven by the above credible reasons and extending the
study of exact round complexity of fair and robust protocols beyond the tradi-
tional malicious-minority setting [6–8], in this work, we aim to settle the same
for the regime of dynamic and boundary corruption.

Related Work. We begin with outlining the most relevant literature of round com-
plexity of fair and robust MPC protocols in the traditional adversarial settings
involving only single type of adversary (either passive or active). To begin with, 2
rounds are known to be necessary to realize any MPC protocol, regardless of the
type of adversary, no matter whether a setup is assumed or not as long as the setup
(when assumed) is independent of the inputs of the involved parties [9]. A 1-round
protocol is susceptible to “residual function attack” where an adversary can evalu-
ate the function on multiple inputs by running the computation with different val-
ues for his inputs with fixed inputs for the honest parties. The result of [6] shows
necessity of 3 rounds for fairness in the plain and CRS setting, when the number
of malicious corruptions is at least 2 (i.e. t ≥ 2), irrespective of the number of par-
ties, assuming the parties are connected by pairwise-private and broadcast chan-
nels. Complementing this result, the lower bound of [8] extends the necessity of 3
rounds for any t (including t = 1) as long as n/3 < t < n/2. The work of [7] shows 3
to be the lower bound for fairness in the presence of CRS, assuming broadcast-only
channels (no private channels).

In terms of the upper bounds, the works of [10,11] showed that 2-rounds are
sufficient to achieve robustness in the passive-majority setting. In accordance
with the impossibility of [4] and sufficiency of honest-majority shown by classical
result of [12], the upper bounds in the malicious setting involve t < n/2 parties.
These include the 3-round constructions of [7,13,14] based on tools such as Zaps,
multi-key FHE, dense crypto-systems. The protocol of [7] can be collapsed to
two rounds given access to a PKI. In the information-theoretic setting involving
t < n/4 malicious corruptions, the work of [15] presents a 3-round perfectly-
secure robust protocol. In the domain of small-number of parties, round optimal
protocols achieving fairness and robustness appear in [8,16].

Moving on to the setting of generalized adversary, there are primarily two
adversarial models that are most relevant to us. The first model initiated by
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[17] consider a mixed adversary (referred to as graceful degradation of corrup-
tions) that can simultaneously perform different types of corruptions. Feasibility
results in this model appeared in the works of [18–21]. The dynamic-admissible
adversary considered in our work is consistent with this model since it involves
simultaneous active and passive corruptions. The second model proposed by [22]
concerns protocols that are secure against an adversary that can either choose
to corrupt a subset of parties with particular corruption type (say, passively)
or alternately a different subset (typically smaller) of parties with a second cor-
ruption type (say, actively), but only single type of corruption occurs at a time.
Referred to as graceful degradation of security [22–28], such protocols achieve
different security guarantees based on the set of corrupted parties; for instance
robustness/information-theoretic security against the smaller corruption set and
abort/computational security against the larger corruption set. We note that
the boundary-admissible adversary when n is odd, involves either purely active
(since ta = tp holds when (ta, tp) = (�n/2�−1, �n/2�)) corruptions or purely pas-
sive corruptions (where (ta, tp) = (0, n− 1)); thereby fitting in the second model
(Infact, boundary-admissible adversary for odd n degenerates to the adversar-
ial model studied in “best-of-both-worlds” MPC [28]). However, in case of even
n, the boundary-admissible adversary with (ta, tp) = (�n/2� − 1, �n/2�) would
involve simultaneous passive and active corruption as tp = ta + 1 and fit in the
prior model. Lastly, both graceful degradation of security and corruptions were
generalized in the works of [5,29]. To the best of our knowledge, the interesting
and natural question of round complexity has not been studied in these stronger
adversarial models.

1.1 Our Results

In this work, we target and resolve the exact round complexity of fair and robust
MPC protocols in both dynamic and boundary setting. This is achieved via 3
lower bounds that hold assuming both CRS and PKI setup and 5 upper bounds
that assumes CRS alone. In terms of network setting, while our lower bounds hold
assuming both pairwise-private and broadcast channels, all our upper bounds use
broadcast channel alone. All our upper bounds are generic compilers that trans-
form a 2-round protocol achieving unanimous abort (either all honest parties
obtain output or none of them do) or identifiable abort (corrupt parties are
identified in case honest parties do not obtain the output) against malicious
majority to a protocol achieving the stronger guarantees of fairness/robustness
against stronger adversaries (namely, dynamic and boundary adversaries). The
need for CRS in our constructions stems from the underlying 2-round protocol
achieving unanimous or identifiable abort. We leave open the question of con-
structing tight upper bounds or coming up with new lower bounds in the plain
model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary has
the freedom to choose from the entire range of corruption thresholds for (ta, tp)
starting from (�n/2� − 1, �n/2�) to (0, n − 1). Our first lower bound establishes
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that �n/2� + 1 rounds are necessary to achieve fairness against dynamic adver-
sary. Since robustness is a stronger security notion, the same lower bound holds
for GOD as well. This result not only rules out the possibility of constant-round
fair protocols but also gives the exact lower bound. We give two matching upper
bounds, one for fairness and the other for robustness, where the former is sub-
sumed by and acts as a stepping stone to the latter. These results completely
settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder bound-
ary adversarial setting where adversary is restricted to the boundary cases of
(�n/2�−1, �n/2�) and (0, n−1). Our two lower bounds of this setting show that 4
and 3 rounds are necessary to achieve robustness and fairness respectively against
the boundary adversary. Our first 4-round lower bound is particularly interest-
ing, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the
boundary cases reduce to pure active (ta = tp when (ta, tp) = (�n/2�−1, �n/2�))
and pure passive ((ta, tp) = (0, n−1)) corruptions. We note that security against
malicious-minority and passive-majority are known to be attainable indepen-
dently in just 2 rounds assuming access to CRS and PKI [7,10,11]. Hence, our
4-round lower bound encapsulates the difficulty in designing protocols tolerant
against an adversary who can choose among his two boundary corruption types
arbitrarily. (2) This lower bound can be circumvented in case of single malicious
corruption i.e. against a special-case boundary adversary restricted to corrup-
tion scenarios (ta, tp) = (1, �n/2�) and (ta, tp) = (0, n − 1). (We refer to such
an adversary as special-case boundary adversary with ta ≤ 1). This observation
augments the rich evidence in literature [16,30,31] which show the impact of sin-
gle corruption on feasibility results. With respect to our second lower bound for
fairness against boundary adversary, we first note that the 3-round lower bound
for fairness in the presence of CRS is trivial given the feasibility results of [6–8].
However, they break down assuming access to PKI. Thus, the contribution of our
second lower bound is to show that the 3-round lower bound holds for boundary
adversary even in the presence of PKI. We complement these two lower bounds
by three tight upper bounds. The upper bounds achieving robustness include a
4-round protocol for the general case and a 3-round protocol for the special-case
of one malicious corruption that demonstrates the circumvention of our first
lower bound. Lastly, our third upper bound is a 3-round construction achieving
fairness, demonstrating the tightness of our second lower bound.

Our results appear in the table below with comparison to the round com-
plexity in the traditional settings of achieving fairness and robustness. Since
PKI (private) setup subsumes CRS (public) setup which further subsumes plain
model (no setup), the lower and upper bounds are specified with their maximum
tolerance and minimum need respectively amongst these setup assumptions. The
results provide us further insights regarding how disparity in adversarial setting
affects round complexity. Note that the round complexity of fair protocols in
the CRS model against an adversary corrupting minority of parties maliciously,
remains unaffected in the setting of boundary adversary; which is a stronger
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variant of the former. On the other hand, this switch of adversarial setting causes
the lower bound of robust protocols in the model assuming both CRS and PKI to
jump from 2 to 4. Lastly, the gravity of dynamic corruption on round complexity
is evident in the leap from constant-rounds of 3, 4 in the boundary corruption
case to �n/2� + 1.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority Fair, GOD 2 [9] (private) [10,11] (plain)

Malicious-minority Fair, GOD 3 [7,8] (public) [13,14] (plain)

Fair, GOD 2 [9] (private) [7] (private)

Boundary Fair 3 [This] (private) [This] (public)

GOD 4 (3 when ta ≤ 1) [This] (private) [This] (public)

Dynamic Fair, GOD �n
2

� + 1 [This] (private) [This] (public)

1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds
and matching upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to
both CRS and PKI– (a) �n/2�+1 rounds are necessary to achieve fairness against
dynamic adversary. (b) 4 rounds are necessary to achieve robustness against a
boundary adversary. (c) 3 rounds are necessary to achieve fairness against a
boundary adversary.

The first lower bound (a) effectively captures the power of dynamic corrup-
tion stemming from the ambiguity caused by the total range of thresholds (ta, tp)
starting from (�n/2� − 1, �n/2�) to (0, n − 1). The proof navigates through this
sequence starting with maximal active corruption and proceeds to scenarios of
lesser active corruptions one at a time. An inductive argument neatly captures
how the value of tp growing alongside decreasing values of ta can be exploited
by adversarial strategies violating fairness, eventually dragging the round com-
plexity all the way upto �n/2� + 1. The lower bounds (b) and (c) are shown by
considering a specific set of small number of parties and assume the existence of
a 3 (2) round robust (fair) protocol for contradiction respectively. Subsequently,
inferences are drawn based on cleverly-designed strategies exploiting the prop-
erties of GOD and fairness. These inferences and strategies are interconnected
in a manner that builds up to a strategy violating privacy, thereby leading to a
final contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting com-
prising of two upper bounds each for fairness and GOD against dynamic and
boundary adversary respectively and lastly, an additional 3-round upper bound
for GOD against the special case of single malicious corruption by boundary
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adversary in order to demonstrate the circumvention of lower bound (b). Tight-
ness of this upper bound follows from lower bound (c) (that holds for single
malicious corruption) as GOD implies fairness. Our upper bounds can be viewed
as “compiled” protocols obtained upon plugging in any 2-round broadcast-only
protocols [10,11] achieving unanimous abort against malicious majority. While
the fair upper-bounds do not require any additional property from the underlying
2-round protocol, our robust protocols demand the property of identifiable abort
and function-delayed property i.e. the first round of the protocol is independent
of the function to be computed and the number of parties. Looking ahead, this
enables us to run many parallel instances of the round 1 in the beginning and run
the second round sequentially as and when failure happens to compute a new
function (that gets determined based on the identities of the corrupt parties).
Assumption wise, all our upper bound constructions rely on 2-round maliciously-
secure oblivious transfer (OT) in common random/reference string models. We
now give a high-level overview of the specific challenges we encounter in each of
our upper bounds and the techniques we use to tackle them.

Dynamic Adversary: The two upper bounds against dynamic adversary show
sufficiency of �n/2�+1 rounds to achieve fairness and robustness against dynamic
admissible adversary. The upper bound for fairness is built upon the protocol
of [5] that introduces a special-kind of sharing, which we refer to as levelled-
sharing where a value is divided into summands (adding upto the value) and each
summand is shared with varying degrees. The heart of the protocol of [5] lies in
its gradual reconstruction of the levelled-shared output (obtained by running an
MPC protocol with unanimous abort), starting with the summand corresponding
to the highest degree down to the lowest. The argument for fairness banks on
the fact that the more the adversary raises its disruptive power in an attempt
to control reconstruction of more number of summands, the more it looses its
eavesdropping capability and consequently learns fewer number of summands
by itself and vice versa. This discourages an adversary from misbehaving as
using maximal disruptive power reduces its eavesdropping capability such that
he falls short of learning the next summand in sequence without the help of
honest parties. The innovation of our fair protocol lies in delicately fixing the
parameters of levelled-sharing in a manner that optimal round complexity can
be attained whilst maintaining fairness.

Next, we point that since the fair protocol consumes the optimal round com-
plexity of �n/2� + 1 even in the case of honest execution, the primary hurdle in
our second upper bound is to be able to carry out re-runs when an adversary
disrupts computation to achieve robustness without consuming extra rounds.
Banking on the player-elimination technique, we use identifiability to bar the
corrupt parties disrupting computation from participating thereafter. Having
parallel execution of Round 1 of all the required re-reruns helps us get closer
to the optimal bound. While these approaches aid to a great extent, the final
saviour comes in the form of a delicate and crucial observation regarding how
the thresholds of the levelled-sharing can be manipulated carefully, accounting
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for the cheaters identified so far. This trick exploits the pattern of reduced cor-
ruption scenarios obtained upon cheater identification and helps to compensate
for the rounds consumed in subprotocols that were eventually disrupted by the
adversary. The analysis of the round complexity of the protocol being subtle, we
use an intricate recursive argument to capture all scenarios and show that the
optimal lower bound is never exceeded. Lastly, we point that both upper bound
constructions against dynamic adversary assume equivocal non-interactive com-
mitment (such as Pedersen commitment [32]). The GOD upper bound addition-
ally assumes the existence of Non-Interactive Zero-Knowledge (NIZK) in the
common random/reference string model.

Boundary Adversary: The three upper bounds against boundary-admissible
adversary restricted to corruption scenarios either (ta, tp) = (�n/2� − 1, �n/2�)
or (ta, tp) = (0, n − 1) show that (a) 4 rounds are sufficient to achieve
robustness against boundary-admissible adversary (b) 3 rounds are sufficient
to achieve robustness against special-case boundary-admissible adversary when
ta ≤ 1 i.e. adversary corrupts with parameters either (ta, tp) = (1, �n/2�) or
(ta, tp) = (0, n − 1) (c) 3 rounds are sufficient to achieve fairness against
boundary-admissible adversary. At a high-level, all the three upper bounds begin
with a 2-round protocol secure against malicious majority that computes thresh-
old sharing of the output. Intuitively, this seems to serve as the only available
option as protocols customized for malicious minority typically breach privacy
when views of majority of the parties are combined (thereby will break down
against tp < n semi-honest corruptions). On the flip side, protocols customized
for exclusively passive majority may violate correctness/privacy in the presence
of even single malicious corruption. Subsequently, this natural route bifurcates
into two scenarios based on whether the adversary allows the computation of
the threshold sharing of output to succeed or not. In case of success, all the
three upper bounds proceed via the common route of reconstruction which is
guaranteed to be robust by the property of threshold sharing. The distinctness
of the 3 settings (accordingly the upper bounds) crops up in the alternate sce-
nario i.e. when the computation of threshold sharing of output aborts. While in
upper bound (c), parties simply terminate with ⊥ maintaining fairness enabled
by privacy of the threshold sharing; the upper bounds (a) and (b) demanding
stronger guarantee of robustness cannot afford to do so. These two upper bounds
exploit the fact that the corruption scenario has now been identified to be the
boundary case having active corruptions, thereby protocols tolerating malicious
minority can now be executed. While the above outline is inspired by the work
of [28], we point that we need to tackle the exact corruption scenarios as that of
the protocols of [28] only when n is odd. On the other hand when n is even, the
extreme case for active corruption accommodates an additional passive corrup-
tion (tp = ta +1). Apart from hitting the optimal round complexity, tackling the
distinct boundary cases for odd and even n in a unified way brings challenge for
our protocol. To overcome these challenges, in addition to techniques of identi-
fication and elimination of corrupt parties who disrupt computation, we employ
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tricks such as parallelizing without compromising on security to achieve the opti-
mum round complexity. Assumption wise, while both the robust constructions
(a) and (b) rely on NIZKs, the former additionally assumes Zaps (2-round,
public-coin witness-indistinguishable protocols) and public-key encryption.

2 Preliminaries

We consider a set of parties P = {P1, . . . Pn}. Our upper bounds assume the
parties connected by a broadcast channel and a setup where parties have access
to common reference string (CRS). Our lower bounds hold even when the parties
are additionally connected by pairwise-secure and authentic channels and for a
stronger setup, namely assuming access to CRS as well as public-key infrastruc-
ture (PKI). Each party is modelled as a probabilistic polynomial time Turing
(PPT) machine. We assume that there exists a PPT adversary A, who can cor-
rupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings,
the A is characterised by two thresholds (ta, tp), where he may corrupt upto
tp parties passively, and upto ta of these parties even actively. Note that tp is
the total number of passive corruptions that includes the active corruptions and
additional parties that are exclusively passively corrupt. We now define dynamic
and boundary admissible adversaries.

Definition 1 (Dynamic-admissible Adversary). An adversary attacking an
n-party MPC protocol with threshold (ta, tp) is called dynamic-admissible as long
as ta + tp < n and ta ≤ tp.

Definition 2 (Boundary-admissible Adversary). An adversary attacking
an n-party MPC protocol with threshold (ta, tp) is called boundary-admissible as
long as he corrupts either with parameters (a) (ta, tp) = (�n

2 � − 1, �n/2�) or (b)
(ta, tp) = (0, n − 1).

In our work, we also consider a special-case of boundary adversary with ta ≤ 1
where the adversary corrupts either with parameters (ta, tp) = (1, �n/2�) or
(ta, tp) = (0, n − 1).

Notation. We denote the cryptographic security parameter by κ. A negligible
function in κ is denoted by negl(κ). A function negl(·) is negligible if for every
polynomial p(·) there exists a value N such that for all m > N it holds that
negl(m) < 1

p(m) . Composition of two functions, f and g (say, h(x) = g(f(x))) is
denoted as g 	 f . We use [n] to denote the set {1, . . . n} and [a, b] to denote the
set {a, a + 1 . . . b} when a ≤ b or the set {a, a − 1, . . . b} when a > b. Lastly, for
dynamic-admissible adversary, we denote the set of active and passively corrupt
parties by D and E respectively, where |D| = ta and |E| = tp.

Roadmap. Our lower and upper bounds for dynamic and boundary corruption
appear in Sects. 3–4 and in Sects. 5–6 respectively. The security definitions and
proofs appear in the full version [33].
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3 Lower Bounds for Dynamic Corruption

In this section, we show that �n
2 � + 1 rounds are necessary to achieve MPC

with fairness against a dynamic-admissible A with threshold (ta, tp). This result
shows impossibility of constant-round fair and robust protocols in the setting of
dynamic corruption.

Theorem 1. No �n
2 �-round n-party MPC protocol can achieve fairness toler-

ating a dynamic-admissible adversary A with threshold (ta, tp) in a setting with
pairwise-private and broadcast channels, and a setup that includes CRS and PKI.

Proof. We prove the theorem by contradiction. Suppose there exists a �n
2 �-round

n-party MPC protocol π computing any function f(x1 . . . xn) (where xi denotes
the input of party Pi) that achieves fairness against a dynamic-admissible A with
corruption threshold (ta, tp) and in the presence of a setup with CRS and PKI.
At a high-level, our proof argument defines a sequence of hybrid executions of
π, navigating through all the possible admissible corruption scenarios assuming
ta+tp = n−1 and starting with the maximum admissible value of ta = �n/2�−1.
Our first hybrid under the spell of a dynamic-admissible adversary, corrupting
�n/2� − 1 parties actively and stopping their communication in the last round,
lets us conclude that the joint view of the honest and passively-corrupted parties
by the end of penultimate round must hold the output in order for π to satisfy
fairness. If not, while ceasing communication in the last round does not prevent
A from getting all the messages in the last round and thereby the output, the
honest parties do fail to compute the output due to the non-cooperation of ta
parties, violating fairness. The views of the passively corrupt parties need to be
taken into account as they follow protocol steps correctly and assist in output
computation. Leveraging the fact that drop of ta leads to rise of tp, we then
propose a new hybrid where ta is demoted by 1 and consequently tp grows big
enough to subsume the list of honest and passive-corruption from the previous
hybrid. As the view of the adversary in this hybrid holds the output by the end
of penultimate round itself, its actively-corrupt parties need not speak in the
penultimate round. Now fairness in the face of current strategy of the actively-
corrupted parties needs the joint view of the honest and passively-corrupted
parties by the end of �n/2� − 2 round to hold the output. This continues with
the set of honest and passively-corrupted parties growing by size one between
every two hybrids. Propagating this pattern to the earlier rounds eventually
lets us conclude that an adversary with threshold (ta, tp) = (0, n − 1) (no active
corruption case) can obtain the output at the end of Round 1 itself. This leads us
to a final strategy that violates privacy of π via residual attack. This completes
the proof sketch. We now prove the sequence of lemmas to complete the proof.

Lemma 1. In an execution of π where all parties behave honestly upto (and
including) Round (�n

2 � − i) for i ∈ [�n
2 � − 1], there exists a set of parties Si

with size (�n
2 � + i) whose combined view at the end of Round �n

2 � − i suffices to
compute the output.
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Proof. We prove the lemma by induction. Let P = {P1, P2, ..., Pn} denote the
set of parties and D(E) denote the set of actively (passively) corrupt parties
where D ⊆ E . Here |D| = ta and |E| = tp.

Base Case ( i = 1): We consider an execution of the protocol π with a
dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(�n

2 � − 1, �n/2�) and an adversarial strategy A1 as follows. The set of actively
corrupt parties D behave honestly upto (and including) Round �n

2 � − 1 and
simply remain silent in the last round i.e. the �n

2 �th round. Since A receives
all the desired communication throughout the protocol, it follows directly from
the correctness of π that A must be able to compute the output. Since π is
assumed to be fair, the honest parties must also be able to compute the output
even without the �n

2 �th round communication from parties in D. We can now
conclude that the combined view of parties in P \D at the end of Round �n

2 �−1
must suffice to compute the output. Thus, the set S1 = P \ D of parties with
size n− ta = n− (�n

2 �− 1) = �n
2 �+1 hold a combined view at the end of Round

�n
2 � − 1 that suffices to compute the output. This completes the base case.

Induction Hypothesis (i = �). Suppose the statement is true for i = � i.e. if all
parties behave honestly upto (and including) Round (�n

2 �− �), then there exists
a set of parties, say S�, with |S�| = (�n

2 � + �) whose combined view at the end
of (�n

2 � − �)th round, suffices to compute the output.

Induction Step (i = � + 1). We consider an execution of the protocol π with
a dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(�n

2 � − � − 1, �n
2 � + �) and E = S� as defined in the induction hypothesis and an

adversarial strategy A�+1 as follows. The set of actively corrupt parties D behave
honestly upto (and including) Round (�n

2 �−�−1) and simply remain silent from
Round (�n

2 � − �) onwards. Since A receives all the desired communication upto
(and including) Round (�n

2 � − �) of π (as per an honest execution) on behalf of
parties in E , it follows directly from the induction hypothesis that the combined
view of the parties in E where |E| = �n

2 �+ � must suffice to compute the output.
Since π is assumed to be fair, the honest parties must also be able to compute the
output even though the parties in D stop communicating from Round (�n

2 � − �)
onwards. We can now conclude that the combined view of parties in P \D at the
end of Round (�n

2 � − � − 1) must suffice to compute the output. Thus, the set
S�+1 = P \ D of parties with size n − ta = n − (�n

2 � − � − 1) = �n
2 � + � + 1 hold

a combined view at the end of Round (�n
2 � − � − 1) that suffices to compute the

output. This completes the induction hypothesis and the proof of Lemma 1. �
Lemma 2. There exists an adversary A that is able to compute the output at
the end of Round 1 of π.

Proof. When i = �n
2 � − 1, Lemma 1 implies that if all parties behave honestly

in Round 1, then there exists a set S� n
2 �−1 of (�n

2 � + �n
2 � − 1) = n − 1 parties

whose combined view suffices to compute the output at the end of Round 1.
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Consequently, a dynamic-admissible adversary A corrupting the parties with
threshold (ta, tp) = (0, n− 1) and (D = ∅, E = S� n

2 �−1) must be able to compute
the output at the end of Round 1 itself. �
Lemma 3. Protocol π does not achieve privacy.

Proof. It follows directly from Lemma 2 that there exists an adversary A with
threshold (ta, tp) = (0, n − 1) corrupting a set of (n − 1) parties passively, say
E = {P1, . . . Pn−1}, that is able to compute the output at the end of Round
1 itself. Thus, A can obtain multiple evaluations of the function f by locally
plugging in different values for {x1, . . . , xn−1} while honest Pn’s input xn remains
fixed. This residual function attack violates privacy of Pn. As a concrete example,
let f be a common output function computing x1 ∧ xn, where xi (i ∈ {1, n})
denotes a single bit. During the execution of π, A behaves honestly with input
x1 = 0 on behalf of P1. However, the passively-corrupt P1 can locally plug-in
x1 = 1 and learn xn (via the output x1 ∧ xn). This is a clear breach of privacy,
as in the ideal world, A participating honestly with input x1 = 0 on behalf of P1

would learn nothing about xn; in contrast to the execution of π where A learns
xn regardless of his input. This completes the proof. �
We have thus arrived at a contradiction to our assumption that π securely com-
putes f and achieves fairness. This completes the proof of Theorem 1. �

4 Upper Bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-
admissible adversary A with threshold (ta, tp). The first upper bound achieves
fairness and is a stepping stone to the construction of the second upper bound
that achieves guaranteed output delivery. Both the upper bounds comprise of
�n/2�+1 rounds in the presence of CRS, tightly matching our lower bound result
of Sect. 3. We start with an important building block needed for both the fair
and GOD protocols.

4.1 Levelled-Sharing of a Secret

Our protocols in the dynamic corruption setting involve a special kind of shar-
ing referred as levelled sharing, which is inspired by and a generalized variant of
the sharing defined in [5]. The sharing is parameterized with two thresholds, α
and β with α ≥ β, that dictate the number of levels as α − β + 1. To share a
secret in (α, β)-levelled-shared fashion, α − β + 1 additive shares (levels) of the
secret, indexed from α to β are created and each additive share is then Shamir-
shared [34] using polynomial of degree that is same as its assigned index. Fur-
ther each Shamir-sharing is authenticated using a non-interactive commitment
scheme, to ensure detectably correct reconstruction. For technical reasons in the
simulation-based security proof, we need an instantiation of commitment scheme
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that allows equivocation of commitment to any message with the help of trap-
door and provides statistical hiding and computational binding. Denoting such
a commitment scheme by eNICOM (Equivocal Non-Interactive Commitment),
we present both the formal definition and an instantiation based on Pedersen’s
commitment scheme [32] in the full version [33]. While the sharing will involve
the entire population P in our fair protocol, it may be restricted to many dif-
ferent subsets of P, each time after curtailing identified actively corrupt parties.
The definition therefore is formalized with respect to a set Q ⊆ P.

Definition 3 ((α, β)-levelled sharing). A value v is said to be (α, β)-levelled-
shared with α ≥ β amongst a set of parties Q ⊆ P if every honest or passively
corrupt party Pi in Q holds Li as produced by fα,β

LSh (v) given in Fig. 1.

Fig. 1. Function fα,β
LSh for computing (α, β)-levelled sharing

In our protocols the function fα,β
LSh will be realized via an MPC protocol,

whereas, given the (α, β)-levelled-sharing, we will use a levelled-reconstruction
protocol LRecα,β() that enforce reconstruction of the summands one at a time
starting with sα. This levelled reconstruction ensures a remarkable property tol-
erating any dynamic-admissible adversary– if the adversary can disrupt recon-
struction of si, then it cannot learn si−1 using its eavesdropping power. This
property is instrumental in achieving fairness against the strong dynamic-
admissible adversary. The protocol is presented in Fig. 2. Its properties and
round complexity are stated below. Note that starting with the feasibility con-
dition ta + tp < n = |P|, expelling a set of actively corrupt parties, say B, makes
the following impact on ta, tp and P: ta = ta − |B|, tp = tp − |B| and P = P \ B.
Consequently, the updated ta, tp and P continue to satisfy ta + tp < |P|. Below,
we will therefore use the fact that ta + tp < |Q|, where Q denotes the relevant
set of parties (i.e. the set of parties remaining after possibly expelling a set of
identified actively corrupt parties).

Lemma 4. LRecα,β satisfies the following properties–

i. Correctness. Each honest Pi participating in LRecα,β with input Li as gen-
erated by fα,β

LSh (v), outputs either v or ⊥ except with negligible probability.
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Fig. 2. Protocol LRecα,β

ii. Fault-Identification. If an adversary disrupts the reconstruction of sj, then
|B| ≥ |Q| − j.

iii. Fairness. If an adversary disrupts the reconstruction of sj, then it does not
learn sj−1.

iv. Round Complexity. It terminates within α − β + 1 rounds.

Proof. i. Consider an honest Pi participating with input Li =
({sji, oji}j∈[α,β],

{cjk}j∈[α,β],Pk∈Q
)
. We observe Pi outputs v′ �= {v,⊥} only if at least one of

the summands, say sj(j ∈ [α, β]) is incorrectly set. This can happen only if Pi

adds at least one index k to Zj such that Pk sends an incorrect share s′
jk �= sjk.

This occurs when (s′
jk, o′

jk) received from Pk is such that cjk opens to s′
jk via

o′
jk but s′

jk �= sjk. It now follows directly from the binding of eNICOM that this
violation occurs with negligible probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding
property of eNICOM that reconstruction of sj would fail only if |Zj | ≤ j. Next,
note that as per the steps in Fig. 2, each honest Pi would output B = Q\Zj if
reconstruction of sj fails. We can thus conclude that |B| = |Q|−|Zj | ≥ |Q|−j.

iii. To prove fairness, we first prove that if an adversary can disrupt the recon-
struction of sj , then it cannot learn sj−1 using its eavesdropping power. Since
as per the protocol, the honest parties do not participate in the reconstruction
of sj−1 when they fail to reconstruct sj , the security of sj−1 follows from the
information-theoretic security of Shamir-sharing and the statistical security
(hiding) of eNICOM.
An adversary can disrupt reconstruction of sj only if |Zj | ≤ j. It is easy to
check that Zj would constitute the non-actively corrupt parties (honest and
purely passive parties) i.e. Q \ D ⊆ Zj . Thus, |Q \ D| = |Q| − ta ≤ |Zj | ≤ j.
Lastly, to maintain ta + tp < |Q|, it must hold that tp ≤ |Q| − ta − 1 ≤ j − 1.
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Thus, the adversary corrupting tp ≤ j − 1 parties cannot learn sj−1 using its
eavesdropping power.

iv. LRecα,β involves reconstruction of summands sα down to sβ , each of which
consumes one round; totalling upto α − β + 1. �

4.2 Upper Bound for Fair MPC

The key insight for this protocol comes from [5] that builds on an MPC protocol
with abort security to compute the function output in (n− 1, 1)-levelled-sharing
form, followed by levelled-reconstruction to tackle dynamic corruption. Fairness
is brought to the system by relying on the fairness of the levelled-reconstruction.
In particular, the adversary is disabled to reconstruct (i − 1)th summand, as
a punitive action, when it disrupts reconstruction of the ith summand for the
honest parties. In the marginal case, if the adversary disrupts the MPC protocol
for computing the levelled-sharing and does not let the honest parties get their
output, we disable it to reconstruct the (n − 1)th summand itself.

In a (α, β)-levelled-reconstruction, the parameters α and β dictate the round
complexity. The closer they are the better round complexity we obtain. The α
and β in [5] are n − 2 apart, shooting the round complexity of reconstruction to
n − 1. We depart from the construction of [5] in two ways to build a (�n

2 � + 1)-
round fair protocol. Firstly and prominently, we bring α and β much closer,
cutting down �n

2 � summands from the levelled-secret sharing and bringing down
the number of levels to just n− 1−�n

2 � from n− 1 of [5]. Second, we plug in the
round-optimal (2-round) MPC protocol of [10,11] achieving unanimous abort
against malicious majority in the CRS model for computing the levelled-sharing
of the output, making overall a (�n

2 � + 1)-round fair protocol. We discuss the
first departure in detail below.

Our innovation lies in fixing the best values of α and β without flouting
fairness. The value of α and β, in essence determines the indispensable sum-
mands that we cannot do without. Every possible non-zero threshold for active
corruption maps to a crucial summand that the adversary using its correspond-
ing admissible passive threshold cannot learn by itself, whilst the pool of non-
disruptive set of parties, i.e. the set of honest and purely passive parties, can.
This unique summand, being the ‘soft spot’ for the adversary, forces him to
cooperate until the reconstruction of the immediate previous summand. As soon
as the adversary does so, the honest parties turn self-reliant to compute the
output, upholding fairness. We care only about the non-zero possibilities for the
threshold of active corruption, as an all-passive adversary holds no power at its
disposal to disrupt, leading to robust output reconstruction by all. For the min-
imum non-zero value of 1 active corruption, the unique summand is sn−2 that
the adversary cannot learn using its admissible eavesdropping capacity of n − 2,
yet the set of non-disruptive parties, which is of size n − 1, can. On the other
extreme, for the maximum value of �n

2 � − 1, the unique summand is s� n
2 � that

the adversary cannot learn using its admissible eavesdropping capacity of �n
2 �,

yet the set of non-disruptive parties, which is of size �n
2 � + 1, can. This sets the
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values of α and β as n − 2 and �n
2 � respectively, making the number of crucial

summands only �n
2 � − 1. The distance between these two parameters captures

the number of possible corruption scenarios with non-zero active corruption.
In the table below (Table 1), we display for each admissible adversarial cor-

ruption (this set subsumes the crucial summands that we retain), whether the
adversary and the set of non-disruptive parties respectively by themselves, can
learn the summand, using its maximum eavesdropping capability and putting
together their shares respectively. The pattern clearly displays the following
feature: irrespective of the corruption scenario that the adversary follows, its
maximum power to disrupt and eavesdrop remains one summand apart i.e. if
it can disrupt ith summand with its maximum disruptive capability (and fall
short of its power for failing the (i − 1)th one), then its maximum eavesdrop-
ping capability does not allow it to learn (i − 1)th summand by itself. Our fair
protocol πdyn

fair tolerating dynamic corruption appears in Fig. 3. Assumption wise,
πdyn
fair relies on 2-round maliciously-secure OT in the common random/reference

string model (when πua is instantiated with protocols of [10,11]) and eNICOM
(used in LRecα,β() and instantiated using Pedersen’s commitment scheme).

Table 1. Levelled-reconstruction where (a = Y/N, b = Y/N) under si indicates if A and
non-active parties respectively can reconstruct si or not (Y = Yes, N = No)

(ta = |D|, tp = |E|) |P \ D| sn−2 sn−3 sn−4 sn−i−1 s�n/2�+1 s�n/2�
(0, n − 1) n (Y, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(1, n − 2) n − 1 (N, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(2, n − 3) n − 2 (N, N) (N, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i, n − i − 1) n − i (N, N) (N, N) (N, N) . . . (N, Y) . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(�n/2� − 1, �n/2�) �n/2� + 1 (N, N) (N, N) (N, N) . . . . . . . . . (N, N) (N, Y)

Fig. 3. Fair MPC against dynamic-admissible adversary
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We state the formal theorem below.

Theorem 2. Assuming the presence of a 2-round MPC protocol πua achieving
unanimous abort against malicious majority, protocol πdyn

fair with n parties satisfies
correctness, achieves fairness and has a round complexity of �n/2� + 1 rounds.

Proof. Correctness of πdyn
fair follows directly from correctness of πua and

LRecn−2,� n
2 � (Lemma 4). The security proof appears in the full version [33].

Round complexity of πdyn
fair includes 2 rounds of πua and the round complexity of

LRecn−2,� n
2 � which is

(
n − 2 − �n

2 � + 1
)

= �n/2� − 1 (Lemma 4); totalling upto
�n/2� + 1 rounds. �

4.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as
soon as failure occurs which can surface either in the underlying MPC or dur-
ing reconstruction of any of the summands of the output. Taking inspiration
from the player-elimination framework [35,36], we maintain a history of devi-
ating/disruptive behaviour across the runs and bar the identified parties from
further participating. Such a paradigm calls for sequential runs and brings great
challenge when round complexity is the concern. We hit the optimal round com-
plexity banking on several ideas and interesting observations. First, we turn the
underlying MPC protocol for computing (α, β)-levelled-sharing of the output to
achieve identifiability so that any disruptive behaviour can be brought to notice.
Slapping NIZK on the 2-round broadcast-only construction of [10] readily equips
it with identifiability, without inflating the round complexity. Second, we lever-
age the function-delayed property of a modified variant of the protocol of [10]
(proposed by [13]) where the first round messages are made independent of the
function to be computed and the number of parties. This enables us to run many
parallel instances (specifically �n/2�) of the round 1 in the beginning and run
the second round sequentially as and when failure happens to compute a new
function each time as follows– (a) it hard-cores default input for the parties
detected to be disruptive so far and (b) the output now is levelled-shared with
new thresholds α and β each of which are smaller than the previous run by a
function of the number of fresh catch, say δ. The latter brings the most crucial
impact on the round complexity. Recall that the distance between α and β that
impacts the round complexity, is directly coupled with the number of possible
corruption scenarios with non-zero active corruption. Starting with the initial
value of �n

2 �−1, each catch by δ reduces number of possible corruption scenarios
(with non-zero active corruption) and the distance between α and β by δ.

In the protocol, we maintain a number of dynamic variables which are
updated during the run– (a) L: the set of parties not identified to be actively cor-
rupt and thus referred as alive; this set is initialized to P; (b) C: the set of parties
identified as actively corrupt; this set initialized to ∅; (c) n: the parameter that
dictates the number of corruption scenarios as �n

2 � and the possible corruption
cases as {(0, n − 1), . . . , (�n/2� − 1, �n/2�)}; this is initialized to n that dictates
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the initial number of corruption cases as �n
2 � and the possible corruption cases as

{(0, n − 1), . . . , (�n/2� − 1, �n/2�)}. After every failure and a fresh catch of a set
B of active corruptions, the sets L, C and n are updated as L = L\B, C = C ∪B
and n = n− 2|B|. The reduction of n by 2|B| denotes counting the reduction for
active as well as passive corruptions. For every value of n, the formula for the
total number of corruption scenarios, the values for (α, β) (that speaks about
the indispensable summands as discussed in the fair protocol) and the number
of corruption scenarios with non-zero active corruption (which denotes the dis-
tance between (α, β)) remain the same– namely �n

2 �, (n− 2, �n/2�) and �n
2 � − 1.

In the marginal case, n becomes either 1 or 2, the former when n is odd and all
active corruptions are exposed making (ta, tp) = (0, 0) and the latter when n is
even and (ta, tp) = (0, 1). With no active corruption in L, the Round 2 of the
MPC can be run to compute the output itself (instead of its levelled-sharing)
robustly in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better
understanding, we present below a snapshot of how the corruption scenarios
shrinks after every catch of δ active corruptions. The first column indicates
a set of possible corruption scenarios, with (ta, tp) varying from (0, n − 1) to
(�n/2� − 1, �n/2�). If δ cheaters are identified, the first δ rows can simply be
discarded as it is established that ta ≥ δ. The number of feasible corruptions
is thus slashed by δ. Next, these δ identified cheaters are eliminated, which
reduces each (ta, tp) of the rows that sustained (ta = δ onwards) by δ as shown
by column 2. Finally, the column 3 displays column 2 with n updated as n− 2δ.
The formal description of the protocol πdyn

god appears in Fig. 4. Assumption wise,
πdyn
god relies on 2-round maliciously-secure OT in the common random/reference

string model, NIZK (when πidua is instantiated with function-delayed variant of
the protocol of [10] satisfying identifiability) and eNICOM (instantiated using
Pedersen’s commitment scheme).

(ta, tp) (ta, tp) (ta, tp)

after δ cheater identification after updating n = n − 2δ

(0, n − 1) – –

(1, n − 2) – –

. . . . . . . . .

(δ, n − δ − 1) (0, n − 2δ − 1) (0, n − 1)

(δ + 1, n − δ − 2) (1, n − 2δ − 2) (1, n − 2)

. . . . . . . . .

(�n/2� − 1, �n/2�) (�n/2� − 1 − δ, �n/2� − δ) (�n/2� − 1, �n/2�)

We now analyze the round-complexity and correctness of πdyn
god below.

Lemma 5. πdyn
god terminates in �n/2� + 1 rounds.
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Proof. Consider an execution of πdyn
god (initialized with n = n). The outline of the

proof is as follows: We give an inductive argument to prove the following - ‘If
Step 2 is executed with parameter n, then Step 2 terminates within �n

2 � rounds’.
Assuming this claim holds, it follows directly that during the execution with
n = n, Step 2 would terminate within �n

2 � rounds; thereby implying that the
round complexity of πdyn

god is atmost �n
2 � + 1 (adding the round for Step 1). We

now prove the above claim by strong induction on n ≥ 1.

Base Case ( n = 1, 2): It follows directly from description in Fig. 4 that Step 2
terminates in �n/2� = 1 round when n = 1, 2.

Induction Hypothesis ( n ≤ �): Assume Step 2 terminates in �n/2� rounds for
n ≤ �.

Fig. 4. Robust MPC against dynamic-admissible adversary

Induction step ( n = � + 1): Consider an execution of Step 2 with parameter
n = � + 1. We analyze the following 3 exhaustive scenarios - (1) Suppose neither
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πidua nor LRecn−2,�n
2 � fails. (2) Suppose πidua aborts. (3) Suppose πidua does not

abort but LRecn−2,�n
2 � fails. We show that in each of them, Step 2 terminates

within �n/2� = � �+1
2 � rounds; thereby completing the induction step.

Suppose neither πidua nor LRecn−2,�n
2 � fails. Then Step 2 involves following num-

ber of rounds– 1 (for Round 2 of πidua) + number of rounds in LRecn−2,�n
2 �

i.e. (n − 2 − �n
2 � + 1) = �n

2 � = �(� + 1)/2� in total.
Suppose πidua aborts. Then B must comprise of at least one active party, implying

that δ ≥ 1, where δ = |B| and subsequently n is updated to n = (n − 2δ) ≤
(�+1−2) = (�−1). Note that Step 2 now involves following number of rounds–
1 (for Round 2 of πidua) + number of rounds in which Step 2 terminates when
re-run with updated parameter n i.e. �n/2� by induction hypothesis. Thus,
the total number of rounds in Step 2 is (1 + �n/2�) ≤ (1 + � �−1

2 �) = � �+1
2 �.

Suppose πidua does not abort but reconstruction LRecn−2,�n
2 � fails. Say adversary

disrupts reconstruction of summand sn−r in Round r of Step 2 (Round r − 1
of LRecn−2,�n/2�), where r ∈ [2, �n/2�]. It follows from fault identification
property of Lemma 4 that |B| ≥ |L|−(n−r) ≥ r (since |L| ≥ n always holds).
Consequently, δ = |B| ≥ r and updated parameter n = n − 2δ ≤ � + 1 − 2r.
We now analyze the round complexity. Note that Step 2 involves following
number of rounds– r (Reconstruction failed in Round r ≥ 2 of Step 2 run with
n = � + 1) + number of rounds in which Step 2 terminates when re-run with
updated parameter n i.e. �n/2� by induction hypothesis. Thus total number
of rounds in Step 2 is (r + �n/2�) ≤ (r + � �+1−2r

2 �) = � �+1
2 �.

We point that induction hypothesis for n = n − 2δ with δ ≥ 1 can be applied
as n ≥ 1 holds always in πdyn

god due to the following: the maximal value of δ is
�n/2� − 1 i.e. the maximum possible number of actively corrupt parties. This
completes the proof. �
Theorem 3. Assuming the presence of a 2-round protocol πidua achieving iden-
tifiable abort against malicious majority and having function-delayed property;
protocol πdyn

god with n parties satisfies correctness, achieves guaranteed output
delivery and has a round-complexity of �n/2� + 1 rounds.

Proof. Correctness of πdyn
god follows directly from correctness of πidua and correct-

ness of LRecn−2,�n
2 � (Lemma 4). The formal security proof appears in the full

version [33]. Round complexity follows from Lemma 5. �

5 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating
boundary-admissible adversaries and in the presence of CRS and PKI setup.
Recall that such an adversary is restricted to corruption scenarios either
(ta, tp) = (�n/2� − 1, �n/2�) or (ta, tp) = (0, n − 1). We show that three and
four rounds are necessary to achieve fairness and GOD respectively against a
boundary-admissible adversary. It is to be noted that GOD is the de facto notion
achieved in the pure passive corruption setting of (ta, tp) = (0, n − 1).
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5.1 Impossibility of 3-Round Robust MPC

In this section, we show that it is impossible to design a 3-round robust MPC
protocol against boundary-admissible adversary with threshold (ta, tp) assuming
both CRS and PKI. Notably, this lower bound is indeed surprising as the indi-
vidual security guarantees translate to GOD against malicious-minority [7] and
passive-majority [10,11] for odd n (as ta = tp wrt (ta, tp) = (�n/2� − 1, �n/2�)),
both of which are known to be attainable in just 2 rounds in the presence of CRS
and PKI. Furthermore, it turns out interestingly that this lower bound does not
hold against a boundary-admissble adversary with ta ≤ 1 (i.e. boundary adver-
sary corrupting with either (ta, tp) = (1, �n/2�) or (ta, tp) = (0, n − 1)), and can
be circumvented for this special case. In fact, we demonstrate a 3-round robust
protocol in Sect. 6.3, against this special-case boundary-admissible adversary.

Theorem 4. Assume parties have access to pairwise-private and broadcast
channels, and a setup that includes CRS and PKI. Then, there exist functions
f for which there is no 3-round protocol computing f that achieves guaranteed
output delivery against boundary-admissible adversary.

Proof. We prove the theorem for n = 5 parties. Let P = {P1, . . . P5} denote
the set of parties, where the adversary A may corrupt either with parametes
(ta, tp) = (2, 2) or (ta, tp) = (0, 4). Here, the corruption scenarios translate to
upto 2 active corruptions or upto 4 pure passive corruptions. We prove the
theorem by contradiction. Suppose there exists a 3-round protocol π comput-
ing a common output function f that achieves GOD against such a boundary-
admissible adversary.

At a high level, we discuss three adversarial strategies A1,A2 and A3, where
Ai is launched in an execution Σi of protocol π. While A1,A2 involve the case of
active corruption of {P1} and {P1, P2} respectively, A3 deals with the strategy
of pure passive corruption of {P1, P3, P4, P5}. The executions are assumed to
be run for the same input tuple (x1, x2, x3, x4, x5) and the same random inputs
(r1, r2, r3, r4, r5) of the parties. Let x̃i denote the default input of Pi. (Same ran-
dom inputs are considered for simplicity and without loss of generality. The same
arguments hold for distribution ensembles as well.) First, when A1 is launched
in Σ1 we conclude that the output ỹ at the end of the execution should be
based on default input of P1 and actual inputs of the remaining parties i.e.
ỹ = f(x̃1, x2, x3, x4, x5). Next, strategy Σ2 involving actively corrupt {P1, P2}
is designed such that corrupt P2 obtains the same view in Σ2 as an honest P2

in Σ1 and therefore computes the output ỹ at the end of Σ2. (Here, view of Pi

includes xi, ri, the messages received during π and the knowledge related to CRS
and PKI setup.) Lastly, a carefully designed strategy A3 by semi-honest parties
{P1, P3, P4, P5} allows A to obtain ỹ = f(x̃1, x2, x3, x4, x5), in addition to the
correct output i.e. y = f(x1, x2, x3, x4, x5) at the end of execution Σ3. This is a
contradiction as it violates the security of π and can explicitly breach the privacy
of honest P2. This completes the proof overview.

We assume that the communication done in Round 2 and Round 3 of π
is via broadcast alone. This holds without loss of generality since the parties
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can engage in point-to-point communication by exchanging random pads in the
first round and then use these random pads to unmask later broadcasts. We
use the following notation: Let p1i→j denote the pairwise communication from
Pi to Pj in round 1 and br

i denotes the broadcast by Pi in round r, where
r ∈ [3], {i, j} ∈ [5]. These values may be function of CRS and the PKI setup as
per the protocol specifications. Let V�

i denotes the view of party Pi at the end
of execution Σ� (� ∈ [3]) of π. Below we describe the strategies A1,A2 and A3.

A1: A corrupts {P1} actively here. P1 behaves honestly in Round 1 and simply
remains silent in Round 2 and Round 3.

A2: A corrupts {P1, P2} actively here. The active misbehavior of P1 is same as in
A1 i.e. P1 behaves honestly in Round 1 and stops communicating thereafter.
On the other hand, P2 participates honestly upto Round 2 and remains silent
in Round 3.

A3: A corrupts {P1, P3, P4, P5} passively here. The semi-honest parties behave as
per protocol specification throughout the execution Σ3 to obtain the correct
output. The passive strategy of {P1, P3, P4, P5} is to ignore the Round 3
message from honest P2 and locally compute the output based on the scenario
of execution Σ2 i.e. imagining that P1 stopped after Round 1 and P2 stopped
after Round 2.

We now present a sequence of lemmas to complete the proof.

Lemma 6. At the end of Σ1, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.

Proof. Firstly, since Σ1 involves active behavior only by P1, it follows directly
from correctness and robustness of π that the output computed at the end of
Σ1, say y′ should be based on actual inputs xi for i ∈ {2, 3, 4, 5}. Now, there are
two possibilities with respect to input of P1 i.e. y′ is based on either x1 (i.e. the
input used by P1 in Round 1 of Σ1) or x̃1 (default input). In case of the latter,
the lemma holds directly. We now assume the former for contradiction.

Suppose the output y′ is based on x1 rather than x̃1. Since P1 stops communi-
cating after Round 1, we can conclude that the combined views of {P2, P3, P4, P5}
must suffice to compute the output y′ = f(x1, . . . , x5) at the end of Round 1
itself. If this holds, we argue that π cannot be secure as follows: Suppose π is
such that when all parties participate honestly in Round 1, the combined view
of {P2, P3, P4, P5} suffices to compute the output at the end of Round 1 itself.
Then, in an execution of π, an adversary corrupting {P2, P3, P4, P5} purely pas-
sively (corresponding to (ta, tp) = (0, 4)) can learn the output on various inputs
of its choice, keeping x1 fixed. This residual attack breaches privacy of honest
P1 (A concrete example of such an f appears in the full version [33]). We have
thus arrived at a contradiction. This completes the proof that y′ must be based
on x̃1, rather than x1 and consequently y′ = ỹ = f(x̃1, x2, x3, x4, x5) must be
the output computed at the end of Σ1. �
Lemma 7. At the end of Σ2, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.
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Proof. Recall that A2 is similar to A1 involving active P1, except that P2 is active
as well with the strategy of behaving honestly upto Round 2 and remaining silent
in Round 3. Since executions Σ1 and Σ2 proceed identically upto Round 2, it
is easy to check that the view of corrupt P2 in Σ2 is same as honest P2 in
Σ1. It now follows directly from Lemma 6 that P2 computes the output ỹ =
f(x̃1, x2, x3, x4, x5). By correctness and robustness of π computing the common
output function f , it must hold that all parties output ỹ at the end of Σ2. �
Lemma 8. The combined view of parties {P3, P4, P5} at the end of Round 2 of
Σ2 suffices to compute the output of Σ2 i.e. ỹ.

Proof. We note that as per A2, both {P1, P2} do not communicate in Round
3; implying that the combined view of honest parties {P3, P4, P5} at the end of
Round 2 of Σ2 must suffice to compute the output of Σ2 i.e. ỹ (Lemma 7). �
Lemma 9. An adversary executing strategy A3 obtains the value ỹ =
f(x̃1, x2, x3, x4, x5), in addition to the correct output y = f(x1, x2, x3, x4, x5)
at the end of Σ3.

Proof. Firstly, Σ3 must lead to computation of correct output i.e. y =
f(x1, x2, x3, x4, x5) by all parties since A3 involves only semi-honest corrup-
tions. Next, it is easy to check that the combined view of adversary corrupting
{P1, P3, P4, P5} passively at the end of Round 2 of Σ3 subsumes the combined
view of honest parties {P3, P4, P5} at the end of Round 2 of Σ2. It now follows
directly from Lemma 8 that the adversary can obtain the output ỹ as well.

In more detail, A launching A3 in Σ3 can compute the output as per the
scenario of Σ2 as follows- Let b3i for i ∈ {2, 3, 4, 5} denotes the message broadcast
by honest Pi (as per its next-message function) in Round 3 in case P1 behaves
honestly in Round 1 but is silent in Round 2. Locally compute {b33, b34, b35} (b3i is
a function of Pi’s (i ∈ {3, 4, 5}) view at the end of Round 2) by imagining that
P1 did not send Round 2 message and compute ỹ by ignoring the message sent
by honest P2 in Round 3. Thus, by following strategy A3, A obtains multiple
evaluations of f i.e. both y and ỹ which violates the security of π. (We give a
concrete example of such an f that breaches privacy of honest P2 in the full
version.) This completes the proof of the lemma. �

Thus, we have arrived at a contradiction to our assumption that π is secure;
completing the proof of Theorem 4. �

We present a natural extension of the above proof for n > 5, a concrete
example of f and a brief intuition of why the above lower bound argument does
not hold when malicious corruption ta ≤ 1 in the full version [33].

5.2 Impossibility of 2-Round Fair MPC

We begin with the observation that the existing 3-round lower bounds of [6–8]
for fair malicious-minority MPC do not carry over in our setting. The lower
bound of both [6,7] break down when the parties have access to a PKI (as
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acknowledged/demonstrated in their work). The result of [8], assuming access
to pairwise-private and broadcast channels, also breaks down when parties have
access to a PKI (elaborated in the full version [33]). The proof, originally given
without the mention of CRS, seems to withstand a CRS.

We now present our lower bound formally.

Theorem 5. There exist functions f for which there is no 2-round n-party MPC
protocol that achieves fairness against boundary-admissible adversary, in a set-
ting with pairwise-private and broadcast channels, and a setup that includes CRS
and PKI.

Proof. We prove the theorem for n = 3 parties, where boundary-admissible
adversary A chooses corruption parameters either (ta, tp) = (1, 1) or (ta, tp) =
(0, 2). Here, the corruption scenarios translate to either upto 1 active corruption
or upto 2 purely passive corruptions. Let {P1, P2, P3} denote the set of parties
with Pi having input xi. Suppose by contradiction, π is a 2-round MPC protocol
computing f that achieves fairness against A. To be more specific, π is fair if
(ta, tp) = (1, 1) and achieves GOD otherwise (as GOD is the de-facto security
guarantee incase of no active corruptions i.e. (ta, tp) = (0, 2)). On a high-level,
we first exploit fairness of π to conclude that the combined view of a set of
2 parties suffices for output computation at the end of Round 1. (Here, view
of Pi includes xi, its randomness ri, the messages received during π and the
knowledge related to CRS and PKI setup.) Next, considering a strategy where
the adversary A corrupts this set of 2 parties purely passively leads us to conclude
that A can compute the output at the end of Round 1 itself; leading upto a final
contradiction. We now present a sequence of claims to complete the formal proof.

Lemma 10. Protocol π must be such that the combined view of {P2, P3} at the
end of Round 1 suffices for output computation.

Proof. The proof of the lemma is straightforward. Assume A corrupting P1

actively (with (ta, tp) = (1, 1)) with the following strategy: P1 behaves hon-
estly in Round 1 and simply remains silent in Round 2. It is easy to check that
P1 would obtain the output due to correctness of π, as he receives the entire pro-
tocol communication as per honest execution. Since π is fair, the honest parties
{P2, P3} must also obtain the output at the end of π; even without P1’s com-
munication in Round 2. Thus, we conclude that the combined view of {P2, P3}
at the end of Round 1 suffices for output computation. �
Lemma 11. There exists an adversarial strategy such that the adversary obtains
the output at the end of Round 1.

Proof. The proof follows directly from Lemma 10 – A corrupting {P2, P3} purely
passively ((ta, tp) = (0, 2)) would obtain the output at the end of Round 1. �
Lemma 12. Protocol π does not achieve privacy.
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Proof. It is implied from Lemma 11 that A corrupting {P2, P3} purely passively
can obtain multiple evaluations of the function f by locally plugging in different
values for {x2, x3} while honest P1’s input x1 remains fixed. This ‘residual func-
tion attack’ violates privacy of P1. We refer to the argument in Lemma 3 for a
concrete example. �

We have arrived at a contradiction, concluding the proof of Theorem 5. It is
easy to check that this argument can be extended for higher values of n. �

6 Upper Bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-
admissible adversary A with threshold (ta, tp). We first present a robust upper
bound in 4 rounds for the general case. Next, we present a 3-round robust proto-
col for the special case of single active corruption, which circumvents our lower
bound of Sect. 5.1. Our fair 3-round upper bound can be arrived at by simpli-
fying the robust general-case construction and appears in full version [33]. Note
that even the fair construction is robust in the corruption scenario of no active
corruptions i.e. (ta, tp) = (0, n − 1). The security guarantees differ only in case
of corruption scenario involving malicious corruptions. All the above three con-
structions are round-optimal, following our lower bound results of Sects. 5.1 and
5.2. We start with a building block commonly used across all our constructs.

6.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [28,37] used in our
upper bounds against the boundary-admissible A.

Definition 4 (α-authenticated sharing). A value v is said to be α-
authenticated-shared amongst a set of parties P if every honest or passively
corrupt party Pi in P holds Si as produced by fα

ASh(v) given in Fig. 5.

Fig. 5. Authenticated secret-sharing
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In our upper bounds, the function fα
ASh is realized via MPC protocols. The

reconstruction will be done via protocol ARecα (Fig. 6) amongst the parties. We
state the relevant properties below (proof appears in the full version [33]):

Fig. 6. Protocol for reconstruction of an authenticated-secret

Lemma 13. The pair (fα
ASh,ARec

α) satisfies the following:

i. Privacy. For all v ∈ F, the output (S1, . . . , Sn) ← fα
ASh(v) satisfies the

following– ∀{i1, . . . iα′} ⊂ [n] with α′ ≤ α, the distribution of {Si1 , . . . , Siα′ }
is statistically independent of v.

ii. Correctness. For all v ∈ F, the value v′ output by all honest parties at
the end of ARecα(S′

1, . . . S
′
n) satisfies the following– For all (S1, . . . , Sn) ←

fα
ASh(v) and (S′

1, . . . , S
′
n) such that S′

i = Si corresponding to atleast α + 1
parties Pi, it holds that Pr[v′ �= v] ≤ negl(κ) for a computational security
parameter κ.

iii. Round complexity. ARecα terminates in one round.

6.2 Upper Bound for Robust MPC: The General Case

In a setting where either at most n − 1 passive corruption or at most (�n
2 � − 1)

active corruption takes place, [28] presents a protocol relying on two types of
MPC protocol. An actively-secure protocol against malicious majority is used
to compute an authenticated-sharing of the output with threshold (�n

2 � − 1).
When this protocol succeeds, the output is computed via reconstruction of the
authenticated-sharing. On the other hand, a failure is tackled via running a
honest-majority (malicious minority) actively-secure protocol, relying on the
conclusion that the protocol is facing a malicious-minority. When n is odd, we
need to tackle the exact corruption scenarios as that of the protocols of [28]. On
the other hand when n is even, the extreme case for active corruption accom-
modates an additional passive corruption. Apart from hitting optimal round
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complexity, tackling the distinct boundary cases for odd and even n in a unified
way brings challenge for our protocol.

We make the following effective changes to the approach of [28]. First, we
invoke a 2-round actively-secure protocol πidua with identifiable abort against
malicious majority (can be instantiated with protocols of [10,11] augmented with
NIZKs) to compute �n

2 �-authenticated-sharing of the output. When we expel
the identified corrupt parties in case of failure (which may occur in corruption
scenario (ta, tp) = (�n/2�− 1, �n/2�)), the remaining population always displays
honest-majority, no matter whether n is odd or even. (For instance, elimination
of 1 corrupt party results in t′ ≤ (tp − 1) = �n/2� − 1 total corruptions among
n′ = (n− 1) remaining parties which satisfies n′ ≥ 2t′ +1.) The honest-majority
protocol πgod is then invoked to compute the function f where the inputs of
the identified parties are hard-coded to default values. The change in the degree
of authenticated sharing ensures that an adversary choosing to corrupt in the
boundary case of �n

2 � − 1 active corruption and zero (when n is odd) or one
(when n is even) additional purely passive corruption, cannot learn the output
by itself collating the information it gathers during πidua. Without the change,
the adversary could ensure that πidua leads to a failure for the honest parties and
yet could learn outputs from both πidua and πgod with different set of adversarial-
inputs. Lastly, the function and input independence property of Round 1 of the
3-round honest-majority protocol of [7,13] allows us to superimpose this round
with the run of πidua. Both these instantations of πgod are also equipped to tackle
the probable change in population for the remaining two rounds (when identified
corrupt parties are expelled) and the change in the function to be computed

Fig. 7. Robust MPC against boundary-admissible adversary
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(with hard-coded default inputs for the identified corrupt parties). Our protocol
appears in Fig. 7. Assumption wise, πbou

god relies on 2-round maliciously-secure OT
in the common random/reference string model, NIZK (when πidua is instantiated
with function-delayed variant of the protocol of [10] satisfying identifiability),
Zaps and public-key encryption (when πgod is instantiated with protocol of [13]).

We state the formal theorem below.

Theorem 6. Assuming the presence of a 2-round protocol πidua achieving identi-
fiable abort against malicious majority and a 3-round robust protocol πgod against
malicious minority (with special property of Round 1 being function and input-
independent), the 4-round MPC protocol πbou

god (Fig. 7) satisfies correctness and
achieves guaranteed output delivery against boundary-admissible A.

Proof. Correctness of πbou
god follows directly from that of πidua, πgod and ARec�n/2�

(Lemma 13). We prove its security in the full version [33]. �
We conclude this section with a simplification to πbou

god that can be adopted
if additional access to PKI is assumed. In such a case, parallelizing Round 1
of πgod with Round 1 of πidua can be avoided and the 2-round robust protocol
of [7] against malicious minority assuming CRS and PKI setup can be used to
instantiate πgod (which would be run in Rounds 3-4 of πbou

god). Both our 4-round
constructions with CRS (Fig. 7) and its simplified variant with CRS and PKI are
tight upper bounds, in light of the impossibility of Sect. 5.1 that holds in the
presence of CRS and PKI.

6.3 Upper Bound for Robust MPC: The Single Corruption Case

Building upon the ideas of Sects. 6.2 and 4.3, a 3-round robust MPC πbou,1
god

against the special-case boundary-admissible adversary can be constructed as
follows. Similar to πbou

god , Round 1 and 2 involve running protocol πidua realizing
�n/2�-authenticated secret-sharing of the function output. When πidua does not
result in abort, πbou,1

god proceeds to reconstruction of output; identical to πbou
god

and thereby terminating in 3 rounds. However, when πidua results in output ⊥,
we exploit the advantage of atmost one malicious corruption by noting that
once the single actively-corrupt party is expelled, the parties involved thereafter
comprise only of the honest and purely passive parties. We adopt the idea of
Sect. 4.3 and re-run Round 2 of πidua among the remaining parties to compute the
function output directly, with input of the expelled party substituted with default
input. This step demands the function-delayed property of πidua i.e. Round 1 is
independent of the function to be computed and the number of parties. In order
to accommodate this re-run, two instances of Round 1 of πidua are run in Round
1 of πbou,1

god . It is easy to see that robustness is ensured as πidua is robust in the
absence of actively-corrupt parties. Lastly, we point that similar to Sect. 4.3, we
use the modified variant of the 2-round protocol of [10] to instantiate πidua that
is function-delayed and achieves identifiability. The formal description of πbou,1

god

appears in Fig. 8. This upper bound is tight, following the impossibility of 2-
round fair MPC (that holds for single malicious corruption) proven in Sect. 5.2
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as GOD implies fairness. Assumption wise, πbou,1
god relies on 2-round maliciously-

secure OT in the common random/reference string model and NIZK (when πidua

is instantiated with above mentioned variant of the protocol of [10]).

Fig. 8. Robust MPC against special-case boundary-admissible adversary

We state the formal theorem below.

Theorem 7. Assuming the presence of a 2-round protocol πidua achieving identi-
fiable abort against malicious majority and having function-delayed property, the
3-round MPC protocol πbou,1

god (Fig. 8) satisfies correctness and achieves guaran-
teed output delivery against special-case boundary-admissible A with corruption
parameters either (ta, tp) = (1, �n/2�) or (ta, tp) = (0, n − 1).

Proof. Correctness of πbou,1
god follows directly from correctness of πidua, and correct-

ness of ARec�n/2� (Lemma 13). We prove its security in full version [33]. �
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Abstract. Card-based cryptography provides simple and practicable
protocols for performing secure multi-party computation (MPC) with
just a deck of cards. For the sake of simplicity, this is often done using
cards with only two symbols, e.g., ♣ and ♥. Within this paper, we tar-
get the setting where all cards carry distinct symbols, catering for use-
cases with commonly available standard decks and a weaker indistin-
guishability assumption. As of yet, the literature provides for only three
protocols and no proofs for non-trivial lower bounds on the number of
cards. As such complex proofs (handling very large combinatorial state
spaces) tend to be involved and error-prone, we propose using formal ver-
ification for finding protocols and proving lower bounds. In this paper,
we employ the technique of software bounded model checking (SBMC),
which reduces the problem to a bounded state space, which is automati-
cally searched exhaustively using a SAT solver as a backend.

Our contribution is twofold: (a) We identify two protocols for con-
verting between different bit encodings with overlapping bases, and then
show them to be card-minimal. This completes the picture of tight lower
bounds on the number of cards with respect to runtime behavior and shuf-
fle properties of conversion protocols. For computing AND, we show that
there is no protocol with finite runtime using four cards with distinguish-
able symbols and fixed output encoding, and give a four-card protocol
with an expected finite runtime using only random cuts. (b) We provide
a general translation of proofs for lower bounds to a bounded model
checking framework for automatically finding card- and length-minimal
protocols and to give additional confidence in lower bounds. We apply
this to validate our method and, as an example, confirm our new AND

protocol to have a shortest run for protocols using this number of cards.

Keywords: Secure multiparty computation ·Card-based cryptography ·
Formal verification · Bounded model checking · Standard decks

1 Introduction

Card-based cryptographic protocols allow to perform secure multi-party com-
putation (MPC), i.e., jointly computing a function while not revealing more
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information about each individual input than absolutely necessary, with just
a (regular) deck of playing cards, as long as they have indistinguishable backs.
Let us start with an example. Assume that Alice and Bob meet in a bar and
spend the evening together. After quite some chat, they would like to find out
whether to have a second date. They are faced with the following problem: In
case only one of them likes to meet again, this would cause an uncomfortable
embarrassment, if he or she is the first to come out.1 Fortunately, Alice is a
notable cryptographer and likes card games, so she has with her a standard deck
of cards. She remembers the protocol by Niemi and Renvall [NR99] for comput-
ing the AND function of two bits, here for outputting “yes”, if both players share
this mutual interest, and “no” otherwise. Doing so using an MPC protocol hides
the input of the respective other player, unless it is obvious from their own input
and output, hence hiding a “yes”-choice given of only one player, from the other.

In order to get a feeling for how such card-based protocols work, let us intro-
duce the said protocol by Niemi and Renvall. It uses five cards with distinguish-
able symbols, which we denote – for simplicity2 – as 1 2 3 4 and 5 . It is
essential that the cards’ backs are indistinguishable, such that when they are put
face-down on the table, the only thing observable is . With these
cards, the two players can encode a commitment to a bit (yes or no) by the order
of two cards i j , i, j ∈ {1, . . . , 5} (with i �= j) via the encoding

i j =̂

{
0, if i < j,

1, if i > j.

Alice inputs her bit by putting the cards 1 2 face-down and in the respective
order on the table (she puts 1 2 for input 0, and 2 1 for input 1), while Bob
does the same using his cards 3 4 . We need an additional helper-card, here a
5 , which is put to the left of the players’ cards.

The protocol starts by swapping Alice’s second card with Bob’s first card
in the card sequence (pile) on the table. The resulting card configuration has
an interesting property, namely that the order of the cards 1 and 4 in this
sequence already encodes the output of the protocol, i.e., it reads 4 1 if the
output is 1, and 1 4 otherwise. Hence, by securely removing the cards 2 and
3 (which is explained below), one directly obtains the output. We see this by
inspecting all possible cases:

Bits Input sequence After swap Removing 2 + 3

(0, 0) 5 1 2 3 4 5 1 3 2 4 5 1 x x 4

(0, 1) 5 1 2 4 3 5 1 4 2 3 5 1 4 x x

(1, 0) 5 2 1 3 4 5 2 3 1 4 5 x x 1 4

(1, 1) 5 2 1 4 3 5 2 4 1 3 5 x 4 1 x

1 This is known as the “dating problem”.
2 Alice and Bob in the story might, e.g., use 7, 8, 9, 10 and a queen with any symbol.



490 A. Koch et al.

We can remove the cards 2 and 3 , while keeping the relative order of all cards
in the sequence intact, by cutting the cards, i.e., rotating the sequence by a
random offset which is unknown to the players. We can then securely turn the
first card and remove it in case it is 2 or 3 . Due to the cut, the turned card
is random, and hence it does not reveal anything about the inputs. When both
cards are removed, we reach a configuration where 5 is the first card by the
same procedure where the two remaining cards encode the AND result. Here,
the 5 played the crucial role of a separator that keeps the relative order of the
remaining cards, starting from the separator, intact when doing a random cut.
(A formal version of this protocol is given in Protocol 2 and Fig. 7.)

In this paper, we are interested in whether we can do away with the helping
card 5 , and whether there are simpler protocols. Moreover, in order to handle
the increasing combinatorial state space (relative to protocols on decks of just ♣
and ♥), we introduce formal verification to the field of card-based cryptography.

1.1 Secure Multiparty Computation with Cards

In combining different protocols, one can do much more than just computing the
AND function. For example, it is possible to compute arbitrary Boolean circuits
by combining the well-known fact that any circuit can be expressed using only
NOT and AND gates, with a method to duplicate the physically encoded bit in
case of forking wires, which we make explicit by a COPY gate. In the encoding
above, NOT simply inverts the order of the two cards, and a COPY-protocol is
given, e.g., in [M16]. Using this setup, we can do general MPC for any function
without needing to trust a possibly corrupted computer.

