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Chapter 36
The Good and Bad Sides of Heparanase-1 
and Heparanase-2
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and Helena Bonciani Nader

36.1  Extracellular Matrix: At the Crossroads of Cell-Cell 
and Cell-Microenvironment Relationships

The extracellular matrix (ECM) can be defined as the structure shared by all multi-
cellular organisms, and it is composed of proteins and glycoconjugates that are 
synthesized and exported/secreted by the cells to the extracellular environment. The 
ECM is organized in a heterogeneous macromolecular network that does not only 
provide structural support, organization and tissue orientation (tissue biomechani-
cal), but among other functions acts as substrate for cell growth, migration, prolif-
eration, adhesion and differentiation and moreover, plays vital role in the various 
sensory crossroads of cell-cell and cell-environment interactions [1–5].

The ECM is composed of a wide variety of molecules, including glycosamino-
glycan chains, which are generally covalently linked to a core protein giving rise to 
proteoglycans, fibrous structural proteins such as collagen and elastin; and fibrous 
adhesive proteins such as laminin and fibronectin. These components are organized 
into macromolecular networks that act in diverse cellular dynamics mentioned 
above. Such macromolecular glycoconjugates are the most abundant class of struc-
turally diverse and heterogeneous molecules present in the ECM and cell surface, 
forming the so-called glycocalyx. Their diverse and heterogeneous structures are 
the result of the action of several glycosyltransferases, which are capable of polym-
erizing carbohydrate chains as well as other classes of enzymes such as sulfotrans-
ferases and epimerases, which alter their substitution pattern and stereochemistry at 
specific sites along the polymer. As a result, at the end of their biosynthesis, there 
will be structurally distinct functional chemical species.
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The ECM is at constant remodeling in response to various extracellular and 
intracellular stimuli, and the way such signals are transmitted, captured and inter-
preted, dictate and distinguish the fate of normal and pathological remodeling [3]. 
Hence, understanding and modulating the ECM information flux can deeply influ-
ence the development of new and improved therapeutic approaches of significance 
for life quality.

ECM, as previously mentioned, has a highly complex supramolecular structure, 
influencing the assembly, viability, and functions of cells and tissues. ECM compo-
nents can influence multiple cell properties and functions directly or through its 
degradation products, being able to modify the cellular microenvironment and tis-
sue function [6]. The epithelial-mesenchymal and epithelial-stromal interactions are 
critical in physiological and pathological processes, e.g., embryonic morphogenesis 
[7], tissue repair [8] and tumorigenesis [9], accompanied by dynamic changes and 
generating new cell-matrix interactions [10, 11]. The binding of cell surface recep-
tors to ECM activates signal transduction pathways that regulate cell functions, 
including adhesion and migration [12, 13]. Several of these activities depend upon 
integrins, that are transmembrane glycoproteins composed of non-covalently linked 
heterodimers that may act at ECM receptors. Integrins require an activation process 
for interaction with ligands that may mediate reactions induced by their binding to 
ECM proteins [14–17].

Consequently, besides its structural role, ECM represents a microenvironment 
that can sequester growth factors and cytokines, which can facilitate rapid and local-
ized changes in the activities of mediators in the absence of newly synthesized pro-
teins. Moreover, the ECM plays an important role in cell-cell communication. 
Fibrillar and non-fibrillar components may limit or facilitate the transport of mole-
cules across the extracellular space while regulating the interstitial hydrostatic pres-
sure. Furthermore, extracellular matrix molecules are involved in cell signaling 
pathways, which are mediated by cell surface receptors. Once activated, this system 
can lead to ECM remodeling either by the production and activation of enzymes 
such as proteases and glucosidases or by de novo synthesis and structural modifica-
tion of ECM components [1–3].

36.1.1  Glycosaminoglycans and Proteoglycans

Glycosaminoglycans (GAGs) are important constituents of both the ECM and cell 
surface. Apart from hyaluronic acid, all GAGs are present in tissues as proteogly-
cans, where the polysaccharide chains are covalently bound to a protein backbone. 
Heparan sulfate and heparin are composed of alternating units of D-glucosamine 
and uronic acid (β-D-glucuronic acid and α-L-iduronic acid), linked by α [1–4]-type 
glycosidic linkages. The glucosamine can be N-acetylated or N-sulfated and/or 
O-sulfated mainly at the C-6 position, and less at the C-3 position. Furthermore, the 
uronic acid moiety can be sulfated to various degrees at the C-2 position [18–21]. 
They participate in a variety of biological processes including cell-ECM  interactions, 
cell growth, cell differentiation and malignant transformation due to their ability to 
bind and modulate key cell growth-related molecules, such as TGF-β (transforming 
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growth factor β), FGF (fibroblast growth factors), VEGF (vascular endothelial 
growth factor) and others [22–25].

