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Abstract  Bacterial adhesion and biofilm formation on biomedical surfaces remain 
the annoying problems in global public health, causing severe infectious diseases 
and increasing health care costs. Moreover, the continued increase in the number of 
multidrug-resistant bacteria and their fast evolution induce a serious concern with 
the lack of development of new antimicrobials. These problems have initiated 
numerous research efforts to develop more effective antimicrobial surfaces through 
different engineering approaches to prohibit bacterial adhesion and subsequent bio-
film formation. In this review, we summarize the engineering technologies for con-
structing antibacterial surfaces from the conventional to the cutting-edge strategies. 
Most of the traditional methods are based on the antifouling coatings and the release 
of toxic biocides from the chemically modified substrates. Antimicrobial nanopar-
ticles can actively inhibit biofilm formation or other essential processes in the drug 
resistance mechanisms of bacteria. Thus, the combined use of bactericidal nanopar-
ticles and antifouling polymers for functionalized organic–inorganic platforms has 
been investigated to enhance antibacterial performance. In recent years, unique sur-
face topographies of antibacterial, natural surfaces have been discovered and stud-
ied with the increased understanding of the interaction between bacteria and 
substrates. We introduce various natural surfaces and artificial implantable biomate-
rials, which present the bactericidal surface topographies, along with their bacteri-
cidal mechanisms and efficiency. The use of biomimetic, nanotextured surfaces is a 
promising approach to overcome the current challenges for the treatment of 
multidrug-resistant bacteria.
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�Introduction

Surgical procedures with implantation of biomedical devices have saved and 
improved the quality of life of numerous patients. The implantable medical devices 
are being used in many different parts of the body including orthopedic, cardiovas-
cular, ophthalmic, or gastroenterological implants for various applications [1]. 
Given applications, diverse types of materials used for the medical implants and 
devices have been developed, ranging from pure metals, metal alloys, ceramics to 
polymers. Mechanical properties, corrosion resistance and biocompatibility of the 
materials, as well as fabrication methods and processing costs, are the key parameters 
to determine the success of the biomedical implants and devices, which the engineers 
must consider when designing advanced biomaterials.

Despite considerable efforts in developing implantable biomedical devices, the 
infectious problems persist accompanied by bacterial adhesion and growth on the 
surfaces. Bacterial infections are considered a challenge in the global health care 
units, which can lead to life-threatening problems or incurring substantial costs. 
Therefore, preventing bacterial adhesion and colonization of the surfaces of bio-
medical implants and devices is essential to mitigate pathogenic bacteria-associated 
infections. To create antibacterial properties of biomaterials, many researchers 
mainly focus on the development of surface features that are unfavorable for bacte-
rial attachment and growth by engineering surface chemistry or physical textures. 
Herein, we review several engineering approaches to develop biomedical implants 
and devices for antibacterial performance by using diverse surface treatments with 
chemical or physical ways. The antibacterial surfaces can be achieved by three 
major categories: (1) sustained release of antibacterial agents, (2) repelling bacterial 
adhesion (antifouling), and (3) contact-killing.

First, antibacterial coatings with antibiotics, antimicrobial nanoparticles, or anti-
fouling polymers have been widely used as one of the global strategies to inhibit 
bacterial infections by mitigating colonization [2]. We introduce several surface 
coatings using functionalized polymers (section “Surface Coatings Using 
Functionalized Polymers”), antimicrobial nanoparticles, and inorganic-organic 
hybrids (section “Surface Modification with Antimicrobial Nanoparticles and/or 
Inorganic–Organic Hybrids”), from traditional to recent approaches. The coating 
methods with functional molecules aim at preventing bacterial adhesion through 
antifouling surfaces or the controlled release of antibacterial agents from a chemical 
point of view. The chemical modification has advantages of the versatility to apply 
diverse materials, regardless of substrate macrostructure, and  relatively easy and 
low-cost fabrication process. Nonetheless, coatings can have challenges of the pos-
sibility of drug resistance, delamination, and/or functionality loss due to thermal, 
hydrolytic, or solvent-induced degradation.

We can learn the lessons from Nature to design antibacterial surfaces without 
additional chemical treatments. Indeed, biomimetics has inspired many researchers 
in an interdisciplinary field of engineering, chemistry, and biology to develop new 
advanced materials that mimic outstanding biological, natural functions. In section 
“Biomimicry Toward Advanced Antimicrobial Surfaces,” we review several gripping 
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natural surfaces (e.g., insect wings, herb leaves, and animal skin), which display 
excellent antimicrobial properties, and summarize critical features that result in the 
reduced bacterial adhesion or the increased killing efficacy. We also discuss recent 
engineering techniques to fabricate artificial structures that mimic such natural sur-
faces with high antibacterial efficiency in section “Nature-Inspired, Nanostructured 
Surface Development for Antibacterial Properties.” Several studies to understand 
the relationship between surface structure and bacterial adhesion are introduced 
along with the efforts to discover the most appropriate materials and methods for 
each practical use.

It would be feasible to apply the approaches discussed in this chapter for making 
a perfectly sterile environment in the surgical operating rooms by realizing desired 
surface properties of surgical tools and tables, monitoring equipment, injection 
tubes, and drapes. However, translational studies to utilize the surface engineering 
strategies for the clinical studies and the practical uses remain, which requires a col-
laborative effort from material researchers, engineers, medical doctors, and regula-
tory agencies. The multidisciplinary research and development will be the next step 
toward advanced antibacterial biomaterials design and application. Next-generation 
biomedical implants and devices should also exhibit multi-functionalities, long-
term stability, and enhanced therapeutic properties, in addition to antibacterial prop-
erties. We review the current challenges in the latest generation of antibacterial 
surfaces and propose future respective in section “Prospective Approaches.”

�Engineering Strategies to Create Antibacterial Surfaces 
on Biomedical Implants and Devices

Advances in biomedical engineering have been driven by the development of new 
biomaterials including therapeutic agents, implants with desired mechanical proper-
ties and improved corrosion resistance, and de novo functional small molecules or 
polymers. Notably, the biological properties of materials, which include biocompat-
ibility, biofouling effect, biodegradability, or cytotoxicity, are directly linked to the 
surface properties. In other words, the interaction of bacterial cells with biomaterials 
at surfaces dictates the cell fates, which controls adhesion, colonization, and the cor-
responding infections [3]. Given a systematic understanding of the surface–bacteria 
interactions, we can rationally design new classes of biomedical implants and devices 
and engineer their surface properties to inhibit bacterial cell adhesion and growth 
while promoting profitable cell growth.

