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Abstract Peptides are short sequences of amino acids. Peptides with biological 
functionality can be derived from the active domain of proteins or determined from 
peptide screening experiments. Combined with modern chemical techniques to 
facilitate peptide synthesis, this leads to peptide modification as an interesting 
approach to render synthetic biomaterials bioactive. Peptides have been used to 
functionalize implant surfaces as well as bulk biomaterials, and they can be incor-
porated within controlled release systems. This chapter considers both osteoinduc-
tive peptides and anti-biofilm peptides with the goals to improve bone regeneration 
and reduce implant-associated infection, respectively.
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 Introduction

Proteins are the functional building blocks of cells and tissues. They are made up of 
differing combinations of 20 natural amino acids (Table 1), which have an amino 
group on one end, a carboxylic acid group on the other end, and a variable side 
chain coming off the central carbon atom. Within a protein or polypeptide, the 
amino acid residues are joined together by the formation of an amide bond between 
the carboxylic acid of one amino acid and the amino group of the next. The sequences 
of natural proteins are determined from the genetic code whereby DNA is first tran-
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scribed to messenger RNA and then translated to protein with each three-base-long 
codon specifying an amino acid. Similar to proteins, peptides are shorter chains of 
amino acids, also linked by amide bonds, that are typically less than 50 amino acids 
in length. With advances in chemical and molecular biology techniques, peptides 
can be chemically synthesized and modified, and de novo sequences can be 
designed. As a treatment strategy, peptides offer many of the advantages of protein 
therapeutics while addressing some of their limitations.

This chapter focuses on the use of peptides in biomaterial-based approaches for 
bone regeneration and anti-biofilm applications. First, a perspective is given on 
peptide design with two main approaches being the derivation of amino acid 
sequences from natural proteins and the screening of de novo libraries of peptides 
for specific functions. Then, relevant peptide synthesis techniques are presented 
along with chemical methods that allow functionalization of surfaces and bulk 
materials with peptides. The main focus of the chapter is the introduction of specific 
peptides from two main classes: osteoinductive peptides and anti-biofilm peptides. 
In both cases, in vitro assays to assess peptide activity as well as in vivo studies to 
demonstrate efficacy are presented. To date, however, few studies have combined 
osteoinductive peptides with antimicrobial peptides to stimulate bone formation 
while simultaneously reducing infection. The chapter concludes with some future 
perspectives on the topic.

Table 1 The 20 standard amino acids, their abbreviations, and types of side chains

Amino acid Three-letter abbreviation One-letter abbreviation Type of side chain

Alanine Ala A Hydrophobic
Cysteine Cys C Thiol
Aspartic acid Asp D Negatively charged
Glutamic acid Glu E Negatively charged
Phenylalanine Phe F Hydrophobic
Glycine Gly G None (hydrogen)
Histidine His H Positively charged
Isoleucine Ile I Hydrophobic
Lysine Lys K Positively charged
Leucine Leu L Hydrophobic
Methionine Met M Hydrophobic
Asparagine Asn N Polar uncharged
Proline Pro P Special
Glutamine Gln Q Polar uncharged
Arginine Arg R Positively charged
Serine Ser S Polar uncharged
Threonine Thr T Polar uncharged
Valine Val V Hydrophobic
Tryptophan Trp W Hydrophobic
Tyrosine Tyr Y Hydrophobic
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 Peptide Design

 Peptides Derived from Proteins

The primary structure of a protein is its chemical composition determined by the 
specific sequence of amino acids. Protein secondary structure, which includes units 
such as α-helices and β-sheets, arises from the organization of portions of the pro-
tein by weak intramolecular bonds, such as hydrogen bonding and ionic interac-
tions. Hydrogen bonding can occur between atoms on the protein backbone, but in 
other cases, these interactions are driven by the chemical composition of the side 
chains of the amino acids. With some exceptions, these side chains can be either 
positively or negatively charged, polar uncharged, or hydrophobic (Table 1). In de 
novo protein design, specifying the pattern of hydrophobic and hydrophilic amino 
acids in the protein sequence is in many cases sufficient to drive protein folding into 
α-helices [1] or β-sheets [2], as measured by circular dichroism. As with proteins, 
peptides with specific patterns of amino acids can self-assemble to form these struc-
tural units, such as RADA16 [RADARADARADARADA [3]; single-letter amino 
acid abbreviations used throughout this chapter, see Table  1] and Q11 
[QQKFQFQFEQQ [4]] that form β-sheets or LD6 [LIVAGD [5]] that forms α-helical 
intermediates. These self-assembling peptides have also been used to generate cyto-
compatible hydrogels for biomedical applications, but further discussion of their 
use is outside the scope of the current chapter.

Likewise, these interactions can occur intermolecularly, that is, between two pro-
teins, leading to receptor–ligand pairing or enzyme–substrate docking for example. 
As the amino acid sequences that are involved in these interactions are usually spe-
cific, they can serve as a starting point for the design of bioactive peptides that 
mimic these active domains of the protein. One of the most simple and commonly 
used peptide mimetics is the cell adhesive RGD sequence. RGD is found in several 
proteins including fibronectin, laminin, collagen, vitronectin, and others and medi-
ates cell attachment through various integrins on the surface of cells [6]. Cell attach-
ment to RGD is sequence specific, as evidenced by reduced binding to scrambled 
peptides such as RDG, and exposure to soluble RGD causes cells to detach from 
their substrate [6]. Functionalization of an otherwise nonadhesive biomaterial with 
RGD will allow cells to attach to and spread on or within the material. Patterning of 
RGD can also restrict cell attachment to specific areas, as has been shown by observ-
ing encapsulated cell spreading in inert poly(ethylene glycol) (PEG) hydrogels 
compared to PEG hydrogels with uniform functionalization with RGD and with 
spatially patterned RGD (Fig. 1) [7].

Besides RGD, there are a number of other integrin binding peptides that can be 
used as cell adhesion ligands, as summarized in Table 2. The use of integrin-binding 
peptides is a generic strategy in tissue engineering approaches, as most cell types 
are adherent and thus will attach, spread, proliferate, and migrate on the peptide- 
functionalized materials. Knowledge of the surface receptor profile of different cells 
can aid in the selection of which ligand or ligands to choose to be able to bind a 
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Table 2 Cell adhesion (integrin binding) peptides

Peptide 
sequence Binding partners Source and/or function References

RGD Several integrins Fibronectin and others [6]
YIGSR Integrins α1β1, α2β1 Laminin; binds endothelial cells [8–10]
VAPG Galactoside-binding 

protein
Elastin; binds smooth muscle cells [8, 11]

SIKVAV Integrins α3, α6, β1; αVβ3 Laminin; binds endothelial cells [12, 13]
RNIAEIIKDI Integrins α3β1, α6β1, 

α6β4, α7β1

Laminin [9]

EILDVPST Integrin α4β1 Fibronectin; binds lymphoid and tumor 
cells

[14]

KLDAPT Integrins α4, β1, β7 Fibronectin; binds lymphoid cells [15]
WQPPRARI Heparin-binding Fibronectin; binds endothelial cells and 

fibroblasts
[16]

PHSRN Integrin α5β1 Fibronectin [17]
AEIDGIEL Integrin α9β1 Tenascin-C [18, 19]
REDV Integrin α4β1 Fibronectin; binds endothelial cells [20]

specific cell type. These peptides can then be used to functionalize biomaterials in 
both 2D and 3D. For example, nanofibrous matrices were formed from the self- 
assembly of peptide amphiphiles functionalized with either YIGSR or VAPG. The 
materials presenting YIGSR enhanced the attachment of endothelial cells, whereas 
the matrices containing VAPG promoted greater spreading of smooth muscle cells 
[8]. Hydrogels formed from photo-cross-linked PEG diacrylate combined with 
VAPG-functionalized PEG monoacrylate were also shown to preferentially support 
attachment of smooth muscle cells over fibroblasts, endothelial cells, and platelets 
[11]. Further, SIKVAV-conjugated chitosan hydrogels were demonstrated to pro-
mote angiogenesis and re-epithelialization in vivo [12]. These cell adhesive peptides 

Fig. 1 Effect of the addition of RGD uniformly throughout compared to spatially patterned within 
PEG hydrogels that were formed by click chemistry on 3 T3 fibroblast spreading. (A) No RGD. 
(B) Uniform RGD. (C) Patterned RGD. The scale bars are 100 μm. (Reprinted by permission from 
Springer Nature, Nature Materials, ©2009 [7])
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can potentially be combined with peptides targeting other receptors, and the design 
of osteoinductive and anti-biofilm peptides that are based on naturally occurring 
domains within proteins are further described in sections “Osteoinductive Peptides” 
and “Anti-biofilm Peptides” of this chapter.