A particular advantage of protocols using physical assumptions is that they
can provide a bridge to reality. Examples of this are given in [GBG14,FFN14],
where the authors give a protocol for proving in zero-knowledge that a nuclear
warhead (to be disarmed due to an international treaty) conforms to a prescribed
template, without giving away anything about its internal design. In our setting
of cryptography with cards, this bridge is used if the cryptographic protocol is
embedded in a real card game, e.g., to prevent cheating3. Here, using computers
is not only cumbersome, but there is no guarantee that the card sequence on my
hand is the one I input into the software, hence no bridge to the physical world.

Another application of such protocols is to explain MPC in an interesting and
motivating way to students in cryptography lectures. Card-based cryptography
tries to find protocols for the above-mentioned AND and COPY functionalities
which are card-minimal, simple and practicable. For simplicity, many protocols
in card-based cryptography work with specially constructed decks, e.g., of only
two symbols, ♣ and ♥. This is easy for explanation, and there are nice and
easily describable protocols, such as the five-card trick by den Boer [dB89] and
the six-card AND protocol by Mizuki and Sone [MS09].

3 As an example, in a Duplicate Bridge tournament, one might prove that all ses-
sions are handed the same cards, eliminating the need of a trusted dealer (no pun
intended).
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However, the setting where all cards are distinguishable, as described above,
has several advantages. Firstly, we assume little about the indistinguishability
of cards, which leads to stronger security guarantees. (This is more similar to
the indistinguishable version of tamper-evident seals, such as scratch-off cards,
by Moran and Naor [MN10].) We only need the backs (or envelopes wrapping
the cards, if one wishes) to be indistinguishable. Secondly, these standard decks
are more commonly available, in contrast to constructed decks. If one were to
use standard decks for the protocols above, they would need multiple copies of
the same card. Thirdly, considering this setting may lead to protocols using less
cards than the optimal ones in the two-symbol deck setting. In fact, as our paper
shows, one may use less cards than in the two-symbol deck setting. For example,
our new four-card Las Vegas AND protocol presented in Sect. 5 uses only a
very basic, practicable shuffling mechanism, namely random cuts, and uses one
card less than the provably card-minimal Las Vegas AND protocol (restricted
to certain types of practical shuffles) in the two-symbol deck setting. As of yet,
there has only been little research in this direction, with [NR99,M16] being the
only works that consider the setting where all cards have distinguishable symbols,
called “standard deck” setting. Nothing is known about non-trivial lower bounds
on the number of cards. This is likely due to the large state space, as there are
many more distinguishable card re-orderings compared to the two-symbol case.

Within this paper, our interest is to find an automatic way of constructing
compact card-based protocols which are secure and correct, based on only the
two standard operations turn and shuffle, given the desired number of cards.
We exploit the observation that, to the best of our knowledge, all findings in
the literature employ only protocols of comparatively small length using only a
small number of cards. Based on the hypothesis that we may always find some
number n which is greater than or equal to any length-minimal card-protocol, we
apply the automatic off-the-shelf formal program-verification technique software
bounded model checking (SBMC) [BCC+99]. This technique allows, given such
a bound n, to encode a program verification task into a decidable set of logical
equations, which can then be solved by a SAT or an SMT solver. In this work, we
propose an automatic method based on SBMC that, given the desired numbers
of cards and protocol length, either constructs such a protocol if and only if
one exists, or proves the underlying SAT formula to be unsatisfiable, i.e., shows
that no such protocol exists. Based thereon, we propose that the cumbersome
and error-prone task of finding such protocols or proving their non-existence by
hand may be supported or complemented by such an automatic approach which
is flexibly adaptable to a variety of card-based protocols and desired restrictions.

Prior to our work, it was not yet clear which role the input encoding plays
when devising new protocols. This is the question on whether it can make a
difference regarding the possibility of a protocol if we provide, e.g., 1 2 to Alice
and 3 4 to Bob, or 1 3 to Alice and 2 4 to Bob. We provide an analysis of
this question, showing that with certain restrictions, there is a relatively large
freedom in choosing the input (and/or output) bases. This is a useful prerequisite
in proving the impossibility of a protocol with a given number of cards.



492 A. Koch et al.

1.2 Contribution

Our contribution consists in providing interesting new protocols and impossibil-
ity results, as well as a fully automatic method based on formal verification to
support such findings. The specific advances therein are the following (cf. also
Table 1 for a comparison to the literature):

(1) A four-card AND protocol in the standard deck setting, improving upon
[NR99] by one card, and reaching the theoretical minimum on the number
of cards. W.r.t. shuffling, this protocol only uses an expected number of
6 random cuts, compared to 7.5 random cuts in a (shortened) variant of
[NR99]. Additionally, it has a natural interpretation and using only random
cuts makes it easy to implement in an actively secure way, cf. [KW17].

(2) We show that under certain conditions the cards for encoding input or
output can be chosen freely. For one-bit output protocols and if five or more
cards are available, we can freely choose both input and output bases by
only extending the protocol by expected three shuffle and three turn steps.
For this matter, we identify two protocols for converting a bit encoding if
the new encoding shares one card with the old one.

(3) We show that there is no finite-runtime protocol for converting between
bases with non-empty intersection using four cards. Moreover, there cannot
be a finite-runtime AND protocol with four cards if we fix the basis in
advance.

(4) We introduce formal verification to card-based cryptography by providing a
technique which automatically finds new protocols using as few as possible
operations and searches for lowest bounds on card-minimal protocols.

Table 1. Minimum number of cards required by AND and basis conversion protocols,
subject to the running time and shuffle restrictions specified in the first two columns.
Note that random cuts are a subclass of uniform closed shuffles.

Running time Shuffle Restr. #Cards Protocol Lower bound

AND Protocols:

Las vegas Random cuts 4 Theorem 3 – (trivial)

Finite

Finite

−
Uniform closed

}
≥ 5a, ≤ 8 [M16, Sect. 3.4] Theorem 2

Disjoint Basis Convert Protocols:

Finite Uniform closed 4 [M16, Sect. 3.2] – (trivial)

Overlapping Basis Convert Protocols:

Las Vegas Random cuts 3 Theorem 4 – (trivial)

Finite

Finite

−
Uniform closed

}
5 Theorem 5 Theorem 1

a Lower bound result only holds for fixed output basis, flexible case is still
open.
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1.3 Related Work

The feasibility of card-based cryptographic MPC is due to [dB89,CK93,NR98],
with a formal model given by [MS14]. The only two papers looking at standard
deck solutions are [NR99,M16]. Lower bounds on card-based cryptographic pro-
tocols are given by [KWH15,KKW+17,K18] for the two-symbol deck setting.
The card-minimal protocol for this setting, using only practicable (i.e., uniform
closed) shuffles, is given by [AHM+18] and uses five cards. The state trees used
for protocols in this paper are devised by [KWH15,KKW+17].

To the best of our knowledge, this is the first work which applies formal meth-
ods to the field of card-based cryptography. However, a large range of research
has been done using formal methods in the more general field of secure two-
party and multiparty computations. This can be clustered into either analyzing
security protocols given as high-level, abstract (and usually idealized) models,
or program-based approaches targeting real(istic) protocol (software) implemen-
tations. Avalle, Pironti, and Sisto [APS14] further structure this into the two
main approaches of automated model extraction and automated code genera-
tion. We refer the interested reader to overviews as given by Blanchet [B12]
or Avalle, Pironti, and Sisto, and only go into a few selected works for which
we identified closer links to our approach, e.g., using software bounded model
checking (SBMC), SAT solvers on real(istic) protocol implementations, or relat-
ing in the analyzed security model. Standard cryptographic assumptions using
lower-level computational models are – albeit more realistic – usually harder to
formalize and automate. One notable line of research is CBMC-GC [FHK+14]
which builds on top of the tool CBMC [CKL04]. It uses SBMC in a compiler
framework translating secure computations of ANSI C programs into an opti-
mized Boolean circuit which can subsequently be implemented securely utiliz-
ing the garbled circuit approach. Another similar setting to ours is analyzed in
[RSH19], where also an “honest-but-curious” attacker model is assumed. Therein,
a domain-specific language is built on top of the F� language, a full-featured,
verification-oriented, effectful programming language [SHK+16]. Swamy et al.
then implement MPC programs with enabled formal verification provided by
the semantics of the language.

1.4 Outline

We give the computational model of card-based protocols, security definitions,
etc. and the necessary preliminaries as well as a basic setup for software bounded
model checking in Sect. 2. Section 3 discusses which freedom one has when choos-
ing the specific cards for encoding inputs and outputs to card-based protocols
and introduces a formal relabeling operation. We give lower bounds on the num-
ber of cards for AND and basis-conversion protocols in Sect. 4. A four-card Las
Vegas AND protocol and two basis-conversion protocols are presented in Sect. 5
and Sect. 6, respectively. Section 7 gives results from applying our formal verifi-
cation setup based on SBMC to our new AND protocol.
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2 Preliminaries

In this section, we first formally introduce card-based protocols with their com-
putational model (including some basic required notions), a convenient formal
protocol representation, a suitable security notion, and the formal requirements
for proving lower bounds. Secondly, we introduce our applied formal technique
called software bounded model checking, on which, thirdly, we establish our
general technique for automatically finding card- and length-minimal protocols.

2.1 Card-Based Protocols

Formally, a deck D of cards is a multiset over a (deck) alphabet or symbol set
Σ. We denote multisets by �·�, e.g., �♥,♥,♣,♣� is a deck over {♥,♣}. In this
paper, we focus mainly on decks D = �1, . . . , n�, n ∈ N, where each symbol occurs
exactly once. Following [M16], we call these decks standard decks, because decks
of common card games are a good representation of such formal decks.

For encoding a bit, we additionally assume a linear order on the card symbols
in Σ, which is the usual order on N for standard decks, and ♣ < ♥ for simple
two-element decks. Two face-down cards with distinct symbols s1, s2 ∈ Σ then
encode a bit via the following encoding rule introduced in [NR99]:

s1 s2 =̂

{
0, if s1 < s2,

1, if s1 > s2.

Card-based protocols proceed by mainly two actions on the sequence or pile of
cards: We can introduce uncertainty (about which card is which) by shuffling
them in arbitrary or in certain controlled ways, e.g., by cutting the cards in
quick succession, so that players do not know which card ended up where in the
card sequence (or pile). Slightly more formal, a (uniform) shuffle is specified by
a permutation set, from which one element is drawn uniformly at random and
applied to the cards, without the players learning which one it was. Secondly,
we may turn over cards and publicly learn their symbol, and act on the basis of
this information. Moreover, we may deterministically permute the cards.

Permutations and Groups. Let Sn denote the symmetric group on {1, . . . , n}.
For elements x1, . . . , xk ∈ {1, . . . , n} the cycle (x1 x2 . . . xk) is the cyclic
permutation π with π(xi) = xi+1 for 1 ≤ i < k, π(xk) = x1 and π(x) = x for all
x not occurring in the cycle. Every permutation can be written as a composition
of pairwise disjoint cycles. For example, (1 3 2)(4 5) maps 1 �→ 3, 3 �→ 2, 2 �→
1, 4 �→ 5, and 5 �→ 4. The identity permutation is denoted as id.

Given permutations π1, . . . , πk ∈ Sn, 〈π1, . . . , πk〉 denotes the group generated
by π1, . . . , πk. A shuffle is a random cut if its permutation set is the group 〈π〉 =
{π0, . . . , πl−1} generated by a single element π which is a cycle (x1 x2 . . . xl).
A shuffle is called a random bisection cut if its permutation set is generated by
a π which is the composition of pairwise disjoint cycles of length 2. Finally, an
Sk-shuffle is a shuffle with permutation set Sk.
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1234 X00 + X01
1243 X10
2134 X11

1234 1/2(X00 + X01 + X10)
1243 1/2(X00 + X01 + X10)
2134 1/2X11
2143 1/2X11

(shuffle, {id, (3 4)})

s1 μ(s1)
...

...
s� μ(s�)

s′
1

1/|Π|
∑

π∈Π μ(π−1(s′
1))

...
...

s′
k

1/|Π|
∑

π∈Π μ(π−1(s′
k))

(shuffle, Π)

Fig. 1. A shuffle operation, given by example (left), and via the general rule (right).

Computational Model and Protocol Tree Representation. For our for-
mal descriptions, we make heavy use of the KWH trees introduced in [KWH15]
and shown to be equivalent to the computational model of [MS14,MS17] in
[KKW+17]. We start by the start node

12 34 X00
12 43 X01
21 34 X10
21 43 X11

and add eventually needed further cards ( 5 , 6 , . . . ) to the right of the players
bits. The state (or KWH) tree is directed, with annotations at the outgoing
edges of the state, specifying the action that is performed next. Let μ be the
state with the outgoing annotation, then the actions are defined as:

1. (shuffle,Π) leads to a μ′ as in Fig. 1, where Π ⊆ S|D| is a permutation set.
2. (turn, T ) branches the tree into states μv for each observation v possible by

revealing the cards at positions from the set T ⊆ {1, . . . , |D|}, as in Fig. 2. μv

contains the sequences from μ which are compatible with the observation v.
For each sequence s compatible with v, we have μv(s) := μ(s)/Pr[v], where
Pr[v] ∈ (0, 1] is the probability of observing v.

3. (perm, π) permutes the sequences of μ according to π.
4. (result, p1, p2) stops the computation and returns the cards at p1, p2 as output.

We start by a state that encodes the input sequences attached to their respec-
tive symbolic input probabilities, see [KKW+17] for a thorough explanation:

12 34 X00
12 43 X01
21 34 X10
21 43 X11
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s1 μ(s1)
...

...
s� μ(s�)

s1,1 1/Pr[v1] · μ(s1,1)
...

...
s1,�1

1/Pr[v1] · μ(s1,�1)

sn,1 1/Pr[vn] · μ(sn,1)
...

...
sn,�n

1/Pr[vn] · μ(sn,�n)

(turn, T )
v1 vn. . .

Fig. 2. A turn operation. Here, v1, . . . , vn, are the possible observation by turning the
cards at positions in T . For each i ∈ {1, . . . , n} the si,1, . . . , si,�i are the sequences from
s1, . . . , s� which are compatible with vi. Note that in secure protocols, the probability
of observing vi, denoted as Pr[vi], is constant.

A protocol computes a Boolean function f : {0, 1}2 → {0, 1} if the start state
(tree root) encodes each b ∈ {0, 1}2 in the first four cards (the remaining cards
being at fixed positions), and in the leaf nodes of the protocol’s state tree, it holds
for the positions given by the result operation that the cards at these positions
encode a value o ∈ {0, 1} if all Xi occurring in μ(s) for sequence s satisfy f(i) = o
(Correctness). We say that a protocol has finite runtime if its tree is finite.
It is a Las Vegas protocol, if it is not finite runtime, but the expected length of
any path in its tree is finite. Note that while we consider looping protocols, we
do not consider the case where a complete restart is necessary. For self-similar
infinite trees, we simplify by drawing edges to earlier states.

Security of Card-Based Protocols. We slightly adjust the security notion
from the literature to standard decks. For more details, we refer to [K19]. Since
different encodings for the same bit are possible, we want the encoding basis
of the output bit to not give away anything about the inputs. We say that a
protocol is secure if at any turn operation the probability for each observation v
is a constant ρ ∈ [0, 1] (using

∑
i∈{0,1}2 Xi = 1), and additionally if at any result

operation the probability of each output basis is constant in the same sense.
As in [KKW+17], for our impossibility proofs and formalizations with

bounded model checkers, it is useful to consider a weaker form of security, which
is a necessary criterion for security as defined above: A protocol is possibilis-
tically output-secure, if at any state of the protocol, every output can still be
possible. This weakens the normal security guarantee, as the probability for a
given input sequence could be higher in this state. One could even be able to
exclude a specific input sequence, if the corresponding output can still be pos-
sible through another input sequence. Together with possibilistic input-security,
this discussion leads to the following formal definition:
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Definition 1 (cf. [KKW+17]). A protocol P = (D, U,Q,A) computing a func-
tion f : {0, 1}2 → {0, 1} has possibilistic input security (possibilistic output secu-
rity) if it is correct, i.e., output O = f(I) almost surely and for uniformly4 ran-
dom input I and any visible sequence trace v with Pr[v] > 0 as well as any input
i ∈ {0, 1}2 (any output o ∈ {0, 1}) we have Pr[v |I = i] > 0 (Pr[v |f(I) = o]).

Proving Lower Bounds. We call two states, μ and μ′, similar, if μ is equal to
μ′ up to row or column permutation. This is an interesting equivalence relation
for reducing the state space and we make use of it in our impossibility results.

As in [KKW+17, Definition 3], we define reduced states, where states are
not annotated by their symbolic probabilities, but by the result that is specified
by their inputs. This simplifies impossibility proofs by reducing information and
the state space. Any such reduced tree captures only a weak form of security,
possibilistic security, as discussed above where each output (reachable in princi-
ple) needs to be still possible. Showing that a protocol is impossible even in this
weak setting implies its general impossibility.

To obtain a reduced state tree, we project all the symbolic probabilities of
the sequences in a state tree to a type (representing the possible future output
associated with the sequence in a correct protocol, see below), which can be
any o ∈ {0, 1}. For this, let P be a protocol computing a function f : {0, 1}2 →
{0, 1} and μ be a state in the state tree. For any sequence s with μ(s) being a
polynomial with positive coefficients for the variables Xb1 , . . . , Xbi (i ≥ 1), set
μ̂(s) := o ∈ {0, 1} if o = f(b1) = f(b2) = . . . = f(bi) in the resulting reduced
state μ̂. We call sequences in μ̂ according to their type o-sequences.

For proving impossibility results, we make use of the backwards calculus as
given in [K18]. We highlight the main ideas here, but refer to it for reference.
Denote by shuf−1(G), for a set of states G, the set of states that are transformed
into a state in G by a shuffle. The trivial shuffle is allowed, i.e., G ⊆ shuf−1(G).
Moreover, turn−1

f (G) is the set of states being in G or having a turnable position
i such that all immediate successor states from a turn at i are in G. Define by
clf(G) the closure of turn−1

f (·) and shuf−1(·) operations on G. Hence, it holds that
if the start state is not in clf(G), then no finite-runtime protocol can exist.

2.2 Automatic Formal Verification Using SBMC

In the following, we introduce an automatic technique from formal program
verification, namely software bounded model checking (SBMC), to the field of
card-based cryptography. We first describe the general technique of using SBMC
to check for software properties, before we explain how we apply it to search for
cryptographically secure card-based protocols. In a nutshell, we translate the
task to a reachability problem in software programs (which will later-on be a
program encoding operations on an abstract state tree as described above), which
the SBMC tool encodes into an instance of the SAT problem.

4 Actually, the distribution does not matter, as long as Pr[I = i] > 0 for all i ∈ {0, 1}k.
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We assume we are given an imperatively defined function f under the form
of an imperative program (for example, written in the C language), that uses
some parameter values taken among a set of possible start values I. An entry
i ∈ I is a list of values, one value for each such parameter: it gives a value to
everything that a run of f depends on, such as its input variables, or anything
that is considered non-deterministic (i.e., of arbitrary, but fixed, value for any
concrete evaluation of f) from the point of view of f . For this reason, those
parameters are qualified as “non-deterministic”, to distinguish them from nor-
mal parameters used in a programming language to pass information around.
Moreover, some values can be “derived”, thus, computed in f from the non-
deterministic parameter values, or declared as constants in f , and both values
of non-deterministic parameters or derived values can then be used as normal
parameters in the program. We are also given a software property to be checked
about f , in the form Cant ⇒ Ccons, where ant and cons stand for antecedent and
consequence respectively. Both Cant and Ccons are sets of Boolean statements.
A Boolean statement is a statement of f that evaluates to a Boolean value, for
example, a simple statement checking that some computed intermediate value is
positive. An entry i is said to satisfy a set of Boolean statements if and only if all
Boolean statements in the set evaluate to true during the execution of f using
the non-deterministic parameter values i, and is said to fail the set of Boolean
statements otherwise. The property Cant ⇒ Ccons requires that for all possible
entries i ∈ I, if i satisfies Cant, then i satisfies Ccons. As an example, assume f
computes, given i, two intermediate integer values v1 and v2, and then returns a
third value v3. The property to be checked could, e.g., be: if v1 is negative, then
v2 is positive and v3 is odd. A solver that is asked to check a software property
Cant ⇒ Ccons thus exhaustively searches for an entry i that satisfies Cant but
fails Ccons. The property is valid if and only if there does not exist any such
entry i, i.e., it is impossible to find.

SBMC is a fully-automatic static program analysis technique used to verify
whether such a software property is valid, given a function and a property to be
checked. It covers all possible inputs within a specified bound. It is static in the
sense that programs are analyzed without executing them on concrete values or
considering any side channels. Instead, programs are symbolically executed and
exhaustively checked for errors up to a certain bound, restricting the number of
loop iterations to limit runs through the program to a bounded length. This is
done by unrolling the control flow graph of the program and translating it into
a formula in a decidable logic that is satisfiable if and only if a program run
exists which satisfies Cant and fails Ccons. The variables in the formula are the
non-deterministic parameters of f , and their possible values are taken from I.

This reduces the problem to a decidable satisfiability problem. Modern SAT-
solving technology can then be used to verify whether such a program run exists,
in which case an erroneous input has been found, and the run is presented to
the user. If the solver cannot find such a program run, it may be either because
the property is valid, or because it is invalid only for some run which exceeds
the bound. In some cases, SBMC is also able to infer statically which bound is
sufficient to bring a definitive conclusion.
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2.3 Automatic Formal Verification for Card-Based Protocols

Our approach employs a standardized program representation of the KWH trees
introduced in [KWH15] (and described in the beginning of this section). This
allows a general programmatic encoding of both shuffle and turn operations, as
well as of the fixed input state (indicated by the input card sequences from the
table in the very beginning of this paper), the non-deterministic reachable states,
and the logical function to be computed securely.

The input state is trivially derived from the specified numbers of cards as
the size and order of the players’ commitments is fixed and the (without loss of
generality) consecutively ordered card sequence of (distinguishable) helper-cards
is simply prepended to the input card sequence, annotated with their respective
input probabilities. Any input state thus consists of exactly four distinguishable
card sequences. Based on this input state, the program performs a loop, which
successively performs turn or shuffle operations based on the input state and
computes the resulting states from which it continues performing turn or shuffle
operations. The loop ends when the specified bound (representing the length of
the protocol to be found) is reached, checks whether the final state is indeed
a valid computation of the secure function, and (if and only if the check is
successful) the found protocol is then presented to the user.

However, this task involves multiple computational complexities, most
notably both the number of (possibly) reachable states, and the choice of the
next operation, i.e., either choosing the card(s) to be turned or which shuffle
to perform. We partially overcome the first computational complexity by not
considering Las Vegas protocols as this relieves us from checking every reach-
able sequence of states to be finite. In fact, we compute all reachable states
after every protocol operation, but only check each of them to be valid, and
then proceed our operations on only one of them, which is non-deterministically
chosen among them. The second computational complexity consists in first
non-deterministically choosing whether to shuffle or to turn, and then to per-
form the respective operation. The turn operation is less interesting as it is
mostly the obvious implementation for updating the computed state and its
probabilities using mostly standard imperative program operations, except that
the turn observations are again non-deterministically chosen, hence making the
SBMC tool consider any of them to be possible. The more interesting opera-
tion is the shuffle operation, as it must randomly draw a set of permutations
on which the thereby reachable states are computed. We implement this by
non-deterministically choosing a set of permutations from a precomputed set of
all generally possible permutations. Both the amount5 and the choices of the
respective permutations are chosen non-deterministically. Moreover, we restrict
our experiments to only closed shuffles and proceed by restricting the computed
set of permutations to be either closed or of size one (i.e., a simple permutation).

Finally, after iterating the afore-mentioned loop for the specified bound num-
ber with the described operations and restricting that final state indeed computes
5 In order to keep the execution times still manageable for our experiments, we bound

this amount by the (arguably quite reasonable) number 8.
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the secure function, we specify the software property Ccons to be checked simply
as the Boolean value false. This trivially unsatisfiable property implies that
the verification task always fails once there exist input and non-deterministic
parameters such that the respective program run reaches the statement in the
program which checks this property. The SBMC tool exhaustively searches for
a run of the specified length through the program which leads from the starting
state to a correct and secure state which satisfies the given security notion, i.e.,
reaches the above-mentioned statement. Hence, if there exists any protocol of
the specified length which computes the secure function and for which the spec-
ified operations and valid intermediate states (representing KWH-trees) exist,
such a protocol is presented by our method. If no such protocol can be found,
we know there is no card-based protocol of the specified length satisfying all our
restrictions on permitted turn and shuffle operations, as well as intermediate
and final states. This means there exists no model for the SAT formula which
encodes the set of all permitted program runs given our specified requirements.

Hence, assuming our translation of KWH trees and respective protocol oper-
ations into a simple imperative program are correct, this method can then be
used in an iterative manner to strengthen the bounds from the literature. Note
that this is largely based on the so-called “small-scope hypothesis”, i.e., a large
number of bugs are already exposed for small program runs. We apply this
hypothesis to the setting of card-based security protocols as all protocols in the
literature only use a small number of turn and shuffle operations and the length
of any found protocol is below ten operations.

This approach can be generalized to search for card-based protocols using a
pre-defined number of actions and adhering to a given formal security notion.
We have written a general program6 to search for such situations parameterized
in the desired restrictions on actions and security notions. Note that, in order
to cope with the still considerable state space size, we use the refined security
notion of output-possibilistic security.

3 On the Choice of Cards for Input and Output

We essentially show that the choice of input basis (or output basis, but not
necessarily both) is irrelevant for the functioning of the protocol. In rare cases,
one has to append two operations to existing protocols to make them fully basis
flexible. In the Niemi–Renvall protocol shown above, the protocol description
specifies Alice’s cards to be of symbols 1, 2, and Bob’s to be of symbols 3, 4
and the helping card to be a 5. To simplify later proofs and to demonstrate
an interesting symmetry in card-based protocols, we show that this choice is
irrelevant for the functioning of the protocol.

6 The program is available under https://github.com/mi-ki/cardCryptoVerification.

https://github.com/mi-ki/cardCryptoVerification
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For this, we define a relabeling from deck alphabet Σ to a deck alphabet Σ′,
i.e., a bijective function λ : Σ → Σ′.7 A relabeling of a sequence s = (s1, . . . , sn)
is a relabeling of each of its symbols, i.e., λ(s) := (λ(s1), . . . , λ(sn)). A relabel-
ing of a state is given by the relabeling of all its sequences, a relabeling of a
protocol/state (sub)tree is the relabeling of all its states as in Figs. 3 and 5.

...

1324 X0
2134 X0
1342 X1
2143 X1

3123 X0
4312 X0
3124 X1
4321 X1

relabel : (1 3)(2 4)

3142 X0
3124 X1

4312 X0
4321 X1

(turn, {1, 2})

31?? 43??

(result, 4, 3)
�

(result, 3, 4)
�

...

1324 X0
2134 X0
1342 X1
2143 X1

1324 X0
1342 X1

2134 X0
2143 X1

(turn, {1, 2})

13?? 21??

(result, 3, 4)
�

(result, 3, 4)
�

Fig. 3. Example of the relabel action, swapping the card symbols of 1 and 3, and of 2
and 4, respectively. This action is for abbreviated writing only, it does not actually rela-
bel the physical cards, which seems impossible without learning their symbols. Hence,
the tree on the left is virtually translated to the right. Note that the relabeling only
affects the sequences, the observations at edges belonging to turn actions and may swap
the order of the indices in result operations.

Lemma 1. If P is a protocol with deterministic output basis, one can relabel
the cards without affecting the functioning.

Note that the deterministic output basis restriction is important, because if
we have a randomized output encoding such as in Fig. 4 on the left, a relabeling
might affect the monotonicity of the encoding of only one of the possible output
bases. In this case, we make use of the following lemma, as illustrated Fig. 4.

Lemma 2. Every protocol with one-bit output and a randomized output basis
can be transformed into a protocol with deterministic output basis, by inserting
a shuffle and a turn before any result operation with randomized output basis.

7 In case of the decks being a subset of N, we may use usual permutation notation.
We require that if λ maps x to y, the cardinalities of x and y are equal in the deck.
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...

43 21 1/2X1
21 34 1/2X1
34 12 1/2X0
12 34 1/2X0

(result, 1, 2)
�

...

43 21 1/2X1
21 34 1/2X1
34 12 1/2X0
12 34 1/2X0

43 12 1/4X1
43 21 1/4X1
21 34 1/4X1
21 43 1/4X1
34 12 1/4X0
34 21 1/4X0
12 34 1/4X0
12 43 1/4X0

(shuffle, 〈(3 4)〉), i.e. shuffle
arbitrary on remaining cards

43 12 X1
34 12 X0

43 21 X1
34 21 X0

21 34 X1
12 34 X0

21 43 X1
12 43 X0

(turn, {3, 4})

??12 ??21 ??34 ??43

(result, 1, 2)
�

(result, 1, 2)
�

(result, 1, 2)
�

(result, 1, 2)
�

Fig. 4. Example of making the basis deterministic, cf. Lemma 2. On the left you see
a tree part with one-bit output and randomized basis, i.e., the output basis may be
{1, 2} or {3, 4}, each with a probability of 1/2. We can make it known to the players, i.e.,
deterministic, by splitting up the state via an Sk-shuffle (here: k = 2) on the remaining
cards (so that they no longer contain any information), turning these and then doing
the result operation. By what is visible in the turn, one can derive the output basis.

4 Impossibility of Finite-Runtime Four-Card AND
and Basis Conversion with Overlapping Bases

In this section we give our main impossibility results.

Theorem 1. There is no four-card finite-runtime basis conversion protocol for
overlapping bases with deck D = �1, 2, 3, 4�.

Proof Sketch. We proceed by using the backwards calculus technique from [K18],
as described in Sect. 2.1. That is, we show that if we start with the set of (highly-
structured) final states G0 of basis conversion protocols and enlarge this set
iteratively by states which reach the given states by a shuffle or a turn, we
obtain the closure clf(G0). If we consider only reduced states, the set of possible
states is finite, so applying turn−1

f (·) and shuf−1(·) operations to the growing set
of states, starting from G0, will become stationary. It remains to show that the
start state is not contained in the closure. We assume w.l.o.g. the input basis
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s1 μ(s1)
...

...
s� μ(s�)

λ(s1) μ(s1)
...

...
λ(s�) μ(s�)

relabel : λ : Σ → Σ′

(result, τ(i), τ(j)),
with τ ∈ {id, (i j)}

�

s1 μ(s1)
...

...
s� μ(s�)

(result, i, j)

�

Fig. 5. The formal rule for relabeling leaf nodes of one-bit output protocols. Let r1 =
sk[i], r2 = sk[j] ∈ D be the output symbols (before relabeling) of some arbitrary
sequence sk of μ. Then, τ = id, if r1 < r2 implies λ(r1) < λ(r2) (λ is monotone on r1,
r2) and τ = (i j) otherwise.

{1, 2} with helping cards 3 and 4, and the output basis {o1 < o2} such that
|{1, 2} ∩ {o1, o2}| = 1. For simplicity, we want the output basis {1, 3} and argue
later why this choice did not affect the proof statement. Hence, the final state is
any choice of at least one 1-sequence and one 0-sequence of the state on the left:

13 24 0
13 42 0
31 24 1
31 42 1

12 34 0
21 34 1

The state on the right is the start state of a basis-conversion protocol. Both
states are considered up to similarity.

We have shuf−1(G0) = G0, i.e., shuffling steps do not help in the last step of a
output-possibilistically secure protocol, because any subset of a final state which
contains at least one 1-sequence and one 0-sequence (required as 1-/0-sequences
cannot be generated out of thin air by a shuffle), is already final. Hence, we
consider G1 := turn−1

f (G0), i.e., the states turnable at a position i, where all
immediate child nodes when turning at i are in G0. W.l.o.g. we assume the
turn to be at position 4. By [K18, Lemma 3], we use that G1 = turn−1

f (G0) =
G0 ∪ turn−1

f (cc(G0)), where cc(G0) is the subset of G0 with states that have a
constant column:

13 24 0
31 24 1

13 42 0
31 42 1
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However, we aim to enlarge this set (which we can do since our claim is only
made stronger by monotonicity of the backwards operations) by the states

24 13 0
42 13 1

24 31 0
42 31 1

,

because they would be reachable anyway via a disjoint basis conversion due to
[M16, Sect. 3.2]. The states from G1 \ G0 look as follows:

. . . a 0

. . . a 1

. . . b 0

. . . b 1

. . . c 0

. . . c 1

. . . d 0

. . . d 1

where at least two of the blocks are present, and a, b, c, d ∈ D are pairwise
distinct. Note that the start state cannot be of this form, as it contains only two
sequences. To show that another backwards turn step does not enlarge the set
by showing that cc(G1) = cc(G0). For this, note that the states from cc(G0) have
two constant columns, but with the specific pairing that if one is 1, the other is 3
and vice versa, or if one is 2, the other is 4 and vice versa. Hence, having another
constant column in the state from G1 \ G0 above, say at position 3, would need
the same symbol (given by the pairing) in the fourth column. Hence, it can only
have two sequences, i.e., it is already in G0. This shows that turn−1

f (G1) = G1.
Now, for the main step of the proof, set G2 := shuf−1(G1) and G3 :=

turn−1
f (G2). Because the shuffling is unrestricted, applying another backwards

shuffle to G2 cannot give a larger set, as we can always combine two shuffles
into one. The remaining proof will show that G3 = G2 in which case no further
enlargement is possible. Afterwards, showing that the start state is not in G2

finishes the proof.
As G2’s states are subsets of G1’s states, cc(G2)’s general form is on the left:

. . . da 0

. . . da 1

. . . db ?

. . . dc ?

. . . da 0

. . . da 1

. . . db ?
(. . . ab ?)

. . . dc ?
(. . . ac ?)

(. . . xd ?)
(. . . yd ?)
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where ? can be either 0 or 1 and x, y are either both a, or one is b and the other
c. To see this, observe that it is a subset of the state on the right where we leave
out at least all sequences interfering with our wish of a constant column in this
position (in parentheses on the right). Our aim is to show that these states are
more specifically the states of cc(G0) again, i.e., it is impossible to reach any
state of form in G1 via a shuffle from these states. Due to the complexity of the
situation, we do a case distinction on the number of sequences of μ ∈ cc(G2).

Let us consider only the first case, the other cases are analogously and are
to be found in a full version of the paper. Let μ contain two sequences. If they
were both from the first block, the state would trivially be in cc(G0). This leaves
us with two choices, either include a sequence ending with da or exclude it. For
concreteness, we choose w.l.o.g. a = 2, d = 4, b = 1 and c = 3, and have this:

1342 0
3142 1

2341 1
4321 0

(. . . 43 ?)
(. . . 23 ?)

(. . . x4 ?)
(. . . y4 ?)

1342 0
2341 1

id

(1 4 3)

(1 4 2)

id

Reaching this state on the left by a shuffle should contain at least {id, (1 4 3),
(1 4 2)}. But if we apply (1 4 2) to the first sequence gives a sequence 3241 which
is not possible on the left side due to its trailing 1. The other cases are similar.

Theorem 2. There is no four-card finite-runtime AND protocol with deck D =
�1, 2, 3, 4� with fixed-in-advance output basis.

Proof Sketch. If the output basis is not given using only Alice’s or only Bob’s
cards, this follows from Theorem 1, because if there would be such an AND

protocol, by fixing the second bit to 1 one could easily generate a basis-convert
protocol, which is impossible. In the remaining case, e.g., of the output basis
being Alice’s cards, say 1, 2, this would not be a basis-convert, as the bit remains
unchanged. In this case, a close analysis of the proof of Theorem 1 above yields
that the theorem also holds in this case. We omit the details, and refer to the
full version.

5 Card-Minimal Protocols for AND

Theorem 3. There is a four-card Las Vegas AND protocol with deck D =
�1, 2, 3, 4� using only random cuts.

Proof. See Fig. 6 and Protocol 1.
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1234 X00
1243 X01
2134 X10
2143 X11

1234 1/4X00
1243 1/4X01
2134 1/4X10
2143 1/4X11
4123 1/4X00
3124 1/4X01
4213 1/4X10
3214 1/4X11

3412 1/4X00
4312 1/4X01
3421 1/4X10
4321 1/4X11
2341 1/4X00
2431 1/4X01
1342 1/4X10
1432 1/4X11

(shuffle, 〈(1 2 3 4)〉)

1234 X00
1243 X01
1342 X10
1432 X11

2341 X00
2431 X01
2134 X10
2143 X11

2134 X00
2143 X01
2413 X10
2314 X11

(perm, (2 3 4))

3412 X00
3124 X01
3421 X10
3214 X11

3124 X00
3241 X01
3214 X10
3142 X11

(perm, (2 4 3))

4123 X00
4312 X01
4213 X10
4321 X11

1243 X00
1234 X01
1324 X10
1423 X11

(perm, (3 4))

4213 X00
4132 X01
4123 X10
4231 X11

(perm, (2 3))

(turn, {1})
1???

2??? 3???
4???

relabel : (1 2)(3 4) relabel : (1 2)(3 4)

1243 1/4X00
1234 1/4X01
1324 1/4X10
1423 1/4X11
3124 1/4X00
4123 1/4X01
4132 1/4X10
3142 1/4X11

4312 1/4X00
3412 1/4X01
2413 1/4X10
2314 1/4X11
2431 1/4X00
2341 1/4X01
3241 1/4X10
4231 1/4X11

(shuffle, 〈(1 2 3 4)〉)

2431 X00
2341 X01
2413 X10
2314 X11

4312 X00
4123 X01
4132 X10
4231 X11

3124 X00
3412 X01
3241 X10
3142 X11

(turn, {1})

1???

2??? 3??? 4???

(shuffle, 〈(1 2 3 4)〉)
(shuffle, 〈(1 2 3 4)〉)

3124 1/3X0
3412 1/3X0
3241 1/3X0
3142 1/3X1
3214 1/3X1
3421 1/3X1

(shuffle, 〈(2 3 4)〉)

3124 X0
3142 X1

3241 X0
3214 X1

3412 X0
3421 X1

(turn, {2})

?1?? ?2?? ?4??

(result, 3, 4)
�

(result, 4, 3)
�

(result, 3, 4)
�

4213 1/4X00
4132 1/4X01
4123 1/4X10
4231 1/4X11
3421 1/4X00
2413 1/4X01
3412 1/4X10
1423 1/4X11

1342 1/4X00
3241 1/4X01
2341 1/4X10
3142 1/4X11
2134 1/4X00
1324 1/4X01
1234 1/4X10
2314 1/4X11

(shuffle, 〈(1 2 3 4)〉)

2134 X00
2413 X01
2341 X10
2314 X11

1342 X00
1324 X01
1234 X10
1423 X11

3421 X00
3241 X01
3412 X10
3142 X11

(turn, {1})

1??? 2??? 3???

4???

(shuffle, 〈(1 2 3 4)〉)
(shuffle, 〈(1 2 3 4)〉)

2134 1/3X0
2413 1/3X0
2341 1/3X0
2314 1/3X1
2431 1/3X1
2143 1/3X1

(shuffle, 〈(2 3 4)〉)

2134 X0
2143 X1

2341 X0
2314 X1

2413 X0
2431 X1

(turn, {2})

?1?? ?3?? ?4??

(result, 3, 4)
�

(result, 4, 3)
�

(result, 3, 4)
�

Fig. 6. Four-card Las Vegas AND protocol using random cuts, cf. Protocol 1. Here,
X0 := X00 + X01 + X10 and X1 := X11. The relabel operations are not actual actions
to be performed but help abbreviate the write-up of the protocol, see Sect. 3.

Table 2. The different states of Protocol 1 after 1 was revealed in the first turn. The
permutation to be applied is (3 4). The situation is similar in all other cases.

Bits Sequence After permutation Removing 3

(0, 0) 1 2 3 4 1 2 4 3 1 2 4 x

(0, 1) 1 2 4 3 1 2 3 4 1 2 x 4

(1, 0) 1 3 4 2 1 3 2 4 1 x 2 4

(1, 1) 1 4 3 2 1 4 2 3 1 4 2 x
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To get a better understanding of why the protocol works and how it is related
to the protocol of [NR99], let us consider exemplarily the case that the first card
to be revealed is a 1, the other cases are analogous. In this situation, let us
look at the different cases, given in Table 2. Using the method as before, we can
remove 3 by performing a random cut while leaving the relative order intact ( 1
here is assigned the role of the 5 in Niemi and Renvall’s protocol) and waiting
until it appears when turning. Later we can remove the 1 from the remaining
cards, to get the output encoded using the cards 2 and 4 . A closer analysis of
the situation after removing 3 shows that one can take a shortcut when one is
not bound to the output being cards 2 4 (which is not our goal, because in the
other cases besides the first turn being 1 it is different anyway, and one would
have to add conversion protocols to ensure this). The situation is as follows: The
remaining three cards are either a cyclic rotation (cut) of the sequence 1 2 4 ,
if the output is 0, or a cyclic rotation of the sequence 1 4 2 , otherwise. A cut
cannot rotate a sequence of the former type to become the other, or vice versa.
After the cut we can safely turn any card and, from the resulting symbol, deduce
in which order the other cards must be output to encode the protocol result.

Protocol 1. Our four-card AND protocol. The first bit is in basis {1, 2}, the
second in {3, 4}, and the output in {1, 2, 3, 4} \ {v2, v3}, where v2, v3 are the
last two revealed symbols. See Fig. 3 for a KWH tree representation.
(shuffle, 〈(1 2 3 4)〉)
v1 := (turn, {1})
if v1 = 1 then (perm, (3 4))
else if v1 = 2 then (perm, (2 3 4))
else if v1 = 3 then (perm, (2 4 3))
else if v1 = 4 then (perm, (2 3))

Let π := (1 3)(2 4)
repeat

(shuffle, 〈(1 2 3 4)〉)
v2 := (turn, {1})

until v2 = π(v1)

(shuffle, 〈(2 3 4)〉)
v3 := (turn, {2})
Let σ := (1 4)(2 3)
if v3 = σ(v2) then (result, 4, 3)
else (result, 3, 4)

For an analysis of the number of shuffle steps in the protocol, observe that
we have performed two shuffles until we reach the loop condition, which holds
with probability 1/4. After the loop, we have one additional shuffle step. Hence,
the expected number of shuffles is 3 +

∑∞
n=1

(
1 − 1

4

)n = 6.
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Comparison to [NR99]. The previous protocol, using five cards, was described
in the introduction. For a pseudo-code description, see Protocol 2.

Protocol 2. Five-card AND protocol by Niemi and Renvall [NR99]. The first
bit is in basis {1, 2}, the second in basis {3, 4}. The output basis is {1, 4}. See
also Fig. 7 for a KWH tree representation.
(perm, (3 4))
repeat

(shuffle, 〈(1 2 3 4 5)〉)
v := (turn, {1})

until v = 2 or v = 3
repeat

(shuffle, 〈(2 3 4 5)〉)
v := (turn, {2})

until v = 2 or v = 3
repeat

(shuffle, 〈(3 4 5)〉)
v := (turn, {3})

until v = 5
(result, 4, 5)

As Niemi and Renvall state, their running time in the number of shuffle
steps is calculated as follows: Their protocol starts with a shuffle and repeats
this with probability 3/5. The second loop contains a shuffle and has a repeating
probability of 3/4. The shuffle in the final loop is repeated with probability 2/3. In
total, the expected running time is 3+

∑∞
n=1

(
3
5

)n +
∑∞

n=1

(
3
4

)n +
∑∞

n=1

(
2
3

)n =
3+1.5+3+2 = 9.5. However, for a fair comparison to our protocol, we eliminate
the last loop from their protocol, as its only function is to ensure that the output
is in basis {1, 4}, which our protocol does not guarantee. In this case, the modified
Niemi–Renvall protocol has an expected number of 3 + 1.5 + 3 = 7.5 shuffle
steps. Hence, our four-card AND protocol needs one card less and outperforms
the Niemi–Renvall protocol by an expected number of 1.5 shuffle steps.

6 Card-Minimal Protocols for Basis Conversion
with Overlapping Bases

In this section, we give two protocols for converting a basis encoding in the case
where the old and the new encoding share a card. The first protocol has an
expected (finite) running time of three shuffle and turn operations. While it has
not been explicit in the literature, it is in a way implicit in the protocol by Niemi
and Renvall [NR99], as the authors aimed to get a fixed-in-advance output basis.
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12 34 5 X00
12 43 5 X01
21 34 5 X10
21 43 5 X11

51324 1/5X00
51423 1/5X01
52314 1/5X10
52413 1/5X11
13245 1/5X00
14235 1/5X01
23145 1/5X10
24135 1/5X11
32451 1/5X00
42351 1/5X01

31452 1/5X10
41352 1/5X11
24513 1/5X00
23514 1/5X01
14523 1/5X10
13524 1/5X11
45132 1/5X00
35142 1/5X01
45231 1/5X10
35241 1/5X11

(perm, (1 2 4 5))
(shuffle, 〈(1 2 3 4 5)〉)

1 3245 X00
1 4235 X01
1 4523 X10
1 3524 X11

2 4513 X00
2 3514 X01
2 3145 X10
2 4135 X11

3 2451 X00
3 5142 X01
3 1452 X10
3 5241 X11

4 5132 X00
4 2351 X01
4 5231 X10
4 1352 X11

5 1324 X00
5 1423 X01
5 2314 X10
5 2413 X11

(turn, {1})

1????
2???? 3????

4????5????

(shuffle, 〈(1 2 3 4 5)〉) (shuffle, 〈(1 2 3 4 5)〉)

2 4513 1/4X00
2 3514 1/4X01
2 3145 1/4X10
2 4135 1/4X11
2 3451 1/4X00
2 4351 1/4X01
2 5314 1/4X10
2 5413 1/4X11

2 1345 1/4X00
2 1435 1/4X01
2 4531 1/4X10
2 3541 1/4X11
2 5134 1/4X00
2 5143 1/4X01
2 1453 1/4X10
2 1354 1/4X11

(shuffle, 〈(2 3 4 5)〉)

21 345 X00
21 435 X01
21 453 X10
21 354 X11

23 451 X00
23 514 X01
23 145 X10
23 541 X11

24 513 X00
24 351 X01
24 531 X10
24 135 X11

25 134 X00
25 143 X01
25 314 X10
25 413 X11

(turn, {2})

?1???
?3??? ?4???

?5???

(shuffle, 〈(2 3 4 5)〉) (shuffle, 〈(2 3 4 5)〉)

23 451 1/3X0
23 514 1/3X0
23 145 1/3X0
23 541 1/3X1
23 154 1/3X1
23 415 1/3X1

(shuffle, 〈(3 4 5)〉)

231 45 X0
231 54 X1

234 51 X0
234 15 X1

235 14 X0
235 41 X1

(turn, {3})

??1?? ??4?? ??5??

(shuffle, 〈(3 4 5)〉)

(result, 4, 5)
�

3 2451 X00
3 5142 X01
3 1452 X10
3 5241 X11
3 1245 X00
3 2514 X01
3 2145 X10
3 1524 X11

3 4512 X00
3 1425 X01
3 4521 X10
3 2415 X11
3 5124 X00
3 4215 X01
3 5214 X10
3 4152 X11

(shuffle, 〈(2 3 4 5)〉)

31 245 X00
31 425 X01
31 452 X10
31 524 X11

32 451 X00
32 514 X01
32 145 X10
32 415 X11

34 512 X00
34 215 X01
34 521 X10
34 152 X11

35 124 X00
35 142 X01
35 214 X10
35 241 X11

(turn, {2})

?1???
?2??? ?4???

?5???

(shuffle, 〈(2 3 4 5)〉) (shuffle, 〈(2 3 4 5)〉)

32 451 X0
32 514 X0
32 145 X0
32 415 X1
32 154 X1
32 541 X1

(shuffle, 〈(3 4 5)〉)

321 45 X0
321 54 X1

324 51 X0
324 15 X1

325 14 X0
325 41 X1

(turn, {3})

??1?? ??4?? ??5??

(shuffle, 〈(3 4 5)〉)

(result, 4, 5)
�

Fig. 7. KWH tree of the five-card AND protocol of [NR99] with D = �1, 2, 3, 4, 5� using
only random cuts, cf. Protocol 2. Note that X0 := X00 + X01 + X10 and X1 := X11.
The output is in basis {1, 4}.

Theorem 4. There is a three-card Las Vegas basis-conversion protocol for over-
lapping bases with deck D = �1, 2, 3� and uniform closed shuffles.

Proof. See Fig. 8 and Protocol 3.
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213 X1
123 X0

213 1/3X1
123 1/3X0
321 1/3X1
312 1/3X0
132 1/3X1
231 1/3X0

(shuffle, 〈(1 2 3)〉)

132 X1
123 X0

213 X1
231 X0

321 X1
312 X0

(turn, {1})

1?? 2?? 3??

(shuffle, 〈(1 2 3)〉) (shuffle, 〈(1 2 3)〉)

(result, 3, 2)
�

Fig. 8. Three-card Las Vegas basis convert for D = �1, 2, 3� with uniform closed
shuffles.

Protocol 3. Three-card Las Vegas basis conversion protocol as given in Fig. 8
with D = �1, 2, 3�, input basis {1, 2} and output basis {1, 3}
repeat

(shuffle, 〈(1 2 3)〉)
v := (turn, {1})

until v = 2
(result, 3, 2)

Theorem 5. There is a five-card finite-runtime basis conversion protocol for
overlapping bases with deck D = �1, 2, 3, 4, 5�. It only uses two random bisection
cuts as shuffle operations.

Proof. This is just applying the basis conversion of [M16] twice, cf. Protocol 4.

Protocol 4. Five-card finite-runtime conversion protocol with overlapping
bases for D = �1, 2, 3, 4, 5�, input basis {1, 2} and output basis {1, 3}
(shuffle, 〈(1 2)(4 5)〉)
v := (turn, {1})
if v = 2 then (perm, (1 2)(4 5))

(shuffle, 〈(1 3)(4 5)〉)
v := (turn, {4})
if v = 4 then (result, 1, 3)
else (result, 3, 1)
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1 struct sequence {

2 uint val[numberOfCards];

3 struct fractions probs;

4 };

Listing 1. C struct holding the state trees.

7 An Illustration of Our Verification Methodology

In the following, we exemplify our translation of card-based cryptographic proto-
cols using standard decks to a specific the bounded model checker CBMC which
takes programs in the C language, and compute a secure AND function. For
our experiments, we used CBMC 5.11 [CKL04] with the built-in solver based
on the SAT-solver MiniSat 2.2.0 [ES03]. All experiments are performed on an
AMD Opteron(tm) 2431 CPU at 2.40 GHz with 6 cores and 32 GB of RAM.

We translate KWH trees in the C language using a simple encoding into
a bounded C program with only static structures and no pointers, e.g., we
employ C structs (see Listing 1) holding an array of card sequences for the
sequence s, attached with their respective values for each probability (for the
probabilistic security notion) or dependency (for output-possibilistic security) Xi

occurring in μ(s), which is simply encoded by another C struct fractions. The
sequences are constructed using non-deterministic values restricted by respective
software conditions to enforce a lexicographic ordering. Moreover, we assign the
starting values in μ(s) with fixed (i.e., deterministic) values based on the con-
structed sequences. Subsequently, an array of (consecutively) reachable states
is constructed non-deterministically using simple implementations of the turn
and the shuffle operation as explained in Sect. 2. We then repeatedly (after each
turn/shuffle) check whether all possible resulting (non-deterministic) states cor-
rectly and securely compute the specified function, e.g., here a secure AND.

An example shuffle operation is shown in Listing 2 for the case of output-
possibilistic security. Therein, the keyword __CPROVER_assume is used by the
bounded model checker to restrict all program runs passing this statement to sat-
isfy the specified (Boolean) condition. By assigning values using the special func-
tion nondet_uint(), we assign a non-deterministic non-negative integer number,
which is restricted to values greater than zero and at most of value NUM_POSS_SEQ

(which is a variable computed by the pre-processor and is the maximum number
of sequences possible with the given deck) in the following program statement.
In the shown example, the non-determinism is used to construct a set of per-
mitted permutation sets (to be used by the shuffle operation), which makes
the SBMC tool inspect the following program code for all possible assignments
of this value. If necessary, this may result in a fully exhaustive search, how-
ever, the prover is often able to restrict the domain based on further program
statements and dependencies seen in the rest of the program. A similar trick
is used when computing the concrete permutations using the non-deterministic
value of permIndex in order to check all possible permutations which possibly
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1 uint permSetSize = nondet_uint();

2 __CPROVER_assume (0 < permSetSize);

3 __CPROVER_assume (permSetSize <= NUM_POSS_SEQ);

4 uint permutationSet[permSetSize][numberOfCards];

5 uint takenPermutations[NUM_POSS_SEQ] = { 0 };

6

7 for (uint i = 0; i < permSetSize; i++) {

8 uint permIndex = nondet_uint();

9 __CPROVER_assume (permIndex < NUM_POSS_SEQ);

10 __CPROVER_assume (!takenPermutations[permIndex]);

11

12 takenPermutations[permIndex] = 1;

13 for (uint j = 0; j < numberOfCards; j++) {

14 permutationSet[i][j] =

15 startState.seq[permIndex][j] - 1;

16 }

17 }

18 struct state result =

19 doShuffle(startState, permutationSet, permSetSize);

20 __CPROVER_assume (isBottomFree(result));

Listing 2. Simplified shuffle operation for CBMC.

move the values, but preserve all existing numbers in the sequence itself. This is
done using the int-array takenPermutations, which is first initialized to zero and,
when choosing a concrete permutation, assumed to be zero at position permIndex,
however set to the number one right afterwards (such that it is not permitted to
be chosen again). In the subsequent inner loop, the permutations are assigned
choosing the according cards from the sequences in the start state using the non-
deterministic value permIndex. Finally, the shuffle is applied, resulting in the state
variable result, which is then checked using a further method isBottomFree to
not contain any sequences with impermissible values for Xi, which would result
in incorrect computations of the AND function.

We applied our approach to the computation of a secure AND protocol using
four cards in order to, firstly, substantiate our proof that no protocol of a length
below six can be found, and, secondly, automatically find a permitted proto-
col using six operations. Using our approach, we were able to show that no
four-card protocol exists using five operations within 57 h and constructed an
output-possibilistic protocol using six operations within 31 h. The sizes of the
constructed formulas consisted of between 150 and 180 million SAT clauses.
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8 Conclusion

In this paper, we proposed a new method to search card-based protocols for
any secure computation, by giving a general formal translation applicable to be
used by the formal technique of software bounded model checking (SBMC). This
method allows us to find new protocols automatically, and prove lower bounds
on required shuffle and turn operations for any protocol, and provide an example
for the computation of a minimal AND protocol. We also found a new protocol
that only uses the theoretical minimum of four distinguishable cards for an AND

computation. Moreover, we supported this finding by our automatic method in
showing the impossibility of any protocol using less shuffle and turn operations
using only practicable shuffles (random cuts). The protocol is hence optimal w.r.t.
the running time restriction “restart-free Las-Vegas”. For the four-card standard
deck setting, we showed that there is no finite runtime protocol, regardless of the
shuffle operations used. This result completes the picture of tight lower bounds
for four cards. Finally, we showed tight lower bounds on basis conversions for
single bits and proposed the missing protocols, and establish the theorem that
using a minimum of five cards, both input- and output-bases can be chosen freely,
which fosters our impossibility result for four cards.

Open Problems. Let us point out some open problems in the card-based
security area that could be approached based on the findings in this paper: (1)
For finite-runtime protocols, there exist no proven tight lower bounds on the
required number of cards (five to eight cards). We recommend more research
applying computer-aided formal methods at this point, as the state space for
five or more cards is very large. (2) Our verification approach is fast for find-
ing protocols and/or lower bounds on the operations needed in a protocol for
given shuffle-restrictions. However, this is based on the assumption that proto-
cols exist already for a given predefined length to find or confirm impossibility
results. Investigating computer-aided formal methods for universal impossibility
results might be worthwhile. (3) The two most common settings in card-based
cryptography are the standard deck setting with only distinguishable cards and
the two-color decks using ♣ and ♥. However, it may be possible that by mixing
these settings (e.g., only distinguishable cards with one pair of identical cards),
we might find more efficient protocols (especially in the finite runtime setting).
For such a mixed setting, [SM19] provide nice results to use in further research.

Appendix: Further Protocols

This appendix contains the 8-card AND protocol of [M16] (Fig. 9) and a second
four-card protocol which uses a number of 4.5 shuffles in expectation, which are,
however, non-closed and hence, more impractical to implement, cf. Fig. 10.
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21 43 56 78 X11
21 34 56 78 X10
12 43 56 78 X01
12 34 56 78 X00

21 43 56 78 1/2X11
21 34 56 78 1/2X10
12 43 56 78 1/2X01
12 34 56 78 1/2X00

21 43 78 56 1/2X11
21 34 78 56 1/2X10
12 43 78 56 1/2X01
12 34 78 56 1/2X00

(shuffle, 〈(5 7)(6 8)〉)

21 43 56 78 1/4X11
21 34 56 78 1/4X10
12 43 56 78 1/4X01
12 34 56 78 1/4X00
21 43 78 56 1/4X11
21 34 78 56 1/4X10
12 43 78 56 1/4X01
12 34 78 56 1/4X00

21 34 65 78 1/4X11
21 43 65 78 1/4X10
12 34 65 78 1/4X01
12 43 65 78 1/4X00
21 34 87 56 1/4X11
21 43 87 56 1/4X10
12 34 87 56 1/4X01
12 43 87 56 1/4X00

(shuffle, 〈(3 4)(5 6)〉)

21 34 56 78 1/2X10
12 34 56 78 1/2X00
21 34 78 56 1/2X10
12 34 78 56 1/2X00
21 34 65 78 1/2X11
12 34 65 78 1/2X01
21 34 87 56 1/2X11
12 34 87 56 1/2X01

21 43 56 78 1/4X11
12 43 56 78 1/4X01
21 43 78 56 1/4X11
12 43 78 56 1/4X01
21 43 65 78 1/4X10
12 43 65 78 1/4X00
21 43 87 56 1/4X10
12 43 87 56 1/4X00

(turn, {3, 4})

??34???? ??43????

(perm, (3 4)(5 6))

12 34 87 56 1/4X01
21 34 87 56 1/4X11
12 34 65 78 1/4X01
21 34 65 78 1/4X11

12 34 78 56 1/4(X10 + X00)
21 34 78 56 1/4(X10 + X00)
12 34 56 78 1/4(X10 + X00)
21 34 56 78 1/4(X10 + X00)

12 34 78 65 1/4X11
21 34 78 65 1/4X01
12 34 56 87 1/4X11
21 34 56 87 1/4X01

(shuffle, 〈(1 2)(5 7)(6 8)〉)

12 34 87 56 1/2X01
12 34 65 78 1/2X01
12 34 78 56 1/2(X10 + X00)
12 34 56 78 1/2(X10 + X00)
12 34 78 65 1/2X11
12 34 56 87 1/2X11

(result, 7, 8)
�

21 34 87 56 1/2X11
21 34 65 78 1/2X11
21 34 78 56 1/2(X10 + X00)
21 34 56 78 1/2(X10 + X00)
21 34 78 65 1/2X01
21 34 56 87 1/2X01

(result, 5, 6)
�

(turn, {1, 2})

12?????? 21??????

Fig. 9. The eight-card finite-runtime AND protocol of [M16], with D = �1, . . . , 8� and
uniform-closed shuffles. Output is in basis {5, 6} or {7, 8}, each with probability 1/2.
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1234 X00
1243 X01
2134 X10
2143 X11

1234 1/2X00
1243 1/2X01
2134 1/2X10
2143 1/2X11
2341 1/2X00
2431 1/2X01
1342 1/2X10
1432 1/2X11

(shuffle, {id, (1 4 3 2)})

1234 X00
1243 X01
1342 X10
1432 X11

2341 X00
2431 X01
2134 X10
2143 X11

(turn, {1})

1??? 2???

1234 1/3(X00 + X01)
1243 1/3(X00 + X01)
1342 1/3X10
1432 1/3X11
1324 1/3X10
1423 1/3X11
3421 1/3X00
4321 1/3X01
4231 1/3X10
3241 1/3X11

(shuffle, {id, (3 4), (1 4 2 3)})

3421 X00
4321 X01
1324 X10
1423 X11

1234 X00 + X01
4231 X10
1432 X11

1243 X00 + X01
1342 X10
3241 X11

(turn, {3})

??4?
??3? ??2?

2341 1/3(X00 + X01)
2431 1/3(X00 + X01)
2134 1/3X10
2143 1/3X11
2314 1/3X10
2413 1/3X11
4213 1/3X00
3214 1/3X01
3241 1/3X10
4231 1/3X11

(shuffle, {id, (2 3), (1 2 4 3)})

4213 X00
3214 X01
2314 X10
2413 X11

2341 X00 + X01
3241 X10
2143 X11

2431 X00 + X01
2134 X10
4231 X11

(turn, {3})

??1? ??3?
??4?

(perm, (1 2 3))(perm, (1 4 3))

1243 1/3X0
1342 1/3X0
3241 1/3X1
3142 1/3X11
4132 1/3(X00 + X01)
4123 1/3X10
4312 1/3X1

(shuffle, {id, (2 4), (1 2 4 3)})

1342 X0
4312 X1

1243 X0
3241 X1

4132 X00 + X01
4123 X10
3142 X11

(turn, {2})

?1??
?2???3??

(result, 1, 4)
�

(result, 1, 3)
�

4132 1/3X0
4123 1/3X0
3142 1/3X11
3124 1/3X1
1342 1/3(X00 + X01)
1243 1/3X10
1432 1/3X1

(shuffle, {id, (3 4), (1 3 2)})

1342 X00 + X01
1243 X10
3142 X11

4132 X0
1432 X1

4123 X0
3124 X1

(turn, {3})

??4?
??3? ??2?

(result, 2, 1)
�

(result, 4, 1)
�

(perm, (2 4))

1234 1/3X0
4231 1/3X0
1432 1/3X1
2431 1/3X11
2341 1/3(X00 + X01)
2314 1/3X10
4321 1/3X1

(shuffle, {(1 2 4), (1 2), (2 3)})

4231 X0
4321 X1

1234 X0
1432 X1

2341 X00 + X01
2314 X10
2431 X11

(turn, {1})

2???
1??? 4???

(result, 2, 4)
�

(result, 2, 3)
�

2341 1/3X0
2314 1/3X0
2431 1/3X11
2413 1/3X1
4231 1/3(X00 + X01)
1234 1/3X10
3241 1/3X1

(shuffle, {id, (3 4), (1 2 3)})

4231 X00 + X01
1234 X10
2431 X11

2314 X0
2413 X1

2341 X0
3241 X1

(turn, {3})

??3?
??1???4?

(result, 2, 4)
�

(result, 1, 2)
�

(perm, (1 2))

(perm, (1 4 2))(perm, (1 2 4))

Fig. 10. A four-card Las Vegas AND protocol with deck D = �1, 2, 3, 4� and uniform
shuffles. Note that X0 := X00 + X01 + X10 and X1 := X11. The output is in one of the
bases {1, 3}, {1, 4}, {2, 3}, {3, 4}, determined by the position of the final state in the
tree, and can be converted as needed.
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Elena Kirshanova1(B), Erik Mårtensson2, Eamonn W. Postlethwaite3,
and Subhayan Roy Moulik4

1 I. Kant Baltic Federal University, Kaliningrad, Russia
elenakirshanova@gmail.com

2 Department of Electrical and Information Technology, Lund University,
Lund, Sweden

erik.martensson@eit.lth.se
3 Information Security Group, Royal Holloway, University of London, Egham, UK

eamonn.postlethwaite.2016@rhul.ac.uk
4 Department of Computer Science, University of Oxford, Oxford, UK

subhayan.roy.moulik@cs.ox.ac.uk

Abstract. The Shortest Vector Problem (SVP) is one of the mathemat-
ical foundations of lattice based cryptography. Lattice sieve algorithms
are amongst the foremost methods of solving SVP. The asymptotically
fastest known classical and quantum sieves solve SVP in a d-dimensional
lattice in 2cd+o(d) time steps with 2c′d+o(d) memory for constants c, c′. In
this work, we give various quantum sieving algorithms that trade com-
putational steps for memory.

We first give a quantum analogue of the classical k-Sieve algo-
rithm [Herold–Kirshanova–Laarhoven, PKC’18] in the Quantum Ran-
dom Access Memory (QRAM) model, achieving an algorithm that heuris-
tically solves SVP in 20.2989d+o(d) time steps using 20.1395d+o(d) memory.
This should be compared to the state-of-the-art algorithm [Laarhoven,
Ph.D Thesis, 2015] which, in the same model, solves SVP in 20.2653d+o(d)

time steps and memory. In the QRAM model these algorithms can be
implemented using poly(d) width quantum circuits.

Secondly, we frame the k-Sieve as the problem of k-clique listing in a
graph and apply quantum k-clique finding techniques to the k-Sieve.

Finally, we explore the large quantum memory regime by adapting
parallel quantum search [Beals et al., Proc. Roy. Soc. A’13] to the 2-Sieve,
and give an analysis in the quantum circuit model. We show how to solve
SVP in 20.1037d+o(d) time steps using 20.2075d+o(d) quantum memory.

1 Introduction

The Shortest Vector Problem (SVP) is one of the central problems in the theory
of lattices. For a given d-dimensional Euclidean lattice, usually described by a

The full version of this article can be found at https://eprint.iacr.org/2019/1016.
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basis, to solve SVP one must find a shortest non zero vector in the lattice. This
problem gives rise to a variety of efficient, versatile, and (believed to be) quantum
resistant cryptographic constructions [AD97,Reg05]. To obtain an estimate for
the security of these constructions it is important to understand the complexities
of the fastest known algorithms for SVP.

There are two main families of algorithms for SVP, (1) algorithms that require
2ω(d) time and poly(d) memory; and (2) algorithms that require 2Θ(d) time
and memory. The first family includes lattice enumeration algorithms [Kan83,
GNR10]. The second contains sieving algorithms [AKS01,NV08,MV10], Voronoi
cell based approaches [MV10] and others [ADRSD15,BGJ14]. In practice, it
is only enumeration and sieving algorithms that are currently competitive in
large dimensions [ADH+19,TKH18]. Practical variants of these algorithms rely
on heuristic assumptions. For example we may not have a guarantee that the
returned vector will solve SVP exactly (e.g. pruning techniques for enumera-
tion [GNR10], lifting techniques for sieving [Duc18]), or that our algorithm will
work as expected on arbitrary lattices (e.g. sieving algorithms may fail on orthog-
onal lattices). Yet these heuristics are natural for lattices often used in crypto-
graphic constructions, and one does not require an exact solution to SVP to
progress with cryptanalysis [ADH+19]. Therefore, one usually relies on heuristic
variants of SVP solvers for security estimates.

Among the various attractive features of lattice based cryptography is its
potential resistance to attacks by quantum computers. In particular, there is no
known quantum algorithm that solves SVP on an arbitrary lattice significantly
faster than existing classical algorithms.1 However, some quantum speed-ups for
SVP algorithms are possible in general.

It was shown by Aono–Nguyen–Shen [ANS18] that enumeration algorithms
for SVP can be sped up using the quantum backtracking algorithm of Mon-
tanaro [Mon18]. More precisely, with quantum enumeration one solves SVP
on a d-dimensional lattice in time 2

1
4ed log d+o(d log d), a square root improve-

ment over classical enumeration. This algorithm requires poly(d) classical and
quantum memory. This bound holds for both provable and heuristic versions of
enumeration. Quantum speed-ups for sieving algorithms have been considered
by Laarhoven–Mosca–van de Pol [LMvdP15] and later by Laarhoven [Laa15].
The latter result presents various quantum sieving algorithms for SVP. One of
them achieves time and classical memory of order 20.2653d+o(d) and requires
poly(d) quantum memory. This is the best known quantum time complex-
ity for heuristic sieving algorithms. Provable single exponential SVP solvers
were considered in the quantum setting by Chen–Chang–Lai [CCL17]. Based
on [ADRSD15,DRS14], the authors describe a 21.255d+o(d) time, 20.5d+o(d) clas-
sical and poly(d) quantum memory algorithm for SVP. All heuristic and provable
results rely on the classical memory being quantumly addressable.

1 For some families of lattices, like ideal lattices, there exist quantum algorithms that
solve a variant of SVP faster than classical algorithms, see [CDW17,PMHS19]. In
this work, we consider arbitrary lattices.
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A drawback of sieving algorithms is their large memory requirements. Ini-
tiated by Bai–Laarhoven–Stehlé, a line of work [BLS16,HK17,HKL18] gave a
family of heuristic sieving algorithms, called tuple lattice sieves, or k-Sieves for
some fixed constant k, that offer time-memory trade-offs. Such trade-offs have
proven important in the current fastest SVP solvers, as the ideas of tuple siev-
ing offer significant speed-ups in practice, [ADH+19]. In this work, we explore
various directions for asymptotic quantum accelerations of tuple sieves.

Our Results.

