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Chapter 9
Heparanase-The Message Comes 
in Different Flavors

Neta Ilan, Udayan Bhattacharya, Uri Barash, Ilanit Boyango, Yifat Yanku, 
Miri Gross-Cohen, and Israel Vlodavsky

9.1  �Introduction

Activity capable of cleaving macromolecular heparin at a limited number of sites 
was first reported in 1975 by Ögren and Lindahl [1]. Soon thereafter, Höök et al. 
reported an endoglycosidase activity that degrades heparan sulfate (HS)-polymers 
into oligosaccharides [2]. Given the structural role of HS proteoglycans (HSPG) in 
the assembly of extracellular matrix (ECM) and basement membrane, it was 
hypothesized that HS-degrading activity would loosen the ECM, thus promoting 
cell dissemination. Indeed, heparanase activity was found to correlate with the 
metastatic potential of tumor cells [3–5], a correlation that still direct and guide 
heparanase research. Subsequent years can be divided to before and after the clon-
ing of the heparanase gene. Until 1999, progress in the field was slow and studies 
were restricted to measures of heparanase activity in different normal and malig-
nant cells and tissues under various experimental settings [6, 7]. Also, the lack of a 
simple assay and purified enzyme in sufficient amounts lead to conflicting reports 
on the biochemical properties and substrate specificity of the enzyme(s) [8]. 
Heparanase activity was attributed to proteins with a molecular weight ranging 
from 8 to 130 kDa, raising the possible existence of several HS-degrading endogly-
cosidic enzymes [8–11]. This confusion was solved when the cloning of a single 
human heparanase cDNA sequence was independently reported by several groups 
in 1999 [12–15]. So far, and unlike many other classes of enzymes, no other cDNA 
sequence encoding an active heparanase enzyme has been identified, indicating 
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that mammalian cells express primarily one single dominant heparanase enzyme 
(historic perspective is presented by Vlodavsky et al., Gaskin et al., and Khanna 
and Parish, Chaps. 1, 3 and 7 in this volume). With the availability of appropriate 
tools, heparanase research entered a new era. In the last 20 years, we are experienc-
ing a burst in heparanase research, evident by an average of 100 new citations in 
PubMed each year. This collective effort has turned heparanase from an obscure 
enzyme to a valid target for the development of anti-cancer drugs, some of which 
are under clinical evaluation [16–19].

In 2007, Vreys and David published a comprehensive review article entitled 
“Mammalian heparanase-What is the message?” [20]. A similar phrase was entitled 
by Rickles: “If heparanase is the answer, what is the question?” [21]. The ‘message’, 
or ‘answer’, over ten years later, can be summarized as a pleiotropic enzyme that 
plays an important role in cancer and inflammation, two major facets that are often 
interconnected. While the pro-tumorigenic properties of heparanase are well taken, 
some aspects of heparanase biology and its mode of action are still unclear. Here, we 
review heparanase function in oncology, suggesting a somewhat different interpreta-
tion of the results.

9.2  �Heparanase and Cancer Progression

9.1.1  �Heparanase Induction in Human Cancer

Soon after the cloning of the HPSE gene and the development of anti-heparanase 
antibodies and probes, many studies examined its expression in human tumors com-
pared with adjacent normal tissue. Immunohistochemistry, in situ hybridization, 
RT-PCR, real time-PCR and enzymatic activity analyses revealed that heparanase is 
up regulated in essentially all human tumors examined. In most cases, elevated lev-
els of heparanase were detected in about 50% of the tumor specimens, with a higher 
incidence in pancreatic (78%) and gastric (80%) carcinomas, and in multiple 
myeloma (86%) [20, 22–24]. Generally, the normal looking tissue adjacent to the 
malignant lesion expressed little or no detectable levels of heparanase, suggesting 
that epithelial cells do not normally express the enzyme. This is in agreement with 
the notion that under normal conditions heparanase expression is restricted primar-
ily to the placenta and platelets, and to lower extent keratinocytes, lymphocytes, 
neutrophils, and macrophages [9, 10]. In several carcinomas, most intense heparan-
ase staining was localized to the invasive front of the tumor [25–28], supporting a 
role for heparanase in cell invasion. Furthermore, patients that were diagnosed as 
heparanase-positive exhibited a significantly higher rate of local and distant metas-
tasis as well as reduced postoperative survival, compared with patients that were 
diagnosed as heparanase-negative [25, 26, 29–32] (Fig. 9.1). These and more recent 
studies [33–43] provide strong clinical support for the pro-metastatic function of 
heparanase. Subsequent studies provided compelling evidence that tie heparanase 
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levels with all steps of tumor formation including tumor initiation, angiogenesis, 
growth, metastasis, and chemoresistance [40, 44–49]. These and other results 
(i.e., the critical role of heparanase in the tumor microenvironment) [49, 50] 
(See also Chapter by Elkin et al., Chap. 17 in this volume) indicate that heparanase 
is causally involved in cancer progression and collectively provide strong clini-
cal support for the pro-tumorigenic function of heparanase and put forward the 
concept that heparanase is a valid target in cancer.

The molecular mechanism(s) underlying heparanase induction in tumor cells is 
not entirely clear, but evidently involves epigenetic alterations (i.e., DNA methyla-
tion), hormones, oncogenes, and post-transcriptional regulation [51]. The involve-
ment of SNPs [52, 53] and an enhancer region that activates the promoter [54] is 
discussed in details by Ostrovsky et al., Chap. 8 in this volume.
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Fig. 9.1  Reduced overall survival curves of patients with tongue (left), head and neck (middle) 
and lung (right) carcinomas according to heparanase immunostaining intensity. Formalin-fixed 
paraffin-embedded sections of tumors and adjacent normal head and neck and lung tissues were 
subjected to immunostaining of heparanase, applying anti-heparanase pAb 733. Staining was 
graded as 0 (negative), 1 (weak) and 2 (strong). Note that adjacent normal head and neck and 
lung tissues are stain negative for heparanase. Shown are representative immunostaining at low 
(upper panels) and high (x100) magnifications (middle panels). Kaplan-Meier analysis showed 
poor survival of patients with strong (score 1 & 2) heparanase staining or high staining extent 
(i.e., percent of heparanase-positive cells), compared with patients who were diagnosed as hep-
aranase-negative (score 0) (lower panels)
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9.1.2  �Basal and Inducible Heparanase Gene Transcription