Moving beyond the direct use of peptides derived from natural proteins, these 
mimetics can be varied, often in a systematic way, by changing individual amino 
acids within the peptide sequence to increase or decrease the activity of the peptide. 
One good example of this is the use of collagen-derived peptides to explore the 
sequence specificity of matrix metalloproteinases (MMPs), which are a family of 
enzymes that are active during normal tissue remodeling processes and also in dis-
ease states. Starting from an eight-amino-acid-long MMP substrate sequence found 
in the α1 chain of type I collagen, GPQGIAGQ, Nagase and Fields systematically 
varied the amino acids in each position and found that the substitution of A with W 
led to increases in the Michaelis-Menten parameter kcat/KM and the relative rate of 
hydrolysis by MMP-1, MMP-8, and MMP-3 [21]. These peptide sequences were 
then used in innovative enzymatically degradable synthetic hydrogels formed by the 
Michael-type addition reaction of end-functionalized multi-arm PEG macromers 
with cross-linker peptides containing the MMP substrate sequences [22, 23]. Indeed, 
the hydrogels containing the modified GPQGIWGQ substrate degraded faster than 
the hydrogels containing the collagen-derived GPQGIAGQ sequence, and this 
allowed for faster remodeling of the matrix and migration of embedded fibroblasts 
(Fig. 2) [22]. These degradable hydrogels were also found to support bone forma-
tion in combination with the osteoinductive molecule, bone morphogenetic protein 
(BMP)-2 [23]. In a rat calvarial defect model, hydrogels that were not degradable 
but loaded with BMP-2 led to similar low amounts of bone formation as degradable 
hydrogels without BMP-2 (approximately 20% bone coverage); however, the 

Fig. 2 Fibroblast migration into PEG hydrogels prepared through a Michael-type addition reac-
tion with the MMP-sensitive GPQGIWGQ peptide cross-linker. (A) Phase contrast images after 1, 
3, 5, and 7 days with scale bar = 250 μm. (B) Confocal image showing cell membranes and nuclei 
with scale bar = 150 μm. (Reprinted with permission from [22]. ©2003 National Academy of 
Sciences, USA)
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hydrogels that were degradable and loaded with BMP-2 resulted in similar amounts 
of bone formation as the standardly used collagen sponge with BMP-2 (approxi-
mately 90% bone coverage) [23].

 Library Screening Approaches

It is also possible to design peptides completely from scratch, and several method-
ologies have been developed to screen libraries of peptides for specific biological 
activity. In fact, half of the 2018 Nobel Prize in Chemistry was jointly awarded to 
George P. Smith and Sir Gregory P. Winter for developing the technique of phage 
display of peptides [24] and antibodies [25]. Phage display utilizes gene editing of 
the coat proteins of bacteriophage to incorporate peptide sequences that are dis-
played as part of the coat proteins. These phage can then be screened against target 
molecules for an interaction of interest and further amplified. The DNA within the 
selected phage can finally be sequenced to determine the relevant peptide sequence. 
Phage display can be useful in determining substrate specificity of enzymes. For 
example, to determine mutant substrates that are not cleaved by an enzyme, the coat 
proteins are modified with the library of peptide sequences, each with a tag on the 
terminus to allow for separation using antibody-coated beads (Fig. 3). After incuba-
tion with the enzyme, the phage that are still attached to the beads can be separated, 
washed, amplified, treated with enzyme, and sorted again. After several rounds of 
sorting and amplification, the individual phage can be isolated and sequenced. This 
approach has been used to identify substrates that are less susceptible to cleavage by 
the metalloproteinase ADAMTS13 [26], and by changing the method to select the 
phage of interest, one can identify enzyme substrates that are preferentially cleaved, 
peptides that bind to specific proteins or other molecules, etc. [24].

An alternative to phage display for peptide design is mixture-based oriented 
peptide libraries [27]. The mixture-based oriented peptide library approach screens 
the peptides in solution and relies on peptide sequencing methods (Edman degra-
dation) to determine the sequence. It has been applied for determining enzyme 
substrates and protein interaction domains [28–31]. For example, to determine an 
enzyme substrate, in a first round, a totally degenerate peptide library with the 
amino (N-) termini acetylated is treated with the protease. The fragments that are 
generated have a free amine group on the N-terminus and are subjected to 
N-terminal sequencing. The amino acids that are most abundant in each position 
are then fixed in a second-generation library, which have the N-termini as free 
amines and the carboxy (C-) termini tagged with biotin. After cleavage with the 
protease, the C-terminal fragments and uncleaved peptides can be separated using 
immobilized avidin, and the N-terminal fragments can be sequenced. This approach 
has been used to generate substrates for a variety of MMPs [27]. Another approach 
to screen for enzyme substrates is a technique called cellular libraries of peptides 
substrates (CLiPS) [32]. A library of peptides containing potential substrates 
tagged with a ligand for a fluorescent probe are displayed on the surface of E. coli. 
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After treating the cells with the protease of interest, the intact peptides are able to 
be detected using fluorescence- activated cell sorting (FACS), and the clones with 
hydrolyzed substrates can be enriched by repeating this cycle several times. 
Compared to phage display and soluble peptide libraries, up to 104 copies of the 
substrate are displayed on a single cell, which allows quantitation of substrate con-
version for an individual clone [32].

These techniques are commonly used to identify peptides that bind to target recep-
tors or to natural ligands, for epitope mapping or mimicking, in drug discovery to find 
new enzyme inhibitors and receptor agonists and antagonists, for epitope discovery in 
vaccine development and diagnostics, and selection of DNA-binding motifs, among 
others [24]. Of relevance to biomaterials development, they have also been used to 
identify new substrates for various MMPs, such as MMP-2 [33], MMP-3 or -7 [34], 
MMP-11 [35], MMP-13 [36], and MT1-MMP [37]. These peptide substrates were 
evaluated with the PEG hydrogel system described above, and sequences resulting in 
hydrogels with increased susceptibility to MMP-1, MMP-2, or plasmin were identi-
fied [38, 39]. The faster degrading hydrogels supported increased proliferation of 
encapsulated fibroblasts as well as sprouting of endothelial cells in a chick aortic ring 

Fig. 3 Working principle of phage display. In this case, the substrates that are not cleaved by the 
enzyme ADAMTS13 are selected and amplified. (Reprinted under the terms of the Creative 
Commons Attribution License from Desch et al. ©2015 [26])
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outgrowth assay [38, 39]. Similar to the cell adhesion peptides already described, the 
functionalization of scaffolds with enzyme substrate peptides also provides a generic 
strategy to support the matrix remodeling, proliferation, and migration of cells within 
the matrix. More specific peptides that are osteoinductive or anti-biofilm, which have 
been found by library screening approaches, are detailed in sections “Osteoinductive 
Peptides” and “Anti-biofilm Peptides” of this chapter.

 Chemical Methods

 Peptide Synthesis

During protein translation from messenger RNA, the nascent protein chain is syn-
thesized from N- to C- terminus in the ribosome via the action of transfer RNA, 
which recognizes the codon in the RNA strand. A new amide bond is formed to 
attach the amino acid to the growing polypeptide chain. Specific codons initiate and 
terminate the synthesis of the protein. On the other hand, peptides are typically 
synthesized chemically using a technique called solid-phase peptide synthesis, 
which allows excess reagents and by-products of the reactions to be easily removed 
by washing and filtration after each step. They can also be synthesized in solution, 
although this requires additional work to separate the peptide intermediate after 
each step. In the case of solid-phase peptide synthesis, the peptide is synthesized on 
a solid support from the C- to N-terminus. Cleavable protecting groups typically 
block reactive functionalities on the side chains and amino group of the amino acid. 
The latter protecting group is often an Fmoc (base-labile) or Boc (acid-labile) group, 
which can be removed before the addition of the next amino acid. Merrifield was the 
first to describe the solid-phase peptide synthesis technique in 1963 [40], and the 
Fmoc/t-Bu orthogonal protecting group strategy has become the most common 
approach applied today. Solid-phase peptide synthesis typically proceeds by cou-
pling of the first amino acid to the supporting resin followed by a deprotection step 
to remove the Fmoc group. The next amino acid is added, followed by deprotection, 
and so on until the last amino acid or other N-terminal group is added. Then, the 
peptide is cleaved from the resin, and the protecting groups are also removed from 
the side chains. The peptide is typically purified by reversed-phase HPLC-MS, with 
the MS used to confirm the molecular mass of the synthesized peptide.