Heparan sulfate proteoglycans (HSPGs) play an important role in cell-ECM 
interaction. Nearly all ECM molecules have heparan sulfate binding sites, sug-
gesting that the balance between adhesion and cell motility rely on integrating 
PGs and integrin-mediated adhesion signals. HSPGs are composed of a protein 
backbone and one or more glycosaminoglycan chains of heparan sulfate (HS). 
There are subfamilies of HSPGs: transmembrane PGs (e.g., syndecans, betagly-
can and CD44), PGs connected to the GPI anchor (e.g., glypicans), and PGs 
secreted into the ECM (e.g., agrin, several collagens, and perlecan) [26]. 
Syndecans are present at the cell surface and can also act as co-receptors along 
integrins by modulating interactions between the cytoskeleton and the ECM [25–
27]. Syndecans can interact with a variety of ligands via HS chains. It is thought 
that these PGs are involved in vital cell functions, including cell proliferation, 
signaling, and recognition, as well as cell- matrix and cell-cell adhesion [28–30]. 
Numerous molecular interactions between heparan sulfate chains, growth fac-
tors, cytokines, and ECM molecules are known, associated in part with cell adhe-
sion and migration mediated by integrins.

Modeling and remodeling of the matrix are driven by the local cellular milieu, 
including secreted and cell-associated components in a framework of dynamic reci-
procity. The current collection of expertly-written chapters aims to relay state-of- 
the-art information concerning the mechanisms of matrix modeling and remodeling 
in normal physiology and disease. Even though there are many results showing that 
glycosaminoglycans from the extracellular matrix and cell surface play a funda-
mental role in controlling the proteolytic activity of several metalloproteases [31–
34], as well as cysteine proteases, such as cathepsins [35–38], in this review we will 
focus on the role played by heparanase in the cell environment.

The interactions between cells and ECM are crucial for cell events such as 
growth, death, differentiation, and motility, which have importance in various bio-
logical processes such as morphogenesis, inflammation, immune response, parasitic 
and virus invasion, cell transformation and metastasis. The ECM composition is not 
static and changes in response to internal and external cell stimuli occur in order to 
maintain the metabolic equilibrium. Changes in ECM structure and organization are 
implicated in many pathobiological states, including cancer, neurodegenerative dis-
eases, and fibrosis, among others [1–4, 39].

36.2  Heparanase: A Key Modulator of ECM Architecture 
at the Crossroads of Homeostasis and Diseases

36.2.1  General Aspects

Heparan sulfate chains are degraded by hydrolase, known as heparanase, which is 
an endo-β-D-glucuronidase that cleaves β-D-glucuronyl(1 → 4)D-N-acetylated glu-
cosamine. Heparanase (HPSE, Hpa or Hpa1) is capable of cleaving heparan sulfate 
side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular 
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matrix. As previously mentioned, heparan sulfate proteoglycans are crucial ele-
ments for normal cell physiology due to their strategic localization and interaction 
with ECM components, integrins, and the cytoskeleton. Heparanase, by altering 
heparan sulfate structure at the cell surface and ECM leads to a cascade of cellular 
events that affect a diversity of physiological processes, such as cell growth, adhe-
sion, migration, and death. The repertoire of physiological and pathological activi-
ties of heparanase is growing steadily, being implicated in inflammation, 
neovascularization, and tumor development [40–42].

Heparanase-1 resides in the endosomal/lysosomal compartment for a relatively 
long time and is likely to play a role in the normal turnover of heparan sulfate [43]. 
Furthermore, heparanase secretion kinetics resembles that of cathepsin D, a known 
lysosomal enzyme, validating its lysosomal origin. Extracellular signals activate 
protein kinases signaling pathways leading, among other effects, to heparanase 
secretion [44]. Also, the uptake of heparanase is dependent on the presence of hepa-
ran sulfate proteoglycans (syndecans) at the cell surface [45].

At present, there are more than 1500 papers focusing on heparanase. Therefore, 
the purpose of this chapter is to give a general view of the putative biological roles 
of heparanase and its implications in normal homeostasis and disease situations. 
Heparanase-1, as an enzyme, plays a role in remodeling the ECM and basement 
membrane by degrading heparan sulfates and thus liberating heparan sulfate-bound 
proteins, such as cytokines and growth factors. On the other hand, heparanase also 
exhibits non-enzymatic activities due to its capacity to interact with membrane pro-
teins such as tissue factor and tissue factor pathway inhibitor, thus playing a role in 
the coagulation cascade [46]. The identification of heparanase- 1 in tumor cells and 
platelets, as well as characterization of its substrate specificity, type of uronic acid 
recognized by the enzyme, and inhibition by non-anticoagulant heparin molecules 
goes back to the ‘80s [47–56]. Other papers reported its activity and secretion by 
degranulating mast cells [57, 58], T and B lymphocytes, granulocytes, and macro-
phages [59, 60], suggesting a role for heparanase in vessel wall injuries, atheroscle-
rosis, neovascularization, and immune responses.

36.2.2  Heparanase Favors Blood Coagulation

Heparanase-1 has been implicated in coagulation in a non-enzymatic manner. 
Heparanase overexpression in human leukemia, glioma, lung cancer, and breast car-
cinoma cells leads to increased levels of tissue factor (TF) and tissue factor pathway 
inhibitor (TFPI). Heparanase-1 was demonstrated to enhance tissue factor activity. 
Hence heparanase procoagulant activity in the plasma of patients with lung cancer 
reveals a new mechanism by which the coagulation system is activated in malig-
nancy [46]. Additionally, the interaction of heparanase-1 with TFPI at the cell sur-
face of endothelial and tumor cells, increases the coagulability due to dissociation 
of TFPI from the cell membrane, thus resulting in increased coagulation activity, 
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supporting a prothrombotic function of heparanase [61]. Peptides generated from 
tissue factor pathway inhibitor, which inhibit heparanase procoagulant activity, 
attenuate inflammation in a sepsis mouse model. Likewise, peptides inhibiting hep-
aranase procoagulant activity significantly reduced tumor growth, vascularisation, 
and relapse. The procoagulant domain in heparanase-1 protein may thus play a role 
in tumor progression, suggesting a new mechanism for the involvement of the coag-
ulation system in cancer [62].