A 3.5-kb promoter region of the heparanase gene was cloned by Jiang et al. [55]. 
Somewhat surprisingly, sequence analysis revealed that the TATA-less, GC-rich 
promoter of the heparanase gene belongs to the family of housekeeping genes. This 
may suggest that heparanase is being expressed at low levels by all cells in order to 
maintain homeostasis (see below). The above-mentioned lack of heparanase detec-
tion by immunostaining of normal epithelium adjacent to the tumor lesion may thus 
result from low levels under the detection of anti-heparanase antibodies. Further 
analysis revealed three Sp1 sites and four Ets-relevant elements (ERE) within the 
heparanase promoter [55, 56]. SP1 is a zinc-finger transcription factor that binds 
GC-rich motif of many gene promoters and is abundantly expressed by all mam-
malian cell types. Thus, it was long thought to be a regulator of housekeeping genes. 
Indeed, knockout of Sp1  in mice causes embryonic lethality at an early stage of 
development (around day 10.5 of gestation) with a broad range of phenotypic 
abnormalities, suggesting a general function in many cell types [57]. Unlike SP1 
and Ets, which are associated with basal heparanase transcription levels [55], Early 
growth response 1 (Egr1) appears to be related to inducible transcription of hepa-
ranase. Egr1 has been shown to bind the human and mouse heparanase gene pro-
moters and to induce heparanase expression in tumor cells [58–60] and in primary 
T lymphocytes, facilitating their infiltration into the CNS to promote EAE [61]. 
Egr1 has been shown to bind to the promoters of a range of genes to mediate 
responses such as wound healing and neo-vascularization, and has been strongly 
associated with vascular proliferative disorders [60]. Moreover, Egr1 has been 
implicated in tumor angiogenesis, growth, and metastasis, closely resembling hepa-
ranase pro-tumorigenic properties. Egr1 was also noted to inhibit heparanase 
expression in pancreatic carcinoma cells exposed to radiation [62], suggesting that 
heparanase gene regulation by Egr1 is cell-type and context-dependent. The clinical 
significance of heparanase regulation by Egr1 emerged in the study of DNA meth-
ylation (Gaskin et al., Chap. 7 in this volume).

9.1.3  �Gene Methylation and Egr1

In addition to multiple genetic alterations that govern cell transformation, epigene-
tic processes, marked by hypermethylation of the promoter region, contribute sig-
nificantly to gene transcription and cancer progression, likely by down-regulation of 
tumor suppressor and DNA repair genes. Several studies have convincingly shown 
that promoter methylation status plays an important role in heparanase gene tran-
scription. By examining a series of tumor-derived cell lines, Shteper et al. found that 
cells which exhibit heparanase activity also harbor at least one unmethylated allele 
[63]. In contrast, cell lines which exhibit no heparanase expression or activity, such 
as C6 rat glioma and JAR human choriocarcinoma, were found to harbor fully 
methylated alleles [63]. Treating these cells with demethylating agents such as 
5-azacytidine restored heparanase activity accompanied by augmented metastatic 

N. Ilan et al.

https://doi.org/10.1007/978-3-030-34521-1_7


257

capacity [63]. This augmentation was suppressed in mice treated with heparanase 
inhibitor [63], thus critically relating to heparanase expression and metastasis. 
Subsequent studies revealed a similar correlation with prostate and bladder cancer-
derived cell lines, and, moreover, with prostate and bladder tissue. Hence, signifi-
cantly higher promoter methylation was found in benign prostatic hyperplasia 
(BPH) and in normal bladder than in bladder carcinomas, inversely correlating with 
heparanase expression [64, 65]. Interestingly, Ogishima et al. have noted a correla-
tion between heparanase expression by bladder and prostate carcinomas and the 
expression levels of Egr1, regulating heparanase expression in a stepwise manner. 
Hence, heparanase expression was the lowest in methylation-positive and EGR1-
negative samples and the highest in methylation-negative and EGR1-positive 
samples [64, 65]. It should be noted, nonetheless, that while DNA methylation 
and Egr1 likely play an important role in regulating heparanase transcription, the 
magnitude of heparanase induction by these factors seems lower than the induction 
often observed by immunostaining. This may suggest that heparanase expression is 
also regulated post-transcriptionally.

9.1.4  �ARE and Post-Transcriptional Gene Regulation

In mammalian cells, sequence elements rich in adenosine and uridine, called AU-rich 
elements (ARE), were identified for their ability to target mRNAs for rapid degrada-
tion [66–68]. Many ARE-bearing mRNAs encode oncoproteins, cytokines, growth 
factors and transcription factors [66, 69]. Arvatz et al. have shown that heparanase 
expression is regulated at the post-transcriptional level by sequences at the 3′ untrans-
lated region (3′UTR) of the gene [51]. Introducing the 3′UTR immediately following 
the heparanase cDNA reduces heparanase enzymatic activity and protein levels, 
resulting in decreased cellular invasion capacity. Furthermore, a 185 bp sequence was 
identified within the 3′UTR that mediates heparanase down-regulation, and an ARE 
motif has been recognized within this region. Deletion of the entire 185 bp region or 
the ARE motif eliminated the inhibitory effect of the 3′UTR, resulting in more stable 
heparanase mRNA, elevated heparanase levels and formation of larger tumor xeno-
grafts indistinguishable from those produced by heparanase over-expressing cells in 
terms of size, vascularization and Akt activation [51]. These results suggest that loss 
of the ARE is an important regulatory mechanism and driving force contributing to 
heparanase induction and tumor growth [51].

9.1.5  �Heparanase Regulation by Hormones, Tumor 
Suppressors, Oncogenes and Micro-RNA

Systemic and local mediators are also likely to participate in heparanase gene 
regulation. The presence of functional estrogen response elements within the 
heparanase promoter suggests a systemic mechanism by which hormones control 
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heparanase transcription [70, 71]. Indeed, administration of estrogen markedly 
enhanced heparanase gene transcription in breast cancer cells, which was com-
pletely abolished by estrogen receptor antagonist [72]. Furthermore, a correlation 
between heparanase and estrogen receptor levels was confirmed by analyzing breast 
carcinoma tissue array [72], signifying its clinical relevance.