1. In Sect. 4 we show how to use a quantum computer to speed up the
k-Sieve of Bai–Laarhoven–Stehlé [BLS16] and its improvement due to
Herold–Kirshanova–Laarhoven [HKL18] (Algorithms 4.1, 4.2). One data point
achieves a time complexity of 20.2989d+o(d), while requiring 20.1395d+o(d) clas-
sical memory and poly(d) width quantum circuits. In the Area× Time model
this beats the previously best known algorithm [Laa15] of time and memory
complexities 20.2653d+o(d); we almost halve the constant in the exponent for
memory at the cost of a small increase in the respective constant for time.

2. Borrowing ideas from [Laa15] in the full version [KMPR19, App. B] we give
a quantum k-Sieve that exploits nearest neighbour techniques. For k = 2, we
recover Laarhoven’s 20.2653d+o(d) time and memory quantum algorithm.

3. In Sect. 5 the k-Sieve is reduced to listing k-cliques in a graph. By generalis-
ing the triangle finding algorithm of [BdWD+01] this approach leads to an
algorithm that matches the performance of Algorithm 4.1, when optimised
for memory, for all k.

4. In Sect. 6 we specialise to listing 3-cliques (triangles) in a graph. Using the
quantum triangle finding algorithm of [LGN17] allows us, in the query model,2

to perform the 3-Sieve using 20.3264d+o(d) queries.
5. In Sect. 7 we describe a quantum circuit consisting only of gates from a uni-

versal gate set (e.g. CNOT and single qubit rotations) of depth 20.1038d+o(d)

and width 20.2075d+o(d) that implements the 2-Sieve as proposed classically
in [NV08]. In particular we consider exponential quantum memory to make
significant improvements to the number of time steps. Our construction
adapts the parallel search procedure of [BBG+13].

All the results presented in this work are asymptotic in nature: our algorithms
have time, classical memory, quantum memory complexities of orders 2cd+o(d),
2c

′d+o(d), poly(d) or 2c
′′d+o(d) respectively, for c, c′, c′′ ∈ Θ(1), which we aim to

minimise. We do not attempt to specify the o(d) or poly(d) terms.

2 This means that the complexity of the algorithm is measured by the number of oracle
calls to the adjacency matrix of a graph.
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Our Techniques. We now briefly describe the main ingredients of our results.

1. A useful abstraction of the k-Sieve is the configuration problem, first described
in [HK17]. It consists of finding k elements that satisfy certain pairwise inner
product constraints from k exponentially large lists of vectors. Assuming
(x1, . . . ,xk) is a solution tuple, the ith element xi can be obtained via a
brute force search either over the ith input list [BLS16], or over a certain
sublist of the ith list [HK17], see Fig. 1b. We replace the brute force searches
with calls to Grover’s algorithm and reanalyse the configuration problem. The
search for xi within such a data structure can itself be sped up by Grover’s
algorithm.

2. The configuration problem can be reduced to the k-clique problem in a graph
with vertices representing elements from the lists given by the configuration
problem. Vertices are connected by an edge if and only if the corresponding list
elements satisfy some inner product constraint. Classically, this interpretation
yields no improvements to configuration problem algorithms. However we
achieve quantum speed-ups by generalising the triangle finding algorithm of
Buhrman et al. [BdWD+01] and applying it to k-cliques.

3. We apply the triangle finding algorithm of Le Gall–Nakajima [LGN17] and
exploit the structure of our graph instance. In particular we form many graphs
from unions of sublists of our lists, allowing us to alter the sparsity of said
graphs.

4. To make use of more quantum memory we run Grover searches in parallel. The
idea is to allow simultaneous queries by several processors to a large, shared,
quantum memory. Instead of looking for a “good” xi for one fixed tuple
(x1, . . . ,xi−1), one could think of parallel searches aiming to find a “good” xi

for several tuples (x1, . . . ,xi−1). The possibility of running several Grover’s
algorithms concurrently was shown in the work of Beals et al. [BBG+13].
Based on this result we specify all the subroutines needed to solve the shortest
vector problem using large quantum memory.

2 Preliminaries

We denote by Sd ⊂ R
d+1 the d-dimensional unit sphere. We use soft-O notation

to denote running times, that is T = ˜O(2cd) suppresses subexponential factors
in d. By [n] we denote the set {1, . . . , n}. The norm considered in this work is
Euclidean and is denoted by ‖ · ‖.

For any set x1, . . . ,xk of vectors in R
d, the Gram matrix C ∈ R

k×k is given
by Ci,j = 〈xi,xj〉, the set of pairwise scalar products. For I ⊂ [k], we denote
by C[I] the |I| × |I| submatrix of C obtained by restricting C to the rows and
columns indexed by I. For a vector x and i ∈ [k], x[i] denotes the ith entry. For
a function f , by Of we denote a unitary matrix that implements f .

Lattices. Given a basis B = {b1, . . . ,bm} ⊂ R
d of linearly independent vectors

bi, the lattice generated by B is defined as L(B) = {∑m
i=1 zibi : zi ∈ Z}. For

simplicity we work with lattices of full rank (d = m). The Shortest Vector
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Problem (SVP) is to find, for a given B, a shortest non zero vector of L(B).
Minkowski’s theorem for the Euclidean norm states that a shortest vector of
L(B) is bounded from above by

√
d · det(B)1/d.

Quantum Search. Our results rely on Grover’s quantum search algorithm [Gro96]
which finds “good” elements in a (large) list. The analysis of the success probabil-
ity of this algorithm can be found in [BBHT98]. We also rely on the generalisation
of Grover’s algorithm, called Amplitude Amplification, due to Brassard–Høyer–
Mosca–Tapp [BHMT02] and a result on parallel quantum search [BBG+13].

Theorem 1 (Grover’s algorithm [Gro96,BBHT98]). Given quantum access
to a list L that contains t “good” elements (the value t is not necessarily known)
and a function f : L → {0, 1}, described by a unitary Of , which determines
whether an element is “good” or not, we wish to find a solution i ∈ [|L|], such
that for f(xi) = 1, xi ∈ L. There exists a quantum algorithm, called Grover’s
algorithm, that with probability greater than 1−t/ |L| outputs one “good” element
using O(

√|L| /t) calls to Of .

Theorem 2 (Amplitude Amplification [BHMT02, Theorem 2]). Let A be
any quantum algorithm that makes no measurements and let A |0〉 = |Ψ0〉+ |Ψ1〉,
where |Ψ0〉 and |Ψ1〉 are spanned by “bad” and “good” states respectively. Let
further a = 〈Ψ1|Ψ1〉 be the success probability of A. Given access to a function f
that flips the sign of the amplitudes of good states, i.e. f : |x〉 	→ − |x〉 for “good”
|x〉 and leaves the amplitudes of “bad” |x〉 unchanged, the amplitude amplification
algorithm constructs the unitary Q = −ARA−1Of , where R is the reflection
about |0〉, and applies Qm to the state A |0〉, where m = 
π

4 arcsin(
√

a)�. Upon
measurement of the system, a “good” state is obtained with probability at least
max{a, 1 − a}.
Theorem 3 (Quantum Parallel Search [BBG+13]). Given a list L, with
each element of bit length d, and |L| functions that take list elements as input
fi : L → {0, 1} for i ∈ [|L|], we wish to find solution vectors s ∈ [|L|]|L|.
A solution has fi(xs[i]) = 1 for all i ∈ [|L|]. Given unitaries Ufi

: |x〉 |b〉 →
|x〉 |b ⊕ fi(x)〉 there exists a quantum algorithm that, for each i ∈ [|L|], either
returns a solution s[i] or if there is no such solution, returns no solution. The
algorithm succeeds with probability Θ(1) and, given that each Ufi

has depth
and width poly log(|L|, d), can be implemented using a quantum circuit of width
˜O(|L|) and depth ˜O(

√|L|).

Computational Models. Our algorithms are analysed in the quantum circuit
model [KLM07]. We set each wire to represent a qubit, i.e. a vector in a two
dimensional complex Hilbert space, and assert that we have a set of universal
gates. We work in the noiseless quantum theory, i.e. we assume there is no (or
negligible) decoherence or other sources of noise in the computational procedures.

The algorithms given in Sects. 4 and 5 are in the QRAM model and assume
quantumly accessible classical memory [GLM08]. More concretely in this model
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we store all data, e.g. the list of vectors, in classical memory and only demand
that this memory is quantumly accessible, i.e. elements in the list can be effi-
ciently accessed in coherent superposition. This enables us to design algorithms
that, in principle, do not require large quantum memories and can be imple-
mented with only poly(d) qubits and with the 2Θ(d) sized list stored in classi-
cal memory. Several works [BHT97,Kup13] suggest that this memory model is
potentially easier to achieve than a full quantum memory.

In Sect. 6 we study the algorithms in the query model, which is the typical
model for quantum triangle or k-clique finding algorithms. Namely, the complex-
ity of our algorithm is measured in the number of oracle calls to the adjacency
matrix of a graph associated to a list of vectors.

Acknowledging the arguments against the feasibility of QRAM and whether
it can be meaningfully cheaper than quantum memory [AGJO+15] we also con-
sider, Sect. 7, algorithms that use exponential quantum memory in the quantum
circuit model without assuming QRAM.

3 Sieving as Configuration Search

In this section we describe previously known classical sieving algorithms. We will
not go into detail or give proofs, which can be found in the relevant references.

Sieving algorithms receive on input a basis B ∈ R
d×d and start by sampling

an exponentially large list L of (long) lattice vectors from L(B). There are effi-
cient algorithms for sampling lattice vectors, e.g. [Kle00]. The elements of L are
then iteratively combined to form shorter lattice vectors, xnew = x1±x2±. . .±xk

such that ‖xnew‖ ≤ maxi≤k{‖xi‖}, for some k ≥ 2. Newly obtained vectors xnew

are stored in a new list and the process is repeated with this new list of shorter
vectors. It can be shown [NV08,Reg09] that after poly(d) such iterations we
obtain a list that contains a shortest vector. Therefore, the asymptotic complex-
ity of sieving is determined by the cost of finding k-tuples whose combination
produces shorter vectors. Under certain heuristics, specified below, finding such
k-tuples can be formulated as the approximate k-List problem.

Definition 1 (Approximate k-List problem). Assume we are given k lists
L1, . . . , Lk of equal exponential (in d) size |L| and whose elements are i.i.d. uni-
formly chosen vectors from Sd−1. The approximate k-List problem is to find |L|
solutions, where a solution is a k-tuple (x1, . . . , xk) ∈ L1 × . . . × Lk satisfying
‖x1 + . . . + xk‖ ≤ 1.

The assumption made in analyses of heuristic sieving algorithms [NV08]
is that the lattice vectors in the new list after an iteration are thought of as
i.i.d. uniform vectors on a thin spherical shell (essentially, a sphere), and, once
normalised, on Sd−1. Hence sieves do not “see” the discrete structure of the
lattice from the vectors operated on. The heuristic becomes invalid when the
vectors become short. In this case we assume we have solved SVP. Thus, we may
not find a shortest vector, but an approximation to it, which is enough for most
cryptanalytic purposes.
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We consider k to be constant. The lists L1, . . . , Lk in Definition 1 may be
identical. The algorithms described below are applicable to this case as well.
Furthermore, the approximate k-List problem only looks for solutions with +
signs, i.e. ‖x1 + . . . + xk‖ ≤ 1, while sieving looks for arbitrary signs. This is
not an issue, as we may repeat an algorithm for the approximate k-List problem
2k = O(1) times in order to obtain all solutions.

Configuration Search. Using a concentration result on the distribution of scalar
products of x1, . . . ,xk ∈ Sd−1 shown in [HK17], the approximate k-List problem
can be reduced to the configuration problem. In order to state this problem, we
need a notion of configurations.

Definition 2 (Configuration). The configuration C = Conf(x1, . . . ,xk) of k
points x1, . . . ,xk ∈ Sd−1 is the Gram matrix of the xi, i.e. Ci,j = 〈xi , xj〉.

A configuration C ∈ R
k×k is a positive semidefinite matrix. Rewriting the

solution condition ‖x1 + . . . + xk‖2 ≤ 1, one can check that a configuration
C for a solution tuple satisfies 1tC1 ≤ 1. We denote the set of such “good”
configurations by

C = {C ∈ R
k×k : C is positive semidefinite and 1tC1 ≤ 1}.

It has been shown [HK17] that rather than looking for k-tuples that form
a solution for the approximate k-List problem, we may look for k-tuples that
satisfy a constraint on their configuration. It gives rise to the following problem.

Definition 3 (Configuration problem). Let k ∈ N and ε > 0. Suppose we
are given a target configuration C ∈ C . Given k lists L1, . . . , Lk all of exponential
(in d) size |L|, whose elements are i.i.d. uniform from Sd−1, the configuration
problem consists of finding a 1 − o(1) fraction of all solutions, where a solution
is a k-tuple (x1, . . . ,xk) with xi ∈ Li such that |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

Solving the configuration problem for a C ∈ C gives solutions to the approx-
imate k-List problem. For a given C ∈ R

k×k the number of expected solutions
to the configuration problem is given by det(C) as the following theorem shows.

Theorem 4 (Distribution of configurations [HK17, Theorem 1]). If
x1, . . . ,xk are i.i.d. from Sd−1, d > k, then their configuration C =
Conf(x1, . . . ,xk) follows a distribution with density function

μ = Wd,k · det(C)
1
2 (d−k)dC1,2 . . . dCd−1,d, (1)

where Wd,k = Ok(d
1
4 (k

2−k)) is an explicitly known normalisation constant that
only depends on d and k.

This theorem tells us that the expected number of solutions to the config-
uration problem for C is given by

∏

i |Li| · (det C)d/2. If we want to apply an
algorithm for the configuration problem to the approximate k-List problem (and
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to sieving), we require that the expected number of output solutions to the con-
figuration problem is equal to the size of the input lists. Namely, C and the input
lists Li of size |L| should (up to polynomial factors) satisfy |L|k ·(det C)d/2 = |L|.
This condition gives a lower bound on the size of the input lists. Using Chernoff
bounds, one can show (see [HKL18, Lemma 2]) that increasing this bound by a
poly(d) factor gives a sufficient condition for the size of input lists, namely

|L| = ˜O
(

(

1
det(C)

)
d

2(k−1)
)

. (2)

Classical Algorithms for the Configuration Problem. The first classical algo-
rithm for the configuration problem for k ≥ 2 was given by Bai–Laarhoven–
Stehlé [BLS16]. It was later improved by Herold–Kirshanova [HK17] and by
Herold–Kirshanova–Laarhoven [HKL18] (Fig. 1b). These results present a fam-
ily of algorithms for the configuration problem that offer time-memory trade-offs.
In Sect. 4 we present quantum versions of these algorithms.

Both algorithms [BLS16,HKL18] process the lists from left to right but in a
different manner. For each x1 ∈ L1 the algorithm from [BLS16] applies a filtering
procedure to L2 and creates the “filtered” list L2(x1). This filtering procedure
takes as input an element x2 ∈ L2 and adds it to L2(x1) iff |〈x1 , x2〉 − C1,2| ≤
ε. Having constructed the list L2(x1), the algorithm then iterates over it: for
each x2 ∈ L2(x1) it applies the filtering procedure to L3 with respect to C2,3

and obtains L3(x1,x2). Throughout, vectors in brackets indicate fixed elements
with respect to which the list has been filtered. Filtering of the top level lists
(L1, . . . , Lk) continues in this fashion until we have constructed Lk(x1, . . . ,xk−1)
for fixed values x1, . . . ,xk−1. The tuples of the form (x1, . . . ,xk−1,xk) for all
xk ∈ Lk(x1, . . . ,xk−1) form solutions to the configuration problem.

The algorithms from [HK17,HKL18] apply more filtering steps. For a fixed
x1 ∈ L1, they not only create L2(x1), but also L3(x1), . . . , Lk(x1). This
speeds up the next iteration over all x2 ∈ L2(x1), where now the filtering
step with respect to C2,3 is applied not to L3, but to L3(x1), as well as to
L4(x1), . . . , Lk(x1), each of which is smaller than Li. This speeds up the con-
struction of L3(x1,x2). The algorithm continues with this filtering process until
the last inner product check with respect to Ck−1,k is applied to all the elements
from Lk(x1, . . . ,xk−2) and the list Lk(x1, . . . ,xk−1) is constructed. This gives
solutions of the form (x1, . . . ,xk−1,xk) for all xk ∈ Lk(x1, . . . ,xk−1). The con-
centration result, Theorem 4, implies the outputs of algorithms from [BLS16]
and [HK17,HKL18] are (up to a subexponential fraction) the same. Pseudocode
for [HK17] can be found in the full version [KMPR19, App. A].

Important for our analysis in Sect. 4 will be the the result of [HKL18] that
describes the sizes of all the intermediate lists that appear during the configura-
tion search algorithms via the determinants of submatrices of the target config-
uration C. The next theorem gives the expected sizes of these lists and the time
complexity of the algorithm from [HKL18].
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Theorem 5 (Intermediate list sizes [HKL18, Lemma 1] and time com-
plexity of configuration search algorithm). During a run of the configura-
tion search algorithms described in Figs. 1a and b, given an input configuration
C ∈ R

k×k and lists L1, . . . , Lk ⊂ Sd−1 each of size |L|, the intermediate lists for
1 ≤ i < j ≤ k are of expected sizes

E[|Lj(x1, . . . ,xi)|] = |L| ·
(

det(C[1, . . . , i, j])
det(C[1 . . . i])

)d/2

. (3)

The expected running time of the algorithm described in Fig. 1b is

T C
k-Conf

= max
1≤i≤k

[

i
∏

r=1

|Lr(x1, . . . ,xr−1)| · max
i+1≤j≤k

|Lj(x1, . . . ,xi−1)|
]

. (4)

Finding a Configuration for Optimal Runtime. For a given i the square bracketed
term in Eq. (4) represents the expected time required to create all filtered lists
on a given “level”. Here “level” refers to all lists filtered with respect to the
same fixed x1, . . . ,xi−1, i.e. a row of lists in Fig. 1b. In order to find an optimal
configuration C that minimises Eq. (4), we perform numerical optimisations
using the Maple™ package [Map].3 In particular, we search for C ∈ C that
minimises Eq. (4) under the condition that Eq. (2) is satisfied (so that we actually
obtain enough solutions for the k-List problem). Figures for the optimal runtime
and the corresponding memory are given in Table 1. The memory is determined
by the size of the input lists computed from the optimal C using Eq. (2). Since the
k-List routine determines the asymptotic cost of k-Sieve, the figures in Table 1
are also the constants in the exponents for complexities of k-Sieves.

Table 1. Asymptotic complexity exponents for the approximate k-List problem, base
2. The table gives optimised runtime and the corresponding memory exponents for the
classical algorithm from [HKL18], see Fig. 1b.

k 2 3 4 5 6 . . . 16 17 18

Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3728 0.37281 0.37281

Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1864 0.18640 0.18640

Interestingly, the optimal runtime constant turns out to be equal for large
enough k. This can be explained as follows. The optimal C achieves the situation
where all the expressions in the outer max in Eq. (4) are equal. This implies that
creating all the filtered lists on level i asymptotically costs the same as creating
all the filtered lists on level i + 1 for 2 ≤ i ≤ k − 1. The cost of creating filtered
lists Li(x1) on the second level (assuming that the first level consists of the
input lists) is of order |L|2. This value, |L|2, becomes (up to poly(d) factors) the
3 The code is available at https://github.com/ElenaKirshanova/QuantumSieve.

https://github.com/ElenaKirshanova/QuantumSieve
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L1 L2 L3 . . . Lk

x1
Filter1,2

L2(x1) . . .

x2
Filter2,3

L3(x1,x2) ...

Filterk−1,k

Lk(x1, . . . ,xk−1)

(a) The algorithm of Bai et al. [BLS16] for the configuration problem.

L1 L2 L3 . . . Lk

x1
Filter1,2 Filter1,3 Filter1,k

L2(x1) L3(x1) . . . Lk(x1)

x2
Filter2,3 Filter2,k

L3(x1,x2) Lk(x1,x2)

(b) The algorithm of Herold et al. [HKL18] for the configuration problem.

Fig. 1. Algorithms for the configuration problem. Procedures Filteri,j receive as input
a vector (e.g. x1), a list of vectors (e.g. L2), and a real number Ci,j , the target inner
product. It creates another shorter list (e.g. L2(x1)) that contains all vectors from the
input list whose inner product with the input vector is within some small ε from the
target inner product.
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running time of the whole algorithm (compare the Time and Space constants
for k = 16, 17, 18 in Table 1). The precise shape of C ∈ C that makes the costs
per level equal can be obtained by equating all the terms in the max of Eq. (4)
and minimising the value |L|2 under these constraints. Even for small k these
computations become rather tedious and we do not attempt to express Ci,j as
a function of k, which is, in principal, possible.

Finding a Configuration for Optimal Memory. If we want to optimise for mem-
ory, the optimal configuration C has all its off diagonal elements Ci,j = −1/k.
We call such a configuration balanced. It is shown in [HK17] that such C max-
imises det(C) among all C ∈ C , which, in turn, minimises the sizes of the input
lists (but does not lead to optimal running time as the costs per level are not
equal).

4 Quantum Configuration Search

In this section we present several quantum algorithms for the configuration prob-
lem (Definition 3). As explained in Sect. 3, this directly translates to quantum
sieving algorithms for SVP. We start with a quantum version of the BLS style
configuration search [BLS16], then we show how to improve this algorithm by
constructing intermediate lists. In the full version [KMPR19, App. B] we show
how nearest neighbour methods in the quantum setting speed up the latter
algorithm.

Recall the configuration problem: as input we receive k lists Li, i ∈ [k] each
of size a power of two,4 a configuration matrix C ∈ R

k×k and ε ≥ 0. To describe
our first algorithm we denote by f[i],j a function that takes as input (i+1) many
d-dimensional vectors and is defined as

f[i],j(x1, . . . ,xi,x) =

{

1, |〈x� , x〉 − C�,j | ≤ ε, � ∈ [i]
0, else.

A reversible embedding of f[i],j is denoted by Of[i],j . Using these functions we
perform a check for “good” elements and construct the lists Lj(x1,x2, . . . ,xi).
Furthermore, we assume that any vector encountered by the algorithm fits into
d̄ qubits. We denote by |0〉 the d̄-tensor of 0 qubits, i.e. |0〉 = |0⊗d̄〉.

The input lists, Li, i ∈ [k], are stored classically and are assumed to be
quantumly accessible. In particular, we assume that we can efficiently construct
a uniform superposition over all elements from a given list by first applying
Hadamards to |0〉 to create a superposition over all indices, and then by querying
L[i] for each i in the superposition. That is, we assume an efficient circuit for

1√
|L|

∑

i |i〉 |0〉 → 1√
|L|

∑

i |i〉 |L[i]〉. For simplicity, we ignore the first qubit that

4 This is not necessary but it enables us to efficiently create superpositions |ΨLi〉 using
Hadamard gates. Since our lists Li are of sizes 2cd+o(d) for a large d and a constant
c < 1, this condition is easy to satisfy by rounding cd.
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stores indices and we denote by |ΨL〉 a uniform superposition over all the elements
in L, i.e. |ΨL〉 = 1√

|L|
∑

x∈L |x〉.
The idea of our algorithm for the configuration problem is the following. We

have a global classical loop over x1 ∈ L1 inside which we run our quantum
algorithm to find a (k − 1) tuple (x2, . . . ,xk) that together with x1 gives a
solution to the configuration problem. We expect to have O(1) such (k − 1)
tuples per x1.5 At the end of the algorithm we expect to obtain such a solution
by means of amplitude amplification (Theorem 2). In Theorem 6 we argue that
this procedure succeeds in finding a solution with probability at least 1−2−Ω(d).

Inside the classical loop over x1 we prepare (k − 1)d̄ qubits, which we
arrange into k − 1 registers, so that each register will store (a superposition
of) input vectors, see Fig. 2. Each such register is set in uniform superposi-
tion over the elements of the input lists: |ΨL2〉 ⊗ |ΨL3〉 ⊗ · · · ⊗ |ΨLk

〉. We apply
Grover’s algorithm on |ΨL2〉. Each Grover’s iteration is defined by the unitary
Q1,2 = −H⊗d̄RH⊗d̄Of[1],2 . Here H is the Hadamard gate and R is the rotation
around |0〉. We have |L2(x1)| “good” states out of |L2| possible states in |ΨL2〉,
so after O

(√

|L2|
|L2(x1)|

)

applications of Q1,2 we obtain the state

|ΨL2(x1)〉 =
1

√|L2(x1)|
∑

x2∈L2(x1)

|x2〉 . (5)

In fact, what we create is a state close to Eq. (5) as we do not perform any
measurement. For now, we drop the expression “close to” for all the states in
this description, and argue about the failure probability in Theorem 6.

Now consider the state |ΨL2(x1)〉 ⊗ |ΨL3〉 and the function f[2],3 that uses
the first and second registers and a fixed x1 as inputs. We apply the unitary
Q2,3 to |ΨL3〉, where Q2,3 = −H⊗d̄RH⊗d̄Of[2],3 . In other words, for all vectors
from L3, we check if they satisfy the inner product constraints with respect to
x1 and x2. In this setting there are |L3(x1,x2)| “good” states in |ΨL3〉 whose
amplitudes we aim to amplify. Applying Grover’s iteration unitary Q2,3 the order

of O
(√

|L3|
|L3(x1,x2)|

)

times, we obtain the state

|ΨL2(x1)〉 |ΨL3(x1,x2)〉 =
1

√|L2(x1)|
∑

x2∈L2(x1)

|x2〉
⎛

⎝

1
√|L3(x1,x2)|

∑

x3∈L3(x1,x2)

|x3〉
⎞

⎠ .

We continue creating the lists Li+1(x1,x2, . . . ,xi) by filtering the initial list
Li+1 with respect to x1 (fixed by the outer classical loop), and with respect to
x2, . . . ,xi (given in a superposition) using the function f[i],i+1. At level k − 1 we
obtain the state |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . . ⊗ |ΨLk−1(x1,...,xk−2)〉. For the last

5 This follows by multiplying the sizes of the lists Li(x1, . . .xi−1) for all 2 ≤ i ≤ k.
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A

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[1],2

−ARA−1Og

︸ ︷︷ ︸√
|L2|

|L2(x1)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],3
︸ ︷︷ ︸√

|L3|
|L3(x1,x2)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],4
︸ ︷︷ ︸√

|L4|
|L4(x1,x2)| iterations ︸ ︷︷ ︸

(|L2(x1)|·|L3(x1.x2)|
|L4(x1,x2)|)1/2

|ΨL2
〉⊗|ΨL3

〉⊗|ΨL4
〉 |ΨL2(x1)〉⊗|ΨL3

〉⊗|ΨL4
〉

|ΨL2(x1)〉⊗|ΨL3(x1,x2)〉⊗|ΨL4(x1,x2)〉

Fig. 2. Quantum circuit representing the quantum part of Algorithm 4.1 with k = 4,
i.e. this circuit is executed inside the loop over x1 ∈ L1. The Hadamard gates

create the superposition |ΨL2〉 ⊗ |ΨL3〉 ⊗ |ΨL4〉. We apply
√

|L2|
|L2(x1)| Grover itera-

tions to |ΨL2〉 to obtain the state |ΨL2(x2)(x1)〉 ⊗ |ΨL3〉 ⊗ |ΨL4〉. We then apply

(sequentially) O
(√

|L3|
|L3(x1,x2)|

)
resp. O

(√
|L4|

|L4(x1,x2)|

)
Grover iterations to the sec-

ond resp. third registers, where the checking function takes as input the first and
second resp. the first and third registers. This whole process is A and is repeated
O(

√|L2(x1)| · |L3(x1,x2)| |L4(x1,x2)|) times inside the amplitude amplification. Final
measurement gives a triple (x2,x3,x4) which, together with a fixed x1, forms a solution
to the configuration problem.

list Lk we filter with respect to x1, . . . ,xk−2 as for the list Lk−1. Finally, for a
fixed x1, the “filtered” state we obtained is of the form

|ΨF 〉 = |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . . ⊗ |ΨLk−1(x1,...,xk−2)〉 ⊗ |ΨLk(x1,...,xk−2)〉 .

(6)

The state is expected to contain O(1) many (k − 1)-tuples (x2, . . . ,xk) which
together with x1 give a solution to the configuration problem. To prepare the
state |ΨF 〉 for a fixed x1, we need

TInGrover = O
(
√

( |L2|
|L2(x1)|

)

+ . . . +

√

( |Lk|
|Lk(x1, . . . ,xk−2)|

)

)

(7)

unitary operations of the form (−H⊗d̄)RH⊗d̄Of[i],j . This is what we call the
“inner” Grover procedure.
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Let us denote by A an algorithm that creates |ΨF 〉 from |0〉 ⊗ . . . ⊗ |0〉 in
time TInGrover. In order to obtain a solution tuple (x2, . . . ,xk) we apply amplitude
amplification using the unitary QOuter = −ARA−1Og, where g is the function
that operates on the last two registers and is defined as

g(x,x′) =

{

1, |〈x , x′〉 − Ck−1,k| ≤ ε

0, else.
(8)

Notice that in the state |ΨF 〉 it is only the last two registers storing xk−1 and
xk that are left to be checked against the target configuration. This is precisely
what we use Og to check. Let |z〉 = |x2, . . . ,xk〉 be a solution tuple. The state
|z〉 appears in |ΨF 〉 with amplitude

〈z|ΨF 〉 = O
(

(
√

|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| · |Lk(x1, . . . ,xk−2)|)
−1

)

.

This value is the inverse of the number of iteration steps QOuter which we repeat in
order to obtain z when measuring |ΨF 〉. The overall complexity of the algorithm
for the configuration problem becomes

T Q

BLS
= O

(

|L1|
(
√

( |L2|
|L2(x1)|

)

+ . . . +

√

( |Lk|
|Lk(x1, . . . ,xk−2)|

)

)

·
√

|L2(x1)| · |L3(x1,x2)| · . . . · |Lk(x1, . . . ,xk−2)|
)

,

(9)

where all the filtered lists in the above expression are assumed to be of expected
size greater than or equal to 1. For certain target configurations intermediate lists
are of sizes less than 1 in expectation (see Eq. (1)), which should be understood as
the expected number of times we need to construct these lists to obtain 1 element
in them. So there will exist elements in the superposition for which a solution
does not exist. Still, for the elements, for which a solution does exist (we expect
O(1) of these), we perform O(

√|L|) Grover iterations during the “inner” Grover
procedure, and during the “outer” procedure these “good” elements contribute
a O(1) factor to the running time. Therefore formally, each |Li(x1, . . . ,xi−1)| in
Eq. (9) should be changed to max{1, |Li(x1, . . . ,xi−1)|}. Alternatively, one can
enforce that intermediate lists are of size greater than 1 by choosing the target
configuration appropriately.

The procedure we have just described is summarised in Algorithm 4.1.
If we want to use this algorithm to solve the Approximate k-List problem
(Definition 1), we additionally require that the number of output solutions is
equal to the size of the input lists. Using the results of Theorem 4, we can
express the complexity of Algorithm 4.1 for the Approximate k-List problem via
the determinant of the target configuration C and its minors.
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Algorithm 4.1. Quantum algorithm for the Configuration Problem
Input: L1, . . . , Lk− lists of vectors from Sd−1, target configuration Ci,j = 〈xi , xj〉 ∈
R

k×k− a Gram matrix, ε > 0.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε
for all i, j.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Prepare the state |ΨL2〉 ⊗ . . . ⊗ |ΨLk 〉
4: for all i = 2 . . . k − 1 do
5: Run Grover’s on the ith register with the checking function f[i−1],i to trans-

form the state |ΨLi〉 to the state |ΨLi(x1,...,xi−1)〉.
6: Run Grover’s on the kth register with the checking function f[k−2],k to transform

the state |ΨLk 〉 to the state |ΨLk(x1,...,xk−2)〉.
7: Let A be unitary that implements steps 3–6, i.e.

A |0⊗k〉 → |ΨF 〉 .

8: Run amplitude amplification using the unitary −ARA−1Og, where g is defined
in Eq. (8).

9: Measure all the registers, obtain a tuple (x2, . . . ,xk).
10: if (x1, . . . ,xk) satisfies C then
11: Lout ← Lout ∪ {(x1, . . . ,xk)}.

Theorem 6. Given input L1, . . . , Lk ⊂ Sd−1 and a configuration C ∈ C , such
that Eq. (2) holds, Algorithm 4.1 solves the Approximate k-List problem in time

Tk-List = ˜O
⎛

⎝

(

(

1
det(C)

)
k+1

2(k−1)

·
√

det(C[1 . . . k − 1])

)d/2
⎞

⎠ (10)

using Mk-List = ˜O
(

(

1
det(C)

)
d

2(k−1)
)

classical memory and poly(d) quantum mem-

ory with success probability at least 1 − 2−Ω(d).

Proof. From Theorem 4, the input lists L1, . . . , Lk should be of sizes |L| =

˜O
(

(

1
det(C)

)
d

2(k−1)
)

to guarantee a sufficient number of solutions. This deter-

mines the requirement for classical memory. Furthermore, since all intermediate
lists are stored in the superposition, we require quantum registers of size poly(d).

Next, we can simplify the expression for T Q

BLS
given in Eq. (9) by noting that

|L2(x1)| ≥ |L3(x1,x2)| ≥ . . . ≥ |Lk−1(x1, . . . ,xk−2)| = |Lk(x1, . . . ,xk−2)|. The

dominant term in the sum appearing in Eq. (9) is
√

(

|Lk|
|Lk(x1,...,xk−2)|

)

.

From Theorem 5, the product
√|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| in Eq. (9)

can be simplified to |L| k−2
2 (

√

det(C[1 . . . k − 1]))
d/2

, from where we arrive at the
expression for Tk-List as in the statement.
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The success probability of Algorithm 4.1 is determined by the success prob-
ability of the amplitude amplification run in Step 8. For this we consider the
precise form of the state |ΨF 〉 given in Eq. (6). This state is obtained by running
k − 1 (sequential) Grover algorithms. Each tensor |ΨLi(x1,...,xi−1)〉 in this state
is a superposition

|ΨLi(x1,...,xi−1)〉 =

√

1 − εi

|Li(x1, . . . ,xi−1)|
∑

x∈Li(x1,...,xi−1)

|x〉

+
√

εi

|Li \ Li(x1, . . . ,xi−1)|
∑

x∈Li\Li(x1,...,xi−1)

|x〉 ,

where εi < |Li(x1,...,xi)|
|Li| ≤ 2−Ω(d). The first inequality comes from the suc-

cess probability of Grover’s algorithm, Theorem 1, the second inequality is
due to the fact that all lists on a “lower” level are exponentially smaller than
lists on a “higher” level, see Theorem 5. Therefore, the success probability of
the amplitude amplification is given by

∏k−1
i=2

1−εi
|Li(x1,...,xi−1)| · 1−εk

|Lk(x1,...,xk−2)| ≥
(1 − 2−Ω(d))

∏k−1
i=2 |Li(x1, . . . ,xi−1)|−1. According to Theorem 2, after perform-

ing O
(

∏k
i=2 |Li(x1, . . . ,xi)| |Lk(x1, . . . ,xk−2)|

)

amplitude amplification itera-
tions, in Step 9 we measure a “good” (x2, . . . ,xk) with probability at least
1 − 2−Ω(d). ��

4.1 Quantum Version of the Configuration Search Algorithm From
[HKL18]

The main difference between the two algorithms for the configuration prob-
lem – the algorithm due to Bai–Laarhoven–Stehlé [BLS16] and due to Herold–
Kirshanova–Laarhoven [HKL18] – is that the latter constructs intermediate fil-
tered lists, Fig. 1. We use quantum enumeration to construct and classically store
these lists.

For a fixed x, quantum enumeration repeatedly applies Grover’s algorithm
to an input list Li, where each application returns a random vector from the
filtered list Li(x) with probability greater than 1 − 2−Ω(d). The quantum com-

plexity of obtaining one vector from Li(x) is O
(√

|Li|
|Li(x)|

)

. We can also check
that the returned vector belongs to Li(x) by checking its inner product with x.
Repeating this process ˜O(|Li(x)|) times, we obtain the list Li(x) stored classi-
cally in time ˜O(

√|Li| · |Li(x)|). The advantage of constructing the lists Li(x) is
that we can now efficiently prepare the state |ΨL2(x)〉 ⊗ . . . ⊗ |ΨLk(x)〉 (cf. Line 3
in Algorithm 4.1) and run amplitude amplification on the states |ΨLi(x)〉 rather
than on |ΨLi

〉. This may give a speed up if the complexity of the Steps 3–11 of
Algorithm 4.1, which is of order ˜O(T Q

BLS
/ |L1|), dominates the cost of quantum

enumeration, which is of order ˜O(
√|Li| · |Li(x)|). In general, we can continue

creating the “levels” as in [HKL18] (see Fig. 1b) using quantum enumeration and
at some level switch to the quantum BLS style algorithm. For example, for some
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level 1 < j ≤ k−1, we apply quantum enumeration to obtain Li(x1, . . . ,xj−1) for
all i > j. Then for all (j−1)-tuples (x1, . . . ,xj−1) ∈ L1×. . .×Lj−1(x1, . . . ,xj−2),
apply Grover’s algorithm as in steps 3–11 of Algorithm 4.1 but now to the states
|ΨLj(x1,...,xj−1)〉⊗ . . .⊗|ΨLk(x1,...,xj−1)〉. Note that since we have these lists stored
in memory, we can efficiently create this superposition. In this way we obtain a
quantum “hybrid” between the HKL and the BLS algorithms: until some level j,
we construct the intermediate lists using quantum enumeration, create superpo-
sitions over all the filtered lists at level j for some fixed values x1, . . . ,xj−1, and
apply Grover’s algorothm to find (if it exists) the (k − j + 1) tuple (xj , . . . ,xk).
Pseudocode for this approach is given in Algorithm 4.2.

Algorithm 4.2. Hybrid quantum algorithm for the Configuration Problem
Input: L1, . . . , Lk, lists of vectors from Sd−1, target configuration Ci,j = 〈xi , xj〉 ∈
R

k×k, ε > 0, 2 ≤ j ≤ k − 1, level we construct the intermediate filtered lists until.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε
for all i, j.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Use quantum enumeration to construct Li(x1) for ∀i ≥ 2
4: for all x2 ∈ L2(x1) do
5: Use quantum enumeration to construct Li(x1,x2), ∀i ≥ 3

6:
. . .

7: for all xj−1 ∈ Lj−1(x1, . . . ,xj−2) do
8: Use quantum enumeration to construct Li(x1, . . . ,xj−1), ∀i ≥ j

9: Prepare the state |ΨLj(x1,...,xj−1)〉 ⊗ . . . ⊗ |ΨLk(x1,...,xj−1)〉
10: for all i = j + 1 . . . k − 1 do
11: Run Grover’s on the ith register with the checking function f[i−1],i

to transform the state |ΨLi(x1,...,xj−1)〉 to the state |ΨLi(x1,...,xi−1)〉.
12: Run Grover’s on the kth register with the checking function f[k−2],k to

transform the state |ΨLk(x1,...,xj−1)〉 to the state |ΨLk(x1,...,xk−2)〉.
13: Let A be unitary that implements Steps 9–12, i.e.

A |0⊗(k−j+1)〉 → |ΨLj(x1,...,xj−1)〉 ⊗ |ΨLk(x1,...,xk−2)〉

14: Run amplitude amplification using the unitary −ARA−1Og, where g is
defined in Eq. (8).

15: Measure all the registers, obtain a tuple (xj , . . . ,xk).
16: if (x1, . . . ,xk) satisfies C then
17: Lout ← Lout ∪ {(x1, . . . ,xk)}.

Let us now analyse Algorithm 4.2. To simplify notation, we denote L
(j)
i =

Li(x1, . . . ,xj−1) for all i ≥ j, letting L
(1)
i be the input lists Li (so the upper

index denotes the level of the list).
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All O notations are omitted. Each quantum enumeration of L
(j)
i from L

(j−1)
i

costs
√

∣

∣

∣L
(j−1)
i

∣

∣

∣

∣

∣

∣L
(j)
i

∣

∣

∣. On level 1 ≤ � ≤ j − 1, we repeat such an enumeration
∏�−1

r=1

∣

∣

∣L
(r)
r

∣

∣

∣ times to create the intermediate lists, once for each (x1, . . . ,x�−1).

Once the lists L
(j)
i , i ≥ j, are constructed, Grover’s algorithm gives the state

|Ψ
L

(j)
j

〉 . . . |Ψ
L

(k−1)
k−1

〉 |Ψ
L
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∣
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(Steps 11–12 in Algorithm 4.2). On Step 14 the unitary A must be executed
√

∣

∣

∣L
(j)
j
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∣

∣ · . . . ·
∣

∣

∣L
(k−1)
k−1

∣

∣

∣ ·
∣

∣

∣L
(k−1)
k

∣

∣

∣ times to ensure that the measurement of the

system gives the “good” tuple (xj , . . . ,xk).
Such tuples may not exist: for j ≥ 3, i.e. for fixed x1,x2, we expect to have less

than 1 such tuples. So most of the time, the measurement will return a random
(k − j + 1)-tuple, which we classically check against the target configuration C.
Overall, given on input a level j, the runtime of Algorithm 4.2 is

T Q
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(11)

Similar to Eq. (9), all the list sizes in the above formula are assumed to be greater
than or equal to 1. If, for a certain configuration it happens that the expected size
of a list is less than 1, it should be replaced with 1 in this expression. The above
complexity can be expressed via the subdeterminants of the target configuration
C using Theorem 5. An optimal value of level j for a given C can be found via
numerical optimisations that searches for j that minimises Eq. (11).

Speed-Ups With Nearest Neighbour Techniques. We can further speed up the
creation of filtered lists in both Algorithms 4.1 and 4.2 with a quantum version
of nearest neighbour search. In the full version [KMPR19, App. B] we describe
a locality sensitive filtering (LSF) technique (first introduced in [BDGL16]) in
the quantum setting, extending the idea of Laarhoven [Laa15] to k > 2.

Numerical Optimisations. We performed numerical optimisations for the target
configuration C which minimises the runtime of the two algorithms for the con-
figuration problem given in this section. The upper part of Table 2 gives time
optimal c for Eq. (10) and the c′ of the corresponding memory requirements for
various k. These constants decrease with k and, eventually, those for time become
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close to the value 0.2989. The explanation for this behaviour is the following:
looking at Eq. (9) the expression decreases when the lists Li(x1, . . . ,xi−1) under
the square root become smaller. When k is large enough, in particular, once
k ≥ 6, there is a target configuration that ensures that |Li(x1, . . . ,xi−1)| are of
expected size 1 for levels i ≥ 4. So for k ≥ 6, under the observation that the
maximal value in the sum appearing in Eq. (9) is attained by the last summand,
the runtime of Algorithm 4.1 becomes T Q

BLS
= |L1|3/2 · √|L2(x1)| |L3(x1,x2)|.

The list sizes can be made explicit using Eq. (3) when a configuration C is such
that |Li(x1, . . . ,xi−1)| are of expected size 1. Namely, for k ≥ 6 and for configu-
ration C that minimises the runtime exponent, Eq. (9) with the help of Eq. (3)

simplifies to
(

(

1
detC

)
5

2(k−1)
√

det C[1, 2, 3]
)d/2

.

Table 2. Asymptotic complexity exponents for the approximate k-List problem, base 2.
The top part gives optimised runtime exponents and the corresponding memory expo-
nents for Algorithm 4.1. These are the results of the optimisation (minimisation) of the
runtime expression given in Eq. (10). The middle part gives the runtime and memory
exponents for Algorithm 4.2, again optimising for time, with j = 2, i.e. when we use
quantum enumeration to create the second level lists Li(x1), i ≥ 2. The bottom part
gives the exponents for Algorithm 4.2 with j = 2 in the memory optimal setting.

k 2 3 4 5 6 . . . 28 29 30

Quantum version of [BLS16] Algorithm 4.1

Time 0.3112 0.3306 0.3289 0.3219 0.3147 . . . 0.29893 0.29893 0.29893

Space 0.2075 0.1907 0.1796 0.1685 0.1596 . . . 0.1395 0.1395 0.1395

Quantum Hybrid version of [BLS16,HKL18] Algorithm 4.2

Time 0.3112 0.3306 0.3197 0.3088 0.3059 . . . 0.29893 0.29893 0.29893

Space 0.2075 0.1907 0.1731 0.1638 0.1595 . . . 0.1395 0.1395 0.1395

Low memory Quantum Hybrid version of [BLS16,HKL18] Algorithm 4.2

Time 0.3112 0.3349 0.3215 0.3305 0.3655 . . . 0.6352 0.6423 0.6490

Space 0.2075 0.1887 0.1724 0.1587 0.1473 . . . 0.0637 0.0623 0.0609

The optimal runtime exponents for the hybrid, Algorithm 4.2, with j = 2 are
given in the middle part of Table 2. Experimentally, we establish that j = 2 is
optimal for small values of k and that this algorithm has the same behaviour for
large values of k as Algorithm 4.1. The reason is the following: for the runtime
optimal configuration C the intermediate lists on the same level increase in size
“from left to right”, i.e. |L2(x1)| ≤ |L3(x1)| ≤ . . . ,≤ |Lk(x1)|. It turns out that
|Lk(x1)| becomes almost |Lk| (i.e. the target inner product is very close to 0), so
quantumly enumerating this list brings no advantage over Algorithm 4.1 where
we use the initial list Lk, of essentially the same size, in Grover’s algorithm.
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5 Quantum Configuration Search via k-Clique Listing

In this section we introduce a distinct approach to finding solutions of the con-
figuration problem, Definition 3, via k-clique listing in graphs. We achieve this
by repeatedly applying k-clique finding algorithms to the graphs. Throughout
this section we assume that L1 = · · · = Lk = L. We first solve the configuration
problem with k = 3, C the balanced configuration with all off diagonals equal
to −1/3 and the size of L determined by Eq. (2). We then adapt the idea to
the case for general k. In the full version [KMPR19, App. C] we give the k = 4
balanced case and consider unbalanced configurations.

Let G = (V,E) be an undirected graph with known vertices and an oracle
OG : V 2 → {True, False}. On input (x1,x2) ∈ V 2, OG returns True if (x1,x2) ∈
E and False otherwise. A k-clique is {x1, . . . ,xk} such that OG(xi,xj) = True
for i �= j. Given k, (xi,xj) ∈ E ⇐⇒ |〈xi , xj〉 + 1/k| ≤ ε for some ε > 0. In
both cases, the oracle computes a d dimensional inner product and compares the
result against the target configuration. Throughout we let |V | = n and |E| = m.

5.1 The Triangle Case

We start with the simple triangle finding algorithm of [BdWD+01]. A triangle
is a 3-clique. Given the balanced configuration and k = 3 on Sd−1, we have

n = |L| = ˜O
(

(3
√

3/4)
d/2

)

, m = |L| |L(x1)| = ˜O
(

n2(8/9)d/2
)

(12)

by Eq. (2) and Theorem 5 respectively,6 We expect Θ(n) triangles to be
found [HKL18]. The algorithm of [BdWD+01] consists of three steps:

1. Use Grover’s algorithm to find any edge (x1,x2) ∈ E among all potential
O(n2) edges.

2. Given an edge (x1,x2) from Step 1, use Grover’s algorithm to find a vertex
x3 ∈ V , such that (x1,x2,x3) is a triangle.

3. Apply amplitude amplification on Steps 1–2.

Note that the algorithm searches for any triangle in the graph, not a fixed
one. To be more explicit about the use of the oracle OG, below we describe a
circuit that returns a triangle. Step 1 takes the state 1

n

∑

(x1,x2)∈V 2

|x1〉 ⊗ |x2〉 and

applies O(
√

n2/m) times the Grover iteration given by −H⊗2d̄RH⊗2d̄OG. The

output is the state
√

ε
n2−m

∑

(x1,x2) �∈E

|x1〉 ⊗ |x2〉 +

√

1 − ε

m

∑

(x1,x2)∈E

|x1〉 ⊗ |x2〉,

where ε represents the probability of failure. We disregard this as in the proof of
Theorem 6. We then join with a uniform superposition over the vertices to create

6 As we are in the balanced configuration case, and our input lists are identical,
Theorem 5 has no dependence on j.
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the state 1√
m

∑

(x1,x2)∈E

|x1〉 ⊗ |x2〉 ⊗ 1√
n

∑

x3∈V

|x3〉 and apply −H⊗3d̄RH⊗3d̄OΔ
G

O(
√

n) times. This oracle OΔ
G outputs True on a triple from V 3 if each pair of

vertices has an edge. We call the final state |ΨF 〉. Let A |0⊗3〉 → |ΨF 〉, then we
apply amplitude amplification with A repeated some number of times determined
by the success probability of A calculated below.

Given that oracle queries OG or OΔ
G have some poly(d) cost, we may calculate

the time complexity of this method directly from the query complexity. The cost
of the first step is O(

√

n2/m) and the second step O(
√

n). From Eq. (12), and
that the costs of Step 1 and Step 2 are additive, we see that O(

√
n) dominates,

therefore Steps 1–2 cost O(
√

n). The probability that Step 2 finds a triangle
is the probability that Step 1 finds an edge of a triangle. Given that there are
Θ(n) triangles, this probability is Θ(n/m), therefore by applying the amplitude
amplification in Step 3, the cost of finding a triangle is O(

√
m).7

The algorithm finds one of the n triangles uniformly at random. By the
coupon collector’s problem we must repeat the algorithm ˜O(n) times to find
all the triangles. Therefore the total cost of finding all triangles is ˜O(n

√
m) =

˜O(|L|3/2|L(x1)|1/2) ≈ 20.3349d+o(d) using 20.1887d+o(d) memory. This matches the
complexity of Algorithm 4.1 for k = 3 in the balanced case.

5.2 The General k-Clique Case

The algorithm generalises to arbitrary constant k. We have a graph with |L|
vertices, |L||L(x1)| edges, . . . , |L||L(x1)| . . . |L(x1, . . . ,xi−1)| i-cliques for i ∈
{3, . . . , k − 1}, and Θ(|L|) k-cliques. The following algorithm finds a k-clique,
with 2 ≤ i ≤ k − 1

1. Use Grover’s algorithm to find an edge (x1,x2) ∈ E among all potential
O(|L|2) edges.

...
i. Given an i-clique (x1, . . . ,xi) from step i − 1, use Grover’s algorithm to find

a vertex xi+1 ∈ V , such that (x1, . . . ,xi+1) is an (i + 1)-clique.
...

k. Apply amplitude amplification on Steps 1–(k − 1).

The costs of Steps 1–(k − 1) are additive. The dominant term is from Step
k − 1, a Grover search over |L|, equal to O(

√|L|). To determine the cost of
finding one k-clique, we need the probability that Steps 1–(k−1) find a k-clique.
We calculate the following probabilities, with 2 ≤ i ≤ k − 2

7 Note that this differs from [BdWD+01] as in general either of Step 1 or 2 may
dominate and we also make use of the existence of Θ(n) triangles.
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1. The probability that Step 1 finds a good edge, that is, an edge belonging to
a k-clique.

i. The probability that Step i finds a good (i + 1)-clique given that Step i − 1
finds a good i-clique.

In Step 1 there are O(|L||L(x1)|) edges to choose from, Θ(|L|) of which belong
to a k-clique. Thus the success probability of this Step is Θ(1/|L(x1)|). There-
after, in Step i, given an i-clique (x1, . . . ,xi) there are O(max{|L(x1, . . . ,xi)|, 1})
(i+1)-cliques on the form (x1, . . . ,xi,xi+1), Θ(1) of which are good. The success
probability of Steps 1–(k − 1) is equal to Θ

(

∏k−2
i=1 max {|L(x1, . . . ,xi)|, 1}−1

)

.
By applying amplitude amplification at Step k, we get the cost

O
⎛

⎝

√

|L|
√

√

√

√

k−2
∏

i=1

max {|L(x1, . . . ,xi)|, 1}
⎞

⎠,

for finding one k-clique. Multiplying the above expression by ˜O(|L|) gives the
total complexity for finding Θ(|L|) k-cliques. This matches the complexity of
Algorithm 4.1, Eq. (9), for balanced configurations for all k.

In the full version [KMPR19, App. C] we show how to adapt the above to
unbalanced configurations and achieve the same complexity as Algorithm 4.1.

6 Quantum Configuration Search via Triangle Listing

Given the phrasing of the configuration problem as a clique listing problem in
graphs, we restrict our attention to the balanced k = 3 case and appeal to
recent work on triangle finding in graphs. Let the notation be as in Sect. 5,
and in particular recall Eq. (12) then a triangle represents a solution to the
configuration problem.

The operations counted in the works discussed here are queries to an ora-
cle that returns whether an edge exists between two vertices in our graph.
While, in the case of [BdWD+01], it is simple to translate this cost into a time
complexity, for the algorithms which use more complex quantum data struc-
tures [Gal14,LGN17] it is not. In particular, the costs of computing various
auxiliary databases from certain sets is not captured in the total query cost.

The quantum triangle finding works we consider are [BdWD+01,Gal14,
LGN17]. In [BdWD+01] a simple algorithm based on nested Grover search and
amplitude amplification is given which finds a triangle in O(n +

√
nm) queries

to OG. For sufficiently sparse graphs G, with sparsity measured as m = O(nc)
and G becoming more sparse as c decreases, this complexity attains the opti-
mal Ω(n). This is the algorithm extended in Sect. 5. In [Gal14] an algorithm
is given that finds a triangle in ˜O(n5/4) queries to OG. This complexity has no
dependence on sparsity and is the currently best known result for generic graphs.
Finally in [LGN17] an interpolation between the two previous results is given as
the sparsity of the graph increases.
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Theorem 7 ([LGN17, Theorem 1]). There exists a quantum algorithm that
solves, with high probability, the triangle finding problem over graphs of n vertices
and m edges with query complexity

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

O(n +
√

nm) if 0 ≤ m ≤ n7/6

˜O(nm1/14) if n7/6 ≤ m ≤ n7/5

˜O(n1/6m1/3) if n7/5 ≤ m ≤ n3/2

˜O(n23/30m4/15) if n3/2 ≤ m ≤ n13/8

˜O(n59/60m2/15) if n13/8 ≤ m ≤ n2.

More specifically it is shown that for c ∈ (7/6, 2) a better complexity can be
achieved than shown in [BdWD+01,Gal14]. Moreover at the end points the two
previous algorithms are recovered; [BdWD+01] for c ≤ 7/6 and [Gal14] for c = 2.
We recall that these costs are in the query model, and that for c > 7/6, where
we do not recover [BdWD+01], we do not convert them into time complexity.

We explore two directions that follow from the above embedding of the con-
figuration problem into a graph. The first is the most näıve, we simply calculate
the sparsity regime (as per [LGN17]) that the graph, constructed as in Sect. 5.1,
lies in.

The second splits our list into triples of distinct sublists and considers graphs
formed from the union of said triples of sublists. The sublists are parameterised
such that the sparsity and the expected number of triangles in these new graphs
can be altered.

6.1 Näıve Triangle Finding

With G = (V,E) and n,m as in (12), we expect to have

m = O (

n2+δ
)

= O (

n1.5500
)

, δ = log(8/9)/log(3
√

3/4).

Therefore finding a single triangle takes ˜O(n23/30m4/15) = ˜O (

n1.1799
)

queries
to OG [LGN17]. If, to list the expected Θ(n) triangles, we have to repeat this
algorithm ˜O(n) times this leads to a total OG query complexity of ˜O(n2.1799) =
20.4114d+o(d) which is not competitive with classical algorithms [HK17] or the
approach of Sect. 5.

6.2 Altering the Sparsity

Let n remain as in Eq. (12) and γ ∈ (0, 1) be such that we consider Γ =
n1−γ disjoint sublists of L, �1, . . . , �Γ , each with n′ = nγ elements. There are
O(n3(1−γ)) triples of such sublists, (�i, �j , �k), with i, j, k pairwise not equal and
the union of the sublists within one triple, �ijk = �i ∪ �j ∪ �k, has size O(n′). Let
Gijk = (�ijk, Eijk) with (x1,x2) in �ijk × �ijk, (x1,x2) ∈ Eijk ⇐⇒ |〈x1,x2〉 +
1/3| ≤ ε. Using Theorem 5, each Gijk is expected to have

m′ = O (|�ijk| |�ijk(x1)|) = O
(

(n′)2(8/9)d/2
)

= O
(

n2γ(8/9)d/2
)
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edges. By listing all triangles in all Gijk we list all triangles in G, and as n is
chosen to expect Θ(n) triangles in G, we have sufficiently many solutions for the
underlying k-List problem. We expect, by Theorem 5

|�ijk||�ijk(x1)||�ijk(x1,x2)| = |�ijk|
(

|�ijk|(8/9)d/2
)(

|�ijk|(2/3)d/2
)

= O(n3γ)(16/27)d/2 = O(n3γ−2)

triangles per �ijk. We must at least test each �ijk once, even if O(n3γ−2) is
subconstant. The sparsity of �ijk given γ is calculated as

m′ = O
(

(n′)2+β(γ)
)

, β(γ) =
log(8/9)

γ log(3
√

3/4)
.

For given γ the number of �ijk to test is O(n3(1−γ)), the number of triangles
to list per �ijk is O(n3γ−2) – we always perform at least one triangle finding
attempt and assume listing them all takes ˜O(n3γ−2) repeats – and we are in
the sparsity regime c(γ) = 2+β(γ) [LGN17]. Let a, b represent the exponents of
n′,m′ respectively8 in Theorem 7 given by m′ = (n′)c(γ). We therefore minimise,
for γ ∈ (0, 1), the exponent of n in O(n3(1−γ)) · ˜O(n3γ−2) · ˜O((n′)a(m′)b),

3(1 − γ) + max{0, 3γ − 2} + aγ +

(

2γ +
log(8/9)

log(3
√

3/4)

)

b.

The minimal query complexity of n1.7298+o(d) = 20.326d+o(d) is achieved at γ = 2
3 .

The above method leaves open the possibility of finding the same triangle
multiple times. In particular if a triangle exists in Gij = (�ij , Eij), with �ij and
Eij defined analogously to �ijk and Eijk, then it will be found in Gijk for all
k, that is O(n1−γ) many times. Worse yet is the case where a triangle exists in
Gi = (�i, Ei) where it will be found O(n2(1−γ)) times. However, in both cases the
total number of rediscoveries of the same triangle does not affect the asymptotic
complexity of this approach. Indeed in the �ij case this number is the product
O(n2(1−γ)) ·O(n3γ ·(8/9)d/2) ·O(n1−γ) = O(n), the product of the number of �ij ,
the number of triangles9 per �ij and the number of rediscoveries per triangle in
�ij respectively. Similarly, this value is O(n) in the �i case and as we are required
to list O(n) triangles the asymptotic complexity remains the same.

7 Parallelising Quantum Configuration Search

In this section we deviate slightly from the k-List problem and the configuration
framework and target SVP directly. On input we receive {b1, . . . ,bd} ⊂ R

d, a
basis of L(B). Our algorithm finds and outputs a short vector from L(B). As in
all the algorithms described above, we will be satisfied with an approximation
to the shortest vector and with heuristic analysis.
8 Note that we are considering Gijk rather than G here, hence the n ↔ n′, m ↔ m′

notation change.
9 Given that |�i| = nγ , |�ij | = 2nγ , |�ijk| = 3nγ the expected numbers of triangles

differ only by a constant.
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We describe an algorithm that can be implemented using a quantum circuit
of width ˜O(N) and depth ˜O(

√
N), where N = 20.2075d+o(d). We therefore require

our input and output to be less than ˜O(
√

N), and if we were to phrase the 2-
Sieve algorithm as a 2-List problem we would not be able to read in and write
out the data. Our algorithm uses poly(d) classical memory. For the analysis, we
make the same heuristic assumptions as in the original 2-Sieve work of Nguyen–
Vidick [NV08].

All the vectors encountered by the algorithm (except for the final measure-
ment) are kept in quantum memory. Recall that for a pair of normalised vectors
x1,x2 to form a “good” pair, i.e. to satisfy ‖x1 ± x2‖ ≤ 1, it must hold that
|〈x1 , x2〉| ≥ 1

2 . The algorithm described below is the quantum parallel version
of 2-Sieve. Each step is analysed in the subsequent lemmas.

Algorithm 7.1. A parallel quantum algorithm for 2-Sieve
Input: {b1, . . . ,bd} ⊂ R

d a lattice basis
Output: v ∈ L(B), a short vector from L(B)

1: Set N ← 20.2075d+o(d) and set λ = Θ(
√

d · det(B)1/d) the target length.
2: Generate a list L1 ← {x1, . . . ,xN} of lattice vectors using an efficient lattice sam-

pling procedure, e.g. [Kle00].
3: Construct a list L2 ← {x′

1, . . . ,x
′
N} such that |〈xi , x′

i〉| ≥ 1/2 for x′
i ∈ L1. If no

such x′
i ∈ L1 exists, set x′

i ← 0.
4: Construct a list L3 ← {yi : yi ← min{‖xi ± x′

i‖} for all i ≤ N}
5: Swap the labels L1, L3. Reinitialise L2 and L3 to the zero state by transferring

their contents to auxiliary memory.
6: Repeat Steps 3–5 poly(d) times.
7: Output a vector from L1 of Euclidean norm less than λ.

Several remarks about Algorithm 7.1.

1. The bound on the repetition factor on Step 6 is, as in classical 2-Sieve algo-
rithms, appropriately set to achieve the desired norm of the returned vectors.
In particular, it suffices to repeat Steps 2–5 poly(d) times [NV08].

2. In classical 2-Sieve algorithms, if xi does not have a match x′
i, it is simply

discarded. Quantumly we cannot just discard an element from the system, so
we keep it as the zero vector. This is why, as opposed to the classical setting,
we keep our lists of exactly the same size throughout all the iterations.

3. The target norm λ is appropriately set to the desired length. The algorithm
can be easily adapted to output several, say T , short vectors of L(B) by
repeating Step 7 T times.

Theorem 8. Given on input a lattice basis L(B) = {b1, . . . ,bd} ⊂ R
d, Algo-

rithm 7.1 heuristically solves the shortest vector problem on L(B) with constant
success probability. The algorithm can be implemented using a uniform family of
quantum circuits of width ˜O(N) and depth ˜O(

√
N), where N = 20.2075d+o(d).
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We prove the above theorem in several lemmas. Here we only give proof
sketches and defer more detailed proofs to the full version [KMPR19, App. D].
In the first lemma we explain the process of generating a database of vectors
of size N having N processors. The main routines, Steps 3–5, are analysed in
Lemma 2. Finally, in Step 7 we use Grover’s algorithm to amplify the amplitudes
of small norm vectors.

Lemma 1. Step (2) of Algorithm 7.1 can be implemented using a uniform family
of quantum circuits of width ˜O(N) and depth poly log(N).

Lemma 2. Steps (3–5) of Algorithm 7.1 can be implemented using a uniform
family of quantum circuits of width ˜O(N) and depth ˜O(

√
N).

Lemma 3. Step (7) of the Algorithm 7.1 can be implemented using a uniform
family of quantum circuits of width ˜O(N) and depth ˜O(

√
N).

Before we present our proofs for the above lemmas, we briefly explain our
computational model. We assume that each input vector bi is encoded in
d̄ = poly(d) qubits and we say that it is stored in a single register. We also
consider the circuit model and assume we have at our disposal a set of elemen-
tary gates – Toffoli, and all 1-qubit unitary gates (including the Hadamard and
Pauli X), i.e. a universal gate set that can be implemented efficiently. We further
assume that any parallel composition of unitaries can be implemented simulta-
neously. For brevity, we will often want to interpret (computations consisting
of) parallel processes to be running on parallel processors. We emphasise that
this is inconsequential to the computation and our analysis. However, thinking
this way greatly helps to understand the physical motivation and convey the
intuition behind the computation.

Proof sketch of Lemma 1. The idea is to copy the cell of registers, |B〉, encoding
the basis B = {b1, . . . ,bd} to N processors, where each processor is equipped
with poly log(N) qubits. The state |B〉 itself is a classical (diagonal) state made
of d̄ 2 = O(log2(N)) qubits. To copy B to all N processors, it takes �log(N)�
steps each consisting of a cascade of CNOT operations.

Each of the processors samples a single xi using a randomised sampling
algorithm, e.g. [Kle00]. This is an efficient classical procedure that can be imple-
mented by a reversible circuit of poly(d) depth and width. The exact same circuit
can be used to realise the sampling on a quantum processor.

Each processor i, having computed the xi, now keeps xi locally and also
copies it to a distinguished cell L1. The state of the system can be described as

|x1〉P1 |x2〉P2 . . . |xN 〉PN |x1,x2 . . .xN 〉L1 |ancilla〉
where Pi is the register in possession of processor i. The total depth of the circuit
is O(log(N)) to copy plus poly log(N) to sample plus O(1) to copy to the list
L1. Each operation is carried out by N processors and uses poly log(N) qubits.
Thus the total depth of a quantum circuit implementing Step (2) is poly log(N)
and its width is ˜O(N). ��
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Proof sketch of Lemma 2. The key idea to construct the list L2 is to let each
processor Pi, which already has a copy of |xi〉 ,xi ∈ L1, search through L1 (now
stored in the distinguished cell L1) to find a vector x′

i such that |〈xi , x′
i〉| ≥ 1/2

(if no such x′
i ∈ L1, set x′

i = 0). The key ingredient is to parallelise this search,
i.e. let all processors do the search at the same time. The notion of parallelisation
is however only a (correct) interpretation of the operational meaning of the
unitary transformations. It is important to stress that we make no assumptions
about how data structures are stored, accessed and processed, beyond what is
allowed by the axioms of quantum theory and the framework of the circuit model.

For each processor i, we define a function fi(y) = 1 if |〈xi , y〉| ≥ 1/2 and
0 otherwise; and let Wf and Df be the maximal width and depth of a unitary
implementing any fi. It is possible to implement a quantum circuit of ˜O(N ·Wf )
width and ˜O(

√
NDf ) depth that can in parallel find solutions to all fi, 1 ≤ i ≤

N [BBG+13]. This quantum circuit searches through the list in parallel, i.e. each
processor can simultaneously access the memory and search. Note, fi is really
a reduced transformation. The “purification” of fi is a two parameter function
f : L1×L1 → {0, 1}. However, in each processor i, one of the inputs is “fixed and
hardcoded” to be xi. The function f itself admits an efficient implementation
in the size of the inputs, since this is the inner product function and also has a
classical reversible circuit consisting of Toffoli and NOT gates. Once the search is
done, it is expected with probability greater than 1−2−Ω(d) that each processor
i will have found an index ji, s.t. |〈xi , xji〉| ≥ 1/2, xi,xji ∈ L1. One can always
check if the processor found a solution, otherwise the search can be repeated
a constant number of times. If none of the searches found a “good” ji, we set
xji = 0. Else, if any of the searches succeed, we keep that index ji.

At this point we have a virtual list L2, which consists of all indices ji. We
create a list L3 in another distinguished cell, by asking each processor to compute
y+

i = xi + xji and y−
i = xi − xji and copy into the ith register the shorter of

y+
i and y−

i , in the Euclidean length. The state of the system now is,

|x1〉P1 . . . |xN 〉PN |y1〉P1 . . . |yL〉PN |x1 . . .xN 〉L1 |y1 . . .yN 〉L3 |ancilla〉 .

A swap between qubits say, S and R, is just CNOTSR◦CNOTRS◦CNOTSR, and
thus the Swap in Step 5 between L1 and L2 can be done with a depth 3 circuit.
Finally reinitialise the lists L2 and L3 by swapping them with two registers of
equal size that are all initialised to zero. This unloads the data from the main
memories (L2, L3) and enables processors to reuse them for the next iteration.

The total depth of the circuit is ˜O(
√

N) (to perform the parallel search for
“good” indices ji), poly log N (to compute the elements of the new list L3 and
copy them), and O(1) (to swap the content in memory registers). Thus, in total
we have constructed a circuit of ˜O(

√
N) depth and ˜O(N) width. ��

Proof sketch of Lemma 3. Given a database of vectors of size N and a norm
threshold λ, finding a vector from the database of Euclidean norm less than λ
amounts to Grover’s search over the database. It can be done with a quantum
circuit of depth ˜O(

√
N). It could happen that the threshold λ is set to be too
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small, in which case Grover’s search returns a random element form the database.
In that case, we repeat the whole algorithm with an increased value for λ. After
Θ(1) repetitions, we heuristically obtain a short vector from L(B). ��
Proof sketch of Theorem 8. As established from the lemmas above, each of Step
2, Steps 3–5 and Step 7 can be realised using a family of quantum circuits of
depth and width (at most) ˜O(

√
N) and ˜O(N) respectively. However, Steps 3–5

run O(poly(d)) times, thus the total depth of the circuit now goes up by at most
a multiplicative factor of O(poly(d)) = O(poly log(N)). The total depth and
width of a circuit implementing Algorithm 7.1 remains as ˜O(

√
N) and ˜O(N)

respectively as ˜O notation suppresses subexponential factors. ��

7.1 Distributed Configuration Search: Classical Analogue

Algorithm 7.1 should be compared with a classical model where there are N =
20.2075d+o(d) computing nodes, each equipped with poly(d) memory. It suffices for
these nodes to have a nearest neighbour architecture, where node i is connected
to nodes i − 1 and i + 1, and arranged like beads in a necklace. We cost one
time unit for poly(d) bits sent from any node to an adjacent node. A comparable
distributed classical algorithm would be where each node, i, receives the basis
B and samples a vector vi. In any given round, node i sends ṽi to node i + 1
and receives ṽi−1 from node i − 1 (in the first round ṽi := vi). Then each node
checks if the vector pair (vi, ṽi−1) gives a shorter sum or difference. If yes, it
computes v(2)

i = min{vi ± ṽi−1} and sets ṽi := vi−1. After N rounds every
node i has compared their vector vi with all N vectors sampled. The vectors vi

can be discarded and the new round begins with v(2)
i being the new vector. The

process is repeated poly(d) many times leading to O(N) · poly(d) time steps.
Thus this distributed algorithm needs ˜O(N) = 20.2075d+o(d) time.
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Abstract. In symmetric cryptanalysis, the model of superposition
queries has led to surprising results, with many constructions being bro-
ken in polynomial time thanks to Simon’s period-finding algorithm. But
the practical implications of these attacks remain blurry. In contrast, the
results obtained so far for a quantum adversary making classical queries
only are less impressive.