Also, the ability of von Willebrand factor (VWF) to trap platelets contributes to 
inflammation, infection, and tumor progression. Overexpression of syndecan-1 
(SDC-1) significantly supports the binding of VWF to endothelial cells. However, 
heparanase degradation of heparan sulfate chains or impaired synthesis of heparan 
sulfate, a major component of the endothelial glycocalyx, reduce platelets recruit-
ment by VWF [63]. Therefore, the first step of hemostasis, platelet aggregation, 
appears to be dependent on heparanase modulation.

36.2.3  Heparanase and the Tumor Microenvironment

Increased expression of heparanase-1 seems to be a marker for various tumors [51, 
64–67]. Furthermore, high levels of heparanase expression correlate with poor sur-
vival rates, as in gliomas, breast cancer, gastrointestinal tumors, and esophageal 
carcinomas [68–70]. The crosstalk between heparanase-1 and macrophages propiti-
ates chronic inflammatory conditions creating a pro-tumorigenic microenviron-
ment, as is the case for chronic inflammatory bowel disease and colon cancer, 
among others [42, 71]. Also, the protagonist of heparanase-1 in inflammation, neu-
ronal disorders, and viral infection is becoming more evident [70, 72–79].

36.2.4  Exosomes

Exosomes are extracellular vesicles produced in the endosomal compartment of 
most eukaryotic cells and play a role in intercellular communication and signal 
transduction [80, 81]. Recently, the pathophysiological effects of exosomes on dis-
eases, especially cancer, have emerged. Heparanase-1 enhances exosome secretion, 
alters its composition, and thereby promotes tumor progression [81–84].

Exosomes participate in multiple mechanisms that support tumorigenesis, such 
as ECM remodeling, angiogenesis, thrombosis, and tumor cell proliferation, being 
implicated in the promotion and establishment of a pro-tumorigenic metastatic 
niche due to their cargo, including oncoproteins and heparanase [82–84]. Using 
CAG cells (plasma cell myeloma), it has been shown that several exosome cargoes 
such as syndecan-1, VEGF and hepatocyte growth factor, are regulated by high lev-
els of activated heparanase-1, reflecting in the spreading of tumor cells and invasion 
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of endothelial cells in vitro [84]. The biogenesis of a class of these vesicles depends 
on syntenin and syndecans [85]. Heparanase-1 acts as a regulator of the syndecan-
syntenin-exosome biogenesis pathway, and the upregulation of both syntenin and 
syndecan has been demonstrated in cancer [86–88]. Syndecan heparan sulfate pro-
teoglycans were found to control exosome biogenesis and endosomal- sorting com-
plex through syntenin-1 and ALIX [87, 88]. The fact that both syntenin and 
heparanase are upregulated in tumors favors the proposed role of exosomes in car-
cinogenesis. Recent data show that anti-myeloma drugs used in the treatment of 
myeloma upregulate heparanase through the nuclear factor-kappa B (NF-κB) sig-
naling pathway [89]. Additional studies demonstrated increased exosome secretion 
when myeloma cells were exposed to the same drugs. The chemotherapy-induced 
exosomes display a proteomic profile distinct from cells not exposed to the drug. 
Furthermore, besides an increase in the levels of heparanase, it shows a distinct 
localization, being present at the exosome surface and hence act on the surrounding 
ECM. Exosomes secreted by tumor cells, together with high levels of heparanase-1, 
not only alter the behavior of tumor cells but also promote alterations to nonneoplas-
tic host cells [82]. Thus, macrophages exposed to these exosomes increase the secre-
tion of myeloma growth-promoting factors [90] and exosomes secreted by tumor 
cells containing heparan sulfate, modulate the expression of heparanase-1 in circu-
lating T-lymphocytes [92]. These and other results bring new insights into the 
understanding of chemoresistance [91].

36.2.5  Heparanase Inhibitors

Since heparanase-1 is known to be involved in tumor progression, inhibitors of this 
enzyme have been produced as novel cancer therapeutics [93]. An improved under-
standing of the molecular contexts favoring the action of these agents against cancer 
would allow a full application of their potential. Current approaches for heparanase-
 1 inhibition include the development of chemically modified heparins, small mole-
cule inhibitors, natural products, synthetic oligonucleotides, and neutralizing 
antibodies [94–101].

