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Device-Related Infections

Paul Renick and Liping Tang

Abstract  Device-related infection is responsible for a quarter of all health care-
associated infections and can even compromise device function. These infections 
are caused by the colonization of microorganisms during the implantation processes. 
Unfortunately, the treatment option for device-related infection is limited. To make 
the situation worse, some of these organisms form biofilms that cover the device 
surface notably weakening the effectiveness of antimicrobial treatments. This chap-
ter summarizes our current understanding of the pathogenesis of device-related 
infection. It also discusses our knowledge of the processes governing the formation, 
regulation, and resistance of biofilms. Finally, we introduce several new methods 
developed for diagnosing and treating biofilm infections on medical devices.
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�Introduction

Medical devices have transformed health care significantly improving the lives of 
patients. The incorporation of medical devices for treatment have restored mobility, 
regulated or restored body functions, and permitted easy and relatively painless 
drug delivery. Examples of these devices include: cardiac implants (pacemakers, 
vascular grafts, cardiac valves, etc.); central and peripheral vascular catheters; endo-
tracheal tubes; contact lenses; tissue fillers/breast implants; orthopedic and pros-
thetic implants; and urinary catheters [1]. Unfortunately, implanting devices can 
result in the introduction of normally benign flora or pathogenic organisms resulting 
in infection and compromising device function. This represents a significant bur-
den  on the health care system and causes significant morbidity and mortality.  
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Device-related infections account for 25.6% of all health care-associated infections 
in the USA [2] and a 6.4% prevalence in England with 1,000,000 reported per year 
[3]. The routes of infection include surgical implantation procedures, placement of 
devices in extended contact with mucous membranes and hematogenous seeding [4, 
5]. Causative organisms include Gram-positive bacteria such as Staphylococcus 
aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Coagulase-
negative Staphylococci (CoNS), Streptococcal species, Enterococcus faecalis 
(E. faecalis), and Enterococcal species. S. aureus and S. epidermidis are known to 
make up the majority of prosthetic implant infections [2, 3]. Commonly isolated 
Gram-negative species include Pseudomonas aeruginosa (P. aeruginosa), 
Escherichia coli (E. coli), Proteus miriabilis (P. miriabilis), and Klebsiella pneu-
moniae (K. pneumoniae) [1, 3, 6]. In addition to bacteria, yeasts, especially the 
Candida species, can play a role in these infections [6].

Further complicating device infection is the formation of biofilms by the infect-
ing organisms. A biofilm is a highly organized aggregate of bacteria (or yeast) 
attached to a surface or each other that secretes hydrated extracellular polymeric 
substances (EPS). The EPS is composed of polysaccharides, extracellular DNA, 
and proteins. Biofilms are known to exhibit community behavior, communicating 
and regulating gene expression in the biofilm by quorum sensing molecules. The 
biofilm aggregate represents a defense against hostile environments (chemotherapy, 
immune response, and predation) enabling the survival of the microorganisms in the 
biofilm [7–14]. Biofilm formation on devices occurs in several steps: attachment to 
conditioned implant surfaces, microcolony formation, maturation and dispersal [2, 
6, 8, 10, 11, 15–18]. A graphical summary of these traits is shown in Fig. 1.

Fig. 1  A summary of the complexity of biofilms illustrating the colonial and organized nature 
of this type of infection. Reprinted with permission from Springer Nature, Nature Reviews 
Microbiology, Hall-Stoodley et al. (2004) [11] Copyright 2004
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�Implant Surface Conditioning

