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Chapter 5
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5.1  Introduction

The use of nanotechnology for potential benefits in agriculture is enormous and 
has been increasing day by day (Shapira and Youtie 2015; Resham et  al. 2015; 
Nath 2015). Novel applications of nanotechnology have been developed in bio-
technology and agriculture (Siddiqui et al. 2015; Singh et al. 2016, 2019; Shweta 
et al. 2017, 2018; Arif et al. 2018; Vishwakarma et al. 2018) to manage food pro-
ductivity (Kumari et al. 2014). Nanoparticles (NPs) are very tiny particles, defined 
as the 10−9 part of 1 m (1 m−9) (Huang et al. 2015). NP efficiency relies on their 
surface area, size, composition, shape, and above all the effective concentration 
at which they work efficiently (Khodakovskaya et  al. 2012; Ranjan et  al. 2014; 
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Dasgupta et  al. 2016; Jain et  al. 2016; Maddineni et  al. 2015). Nanotechnology 
provides a very large variety of techniques and devices to formulate NPs, detect 
biotic and abiotic stress in plants, and provide genetic manipulation that allows 
more precise plant breeding (Perez-de-Luque and Hermosin 2013; Fraceto et  al. 
2016). Fertilizers are very important in the growth, development, and metabolism 
of plants (Giraldo et al. 2014), but at most concentrations applied fertilizers are not 
available to plants because of leaching, runoff, and degradation. Thus, it is very 
important to control or minimize chemical fertilizer loss. With their unique proper-
ties, NPs encapsulate nutrients, which, released as required, control the discharge of 
chemical fertilizers for plant growth (Derosa et al. 2010; Nair et al. 2010; Shweta 
et al. 2018). Several studies have shown that particular low doses of NPs enhance 
plant physiology (Zheng et al. 2005; Klaine et al. 2008). NPs can enter plant cells 
through the stomata of leaves and roots to transport nutrients, DNA, and chemicals 
(Galbraith 2007; Torney et  al. 2007). Nanomaterials can break down the plasma 
membrane, inducing pore formation to enter into the plant cells (Wong et al. 2016) 
and reach the cytosol (Serag et al. 2011). These NPs enhance chlorophyll activity, 
water uptake, and specific microbial communities in the soil (Fig. 5.1).

With unique physicochemical properties, NPs can enhance the biochemical pro-
cesses of plants (Giraldo et al. 2014). The application of carbon nanotubes (CNTs) 
to activate the growth and physiology of different plants has been well documented; 

Fig. 5.1 Nanoparticle spray or irrigation and the effects on plant growth and the soil microbial 
community
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for example, the root growth of ryegrass, onion, and cucumber was increased by 
CNTs (Lin and Xing 2007; Canas et al. 2008; Shweta et al. 2017). NPs have some 
toxic effects on plants and other living organisms, but also increase the growth, 
physiology, and photosynthesis of plants. This review discusses the impact of 
nanoparticles on plants and microbial communities.

5.2  Effect of Nanoparticles on Plants

The impact of nanoparticles on plants depends upon the plant species and the NP 
variety (Table  5.1) (Nair 2016; Servin and White 2016; Singh et  al. 2016; 
Vishwakarma et al. 2018; Tripathi et al. 2017; Rastogi et al. 2019). Minerals such as 
nitrogen and phosphorus act as growth factors, regulating plant growth and also 
increasing crop productivity. Phosphorus fertilizer increases the availability of 
phosphorus in the soil and increases the uptake of phosphorus from the root sur-
faces. In phosphorus-solubilizing enzymes in which Zn is a cofactor, phosphatase 
and phytase enzyme activity was increased by 84–108%. ZnO NPs also enhanced 
root length, root volume, and the chlorophyll and protein content of the leaves in 
mung bean plants. ZnO NPs also maintained soil health by influencing the soil 
microbial community (Raliya et al. 2016).