Important considerations when planning to synthesize a peptide include the gen-
eral synthesis strategy, the choice of protecting groups for the side chains, the resin 
used as solid support as well as how it is linked to the C-terminus of the peptide, and 
the choice of coupling reagents [41]. The speed and quality of solid-phase peptide 
synthesis can be improved by the application of microwave irradiation, which raises 
the temperature and helps to break up chain aggregation of the peptide intermedi-
ates [42]. The microwave energy reduces the reaction time for both the coupling of 
amino acids and also the removal of the Fmoc protecting group [42, 43]. Nevertheless, 
synthesis of longer peptides tends to result in lower yields, and some amino acids 
are more difficult to couple than others. As a result, chemical ligation strategies can 
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be used to join two shorter peptides together in solution phase. These methods result 
in the formation of amide or other chemical bonds between the two peptide seg-
ments, and typically chemoselective functional groups are chosen to allow ligation 
in the presence of the unprotected side chains on the peptides. Commonly used 
reactions include thioester ligation, thioether ligation, and imine ligation [44]. 
Enzyme-catalyzed methods, which have been primarily developed for ligation of 
proteins, can also be applied to peptides. For example, sortase A derived from 
Staphylococcus aureus recognizes and cleaves the LPxTG motif, which can be 
tagged on one peptide. The resulting thioester is then ligated to the N-terminus of a 
second peptide that starts with a G residue [45, 46]. The enzyme subtiligase, an 
engineered mutant of subtilisin, can also catalyze the reaction between a peptide 
thioester or peptide ester and the N-terminus of a second peptide [47, 48].

An advantage of solid-phase peptide synthesis is that it is not limited to the 20 natu-
ral amino acids, and in fact any compounds with appropriate reactive groups can be 
added to the peptide chain. Some examples are provided in Table 3. The functional 
group on the C-terminus of the peptide is usually determined by the choice of starting 
resin, and the N-terminus is often acetylated to block the reactivity of the amine group. 
Fluorescent labels or dyes can be incorporated into the peptides, including them as 
modifications on side chains or directly within the peptide chain if proper reactive 
groups are available. Examples of molecules used in this approach are summarized in 
Table 4. Fluorescent dyes such as fluorescein isothiocyanate (FITC), 5-carboxyfluo-
rescein (5-FAM), Dansyl, 5- (and 6-) carboxytetramethylrhodamine [5(6)-TAMRA], 

Table 3 Potential modifications to peptides prepared by solid-phase peptide synthesis

Modification Molecules

N-terminus Free amine, acetylation, Fmoc
C-terminus Free acid, amidation
d-form amino 
acids

d-Ala, d-Cys, d-Asp, d-Glu, d-Phe, d-His, d-Ile, d-Lys, d-Leu, d-Met, 
d-Asn, d-Pro, d-Gln, d-Arg, d-Ser, d-Thr, d-Val, d-Trp, d-Tyr

Phosphorylation pSer, pTyr, pThr
PEGylation PEGX

Cyclization Disulfide bridge

Table 4 Fluorescent tags for incorporation into peptides, their excitation (λex) and emission (λem) 
wavelengths, and their function

Fluorophore λex λem Function

Biotin NA NA Binding-tagged streptavidin
FITC 492 nm 515 nm Fluorophore, donor for FRET
5-FAM 492 nm 518 nm Fluorophore
Dansyl 333 nm 518 nm Fluorophore, FRET
TAMRA 546 nm 575 nm Fluorophore, acceptor for FRET
Dnp 350 nm NA Acceptor for FRET (quencher)
MCA 322 nm 390 nm Fluorophore, FRET with Dnp
5(6)-CR6G 522 nm 550 nm Fluorophore
DABCYL 428 nm NA Acceptor for FRET (quencher)
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7-methoxycoumarin-4-acetic acid (MCA), and 5- (and 6-) carboxyrhodamine 6G 
[5(6)-CR6G] have different excitation and emission wavelengths, and they can be 
selected to avoid overlap with tissue autofluorescence or with other fluorescent mol-
ecules used in a biomaterial formulation. Biotin can be incorporated for later tagging 
with fluorophores conjugated to streptavidin, and other molecules such as dinitrophe-
nol (Dnp) or DABCYL can be used as part of Forster energy resonance transfer 
(FRET) pairs. Some of these molecules can be used as an N-terminal modification by 
reaction of the molecule with the amine group at the end of the peptide as the last step 
during peptide synthesis. This reaction can be achieved through a carboxylic acid 
group already present in the molecule or by first modifying the molecule with a suc-
cinimidyl ester group, which can then react with the terminal amine group. 
Alternatively, the fluorescent molecule can be added to the side chain of a lysine resi-
due, and then this modified lysine can be incorporated anywhere in the peptide using 
standard coupling and deprotection reactions.

Labeling of peptides with fluorescent dyes can be a useful strategy for examining 
the loading and release of the peptide from a biomaterial carrier. For example, 
FITC-labeled peptides were used to track release from electrospun nanofibrous 
membranes and aerogels of poly(lactide-co-glycolide) (PLGA)/collagen/gelatin 
[49, 50]. A fluorescence plate reader can directly measure the concentration of the 
released peptide over time without the need for more complicated assays, such as 
ELISA, for the detection of the peptide. FRET pairs and dye quenching can also be 
used in peptide design to track spatial information about the peptides or peptide 
fragments. Fluorescent dyes and molecules that quench their fluorescence when in 
close proximity, such as the combination of fluorescein with DABCYL, can be 
incorporated on the opposite ends of enzyme substrate peptides similar to the ones 
described above. When the peptide is intact, the dye and quencher are close enough 
that there is no fluorescence; however, once the substrate is cleaved, the two frag-
ments can diffuse away from each other, and the fluorescence is restored. In addi-
tion to being useful for determining kinetic parameters of the enzyme substrate 
interaction in solution [21], this approach has been used to track the local degrada-
tion of a PEG hydrogel incorporating such peptides (Fig. 4) [51].

Fig. 4 Design and characterization of quenched fluorescent peptides as enzyme substrates. (a) 
Sequence and design of cleavable peptide and non-degradable control. (b) Degradation kinetics 
tracked by monitoring fluorescence over time. (Reprinted from Biomaterials, 34, Leight JL et al., 
Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using 
a fluorogenic peptide substrate, 7344–52, ©2013 with permission from Elsevier [51])
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 Peptide Functionalization

In addition to synthesis of the desired peptide, it must be able to be chemically 
bound to or mixed in with the biomaterial while maintaining its biological activity. 
This can also influence the design of the peptide. For covalent binding of the pep-
tide, an appropriate reactive group or additional amino acids must be added to 
allow the reaction to occur. One example of this is the use of a peptide substrate, 
which can be covalently cross-linked through the action of an enzyme. One such 
substrate is NQEQVSP(L), which is derived from α2-plasmin inhibitor and is a 
substrate for the transglutaminase enzyme factor XIIIa. This peptide allows cova-
lent  cross- linking with some natural biomaterials, such as fibrin [52, 53], or with 
synthetic biomaterials that have a complementary substrate (FKGG) recognized by 
the enzyme [54]. For covalently bound peptides that act as a ligand, spacer amino 
acids may need to be added within the peptide to prevent steric hindrance interfer-
ing with receptor recognition. Cyclization of the peptide to constrain its presenta-
tion may also help to improve ligand–receptor interactions, as has been demonstrated 
with the RGD peptide [55]. For peptides that are active in soluble form, an MMP 
substrate can be added in the peptide sequence between the covalent attachment 
point and the peptide of interest to allow enzymatic cleavage and release of the 
peptide. For example, this has been done by adding the MMP substrate sequence 
PVGLIG to the N-terminus of osteogenic growth peptide (OGP) and then using 
carbodiimide chemistry to link the peptide to a partially oxidized form of alginate. 
Release of the peptide from the alginate matrix through the action of MMP-2 was 
confirmed [56].