This chapter reviews a variety of engineering strategies to create antibacterial 
surfaces on biomedical implants and devices in the two main categories: (1) chemi-
cal surface coatings and modifications and (2) physical surface texture develop-
ments. We summarize the surface fabrication methods from traditional approaches 
to recent events with a discussion of possible mechanisms of cell adhesion and 
growth on the engineered surfaces. Moreover, we highlight several examples of 
antibacterial surfaces in nature, which inspire to the next-generation engineers for 
advanced antifouling, bactericidal surface developments on artificial materials.

Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants…
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�Surface Coatings Using Functionalized Polymers

Polymers have been actively explored as advanced coating materials for a myriad of 
biomedical applications, based on the molecular tunability (i.e., molecular weights, 
chemical properties of pendent groups, chain flexibility, and so on) and the corre-
sponding diverse functionalities [4]. Several coating techniques of polymers on 
metals or metal alloys, for instance, layer-by-layer deposition [4], conventional 
organic coatings (e.g., dipping, spinning, spraying) [5], or brush formation [6], 
enable functionalization and protection of the surfaces from corrosive or other stim-
uli attacks.

Proteins are adsorbed on the implanted material surfaces by forming a thin layer 
in blood, leading to the promotion of bacterial cell attachment. Thus, for an effective 
antibacterial surface, it is essential to impart antifouling properties that repel pro-
teins and bacteria at the surfaces. First, we highlight widely used polymers as coat-
ings to prevent nonspecific protein adhesions on medical implants in section 
“Antifouling Polymer Coatings to Prevent Bacterial Adhesion” (i.e., passive 
approaches). Additionally, we can avoid bacterial infections by coating the surfaces 
with antibiotics or antimicrobial nanoparticles that can kill adhered, pathogenic 
microorganisms (i.e., active approaches). Functionalized polymer coatings that 
release such antibacterial agents can improve the bactericidal performance of the 
biomedical surfaces. In section “Bactericidal Activity of Functionalized Polymer 
Coatings,” we introduce surface coating strategies based on functionalized poly-
mers with such active antibacterial properties.

�Antifouling Polymer Coatings to Prevent Bacterial Adhesion

To achieve an effective antifouling coating for the bacteria-repellent property, anti-
fouling polymers such as zwitterionic [7], peptidomimetic polymers [8–9], or 
poly(ethylene glycol) (PEG) [10] have been widely employed, as shown in Fig. 1. 
The strategy to utilize such antifouling polymers for surface repellency against bac-
teria can be rationalized by the steric repulsion effect and the formation of the 
hydration layer [11]. Entropic instability induces the steric repulsion that prevents 
bacterial adhesion, while the hydrogen bonding interaction with PEG molecules or 
the electrostatic interaction with zwitterionic molecules forms a hydration layer to 
deter nonspecific interaction between cell and substrate. The attachment and bind-
ing of fouling agents to the surface are energetically unfavorable due to the energy 
barrier which must be overcome to disrupt the hydration layer [11].

PEG is a nontoxic, non-immunogenic, and uncharged polymer that is soluble in 
aqueous and many organic solvents, leading to broad utilization in a number of 
studies [12]. Since the PEG chains are hydrophilic, highly mobile and attain huge 
exclusion volumes, they prohibit adsorption of cell and protein at the surfaces [13]. 
Antifouling PEG polymers can be coated on surfaces via diverse techniques includ-
ing self-assembled monolayer (SAM), physical adsorption, or chemical grafting. 

R. Tan et al.



317

Immobilizing PEG through SAM formation is one of the most commonly used 
approaches to impart passive antifouling activity to a surface. Prime et al. reported 
that SAMs made from PEG showed remarkable protein resistance [14]. Also, PEG 
molecules can be chemically grafted on surfaces using grafting-to or grafting-from 
methods. An important parameter in determining the antifouling performance of the 
PEG layer is the density of polymer molecules and the chain length. In general, the 
increase of chain length (i.e., polymer molecular weight) leads to a decreased num-
ber of adhering bacterial cells and higher grafting density results in more effective 
antifouling surfaces [15].

Apart from PEG, zwitterionic antifouling polymers have attracted significant 
attention due to their remarkable biofouling resistance, based on the high degrees of 
ionic hydration [7]. Zwitterionic polymers composed of both cationic and anionic 
groups with a unique molecular structure exhibit overall charge neutrality with high 
hydrophilicity. A broad spectrum of zwitterionic polymers can be synthesized with 
different chemical structures, whereas PEGs share the same repeating units. In this 
regard, the targeted library of zwitterionic brushes with varying densities of charge, 
hydration, chain lengths, and grafted chain densities has been quantitatively evalu-
ated for their antifouling properties [16].

A few other hydrophilic polymer brushes have also been developed as antifoul-
ing coating materials. For example, poly N-isopropylacrylamide (PIPAAM), a 
thermo-responsive polymer with the lower critical solution temperature (LCST) 
behavior, which is grafted on Ti surfaces successfully induced significant detach-
ment of bacteria upon rinsing at room temperature [17]. Polyacrylamide (PAAm) 
brushes coated on silicon rubber surfaces also showed effective resistance against 
attachment of proteins and bacteria. Furthermore, peptide-based coatings, such as 
self-assembled monolayers made from oligopeptide and serum albumin blocking 
layers, have been proposed for antifouling applications [18, 19].

Fig. 1  Representative chemical structures of antifouling polymers commonly used for the surface 
modification of biomedical devices

Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants…
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�Bactericidal Activity of Functionalized Polymer Coatings

Although the passive antifouling approaches have shown broad applicability, inher-
ent limitations to these approaches remain when dealing with proliferative fouling 
due to their inability to suppress the colonization of bacteria. An alternative strategy 
is to construct a surface that can actively inhibit microbial colonization by killing 
bacteria. The active approach can be divided into the controlled release of antimi-
crobial agents and non-release-based antimicrobial systems.