Germination of cucumber seed was enhanced by exposure to various concentra-
tions of ZnO NPs (de la Rosa et al. 2013). ZnO NPs not only were absorbed by 
Vigna radiata and Cicer arietinum roots but also improved the length and biomass 
of the roots and shoots of these species (Mahajan et al. 2011). This NP also enhanced 
somatic embryogenesis by shoot regeneration, induced the synthesis of proline, and 
increased tolerance against stress by increasing the activity of different enzymes 
(Helaly et  al. 2014). Gold (Au) NPs enhanced the seed germination of Brassica 
juncea, Boswellia ovalifoliolata, and Gloriosa superba (Arora et al. 2012; Gopinath 
et al. 2014). The Au NPs increased the number of leaves, leaf area, and length of the 
plant and its chlorophyll and carbohydrate content, which increased growth, devel-
opment, and crop yield (Arora et al. 2012; Gopinath et al. 2014). The Au NPs dem-
onstrated importance in seed germination, in antioxidants, and altered the expression 
of micro-RNAs that regulate morphological, physiological, and metabolic processes 
in plants (Kumar et al. 2013).

The effects of CeO2 were collectively found on seed germination, vegetative 
parts, the cotyledon, floral parts, and ripening of fruits. The rate of seed germination 
(97%) was high in a 10 mg/l concentration of CeO2. No negative effect on germina-
tion and no significant effect on production of chlorophyll was seen with any con-
centration of CeO2 NPs on tomato plants, although there was a significant difference 
in the growth of the vegetative parts of the tomato plant; faster growth was found at 
10 mg/l CeO2 NPs. The number of floral buds was slightly higher in the control and 
the 10 mg/l concentration of CeO2 NPs, and 67% of buds were converted into the 
flower. Fruit size, production, and ripening were enhanced by increasing concentra-
tions of CeO2 NPs; large, heavy fruits were found at 10 mg/l (Wang et al. 2012a).
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Table 5.1 Effect of nanoparticles on plant growth/physiology/tolerance against stress

Nanoparticles Plant Impact on plant parts/process References

Al2O3 Lemna minor Increased root length, 
photosynthetic activity, 
biomass accumulation

Juhel et al. (2011)

TiO2 Triticum aestivum Increased root length Larue et al. (2012)
CeO2, ZnO Zea mays Reduced yield Zhao et al. (2012)
CuO Brassica napus Increased plant growth Rahmani et al. (2016)
FeCl3 Lepidium sativum

Sinapis alba
Sorghum 
saccharatum

Seed germination, seedling 
length, biomass

Libralato et al. (2016)

Ag NO3 Lentil seed Seed germination/elongation 
of root and shoot

Hojjat and Hojjat (2016)

Fe2O3 Soybean Increased root length, 
regulated the enzyme

Alidoust and Isoda (2013)

Cu, Zn Wheat seedling Increased RWC and 
stabilized photosynthetic 
pigments

Taran et al. (2017)

Ca3(PO4)2 Rice Increased growth, micro- 
fertilizer and promoter of 
growth

Upadhyaya et al. (2017)

Fe3O4, TiO2 Soya bean Enhanced plant growth, crop 
yield, effect on leaf carbon 
and phosphorus

Burke David et al. (2015)

CeO2 Soya bean Stimulated plant growth, 
rubisco carboxylase activity, 
relative water content

Cao et al. (2017)

ZnO Chickpea Effect on root, accumulation 
of biomass in seedlings, 
lowered ROS, promoted 
antioxidant activity

Burmana et al. (2013)

Ag Wheat Increased shoot fresh and dry 
weight, enhanced salt 
tolerance ability of crop

Mohamed et al. (2017)

SiO2 Zea mays L., 
Phaseolus vulgaris 
L., Hyssopus 
officinalis L., 
Nigella sativa L., 
Amaranthus 
retroflexus L., 
Taraxacum 
officinale 
F. H. Wigg

Seed germination, root and 
shoot length, fresh weight 
(except Hyssopus officinalis 
L.) and dry weight, 
photosynthetic pigments, 
total protein and total amino 
acids (except Hyssopus 
officinalis L.) significantly 
increased at 400 mg l−1; these 
parameters were decreased in 
weeds, and total 
carbohydrates decreased in 
all plants except 
A. retroflexus