In the PEG hydrogels prepared by a Michael-type addition reaction described 
above, a covalent bond was formed between the polymer and the peptides through 
the functionalization of the PEG with vinyl sulfone groups and the incorporation of 
cysteine residues, which have a reactive thiol group, in the peptides. This allowed 
both the functionalization of the PEG with the cell adhesive RGD peptide and the 
cross-linking of the PEG into an enzymatically degradable network using the sub-
strate peptides [22, 23, 38, 39]. Similar conjugation reactions can also be performed 
between maleimide groups and thiol groups [57]. This strategy has been used to 
functionalize surfaces with peptides, for example, with layer-by-layer films of 
peptide- grafted poly(allylamine hydrochloride) (PAH) [58] and maleimide self- 
assembling monolayers on quartz substrates [59].

Depending on the reactive groups present on the material, peptides can also be 
covalently attached via an amide bond using 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling reagents to 
materials such as maleic anhydride-modified poly(lactic acid) (PLA) [60] or the 
carboxyl groups of partially oxidized alginate [56]. Typically, this approach relies 
on the reaction of an amine group coming from the N-terminus or a lysine side chain 
of the peptide with a carboxyl group on the material. Further, copper-catalyzed 
azide alkyne cycloaddition reactions can be used with azide-functionalized peptides 
and, for example, propargyl functionalized l-phenylalanine-based poly(ester urea)s 
[61]. Alternatively, the reactive groups can be switched between peptide and 
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polymer, as in the case of azidopropyl hyperbranched poly(arylene oxindole) func-
tionalization with 5-Hexynoic-RGDS [62].

For noncovalent binding of peptides, the peptides may be allowed to adsorb to 
the material or be mixed in during processing, so that they are entrapped in the 
matrix. Alternatively, the peptide can be modified with an affinity domain that pro-
motes noncovalent interactions with the material. For example, the addition of a 
highly negatively charged E7 domain, consisting of seven glutamic acid residues in 
a row, enables peptides to bind to calcium-based materials [63–66] or to pre- 
mineralized materials, such as PLGA/collagen/gelatin nanofibers [49]. For an anor-
ganic bovine bone graft material, coupling of a BMP-2-derived peptide to E7 led to 
increased loading and greater retention, even after 8 weeks of implantation in vivo 
[63]. Alternatively, the hydroxyapatite binding domain of statherin (N15 domain) 
was used to bind either PGRGDS or PDGEA (a cell adhesive peptide derived from 
type I collagen) to hydroxyapatite surfaces. The peptide-coated materials bound 
MC3T3-E1 osteoblasts via the αVβ3 integrin (for  PGRGDS)  and α2β1 integrin 
(for PDGEA) [67].

Other linkers, such as polydopamine, can be used to mediate peptide attachment 
to surfaces [68–72]. In one approach, the surface can be coated with polydopa-
mine, and then the peptide can be bound to the polydopamine coating [68]. 
Polydopamine coatings can be formed by dip-coating of a material in an aqueous 
solution of dopamine, which self-polymerizes, and they allow for further function-
alization via secondary reactions [73]. This methodology is inspired by the adhe-
sive proteins in mussels, which contain 3,4-dihydroxy-l-phenylalanine and lysine 
amino acids, and the covalent and noncovalent interactions that can occur with 
catechol compounds, and it is particularly interesting because it is compatible with 
a number of different inorganic and organic materials, such as metals, oxides, poly-
mers, and ceramics [73]. Alternatively, peptides can be functionalized with a short 
polydopamine tag that can then interact with surfaces via the catechol groups 
(Fig. 5) [70]. This approach has been used to functionalize otherwise inert titanium 
(Ti) surfaces with RGDS and OGP, which enhanced the attachment, proliferation, 
and osteogenic differentiation of bone marrow-derived mesenchymal stem cells 
(BM-MSCs) in vitro as well as improved osteogenesis and mechanical stability of 
peptide-coated screws implanted in the femoral condyles of New Zealand White 
rabbits in vivo [70].

 Osteoinductive Peptides

Peptide-functionalized materials provide an interesting approach to stimulate bone 
regeneration. In the fields of orthopedics and dentistry, peptides are relevant in two 
major ways. The first is to provide surface functionalization of the frequently 
Ti-based implants that are used as permanent implants. The use and characterization 
of Ti implants [74] as well as their combination with biopolymers [75] have been 
previously reviewed. The second is to use peptides in tissue engineering approaches. 
Typically, tissue engineering aims to combine cells, biomaterials, and biological 
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factors to create living implants that can repair or regenerate tissue function [76], 
and peptides are one means of providing these biological signals. In this case, tissue 
engineering scaffolds of a variety of materials have been modified and examined for 
their effects both in vitro and in vivo.

This section focuses on the application of peptides with osteoinductive capabili-
ties, that is, peptides that can promote the osteogenic differentiation of progenitor 
cells in vitro and can lead to de novo bone formation in vivo. While the cell adhesive 
and enzymatically degradable peptides discussed above as well as other peptides, 
such as pro-angiogenic peptides, can support tissue remodeling and repair more 
generally and thus are interesting to consider as part of treatments to regenerate 
bone, as considered in recent reviews [77, 78], in this section, peptides that influ-
ence bone progenitor cells are specifically considered. These peptides are derived 
from a number of sources including identification of active domains in BMP-2, 
BMP-7, and other osteogenic proteins. A number of osteogenic peptides, their 
sequences and variants, and their effects are briefly summarized in Table 5.

 OGP Peptides

Osteogenic growth peptide (OGP; ALKRQGRTLYGFGG) is a 14 amino acid pep-
tide derived from the C-terminus of histone H4. It is found naturally in soluble form 
in serum and has been shown to influence osteoblast proliferation and differentia-
tion [79]. OGP increased alkaline phosphatase (ALP) activity of MC3T3-E1 pre- 

Fig. 5 Cell adhesive (DOPA)4-G4-GRGDS and osteoinductive (DOPA)4-G4-YGFGG peptides that 
mimic mussel-derived proteins with catechol groups to enable coordination between the catechol 
groups and titanium oxide for surface functionalization of Ti cortical bone screws. (Reprinted with 
permission from [70]. ©2016 American Chemical Society)
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osteoblasts in  vitro and improved bone remodeling in  vivo in a rat mandibular 
condyle model when delivered systemically [79]. In addition, systemic administra-
tion of OGP has been shown to improve the structural and mechanical properties of 
the fracture callus in a rat model [93].

OGP has also been used with several biomaterials, both as a 2D surface modifi-
cation and for incorporation in a 3D scaffold [94, 95]. When OGP and its shorter 
variant, OGP(10–14) (YGFGG) [80], were tethered to 2D surfaces via click chem-
istry between an azide-functionalized peptide and an alkyne-terminated self- 
assembled monolayer (SAM), they led to increases in MC3T3-E1 attachment and 
proliferation in  vitro [96]. A similar approach has been used with azide- 
functionalized OGP and poly(ester urea) scaffolds via propargyl groups on the 
surface of the  scaffolds. This functionalization increased the differentiation of 
human mesenchymal stem cells (hMSCs), as demonstrated by increases in ALP 
activity, calcium deposition, and expression of osteogenic genes [61]. Carbodiimide 
chemistry has been utilized to link OGP(10–14) to maleic anhydride-modified 
PLA scaffolds, improving the proliferation, differentiation, and mineralization of 
neonatal rat calvarial osteoblasts [60]. Moreover, OGP has been used to function-
alize the surface of Ti implants through a polydomamine linker. In combination 
with the cell adhesive peptide RGD, the OGP-functionalized surfaces promoted 