Development of heparanase-1 inhibitors focused on carbohydrate-based com-
pounds of which few are being evaluated in clinical trials for various types of can-
cer, including myeloma, pancreatic carcinoma, and hepatocellular carcinoma [103]. 
Low-sulfate oligosaccharides were less effective heparanase inhibitors than 
medium- and high-sulfated fractions of the same-size saccharide. While 
O-desulfation abolished the heparanase-inhibiting effect of heparin, O-sulfated, 
N-substituted (e.g., N-acetyl or N-hexanoyl) species of heparin retained high inhibi-
tory activity [102]. Therapeutic potential of a supersulfated low molecular weight 
heparin (ssLMWH) showed potent anti-heparanase activity in preclinical models 
[104]. Synthetic glycopolymers that mimic heparin structure with reduced 
 anticoagulant activity is another strategy to generate heparanase-1 inhibitors. 
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Among these glycopolymers, a sulfated poly-2-aminoethyl methacrylate grafted 
heparin disaccharide has shown potent efficacy in inhibition of heparanase-1 activ-
ity and microvascular endothelial cell proliferation, protecting against tumor metas-
tasis [105]. Several heparan sulfate glycomimetics demonstrated heparanase-1 
inhibition comparable to the compounds in clinical development and also inhibit 
metastasis and growth of human myeloma cells in mouse xenografts [106].

Roneparstat (=SST0001), a chemically-modified heparin saccharide with 100% 
N-acetylation and 25% glycol split with non-anticoagulant activity is known to 
decrease the uptake and the effects of soluble heparanase-1 [89].

PI-88 is a mixture of highly sulfated, monophosphorylated mannose oligosac-
charide a heparanase inhibitor showed efficacy as an adjunct therapy for hepatocel-
lular carcinoma [107].

PG545, a synthetic mixture of tetrasaccharide derived from heparin is also an 
inhibitor of the heparan sulfate-degrading enzyme heparanase-1 (Hammond & 
Dredge, Chap. 22 in this volume). Using a murine model of lymphoma, it was 
observed that the antitumor effect of PG545 is dependent on natural killer cells 
[108, 109]. Moreover, PG545 exhibits a strong anti-lymphoma activity, eliciting 
lymphoma cell apoptosis, and involving ER stress response [110].

Protein tyrosine phosphorylation plays a pivotal role in various growth factors 
signaling to induce cell proliferation, differentiation, and survival. Protein tyrosine 
kinases (PTKs) and protein tyrosine phosphatases (PTPs) are the two counteracting 
proteins, which regulate tyrosine phosphorylation. PTP1B is a ubiquitously 
expressed non-transmembrane phosphatase that belongs to the protein tyrosine 
phosphatases superfamily, and the implication of PTP1B in dephosphorylation of 
Src (Y530) is well documented in the progression of oncogenesis in various can-
cers. Therefore, PTP1B has been emerged as a promising next-generation therapeu-
tic target to design novel, effective, and bioavailable drugs to fight against cancer 
[111]. A synthetic strategy that could generate libraries of biologically active 
condensed- bicyclic triazolo-thiadiazoles identified inhibitors of PTP1B.  Among 
such compounds, 1,2,4-triazolo-1,3,4-thiadiazoles presents human heparanase-1 
inhibitory activity [112].

Compound 1-(2-hydroxyethyl)-2-imidazolidinone was synthesized as an inhibi-
tor of both heparanase-1 and metalloproteinase 9 (MMP-9). The inhibition of base-
ment membrane degrading enzymes such as heparanase-1 and MMP-9 may improve 
the epidermal barrier function of facial skin, which is exposed to the sun on a daily 
basis. Therefore, 1-(2-hydroxyethyl)-2-imidazolidinone is an effective way to care 
for regularly sun-exposed facial skin [113].

Heparanase-1 neutralizing monoclonal antibodies profoundly attenuated myeloma 
and lymphoma tumor growth and dissemination in preclinical models by targeting 
heparanase in the tumor microenvironment [97, 103]. As previously mentioned, pep-
tides derived from TFPI-2 inhibitory site were shown to inhibit tissue factor/heparan-
ase-1 complex and to attenuate sepsis severity and tumor growth in a mouse model 
[46]. Interestingly, aspirin binds to Glu225 at the active site of heparanase- 1 and inhib-
its its enzymatic activity, preventing tumor metastasis and angiogenesis [114].
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36.3  Heparanase-2 the Ugly Duckling or the Beautiful Swan

36.3.1  Heparanase-2 Cloning

Mackenzie and coworkers cloned a new heparanase, nominated human heparanase-
 2 or Hpa2 which differs from Hpa1 since it does not present catalytic activity. The 
gene encoding heparanase-2 is located on chromosome 10q23–24. There are three 
isoforms of heparanase-2 originated by alternative splicing containing amino acids 
592, 534 and 480, termed Hpa2c, Hpa2b and Hpa2a, respectively. These isoforms 
are all membrane-associated proteins containing the C-terminal portion facing the 
cytoplasm. Heparanase-2c is the only variant capable of being secreted, possibly 
because it contains specific glycosylation sites, which are absent in Hpa2a and 
Hpa2b. It was also observed that unlike Hpa1, heparan sulfate proteoglycans on the 
cell surface (i.e., syndecans) are not able to promote internalization and proteolytic 
processing of heparanase-2 [115].