In this paper, we introduce a new quantum algorithm which uses
Simon’s subroutines in a novel way. We manage to leverage the alge-
braic structure of cryptosystems in the context of a quantum attacker
limited to classical queries and offline quantum computations. We obtain
improved quantum-time/classical-data tradeoffs with respect to the cur-
rent literature, while using only as much hardware requirements (quan-
tum and classical) as a standard exhaustive search with Grover’s algo-
rithm. In particular, we are able to break the Even-Mansour construc-
tion in quantum time Õ(2n/3), with O(2n/3) classical queries and O(n2)
qubits only. In addition, we improve some previous superposition attacks
by reducing the data complexity from exponential to polynomial, with
the same time complexity.

Our approach can be seen in two complementary ways: reusing super-
position queries during the iteration of a search using Grover’s algorithm,
or alternatively, removing the memory requirement in some quantum
attacks based on a collision search, thanks to their algebraic structure.

We provide a list of cryptographic applications, including the Even-
Mansour construction, the FX construction, some Sponge authenticated
modes of encryption, and many more.
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1 Introduction

Ever since Shor [39] introduced his celebrated quantum polynomial-time algo-
rithm for solving factorization and Discrete Logarithms, both problems believed
to be classically intractable, post-quantum cryptography has become a subject
of wide interest. Indeed, the security of classical cryptosystems relies on compu-
tational assumptions, which until recently, were made with respect to classical
adversaries; if quantum adversaries are to be taken into account, the landscape
of security is bound to change dramatically.

While it is difficult to assert the precise power of quantum computers, which
are yet to come, it is still possible to study quantum algorithms for cryptographic
problems, and to estimate the computational cost of solving these problems for a
quantum adversary. The ongoing project by NIST [35] for post-quantum asym-
metric schemes aims to replace the current mostly used ones by new standards.

In symmetric cryptography, the impact of quantum computing seems, at first
sight, much more limited. This is because the security of most of symmetric-key
schemes is not predicated on structured problems. Symmetric-key schemes are
required to be computed extremely efficiently, and designers must avoid such
computationally expensive operations. Grover’s quantum search algorithm [22],
another cornerstone of quantum computing, speeds up by a quadratic factor
exhaustive search procedures. This has led to the common saying that “doubling
the key sizes” should ensure a similar level of post-quantum security.

However, the actual post-quantum security of symmetric-key schemes
requires more delicate treatment. Recovering the secret key via exhaustive search
is only one of all the possible approaches. The report of the National Academy
of Sciences on the advent of quantum computing [34] also states that “it is pos-
sible that there is some currently unknown clever quantum attack” that would
perform much better than Grover’s algorithm. Indeed, cryptographers are mak-
ing significant progress on quantum attackers with superposition queries, which
break many symmetric-key schemes in polynomial time.

Quantum Generic Attacks in Q1 and Q2 Models. Quantum attacks can be
mainly classified into two types [20,23,25], Q1 model and Q2 model, assum-
ing different abilities for the attacker. In the Q1 model, attackers have an access
to a quantum computer to perform any offline computation, while they are only
allowed to make online queries in a classical manner. In the Q2 model, besides
the offline quantum computation, attackers are allowed to make superposition
queries to a quantum cryptographic oracle. Here, we briefly review previous
results in these models to introduce the context of our results.

The Q2 model is particularly interesting as it yields some attacks with a very
low cost. Kuwakado and Morii [29,30] showed that the Even-Mansour cipher
and the three-round Feistel networks, classically proven secure if their underly-
ing building blocks are ideal, were broken in polynomial time. This exponential
speedup, the first concerning symmetric cryptography, was obtained thanks to
Simon’s algorithm [40] for recovering a Boolean hidden shift. Later on, more
results have been obtained in this setting, with more generic constructions
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broken [24,31], and an exponential acceleration of slide attacks, which target
ciphers with a self-similar structure. Versions of these attacks [6] for construc-
tions with modular additions use Kuperberg’s algorithm [27], allowing a bet-
ter than quadratic speed-up. All these attacks, however, run in the model of
superposition queries, which models a quantum adversary having some inher-
ently quantum access to the primitives attacked. As such, they do not give any
improvement when the adversary only has classical access.

Stated differently, the attacks in the Q1 model are particularly relevant due to
their impact on current data communication technology. However, the quantum
algorithms that have been exploited for building attacks in the Q1 model are very
limited and have not allowed more than a quadratic speed-up. The most used
algorithm is the simple quantum exhaustive search with Grover’s algorithm. A
possible direction is the collision finding algorithm that is often said to achieve
“2n/3 complexity” versus 2n/2 classically. However, even in this direction, there
are several debatable points; basic quantum algorithms for finding collisions
have massive quantum hardware requirements [9]. There is a quantum-hardware-
friendly variant [12], but then the time complexity becomes suboptimal.

In summary, attacks using Simon’s algorithm could achieve a very low com-
plexity but could only be applied in the Q2 model, a very strong model. In
contrast, attacks in the Q1 model are practically more relevant, but for now the
obtained speed-ups were not surprising.

Another model to consider when designing quantum attacks is whether the
attacker has or not a big amount of quantum memory available. Small quantum
computers seem like the most plausible scenario, and therefore attacks needing a
polynomial amount of qubits are more practically relevant. Therefore, the most
realistic scenario is Q1 with small quantum memory.

Our Main Contribution. The breakthrough we present in this paper is the first
application of Simon’s algorithm [40] in the Q1 model, which requires signif-
icantly less than O (

2n/2
)

classical queries and offline quantum computations,
only with poly(n) qubits, and no qRAM access (where n is the size of the secret).
Namely, we remove the superposition queries in previous attacks. The new idea
can be applied to a long list of ciphers and modes of operation. Let us illustrate
the impact of our attacks by focusing on two applications:

The first application is the key recovery on the Even-Mansour construction,
which is one of the simplest attacks using Simon’s algorithm. Besides the polyno-
mial time attacks in the Q2 model, Kuwakado and Morii also developed an attack
in the Q1 model with O (

2n/3
)

classical queries, quantum computations, qubits,
and classical memory [30]. The extension of this Q1 attack by Hosoyamada and
Sasaki [23] recovers the key with O (

23n/7
)

classical queries, O (
23n/7

)
quantum

computations, polynomially many qubits and O (
2n/7

)
classical memory (to bal-

ance classical queries and quantum computations). Our attack in the Q1 model
only uses polynomially many qubits, yet only requires O (

2n/3
)

classical queries,
O (

n32n/3
)

quantum computations and poly(n) classical memory.
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The second application is the key recovery on the FX-construction
FXk,kin,kout

, which computes a ciphertext c from a plaintext p by c ← Ek(p ⊕
kin) ⊕ kout, where E is a block cipher, k is an m-bit key and kin, kout are two n-
bit keys. Leander and May proposed an attack in the Q2 model with O (

n2m/2
)

superposition queries, O (
n32m/2

)
quantum computations, poly(n) qubits and

poly(n) classical memory [31].1 They combined Simon’s algorithm and Grover’s
algorithm in a clever way, while it became inevitable to make queries in an adap-
tive manner. For the Q1 model, the meet-in-the-middle attack [23] can recover
the key with O (

23(m+n)/7
)

complexities. Our results can improve the previous
attacks in two directions. One is to reduce the amount of superposition queries in
the Q2 model to the polynomial order and convert the adaptive attack to a non-
adaptive one. The other is to completely remove the superposition queries. The
comparison of previous quantum attacks and our attacks on Even-Mansour and
the FX construction is shown in Table 1. Other interesting complexity trade-offs
are possible, as shown in detail in Sects. 4 and 5.

Table 1. Previous and new quantum attacks on Even-Mansour and FX, assuming that
m = O (n).

Target Model Queries Time Q-memory C-memory Reference

EM Q2 O (n) O (
n3

) O (n) O (
n2

)
[30]

Q1 O (
2n/3

) O (
2n/3

) O (
2n/3

) O (
2n/3

)
[30]

Q1 O (
23n/7

) O (
23n/7

) O (n) O (
2n/7

)
[23]

Q1 O (
2n/3

) O (
n32n/3

) O (
n2

) O (n) Section 5

FX Q2 O (
n2m/2

) O (
n32m/2

) O (
n2

)
0 [31]

Q2 O (n) O (
n32m/2

) O (
n2

) O (n) Section 4

Q1 O (
23(m+n)/7

) O (
23(m+n)/7

) O (n) O (
2(m+n)/7

)
[23]

Q1 O (
2(m+n)/3

) O (
n32(m+n)/3

) O (
n2

) O (n) Section 5

Our New Observation. Here we describe our new algorithm used in the Q1 model
with the Even-Mansour construction as an example. Recall that the encryption
Ek1,k2 of the Even-Mansour construction is defined as Ek1,k2(x) = P (x⊕k1)⊕k2,
where P is a public permutation and k1, k2 ∈ {0, 1}n are the secret keys. Roughly
speaking, our attack guesses (2n/3)-bit of k1 (denoted by k

(2)
1 in Fig. 1) by

using the Grover search, and checks if the guess is correct by applying Simon’s
algorithm to the remaining (n/3)-bit of k1 (denoted by k

(1)
1 in Fig. 1). If we

were in the Q2 model, we could recover k1 using the technique by Leander and
May [31] in time Õ(2n/3). However, their technique is not applicable in the Q1
setting since quantum queries are required.

Our core observation that realizes the above idea in the Q1 model is that, we
can judge whether a function f ⊕ g has a period (i.e., we can apply Simon’s
algorithm) without any quantum query to g, if we have the quantum state

1 Here we are assuming that m is in O (n), which is the case for usual block ciphers.
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|ψg〉 := (
∑

x |x〉|g(x)〉)⊗cn (c is a small constant): If we have the quantum state
|ψg〉, then we can make the quantum state |ψf⊕g〉 := (

∑
x |x〉|(f ⊕ g)(x)〉)⊗cn

by making O (n) quantum queries to f . Once we obtain |ψf⊕g〉, by applying the
Hadamard operation H⊗n to each |x〉 register, we obtain the quantum state
(

∑

x1,u1

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉
)

⊗· · ·⊗
(

∑

xcn,ucn

(−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉
)

Then, roughly speaking, dim(Span(u1, . . . , ucn)) < n always holds if f ⊕ g has a
secret period s, while dim(Span(u1, . . . , ucn)) = n holds with a high probability
if f ⊕g does not have any period. Since the dimension of the vector space can be
computed in time O (

n3
)
, we can judge if f ⊕g has a period in time O (

n3
)
. Note

that we can reconstruct the quantum data |ψg〉 after judging whether (f ⊕ g)
has a period (with some errors) by appropriately performing uncomputations,
which help us use these procedures as a subroutine without measurement in
other quantum algorithms.

For the Even-Mansour construction, we set g : {0, 1}n/3 → {0, 1}n by
g(x) := Ek1,k2(x‖02n/3). Then we can make the quantum state |ψg〉 by clas-
sically querying x to g for all x ∈ {0, 1}n/3, which requires 2n/3 classical queries.
After obtaining the state |ψg〉, we guess k

(2)
1 . Suppose that here our guess is

k′ ∈ {0, 1}2n/3. We define fk′ : {0, 1}n/3 → {0, 1}n by fk′(x) := P (x‖k′). Then,
roughly speaking, our guess is correct if and only if the function fk′ ⊕ g has a
period k

(1)
1 . Thus we can judge whether the guess is correct without quantum

queries to g, by using our technique described above. Since k
(2)
1 can be guessed

in time Õ(2n/3) by using the Grover search, we can recover the keys by making
O(2n/3) classical queries and Õ(2n/3) offline quantum computations.

P

k
(2)
1

k
(1)
1

2n
3

n
3

k2

n

Grover search space

Apply Simon’s algorithm

Fig. 1. Idea of our Q1 attack on the Even-Mansour construction.

We will show how we can similarly attack the FX construction in the Q1
model, by guessing additional key bits (see Fig. 2).

Moreover, our attack idea in the Q1 model can also be used to reduce the
number of quantum queries of attacks in the Q2 model. The Leander and May’s
attack on the FX construction in the Q2 model [31] guesses the m-bit key k
of the FX construction FXk,kin,kout

and checks whether the guess is correct by
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E

k
(2)
in

k
(1)
in

2n−m
3

n+m
3

kout

n

Grover search space

Apply Simon’s algorithm

k

m

Fig. 2. Idea of our Q1 attack on the FX construction.

using Simon’s algorithm, which requires O(2m/2) online quantum queries and
Õ(2m/2) offline quantum computations. Roughly speaking, the guess k′ for the
key k is correct if and only if (fk′ ⊕ g)(x) has the secret period kin, where
fk′(x) = Ek′(x) and g(x) = FXk,kin,kout

(x). In the Q2 model, we can make the
quantum state |ψg〉 = (

∑
x |x〉|g(x)〉)⊗cn by making O (n) quantum queries to g.

Thus, by our new attack idea described above, we can break the FX construction
with O (n) online quantum queries and Õ(2m/2) offline quantum computations,
which exponentially improves the attack by Leander and May from the viewpoint
of quantum query complexity.

This exponential improvement on the quantum query complexity is due to
the separation of offline queries and online computations: In the previous attack
on the FX construction in the Q2 model by Leander and May, we have to do
online queries and offline computations alternately in each iteration of the Grover
search. Thus the number of online quantum queries becomes exponential in the
previous attack. On the other hand, in our new attack, the online queries (i.e.,
the procedures to make the quantum state |ψg〉) are completely separated from
offline computations. This enables us to decrease the number of quantum queries
exponentially, while we still need exponentially many offline computations.

Paper Organization. Section 2 gives preliminaries. Section 3 describes our
main algorithms. Section 4 shows applications of our algorithms in the Q2 model.
Section 5 shows applications of our algorithms in the Q1 model. Section 6 dis-
cusses further applications of our algorithm. Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some quantum computing notions and review
Simon’s and Grover’s algorithms. We refer to [36] for a broader presentation.
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2.1 The Quantum Circuit Model

It has become standard in the cryptographic literature to write quantum algo-
rithms in the circuit model, which is universal for quantum computing. We
only consider the logical level of quantum circuits, with logical qubits, not their
implementation level (which requires physical qubits, quantum error-correction,
etc). Although it is difficult to estimate the cost of a physical implementation
which does not yet exist, we can compare security levels as quantum operation
counts in this model. For example, Grover search of the secret key for AES-128
is known to require approximately 264 quantum evaluations of the cipher, and
284 quantum operations [21].

Qubits and Operations. A quantum circuit represents a sequence of quantum
operations, denoted as quantum gates, applied to a set of qubits. An individual
qubit is a quantum object whose state is an element of a two-dimensional Hilbert
space, with basis |0〉, |1〉 (analogs of the classical logical 0 and 1). Hence, the
state is described as a linear combination of |0〉, |1〉 with complex coefficients (a
superposition). We add to this a normalization condition: α|0〉+β|1〉 is such that
|α|2 + |β|2 = 1. When it is clear from context, we dismiss common normalization
factors.

When n qubits are given, the computational basis has 2n vectors, which
are all n-bit strings. The qubits start in a state |0〉, for example a fixed spin
or polarization. The sequence of quantum gates that is applied modifies the
superposition, thanks to constructive and destructive interferences. In the end,
we measure the system, and obtain some n-bit vector in the computational basis,
which we expect to hold a meaningful result.

All computations are (linear) unitary operators of the Hilbert space, and as
such, are reversible (this holds for the individual gates, but also for the whole
circuit). In general, any classical computation can be made reversible (and so,
implemented as a quantum circuit) provided that one uses sufficiently many
ancilla qubits (which start in the state |0〉 and are brought back to |0〉 after the
computation). Generally, on input |x〉, we can perform some computation, copy
the result to an output register using CNOT gates, and uncompute (perform
backwards the same operations) to restore the initial state of the ancilla qubits.
Uncomputing a unitary U corresponds to applying its adjoint operator U∗.

By the principle of deferred measurements, any measure that occurs inside
the quantum circuit can be deferred to the end of the computation.

Quantum Oracles. Many quantum algorithms require an oracle access. The dif-
ference they make with classical algorithms with this respect is that classical ora-
cles (e.g. cryptographic oracles such as a cipher with unknown key) are queried
“classically”, with a single value, while quantum oracles are unitary operators.
We consider oracle calls of the type:

|x〉
Of

|x〉
|y〉 |y ⊕ f(x)〉
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which XOR their output value to an output register (ensuring reversibility). If
we consider that |y〉 starts in the state |0〉, then f(x) is simply written here. If
the function f can be accessed through Of , we say it has superposition oracle
access.

Quantum RAM. Additionally to the use of “plain” quantum circuits with univer-
sal quantum computation, many algorithms require quantum random-access, or
being able to access at runtime a superposition of memory cells. This is a strong
requirement, since this requires an extensive quantum hardware (the qRAM)
and a huge architecture that is harder to build than a quantum circuit with a
limited number of qubits. Shor’s algorithm, Simon’s algorithm, Grover’s algo-
rithm do not require qRAM, if their oracle calls do not either, contrary to, e.g.,
the algorithm for quantum collision search of [9], whose optimal speedup can be
realized only by using massive qRAM.

Our algorithm has no such requirement, which puts it on the same level of
practicality as Grover’s algorithm for attacking symmetric primitives.

2.2 Simon’s Algorithm

Simon’s algorithm [40] gives an exponential speedup on the following problem.

Problem 1 (Simon’s problem). Suppose given access to a function f : {0, 1}n →
{0, 1}n that is either injective, or such that there exists s ∈ {0, 1}n with:

∀x, f(x) = f(y) ⇐⇒ y = x or y = x ⊕ s,

then find α.

In other words, the function f has a hidden Boolean period. It is also easy to
extend this algorithm to a hidden Boolean shift, when we want to decide whether
two functions f and g are such that g(x) = f(x ⊕ s) for all x. In practice, f
can fall in any set X provided that it can be represented efficiently, but in our
examples, we will consider functions producing bit strings.

Solving this problem with classical oracle access to f requires Ω
(
2n/2

)

queries, as we need to find a collision of f (or none, if there is no hidden period).
Simon [40] gives an algorithm which only requires O (n) superposition queries.
We fix c ≥ 1 a small constant to ensure a good success probability and repeat
cn times Algorithm 1.

We obtain either:

• a list of cn random values of y;
• a list of cn random values of y in the hyperplane y · s = 0.

It becomes now easy to test whether s exists or not. If it doesn’t, the system
of equations obtained has full rank. If it does exist, we can find it by solving
the system. Judging whether there exists such an s and actually finding it (if it
exists) can be done in time O (

n3
)

by Gaussian elimination.
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Algorithm 1. Quantum subroutine of Simon’s algorithm.
1: Start in the all-zero state |0〉|0〉 where the first register contains n qubits and the

second represents elements of X.
2: Apply Hadamard gates to obtain:

∑

x∈{0,1}n

|x〉|0〉

3: Query Of to obtain:

∑

x∈{0,1}n

|x〉|f(x)〉 =
∑

a∈X

⎛

⎝
∑

x∈{0,1}n|f(x)=a

|x〉
⎞

⎠ |a〉

4: Measure a (alternatively, we can defer this measurement), get a random value
a ∈ X and: ∑

x∈{0,1}n|f(x)=a

|x〉

5: Apply Hadamard gates:

∑

y∈{0,1}n

⎛

⎝
∑

x∈{0,1}n|f(x)=a

(−1)x·y

⎞

⎠ |y〉

6: Now measure the y register. There are two cases.
• Either f hides no period s, in which case we get a random y.
• Either f hides a period s, in which case the amplitude of |y〉 is:

∑

x∈{0,1}n|f(x)=a

(−1)x·y = (−1)x0·y + (−1)(x0⊕s)·y

which is zero if y · s = 1 and non-zero otherwise.
• In that case, measuring gives a random y such that y · s = 0.

Simon’s Algorithm in Cryptography. This algorithm has been used in many
attacks on modes of operation and constructions where recovering a secret
requires to find a hidden shift between two functions having bit-string inputs.
Generally, the functions to which Simon’s algorithm is applied are not injective,
and random collisions can occur. But a quick analysis (as done e.g. in [24]) shows
that even in this case, a mild increase of the constant c will increase the success
probability to a sufficient level. To be precise, the following proposition holds.

Proposition 1 (Theorem 2 in [24]). Suppose that f : {0, 1}n → X has a
period s = 0n, i.e., f(x ⊕ s) = f(x) for all x ∈ {0, 1}n, and satisfies

max
t�={s,0n}

Pr
x

[f(x ⊕ t) = f(x)] ≤ 1
2
. (1)

When we apply Simon’s algorithm to f , it returns s with a probability at least
1 − 2n · (3/4)cn.



Quantum Attacks Without Superposition Queries 561

2.3 Grover’s Algorithm

Grover’s algorithm [22] allows a quadratic speedup on classical exhaustive search.
Precisely, it solves the following problem:

Problem 2 (Grover’s problem). Consider a set X (the “search space”) whose
elements are represented on �log2(|X|)� qubits, such that the uniform superpo-
sition

∑
x∈X |x〉 is computable in O (1) time. Given oracle access to a function

f : X → {0, 1} (the “test”), find x ∈ X such that f(x) = 1.

Classically, if there are 2t preimages of 1, we expect one to be found in time
(and oracle accesses to f) O (|X|/2t). Quantumly, Grover’s algorithm finds one
in time (and oracle accesses to Of ) Õ

(√|X|/2t
)
. In particular, if there is one

preimage of 1, the running time is Õ
(√|X|

)
. If the superposition oracle for f

uses a ancilla qubits, then Grover’s algorithm requires a + �log2(|X|)� qubits
only.

Grover’s algorithm works first by producing the superposition
∑

x∈|X| |x〉. It

applies Õ
(√|X|/2t

)
times an operator which, by querying Of “moves” some

amplitude towards the preimages of 1.

3 Simon’s Algorithm with Asymmetric Queries

In this section, we introduce a problem that can be seen as a general combina-
tion of Simon’s and Grover’s problems, and that will be solved by an according
combination of algorithmic ideas. The problem has many cryptographic applica-
tions, and it will be at the core of our improved Q2 and Q1 time-memory-data
tradeoffs.

Problem 3 (Asymmetric Search of a Period). Let F : {0, 1}m×{0, 1}n → {0, 1}�

and g : {0, 1}n → {0, 1}� be two functions. We consider F as a family of functions
indexed by {0, 1}m and write F (i, ·) = fi(·). Assume that we are given quantum
oracle access to F , and classical or quantum oracle access to g. (In the Q1 setting,
g will be a classical oracle. In the Q2 setting, g will be a quantum oracle.)

Assume that there exists exactly one i ∈ {0, 1}m such that fi ⊕ g has a
hidden period, i.e.: ∀x ∈ {0, 1}n, fi0(x) ⊕ g(x) = fi0(x ⊕ s) ⊕ g(x ⊕ s) for some
s. Furthermore, assume that:

max
i∈{0,1}m\{i0}
t∈{0,1}n\{0n}

Pr
x←{0,1}n

[(fi ⊕ g)(x ⊕ t) = (fi ⊕ g)(x)] ≤ 1
2

(2)

Then find i0 and s.

In our cryptographic applications, g will be a keyed function such that adver-
saries have to make online queries to evaluate it, while F will be a function such
that adversaries can evaluate it offline. For example, the problem of recovering
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keys of the FX construction FXk,kin,kout
(x) = Ek(x⊕kin)⊕kout can be regarded

as a simple cryptographic instantiation of Problem 3: Set g(x) := FXk,kin,kout
(x)

and F (i, x) := Ei(x). Then, roughly speaking, the function fi ⊕ g has a period
kin if k = i, whereas it does not have any period if i = k and Condition (2)
holds. Thus we can know whether i = k by checking whether fi ⊕g has a period.

Justification of Condition (2). We added Condition (2) in Problem 3 because
the problem would be much harder to solve if we do not suppose any condition on
fi. Such assumptions are standard in the litterature of quantum attacks using
Simon’s algorithm (see for example [24, Sections 2.2 and 4] or [4, Section 3]).
This is reasonable for cryptographic applications, as a block cipher is expected
to behave like a random permutation, which makes the functions we construct in
our applications behave like random functions. This assumption is made in [24,
31], and such functions satisfy Condition (2) with an overwhelming probability.
Moreover, as remarked in [24], a cryptographic construction that fails to satisfy
Condition (2) would exhibit some poor differential properties which could be
used for cryptanalysis.

3.1 Existing Techniques to Solve the Problem

Here we explain existing algorithms to solve Problem 3 in both the Q1 model
and the Q2 model, with the algorithms to recover keys of the FX construction
as an example. Note that we consider the situation in which exponentially many
qubits are not available.

The Model Q1. In the Q1 model, when we are allowed to make only classical
queries to g := FXk,kin,kout

, there exists a Q1 algorithm to attack the FX con-
struction that uses a kind of meet-in-the-middle technique [23]. However, it does
not make use of the exponential speed-up of Simon’s algorithm, and its time
complexity and query complexity is O (

23(n+m)/7
)

(for m ≤ 4n/3).

The Model Q2. Problem 3 can be solved with O (
n2m/2

)
superposition queries

to F (i, x) = Ei(x) and g(x) = FXk,kin,kout
(x), and in time O (

n32m/2
)
, using the

Grover-meet-Simon algorithm of [31]. Indeed, we make a Grover search on index
i ∈ {0, 1}m. When testing whether a guess i for the key k is correct, we perform
O (n) queries to F and O (n) queries to g, to check whether fi ⊕ g has a hidden
period, hence whether the guess i is correct. Moreover, since superposition access
to F and g is allowed, we can test i in superposition as well.

3.2 An Algorithm for Asymmetric Search of a Shift

Here we describe our new algorithms to solve Problem 3. We begin with explain-
ing two observations on the Grover-meets-Simon algorithm in the Q2 model
described in Sect. 3.1, and how to improve it. Then we describe how to use the
idea to make a good algorithm to solve Problem 3 in the Q1 model.



Quantum Attacks Without Superposition Queries 563

Two Observations. Our first observation is that, when doing the Grover search
over i for Problem 3, each time a new i is tested, a new function fi is queried.
But, in contrast, the function g is always the same. We would like to take this
asymmetry into account, namely, to make less queries to g since it does not
change. This in turn has many advantages: queries to g can become more costly
than queries to fi.

Our second observation is that, for each i ∈ I, once we have a superposition
|ψg〉 =

⊗cn
(∑

x∈{0,1}n |x〉|g(x)〉
)

and given a quantum oracle access to fi, we
can obtain the information if fi ⊕ g has a period or not without making queries
to g.

From |ψg〉, we can make the state |ψfi⊕g〉 =
⊗cn

(∑
x∈{0,1}n |x〉

|fi(x) ⊕ g(x)〉
)

by making queries to fi. By applying usual Simon’s procedures
on |ψfi⊕g〉, we can judge if fi ⊕ g has a period. Moreover, by appropriately per-
forming uncomputations, we can recover |ψg〉 (with some errors) and reuse it in
other procedures.

With these observations in mind, below we give an intuitive description of
our algorithm Alg-PolyQ2 to solve Problem 3 in the Q2 model (we name our
algorithm Alg-PolyQ2 because it will be applied to make Q2 attacks with poly-
nomially many online queries in later sections). The main ideas of Alg-PolyQ2
are separating an online phase and offline computations, and iteratively reusing
the quantum data |ψg〉 obtained by the online phase.

Algorithm Alg-PolyQ2(informal)

1. Online phase: Make cn quantum queries to g to prepare |ψg〉.
2. Offline computations: Run the Grover search over i ∈ {0, 1}m. For each fixed

i, run a testing procedure test such that: (a) test checks if i is a good element
(i.e., fi ⊕ g has a period) by using |ψg〉 and making queries to fi, and (b)
after checking if i is good, appropriately performs uncomputations to recover
the quantum data |ψg〉.

A formal description of Alg-PolyQ2 is given in Algorithm 2. We fix a constant
c ≥ 1, to be set later depending on the probability of error wanted.

We show how to implement the testing procedure test in Algorithm 3 without
any new query to g, using only exactly 2cn superposition queries to F . To write
this procedure clearly, we consider a single function f in input, but remark that
it works as well if f is a superposition of fi (as will be the case when test is
called as the oracle of a Grover search).

In practice, Algorithm 3 works up to some error (see Remark 1), which is
amplified at each iteration of Algorithm 2. The complexity and success proba-
bility (including the errors) of Alg-PolyQ2 can be analyzed as below.

Proposition 2. Suppose that m is in O (n). Let c be a sufficiently large con-
stant.2 Consider the setting of Problem 3: let i0 ∈ {0, 1}m be the good ele-
ment such that g ⊕ fi0 is periodic and assume that (2) holds. Then Alg-PolyQ2
2 See Proposition 5 for a concrete estimate.
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Algorithm 2. Alg-PolyQ2.
1: Start in the all-zero state.
2: Using cn queries to g, create the state:

|ψg〉 =

cn⊗
⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

The circuit now contains |ψg〉, the “g-database”, and additional registers on
which we can perform Grover search. Notice that |ψg〉 contains cn independent
(and disentangled) registers.

3: Create the uniform superposition over indices i ∈ {0, 1}m:

|ψg〉 ⊗
∑

i∈{0,1}m

|i〉

4: Apply Grover iterations. The testing oracle is a unitary operator test that takes in
input a register for |i〉 and the “g-database”, and tests in superposition whether
fi ⊕ g has a hidden period. If this is the case, it returns |b ⊕ 1〉 on input |b〉.
Otherwise it returns |b〉. (Algorithm 3 gives the details for test in the case that i is
fixed.)

|ψg〉
test

|ψg〉
|i〉 |i〉
|b〉 |b or b ⊕ 1〉

The most important feature of test is that it does not change the g-database
(up to some errors). The registers holding |ψg〉 are disentangled before and after
the application of test.

5: After O
(
2m/2

)
Grover iterations, measure the index i.

6: If the hidden shift is also wanted, apply a single instance of Simon’s algorithm (or
re-use the database and perform a slightly extended computation of test to retrieve
the result).

finds i0 with a probability in Θ(1) by making O (n) quantum queries to g and
O (

n2m/2
)

quantum queries to F .3 The offline computation (the procedures
excluding the ones to prepare the state |ψg〉) of Alg-PolyQ2 is done in time
O (

(n3 + nTF )2m/2
)
, where TF is the time required to evaluate F once.

See Section A in the full version of the paper [5] for a proof.

Remark 1. Intuitively, the error produced in each iteration of Algorithm 3 is
bounded by the maximum, on i, of: p(i) := Pr [dim(Span(u1, . . . , ucn)) < n] ,
when u1, . . . , ucn are produced with Simon’s algorithm, i.e. the probability that
3 In later applications, F will be instantiated with unkeyed primitives, and quantum

queries to F are emulated with offline computations of primitives such as block
ciphers.
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Algorithm 3. The procedure test that checks if a function f ⊕ g has a period
against the g-database, without any new query to g.
1: We start with the g-database:

|ψg〉 =
cn⊗

⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

2: Using cn superposition queries to f , build the state:

|ψf⊕g〉 =
cn⊗

⎛

⎝
∑

x∈{0,1}n

|x〉|g(x) ⊕ f(x)〉
⎞

⎠

We will now perform, in a reversible way, the exact computations of Simon’s
algorithm to find if g ⊕ f has a hidden period or not (in which case f and g have
a hidden shift).

3: Apply
(
H⊗n ⊗ Im

)cn ⊗ I1 to |ψf⊕g〉 ⊗ |b〉, to obtain

⎛

⎝
∑

u1,x1∈{0,1}n

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉
⎞

⎠ ⊗ · · · (3)

· · · ⊗
⎛

⎝
∑

ucn,xcn∈{0,1}n

(−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉
⎞

⎠ ⊗ |b〉.

4: Compute d := dim(Span(u1, . . . , ucn)), set r := 0 if d = n and r := 1 if d < n, and
add r to b. Then uncompute d and r, and obtain

∑

u1,...,ucn
x1,...,xcn

(−1)u1·x1 |u1〉|(f ⊕ g)(x1)〉 ⊗ · · · (4)

· · · ⊗ (−1)ucn·xcn |ucn〉|(f ⊕ g)(xcn)〉 ⊗ |b ⊕ r〉.
Note that r in (4) depends on u1, . . . , ucn and now the last register may be entangled
with the registers of u1, . . . , ucn.

5: Uncompute
(
H⊗n ⊗ Im

)cn ⊗ I1.
6: Using cn new superposition queries to f , revert |ψf⊕g〉 to |ψg〉.

There are two cases:
• If f ⊕ g has a hidden period, then r = 1 always holds. Hence, in the output

register, we always write 1.
• If f ⊕ g does not have a hidden period, then with high probability, r = 0.

Hence, in the output register, we write 0.

Simon’s algorithm returns the incorrect answer “fi ⊕ g is periodic” even though
fi ⊕ g is not periodic. From condition (2), we can show that p(i) ≤ 2(n+1)/2((1+
1
2 )/2)cn/2 holds (see Lemma 1 in the full version of the paper [5]).
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Remark 2. Alg-PolyQ2 finds the index i such that fi ⊕ g has a period, but does
not return the actual period of fi ⊕ g. However, we can find the actual period of
fi ⊕ g (after finding i with Alg-PolyQ2) by applying Simon’s algorithm to fi ⊕ g.

Summary. With Alg-PolyQ2, we realize an “asymmetric” variant of Simon’s algo-
rithm, in which we store a “compressed” database for a single function g, which
is not modified (up to some errors) while we test whether another function f
has a hidden shift with g, or not. An immediate application of this algorithm
will be to achieve an exponential improvement of the query complexity of some
Q2 attacks on symmetric schemes. Indeed, in the context where Simon’s algo-
rithm and Grover’s algorithm are combined, it may be possible to perform the
queries to the secret-key cryptographic oracle only once, and so, to lower the
query complexity to O (n).

3.3 Asymmetric Search with Q1 Queries

In Alg-PolyQ2, (online) queries to g and (offline) queries to F are separated,
and only cn superposition queries to g are made. Hence another tradeoff is at
our reach, which was not possible when g was queried in each Grover iteration:
removing superposition queries to g completely.

Algorithm 4. Producing the g-database |ψg〉.
Input: Classical query access to g
Output: The g-database:

|ψg〉 =

cn⊗
⎛

⎝
∑

x∈{0,1}n

|x〉|g(x)〉
⎞

⎠

1: Start with the all-zero state
cn⊗

|0〉|0〉
2: Apply Hadamard gates:

cn⊗ ∑

x∈{0,1}n

|x〉|0〉

3: For each y ∈ {0, 1}n, query (classically) g(y), then apply a unitary which writes
g(y) in the second register if the first contains the value y.

This requires now to query the whole codebook for g to prepare the quantum
state |ψg〉. Once |ψg〉 is built, the second offline phase runs in exactly the same
way. Building |ψg〉 costs roughly 2n time (and classical queries), while going
through the search space for f takes 2m/2 iterations (and quantum queries to
F ). We call our new algorithm in the Q1 model Alg-ExpQ1 because it will be
applied to make Q1 attacks with exponentially many online queries in later
sections. The optimal point arrives when m = 2n.
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Below we give an intuitive description of our algorithm Alg-ExpQ1 to
solve Problem 3 in the Q1 model. As described above, the difference between
Alg-ExpQ1 and Alg-PolyQ2 is the online phase to prepare |ψg〉.
Algorithm Alg-ExpQ1(informal)

1. Online phase: Make 2n classical queries to g and prepare the state |ψg〉.
2. Offline computations: Run the Grover search over i ∈ {0, 1}m. For each fixed

i, run a testing procedure test such that: (a) test checks if i is a good element
(i.e., fi ⊕ g has a period) by using |ψg〉 and making queries fi, and (b) after
checking if i is good, appropriately perform uncomputations to recover the
quantum data |ψg〉.

A formal description of Alg-ExpQ1 is the same as that of Alg-PolyQ2 (Algo-
rithm 2) except that we make 2n classical queries to g to prepare the quantum
state |ψg〉. See Algorithm 4 for formal description of the online phase.

The complexity and success probability (including the errors) of Alg-ExpQ1
can be analyzed as below.

Proposition 3. Suppose that m is in O (n). Let c be a sufficiently large con-
stant.4 Consider the setting of Problem 3: let i0 ∈ {0, 1}m be the good element
such that g ⊕ fi0 is periodic and assume that (2) holds. Then Alg-ExpQ1 finds i0
with a probability in Θ(1) by making O (2n) classical queries to g and O (

n2m/2
)

quantum queries to F .5 The offline computation (the procedures excluding the
ones to prepare the state |ψg〉) of Alg-ExpQ1 is done in time O (

(n3 + nTF )2m/2
)
,

where TF is the time required to evaluate F once.

A proof is given in Section A in the full version of the paper [5].

Finding Actual Periods. The above algorithm Alg-ExpQ1 returns the index i0
such that fi0 ⊕ g has a period, but does not return the actual period. Therefore,
if we want to find the actual period of fi0 ⊕ g after finding i0, we have to apply
Simon’s algorithm to fi0 ⊕ g again. Now we can make only classical queries to g,
though, we can use the same idea with Alg-ExpQ1 to make an algorithm SimQ1
that finds the period of fi0 ⊕ g. Again, let c be a positive integer constant.

Algorithm SimQ1

1. Make 2n classical queries to g and prepare the quantum state |ψg〉.
2. Make cn quantum queries to fi0 to obtain the quantum state

∣
∣ψfi0⊕g

〉
=⊗cn (

∑
x |x〉|fi0(x) ⊕ g(x)〉).

3. Apply H⊗n to each |x〉 register to obtain the state

cn⊗
(

∑

x,u

(−1)x·u|u〉|fi0(x) ⊕ g(x)〉
)

.

4 See Proposition 5 for a concrete estimate.
5 Again, in later applications, F will be instantiated with unkeyed primitives, and

quantum queries to F are emulated with offline computations of primitives such as
block ciphers.
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4. Measure all |u〉 registers to obtain cn vectors u1, . . . , ucn.
5. Compute the dimension d of the vector space V spanned by u1, . . . , ucn. If

d = n − 1, return ⊥. If d = n − 1, compute the vector v = 0n ∈ {0, 1}n that
is orthogonal to V .

Obviously the probability that the above algorithm SimQ1 returns the period of
fi0 ⊕g is the same as the probability that the original Simon’s algorithm returns
the period, under the condition that cn quantum queries can be made to the
function fi0 ⊕ g. Thus, from Proposition 1, the following proposition holds.

Proposition 4. Suppose that fi0 ⊕ g has a period s = 0n and satisfies

max
t�={s,0n}

Pr
x

[(fi0 ⊕ g)(x ⊕ t) = (fi0 ⊕ g)(x)] ≤ 1
2
. (5)

Then SimQ1 returns s with a probability at least 1−2n ·(3/4)cn by making O (2n)
classical queries to g and cn quantum queries to fi0 . The offline computation of
SimQ1 (the procedures excluding the ones to prepare the state |ψg〉) runs in time
O (

n3 + nTf

)
, where Tf is the time required to evaluate fi0 once.

Proposition 5 (Concrete cost estimates). In practice, for Propositions 2
and 3, c � m/ (n log2(4/3)) is sufficient.

Proof. We need to have 4�π/
(
4 arcsin

(
2−m/2

))�2(n+1)/2(3/4)cn/2 < 1/2.
In practice, arcsin(x) � x and the rounding has a negligible impact. Hence,

we need that m/2 + (n + 1)/2 + log2(π) + log2(3/4)cn/2 < −1.
This reduces to c > log2(4/3)−1 (m + 3 + 2 log2(π)) /n � m/ (n log2(4/3)n).

Remark 3. If m = n, this means c � 2.5, and if m = 2n, c � 5.

4 Q2 Attacks on Symmetric Schemes with Reduced
Query Complexity

This section shows that our new algorithm Alg-PolyQ2 can be used to construct
Q2 attacks on various symmetric schemes. By using Alg-PolyQ2 we can expo-
nentially reduce the number of quantum queries to the keyed oracle compared
to previous Q2 attacks, with the same time cost.

In each application, we consider that one evaluation of each primitive (e.g.,
a block cipher) can be done in time O (1), for simplicity. For our practical esti-
mates, we use the cost of the primitive as our unit, and consider that it is greater
than the cost of solving the linear equation system. In addition, we assume that
key lengths of n-bit block ciphers are in O (n), which is the case for usual block
ciphers.
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4.1 An Attack on the FX Construction

Here we show a Q2 attack on the FX construction. As described in Sect. 3, the
FX construction builds an n-bit block cipher FXk,kin,kout

with (2n+m)-bit keys
(kin, kout ∈ {0, 1}n and k ∈ {0, 1}m) from another n-bit block cipher Ek with
m-bit keys as

FXk,kin,kout
(x) := Ek(x ⊕ kin) ⊕ kout. (6)

This construction is used to obtain a block cipher with long ((2n + m)-bit)
keys from another block cipher with short (m-bit) keys. Roughly speaking, in
the classical setting, the construction is proven to be secure up to O (

2(n+m)/2
)

queries and computations if the underlying block cipher is secure [26].
Concrete block ciphers such as DESX, proposed by Rivest in 1984 and ana-

lyzed in [26], PRINCE [8], and PRIDE [1] are designed based on the FX construc-
tion. To estimate security of these block ciphers against quantum computers, it
is important to study quantum attacks on the FX construction.

As briefly explained in Sect. 3, the previous Q2 attack by Leander and
May [31] breaks the FX construction by making O (

n2m/2
)

quantum queries,
and its time complexity is O (

n32m/2
)
.

Application of Our Algorithm Alg-PolyQ2. Below we show that, by applying
our algorithm Alg-PolyQ2, we can recover keys of the FX construction with only
O (n) quantum queries. The time complexity of our attack remains O (

n32m/2
)
,

which is the same as Leander and May’s.

Attack Idea. As explained in Sect. 3, the problem of recovering the keys k and
kin of the FX construction Fk,kin,kout

can be reduced to Problem 3: Define F :
{0, 1}m × {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n by

F (i, x) = Ei(x) ⊕ Ei(x ⊕ 1)
g(x) = FXk,kin,kout

(x) ⊕ FXk,kin,kout
(x ⊕ 1).

Then
fk(x) ⊕ g(x) = fk(x ⊕ kin) ⊕ g(x ⊕ kin) (7)

holds, i.e., fk ⊕ g(x) has a period kin (note that fk(x) = F (k, x)). If E is a
secure block cipher and Ei is a random permutation for each i, intuitively, fi ⊕g
does not have any period for i = k. Thus the problem of recovering k and kin

is reduced to Problem 3 and we can apply our algorithm Alg-PolyQ2. Formally,
the attack procedure is as follows.

Attack Description

1. Run Alg-PolyQ2 for the above F and g to recover k.
2. Apply Simon’s algorithm to fk ⊕ g to recover kin.
3. Compute kout = Ek(0n) ⊕ FXk,kin,kout

(0n).

Next we give a complexity analysis of the above attack.
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Analysis. We assume that m = O (n), which is the case for usual block ciphers. If
E is a secure block cipher and Ei is a random permutation for each i ∈ {0, 1}m,
we can assume that fk ⊕ g = Ek ⊕ Ek(· ⊕ 1) ⊕ FXk,kin,kout

⊕ FXk,kin,kout
(· ⊕ 1)

is far from periodic for all i = k, and that assumption (2) in Problem 3 holds.
Hence, by Proposition 2, Alg-PolyQ2 recovers k with a high probability by

making O (n) quantum queries to g and O (
n2m/2

)
quantum queries to F , which

implies that k is recovered only with O (n) quantum queries made to FXk,kin,kout
,

and in time O (
n32m/2

)
. (Note that one evaluation of g (resp., F ) can be done

by O (1) evaluations of FXk,kin,kout
(resp., E)).

From Proposition 1, the second step can be done with O (n) quantum queries
in time O (

n3
)
. It is obvious that the third step can be done efficiently.

In summary, our attack recovers the keys of the FX construction with a high
probability by making O (n) quantum queries to the (keyed) online oracle, and
it runs in time O (

n32m/2
)
.

Applications to DESX, PRINCE and PRIDE. DESX [26] has a 64-bit
state, two 64-bit whitening key and one 56-bit inner key. From Propositions 2
and 5, we can estimate that our attack needs roughly 135 quantum queries and
229 quantum computations of the cipher circuit.

PRINCE [8], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 155 quantum
queries and 233 quantum computations of the cipher circuit.

5 Q1 Attacks on Symmetric Schemes

This section shows that our new algorithm Alg-ExpQ1 can be used to construct
Q1 attacks on various symmetric schemes, with a tradeoff between online clas-
sical queries, denoted below by D, and offline quantum computations, denoted
below by T .

All the algorithms that we consider run with a single processor, but they
can use quantum or classical memories, whose amount is respectively denoted
by Q (number of qubits) and M . Again, we consider that one evaluation of each
primitive (e.g. a block cipher) can be done in time O (1), for simplicity, and we
assume that key lengths of n-bit block ciphers are in O (n).

5.1 Tradeoffs for the Even-Mansour Construction

The Even-Mansour construction [19] is a simple construction to make an n-bit
block cipher Ek1,k2 from an n-bit public permutation P and two n-bit keys k1, k2
(see Fig. 3). The encryption Ek1,k2 is defined as Ek1,k2(x) := P (x⊕k1)⊕k2, and
the decryption is defined accordingly.

In the classical setting, roughly speaking, the Even-Mansour construction is
proven secure up to O (

2n/2
)

online queries and offline computations [19]. In
fact there exists a classical attack with tradeoff TD = 2n, which balances at
T = D = 2n/2 [15].
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x P

k1 k2

Ek1,k2(x)

Fig. 3. The Even-Mansour construction.

Previous Q1 Attacks on the Even-Mansour Construction. Kuwakado
and Morii gave a Q1 attack that recovers keys of the Even-Mansour construc-
tion with O (

2n/3
)

classical queries and qubits, and O (
2n/3

)
offline quantum

computations [30]. Their attack is based on a claw-finding algorithm by Bras-
sard et al. [9], and gives the tradeoff T 2D = 2n, with additional Q = D qubits.
The balanced point 2n/3 is significantly smaller than the classical balanced point
2n/2. However, if we want to recover keys with this attack in time T � 2n/2, we
need an exponential amount of qubits.

Main Previous Attacks with Polynomial Qubits. The best classical attacks allow
a trade-off of D · T = 2n (see [18] for other trade-offs involving memory). With
Grover we could recover the keys with a complexity of 2n/2 and 2 plaintexts-
ciphertext pairs, (P1, C1) and (P2, C2), by performing an exhaustive search over
the value of k1 that would verify P (P1 ⊕ k1) ⊕ P (P2 ⊕ k1) = C1 ⊕ C2. In [23],
Hosoyamada and Sasaki also gave a tradeoff D · T 6 = 23n for D ≤ 23n/7 under
the condition that only polynomially many qubits are available, by using the
multi-target preimage search by Chailloux et al. [12]. D and T are balanced at
D = T = 23n/7, which is smaller than the classical balanced point 2n/2. The
attack uses only polynomially many qubits, but requires M = D1/3 = 2n/7

classical memory. At the balanced point, this still represents an exponentially
large storage. Note that this is the only previous work that recover keys in time
T � 2n/2 with polynomially many qubits.

Table 2. Tradeoffs for Q1 attacks on the Even-Mansour construction. In this table we
omit to write order notations, and ignore polynomial factors in the first and last rows.

Reference Classical
attack

Grover [23] [30] [Ours]

Tradeoff of
D and T

D · T = 2n T = 2n/2,
D = constant

D · T 6 = 23n

(D ≤ 23n/7)

D = 2n/3,
T = 2n/3

D · T 2 = 2n

Num. of
qubits

– poly(n) poly(n) 2n/3 poly(n)

Classical
memory

D poly(n) D1/3 poly(n) poly(n)

Balanced
point of D

and T

2n/2 – 23n/7 – 2n/3
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Application of Alg-ExpQ1. We explain how to use our algorithm Alg-ExpQ1
to attack the Even-Mansour construction. The tradeoff that we obtain is T 2 ·
D = 2n, the same as the attack by Kuwakado and Morii above. It balances at
T = D = 2n/3, but we use only poly(n) qubits and poly(n) classical memory. See
Table 2 for comparison of attack complexities under the condition that poly(n)
many qubits are available.

Attack Idea. The core observation of Kuwakado and Morii’s polynomial-time
attack in the Q2 model [30] is that the n-bit secret key k1 is the period of the
function Ek1,k2(x)⊕P (x), and thus Simon’s algorithm can be applied if quantum
queries to Ek1,k2 are allowed. The key to this exponential speed up (compared
to the classical attack) is to exploit the algebraic structure of Ek1,k2 (the hidden
period of the function) with Simon’s algorithm.

On the other hand, the previous Q1 (classical query) attacks described above
use only generic multi-target preimage search algorithms that do not exploit any
algebraic structures. Hence being able to exploit the algebraic structure in the
Q1 model should give us some advantage.

Our algorithm Alg-ExpQ1 realizes this idea. It first makes classical online
queries to emulate the quantum queries required by Simon’s algorithm (the g-
database above) and then runs a combination of Simon’s and Grover’s algorithms
offline (Grover search is used to find the additional m-bit secret information). A
naive way to attack in the Q1 model would be to immediately combine Kuwakado
and Morii’s Q2 attack with Alg-ExpQ1. However, we would have to query the
whole classical codebook to emulate quantum queries, which is too costly (and
there is no Grover search step).

Our new attack is as follows: We divide the n-bit key k1 in k
(1)
1 of u bits and

k
(2)
1 of n − u bits and apply Simon’s algorithm to recover k

(1)
1 , while we guess k

(2)
1

by the Grover search (see Fig. 4). Then, roughly speaking, Alg-ExpQ1 recovers
the key by making D = 2u classical queries and T = 2(n−u)/2 offline Grover
search iterations (note that the offline computation cost for Simon’s algorithm
is poly(n) and we ignore polynomial factors here for simplicity), which yields the
tradeoff D · T 2 = 2n, only with poly(n) qubits and poly(n) classical space.

P

k
(2)
1

k
(1)
1

n − u

u

k2

n

Grover search space

Apply Simon’s algorithm

Fig. 4. Idea of our Q1 attack on the Even-Mansour construction.
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Attack Description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 ≤ u ≤ n. Define F : {0, 1}n−u × {0, 1}u → {0, 1}n by

F (i, x) = P (x‖i), (8)

and define g : {0, 1}u → {0, 1}n by g(x) = Ek1,k2(x‖0n−u).
Note that F (k(2)

1 , x) ⊕ g(x) has the period k
(1)
1 since F (k(2)

1 , x) ⊕ g(x) =
P (x‖k

(2)
1 ) ⊕ P ((x ⊕ k

(1)
1 )‖k

(2)
1 ) ⊕ k2. Our attack is described as the following

procedure:

1. Run Alg-ExpQ1 for the above F and g to recover k
(2)
1 .

2. Recover k
(1)
1 by applying SimQ1 to f

k
(2)
1

and g.
3. Compute k2 = Ek1,k2(0

n) ⊕ P (k1).

Analysis. Below we assume that u is not too small, e.g., u ≥ n/ log2 n. This
assumption is not an essential restriction since, if u is too small, then the com-
plexity of the first step becomes almost the same as the Grover search on k1,
which is not of interest.

If P is a random permutation, we can assume that fi ⊕ g = P (·||i) ⊕
Ek1,k2(·||0n−u) is far from periodic for all i = k

(2)
1 , and that assumption (2)

in Problem 3 holds.
Hence, by Proposition 3, Alg-ExpQ1 in Step 1 recovers k

(2)
1 with a high prob-

ability by making O (2u) classical queries to g and the offline computation of
Alg-ExpQ1 runs in time O (

n32(n−u)/2
)
. Here, notice that one evaluation of g

(resp. F ) can be done in O (1) evaluations of Ek1,k2 (resp. P ). In addition,
from Proposition 4, SimQ1 in Step 2 recovers k

(1)
1 with a high probability by

making O (2u) classical queries to g and the offline computation of Alg-ExpQ1
runs in time O (

n3
)
. Step 3 requires O (1) queries to Ek1,k2 and O (1) offline

computations.
In summary, our attack recovers keys of the Even-Mansour construction with

a high probability by making D = O (2u) classical queries to Ek1,k2 and doing
T = O (

n32(n−u)/2
)

offline computations, which balances at T = D = Õ(2n/3).
By construction of Alg-ExpQ1 and SimQ1, our attack uses poly(n) qubits and
poly(n) classical memory.

Applications to Concrete Instances. The Even-Mansour construction is a
commonly used cryptographic construction. The masks used in Even-Mansour
are often derived from a smaller key, which can make a direct key-recovery using
Grover’s algorithm more efficient. This is for example the case in the CAESAR
candidate Minalpher [38]. In general, we need to have a secret key of at least
two thirds of the state size for our attack to beat the exhaustive search.

The Farfalle construction [2] degenerates to an Even-Mansour construction
if the input message is only 1 block long (Fig. 5). Instances of this construction
use variable states and key sizes. The Kravatte instance [2] has a state size of
1600 bits, and a key size between 256 and 320 bits, which leads to an attack at
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a whopping cost of 2533 data and time, while the direct key exhaustive seach
would cost at most 2160. Xoofff [16] has a state size of 384 bits and a key size
between 192 and 384 bits. Our attack needs 2128 data, which is exactly the data
limit of Xoofff. Hence, it is relevant if the key size is greater than 256.

m pc pd pe z

k k′

Fig. 5. One-block Farfalle.

5.2 Tradeoffs for the FX Construction

The FX construction [26] FXk,kin,kout
, computes a ciphertext c from a plaintext

p by c ← Ek(p ⊕ kin) ⊕ kout, where E is a block cipher, k is an m-bit key
and kin, kout are two n-bit keys. In the classical setting, there exists a classical
attack with tradeoff TD = 2n+m, which balances at T = D = 2(n+m)/2 (see, for
example, [17] for more details and memory trade-offs).

Previous Q1 Attacks on the FX Construction. Applying Grover as we
did before on Even-Mansour on the keys kin and k, we can recover the keys with
only two pairs of plaintext-ciphertext and a time complexity of 2(n+m)/2, while
only needing a polynomial number of qubits.

In [23], Hosoyamada and Sasaki proposed a tradeoff D · T 6 = 23(n+m) for
D ≤ min{2n, 23(n+m)/7} with a polynomial amount of qubits, by using the multi-
target preimage search by Chailloux et al. [12]. The balance occurs at D = T =
23(n+m)/7 (if m ≤ 4n/3), which is smaller than the classical balanced point
2(n+m)/2. The attack requires M = D1/3 classical memory, thus the attack still
requires exponentially large space at the balanced point. This was the only Q1
attack with time T � 2(n+m)/2 and a polynomial amount of qubits.

Application of Alg-ExpQ1. We explain how to apply our algorithm Alg-ExpQ1
to the FX construction. Our new tradoff is T 2 · D = 2n+m for D ≤ 2n, which
balances at T = D = 2(n+m)/3 (for m ≤ 2n), using only poly(n) qubits and
poly(n) classical memory. See Table 3 for comparison of attack complexities under
the condition that only poly(n) qubits are available.

Attack Idea. Recall that, in the Q1 attack on the Even-Mansour construction
in Sect. 5.1, we divided the first key k1 to two parts k

(1)
1 and k

(2)
1 and applied

Simon’s algorithm to k
(1)
1 while we performed Grover search on k

(2)
1 .

In a similar manner, for the FX construction FXk,kin,kout
we divide the n-bit

key kin in k
(1)
in of u bits and k

(2)
in of (n − u) bits. We apply Simon’s algorithm to

recover k
(1)
in while we perform Grover search on k in addition to k

(2)
in (see Fig. 6).
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Table 3. Tradeoffs for Q1 attacks on the FX construction. In this table we omit to
write order notations, and ignore polynomial factors in the first and last rows.

Reference Classical attack Grover [23] [Ours]

Tradeoff of
D and T

D · T = 2n+m

(D ≤ 2n)

T = 2(n+m)/2

D = constant

D · T 6 = 23(n+m)

(D ≤ min{2n, 23n/7})

D · T 2 = 2n+m

(D ≤ 2n)

Num. of
qubits

– poly(n) poly(n) poly(n)

Class.

memory

D poly(n) D1/3 poly(n)

Balanced
point of D
and T

2(n+m)/2

(m ≤ n)

– 23(n+m)/7

(m ≤ 4n/3)

2(n+m)/3

(m ≤ 2n)

E

k
(2)
in

k
(1)
in

n − u

u

kout

n

Grover search space

Apply Simon’s algorithm

k

m

Fig. 6. Idea of our Q1 attack on the FX construction.

Then, roughly speaking, by applying Alg-ExpQ1 we can recover the key by
making D = 2u classical queries and T = 2(n−u)/2 offline Grover iterations
(note that the offline computation cost for the Simon’s algorithm is poly(n)
and we ignore polynomial factors here for simplicity), which yields the tradeoff
D · T 2 = 2(n+m) for D ≤ 2n, with only poly(n) qubits and poly(n) classical
memories.

Attack Description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 ≤ u ≤ n. Define F : {0, 1}m+(n−u) × {0, 1}u → {0, 1}n by

F (i‖j, x) = Ei(x‖j)(i ∈ {0, 1}m, j ∈ {0, 1}n−u), (9)

and define g : {0, 1}u → {0, 1}n by g(x) = FXk,kin,kout
(x‖0n−u).

Note that F (k‖k
(2)
in , x)⊕ g(x) has the period k

(1)
in since F (k‖k

(2)
in , x)⊕ g(x) =

Ek(x‖k
(2)
in ) ⊕ Ek((x ⊕ k

(1)
in )‖k

(2)
in ) ⊕ kout. Our attack procedure runs as follows:

1. Run Alg-ExpQ1 for the above F and g to recover k and k
(2)
in .

2. Recover k
(1)
in by applying SimQ1 to f

k‖k
(2)
in

and g.
3. Compute kout = FXk,kin,kout

(0n) ⊕ Ek(kin).
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Analysis. We assume that m = O (n), which is the case for usual block ciphers. In
the same way as in the analysis for the attack on the Even-Mansour construction
in Sect. 5.1, if E is a (pseudo) random permutation family and u is not too small
(e.g. u ≥ n/ log2 n), we observe that the assumption (2), rephrased as:

max
t∈{0,1}n\{0n}

Pr
x∈{0,1}n

[
Ei (x||j) ⊕ Ei (x ⊕ t||j) ⊕ Ek

(
x ⊕ k

(1)
in ||k(2)

in

)

⊕Ek

(
x ⊕ t ⊕ k

(1)
in ||k(2)

in

)
= 0

]
≤ 1/2 (10)

holds for all (i, j) = (k, k
(2)
1 ) with overwhelming probability.

This again implies that the claims of Propositions 3 and 4 hold for Alg-ExpQ1
in Step 1 and SimQ1 in Step 2, respectively.

Thus our attack recovers keys of the FX construction with a high prob-
ability by making D = O (2u) classical queries to FXk,kin,kout

and doing
T = O (

n32(m+n−u)/2
)

offline computations for D ≤ 2n, which balances at
T = D = Õ(2(n+m)/3) if m ≤ 2n. Our attack uses only poly(n) qubits and
poly(n) classical memory by construction of Alg-ExpQ1 and SimQ1.

Application to Concrete Instances. DESX [26] has a 64-bit state, two 64-
bit whitening key and one 56-bit inner key. From Propositions 2 and 5, we can
estimate that our attack needs roughly 242 classical queries and 240 quantum
computations of the cipher circuit.

PRINCE [8], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 245 quantum
queries and 243 quantum computations of the cipher circuit.

We can also see some encryption modes as an instance of the FX construction.
This is for example the case of the XTS mode [32], popular for disk encryption. It
is generally used with AES-256 and two whitening keys that depend on the block
number and another 256-bit key. Hence, with the full codebook of one block, we
can obtain the first key and the value of the whitening keys of the corresponding
block. Once the first key is known, the second can easily be brute-forced from a
few known plaintext-ciphertext couples in other blocks.

Adiantum [14] is another mode for disk encryption that uses a variant of
the FX construction with AES-256 and Chacha. There is however one slight
difference: the FX masking keys are added with a modular addition instead
of a xor. The FX construction is still vulnerable [6], but we will need to use
Kuperberg’s algorithm [28] instead of Simon’s algorthm. As before, with the full
codebook on one block, we can recover the AES and Chacha keys in a time
slightly larger than 2256.

5.3 Other Applications

Chaskey. The lightweight MAC Chaskey [33] is very close to an Even-Mansour
construction (see Fig. 7). Since the last message block (m2 in Fig. 7) is XORed
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to the key K1, we can immediately apply our Q1 attack and recover K1 and
the value of the state before the xoring of the last message block. As π is a per-
mutation easy to invert, this allows to retrieve K. The Chaskey round function
applies on 128 bits. It contains 16 rounds with 4 modular additions on 32 bits,
4 XORs on 32 bits and some rotations. With a data limit of 248, as advocated
in the specification, our attack would require roughly 2(128−48)/2 × 219 = 259

quantum gates, where the dominant cost is solving the 80-dimensional linear
system inside each iteration of Grover’s algorithm.

K π π

m1 m2 K1 K1

Trunkt Tag
128

Fig. 7. Two-block Chaskey example.

Sponges. Our attack can be used on sponges if there is an input injected on
a fixed state. In general, it has two drawbacks: the nonce has to be fixed, and
the cost of the attack is at least 2c/2 with c the capacity of the sponge, which is
often the classical security parameter. However, there are some cases where our
attack is of interest.

In particular, our attack needs a set of values that contains an affine space. If
a nonce was injected the same way the messages are, then we only need to know
the encryptions of identical messages, with a set of nonces that fills an affine
space. Nonce-respecting adversaries are generally allowed to choose the nonce,
but here, the mere assumption that the nonce is incremented for each message
(which is the standard way nonces are processed in practice) is sufficient: A set
of 2k consecutive values contains an affine space of (Z/(2))k−1.

This is the case in the Beetle mode of lightweight authenticated encryp-
tion [13], whose initialization phase is described as (K1 ⊕ N)‖K2 �→ f((K1 ⊕
N)‖K2), where K1, N ∈ {0, 1}r, K2 ∈ {0, 1}c, and f is a (r+ c)-bit permutation
(Fig. 8).

Here, the nonce is directly added to the key K1, but as the key has the same
length as the state, the attack would still work if the nonce was added after the
first permutation. In Beetle[Light+], the rate is r = 64 bits and the capacity
c = 80 bits. The rate is sufficiently large to embed 48 varying bits for the nonce;
in that case, by making 248 classical queries and 248 Grover iterations, we can
recover the secret K1||K2. In Beetle[Secure+], r = c = 128 bits. We can recover
K1||K2 with 285 messages and Grover iterations.
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f
K1 ⊕ N

K2

r

c

Fig. 8. Beetle state initialization.

6 Discussion

In this section, we discuss on the application of our attack idea to related-
key attacks, to some slide attacks, and to an extension of Problem 3. See also
Section B in the full version of the paper [5] for discussions on adaptive attacks
and non-adaptive attacks.

6.1 Related Keys

Consider a block cipher Ek with a key and block size of n bits. In the related-key
setting, as introduced in [41], we are not only allowed to make chosen plaintext or
ciphertext queries to a secret-key oracle hiding k, but also to query Ek⊕�(m) for
any n-bit difference � and message m. Classically, this is a very powerful model,
but it becomes especially meaningful when the block cipher is used inside a mode
of operation (e.g. a hash function) in which key differences can be controlled by
the attacker. It is shown in [41] that a secret key recovery in this model can
be performed in 2n/2 operations, as it amounts to find a collision between some
query Ek⊕�(m) and some offline computation E�′(m) (we can use more than a
single plaintext m to ensure an overwhelming success probability).

Rötteler and Steinwandt [37] noticed that, if a quantum adversary has super-
position access to the oracle that maps � to Ek⊕�(m), it can mount a key-recovery
in polynomial time using Simon’s algorithm. Indeed, one can define a function:

f(x) = Ek⊕x(m) ⊕ Ex(m)

which has k as hidden period, apply Simon’s algorithm and recover k. This attack
works for any block cipher, even ideal. In contrast, in the Q2 quantum attacker
model, we know that some constructions are broken, but it does not seem to be
the case for all of them.

With our algorithm Alg-ExpQ1, we are able to translate this related-key
superposition attack into an attack where the related-key oracle is queried only
classically, but the attacker has quantum computing power. We write k = k1||k2
where k1 has n/3 bits and k2 has 2n/3 bits. We query E(k1||k2)⊕(�1||0)(m) for
a fixed m and all n/3-bit differences �1. Then we perform a Grover search on
k2. The classical security level in presence of a related-key oracle of this form,
which is 2n/2, is reduced quantumly to 2n/3. This shows that the transition to
a quantum setting has an impact on the related-key security even if the oracle
remains classical.
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As a consequence, we could complete the security claims of the 16-round
version of the block cipher Saturnin [10], a submission to the ongoing NIST
lightweight cryptography competition6. The authors of Saturnin gave security
claims against quantum attackers meeting the best generic attacks. No claims
were given regarding the Q1 model for related-key attacks. Our result gives the
best generic quantum related-key attack on ideal block ciphers without super-
position queries, and sets the level of security that should be expected from a
block cipher in this setting: the key can be recovered in quantum time Õ (

2n/3
)

for a block cipher of n bits (and using 2n/3 classical related-key queries). The
corresponding security level for Saturnin16, which has blocks of 256 bits, lies at
2256/3 = 285: we can say that in the Q1 related-key setting, Saturnin16 should
have no attack with time complexity lower than 285.

6.2 Slide Attacks

Quantum slide attacks are a very efficient quantum counterpart of the classical
slide attacks [3]. They have been introduced in [24], with a polynomial-time
attack on 1-round self-similar ciphers. In many cases, our algorithm does not
improve these attacks, because they are already too efficient and do not rely on
a partial exhaustive search. Still, some of them use a partial exhaustive search.
This is the case of the slide attack against 2 round self-similar ciphers of [31]
and the slide attacks against whitened Feistels of [7].

For example, we can see a 2 round self-similar cipher as an example of iterated
FX cipher, as in Fig. 9. Define functions pi, Fi, and g as

pi((b, x)) =
{

(0, Ei(x)) if b = 0
(1, x) if b = 1 , Fi((b, x), y) =

{
y ⊕ x if b = 0

Ei(y) ⊕ x if b = 1 ,

and g((b, x)) = iFX(x). We have the property that iFX(Ek2(x⊕k1))⊕(x⊕k1) =
Ek2(iFX(x)) ⊕ x. Hence, we have the hidden period (1, k1) in the function
fk2((b, x)) = Fk2 ((b, x), g(pk2(b, x))). To apply our attack, we need to compute∑

x,b |x〉|b〉|fi((b, x))〉 from the state
∑

x |x〉|iFX(x)〉. We first need to add one
qubit to obtain

∑
x |x〉(|0〉+ |1〉)|iFX(x)〉. Then, conditioned on the second regis-

ter to be 0, we transform x into E−1
i (x). Next, conditioned on the second register

to be 1, we transform iFX(x) into Ei(iFX(x)). Finally, we add the first regis-
ter to the third. Hence, we can apply our attack, and retrieve k1 and k2 using
O (|k1|) queries and O (|k1|32|k2|/2) time, assuming |k1| = Ω(|k2|).

m Ek2
... Ek2

k1 k1 k1 k1

iFX(m)

Fig. 9. Iterated-FX cipher.

6 https://csrc.nist.gov/Projects/Lightweight-Cryptography.

https://csrc.nist.gov/Projects/Lightweight-Cryptography


580 X. Bonnetain et al.

The above problem of recovering keys can be generalized as the following
problem, which can be solved by the same strategy as above.

Problem 4 (Constructing and Finding a Hidden Period). Let g : {0, 1}n →
{0, 1}� be a function, i ∈ I, pi : {0, 1}n → {0, 1}n be a permutation and Fi :
{0, 1}n × {0, 1}� → {0, 1}� be a function such that Fi(x, ·) is a permutation.
Assume that there exists i0 ∈ I such that fi0(x) = Fi0 (x, g(pi0(x))) has a
period, i.e.: ∀x ∈ {0, 1}n, fi0(x) = fi0(x ⊕ s) for some s. Assume that we are
given quantum oracle access to Fi and pi and classical or quantum oracle access
to g. (In the Q1 setting, g will be a classical oracle. In the Q2 setting, g will be
a quantum oracle.) Then find i0 and s.