Table 5 Osteoinductive/osteogenic peptides and their effects

Peptide Sequence Effects Reference

OGP ALKRQGRTLYGFGG
YGFGG (shorter variant) 

Osteogenic differentiation in vitro; 
bone formation in vivo

[70, 79, 
80]

BMP-2 
derived

NSVNSKIPKACCVPTELSAI Ectopic bone formation in vivo [81]

KIPKASSVPTELSAISTLYL Osteogenic differentiation in vitro; 
ectopic bone formation in vivo

[82]

DWIVA Osteogenic differentiation in vitro; 
increased bone formation in vivo

[83]

BMP-7 
derived

TVPKPSSAPTQLNAISTLYF Osteogenic differentiation in vitro [84]

GQGFSYPYKAVFSTQ (BFP-1) Osteogenic differentiation in vitro [85]
ETLDGQSINPKLAGL (BFP-3) Osteogenic differentiation in vitro [86]

BMP-4 
derived

RKKNPNCRRH Osteogenic differentiation in vitro 
(ERK1/2 activation); bone formation 
in vivo

[87]

BMP-9 
derived

KVGKACCVPTKLSPISVLYK Osteogenic differentiation in vitro; 
ectopic bone formation in vivo

[88, 89]

PTH1-34 SVSEIQLMHNLGKHLNS- 
MERVEWLRKKLQDVHNF

Orthotopic bone formation in vivo [90]

Others GTPGPQGIAGQRGVV (P-15) Proliferation in vitro; bone formation 
in vivo

[91]

GLRSKSKKFRRPDIQY- 
PDATDEDITSHM (CBM)

Mineralization in vitro and in vivo [92]

PFSSTKT (BMHP1) Osteogenic differentiation in vitro [59]
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cell attachment and mineralization in vitro, and functionalized Ti screws led to 
increased osseointegration, as shown by increased bone volume, bone-implant 
contact, and pull-out force (Fig. 6) [70].

Additionally, hydrogels have been formed using OGP(10–14) tethered to algi-
nate matrices by a protease-sensitive linker. Exposure to enzymatic treatment led to 
the release of the peptide and osteogenic differentiation of treated hMSCs. The 
MSC-laden, OGP-functionalized alginate hydrogels also resulted in ectopic bone 
formation in vivo [56]. Moreover, functionalization with OGP increased MC3T3-E1 
proliferation and alkaline phosphatase activity for cells cultured on hydrogels 
formed from the self-assembling peptide RADA16 [97].

 Peptides Derived from BMP-2

As BMP-2 is one of the most potent osteoinductive growth factors [98], peptides 
derived from BMP-2 have also been studied for their ability to stimulate osteogenic 
differentiation in vitro and bone formation in vivo. One of the first peptides derived 
from BMP-2 was a 20-amino-acid-long sequence (NSVNSK-IPKACCVPTELSAI), 
which led to ectopic bone formation in the calf muscle of rats when linked to an 
alginate hydrogel [81]. A peptide containing the motif DWIVA has also been dem-
onstrated to promote proliferation and osteogenic differentiation of MC3T3-E1 
cells  in vitro and to increase bone growth when conjugated to the surface of Ti 
implants used in mandibular bone defects in beagle dogs [83].

Fig. 6 Effect of OGP surface treatment of Ti bone screws on osteogenesis and mechanical stabil-
ity in a rabbit femoral condyle. (a) Reconstructed microCT images. (b) Quantitation of bone vol-
ume (BV)/total volume (TV) from microCT images. (c) Representative histological images stained 
with toluidine blue with 1 = untreated control, 2 = OGP, 3 = RGD, and 4 = OGP/RGD (3,1). (d) 
Quantification of bone-implant contact (BIC) from histological images. (e) Biomechanical pull- 
out testing. (Reprinted with permission from [70]. ©2016 American Chemical Society)
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The peptide KIPKASSVPTELSAISTLYL, derived from residues 73–92 of the 
knuckle epitope of BMP-2, has promoted ALP activity and osteocalcin gene expres-
sion by C3H10T1/2 cells in culture and, when combined with an alginate hydrogel, 
has led to ectopic bone formation in rat muscle tissue [82, 99] and accelerated bone 
formation in a rat tibial defect [100]. Entrapping the peptide in chitosan micro-
spheres that were then embedded in nano-hydroxyapatite/collagen/poly(lactic acid) 
(PLA) scaffolds provided controlled release of the peptide, which still retained its 
activity [101]. Further, grafting the peptide to self-assembled monolayers in combi-
nation with the cell adhesive RGD peptide led to the upregulation of bone sialopro-
tein expression as well as promotion of mineralization, even in the absence of other 
osteogenic supplements [102]. As has been shown with OGP, polydopamine has 
also been used to link the BMP-2-derived peptide to PLGA scaffolds [69, 71]. For 
example, the modified scaffolds promoted osteogenic differentiation of human 
adipose- derived stem cells (hADSCs) in culture and resulted in bone formation in 
calvarial defects in vivo [69].

The BMP-2-derived KIPKASSVPTELSAISTLYL has also been incorporated 
into surface coatings using electrostatic interactions. One way this has been achieved 
is by forming layer-by-layer films of PAH and poly(sodium 4-styrenesulfonate), 
with the peptide grafted on the PAH. The films were coated on electrospun mem-
branes of nano-hydroxyapatite and PLGA, and they promoted alkaline phosphatase 
activity by MSCs in vitro and bone formation in a rat calvarial defect in vivo [58]. 
A second method to immobilize the peptide is through the E7 calcium binding 
domain described earlier. E7-modified BMP-2- derived peptides have been bound to 
anorganic bovine bone [63], α-tricalcium phosphate (α-TCP) scaffolds [64], and 
even nanofibrous membranes of PLGA/collagen/gelatin that were pre-mineralized 
[49]. Nanofibrous aerogels of electropsun PLGA/collagen/gelatin and Sr-Cu-doped 
bioactive glass fibers were also functionalized with E7-BMP-2 peptides. The addi-
tion of the peptide increased bone formation in vivo in rat calvarial bone defects 
(Fig. 7) [50].

 Peptides Derived from BMP-7

Bone forming peptide-1 (BFP-1; GQGFSYPYKAVFSTQ) is derived from residues 
100–114 of BMP-7. Treatment with soluble BFP-1 led to increased ALP activity and 
calcium deposition by bone marrow stromal cells, and further these BFP-1- treated 
cells increased bone formation when injected subcutaneously in mice [85]. Likewise, 
hMSCs also showed increased ALP activity, calcium deposition, and osteogenic 
gene expression when cultured on nanofibrous scaffolds consisting of polycaprolac-
tone (PCL) functionalized with the peptide via a polydopamine linker. This enhance-
ment in osteogenic differentiation was also seen when the cells were cultured in 
medium lacking other osteoinductive factors [68]. Further, human- induced pluripo-
tent stem cells (hiPSCs) also increased ALP activity, calcium deposition, and osteo-
genic gene expression when cultured on 2D surfaces that had been functionalized 
with BFP-1 and carboxymethyl chitosan [72]. A second osteoinductive peptide, 
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BFP-3, was also determined from BMP-7 residues 250–265 (ETLDGQSI-
NPKLAGL ). It increased in vitro osteogenic differentiation of bone marrow stromal 
cells by increasing ERK1/2 and Smad1/5/8 phosphorylation [86].

 Peptides Derived from BMP-4 and BMP-9

Osteoinductive peptides have also been identified within BMP-9, including from the 
knuckle epitope, residues 68–87 (KVGKACCVPTKLSPISVLYK) [103]. In vitro, 
this peptide-induced gene expression of Runx2, osterix, type I collagen, and osteo-

Fig. 7 Calvarial bone regeneration induced by E7-BMP-2 peptide loaded aerogels. Radiographs 
of (A) untreated controls, (B) aerogel only control, (C) E7-BMP-2 peptide loaded aerogel group. 
Quantification of (D) regenerated bone volume and (E) bone formation area. (Reprinted with per-
mission from [50]. ©2018 John Wiley and Sons)
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calcin by MC3T3-E1 pre-osteoblast cells, and it activated the Smad pathway [89]. 
The phosphorylation of Smad1/5/8 was further enhanced when this peptide was 
presented in combination with a fibronectin-derived peptide containing both PHSRN 
and RGD ligands and functionalized on films of PCL [104]. When combined with a 
chitosan-based delivery system, the peptide induced ectopic bone formation in the 
quadriceps of mice. Interestingly, a collagen-based delivery system abrogated this 
response [88].