The coding region alignment of heparanase-1 and heparanase-2 shows 40% 
identity, including amino acid residues critical to the catalytic activity (Glu225 and 
Glu343). Moreover, heparanase-2 has a high affinity for heparan sulfate. The seg-
ment comprising the HS-binding regions and catalytic site of heparanase-1 are not 
conserved in heparanase-2, preventing heparanase-2 from being processed by pro-
teolysis [115, 116] (McKenzie, Chap. 34 in this volume). The HPSE2 gene presents 
12 exons, comprises approximately 630 kb and is located in a region (10q23–24) 
that is predisposed to loss of heterozygosity, characteristic of genomic instability in 
cancer. Molecular defects in the occurrence of loss of heterozygosity are derived 
from tumor suppressor genes, which protect DNA integrity or involve chromosome 
segregating genes that mediate correct separation of sister chromatids into daughter 
cells during mitotic cell division. Segregating genes may include genes involved in 
the determination of centromere structure, sister chromatid cohesion and genes 
involved in formation of the anaphase promoter complex [117]. Therefore, loss of 
heterozygosity, as well as segregating genes, are potentially involved in carcinogen-
esis [118].

The determination of genomic segments susceptible to loss of heterozygosity in 
solid tumors allowed the delineation of specific regions of the genome as tumor sup-
pressor genes favoring a molecular profile of accumulation of genetic changes in a 
multi-step process during cancer progression [119, 120].

36.3.2  Heparanase-2 and Urofacial Syndrome

The urofacial syndrome, or hydronephrosis, comprises an autosomal recessive con-
genital disorder characterized by inverted facial expressions, an unusual facial 
expression, in association with obstructive urinary tract disease. The clinical symp-
toms of the urofacial syndrome are largely confined to the urinary tract, and patients 
appear to grimace when they smile. The main urologic features include urinary 
incontinence, bladder enlargement, renal complications, and many patients also 
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experience repeated episodes of urinary tract infections [121, 122]. The genetic 
characterization of urogenital syndrome identified HPSE2 gene as the primary can-
didate for such pathology [123, 124, 125] (Roberts and Woolf, Chap. 35 in this 
volume). It was identified as a great variety of mutations (deletions and missense) in 
all 12 exons of the HPSE2 gene in the human genome. However, it should be noted 
that many of the mutations in the HPSE2 gene are not related to the clinical features 
of the urogenital syndrome. Thus, the urogenital syndrome is probably underesti-
mated, particularly when urinary tract characteristics are mild. Such phenotypic 
variability present in the urogenital syndrome may also be the result of environmen-
tal influences and other genetic modifications [123].

The second gene that characterizes the urogenital syndrome is LRIG2, leucine- 
rich repeats and immunoglobulin-2-like domains, which encodes a transmembrane 
family of proteins that modulate a variety of signaling pathways [126]. Surprisingly, 
LRIG2 gene mutant mice present a normal survival rate without detectable pheno-
type or exhibit slowed growth and a slight increase in spontaneous mortality [127, 
128]. Both HPSE2 and LRIG2 represent proteins that co-localize with a neuronal 
marker, β3-tubulin, present in the human bladder, which justifies their potential 
involvement in neuronal modulation [125] (Roberts and Woolf, Chap. 35 in this 
volume). However, the fact that heparanase-2 knockout mice have been able to 
develop urofacial syndrome strongly suggests that HPSE2 is independently related 
to the development of such pathology. Furthermore, the presence of HPSE2 gene in 
a chromosome region susceptible to loss of heterozygosity may reinforce its involve-
ment in carcinogenesis [129].

36.3.3  What Can we Learn from Heparanase-2 Knockout/
Knockdown Studies?

The HPSE2 analog gene was identified in frogs, showing that the protein is localized 
in the embryos neural tube region, where the motor neurons develop. Heparanase-2 
knockdown in frogs was performed by morpholino; the Xenopus tropicalis embryos 
developed skeletal muscles paralysis, and motor neurons showed significant morpho-
logical alteration. Biochemically, HPSE2 knockdown in frogs caused an increase in 
FGF-2 expression, enhancement in cell signaling mediated by kinases, and transcrip-
tion alterations of genes associated with neurons and muscles. It was hypothesized 
that the primary role of heparanase-2  in this model was modulation of FGF-2 and 
signal transduction during neural development, corroborating the phenotype found in 
urofacial syndrome [130]. Deletion of both HPSE2 alleles in mice caused a phenotype 
similar to urofacial syndrome, with bladder distended, abnormal voiding behavior, 
slow growth rate, renal dysfunction, malnutrition, and the animals die one month after 
birth. The mice also presented severe urological alterations, and the bladder is charac-
terized by excessive presence of fibrotic tissue correlated with an increased level of 
transforming growth factor-beta (TGF-β), indicating that tissue remodeling involving 
such mutation is also related to the signaling of TGF-β [129].

Urogenital carcinoma is highly frequent in California sea lions (Zalophus cali-
fornianus), and the etiology of such carcinoma was extensively studied and is 
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clearly multifactorial [131]. Interestingly, a genetic analysis of many generations of 
sea lions showed a single locus associated with the occurrence of bladder carci-
noma, and in a case-control study, it was shown that bladder carcinoma in sea lions 
was significantly associated with homozygosity at the locus of the Pv11 microsatel-
lite. Pv11 was mapped as a microsatellite of intron 9 of the HPSE2 gene, evidencing 
the relationship between this microsatellite and the HPSE2 gene and suggesting that 
HPSE2 gene alteration could be related to bladder carcinogenesis in sea lions [132].