Immediately after implantation, medical devices are rapidly coated with host pro-
teins, specifically plasma proteins that condition the surfaces of the implants. A 
majority of the implant devices attract hydrophobic proteins like albumin, immuno-
globulin IgG, and fibrinogen. Once in contact with these surfaces, the proteins can 
either maintain a configuration similar to the configuration in the liquid phase or, 
due to conditions in the local environment, unfold and denature exposing occult 
epitopes to the immune system enhancing inflammation at the implant site [19]. An 
example of this is the binding and conformational change of the serum protein 
fibrinogen. In Tang et  al. [20], it was demonstrated that fibrinogen underwent a 
time-dependent conformational change, exposing the occult sequences P1 and P2. 
These epitopes enhanced the recruitment of phagocytic cells to the implant, increas-
ing levels of inflammatory cytokines, suggesting that these two epitopes are linked 
to fibrotic reactions [20]. In this background of inflammation and surface coating, 
bacteria have developed a means to exploit and bind to these host proteins that coat 
implanted materials. Figure 2 shows an image of S. aureus biofilm that has formed 
on a host-conditioned catheter segment.

�Bacterial Adhesion to Surfaces

Bacterial adhesion is a two-step process with a primary adhesion step (“docking”) 
and a secondary adhesion step (“locking”) [16]. The first stage of adhesion is ran-
dom with the organism arriving at the surface by chance. This process occurs by 
physiochemical interactions (hydrophobic, electrostatic, van der Waals forces, tem-
perature, and hydrodynamic forces). These interactions are reversible and can be 
altered by environmental conditions and depend on the net sum of attractive and 
repulsive forces over a critical proximity to the surface [16]. Overall, electrostatic 
interactions favor repulsion based on bacterial and surface-negative charges, while 
hydrophobic interactions drive primary adhesion [16, 21]. The secondary adhesion 

Fig. 2  SEM images of Staphylococcus aureus biofilms on the surface of Teflon-coated catheters 
established in a mouse model of biofilm infection. The panel on the left shows the biofilm (gray 
arrow) adhered to the catheter surface (black arrow). The right-hand image shows the individual 
staphylococci (gray arrow), matrix (white arrow), and host immune cells (black arrow)
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or “Locking” is facilitated by receptor–ligand reactions between the bacteria and 
the surface. This step of adhesion is permanent unless disrupted by mechanical and 
physical means. Once this secondary binding is complete, the process of biofilm 
formation begins [2, 8, 16]. Figure 2 shows a scanning electron microscopy (SEM) 
established biofilm on a Teflon-coated catheter segment.

Binding to abiotic surfaces by bacteria is driven by nonspecific means such as 
electrostatic, hydrophobic and hydrophilic interactions mentioned above but differ-
ent mechanisms come into play on conditioned surfaces [2, 8, 16, 21, 22]. In the 
case of device-related infections, the bacteria encounter surfaces that are precondi-
tioned by host proteins. Bacteria have developed a wide array of adhesion that can 
exploit collagen, fibronectin, fibrinogen, and lectin and can express a variety of 
surface-active compounds (SACs) to aid in attachment [16, 21, 23]. S. epidermidis 
has been demonstrated to have competitive binding for fibronectin with heparin [22] 
and the ability of S. aureus to bind to a variety of epitopes including fibrinogen, col-
lagen, and bone sialoprotein is well documented [23–26]. There is evidence that 
suggests E. coli and Pseudomonas aeruginosa can alter their surface hydrophobic-
ity by the secretion of SACs [21]. Pseudomonas aeruginosa expresses PA-IL and 
PA-IIL which recognize host glycans [27]. Other bacteria cell surface features that 
initiate or aid in binding include flagella, lipopolysaccharides (LPS), fimbrae, 
mycolic acids and lipopolysaccharides [8]. Additionally, their context and environ-
mental conditions can result in distinct adhesion coming into play to aid with sur-
face attachment. The El Tor strain of Vibrio cholera when in contact with borosilicate 
uses a mannose-sensitive hemagglutinin not associated with pathogenicity to bind 
to these surfaces. In contrast with this, when the bacteria comes in contact to chitin, 
a virulence-associated toxin-coregulated pilus is used to attach and begin biofilm 
formation [28]. Another feature of some of these adhesions is that they are transcrip-
tionally regulated and are expressed either during the planktonic or sessile phases of 
life. Polysaccharide intercellular adhesion (PIA) expressed by S. epidermidis is an 
example of these transcriptionally regulated inhibitors. Interruption of the icxADBC 
operon controlling the expression of PIA results in impaired adherence mutants, 
while expression in a deficient strain enables attachment to surfaces [16, 29–31]. 
The binding of organisms to surfaces can also promote the adhesion of other organ-
isms to the surface and each other [32]. For example, Leung et al. demonstrated in 
an in vitro biofilm model that colonization of biliary stents by E. coli enhances the 
binding of Enterococcus [32].

