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Chapter 3
Ecotoxicity of Metallic Nanoparticles 
and Possible Strategies for Risk 
Assessment
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Pragya Srivastava, and Raghvendra Pratap Narayan

3.1  Introduction

Nanoparticles are defined as particulate matter, usually with nanoscale dimensions 
(1–100 nm), whose properties are diverse from their bulk form (Auffan et al. 2009). 
Various distinctive properties of nanoparticles such as electronic (Kim et al. 2007), 
optical/photonic (Chan et al. 2013), magnetic (Mornet et al. 2006), and catalytic 
(Nasrollahzadeh et al. 2015) have significant roles in daily human life. Fundamentally, 
nanoparticles are categorized in two groups: (i) carbon-containing nanoparticles 
and (ii) metal-containing nanoparticles. Carbon-containing nanoparticles are made 
of carbon nanotubes and fullerenes. However, most of the metal-containing nanopar-
ticles are made from metals such as gold (Au), iron (Fe), silver (Ag), copper (Cu), 
and metal oxides such as titanium dioxide (TiO2), antimony oxide (Sb2O3), cerium 
dioxide (CeO2), copper oxide (CuO), nickel oxide (NiO), iron oxide (FeO), and zinc 
oxide (ZnO).

Metallic nanoparticles are important because of their physical, chemical, and 
optoelectronic properties. Metallic nanoparticles have been used in various products 
with different purposes, such as sensors (Li et al. 2007), as catalysts in various pro-
cesses (Carnes and Klabunde 2003), drug delivery (Hola et al. 2015), sunscreens 
(Gulson et al. 2015), solar-driven energy production (Sau et al. 2010), and in pollutant 
remediation (Kamat and Meisel 2003; Choopun et al. 2009; Raman and Kanmani 
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2016). Additionally, nanoparticles have been shown to inhibit microorganism 
growth by exhibiting antibacterial, antiviral, and antifungal properties (Padmavathy 
and Vijayaraghavan 2008; Khatami et al. 2015; Rai et al. 2016). As metallic nanopar-
ticles are widely used, their exposure is likely to increase substantially, and they 
interact negatively with microorganisms, green plants, animals, human beings, and 
their surrounding environment (Navarro et al. 2008; Wise et al. 2010; Singh et al. 
2016, 2019; Shweta et al. 2017, 2018; Arif et al. 2018; Vishwakarma et al. 2018). 
Therefore, detailed understanding of their synthesis, interaction, and possible risk 
valuation would offer a foundation for harmless use of nanoparticles.

3.2  Synthesis of Metallic Nanoparticles

Synthesis of metallic nanoparticles is a timely area of research because their use is 
widespread. Various physical and chemical methods are used for the production of 
metallic nanoparticles (Tripathi et al. 2017; Koul et al. 2018). For the synthesis of 
metal oxide nanoparticles, stabilized precipitation and flame pyrolysis are com-
monly used methods (Christian et al. 2008). Monodisperse nickel phosphide (Ni2P) 
nanorods and nanoparticles are made by a one-step solution-phase route (Li et al. 
2015). Moreover, there is growing interest in the controlled synthesis of metallic 
nanoparticles (Wiley et al. 2005; Xia et al. 2009). However, these methods have 
certain drawbacks because of the use of poisonous chemicals and radiation and are 
an expensive process. Therefore, academic research is shifting toward biological 
synthesis of metallic nanoparticles, as it is rapid, feasible, and more productive rela-
tive to its cost. In this context, microorganisms have an increasingly critical role as 
they can provide inorganic materials either intra- or extracellularly for the synthesis 
of nanoparticles (Simkiss and Wilbur 1989; Mann 1996). Numerous microorganisms 
such as bacteria (Shahverdi et al. 2007; Saifuddin et al. 2009; Pantidos and Horsfall 
2014), actinomycetes (Abdeen et al. 2014; Golinska et al. 2014), algae (Singaravelu 
et al. 2007; Aruoja et al. 2009; Abboud et al. 2014), and fungi (Mukherjee et al. 
2001; Ahmad et al. 2003; Yadav et al. 2015) are used for nanoparticle synthesis. 
Also, peptides (Tomczak et al. 2007), starches (Kumar et al. 2014), and almost all 
parts of plants have been used for the synthesis of metallic nanoparticles.