Normal epithelia exhibit relatively low levels of heparanase activity, suggesting 
that the heparanase promoter may possibly be transcriptionally repressed. This is 
due, at least in part, to binding of the p53 tumor suppressor and recruitment of his-
tone deacetylases [73]. Mutational inactivation of p53 during cancer development 
leads to transcriptional activation of heparanase, providing a possible molecular 
mechanism for the frequent increase in heparanase levels observed in the course of 
tumorigenesis [73]. Likewise, heparanase expression was found to be under the 
regulation of oncogenes. For example, overexpression of mutant BRAF (V600E) 
and mutant Ras (G12 V) resulted in a marked increase in heparanase expression, 
accompanied by reduced HS on the cell surface [74]. Similarly, knockdown of 
BRAF expression in a BRAF-mutated KAT-10 tumor cell line led to the suppression 
of heparanase gene expression, subsequently leading to increased cell surface HS 
levels [74]. Analyses of the heparanase promoter revealed that the Ets relevant ele-
ments are critical for BRAF-induced heparanase expression, in a manner that 
involves GABPβ (but not Egr1) [74].

More recent studies reported the involvement of several micro-RNAs in heparan-
ase gene regulation. For example, miR-1258 levels inversely correlated with hepa-
ranase expression in non-small cell lung cancer and breast cancer cells [75–77]. 
Functionally, heparanase downregulation by miR-1258 resulted in reduced cell 
invasiveness in vitro, and brain metastasis of breast cancer cells in vivo [75–77], 
emphasizing the relevance of miRNA-dependent heparanase regulation for cancer 
metastasis. In contrast, Mir-558 was noted to induce heparanase expression, and 
knockdown of endogenous miR-558 decreased the growth, invasion, metastasis, 
and angiogenesis of neuroblastoma cells in vitro and in vivo [78].

Collectively, the results suggest that heparanase expression is tightly regulated 
[20]; its induction in tumor cells is not mediated by one common cue but rather by 
complexed mechanisms that can operate in concert [65] but may vary among cells, 
type of tumor, and patients. Somewhat surprisingly, the detailed experimental 
results described above are not reflected in many array-type analyses that compare 
gene signatures in disease states and mainly cancer. We expected that given the 
common induction of heparanase in human tumors and consequently its bad prog-
nosis (Fig. 9.1), heparanase will be found among the genes increased in tumors vs. 
normal tissue. This is not commonly observed. The reason is unclear, but may 
suggest that post-transcriptional mechanisms are more dominant than anticipated, 
or that mechanisms that were identified in cell lines do not sufficiently mimic 
tumors in patients. It is also possible that the heterogeneity of human tumors and 
sampling of a small area of the lesion for RNA extraction does not sufficiently 
reflect the tumor mass. Common inclusion of heparanase in patients’ gene analyses 
would strengthen the significance of heparanase in cancer, and recruit more investi-
gators to the field.
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9.3  �Heparanase Signaling-A Message from within

Heparanase up-regulation in primary human tumors correlated in some cases not only 
with tumor metastasis but also with tumors larger in size [26, 79–83]. The clinical 
findings have been recapitulated in many pre-clinical models in which overexpres-
sion of heparanase promotes tumor growth [20, 22–24, 84, 85]. Likewise, heparan-
ase gene silencing or administration of heparanase inhibitors attenuated tumor 
growth [20, 22–24, 84, 85] (See chapters 19, 22, 23, 21 by Chhabra and Ferro; 
Hammond and Dredge; Giannini et al. and Noseda and Barbieri, This book for a 
detailed discussion on heparanase inhibitors). In addition, recent studies revealed 
that high levels of heparanase in the tumor metastases predict poor prognosis in 
stage IVc melanoma patients [39]. This result implies that heparanase not only 
enhances tumor cells dissemination but also promotes the growth and aggressive-
ness of the resulting metastases. Notably, larger tumors were produced also by cells 
engineered to overexpress heparanase mutants and forms (i.e., C-domain, splice 
variants) that lack heparanase enzymatic activity [45, 46, 86–89] (Fig. 9.2), clearly 
implying that heparanase function beyond its enzymatic aspect.

The mechanisms underlying the capacity of heparanase to promote tumor growth 
are not entirely clear. Conceptually, heparanase activity can potentially release a 
wide range of biological mediators that are sequestered by HSPG and turn on their 
activity. Among the proteins sequestered by the ECM are typical pro-angiogenic 
mediators such as PDGF, HGF, bFGF, HB-EGF, and VEGF-A [90, 91]. Indeed, hep-
aranase exerts a strong pro-angiogenic response in pre-clinical models and clinical 
settings [20, 22, 84, 85, 92, 93]. Experimentally, Elkin et al. have demonstrated that 
heparanase can release ECM-bound 125I-bFGF in a highly active form that promotes 
the proliferation of BaF3 cells [93]. Similarly, the addition of recombinant heparan-
ase could release VEGF-A from cardiomyocytes, but this effect was also exerted by 
latent heparanase, suggesting displacement rather than cleavage of HS [94]. Similar 
considerations may also hold for the increase of soluble VEGF receptor 1 (sVEGF-
R1) in heparanase-transgenic mice [95]. However, the release of ECM-bound angio-
genic- and growth- promoting factors was not demonstrated unequivocally in the 
context of tumor growth, most probably due to the low levels of protein being 
released and its local nature. Instead, we and others have shown that heparanase 
induces the expression of VEGF-A [50, 96–98] and VEGF-C [99, 100], leading to 
increased blood and lymph vessel density. This implies that heparanase not only 
facilitates tumor cell invasion by loosening the ECM and basement membrane but 
also increases the density of vessels that mobilize the disseminating cells to distant 
organs. Subsequent studies revealed that heparanase down-regulates the expression of 
tumor suppressors [i.e., CXCL10; [45]] and induces the transcription of pro-angio-
genic (i.e., COX-2, MMP-9), pro-thrombotic (i.e., tissue factor), pro-inflammatory 
(i.e., TNFα, IL-1, IL-6, MIP-2), pro-fibrotic (i.e., TGFβ), mitogenic (i.e., HGF), 
osteolytic (RANKL) and various other genes [22, 50, 99, 101–107], thus signifi-
cantly expanding its functional repertoire and mode of action in promoting aggres-
sive tumor behavior. The mode by which heparanase regulates gene transcription is 
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Fig. 9.2  Heparanase promotes the formation of disorganized acinar structures by MCF10A cells 
and tumorigenicity of MCF10AT1 cells. (A). Acinar structures formation. Control (Mock), hepa-
ranase (Hepa), and 8C-infected MCF10A cells were plated on, and overlaid with Matrigel for 
10 days. Formation of three-dimensional acini-like structures was evaluated by fluorescent confo-
cal imaging applying DAPI nuclei counterstaining. (B). Tumorigenicity of MCF10AT1 cells. 
MCF10AT1 cells were infected with control (Mock), heparanase, or 8C gene constructs and inocu-
lated into SCID/beige mouse mammary fat pad (n = 6). Xenografts were harvested 12 weeks after 
cell transplantation and formalin-fixed, paraffin-embedded 5-micron sections were subjected to 
histological analyses. Shown are representative images of whole sections scanned by 3DHISTECH 
Pannoramic MIDI System attached to HITACHI HV-F22 color camera (3dhistech kft, Budapest, 
Hungary). (C). Immunostaining. Xenografts produced by MCF10AT1 infected cells were stained 
with anti-vimentin (upper panels) and anti-E-cadherin (second panels) antibodies. Original magni-
fications: x100
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largely unclear but possibly results from its ability to stimulate signal transduction, 
best exemplified by Src-mediated VEGF-A induction by heparanase [96]. Stimulation 
of signaling (i.e., increased phosphorylation and activity of protein kinases intrinsic 
in signal transduction pathways) by heparanase can be indirect, due to the release of 
HS-bound growth factors. As discussed above, this possibility has not been convinc-
ingly proven in preclinical and clinical studies. Alternatively, heparanase was noted 
to enhance signaling in HS-dependent and -independent manners [89].