�Biofilm Formation

After adhesion to the surface, bacteria form microcolonies composed of single and 
multiple species of bacteria, alter their phenotypes to a sessile existence, and begin 
to express EPS. The maturing biofilm develops stratified structures with nutrient 
channels and differing zones of metabolic rates and genomic expression giving rise 
to a situation analogous to tissues in higher organisms [15, 33]. As the high densities 
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of cells limit the rate of growth and nutrients [15], biofilms display altruistic and 
cooperative properties [34]. In multispecies biofilms, different species can utilize 
alternative catabolic pathways and feed off the metabolites of other species [34, 35]. 
The resulting microenvironments with the developing biofilm result in different 
growth responses and gene expression by the bacteria ultimately resulting in struc-
turally complex mature biofilms [33]. Environmental stresses placed on the forming 
biofilm can speed the development of the biofilm. In both S. aureus and S. epider-
midis, the main polysaccharide in the matrix is PIA, which is expressed via the 
icxADBC operon. In response to environmental stresses such as antibiotic treat-
ment, osmolarity, alcohols, low oxygen, low nutrients, and heat lead to increased 
expression of PIA and more rapid matrix development [2, 29, 30]. The rate of liquid 
flow and sheer stress also can result in modifications to the amount of the matrix 
produced depending on the vascularization and location in the body. Increased lev-
els of PIA are present in S. epidermidis catheter infections compared to other lower 
shear environments [2]. After maturation, complex signaling within biofilms can 
result in the dispersal of planktonic bacteria and can occur actively or passively [11, 
15, 17]. Passive dispersal of biofilms occurs because of abrasion, fluid shear (ero-
sion and sloughing), predator grazing, and medical intervention [15, 17, 33]. Active 
dispersal is initiated by the biofilms in response to environmental or signaling cues. 
These cues include changes in nutrient levels, quorum sensing molecules, chemical 
signals, and cyclic dimeric guanosine monophosphate (GMP) [17]. Active biofilm 
dispersion allows the bacteria to colonize other surfaces and serves as a survival 
mechanism [15, 17, 33].

�Quorum Sensing and Biofilm Regulation

Bacteria regulate physical processes and cooperative efforts via small molecule 
autoinducers that are expressed at a basal level during growth in a process known as 
quorum sensing (QS) [8, 11, 18, 36, 37]. These molecules allow coordination of a 
response in a population-dependent manner by the activation or repression of gene 
expression. The localized QS molecules are directly related to the population 
density and only induce behavior in locally high concentrations of bacteria [18, 36, 
38]. Currently, there are three classes of QS molecules with example systems and 
functions showing in Table 1. For a more comprehensive review of these systems, 
see references (18, 36–39).

Table 1  The three classes of quorum sensing molecules used by bacteria

Bacteria Signaling molecule Example system Function

Gram-negative Acyl Homoserine Lactones LuxI/LuxR Bioluminescence
Gram-positive Small peptides Agr Virulence factors
Both Gram-negative 
and Gram-positive