Antibiotic- or antiseptic-releasing coatings are prepared either by soaking the 
carrier material coated with polymers in a solution containing antibiotics or by 
directly impregnating into the coating material. The release of the antibiotics can be 
controlled by manipulating the composition and concentration of the coating formu-
lation. For example, Hammond and co-workers have used layer-by-layer (LbL) 
deposition technique to fabricate polyelectrolyte multilayer films containing an 
antibiotic agent, gentamicin. The LbL multilayered heterostructure was composed 
of hydrolytically degradable poly(ß-amino ester), biocompatible polyanionic hyal-
uronic acid, and gentamicin [20]. The gentamicin loading density, as well as its 
release rate, can be controlled by tuning of hydrophilicity and electrostatic interac-
tions between the polymeric components in the films. In a similar approach, antimi-
crobial peptides were incorporated into a microgel by electrostatic interactions. 
Bactericidal efficiency of the peptide-loaded microgels was achieved via both direct 
contact-killing and release of incorporated peptides. The antimicrobial effects were 
governed by the release rate of the bactericidal peptides from the microgel, con-
trolled by ionic strength in the solution that affects the electrostatic interactions of 
the chain scaffold components [21].

Despite many useful applications of the antibacterial systems that release antimi-
crobial agents, there remains limitation such as the difficulty of long-term use of 
bleaching agents, i.e., eventual depletion of agents. To circumvent the issues, 
surface-mounted antibacterial agents that kill bacteria by contact have served as a 
viable alternative. Cationic polymeric materials with cationic antimicrobial groups 
(e.g., quaternary ammonium (QA), phosphonium (QP) and guanidinium groups, 
etc.) have been designed and applied to fabricate surfaces with bacterial contact-
killing features [22]. Besides, alkyl pyridinium was reported by Tiller et al. as an 
active antibacterial agent, resulting in effective contact-killing against bacteria [23]. 
Specifically, poly(vinyl-N-pyridinium bromide) covalently attached to various sur-
faces was reported to show 99% killing efficiency of both Gram-negative and Gram-
positive bacteria [24].

Various bio-based polymers, such as chitosan and cellulose, are well known to 
have antimicrobial compounds of biological, chemical origins [25]. Coating with 
nanofibers of such biopolymers has been developed in this field to increase antimi-
crobial performance with high surface area. Recently, Correia et al. demonstrated 
that the chitosan nanofiber scaffolds grafted with antimicrobial oligomers induced 
efficient contact-killing of bacteria [26]. The electrostatic interaction between poly-
cationic chitosan and the anionic exterior surface of microbes leads to the disruption 
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of the cell membrane and leakage of intracellular components. At the same time, 
DNA transcription and protein synthesis are interrupted by the penetration of chito-
san into the cell membrane [27]. While chitosan shows effectively bactericidal effi-
cacy against both Gram-negative and Gram-positive bacterial cell, chitosan is 
biocompatible to mammalian cells [25]. Chitosan-based nanofibers can be fabri-
cated by electrospinning technique, which uses electric fields to make fibers in the 
order of hundreds of nanometers in diameter from charged polymer solutions or 
melts. Chitosan and its derivatives are successfully electrospun into antibacterial 
nanofibers as shown in several examples [28–30]. In addition, cellulose-based nano-
fibers formed via electrospinning or surface graft polymerization exhibited antimi-
crobial property with incorporation of antimicrobial agents or grafted functional 
groups [31–33]. Besides, diverse nanofibers made from different antimicrobial 
polymers have been created for bactericidal applications with high surface exposure 
area [34–36].

In addition to polymeric coatings, some nanomaterials, mainly inorganic 
nanoparticles including metals and metal oxides can also impart fouling resistance 
to surfaces. They have also attracted considerable attention because of their superior 
antibacterial activity with ameliorating the fouling resistance property. We will 
study the surface modification strategies to utilize antimicrobial inorganic nanopar-
ticles in hybrid form in the next section.

�Surface Modification with Antimicrobial Nanoparticles and/or 
Inorganic–Organic Hybrids

Bacterial cells primarily exist in robust communities by colonization on surfaces, 
known as biofilm, which is highly resistant to treatment with antibiotics. Biofilm 
formation of multidrug-resistant bacteria is a huge issue in a global health care sys-
tem. Therefore, development of novel engineering approaches to actively prohibit 
the biofilm formation as well as the related infections is highly in demand rather 
than conventional antibiotic release from antifouling surfaces. This part focuses on 
the recent advances in antimicrobial nanoparticles (NPs) and inorganic–organic 
hybrid platforms, which may offer a promising solution for developing long-lasting 
antibacterial surfaces.

�Antibacterial Nanoparticles

Antibacterial nanoparticles (NPs)  are talent materials, as they can not only combat 
bacteria by themselves but also play a role as carriers for other biocidal agents. Two 
general advantages of antibacterial NPs are the distinctive antibacterial efficacy 
achieved by high surface to volume ratios due to the ultrasmall size and the potential 
to functionalization with different (bio)molecules [37].

Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants…
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The antimicrobial NPs exert bactericidal activity via different and extensive 
mechanisms. In other words, antibacterial NPs do not present the monotonous 
actions like standard antibiotics. They can directly interact with the cell wall of 
bacteria while preventing biofilm formation and triggering immune responses in the 
body. Ultimately, antibacterial NPs dispersed in a solution phase trigger reactive 
oxygen species (ROS) generation and intercellular damage of bacterial cells by 
interactions with nucleic acids and proteins [38].

Among different antibacterial NPs, silver NPs (AgNPs) are considered the most 
effective antibacterial agent [39]. Several mechanisms have been proposed to 
explain AgNPs antimicrobial activity [40, 41]. The adsorption of AgNPs leads to the 
depolarization of the bacterial cell wall, thereby inducing cell membrane disruption. 
Then, penetration of AgNPs produces ROS that inhibits ATP production and DNA 
replication. Furthermore, there is an evidence that an oxidative dissolution of AgNPs 
involves the release of Ag+ species, known to exhibit antibacterial activity. Since the 
Ag+ possesses a high affinity with amines, phosphates, and most thiols, it ultimately 
weakens protein functions that contain amine, phosphates, and thiols by the forma-
tion of a quasi-covalent bond. At the same time, AgNP exhibits bactericidal action 
itself by disrupting cell membranes, in parallel to Ag+ release.

