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Animal Models for Bone Tissue
Engineering and Osteoinductive
Biomaterial Research

Qifeng Lu, Xiao Lin, and Lei Yang

Abstract Animal bone defect model is the most important and widely used in vivo
model for the study of osteoinductive biomaterials and bone tissue engineering.
There are many different types of bone defect models at various anatomical sites,
including skull and long bones, and using different animals, including mice, rats,
rabbits, dogs, swine, and even nonhuman primates. Proper selection of animal
model for a specific biomaterial or bone tissue engineering study is critical to obtain
reasonable and reliable results. In this chapter, calvarial, weight-bearing long bone
segmental defect models, metaphyseal defect models, and vertebral defect models
are reviewed referring to several selection criteria of bone defect models. Several
issues regarding model selection are discussed, including the characteristics of the
model, the material being tested, and the experimental purpose. Considering the
inconsistency between the current models and the real clinical conditions, we pro-
pose a suggestion for the future development of animal models for bone tissue
engineering and osteoinductive biomaterial research.

Keywords Animal model - Bone defect - Fracture - Osteoinductive biomaterials
Bone tissue engineering

Qifeng Lu and Xiao Lin contributed equally to this work.

Q. Lu- X. Lin
Orthopaedic Institute and Department of Orthopaedics, The First Affiliated Hospital,
Soochow University, Suzhou, Jiangsu, China

L. Yang (><)
Orthopaedic Institute and Department of Orthopaedics, The First Affiliated Hospital,
Soochow University, Suzhou, Jiangsu, China

Center for Health Science and Engineering (CHSE), School of Materials Science and
Engineering, Hebei University of Technology, Tianjin, China
e-mail: ylei@hebut.edu.cn

© Springer Nature Switzerland AG 2020 245
B. Liet al. (eds.), Racing for the Surface,
https://doi.org/10.1007/978-3-030-34471-9_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34471-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-34471-9_11
mailto:ylei@hebut.edu.cn

246 Q. Luetal.

Introduction

Bone fracture is a common injury. Severe bone fractures are usually comminuted,
which may cause bone defects. Nonunion would occur if the size of bone defect is
beyond the self-healing ability of bone, which will cause serious pain and medical
burden to patients. Furthermore, the repair of bone defects is difficult in clinical
treatment due to limited autogenous bone supply.

The development of osteoinductive biomaterials and bone tissue engineering
technology brings hope to the treatment of bone defects caused by fracture. For
bone defects caused by tumors and osteomyelitis, biomaterials with only osteoin-
ductive capability have limited treatment potential. Thus, this chapter focusses on
defects caused by fracture. After development of bioactive bone substitutes, includ-
ing osteoinductive biomaterials and bone tissue engineering products, evaluation of
whether the materials meet the requirements of clinical treatment is necessary.
Considering the complexity of the human body, results from in vitro tests cannot
properly reflect the performance of biomaterials in vivo. Animal experiments are
therefore essential for biomaterial evaluations by simulating the clinical human
application.

However, the establishment of a universal animal model applicable to all studies
for bone tissue engineering and osteoinductive biomaterial is impossible. A wide
variety of bone defect models has been created for testing various materials. The
repair of bone defect is affected by many factors, such as stability of the fractured
ends of bone, blood supply, infection, and treatment methods, all of which affect the
evaluation results of biomaterials. An incorrect selection of model or failure of detail
control may seriously affect the results and even mislead the researchers. Therefore,
proper animal models should simulate the real conditions of fracture and bone defect
well and should be repeatable and standardized to obtain reliable results.

Here, we review the current bone defect models for the researches of osteoinduc-
tive biomaterials and bone tissue engineering and provide prospects for the develop-
ment of defect models, which may serve as a reference for relevant researchers. This
review includes three parts. The characteristics and analyses of the each bone
defect model are introduced in the first part. The model selection criteria are
described and suggested in the second part. Finally, the need for improvement and
development of new bone defect models are proposed in the third part.

Animal Bone Defect Models

An ideal animal bone defect model used in osteoinductive biomaterials and bone
tissue engineering research needs to meet the following criteria.

Clinical similarity: The animal model should have a similar in vivo environment
simulating a specific human disease. For the bone fracture defect model, it should
simulate bone defect of human when fracture occurs. Meanwhile, the animal model
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should be consistent with the disease severity. In terms of bone defect models, the
size of bone defects should exceed the self-repair ability of the body where non-
union occurs without immediate treatment. The smallest size causing nonunion is
defined as the critical size defect (CSD) [1]. The CSD values vary with animal
model and animal age, weight, defect location, and other pathological factors [2].