This problem assumes that g is a keyed function, and that we can reversibly
transform (x, g(x)) into a couple (y, fi(y)), with fi a periodic function if i = i0.
We can see this transformation as a generalization of the CCZ equivalence [11],
where the function mapping the graph of g and the graph of fi do not need
to be an affine function. There may also be more than one solution (in which
case we just want to find one), or there may be none, just as Grover’s algorithm
can handle cases with many expected solutions, or distinguish whether there is
a solution or not. Note that Problem 3 is a special case of the above problem,
in the case where pi is the identity, and Fi is only the xoring of g and another
function.

7 Conclusion

In this paper, we have introduced a new quantum algorithm, in which we make
use of Simon’s algorithm in an offline way. The idea of making poly(n) superposi-
tion queries to the oracle (with, as input, a uniform superposition), storing them
as some compressed database on n2 qubits, and reusing them during the itera-
tions of a Grover search, yielded surprising results. This idea, initially targeting
the query complexity of some Q2 attacks on cryptographic schemes, enabled us
to find new quantum-time/classical-data tradeoffs. Our result has three conse-
quences, each of which answers a long-standing question in post-quantum cryp-
tography.

Simon’s Algorithm Can Be Used in an Offline Setting. We provided the first
example of use of Simon’s algorithm (or more precisely, its core idea) in an
offline setting, without quantum oracle queries.

Improving More Than the Time Complexity. Consider the example of our attack
on the Even-Mansour construction in quantum time Õ (

2n/3
)

and classical
queries O (

2n/3
)
. With the same number of queries, the classical attack requires

O (
22n/3

)
time and O (

2n/3
)

classical memory to store the queries. In our attack,
we do not need this storage. To the best of our knowledge, this is the first time
that a quantum Q1 attack provides a quadratic speedup while the needs of
hardware are also reduced.
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Q2 Attacks Make a Difference. Schemes which do not have an attack in the
superposition model cannot be attacked by our algorithm. We showed that their
algebraic structure, which makes the superposition attack possible, indeed made
a practical difference when it came to Q1 attacks. We believe that this question
needs further investigation.
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ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 4

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Far-
falle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801

3. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

4. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 20

5. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline simon algorithm.
IACR Cryptology ePrint Archive 2019, 614 (2019). https://eprint.iacr.org/2019/
614

6. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-
2 19

7. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Selected Areas in Cryptography - SAC 2019. Lecture Notes in Computer Sci-
ence, Springer (2020)

8. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

9. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

10. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms
for post-quantum security (2019). https://project.inria.fr/saturnin/files/2019/05/
SATURNIN-spec.pdf

11. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs Codes Crypt. 15(2), 125–156 (1998)

https://doi.org/10.1007/978-3-662-44371-2_4
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-319-72565-9_20
https://eprint.iacr.org/2019/614
https://eprint.iacr.org/2019/614
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/BFb0054319
https://project.inria.fr/saturnin/files/2019/05/SATURNIN-spec.pdf
https://project.inria.fr/saturnin/files/2019/05/SATURNIN-spec.pdf


582 X. Bonnetain et al.

12. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

13. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight
and secure authenticated encryption ciphers. IACR Trans. Crypt. Hardw. Embed.
Syst. 2018(2), 218–241 (2018). https://doi.org/10.13154/tches.v2018.i2.218-241

14. Crowley, P., Biggers, E.: Adiantum: length-preserving encryption for entry-level
processors. IACR Trans. Symmetric Cryptol. 2018(4), 39–61 (2018). https://doi.
org/10.13154/tosc.v2018.i4.39-61

15. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

16. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of xoodoo and xoofff.
IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.13154/
tosc.v2018.i4.1-38

17. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 10

18. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of Iterated Even-
Mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 439–457. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45611-8 23

19. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–162 (1997). https://doi.org/10.1007/
s001459900025

20. Gagliardoni, T.: Quantum Security of Cryptographic Primitives. Ph.D. thesis,
Darmstadt University of Technology, Germany (2017). http://tuprints.ulb.tu-
darmstadt.de/6019/

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
212–219. ACM (1996). http://doi.acm.org/10.1145/237814.237866

23. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 11

24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

25. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view/536

https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.13154/tches.v2018.i2.218-241
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-662-45611-8_23
https://doi.org/10.1007/978-3-662-45611-8_23
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
http://tuprints.ulb.tu-darmstadt.de/6019/
http://tuprints.ulb.tu-darmstadt.de/6019/
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-662-53008-5_8
http://tosc.iacr.org/index.php/ToSC/article/view/536


Quantum Attacks Without Superposition Queries 583

26. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68697-5 20

27. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.
1137/S0097539703436345

28. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. In: TQC 2013, LIPIcs, vol. 22, pp. 20–34. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

29. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher
and the random permutation. In: IEEE International Symposium on Information
Theory, ISIT 2010, Proceedings, pp. 2682–2685. IEEE (2010)

30. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and Its
Applications, ISITA 2012, pp. 312–316. IEEE (2012)

31. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

32. Martin, L.: XTS: a mode of AES for encrypting hard disks. IEEE Secur. Privacy
8(3), 68–69 (2010). https://doi.org/10.1109/MSP.2010.111

33. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 19

34. National Academies of Sciences, Engineering, and Medicine: Quantum Com-
puting: Progress and Prospects. The National Academies Press, Washington,
DC (2018). https://www.nap.edu/catalog/25196/quantum-computing-progress-
and-prospects

35. National Institute of Standards and Technlology: Submission requirements
and evaluation criteria for the post-quantum cryptography standardiza-
tion process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

36. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information.
AAPT (2002)
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Abstract. The random oracle model (ROM) is an idealized model
where hash functions are modeled as random functions that are only
accessible as oracles. Although the ROM has been used for proving
many cryptographic schemes, it has (at least) two problems. First, the
ROM does not capture quantum adversaries. Second, it does not capture
non-uniform adversaries that perform preprocessings. To deal with these
problems, Boneh et al. (Asiacrypt’11) proposed using the quantum ROM
(QROM) to argue post-quantum security, and Unruh (CRYPTO’07) pro-
posed the ROM with auxiliary input (ROM-AI) to argue security against
preprocessing attacks. However, to the best of our knowledge, no work
has dealt with the above two problems simultaneously.

In this paper, we consider a model that we call the QROM with (clas-
sical) auxiliary input (QROM-AI) that deals with the above two prob-
lems simultaneously and study security of cryptographic primitives in the
model. That is, we give security bounds for one-way functions, pseudo-
random generators, (post-quantum) pseudorandom functions, and (post-
quantum) message authentication codes in the QROM-AI.

We also study security bounds in the presence of quantum auxil-
iary inputs. In other words, we show a security bound for one-wayness
of random permutations (instead of random functions) in the presence
of quantum auxiliary inputs. This resolves an open problem posed by
Nayebi et al. (QIC’15). In a context of complexity theory, this implies
NP∩coNP �⊆ BQP/qpoly relative to a random permutation oracle, which
also answers an open problem posed by Aaronson (ToC’05).

1 Introduction

1.1 Background

Random Oracle Model with Auxiliary Input. The random oracle model (ROM)
introduced by Bellare and Rogaway [BR93] is a remarkably useful tool for ana-
lyzing security of practical cryptographic schemes. In the ROM, we model a
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hash function as a truly random function that is only accessible as an oracle and
assume that an adversary has no a priori knowledge about the function. This
means that the traditional definition of the ROM does not capture non-uniform
adversaries who perform heavy offline preprocessings to generate auxiliary infor-
mation (also called advice) of the random function. Indeed, a non-uniform attack
is effective in some cases [Hel80,FN99,DTT10]. For example, Hellman [Hel80]
showed that one can speed up an inversion of a permutation by using the power
of preprocessing. Bernstein and Lange [BL13] pointed out that non-uniform
attacks are a potential threat in the real world by exhibiting some examples
of (unrealistic) non-uniform attacks. To deal with such non-uniform attacks,
Unruh [Unr07] introduced the random oracle model with auxiliary input (ROM-
AI) where an adversary can perform arbitrarily heavy preprocessing to generate
auxiliary information of the random function. He gave a generic tool for analyz-
ing security in the ROM-AI by introducing another model called the bit-fixing
ROM and showed that a random oracle is one-way and that RSA-OAEP [BR95]
remains secure in the ROM-AI. Subsequently, Dodis, Guo, and Katz [DGK17],
and Coretti, Dodis, Guo, and Steinberger [CDGS18] further studied the ROM-
AI to show (tighter) security bounds for several natural applications including
one-way functions (OWFs), collision resistant hash functions (CRHFs), pseudo-
random generators (PRGs), pseudorandom functions (PRFs), message authen-
tication codes (MACs), and more.

Quantum Random Oracle Model. The ROM has been strengthened in another
direction called the quantum ROM (QROM) [BDF+11], where an adversary
can access the random oracle quantumly. This is a natural model when con-
sidering post-quantum security since a random oracle is an idealization of a
hash function that can be quantumly evaluated by an adversary once quan-
tum computers are available. Since many proof techniques in the ROM can-
not be directly translated into ones in the QROM, many studies have given
security proofs in the QROM for schemes that are originally proven secure
in the ROM (e.g., [Zha12b,Unr15,ES15,TU16,HRS16,CBH+18,KLS18,SXY18,
JZC+18,KYY18,AHU19,DFMS19,LZ19]).

Quantum Random Oracle Model with (Quantum) Auxiliary Input. Although
both the ROM-AI and QROM have been studied thoroughly, to the best of our
knowledge, no work has considered both these extensions simultaneously. In this
work, we consider a mix of them and initiate the study of the QROM with aux-
iliary input. In particular, we consider both the QROM with classical auxiliary
input (QROM-AI) and the QROM with quantum auxiliary input (QROM-QAI).
Both these models reasonably extend the QROM to capture adversaries with pre-
processing in some sense. The QROM-AI captures an adversary that performs
a long classical preprocessing to prepare classical auxiliary information that will
be used in the future when quantum computers become available. This model is
reasonable in the current situation in which quantum computers are not avail-
able yet and in a future situation in which quantum computers are available, but
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are far less efficient than classical computers. On the other hand, the QROM-
QAI would be more reasonable in the situation where a highly efficient quantum
computer is available at the time of preprocessing. The motivation of this work
is to study security of natural applications of random oracles in these models.

The work most relevant to the above problem is that of Nayebi, Aaronson,
Belovs, and Trevisan [NABT15], which showed a lower bound for the number of
queries to invert a random permutation with classical auxiliary input. However,
their result is not sufficient for our purpose in several aspects. First, they only
considered a random permutation whereas we consider a random function. Since
a hash function in the real world is not a permutation, we need to consider a
random function instead of a random permutation to derive implications in the
real world. Second, they only considered a lower bound for one-wayness whereas
we are also interested in other applications such as CRHFs, PRGs, PRFs, and
MACs. Third, they did not consider the effect of salting, which is a technique to
use a random string that is chosen after the preprocessing as a public parameter.
Salting is widely deployed in the real world, and sufficiently long salt defeats non-
uniform attacks in the ROM-AI [DGK17,CDGS18]. Finally, they only considered
settings where auxiliary inputs are classical, and their result seems difficult to
directly extend to the setting where auxiliary inputs are quantum. Indeed, they
left it extending their result to the quantum auxiliary input setting as an open
problem. Thus it remains unknown if we can obtain security bounds for the
security of OWFs, CRHFs, PRGs, PRFs, and MACs and if salting is effective
in the QROM-AI and QROM-QAI.

1.2 Our Results

In this work, we initiate the study of the QROM-AI and the QROM-QAI, and
give security bounds for several cryptographic applications in the QROM-AI.
However, we do not know if we can extend them to ones in the QROM-QAI.
Nonetheless, we make a step toward the goal by proving that a random permu-
tation (instead of a random function) is hard to invert even with a quantum aux-
iliary input. This answers the open problem raised by Nayebi et al. [NABT15].
We describe more details of our results below.

Security Bounds in QROM-AI. We prove security bounds for natural “salted”
constructions of OWFs, PRGs, PRFs, and MACs in the QROM-AI. A caveat
of our results for PRFs and MACs is that we only consider classical queries for
PRF and MAC oracles whereas queries to the random oracle can be quantum. To
clarify this limitation, we denote them as pqPRFs and pqMACs.1 On the other
hand, we denote quantum-accessible PRFs and MACs as qPRFs and qMACs.
We note that the attack models of pqPRFs and pqMACs make sense as post-
quantum security models a setting where honest parties are all classical and only
adversaries are quantum.

1 “pq” stands for “post-quantum”.
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Table 1. Security bounds and best known attacks using an S-bit auxiliary input and
T queries to the random oracle for “salted” constructions of primitives in the QROM-
AI. The first two primitives (unkeyed primitives) are constructed from a random oracle
O : [K]× [N ] → [M ] where [K] is the domain of the salt, [N ] is the domain of the input
(or the seed for PRGs), [M ] is the domain of the outputs, and we let α := min(N, M).
The latter two primitives (keyed primitives) are constructed from a random oracle
O : [K] × [N ] × [L] → [M ] where [K] is the domain of the salt, [N ] is the domain
of the key, [L] is the domain of the inputs, and [M ] is the domain of the outputs (or
authenticators for MACs). Qprf denotes the number of queries to the PRF oracle in
the security bound for pqPRFs. We omit constant factors and logarithmic terms for
simplicity.

Security bounds in QROM-AI
(Ours)

Best known attacks in QROM-AI

OWFs
(

ST2

Kα
+ T2N
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)1/2
min

{
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}
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(
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pqPRFs
(
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pqMACs
(
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Our results are summarized in Table 1. (An extended table that includes
security bounds and attacks in the ROM-AI can be found in the full version.)
The notations used in the table are the same as those used in [DGK17]. The
“Security bounds in QROM-AI” column indicates upper bounds of advantages
to break these primitives by an adversary that makes T quantum queries to
the random oracle and is given a classical auxiliary input of size at most S
bits. The “Best known attacks in QROM-AI” column indicates advantages that
are achieved by the best known attacks. (the full version briefly explains how
we filled this column.) Though our bounds in the QROM-AI are much less tight
than those in the ROM-AI and far from matching the best known attacks, we can
derive some meaningful implications from them. For example, our bounds imply
the computational hardness of these primitives if the size of domain and ranges
are sufficiently large2. Moreover, our bounds imply that if we use a large enough
salt, these primitives remain secure even if an adversary prepares a very long
auxiliary input. That is, if the size K of the domain of the salt is exponentially
larger than the auxiliary input size S, then terms that depend on S are negligible.
This extends similar results in the ROM-AI [DGK17,CDGS18] to the QROM-AI.

On Quantum Auxiliary Input. Unfortunately, we could not obtain any mean-
ingful security bound in the QROM-QAI where quantum auxiliary inputs are
available. Nonetheless, we give a security bound for a closely related problem:

2 More precisely, if both S and T are polynomial in the security parameter and (appro-
priate parts of) domains and ranges of the random oracle are exponentially large
then our bounds become negligibly small.
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one-wayness of a random permutation (instead of a random function) with quan-
tum auxiliary input. That is, we show that the probability of inverting a ran-
dom function O : [K] × [N ] → [N ] such that O(a, ·) is a permutation over
[N ] for all a ∈ [K] with an S-qubit quantum auxiliary input and T quan-

tum queries is ˜O

(

(

ST 2

KN + T 2

N

)1/3
)

. This answers the open problem raised by

Nayebi et al. [NABT15]. Before our work, such a result was known in the setting
where an auxiliary input is classical and K = 1 [NABT15], which gave a security
bound ˜O(

√

ST 2/N).3

Our result also has an implication in complexity theory. Specifically, it implies
an oracle separation of NP∩coNP and BQP/qpoly which is the class of problems
solvable by a polynomial-size quantum algorithm with a polynomial-size quan-
tum advice [NY04,Aar05]. That is, we have NP∩ coNP �⊆ BQP/qpoly relative to
a random permutation oracle. This affirmatively answers the open problem left
by Aaronson [Aar05], who showed the existence of an oracle relative to which
NP �⊆ BQP/qpoly and left it open to show the existence of an oracle relative to
which NP ∩ coNP �⊆ BQP/qpoly.

1.3 Technical Overview

Our main tool is the compression technique developed by Genarro, Gertner,
Katz, and Trevisan [GT00,GGKT05]. The basic idea behind the technique is
a very simple information theoretic argument: For sets M, C, if there exist an
encoding algorithm E : M → C and a decoding algorithm D : C → M such
that D(E(m)) = m holds with high probability (over the uniformly random
choice of m), then the cardinality of C cannot be much smaller than that of M.
More precisely, if the decoding succeeds with probability δ, then we must have
|C| ≥ δ|M|. This holds even if the encoder and the decoder share a randomness of
any length [DTT10]. We call this information theoretical bound the compression
lemma. In the following, we explain how to apply this to derive security bounds
in the QROM-AI. We omit salting for simplicity since similar methods still work
with salting.

OWFs in QROM-AI. Here, we explain how to obtain a security bound for OWFs
in the QROM-AI. First, we review the case of random permutations, which is
shown by Nayebi et al. [NABT15] because this is much simpler. Suppose that
we have a random permutation f : [N ] → [N ] and an adversary A that succeeds
in inverting f with high probability, say 2/3, for ε-fraction of x ∈ [N ] by using
S-bit classical auxiliary information of f and T quantum queries to f . We want
to give an upper bound for ε.

The idea is to construct an encoder that compresses the truth table of the
random oracle by using the power of the adversary A and then invoke the com-
pression lemma. Specifically, we choose a random subset R ⊂ [N ] by putting
3 They claim that their security bound is ˜O(ST 2/N). However, their definition of one-

wayness is weaker than ours, and if we use our definition, then the quadratic security
loss naturally occurs. See the full version for more detailed discussion.
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each element x ∈ [N ] into R with a certain probability, which will be used as
the shared randomness between the encoder and the decoder. Then we define
the set G ⊂ R of good elements where we say that x ∈ R is good if A succeeds
in inverting f(x) with high probability and A’s total query magnitude on any
x′ ∈ R \ {x} is “small” when it runs on the input f(x). By appropriately setting
parameters, we can show that G is “not too small” with high probability. Then
the encoder generates an encoding that consists of a “partial truth table” of
f on [N ] \ G, the description of the set f(G) and the auxiliary input that is
used by A. The decoder recovers the whole truth table of f by inverting f on
each element of f(G) by running A. Here, we have to be careful about the fact
that the decoder is not given the whole truth table of f and cannot correctly
simulate the oracle f for A. Thus, when the decoder tries to invert y ∈ f(G) in
f , it defines a function gy by

gy(x) :=

{

f(x) if x /∈ R

y if x ∈ R,

and uses gy instead of f . Though f and gy do not match on R \ {x}, by the
definition of the good elements, A’s query magnitude on R \ {x} is “small,” and
thus A still succeeds in inverting y with high probability with the oracle access
to gy instead of f . Then the decoder can recover x = f−1(y) by computing the
output distribution of A and taking the value that is output with the highest
probability.4 By repeating this for every y ∈ f(G), the decoder can recover the
whole truth table of f . On the other hand, the encoding is smaller than the
original truth table of f since it “forgets” the truth table on the subset G that is
“not too small.” By setting parameters appropriately, we can derive the security
bound.

For random functions instead of random permutations, the difference is that
a preimage of y may not be unique, and we have to bound the probability that
an adversary finds any of them. In that case, even if an adversary succeeds
in inverting the random function with high probability, there may not be any
particular value that is output with constant probability. Thus the decoder has
to use a value that is output by the adversary with sub-constant probability for
recovering the truth table. This only gives a somewhat bad bound related to this
probability, even if we resolve other technical difficulties.

To deal with this problem, we include a randomness used in the measurement
of the final state of A as a part of the shared randomness between the encoder
and decoder. With a fixed randomness for the measurement, the decoder can
deterministically simulate A5 and decide the value that is supposed to be used
for recovering the table. With this idea (among others), we extend the above
result to the case of random functions.
4 Since the compression lemma works for unbounded-time encoders and decoders, we

can assume that the decoder has an unbounded computational power to simulate
quantum computations.

5 Since the decoder has unbounded computational power, it can control the random-
ness for measurements in executions of the quantum algorithm A.



590 M. Hhan et al.

PRGs in QROM-AI. For obtaining security bounds for PRGs, we first consider
(an average case version of) Yao’s box problem [Yao90] similarly to the classical
case [DTT10,DGK17]. In Yao’s box problem, we consider a random oracle O :
[N ] → {0, 1} and an adversary that tries to compute O(x) for uniform x ∈ [N ]
by using an S-bit classical auxiliary input and T quantum queries to O without
querying x itself (i.e., A’s query magnitude on x is 0 in the quantum case). If we
obtain a proper bound for Yao’s box problem, then a bound for PRGs follows as
discussed below. To construct PRGs, we consider a random oracle O : [N ] → [M ]
and want to bound the advantage of A to distinguish O(x) for x ← [N ] from a
truly random string y ← [M ] by using an S-bit classical auxiliary input and T
quantum queries to O.

First, we argue that A’s total query magnitude on x is “small.” This holds
because if it is “not small,” then we can use A to invert O with “non-small”
probability by measuring one of its queries, which contradicts the bound for
the one-wayness of O. Then we can convert A to an algorithm A′ whose query
magnitude on x is 0 while only slightly degrading its distinguishing advantage.6

Now, A′ distinguishes O(x) from a random string without querying x at all. By
Yao’s equivalence of distinguishability and predictability [Yao82], there exists an
algorithm B such that for some i ∈ [log M ], it predicts the i-th bit of O(x) given
an advice stO of S-bit, x, and the first i − 1 bits of O(x) making T quantum
queries to O without querying x to O. This is exactly an algorithm that solves
Yao’s box problem by also considering the first i − 1 bits of O(x) as a part of
the auxiliary input.7 Therefore we can apply the bound for Yao’s box problem
to derive a security bound for PRGs in the QROM-AI.

What is left is how to derive a security bound for Yao’s box problem.8 Basi-
cally, we follow the classical counterpart that was shown by De et al. [DTT10],
which is roughly described as follows. First, we choose a random subset R ⊂ [N ]
by putting each element of x ∈ [N ] into R with a certain probability, which will
be used as the shared randomness between the encoder and the decoder. Then
we define the set G of good elements where we say that x ∈ [N ] is good if (A):
x ∈ R, and (B): for any query x′ made by A with input x, we have x′ /∈ R.9

Then we partition G into two subsets G0 that consists of all x ∈ G such that
A correctly guesses O(x) on input x, and G1 := G \ G0. By some analyses of
probabilities, they showed that |G| is “not too small” and |G0|− |G1| = Ω(ε|G|)
with “non-small” probability where ε is A’s advantage (i.e., A returns the correct
answer with probability 1/2 + ε). Then they construct an encoder that outputs
the partial truth table of O on [N ] \ G, the description of the set G0, and the

6 In the actual proof, we rely on the semi-classical one-way to hiding theorem recently
given by Ambainis, Hamburg, and Unruh [AHU19].

7 More precisely, since an auxiliary input cannot depend on x, we consider the partial
truth table of O that gives the first i − 1 bits of O(x) for all x as a part of the
auxiliary input.

8 Nayebi et al. [NABT15] also studied Yao’s box problem. However, they only consid-
ered the worst case, so their result is not applicable for our purpose.

9 Recall that this is a review of the classical case, and thus this condition is well-
defined.



Quantum Random Oracle Model with Auxiliary Input 591

auxiliary input used by A. The decoder can recover the whole truth table of
O by running A on each x ∈ G and negating it if x ∈ G1.10 We note that
the decoder never gets stuck in simulating the oracle since all of A’s queries
are outside R where the decoder knows the value of O. They showed that the
encoding size is much smaller than the whole truth table when |G0| − |G1| is
“large”. (Note that the needed number of bits to represent the set G0 is smaller
when |G0| − |G1| is larger since the number of possible choices of G0 and G1 is
smaller when |G0| − |G1| is larger assuming |G0| > |G1|.) More specifically, they
showed that we can obtain a meaningful bound when |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|), which occurs with “non-small” probability.

When generalizing this strategy to the quantum setting, there are several
obstacles.

First, the condition (B) is not well-defined in the quantum setting. This can
be easily adapted by requiring that A’s query magnitudes on elements of R are
“small” instead of requiring A to not query any of them.

Second, the sets G0 and G1 are not well-defined in the quantum setting
since we cannot assume A is deterministic in the quantum setting. This can be
resolved by including the randomness for measurements in the shared random-
ness between the encoder and decoder similarly to the case of OWFs.

Third, in the classical setting, for proving that |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|) with “non-small” probability, we use the fact
that the probability that x is good (i.e., Pr[x ∈ G]) is constant for all x ∈ [N ].
In the classical setting, this can be assumed without loss of generality since we
can force an adversary to not make the same queries twice. On the other hand,
this cannot be assumed in the quantum setting, and Pr[x ∈ G] may depend on
x. Fortunately, we can still show that if we choose parameters appropriately,
then Pr[x ∈ G] are well-balanced, i.e., maximal and minimal values of Pr[x ∈ G]
are very close. By using this, we can still prove that |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|) with “non-small” probability though the proof
becomes more involved.

With these ideas, we obtain a security bound for Yao’s box problem in the
quantum setting.

pqPRFs and pqMACs in QROM-AI. With ideas used for OWFs and PRGs
as explained above, the results for pqPRFs and pqMACs in the ROM-AI in
[DGK17] can be naturally translated into ones in the QROM-AI. Since the orig-
inal bounds in [DGK17] only considered classical accesses to PRF/MAC oracles,
our results inherit this. One thing we have to care about here is that classical
PRF and MAC oracles are not unitary, and we cannot assume that measure-
ments are deferred to the end of the computation by the adversary. Thus for
applying our technique of deterministic simulation of quantum computations,
we include randomness for all measurements that are possibly done in the mid-
dle of the computation by the adversary in the shared randomness between the

10 Though the encoding does not contain the description of G, the decoder can recover
it from R.
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encoder and decoder. We note that the size of shared randomness does not affect
the limitation of a compression, and this does not make our bounds worse.

Bound for Inverting Permutations with Quantum Advice. Next, we move on
to discussing quantum auxiliary inputs. Our strategy is to use the compres-
sion technique similarly to the case of the classical auxiliary inputs. However, if
we consider quantum auxiliary inputs, we first have to extend the compression
lemma to the setting where encodings are quantum. Fortunately, such an exten-
sion is already known [Nay99,NS06], and both papers showed that the bound is
almost the same as the classical case.

Given this, one may think that security bounds in the QROM-AI are quite
easy to extend to ones in the QROM-QAI. However, this is not the case. Recall
that decoders in these proofs run an adversary A many times. On the other
hand, we cannot reuse a quantum auxiliary input since it may be broken in
each running of A. Thus, an encoding has to contain as many copies of the
auxiliary input as the number of executions of A by the decoder, in which case
the encoding is no longer small. Indeed, Nayebi et al. [NABT15] mentioned that
their result is difficult to extend to the quantum auxiliary input setting for this
reason.

We overcome this issue by using a general principle of quantum information,
often called the gentle measurement lemma [Win99,AR19], which states that if
we can predict the outcome of a measurement with probability almost 1, then
the measurement barely damages the quantum state. To apply the lemma, we
amplify the success probability of an adversary A to almost 1 by running it many
times.11 Especially, if the correct solution of a problem in question is unique (as
in the inversion problem of a permutation), then A outputs a certain value with
probability almost 1. In this case, the quantum auxiliary input is not damaged
much in each running of A due to the gentle measurement lemma and can be
reused many times in the decoding procedure. We note that the decoder still
needs a certain number of copies of the auxiliary input since it has to run the
adversary many times to amplify the success probability. However, the number
of copies needed is not too large since the adversary’s error probability decreases
exponentially in the number of repetitions. Thus, the encoding does not become
too large, and we can obtain a meaningful bound. This is how we obtain a
security bound for inverting a random permutation with quantum advice.

We note that the above method crucially relies on the solution of the problem
being unique. Otherwise, even if an adversary’s success probability is almost 1, its
output may still have high entropy, in which case the gentle measurement lemma
is not applicable. This is why we limit our attention to random permutations
instead of random functions.

11 A similar idea was used by Aaronson [Aar05] to show limitations of quantum one-way
communication and algorithms with quantum advice.
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1.4 Limitations and Open Problems

Though we made progress in understanding the power of non-uniform attacks
in the quantum setting, our results contain many limitations.

1. We do not have any result for CRHFs in the QROM-AI/QROM-QAI.
2. Our results on PRFs and MACs in the QROM-AI are limited to pqMACs

and pqPRFs where oracles (except for the random oracle) are classical.
3. All security bounds shown in this paper are much less tight than the counter-

parts in the classical setting, and far from matching the best known attacks.
We note that known security bounds of many primitives including OWFs,
PRGs, PRFs, and MACs in the ROM-AI do not match the best known
attacks even in the classical setting [DGK17,CDGS18].

4. Our techniques cannot be used for analyzing schemes on the basis of compu-
tational assumptions since it would be difficult to capture these assumptions
with the compression technique. We note that this limitation is overcome
by using another technique called the pre-sampling technique instead of a
compression technique in the classical setting [Unr07,CDGS18].

5. We have no security bound in the QROM-QAI. A possible approach toward
that is to extend our result on one-wayness of a random permutation with
quantum auxiliary input.

We leave the above limitations as open problems to be overcome.
Also, we are not aware of any non-trivial attack in the QROM-AI or QROM-

QAI that outperforms ones in the ROM-AI except for attacks that just ignore
auxiliary inputs (e.g., Grover’s algorithm [Gro96] and BHT [BHT97] algorithm).
We leave it as an interesting open problem to give a non-trivial attack that
utilizes auxiliary inputs against any primitive in the QROM-AI or QROM-QAI.

1.5 Related Work

Security Bounds against Non-uniform Attacks in Other Models. Corrigan-Gibbs
and Kogan [CK18] studied non-uniform attacks in the generic group model
(GGM), showed security bounds for several problems including the discrete log-
arithm problem that matches the best known attack. Their results are based
on the compression technique. Coretti, Dodis, and Guo [CDG18] studied non-
uniform attacks in the random permutation model (RPM), ideal-cipher model
(IPM), and GGM, and showed security bounds for many applications in these
models by developing a general tool to analyze them. Their results are based
on the pre-sampling technique. We note that both above works only consider
classical attacks.

Quantum-Accessible PRFs and MACs. Zhandry [Zha12a] gave the first construc-
tions of qPRFs from OWFs or learning with errors (LWE) assumption in the
standard model as well as a separation between pqPRFs and qPRFs.
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Boneh and Zhandry [BZ13] formally defined qMACs and showed that qPRFs
are sufficient to construct them. A stronger and the best current security notion
for qMACs was proposed by Garg, Yuen, and Zhandry [GYZ17].

We note that these works focus on constructions in the standard model,
whereas this work focuses on hash-based constructions in the QROM-AI or
QROM-QAI that are much more efficient.

Compression Technique in Quantum Setting. Besides Nayebi et al. [NABT15],
Hosoyamada and Yamakawa [HY18] also used the compression technique in the
quantum setting to show a black-box separation of CRHFs from one-way per-
mutations. Their technique is incomparable with ours as they showed bounds for
inverting random permutations in the presence of a specific quantum oracle that
finds collisions whereas we show bounds for several applications of a random
oracle in the presence of any bounded-length auxiliary inputs.

2 Preliminaries

Notations. We say a function ε(n) is negligible if ε(n) < 1/|p(n)| for any poly-
nomial p for sufficiently large n. For a positive integer n, we write [n] = {1, . . . , n}
to denote the set of positive integers less than or equal to n. In tilde notations
˜O(f(A,B, · · · )) or ˜Ω(f(A,B, · · · )), we ignore non-negative degree polylogarith-
mic factors with respect to all capital variables which appear in the context. For
example, we write (T 2/N) · log M = ˜O(T 2/N). To denote the event that a prob-
abilistic or quantum algorithm A with input z outputs x, we write A(z) → x.

Quantum algorithms have intrinsic randomness when they perform measure-
ments. The probability that a quantum algorithm A outputs x on an input z is
denoted by PrA[A(z) → x]. To denote quantum objects such as quantum states
or a quantum-accessible oracle, we use the ket notation |·〉. For example, |φ〉
denotes a quantum state, while x is a classical string. For basics of quantum
computing, we refer readers to [NC00].

2.1 Oracle-Aided Quantum Algorithm

An oracle-aided quantum algorithm is a quantum algorithm that can perform
quantum computations and can access oracles. In this paper, we consider three
types of oracles: quantum-accessible oracle, classical-accessible oracle, and semi-
classical oracle [AHU19], which is explained in the next subsection. A quantum-
accessible oracle that computes a function f : X → Y applies a unitary that
transforms a query |x, y〉 to |x, y ⊕ f(x)〉, and returns the resulting state. A
classical-accessible oracle that computes a function f : X → Y , given a query
|x, y〉, first measures the input register |x〉, and then returns |x, y ⊕ f(x)〉. Note
that a classical-accessible oracle is not unitary. We often use A|f〉 to mean that
A accesses a quantum-accessible oracle that computes f and Af to mean that
A accesses classical-accessible oracle that computes f . We allow an oracle-aided
quantum algorithm to make queries in parallel. Its query depth d is defined to
be the number of oracle calls counting parallel queries as one query.
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2.2 Semi-classical Oracle

In this section, we review semi-classical oracles introduced in [AHU19]. Here,
we only define a semi-classical oracle for the indicator function of a set S since
we only need it in this paper. A semi-classical oracle OSC

S for a set S ⊆ X is
queried with two registers, an input register Q with C

X and an output register
R with space C

2. When queried with a value |x〉 in Q, the oracle returns whether
x ∈ S in the output register R. More formally, it performs a measurement with
projectors M0 and M1, where M0 :=

∑

x∈X\S |x〉 〈x| and M1 :=
∑

x∈S |x〉 〈x|,
and initializes R to |0〉 or |1〉 corresponding to the measurement result.

In the execution of a quantum algorithm AOSC
S , Find denotes the event that

OSC
S returns |1〉. This event is well-defined, since OSC

S measures its outputs.

Punctured Oracle. If H is an oracle with domain X and codomain Y , we define
|H〉 \ S as an oracle which, on input x, first queries OSC

S (x) and then queries
H(x). The lemma ([AHU19, Lemma 1]) states that the outcome of A|H〉\S is
independent of H(x) for all x ∈ S when Find does not occur. We review the
semi-classical oneway-to-hiding lemma (the SC-O2H lemma in short):

Lemma 1 (The SC-O2H lemma [AHU19, Theorem 1]). Let S ⊆ X be
random. Let G,H : X → Y be random functions satisfying ∀x �∈ S [G(x) =
H(x)]. Let z be a random bit string. (S,G,H, z may have an arbitrary joint
distribution.)

Let A be an oracle-aided quantum algorithm of query depth d (not necessarily
unitary). Let

Pleft := Pr[b = 1 : b ← A|H〉(z)],

Pright := Pr[b = 1 : b ← A|G〉(z)],

Pfind := Pr[Find : A|G〉\S(z)] = Pr[Find : A|H〉\S(z)].

Then we have

|Pleft − Pright| ≤ 2
√

(d + 1) · Pfind and |
√

Pleft − √

Pright| ≤ 2
√

(d + 1) · Pfind.

The lemma also holds with bound
√

(d + 1) · Pfind for the following alternative
definition of Pright:

Pright := Pr[b = 1 ∧ ¬Find : b ← A|G〉\S(z)].

We often denote the above probability by Pr[¬Find : A|G〉\S(z) → 1] for notational
simplicity.

Lemma 2 (Search in semi-classical oracle [AHU19, Theorem 2 and
Corollary 1]). Let A be any oracle-aided quantum algorithm making at most
q queries (depth d) to a semi-classical oracle with domain X. Let S ⊆ X and
z ∈ {0, 1}∗. (S, z may have an arbitrary joint distribution.)
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Let B be an algorithm that on input z chooses i ← {1, . . . , d}; runs AOSC
∅ (z)

until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then we have

Pr[Find : AOSC
S (z)] ≤ 4d · Pr[S ∩ T �= ∅ : T ← B(z)].

In particular, if S and z are independent, A makes at most q queries, and we
let Pmax := maxx∈X Pr[x ∈ S], then we have

d · Pr[S ∩ T �= ∅ : T ← B(z)] ≤ q · Pmax.

Remark 1. In the above lemmas, the input z is assumed to be a classical string.
However, we can obtain exactly the same bound even if z is a quantum state.
This is because any quantum state can be described by a classical string with
an exponential blowup of the size, and the above lemmas are only about query-
complexities and the size of z does not matter.

3 Quantum ROM with Classical AI

In this section, we show security bounds for primitives in the QROM-AI.

3.1 Preparations

First, we prepare some lemmas and notations that are used in our proofs.

Compression Lemma. The following lemma states that there exists an
information-theoretic lower bound for a compression algorithm.

Lemma 3 ([DTT10, Fact 8.1]). Let M,C,R be sets. Let E : M ×R → C and
D : C × R → M be deterministic algorithms. For δ ∈ [0, 1], if we have

Pr
r←R

[D(E(m, r), r) = m] ≥ δ

for all m ∈ M , then we have |C| ≥ δ|M |, which can be rephrased as log |C| ≥
log |M | − log 1/δ.

We use the above lemma (which we call the compression lemma) to derive
security bounds for various primitives in the QROM-AI by constructing a pair
of encoding and decoding algorithms that compress the truth table of a random
function by using the power of an adversary against the primitive. Note that we
encode a function into a classical bit string while we use a quantum adversary.
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Simulating Measurement. Quantum algorithms are inherently randomized
due to the intrinsic randomness of measurements. However, if we do not care
about the running-time, we can fix the randomness in the measurement by clas-
sically simulating the execution of the algorithm.

More precisely, we can classically simulate an execution of any quantum
algorithm A(z) with a randomness r ∈ [0, 1]12 by first computing the final state,
which is known to be possible in classical exponential time, and then choosing a
measurement result in accordance with the randomness r, where we assume that
A performs only one measurement at the end of its execution without loss of
generality. We denote this procedure by Simr(A(z)). If we consider many inputs
z ∈ Z and a corresponding random coin R = {rz} ∈ [0, 1]|Z|, we just denote
Simrz

(A(z)) by SimR(A(z)) for notational simplicity. We note that exactly the
same procedure is possible for an oracle-aided quantum algorithm A|f〉 that
accesses a quantum oracle |f〉 that computes a function f if the simulator knows
the whole truth table of f since we can think of the combination of A and |f〉
as a single quantum algorithm. We also note that almost the same procedure
is possible for an oracle-aided quantum algorithm A|f〉,g that accesses both a
quantum oracle |f〉 and a classical oracle g if the simulator knows the whole
truth table of f and g with the following modification. The difference from the
case of a quantum oracle is that the oracle may not be unitary and we are no
longer able to assume that the algorithm performs a measurement once, and
it may perform a measurement in the middle of the computation. This can be
dealt with by augmenting the amount of randomness used by the simulator so
that fresh randomness is available in the simulation of each measurement.

Since the compression lemma (Lemma 3) holds even for an unbounded-time
encoder and decoder that may share unbounded-size randomness, we can allow
them to simulate a (oracle-aided) quantum algorithm classically in the above
way.

Notations. In this section, we consider a random oracle with the domain [K]×
[N ] (or [K] × [N ] × [L] for the case of pqPRFs and pqMACs) and the codomain
[M ]. We omit to state a distribution of a random oracle O if that is uniformly
chosen from the set of functions with the corresponding domain and codomain.
We use a and x (or k for the case of pqPRFs and pqMACs) to represent elements
of [K] and [N ] respectively throughout the section, and often omit to state
distributions when they are uniform. For example, we write Pra,x[f(a, x) = y]
instead of Pra←[K],x←[N ][f(a, x) = y].

3.2 Function Inversion

The following theorem is the main result of this section.

12 In an actual simulation, the randomness should be approximated by a rational num-
ber up to a sufficient precision. We just think of the randomness as a real number
for simplicity.
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Theorem 1. Let O ∈ Func([K] × [N ], [M ]) be a random oracle. Suppose that
A is an oracle-aided quantum algorithm that takes an S-bit classical advice stO
(that may depend on O) as input, makes at most T oracle queries, and satisfies

Pr
A,O,a,x

[

O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x)) → x′
]

= ε.

Then it holds that

ε2 = ˜O

(

ST 2

K min(M,N)
+

T 2N

min(M,N)2

)

.

The main idea of the proof of this theorem is to compress the truth table of
the random function into a smaller encoding by using an algorithm that inverts
the function. Then by applying Lemma 3, we obtain a bound for the advantage
to invert the function. Specifically, we encode a function into an encoding that
consists of a partial truth table and information to recover the remaining part
of the truth table similarly to [DGK17].

We also introduce another lemma, which can be seen as a variant of the
above theorem. This lemma is used for proving lower bounds for other problems
in the next sections. In this lemma, we give an upper bound for the probability
that the event Find occurs when an adversary is given a punctured oracle on
the correct answer. (See Sect. 2.2 for the definitions of Find and the punctured
oracle.) This corresponds to [DGK17, Corollary 1], which gives a bound for the
probability that an adversary ever queries the correct answer to the oracle in
the classical case.

Lemma 4. Let O ∈ Func([K]× [N ], [M ]) be a random oracle. Suppose that A is
an oracle-aided quantum algorithm that takes an S-bit classical advice stO (that
may depend on O) as input, and makes at most T oracle queries. Then it holds
that

Pr
A,O,a,x

[

Find : A|O〉\{(a,x)}(stO, a,O(a, x))
]

= O

(

ST 2

KN
+

T 2 log N

N

)

.

Proof of Theorem 1. First, we consider an adversary A (which we call a biased
adversary) that breaks the one-wayness in a slightly stronger sense. Namely, we
assume that we have

Pr
O,a,x

[

Pr
A

[A|O〉(stO, a,O(a, x)) → x′ ∧ O(a, x) = O(a, x′)] ≥ c]
]

≥ ε

for a fixed constant c. We will later show that we have

ε = ˜O

(

ST 2

K min(M,N)
+

T 2N

min(M,N)2

)

in this setting. For the time being, we assume that the above statement is true
and prove the theorem. Suppose that there exists an algorithm A such that

Pr
A,O,a,x

[

O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x)) → x′
]

= ε′.
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By an averaging argument, at least an (ε′/2)-fraction of (O, a, x) satisfies

Pr
A

[

O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x)) → x′
]

≥ ε′/2.

Applying the amplitude amplification [BHMT02], we obtain another algorithm
A′ that uses A, A−1 and O as sub-routines O(ε′−1/2) times and satisfies

Pr
A′

[

O(a, x) = O(a, x′) : A′|O〉(stO, a,O(a, x)) → x′
]

= Ω(1),

where we abuse the notation to use A and A−1 to mean the unitary part of
A and its inverse, respectively. By the bound for the biased adversary, we have
ε′ = ˜O

(

ST 2/ε′

K min(M,N) + T 2N/ε′

min(M,N)2

)

, which implies

ε′2 = ˜O

(

ST 2

K min(M,N)
+

T 2N

min(M,N)2

)

as desired.
Now it suffices to prove the bound for the biased adversary. For the sake of

contradiction, we assume that we have

ε = ˜Ω(ST 2/K min(M,N) + T 2N/ min(M,N)2). (1)

Note that it particularly implies CT 2 ≤ εKN for a sufficiently large C since the
tilde notation hides a non-negative degree polylogarithmic factor and T 2/KN =
O(ST 2/K min(M,N)) holds.13 Here, to apply Lemma 1, we consider another
adversary B that takes a list L of classical strings as an additional input and
works as follows:

B|f〉(stO, a, y, L): It runs A|f〉(stO, a, y). Then B outputs 1 if the answer z of
the algorithm A satisfies (a, z) ∈ L, and outputs 0 otherwise.

Note that the assumption on the biased adversary A can be rephrased as

Pr
O,a,x

[

Pr
B

[B|O〉(stO, a,O(a, x),O−1
a (O(a, x))) → 1] ≥ c]

]

≥ ε

where Oa(x) := O(a, x) and O−1
a (y) := {(a, x) : O(a, x) = y}. Here, we state a

claim about the size of O−1
a (y) whose proof can be found in the full version.

Claim 1. Except for an (ε/4)-fraction of O ∈ Func([K] × [N ], [M ]), we have

|O−1
a (y)| = |{x : Oa(x) = y}| = ˜O(N/ min(N,M))

for all (a, y) ∈ [K] × [M ].

13 Looking ahead, this is used in the proof of Claim 2.



600 M. Hhan et al.

By an averaging argument, at least an (ε/2)-fraction of f ∈ Func([K]× [N ], [M ])
satisfies

Pr
a,x

[

Pr
B

[B|f〉(stf , a, f(a, x), f−1
a (f(a, x))) → 1] ≥ c]

]

≥ ε/2.

Combining this with Claim 1, at least an (ε/4)-fraction of Func([K] × [N ], [M ]),
denoted by F , simultaneously satisfies PrB[B|f〉(stf , a, f(a, x), f−1

a (f(a, x))) →
1] ≥ c and |f−1

a (y)| = ˜O(N/ min(N,M)) for all (a, y) ∈ [K] × [M ]. We define
β = ˜O(N/ min(M,N)) so that we have |f−1

a (y)| ≤ β for all (a, y).
We fix an arbitrary function f ∈ F and write L to denote the set f−1

a (f(a, x)).
We will describe an encoder that compresses the truth table of f to generate
an encoding that consists of a partial truth table of f and other information to
recover the remaining part of the truth table by using the algorithm A. What
is non-trivial is that the decoder has to simulate the algorithm A that makes
queries to f though it is given only a partial truth table of f as a part of the
encoding. We will show that this is actually possible by using the SC-O2H lemma
(Lemma 1) below.

A public randomness r shared by the encoder and decoder (in Lemma 3)
specifies R1 and R2 as explained below. A set R1 ⊂ [K] × [M ] is chosen so that
each (a, y) ∈ [K]× [M ] is included in R1 with probability d/T (T +1) for a fixed
constant d ≤ c2/1280. Let R(a,x) := R1 \ {(a, f(a, x))}. For a set S ⊂ [K] × [M ],
we define Sa := {y ∈ [M ] : (a, y) ∈ S} and f−1(S) := ∪a∈[K]f

−1
a (Sa).

We say that (a, x) ∈ I is good if both

(A) (a, f(a, x)) ∈ R1,

(B) Pr[Find : B|f〉\f−1(R(a,x))(stf , a, f(a, x), L)] ≤ c2

16(T + 1)

hold. We denote the set of good elements by G. Note that if we have f(a, x) =
f(a, x′), then we have (a, x) ∈ G if and only if (a, x′) ∈ G.

Here, we state a claim that states that G is “not too small” with high prob-
ability whose proof is given in the full version.

Claim 2. PrR1 [|G| ≥ δεKN/T 2] ≥ 0.8 for some constant δ > 0.

For y ∈ [M ], we define a function gy : [K] × [N ] → [M ] by

gy(z) =

{

f(z), if z ∈ ([K] × [N ]) \ f−1(R1),
y, otherwise.

By the SC-O2H lemma (Lemma 1), for any (a, x) ∈ G, it holds that

∣

∣

∣Pr
B

[B|f〉(stf , a, f(a, x), L) → 1] − Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L) → 1]
∣

∣

∣

≤ 2
√

(T + 1) · Pr[Find : B|f〉\f−1(R(a,x))(stf , a, f(a, x), L)] ≤ c/2,
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where we used the condition (B) for deriving the last inequality. Since we have
PrB[B|f〉(stf , a, f(a, x), L) → 1] ≥ c, we have

Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L) → 1] ≥ c

2
for any (a, x) ∈ G. It is easy to see that this can be rephrased as

Pr
A

[A|gf(a,x)〉(stf , a, f(a, x)) → x′ ∧ f(a, x) = f(a, x′)] ≥ c/2.

The randomness R2, which is another random coin specified by r, is used for
the simulation

SimR2

(

A|gf(a,x)〉(stf , a, f(a, x))
)

of A|gf(a,x)〉(stf , a, f(a, x)).14 It outputs x′ such that f(a, x) = f(a, x′) with
probability at least c/2 over the choice of R2. Then for at least a (c/4)-fraction
of R2, the simulation of A with oracle access to |gf(a,x)〉 instead of |f〉 outputs
a correct preimage for at least a (c/4)-fraction of (a, x). More precisely, for at
least a (c/4)-fraction of R2, the following condition is satisfied:

(∗) There exists at least a (c/4)-fraction of good elements (a, x), which we
denote by X, such that we have

SimR2

(

A|gf(a,x)〉(stf , a, f(a, x))
)

→ x′ such that f(a, x) = f(a, x′)

for all (a, x) ∈ X.

We again remark that (a, x) ∈ X and (a, x′) ∈ X are equivalent if f(a, x) =
f(a, x′). We say that (R1, R2) is good if the following three conditions all hold:

1) |G| ≥ δεKN/T 2, 2) the condition (∗), 3) |R1| = Θ(εKM/T 2).

By Claim 2, the first statement holds with probability at least 0.8 (over the
choice of R1), and the second holds with probability at least c/4 (over the choice
of R2 for any fixed R1) as discussed above, and the last holds with probability
1− o(1) by the Chernoff bound. Therefore, the probability that (R1, R2) is good
is Ω(1). When (R1, R2) is good, we clearly have |X| = Ω(εKN/T 2) by definition.

Now we are ready to explicitly describe the encoder and decoder for f . Note
that the decoder will correctly recover f as long as (R1, R2) is good. The encoder
induces R1, R2 from the given public randomness. The encoder computes Xa :=
{x : (a, x) ∈ X}, Ya := {y : y = f(a, x) for x ∈ Xa}, Y := ∪a∈[K]{(a, y) : y ∈
Ya}, and Ra = R1 ∩ ({a} × [M ]) for all a ∈ [K]. Then, |Y | ≥ |X|/β holds by the
definition of β.

For each a ∈ [K], the encoder computes a set Za ⊂ [N ] as the set consisting
of outputs of simulations SimR2

(A|gy〉(stf , a, y)
)

for all y ∈ Ya. We note that
Za is well-defined since the simulation is deterministic once R2 is fixed. Let
Z := ∪a∈[K]{(a, z) : z ∈ Za}. Clearly, we have |Za| = |Ya| and |Z| = |Y |. Now
the function f ∈ F is encoded as follows, given the public randomness R1, R2.
14 Specifically, R2 consists of independent random coins r2(a, y) for each (a, y) ∈ [K]×

[M ] to simulate A|gy〉(stf , a, y).
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• The advice string stf : S bits.
• The description of Za with its size for each a ∈ [K]: log N + log

(

N
|Za|

)

bits.

• The description of Ya with its size for each a ∈ [K]: log M + log
(|Ra|

|Ya|
)

bits.
• The values of f on ([K] × [N ]) \ Z: (KN − |Z|) log M bits.

The values are encoded in the lexicographic order of their inputs. The size of
the third component is derived by observing Ya ⊂ Ra. Given this encoding and
random sets R1, R2, the decoder fills the truth table of f as follows:

1. Reconstruct stf , Ya, Za, Y , and Z.
2. Fill the truth table of f on ([K] × [N ]) \ Z.
3. Recover the set f−1(R1) ⊂ [K]×[N ]: this is done by 1) including all elements

of Z (which are definitely in f−1(R1) since they are good) and 2) including
all (a, x) /∈ Z such that f(a, x) ∈ R1, which can be checked by using the
partial truth table on ([K] × [N ]) \ Z.

4. Recover the function values on Z. This step is done by simulating the algo-
rithm A. More precisely, for each (a, y) ∈ Ya, the decoder executes the
simulation SimR2

(A|gy〉(stf , a, y)
)

to obtain an output z and set the value
of f on (a, z) to be y. By the definition of Z, this simulation correctly recov-
ers the function values if the randomness (R1, R2) is good. Note that since
the decoder has already recovered f−1(R1), the decoder can simulate the
function gy.

The decoder successfully recovers f as long as (R1, R2) is good, which hap-
pens with probability Ω(1). The overall encoding size is

S + K log N + K log M +
∑

a∈[K]

(

log

(

N

|Za|

)

+ log

(

|Ra|
|Ya|

))

+ (KN − |Z|) log M

≥ log(εMKN ) + O(1) = KN log M + log ε + O(1),

(2)
by the compression lemma (Lemma 3). Since we have log

(

a
b

) ≤ b log(ea/b),
|Za| = |Ya|, and |Z| = |Y |, we obtain

∑

a∈[K]

log
(

N

|Ya|
)

+
∑

a∈[K]

log
(|Ra|

|Ya|
)

− |Y | log M

≤
∑

a∈[K]

|Ya| log
(

eN

|Ya|
)

+
∑

a∈[K]

|Ya| log
(

e|Ra|
|Ya|

)

− |Y | log M

≤ |Y | log
(

eKN

|Y |
)

+ |Y | log
(

e|R1|
|Y |

)

− |Y | log M

= |Y | log
(

e2KN |R1|
M |Y |2

)

,
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where the second inequality is obtained by using log-concavity (or Jensen’s
inequality for log with weights |Ya| and |Ra|.) Combining this bound with the
inequality (2), we obtain

S + K log(MN) ≥ |Y | log
(

M |Y |2
e2KN |R1|

)

+ ˜O(1), (3)

where we used (1) to remove the log ε term in the right-hand side. Using
|X| = Ω(εKN/T 2), |Y | ≥ |X|/β, and |R1| = Θ(εKM/T 2), we obtain
|Y |2/|R1| = Ω(εKN2/MT 2β2). This implies |Y |2/|R1| ≥ DεKN2/MT 2β2 for
some constant D. If DεN/T 2β2 ≤ e3 holds, then we have ε ≤ (e3T 2N/D) ·
(β/N)2 = ˜O(T 2N/ min(M,N)2) since β/N = ˜O(1/min(M,N)). Otherwise,
we have M |Y |2

e2KN |R1| ≥ M
e2KN · DεKN2

MT 2β2 ≥ e. Putting this bound and the bound
|Y | ≥ |X|/β = Ω(εKN/T 2β) into (3), we obtain

O (S + K log max(M,N)) ≥ |Y | + Õ(1) = Ω

(

εKN

βT 2

)

,

which implies ε = ˜O
(

ST 2

K min(M,N) + T 2

min(M,N)

)

. Combining the two cases, we
obtain

ε = ˜O

(

ST 2

K min(M,N)
+

T 2N

min(M,N)2

)

.

��
Proof sketch of Lemma 4. The proof is very similar to the proof of Theorem 1
except some parts. The main differences are

1. the algorithm does not output an element in [N ], and
2. we cannot apply the amplitude amplification since it uses a semi-classical

oracle that is not unitary.

The first problem is resolved by considering another algorithm B that outputs
the query register of the semi-classical oracle whenever Find occurs, and the
second problem is circumvented by amplifying the success probability just by a
parallel repetition. We note that there are two technical differences that make
the proof easier: we choose the random coin R as a subset of [K] × [N ] instead
of [K]× [M ] and need not consider a counterpart of Claim 1. The detailed proof
can be found in the full version. ��

3.3 Pseudorandom Generators

In this section, we prove that a random function is a secure PRG even if we allow
an adversary to make quantum queries to the function and to obtain a classical
advice string. Our result is stated as follows.
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Theorem 2. Let O ∈ Func([K] × [N ], [M ]) be a random oracle. Suppose that
A is an oracle-aided quantum algorithm that takes an S-bit classical advice stO
(that may depend on O) as input, and makes at most T oracle queries. Then it
holds that

∣

∣

∣

∣

Pr
A,O,a,x

[

A|O〉(stO, a,O(a, x)) → 1
]

∣

∣

∣

∣

−
∣

∣

∣

∣

Pr
A,O,a,y

[

A|O〉(stO, a, y) → 1
]

∣

∣

∣

∣

= ˜O

(

6

√

ST 4

KN
+

T 4

N

)

,

where y is uniform in [M ].

For proving Theorem 2, we need the following lemma, which can be seen as a
security bound for a quantum average case version of Yao’s box problem [Yao90].
We note that the classical average case version was proven in [DTT10, Lemma
8.4] and quantum worst-case version was proven in [NABT15, Theorem 1], nei-
ther of which suffices for our purpose.

Lemma 5. Let F ⊂ Func([N ], {0, 1}) be a set of functions. Suppose that A is
an oracle-aided quantum algorithm that takes an S-bit classical advice stf (that
may depend on f ∈ F) as input, makes at most T oracle queries, has query
magnitudes 0 on its second input (i.e. x) for all queries, and satisfies

Pr
A,x

[A|f〉(stf , x) → f(x)] ≥ 1
2

+ ε

for all f ∈ F . Then there is a pair of an encoder and decoder for the truth
tables of functions in F with recovery probability Ω(ε5/T 2) and encoding length
at most S + N − Ω(ε6N/T 2). In particular, this implies ε6 = O(ST 2/N) for
F = Func([N ], {0, 1}).

This lemma can be proven similarly to its classical counterpart in [DTT10,
Lemma 8.4] except for some technical issues as discussed in Sect. 1.3. The proof
of this lemma can be found in the full version. Now, we are ready to prove
Theorem 2.

Proof of Theorem 2. We first sketch the outline of the proof by the following
diagram:

p0 := Pr
A,O,a,x

[A|O〉(stO, a,O(a, x)) → 1]

O2H+Lemma 4≈ p1 := Pr
A,O,a,x

[¬Find : A|O〉\{(a,x)}(stO, a,O(a, x)) → 1]

Lemma 5≈ p2 := Pr
A,O,a,x

[¬Find : A|O〉\{(a,x)}(stO, a, y) → 1]

O2H+Lemma 4≈ p3 := Pr
A,O,a,x

[A|O〉(stO, a, y) → 1].

We assume that M is a power of 2 for simplicity.
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Step 1. |p0 − p1| = ˜O

(

4

√

ST 4

KN + T 4

N

)

This is simply proven by using the SC-O2H lemma. More precisely, by
Lemma 1,

|p0 − p1| ≤
√

(T + 1) Pr
A,O,a,x

[

Find : A|O〉\{(a,x)}(stO, a,O(a, x))
]

holds, which is bounded by ˜O

(

4

√

ST 4

KN + T 4

N

)

by Lemma 4.

Step 2. |p2 − p3| = ˜O

(

4

√

ST 4

KN + T 4

N

)

This is exactly the same as Step 1.

Step 3. |p1 − p2| = ˜O

(

6

√

ST 2

KN

)

First, we consider an oracle-aided quantum algorithm B that uses A as a
sub-routine as follows.

B|O〉(stO, a, x, y): It runs A|O〉\{(a,x)}(stO, a, y). If the event Find occurs w.r.t.
the running of A, B immediately halts and returns 0. Otherwise, B returns
what A outputs.

We note that B can simulate the oracle |O〉 \ {(a, x)} for A since it knows the
punctured point (a, x). Moreover, B’s query magnitude on (a, x) is 0 since before
making a query to O, it performs a partial measurement to check if the query is
equal to (a, x) and immediately aborts if so by the definition of the punctured
oracle. By the construction of B, it is easy to see that

p1 = Pr
B,O,a,x

[B|O〉(stO, a, x,O(a, x)) → 1],

p2 = Pr
B,O,a,x

[B|O〉(stO, a, x, y) → 1].

Let |p1 − p2| = ε. By Yao’s equivalence of pseudorandomness to unpredictabil-
ity [Yao82], there exists an i ∈ [log M ], an oracle-aided quantum algorithm C
whose query magnitude at (a, x) is 0, and an advice string ˜stO that have at most
S + 1 bits such that

Pr
C,O,a,x

[C|O〉(˜stO, a, x,O1(a, x), · · · ,Oi−1(a, x)) → Oi(a, x)] ≥ 1
2

+
ε

log M
,

where Oi(a, x) denotes the i-th bit of O(a, x).
If we define TO as a partial truth table of O that specifies the first i − 1 bits

of O(a, x) for all (a, x) ∈ [K]× [N ], then there is another algorithm D (that just
runs C once) whose query magnitude on (a, x) is 0 that satisfies

Pr
D,O,a,x

[D|O〉(˜stO, TO, a, x) → Oi(a, x)] ≥ 1
2

+
ε

log M
.
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Then at least an (ε/ log M)-fraction of O satisfies

Pr
D,a,x

[D|O〉(˜stO, TO, a, x) → Oi(a, x)] ≥ 1
2

+
ε

2 log M
.

By Lemma 5, there exists a pair of an encoder and decoder for this fraction of
functions with the success probability Ω(ε5/T 2 log5 M) and encoding size

KN + KN · (log M − 1) + S + O(1) − Ω

(

ε5KN

T 2 log6 M

)

.

By Lemma 3, it holds that

KN log M + S + O(1) − Ω

(

ε6KN

T 2 log6 M

)

≥ log
(

εMKN

log M

)

+ log(ε5/T 2 log5 M)

or O
(

S + log
(

T 2 log6 M
ε6

))

≥ Ω
(

ε6KN
T 2 log6 M

)

, which implies ε = ˜O

(

6

√

ST 2

KN

)

as

desired.15

Overall, we obtain |p0 − p3| = ˜O

(

6

√

ST 4

KN + T 4

N

)

. ��

3.4 Post-quantum Pseudorandom Functions

The main theorem of this subsection is that random oracles are secure pqPRFs
in the QROM-AI, which is formally stated as follows.

Theorem 3. Let O ∈ Func([K]× [N ]× [L], {0, 1}) be a random oracle. Suppose
that A is an oracle-aided quantum algorithm that takes an S-bit classical advice
stO (that may depend on O) as input, and makes at most T (quantum) queries
to the oracle O and at most Q classical queries to the other oracle. Then it holds
that

∣

∣

∣

∣

Pr
A,O,a,k

[

A|O〉,O(a,k,·)(stO, a) → 1
]

− Pr
A,O,a,F

[

A|O〉,F (stO, a) → 1
]

∣

∣

∣

∣

= ˜O

(

4

√

ST 4

KN
+

T 4

N
+ Q

6

√

ST 2

KN

)

,

where F is uniform in Func([L], {0, 1}).

The proof can be done similarly to Theorem 2 except that we need an
extended variant of Lemma 5. The proof of Theorem 3 can be found in the
full version.

15 More concretely, ε6 > CST 2 log6 M(1+log KN)/KN for sufficiently large C implies
contradiction.
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3.5 Post-quantum MACs

The main theorem of this subsection is that random oracles are secure pqMACs
in the QROM-AI, which is formally stated as follows.

Theorem 4. Let O ∈ Func([K] × [N ] × [L], [M ]) be a random oracle. Suppose
that A is an oracle-aided quantum algorithm that takes an S-bit classical advice
stO (that may depend on O) as input, and makes at most T oracle queries to
the oracle O. Then it holds that

Pr
A,O,a,k

[

A|O〉,O(a,k,·)(stO, a) → (m, t) ∧ O(a, k, m) = t
]

= ˜O

(

3

√

ST 4

KN
+

T 4

N
+

1

M

)

where A never queries m to its second oracle.

The proof can be found in the full version.

4 Random Permutation with Quantum AI

In this section, we give a security bound for inverting random permutations with
quantum auxiliary input.

4.1 Preparations

First, we prepare some lemmas that are needed for proving our results.

Quantum Compression Lemma. Nayak [Nay99] generalized the seminal
result of Holevo [Hol73] to relate the number of qubits that is needed to transmit
n-bit classical information and the success probability of it.

Theorem 5. [Nay99,NS06, adapted] Suppose that Alice holds an n-bit string x
and wants to convey it to Bob via a (noiseless) quantum channel. If, for any x,
the probability that Bob successfully recovers x is p ∈ (0, 1], then the number of
qubits m transmitted by Alice is at least n − log 1/p.

Note that the above statement is very similar to the compression argument in
the classical setting. Using this Theorem 5, we can obtain the following quantum
compression lemma. The proof is postponed to the full version.

Lemma 6 (Quantum compression lemma). Let M,R be a set. Let E be a
procedure that takes (x, r) ∈ M × R and outputs a m-qubit quantum state and
D a procedure that takes a quantum state along with string r ∈ R. If we have

Pr
r

[D(E(x, r), r) = x] ≥ p

for all x ∈ M , then it holds that m ≥ log |M | − 2 log 1/p + 1.



608 M. Hhan et al.

Rewinding Quantum Advice. Here, we describe a way to reuse a quantum
advice for quantum algorithms when the outputs of the algorithms are fixed
values with very high probability. We note that a similar idea has been used in
several works [Aar05,AR19].

Specifically, Aaronson [Aar05] implicitly proved the following lemma by using
the gentle measurement lemma [Win99], whose proof can be found in the full
version for completeness.

Lemma 7 (Implicit in [Aar05]). Let ρ be any (mixed) quantum state, n be
any positive integer, and for i ∈ [n], let Ai be a unitary quantum algorithm
(i.e., Ai is unitary except for the final measurement) such that Pr[Ai(ρ) = xi] >
1 − 1

9n4 for some classical string xi. Then there exists an algorithm B such that
Pr[B(ρ) = {xi}i∈[n]] > 2/3.

4.2 Bound for Inverting Random Permutations

Theorem 6. Let O ∈ Func([K] × [N ], [N ]) be a random permutation with salt
(i.e., O(a, ·) is a random permutation). Suppose that A is an oracle-aided quan-
tum algorithm that takes an S-bit quantum advice |stO〉 (that may depend on O)
as input, makes at most T oracle queries, and satisfies

Pr
A,O,a,x

[

A|O〉(|stO〉, a,O(a, x)) → x
]

= ε,

Then it holds that ε3 = ˜O
(

ST 2

KN + T 2

N

)

.

Remark 2. In the above, we assumed the advice |stO〉 is a pure state. This does
not lose generality since any S-qubit mixed state can be realized as half of a
2S-qubit pure state by purification.

Proof of Theorem 6. By an averaging argument, there exists a set of functions
F that is an ε/2-fraction of random oracles such that

Pr
A,a,x

[A|f〉(|stf 〉, a, f(a, x)) → x] ≥ ε/2

for all f ∈ F . Fix f ∈ F . Again, by an averaging argument, there are at least
ε/4 · KN elements (a, x) satisfying

Pr
A

[A|f〉(|stf 〉, a, f(a, x)) → x] ≥ ε/4.

We denote the set of such (a, x) by I and call it semi-good.
Now we consider an algorithm B that is an “amplified version” of A that

satisfies

Pr
B

[B|f〉(|˜stf 〉, a, f(a, x)) → x] ≥ 3/4

for all (a, x) ∈ I. More precisely, B runs Θ(1/ε) copies of A in parallel except
measurements, checks the correctness of outputs of A (before measurements) by
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querying them to f , and then outputs x if any of them is the correct answer x
and ⊥ otherwise. The number and depth of queries of B are T ′ = Θ(T/ε) and
D′ = T + 1, respectively, and the quantum advice |˜stf 〉 is Θ(S/ε)-qubit.

Then a random set R ⊂ [K] × [N ] is chosen that will serve as a random
public coin for encoding, so that (a, x) ∈ R with probability p = d/T ′(T + 2)
(independently for each (a, x)) for some constant d (d < 1/46080 suffices). Here,
we may assume that p|I| ≥ C for a sufficiently large constant C (C ≥ 16 ln 10
suffices) since otherwise we have ε2KN/T 2 = O(1) in which case the statement
of Theorem 6 trivially holds.16

We say that (a, x) ∈ I is good if both

(A) (a, x) ∈ R, (B) Pr
B

[Find : B|f〉\(R\{(a,x)})(|˜stf 〉 , a, f(a, x))] ≤ 1
576(T + 2)

hold. A set of good elements is denoted by G.
Then the following claim can be proven similarly to Claim 2. The proof can

be found in the full version.

Claim 3. PrR[|G| ≥ δε2KN/T 2] > 0.8 for some constant δ.

We say that R is good if |G| ≥ δε2KN/T 2. We now fix a good R. For y ∈ [N ],
we define a function gy : [K] × [N ] → [N ] by

gy(a, z) =

{

f(a, z) if (a, z) /∈ R,

y otherwise.

We note that gy agrees with f on R \ {(a, x)} where (a, x) is any preimage of y
in f (i.e., f(a, x) = y). Here, we consider an algorithm C that works similarly to
B except that it takes x as an additional input and returns 1 if B’s output is x
and 0 otherwise. By Lemma 1 and Remark 1, for any (a, x) ∈ G, we have

∣

∣

∣Pr
C

[C|gf(a,x)〉(|˜stf 〉, a, x, f(a, x)) → 1] − Pr
C

[C|f〉(|˜stf 〉, a, x, f(a, x)) → 1]
∣

∣

∣

≤ 2
√

(T + 2)Pr
C

[Find : C|f〉\(R\{(a,x)})(|˜stf 〉 , a, x, f(a, x))]

which is clearly equivalent to
∣

∣

∣Pr
B

[B|gf(a,x)〉(|˜stf 〉, a, f(a, x)) → x] − Pr
B

[B|f〉(|˜stf 〉, a, f(a, x)) → x]
∣

∣

∣

≤ 2
√

(T + 2)Pr
B

[Find : B|f〉\(R\{(a,x)})(|˜stf 〉 , a, f(a, x))] ≤ 1
12

.

Thus we have

Pr
B

[B|gf(a,x)〉(|˜stf 〉, a, f(a, x)) → x] ≥ 3
4

− 1
12

=
2
3
.