Microsatellites are DNA repeated sequences and the most common microsatellite 
in humans is a dinucleotide repeat of nucleotides C and A, which occurs tens of thou-
sands of times throughout the genome. Microsatellites are also known as single- 
sequence repeats. Although the length of these microsatellites is highly variable in 
different persons, the number of repetitions of such sequences contributes to the fin-
gerprint of individual DNA. Therefore, each individual has microsatellites of definite 
length which occur at thousands of sites within a genome. Microsatellites are high 
spots for mutations compared to other areas of DNA, leading to high genetic diversity. 
Microsatellites are widely used for DNA profiling in cancer diagnosis, fingerprint 
analysis, paternity test, and forensic identification, to locate a gene or mutation respon-
sible for a particular disease. Microsatellite instability is the condition of genetic 
hypermutability (predisposition to mutation) that results from repair of DNA incom-
patibility. The presence of microsatellite instability represents phenotypic evidence 
that repair mechanisms are not functioning normally. The  evidence of HPSE2 gene 
mapped as a microsatellite and correlates with bladder carcinoma in California sea 
lions suggest that heparanase-2 might be involved with cancer.

36.3.4  Colorectal Cancer

The first article evidencing increased expression of heparanase-2 in human cancer 
revealed an enhancement of heparanase-2  in colorectal carcinoma compared to the 
non-neoplastic tissue and inverse correlation between heparanase-2 overexpression 
and downregulation of syndecan-1 [133]. Considering this article Giordano questioned 
whether heparanase-2 would be the ugly duckling representing a tumor marker or 
whether heparanase-2 could be the beautiful swan acting as a mechanism to compen-
sate for the loss of syndecan-1 from the tumor tissue [134]. By this time, other authors 
have reported a decrease in syndecan-1 as a worse prognosis for colorectal carcinoma 
with a higher incidence of liver and lymph node metastases, as well as decreased patient 
survival and poor histological differentiation of tumors [135, 136]. Additionally, it was 
known that heparanase-1 could modulate adhesion and invasion of neoplastic cells by 
activation of Rho, independently of its enzymatic activity, corroborating the notion that 
heparanase-2, due to its similarity with heparanase- 1, might be associated with carci-
nogenesis even without having a catalytic activity [137].

The presence of heparanase-1, heparanase-2, and syndecan-1 in colorectal adeno-
mas, suggested a possible role of these molecules in progression of benign tumors. 
There was an inverse correlation between heparanase-2 and syndecan-1, as well as 
heparanase-1 and heparanase-2, while heparanase-1 and syndecan-1 showed a direct 
correlation [138]. The inverse correlation between heparanase-2 and heparanase- 1 in 
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benign colorectal tumor suggests that heparanase-2 may be related to good progno-
sis since heparanase-1 is directly involved in tumor metastasis.

Zhang and coworkers reported that heparanase-2 represents a favorable progno-
sis in colorectal cancer, observing intense cytoplasmic labeling of heparanase-2 in 
gastric cancer compared to non-neoplastic tissue; however overexpression of hepa-
ranase- 2 indicated higher survival of patients affected by such neoplasm [139]. 
Otherwise, among tissues collected from patients with colon carcinoma heparanase-
 1 was overexpressed specifically in cases of tumor metastasis, indicating that the 
most poorly differentiated carcinoma tissues presented the highest expression of 
heparanase-1 [140]. Thus, while heparanase-1 appears to be directly related to met-
astatic tumors, heparanase-2 appears to be overexpressed in benign tumors and does 
not increase in more advanced stages. The expression of both heparanase-1 and 
heparanase-2 isoforms (heparanase-2a, 2b, and 2c), was determined in plasma sam-
ples from 21 patients with gastrointestinal cancer and 43 healthy individuals. The 
results showed a significant increase in all heparanase species in the plasma of can-
cer patients compared to the control group. Additionally, the enzymatic activity of 
heparanase-1 was increased in all individuals affected by cancer compared to the 
control group [141], suggesting a potential noninvasive new diagnostic assay to 
detect both heparanase-1 and heparanase-2.

36.3.5  Breast Cancer

The interactions between tumor cells and ECM components are essential during 
invasion and metastasis. Tumor cells must destruct the basement membrane in order 
to be able to migrate into the connective tissue. Degradation of the ECM and base-
ment membrane releases HS-bound active cytokines, growth factors, and  angiogenic 
factors. In fact, degradation of HS chains by heparanase-1 generates oligosaccha-
rides that intensify the action of such growth factors, cytokines, and angiogenic 
factors, thus inducing cellular proliferation, inflammation, and formation of new 
blood vessels, contributing to the carcinogenic process. While heparanase- 2 lacks 
HS-degrading activity, it has a high affinity towards heparan sulfate, which can alter 
ECM dynamics leading to deregulated cancer cell proliferation and invasion. In 
fact, decreased heparanase-2 expression appears to represent an excellent diagnostic 
marker for the molecular subtypes of luminal A, luminal B, and triple negative 
breast cancer. Therefore, heparanase-2 by interacting intensively with HS chains 
prevents the deleterious action of heparanase-1. It was reported that heparanase-2 is 
downregulated in tumor tissues from patients with luminal A, luminal B, and triple 
negative breast cancer compared to non-neoplastic tissue, while metalloprotease-11 
was overexpressed in all subtypes of breast cancer [142].