3.3  Application of Nanoparticles

Nowadays, metal-based nanoparticles have become one of the main and increasing 
aims of nanotechnology, as these particles are usually used in cosmetics, antibacterial 
agents, tires, stain-resistant clothing, optic devices, toothpaste, sensors, food addi-
tives, and data storage (Fig. 3.1).
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As antibacterial agents, these particles are widely used in medical applications, 
food storage, and water treatment (Bosetti et al. 2002; Cho et al. 2005; Singh et al. 
2008; Espitia et al. 2012). In the textile industry, silver nanoparticles are used to 
prepare cotton fibers that exhibit antibacterial activity (Durán et al. 2007). It has 
been reported that Ag or Au nanoparticles extracellularly produced from Fusarium 
oxysporum can be used to prevent or to reduce the infection of Staphylococcus 
aureus (Durán et al. 2007). Moreover, metallic nanoparticles are of great scientific 
importance regarding their catalytic activity in various metal-based reactions 
(Hvolbæk et al. 2007). Metallic nanoparticles also show superior catalytic activity 
in the reduction and removal of dye. For instance, gold nanoparticles are reported to 
catalyze the reduction of dye in the presence of stannous chloride (Gupta et  al. 
2010). Silver and gold nanoclusters were reported to catalyze the reduction of meth-
ylene blue dye (C16H18ClN3S) by arsine in micellar medium (Kundu et al. 2002). 
Köhler et al. (2008) reported that the catalytic activities of nanoparticles enhanced 
the bleaching of the organic dyes. However, catalytic activity of metallic nanopar-
ticles also varies from metal to metal. For instance, the Ag nanoparticle was found 
to be superior to Au and Pt colloid in catalyzing chemiluminescence from the 
luminol–hydrogen peroxide system (Guo et al. 2008). Despite the aforementioned 
antibacterial and catalytic activity of metallic nanoparticles, the optical properties of 
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a metallic nanoparticle also offer a manageable tool for particle sorting and sensing, 
for instance, in optoelectronic devices (Djurišić et al. 2010; Choi et al. 2013) and in 
sensing devices (Ankamwar et al. 2005).

In the medical field, metallic nanoparticles are used to develop an aggregation- 
based immunoassay for anti-protein A (Thanh and Rosenzweig 2002), and for treat-
ment of B-chronic lymphocytic leukemia (Mukherjee et al. 2007) and oral cancer 
(El-Sayed et al. 2005).

Nanoparticles have also found application in remediation of contaminated envi-
ronments (Li et al. 2006). There are several studies on the application of nanopar-
ticles for remediation of various pollutants such as metals, organic pollutants, and 
dyes (Mak and Chen 2004; Hoch et al. 2008; Cheng et al. 2013; Zhao et al. 2016). 
However, as the benefit obtained from the intended use of nanoparticles for reme-
diation is balanced by potential risk, it is therefore obligatory to assess the probable 
environmental risk.

3.4  Toxicity of Metallic Nanoparticles

The toxicity of nanoparticles is principally the result of their small size, their large 
surface area compared to volume, and reactive facets. Metallic nanoparticles show 
toxic effects on various organisms (Table 3.1). Ge et al. (2011) reported that TiO2 
and ZnO nanoparticles reduced the biomass of a microbial community. Among 
microbial communities, nitrogen-fixing bacteria are an important component of the 
soil ecosystem as they maintain soil health and fertility. Cherchi et  al. (2011) 
reported bactericidal effects of TiO2 nanoparticles in Anabaena variabilis. Toxicity 
of nanometal oxides in aquatic ecosystems has also been studied by various research 
groups (Blaise et al. 2008; Lee et al. 2009; Pradhan et al. 2012; Miller et al. 2012). 
Federici et al. (2007) reported that the gills of Oncorhynchus mykiss showed sensi-
tivity toward TiO2 nanoparticles. Furthermore, TiO2 nanoparticles were reported to 
inhibit the growth of Desmodesmus subspicatus at higher concentrations (Hund- 
Rinke and Simon 2006). However, the toxicity of metallic nano-sized particles in an 
aquatic ecosystem is debatable (Sharma 2009) as their physicochemical properties 
are dissimilar from their ionic and bulk form (Christian et al. 2008). Moreover, sol-
uble ions released from metallic nanoparticles appear be the main cause of ecotox-
icity (Aruoja et al. 2009). Green plants are also affected by metallic nanoparticles as 
these particles enter into the plant by various means such as stomata, cuts or wounds, 
and through the roots. Zn and ZnO nanoparticles negatively affect the growth of 
Raphanus sativus (radish), Brassica napus (rape), and Lolium perenne (ryegrass) 
(Lin and Xing 2007). Similarly, Yang and Watts (2005) reported the toxicity of alu-
mina nanoparticles in Brassica oleracea (cabbage), Daucus carota (carrot), Zea 
mays (corn), Cucumis sativus (cucumber), and Glycine max (soybean). Metallic 
nanoparticles are known to induce effects on human health, as they cause gastro-
duodenal corrosive injury (Liu et al. 2004), a cytotoxic effect on glomerular and 
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Table 3.1 Toxic effect of metallic nanoparticles on organisms