16 Looking ahead, this is used in the proof of Claim 3.
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Note that the algorithm B outputs one particular answer x or ⊥, so we can
amplify the success probability by running O(log(KN)) copies of B in parallel
and taking an output of any execution of B that is not ⊥ as its final output if
any (before the measurement). We call this algorithm ˜B, which satisfies

Pr
˜B
[ ˜B|gf(a,x)〉(|stf 〉, a, f(a, x)) → x] ≥ 1 − 1

9(KN)4
,

where |stf 〉 is O(S log(KN)/ε) qubits.
Now we are ready to encode the function f for good R. Let Ra := R ∩

({a} × [N ]) and Ga = G ∩ ({a} × [N ]). The encoding of f includes the following
information:

• The advice string |stf 〉: O(S log(KN)/ε) qubits.
• The set f(Ra) for each a ∈ [K]:

∑

a log
(

N
|Ra|

)

bits.
• The values of f on ({a} × [N ]) \ Ra for each a ∈ [K]:

∑

a log(N − |Ra|)! bits.
• The cardinality of Ga for each a ∈ [K]: K log N bits.
• The set f(Ga) for each a ∈ [K]:

∑

a log
(|Ra|
|Ga|

)

bits.
• The values of f on Ra \ Ga :

∑

a log(|Ra| − |Ga|)! bits.

The decoding procedure initializes an empty table to store the values of f
and then fills the table as follows:

1. Recover |stf 〉, Ga, and G.
2. Fill the values of f on inputs in ([K] × [N ]) \ R. This can be done since the

decoder knows R as a shared random string.
3. Fill the table of f for G by the following procedures. For each (a, y) ∈ f(Ga),

let x ∈ [N ] be the inversion of y at a, i.e., y = f(a, x) (which is unknown
to the decoder so far). Note that the function gy can be evaluated by the
decoder since it only needs values of f on ([K] × [N ]) \ R which is already
recovered. As discussed above, we have

Pr
˜B
[ ˜B|gf(a,x)〉(|stf 〉, a, f(a, x)) → x] ≥ 1 − 1

9(KN)4
.

Then the decoder uses the procedure in Lemma 7 to recover x for all (a, y) ∈
f(G). Noting that |f(G)| ≤ KN , by Lemma 7, the decoder succeeds in
correctly recovering x for all (a, y) ∈ f(G) with probability at least 2/3. We
note that the set G is also recovered at this point.

4. The decoder fills the values of f on inputs in R \ G by using the partial
truth table and the description of G that is recovered in the previous step.

The decoding procedure succeeds with a constant probability (over the choice
of R and the randomness of measurements) since a constant fraction of R is good
and the decoding succeeds with a constant probability for good R.
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The overall encoding size except the size of advice string and the size of Ga is

∑

a∈[K]

(

log

(

N

|Ra|

)

+ log(N − |Ra|)! + log

(

|Ra|
|Ga|

)

+ log(|Ra| − |Ga|)!
)

=
∑

a∈[K]

log

(

N !

(N − |Ra|)!|Ra|! · (N − |Ra|)! · |Ra|!
(|Ra| − |Ga|)!|Ga|! · (|Ra| − |Ga|)!

)

= K log N ! −
∑

a∈[K]

log |Ga|!

≤ K log N ! −
∑

a∈[K]

|Ga| log(|Ga|/e) ≤ K log N ! − |G| log

( |G|
eK

)

,

where we used the fact that n! ≥ (n/e)n and x log x is convex in the last two
inequalities. Then by Lemma 6, we obtain the inequality

O

(

S log(KN)
ε

+ K log N

)

≥ |G| log
( |G|

eK

)

+ Θ(1).

Then we have either |G|/eK < 2, which implies ε2 = O(T 2/N), or

O

(

S log(KN)
ε

+ K log N

)

≥ |G| ≥ δε2KN/T 2.

Combining them, we obtain ε3 = ˜O
(

ST 2

KN + T 2

N

)

. ��

4.3 Implication in Complexity Theory

Here, we discuss an implication of the result of the previous section in complexity
theory. We denote by BQP/qpoly the class of languages that can be decided in
quantum polynomial time with a polynomial-size quantum advice.17 Then the
following theorem follows from Theorem 6. The proof is postponed to the full
version.

Theorem 7. NP∩ coNP �⊆ BQP/qpoly relative to a random permutation oracle
with probability 1.
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Abstract. The functionality of classically-instructed remotely prepared
random secret qubits was introduced in (Cojocaru et al. 2018) as a way
to enable classical parties to participate in secure quantum computation
and communications protocols. The idea is that a classical party (client)
instructs a quantum party (server) to generate a qubit to the server’s side
that is random, unknown to the server but known to the client. Such task
is only possible under computational assumptions. In this contribution
we define a simpler (basic) primitive consisting of only BB84 states, and
give a protocol that realizes this primitive and that is secure against the
strongest possible adversary (an arbitrarily deviating malicious server).
The specific functions used, were constructed based on known trapdoor
one-way functions, resulting to the security of our basic primitive being
reduced to the hardness of the Learning With Errors problem. We then
give a number of extensions, building on this basic module: extension to
larger set of states (that includes non-Clifford states); proper considera-
tion of the abort case; and verifiablity on the module level. The latter is
based on “blind self-testing”, a notion we introduced, proved in a limited
setting and conjectured its validity for the most general case.

Keywords: Classical delegated quantum computation · Learning
With Errors · Provable security

1 Introduction

In the coming decades, advances in quantum technologies may cause major shifts
in the mainstream computing landscape. In the meantime, we can expect to see
quantum devices with high variability in terms of architectures and capacities,
the so-called noisy, intermediate-scale quantum (NISQ) devices [46] (such as
those being developed by IBM, Rigetti, Google, IonQ) that are currently avail-
able to users via classical cloud platforms. In order to be able to proceed to
the next milestone for the utility of these devices in a wider industrial base, the
issues of privacy and integrity of the data manipulation must be addressed.
c© International Association for Cryptologic Research 2019
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Early proposals for secure and verifiable delegated quantum computing based
on simple obfuscation of data already exist [2,5,10,14,20,22,24,34,40,41]. How-
ever, these schemes require a reliable long-distance quantum communication
network, connecting all the interested parties, which remains a challenging task.

For these reasons, there has recently been extensive research focusing on the
practicality aspect of secure and verifiable delegated quantum computation. One
direction is to reduce the required communications by exploiting classical fully-
homomorphic-encryption schemes [3,11,18], or by defining their direct quantum
analogues [29,30,44,50]. Different encodings, on the client side, could also reduce
the quantum communication [24,34]. However, in all these approaches, the client
still requires some quantum capabilities. While no-go results indicate restric-
tions on which of the above properties are jointly achievable for classical clients
[1,4,42,54], recent breakthroughs based on post-quantum secure trapdoor one-
way functions, paved the way for developing entirely new approaches towards
fully-classical client protocols for emerging quantum servers. The first such pro-
cedures were proposed in [32] allowing a classical client to securely delegate a
universal quantum computation to a remote untrusted server. The key technical
idea was the ability to perform a CNOT quantum gate that is controlled by an
encrypted classical bit. To achieve this a classical primitive of trapdoor claw-
free functions pair was used. It was later followed by the work of [7], where the
construction achieved stronger security guarantee and based on more standard
cryptographic assumptions. Building on this, a single device certifiable random-
ness was achieved in [8], where the randomness is information theoretical, but
the certification is based on the computational limitations of quantum devices.
Finally, using post-hoc verification of quantum computations [21], and the above
ideas to generate a single qubit “blind measurement device”, [33] gave the first
protocol achieving classical client verification of universal quantum computation.

All these constructions, while they used similar techniques, proved the desired
properties in a monolithic way. An alternative approach was taken in [15] where
the idea was to replace the quantum channel (that is used in many different pro-
tocol implementing blind and/or verifiable quantum computation) with a module
running between a classical client and a quantum server. It was shown then how a
classical client could use this module (referred to as QFactory) to achieve secure
delegated universal quantum computing, but potentially also, other function-
alities such as multi-party quantum computation. However, the security proof
was made in a weak “honest-but-curious” model, and the full proof of security
was left as an open question. In this paper, we extend the security proof to a
fully malicious adversary. All our proofs are made using reductions to hardness
assumptions (namely LWE), and the simplicity of the main protocol suggests
that an extention to a composable model such as Universal Composability [12] or
Abstract Cryptography (AC) [35] should be possible (but left as a future work).

Concurrently with our work, [23] also took this modular approach. Techni-
cally they followed closely the ideas from [8,32,33], but the basic primitive they
derive (in a verifiable version) is the one we introduced in [15]. They gave pro-
tocols for a verifiable version of the secret single qubit generation, while they
also gave a proof in the AC model. Their AC proof relies on a strong hypothesis
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that they call “measurement buffer” that forces the adversary to give the state
that he is supposed to measure to the simulator, enforcing (essentially) a trusted
measurement. They also state that the stand-alone proof does not require this
assumption. To our view, this assumption is very high price for moving to the
AC framework, which is why in our current work we do not focus on compos-
ability while we work towards resolving this issue as part of the future work
we mentioned. Moreover, in [23] they do not investigate a crucial “abort” case
of the protocol, which is related to the properties of the functions required for
the protocol implementation. Specifically, properties such as two-regularity can
only be achieved probabilistically, causing the security of the protocol to fail
whenever the function property is not satisfied. This means that they need to
use a family of functions that is secure only under the assumption that SIVPγ

is hard for a superpolynomial γ, while the standard assumption is that SIVPγ

is secure only for a polynomial γ [7].
Following the modularity of [15], we present a universal yet minimal func-

tionality module that is fully secure and verifiable at the module level and could
be used as a black box in other client-server applications to replace the need for
a reliable long-distance quantum communication network. The price one has to
pay is a reduction from information-theoretic security (achievable using quan-
tum communication) to post-quantum computational security via our modules.
The ultimate vision would be to develop a hybrid network of classical and quan-
tum communication channels, depending on the desired security level and the
technology development of NISQ devices allowing classical or quantum links [53].

1.1 Our Contributions

In [15] was defined a classical client - quantum server functionality of delegated
pseudo-secret random qubit generator (PSRQG) that can replace the need for
quantum channel between parties in certain quantum communication protocols,
with the only trade-off being that the protocols would become computationally
secure (against quantum adversaries). However, the proof of security was done
in a weak model called “honest-but-curious”. In this paper (full version at [16]):

1. We present a new protocol called Malicious 4-states QFactory in Sect. 3 that
achieves the functionality of classically instructed remote secret generation
of the states {|0〉 , |1〉 , |+〉 , |−〉} (known as the BB84 states), given 2 cryp-
tographic functions: (1) a trapdoor one-way function that is quantum-safe,
two-regular and collision resistant and (2) a homomorphic, hardcore predi-
cate. The novelty of this new protocol reflects in both simplicity of construc-
tion and proof, as well as enhanced security, namely the protocol is secure
against any arbitrarily deviating adversary. The target output qubit set is
one of the four BB84 states, states that form the core requirement of any
quantum communication protocol.
Then, in Subsect. 3.3, we present the security of the Malicious 4-states QFac-
tory against any fully malicious server, by proving that the basis of the gen-
erated qubits are completely hidden from any adversary, using the properties
of the two functions, the security being based on the hardness of the Learning
with Errors problem.
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2. While the above-mentioned results do not depend on the specific function
used, the existence of such functions (with all desired properties) makes the
functionality a practical primitive that can be employed as described in this
paper. In Sect. 4, we describe how to construct the two-regular, collision resis-
tant, trapdoor one-way family of functions and the homomorphic, hardcore
predicate. Furthermore, we prove using reductions in Subsect. 4.2 that the
resulting functions maintain all the required properties.

3. In order to demonstrate the modular construction of the basic Malicious 4-
states QFactory, we also present in Sect. 5, a secure and efficient extension to
the functionality of generating 8 states, called the Malicious 8-states QFactory
protocol (where the security refers to the fact that the basis of the new state
is completely hidden). The set of output states

{
|+θ〉 | θ ∈ {0, π

4 , ..., 7π
4 }

}
(no

longer within the Clifford group) are used in various protocols, including
protocols for verifiable blind quantum computation.

4. While the protocol introduced in Sect. 3 requires (for the security proof) a
family of functions having 2 preimages with probability super-polynomially
close to 1, we also define in Sect. 7 a protocol named Malicious-Abort 4-states
QFactory, that is secure when the functions have 2 preimages with only a
constant (greater than 1/2) probability. Indeed, even if the parameters used
for the first category of functions are implicitly used in some protocols [32],
the second category of functions is strictly more secure and more standard
in the cryptographic literature [7]. The Malicious-Abort 4-states QFactory
protocol is proven secure also for this second category of functions, assuming
that the classical Yao’s XOR lemma also applies for one-round protocols (with
classical messages) with quantum adversaries.

5. With a simple construction in Sect. 6, we extend our basic module, in a “blind-
measurement” device, where the server performs a single qubit measurement
in either the Z or X basis, but he is ignorant of the measurement basis
(while the client knows). This type of blind measurement was the basis for
the paper of [33], where a classical-client verification of quantum computation
protocol was first given. Here we see how our module can also offer this type
of functionality.

6. The Malicious 8-states QFactory can be further extended in order to offer a
notion of verification for QFactory in Sect. 8, the new protocol being called
Verifiable QFactory. We demonstrate that this notion of verifiability of QFac-
tory is suitable, by showing that it is sufficient to obtain verifiable blind quan-
tum computation. Such protocol would be the first classical client, verifiable
and blind quantum computation protocol.
We introduce in Subsect. 8.2 a novel framework called blind self-testing, which
differs from the standard self-testing by replacing the non-locality assump-
tions for such tests with blindness conditions. We describe how this tech-
nique can be used to prove the verifiability of QFactory. Note however, that
the security of the Verifiable QFactory Protocol 8.2 is conjectured, while we
expect that the full proof would follow using the most general case of the
novel notion of blind self-testing that we introduced. Finally, we prove how a
(much simpler) i.i.d. blind self-testing is achievable.
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1.2 Overview of the Protocols and Proofs

The Protocol. The general idea is that a classical client communicates with a
quantum server instructing him to perform certain actions. By the end of the
interaction, the client obtains a random value B = B1B2 ∈ {00, 01, 10, 11}, while
the server (if he followed the protocol) ends up with the state HB1XB2 |0〉, i.e.
with one of the BB84 states. Moreover, the server, irrespective of whether he
followed the protocol or how he deviated, cannot guess the value of the (basis)
bit B1 any better than making a random guess (more details in Subsect. 3.3).

This module is sufficient to perform (either directly or with simple extensions)
multiple secure computation protocols including blind quantum computation.

To achieve such a task, we require three central elements. Firstly, the quan-
tum operations performed by the server should not be repeatable, in order to
avoid letting the (adversarial) server run multiple times these operations and
obtain multiple copies of the same output state. That would (obviously) com-
promise the security since direct tomography of a single qubit is straightforward.
This can be achieved if the protocol includes a measurement of many qubits,
where the probability of getting twice the same outcome would be exponentially
small. The second element is that the server should not be able to efficiently
classically simulate the quantum computation that he needs to perform. This is
to stop the server from running everything classically and obtaining the explicit
classical description of the output state. This is achieved using techniques from
post-quantum cryptography and specifically the Learning-With-Errors problem.
Lastly, the computation has to be easy to perform for the client, since she needs
to know the output state. This asymmetry (easy for client/hard for server) can
be achieved only in the computational setting, where the client has some extra
trapdoor information. The protocol requires the following cryptographic primi-
ties defined formally in Definition 8:

– F : a family of 2-regular, collision resistant, trapdoor one-way functions (that
can be constructed from a family of injective, homomorphic, trapdoor one-
way functions G);

– d0(tk): a hardcore predicate of the index of the functions in F . More precisely,
every function fk ∈ F has an associated hardcore bit d0 that is hard to guess
given only k, but easy to compute given the trapdoor tk;

– h: a predicate such that h(x) ⊕ h(x′) = d0 for any x, x′ with fk(x) = fk(x′)

Given these functions, the protocol steps are: The client sends the descriptions
of the functions fk (from the family F) and h. The server’s actions are described
by the circuit given in Fig. 1 (see Sect. 3), classically instructed by the client:
prepares one register at ⊗nH |0〉 and second register at |0〉m; then applies Ufk

using the first register as control and the second as target; measures the second
register in the computational basis, obtains the outcome y. Through these steps
server produces a superposition of the 2 preimages x and x′ of y for the function
fk, i.e. |x〉+ |x′〉. Next, server is instructed to apply the unitary corresponding to
function h (targeting a new qubit |0〉) and to measure all but this new qubit in
the Hadamard basis (the measurement outcomes will be denoted as b), which will
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be the output of the protocol. This last step intuitively magnifies the randomness
of all the qubits to this final output qubit.

Then, it can be proven that, in an honest run, this output state is:

|out〉 = HB1XB2 |0〉 , where
B1 = h(x) ⊕ h(x′) = d0(tk) =: d0

B2 = (d0 × (b · (x ⊕ x′))) ⊕ h(x)h(x′)

Therefore, the client can efficiently obtain the description of the output state,
namely B1 and B2 by inverting y, to obtain the 2 preimages x and x′ using his
secret trapdoor information tk.

Security. Informally speaking the desired security property of the module is to
prove that the server cannot guess better than randomly the basis bit B1 of what
the client has, no matter how the server deviates or what answers he returns.
In other words, we prove that given that the client chooses k randomly, then no
matter which messages y and b the server returns, he cannot determine B1.

Specifically, using the properties of the 2 cryptographic functions, we show
that the basis of the output state is independent of the messages sent by server
and essentially, the basis is fixed by the client at the beginning of the protocol.

Here it is important to emphasize that the simplicity of our modular con-
struction allow us to make a direct reduction from the above security property to
the cryptographic assumptions of our primitives functions F , d0 and h. Indeed,
from the expression above, we can see that at the end of the interaction the
client has recorded as the basis bit the expression B1 = h(x) ⊕ h(x′) = d0(tk),
which is a hardcore bit and is therefore hard to guess given only k.

The Primitive Construction. In order to use this module in practise, it is cru-
cial to have functions that satisfy our cryptographic requirements, and explore
the choices of parameters that ensure that all these properties are jointly satis-
fied. Building on the function construction of [15] we gave specific choices that
achieve these properties. The starting point is the injective, trapdoor one-way
family of functions Ḡ from [39], where the hardness of the function is derived
from the Learning With Errors problem.

More precisely, to sample a function fk, we first sample a matrix K ∈ Z
m×n
q

using the construction of [39] (that provides an injective and trapdoor function),
a uniform vector s0 ∈ Z

n
q , an error e0 ∈ Z

m
q according to a small Gaussian1 and

a random bit d0, and we compute

y0 = Ks0 + e0 + d0 ×
(

q
2 0 . . . 0

)T (1.1)

The hardcore property of d0 will directly come from the fact that under LWE
assumption, no adversary can distinguish a LWE instance Ks0 + e0 from a
random vector, so it is not possible to know if we added or not a constant
vector. The function fK,y0 will then be defined as follow:

fK,y0(s, e, c, d) = Ks + e + c × y0 + d ×
(

q
2 0 . . . 0

)T (1.2)
1 But big enough to make sure the function is secure.
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Note that c and d are bits, and the error e is chosen in a bigger space2 than
e0 to ensure that the function fK,y0 has two preimages with good probability.
Moreover, if we define h(s, e, c, d) = d, it is easy to see that for all preimages
x, x′ with f(x) = f(x′), we have:

h(x) ⊕ h(x′) = d0

The Extended Protocol. In order to use the above protocol for applications
such as blind quantum computing [10], we need to be able to produce states taken
from the (extended) set of eight states {|+θ〉 , θ ∈ {0, π

4 , ..., 7π
4 }}. Importantly,

we still need to ensure that the bits corresponding to the basis of each qubits
produced, remain hidden. Here we prove how given two states produced by the
basic protocol described previously, which we denote as |in1〉 and |in2〉, we
can obtain a single state from the 8-states set, denoted |out〉, ensuring that no
information about the bits of the basis of |out〉 is leaked3.

To achieve this, we need to find an operation (see Fig. 2 in Sect. 5.1), that
in the honest case maps the indices of the inputs to those of the output using
a map that satisfies certain conditions. This relation (inputs/output) should be
such that learning anything about the basis of the output state implies learning
non-negligible information for the basis of (one) input. This directly means, that
any computationally bounded adversary that can break the basis blindness of
the output, can use this to construct an attack that would also break the basis
blindness of at least one of the inputs, i.e. he would break the security guarantees
of the basic module that was proven earlier.

Other Properties. To further demonstrate the utility of our core module, as
a building block for other client-server protocols, one might wish to expand fur-
ther the desired properties of the basic functionality. First we give a direct use of
our gadget, to construct a “blind-measurement” device. Such device is essential
for (non-blind) verification schemes based on post-hoc verification method [21]
and directly relates our work with that of [33]. Next, to obtain the verifiability
of the module (i.e. imposing an honest behaviour on the server) we propose a
generalization of the self-testing, where the non-locality condition is replaced by
the blindness property and the analysis is done in the computational setting.
Finally, to further improve the practicality of the black box call of the QFactory
we also present the security against abort scenario that could be achieved based
on a quantum version of Yao’s XOR Lemma. However, these additional proper-
ties require stronger basic assumptions that we leave as an open question to be
removed or proven correct separately.

2 But small enough to make sure the partial functions f(·, ·, c, ·) are still injective.
3 Note that one of the input states is exactly the output of the basic module, while the

second comes from a slightly modified version (essentially rotated in the XY-plane
of the Bloch sphere).
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2 Preliminaries

We assume basic familiarity with quantum notions, a good reference is [43].
For a state |+θ〉 = 1√

2
(|0〉 + eiθ |1〉), where θ ∈ {0, π

4 , ..., 7π
4 }, we use the

notation:
θ =

π

4
L

Additionally, as L is a 3-bit string, we write it as L = L1L2L3, where L1, L2, L3

represent the bits of L.
As a result when we refer to the basis of the |+θ〉 state, it is equivalent to

referring to the last 2 bits of L, thus saying that nothing is leaked about the
basis of this state, is equivalent to saying nothing is leaked about the bits L2

and L3.
For a set of 4 quantum states {|0〉 , |1〉 , |+〉 , |−〉}, we denote the index of

each state using 2 bits: B1, B2, with B1 = 0 if and only if the state is |0〉 or |1〉,
and B2 = 0 if and only if the state is |0〉 or |+〉, i.e. HB1XB2 |0〉. We will use
interchangeably the Dirac notation and the basis/value notation.

In the following sections, we will consider polynomially bounded malicious
adversaries, usually denoted by A. The honest clients will be denoted with the π
letter, and both honest parties and adversaries can output some values, that could
eventually be used in other protocols. To denote that two parties πA and A interact
in a protocol, and that πA outputs a while A outputs b, we write (a, b) ← (πA‖πB)
(we may forget the left hand side, or replace variables with underscores “ ” if it is
not relevant). We can also refer to the values of the classical messages send between
the two parties using something like Pr [a = accept | (πA‖A)], and this probabil-
ity is implicitly over the internal randomness of πA and A. To specify a two-party
protocol, it is enough to specify the two honest parties (πA, πB). Moreover, if the
protocol is just made of one round of communication, we can just write y ← A(x)
with x the first message sent to A, and y the messages sent from A. Finally, a value
with a tilde, such as d̃, represents a guess from an adversary.

We are considering protocols secure against quantum adversaries, so we
assume that all the properties of our functions hold for a general Quantum
Polynomial Time (QPT) adversary, rather than the usual Probabilistic Poly-
nomial Time (PPT) one. We will denote D the domain of the functions, while
D(n) is the subset of strings of length n. The following definitions are for PPT
adversaries, however in this paper we will generally use quantum-safe versions
of those definitions and thus security is guaranteed against QPT adversaries.

Definition 1 (One-way). A function family {fk : D → R}k∈K is one-way if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can invert fk with at most negligible probability over
the choice of k:

Pr
k←Gen(1n)

x←D
rc←{0,1}∗

[f(A(k, fk(x)) = f(x)] ≤ negl(n)

where rc represents the randomness used by A.
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Definition 2 (Collision resistant). A family of functions {fk : D → R}k∈K
is collision resistant if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can find two inputs x 
= x′ such that fk(x) = fk(x′)
with at most negligible probability over the choice of k:

Pr
k←Gen(1n)
rc←{0,1}∗

[A(k) = (x, x′) such that x 
= x′ and fk(x) = fk(x′)] ≤ negl(n)

where rc is the randomness of A (rc will be omitted from now).

Definition 3 (k-regular). A deterministic function f : D → R is k-regular
if ∀y ∈ Im f , we have |f−1(y)| = k.

Definition 4 (Trapdoor Function). A family of functions {fk : D → R} is
a trapdoor function if:

– There exists a PPT algorithm Gen which on input 1n outputs (k, tk), where
k represents the index of the function. We also suppose that it is possible to
derive the index k from the trapdoor tk using a function Pub, i.e. k = Pub(tk)

– {fk : D → R}k∈K is a family of one-way functions;
– There exists a PPT algorithm Inv, which on input tk (which is called the

trapdoor information) output by Gen(1n) and y = fk(x) can invert y (by
returning all preimages of y4) with non-negligible probability over the choice
of (k, tk) and uniform choice of x.

Definition 5 (Hardcore Predicate). A function hc : D → {0, 1} is a hard-
core predicate for a function f if:

– There exists a PPT algorithm that, for any input x, can compute hc(x);
– Any QPT algorithm A when given f(x), can compute hc(x) with negligible

better than 1/2 probability:
Pr

x←D(n)
rc←{0,1}∗

[A(f(x), 1n) = hc(x)] ≤ 1
2 + negl(n), where rc is the randomness

used by A;

The Learning with Errors problem (LWE) is described in the following way:

Definition 6 (LWE problem (informal)). Given s, an n dimensional vector
with elements in Zq, for some modulus q, the task is to distinguish between a
set of polynomially many noisy random linear combinations of the elements of s
and a set of polynomially many random numbers from Zq.
4 While in the standard definition of trapdoor functions it suffices for the inversion

algorithm Inv to return one of the preimages of any output of the function, in
our case we require a two-regular tradpdoor function where the inversion procedure
returns both preimages for any function output.
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Regev [47] and Peikert [45] have given quantum and classical reductions from
the average case of LWE to problems such as approximating the length of the
shortest vector or the shortest independent vectors problem in the worst case,
which are conjectured to be hard even for quantum computers.

Theorem 1 (Reduction LWE, [47, Theorem 1.1]). Let n, q be integers and
α ∈ (0, 1) be such that αq > 2

√
n. If there exists an efficient algorithm that solves

LWEq,Ψ̄α
, then there exists an efficient quantum algorithm that approximates

the decision version of the shortest vector problem GapSVP and the shortest
independent vectors problem SIVP to within Õ(n/α) in the worst case.

Definition 7 (Function Unitary). For any function f : A → B that can
be described by a polynomially-sized classical circuit, we define the controlled-
unitary Uf , as acting in the following way:

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 ∀x ∈ A ∀y ∈ B, (2.1)

where we name the first register |x〉 control and the second register |y〉 target.
Given the classical description of this function f , we can always define a QPT
algorithm that efficiently implements Uf .

3 The Malicious 4-States QFactory Protocol

3.1 Requirements and Protocol

The Malicious 4-states QFactory Protocol described Protocol 3.1 uses a family
of cryptographic functions F and a function h having the following properties
(see Sect. 4 to see how this family of functions can be constructed from a family
of injective, trapdoor and (pseudo) homomorphic functions):

Definition 8 (2-regular homomorphic-hardcore family). A family F =
{fk : D′ → R}k∈K is said to be a 2-regular homomorphic-hardcore family with
respect to hk : D′ → {0, 1} and d0 : T → {0, 1} (T is the set of trapdoors tk) if:

– it is 2-regular, collision resistant and trapdoor
– for all k, hk can be described by a polynomial classical circuit
– d0 is a hardcore predicate for Pub, i.e. given a random index k = PubF (tk),

it should be impossible to get d0 := d0(tk) with probability better than 1/2 +
negl(n), i.e. for any QPT adversary A:

Pr [A(k) = d0(tk) | (k, tk) ← GenF ] ≤ 1
2

+ negl(n) (3.1)

– for all k ∈ K and x, x′ ∈ D′ such that fk(x) = fk(x′), we have:

hk(x) ⊕ hk(x′) = d0 (3.2)

We also extend this definition to δ-2-regular homomorphic-hardcore family, when
the function is δ-2-regular, i.e. 2-regular with probability δ (see the full paper [16]
for a formal definition).
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Protocol 3.1 Malicious 4-states QFactory Protocol: classical delegation of the
BB84 states
Requirements:
Public: A δ-2-regular homomorphic-hardcore family F with respect to {hk} and d0, as
described above. For simplicity, we will represent the sets D′ (respectively R) using n
(respectively m) bits strings: D′ = {0, 1}n, R = {0, 1}m. In this protocol, we require δ
to be negligibly close to 1, see Section 7 for an extensions to a constant δ.
Stage 1: Preimages superposition
– Client: runs the algorithm (k, tk) ← GenF (1n).
– Client: instructs Server to prepare one register at ⊗nH |0〉 and second register initi-
ated at |0〉m.
– Client: sends k to Server and the Server applies Ufk using the first register as control
and the second as target.
– Server: measures the second register in the computational basis, obtains the out-
come y. Here, in an honest run, the Server would have a state (|x〉 + |x′〉) ⊗ |y〉 with
fk(x) = fk(x′) = y and y ∈ Im fk.
Stage 2: Output preparation
– Server: applies Uhk on the preimage register |x〉 + |x′〉 as control and another
qubit initiated at |0〉 as target. Then, measures all the qubits, but the target in the
{ 1√

2
(|0〉 ± |1〉)} basis, obtaining the outcome b = (b1, ..., bn). Now, the Server returns

both y and b to the Client.
– Client: using the trapdoor tk computes the preimages of y:

– if y does not have exactly two preimages x, x′ (the server is cheating with over-
whelming probability), defines B1 = d0(tk), and chooses B2 ∈ {0, 1} uniformly at
random

– if y has exactly two preimages x, x′, defines B1 = hk(x) ⊕ hk(x′) = d0(tk), and B2

as defined in Theorem 2.

Output: If the protocol is run honestly, the state that the Server has produced is
(with overwhelming probability) the BB84 state |out〉 = HB1XB2 |0〉, having the basis
B1 = hk(x) ⊕ hk(x′) = d0 (see Theorem 2 for the exact value of B2). The output of
the Server is |out〉, and the output of the Client is (B1, B2).

3.2 Correctness of Malicious 4-States QFactory

In an honest run, the description of the output state of the protocol depends on
measurement results y ∈ Im fk and b, but also on the 2 preimages x and x′ of y.

The output state of Malicious 4-states QFactory belongs to the set of states
{|0〉 , |1〉 , |+〉 , |−〉} and its exact description is the following:

Theorem 2. In an honest run, with overwhelming probability the output state
|out〉 of the Malicious 4-states QFactory Protocol (Protocol 3.1) is a BB84 state
whose basis is B1 = hk(x) ⊕ hk(x′) = d0, and:

– if d0 = 0, then the state is |hk(x)〉 (computational basis, also equal to |hk(x′)〉)
– if d0 = 1, then if

∑
i bi · (xi ⊕ x′

i) = 0 mod 2, the state is |+〉, otherwise the
state is |−〉 (Hadamard basis).
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i.e.

|out〉 = HB1XB2 |0〉 (3.3)

with

B1 = hk(x) ⊕ hk(x′) = d0 (3.4)
B2 = (d0 × (b · (x ⊕ x′))) ⊕ h(x)h(x′) (3.5)

(the inner product is taken modulo 2, and x ⊕ x′ is a bitwise xor)

Proof. The operations performed by the quantum server, can be described as:

|0〉

Ũh

|out〉

|0〉 H

Ufk

MX ⇒ b· · · · · ·
|0〉 H

|0〉
MZ ⇒ y· · ·

|0〉

Fig. 1. The circuit computed by the Server

|0〉 ⊗ |0n〉 ⊗ |0m〉 I2⊗H⊗n⊗I2
⊗m

−−−−−−−−−−−→ |0〉 ⊗
∑

x∈D
|x〉 ⊗ |0m〉 I2⊗Ufk−−−−−→

|0〉 ⊗
∑

x∈D
|x〉 ⊗ |fk(x)〉 fk2-regular−−−−−−−→ |0〉 ⊗

∑

y∈Im(fk)

(|x〉 +
∣∣x′〉) ⊗ |y〉 I2⊗I2

⊗n⊗M⊗m
Z−−−−−−−−−−−→

|0〉 ⊗ (|x〉 +
∣∣x′〉) ⊗ |y〉 ˜Uh⊗I2

⊗m

−−−−−−−→ (|h(x)〉 ⊗ |x〉 +
∣∣h(x′)

〉 ⊗ ∣∣x′〉) ⊗ |y〉 I2⊗M⊗n
X

⊗I2
⊗m

−−−−−−−−−−−→
|out〉 ⊗ |b1〉 ... ⊗ |bn〉 ⊗ |y〉 ⇒ |out〉 = Hd0Xd0(b·(x⊕x′))⊕h(x)h(x′) |0〉

where Ũh is a “swapped” Uh, acting on the first register as target and input

register as control: |0〉 |x〉
˜Uh−−→ |h(x)〉 |x〉. For more detailed computations, see

the full paper. �

It can be noticed that, in an honest run of the protocol, using y and the
trapdoor information of the function fk, the Client obtains x and x′ and thus
can efficiently determine what is the output state that the Server has prepared.
In the next section, we prove that no malicious adversary can distinguish between
the 2 possible bases {|0〉 , |1〉} and {|+〉 , |−〉} of the output qubit, or equivalently
distinguish whether B1 is 0 or 1.
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3.3 Security Against Malicious Adversaries of Malicious 4-States
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has is given by Theorem 2. Therefore, the task that a malicious
server wants to achieve, is to be able to guess, as good as he can, the description
of the output state that the client (based on the public communication) thinks
the server has produced. In particular, in our case, the server needs to guess the
bit B1 (corresponding to the basis) of the (honest) output state.

Note that we want to make sure that the server cannot guess the basis bit B1

(for most applications [10,22] basis blindness is sufficient as indicated in [19]),
and we do not care about the value bit B2 simply because it is not possible to
say that B2 cannot be guessed with probability better than random. Indeed,
even in the honest case, or in the “perfect” case with a quantum channel, the
server can always measure the qubit |out〉 he has to extract the value bit (for
example by measuring it in a random basis (computational or Hadamard) and
outputting the outcome of the measurement, he will succeed with probability
1
2 × 1

2 + 1
2 × 1 = 3

4 > 1/2). Additionally, partial blindness of B2 is implicit in
our work, since learning B2 leads to leaking partial information about B1, in
the case that the server possesses the honest output state HB1XB2 |0〉. Optimal
bounds for B2’s leakage are not known if the server is malicious and without
verification, is non-trivial and will be studied as a future work.

Definition 9 (4 states basis blindness). We say that a protocol (πA, πB)
achieves basis-blindness with respect to an ideal list of 4 states
S = {SB1,B2}(B1,B2)∈{0,1}2 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SB1B2 ∈ S | ((B1, B2), |φ〉) ← (πA‖πB)] ≥ 1 − negl(n)

– and no information is leaked about the index bit B1 of the output state of the
protocol, i.e for all QPT adversary A:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1) ← (πA‖A)

]
≤ 1/2 + negl(n)

Theorem 3 (Malicious 4-states QFactory is secure). Protocol 3.1 satisfies
4-states basis blindness with respect to the ideal list of states
S = {HB1XB2 |0〉}B1,B2 = {|0〉 , |1〉 , |+〉 , |−〉}.

Proof. The advantage of our construction is that this theorem is now a direct
application of the definition of the family F (Definition 8). Indeed, let us suppose
that there exists a QPT adversary A such that:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1) ← (πA‖A)

]
≥ 1/2 +

1
poly(n)

where πA (respectively πB) is the honest Client (respectively Server) of Protocol
3.1. From Theorem 2, we notice that the value of B1 is always equal to d0(tk).
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Moreover, our adversary is just a one-round adversary, so we can rewrite the
previous equation as:

Pr [d0(tk) = A(k) | (k, tk) ← GenF ] ≥ 1/2 +
1

poly(n)
But d0 is a hardcore predicate, so this contradicts Eq. 3.1. So no QPT adversary
A can guess the basis B1 with probability better than 1/2 + negl(n). �
Remark 1. In the run of the Malicious 4-states QFactory protocol, the adver-
sary/server has no access to the abort/accept bit, specifying whether the Client
wants to abort the protocol after receiving the image y from the server (the
abort occurs when y does not have exactly two preimages). So that’s why this
first protocol is correct with overwhelming probability only when δ > 1−negl(n).
See Sect. 7 to see how we address this issue for constant δ.

4 Function Implementation

4.1 General Construction of 2-Regular Homomorphic-Hardcore
Family

To complete the construction of Malicious 4-states QFactory, we must find
functions F , h, and d0 satisfying the properties described in Definition 8. We
first explain a general method to construct a 2-regular function from an injec-
tive homomorphic function (the generalisation to δ-2-regularity from pseudo-
homomorphic functions is treated in the full paper), and we give in the next
section a candidate that achieves the two other properties required in our def-
inition (homomorphic-hardcore predicate) whose security is based on the cryp-
tographic problem LWE.

Lemma 1. It is possible to construct a family of functions F : {fk′ : D ×
{0, 1} → R}, hk′ and d0 that are a 2-regular homomorphic-hardcore family
(Definition 8) from a family of functions G = {gk : D → R}k that is injec-
tive, trapdoor, homomorphic and such that there exists a homomorphic hardcore
predicate hk : D → {0, 1} for all gk ∈ G.

Proof. Because G and D are homomorphic, there
exist 2 operations “+D” acting on D and “+R” act-
ing on R such that ∀k,∀z1, z2 ∈ D, gk(z1 +D z2) =
gk(z1)+R gk(z2) and h(z1)⊕h(z2) = h(z2+D z1) =
h(z2 −D z1). Then, the functions F , h′

k, d0 are con-
structed as follow. First, to generate a private key,
we generate a private key of G, and we pick a ran-
dom element z0 (see GenF (1n) on the right). And
then we define fk′ : D × {0, 1} → R as fk′(z, c) =
gk(z) +R c · y0, we also define h′

k′ : D × {0, 1} → R
as h′

k′(z, c) = hk(z) and d0 : T ′ → {0, 1} (where T ′

is the sets of trapdoors t′k′) as d0(tk, z0) = hk(z0). Now, it is easy to see that this
family is 2-regular homomorphic-hardcore family, as proven in the full paper. �
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4.2 Construction of δ-2-regular Homomorphic-Hardcore Family F
We will now give an explicit implementation of a family G that is injective,
trapdoor, (pseudo) homomorphic with a homomorphic-hardcore predicate d0,
and then we will rely on a construction similar to Lemma 1 to produce a family
F , h, and d0 with the properties described in Definition 8 needed by Protocols
3.1 and 7.1. Note that we defined in a previous work [15] a similar construction,
but without the additional homomorphic-hardcore property.

The starting point is the injective, trapdoor one-way family of functions
Ḡ = {ḡK : Zn

q × Em → Z
m
q }K

5 from [39] (where E defines the set of integers
bounded in absolute value by some “big-enough” value μ which will be defined
later, and additions are matrix additions modulo q, where q is an even integer).

ḡK(s, e) = Ks + e

Then, to sample a function from the family F = {fk : Zn
q × Em × {0, 1} ×

{0, 1} → Z
m
q }, we will first sample a random matrix K ∈ Z

m×n
q with the trapdoor

matrix R using the construction from [39], as well as a uniform random vector
s0 ∈ Z

n
q , a random small error vector e0 ∈ Z

m
q sampled according to a “small-

enough” Gaussian distribution Dm
α′q on integers and a (uniform) random bit

d0 ∈ {0, 1}. Now, after defining the constant vector v =
(

q
2 0 . . . 0

)T , and

y0 := Ks0 + e0 + d0 × v

the trapdoor is set to tk := (R, s0, e0, d0), and the public index is k = (K, y0).
We can already note at that step that d0 is a hardcore-predicate:

Lemma 2. The function d0(tk) := d0 is a hardcore predicate of k, i.e. for all
QPT adversaries A,

Pr[A(k) = d0(tk)] ≤ 1
2

+ negl(n)

Now, we can define fk : Zn
q × Em × {0, 1} × {0, 1} → Z

m
q as follow:

fk(s, e, c, d) = Ks + e + c × y0 + d × v

and h : Zn
q × Em × {0, 1} × {0, 1 → {0, 1} as:

h(s, e, c, d) = d

The intuition behind this construction is more or less the same as the general
construction presented in Subsect. 4.1. Moreover, the first two terms As + e are
useful for the security, the c × y0 term is needed to ensure the 2-regularity (the
two images will differ by (s0, e0, 1, d0)), and the last term d × v is mostly useful
to provide the hardcore property. More precisely:

5 The bar on top of Ḡ denotes the version where there is not yet the hardcore bit d0.



630 A. Cojocaru et al.

– This function cannot have more than 2 preimages because the partial func-
tions f(·, ·, c, ·) are injective (because ḡK is injective)

– h is the homomorphic-hardcore predicate required by Definition 8. Indeed, if
there is a collision, i.e. if fk(s, e, 0, d) = fk(s′, e′, 1, d′), it is easy to see that
d⊕d′ = d0 (q is even, and operations are modulo q), i.e. that h(x)⊕h(x′) = d0

– finally, for an appropriate choice of parameters (see Lemma 3), this function
is 2-regular with good probability. Indeed, if for a random element (s, e, 0, d)
there exists (s′, e′, 1, d′) with fk(s, e, 0, d) = fk(s′, e′, 1, d′), then e = e′ + e0.
But e0 is sampled from a set significantly smaller than E, so with good
probability e′ = e − e0 will belong to E.

Note on the Parameters: α′ is chosen to make sure that the sampled elements
are small compared to μ (the upper bound on E), but such that the noise is still
big enough for security. On the contrary, μ must stay small enough to ensure
that the function does not have more than two preimages. Our previous work
provides a set of parameters having all the required constraints:

Lemma 3 (from [15]). The family of functions F is δ-2-regular with good (con-
stant greater than 1/2) probability, trapdoor, one-way and collision resistant (all
these properties are true even against a quantum attacker), assuming that there
is no quantum algorithm that can efficiently solve SIVPγ for γ = poly(n), for
the following choices of parameters:

q = 25�log(n)�+21

m = 23n + 5n �log(n)�
μ = 2mn

√
23 + 5log(n)

α′ =
μ

m
√

mq
(4.1)

Moreover, we can find another set of parameters such that this probability δ is
negligibly close to one assuming that SIVPγ is secure for a superpolynomial γ
(depending on the value of δ, you may choose Protocol 3.1 (δ ∼ 1) or Protocol
7.1 (δ > 1/2)).

We can now formalize the above intuitions:

Theorem 4. The family F defined above with appropriate parameters such as
the one defined in Lemma 3 is a δ-2-regular homomorphic-hardcore family.

Proof. The proofs that hk(x)⊕hk(x′) = d0, and that gK is injective and one-way
can be found in the full paper, the Lemma 3 ensures that the family is δ-2-regular,
the hardcore property comes from Lemma 2, and the other properties are trivial
to check. �
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5 The Malicious 8-States QFactory Protocol

In order to use the Malicious 4-states QFactory functionality for applications
such as blind quantum computing [10], we need to be able to produce states
from the set {|+θ〉 , θ ∈ {0, π

4 , ..., 7π
4 }}, always ensuring that the bases of these

qubits remain hidden. Here we prove how by obtaining two states of Malicious
4-states QFactory Protocol, we can obtain a single state from the 8-states set,
while no information about the bases of the new output state is leaked.

To achieve this, we need to find an operation, that in the honest case maps
the correct inputs to the outputs, in such a way, that the index of the output
state corresponding to the basis, is directly related with the bases bits of the
input states. This relation should be such that learning anything about the basis
of the output state implies learning non-negligible information about the input.
This directly means, that any computationally bounded adversary that breaks
the 8-states basis blindness of the output, also breaks the 4-states basis blindness
of at least one of the inputs.6

Protocol 5.1 Malicious 8-states QFactory
Requirements: Same as in Protocol Protocol 3.1
Input: Client runs twice the algorithm GenF (1n), obtaining (k1, t1k), (k2, t2k). Client
keeps t1k, t2k private.
Protocol:
– Client: runs Malicious 4-states QFactory algorithm to obtain a state |in1〉 and a
“rotated” Malicious 4-states QFactory to obtain a state |in2〉 (by rotated Malicious
4-states QFactory we mean a Malicious 4-states QFactory, but where the last set of

measurements in the |±〉 basis (Fig. 1) is replaced by measurements in the
∣∣∣± π

2

〉
basis).

– Client: records measurement outcomes (y1, b1), (y2, b2) and computes and stores the
corresponding indices of the output states of the 2 Malicious 4-states QFactory runs:
(B1, B2) for |in1〉 and (B′

1, B
′
2) for |in2〉.

– Client: instructs Server to apply the Merge Gadget (Fig. 2) on the states |in1〉, |in2〉.
– Server: returns the 2 measurement results s1, s2.
– Client: using (B1, B2), (B′

1, B
′
2), s1, s2 computes the index L = L1L2L3 ∈ {0, 1}3 of

the output state.
Output: If the protocol is run honestly, the state that the Server has produced is:

|out〉 = X(s2+B2)·B1ZB′
2+B2(1−B1)+B1[s1+(s2+B2)B

′
1]R(

π

2
)B1R(

π

4
)B′

1 |+〉 (5.1)

5.1 Correctness of Malicious 8-States QFactory

We prove the existence of a mapping M (which we will call Merge Gadget),
from 2 states |in1〉 and |in2〉, where |in1〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} and |in2〉 ∈
{|+〉 , |−〉 , |+y〉 , |−y〉} to a state |out〉 =

∣
∣+L· π

4

〉
, where L = L1L2L3 ∈ {0, 1}3.

Namely, as defined in Protocol 5.1, M is acting in the following way:
6 Here it is worth pointing out that a similar result (in a more complicated method)

was achieved in [19]. That technique however, is applied in the information theoretic
setting.
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∣∣∣+π
4

〉
• |±〉 s1

|in1〉 Z • |±〉 s2

|in2〉 Z |out〉

Fig. 2. Merge gadget

M(|in1〉 , |in2〉) = MX,2MX,1∧Z2,3∧Z1,2

[∣∣+π
4

〉
⊗ |in1〉 ⊗ |in2〉

]
(5.2)

Theorem 5. In an honest run, the Output state of the Malicious 8-states QFac-
tory Protocol is of the form

∣
∣+L· π

4

〉
, where L = L1L2L3 ∈ {0, 1}3.

It can also be noticed that, in an honest run of Malicious 8-states QFactory,
the client can efficiently determine L: using b1, b2, y1, y2 and the trapdoors t1k, t2k,
he first obtains (B1, B2) and (B′

1, B
′
2), and after receiving s1, s2, he determines

the description of the state prepared by the server.

5.2 Security Against Malicious Adversaries of Malicious 8-States
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has, is given by Theorem 5.

Therefore, as in the case of Malicious 4-states QFactory, the task that a mali-
cious server wants to achieve, is to be able to guess, as good as he can, the index
of the output state that the client thinks the server has produced. In particular,
in our case, the server needs to guess the bits L2 and L3 (corresponding to the
basis) of the (honest) output state.

Definition 10 (8 states basis blindness). Similarly, we say that a protocol
(πA, πB) achieves basis-blindness with respect to an ideal list of 8 states S =
{SL1,L2,L3}(L1,L2,L3)∈{0,1}3 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SL1,L2,L3 ∈ S | ((L1, L2, L3), |φ〉) ← (πA‖πB)] = 1

– and if no information is leaked about the “basis” bits (L2, L3) of the output
state of the protocol, i.e for all QPT adversary A:

Pr
[
L2 = L̃2 and L3 = L̃3 | ((L1, L2, L3), (L̃2, L̃3)) ← (πA‖A)

]
≤ 1/4 + negl(n)
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Theorem 6. Malicious 8-states QFactory satisfies 8-state basis blindness with
respect to the ideal set of states S = {|+πL/4〉}L∈{0,...,7} = {|+〉 , |+π

4
〉 , .., |+ 7π

4
〉}.

Sketch Proof (The full proof can be found in the full paper). We prove this result
by reduction showing that, if there exists a QPT adversary A that is able to break
the 8-states basis blindness property of Malicious 8-states QFactory (determine
the indices L2 and L3 with probability 1

4 + 1
poly1(n)

for some polynomial function
poly1), then we can construct a QPT adversary A′ that can break the 4-states
basis blindness of the Malicious 4-states QFactory protocol (determine the basis
bit with probability 1

2 + 1
poly2(n)

, for some polynomial poly2(·)). �

6 Blind Measurement Gadget

In this section we show how our basic module can be used to achieve another
task, that of blind-measurement. The task is the following: we want a classical
client to instruct a quantum server to measure one of his qubits in either the
Pauli X or Z basis, in a way that the server is not aware of which of the two
bases was actually used. We give below a gadget that achieves this task using
a single output of the Malicious QFactory 4-states. We note also, that other
blind-measurements, between different sets of bases, are also possible using our
module, but we focus on this one since it is this type of measurement needed for
post-hoc verification [21] and thus is the basis for classical verification protocols
such as that of [33].

The following gadget Fig. 3 achieves the desired task. Note, that we consider
a general state |ψ〉 where the measurement is performed on the first of its qubits
(thus the second wire in the figure represents all the non-measured qubits).
Depending on the value of B1, the actual outcome is Z or X and the measurement
outcome is obtained from either s1 or s2 (see details in the full paper).

Fig. 3. Blind measurement gadget

7 Malicious-Abort 4-States QFactory: Treating Abort
Case

In this section, we will discuss an extension of Malicious 4-states QFactory, whose
aim is to achieve basis blindness even against adversaries that try to exploit the
fact that Malicious 4-states QFactory can abort when there is only one preimage
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associated to the y returned by the server. One may think that we could just
send back this accept/abort bit to the server, but unfortunately it could leak
additional information on the hardcore bit d0 (which corresponds to the basis
B1 of the produced qubit) to the server, and from an information theory point
of view, as soon as the probability of acceptance is small enough, we cannot
guarantee that this bit remains secret. On the other hand, for honest servers, the
probability of aborting is usually non-negligible, so we cannot neglect this case.

We stress out that it is also possible to guarantee that for honest servers this
probability goes negligibly close to 1 by making an appropriate choice of param-
eters for the function. In that case the initial protocol of Malicious QFactory
defined Sect. 3 is secure, but this comes (as far as we know), at the cost of using
a function with is “less” secure. More specifically, instead of having a reduction
to GapSVP with a polynomial γ, the reduction usually goes to GapSVP with a
super-polynomial γ. Such function parameters have been used implicitly in other
works [32] ([7] later removed this assumption), and for now they are believed to
be secure (the best known polynomial algorithm cannot break GapSVP with
a γ smaller than exponential), but these assumptions are usually not widely
accepted in the cryptography community, and that’s why we aim to remove this
non-standard assumption.

The solution we propose in this section uses the assumption that the classical
Yao’s XOR Lemma also applies for one-round protocols (with classical messages)
against quantum adversary. This lemma roughly states that if you cannot guess
the output bit of one round with probability better than η, then it’s hard to
guess the output bit of t independents rounds with probability much better than
1/2 + ηt. As far as we know, this lemma has been proven only in the classical
case (see [25] for a review of this theorem as well as the main proof methods),
and other works [52] even extend this lemma to protocols, and also to quantum
setting [28,49]. Unfortunately, these works focus on communication and query
complexity and are not really usable in our case.

In the following, we will call “accepted run” a run of Malicious 4-states
QFactory such that the y received from the server has 2 preimages (“probability
of success” also refers to the probability of this event when the server is honest),
and otherwise we call it an “aborted run”.

7.1 The Malicious-Abort 4-State QFactory Protocol

In a nutshell, the solution we propose is to run several instances of Malicious 4-
states QFactory, by remarking that we do not need to discard the aborted runs.
Indeed, it is easy to see that in these cases, the produced qubits will always be
in the same basis (denoted by 0). The idea is then to implement on the server
side a circuit that will output a qubit having as basis the XOR of all the basis
of the accepted runs (without even leaking which runs are accepted or not), and
check on client’s side that the number of accepted runs is high enough (this will
happen with probability exponentially close to 1 for honest servers). If it is the
case, the client will just output the XOR of the basis of the accepted run, and
otherwise (i.e. if the server is malicious), he will just pick a random bit value.
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Unfortunately, in practice things are a bit more complicated, and in order
to be able to write the proof of security we need to divide all the t runs into nc

“chunks” of size tc, and test them individually. Here is a more precise (but still
high level) description of the protocol and proof’s ideas, the full proofs being in
the full paper:

– firstly, we run t = nc × tc parallel instances of Malicious 4-states QFactory,
without revealing the abort bit for any of these instances;

– then the key point to note is that for honest servers, if yi has only one preimage
then the output qubit produced by the server at the end of the protocol will
be either |0〉 or |1〉, but cannot be |+〉 or |−〉 (with one preimage we do not
have a superposition). In other words, the basis is always the {|0〉 , |1〉} basis
(denoted as 0) so we do not really need to abort. Therefore, at the end, (for
honest runs) the basis of the output qubits will be equal for all i ∈ [[0, t]] to
βi = d0,i · ai, where ai = 1 iff yi has two preimages, and ai = 0 otherwise. Of
course, this distribution will be biased against 0, but it is not a problem. See
Lemma 4 for proof.

– then, it also appears that from t qubits in the basis β1, . . . , βt, we have a way
to produce a single qubit belonging to the set {|0〉 , |1〉 , |+〉 , |−〉} whose basis
B1 is the XOR of the basis of the t qubits, i.e. B1 = ⊕t

i=1βi (see Lemma 5).
– Then, the client will test every chunk, by checking if the proportion of

accepted runs in every chunk is greater than a given value pc. If all chunks
have enough accepted runs, then the client just computes and outputs the
good value for the basis (which is the XOR of the hardcore bit of all the
accepted runs) and value bits. However, if at least one chunk doesn’t have
enough accepted runs (which shouldn’t happen if the server is honest), then
the client just outputs random values for the basis and value bit, not cor-
related with server’s qubit (equivalent to saying that a malicious server can
always throw the qubit and pick a new qubit, not correlated with client’s
one).

– Correctness: if the probability to have two preimages for an honest server is at
least a constant pa greater than 1/2 (the parameters we proposed in [15] have
this property), and if t is chosen high enough, the fraction of accepted runs
will be close to pa, and we can show that the probability to have a fraction
of accepted runs smaller than a given constant pb < pa is exponentially (in t)
close to 0. So with overwhelming probability, all the chunks will have enough
accepted runs, i.e. honest servers will have a qubit corresponding to the output
of the client.

– Soundness: to prove the security of this scheme, we first prove that it is impos-
sible for any adversary to guess the output of one chunk with a probability
bigger than a constant η < 1 (otherwise we have a direct reduction that
breaks the hardcore bit property of gK). Now, using the quantum version of
Yao’s XOR Lemma that we conjecture at Conjecture 1, we can deduce that
no malicious server is able to guess the XOR of the tc chunks/instances with
probability better than 1/2+ ηtc +negl(n), which goes negligibly close to 1/2
when tc = Ω(n).
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Putting everything together, the parties will just run t = nc ·tc Malicious 4-states
QFactory in parallel, the client will then check if

∑
i ai is higher than pc · tc for

all the nc chunks, and if so he will set B1 = ⊕t
i=1di · ai (server has a circuit to

produce a qubit in this basis as well). Otherwise B1 will be set to a uniformly
chosen random bit (it is equivalent to say that a malicious server can destroy the
qubit, and this is also unavoidable even with a real quantum communication),
and we still have correctness with overwhelming probability for honest clients.

The exact algorithm is described in Protocol 7.1, while the security result is
shown in Theorem 7 (and the proofs can be found in the full paper).

7.2 Correctness and Security of Malicious-Abort 4-State QFactory

Now, we will formalize the previous statements, the proofs are in the full paper.

Conjecture 1 (Yao’s XOR Lemma for one-round protocols (classical messages)
against quantum adversary).
Let n be the security parameter, fn : Xn × Yn → {0, 1} be a (possibly non-
deterministic) function family (usually not computable in polynomial time), and
χn be a distribution on Xn efficiently samplable. If there exists δ(n) such that
|δ(n)| ≥ 1

poly(n) and such that for all QPT (in n) adversary An : Xn → Yn×{0, 1}:

Pr
[
β̃ = fn(x, y) | (y, β̃) ← An(x), x ← χn

]
≤ 1 − δ(n)

then, for all t ∈ N
∗, there is no QPT adversary A′

n : X t
n → Yt

n ×{0, 1} such that:

Pr

[

β̃ =
t⊕

i=1

fn(xi, yi) | (y1, . . . , yt, β̃) ← A′
n(x1, . . . , xt),∀i, xi ← χn

]

≥1
2

+ (1 − δ(n))t + negl(n)

Lemma 4 (Aborted runs are useful). If πA4 and πB4 are following the Mali-
cious 4-states QFactory protocol honestly, and if y has not 2 preimages, then the
output qubit produced by πB4 is in the basis {|0〉 , |1〉}.

Lemma 5 (Gadget circuit Gad⊕ computes XOR). If we denote by bi the
basis of |ini〉 (equal to 0 if the basis is 0/1, and 1 if the basis is +/−), and if
we run the circuit Gad⊕ (inspired by measurement based quantum computing)
represented Fig. 4 on these inputs, then basis of |out〉 is equal to ⊕t

i=1bi.
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∣∣+π/2

〉 • |±〉 s1,1

|in1〉 Z • |±〉 s1,2

∣∣+π/2

〉 • |±〉 s2,1

|in2〉 Z • |±〉 s2,2

...
...

...∣∣+π/2

〉 • |±〉 st,1

|int〉 Z • |±〉 st,2

|+〉 Z Z Z |out〉

Fig. 4. The XOR gadget circuit Gad⊕ (run on server side)

We will now describe here the protocol of Malicious-Abort 4-states
QFactory:

Protocol 7.1 Malicious-Abort 4-states QFactory Protocol
Requirements:
Public: The family of functions F and h described above, such that the probability of
having two pre-images for a random image is greater than a constant pa > 1/2.
This protocol is based on the constants tc ∈ N (number of repetitions per chunk),
nc ∈ N (number of chunks), pa ∈ (1/2, 1] (lower bound on probability of accepted run
in the honest protocol), pc ∈ (1/2, 1] < pa (fraction of the runs per chunk that must be
accepted). These constants can be chosen to have overwhelming probability of success
for honest players, and negligible advantage for an adversary trying to guess the basis.
Stage 1: Run multiple QFactories
– Client: prepares t = nc × tc public keys/trapdoors:

(k(i,j), tk(i,j)) ← GenF (1n), where i ∈ [[1, nc]], j ∈ [[1, tc]]

The Client then sends the public keys k(i,j) to the Server, together with h.
– Server and Client: follow Protocol 3.1 t times, with the keys sent at the step before.
Client receives ((y(i,j), b(i,j)))i,j , and sets for all i, j: a(i,j) = 1 iff |f−1(y(i,j))| = 2,

otherwise a(i,j) = 0, and B
(i,j)
1 and B

(i,j)
2 like in Protocol 3.1 when a(i,j) = 1 (otherwise

B
(i,j)
1 = 0 and B

(i,j)
2 = h(f−1(y)). Server will get t outputs |in(i,j)〉.

Stage 2: Combine runs and output
– Server: applies circuit Figure 4 on the t outputs |int〉, and outputs |out〉.
– Client: checks that for all chunks i ∈ [[1, nc]] the number of accepted runs is high
enough, i.e.

∑
j a(i,j) ≥ pctc.
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– If at least one chunk does not respect this condition, then picks two random bits
B1 (the basis bit) and B2 (the value bit) and outputs (B1, B2), corresponding to
the description of the BB84 state HB1XB2 |0〉.

– If all chunks respect this condition, then sets B1 :=
⊕

i,j B
(i,j)
1 (the final basis is

the XOR of all the basis), and B2 will be chosen to match the output of Figure 4.

Theorem 7 (Malicious-Abort QFactory is correct and secure). Assum-
ing Conjecture 1, if the probability of the family F to have two preimages for any
image is bigger than a constant pa > 1/2, then there exists a set of parameters
pc, tc and nc such that Protocol 7.1 is correct with probability exponentially close
to 1 and basis-blind, i.e. for any QPT adversary A:

Pr
[
B̃1 = B1 | ((B1, B2), B̃1) ← (πA4⊕‖A)

]
≤ 1/2 + negl(n)

More precisely, we need tc ∈ (1/2, pc) to be a constant, and both tc and nc need
to be polynomial in n and Ω(n).

8 Verifiable QFactory

In the previous protocols, Malicious 4-states QFactory and Malicious 8-states
QFactory, the produced qubits came with the guarantee of basis-blindness (Defi-
nitions 9 and 10). While the property refers to the ability of a malicious adversary
to guess the honest basis bit(s), it tells nothing about the actual state that a
deviating server might produce. For a number of applications and most notably
for verifiable blind quantum computation [22], the basis-blindness property is not
sufficient. What is needed is a stronger property, verification, that ensures that
the produced state was prepared correctly even in a malicious run.

8.1 Verifiable QFactory Functionality

There are two issues with trying to define a verification property for QFactory.
The first is that the adversarial server can always abort, therefore the verifica-
tion property can only ensure that the probability of non-aborting and cheat is
negligible. The second issue is that, since the final state is in the hands of the
server, the server can always apply a final deviation on the state7. This is not
different from what happens in protocols that do have quantum communication.
In that case, the adversarial receiver (server) can also apply a deviation on the
state received before using the state in any subsequent protocol. This deviation
could even be the server replacing the received state with a totally different
state.

Here, we define the strongest notion of verifiable QFactory possible, which
exactly captures the idea of being able to recover the ideal state from the real
state without any knowledge of the (secret) index of the ideal state. This notion is

7 However that deviation needs to be independent of anything that is secret.
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sufficient for any protocol that includes communication of random secret qubits
of the form

∣
∣+Lπ/4

〉
which includes a verifiable quantum computation protocol

and furthermore, it is also possible to relax slightly the definition of verifiable
QFactory, as it is proven in the full paper.

Definition 11 (Verifiable QFactory). Consider a party that is given a state
uniformly chosen from a set of eight states S = {ρL |L ∈ {0, 1, ..., 7}} or an
abort bit, where S is basis-blind i.e. given a state sampled uniformly at random
from S, it is impossible to guess the last two bits of the index L of the state within
the set S with non-negligible advantage. We say that this party has a Verifiable
QFactory if, it aborts with small probability and when he does not abort, there
exists an isometry Φ, that is independent of the index L, such that:

Φ(ρL)
ε≈ |+Lπ/4〉 〈+Lπ/4| ⊗ σjunk (8.1)

where the state σjunk is independent of the index L.

It is worth stressing, that if the security setting is computational (as in this
work), the basis-blindness and the approximate equality above involve a QPT
distinguisher, while the isometry Φ needs to be computable in polynomial time.

8.2 Blind Self-testing

Before giving a verifiable QFactory protocol, we define a new concept of blind
self-testing, that will be essential in proving the security of the former. Self-
testing is a technique developed [31,36–38,51] that ensures that given some mea-
surement statistics, classical parties can be certain that some untrusted quantum
state (and operations), that two or more quantum parties share, is essentially
(up to some isometry) the state that the parties believe they have. In high-level,
we are going to use a test of this kind in order to certify that the output of
Verifiable QFactory is indeed the desired one.

Existing results, that we will call non-local self-testing, only deal with how
to exploit the non-locality (the fact that the quantum state tested is shared
between non-communicating parties) to test the state and operations. Naturally,
the correctness is up to a local isometry (something that the servers can apply,
while preserving the non-communication condition).

Here, instead of testing a single non-local state, we test a family of states,
where the non-locality property is replaced by the blindness property - the fact
that server is not aware (is blind) of which state from the possibly known family
of states he is actually given in each run of the protocol. To see how this is
closely related, one can imagine the usual non-local self-testing of the singlet
state, where one quantum side (Alice) actually performs a measurement (as
instructed). From the point of view of the other quantum side (Bob), he has a
single state that, in the honest run, is one of the BB84 states, while he is totally
oblivious about the basis of this state (if that was not the case, it would lead
to signalling the basis choice of Alice’s measurement). However, this is, by no
means the most general case. Here we introduce the concept of blind self-testing
formalising the above intuition.
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We give here the most general case of blind self-testing and we conjecture
that it holds. In the full paper we also list three simpler scenarios (of increasing
complication) that lead to the most general case given here, following similar
steps with the extension of simple i.i.d. self-testing to fully robust and rigid self-
testing in existing literature [17,26,31,38,48]. The security proof of the first case
can be found in the full paper, while complete analysis of the most general blind
self-testing goes beyond the scope of this work.

Protocol 8.1 Blind self-testing: The general case
– Server prepares a single state ρtot (consisting of N qubits in the honest run). This
state has a corresponding index consisting of N 3-bit indices Li (Li ∈ {0, ..., 7} ∀i ∈
{1, ..., N}), and the server is basis blind with respect to each of these N indices, i.e.
(being computationally bounded) he cannot determine with non-negligible advantage
the two basis bits of any index Li. On the other hand, client knows the indices Li’s.
– The client, randomly chooses a fraction f of the qubits to be used as tests and
announces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the
server.
– For each test qubit ij ∈ T , the client chooses a random measurement index
Mij ∈ {000, · · · , 111} and instructs the server to measure the corresponding qubit

in the
{

|+Mij
π/4〉 , |−Mij

π/4〉
}

basis.

– The server returns the test measurement results {c(ij)}.
— For each fixed pair (L, M), the client gathers all the test positions that correspond
to that pair and from the relative frequencies, the client obtains an estimate for the
probability pL,M (where by convention we have that pL,M corresponds to the +1 out-
come, while 1 − pL,M to the −1).
– If |pL,M − cos2((L − M)π/8)| ≥ ε2 for any pair (L, M) the client aborts.
Output: If the client does not abort (and this happens with non-negligible probabil-
ity), then there exists an index-independent polynomial isometry Φ = Φk1 ⊗ · · · Φkl ,
given by products of the isometries in Fig. 5, that is applied to a random subset of
non-tested qubits i, such that:

Φ(Trall but k1,··· ,kl qubitsρtot)
ε(ε1,ε2)≈

(
|+Lk1π/4〉

k1
⊗ · · · ⊗ |+Lkl

π/4〉
kl

)
⊗ σjunk (8.2)

|+〉 H • H •

|Ψ(L)〉 X ′ −iY ′

Fig. 5. The isometry of the blind self-testing. Note that the controlled gates are con-
trolled in the X-basis, i.e. ∧U12(a |+〉+b |−〉)1⊗(|ψ〉)2 = a |+〉1⊗|ψ〉2+b |−〉1⊗U |ψ〉2.

In this most general setting, we make no assumption on the state ρtot produced
by server and want to recover the full tensor product structure of the resulting
states given by Eq. (8.2). In the self-testing literature, Azuma-Hoeffding, quan-
tum de-Finetti theorems and rigidity results [6,9,13,27] were used to uplift the
simple i.i.d. case and prove security in the general setting.
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8.3 The Verifiable QFactory Protocol

In this section we introduce a protocol for the final version of our functionality,
Verifiable QFactory. Here, we give the protocol, show the correctness and the
security, namely that the protocol achieves the verification property from Defi-
nition 11, based on the conjectured security of the most general blind self-testing
given in Protocol 8.1. The basic idea is the following: repeat the Malicious 8-
states QFactory multiple times, then the client chooses a random fraction of the
output qubits and uses them for a test and next instructs the server to measure
the test qubits in random angles and, finally, the client checks their statistics.
Since the server does not know the states (or to be more precise, the basis bits),
he is unlikely to succeed in guessing the correct statistics unless he is honest.
(up to some trivial relabelling). The output qubits and the measurement angles,
need to be from the set of 8-states, which is one of the reasons we wanted to
give the 8-states extension of our Malicious 4-states QFactory.

Protocol 8.2 Verifiable QFactory
Requirements: Same as in Protocol Protocol 3.1
Input: Client runs N times the algorithm (k(i), t

(i)
k ) ← GenF (1n), where i ∈

{1, · · · , N} denotes the ith run. He keeps the t
(i)
k ’s private.

Protocol:
– Client: runs N times the Malicious 8-states QFactory Protocol 5.1.

– Client: records measurement outcomes y(i), b(i) and computes and stores the
corresponding index of the output state L(i).

– Client: instructs the server to measure a random fraction rf of the output states,
each in a randomly chosen basis of the form {|+M(i)π/4〉 , |−M(i)π/4〉}. Here M (i) is the
index of the measurement instructed.

– Server: returns the measurement outcomes c(i).
– Client: for each pair (L, M) collects the results c(j) for all j’s that have the specific

pair and with the relative frequency obtains an estimate for the probability p(L, M).
– Client: aborts unless all the estimates of the probabilities p(L, M) are ε-close to

the ideal one i.e. p(L, M)
ε≈ | 〈+Mπ/4| +Lπ/4〉|2.

Output: Probability of non-abort and being far from the ideal state8 is negligible ε′:

p(non-abort ∧ Δ(ρ
L(i1)···L(iN(1−f)) , ρideal) ≥ t(n)) ≤ ε′ (8.3)

where i1, ..., iN(1−f) refer to the unmeasured qubits and where

Φ(ρideal) = ⊗N(1−f)
k=1 |+

L(ik)π/4
〉 〈+

L(ik)π/4
| ⊗ σjunk (8.4)

σjunk is a constant density matrix, ε, ε′ are negligible and t(·) is non-negligible function.
Moreover, in an honest run, the probability of aborting is negligible and the output

is:

ρhonest = ⊗N(1−f)
k=1 |+

L(ik)π/4
〉 〈+

L(ik)π/4
| (8.5)

8 The distance Δ used here depends on the setting. In our case it is understood as a
QPT distinguisher.
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Theorem 8 (correctness). If Protocol 8.2 is run honestly, it aborts with neg-
ligible probability and the output (non-measured) qubits are exactly in a product
state of the form |+L(ik)π/4〉 〈+L(ik)π/4|. Thus, the trivial isometry (the identity)
suffices to recover the state of Eq. (8.1), and where there is no junk state.