The evaluation of infiltrating ductal adenocarcinomas (metastatic and non- 
metastatic adenocarcinomas) evidenced a significant decrease of heparanase-2 
[143]. Heparanase-2, as well as heparanase-1, are overexpressed in the mononuclear 
fraction of peripheral blood cells in patients with breast cancer. Circulating lympho-
cytes obtained from healthy individuals when incubated with plasma from patients 
with breast cancer express a significantly higher amount of both heparanases [144]. 
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The mechanism of induction of heparanase-1 and heparanase-2 expression in circu-
lating lymphocytes appears to be mediated by heparan sulfate secreted by tumor 
cells, proving a cross-talk between the tumor, tumor microenvironment and circulat-
ing lymphocytes [92].

36.3.6  Cervical and Endometrial Cancer

Immunohistochemical analyses showed a progressive increase of heparanase-2 
according to the severity of cervical lesions comparing low-grade squamous intraep-
ithelial lesions and invasive carcinoma, while the group of non-affected individuals 
presented lower expression of heparanase-2. This study revealed that heparanase-2 
can be used as an auxiliary biomarker and contribute to improving the histopatho-
logical diagnosis of benign cervical lesions [145]. Labeling of heparanases in 
 endometrial tissue has demonstrated that while heparanase-1 strongly targets 
advanced cancer in glandular tissue, heparanase-2 revealed strong staining at the 
endometrial stroma that is not affected by neoplasia [146]. Again, these results cor-
roborate the notion that heparanase-2 is involved in early stages of tumor develop-
ment and is present in benign tumors.

36.3.7  Ovarian Cancer

There was no significant difference in heparanase-2 expression between benign and 
malignant ovarian tumors, indicating that heparanase-2 is not exclusive for malig-
nant tumors [147]. Interesting data were obtained using fertilization methods that 
involve superovulation. Fertilization induces the expression of several genes which 
participate in endometrial remodeling and affect trophoblast migration, embryo 
implantation, and endovascular invasion. A study that evaluated genes related to 
superovulation showed a significant reduction in heparanase-2 expression [148].

36.3.8  Bladder Cancer

Immunohistochemical analysis revealed that Heparanase-2 is expressed by bladder 
normal transitional epithelium and its expression level decreases substantially in 
bladder cancer. Notably, tumors that retain high levels of heparanase-2 have been 
diagnosed as low grade and low stage, suggesting that Hpa2 is possibly essential to 
preserve cell differentiation and disrupt cellular motility. In vitro, addition of recom-
binant heparanase-2 inhibited bladder carcinoma cell migration. Moreover, tumors 
produced by bladder carcinoma cells that overexpress heparanase-2 were smaller and 
of lower grade than tumors produced by mock-transfected cells [149]. Interestingly, 
the expression of Hpa2 in bladder stromal cells correlates with collagen deposition 
and a marked increase in lysyl oxidase (LOX) staining. The association between 
heparanase-2 and LOX expression was clinically confirmed by staining of bladder 
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cancer biopsy samples [149]. In summary, heparanase-2 seems to function in bladder 
tissue to maintain cell differentiation and decrease cell motility in a manner that 
appears to be independent of heparanase enzymatic activity.

36.3.9  Thyroid and Head and Neck Cancer

One of the major challenges for the diagnosis of thyroid cancer is to identify ideal 
markers that can distinguish between differentiated thyroid carcinoma and benign 
lesions. Ultrasound-guided aspiration is the most appropriate method to evaluate 
thyroid nodules. However, a significant percentage of the cytological examination 
has an indeterminate classification with malignancy proportions ranging from 10 to 
30%. The anatomopathological evaluation of tissues obtained by surgical resection 
allows good diagnosis, but in this case, the patient has already undergone thyroidec-
tomy, and often the thyroid ablation was unnecessary because the tumor is benign. 
Heparanase-2 seems to be an excellent marker to differentiate benign tumors from 
malignant thyroid tumors. Intense labeling of heparanase-2 in the colloid secreted 
by follicular thyroid cells along with negative stroma staining characterizes benign 
tumors. Conversely, negative colloid staining and intense labeling of the extracel-
lular matrix by heparanase-2 indicates differentiated thyroid carcinoma [150].

Levy-Adam and coworkers proposed an elegant model of heparanase-2 action 
and demonstrated that the interaction of heparanase-2 with HS induces inhibition of 
heparanase-1 activity [116]. Cells obtained from head and neck tumors that overex-
press heparanase-2 are abundantly decorated with stromal cells and collagen depo-
sition, correlating with a marked increase in lysyl oxidase expression. In this study, 
it was observed that the enzymatic activity of heparanase-1 was not affected in cells 
that over-express heparanase-2, suggesting that reduced tumor growth is not due to 
the regulation of heparanase-1 by heparanase-2. Furthermore, the growth of xeno-
grafts that overexpress heparanase-2 was unaffected by administration of anti-Hpa2 
monoclonal antibodies that inhibit the interaction of Hpa2 with HS, together indi-
cating that the function of heparanase-2 does not depend on heparanase-1 activity or 
HS binding [151]. Hpa2 overexpression in head and neck cancer cells markedly 
reduces tumor growth due to inhibition of vascularization. Restrained tumor growth 
was associated with a prominent decrease in tumor vascularity (blood and lymph 
vessels), likely due to reduced Id1 expression, a transcription factor highly impli-
cated in VEGF-A and VEGF-C gene regulation [151].