Sharifi-Rad et al. (2016)

(continued)
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Clement et al. (2013) determined the effect of TiO2 NPs on algae, rotifers, and 
plants. High concentrations of TiO2 NPs have antimicrobial activity and also 
 promoted the growth of roots. The collective effect of SiO2 NPs on germination of 
seeds, elongation of roots and shoots, and water content of Zea mays L. was deter-
mined. SiO2 NP uptake by plants from a hydroponic environment and increased 

Table 5.1 (continued)

Nanoparticles Plant Impact on plant parts/process References

Ag Wheat (Triticum 
astivium var. 
UP2338), cowpea 
(Vigna sinensis var. 
Pusa Komal), 
brassica (Brassica 
juncea var. Pusa jai 
Kisan), oat

Wheat was unaffected by Ag 
NPs, but overall growth of 
cowpea and Brassica plants 
was influenced

Pallavi et al. (2016)

TiO2 Arabidopsis 
thaliana (L.) 
Heynh,
corn, cabbage, 
lettuce,
oat,
Brassica napus L.
Cucumber,
fennel,
onion, tomato
Parsley 
(Petroselinum 
crispum Mill.),
red clover,
soybean,
spinach,
wheat

Enhanced germination, root 
elongation and seedling 
growth

Szymanska et al. (2016), 
Andersen et al. (2016), 
Mahmoodzadeh et al. 
(2013), Servin et al. (2012), 
Feizi et al. (2013, 2012), 
Haghighi and Teixeira da 
Silva (2014), Dehkourdi and 
Mosavi (2013), Gogos et al. 
(2016), Rezaei et al. (2015), 
Zheng et al. (2005), 
Mahmoodzadeh and Aghili 
(2014).

TiO2 Chickpea (Cicer 
arietinum L.),
tomato, wheat,
Flax (Linum 
usitatissium L.)

Enhanced tolerance against 
cold in chickpea, heat in 
tomato, drought in wheat and 
flax

Mohammadi et al. (2013, 
2014), Qi et al. (2013), 
Jaberzadeh et al. (2013), 
Aghdam et al. (2016)

TiO2 Tomato, oilseed 
rape, Arabidopsis, 
spinach, basil 
(Ocimum 
basilicum L.)

Increased chlorophyll 
contents of tomato and oil 
seed rape, promoted activity 
of rubisco and net 
photosynthesis in 
Arabidopsis, spinach, tomato, 
and basil (Ocimum basilicum 
L.)

Raliya et al. (2015a), Li 
et al. (2015), Ze et al. 
(2011), Lei et al. (2008), 
Kiapour et al. (2015)

TiO2 Barley, corn, mung 
bean, snail clover, 
tomato, wheat

Enhanced crop yield and 
biomass

Moaveni and Kheiri (2011), 
Morteza et al. (2013), 
Raliya et al. (2015b), 
Rafique et al. (2015)
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growth of seed and elongation of roots was high as compared to control. Seed 
 germination was increased at 400  mg/l but decreased at 2000 and 4000  mg/l 
 concentrations of SiO2 NPs. SiO2 NPs increased root length but decreased shoot 
length of plants at concentrations from 0 to 4000 mg/l. SiO2 NPs showed a negative 
correlation between NP concentration and relative water content (RWC) in plants. 
The RWC was decreased as the concentration of SiO2 increased from 0 to 4000 mg/l. 
It was observed that SiO2 NPs had a significant effect on photosynthetic pigments 
(chlorophyll a, b, and carotenoids), which increased at 400–4000 mg/l NP concen-
tration in Z. mays. High photosynthetic content was found at 400 mg/l SiO2 NPs 
(Rad et al. 2014).

5.2.1  Effects of NPs on Photosynthesis

Photosynthesis is the key mechanism that transforms light energy into chemical 
energy. Rubisco is an enzyme used in carbon fixation during light reactions. SiO2 
NP increased the photosynthesis rate by increasing the activity of carbonic anhy-
drase and the formation of photosynthetic pigments (Xie et al. 2012; Siddiqui and 
Al-Whaibi 2014). Carbon anhydrase acts as a supplier for CO2 to the rubisco 
enzyme, which enhances photosynthesis (Siddiqui et al. 2012). TiO2 has photocata-
lytic properties that not only increase the efficiency of light absorbance but also 
increase the conversion of light energy into chemical energy. TiO2 also improved 
fixation of CO2, prevented the plant from aging, and ultimately enhanced the photo-
synthesis process (Hong et al. 2005; Yang et al. 2006).