Other metallic NPs, such as ZnO, TiO2, Au, CeO2, CaO, and CuO, have also 
demonstrated bactericidal effects [42–44]. Although some controversy still exists, 
some studies have utilized AuNPs as antibacterial agents [45–46]. It has been also 
reported that AuNPs can be utilized as delivery vehicles of antibiotics attributing to 
nontoxicity for the human body and easy surface modification via diverse conjuga-
tion chemistry of AuNPs [47, 48]. Metal oxide NPs are also known to effectively 
inhibit the growth of a wide range of bacteria due to their intrinsic photocatalytic 
activity, generating ROS.

�Inorganic–Organic Hybrids

In section “Antibacterial Nanoparticles,” we highlighted several functional inor-
ganic NPs that exhibit antibacterial properties. Surface modification of biomedical 
implants and devices with the antimicrobial NPs is useful and productive to prevent 
biofilm formation of bacteria, mainly presenting high antibiotic resistance. However, 
decoration of the medical device surfaces only with NPs will have challenges due to 
easy loss of NPs by adsorption to floating proteins, platelets, dead cells, and cell 
debris [49]. To resolve the problem, we can integrate the bactericidal inorganic NPs 
with antifouling organic materials into a single coating platform.

Surface coatings of antifouling polymers combined with antimicrobial NPs can 
be used for modification of medical implants [50]. Silver-based coatings hybridized 
with organic materials showed excellent bactericidal activity against both Gram-
positive and Gram-negative bacteria. Indeed, many studies regarding organic–inor-
ganic hybrid coatings containing AgNPs have been reported [6, 7, 51, 52].

The main advantage of using the inorganic–organic hybrid platform is in the 
versatility to create multi-functionalities of the material surfaces based on the beauty 
of chemistry. For instance, Yoo et al. have recently demonstrated that a combination 
of antifouling polymeric brushes and AgNPs on a Ti results in 100% bacterial killing 
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efficiency. Protein-resistant polysarcosine brushes at the surface played a dual role 
in inhibiting adsorption of biofoulants and mediating formation of bactericidal 
AgNPs at the coated surfaces. This approach does not only yield antifouling proper-
ties but also introduce a pronounced bactericidal activity, thereby leading to far more 
improved antibacterial surfaces (Fig. 2) [6]. AgNPs can be conjugated with poly-
mers via photoreduction or by using reducing agents. Recently, “green” synthesis of 
AgNPs using plant extracts as reducing agents has been spotlighted instead of using 
chemical agents [53, 54]. Similarly, other bacteria-repelling, antifouling polymers 
(e.g., zwitterionic polymer, per-fluoro polymer, and PEG) can also be demonstrated 
to improve the prevention efficacy of biofilm formation with the incorporation of 
AgNPs by the conjugation chemistry.

It would also be worthy to note that we can decorate the surfaces of antimicrobial 
NPs with organic materials to create a synergistic effect. Metal oxide photocata-

Fig. 2  (A) Schematic representation of surface modification with inorganic–organic hybridization 
on biomedical implants and devices. AgNPs are formed through reduction by catechol groups of 
polysarcosine (p(Sar)) brushes modified on a TiO2 surface (inset: a scanning electron micrograph 
of the inorganic–organic hybrid surface) (B) Representative chemical structure of p(Sar) and 
catechol-mediated AgNP reduction process. (C) Photographs and the number of E. coli colonies 
with non-modified, p(Sar)-modified, and AgNPs-decorated p(Sar) TiO2 surfaces. (Reprinted with 
permission from [6]. Copyright 2018 American Chemical Society)
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lysts, such as TiO2, ZnO, CeO2, and so on, generate ROS under light irradiation, 
thereby resulting in bactericidal effects. However, the surfaces of metal oxides are 
inherently hydrophilic, which is vulnerable to bacterial colonization. Surface modi-
fication of hydrophilic metal oxides with polydimethylsiloxane (PDMS) under UV 
light enables to create hydrophobic surfaces with retention of the natural photocata-
lytic activity [55].

Furthermore, biocompatible biopolymers to mammalian cells combined with 
antimicrobial inorganic NPs can improve the biocompatibility of implantable mate-
rials as well as facilitate the controlled release of biocidal agents. For example, the 
gelatin and ZnO  NPs composite films have been applied for food preservation, 
showing excellent antibacterial activity against foodborne, pathogenic bacteria [56].

�Biomimicry Toward Advanced Antimicrobial Surfaces

Living organisms in Nature have evolved their structure and functions over a geo-
logical period to survive extreme and various environmental conditions, which offer 
engineering solutions to overcome many challenges in new material development. 
For instance, the lotus effect, known as self-cleaning properties of surfaces to 
remove dirt particles with water droplets via superhydrophobicity based on hierar-
chical surface roughness, has inspired researchers in the fields of antifouling paints, 
clothes, anti-stiction coatings, and low friction surfaces [57].

Indeed, we can easily find functional, natural surfaces from plants, animals, and 
insects that display antifouling and/or bactericidal properties with the delicate nano-
structure. Gecko skin [58], sharkskin [59], many insect wings [60, 61], and plant 
leaves [62] possess antibacterial properties with unique surface patterns. Also, we 
recently discovered nanoprotrusive natural surfaces, Such as gecko skin [63], cicada 
wing [64], and dragonfly wings [65], exhibit high bactericidal efficiency.

Motivated by such antifouling and bactericidal surfaces in nature, researchers 
have been actively trying to mimic and engineer the surface structure of human-
made materials used in biomedical implants and devices [66]. In section “Biomimicry 
Toward Advanced Antimicrobial Surfaces,” we introduce natural antimicrobial sur-
faces classified into two categories based on the resistance mechanism against 
bacterial cells: (1) reduction of cell attachment (antifouling surfaces), and (2) rup-
ture of the attached cell membrane (bactericidal surfaces).