Proof. In an honest run, each of the outputs of different Malicious 8-states QFac-
tory runs, are of the correct form, therefore measuring any of those outputs in
the {|±Mπ/4〉} basis returns the correct statistics with high probability. Hence,
the protocol does not abort, while the remaining states are prepared correctly.

�

Theorem 9 (security). Protocol 8.2 is a Verifiable QFactory (Definition 11),
i.e. the probability of accepting the tests and having a state far from the ideal is
negligible irrespective of the deviation of the adversary, assuming that the self-
testing Protocol 8.1 is correct.

In the full paper we also explain how this task is very similar with self-testing
results, and provide the first step for our self-testing result.
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Abstract. Despite their usage of pseudonyms rather than persistent
identifiers, most existing cryptocurrencies do not provide users with any
meaningful levels of privacy. This has prompted the creation of privacy-
enhanced cryptocurrencies such as Monero and Zcash, which are specif-
ically designed to counteract the tracking analysis possible in curren-
cies like Bitcoin. These cryptocurrencies, however, also suffer from some
drawbacks: in both Monero and Zcash, the set of potential unspent coins
is always growing, which means users cannot store a concise representa-
tion of the blockchain. Additionally, Zcash requires a common reference
string and the fact that addresses are reused multiple times in Monero
has led to attacks to its anonymity.

In this paper we propose a new design for anonymous cryptocur-
rencies, Quisquis, that achieves provably secure notions of anonymity.
Quisquis stores a relatively small amount of data, does not require
trusted setup, and in Quisquis each address appears on the blockchain
at most twice: once when it is generated as output of a transaction, and
once when it is spent as input to a transaction. Our result is achieved by
combining a DDH-based tool (that we call updatable keys) with efficient
zero-knowledge arguments.

1 Introduction

Bitcoin was introduced in 2008 [30], and at a high level it relies on the use of
addresses, associated with a public and private key pair, to keep track of who
owns which coins. Users of the system can efficiently create and operate many
different addresses, which gives rise to a form of pseudo-anonymity. As is now
well known, however, Bitcoin and other cryptocurrencies relying on this level of
pseudo-anonymity can, in practice, have these addresses linked together and even
linked back to their real-world identities with little effort [3,26,28,33,34,37].

Due to this, there has now been an extensive body of work aiming to provide
privacy-enhanced solutions for cryptocurrencies, although even some of these
new solutions have also been subjected to empirical analyses pointing out the
c© International Association for Cryptologic Research 2019
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extent to which they can be de-anonymized as well [18–20,25,27,29,40]. These
solutions typically fall into two main categories.

First, tumblers (also known as mixers or mixing services) act as opt-in over-
lays to existing cryptocurrencies such as Bitcoin [16,23,36] and Ethereum [24],
and achieve enhanced privacy by allowing senders to mix their coins with those
of other senders. While these are effective and arguably have a high chance of
adoption due to their integration with existing cryptocurrencies, they also have
some limitations. In particular, they are generally either dependent on trusting
a central mixer, which leaves users vulnerable to attacks on availability, or they
require significant coordination amongst the parties wishing to mix, which leads
to higher latency as users must wait for other people to mix with them.

Second, there are cryptocurrencies with privacy features built in at the pro-
tocol level. Of these, the ones that have arguably achieved the most success
are Dash [1], Monero [31], and Zcash [6]. Dash is derived from a tumbler solu-
tion, Coinjoin [23], and thus inherits the properties discussed there. In Monero,
senders specify some number of addresses to “mix in” to their own transaction,
and then use this list of public keys to form a ring signature and hide which
specific address was theirs. Observers of the blockchain thus learn only that
some unknown number of coins have moved from one of these input public keys.
In Zcash, users can put coins into a “shielded pool.” When they wish to spend
these coins, they prove in zero-knowledge that they have the right to spend some
specific coins in the pool, without revealing which ones.

Between Monero and Zcash, there are already several differences. For exam-
ple, because users in Monero specify rings themselves, they achieve a form of
plausible deniability : no one can tell if a user meant to be involved in a given
transaction, or if their address was simply used in a ring without their consent.
In Zcash, in contrast, every other user in a user’s anonymity set has no such
deniability, as they at one point intentionally put coins into the shielded pool.

One limitation central to both cryptocurrencies, however, is the information
that peers in the network are required to keep. In Bitcoin, the list of all addresses
with a positive balance can be thought of as a set of unspent transaction outputs
(UTXOs). When a sender spends coins, their address ceases to be a UTXO,
so is replaced in the set with the address of their recipient. Full nodes can thus
collapse the blockchain into this UTXO set, and check for double spending simply
by checking if a given input address is in the set or not. In other words, it acts
as a concise representation of the entire history of the blockchain. In October
2017, for example, there had been over 23 million Bitcoin transactions and the
total size of the blockchain was over 130 GB, but the size of the UTXO set was
only 3 GB [12].

In Monero and Zcash, however, addresses can (essentially) never be removed
from the UTXO set, as it is never clear if an address has spent its contents or
was simply used as part of the anonymity set in the transaction of a different
sender. The size of the UTXO set is thus monotonically increasing: with every
transaction, it can only grow and never shrink. This has a significant impact
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on full nodes, as they must effectively store the entire blockchain without the
option of the concise representation possible in Bitcoin.

Our Contributions. We present Quisquis, a new design for anonymous cryp-
tocurrencies that resolves the limitations outlined above for existing solutions.
In particular, users are able to form transactions on their own, so do not need
to wait for other interested users and incur the associated latency. They can
also involve the keys of other users without their permission, which gives the
same degree of plausible deniability as Monero. Finally, each transaction acts
to replace all the input public keys in the UTXO set with all the output public
keys, thus allowing the UTXO set to behave in the same manner as in Bitcoin.
Furthermore, our transactions are relatively inexpensive to compute and verify,
taking around 471ms to compute and 71ms to verify for an anonymity set of
size 16, with proofs of size approximately 13 kB.

As a brief technical overview, Quisquis achieves anonymity using a primitive
that we formalize in Sect. 3 called updatable public keys, which allows users to
create updated public keys, indistinguishable from ones that are freshly gener-
ated, without changing the underlying secret key. After formally defining our
threat model in Sect. 4, we present our full construction of Quisquis in Sect. 5.
Roughly, senders take the keys of other users, including their intended recipients,
to form a list of public keys that act as the input to a transaction. A sender can
now “re-distribute their wealth” among these input keys, acting to move some of
their own coins to the recipient and keeping the (hidden) balances of the other
members of the anonymity set the same. To ensure anonymity, the output public
keys are all updated, and all balances and amounts are given only in commit-
ted form. Thus, by design, in Quisquis every address can only ever appear at
most twice on the blockchain: once when it is generated in the output of the
transaction, and once when it is spent as input to a different transaction. This
greatly reduces (compared, e.g., to Monero) the ability of an attacker to perform
de-anonymization attacks based on how often a certain address participates in
transactions.

To ensure integrity, the sender proves in zero-knowledge that they have cor-
rectly updated the keys and have not taken money away from anyone except
themselves. Crucially, because the witness for the zero-knowledge proof is lim-
ited to this single transaction (as opposed to encompassing other parts of the
blockchain), we can use standard discrete-log-based techniques as opposed to
the heavyweight zk-SNARKs required in Zcash. This means that security can
depend entirely on DDH, and no trusted setup is required (as we use the random
oracle model to make the proofs non-interactive and to generate other system
parameters and random values using “nothing up my sleeves” methods). As the
design of Quisquis is modular, other tradeoffs could be achieved as well: for
instance, it could be possible to instantiate Quisquis with zk-SNARKs as well,
thus achieving even smaller transactions and faster verification at the cost of
much slower transaction generation and the stronger assumptions underlying
zk-SNARKs.
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To demonstrate the efficiency of Quisquis, we implement it and present per-
formance benchmarks in Sect. 7. We then provide a thorough comparison with
existing solutions in Sect. 8 before concluding in Sect. 9.

2 Cryptographic Primitives

2.1 Notation

Let logg h be the discrete log of h with respect to g. Define (a, b)c := (ac, bc)
and (a, b) · (c, d) := (ac, bd). For vectors a and b, let a ◦ b be the Hadamard
product of a and b; i.e., the vector c such that ci = aibi. We use y ← A(x)
to denote assigning to y the output of a deterministic algorithm A on input
x, and y $← A(x) if A is randomized; i.e., we sample a random r and then
run y ← A(x; r). We use [A(x)] to denote the set of values that have non-zero
probability of being output by A on inputs x. We use r $← R for sampling an
element r uniformly at random from a set R. If y = (y1, . . . , yn) $← A(x) then
we often denote yi by yi.

2.2 Zero-Knowledge Arguments of Knowledge

Let R be a binary relation for instances x and witnesses w, and let L be its
corresponding language; i.e., L = {x | ∃w : (x,w) ∈ R}. An interactive proof is
a protocol where a prover P tries to convince a verifier V , by an exchange of
messages, that an instance x is in the language L. The set of messages exchanged
is known as a transcript, from which a verifier can either accept or reject the
proof. The proof is public-coin if an honest verifier generates his responses to
P uniformly at random. An interactive proof is a special honest-verifier zero-
knowledge argument of knowledge if it satisfies the following properties:

– Perfect completeness: if x ∈ L, an honest P always convinces an honest V .
– Special honest-verifier zero-knowledge (SHVZK): there exists a simulator S

that, given x ∈ L and an honestly generated verifier’s challenge c, produces
an accepting transcript which has the same (or indistinguishably different)
distribution as a transcript between honest P, V on input x.

– Argument of knowledge: if P convinces V of an instance x, there exists an
extractor with oracle access to P that runs in expected polynomial-time to
extract the witness w.

A public-coin SHVZK argument of knowledge can be turned into a non-
interactive zero knowledge (NIZK) argument of knowledge using the Fiat-Shamir
heuristic. Essentially, non-interactivity is achieved by replacing the verifier’s ran-
dom challenge with the output of a hash function, which in the security proof is
modeled as a random oracle.



Quisquis: A New Design for Anonymous Cryptocurrencies 653

2.3 Commitments

We use a commitment scheme Commit relative to a public key pk that, given a
message m ∈ M and randomness r ∈ R, computes com ← Commitpk(m; r). Our
commitments must satisfy two properties: first, they are computationally hiding,
meaning for any two messages m0,m1, an adversary has negligible advantage in
distinguishing between Commitpk(m0;UR) and Commitpk(m1;UR), where UR is
the uniform distribution over the randomness space. Second, they are uncondi-
tionally binding, meaning even given the sk relative to pk, a commitment cannot
be opened to two different messages.

Beyond these two basic properties, we require two extra properties from
our commitments. First, they must be homomorphic in the sense that for
some operation � it holds that Commitpk(m) � Commitpk(m′) = Commitpk(m +
m′) (for appropriate randomness). Second, they must be key-anonymous,
meaning that for any honestly generated keys pk0, pk1 and adversarially
chosen m, the tuple (m, pk0, pk1,Commitpk0(m)) is indistinguishable from
(m, pk0, pk1,Commitpk1(m)).

We can construct such commitments in a group (G, g, p) where the DDH
problem is hard, by essentially performing an ElGamal encryption in the expo-
nent relative to public keys of the form pk = (gi, hi) (which are what we use
in our later constructions). In particular, Commitpk(v; r) returns com = (c, d)
where c = gi

r and d = gvhi
r. It is easy to verify that this commitment scheme is

unconditionally binding, computationally hiding, key-anonymous, and additively
homomorphic.

Finally, we also use extended Pedersen commitments in the constructions of
our zero-knowledge (ZK) arguments; i.e., schemes that commit to a vector of
values using a single group element.

3 Updatable Public Keys

This section introduces the notion of an updatable public key (UPK), in which
public keys can be updated in a public fashion, and such that they are indis-
tinguishable from freshly generated keys. This idea has been considered before
in the context of several cryptographic primitives, such as signatures [4,14] and
public-key encryption [39], but we wish to define it solely for keys, regardless of
the primitive they are used to support.

We begin by defining security for UPKs. Our definitions of indistinguisha-
bility and unforgeability resemble those that have already been used for Bitcoin
stealth keys [24] and in the context of other cryptographic primitives [4,22,39].

Indeed, we could continue to be inspired by stealth keys in our construction
of a UPK scheme, but given their reliance on hash functions this would render us
unable to prove statements about the keys using discrete log-based techniques,
as we would like to do in our construction of Quisquis in Sect. 5. We thus present
instead a purely algebraic UPK scheme based on DDH, inspired by “incomparable
public keys” [39].
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3.1 Security Definitions

An updatable public key system (UPK) is described by the following algorithms:

– params $← Setup(1κ) outputs the parameters of the scheme, including the
public and secret key spaces PK,SK. These are given implicitly as input to
all other algorithms.

– (pk, sk) $← Gen(1κ) takes as input a security parameter κ and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

– ({pk′
i}n

i=1)
$← Update({pki}n

i=1) takes as input public keys (pk1, . . . , pkn) and
outputs a new set of public keys (pk′

1, . . . , pk
′
n).

– 0/1 ← VerifyKP(pk, sk) takes as input pk ∈ PK and sk ∈ SK and checks
whether or not (pk, sk) is a valid key pair.

– 0/1 ← VerifyUpdate(pk′, pk, r) takes as input public keys pk′, pk, and random-
ness r and checks if pk′ was output by Update(pk; r).

We require a UPK to satisfy the following properties.

Definition 1 (Correctness). A UPK satisfies perfect correctness if the fol-
lowing three properties hold for all (pk, sk) ∈ [Gen(1κ)]: (1) the keys verify,
meaning VerifyKP(pk, sk) = 1; (2) the update process can be verified, meaning
VerifyUpdate(Update(pk; r), pk, r) = 1 for all r ∈ R; and (3) the updated keys ver-
ify, meaning VerifyKP(pk′, sk) = 1 for all pk′ ∈ [Update(pk)].

We next define indistinguishability, which says that an adversary cannot
distinguish between a freshly generated public key and an updated version of a
public key it already knows.

Definition 2 (Indistinguishability). Consider the following experiment:

1. (pk∗, sk∗) $← Gen(1κ);
2. pk0

$← Update(pk∗);
3. (pk1, sk1) $← Gen(1κ).

A UPK satisfies indistinguishability if for any PPT adversary A:

|Pr[A(pk∗, pk0) = 1] − Pr[A(pk∗, pk1) = 1]| ≤ negl(κ).

Finally, we require that an adversary should not be able to learn the secret key
of an updated public key (unless it already knew the secret key for the original
public key). This is formalized by saying that the adversary cannot produce a
public key for which it knows both the secret key and the randomness needed
to explain this public key as an update of an honestly generated public key.

Definition 3 (Unforgeability). A UPK satisfies unforgeability if for any PPT
adversary A:

Pr[VerifyKP(pk′, sk′) = 1 ∧ VerifyUpdate(pk′, pk, r) = 1
| (pk, sk) $← Gen(1κ); (sk′, pk′, r) $← A(pk)] ≤ negl(κ).
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3.2 UPKs from DDH

We present a construction of UPK based over a prime-order group (G, g, p) where
the DDH assumption is believed to hold. Thus, our Setup outputs only publicly
verifiable parameters, and does not need to be run by a trusted party. The rest
of the algorithms are as follows:

– Gen(1κ): Sample r, sk $← Fp and output pk = (gr, gr·sk).
– Update({pki}n

i=1): Parse pki = (gi, hi). Sample r $← Fp and compute pk′
i =

pkr
i = (gr

i , hr
i ) for all i.

– VerifyKP(pk, sk): Parse pk = (g′, h′) and output (g′)sk ?= h′.
– VerifyUpdate(pk′, pk, r): Output Update(pk; r) ?= pk′.

Lemma 1. The scheme above is a UPK satisfying Definitions 1–3 if the DDH
assumption holds in (G, g, p).

Proof. Correctness is straightforward to verify. To prove indistinguishability, our
reduction receives a DDH challenge chl = (g, gx, gy, gz), samples a value r $← Fp,
and defines pk∗ = (gr, gxr) and pk′ = (gyr, gzr). It then invokes the indistin-
guishability adversary A on input (pk∗, pk′). If chl is a DDH tuple then pk′ is
distributed identically to pk0, and if chl is not a DDH tuple then pk′ is distributed
identically to pk1. Therefore, our reduction has the same (non-negligible) advan-
tage in the DDH game as the A has in the indistinguishability game.

To prove unforgeability, our reduction receives a DL challenge chl = (g, h),
picks a random t $← Fp, and sets (g0, h0) = (gt, ht). The reduction now runs
(s, (g1, h1), r) $← A(g0, h0), and outputs s. The input to the adversary in the
reduction is distributed identically as in the definition of security. The winning
condition of the security definition requires that h1 = gs

1 and (g1, h1) = (gr
0, h

r
0) =

(grt, hrt) thus implying that gsrt = hrt or equivalently that h = gs, meaning s
is a valid solution to the DL oracle.

4 Threat Model

In this section, we present our model for cryptocurrency transactions, in which
we view a transaction not as just transferring value from a sender to a recipient
but as participants “re-distributing wealth” amongst themselves. Before present-
ing this model in Sect. 4.2, we first present the notion of an updatable account
in Sect. 4.1, which is an extension of updatable public keys that associates them
with a (hidden) balance; this is mainly done as a way to simplify notation in
future sections. We then present the relevant notions of security in Sect. 4.3,
focusing on anonymity (meaning no one can identify the “true” sender and recipi-
ent within the set of participants in a transaction) and theft prevention (meaning
no one can steal the coins of other people or otherwise inflate their own wealth).
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4.1 Updatable Accounts

To represent an account in a cryptocurrency, we use pairs acct = (pk, com) of
public keys, which act as the pseudonym for a user, and commitments, which
represent the balance associated with that public key.

In more detail, each account carries a balance bl ∈ V, where V ⊂ M; i.e.,
the domain of values is a subset of the messages that can be committed to
using Commit. To create a new account with initial balance bl ∈ V, one can
run (acct, sk) $← GenAcct(1κ, bl), which internally runs (pk, sk) $← Gen(1κ) and
com $← Commitpk(bl), sets acct = (pk, com), and returns (acct, sk).

To verify that an account has a certain balance, it is necessary to be able
to open a commitment using the secret key corresponding to pk. This also
allows the owner of sk to open a commitment or prove statements about the
committed message even without knowing the randomness used. We use the
notation VerifyCom(pk, com, sk,m), and require the commitment to be bind-
ing also with respect to this function; i.e., that no PPT adversary can output
(pk, com, sk,m, sk′,m′) with m 
= m′ but such that VerifyCom(pk, com, sk,m) =
VerifyCom(pk, com, sk′,m′) = 1. With this algorithm in place, one can run
0/1 ← VerifyAcct(acct, (sk, bl)), which parses acct = (pk, com) and outputs 1
if VerifyCom(pk, com, (sk, bl)) = 1 and bl ∈ V and 0 otherwise.

For an account acct = (pk, com), observe that the output of VerifyAcct is
agnostic to updates of the public key; i.e.,

VerifyAcct((pk, com), (sk, bl)) = VerifyAcct((Update(pk), com), (sk, bl)).

Additionally, VerifyAcct is agnostic to re-randomizations of the commit-
ment; i.e., VerifyAcct((pk, com), (sk, bl)) = VerifyAcct((pk, com�Commitpk(0; r)),
(sk, bl)).

Thanks to these observations, we are able to “update” accounts using the
following notation:

– {acct′i}n
i=1

$← UpdateAcct({accti, vi}n
i=1; r1, r2) takes as input a set of accounts

accti = (pki, comi) and values vi such that |vi| ∈ V, and outputs a new
set of accounts (acct′1, . . . , acct

′
n) where acct′i

$← (Update(pk; r1), com �
Commitpk(vi; r2)).

– 0/1 ← VerifyUpdateAcct({acct′i, accti, vi}n
i=1; r1, r2) outputs 1 if {acct′i}n

i=1 =
UpdateAcct({accti, vi}n

i=1; r1, r2) and |vi| ∈ V, and 0 otherwise.

4.2 The Cryptocurrency Setting

Modeling the security of a cryptocurrency is a complex problem, as there are
many different actors operating at different layers of the protocol: a user wishing
to send some coins creates a transaction, which is then broadcast to their peers
in a peer-to-peer network. Those peers in turn perform some cryptographic vali-
dation of the transaction, and if satisfied broadcast it to their peers. Eventually,
it reaches a miner or validator, who engages in some form of consensus protocol
to confirm the transaction into the blockchain.
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For the sake of simplicity, we focus solely on the transaction layer of a cryp-
tocurrency, and assume network-level or consensus-level attacks are out of scope;
i.e., we assume that the system is free from eclipse attacks [17] or other de-
anonymization attacks that depend on network-level information (such as IP
addresses) and that an adversary is not sufficiently powerful to prevent honest
transactions from being added to the blockchain or to add malicious transactions
of their own.

Rather than use the traditional model of having a sender, in possession of
some secret key and a coin, send this coin to a recipient, we instead consider
a set of participants who want to redistribute wealth amongst themselves. This
means we now model a transaction as taking place amongst a set of participants
P who act as both the senders and the recipients in the transaction, and who
each come in with some initial balance bl0,i and end with some balance bl1,i.

This still captures the traditional model of keeping senders and recipients
separate, because for a sender S sending one coin to a recipient R we can use
P = (pkS , pkR), bl0 = (1, 0), and bl1 = (0, 1). The natural question, however,
is who is required to authorize this transaction; for efficiency reasons we do not
want every participant to have to do so, but to ensure that parties cannot simply
steal each others’ money we do need permission on behalf of the “true” senders.
The simple way to provide both these properties is to require authorization only
on behalf of the public keys whose associated balance has gone down; i.e., for
every pki ∈ P such that bl1,i − bl0,i < 0.

Again, this model fully captures the traditional model of senders and recip-
ients, but crucially makes it easier to reason about cryptocurrencies designed
to provide anonymity. More formally, a transaction layer for cryptocurrencies
consists of (Setup,Trans,Verify), as defined below.

The setup algorithm state $← Setup(1κ,bl) generates the initial state of the
system. The vector bl represents the initial balance of the accounts in the system
and it must be such that bli ∈ V and

∑
i bli ∈ V. We assume that Setup runs

(accti, ski) $← GenAcct(1κ, bli) at some point, and that the state contains a set
UTXO consisting of all accounts accti. All other algorithms take as input the
(current) state even when omitted, and the state is updated in ways other than
through these algorithms (e.g., by miners producing blocks at the network layer).

To create a transaction, a sender in possession of a secret key sk runs tx ←
Trans(sk,P, A,v).1 The vector of values v ∈ V represents the desired change in
balance for each participant, meaning they should end up with bl1,i = bl0,i + vi

(where bl0,i is their initial balance according to state). In creating a transaction,
the sender may want to achieve some degree of anonymity, meaning they want
to hide the link between their accounts and those of the recipient. To this end,
we introduce an anonymity set A, which consists of other accounts used to hide
information about the sender. It is important that these accounts are “eligible”
in some way (where this depends on the concrete system, but can mean for
example that they have not yet spent their contents). If A is not explicitly

1 For simplicity we consider a single sender but the notation can easily be generalized
to allow for arbitrarily many.
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specified, it is picked at random from the set of eligible accounts. We denote by
tx[inputs] = P ∪ A the input accounts in a transaction, and by tx[outputs] the
output accounts.

Finally, 0/state ← Verify(state, tx) checks if a transaction is valid given the
current state. If so, it outputs an updated state, and if not it outputs 0.

We say a state is valid if it is output by Setup or if it was the output of
Verify(state′, tx) for a valid state′ and a transaction tx output by Trans. We say a
transaction layer preserves value if for any valid state′ 
= ⊥ derived from a valid
state, ValueOf(state.UTXO) = ValueOf(state′.UTXO), where ValueOf computes
the number of coins associated with the UTXO set induced by a state.

4.3 Security

Intuitively, an anonymous cryptocurrency should provide anonymity for both the
sender and the recipient, meaning that even they cannot identify which accounts
belong to whom. From an integrity perspective, it is also important to guarantee
theft prevention, meaning an adversary can transfer value only from accounts for
which it knows the secret key (and therefore the adversary cannot reduce the
balance of the honest parties either).

Regardless of the goal, the basic outline of our security experiment is the
same, in order to capture the different ways an adversary can interact with
honest participants in the system. For example, the adversary can instruct honest
participants to engage in transactions, or form arbitrary (i.e., fully adversarial)
transactions itself, as long as they are valid.

Intuitively, the adversary begins by specifying the initial balances bl of all par-
ticipants in the protocol. We continue this full control by allowing the adversary
to direct honest parties to make specific transactions (via transact queries), and
to inject fully malicious transactions in the system (via verify queries). It can
also learn the secret key for any account in the system (via disclose queries),
although here we must be careful to prevent “trivial” attacks resulting from these
disclosures in challenge queries (in which the adversary specifies two different
senders, recipients, and values, and tries to guess between transactions involving
them).

These trivial attacks include: (1) the adversary controls the secret key of one
or both of the senders; (2) the adversary controls the secret key of a recipient,
and (3) the adversary specified a sender who does not have enough funds to
complete the specified amount (meaning the output of Trans is ⊥ in this case
but not the other). Formally, our game is defined as follows:

1. b $← {0, 1};
2. bl $← A(1κ);
3. state $← Setup(1κ,bl);
4. b′ $← AO(·)(state).

Part of Setup involves running (accti, ski) $← Gen(1κ, bli), and we assume that
this results in the values (i, accti, ski, bli) being stored in memory available to
the oracle.
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For several of the oracle queries, there is some bookkeeping required to
update the keys and balances associated with these records. We define this
bookkeeping subroutine with respect to a transaction tx and two sets honest
and corrupt as follows: For every acctj ∈ tx[outputs] identify the corresponding
accti ∈ tx[inputs] such that skj = ski. For every such j, create a new record
of the form (j, acctj , ski, bli + v′

i), where v′
i is either (1) vi if i ∈ P or (2) 0 if

i ∈ A. Then, reset the value for every accti ∈ tx[inputs]; i.e., save the record
(i, accti, ski, 0).

Finally, for every pair (i, j) as above: if i ∈ honest add j to honest, else add
j to corrupt.

Initialize honest to be the set of all indices i in memory, and corrupt to be
the empty set. The oracle O(·) allows the following queries:

– (disclose, i): If (i, accti, ski, bli) was stored, call J the set of all j such that
there is a record (j, acctj , skj , blj) with ski = skj . Remove i and J from honest,
add them to corrupt, and return (ski, bli, J, {blj}j∈J) to the adversary.

– (transact, i,P, A,v): If (i, accti, ski, bli) was not stored return ⊥. Otherwise
run tx $← Trans(ski,P, A,v), and state′ ← Verify(state, tx). If state′ 
= ⊥
update state = state′, run the bookkeeping for tx, and return tx.

– (verify, tx): run state′ ← Verify(state, tx). If state′ 
= ⊥ update state = state′,
run the bookkeeping for tx, and return state′.

– (challenge, b, (i0, i1, j0, j1, A, v0, v1)): Let A0 = A1 = A. If (1) i0 ∈ corrupt
or i1 ∈ corrupt, (2) j0 ∈ corrupt or j1 ∈ corrupt (except if j0 = j1 and v0 = v1),
(3) bli0 < v0 or bli1 < v1, then halt and return 0 (i.e., the adversary lost the
game). Otherwise, for x ∈ {0, 1}, if i0 
= i1 add i1−x to Ax, and if j0 
= j1 add
j1−x to Ax. Now compute txx ← Trans(skix

, {acctix
, acctjx

}, Ax, (−vx, vx)).
If Verify(state, txx) = ⊥, then again we say the adversary lost the game.
Otherwise, run the bookkeeping for txb.

After a challenge query, the oracle halts; i.e., it outputs ⊥ as the response
to all future queries.

In terms of the concrete security notions discussed above, we say that the
adversary wins the anonymity game if b′ = b and the adversary did not lose
the game as the result of some invalid query during the game. We define the
advantage of the adversary as the probability that the adversary wins subtracted
by 1/2, and say that:

Definition 4. Anonymity holds if no PPT A has non-negligible advantage in
the anonymity game.

Note that our definition of anonymity does not depend on the size of the
anonymity set. Instead, our definition guarantees that, from the point of view
of the adversary, a transaction is as likely to have been generated by any of
the accounts in the input of the transaction (excluding those that the adversary
owns or has corrupted).
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We say that the adversary wins the theft prevention game if, as a result of any
verify query: (1) there exists an account j ∈ honest whose balance decreases
or (2) the total wealth of the adversary increases; i.e., the sum of the balance
of accounts in the set corrupt increases. (For this property, we could modify
the game so that the adversary just outputs ⊥ and does not need to make any
challenge queries). Again, we say that:

Definition 5. Theft prevention holds if no PPT A can win the theft prevention
game with non-negligible probability.

Note that theft prevention as defined above trivially implies protection from
double spending attacks.

Finally, we address several seeming limitations in our definition, which have
all been introduced for ease of notation and the sake of readability but which are
not necessary for our construction. First, our challenge queries consider only
a single recipient, but could be generalized to handle sets of recipients. Second,
we do not consider adversarially generated keys (allowing the adversary only to
corrupt honest keys), but we could capture this by changing the second step to
allow the adversary to output a list of its own accounts. We would then have to
process these accounts into records (in order to keep track of their balances) and
restrict which keys could be used for which oracle queries; requiring, e.g., that
transact only be used for non-adversarial keys. Finally, our current definition
has the “IND-CCA1”-style requirement that after the first challenge query, the
adversary cannot make any other queries. To generalize the definition to allow
for this, the oracle would have to keep track of two balances bl0 and bl1 for each
account after the challenge query, where blb represents the balance of each
account in the “world” in which transaction txb was performed. This is necessary
to prevent an additional type of trivial attack, in which the adversary made a
transact query requiring the sender to transfer more than min(bl0, bl1): in one
of the two worlds this would force the oracle to return ⊥, which would trivially
leak b. Again, all of these limitations were adopted to simplify presentation,
but (as should be made clear in the next two sections) our construction would
also satisfy the stronger definition relative to a modified game without these
restrictions.

5 Our Quisquis Construction

5.1 Overview and Intuition

To get a sense of how Quisquis works, let’s suppose that Alice wants to anony-
mously send 5 coins to Bob, and start with a strawman solution in which values
are visible in the clear and associated with updatable public keys. To form a
transaction, Alice identifies n − 1 unspent keys with exactly 5 coins associated
with them. She then uses these keys, in combination with her own, as the input
to the transaction. To form the output keys, she replaces her key with Bob’s
key, and updates all the other keys. Finally, she forms a ZK proof that she has
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created the output keys properly; i.e., that she knew the private key for any
public keys that were replaced, and that she formed the other output keys by
performing a valid update of the input ones. The final transaction consists of
the lists of input and output keys, their associated values, and the ZK proof.

This solution allows Alice to use the other input keys as an anonymity set,
but only in the restrictive setting in which she has the exact value she wants to
send to Bob stored in one of her keys, and she can find multiple other keys with
that same value. To address these issues, we first shift to the “re-distribution of
wealth” model introduced in Sect. 4. Rather than replace her own key with Bob’s
key, she instead adds Bob’s key to the list of input keys. If she picks two others
keys pk0 and pk1 and forms P = (pk0, pk1, pkA, pkB), then even if she has 9 coins
stored in her key she can still send Bob 5 coins by using v = (0, 0,−5,+5).

The problem with this new solution, of course, is that it has no anonymity:
anyone can look at v and see who the real senders and recipients are. To hide
these values, we switch to using the updatable accounts described in Sect. 4.1,
which means including only commitments to the account balances. The main
additional complexity is now in proving that the transaction has been formed
correctly, and in particular proving that it does not take money away from
anyone other than the real sender. Intuitively, Alice can do this by proving that
for every output key, either she knows the secret key for the corresponding input
key, or the balance corresponding to that key did not decrease; i.e., the difference
between its balance and the balance of its input key is non-negative.

This also supports the case in which Alice wants to consolidate the coins
associated with multiple account, as she can include these accounts in both the
input and output lists but re-distribute her money so that it all ends up in one
of them. This exposes an issue for efficiency, however, which is that once an
account has a balance of 0 it is wasteful to leave it in the UTXO set. Thus, to
“destroy” an output account, Alice can prove that its committed balance is 0,
which signals to others to remove it from the UTXO set.

Conveniently, the technique of proving that a committed value is 0 can also
be used to create a new account. This has a positive effect on Bob’s anonymity
(and communication overhead), as he can now send Alice a regular key once
rather than providing a new account every time she wants to send him money.
To use this key in the input list, Alice can first update it (to get a new random-
looking key), generate a commitment relative to this public key (i.e., generate a
new account for it), and prove that its committed balance is 0.

5.2 Transactions in Quisquis

Before describing the algorithms needed to form and verify transactions, we
first describe how to instantiate the updatable accounts introduced in Sect. 4.1.
Combining the commitment scheme from Sect. 2.3 and the UPK scheme from
Sect. 3.2, we get accounts of the form (pki, comi) = ((gi, g

sk
i ), (gr

i , gvgsk·ri )). This
already gives us most of the properties we need, and guarantees that |V|  |M|
as long as we use V = {0, . . . , V }, where V is an upper bound on the maximum
possible number of coins in the system (e.g., the limit of V = 2.1 × 1015 < 251
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satoshis in Bitcoin, compared to M = {0, . . . , p − 1} for a 256-bit prime p
in the commitment scheme). All it thus remains to show is that the owner of
the secret key corresponding to pk = (g, h) can open the commitment. To do
this, we can define the additional algorithm VerifyCom(pk, com, sk, v) as parsing
com = (c, d) and then checking that VerifyKP(pk, sk) = 1 and d = gv · csk. For
every (pk, com) there exists exactly one pair (sk, v) for which VerifyCom outputs
1, so the commitment is unconditionally binding even with respect to this type
of opening.

Setup On input 1κ, Setup returns as state the output of Setup for the UPK
scheme, and a list of all current accounts (which may be empty).

Trans As discussed in the overview, Quisquis allows a sender to “re-distribute”
their wealth to one or more recipients, by including their accounts in both the
input and output lists that comprise the transaction. In what follows we assume
that transactions have a fixed number n of both inputs and outputs.

Suppose a transaction is meant to transfer v coins from a sender to a recipient.
To hide the identity of the sender and recipient, the Trans algorithm picks an
anonymity set A of size n − 2 uniformly at random from the set of all unspent
transaction outputs, and creates a vector v = (v,−v, 0, . . . , 0). It then updates
all these accounts by running UpdateAcct. Intuitively, the properties of updatable
accounts guarantee that the individual accounts that are generated as output of
UpdateAcct cannot be tied to the input of the function. However, the ordering
still reveals the link between the input and outputs. We thus simply present the
input and output lists in some canonical (e.g., lexicographical) order. Because
the updated keys are distributed uniformly at random, this can be thought of
as applying a random permutation ψ to shuffle the updated accounts.

Finally, to ensure that malicious parties cannot steal funds from honest users,
the transaction must contain a NIZK proof π that the output of the transaction
has been computed following the protocol specification.

To summarize, tx $← Trans((s, sks, bls),P, A,v) performs the following steps:

1. First, check that the input is valid by parsing P = {acct1, . . . , acctt} and
checking that VerifyAcct(accts, sks, bls) = 1. Then check that the vector v
satisfies: (1)

∑
i vi = 0, (2) ∀i 
= s : vi ∈ V (i.e., is positive), (3) −vs ∈ V and

(4) bls + vs ∈ V.
2. Let inputs = P ∪ A in some canonical order and v′ be the permutation of

v under the same order. Let s∗,R∗, A∗ denote the indices of the respective
accounts of the sender, the recipients, and the anonymity set in this list; i.e.,
it now holds that −v′

s∗ ∈ V, v′
i ∈ V ∀i ∈ R∗ and v′

i = 0 ∀i ∈ A∗.
3. Let outputs be the output of UpdateAcct(inputs,v′; r) in some canonical order.
4. Let ψ : [n] → [n] be the implicit permutation mapping inputs into outputs;

i.e., such that accounts inputsi and outputsψ(i) share the same secret key.
5. Form a zero-knowledge proof π of the relation R(x,w), where x = (inputs,

outputs), w = (sk, bl,v′, r = (r1, r2), ψ, s∗,R∗, A∗), and R(x,w) = 1 if for all
i ∈ [n], j = ψ(i), accti ∈ inputs, acctj ∈ outputs:
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VerifyUpdateAcct(acctj , accti, r, 0) = 1 ∀i ∈ A∗

∧ (VerifyUpdateAcct(acctj , accti, r, v′
i) = 1 ∧ v′

i ∈ V) ∀i ∈ R∗

∧ VerifyUpdateAcct(acctψ(s∗), accts∗ , r, v′
s∗) = 1

∧ VerifyAcct(acctψ(s∗), sk, bl+ v′
s∗) = 1

∧
∑

i

v′
i = 0.

Then the final transaction is tx = (inputs, outputs, π).
Due to the way transactions are generated, every address appears at most

twice in Quisquis: once when it is created in the output of some transaction,
and once when it appears as the input of some other transaction (regardless
of whether it is the real sender or just an account added for anonymity). In
particular, unlike in Monero the same account cannot be used as part of the
anonymity set for two different transactions, since it will have been updated in
the meantime and thus replaced in the UTXO set.

Verify The Verify algorithm ensures the validity of a transaction by checking
that all the accounts in tx[inputs] are considered unspent in the current state,
and by running the verification algorithm for the NIZK argument.

Additionally, upon receiving a transaction in which one of their accounts was
included in tx[inputs], it is necessary for users to identify which (if any) of the
accounts in outputs belongs to them. (If no such account appears in the inputs
then they do not need to process the transaction further.) To do this, they first
identify the secret key sk corresponding to their account in tx[inputs]. They then
go through every (pk, com) ∈ tx[outputs] and run b ← VerifyKP(pk, sk). If b = 1,
they replace their own existing record of that account with acct = (pk, com).

The user should then figure out whether their address was an actual recipient
of the transaction or whether it had only be used as part of the anonymity
set. They can start by running VerifyAcct(acct, sk, bl) = 1, where bl was their
balance before the transaction; if this passes, then their account was used as
part of the anonymity set so their balance is unchanged. Otherwise, they need
to find out the value v by which their balance was increased. For simplicity here
we assume that the values v are small enough, say 32 bits (for comparison, the
total number of satoshis that will ever exist is 251), so that computing v from
gv is computationally easy, and therefore the user can “brute force” their new
account. Again, this is necessary only in the case of transactions that include
their accounts as part of the input (and transactions creating new accounts); no
other transactions can change the balance of a user’s account.

The design can be easily extended for larger values of v: for instance, we can
(1) require that senders communicate the value vi to their recipients off-chain
or (2) append to the transaction an encryption of vi under the public key of the
receiver, together with a proof that the encryption contains the correct value
(using, e.g., a similar approach to Zether [10]).
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Creating and Removing Accounts. The described scheme above supports
the basic functionality of making anonymous payments, but as described in the
overview in Sect. 5.1 it is possible to improve on the efficiency of this basic
protocol. In particular, newly created accounts and fully spent accounts both
have a (provable) balance of 0. Allowing users to create new accounts improves
the overall communication overhead and anonymity of the system, since users
can send one long-term key to potential senders rather than a new account
every time (which would also reveal to the sender the transaction in which this
account was created). Allowing users to destroy empty accounts reduces the
storage overhead of the system, since other users do not have to keep track of
accounts that have no contents left to spend.

We denote the respective algorithms used to perform creating and removing
accounts by CreateAcct and DestroyAcct.

– acct = (pk′, com), π) $← CreateAcct(pk) is such that pk′ ∈ [Update(pk)], com =
Commitpk′(0; r) for some r, and π is a ZK proof for the relation R(x,w),
where x = (pk′, com), w = r, and R(x,w) = 1 if com = Commitpk′(0; r).
Again, this algorithm can be run by anyone in possession of a public key for
a user, which allows senders to send money to recipients without requiring
their participation.

– π $← DestroyAcct(sk, acct) is such that π is a ZK proof for the relation R(x,w),
where x = acct, w = sk, and R(x,w) = 1 if VerifyAcct(acct, (sk, 0)) = 1.

Proofs of this type can optionally be included in transactions, and have the
effect that upon verification users remove the corresponding acct from the list
of active accounts. The zero-knowledge proofs involved in both CreateAcct and
DestroyAcct are standard proofs of relations between discrete logarithms, so we
do not include descriptions of them here.

Mining Fees. As currently described, Quisquis does not provide any incentives
for miners to include transactions, due to the lack of fees. More crucially, it
assumes the total balance of the system is fixed during Setup, so does not capture
the ability to mine new coins.

To add transaction fees to the Trans algorithm, we can add the fee f as
an input and change the requirement on the vector v to be f +

∑
i vi = 0.

Assuming the fee is public (as it is in other privacy-enhanced currencies like
Zcash), this does not add any complexity to the zero-knowledge proof. So, let
(tx1, f1, . . . , txm, fm) be a set of transaction that a miner wants to add to the
blockchain. To collect the fees and add a block reward rwd, the miner can simply
generate a new account (acct, sk) ← GenAcct(1κ, rwd +

∑
i fi) and a proof that

the balance of this account is equal to the block reward plus the sum of fees
present in the block. The initial balance is thus public, but as soon as it is used
in any further transaction the usual anonymity guarantee is preserved.

Concurrent Transactions. Although it is somewhat out of scope of the core
cryptographic design, we briefly discuss here how a cryptocurrency based on
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the Quisquis design might deal with concurrent transactions, in which two users
both try to use the same account in their anonymity set at roughly the same
time (and there is thus a non-empty intersection between the two tx[inputs]).
Since each address can appear only once as input in Quisquis, this requires at
least one of the two transactions to be rejected by the system. We propose here
two simple approaches for dealing with this, although the probability of having
such a collision could be quite low (depending on system parameters such as the
frequency of transactions, the network latency, etc.).

The first heuristic is “reject and wait”: if two conflicting transactions are
received in the same time period, they are both rejected and the users are
instructed to wait and attempt the transaction again. The second heuristic is
“first come first serve”: the transaction that is first received is approved and the
second one is rejected. The sender of the second transaction is free to send a new
transaction as soon as they want.

The first proposal might be better for anonymity, since – thanks to the wait-
ing time – many (or even all) addresses in the original anonymity sets might
have left the UTXO set (after being chosen as part of the anonymity set of
other transactions) and been replaced by new random-looking accounts. The
second proposal ensures lower latency, but might reduce the privacy of the sec-
ond transaction: if all accounts in the intersection were part of the anonymity
set, the sender might simply replace those and effectively run a transaction with
a smaller anonymity set. On the other hand, if any actual sender (or receiver) of
the transaction disappeared from the UTXO set, this would require the sender
to use the new version of those accounts that was created in the tx[outputs] of
the approved transaction.

5.3 Proofs of Security

Proof of Anonymity. The full proof of anonymity of Quisquis is given in the
full version of the paper [13], but we sketch the main intuition here. Informally,
we claim that any A that can determine b from tx can be used to break either
the indistinguishability property of UPK, the hiding property of Commit, or the
zero-knowledge property of the NIZK. That is, any A that can determine b can
distinguish between tx0 and tx1. Since tx0[inputs] = tx1[inputs] (by inspection), it
must be the case that the adversary either distinguishes between the transactions
based on the proof π or the set of accounts in outputs. The first option is ruled
out due to the zero-knowledge property of π. To see why the adversary cannot
distinguish based on outputs, note that in both cases outputs is obtained by
updating all the accounts in inputs, and the only differences between outputs0
and outputs1 are (1) the amounts by which the accounts have been increased
or decreased and (2) which accounts are included in P and which are included
in A. Since the amounts are only present in committed form, we conclude that
the adversary cannot distinguish based on (1) due to the hiding property of the
commitment. Since all the accounts are updated (both those in P and in A),
and they are then randomly permuted, the adversary cannot distinguish based
on (2) either.
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Proof of Theft Prevention. To win the theft prevention game, the adversary
needs to submit a transaction tx that increases the total balance corresponding
to the corrupted accounts or decreases the balance for the honest accounts. Intu-
itively, this can happen only in two ways: (1) if the adversary manages to transfer
value from an honest account (to a corrupted account or to an “unspendable”
account) and (2), if the adversary manages to transfer a value higher than the
balance of a corrupted account. Due to the extractability of the zero-knowledge
proof system, we know that the tx will be accepted only if the adversary has a
valid witness. This means that: in case (1) we can use the adversary to compute
a secret key sk for an honest account (thus breaking the unforgeability property
of UPK); in case (2) we can use the adversary to compute an opening of a com-
mitment with a balance different from the real one, thus breaking the binding
property of the commitment scheme.

6 Instantiating the Zero-Knowledge Proof

In this section we will instantiate the zero-knowledge proof that inputs and
outputs satisfy the relation described in the Trans algorithm. First consider the
simplified case where Trans does not do any lexicographic ordering or any type
of permutation of the public keys. Then a prover essentially has to prove that
(1) accounts in outputs are proper updates of inputs, (2) the updates satisfy
preservation of value, (3) balances in the recipient accounts do not decrease, and
(4) the sender account in outputs contain a balance in V. Properties (3) and (4)
require a tool called range proofs. We choose to use the most efficient implemen-
tation of range proofs, which is the Bulletproofs of Bootle et al. [11]. The main
requirement to use Bulletproofs is to have a public commitment key (g, h) such
that the DL relation between them is unknown.

We now explain how to check properties (1) and (2). Let inputs have balances
bl, and outputs have balances bl′. Let vi = bl′i − bli be the change in value from
inputs to outputs. Additionally, let the sender be inputs1 and the recipients be
inputs2, . . . , inputst.

To be able to easily verify that the update is done correctly, the prover creates
accounts acctδ that contain values v. Since we need preservation of value, there
needs to be a way to verify that

∑
i vi = 0. To do this, recall that we can

regard an account acct as two parts (pk, com) where pk is a UPK and com is a
commitment to the balance. The idea is then to use the homomorphic property
of the commitment. This is done by first creating acctε that also contains values
v but where pkε,i = (g, h) for all i. (Hence comδ,i and comε,i can be seen as
two commitments of the same value under different public keys pkδ,i and pkε,i.)
Then

∑
i vi = 0 iff

∏
i comε,i is a commitment of 0 under public key (g, h). The

values acctε,2, . . . , acctε,t will also be used to prove that the recipient’s increase
in values v2, . . . , vt are in V.

Note however that the simplified case does not hide where the sender and
recipient accounts are in both inputs and outputs. To get full anonymity, the
input accounts are shuffled into a list inputs′ before the updates, then shuffled
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again after the updates to get the output accounts in an arbitrary order. The
first shuffle uses a permutation so that the sender is always in position inputs′1
and the recipients are inputs′2, . . . , inputs

′
t, while the second shuffle uses a ran-

dom permutation. This will help making the proof more efficient (otherwise, for
every account in the transaction, we would have to prove the disjunction of the
conditions for the sender and the recipients).

Table 1. Additional functions to perform a transaction.

Function Description

CreateDelta Creates a set of accounts that contains the difference (say vi)
between balances in the input and output accounts, and
another set of accounts that also contains vi but all with the
global public key (g, h)

VerifyDelta Verifies that accounts created using CreateDelta are consistent
VerifyNonNegative Verifies that an account contains a balances in V
UpdateDelta Updates the input accounts by vi, but with left half

unchanged
VerifyUD Verifies that UpdateDelta was performed correctly

6.1 The Auxiliary Functions

To realize the ideas above, we require some auxiliary functions defined as follows
(see Table 1 for a summary).

CreateDelta({accti}n
i=1, {vi}n

i=1): Parse accti = (pki, comi). Sample r1, . . . , rn−1
$← Fp and set rn = −∑n−1

i=1 ri. Set acctδ,i = (pki,Commitpki
(vi; ri)). Set

acctε,i = (g, h,Commit(g,h)(vi; ri)). Output ({acctδ,i}n
i=1, {acctε,i}n

i=1), r).
VerifyDelta({acctδ,i}n

i=1, {acctε,i}n
i=1,v, r):Parse acctδ,i = (pki, comi) and acctε,i

=(pk′
i, com

′
i). If

∏n
i=1 com′

i = (1, 1) and for all i, comi = Commitpki
(vi; ri) ∧

acctε,i = (g, h,Commit(g,h)(vi; ri)) output 1. Else output 0.
VerifyNonNegative(acct, v, r): If acct = (g, h, gr, gvhr) ∧ v ∈ V output 1. Else

output 0.
UpdateDelta({accti}n

i=1, {acctδ,i}n
i=1): Parse accti = (pki, comi) and acctδ,i =

(pk′
i, com

′
i). If pki = pk′

i for all i output2 {(pki, comi ·com′
i)}n

i=1, else output ⊥.
VerifyUD(acct, acct′, acctδ): Parse acct = (pk, com), acct′ = (pk′, com′) and
acctδ = (pkδ, comδ). Check that pk = pk′ = pkδ ∧ com′ = com · comδ.

2 Note that if acct = (pk, com) and acctδ = (pk,Commitpk(v; r))), then
UpdateDelta(acct, acctδ) = UpdateAcct(acct, v; 1, r).



668 P. Fauzi et al.

6.2 The Proof System

Let (g, h) be a global public key output by the Setup algorithm, such that the DL
relation between them is unknown. The NIZK system NIZK.Prove(x,w) performs
the following:

1. Parse x = (inputs, outputs), w = (sk, bl,v, (u1,u2), ψ : [n] → [n], s∗,R∗, A∗).
If R(x,w) = 0 abort;

2. Let ψ1 be a permutation such that ψ1(s∗) = 1, ψ1(R∗) = [2, t] and ψ1(A∗) =
[t + 1, n];

3. Sample τ1
$← F

n
p , ρ1

$← Fp;
4. Set inputs′ = UpdateAcct({inputsψ1(i), 0}i; (τ1, ρ1));
5. Set the vector v′ such that v′

i = vψ1(i);
6. Set ({acctδ,i}, {acctε,i}, r) $← CreateDelta(inputs′,v′);
7. Update outputs′ ← UpdateDelta(inputs′, {acctδ,i});
8. Let ψ2 = ψ−1

1 ◦ψ, τ2,i =
u1,i

τ1,ψ2(i)
and ρ2 = u2,i−ρ1

τ1,ψ2(i)
−rψ2(i); (So that ψ1◦ψ2 = ψ

and outputs = UpdateAcct({outputs′ψ2(i), 0}i; τ2, ρ2)}).
9. Generate a ZK proof π = (inputs′, outputs′, acctδ, acctε, π1, π2, π3) for the rela-

tion R1 ∧ R2 ∧ R3, where

R1 = {(inputs, inputs′, (ψ1, τ 1, ρ1)) |
VerifyUpdateAcct({inputs′i, inputsψ1(i), 0}i; τ 1, ρ1) = 1},

R2 = {((inputs′, outputs′, acctδ, acctε), (sk, bls∗ ,v′, r)) |
VerifyUD(inputs′i, outputs

′
i, acctδ,i) = 1 ∀i

∧ VerifyUpdateAcct(inputs′i, outputs
′
i, 0; 1, ri) = 1 ∀i ∈ [t + 1, n]

∧ VerifyNonNegative(acctε,i, v′
i, ri) = 1 ∀i ∈ [2, t]

∧ VerifyAcct(outputs′1, (sk, bls∗ + v′
1)) = 1

∧ VerifyDelta({acctδ,i}, {acctε,i},v′, r) = 1},

R3 = {(outputs′, outputs, (ψ2, τ 2, ρ2)) |
VerifyUpdateAcct({outputsi, outputs′ψ2(i), 0}i; τ2, ρ2) = 1}.

Instantiating the Shuffle Argument. The zero-knowledge argument of
knowledge for R1 and R3 uses a shuffle argument Σ1 = Σsh(ψ1), which is required
to prove that inputs′ is a correct shuffle of inputs and Σ3 = Σsh(ψ2), which is
required to prove that outputs is a correct shuffle of outputs′.

Let (g, h) be the global public key output by the Setup algorithm, and let ck =
(ḡ, ḡ1, . . . , ḡn) be the commitment key of the extended Pedersen commitment
scheme comck(a; r) = ḡr

∏
i ḡai

i . In the following, we just write this as com(a; r).
Recall that an update of accti = (pki, comi) using randomness (τi, ρi) is

acct′j = (pk′
j , com

′
j) = (pkτi

i , comi · pkρi

i ). The public key pki is updated by
just exponentiation, so its proof of correct shuffle is a slight modification of
the Bayer-Groth [5] shuffle. For this we define the generalized commitments to
a matrix A = (a1, . . . ,an) ∈ F

m×n
p to be the commitments of its n columns.
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That is, com(A; r) = (com(a1; r1), . . . , com(an; rn)). Additionally, a Hadamard
product of matrices A and B, denoted C = A ◦ B, is simply the matrix such
that cij = aijbij .

The shuffle argument uses the following sub-arguments [5]:

– The multi-exponentiation argument, πMExp: Given a vector C′ and a com-
mitment C′

B , the prover shows knowledge of a witness w = (b′, r) such that
C′

B = com(b′; r), and for a fixed T ∈ G, it holds that
∏n

i=1 C ′
i
b′

i = T . In
the shuffle argument, T =

∏n
i=1 Cxi

i , where x is the second message of the
protocol.

– The product argument, πprod: Given a commitment CA , the prover shows
knowledge of a witness w = (a, r) such that CA = com(a; r), and for a fixed
t ∈ Fp, it holds that

∏n
i=1 ai = t. In the shuffle argument, t =

∏n
i=1(y · i +

xi − z), where (y, z) is the fourth message of the protocol.
– The Hadamard product argument, πHad: Given extended Pedersen commit-

ments A,B,C, the prover shows knowledge of an opening to vectors a, b, c
such that a ◦ b = c.

A proof of correct shuffle for comi uses the following invariant, provided we set
all ρi to be the same value ρ. Let pki = (gi, hi), (G,H) = (

∏N
i=1 gXi

i ,
∏N

i=1, h
Xi

i )
and (G′,H ′) = (Gρ,Hρ). For a random variable X,

∏N
i=1(com

′
ψ(i))

Xψ(i)
=

∏N
i=1 comXi

i · (G′,H ′). Hence we can also use a multi-exponentiation argument
(this time with T =

∏n
i=1 comxi

i · (G′,H ′)), with an additional proof of correct
update Σvu for the tuple (G,H,G′,H ′).

Note that using the same ρi = ρ to update the comi is secure under the
indistinguishability of UPK and computational hiding of Commit. (An adversary
that can distinguish if two accounts are updated using the same ρ, can be used
to break DDH.)

The full shuffle argument Σsh is shown in Fig. 1.
The following lemma is similar to the one in [5], and the full proof is deferred

to the full version of the paper [13].

Lemma 2. Let the product argument πprod, the Hadamard product argument
πHad, the verify update argument πvu and the multi-exponentiation argument
πMExp be public-coin SHVZK arguments of knowledge. Then Σsh is a public-
coin SHVZK argument of knowledge of (ψ, τ , ρ) such that (pk′

i, com
′
i) = (pkτi

ψ(i),

comψ(i) · pkρ
ψ(i)).

Instantiating the Other Sub-arguments. To prove statements related to
the function VerifyNonNegative we use Bulletproofs, which we denote by the
argument Σrange(acct, v, r). VerifyAcct also uses Bulletproofs but since the sender
may not know the randomness used to open his commitment (for example, if the
account was previously updated by someone else), we need a separate argument
Σrange,sk(acct, v, sk). This argument first creates acctε, proves knowledge of (v, r)
such that acctε = (g, h,Commit(g,h)(v; r)), then calls Σrange(acctε, v, r).
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The zero-knowledge argument of knowledge Σ2 for the non-shuffle parts con-
sists of the following sub-protocols:

1. Σvud: trivial check of VerifyUD.
2. ΣCom: prover shows knowledge of v′, r such that VerifyDelta

({acctδ,i}), {acctε,i},v′, r) = 1.
3. Σi

zero: prover shows knowledge of ri such that VerifyUpdateAcct(inputs′i,
outputs′i, 0, (1, ri)) = 1.

4. ΣNN : (
∧t+1

i=2 Σrange(acctδ,i, v′
i, ri)) ∧ (

∧n
i=t+2 Σi

zero) .

Fig. 1. The full shuffle argument Σsh. Here V (π) : x means that statement x should
be verified using the argument π.
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Hence Σ2 = Σvud ∧ ΣCom ∧ ΣNN ∧ Σrange,sk(outputs′1, bls∗ + v′
1, sk). The

proof of the next lemma follows from the properties of AND-proofs, and is thus
omitted.

Lemma 3. Σ2 is a public-coin SHVZK argument of knowledge of the relation R2.

The full SHVZK argument of knowledge for Quisquis is then Σ := Σ1 ∧
Σ2 ∧Σ3. The proof of the following theorem is deferred to the full version of the
paper [13].

Theorem 1. Σ is a public-coin SHVZK argument of knowledge of the relation
R(x,w) defined in Sect. 5.2.

7 Performance

We now describe a prototype implementation of Quisquis, written in roughly
2000 lines of Go and interfaced with an existing Rust implementation for pro-
ducing Bulletproofs,3 to demonstrate that it is competitive in terms of both
communication and computational costs.

As a reminder, transactions in Quisquis are made up of: (1) input and output
account lists tx[inputs] and tx[outputs], (2) intermediate account lists inputs′,
outputs′, {acctδ,i} and {acctε,i}, and (3) a NIZK Σ = Σ1 ∧ Σ2 ∧ Σ3, with Σ1
proving that a permutation has updated each of the accounts in tx[inputs] to the
corresponding intermediate account, and Σ3 similarly proving that tx[outputs] is
an updated permutation of the set of intermediate accounts. Σ2 is a combination
of multiple NIZKs to prove that a number of conditions on the accounts and their
balances are satisfied.

In our UPK construction, an account consists of four elements from G. Using
an elliptic curve at the 128-bit security level and with compressed points (i.e.,
in which points are represented just by the x-coordinate and the sign of the
y-coordinate), each group element requires 33 bytes of communication (32 bytes
for the x-coordinate and 1 bit for the sign), and each field element is 32 bytes.

The lists of accounts dominate the proof size for large anonymity set sizes.
Since (1) and (2) are both lists of accounts of size n, and each account consists of
4 group elements, each transaction contains 24n group elements, or 792n bytes.

For Σ1 and Σ3, the Bayer-Groth shuffle that we use in Sect. 6 is parameter-
izable, and we have chosen the options that minimize communication. We thus
implement the shuffle with communication complexity that grows proportionally
to the square root of the size of the anonymity set. This means that it consists of
11

√
n+7 group elements and 5

√
n+12 field elements. Concretely then, each of

these two proofs requires 352
√

n+224 bytes for group elements, and 160
√

n+384
for field elements, for a total of 512

√
n + 608 bytes each, giving 1024

√
n + 1216

bytes in total.

3 https://github.com/dalek-cryptography/bulletproofs.

https://github.com/dalek-cryptography/bulletproofs
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Table 2. The computation and communication complexity of the NIZKs in Quisquis,
reported with various anonymity set sizes, and averaged over 20 seconds of runs.

|A| Gen. (ms) Verif. (ms) Proof size Proof size (bytes)

4 124 ± 4% 25.6 ± 3% 122G + 83Fp 6528
16 471 ± 4% 71.6 ± 3% 244G + 175Fp 13408
64 2110 ± 3% 251 ± 4% 624G + 503Fp 36064

Bulletproofs can be produced and verified in batches, leading to the resulting
proofs growing only logarithmically with the size of the batch, rather than lin-
early. These proofs are then most efficient when batched in powers of two, and
so we have chosen the anonymity set size to be both square and a power of two
below. However, anonymity set sizes are not limited to these values. The proof
size when using Bulletproofs for range proofs also grows depending on the size
of the range, and this also must be a power of two. We have chosen K = 64 for
V = [0, 2K − 1].

Besides the 16n group elements used for lists of intermediate accounts, Σ2
requires 6n+38+2 log2(t) group elements, and 6n+15 field elements. The total
proof size is then 6n+22

√
n+52+2 log2(t) group elements and 6n+10

√
n+39

field elements.
Concretely, Table 2 shows the time to generate and verify the NIZK argu-

ments in Quisquis with certain anonymity set sizes. These benchmarks were
collected on a laptop with an Intel Core i7 2.8GHz CPU and 16GB of RAM,
and demonstrate the overall practicality of Quisquis: proofs take 2.1 s to generate
and comprise 36 kB in the worst case in which the size of the anonymity set is
64. We stress, however, that we do not expect users to end up using anonymity
sets of anywhere near this size in a practical deployment of Quisquis, although
we leave it as an interesting open problem to understand the effect different set
sizes would have on the level of anonymity achieved by users.

8 Related Work and Comparisons

We provide a broad overview of related work, in terms of tumblers designed to
provide anonymity, as well as a detailed comparison with the two solutions, Zcash
and Monero, that are most related to our own. The results of our comparison are
summarized in Table 3. The benchmarks in Table 3 were collected using a server
with an Intel Core i7 3.5GHz CPU and 32GB of RAM, due to the Zcash client
performing best when used with Linux, and due to the high RAM requirements
of its prover. Both the prover and verifier in Quisquis and Monero are CPU rather
than RAM bound, and so the additional RAM did not considerably change the
proving and verification time, although optimizations may be possible.

There are several approaches that do not fit into the categories below, which
we discuss now. First, Mimblewimble [15,32] is a cryptocurrency design that
compresses the state of the blockchain via “cut-through” transactions; it thus
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Table 3. The security properties and efficiency considerations for each privacy solution.
For tumblers, the stated properties are for the best solutions, but they vary significantly
among solutions. No tumblers satisfy plausible deniability, and all have relatively high
transaction cost due to the required latency. Numbers are given for Monero with 2 newly
created TXOs and a ring size 10, and Quisquis numbers are given for one sender, 3
receivers and 12 randomly selected accounts (giving a total size of 16). n is the number
of participants in the transaction, and v is the bit-length of the largest value allowed
in the system.

Security Efficiency
Anon. Deniability Theft UTXO growth tx size tx cost (ms)

prev big-O kB prover verifier

Tumblers yes* no yes* non-monotonic low - high slow

Zcash yes no* yes monotonic 1 0.29 21747 8.57

Monero no yes yes monotonic n+ log(v) 2.71 982 46.3

Quisquis yes yes yes non-monotonic n+ log(v) 13.4 471 71.6

achieves a goal similar to ours in providing a compact UTXO set. It also achieves
a notion of privacy known as transaction indistinguishability [15], but it does not
provide anonymity in the face of network-level attackers (who can still identify
the senders and recipients in individual transactions). In this sense, Mimblewim-
ble achieves anonymity only against “late-comer” attackers who see the data after
it is published in the blockchain, so do not see individual transactions as they
move around the network. In Quisquis the attacker is assumed to be able to see
all individual transactions, so we can achieve anonymity even against attack-
ers seeing all transactions at the network level. We view this as quite realistic
given the high number of full nodes in existing cryptocurrencies. Further, the
techniques used in Mimblewimble are in some sense complementary to Quisquis:
if individual Quisquis transactions were able to be combined using the same
techniques as Mimblewimble (meaning one block would contain a single “super-
transaction” combining the inputs and outputs of all the individual transactions),
then against the same late-comer adversary you could argue that the anonymity
set would be bigger.

Second, after posting our paper online, we were made aware of Appecoin [21],
a proposal for an anonymous e-cash system. While there are some similarities
in the design of this system compared to ours, including the use of shuffles and
updatable public keys, the presentation of Appecoin is very informal, which in
turn makes it difficult to identify the extent to which it satisfies our desired
security properties.

8.1 Tumblers

Solutions for tumblers are often split into two categories: centralized [8,16,38]
and decentralized [7,23,24,35,36]. In terms of the former, the one that achieves
the best security is arguably TumbleBit [16], which achieves anonymity and theft
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prevention assuming RSA and ECDSA are secure. The most naïve centralized
solutions do not even achieve theft prevention (as a centralized mix can simply
steal your coins rather than permute them), and none achieve plausible deni-
ability. The mixing process is typically quite slow, either because participants
must wait for others to join, or because multiple rounds of interaction with the
tumbler are required.

In terms of decentralized solutions, the most common is Coinjoin [23], which
has also given rise to the Dash cryptocurrency [1] and the coin mixing protocol
ValueShuffle [35]. All of these solutions satisfy theft prevention, but none satisfy
plausible deniability. The arguments for anonymity are not typically based on
any cryptographic assumptions, and in some cases the protocols are not fully
anonymous; e.g., ValueShuffle hides payment values but reveals which trans-
action outputs are unspent. One exception is Möbius [24], in which security is
proven under the DDH assumption (in the random oracle model). Again, latency
is often quite high due to the need to wait for others to join the mixing process,
and for all participants to exchange messages.

8.2 Zcash

Zcash [6] is based on succinct zero-knowledge proofs (zk-SNARKs), which allow
users to prove that a transaction is spending unspent shielded coins (i.e., coins
that have already been deposited into a so-called shielded pool), without reveal-
ing which shielded coins they are. In terms of security, the anonymity set in
Zcash is defined as all other coins that have been deposited into the pool. It also
achieves theft prevention due to the soundness of the zero-knowledge proofs, but
does not achieve plausible deniability, as all users opt in to the anonymity set
by depositing their coins, and their transactions are performed independently of
one another.

In terms of efficiency, since it is not known which shielded coins are being
spent, no shielded coins can ever be removed from the UTXO set. The protocol
mitigates this growth by storing information about shielded coins in a Merkle
tree, meaning proofs grow in a logarithmic rather than a linear fashion with
respect to the size of the UTXO set, but the growth of the set is still monotonic.
It is relatively slow to generate Zcash transactions (https://speed.z.cash/), and
they also require a large amount of RAM, although these numbers are expected
to improve significantly in future releases [2].

Finally, in terms of cryptographic assumptions, despite recent advances [9],
Zcash still requires a “trusted setup” to generate the common reference string
used for the zk-SNARKs; otherwise, anyone with knowledge of its trapdoor can
violate soundness and spend shielded coins that they do not rightfully own. Such
structured reference strings are qualitatively different from a common random
string (such as the one used in Quisquis), which can be generated using a ran-
dom oracle, and instead require performing relatively cumbersome MPC-based
“ceremonies”. Additionally, all zk-SNARKs rely on strong (i.e., non-falsifiable
and relatively untested) “knowledge-of-exponent”-type assumptions.

https://speed.z.cash/
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8.3 Monero

In Monero [31], senders form transactions by picking other unspent transaction
outputs (“mix-ins”) and forming a ring signature over them. Pairs of senders
and recipients also strengthen the anonymity of this approach by using freshly
generated stealth addresses every time they transact, meaning every address is
used to receive coins only once. In terms of security, Monero satisfies both theft
prevention (due to the unforgeability of the ring signature) and plausible deni-
ability. For anonymity, however, it is known that selecting mix-ins uniformly at
random can be used to distinguish the real input from the fake ones [27]. This not
only means that a more complex algorithm is needed to generate the anonymity
set inside the protocol but also that it is incompatible with our definition of
anonymity, in which oracle queries may result in the selection of uniformly ran-
dom UTXOs. Thus, while we do not rule out the option that Monero could be
proved anonymous in a different model, the same anonymity set size does pro-
vide more anonymity in Quisquis (in which all keys appear only once) than in
Monero (in which keys may be used and re-used in ways that leak information).

To illustrate the main conceptual difference between Monero and Quisquis,
consider the following toy example of an intersection-style attack [20,27]. Using
a system in which accounts cannot be removed from the UTXO set, such as
Monero, acct1 transfers all its funds to acct4 and uses acct2 as its anonymity set.
Then acct2 transfers its funds to acct5 using acct1 as its anonymity set, and acct3
transfers its funds to acct6 using acct2 as its anonymity set. As double-spending
is not possible, anyone observing the blockchain can see that both acct1 and acct2
have already spent their contents at the time the last transaction was performed,
so acct3 must be the actual sender. Using Quisquis instead, all the accounts used
as inputs would have been removed from the UTXO set and replaced by new
random-looking accounts, meaning it would not be possible to use the same
account twice in two different anonymity sets. Thus, such an attack could not
be mounted. Furthermore, altruistic users in Quisquis could periodically send
themselves money using large anonymity sets in order to “refresh” the UTXO set,
in an attempt to ensure that the UTXO set has a relatively uniform distribution
in terms of the age of the accounts (i.e., the time at which they were created)
and thus evade attacks on Monero that are based on the differences in this
distribution [27]. Again, such solutions do not work in Monero, as accounts
always stay in the UTXO set.

With respect to efficiency, the UTXO set also grows monotonically, as it
does in Zcash. Finally, in terms of assumptions, Monero makes the same ones as
Quisquis: it requires DDH to be secure in the random oracle model.