TiO2 NPs increased CO2 fixation by increasing the activity of rubisco and ulti-
mately improving plant growth. TiO2 NPs enhanced the net rate of photosynthesis, 
water conduction, and plant transpiration (Ma et al. 2008; Qi et al. 2013). ZnO NPs 
showed a positive effect on the growth of cotton (Gossypium hirsutum L.). The 
growth (130.6%) and biomass (131%) of cotton were significantly enhanced by 
ZnO NPs.

ZnO NPs increased the level of chlorophyll a, b, and carotenoids (141.6%, 
134.7%, 138.6%, respectively) and increased soluble protein (179.4%) but reduced 
malondialdehyde (MDA) level in plant leaves. Various enzymatic activities of cata-
lase, superoxide dismutase (264.2%), and peroxidase (182.8%) were also increased 
and improved the growth of cotton plants (Venkatachalam et al. 2016).

5.3  Effect of Nanoparticles on the Soil Microbial Community

Soil microbes have a significant role in soil health, plant growth, productivity, and 
biological and chemical reactions within soil and plants (Table  5.2) (Falkowski 
et al. 2008; Schimel and Schaeffer 2012; Philippot et al. 2013; Vacheron et al. 2013; 
Singh et al. 2019). NPs enter into the soil through several ways including human 
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activity, sewage, and industrial waste. NPs of silica, palladium, gold, and copper 
have beneficial effects on soil microbes and seed germination of lettuce (Shah 
and Belozerova 2009). Biological and physicochemical properties determined 
their health and increased soil productivity. Biosolids have been used as organic 
fertilizers for decades; silver and titanium NPs were detected above the threshold 
level and adversely affected soil microbiota (Kim et al. 2010; Rottman et al. 2012; 
Wang et al. 2012a, b). Zinc oxide and copper NPs did not show harmful effects on 
soil microbes although silver and titanium NPs showed an adverse effect on the 
microbial biomass richness (Cardoso et al. 2013; Shah et al. 2014).

Asadishad et  al. (2017) investigated the efficacy of gold nanoparticles coated 
with citrate (50 nm) and polyvinylpyrrolidone (PVP) (5, 50, and 100 nm) on soil 
enzymatic activity and soil microbes. They noted that a low concentration of Au 
NPs (0.1 mg/kg) reduced the size of PVP. Au NPs stimulate soil enzymatic activity; 
the Au NP size and soil enzymatic activity showed no correlation at a high dose 
(100 mg/kg). Citrate-coated Au NPs significantly increased soil enzymatic activity 
as compared to PVP-coated Au NPs at 50 nm size of both particles. Biomass of the 
important soil bacteria Actinobacteria and Proteobacteria was increased by the addi-
tion of citrate-coated Au NPs.

Table 5.2 Effect of nanoparticles on the soil microbial community

Nanoparticles Impact on soil microbial community/processes References

Fe3O4, TiO2 Changed the soil microbial community, influenced the 
colonies of nitrifying bacteria associated with roots

Burke David et al. 
(2015)

CuO Influenced the composition and activity of the bacterial 
community, decreased the oxidative potential of the soil

Schlich and 
Hund-Rinke (2015)

ZnO Ammonification, dehydrogenase, and hydrolase activity Shen et al. (2015)
TiO2 Influenced carbon mineralization, pH of soil, organic 

matter; identified soil type and moisture
Simonin et al. (2015)

CeO2, Fe3O4, 
SnO

No effect on microbial biomass C and N VittoriAntisari et al. 
(2013)

Ag Different impact on ion release shape and function of 
the natural soil microbes

Zhai et al. (2016)

TiO2, ZnO Altered soil microbes, enhanced the degradation of 
organic pollutants

Ge et al. (2012)