�Natural, Antifouling Surfaces with Reduced Bacterial Adhesion

Preventing adhesion of contaminants on surfaces can be achieved via the creation of 
superhydrophobic surfaces with nano/micro hierarchical structures that mimic 
different natural, antifouling surfaces observed in various herbaceous plants [62], 
insect species [60–65], and animals [58, 59].
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For examples, rice, lotus, and taro leaves display hierarchical surface layers with 
dense, nanometer-scale wax crystalloids on micrometer-sized, convex epidermal 
cells (Fig. 3) [68]. Such unique surface structural and chemical properties of leaves 
result in very high surface contact angles with low water sliding angles [69]. Hence, 
bacteria and any contaminant particles can be easily picked up by near water drop-
lets and removed with the rolling-off-droplets on the natural superhydrophobic, 
antifouling surfaces.

The antifouling effect of superhydrophobic surfaces is based on air traps between 
the surface structure and bacterial cell membrane. The hierarchical nanofeatures on 
microstructures, which enable retaining the trapped air under water, have a critical 
role in fluid drag reduction and biofouling prevention [67]. Cassie–Baxter model 
suggests that the air layer captured under the droplet serves as another substrate in 
the system, leading to reduced surface tension of solid and vapor [70]. A heteroge-
neous surface composed of air and solid results in meager adhesive force between 
water and the solid surface, which induces “self-cleaning, antifouling effect.”

In addition to the plenty of superhydrophobic plant leaves, animal skin also pres-
ent great antifouling property. Sharkskin is one of the representative examples to 
demonstrate excellent antifouling efficacy against bacteria, algae, and barnacles. 
The superior antifouling performance of sharkskin originates from a combination of 
a unique surface structure composed of micrometer-scale riblets and dermal denti-
cles. In conjunction with the unique surface patterns, superior mechanical flexibility 
and mucous surface layers of sharkskin significantly reduce friction drag and 
increase aerodynamics in water [59]. Many research efforts have been devoted to 
designing a new type of surface to attack bacteria with the sharkskin-mimicking, 
patterned diamond-like surface texture [71]. We will discuss the engineering 
approaches developed to mimic natural structure in the next  section “Nature-
Inspired, Nanostructured Surface Development for Antibacterial Properties” in 
more detail.

Fig. 3  Antifouling, superhydrophobic taro leaves. A photograph and scanning electron micro-
graphs of taro leaves. (Reprinted from [68]  with permission from Elsevier. Copyright 2007 
Elsevier)
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Other interesting natural surfaces that present antifouling effect can be found 
from a variety of insects living in an extreme environment like dusty soil and damp 
tropical jungle. Wings of butterflies, moths, alderflies, antlions, fishflies, dobson-
flies, or snakeflies presented excellent antifouling properties, which were demon-
strated by testing the efficiency to remove particles of different sizes with water 
droplets during fogging. It was reported that only less than 5% particles, initially 
applied to the surfaces, remain on the Lepidoptera and Planipennia wings [61]. 
Moreover, Lepidoptera wings have hierarchical microgrooves on an array of 
shingle-like structures, which is useful to create engineering surfaces by obtaining 
a replica of the surface for enhanced antifouling properties [72, 73]. Truly, insects 
have inspired many researchers to develop marvelous surface structure using 
advanced nanotechnology toward antifouling surfaces while overcoming the hostile 
environmental disadvantages.

�Natural, Bactericidal Surfaces to Induce Membrane Rupture 
of Bacterial Cell

Another effective strategy to prevent biofilm formation is to kill and physically 
interfere interactions of attached microbes with surface protrusive topography. In 
this regard, cicada (e.g., Psaltoda claripennis) and dragonfly wings (e.g., Diplacodes 
bipunctata) have recently received an intense attention due to their antifouling as 
well as high bactericidal effectiveness. Herein, we summarize several reports of 
natural surfaces showing the excellent bactericidal performance.

Ivanova et al. reported the first example of natural cicada wings that kill Gram-
negative pathogenic bacteria, Pseudomonas aeruginosa (P. aeruginosa), which 
causes severe infections at different sites within the body such as urinary and respi-
ratory tracts or wounded skin [64]. The authors demonstrated that the nanopillars on 
the cicada wings could rupture and penetrate the bacterial membrane within approx-
imately 3 min, resulting in high bactericidal efficiency. The physical and mechani-
cal bactericidal ability was further demonstrated by altering the cicada surface into 
deposited gold to eliminate the chemical effect, which also confirmed that the nano-
pillar structure has a significant role to kill the adhered bacteria. A biophysical 
model to explain the interaction of bacterial cell and surface nanopillar structure 
supported that mechanical properties, especially rigidity of cells, are the impor-
tant  factors to determine bactericidal efficacy on the cicada wing [74]. These 
findings provide scientific insights into the bactericidal mechanism underlying nat-
ural antimicrobial materials. However, it is worth noting that the cicada wings are 
only lethal to Gram-negative bacteria but less effective to more rigid Gram-positive 
bacteria with a thicker layer of peptidoglycan. Also, the bactericidal efficacy on 
cicada wings varies from different cicada species [75, 76].

Dragonfly wings (Diplacodes bipunctata) are effective to kill both Gram-positive 
and Gram-negative bacterial cells, which originates from the high-aspect ratio 
nanoprotrusion on the surfaces [65]. The protrusive nanopillars or their clusters on 
dragonfly wings (e.g. Hemianax papuensis, Sympetrum vulgatum) are primarily 
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composed of aliphatic hydrocarbon and a fatty acid outer layer. The size of the 
nanoscale surface structures varies between 83 and 195 nm in diameter according to 
species [77, 78]. The bactericidal efficiency is dependent on the topography of the 
nanoprotrusion on their wings, which implies that different dragonfly species would 
show different bactericidal efficiency against pathogenic bacteria [79].

The sharp nanopillars on insect wings with high-aspect-ratio exhibit great bacte-
ricidal activity while bringing about by cell membrane deformation and lysis. 
Bandara et al. demonstrated that the cell membrane rupture is caused by a combina-
tion of the strong adhesion between nanopillars and extracellular polymeric sub-
stance (EPS) of attached bacteria as well as the shear force when immobilized 
bacterium tries to move on the nanotextured surface (Fig. 4) [80]. Most notably, the 
nanoprotrusive surface structure does play the main role in the bactericidal perfor-
mance. A recent study confirmed that the black silicon surfaces which mimic drag-
onfly wings effectively killed both of Gram-negative and Gram-positive bacteria, 
despite low production of EPS [81].