A heparin binding domain from residues 15–24 of BMP-4, RKKNPNCRRH, has 
been shown to have osteogenic activity. Administered in soluble form, the peptide 
promoted the osteogenic differentiation of hMSCs, as shown by increased matrix 
mineralization as well as upregulation of the osteogenic genes, ALP, osteopontin, 
and osteonectin. Phosphorylation of Smad 1/5/8 and MAPK was demonstrated by 
Western blotting and confirmed the activation of the ERK1/2 pathway. Further, 
when combined with an alginate hydrogel matrix, the peptide was able to stimulate 
in vivo bone formation in a rabbit calvarial defect model [87].

 Peptides Derived from Parathyroid Hormone

A peptide derived from parathyroid hormone residues 1–34 (PTH1–34; SVSEIQL- 
MHNLGKHLNSMERVEWLRKKLQDVHNF) has been used clinically as treatment 
for osteoporosis [105]. For stimulating bone regeneration, it has been covalently 
bound to an RGD-functionalized PEG hydrogel and been shown to lead to increases 
in in vivo bone formation, at levels similar to treatment with autologous bone, when 
implanted into alveolar bone defects surrounding standard Ti implants in a dog model 
[90]. Similarly, PTH1–34 was covalently bound to a fibrin matrix via an enzymatically 
degradable peptide linker, and this led to increased bone formation in defects of the 
femur and humerus of sheep [106]. The soluble form of PTH1–34 was also adminis-
tered via injection to determine dosing amount and frequency to improve bone healing 
in a mouse femoral allograft model [107]. Moreover, it was shown to protect against 
radiotherapy-induced trabecular bone loss in a rat model [108].

 Other Peptides

A number of other peptides have shown osteoinductive activity. Bone marrow 
homing peptide 1 (BMHP1; PFSSTKT), which was discovered from screening a 
phage display library, led to osteogenic differentiation of MSCs cultured on quartz 
substrates functionalized with the peptide [59]. The peptide P-15 derived from 
residues 766–780 of the type I collagen α chain (GTPGPQGIAGQRG-VV) accel-
erated bone formation in a rabbit calvarial defect model when it was coated on 
deproteinized bovine bone [91]. A collagen-binding motif (CBM) from osteopontin 
(GLRSKSKKFRRPDIQYPDATDEDITSHM) in combination with a type I collagen 
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matrix increased mineralization by cultured bone marrow stromal cells, as shown 
by calcein, Alizarin Red S, and ALP staining, as well as phosphorylation of 
Smad1/5/8 (Fig. 8). The peptide functionalized matrices also led to increased bone 
formation in rabbit calvarial defects [92].

 Use of Osteoinductive Peptides Clinically

The majority of peptides used to stimulate bone healing and regeneration have only 
been evaluated in vitro or in preclinical animal studies [109, 110]. Of the osteoinduc-
tive peptides discussed in this chapter, two have seen more extensive clinical use, 
PTH1–34 and P-15. In addition, chrysalin, also known as thrombin peptide 508 
(TP508), has been evaluated in Phase I/II clinical trials to treat distal radial fractures, 
showing reduced time to healing [111]. PTH1–34 has been approved for the prevention 
and treatment of osteoporosis clinically [105]. In a clinical study for the treatment of 
distal radial fractures, PTH1–34 shortened the time to healing with the lower of two 
doses tested [112] and appeared to improve early callus formation [113]. The use of 

Fig. 8 Effect of CBM on bone marrow stromal cells. (A) Micrographs of calcein staining (left 
panel), Alizarin Red S staining (middle panel), and ALP expression (right panel). (B) 
Quantification of ALP activity. (C) Western blot analysis for phosphorylated-Smad expression. 
(Reprinted from Biomaterials, 28, Lee J-Y et al., Assembly of collagen-binding peptide with 
collagen as a bioactive scaffold for osteogenesis in  vitro and in  vivo, 4257–67, ©2007 with 
permission from Elsevier [92])
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PTH1–34 in bone healing has also been documented in several case reports, including 
for sternal nonunion [114] and hip fracture [115], among others [110]. P-15 was 
combined with anorganic bone mineral and a hydrogel carrier material and tested in 
a clinical study for anterior cervical discectomy and fusion in comparison with auto-
graft. The radiographic fusion rates, clinical and patient- reported outcomes, and 
safety profile of the P-15 formulation were all similar to autograft bone [116]. In a 
first example of its use for orthopedic applications, again combined with anorganic 
bone mineral, P-15 has been tested in a pilot clinical trial to treat patients with mal-
union or delayed union fractures, leading to full consolidation in 90% of the cases 
[117]. In the oral cavity, P-15 in combination with anorganic bone mineral has been 
shown to lead to improved defect fill results when compared to anorganic bone min-
eral alone in a multicenter trial with 33 patients [118].

 Anti-biofilm Peptides

Biofilms are formed by the colonization of bacteria on surfaces and represent a 
leading cause of chronic and implant-associated infections clinically [119, 120]. 
They are characterized by the formation of aggregates of bacteria that encapsulate 
themselves in a dense extracellular matrix composed of polysaccharides, extracel-
lular DNA, proteins, and lipids [121]. As a result, bacteria in biofilms are 10- to 
1000- fold more resistant to antibiotics than planktonic (motile) bacteria [122, 
123]. Of relevance to biomaterials, biofilms can form on the surface of implanted 
medical devices, such as catheters, valves, stents, and orthopedic prostheses, and 
even of contact lenses [124]. In dentistry, the plaque that develops on the surface 
of teeth is also a biofilm [125]. Peptide-based treatments for preventing or elimi-
nating biofilms are becoming interesting due to the development of antimicrobial 
peptides, which demonstrate broad-spectrum activity against planktonic Gram-
positive and Gram-negative bacteria. A subset of these antimicrobial peptides 
have also demonstrated activity against bacteria in biofilms, both on their own and 
in combination with other antibiotics [126–132], and a number of examples are 
summarized in Table 6.

Antimicrobial peptides, a subset host defense peptides, are naturally produced by 
organisms including animals, fungi, plants, and bacteria, resulting in the identifica-
tion of more than 2000 such peptides [152]. Antimicrobial peptides typically act 
rapidly and have a broad-spectrum antimicrobial activity against planktonic cells, 
while host defense peptides also include those peptides that act as innate immune 
modulators through anti-infective, anti-inflammatory, wound healing, and/or anti- 
biofilm activities [153, 154]. Thus, these natural peptides are interesting to explore 
as potential therapeutics against biofilms. Alternatively, peptide screening methods 
can be used to identify peptides with antibacterial activity [155]. As the literature on 
antimicrobial peptides is vast, this chapter will focus on a few key examples of anti-
microbial peptides that are naturally derived or identified from peptide screening 
studies and have shown anti-biofilm activity. Additional emphasis will be placed on 
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peptides that have shown anti-biofilm activity in vivo in animal models or that have 
been used to modify biomaterial surfaces. Anti-biofilm activity is typically demon-
strated in vitro by the ability to kill multiple species of bacteria that can be present 
in biofilms, including Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 
species [131]. In vivo activity has primarily been tested in mouse skin wound or 
cutaneous abscess models as well as rat ureteral catheterization models. In addition 
to killing planktonic bacteria that can form or detach from biofilms as well as killing 
embedded bacteria, antimicrobial peptides can also act to interfere with bacterial 
adhesion and gene expression as well as influence the host response to the biofilm 
[127]. These latter activities can occur at concentrations much lower than the mini-
mum inhibitory concentration (MIC), which is usually used to characterize the 
effects of antimicrobial agents on planktonic bacteria [127] and provides a measure-
ment of anti-biofilm activity.