Ag Influenced soil microbial diversity and functional 
bacterial diversity

Pallavi et al. (2016)

Ag Increased biomass of Aspergillus niger and Penicillium 
chrysogenum
Enhanced soil extract and inhibited antifungal activity 
of Ag

Pietrzak and 
Gutarowska (2015)

Ag Affected functional diversity of soil microbial 
community and associated ecosystem processes

Zhai et al. (2016)

CuO, Fe3O4 Increased toxicity toward microbial community Frenk et al. (2013)
SiO2, Pd, Au, 
Cu

Increased number of microbial colonies in soil, 
enhanced metabolic rate of soil community

Shah and Belozerova 
2009
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5.4  Impact of Carbon Nanotubes on Plants

Carbon nanotubes are allotropic forms of carbon nanoparticles, open or closed 
nano-structure cylindrical tubes that are single-walled carbon nanotubes (SWCNTs) 
or multi-walled carbon nanotube (MWCNTs). These layers are composed of rolled 
sheets of graphene. These nanotubes vary from 100  nm to some centimeters in 
length; the outer diameter of SWCNTs varies from 0.8 to 2 nm and that of MWCNTs 
from 5 to 20 nm (De Volder et al. 2013). CNTs were shown to act as growth regula-
tors for plants (Khot et al. 2012). It was also noted that different sizes and composi-
tion of CNTs affect different plant growth parameters (Table 5.3). The stress-related 
gene of the tomato seed was regulated by MWCNTs that enhance seed germination 
and growth (Khodakovskaya et al. 2009).

CNTs are involved in major cellular processes of plants such as up- or downregu-
lation of gene expression. MWCNTs induced the expression of a gene that codes for 
water channels and increased the water intake ability of root cells. CNTs are very 
small in diameter, so they can easily pass through the pores of the cell wall and also 
can increase the cell-wall pores. CNTs induced pores in the cell wall that enhanced 
water uptake, which regulates the activity of starch hydrolase enzymes and increases 
seed germination (Santos et al. 2013; Vithanage et al. 2017). These CNTs also act 
as a slow-release fertilizer that promotes plant growth (Wu 2013).

MWCNTs are also frequently used in hydroponic culture; CNTs (2000 mg/l) 
increase the root length of ryegrass (Lin and Xing 2007). Canas et al. (2008) showed 
that CNTs enhanced the physiology of six crops: cucumber, carrot, onion, tomato, 
cabbage, and lettuce. Plants were treated with uncoated (0, 104, 315, or 1750 mg/l) 
or coated (0, 160, 900, or 5000 mg/l) CNTs for 48 h. The uncoated CNTs signifi-
cantly boosted root length of onion and cucumber more than the coated CNTs, with 
an inverse proportion between time and root elongation in these hydroponic crops. 
More effective results were seen on the first day as compared to the second day. It 
was hypothesized that CNTs may have an obligatory effect on the root length of 
plants by obstructing the relationship between roots and microbes, altering vital 
biological and chemical reactions. CNTs not only were absorbed by the plant but 
accumulated in the epidermal tissue of wheat roots (Wild and Jones 2009). Citrate- 
coated CNTs enhanced the growth and physiology of plants by increasing water 
uptake capability and also the uptake of nutrients and minerals, which directly 
affected the photosynthesis of the plants. CNTs increased plant length and also 
increased the number of leaves, which enhanced plant photosynthetic activity 
(Tripathi et al. 2011).