9.1.6  �HS-Dependent Signaling

Heparanase interacts with syndecans by virtue of their HS content and the typical 
high affinity that exists between the enzyme and its substrate. This high-affinity 
interaction directs clustering of syndecans followed by a rapid and efficient uptake of 
heparanase [108] (see below). Mechanistically, syndecan clustering by heparanase or 
the KKDC peptide [corresponding to the heparin binding domain of heparanase 
[109]] enhanced cell spreading and was associated with PKC, Src, and Rac1 activa-
tion [110], molecular determinants shown to be induced by syndecans [111–114]. 
This mode of action likely represents a non-enzymatic signaling function of hepa-
ranase in its simplest term [89].

9.1.7  �HS-Independent Signaling

Heparanase was noted nonetheless to elicit signaling also in a manner that does not 
involve HS. Signaling is considered to be HS-independent if it occurs in HS-deficient 
cells (i.e., CHO 745) or in the presence of heparin, as has been demonstrated for 
enhanced Akt phosphorylation by heparanase [115]. In fact, heparin, a potent inhib-
itor of heparanase enzymatic activity, when added together with heparanase, aug-
mented Akt phosphorylation [115], critically implying that heparanase enzymatic 
activity is not required for Akt activation. In several cases, where tumor xenograft 
development was examined, heparanase over-expression resulted in tumors bigger 
in volume and weight [51, 70, 116, 117] coupled with increased Akt phosphoryla-
tion [51, 88, 116, 117]. Importantly, heparanase gene silencing was associated with 
reduced Akt phosphorylation levels [118], further substantiating a role for endoge-
nous heparanase in Akt modulation. Moreover, Akt phosphorylation was markedly 
attenuated by heparanase inhibitors [46, 119, 120] (also see below). Subsequent 
studies revealed that heparanase stimulates the phosphorylation of STAT3 and 
STAT5, Src, EGFR, Erk and the insulin receptor, and moreover activates G-protein 
receptor signaling [121–124], all function to promote tumorigenesis. Importantly, 
enhanced EGFR phosphorylation by heparanase was restricted to selected tyrosine 
residues (i.e., 845, 1173) thought to be direct targets of Src rather than a result of 
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receptor auto-phosphorylation [125]. Indeed, enhanced EGFR phosphorylation on 
tyrosine residues 845 and 1173 by heparanase was abrogated in cells treated with 
Src inhibitors or anti-Src siRNA [121]. Notably, heparanase gene silencing was 
accompanied by a decrease in cell proliferation, while heparanase overexpression 
resulted in enhanced cell proliferation and formation of larger colonies in soft agar, 
in Src- and EGFR-dependent manner [121].

Fux et al. predicted the structure of enzymatically active, single chain, heparan-
ase enzyme, in which the linker segment was replaced by three glycine-serine 
repeats (GS3), resulting in a constitutively active enzyme [126]. The structure 
clearly illustrates a TIM-barrel fold, in agreement with previous predictions [109, 
127]. Notably, the structure also delineates a C-terminus fold positioned next to the 
TIM-barrel structure [88]. Fux et al. thus, hypothesized that the seemingly distinct 
protein domains observed in the three-dimensional model, namely the TIM-barrel 
and C-domain regions, mediate enzymatic and non-enzymatic functions of heparan-
ase, respectively [88]. Interestingly, cells transfected with the TIM-barrel construct 
(amino acids 36–417) failed to display heparanase enzymatic activity, suggesting 
that the C-domain is required for the establishment of an active heparanase enzyme, 
possibly by stabilizing the TIM-barrel fold [88]. Deletion and site-directed muta-
genesis approach further indicated that the C-domain plays a decisive role in hepa-
ranase enzymatic activity and secretion [88, 128, 129]. Remarkably, Akt 
phosphorylation was stimulated by cells overexpressing the C-domain (amino acids 
413–543), while the TIM-barrel protein variant yielded no Akt activation compared 
with control, mock transfected cells [88]. These findings clearly indicate that the 
non-enzymatic signaling function of heparanase leading to activation of Akt is 
mediated by the C-domain. Because the C-domain gene construct lacks the 8 kDa 
segment which, according to the predicted model, contributes one beta strand to the 
C-domain structure, the resulting protein may exhibit suboptimal Akt activation. 
Indeed, Akt phosphorylation was markedly enhanced in cells transfected with a 
mini gene comprising a segment of the 8 kDa subunit, predicted by the model to 
contribute a beta strand (Gln36-Ser55) to the C-domain structure, linked to the 
C-domain sequence. These findings further support the predicted three-dimensional 
model, indicating that the C-domain is indeed a valid functional domain responsible 
for Akt phosphorylation (see Chapter 5 by Wu and Davies for a detailed discussion 
of heparanase crystal structure and new insights regarding structural relationships 
between the latent and active enzyme). The cellular consequences of C-domain 
overexpression are best revealed by monitoring tumor xenograft growth. Notably, 
tumor xenografts produced by C-domain-transfected glioma cells appeared 
comparable to those produced by cells transfected with the full-length heparanase, 
while the growth of tumors produced by TIM-barrel-transfected cells appeared 
comparable with control mock-transfected cells [88].