AI-2 LuxS Interspecies 
communication

The AI-2 signaling molecules are unique in that they allow for cross-species communication
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QS molecules are known to play a role in biofilm formation and regulate societal 
traits such as competence, sporulation, virulence factors, structural formations, dis-
persion, antimicrobial expression, fratricide, bioluminescence, and symbiosis [18, 
39]. QS molecules are reported to be involved in altruistic cooperative group bene-
fits even when confronted with other bacteria that would exploit this altruism. 
An example would be a trade-off in growth rates where slow rates with a high yield 
are ultimately better for the population than a fast growth rate with low yield. 
The higher yields suggest a more efficient use of resources even at the expense of 
individual bacteria [18, 34]. The modulation of virulence factors by QS molecules 
implicates them in the biofilm formation and infection processes. Multiple species 
of bacteria do not express virulence factors until a critical concentration of bacteria 
is reached allowing them to collectively avoid the host immune system [39–42]. 
While QS systems can be extremely precise, there is also a certain degree of leaki-
ness in these communication systems allowing cross talk between species [36]. In 
cystic fibrosis infections, P. aeruginosa can upregulate virulence factors in response 
to intercepting AI-2 signals from nonpathogenic oropharyngeal flora [41]. Another 
cystic fibrosis pathogen, Burkholderia cepacia, can intercept P. aeruginosa QS sig-
nals and upregulate its virulence factors to establish infection [37, 41]. Species cross 
talk between Haemophilus influenzae and Moraxella catarrhalis can help establish 
chronic infections and resistance in polymicrobial otitis media [43].

�The EPS Matrix

The essential part of the biofilm is the production of an EPS matrix which comprises 
roughly 90% of the biomass of the biofilms [44]. The EPS represents both a habitat 
and a fortress for the bacteria encased within. The organization of the matrix 
depends on the structural components within the matrix and the metabolic activity 
occurring within the biofilm [10]. The largest component of the matrix is water 
comprising up to 97% of the matrix with the remaining bulk of the materials being 
composed of soluble components like polysaccharides, proteins, and 
eDNA. Insoluble matrix components include amyloids, cellulose, pili, flagella, and 
fimbriae [9]. The physical distances between microcolonies during the initial for-
mation result in voids that ultimately become pore and channels which facilitate 
nutrient and liquid transport within the biofilm [9, 10]. The formation of the matrix 
results in emergent properties that help the biofilms survive in the environment. The 
matrix provides localized gradients allowing for different populations of bacteria to 
survive various niches and utilize different metabolic pathways for survival. The 
material of the matrix also functions to absorb resources from the surrounding envi-
ronment. The matrix also serves to sequester secreted enzymes resulting in a de 
facto external digestive system. This environment enables social behavior between 
bacterial species, both cooperative and competitive [10, 18, 35]. Since the matrix is 
a semisolid gel, the matrix can also form a skin and retain water protecting the bio-
film from dehydration. Its gel-like nature also allows the migration of bacteria in the 
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biofilm and in some cases can represent population efforts that parallel the division 
of labor [9, 10]. A key advantage of matrix formation is tolerance and resistance 
from chemotherapy, host defenses, and predation by Protista [45].