For animal surfaces presenting the bactericidal effect, gecko skin (e.g., L. stein-
dachneri) with sub-micro-spaced, hairy spinules on hexagonal-patterned dome-like 
structures demonstrated the self-cleaning property as well as bactericidal efficacy 
against both Gram-negative and Gram-positive bacteria [58, 63, 82]. In addition to 
terrestrial insect and animal surfaces, the cuticle of the aquatic larva of the drone fly 
(e.g., Eristalis tenax) is reported to have a potential bactericidal property [83]. The 
authors observed the spine-like nanopillars on the cuticle layers made it difficult for 
bacteria to attach and colonize the surfaces. Considered the larvae living in bacte-
ria-, fungi- and algae-rich environments, mimicking an array of the nanopillars 
(typically <100 nm in diameter) would facilitate to enhance antibacterial efficiency 
of engineered surfaces in a harsh environment.

Fig. 4  SEM image and schematics to show the bactericidal effects of natural dragonfly wings with 
nano-topography. (Reprinted with permission from [80]. Copyright 2017 American Chemical 
Society)
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�Nature-Inspired, Nanostructured Surface Development 
for Antibacterial Properties

Advances in nanofabrication techniques facilitate the development of such func-
tional, engineered surfaces on various materials. Recently, the creation of biomi-
metic, antibacterial surfaces using nanotechnology has gathered strong attention in 
surface sciences, material developments, and biomedical applications. In section 
“Nature-Inspired, Nanostructured Surface Development for Antibacterial Properties,” 
we review current engineering approaches to create biomimicking, antibacterial 
nanostructures, classified into three categories based on the structural characteris-
tics: (1) nano/microscale roughness, (2) nanoprotrusion, and (3) nanopores (Fig. 5).

�Engineered Surfaces with Surface Roughness or Pattern at the Nano 
and Micro Scale

Inspired by the antimicrobial structure in the nature surfaces (e.g., plant leaves, 
insect wings, and animal skin), researchers have tried to fabricate analogous struc-
tures on the surfaces of biomedical implants or devices to prevent bacterial infec-
tions. Herein, we highlight widely used engineering techniques to create the 
nature-mimicking structures on surfaces of artificial materials, in particular, the fab-
rication methods to make nano/micro surface roughness, hierarchical structure, or 
regular patterns.

The lotus leaf-inspired hierarchical nanostructure has been created for wettabil-
ity control on the diverse types of materials by using many advanced engineering 
techniques including self-assembly, laser processing, etching, and electrodeposi-
tion. The approaches to mimic superhydrophobic, antifouling lotus leaves can also 
be used for modification of biomedical surfaces [69]. Recent work reported that the 
lotus leaf-mimicking, fluorinated polypropylene surfaces significantly reduced 
E. coli adhesion, compared to the untreated, flat control surface, based on structural 
and chemical properties [84].

One of the easiest, feasible ways to mimic natural surfaces would be to obtain the 
direct replication of natural antibacterial surfaces by molding, embossing, and print-
ing of polymers. The polymer replication techniques broadly require the following 

Fig. 5  Schematic representations of engineered surfaces with (a) nano-/microscale roughness, (b) 
protrusive structures with high-aspect-ratio nanopillars, and (c) pores at the nanometer scale

R. Tan et al.



327

necessary steps: a master mold (e.g., a natural surface from which replicas are 
formed), replication of the master using moldable polymer, and transfer and regis-
tration of the replica to a functional material (e.g., implants or surgical tools) [85]. 
Using this technology, engineers have tried to make replicas of sharkskin, rice leaf, 
and butterfly wing by diverse types of polymeric substrates (e.g., polyurethane, 
polypropylene, and polydimethylsiloxane), which also demonstrated good antifoul-
ing effect against both Gram-positive and Gram-negative bacteria [73, 86]. Notably, 
some polymeric replicas of sharkskin exhibited a better self-cleaning and antifoul-
ing performance against microorganisms including zoospores and E. coli than the 
primary micropattern [87, 88]. The molding or casting methods are useful to fabri-
cate the nature-mimicking surfaces in a high throughput and low cost with a good 
resolution at the microscale, but they can be limited to the higher resolution of the 
nanoscale range [66]. This challenge can be overcome with different engineering 
strategies. For example, polyethylene terephthalate was fabricated into nanocones 
or sharp nanopillars by colloidal lithography or inductively coupled plasma, which 
also mitigated bacterial adhesion and colonization activity [89, 90].

For the direct implementation of surface roughness on implantable metal or 
metal alloy materials, researchers have tried to apply sputtering or shot peening and 
tested the antimicrobial properties of the modified surfaces. For example, a titanium 
alloy (Ti6Al4V) has been coated with nanocolumnar structures by the glancing angle 
deposition using magnetron sputtering technique for lotus leaf effect [91]. The 
nano-roughened Ti alloy surfaces inhibited bacterial attachment and biofilm forma-
tion of S. aureus while showing good biocompatibility to osteoblasts [91]. The 
nano-roughened Ti surfaces with nanocolumns reduce the available area for bacte-
rial cells to attach, leading to a limited number of anchoring points between the 
bacteria and nanorough surface. Nevertheless, nanoroughness on the Ti surface has 
less impact on osteoblasts due to a more deformable membrane and the large size of 
mammalian cells.

Such nano-roughened Ti surfaces can also be fabricated by physical vapor depo-
sition. Jandt and others demonstrated the nanorough Ti surfaces reduced adhesion 
of E. coli and S. aureus with the increase of surface roughness, which originated 
from the decrease of adhesion points of the cells to the surfaces [92]. However, the 
degree of reduction of bacterial attachment on the nanorough surface may vary in an 
individual bacterial cell type for a given specific surface. The ability of bacterial 
attachment reduction could be affected by many factors, like shape or spatial distri-
bution of surface features, surface chemistry, and bacterial type [93, 94]. To our best 
knowledge, up to date, there is no substrate possessing the universal ability to reduce 
the adhesion of all types of bacteria.