MWCNTs regulated the gene expression of the aquaporin gene (NtPIPI), and of 
two water channel genes (CycB and NtLRX), which increased cell permeability for 
water absorption and also helped in formation of the cell wall and regulation of 
mitosis (Khodakovskaya et al. 2012). MWCNTs also had a significant effect on root 
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Table 5.3 Effect of carbon nanoparticles and nanotubes on plant growth processes

Plant name CNPs/CNT
Impact on plant parts, 
growth/process References

Lycopersicon 
esculentum

CNTs Seed germination and 
growth

Anjum et al. (2014)

Medicago sativa, 
Triticum aestivum

CNTs Root elongation Miralles et al. (2012)

Allium cepa, Cucumis 
sativus

SWCNTs Root elongation Canas et al. 2008

Hordeum vulgare L., 
Glycine max, Zea mays

MWCNTs Growth (leaf, root and 
shoot)/germination

Lahiani et al. (2013)

Wheat MWCNTs Root growth and yield Wang et al. (2012a)
Lycopersicon 
esculentum

MWCNTs Increased uptake of water 
and nutrients

Tiwari et al. (2013)

Zea mays MWCNTs Increased nutrient transport 
and yield

Tiwari et al. (2014)

Mustard plant (Brassica 
juncea)

MWCNTs Increased seed 
germination, root 
elongation

Mondal et al. (2011)

Tomato MWCNTs Increased plant growth 
(flower and fruit) and yield

Khodakovskaya et al. 
(2013), Alimohammadi 
et al. (2011)

Wheat, maize, peanut, 
garlic

CNTs Increase in root and shoot 
length

Rao and Srivastava 
(2014)

Red spinach, lettuce, 
rice, cucumber, chili, 
lady finger (okra), 
soybean

CNTs Increased growth, root and 
shoot length

Begum et al. (2014)

Corn CNTs Increased growth, root and 
shoot length, biomass

De La Torre-Roche 
et al. (2013)

Hyoscyamus niger SWCNTs Enhanced plant 
performance, antioxidant 
activity, and biosynthesis 
of protein

Hatami et al. 2017

Zucchini SWCNTs, 
MWCNTs

No significant change in 
seed germination

Stampoulis et al. (2009)

Solanum lycopersicum CNPs Seed coat permeability Ratnikova et al. 2015
Buckypaper CNTs 

(SWCNTs, 
MWCNTs)

Increased permeability 
(pore size)

Shen et al. (2017)

Broccoli CNTs Positive effect on growth, 
enhanced CO2 assimilation

Martinez-Ballesta et al. 
(2016)

Arabidopsis thaliana MWCNTs Effect on efficiency of 
photosynthesis and 
physiological mechanism

Voleti (2015)

5 Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes
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length of wheat seedlings, and on germination and growth of soya bean, corn, and 
barley (Wang et al. 2012a, b; Lahiani et al. 2013). The root length of wheat seed-
lings increased 32% with MWCNTs at 40–160 μg/l for 3 to 7 days (Wang et al. 
2012a, b). CNTs impacted early plant growth by germination of seed,  expression of 
genes, cell culturing, and physiological processes such as photosynthesis and anti-
oxidant activities (Canas et al. 2008).

SWCNTs enhanced photosynthetic activity threefold as compared to normal 
photosynthesis, and increased the rate of electron transport because SWCNTs com-
bine with the chloroplast and enable the leaf to enhance the rate of electron transport 
by a photo-absorption mechanism (Giraldo et al. 2014). The germination ability of 
seed might be enhanced by increasing concentrations of MWCNTs. The highest 
seed germination rate was noted at 60 μg/ml CNTs; increasing CNT concentrations 
increased plant growth and also enhanced the yield of cotton per plant. The highest 
yield of cotton was found at 100 μg/ml CNTs (Sawant 2016): there was a linear 
 correlation between seed germination and CNT concentration. It was observed that 
the length of plants (62 ± 5.58cm), boll’ number/ plant (5.8 ± 0.64) and size of boll 
(3.41 ± 0.27cm) and yield of cotton (3.4 ± 0.37/hectare) was found highest at 120 
μg/ml, 80 μg/ml, 60 μg/ml, 100 μg/ml of CNTs respectively (Sawant 2016).