�Biofilm Resistance

One of the prime advantages of the EPS matrix is the protection from antimicrobi-
als, the immune system, and predators. In some cases, it has been noted that to affect 
biofilms sometimes up to 1000-fold or more, antibiotics are required to kill the 
planktonic form of the same bacteria [46]. Biofilm resistance is a multifactorial 
process involving the biology, chemistry, and physics of the biofilm [12]. The fac-
tors that have been associated with the increase in antibiotic resistance are gradients 
(oxygen, nutrients, slowed agent diffusion, etc.) stress responses, gene expression 
(resistance factors), dormancy, and tolerance [3, 7, 8, 10–13, 15, 47, 48]. Gradients 
present in the biofilm can result from the diffusion of agents into the biofilm result-
ing in sublethal concentrations of antibiotics selecting for resistance. Gradients in 
nutrients and oxygen lead to zones of decreased metabolism and dormant bacteria 
[10, 48]. The slowing metabolism of these phenotypes can affect antimicrobials that 
require active cellular metabolism for efficacy [49–51]. The enzyme sequestering 
effects of the matrix can lead to antimicrobial deactivation and the matrix compo-
nents can complex with antimicrobials leading to chelation and precipitation of 
these agents [10]. Close proximity of bacteria in a biofilm facilitate horizontal gene 
transfer of resistance mechanisms, especially under conditions of environmental 
stress [2, 7, 52]. In addition, preexisting drug resistance could be present in biofilms. 
One of the most commonly used agents to treat biofilm infections is the ansamycin 
antibiotic rifampicin. While highly efficacious, this RNA synthesis targeting agent 
requires a single mutation in the rpoB gene to confer resistance. In vitro resistance 
determination studies have found that the frequency of mutation conferring rifampin 
resistance is between 10−7 and 10−8 [53–55]. Base on this frequency, if the biofilm 
being treated has a population of 109 cfu, then by random chance there are approxi-
mately 10–100 bacteria that have the mutation conferring rifampicin resistance. 
Thus, monotherapy treatment with antibiotics will result in enrichment of the mutant 
population and addressing this requires extended therapy with drug cocktails to 
avoid this enrichment [56–58]. A final source of biofilm resistance is the subpopula-
tion of persister cells that develop in biofilms. This cell phenotype can survive high 
levels of antibacterials while lacking any specific resistance mechanisms [7, 47, 59]. 
These dormant cells can survive blocking the activity of antibacterials by depriving 
them of targets through metabolic inactivity and remain dormant [47]. Eventually 
when environmental conditions permit, these cells will emerge from dormancy and 
proliferate. The exact mechanisms of persister formation are unknown but current 
theories center on toxin and antitoxin systems (TA) [47, 60]. The five classes of TA 
systems are composed of a stable protein toxin that disrupts an essential metabolic 
function and a labile antitoxin which is coded in an operon (see Table 2).
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This arrangement results in tight co-transcription and translation [60, 61]. One of 
the key drivers of persister formation is environmental stress, especially antibiotic 
treatment. It is believed that the TA system activity is modulated by the (p)ppGpp 
signaling nucleotide and that persister cells can spontaneously form in bacterial 
populations [61].

Biofilms are also highly resistant to clearance by the immune system. When a 
device is implanted, especially internal implants, the procedure can result in local-
ized acute and chronic inflammation which can lead to a foreign body reaction. The 
implantation results in localized acute and chronic inflammation plus a foreign body 
reaction to the implant [2, 19, 20]. Ultimately a fibrous capsule forms around the 
implant resulting in a zone of suppressed immune response know as a locus minoris 
resistentiae which can increase the chance of infection and biofilm formation [2, 62, 
63]. Studies have also uncovered that biomaterial implants can also alter immune 
cell responses. The implanted biomaterial can activate the complement system, 
platelets, and neutrophils. Chronic inflammatory responses may lead to neutrophil 
exhaustion, depletion of oxidative species and “frustrated phagocytosis” while other 
demonstrate that leukocytes can react and then penetrate the biofilm [2]. Studies 
performed in animal models with S. aureus suggest that the immune response may 
skew from the traditional pro-inflammatory response to a pro-fibrotic response. The 
S. aureus biofilm was able to alter macrophage responses toward an anti-inflammatory 
response with significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expres-
sion [2, 14]. In addition to dampening the inflammation, S. aureus biofilms have 
been shown to change macrophage responses to the M2 phenotype and immune 
suppressive T cell response by increased expression of Arg1 [64, 65]. S. aureus can 
also induce dysfunction and death in macrophages via various toxins, including 
Leukocidin [64]. Pseudomonas aeruginosa biofilms have been found to suppress 
neutrophils disrupting the response and reducing neutrophil oxidation potential [66].

�Diagnosis of Biofilm Infections on Medical Devices

Diagnosis of infections on biofilm-infected devices is commonly determined using 
traditional microbial growth means. For orthopedic devices, the device itself is sam-
pled with three to six biopsies of the surrounding tissues [67]. Sonication of the 

Table 2  The five toxin–antitoxin systems with their regulatory elements and mechanisms of 
actions [61]

Type Regulatory element Mechanism of action

I sRNA Binding to toxin mRNA preventing ribosome binding
II Protein DNA binding that suppresses toxin transcription
III RNA–protein complex Toxin function inhibited by interaction with pseudoknots 

antitoxin RNA
IV Protein Blocking of toxin target site on cytoskeletal proteins
V Endoribonuclease Cleavage of toxin mRNA