While signaling through HS clustering appears straightforward in its rational, 
HS-independent signaling by heparanase requires a mediator, possibly in the form 
of cell surface receptor(s). The existence of cell surface heparanase receptor is sup-
ported by binding experiments. Applying iodinated heparanase to HeLa cells 
revealed the presence of two distinct types of binding sites exhibiting low-affinity 
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(Kd = 3 mM), high abundant (βmax = 1x108), and high affinity (Kd = 2 nM), low 
abundant (βmax = 1.7x104) characteristics [130]. Binding studies performed with 
wild type CHO-KI cells and their HS-deficient CHO-745 counterpart cells have 
demonstrated that heparanase binding to the high-affinity binding sites is almost 
identical in both cell types. In contrast, the number of low-affinity binding sites was 
significantly reduced in CHO-745 vs. CHO-KI cells, and a similar decrease was 
noted in CHO-KI cells treated with bacterial heparinase III [130]. These studies 
reinforce the notion that while HSPG serve as low affinity, high abundant binding 
sites, heparanase also associates with high affinity, low abundant cell surface 
receptor(s). A first indication for the protein nature of this receptor and its molecular 
weight emerged from cross-linking experiments, revealing two distinct complexes 
representing 130 and 170 kDa proteins associated with heparanase [88]. Moreover, 
Akt phosphorylation by heparanase was found to be mediated by a lipid raft resident 
protein [118]. Such a receptor has not been isolated and characterized yet. Also, 
Wood and Hulett have reported that the 300  kDa Cation-independent Mannose 
6-Phosphate Receptor (CIMPR; CD222) can bind enzymatically active heparanase 
[131] and may serve as a heparanase receptor. The affinity of this interaction and the 
consequences of heparanase binding in term of signaling has not been reported. 
Alternatively, heparanase may facilitate signaling from within the lysosome.

9.4  �Heparanase Uptake – Is the Message within Lysosomes?

A number of studies have shown that secreted or exogenously added latent heparan-
ase rapidly interacts with normal and tumor-derived cells, followed by internaliza-
tion and processing into a highly active enzyme [108, 115, 130, 132–136], 
collectively defined as heparanase uptake. Several approaches, including 
HS-deficient cells, addition of heparin or xylosides, and deletion of HS-binding 
domains of heparanase, provided compelling evidence for the involvement of HS in 
heparanase uptake [109, 132]. While syndecans are regarded as the primary recep-
tors for heparanase endocytosis, low-density lipoprotein receptor-related protein 
(LRP) and the cation-independent mannose-6-phosphate receptor (CIMPR) have 
been identified as heparanase-binding proteins [131, 136] that contribute to hepa-
ranase uptake. Heparanase uptake is regarded as a pre-requisite for the delivery of 
latent 65 kDa heparanase to lysosomes and its subsequent proteolytic processing 
and activation into 8 and 50 kDa that compose the active enzyme. Following uptake, 
heparanase was noted to reside primarily intracellularly within endocytic vesicles, 
assuming a polar, peri-nuclear localization and co-localizing with lysosomal mark-
ers [133, 137] (Fig. 9.3A). Indeed, heparanase processing was blocked by chloro-
quine and bafilomycin A1 which inhibit lysosomal proteases by raising the lysosome 
pH [108]. Subsequent studies employing lysosomal preparation, site-directed muta-
genesis, gene silencing, and pharmacological inhibitors have identified cathepsin L 
as the primary lysosomal protease responsible for heparanase processing and acti-
vation [138–140]. Moreover, syndecan-1 and 4 are internalized by cells following 
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Fig. 9.3  (A). Altered syndecan localization in response to heparanase addition. U87 glioma cells 
were incubated with Myc-tagged latent heparanase (10 μg/ml) for 15 min. Cells were then fixed 
and stained with anti-syndecan-1 (upper panel, green) monoclonal antibody and with anti-Myc 
polyclonal antibody (Hepa, second panel, red). Merge images are shown in the lower panel. Note 
internalization of syndecan into endocytic vesicles upon heparanase addition. (B). Heparanase 
uptake requires the syndecan cytoplasmic tail. Heparanase (1 μg/ml) was added to U87 glioma cells 
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addition of heparanase, co-localizing with heparanase in endocytic vesicles [132, 141] 
(Fig. 9.3A). Since syndecans mediate the uptake of a large number of molecules 
including atherogenic lipoproteins [142, 143] and microorganisms such as bacteria 
and viruses [144], mechanisms that mediate internalization of syndecan ligands are 
of interest and clinical significance. Structurally, all syndecans are composed of an 
extracellular domain, membrane domain, and a conserved short C-terminal cyto-
plasmic domain divided into the first conserved region (C1), the variable domain 
(V), and the second conserved region (C2). Each of these cytoplasmic domains has 
been shown to interact with specific adaptor molecules and to mediate cellular func-
tions [113, 145]. To examine the role of syndecan-1 cytoplasmic domain in heparan-
ase processing, Shteingauz et al. transfected cells with full-length mouse syndecan-1 
or deletion constructs lacking the entire cytoplasmic domain (delta), the conserved 
(C1 or C2) or variable (V) regions [146]. Heparanase uptake was markedly increased 
following syndecan-1 over expression (Fig. 9.3B, WT), thus challenging the notion 
that cell surface HS is at saturation and does not limit ligand binding. In contrast, 
heparanase was retained at the cell membrane, and its processing was impaired in 
cells overexpressing syndecan-1 deleted for the entire cytoplasmic tail [146] 
(Fig. 9.3B, Delta). Subsequent studies revealed that the C2 and V regions of syn-
decan-1 cytoplasmic tail mediate heparanase processing. Furthermore, syntenin, 
known to interact with syndecan C2 domain, and α actinin were shown to be essen-
tial for heparanase processing [146]. These results illustrate the tight regulation of 
heparanase activation and shed light on syndecan-mediated endocytosis. 
Interestingly, syndecans and syntenin, via interaction with ALIX, have been impli-
cated in regulating the biogenesis of exosomes [147]. Importantly, heparanase facil-
itates the production of exosomes and regulates their secretion and composition 
[148, 149], implying that heparanase-syndecan-syntenin establish a linear axis that 
regulates exosome formation and the related effects on tumor progression [146] (see 
Chapters 12, 10 by Sanderson et al., and David and Zimmermann for detailed dis-
cussion on heparanase and exosomes).