Nanoparticles Organisms Effects References

TiO2 
nanoparticles

Daphnia magna Bioaccumulation may interfere with food 
intake and ultimately affect growth and 
reproduction

Zhu et al. 
(2010)

TiO2 
nanoparticles

Daphnia magna Caused mortality Lovern and 
Klaper 
(2006)

ZnO and TiO2 
nanoparticles

Escherichia coli Induced oxidative stress and DNA damage 
leading to reduced viability of E. coli

Kumar et al. 
(2011a)

ZnO and TiO2 
nanoparticles

Salmonella 
typhimurium

Both ZnO and TiO2 nanoparticles were 
significantly internalized in the 
S. typhimurium cells in a concentration- 
dependent manner and these nanoparticles 
exhibited weak mutagenic potential

Kumar et al. 
(2011b)

Ag 
nanoparticles

Bacteria Ag nanoparticles inhibited soil-denitrifying 
bacteria

Throbäck 
et al. (2007)

Ag 
nanoparticles

Bacteria Inhibited the nitrifying organisms Choi et al. 
(2008)

TiO2 and ZnO 
nanoparticles

Bacteria TiO2 and ZnO nanoparticles reduced both 
microbial biomass, bacterial diversity, and 
composition

Ge et al. 
(2011)

CuO, NiO, 
ZnO, and 
Sb2O3 
nanoparticles

Escherichia coli, 
Bacillus subtilis, 
and Streptococcus 
aureus

Toxic to microorganisms: toxicity order 
was CuO > ZnO > NiO > Sb2O3 
nanoparticles

Baek and An 
(2011)

CeO2 
nanoparticles

Synechocystis 
PCC6803 and 
Escherichia coli

E. coli was sensitive to the ‘direct’ effects 
of nanoparticles, whereas Synechocystis 
was protected by extracellular polymeric 
substances, preventing direct cellular 
contacts

Thill et al. 
(2006)

Ag 
nanoparticles

Zebrafish Induced oxidative stress and apoptosis Choi et al. 
(2010)

Au 
nanoparticles

Phytoplanktonic 
alga (Scenedesmus 
subspicatus) and a 
benthic bivalve 
(Corbicula 
fluminea)

Mortality was 20% at lowest contamination 
condition; the highest reached 50% in 
algae. Au nanoparticles were adsorbed by 
the algal cell wall, leading to progressive 
intracellular and wall disturbances. In 
bivalves these nanoparticles 
bioaccumulated and penetrated into the 
gills and digestive epithelia to cause 
oxidative stress

Renault et al. 
(2008)

Ag 
nanoparticles

Mytilus edulis Au nanoparticles accumulated in digestive 
gland causing oxidative stress

Tedesco et al. 
(2010)

tubular renal cells (Pujalté et al. 2011), and toxic effects on the pulmonary system 
(Moos et al. 2010). Karlsson et al. (2009) assessed the effect of metallic  nanoparticles 
on human cell lines and reported that nanoparticles are perhaps more toxic than 
their bulk forms.
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3.4.1  Uptake of Metallic Nanoparticles

The detailed mechanisms of biological uptake of metallic nanoparticles are not well 
known. However, it has been hypothesized that uptake of nanoparticles in animal 
bodies takes place through the gut (Baun et al. 2008) by various mechanisms such 
as diffusion through cell membranes, via endocytosis and adhesion (Geiser et al. 
2005; Kim et al. 2007). In other biotic components (plants, algae, fungi) the cell 
wall restricted the entry of nanoparticles as it acts as a barrier. However, small-sized 
nanoparticles enter the cell via the pores in the cell wall (Zemke-White et al. 2000), 
and further interaction of these small-sized nanoparticles with the cell wall might 
increase the pore size, resulting in the internalization of large-sized nanoparticles 
(Navarro et al. 2008). After passing through the cell wall, endocytosis takes place 
(Navarro et al. 2008), and inside the cell nanoparticles bind with various cellular 
structures, thereby inhibiting cellular activity or damaging the cell organelles. Plants 
interact more frequently with nanoparticles by the presence of stomata, cuts or 
wounds, and the large surface area of leaf and roots (Navarro et al. 2008).

3.4.2  Mode of Action of Nanoparticles

Internalized metallic nanoparticles inside the cell interfere with several biological 
mechanisms, such as causing disruption of the membrane potential, and destabiliza-
tion and oxidation of protein, and affect the stability of nucleic acid, stimulate the 
production of free radical species called reactive oxygen species (ROS), disrupting 
energy flow and releasing toxic compounds (Klaine et al. 2008). Gold nanoparticles 
have been reported to puncture the cell membrane (Tsao et al. 1999) and alter the 
cell shape and enzymatic activity (Liu et al. 2004).