All of these systems are believed to play an active role in the generation of persister populations 
in biofilms
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devices or samples to remove the adherent bacteria has proven to be superior to 
identifying delayed and late infections compared to a tissue sample, histology, and 
synovial culture [2, 3, 46, 68, 69]. In most cases, removal of the device or sampling 
of the surface and associate materials (respiratory secretions, urine samples, etc.) are 
used to confirm the presence of a biofilm [67]. These conventional methods are not 
without drawback. The main challenge is that it is difficult to survey the presence of 
small colony variants in biofilms on different regions of medical implants. To over-
come such limitations, several new methods have been investigated in recent years. 
For example, indirect methods of diagnosis have been successfully used to confirm 
implant infection including immunoglobulin assays, the inflammatory marker 
C-reactive protein, and histopathological evaluation of samples [70]. Other diagnos-
tic methods include PCR (which can also screen for drug resistance markers) [3, 70], 
next-generation sequencing, fluorescent in situ hybridization (FISH), Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-
TOF) mass spectroscopy, and assay of α-defensin levels in the synovial fluid [2, 67].

Of recent interest has been the incorporation of nuclear medicine in visualization 
of infected implanted devices and foci of infection. These methods have included 
computerized tomography (CT) magnetic resonance imaging (MRI), ultrasound, 
and radionucleotide methods such as Single Photon Emission Computed 
Tomography (SPECT) and Positron Emission Tomography (PET). Current applica-
tions include combinations of both screening modalities to generate anatomical 
information via CT scanning with the labeling data from either SPECT or PET 
(SPECT/CT or PET/CT) [71–73]. CT imaging utilizes X-rays to generate three-
dimensional slices of the target while SPECT incorporates the gamma ray emis-
sions from a radioisotope to show specific areas of interest via the radiolabel’s 
interactions with the target (see Fig. 3). PET looks for the localization of specific 
radioisotope accumulation and measures the emission of gamma photons from posi-
tron annihilations at 511 KeV which results in these photons moving in opposite 
directions. The impact of these photons on detectors results in a simultaneous detec-
tion event that can be used to construct a three-dimensional image of the areas 
where the radioisotopes have accumulated. Many of the combination systems are 
already available from commercial vendors and have seen use clinically [71, 72, 
74–76]. SPECT/CT has been used to visualize a wide variety of infections including 
osteomyelitis, prosthetic joint infections, mixed infections, infectious endocarditis, 
and infected cardiac implant devices [72]. Currently, PET has been used to image 
tumors in cancer patients indirectly by using radiolabels on metabolites that have 
enhanced uptake in tumors or white blood cells (WBCs) migrating to the site of the 
tumor (see Table 3) [77–80]. While these methods have been shown to work, many 
rely on indirect measurements looking at a paired response to infection, such as 
metabolite update and infiltration of immune cells and modulators [79, 81, 82]. 
More direct approaches have recently been successfully attempted using tagged 
antibodies, antimicrobials, and molecules that are utilized by the infecting patho-
gens including the differentiation between Gram-positive and Gram-negative infec-
tions [75, 83–90]. While targeting by antimicrobials and immune cells is a proven 
approach, it must be considered that labeled agents of this type could generate a 
skewed or no signal based on killing of the target. An approach taken by Ordonez 
et al. [91] has used in silico screening to identify radiolabeled molecules that are 
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Fig. 3  SPECT/CT images of infections in two patients with prosthetic hip infections using SPECT/
CT. The upper panels show the emission while the middle panels show the CT images while the 
bottom panels show the superimposed images of 99mTC-HMPAO WBC uptake. Reprinted with 
permission from Springer Nature, Clinical and Translational Imaging, Erba and Israel [72]

Table 3  PET radiolabels used to detect inflammation and infection

Tracer Abbreviation Diagnosis Reference
18F-fluorodeoxyglucose (FDG) 18F-FDG Tuberculosis