Fig. 9.3  (continued) over-expressing wt syndecan-1 or syndecan-1 lacking the entire cytoplasmic 
tail (delta) for 1 hour at 37 °C. Cells were then fixed with cold methanol and subjected to immu-
nofluorescent staining applying anti-heparanase mouse monoclonal antibody (lower panels, 
green). Merged images with rat anti-syndecan-1 staining (red) are shown in the upper panels. Note 
increased heparanase-positive endocytic vesicles in cells overexpressing wild type (WT) syn-
decan-1, but retention of heparanase at the cell membrane, co-localizing with syndecan lacking the 
entire cytoplasmic tail (Delta). (C). Heparanase co-localizes with LC3-II. Heparanase (1 μg/ml) 
was added exogenously to HeLa cells stably expressing a GFP-LC3 gene construct for 24 hours. 
Cells were then deprived of amino acids in the presence of chloroquine (50 μg/ml; AA+Chl) for 
3 hours or were incubated under serum-free conditions as control (Con). Cells were then fixed with 
methanol and subjected to immunofluorescent staining applying anti-heparanase (middle panels, 
red) antibody. Co-localization of heparanase and GFP-LC3 appears yellow (lower panel). (D). 
Electron microscopy. Pancreas tissues from control (Con) and heparanase transgenic mice 
(Hpa-Tg) were fixed in glutaraldehyde and processed for EM. Shown are representative images at 
x10,000 magnification. Note a substantial increase in the number and size of autophagosomes in 
the pancreas of heparanase-transgenic mice
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The efficient uptake mechanism and accumulation of heparanase in endocytic 
vesicles suggest that heparanase is not normally present in association with the ECM, 
the site of its recognized activity. Active heparanase can get to the cell exterior by one 
of three mechanisms: 1. Secretion of endocytic vesicles/lysosomes; 2. Processing of 
latent heparanase into active enzyme outside the cell, and 3. Release by lysosomes/
micro-vesicles. The latter, however, is thought to mediate communication between 
cells and transfer the membrane-enclosed protein and/or its mRNA from one cell to 
another rather than to release the enzyme. The former mechanisms have been sub-
stantiated experimentally [150–152], but the secreted enzyme will be subjected to the 
same principles of uptake (or re-uptake) described above [20]. The rapid and efficient 
uptake mechanism of heparanase and its accumulation in lysosomes likely serve as 
an important regulatory mechanism that limit its extracellular retention, due to the 
damage that this activity may cause to tissues and cells. The instrumental role of the 
lysosome in signaling raises the possibility that heparanase accumulation in this 
organelle not only serves as a reservoir for the enzyme but rather plays an important 
role in its function.

9.1.8  �The Lysosome as a Signaling Organelle

For the past five decades, the lysosome has been characterized as an unglamorous 
cellular recycling center. This notion has undergone a radical shift in the last 10 years, 
with new research revealing that this organelle serves as a major hub for metabolic 
signaling pathways. The discovery that master growth regulators, including the pro-
tein kinase mTOR (mechanistic target of rapamycin), make their home at the lyso-
somal surface has generated intense interest in the lysosome’s key role in nutrient 
sensing and cellular homeostasis [153–156]. The transcriptional networks required 
for lysosomal maintenance and function are a subject of intense research activity, and 
their connection to lysosome-based signaling pathways was revealed. Much is now 
understood about how the lysosome contributes to amino acid sensing by mTORC1, 
the function of the energy-sensing kinase, AMP-activated protein kinase (AMPK), at 
the lysosome and how both AMPK and mTORC1 signaling pathways feedback to 
lysosomal biogenesis and regeneration following autophagy [153–156]. In fact, the 
lysosome is intimately involved in each of the classic hallmarks of cancer [154], and 
compounds that impact lysosomal function are under clinical evaluation [154].

In spite of its localization in a highly active protein degradation environment such 
as the lysosome, heparanase appears stable [108, 137] and exhibits a half-life of about 
30 hours [132], relatively long compared with a t1/2 of 2–6 h, and 25 min for trans-
membrane and GPI-anchored HSPG, respectively [157]. Residence and accumulation 
of heparanase in lysosomes indicate that the enzyme may function in the normal phys-
iology of this organelle. In a search for such function, we revealed a role of heparanase 
in modulating autophagy [48]. Autophagy is an evolutionarily conserved catabolic 
pathway through which cytoplasmic components, including macromolecules such as 
proteins and lipids as well as whole organelles, are sequestered into double-membrane 
vesicles called autophagosomes. Autophagosomes are subsequently fused with 
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lysosomes, where the intracellular material is degraded and recycled. This process 
occurs in every cell at a basal level and is required to remove unfolded proteins and 
damaged organelles, thus maintaining cellular homeostasis. Autophagy is further 
induced by starvation and stress, promoting cancer cells survival by providing their 
metabolic needs [158, 159]. Our results indicate that heparanase is localized within 
autophagosomes (Fig.  9.3C) and promotes autophagy. Moreover, enhanced tumor 
growth and chemo-resistance exerted by heparanase are mediated in part by augment-
ing autophagy [48]. This was concluded because reduced LC3-II (a protein that 
specifically associates with autophagosomes) levels are found in cells and tissues 
obtained from heparanase knockout mice as opposed to elevated LC3-II levels 
found in transgenic mice that overexpress heparanase. Even higher induction of 
autophagy was evident in head and neck carcinoma and glioma cells overexpressing 
heparanase [48], in accordance with a strong pre-clinical and clinical significance of 
heparanase in the progression of these malignancies [36, 51, 81, 88, 99, 103, 121, 
122]. Notably, electron microscopy analyses of cells overexpressing heparanase 
revealed not only a higher number of autophagic vacuoles (Fig.  9.3D), but also 
abundant release of vesicles, likely exosomes, from the cell surface [48], further 
supporting the notion that heparanase enhances exosome secretion that contributes to 
tumor growth [148, 149]. These results imply that heparanase function is not limited 
to the extracellular milieu but can function inside the cell [48, 160].