Various studies have shown that SWCNTs and MWCNTs positively affect ger-
mination and growth of tomato, rice, common gram, and tobacco by increasing their 
water uptake ability, which improves germination processes (Khodakovskaya et al. 
2009; Nair 2016). The toxic levels of Ag, ZnO, and Al2O3 induced oxidative stress 
and produced reactive oxygen and nitrogen species, which reduced plant growth 
(Zhao et al. 2012; Thwala et al. 2013; Hossain et al. 2015; Xia et al. 2015). Oxidative 
species reduced rubisco activity and decreased the photo-protective activity of pho-
tosystem II (Jiang et al. 2017). The defensive system of plant consists of nonenzy-
matic antioxidants, which include thiols, glutathione, phenolics, ascorbate and 
enzymatic CAT, SOD, APX, GR, GPX, and GST (Singh et  al. 2015). Oxidative 
stresses were caused by NPs that decreased photosynthetic rate, ultimately inhibit-
ing plant growth (Da Costa and Sharma 2016; Li et al. 2016).

Chegini et al. (2017) observed that physiological parameters were affected by 
MWCNTs, drought conditions, and their interactions in Salvia mirzayanii. The leaf 
water content and chlorophyll index showed significant alterations under drought 
conditions. The various levels of MWCNTs affected electrolyte leakage index and 
caused a significant difference in phenolic compounds under the interactions of the 
experimental treatments. Phenolic content was significantly influenced at MWCNT 
50 and 200 mg/l, to 25% of field capacity (FC), respectively. The concentration of 
MWCNTs (50 mg/l) in moderate drought condition changed the physiological traits 
and antioxidant activity of S. mirzayanii.

Barbinta-Patrascu et  al. (2017) reported an effect of carbon nanotubes coated 
with chlorophyll a and laden biomimetic membrane. The multilamellar lipid vesi-
cles increased antioxidant (85%) activity and antibacterial activity against 
Staphylococcus aureus, and the highest antioxidant ability was found in hybrid 
CNTs that originated through the multilamellar lipid vesicles (TP3). They were 
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widely dispersed and increased the reaction sites for removal of ROS by increasing 
their surface area. The TP3 sample showed the highest antibacterial activity result-
ing from good dispersion because a large surface area was provided to destroy bac-
terial contamination. The SWCNTs react directly with bacterial cells and physically 
break down their cell membrane by puncture, causing the death of the bacterial cells 
(S. aureus) (Bai et al. 2011; Smith and Rodrigues 2015).

5.4.1  Effect of CNTs on Photosynthesis Mechanism

Sunlight is the most available source of energy, which is conserved in many ways in 
an ecosystem. One of the most efficient methods for the conservation of sunlight is 
photosynthesis. For this purpose, the higher green plants, algae, and bacteria con-
tain special pigments that use water and CO2 to form organic molecules. These 
photosynthetic organisms contain the photo-elements chlorophyll a, b, d, and f, and 
a series of electron carrier redox reactions (Blankenship et al. 2011). The thylakoid 
membrane of plastids acts as a photo-current producer in the presence of potassium 
ferrocyanide. The cell surface (1 cm2) produced maximum electric power, 24 mW, 
at 625 nm of red light. The thylakoid membrane immobilized with MWCNTs acts 
as an anode with MWCNTs as a cathode, which produced the maximum current 
density, 38 mA/cm2. The maximum electric power produced at this current density 
is 5.3 mW/cm2 (Calkins et al. 2013). The effect of CNTs on chlorophyll f and d was 
more than that on chlorophyll a and b: it enhanced the absorption ability of far-red 
and infrared light (700–750 nm) and also enhanced the ability of photo-convertors 
(Voloshin et al. 2015). The CNTs were synthetic NPs that penetrate into the biologi-
cal matrix and have multifunctional properties such as water uptake and conduction 
for electricity in biological systems. MWCNTs were most electro-conductive in 
BY-2 tobacco cells as compared to balsam fir wood at high temperature (Di Giacomo 
et al. 2013; Leslie et al. 2014).