 LL-37, P10, AS10, and hep20 Peptides (Naturally Derived)

Of the many antimicrobial peptides, cathelicidin LL-37 (LLGDFFRKSKEKIG- 
KEFKRIVQRIKDFLRNLVPRTES) was one of the first human-derived peptides to 
demonstrate anti-biofilm activity. It can be found at mucosal surfaces and in the 
granules of phagocytes, and its concentration at sites of chronic inflammation is 
higher than baseline levels in most bodily fluids [146]. It is able to prevent biofilm 
formation in vitro at concentrations well below its MIC, and it can also reduce exist-
ing P. aeruginosa biofilms [146]. Shorter peptides derived from LL-37, such as P10 
(LAREYKKIVEKLKRWLRQVLRTL-R), have also shown antimicrobial activity. 
P10 was more effective at killing the methicillin-resistant S. aureus (MRSA) strain 
LUH14616 than LL-37, and it could eradicate MRSA strains LUH14616 and 
LUH15051 from thermally wounded human skin equivalents in vitro without show-
ing toxicity towards the fibroblasts and keratinocytes within the tissue models [147].

Likewise, the mouse cathelicidin-related antimicrobial peptide (CRAMP) has 
been shown to inhibit fungal biofilm formation [156]. Shorter peptides based on 
CRAMP, such as AS10 (KLKKIAQKIKNFFQKLVP), were also able to inhibit 
Candida albicans biofilm growth on Ti disks as well as formation of biofilms from 
other bacteria [134]. The study also tested the effect of AS10 on human osteoblasts, 
mesenchymal stromal cells, and endothelial cells in vitro and demonstrated no neg-
ative effects on cell viability. Further, AS10 did not interfere with calcium deposi-
tion by the osteoblasts or mesenchymal stromal cells or with tube formation by the 
endothelial cells, which suggests that AS10 could be used as an anti-biofilm coating 
on implants without affecting cells in the surrounding tissues [134].

A second human-derived antimicrobial peptide is hepcidin 20 (hep20; ICIFCC- 
GCCHRSHCGMCCKT), a 20-amino-acid peptide that is found in the liver. The 
related hepcidin 25 (hep25) is involved in the regulation of plasma iron levels by 
binding ferroportin on macrophages, enterocytes, and hepatocytes [157]. Both hep25 
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and hep20 have demonstrated antimicrobial activity against several bacterial strains 
[158] with hep20 also showing antifungal activity [159]. Hep20 inhibited biofilm 
formation of polysaccharide intercellular adhesion (PIA)-positive and PIA- negative 
clinical isolates of Staphylococcus epidermis, most likely by inhibiting the accumu-
lation of extracellular matrix within the biofilm [143].

 IDR-1018 and 3002 Peptides (from Peptide Library Screenings)

Innate defense regulator peptide 1018 (IDR-1018) and 3002 are two examples of 
peptides that have been optimized by peptide library screening methods. Starting 
from the bovine bactenecin derivative Bac2a (RLARIVVIRVAR-NH2), a library of 
over 100 peptides, each 12 amino acids long, was generated by performing point 
mutations, scrambling, and deletion of amino acids [160]. The immunomodulatory 
potential of the peptides from the library was evaluated by measuring the ex vivo 
induction of monocyte chemotactic protein 1 (MCP-1) and MCP-3 by human 
peripheral blood mononuclear cells, and IDR-1018 (VRLI-VAVRIWRR-NH2) 
resulted in a >50-fold increase compared to Bac2a [160]. IDR-1018 also exhibited 
broad-spectrum anti-biofilm activity towards P. aeruginosa, E. coli, A. baumannii, 
K. pneumoniae, MRSA, S. typhimurium, and B. cenocepacia when tested with 
sub- MIC concentrations [161]. It could also inhibit or eliminate biofilms, as dem-
onstrated by growing P. aeruginosa biofilms in continuous-culture flow cells in a 
minimal medium. The medium flowing through the cells was supplemented with 
IDR-1018 either during or after biofilm establishment, and in both cases, the treat-
ment led to thinner biofilms that lacked the structural features of mature biofilms 
or eliminated them entirely (Fig. 9) [161].

The sequence specificity of IDR-1018 was further explored by generating a sec-
ond peptide library that contained 96 peptides with single amino acid substitutions 
[133]. This library was SPOT-synthesized on cellulose arrays, and the ability to 
prevent MRSA biofilms was evaluated. The resulting data were fed into a quantita-
tive structure–activity relationship (QSAR) model, which predicted new peptides 
with anti-biofilm activity from an in silico library of 100,000 peptide sequences. 
The identified peptide 3002 (ILVRWIRWRIQW-NH2) was more effective than 
IDR-1018  in inhibiting biofilm growth and in eradicating pre-formed biofilms. 
Further, peptide 3002 was able to reduce abscess size in a mouse cutaneous model 
of high-density bacterial infection, an MRSA chronic infection model [133].

 DJK-5, DJK-6, and D-RR4 Peptides (d-Enantiomeric Peptides)

While peptides represent a potentially powerful therapeutic option, they have some 
drawbacks for use in vivo including degradation by proteases and inactivation in 
bodily fluids. The incorporation of non-natural amino acids into synthetic peptides 
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Fig. 9 Inhibition and eradication/reduction of biofilms of different bacterial strains by sub- 
inhibitory concentrations of peptide IDR-1018, as demonstrated in a flow cell assay. The scale bars 
are 30 μm. (Reprinted under the terms of the Creative Commons Attribution License from de la 
Fuente-Núñez et al. ©2014 [161])

can address some of these limitations by providing more stable variants, which may 
lead to increased activity [140–142, 162]. The synthetic antimicrobial peptides 
DJK-5, DJK-6, and D-RR4 have been developed including the d-enantiomeric form 
of amino acids and have shown strong anti-biofilm activity both in vitro and in vivo 
[140–142]. DJK-5 (vqwrairvrvir; d-amino acids) and DJK-6 (vqwrrirvw-vir; 
d-amino acids) were identified from screening a library of 12-amino-acid-long pep-
tides with the following design constraints: d-enantiomeric forms of only 9 amino 
acids (A, F, I, K, L, Q, R, V, W), 4 charged residues, 7–8 hydrophobic residues, and 
0–1 Q residues. DJK-5 and DJK-6 were identified as being able to inhibit biofilm 
formation by several common bacterial strains, at concentrations below their MIC, 
and to eradicate established biofilms [140]. Further, DJK-5 was shown to decrease 
abscess size and reduce bacterial burden in a mouse cutaneous abscess model 
induced by P. aeruginosa [141].

The peptide D-RR4 (wlrrikawlrrika-NH2; d-amino acids) was developed to be 
resistant to proteolytic digestion, as confirmed by stability in the presence of both 
bacterial (proteinase K) and mammalian (trypsin) proteases, and it remained active 
in the presence of physiologic concentrations of salt, serum proteins, and acidic pH 
[142]. It also showed reduced toxicity towards macrophages and keratinocytes when 
compared to the l-enantiomeric form of the peptide. The in vivo antibacterial activity 
of D-RR4 was demonstrated by increased survival and decreased bacterial burden of 
Caenorhabditis elegans worms infected with P. aeruginosa or A. baumannii, after 
treatment with the peptide [142].
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 BMAP28, Tachyplesin III, WRL3, and DRGN-1 Peptides 
(Evaluation In Vivo)

In vitro activity to inhibit or kill relevant bacterial strains as well as to inhibit or 
eradicate biofilms helps to demonstrate the potential of anti-biofilm peptides. 
However, ultimately, they must be effective in vivo, and thus the development of 
relevant animal models is important. As mentioned previously, the survival of C. ele-
gans worms and the reduction of cutaneous abscesses in mice are two examples of 
such in vivo models. However, they lack some of the complex features of implant-
associated biofilm formation and chronic infection. A more challenging model is an 
infected mouse burn wound model. In this case, a region of skin is first scalded and 
then infected with MRSA.  In addition to the size of the wound and the bacterial 
burden, the effects on host response [interleukin (IL)-6, IL-10, tumor necrosis factor 
(TNF)-α, and MCP-1 production] as well as angiogenesis can be evaluated. Using 
this model, the antimicrobial effects of an engineered amphiphathic peptide, WRL3 
(WLRAFRRLVRRLARGLRR-NH2), was demonstrated (Fig. 10). This confirmed 
its potential as an anti-biofilm agent as also shown by antimicrobial activity against 
MRSA and inhibition of biofilm activity in  vitro [151]. Likewise, DRGN-1 
(PSKKTKPVKPKKVA) enhanced healing in a mouse skin wound model that was 
infected with a biofilm containing both P. aeruginosa and S. aureus [163].