Metallic nanoparticles also generate oxidative stress in biological systems by the 
production of ROS. ROS disrupt the influx and efflux of electrons and ions, disrupt 
membrane permeability, and reduce glutathione content inside the cell (Limbach 
et  al. 2007). ROS increase the permeability of cell membrane by oxidization of 
double bonds of fatty acids. It has also been reported that TiO2 nanoparticles have 
photocatalyst properties (Khus et al. 2006) and, with exposure to ultraviolet radia-
tion (Zhao et al. 2007) produce ROS thereby causing DNA damage. Photosensitive 
silver nanoparticles have been shown to break the double-stranded DNA upon expo-
sure of to UV light (Badireddy et  al. 2007). It has also been reported that CeO2 
nanoparticles cause oxidation of membrane-bound complexes of respiratory elec-
tron transport chain (Thill et  al. 2006). Moreover, quantum dots cause oxidative 
destruction (Hardman 2006), and heavy metals or metal ions released from quantum 
dots are toxic to the living cells (Klaine et al. 2008). Silver ions discharged from the 
metallic nanoparticles interact with functional thiol groups (derived from the cyste-
ine residues) of enzymes (Matsumura et  al. 2003) and inhibit the respiratory 
enzymes (Kim et al. 2007).
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3.5  Ecotoxicology Assessment and Possible Strategies

According to the U. S. Environmental Protection Agency (EPA), “risk is a measure 
of the probability that cause damage to life, health, property, and/or the environ-
ment.” Before assessing the biotic hazard, it is desirable to assess the physical and 
chemical properties of nanoparticles. The various techniques for analysis and char-
acterization of metallic nanoparticles include membrane filtration (Akthakul et al. 
2005; Howell et al. 2006), size-exclusion chromatography (Wang et al. 2006), and 
photon correlation spectroscopy, used to determine the size and sometimes the 
shape of metallic nanoparticles (Chrastina and Schnitzer 2010). Additionally, trans-
mission electron microscopy (TEM) (Jose-Yacaman et  al. 2001; Chrastina and 
Schnitzer 2010), the scanning electron microscope (SEM) (Rai et  al. 2009), and 
atomic force microscopy (AFM) (Viguie et al. 2007) are used to gather evidence 
about the configuration, arrangement, charges, and force of nanoparticles. The com-
plex arrangement of crystal metallic nanoparticles can be resolved by X-ray diffrac-
tion (XRD) and energy-dispersive X-ray (EDX) techniques (Rai et  al. 2009). 
However, it is difficult to analyze the properties of nanoparticles because their con-
centration in the environment is below the detection limit and test samples also 
carry unwanted nanoparticles (Lead and Wilkinson 2006). After the analysis and 
characterization of metallic nanoparticles, standard toxicity tests on organisms are 
used to assess the impacts of nanoparticles. For aquatic threat evaluation, an algal 
growth inhibition assay is commonly used, and Pseudokirchneriella subcapitata is 
an ideal organism for envisaging lethal threats to primary producers (Aruoja et al. 
2009). Toxicological effects of metallic nanoparticles on diverse algal species, such 
as Chlamydomonas reinhardtii (Navarro et  al. 2008; Chen et  al. 2012; Melegari 
et al. 2013), Desmodesmus subspicatus (Hartmann et al. 2010), Dunaliella tertio-
lecta, and Chlorella vulgaris (Oukarroum et al. 2012), have also been studied. Also, 
Vibrio fischeri, a naturally luminescent bacterium, is widely used for ecotoxicologi-
cal studies, and the bacterial luminescence inhibition assay is economical and easy 
to perform (Mortimer et al. 2008). There are various aspects for understanding the 
risk assessment of nanoparticles, such as dose of nanoparticles, exposure time, and 
endpoint measurement. Furthermore, short- and long-term laboratory experiments 
and development of a coordinated approach are still needed for assessing the 
toxicity.

3.6  Conclusions

Because of the wide application of metallic nanoparticles, their unintentional release 
and exposure pose a serious hazard to organisms and their environments. Only a few 
areas have been covered for the assessment and testing of the hazardous effects of 
metallic nanoparticles. Therefore, there is a requirement for data on the long-term 
effects of metallic nanoparticles, in  vivo interactions of metallic nanoparticles, 
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applied methods, databases of well-established toxicity tests, and the establishment 
of testing guidelines to enhance the transparency and comparability of obtained data.
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