It was investigated whether CNTs had a positive effect on photosystem I of cya-
nobacteria by enhancing the ability of conversion of light into current. The 
MWCNTs were non-encroaching because a carboxylate pyrene derivative formed 
the fixed covalent structure of photosystem I (PS I). The PS I was ascribed as the 
transporter of photo-current to the electrode (MWCNTs) (Ciornii et  al. 2017). 
MWCNTs have a combined effect on thylakoid, the multi-protein complexes PS I 
and II, and photo-electrochemical properties. SWCNTs enhanced immobilization 
of the reaction center of the bacterium Rhodobacter (Rb.) sphaeroides (sp.) and also 
enhanced the photo-electrochemical activity (Ham et al. 2010; Calkins et al. 2013). 
MWCNTs significantly enhanced direct transfer of electron in the thylakoid of spin-
ach and of the cyanobacterium Nostoc sp. (Sekar et al. 2014). CNTs enhanced the 
expression of Arabidopsis aquaporin in tobacco plant and enhanced photosynthetic 
activity by production of the photo-electric current. It was observed that CNTs acti-
vate gene and protein expression of aquaporin in tobacco cells (Khodakovskaya 
et al. 2012).
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5.5  Effect of CNTs on Soil Microbial Community

The soil contains different microorganisms that form the biota of the soil as the 
main source of nutrients which are significant in plant growth (Table  5.4). 
Microorganisms have a key role in recycling of nutrients by decomposition of 
organic matter (Simonet and Valcarcel 2009; Dinesh et al. 2012). Some microorgan-
isms associate with plant roots; the soil microbial community normally consists of 
gram-positive bacteria, gram-negative bacteria, and fungi (Luongo and Zhang 2010; 
Santos et al. 2013). The major challenge in the agriculture sector is the conservation 
of biodiversity and protection of the biomass of these soil microbes. CNTs can 
change a microbial community by increasing or decreasing the toxins present in 
organic compounds (Dinesh et  al. 2012). Limited literature is available on the 
impact of CNTs on soil microbial communities. It has been also reported that CNTs 
had no significant effect on soil microbes. So, there is a need to thoroughly explore 
CNT impacts on soil microbes.

Mukherjee et al. (2016) reported that low and high concentrations of CNTs have 
no adverse effect on soil microbiota. High (10–10,000 mg/kg) and low (10–1,000 mg/
ml) concentrations of CNTs were used to investigate effects on soil microbial com-
munity and enzymatic activity, but it was found that CNTs had no visible effect on 
soil microbes and enzymatic activity, although these high and low CNT concentra-
tions reduced selected species of bacteria. These specific concentrations increased 
the amount of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria. 
Similarly, when red clover was treated with MWCNTs, the activity of symbiotic 
microorganisms as nitrogen fixers was slightly increased at 3000 mg/kg MWCNTs 
(Moll et al. 2016).

Table 5.4 Effect of carbon nanoparticles (CNP) and carbon nanotubes (CT) on the soil microbial 
community

CNPs/
CNT Impact on soil microbial community/processes References

MWCNTs Enhanced activity of anaerobic ammonium oxidation 
bacteria, high carbohydrate and protein

Wang et al. (2013)

SWCNTs Strong antimicrobial activity Kang et al. (2007)
SWCNTs Effect on both gram-positive and gram-negative bacteria Jin et al. (2014)
MWCNTs Effect on soil enzyme activity, soil microbial biomass Chung et al. (2015)
MWCNTs Conditionally affect soil microbial community Kerfahi et al. (2015)
CNTs Effects on composition of soil microbes Khodakovskaya et al. 

(2013)
CNTs Affect growth of gram-negative bacteria Cordeiro et al. (2014)
SWCNTs Effects on antimicrobial activity of surface bacteria Jackson et al. (2013)
CNTs Toxic effect on microbes Petersen et al. (2014)
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5.6  Future Possibilities

Nanoparticles have great potential to promote plant growth and development by 
increasing nutrient uptake, improving water uptake efficiency, and enhancing pho-
tosynthetic activity. However, there is a need to improve NP use in agriculture by 
developing target-specific NPs to enhance plant growth, physiological parameters, 
and the soil microbial community. There is an urgent need to utilize NPs having 
great potential to enhance photosynthesis mechanism because minimal attention is 
being given to this area of research. Biosynthesized NPs should be used: by control-
ling their size and concentration we can determine the mechanism of toxicity in 
plants. Modulating these factors, we can reduce transportation, toxicity, and bio-
availability to the ecosystem. There is further need to explore the function of NPs 
beneath plant roots.
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