Repeatability: Standardized processes and operational methods should be used
to produce animal bone defect model, which allows the model to be repeated under
the same conditions, rendering the results from the bone defect model reliable and
comparable.

There are many types of bone defect models used in the researches of osteoin-
ductive biomaterials and bone tissue engineering. Based on the defect location, the
bone defect models can be divided into calvarial bone defect model, long bone
segmental defect model, metaphyseal defect model, vertebral body defect model,
and long bone multiple defect model, etc. Moreover, each model can be created in
different animal species. Within so many kinds of defect model, selecting a suitable
model for research is a problem every researcher encounters. Before making
choices, an in-depth understanding of these models is necessary.

Calvarial Bone Defect Models

Calvarial bone defects are usually created at the center of parietal bone by using a
trephine with a specific diameter after cutting the skin and subcutaneous tissue [7].
This model is easy to create and the procedure is standardized to reach a high
repeatability.

CSD in Calvarial Bone Defect Models

The CSD of a mouse skull is 4 mm in diameter for round defects [8]. In addition,
bilateral skull defects with 3.5 mm in diameter [7] can be established in one mouse
to obtain more reliable results. Table 1 summarizes CSD values for a number of dif-
ferent models.

Calvarial bone defect models are usually created in rats. However, the CSD of
cranial bone defects is reported to be approximately 4-8 mm [3, 9-13] (Fig. 1a).
Scholars initially recognized that the CSD was 8 mm in diameter [9], which is gen-
erally chosen in the level of the dura and sigmoid sinus [9]. However, these large-
size cranial defects may damage the sagittal sinus, resulting in increasing the
probability of bleeding. Therefore, scholars studied small-size skull defects. Sakata
et al. created a 7-mm diameter cranial defect [13]. At 14 days post grafting, no calci-
fied tissue was visible in the defect, and more calcification was seen after 35 days,
but this did not fill the calvarial defects [13]. Subsequently, experiments of rat skull
defects with diameters of 6, 5, and even 4 mm were reported [12—14]. These small-
size bone defect models could make bilateral defects so that it might be used to
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compare different materials in one single animal, thus improving the reliability of
the experiment. The most widely used model is the 5-mm defect model, which is
considered to be CSD with bilateral [15, 16] or single defect [3, 11, 17]. With regard
to the skull defect with 4-mm diameter, Glowacki et al. [12] found no obvious signs
of bone healing even after 6 months of observation. It should be noted that the
observation time period for the determination of CSD in the rat skull should be
>8 weeks because skull repair is active within the first 4 weeks and essentially stops
at the eighth week [15].

For the rabbit calvarial defect model, the CSD is generally considered as a
full-thickness defect with a diameter of 15 mm [4] (Fig. 1b). Bilateral bone defects
with smaller size were also established on rabbit skull. Lin et al. drilled an 8 mm-

(a)
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Fig. 1 Calvarial bone defect models: (a) a rat calvarial CSD of 5 mm in diameter [3]; (b) the
composite hydroxyapatite/cell sheet transplanted into the calvarial defect of rabbit (15 mm in
diameter) [4]; (¢) four 8 mm-diameter defects were drilled into the rabbit calvarial bone with a
trephine [5]; (d) canine calvarial defect model: (I) bilateral full-thickness bone defects with a size
of 20 mm x 20 mm were created; (II) the experimental side (left) was repaired with a cell-coral
construct and the control side (right) was filled with a coral alone; (IIT) coronal CT scan image of
the same animal was taken immediately after surgery [6]
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diameter bilateral full-thickness defect, which was used to compare the repair of
bone defect with autologous mesenchymal stem cells (MSCs) [18]. Liu et al.
created four 8 mm-diameter defects in the calvarium of rabbits using a trephine
attached to a low-speed hand-piece [5] (Fig. 1c). Furthermore, Tovar et al. also
drilled two bilateral 8.0 mm-diameter defects without dural injury in the proximal
to the coronal suture of the parietal bone [19]. In this way, a variety of bone substi-
tutes have be evaluated by the rabbit calvarial defect model (Table 1).

The CSD in canine skull defect model is usually 20 mm in diameter [20]. With
regard to large animal models, making bilateral skull defects is convenient. Sato
et al. manufactured bilateral 14-mm trephine defects in dog skull to evaluate the
performance of f-sheep bone morphogenetic protein (3-BMP) and a carrier consist-
ing of matrix y-carboxyglutamic acid rich protein [21]. Cui et al. created bilateral
full-thickness bone defects with a size of 20 x 20 mm at the parietal bone [6]
(Fig. 1d). In addition, a large skull defect area, measuring 35 x 35 mm, was also
created in another study [22].