As catheters frequently develop biofilms, in vivo models have also been devel-
oped to study the effects of antimicrobial peptides on ureteral stent infection. These 
rat models have involved the implantation of ureteral stents either subcutaneously or 
in the bladder. The subcutaneous model was used to assess the effectiveness of 
stents coated with Tachyplesin III (KWCFRVCYRGICYRKCR-NH2), which is 
derived from horseshoe crabs and exhibits antimicrobial activity against P. aerugi-
nosa. After implantation of the Tachyplesin III-coated stent, P. aeruginosa was 
injected onto the implant surface. The Tachyplesin-III-treated group showed a 
reduction in bacterial count compared to uncoated stents, and this effect was further 
enhanced by co-treatment with intraperitoneal injection of piperacillin-tazobactam 
(TZP) [149]. On the other hand, the bladder implantation model was used with 
BMAP-28 (GGLRSLGR KILRAWKKYGPIIVPIIRI-NH2), a cathelicidin peptide. 
After implantation of the BMAP-28-coated stent, S. aureus or E. faecalis was inoc-
ulated into the bladder. The BMAP-28 coating reduced the bacterial counts for both 
strains compared to uncoated controls, and this level was further reduced by coad-
ministration of vancomycin intraperitoneally [137].

 Immobilization of Antimicrobial Peptides

A final consideration in the development of anti-biofilm peptides is their delivery 
mechanism. As biofilms tend to form on the surface of implanted devices, peptide 
immobilization techniques become relevant [164]. Antimicrobial peptides can simply 
be adsorbed on the surface of materials by soaking them in solutions of the peptides 
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[137, 149, 165]. Layer-by-layer films provide a next step in complexity of prepara-
tion and controlled release of the peptide. These films are formed from alternating 
deposition of cationic and anionic molecules (polymers or peptides) [166, 167]. 
For example, the thickness and stability of the coating, amount of peptide loaded, 
and the release rates of the antimicrobial peptide ponericin G1 (GWKDWA 
KKAGGWLKKKGPGMAKAALKAAMQ-NH2) were affected by the choice of 
polyanion used, and the film composition also influenced resistance to attachment 
of S. aureus [167].

Polymer brushes provide a means for covalent conjugation of antimicrobial 
peptides. Ti and quartz surfaces have been functionalized by surface-initiated 
polymerization of N,N-dimethylacrylamide and aminopropyl methacrylamide 
hydrochloride, resulting in a primary amine functionality. These amine groups 
were modified to maleimide groups, which then allowed the reaction with cyste-
ine-containing peptides [168, 169]. The presentation of antimicrobial peptide 

Fig. 10 In vivo antimicrobial activity of WRL3 as demonstrated in a mouse infected burn wound 
model. (A) Viable bacterial counts in colony-forming units (CFU). (B) Wound area measurements. 
(C) Images of wounded regions. (Reprinted with permission from [151]. ©2016 American 
Chemical Society)
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Tet-20 (KRWRIRVRVIRKC) inhibited P. aeruginosa and S. aureus growth 
in vitro and S. aureus adherence in vivo on subcutaneous implants [169]. Similarly, 
an allyl glycidyl ether polymer brush with PEG-maleimide spacer was used to bind 
cysteine- containing peptides to polydimethylsiloxane (PDMS) surfaces [170].

As reduction in biofilm formation and improved osseointegration are important 
considerations for Ti orthopedic and dental implants, loading of antimicrobial pep-
tides in porous calcium phosphate (CaP) coatings on Ti surfaces has been explored. 
Coatings containing the peptide Tet213 (KRWWKWWRRC) demonstrated antimi-
crobial activity against S. aureus and P. aeruginosa bacterial strains while remain-
ing cytocompatible towards MG-63 osteoblast-like cells [171]. A similar coating 
loaded with HHC36 (KRW-WKWWRR) did not interfere with bone growth around 
press-fit grafts in a rabbit femoral defect model [172]. A more complex coating 
combining the CaP with vertically oriented TiO2 nanotubes and a phospholipid film 
were also able to provide sustained release and antimicrobial activity of HHC36 [173].

 Use of Anti-biofilm and Antimicrobial Peptides Clinically

Similar to the osteoinductive peptides, anti-biofilm peptides as well as antimicrobial 
peptides more generally have not yet resulted in many products for clinical use [174, 
175]. Of the peptides discussed herein, LL-37 has been tested in Phase I/II clinical 
trials to treat hard-to-heal venous leg ulcers. In this case, the LL-37 improved the 
healing rate constants [176], but the application was a topical treatment for wound 
healing and not treatment of biofilms. Polymyxin B and Polymyxin E (colistin) have 
been used clinically to treat drug-resistant infections resulting from Gram- negative 
bacteria [177–179]. However, the majority of antimicrobial peptides tested clinically 
have been used topically in clinical trials to treat infected diabetic foot ulcers, cath-
eter infections, and skin and fungal infections [175] and not for treatment and/or 
prevention of biofilms. While several anti-biofilm peptides show promise, clinical 
translation of antimicrobial peptides has met a number of regulatory hurdles [174].

 Conclusion/Summary and Future Perspectives

This chapter started out by introducing basic concepts in peptide design, from learn-
ing from nature and deriving peptides from active domains within proteins to utiliz-
ing peptide library screening methods to identify peptides with a desired response. 
Standard methods for peptide synthesis, most commonly solid-phase peptide syn-
thesis, and various techniques for functionalizing biomaterials with peptides were 
summarized. These chemical methods for peptide synthesis bring about additional 
opportunities in peptide design, as non-natural amino acids and fluorescent tags, 
among other molecules, can be incorporated during the synthesis. This allows for the 
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development of peptides that may be more stable or have higher activity than their 
naturally derived counterparts, and the possibility of adding dyes further provides 
simplified methods for detecting the peptides. These so-called peptidomimetics have 
started to be explored for their antimicrobial activities [126, 132, 180], and it would 
be interesting to explore further osteoinductive peptidomimetics. Covalent and non-
covalent binding of peptides to biomaterials also provides a means to localize the 
peptide and in some cases provide controlled release. It would also be interesting to 
explore osteoinductive and antimicrobial peptides in the context of other controlled 
release systems. For example, research is rapidly advancing in the development of 
stimuli-responsive systems that release their cargo in response to changes in tem-
perature, pH, light, etc., and conjugation to polymers or encapsulation in micro-/
nano-particles also provide a means for extended delivery of compounds [181].

Finally, this chapter focused on the development and application of two classes 
of peptides, those with osteoinductive and anti-biofilm activity. The osteoinductive 
peptides have been derived for a large part from the active domains of the different 
BMPs. Their activities have been demonstrated in vitro by stimulating osteogenic 
differentiation of different types of progenitor cells and in vivo by promoting bone 
growth, ectopically or orthopically. These peptides show promise to support osseo-
integration when functionalized on the surface of Ti or other inert implant materials. 
Further work to combine these peptides with newly developed biomaterial scaffolds 
[182, 183] would help to advance the field of bone tissue engineering. The anti- 
biofilm peptides presented have been developed from naturally occurring antimicro-
bial peptides as well as from screening of peptide libraries. Candidate peptides have 
shown activity against several strains of bacteria that are involved in biofilm forma-
tion, and they have also been shown to reduce bacterial burden or wound size in 
in vivo models. Development of more complex animal models that mimic the clini-
cal conditions of biofilm infection would help to further identify and characterize 
peptides with anti-biofilm activity. Last but not least, the combination of osteoin-
ductive and anti-biofilm peptides would allow for the development of materials that 
stimulate bone formation while simultaneously protecting against chronic infection. 
Anti-biofilm peptides have clearly been intended for orthopedic [184] and dental 
applications, as they have been studied while functionalized on Ti surfaces. Full- 
length BMPs have been combined with antibacterial agents, such as vancomycin 
and silver (Ag+) [185], so the combination of osteoinductive and anti-biofilm pep-
tides, functionalized on the surface of permanent implants or implemented in tissue 
engineering scaffolds, is a logical next step.
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