�Biomimetic Surfaces with Nanoprotrusion

Since the first report of the antifouling and the bactericidal efficacy of the cicada 
wings with high-aspect-ratio nanoprotrusion [64], many efforts have been devoted 
to creating the bioinspired, bactericidal surfaces with nanoprotrusion on medical 
devices or implants.
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Stainless steel 316L (SS316L) is one of the most extensively used metal alloys 
for food processing equipment and biomedical devices such as implants and surgi-
cal tools due to its biocompatibility, corrosion resistance, and mechanical strength 
[95]. Therefore, it is critical to developing a facile method to attain nano-topography 
on SS316L surfaces to inhibit bacterial adhesion. Surface-roughened SS316L can 
be created via severe shot peening [96], abrasive flow finishing [97], or 
electrochemical etching methods [98]. Jang and Choi et al. evaluated the antibacte-
rial nature of nano-textured SS316L surfaces fabricated by electrochemical etching, 
which possess pronounced, nanoporous, and protrusive structures on the surface 
(Fig. 6) [98]. The SS316L surfaces with ~20 nm pores and protrusive nanospikes 
exhibited a significant reduction in surface adhesion of both of Gram-negative 
E. coil and Gram-negative S. aureus. Compared to other surface finishing tech-
niques, the electrochemical etching process is affordable and scalable as well as has 
exquisite control of surface structures by electrochemical parameters such as poten-
tial and current density. Furthermore, the electrochemical surface modification pro-
duced a superior passive film with enrichment of Chromium (Cr) and Molybdenum 
(Mo) at the SS316L surface for corrosion resistance in physiological solution, 
which would be another advantage to use this method for biomedical applications.

Fig. 6  (A) Schematic illustration of development of biocompatible, nanoporous, and protrusive 
stainless steel 316L (SS316L) surfaces by electrochemical etching to inhibit bacterial adhesion. 
(B) Scanning electron micrographs of nanotextured SS316L (NT-SS316L) surface. (C) A repre-
sentative fluorescent micrograph of dead E. coli on NT-SS316L. (Reprinted with permission from 
[98]. Copyrights at American Chemical Society 2018)
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Ti and its alloys are also one of the most popular choices of implant materials due 
to their excellent chemical and corrosion resistance, biocompatibility, and osseoin-
tegration [99–101]. Several different engineering approaches have been applied for 
the fabrication of protrusive structures on implantable Ti surfaces to prevent the 
microbial-induced infection problems. For instance, a cicada wing-mimicking 
nanocolumnar structure on Ti was fabricated by glancing angle sputter deposition, 
leading to selective bactericidal activity with 50% mortality of E. coli [102]. Using 
hydrothermal etching, Bhadra and coworkers created perpendicular-oriented 
nanowire-like structure on Ti surfaces. The engineered Ti surfaces with nano-
patterned arrays, mimicking dragonfly wings, showed high efficiency in killing 
P. aeruginosa [103]. Another nanopillar structure, made from a chlorine-based reac-
tive ion etching on Ti surface, also presented excellent bactericidal efficacy against 
Gram-negative bacterial cells [104]. In addition, all the aforementioned nanotex-
tured surfaces possess good cytocompatibility allowing the proliferation and growth 
of mammalian cells. Some other works related to Ti and Ti alloys etched by the 
hydrothermal process [105], anodization [106], or thermal oxidation [107] also 
demonstrated specific bactericidal efficacy and good cytocompatibility as well.

Silicon (Si)  is a good candidate to fabricate the nanoprotrusion, while enabling 
to control the aspect ratio systematically, with high throughput and low fabrication 
costs. The nanotextured silicon substrate created via reactive ion etching, called 
“black silicon,” presents sharper, more discretely distributed, and lower clustered 
nanoprotrusive features [81, 108]. The black silicon resulted in higher efficiency to 
kill endospores, Gram-negative and Gram-positive bacteria than natural dragonfly 
wings [65]. Besides, in vivo implant study demonstrated that the biocompatibility of 
black silicon surfaces to eukaryotic cells without inflammatory response in ocular 
and general tissue environment of the host [109].

When it comes to the mechanism of bactericidal efficacy, the mechanical rupture 
of the cell membrane caused by the interaction between the cell membrane and 
surface topography is generally accepted as reported in several papers [74, 110–
112]. The effect of topographic geometry on bactericidal efficiency has been sys-
tematically investigated by tuning the surface protrusion dimension (i.e., height, tip 
sharpness, and pillar diameter) and testing the various material surfaces, such as 
silicon, polymer, and metals [81, 105–114]. The nanoprotrusive surface topography 
and the bacterial motility are believed as the two paramount factors to result in the 
bactericidal efficacy [115, 116]. For the bactericidal effect underlying bacterial 
motility, several recent studies indicated that the strong focal adhesion of bacterial 
cells on the tips of nanopillars, enabled by the generation of extracellular polymeric 
substances (EPS), enhances the cell membrane tension during movement, thereby 
leading to the death of the bacterial cell [80, 114]. However, no universal mecha-
nism regarding all the factors affecting the bactericidal properties of a nanotextured 
surface is reported so far. There are some controversial studies regarding the cell 
rupture mechanism emerged [80, 81, 115], which imply that we need more compre-
hensive studies to understand the universal mechanism behind bacteria adhesion on 
the engineered surfaces with nanoprotrusive structure.
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�Antifouling Nanoporous Surface Formation

An alternative strategy to enhance the antibacterial property is to lower the bacterial 
attachment via nanopore formation on the substrates. The nanoporous surface tends 
into more hydrophobic based on the Cassie–Baxter model, which leads to the reduc-
tion of attached bacterial cells with the increased wettability.

Anodized aluminum oxide with nanoscale pores in diameters of 15 and 20 nm 
displayed a significant reduction of bacterial attachment and biofilm formation of 
E. coli and Listeria innocua. The nanoporous surfaces inhibited flagella-dependent 
attachment of E. coli by suppressing expression of appendages. The antifouling 
effect of nanoporous surfaces can be explained by the increased net repulsion forces 
between bacterial cell and substrate, in combination with electrostatic repulsion and 
surface effective free energy [117]. The report about simple and robust anodizing 
method to develop nanoporous structure on alumina surfaces brought significant 
scientific benefits for understanding antibacterial mechanism of the surfaces with 
nanopores. However, porous anodic aluminum oxide is not applicable for biomedi-
cal implants or devices due to its toxicity, mechanical weakness, and low corrosion 
resistance as compared to other materials.