36.3.10  Heparanase-2 and Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disease with a high incidence that causes 
progressive loss of memory and cognitive dysfunction and causes death due to chronic 
complications. Alzheimer’s disease is caused by abnormal accumulation of cytotoxic 
peptides called amyloid-β (Aβ) that form senile plaques and intracellular accumula-
tion of hyperphosphorylated forms of the microtubule-associated tau protein. HS pro-
teoglycans favor Aβ or tau fibrillization and promote resistance to proteolytic 
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degradation of such protein aggregates [152]. Both heparanases (heparanase-1 and 
heparanase-2) are overexpressed and co-localized with Aβ aggregates in degenerate 
neurons and are also present in the extracellular matrix at different stages of 
Alzheimer’s disease. While heparanase-1 is present in fragmented nuclei of senile 
plaques composed of β-amyloid deposition, heparanase-2 is found around senile 
compact plates [153].

Studies have shown that the enzymatic activity of heparanase-1 appears to decrease 
β-amyloid deposition or block the intracellular formation of tau fibrils by promoting 
degradation of HS chains, whereas heparanase-2 seems to act as a  heparanase- 1 
inhibitor, competing for HS binding. Thus, it appears that both heparanases are 
involved in Alzheimer’s disease [154, 74] (Li and Zhang, Chap. 25 in this volume).

36.3.11  Heparanase-2 as a Tumor Suppressor

Cancer is caused by sequential pathological variations or mutations, the transforma-
tion of proto-oncogenes into oncogenes and loss of function of tumor suppressor 
genes. However, it is also important to consider epigenetic changes that may alter 
the expression pattern of certain genes. Such epigenetic changes include DNA 
methylation as well as histone modifications. The complex between histones and 
DNA comprises the structural unit of chromatin. The organization of chromatin is 
regulated in part by post-translational modifications of histones. The complex of 
proteins called Polycomb act as transcriptional repressors that promotes the silenc-
ing of specific genes by chromatin modifications. Specifically, EZH2 protein 
belonging to the Polycomb complex is capable of promoting methylation of Lys27 
residues of histone H3, leading to repression of target genes [155]. Together, the 
Polycomb complex plays central roles in epigenetic silencing of stem cell target 
genes, tumor metastases, and cancer [156–158]. Target genes of the Polycomb com-
plex have been extensively investigated. In a study that evaluated the signature 
repression of the Polycomb complex in metastatic prostate cancer, 87 genes were 
described as down-regulated genes that were associated with worse clinical progno-
sis. Strikingly, HPSE-2 gene expression is repressed by the Polycomb complex, 
strongly supporting the tumor suppressor activity of heparanase-2 [156].

36.4  Conclusions

HPSE gene is located on chromosome 4q21.2 and the enzyme heparanase (Hpa-1) 
degrades HS chains and plays a role in the normal turnover of HS proteoglycans. 
The oligosaccharides generated by heparanase at the cell surface and ECM lead to 
a cascade of cellular events that affect a diversity of physiological processes, such 
as cell growth, adhesion, migration, and death. Hence, heparanase is being impli-
cated in diverse cellular systems, including inflammation, neovascularization, tissue 
remodeling, carcinogenesis, tumor cell metastasis, and blood coagulation. 
Additionally, heparanase acts as a regulator of the syndecan-syntenin-exosome bio-
genesis pathway and enhances exosome secretion. Inhibitors of heparanase include 
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chemically modified heparins, small molecules, natural products, synthetic oligo-
nucleotides, and neutralizing antibodies, and some of these compounds are cur-
rently in clinical trials and have been produced as novel cancer therapeutics.

Heparanase-2 is located on chromosome 10q23–24, and coding region alignment 
with heparanase-1 showed 40% identity. Additionally, heparanase-2 has no enzymatic 
activity but has a higher affinity for HS compared to Hpa-1. Heparanase-2 appears to 
be overexpressed in benign tumors and less aggressive tumors. Apart from attenuation 
of heparanase-1 enzymatic activity, heparanase-2 inhibits neovascularization medi-
ated by VEGF, independent of heparanase-1 modulation and HS binding. The fact 
that the HPSE2 gene is located in a chromosomal region susceptible to loss of hetero-
zygosity, and is under the control of the Polycomb complex, strongly suggests that 
HPSE2 may function as a tumor suppressor. It also plays important roles in embryo-
genic development and survival. Altogether, heparanase-2 may be looked upon as a 
beautiful swan, while heparanase-1 is the ugly duckling (Figs. 36.1 and 36.2).

Fig. 36.1 Interaction of heparan sulfate with heparanase-1 and heparanase-2. Both heparanases 
interact with heparan sulfate side chains of proteoglycans (HSPG) at the cell surface and extracel-
lular matrix. Heparanase-1 binds and degrades HS chains generating oligosaccharides with high 
affinity to growth factors, cytokines, and angiogenic factors, affecting cell proliferation, cell migra-
tion, angiogenesis, and inflammation. Heparanase-2 binds with high affinity to HS chains but does 
not cleave them. Heparanase is also involved in the lysosomal turnover of HSPG. Heparanase-2c is 
the only variant capable of being secreted, possibly because it contains specific glycosylation sites, 
that are absent in Hpa2a and Hpa2b. heparanase-2 is does not promote the internalization of HSPG.
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