S. aureus biofilm 
infection
Bacterial infection

Ankrah et al. [83], 
Neumann et al. [85], 
Ordonez and Jain [87], 
Palestro and Love [74]  
and Signore et al. [76]

18F-labeled glutamate analogs BAY 94-9392
BAY 85-8050

Cancer Koglin et al. [77] and 
Krasikova et al. [78]

Labeled white blood cells 111In-WBCs
99mTc-WBC

Bacterial infection Neumann et al. [85], 
Signore et al. [76]  
and Erba and Israel [72]

d-[methyl-11C]-methionine [11C]-d-Met Bacterial infection Neumann et al. [85]
68Ga-labled phage display 
peptides

68Ga-A9-K-
DOTA

S. aureus biofilm Nielsen et al. [86]

[18F]-fluoropropyl-trimethoprim [18F]-FPTMP Bacterial infection Sellmyer et al. [75]
2-[18F]-fluorodeoxysorbital 18F-FDS Bacterial infection Weinstein et al. [90]

These have been used successfully to identify tumors or infection
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specifically taken up by bacteria and are not antimicrobial. There results identified 
ten promising leads that identified three lead candidates (Para-aminobenzoic acid or 
PABA, d-mannitol, and d-sorbital) that were successful in in vivo testing, specifi-
cally identifying infection sites in a murine model of myositis.

Both the SPECT and PET methods have limitations to their use that must be 
accounted for in the final interpretation of the results and to prevent misdiagnosis. 
With the indirect visualization of infection, distinctions between sterile inflamma-
tion and actual infection must be made with the approach of infection-specific trac-
ers allowing this differentiation [75, 85, 89]. In the cases of combined systems 
(SPEC/CT and PET/CT) allowances must be made for the proximity of the two 
independent screening modalities in the physical design of the device [92] and CT 
measurements have to take into account photon attenuation and correction for scat-
tering. An example of successful imaging is shown in the SPECT/CT scan in Fig. 3 
from two different patients with suspected prosthetic hip infections. The top image 
is the emission of the tracer administered to both patients while the second image is 
the traditional CT scan. The final set of images is the superposition of both of the 
SPECT and CT images. By the combination of these results, the clinicians were 
able to specifically identify that the infection was limited to either the soft tissue and 
posterior aspect of the prothesis or the peri-prosthetic soft tissue. This fusion of the 
imaging technology has further allowed the identification of the cortical, corticome-
dullary, and subperiosteal foci of chronic osteomyelitis with a specificity value of 
89% and a sensitivity of 100% [72, 93]. These results would allow for a targeted 
intervention if surgery and debridement would be required or allow noninvasive 
monitoring of efficacy of pharmaceutical treatment.

�Treatment of Biofilm Infections on Medical Devices

Treatment for device-related infections varies with the type of device and the loca-
tion. In the case of peripheral devices, the easiest course is to remove the device 
and treat the infection with antibiotics [67]. In some cases, central venous cathe-
ters can be kept in place and treated using antimicrobial lock therapy typically 
with combinations of disinfectants and antibiotic at elevated levels above the min-
imum inhibitory concentration (MIC). With implanted devices such as prosthetic 
joints, the timing of the detection is critical. Infections occurring within 3 weeks 
of surgery can be treated with antibiotic therapy with a 70–90% success rate. For 
delayed or late infections, the device is usually removed to ensure that the biofilm 
is eradicated. The gold standard treatment is a two-stage surgical procedure where 
the infected device is removed, and the devitalized tissue is debrided. An antibi-
otic-impregnated filler is placed in the wound and at least 6 weeks of antimicrobial 
therapy is carried out [94]. At the completion of antibiotic therapy, the new sterile 
device is implanted. The success rate for the two-stage procedure is 93–100% [2, 
46, 70]. Antibiotic therapy for the treatment of these infections is typically a com-
bination therapy of rifampin, a fluoroquinolone followed by a glycopeptide [2, 70, 
94, 95]. Other options in the combination therapy include daptomycin, linezolid, 

Device-Related Infections



182

tigecycline, cephalosporins and carbapenems [67], amoxicillin and trimethoprim-
sulfamethoxazole [46].