The mechanism underlying autophagy induction by heparanase is not entirely 
clear, but likely involves mTOR1 that plays a pivotal role in nutrient-sensing and 
autophagy regulation [161]. mTOR1 activity inhibits autophagy, but under starva-
tion, its activity is repressed, leading to autophagy induction. Shteingauz et al. found 
that heparanase overexpression associates with reduced mTOR1 activity, evident by 
decreased levels of p70 S6-kinase phosphorylation, an mTOR1 substrate. In con-
trast, heparanase-knockout cells exhibited increased mTOR1 activity and p70 
S6-kinase phosphorylation [48]. Notably, mTOR1 appears more diffusely scattered 
in control cells, whereas in cells with a high content of heparanase, mTOR1 is found 
mostly in peri-nuclear regions, co-localizing with heparanase and LysoTracker that 
labels acidic lysosomal vesicles. This agrees with the notion that activation of 
mTOR1 by nutrients is associated with peripheral lysosomes, whereas starvation 
leads to peri-nuclear clustering of lysosomes and decreased mTOR1 activity [162]. 
These results imply that autophagy induction contributes to the pro-tumorigenic 
function of heparanase. This emerges from in vitro and in vivo experiments utilizing 
inhibitors of autophagy (chloroquine) and heparanase (PG545) alone or in combina-
tion [48]. Thus, combining PG545 and chloroquine in a tumor xenograft model 
resulted in significantly smaller and more differentiated tumors, suggesting that 
heparanase activity drives cancer cell de-differentiation as part of its pro-tumorigenic 
properties. Equally important is the ability of heparanase overexpression to confer 
resistance to stress, chemotherapy and targeted drugs [47], mediated, at least in part, 
by enhancing autophagy [48]. Indeed, diverse classes of anticancer drugs induce 
autophagy [163, 164], thus attenuating tumor cell elimination, while autophagy 
inhibitors overcome chemo-resistance [165, 166]. Based on this concept, chloro-
quine is currently evaluated in several clinical trials in combination with different 
classes of chemotherapeutic agents [165, 167].
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Modulation of mTOR activity and autophagy by heparanase likely represents 
only the tip of the iceberg; lysosomal heparanase possibly modulate many other 
aspects of lysosome function in health and disease, but this notion awaits in-depth 
validation. Moreover, it is possible that lysosomal heparanase needs to be targeted 
in order to attenuate tumor growth.

9.5  �Heparanase Inhibitors – Are We Targeting Well?

The search for heparanase inhibitors started soon after the appreciation of its 
pro-metastatic properties [168, 169]. Since then, many heparanase inhibitors have been 
developed (Discussed in detail by Chhabra & Ferro; Hammond & Dredge; Giannini 
et al. and Noseda and Barbieri, Chaps. 19, 21, 22 and 23; in this volume). These include, 
among others, heparin/HS mimetics (i.e., SST0001 = Roneparstat, M402 = Necuparanib, 
PI-88 = Mupafostat), synthetic, fully sulfated HS mimetic (PG545 = Pixatimod), neu-
tralizing antibodies, small molecules, oligonucleotides (i.e., defibrotide), natural prod-
ucts and their derivatives, and many others [23, 85, 120, 170–173]. Of these, Mupafostat, 
Roneparstat, Necuparanib, and Pixatimod were examined clinically [16–19]. These 
compounds as well as the anti-heparanase neutralizing monoclonal antibodies that 
show some potency in pre-clinical models [49], do not penetrate the cell and their inhi-
bition potential is restricted to the cell exterior. This likely explains the low toxicity of 
these compounds [16, 17]. Given the above considerations and the seemingly low 
abundance of heparanase outside the cells, the eminent question would be what exactly 
are these inhibitors targeting? A possible explanation comes from the observation that 
the heparin/HS mimetics as well the neutralizing antibodies not only inhibit heparanase 
activity but also attenuate its uptake, resulting in accumulation of heparanase in the cell 
culture medium, accompanied with reduced lysosomal content [[49, 50] and our 
unpublished results]. This may suggest that attenuation of tumor growth results in 
whole or in part from reduced intracellular content of heparanase. Thus, the ideal inhib-
itor should target heparanase both inside and outside the cell, attenuating HS cleavage 
and signaling, in order to neutralize its diverse functions and bring heparanase inhibi-
tors closer to the clinic.

9.6  �Is Hpa2 the Answer?

Cloning of a single human heparanase cDNA sequence independently reported by 
several groups [12–15] implied that one active heparanase enzyme exists in mam-
mals. Further analysis of human genomic DNA led researchers to conclude that the 
heparanase gene is unique and that the existence of related proteins is unlikely [174]. 
Based on amino acid sequence, McKenzie and colleagues nonetheless reported the 
cloning of heparanase homolog termed heparanase 2 (Hpa2) [174]. The full-length 
HPSE2 gene consists of 2353 bp encoding a protein of 592 amino acids; Alignment 
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of the coding region of heparanase and Hpa2 reveals an overall identity of 40% and 
sequence resemblance of 59%, including conservation of residues critical for hepa-
ranase enzymatic activity (Glu225 and Glu343) [174]. The segment corresponding to 
the linker region and cleavage sites of pro-heparanase are not conserved in Hpa2 
[20]. Importantly, Hpa2 lacks intrinsic HS-degrading activity, the hallmark of hepa-
ranase [141], and seems not to undergo processing in a manner required for hepa-
ranase activation. This may be due to differences in the cellular localization of Hpa2 
and its sequestration from the lysosome. Wild type Hpa2 (Hpa2c) [141, 174] is 
secreted and markedly accumulates in the cell conditioned medium following the 
addition of heparin or HS but not hyaluronic acid, indicating that Hpa2 retains the 
capacity to interact with HS despite the lack of HS-degrading activity [141]. In fact, 
Hpa2 exhibits even higher affinity towards heparin and HS than heparanase [141], 
thus competing for HS binding and thereby inhibiting heparanase enzymatic activ-
ity [141]. Moreover, co-immunoprecipitation studies revealed physical association 
between Hpa2 and heparanase proteins [141], providing an additional route by 
which Hpa2 can inhibit heparanase enzymatic activity. Immunofluorescent staining 
illustrates Hpa2 localization on the cell surface following its exogenous addition, 
co-localizing with and clustering of syndecan-1 and -4 (Fig. 9.5, left image). Unlike 
heparanase, Hpa2 does not appear to get internalized into endocytic vesicles but 
rather remains on the cell surface for a relatively long period of time [141]. This 
result clearly indicates that the rapid and efficient internalization of heparanase 
together with syndecans (Fig. 9.3A) [108, 109, 175] is unique and not purely a con-
sequence of HS-ligand binding. Moreover, the lack of Hpa2 processing may be due 
to its sequestration from the lysosome and lysosomal enzymes. Thus, while Hpa2 
can inhibit heparanase activity extracellularly, it cannot affect lysosomal heparanase 
directly. However, Hpa2 attenuate heparanase uptake, possibly due to its high affin-
ity to HS, resulting in depletion of lysosomal heparanase [141]. In this regard, Hpa2 
function in a manner similar to HS-mimetic heparanase inhibitors [48]. In addition 
to the full-length Hpa2 protein (Hpa2c), several variants have been identified as a 
result of alternative splicing of the HPSE2 transcript, including Hpa2a (480 aa) and 
Hpa2b (534 aa) [174]; Another splice variant of Hpa2, composed of only 528 amino 
acids, was described by Vreys and David [20]. Notably, only wild type Hpa2 is 
secreted, likely due to extra glycosylation sites that are lost in the splice variants 
[141]. The biological significance and cellular localization of Hpa2 splice variants 
are yet to be revealed. Localization of Hpa2 splice variants to the lysosome will 
imply that whereas wild type Hpa2 can modulate heparanase activity in the cell 
exterior, its splice variants will modulate heparanase activity inside cells.