9 Conclusions and Open Problems

In this paper we have identified and solved an open problem in anonymous
cryptocurrencies; namely, that of a monotonically increasing UTXO set. We
have introduced Quisquis, complete with an updatable public key system and
accompanying NIZKs with low communication and computational complexity.
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Quisquis allows users to achieve strong notions of anonymity and theft preven-
tion, which we have presented with accompanying reductions to the DDH and
DL assumptions. As the anonymity properties are achieved by each individual
user’s actions, transactions can be made anonymously without increased latency,
and without strictly increasing the size of the UTXO set. While our NIZKs are
already relatively efficient, we nevertheless leave as an interesting open problem
the design of a special-purpose NIZK for improved communication efficiency.
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Abstract. Electronic cash (e-cash) is the digital analogue of regular
cash which aims at preserving users’ privacy. Following Chaum’s seminal
work, several new features were proposed for e-cash to address the prac-
tical issues of the original primitive. Among them, divisibility has proved
very useful to enable efficient storage and spendings. Unfortunately, it is
also very difficult to achieve and, to date, quite a few constructions exist,
all of them relying on complex mechanisms that can only be instantiated
in one specific setting. In addition security models are incomplete and
proofs sometimes hand-wavy.

In this work, we first provide a complete security model for divisible
e-cash, and we study the links with constrained pseudo-random func-
tions (PRFs), a primitive recently formalized by Boneh and Waters.
We exhibit two frameworks of divisible e-cash systems from constrained
PRFs achieving some specific properties: either key homomorphism or
delegability. We then formally prove these frameworks, and address two
main issues in previous constructions: two essential security notions were
either not considered at all or not fully proven. Indeed, we introduce the
notion of clearing, which should guarantee that only the recipient of a
transaction should be able to do the deposit, and we show the exculpabil-
ity, that should prevent an honest user to be falsely accused, was wrong
in most proofs of the previous constructions. Some can easily be repaired,
but this is not the case for most complex settings such as constructions
in the standard model. Consequently, we provide the first construction
secure in the standard model, as a direct instantiation of our framework.

1 Introduction

Electronic payment systems offer high usage convenience to their users but at the
cost of their privacy. Indeed, transaction data, such as payee’s identity, date and
location, leak sensitive information about the users, such as their whereabouts,
their religious beliefs, their health status, etc.

However, secure e-payment and strong privacy are not incompatible, as shown
by Chaum in 1982 [20] when he introduced the concept of electronic cash (e-cash).
Informally, e-cash can be thought of as the digital analogue of regular cash with
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special focus on users’ privacy. Such systems indeed consider three kinds of parties:
the bank, the user and the merchant. The bank issues coins that can be withdrawn
by users and then spent to merchants. Eventually, the latter deposit the coins on
their account at the bank. Compared to other electronic payment systems, the
benefit of e-cash systems is that the bank is unable to identify the author of a
spending. More specifically, it can neither link a particular withdrawal—even if
it knows the user’s identity at this stage—to a spending nor link two spendings
performed by the same user.

At first sight, this anonymity property might seem easy to achieve: one could
simply envision a system where the bank would issue the same coin (more specifi-
cally, one coin for each possible denomination) to each user. Such a system would
obviously be anonymous but it would also be insecure. Indeed, although e-cash
aims at mimicking regular cash, there is an intrinsic difference between them:
e-cash, as any electronic data, can easily be duplicated. This is a major issue
because it means that a user could spend the same coin to different merchants.
Of course, some hardware countermeasures (such as storing the coins on a secure
element) can be used to mitigate the threat but they cannot completely remove
it. Moreover, the prospect of having an endless (and untraceable) reserve of coins
will constitute a strong incentive to attack this hardware whose robustness is not
without limits.

To deter this bad behaviour, e-cash systems must therefore enable (1) detec-
tion of re-used coins and (2) identification of defrauders. Besides invalidating
the trivial solution sketched above (a unique coin for each denomination) these
requirements impose very strong constraints on e-cash systems: users should
remain anonymous as long as they behave honestly while becoming traceable as
soon as they begin overspending, from the first cent.

Chaum’s idea, taken up by all subsequent works, was to associate each with-
drawn coin with a unique identifier called a “serial number”1. The latter remains
unknown to all parties, except the user, until the coin is spent. At this time, it
becomes public and so can easily be compared to the set of all serial numbers
of previously spent coins. A match then acts as a fraud alert for the bank which
can then run a specific procedure to identify the cheater.

Unfortunately, by reproducing the features of regular cash, e-cash also repro-
duces its drawbacks, in particular the problem of paying the exact amount.
Worse, as we explain below, the inherent limitations of e-cash compound this
issue that becomes much harder to address in a digital setting. This has led
cryptographers to propose a wide variety of solutions to mitigate the impact on
user’s experience. They include for example on-line e-cash, transferable e-cash
or divisible e-cash.

1 Actually, this specific terminology appeared later [21] but this notion is implicit in
the Chaum’s paper.
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1.1 Related Work

On-line/Off-line Anonymous e-Cash. The original solution proposed by
Chaum for anonymous payment was based on the concept of blind signature.
This primitive, later formalized in [31,32], allows anyone to get a signature σ on
a message m that is unknown to the signer. Moreover, the latter will be unable
to link the pair (σ,m) to a specific issuance. Applying this idea to the payment
context leads to the following e-cash system. A coin is a blind signature issued
by a bank to a user during a withdrawal. To spend his coin, the user simply
shows the signature to a merchant who is able to verify it using the bank’s
public key. Two cases may then appear. Either the e-cash system does not allow
identification of defrauders, in which case the bank must be involved in the
protocol to check that this coin has not already been spent. The resulting system
is then referred to as on-line e-cash. Otherwise, the coin may be deposited later
to the bank, leading to an off-line e-cash system. Obviously, the latter solution
is preferable since it avoids a costly connection to the servers of the bank during
the payment. In the following, we will only consider off-line e-cash systems.

Transferable vs. Divisible e-Cash. In theory, the problem of anonymous pay-
ment is thus solved by blind signatures for which several instantiations have been
proposed (see e.g. [32]). However, as we mention above, it remains to address the
problem of paying the exact amount, which becomes trickier in a digital setting.
Indeed, let us consider a consumer that owns a coin whose denomination is e 10
and that wants to pay e 8.75. A first solution could be to contact his bank to
exchange his coin against coins of smaller denominations but this would actually
reintroduce the bank in the spending process and so would rather correspond to
an on-line system. It then mainly remains two kinds of solutions: those where
the merchant gives back change and those that only use coins of the smallest
possible denomination (e.g. e 0.01). They both gave rise to two main streams in
e-cash: transferable e-cash and compact/divisible e-cash.

Let us go back to our example. At first sight, the simplest solution (inspired
from regular cash) is the one where the merchant gives back change, by returning,
for example, a coin of e 0.05, one of e 0.20 and one of e 1. However, by receiving
coins, the user technically becomes a merchant (in the e-cash terminology) which
is not anonymous during deposit. Therefore, the only way to retain anonymity in
this case is to ensure transferability of the coin, meaning that the user will be able
to (anonymously) re-spend the received coins instead of depositing them. While
this is a very attractive feature, it has unfortunately proved very hard to achieve.
Worse, Chaum and Pedersen [22] have shown that a transferable coin necessarily
grows in size after each spending. Intuitively, this is due to the fact that the coins
must keep information about each of its owner to ensure identification of defraud-
ers. In the same paper, Chaum and Pedersen also proved that some anonymity
properties cannot be achieved in the presence of an unbounded adversary. Their
results were later extended by Canard and Gouget [15] who proved that these prop-
erties were also unachievable under computational assumptions. More generally,
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identifying the anonymity properties that a transferable e-cash system can, and
should, achieve has proved to be tricky [2,15].

All these negative results perhaps explain the small number of results on
transferable e-cash, and quite recent constructions [2,6,17] are too complex for a
large-scale deployment or rely on a very unconventional model [23]. In particular,
none of them achieves optimality with respect to the size, meaning that the coin
grows much faster than the theoretical pace identified by Chaum and Pedersen.

Now, let us consider our spending of e 8.75 in the case where all coins are
of the smallest possible denomination. This means that the user no longer has a
coin of e 10 but has 1000 coins of e 0.01. Such a system can handle any amount
without change but must provide an efficient way to store and to spend hundreds
of coins at once. A system offering efficient storage is called compact and a system
supporting both efficient storage and spending is called divisible.

Anonymous Compact e-Cash. Anonymous compact e-cash was proposed by
Camenisch, Hohenberger and Lysyanskaya [13] and was informally based on the
following idea. Let N be the amount of a wallet withdrawn by a user (i.e. the
wallet contains N coins that all have the same value). During a withdrawal, a
user gets a certificate on some secret value s that will be used as a seed for a
pseudo-random function (PRF) F , thus defining the serial numbers of the N
coins as Fs(i) for i ∈ [1, N ].

To spend the i-th coin, a user must then essentially reveal Fs(i) and prove, in
a zero-knowledge way, that it is well-formed, i.e. that (1) s has been certified and
that (2) the serial number has been generated using Fs on an input belonging to
the set [1, N ]. All of these proofs can be efficiently instantiated in many settings.
Anonymity follows from the zero-knowledge properties of the proofs and from
the properties of the pseudo-random function, as it is hard to decide whether
Fs(i) and Fs(j) have been generated under the same secret key s.

Unfortunately, compact e-cash only provides a partial answer to the practical
issues of spendings: storage is very efficient but the coins must still be spent one
by one, which quickly becomes cumbersome. An ultimate answer to this issue
was actually provided by Okamoto and Ohta [29] and later named divisible e-
cash. The core idea of divisible e-cash is that the serial numbers of a divisible
coin2 can be revealed by batches, leading to efficient spendings.

However, this is easier said than done, and it took 15 years to construct
the first anonymous divisible e-cash system [14]. Moreover, the latter was more
a proof of concept than a practical scheme, as pointed out in [1,16]. Although
several improvements followed (e.g. [1,16,18,30]), the resulting constructions are
still rather complex, which makes their analysis difficult. We highlight this issue
by pointing out below a problem on exculpability that has been overlooked in
the security proofs of these constructions.

2 The terminology can be confusing here: the “divisible coin” considered by most of
the papers corresponds to the “wallet” of a compact e-cash system. In particular,
the divisible coin contains several coins that are all associated to a serial number.
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1.2 A Major Issue with Exculpability in Previous Constructions

Intuition of the Problem. Among the natural properties expected from an
e-cash system is the one, called exculpability, stating that a coin withdrawn by
a user whose public key is upk∗ can only be spent by the latter. In particular
this means that he cannot falsely be accused of double-spendings: in case of
overspending detection, this user is necessarily guilty. All e-cash constructions
enforce this property by requiring a signature (potentially a signature of knowl-
edge) on the transaction under upk∗. Intuitively, this seems enough: a transaction
accusing an honest user of fraud should contain a signature (or more specifically
a proof of knowledge of a signature) under upk∗ and so would imply a forgery.
Actually, this argument is ubiquitous in previous papers3 and leads to quite sim-
ple security proofs. It is explicitly stated in Section D.3 of the full version of [27]
and in Section 4.6 of [16], and implicitly used in Section 6.3 of [18], in Section
6.2 of [30], and in the security proofs (page 22) of the full version of [13].

Unfortunately, this argument is not correct because of the complex identifica-
tion process of e-cash systems, based on so-called double spending tags. Indeed,
the public key upk∗ returned by the identification algorithm is not extracted from
the signature itself, but from a complex formula involving several elements, such
as PRF seeds, scalars, etc. An adversary might then select appropriate values
that will lead this algorithm to output upk∗ while taking as input two trans-
actions generated with different public keys. This scenario, that has not been
taken into account in previous papers, invalidates their proofs4 because, in such
a case, the transactions do not contain a valid signature under upk∗.

Concrete Example. To illustrate this problem, let us consider the lattice-
based construction proposed by Libert et al. [27]. In this system, each user
selects a short vector e and defines his public key as F.e for some public matrix
F. Each coin withdrawn by this user is associated with two vectors k and t.
The former is used to generate the i-th serial number yS = �Ai · k�p for some
public matrix Ai while the latter is used to generate the double-spending tag
yT = upk + H(R) · �Ai · t�p, where H(R) is a matrix derived from public
information associated with the transaction R.

If two transactions R and R′ yield the same serial number, then one com-
putes y∗ = (H(R) − H(R′))−1(yT − y′

T ) and returns yT − H(R) · y∗. One can
note that this formula indeed returns a public key upk∗ if both transactions
have been generated by the user upk∗ and tag t, as y∗ is then �Ai · t�p. How-
ever, there is no equivalence here, and an adversary might manage to generate
R,R′, t, t′, upk, upk′ (in the exculpability game the adversary controls the bank,
the merchants and all dishonest users) such that upk∗ = yT − H(R) · (H(R) −
H(R′))−1(yT − y′

T ).

3 Our comment obviously only applies to papers that provide a security proof.
4 We stress that the problem is located in the proofs and not in the definition of the

exculpability property.



684 F. Bourse et al.

If we modify the original protocol, to ensure that collisions only occur when
t = t′, the previous relation still gives us

upk∗ = upk − H(R) · (H(R) − H(R′))−1(upk − upk′)

from which it is not possible to conclude that upk∗ = upk = upk′. In particular,
it does not seem possible to extract from these transactions a short vector e∗

such that upk∗ = F · e∗, which invalidates the original proof.

Discussion. This problem is not exclusive to lattice-based constructions but
we note that the proofs can be fixed in the case where upk = gx for some secret
scalar x and where the transactions contain a signature of knowledge of the
different secret values (including x). This is actually quite frequent in existing
constructions (e.g. [13,14,16] and the ROM constructions of [18,19,30]).

Indeed, in such a case, the double-spending tag is of the form T = upk ·
Fs(i)R where s is a seed, i ∈ [1, N ] is an integer, and R is derived from public
information. In case of double-spending, there are two tags T and T′ from which
one can recover upk by computing (TR′

/(T′)R)
1

R′−R .
Here again, an adversary might generate upk, s, R, upk′, s′, R′ such that the

corresponding tags T and T′ satisfy (TR′
/(T′)R)

1
R′−R = upk∗, for some honest

public key upk∗. However, in this case, the reduction can recover the discrete
logarithm of upk∗ by extracting all the secret values from the proofs generated
by the adversary. This means that exculpability can still be proven under the
discrete logarithm assumption and so that the original proofs can easily be fixed
by adding this remark.

Unfortunately, this patch is inherent to signatures of knowledge of discrete
logarithms in the Random Oracle Model, and so cannot be applied to other
settings (e.g. lattices [27]) or to standard model constructions [18,19,30]. In
particular, this means that divisible e-cash secure in the standard model or even
lattice-based compact e-cash is still an open problem.

1.3 Contributions

One can note that the above issue has remained undetected for more than a
decade, whereas all compact/divisible e-cash systems are based on the same
intuition. However, the latter has never been formalized. Intuition is necessary
to design and understand a scheme but we must be very careful when it comes to
complex primitives. This pleads for a more formal approach, where the common
intuition are translated into a generic framework.

In addition, this lack of generic framework leads designers to create and
combine several ad-hoc mechanisms, with complex security proofs that often
rely on tailored computational assumptions. This stands in sharp contrast with
a related primitive, group signature, whose foundations were studied by Bellare
et al. [4,5] and for which very efficient constructions exist.
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Two Generic Frameworks and Concrete Instantiations. In this work, we
propose two generic frameworks that yield secure divisible e-cash systems from
constrained PRFs, a well-known cryptographic primitive. For each framework,
we identify the properties it must achieve and, so, we reduce the problem of
constructing divisible e-cash systems to a simpler one: efficient instantiations of
the building blocks. We additionally provide examples of instantiations to show
that our frameworks are not artificial but can lead to practical schemes.

Our Approach: Constrained Pseudo-Random Functions. Starting from
the work of Camenisch et al. [13] that defines the serial numbers as outputs of
a PRF, we formalize the requirements on divisible e-cash systems as properties
that must be achieved by the PRFs. Actually, the main requirement is that the
serial numbers can be revealed by batches, which means that it must be possible
to reveal some element kS that (1) allows to compute Fs(i) ∀i ∈ S ⊂ [1, N ] and
(2) does not provide any information on the other serial numbers, i.e. on the
outputs of the PRF outside S. This exactly matches the definition of constrained
PRF, a notion formalized in [10,12,26].

There are also several requirements that must implicitly be fulfilled by the
constrained key kS , for anonymity to hold, and namely unlinkability of the trans-
actions: different constrained keys generated from the same master key must be
unlinkable, which also requires kS to hide any information on the subset S
(besides its cardinality, which will represent the amount). All these notions were
already defined in previous papers on constrained PRFs (e.g. [3,7,9]), although
we only need here weaker versions of the original definitions.

Collision Resistance. Intuitively, unlinkability of kS will ensure honest users’
privacy. However, e-cash systems must also be able to deal with dishonest parties,
including the bank itself. In such a case, the adversary has much more power than
in usual PRF security games: it has a total control on the seeds and could use
it to create collisions between serial numbers or worse, falsely accuse an honest
user. To thwart such attacks, we need to introduce a new security property
for constrained PRFs, that we call collision resistance. It requires that different
keys (even chosen by the adversary) yield different outputs, similarly to the
standard collision resistance notion for hash functions. We provide more details
in Sect. 2.2.

Key Homomorphic vs. Delegable Constrained PRFs. We then investi-
gate two different scenarios, leading to two different (but related) frameworks.
In the former, we consider key homomorphic constrained PRF [3] whereas we
use delegatable constrained PRF [26] in the latter. Interestingly, we note that
all existing divisible e-cash systems can be associated with one of these frame-
works, which brings two benefits. First, this means that it is possible to get,
from existing systems, constrained PRFs (either key homomorphic or delegat-
able) that achieve all the properties we list above. We therefore believe that our
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results might be of independent interest outside e-cash since it draws attention
on (implicit) constructions of constrained PRFs that might have been ignored.
Second, it means that some of the constructions affected by the exculpability
issue (see Sect. 1.2) could be fixed by using the same tricks we introduce in our
frameworks.

Serial Numbers and Double Spending Tags. Once we have identified the
sufficient properties for our PRFs, we explain how to use them to generically
construct the serial numbers and the double spending tags. This is definitely the
main contribution of the paper. We then describe how to combine these PRFs
with very standard primitives, namely digital signatures, commitment schemes
and NIZK proofs, to get a divisible e-cash system.

First Divisible e-Cash System Secure in the Standard Model. Finally,
we provide detailed proofs for both frameworks to show that the security of the
overall construction generically holds under the security of each of the build-
ing blocks. Concretely, this means that, for any setting, one can construct a
secure divisible e-cash system by essentially designing a constrained PRF achiev-
ing some simple properties. To illustrate this point, we describe, by using our
framework, the first divisible e-cash system secure in the standard model, since
previous analyses in the standard model are all wrong, as explained above.

Several Security Issues. Another interesting outcome of our formalization
process is that it highlights some security issues that have often been overlooked
in previous papers.

First, there is the critical issue with exculpability, as discussed in Sect. 1.2.
Second, security models of e-cash systems only deal with the security of the

users and the bank. We indeed note that (almost) no property related to the
security of the merchant has ever been formalized. In particular, the ability of
the merchants to deposit the electronic coins they received is not ensured by the
e-cash scheme itself. For example, in most systems, nothing prevents the spender
from depositing the coins he has just spent5: we define a new property, called
clearing, that formalizes the security requirements for the merchants.

Eventually, in the withdrawal procedure, the coins secret values are tradition-
ally generated collaboratively by the bank and the user. Our security analysis
shows that this collaborative generation does not seem to provide any relevant
benefit, at least for our frameworks.

1.4 Organization

We recall in Sect. 2.1 the notion of constrained pseudo-random functions and detail
the security properties required in order to construct divisible e-cash systems in
5 Identification of the spender is not possible in this case because the two transcripts

received by the bank (the one sent by the spender and the one sent by the merchant)
are exactly the same.
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Sect. 2.2 (concrete instantiations of constrained PRFs can be found in the full ver-
sion [11]). The syntax and the security model of divisible e-cash are described in
Sect. 3. We provide, in Sect. 4, the intuition behind our two frameworks, however,
due to space limitations, Sect. 5 only contains the formal description of our first
framework, the second one being described in the full version [11]. The security
analysis of our generic constructions is provided in the full version. The latter also
contains a concrete instantiation of our framework along with an additional secu-
rity notion for delegatable constrained PRFs.

2 Constrained Pseudo-Random Function

Our constructions of divisible e-cash systems will heavily rely on constrained
pseudo-random functions [10,12,26] with special features that we present below.
But first, we recall the syntax of this primitive.

2.1 Syntax

For sake of simplicity, our PRF K × S → Y will only be constrained on subsets
of S. We will then not consider the more general setting where it is constrained
according to a circuit. Our PRF thus consists of the following five algorithms.

– Setup(1λ, {Si}n
i=1): On input a security parameter λ and a set of admissible

subsets Si ⊂ S, this algorithm outputs the public parameters pp that will be
implicitly taken as inputs by all the following algorithms;

– Keygen(): this algorithm outputs a master secret key s ∈ K;
– CKey(s,X ): On input the master key s and a set X , this deterministic6 algo-

rithm outputs a constrained key kX ∈ KX or ⊥;
– Eval(s, x): On input the master key s and an element x ∈ S, this deterministic

algorithm outputs a value y ∈ Y;
– CEval(X , kX , x): On input a set X , a constrained key kX and an element

x ∈ X , this deterministic algorithm outputs a value y ∈ Y.

For conciseness, we will denote CEval(X , kX , x) by CEvalX (kX , x).
A constrained PRF is correct for a family of subsets {Si}n

i=1 if, for all λ ∈ N,
pp ← Setup(1λ, {Si}n

i=1), s ← Keygen() and x ∈ Si ⊆ S, we have, with over-
whelming probability, CEvalSi

(CKey(s,Si), x) = Eval(s, x). And this common
value is PRFs(x).

Definition 1. A constrained PRF is key homomorphic [3,8] if:

1. Y, K and KSi
are groups ∀i ∈ [1, n]

2. ∀i ∈ [1, n], CEvalSi
(k1 ·k2, x) = CEvalSi

(k1, x) ·CEvalSi
(k2, x), ∀k1, k2 ∈ KSi

and x ∈ Si.
3. CKey(s1 · s2,Si) = CKey(s1,Si) · CKey(s2,Si), ∀s1, s2 ∈ K and i ∈ [1, n]
6 Although the general definition in [10] allows randomized CKey algorithm, all our

constructions will require this algorithm to be deterministic.
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We use the multiplicative notation for our group operations, in K and KSi
. As

in [3], we require that the CKey algorithm, for any Si, is a group homomorphism
from K into KSi

.
Finally, some of our constructions will require the ability to derive a con-

strained key kSi
from any key kSj

such that Si ⊂ Sj . This requires the following
modifications of the syntax and of the correctness property.

Definition 2. A constrained pseudo-random function is delegatable [26] if it
additionally supports the following algorithm:

– CKey(kX ,X ′): on input a constrained key kX ∈ KX and a set X ′ ⊆ X , this
algorithm outputs a constrained key kX ′ ∈ KX ′ or ⊥.

To be correct, the delegatable constrained PRF must additionally satisfy, for a
family of subsets {Si}n

i=1, that, for all λ ∈ N, pp ← Setup(1λ, {Si}n
i=1), s ←

Keygen(), Si ⊂ Sj ⊆ S, and kSj
← CKey(s,Sj), we have, with overwhelming

probability, CKey(kSj
,Si) = CKey(s,Si).

2.2 Security Model

Our divisible e-cash constructions will use different types of constrained PRF, sat-
isfying some of the following security requirements. Most of them have already
been defined in previous works but we will need specific variants for some of them.

Pseudo-Randomness (PR). The first property one may expect from a con-
strained PRF is pseudo-randomness, which informally requires that an adver-
sary, even given access to constrained keys, cannot distinguish the PRF eval-
uation from random, for a new point (not already queried and outside sets of
known constrained keys). It is defined by Exppr−b

A (1λ, {Si}n
i=1) in Fig. 1 where

the adversary has access to the following oracles:

– OCKey(X ): on input a set X , this algorithm returns CKey(s,X ) if ∃i ∈ [1, n]
such that X = Si and ⊥ otherwise.

– OEval(x): on input an element x ∈ S, this algorithm returns Eval(s, x).

A constrained PRF is pseudo-random if Advpr (A) = |Pr[Exppr−1
A (1λ, {Si}n

i=1) =
1] - Pr[Exppr−0

A (1λ, {Si}n
i=1) = 1]| is negligible for any A.

Key Pseudo-Randomness (KPR). We note that the previous definition only
requires pseudo-randomness for the output of the PRF. As in [3] we extend this
property to the constrained keys themselves, leading to a property that we call
key pseudo-randomness. However, compared to [3], we additionally require some
form of key privacy, in the sense of [26]. In particular, we need that constrained
keys issued for subsets of the same size7 should be indistinguishable.

Let F be a constrained PRF defined for a family of subsets {Si}n
i=1 satisfying

KSi
= KSj

∀i, j such that |Si| = |Sj |. F is key pseudo-random if Advkpr (A) =

7 We note that our privacy requirements are weaker than the ones of [7,9] since we
allow the constrained keys to leak the size of the subsets.
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Exp
pr−b
A (1λ, {Si}n

i=1) – Pseudo-Randomness

1. pp ← Setup(1λ, {Si}n
i=1)

2. s ← Keygen()
3. x ← AOCKey,OEval(pp)
4. y0 ← Eval(s, x)
5. y1

$← Y
6. b∗ ← AOCKey,OEval(pp, yb)
7. If OEval was queried on x, return 0
8. If OCKey was queried on X � x, return 0
9. Return b∗

Exp
kpr−b
A (1λ, {Si}n

i=1) – Key Pseudo-Randomness

1. pp ← Setup(1λ, {Si}n
i=1)

2. s ← Keygen()
3. i∗ ← AOCKey,OEval(pp)
4. k0 ← CKey(s, Si∗)
5. k1

$← KSi∗
6. b∗ ← AOCKey,OEval(pp, kb)
7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ �= ∅, return 0
9. Return b∗

Exp
ckpr−b
A (1λ, {Si}n

i=1) – Combined Key Pseudo-Randomness

1. ppj ← Fj .Setup(1λ, {Si}n
i=1), ∀j ∈ [1, t]

2. s ← F1.Keygen()
3. i∗ ← AOCKey,OEval({ppj}t

j=1)
4. (k1

0, . . . , k
t
0) ← (F1.CKey(s, Si∗), . . . , Ft.CKey(s, Si∗))

5. (k1
1, . . . , k

t
1)

$← Kt
Si∗

6. b∗ ← AOCKey,OEval({ppj}t
j=1, (k

1
b , . . . , kt

b))
7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ , return 0
9. Return b∗

Fig. 1. Pseudo-Randomness Games for Constrained Pseudo-Random Functions

|Pr[Expkpr−1
A (1λ, {Si}n

i=1) = 1] - Pr[Expkpr−0
A (1λ, {Si}n

i=1) = 1]| is negligible for
any A, where the game Expkpr−b

A (1λ, {Si}n
i=1) is defined in Fig. 1.

Combined Key Pseudo-Randomness (CKPR). In practice, divisible e-cash
systems require multiple pseudo-random values, some acting as the unique iden-
tifier of the coin (the serial number) and some being used to mask the spender’s
identity. If F is key pseudo-random, a solution could be to split the con-
strained key kSi

← CKey(s,Si) into several parts, each of them being used
as pseudo-random values. Unfortunately, combining this solution with zero-
knowledge proofs would be very complex. In our frameworks, we will follow
a different approach and will generate several pseudo-random values by using
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different PRFs F1, . . . , Ft evaluated on the same master key s and the same
subset Si: Let F1 . . . , Ft be constrained PRFs K × S → Y defined for the same
family of subsets {Si}n

i=1 satisfying KSi
= KSj

∀i, j such that |Si| = |Sj |. We
say that the family (F1, . . . , Ft) achieves combined key pseudo-randomness if
Advckpr (A) = |Pr[Expckpr−1

A (1λ, {Si}n
i=1) = 1] - Pr[Expckpr−0

A (1λ, {Si}n
i=1) = 1]|

is negligible for any A, where the game Expckpr−b
A (1λ, {Si}n

i=1) is defined in Fig. 1.
This can be done very easily by constructing each Fi similarly but with

different public parameters: let us assume that F1.CKey(s,Si) = k1
Si

= gαi·s
1 ∀i

for some generator g1 of KSi
. We can define other PRFs F2, . . . Ft with the same

input spaces by setting Fj .CKey(s,Si) = kj
Si

= gαi·s
j for a different generator gj .

In such a case, we get t values (k1
Si

, . . . , kt
Si

) which are indistinguishable from
a random element of Kt

Si
assuming key pseudo-randomness of F1 and the DDH

assumption (see the full version [11] for more details).

Collision Resistance (CR). In our divisible e-cash constructions, the PRFs
will mostly be used to generate serial numbers that act as unique identifiers of
the coins. If a coin is spent twice (or more) the same serial number will appear in
several transactions, which provides a very simple way to detect frauds. However,
it is important to ensure that collisions between serial numbers only occur in
such cases. Otherwise, this could lead to false alerts and even false accusations
against an honest user.

At first sight, it might seem that this property is implied by pseudo-
randomness. Unfortunately, this is not true in the context of e-cash where the
adversary has total control of the master secret keys, contrarily to the adversary
of the pseudo-randomness game. We therefore need to define a new property
that we call collision resistance. Informally, it says that it should be hard to
generate collisions between the outputs of the PRFs. However, some subtleties
arise because of the different kinds of keys (secret master keys, constrained keys)
that we consider here. We then define three variants of this property that are
described in Fig. 2.

For k ∈ {1, 2, 3}, a constrained PRF achieves collision resistance-k if, for any
A, Advcr−k(A) = Pr[Expcr−k

A (1λ, {Si}n
i=1) = 1] is negligible. We provide in the

full version [11] several examples of PRFs achieving these properties.

3 Divisible E-Cash

The syntax and the formal security model are drawn from [18,30]. We neverthe-
less introduce several changes to make them more generic but also to add some
specifications that were previously implicit only.

3.1 Syntax

A divisible e-cash system is defined by the following algorithms, that involve
three types of entities, the bank B, a user U and a merchant M. Our model
defines a unique value N for the divisible coin but it can easily be extended to
support several different denominations.



Divisible E-Cash from Constrained Pseudo-Random Functions 691

Collision Resistance 1
Expcr−1

A (1λ, {Si}n
i=1)

1. pp ← Setup(1λ, {Si}n
i=1)

2. (s1, s2, x1, x2) ← A(pp)
3. If (s1, x1) = (s2, x2), return 0
4. Return Eval(s1, x1) = Eval(s2, x2)

Collision Resistance 2
Expcr−2

A (1λ, {Si}n
i=1)

1. pp ← Setup(1λ, {Si}n
i=1)

2. (i, k1, k2, x) ← A(pp)
3. If k1 = k2, return 0
4. Return CEvalSi(k1, x) = CEvalSi(k2, x)

Collision Resistance 3
Expcr−3

A (1λ, {Si}n
i=1) (for Key Homomorphic Constrained PRFs only)

1. pp ← Setup(1λ, {Si}n
i=1)

2. (i, j, ki, kj , x) ← A(pp)
3. If i = j, return 0
4. If ki = 1KSi

∨ kj = 1KSj
, return 0

5. Return CEvalSi(ki, x) = CEvalSj (kj , x)

Fig. 2. Collision Resistance Games for Constrained Pseudo-Random Functions

– Setup(1λ, N): On input a security parameter λ and an integer N , this prob-
abilistic algorithm outputs the public parameters pp for divisible coins of
global value N . We assume that pp are implicit to the other algorithms, and
that they include λ and N . They are also given as an implicit input to the
adversary, we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a key
pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchant
M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that usk
(resp. msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value N or outputs ⊥ (in case of failure) while the bank stores the
transcript of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk, V ),M(msk, bpk, info, V )): This is an interactive protocol
between a user U and a merchant M. Here, info denotes a set of public
information associated to the transaction, by the merchant, and V denotes
the amount of this transaction. At the end of the protocol the merchant gets
Z along with a proof of validity Π or outputs ⊥. U then either updates C or
outputs ⊥.

– Deposit(M(msk, bpk, (V, info, Z,Π)),B(bsk, L,mpk)): This is an interactive
protocol between a merchant M and the bank B where the former first sends a
transcript (V, info, Z,Π) along with some additional data μ. B then checks (1)
the validity of all these elements and (2) that this merchant has not already
deposited a transcript associated with info. If condition (1) is not fulfilled,
then B aborts and outputs ⊥. If condition (2) is not fulfilled, then B returns
another transcript (V ′, info, Z ′,Π ′) along with the associated μ′. Otherwise, B
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recovers the V serial numbers SNi0 , . . . , SNiV −1
8 derived from Z and compares

them to the set L of all serial numbers of previously spent coins. If there is a
match for some index ik, then B returns a transcript (V ′, Z ′,Π ′, info′) such
that SNik is also a serial number derived from Z ′. Else, B stores these new
serial numbers in L and keeps a copy of (V, info,mpk, Z,Π).

– Identify((V, info,mpk, Z,Π), (V ′, info′,mpk′, Z ′,Π ′), bpk): On the wo tran-
scripts, this deterministic algorithm outputs 0 if info = info′, if one of the
transcripts is invalid, or if the serial numbers derived from these transcripts
do not collide. Else it outputs a user’s public key upk or ⊥.

– CheckDeposit([(V, info,mpk, Z,Π), μ], bpk): This deterministic algorithm
outputs 1 if [(V, info, Z,Π), μ] are valid elements deposited by a merchant
whose public key is mpk and 0 otherwise.

Our model does not place restrictions on the values that can be spent nor on
the size of a spending transcript. It is therefore more generic and in particular
also fits compact e-cash systems where the serial numbers can only be revealed
one by one.

3.2 Security Model

Existing security models essentially focus on the user’s and the bank’s interests.
The former must indeed be able to spend their coins anonymously without being
falsely accused of frauds while the latter must be able to detect frauds and
identify the perpetrators. This is formally defined by three security properties
in [18]: anonymity (user’ spendings are anonymous, even with respect to the
bank), exculpability (honest users cannot be falsely accused, even by the bank)
and traceability (an author of overspending should be traced back).

However, all these notions (and the corresponding ones in previous papers)
fail to capture an important security property for the merchant: he must always
be able to clear his transactions, but also, he should be the only one able to
deposit them. This is especially problematic for e-cash because users can repro-
duce the transcripts of their spendings. Designers of existing divisible e-cash sys-
tems seem to be more or less aware of this issue9 because they usually attribute a
signing key to the merchant. However, these systems do not specify the security
properties expected from the corresponding signature scheme and most of them
even do not specify which elements should be signed.

For completeness, we therefore add the property of clearing (only the recipi-
ent merchant can perform the deposit) to the above usual ones. All of them are
defined in Fig. 3 and make use of the following oracles:
8 We do not make any assumption on the indices i0, . . . , iV −1, contrarily to some

previous works that assume they are consecutive.
9 The “correctness for merchant”, informally defined in [1], is related to this issue. It

ensures that the transcript deposited by an honest merchant will be accepted, even
if the spender is dishonest and double-spends his coin. However, it only considers
an honest bank and it does not consider situations where the transcript would be
deposited by another entity. In particular, the scheme in [1] does not ensure that the
merchant is the only one able to clear his coins.
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– OAdd() is an oracle used by the adversary A to register a new honest user
(resp. merchant). The oracle runs the Keygen algorithm, stores usk (resp.
msk) and returns upk (resp. mpk) to A. In this case, upk (resp. mpk) is said
honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp.
merchant) whose public key is upk (resp. mpk). The oracle then returns the
corresponding secret key usk (resp. msk) to A along with the secret values
of every coin withdrawn by this user. From now on, upk (resp. mpk) is said
corrupted.

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted
user (resp. merchant) whose public key is upk (resp. mpk). In this case, upk
(resp. mpk) is said corrupted. The adversary could use this oracle on a public
key already registered (during a previous OAdd query) but for simplicity,
we do not consider such case as it will gain nothing more than using the
OCorrupt oracle on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw
protocol. This oracle will be used by A playing the role of the bank against
the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw
protocol. This oracle will be used by A playing the role of a user whose public
key is upk against the bank.

– OSpend(upk, V ) is an oracle that executes the user’s side of the Spend protocol
for a value V . This oracle will be used by A playing the role of the merchant
M.

– OReceive(mpk, V ) is an oracle that executes the merchant’s side of the Spend
protocol for a value V . This oracle will be used by A playing the role of a
user.

– ODeposit(mpk, V, info) is an oracle that executes the merchant’s side of the
Deposit protocol for a transaction of amount V associated with the value
info. This oracle cannot be queried on two inputs with the same value info. It
will be used by A playing the role of the bank.

In the experiments, users are denoted by their public keys upk, cupk denotes
the amount already spent by user upk during OSpend queries, mupk the
number of divisible coins that he has withdrawn and Tri the transcript
(Vi, infoi,mpki, Zi,Πi) for any i ∈ N. This means that the total amount available
by a user upk is mupk ·N . The number of coins withdrawn by all users during an
experiment is denoted by m.

For sake of simplicity, we assume that all merchants are corrupted, and added
through OAddCorrupt queries, in the traceability, exculpability and anonymity
experiments. We therefore do not need to add access to the OReceive and
ODeposit oracles in the latter. We stress that this is not a restriction since
the OAddCorrupt oracle provides more power to the adversary than the OAdd
and OCorrupt ones. Similarly, we assume that the bank and all the users are
corrupted in the clearing game and so do not provide access to the OSpend,
OWithdrawU and OWithdrawB oracles in it.
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ExptraA (1λ, N) – Traceability Security Game

1. pp ← Setup(1λ, N)
2. (bsk, bpk) ← BKeygen()
3. {(Vi, infoi,mpki, Zi, Πi)}u

i=1
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u

i=1 Vi > m · N and ∀i �= j, Identify(Tri,Trj , bpk) =⊥, then return 1
5. Return 0

ExpexcuA (1λ, N) – Exculpability Security Game

1. pp ← Setup(1λ, N)
2. bpk ← A()
3. [Tr1,Tr2] ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify(Tr1,Tr2, bpk) = upk and upk not corrupted, then return 1
5. Return 0

Expanon−b
A (1λ, N) – Anonymity Security Game

1. pp ← Setup(1λ, N)
2. bpk ← A()
3. (V, upk0, upk1,mpk) ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upki is not registered for i ∈ {0, 1}, then return 0
5. If cupki > mupki · N − V for i ∈ {0, 1}, then return 0
6. (V, Z, Π, info) ← Spend(C(uskb, C,mpk, V ), A())
7. cupk1−b

← cupk1−b
+ V

8. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
9. If upki has been corrupted for i ∈ {0, 1}, then return 0

10. Return (b = b∗)

ExpclearA (1λ, N) – Clearing Security Game

1. pp ← Setup(1λ, N)
2. bpk ← A()
3. [(V, info,mpk, Z, Π), μ] ← AOAdd,OCorrupt,OAddCorrupt,OReceive,ODeposit()
4. If CheckDeposit([(V, info,mpk, Z, Π), μ], bpk) = 0, then return 0
5. If mpk is corrupted, then return 0
6. If (mpk, V, info) has been queried to ODeposit, then return 0
7. Return 1

Fig. 3. Security Games for Divisible E-Cash

Our clearing game ensures that no one can forge a valid deposit query from
the merchant. This means in particular that the bank cannot rightfully refuse
the deposit of an honest merchant (because it will not be able to provide a valid
proof that the transcript has already been deposited) and that it cannot falsely
accuse a merchant of trying to deposit the same transcript several times.

A divisible E-cash system is said to be traceable, exculpable, anonymous,
and/or clearable if Succtra(A), Succexcu(A), Advanon(A), and/or Succclear (A),
are respectively negligible for any probabilistic polynomial adversary A, where
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Succtra(A) = Pr[ExptraA (1λ, N) = 1] Succexcu(A) = Pr[ExpexcuA (1λ, N) = 1]

Succclear (A) = Pr[ExpclearA (1λ, N) = 1]

Advanon(A) = |Pr[Expanon−1
A (1λ, N) = 1] − Pr[Expanon−0

A (1λ, N) = 1]|

4 High-Level Description

Before introducing a generic framework for divisible e-cash, we focus on the
heart of such systems, namely the construction of the serial numbers and of the
double-spending tags.

Regarding the former, the fact that each serial number SN must look random
has led designers to use pseudo-random functions (PRFs). More specifically,
every anonymous divisible e-cash scheme defines SNi as F.Eval(s, i) where s is the
master key and i ∈ [1, N ]. However, to avoid a cost linear in the amount V it is
necessary to provide a way to reveal these serial numbers by batches. Designers of
divisible e-cash systems (e.g. [1,14,16,18,19,30]) have thus constructed pseudo-
random functions with a special feature: given s and a subset X ⊆ [1, N ], one
can compute kX allowing to evaluate the PRF only on the elements of X . This
matches the definition of constrained PRFs, as described above. To spend a value
V , the user can now simply reveal a constrained key kX for a set X of size V .
However additional properties are required here to achieve anonymity. Indeed,
informally, the constrained key must hide information on the spender (more
specifically on the master secret key) and on the subset X 10 itself. All these
properties are captured by key pseudo-randomness that we defined in Sect. 2.
Eventually, to avoid false positive in the fraud detection process, we will need
the collision resistance properties defined in the same section.

Therefore, constructing divisible e-cash with efficient double-spending detec-
tions is roughly equivalent to constructing a key pseudo-random, collision resis-
tant constrained PRF for subsets of [1, N ] that smoothly interacts with Non-
Interactive Zero-Knowledge (NIZK) proofs. However, detection of double spend-
ing is not enough, it must also be possible to identify double spenders by using the
additional information contained in the double-spending tag. This adds further
requirements on the PRF and leads to two constructions that we present below.

4.1 Construction Using Key Homomorphism

Our first construction of double-spending tag is reminiscent of the techniques
used by compact e-cash systems [13,27]. In these papers, the double spending
tag Ti associated with SNi is of the form ID · (F ′.Eval(s′, i))R, where ID is the
“identity” of the spender (usually his public key), F ′ is a PRF seeded with a
master secret key s′ (note that we may have F = F ′ or s = s′ but not both) and
R is a public identifier of the transaction.

Intuitively, the idea behind this tag is that (F ′.Eval(s′, i))R will perfectly
mask the user’s identity as long as the latter does not overspend his coin. In
10 Actually the size of X can leak as it corresponds to the public amount of the trans-

action.
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case of double spendings, there will indeed be two tags T(1)i and T
(2)
i of the form

ID · (F ′.Eval(s′, i))R1 and ID · (F ′.Eval(s′, i))R2 . Therefore, by computing:

((T(1)i )R2/(T(2)i )R1)1/(R2−R1)

the bank can directly recover the identity ID of the defrauder. This idea was
adapted in [18,19,30] to the context of divisible e-cash by replacing F ′.Eval(s′, i)
with a key constrained to the appropriate subset.

However, we have explained in Sect. 1.2 that this process of identification is
problematic and could lead to false accusations against honest user, thus break-
ing exculpability. Concretely, the problem arises from the fact that the above
formula may output ID while involving tags T

(1)
i and T

(2)
i produced for different

identities. Indeed, in the exculpability game, a malicious bank could cooperate
with malicious users and merchants to select values ID1, ID2, R1, R2, s1 and
s2 such that ((T(1)i )R2/(T(2)i )R1)1/(R2−R1) = ((ID1 · (F ′.Eval(s1, i1))R1)R2/(ID2 ·
(F ′.Eval(s2, i2))R2)R1)1/(R2−R1) = ID. This means that, in general, this tag
construction cannot be used as it is.

To prevent this problem, our generic construction uses four PRFs, that we
will denote by F1, F2, F3 and F4, defined for the same family of subsets {Si}n

i=1

and sharing the same key space K. We additionally require F2, F3 and F4 to be
key homomorphic.

Let s ∈ K be a secret master key and Si be a subset of size V , the amount
of the transaction. As previously11, our first PRF will be used to reveal k

(1)
Si

←
F1.CKey(s,Si). Likewise, our third PRF will be used to generate an element of
the form12 IDR · k3

Si
, with k3

Si
← F3.CKey(s,Si). The novelty here is that these

values will only constitute a part of the serial number and of the double spending
tag. The other parts will be derived from k

(2)
Si

← F2.CKey(s · id,Si), where id

is some element of K associated with the public identity ID, and from ID · k4
Si

where k4
Si

← F4.CKey(s,Si). More specifically,

SNj = F1.CEvalSi
(k(1)

Si
, j)||F2.CEvalSi

(k(2)
Si

, j) TSi
= (IDR · k3

Si
, ID · k4

Si
).

Intuitively, the fact that the master secret key of F2 depends on id will ensure
that no collision can occur for different users, which thwarts the previous attack.
Moreover, the first part of SNj still ensures that collisions can only occur for
spendings involving the same master key, evaluated on the same element j ∈ S.
The last element of the double-spending tag has a more technical purpose, it
prevents identification errors in the case where the colliding serial numbers have
been generated using different subsets (see Remark 3).

11 For sake of clarity, we assume here that the elements associated with the users’
identity live in the right spaces. Our formal definition will make use of suitable maps
to ensure this fact.

12 We need to apply the exponent R on the identity itself instead of the constrained
key to rely on the correctness of CEval, but the principle is the same.
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Therefore, if two spendings with respective tags T
(1)
Si1

and T
(2)
Si2

lead to a
collision, then we have:

T
(1)
Si1

= (IDR1 · k3
Si1

, ID · k4
Si1

) T
(2)
Si2

= (IDR2 · k3
Si2

, ID · k4
Si2

)

with j ∈ Si1 ∩ Si2 . If Si1 = Si2 = Si, we can compute:

F3.CEvalSi
(T(1)Si

[1], j) = F3.CEvalSi
(IDR1 , j) · F3.CEvalSi

(k3
Si

, j)

F3.CEvalSi
(T(2)Si

[1], j) = F3.CEvalSi
(IDR2 , j) · F3.CEvalSi

(k3
Si

, j)

Since k3
Si1

and k3
Si2

are derived from the same master key, correctness ensures
that F3.CEvalSi

(k3
Si

, j) = F3.CEvalSi
(k3

Si
, j). Therefore:

F3.CEvalSi
(T(2)Si

[1], j) · F3.CEvalSi
(T(1)Si

[1], j)−1

= F3.CEvalSi
(IDR2 , j) · F3.CEvalSi

(ID−R1 , j)

The bank can then perform an exhaustive search on the set of public identities
{IDi} until it gets a match. Identification of defrauders is then possible with a
linear cost in the number of users of the system.

Now in the case where Si1 = Si2 , we have, for any identity ID∗:

F4.CEvalSi1
(T(1)Si1

[2]/(ID∗), j) = F4.CEvalSi1
(ID/(ID∗), j) · F4.CEvalSi1

(k4
Si1

, j)

F4.CEvalSi2
(T(1)Si2

[2]/(ID∗), j) = F4.CEvalSi2
(ID/(ID∗), j) · F4.CEvalSi2

(k4
Si2

, j)

Here again, F4.CEvalSi1
(k4

Si1
, j) = F4.CEvalSi2

(k4
Si2

, j), therefore:

F4.CEvalSi1
(T(1)Si1

[2]/(ID∗), j)/F4.CEvalSi2
(T(1)Si2

[2]/(ID∗), j)

= F4.CEvalSi1
(ID/(ID∗), j)/F4.CEvalSi2

(ID/(ID∗), j)

and one can easily identify the case where ID∗ = ID since this it is the only one
where the right member equals to 1Y if F4 achieves collision resistance-3.

Remark 3. The use of two elements in the double-spending tag may seem sur-
prising, in particular because the equality

F3.CEvalSi1
(T(2)Si2

[1], j) · F3.CEvalSi2
(T(1)Si2

[1], j)−1

= F3.CEvalSi1
(IDR2 , j) · F3.CEvalSi2

(ID−R1 , j)

still holds for the right ID in the case where Si1 = Si2 . However, in this case, we
cannot ensure that this equality only holds for ID, it might also work for other
identities, leading to obvious identification issues.

4.2 Construction Using Delegation

Our second construction is inspired by what has been the main framework for
divisible e-cash for many years (e.g. [14,16,28]). It makes use of a family of two
delegatable PRFs (F1, F2) and two functions13 (H,H ′) such that H : K → G

13 The requirements placed on these functions are specified in the full version [11].
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and H ′ : KSi
→ G for some group G (we here assume that KSi

= KSj
for all

i, j ∈ [1, N ]). We assume that the subsets {Si} of [1, N ] supported by the PRFs
F1 and F2 satisfy the following requirement:

Si ∩ Sj = ∅ ⇒ Si ⊂ Sj or Sj ⊂ Si

Therefore, for each subset Si = [1, N ], it is possible to define the smallest subset
containing strictly Si. Its index is given by a function D.

To spend a value V , a user whose coin secret key is s selects a subset Si

containing V elements and will reveal the following information:

1. k
(1)
Si

← F1.CKey(s,Si)

2. k
(2)
Si

← upk · F2.CKey(s,Si)
3. TSi

← upk · H ′(F1.CKey(s,SD(Si)))
R

for some public element R. The first element will be used by the bank to derive
the serial numbers SNt ← F1.CEvalSi

(k(1)
Si

, t) ∀t ∈ Si. The second element pre-
vents the problem we mention in Sect. 4.1: it will be used to discard collisions
between spendings involving different users. Finally, the last element is the
double-spending tag but the identification process is more subtle than in the
previous case, as we explain below.

Let (k(1)
Si

, k
(2)
Si

, TSi
) and (k(1)

Sj
, k

(2)
Sj

, TSj
) be two spendings leading to a collision,

i.e. such that there are ti ∈ Si and tj ∈ Sj verifying the equation:

F1.CEvalSi
(k(1)

Si
, ti) = F1.CEvalSj

(k(1)
Sj

, tj).

Collision resistance of F1 implies that ti = tj and that k
(1)
Si

and k
(1)
Sj

were
both derived from the same master secret key. Moreover, ti ∈ Si ∩ Sj = ∅ which
implies that Si ⊂ Sj or Sj ⊂ Si. Let us assume that Sj ⊂ Si. We then distinguish
the two following cases.

– Case 1: Sj � Si, which implies that SD(Sj) ⊂ Si. From k
(1)
Si

, one can then

compute T∗ ← H ′(F1.CKey(k
(1)
Si

,SD(Sj))) and thus recover upk = TSj
/(T∗)Ri .

– Case 2: Sj = Si. In such a case, k
(2)
Si

= k
(2)
Sj

if and only if both elements have
been generated using the same public key upk. Therefore, one aborts if this
equality does not hold. Else, one computes upk ← (TRj

Si
/TRi

Sj
)1/(Rj−Ri).

4.3 Discussion

To our knowledge, all anonymous divisible e-cash systems can be associated
with one of these frameworks. The main difference is that existing constructions
require less PRFs but, as we explain in Sect. 1.2, this leads to a problem that has
been overlooked in the proofs. Although some of them can be patched without
adding new PRFs, we note that this patch is very specific to some constructions
and so cannot be applied to our generic frameworks.
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Starting from the seminal work of Canard and Gouget [14], several schemes
[1,16,28]) implicitly followed the second framework14 and so constructed (or
re-used) delegatable PRFs satisfying the properties listed above. Unfortunately,
the resulting PRFs do not interact nicely with NIZK, leading to quite complex
constructions.

Recently, a series of papers [18,19,30] followed a different approach that actu-
ally matches our first framework. It is then possible to extract from these papers
constrained key homomorphic PRFs that achieve key pseudo-randomness. More-
over, these PRFs interact smoothly with NIZK, even in the standard model,
leading to very efficient constructions.

However, in practice, efficiency does not only depend on the compatibility
with NIZK proofs. Divisible e-cash indeed achieves its ultimate goal when it
allows the user to spend efficiently the V coins associated with a transaction of
amount V . This means that the family of subsets {Si} supported by the PRF
must be as rich and as diverse as possible. For decades, the constructions have
only been compatible with intervals of the form [1 + j · 2k, (j + 1)2k] due to the
use of binary trees. It is only recently that Pointcheval, Sanders and Traoré [30]
proposed a construction supporting any interval [a, b] ⊆ [1, N ]. This led to the
first constant-size divisible e-cash systems.

5 Our Framework

We now elaborate on the solutions sketched in the previous section to construct
a full divisible e-cash system. We only consider here constructions based on key
homomorphic constrained PRFs but describe those based on delegatable PRF
in the full version [11].

5.1 Building Blocks

Our framework makes use of three standard cryptographic primitives, namely dig-
ital signature, commitment scheme and non-interactive zero-knowledge (NIZK)
proofs that we recall below, along with their respective security properties.

Expeuf−cma
A (1λ) – EUF-CMA security Game

1. (sk, pk) ← Keygen(1λ)
2. (m∗, σ∗) ← AOSign(pk)
3. If Verify(pk, m∗, σ∗) = 0 or OSign queried on m∗, then return 0
4. Return 1

Fig. 4. Security Game for Digital Signature

14 We nevertheless note that the cut-and-choose technique used during withdrawal in
[1] is very specific to this work and does not fit our framework.
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Digital Signature. A digital signature scheme Σ is defined by three algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a pair
of signing and verification keys (sk, pk);

– Sign(sk,m): on input the signing key sk and a message m, this algorithm
outputs a signature σ;

– Verify(pk,m, σ): on input the verification key pk, a message m and its alleged
signature σ, this algorithm outputs 1 if σ is a valid signature on m under pk,
and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability
under chosen message attacks (EUF-CMA) [24]: it means that it is hard, even
given access to a signing oracle, to output a valid pair (m,σ) for a message m
never asked to the signing oracle. The formal definition is provided in Fig. 4 and
makes use of an oracle OSign that, on input a message m, returns Sign(sk,m).
A signature scheme is EUF-CMA secure if Pr[Expeuf−cma

A (1λ) = 1] is negligible
for any A.

Commitment Scheme. A commitment scheme Γ is defined by the following
two algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a com-
mitment key ck that specifies a message space M, a randomizer space R
along with a commitment space C;

– Commit(ck,m, r) : on input ck, an element r ∈ R and a message m ∈ M, this
algorithm returns a commitment c ∈ C.

Informally, a commitment should be binded to the committed message, but
still hiding the latter. This is formally defined by the games ExpbindA (1λ) and
Exphid−b

A (1λ) of Fig. 5. A commitment scheme is binding if Pr[ExpbindA (1λ) = 1]
is negligible, while it is hiding if Pr[Exphid−1

A (1λ) = 1] − Pr[Exphid−0
A (1λ) = 1] is

negligible.

Hiding Security Game
Exphid−b

A (1λ)

1. (ck) ← Keygen(1λ)
2. m ← A(ck)
3. r

$← R, c0 ← Commit(ck, m, r)
4. c1

$← C
5. b∗ ← AOSign(ck, cb)
6. Return (b = b∗)

Binding Security Game
ExpbindA (1λ)

1. (ck) ← Keygen(1λ)
2. (m0, m1, r0, r1) ← A(ck)
3. If Commit(ck, m0, r0) �= Commit(ck, m1, r1)

or m0 = m1, then return 0
4. Return 1

Fig. 5. Security Game for Commitment Schemes
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NIZK Proofs. Let R be an efficiently computable relation with triples
(crs, φ, w), where crs is called the common reference string and w is said to be
a witness to the instance φ. A NIZK proof system is defined by the following
three algorithms:

– Setup(1λ): on input a security parameter λ, this algorithm outputs the com-
mon reference string crs.

– Prove(crs, w, φ): on input a triple (crs, w, φ) ∈ R, this algorithm outputs a
proof π.

– Verify(crs, φ, π): on input crs, a proof π and an instance φ this algorithm
outputs either 1 (accept) or 0 reject.

A NIZK proof is correct if the probability that Verify(crs, φ, Prove(crs, w, φ))
returns 0 is negligible for all (crs, w, φ) ∈ R. We will additionally require the
properties of zero-knowledge and extractability. Both of them are defined in
Fig. 6. Extractability requires the existence of an extractor XA that takes as
input the transcript transA of the adversary A. Zero-knowledge requires the
existence of a simulator consisting of the algorithms SimSetup and SimProve
that share state with each other. In the security experiment Expzk−b

A (1λ), the
adversary has access to the following oracle:

– OProve-b(w, φ): on input (w, φ), this algorithm returns ⊥ if (crsb, w, φ) /∈ R.
Else, it returns Prove(crsb, w, φ) if b = 0 and SimProve(crsb, φ) otherwise.

A NIZK proof is zero-knowledge if Pr[Expzk−1
A (1λ)]−Pr[Expzk−0

A (1λ)] is negligi-
ble. It is extractable if Pr[ExpextA (1λ)] is negligible.

Zero-Knowledge Game
Expzk−b

A (1λ)

1. crs0 ← Setup(1λ)
2. crs1 ← SimSetup(1λ)
3. b∗ ← AOProve−b(crsb)
4. Return (b = b∗)

Extractability Game
ExpextA (1λ)

1. crs ← Setup(1λ)
2. (φ, π) ← A(crs)
3. w ← XA(transA)
4. If Verify(crs, φ, π) = 0 or (crs, w, φ) /∈ R,

then return 0
5. Return 1

Fig. 6. Security Game for NIZK Proofs

5.2 Construction

Our construction makes use of a digital signature scheme Σ, a commitment
scheme Γ and a NIZK proof system Π as described above. The difficulty here is to
provide the description of a framework that encompasses very different settings
such as cyclic groups or lattices. For example, the element IDR of Sect. 4 that
was involved in double-spending tags does not make sense in a lattice setting and
would in practice be replaced by R · ID where R is a matrix and ID is a vector.
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To remain as generic as possible, we will then introduce several functions that
will abstract the properties we need. In our example, we need that IDR+R′

=
IDR · IDR′

and that (R + R′) · ID = R · ID + R′ · ID and so will represent IDR

and R · ID by G(ID, R) where G is a bilinear map (see Remark 5 for more
details). Such functions make the description of our framework rather complex
but we stress that they are actually very easy to instantiate. In particular, we
emphasize that the following framework essentially formalises the high-level ideas
described in Sect. 4 and does not significantly increase the practical complexity
of our construction.

– Setup(1λ, N): To generate the public parameters pp, the algorithm first com-
putes crs ← Π.Setup(1λ). It then selects four constrained PRFs F1, F2, F3

and F4 with the same master key space K and that support the same subsets
S1, . . . ,Sn with Si ⊂ [1, N ] ∀i ∈ [1, n]. For sake of simplicity, we assume that
KSi

= KSj
= KS for all i, j ∈ [1, n]. F2, F3 and F4 must additionally be key

homomorphic. Finally, it selects a hash function H : {0, 1}∗ → G for some
group G, two functions G1 : {0, 1}∗ → K, G2 : {0, 1}∗ → KS along with a
non degenerate bilinear map G3 : KS × G → KS (see Remark 5). The public
parameters pp are then set as crs, F1, F2, F3, F4,H,G1, G2, G3.

– BKeygen(): The bank generates a commitment key ck ← Γ.Keygen(1λ) and
a key pair (skB , pkB) ← Σ.Keygen(1λ). It then sets bsk as skB and bpk as
(hg, pkB).

– Keygen(): The user (resp. the merchant) generates a signature key pair
(usk, upk) (resp. (msk,mpk)) using Σ.Keygen.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user
first generates s ← F1.Keygen(1λ, {Si}n

i=1) and a random element r from the
randomizer space R of Γ . It then sends c ← Γ.Commit(ck, [s, upk], r) to the
bank along with a signature τc ← Σ.Sign(usk, c).
If τc is valid, the bank returns a signature σc ← Σ.Sign(skB , c) to the user.
The latter can then set its coin C as (c, s, r, σc).

– Spend(U(usk, C, bpk, V ),M(msk, bpk, info, V )): During a spending of amount
V , the merchant first selects a string info that he never used before15 and
sends it to the user along with his public key mpk.
The user then selects a subset Si with |Si| = V such that SNj has never been
revealed for all j ∈ Si, and computes k

(1)
Si

← F1.CKey(s,Si), k
(2)
Si

← F2.CKey(s·
G1(upk),Si) and TSi

← (G3(G2(upk),H(mpk||info))·k(3)
Si

, G2(upk)·k(4)
Si

) where

k
(3)
Si

= F3.CKey(s,Si) and k
(4)
Si

= F4.CKey(s,Si).

Finally, it generates a signature τ ← Σ.Sign(usk, (mpk, V, info, k
(1)
Si

, k
(2)
Si

, TSi
))

along with a NIZK proof π of (upk, s, c, r, σc,Si, τ) such that:
1. ∃i∗ ∈ [1, n] : Si = Si∗ ∧ |Si| = V
2. c = Γ.Commit(ck, [s, upk], r)
3. 1 = Σ.Verify(pkB , c, σc)

15 This string can simply be a counter incremented by the merchant after each trans-
action, or include information that uniquely identifies the transaction such as the
date and the hour.
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4. k
(1)
Si

= F1.CKey(s,Si)
5. k

(2)
Si

= F2.CKey(s · G1(upk),Si)
6. TSi

=(G3(G2(upk),H(mpk||info))·F3.CKey(s,Si), G2(upk)·F4.CKey(s,Si))
7. 1 = Σ.Verify(upk, (mpk, V, info, k

(1)
Si

, k
(2)
Si

, TSi
), τ)

The elements (k(1)
Si

, k
(2)
Si

, TSi
, π) are then sent to the merchant who accepts

them as a payment if π is valid.
– Deposit(M(msk, bpk, (V, info, k

(1)
Si

, k
(2)
Si

, TSi
, π)),B(bsk, L,mpk)): To deposit a

transaction, the merchant sends its transcript Tr ← (V, info, k
(1)
Si

, k
(2)
Si

, TSi
, π)

along with a signature μ ← Σ.Sign(msk,Tr). The bank then checks that
(1) the proof π is valid, (2) π proves knowledge of a signature on a tuple
whose first coordinate is mpk, (3) Σ.Verify(mpk,Tr, μ) = 1 and (4) that this
merchant has not previously deposited a transaction associated with info. If
one of the first three conditions is not satisfied, then the bank returns ⊥.
If the last condition is not satisfied then the bank knows another transcript
(V ′, info, k(1)

Sj
, k

(2)
Sj

, TSj
, π′) along with a signature μ′. All these elements, along

with [Tr, μ] constitute a proof of double-deposit.
Else, the bank recovers, for all j ∈ Si (see Remark 6 below), the serial num-
bers SNj ← F1.CEvalSi

(k(1)
Si

, j)||F2.CEvalSi
(k(2)

Si
, j). It then distinguishes the

following two cases:
• ∃j∗ ∈ Si such that SNj∗ already belongs to L. In such a case, the bank

recovers the first transcript (V ′, info′,mpk′, k(1)
Si′

, k
(2)
Si′

, TSi′ , π
′) that yields

this serial number and returns it along with Tr.
• SNj /∈ L ∀j ∈ Si, in which case the bank simply adds these serial numbers

to L

– Identify((V, info,mpk, k
(1)
Si

, k
(2)
Si

, TSi
, π), (V ′, info′,mpk′, k(1)

Sj
, k

(2)
Sj

, TSj
, π′),

bpk): Given two transcripts, this algorithm first checks that (1) mpk||info =
mpk′||info′ and (2) both proofs π and π′ are valid. If one of these conditions is
not satisfied, then it returns 0. Else, it checks that there is a collision between
the serial numbers derived from these transcripts, i.e. there are x ∈ Si and x′ ∈
Sj such that F1.CEvalSi

(k(1)
Si

, x)||F2.CEvalSi
(k(2)

Si
, x) = F1.CEvalSj

(k(1)
Sj

, x′)||
F2.CEvalSj

(k(2)
Sj

, x′). If there is no collision, it outputs 0.
Else, it proceeds as in Sect. 4.1 to identify the defrauder. If TSi

[2] = TSj
[2], it

computes R = H(mpk||info), R′ = H(mpk′||info′) along with

F3.CEvalSi
(TSi

[1], x)/F3.CEvalSj
(TSj

[1], x′)

and F3.CEvalSi
(G3(G2(upk), R), x)/F3.CEvalSj

(G3(G2(upk), R′), x) for all
upk until it gets a match. It then returns the corresponding public key upk∗

(or ⊥ if the exhaustive search fails).
Else, TSi

[2] = TSj
[2] and it computes

F4.CEvalSi
(TSi

[2]/G2(upk), x)/F4.CEvalSj
(TSi2

[2]/G2(upk), x′)

for all public keys upk until it gets 1Y . It then returns the corresponding
public key upk∗ (or ⊥ if the exhaustive search fails).
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– CheckDeposit([(V, info,mpk, k
(1)
Si

, k
(2)
Si

, TSi
, π), μ], bpk): this algorithm checks

that π is valid and that 1 = Σ.Verify(mpk, (V, info, k
(1)
Si

, k
(2)
Si

, TSi
, π), μ) in

which case it outputs 1. Else, it returns 0.

Remark 4. An example of instantiation of our full construction, in the standard
model, is provided in the full version [11] to assess the practical complexity
of our framework. Nevertheless, we note that a spending essentially consists
in generating 4 constrained keys along with a zero-knowledge proof that they
have been correctly computed from a certified master key. In bilinear groups,
such proofs can easily be produced in the random oracle model or by using
Groth-Sahai proofs [25] if one selects an appropriate digital signature scheme
for Σ, as illustrated in our full version where we show that the complexity of
our framework is very similar to the one of (unsecure) schemes from the state-
of-the-art. The case of lattices is more complex but we note that the proofs and
the signature scheme required here are similar to those described in [27].

Remark 5. The only purpose of the functions G1, G2 and G3 is to project the
different elements of our system on the appropriate spaces, which ensures com-
patibility with most PRFs. As we illustrate on concrete examples in the full
version [11], these functions are in practice very simple (for example G2 is usu-
ally the identity function) and nicely interact with zero-knowledge proofs. In
particular, our bilinear map G3 can easily be instantiated in most settings. For
example, when KS is a cyclic group of order p, we will simply have G = Zp

and G3(x, y) = xy. Similarly, when KS = F
n
q , we will have G ⊂ Mm,n and

G3(x,A) = A · x.
We will also manage to make G1 and G2 injective in practice which means

that the collision resistance will be trivially satisfied. We recall that the bilinear
map G3 is non degenerate if G3(x, y) = 1KS implies x = 1KS or y = 1G.

Remark 6. Note that, even if the bank does not know the subset Si, it is always
able to recover all the serial numbers SNj ← CEvalSi

(kSi
, j), for j ∈ Si. Indeed,

it can generates the list L containing SNk ← CEvalS(kSi
, k), for all S containing

V elements and k ∈ S. Such a list contains the valid serial numbers (those for
which S = Si) and so can still be used to detect double-spendings. Moreover, due
to the properties of PRF, the “invalid” serial numbers (those for which S = Sj)
are random elements and so are unlikely to create false positives (collisions in
the list L that are not due to double-spendings).

However, we stress that this is only a generic solution that works for any
instantiation of our construction. In practice, it leads to quite complex deposits
and so should be avoided, if possible. Actually, to our knowledge, it is only used
in [18]. All other divisible e-cash systems manage to construct PRFs that can
be evaluated on the elements of Si without knowing Si. More specifically, theses
PRFs are compatible with an algorithm CEval that takes as input a constrained
key and the size of the corresponding subset and that outputs CEval(kSi

, |Si|) =
{CEvalSi

(kSi
, x),∀x ∈ Si}.

The security of our construction is stated by the following theorem, proven
in the full version [11].
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Theorem 7. Our divisible e-cash system is

– traceable if F1 and F2 achieve collision resistance-1, Γ is computationally
binding, Σ is EUF-CMA secure, Π is extractable, and G1 is collision resis-
tant.

– exculpable if Σ is EUF-CMA secure, Π is extractable, F1 and F2 achieve
collision resistance-1, F3 achieves collision resistance-2, F4 achieves collision
resistance-3 and H, G1 and G2 are collision resistant.

– clearable if Σ is EUF-CMA secure.
– anonymous if (F1, F2, F3, F4) achieves combined key pseudo-randomness, Γ

is computationally hiding and Π is zero-knowledge.

Remark 8. Most existing constructions require a collaborative generation of the
coin secret values. Our framework can easily support this feature if Γ is homo-
morphic. In such a case, traceability no longer requires collision resistance for
F1 and F2 because the randomness added by the bank (which is honest in this
game) will make collisions very unlikely. Unfortunately, the collaborative gener-
ation has no effect on exculpability since both parties (the user and the bank)
can be corrupted in this game. We therefore choose to simplify our withdrawal
protocol by removing this step since we need collision resistance of F1 and F2

anyway.

6 Conclusion

Decades after their introduction, divisible e-cash systems are still remarkably
hard to design, and even to analyse. Existing schemes are based on intricate
mechanisms, tailored to very specific settings, and so can hardly be reproduced
in different contexts. Moreover, such mechanisms often rely on ad-hoc computa-
tional problems whose intractability is hard to assess.

In this paper we introduce the first frameworks for divisible e-cash systems
that only use constrained PRFs and very standard cryptographic primitives. We
prove the security of our global constructions assuming that each of the building
blocks achieve some properties that we identify.

Our work thus presents this complex primitive in a new light, highlighting its
strong relations with constrained PRFs. More specifically, it shows that the bulk
of the design of a divisible e-cash system is the construction of a constrained PRF
with some specific features. We therefore hope that our results will encourage
designers of constrained PRFs to add these features to their constructions, so as
to implicitly define a new divisible e-cash scheme. We in particular believe that
it is an important step towards a post-quantum divisible e-cash system.
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