Implantable polymeric material, polymethyl methacrylate (PMMA), has been 
tested with the nanoporous surface structure fabricated by nanoimprint lithography 
for antibacterial properties. The nanoimprinted PMMA surfaces demonstrated the 
reduced attachment of bacteria as compared to the flat surfaces [118]. However, 
only a few works have been demonstrated in this area up to date. Some studies of 
the influence of pore size on the bacterial adhesion yielded conflicting results 
according to the types of materials and cells [90]. Therefore, development of poten-
tial fabrication methods to create nanopores on other biocompatible materials in 
tunable scale is worth to be investigated, along with a systematic study to under-
stand the adhesion of different types of bacteria.

In section “Nature-Inspired, Nanostructured Surface Development for 
Antibacterial Properties,” we highlighted several different engineering approaches 
to create nature-inspired, nanostructured surfaces for antibacterial activities, rang-
ing from the nano- or microscale roughness/patterns, protrusion, and to pores. 
According to the material types of biomedical surfaces and target functionalities, 
we need to design the surface engineering methods rationally. Herein, we summa-
rize the types of materials, fabrication methods, characteristic surface features, and 
corresponding antibacterial properties in Table 1.

�Prospective Approaches

While many advances toward developing antibacterial surfaces have been achieved 
for several decades, the practical applications of the surfaces for in vivo implants or 
industrial fabrications are still in early stages. So far, material scientists have focused 
on the development of new surface properties of implantable biomaterials and dem-
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onstration of antibacterial properties in lab scale. The biological, fundamental stud-
ies on the interactions between microorganisms and surfaces have been conducted 
separately. Meanwhile, medical doctors have faced challenges to find applicable 
medical devices that present advanced antibacterial properties without frequent 
replacement or additional antibiotic treatments. Moving forward, we believe that the 
multidisciplinary, cooperative efforts will be the primary focus of continued research. 
Engineers need to advance strategies to create functional surfaces with target anti-
bacterial properties of biomedical devices in a practical scale by active discussions 
with surgeons and biomedical industry, as well as to improve understanding of the 
bacteria–surface interactions with collaboration with microbiologists.

The recent accomplishments in mimicking the excellent bactericidal, antifouling 
natural surfaces via different surface treatment techniques offer futuristic biomedi-
cal implants and devices. We have reviewed the diverse structural features of the 
natural surfaces displaying antibacterial activities (i.e., plant leaves, insect wings, 
and animal skins) on account of the relationship between the surface nanostructure 
and bactericidal mechanism. We realize that significant variations in the structural 
dimension and configuration of these natural surfaces, which implies that there is no 
universal surface structure to exhibit antimicrobial property against all types of 
bacteria. Current understanding on the pathogenesis of bacteria adhered on the nan-
otextured surfaces is still limited, and the biomimetic approaches have been recently 
suggested in this field. Since the future of biomimicking surfaces is promising, 
establishing the surface–bacteria correlation will be necessary while varying sur-
face structure systematically and testing multiple microorganisms. Also, studies 
about the long-term effects of the surface textures on biomedical implants in the 
body are essential before the new methods can be used to inhibit bacterial adhesion.

Given the fast evolution of microorganisms with increasing antibiotic resistance, 
the development of functional surfaces inspired by nature is of great significance to 
inhibit pathogenic bacteria adhesion and growth without antibiotic or other chemi-
cal treatments. We will need a more comprehensive investigation to develop engi-
neering methods to create the biomimetic structure in large-scale and rapid 
production for clinical demonstration. Ultimately, such cumulative attempts toward 
advanced antibacterial surfaces created via different engineering approaches will 
serve not only to enable the development of practical biomedical devices displaying 
excellent antimicrobial performance but also enhance our understanding of the 
complex bacteria–surface interactions.

�Summary

We have discussed many facets of surface engineering approaches to create antibac-
terial properties for biomedical implants and devices, highlighting chemical and 
physical aspects to inhibit bacterial adhesion and growth, through this chapter.

Traditionally, surface coatings of antifouling polymers using PEG, PNIPAAM, or 
zwitterionic polymers have been widely employed to prevent protein adsorption ulti-
mately leading to reduced bacterial attachment. However, these polymer coating 
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approaches can have inherent limitations due to the lack of long-term suppression 
ability against bacterial colonization. For contact-killing of adhered bacteria, 
researchers have also developed functionalized polymer coatings that release antibi-
otics or bleaching agents via several different surface modification techniques, which 
include layer-by-layer deposition, brush formation, and electrospinning. Recent 
advances in the synthesis of new types of functional polymers or peptides are prom-
ising to develop chemically active antimicrobial surfaces with enhanced perfor-
mance. The fast evolution of bacteria that show high resistance to antibiotics is a 
growing problem. As another engineering approach to actively inhibit biofilm forma-
tion of multidrug-resistant bacteria, we have highlighted several antibacterial inor-
ganic nanoparticles (e.g., Ag, ZnO, CuO, and TiO2) and their bactericidal mechanisms. 
To carry the antimicrobial functions of nanoparticles at the surfaces of biomedical 
devices, engineers have developed several strategies for designing inorganic–organic 
hybrid platforms that can present dual activities of antifouling and contact-killing.

The challenges of chemical coatings of the delamination and functionality loss 
by degradation can be overcome through physical approaches to develop antibacterial 
physical  structure at the surfaces. Inspired by living organisms in nature, which 
have evolved their structure to survive extreme conditions, we can establish new 
engineering strategies toward advanced antibacterial materials. Thus, we have 
reviewed various natural surfaces that present excellent antifouling and bactericidal 
properties, such as plant leaves, insect wings, and animal skins. Depending on the 
dimension and configuration of the natural surface structures, they presented 
bacterial-resistant mechanisms by inhibiting adhesion and rupturing the attached 
cell membranes. The biomimetic attempts and advances in nanofabrication tech-
niques in recent years have recently accelerated the development of antibacterial 
surfaces on biomedical implants and devices while gathering intense attention in 
surface and materials science and engineering. We have reviewed cutting-edge 
reports in this field to create antifouling, bactericidal surfaces with biomimicking 
nanostructures (i.e., nano-/microscale roughness, hierarchical structure, protrusive 
nanopillars, and nanopores) via different types of surface treatment methods. 
Considerable efforts to advance diverse surface engineering approaches will facili-
tate the development of the next-generation implantable biomedical devices per-
fectly preventing bacterial infections.
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