9.1.9  �Hpa2 in Cancer Progression-an Opposite Answer

Very little attention was given to Hpa2 in general, and only a few studies attempted 
to reveal its significance in cancer (see Chapters by Roberts and Woolf, and by 
Mckenzie, Chaps. 34 and 35; in this volume). However, the emerging results clearly 
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suggest that Hpa2 function in cancer is the exact opposite of heparanase. The notion 
that Hpa2 function as a tumor suppressor is supported by the following observa-
tions. Unlike heparanase, Hpa2 staining is evident in the normal epithelium of the 
bladder, breast, gastric and ovarian tissues. Notably, Hpa2 levels are reduced sub-
stantially in the resulting carcinomas (Fig.  9.4), a staining pattern typical of a 
tumor suppressor. In other cases, such as head and neck cancer, the opposite is 
observed [141]. The reason for this behavior is unclear. Importantly, nonetheless, 
head and neck cancer patients exhibiting high levels of Hpa2 showed prolonged 
time to disease recurrence (follow-up to failure) and inversely correlated with tumor 
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cell dissemination to regional lymph nodes [141], thus providing clinical relevance 
for the antitumor properties of Hpa2. Notably, overexpression of Hpa2 in head and 
neck cancer cells resulted in a marked reduction in tumor growth, associating with 
a prominent reduction in tumor vascularity (blood and lymph vessels) likely due to 
reduced Id1 expression [176], a transcription factor highly implicated in VEGF-A 
and VEGF-C gene regulation [177]. Moreover, growth of tumor xenografts pro-
duced by Hpa2 over-expressing cells was not affected by a monoclonal antibody 
that targets a heparin binding domain of Hpa2 [176], implying that Hpa2 functions 
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signal peptides (1). The proteins are then shuttled to the Golgi apparatus and are subsequently 
secreted via vesicles that bud from the Golgi (2). Once secreted, heparanase rapidly interacts with 
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ranase-syndecan complex (5) that accumulates in late endosomes (6). Hpa2 interacts with cell mem-
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but rather remains on the cell membrane for a relatively long period of time (4 & left inset). 
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in HS-independent manner. Tumor produced by cells over-expressing Hpa2 were 
not only smaller but also exhibited a higher degree of cell differentiation (i.e., cyto-
keratin expression) [176]. Likewise, high levels of Hpa2 in bladder cancer patients 
correlated inversely with tumor grade and stage [178], further strengthening the 
significance of Hpa2 as a tumor suppressor and its role in cell differentiation. Thus, 
heparanase and Hpa2 not only exhibit opposite function in term of tumor growth but 
also in term of the underlying mechanism. For example, while heparanase induces 
VEGF-A and VEGF-C expression and promote angiogenesis, Hpa2 attenuate the 
expression of VEGF-A and VEGF-C and decrease tumor vascularity; whereas hepa-
ranase reduce cell differentiation and promote epithelial to mesenchymal transition 
(EMT) (Fig. 9.2; [179]), Hpa2 increase cell differentiation [176, 178]. This mirrored 
functionality strongly suggests that Hpa2 exert these properties by modulating hep-
aranase, but we could not demonstrate decreased heparanase activity in cells over-
expressing Hpa2 [176], possibly due to the semi-quantitative assay being employed. 
Given the above considerations, however, it is possible that the main function of 
Hpa2 is not to inhibit heparanase activity extracellularly, but rather to deplete hepa-
ranase from the lysosome.

9.7  �Heparanase Message Revisited

Twenty years after cloning the HPSE gene, heparanase research has made substantial 
progress, clearly revealing the clinical significance of the enzyme and turning 
heparanase into a valid target for the development of anti-cancer therapeutics. 
Progress was also made in deciphering the role of heparanase in inflammation, viral 
infection, diabetes, and other pathologies (see chapters by Elkin et al., Simeonovic 
et al., Masola et al., and Agelidis and Shukla, Chaps. 17, 24, 27 and 32; in this 
volume). Disclosing its mode of action and the translation of the knowledge into 
clinical practice is nonetheless insufficient. In this Review, we challenge some of the 
concepts that guided the field, hoping that new ideas and thinking will advance basic 
and translational aspects of heparanase.

Based on the house-keeping nature of its gene promoter, we suggest that hepa-
ranase is expressed at low levels by all cells, modulating autophagy and possibly 
other functions of the lysosome. According to this notion, heparanase function in 
the lysosome is equally, or possibly more important than its function extracellularly. 
This may turn most relevant in platelets, neutrophils, lymphocytes and macrophages 
that show relatively high levels of heparanase expression/activity [13, 50, 60], and 
also in normal epithelium [180]. Beyond serving as a cellular recycling center, 
recent evidence suggests that the lysosome is involved in homeostasis, generating 
building blocks for cell growth, mitogenic signaling, angiogenesis and metastasis, 
and activation of transcriptional programs [154, 156], repertoire that closely resem-
bles those of heparanase. The PI3-kinase/Akt/mTOR is highly implicated in the 
regulation of cell metabolism, protein homeostasis, and cell growth due, in part, 
to the localization of mTOR at the lysosome membrane which is required for its 
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activation [153, 181]. In fact, Akt is the most common kinase activated by heparanase 
[46, 51, 88, 101, 115–119, 121, 122, 182–185], and its instrumental role in the regu-
lation of mTOR would likely convey to the lysosome [181]. Clearly, more work is 
required to critically resolve the significance of heparanase in modulating lysosomal 
function in normal cells and in tumor growth, metastasis, and chemo-resistance.

As already described above, heparanase inhibitors were solely directed to neu-
tralize its enzymatic activity and most often yielded disappointing results in pre-
clinical models, with the exception of PG545 (Pixatimod). The specificity of this 
compound is, nonetheless, questionable, because it also exerts heparanase-
independent functions and attenuates the growth of tumor xenografts produced by 
heparanase-negative lymphoma cells [186]. A new generation of heparanase inhibi-
tors, possibly in the form of small molecules, should also target its signaling activity 
at the cell membrane and inside the lysosome in order to better neutralize all aspects 
of heparanase function. This will lead to better appreciation of heparanase role in 
health and disease and, hopefully, will enable improved clinical application of these 
compounds in cancer, inflammation, and other pathologies.
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