Due to increasing rates of antimicrobial resistance mechanisms and the inherent 
resistance of biofilms, some novel approaches to dealing with biofilm infection are 
being explored. Therapy using bacteriophages and cocktails of bacteriophages are 
being used against biofilms including phages that lyse the target bacteria and phage-
encoded enzymes to dissolve the EPS matrix [96]. Phages were used as successful 
therapeutic agents by the former Soviet Union and Eastern European countries [97]. 
In 2017, a personalized cocktail targeting drug resistant Acinetobacter baumannii 
successfully cleared a persistent infection in a clinical setting illustrating the utility 
of this therapeutic approach [98]. The incorporation of phage therapy also has been 
reported to enhance the efficacy of antibiotics against S. aureus biofilms in vitro 
[99]. Another novel therapeutic approach being explored is the use of antimicrobial 
peptides (AMPs). AMPs are small positively charged peptides secreted by virtually 
every type of organisms to combat pathogens [100–102]. The AMP Database as of 
2019 contains a total of 3055 entries from all the kingdoms of life (Protista, 
Archaebacteria, Eubacteria, Plants, Fungi, and Animals) [103]. The mode of action 
of these ubiquitous agents is through membrane disruption and depolarization but 
recently evidence has been mounting that there are additional targets within bacteria 
such as translation, transcription, and replication that are affected by these peptides 
[100, 101, 104]. Currently, there are several classes of AMPs used clinically as sys-
temic and topical agents including colistin, polymyxin B, nisin and bacitracin in 
addition to synthetic AMPs in development [104–106].

A challenge posed by is the modification of the environment around the wound 
is that it typically becomes anoxic and mildly acidic (pH 5.0). Acidic pH values can 
both enhance or inhibit the activity of antibiotics [107, 108]. The MICs for genta-
micin against S. aureus increase as pH decreases while the opposite holds true for 
oxacillin [109]. In purulent wounds, the bactericidal activity of ciprofloxacin and 
imipenem is inhibited [110]. A novel approach to adapting agents to this acidic 
environment is the design targeted delivery systems that only activate in these 
mildly acidic conditions. A pH activated targeted delivery system has been tried 
using poly(d,l,-lactic-co-glycolic acid) (PGLA) nanoparticles that were laced with 
PEG to prevent nonspecific interactions. To provide specificity to the target bacte-
ria, a poly-l-lysine was incorporated that becomes a positively charged cationic 
moiety by gaining electrons at an acidic pH. This technology was successfully used 
to deliver vancomycin to S. aureus in an in vitro system [110]. The targeted deliv-
ery concept has also been applied to AMPs. Modification of the Cardin and 
Weintraub heparin-binding sequences (AKKARA and ARKKAAKA) with histi-
dines yielded membrane damaging antimicrobials that only were activated under 
acidic conditions and were active against Gram-negative, Gram-positive, and yeast 
[111]. A similar approach has shown in vivo efficacy against H. pylori infection, a 
causative organism in the generation of stomach ulcers. This pH responsive poly-
peptide AMP was designed with a random distribution of positive and negative 
residues which, under a physiological pH adopted a nontoxic, inactive random con-
figuration. When exposed to acidic conditions, the AMP transitioned to the antimi-
crobial helical configuration [112].
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�Conclusion and Summary

Device-related infection remains to be a major burden on the health care system. 
With the recent improved knowledge on the pathogenesis of bacterial infection, we 
may be able to develop new methods for the detection of bacterial activities and 
eradication of biofilm-encapsulated microorganisms surrounding implanted medi-
cal devices. Equally important is the need for more studies to explore the possibility 
of designing medical device surfaces that can reduce bacterial colonization while 
restoring “normal” antimicrobial responses of immune cells. It is our belief that 
such a biological response-oriented approach will help in the creation of next-
generation medical devices with significantly improved safety and functionality.
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