Comments on the Models

Some studies performed periosteal removal in the operative region [12, 23], which
might have caused the failure of the skull repair. For example, the stripping of perios-
teum could even lead to the failure of 2-mm diameter defect healing in rats [24, 25].
Thus, the periosteal layer should be sutured to avoid the obstruction of blood supply
when creating animal skull defects.

The operation procedure of the calvarial defect model seems simple, but many
things needs special attention to create a successful, repeatable model. The skull is
located under the skin; thus, direct skull exposure without intraoperative bleeding is
simple. However, prevention of secondary damage is difficult. The surgeon should be
careful not to damage the dura mater and the surrounding vessels intraoperatively, or
it would cause uncontrollable bleeding. Also, the sagittal sinus may be injured during
when creating large-size defects, resulting in obstruction of blood supply. In addi-
tion, bone marrow progenitor cells exist in the connective tissue near the sagittal
suture, which might be involved in bone remodeling after injury. These factors may
critically impact the repair of bone defects.

Segmental Defect Models of Weight-Bearing Long Bone

Weight-bearing bones refer to the bones that bear the main weight of the body in
the extremities. The femur and tibia are the most common weight-bearing bones
in animal models. The femur size is large, which is convenient for the establish-
ment of bone defect model. And the infection resisting ability of femur model is
believed to be strong. However, much muscle tissue around the femur can com-
plicate bone exposure during operation. Because part of tibia is directly under
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the skin, tibial exposure is relatively simple, but infection is easy to occur. The
selection of model should be based on the purpose of the study and the degree of
familiarity of the anatomy.

Fixation Used in the Segmental Defect Model

After the long bone segmental defect forms, the body weight would cause the move-
ment and displacement of the broken ends of the bone, which could affect bone
healing and test results. Therefore, internal or external fixation must be used to
ensure the stability of defect site.

Rats are often used to create the segmental defect models of weight-bearing long
bone. It is however challenging to perform surgery on the slender bones. Kirschner
wire is often used for fixing the tibia [30] and femur [31] of rats. However, Kirschner
wire in bone marrow cavity occupies much space, causing inconvenience for
implanting testing materials. In addition, Kirschner wire has no anti-rotation ability
and disturbs the blood supply of defect ends. These shortcomings limit the applica-
tion of Kirschner wire in the small animal model. Besides the Kirschner wire, exter-
nal fixator can be used to secure the femoral defect [32, 33], which reveals good
anti-rotation ability and preserves the blood supply of defect ends as well as ade-
quate space for implantation. Moreover, the external fixator usually allows animals
move freely without the joint being fixed. In recent years, plate fixation [26] (Fig. 2a)
and a four-hole high-density polyethylene with stainless-steel screws [34] have been
developed for rat femur models. Also, small steel plates and screws have been
used to immobilize the femur [35] and tibia [27] (Fig. 2b) of rabbits (Table 2).

With regard to large animals, the weight of the goat and sheep is closer to that of
the human body and the size of the bone is also similar to that of the human bones.
So more fixation options are available for these animal models. The standard
dynamic compression plate (DCP, ten-hole) [36, 37], external fixator [29, 38]
(Fig. 2d), screws [28] (Fig. 2c), and internal fixation rods [39, 40] can be used as
fixation devices for tibial defects. For femoral defects, internal fixation rods or inter-
locking nails can be used as fixation devices [39].

CSD in the Segmental Defect Models of Weight-Bearing Long Bone

The CSD of long bone is considered as 1.5-2.5 times the circumference of the
diaphysis, or >1/10 of the length [1]. Different animals and bones have differ-
ent CSDs.

The CSD of the tibia and femur in the rat model are 4 mm [30] and 5 mm [31-
34], respectively. For the rabbit model, the CSD of the tibial defect model is deter-
mined as 5 mm [27]. However, there are different opinions on the femoral CSD in
rabbit models. Fialkov et al. confirmed 12 mm as CSD for femoral diaphyseal defect
model [41], but Fan [42] and Duan et al. [35] used a 15-mm defect as CSD.
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Fig. 2 Weight-bearing long bone segmental defect models with fixations: (a) Photo and radio-
graphs of rat femoral defects with fixation (I) prior to implantation, (II) immediately post-
implantation, (III) treated with HA/TCP loaded human MSCs at 12 weeks post-implantation, and
(IV) treated with HA/TCP alone at 12 weeks post-implantation [26]. (b) A 5-mm bone defect was
created in the middle of rabbit tibia and stabilized with a plate and screws. The defect was implanted
with a complex of 3-TCP granules and collagen, either with 200 mg of FGF-2 (I) or without FGF-2
(II). For control group, the bone defect was left empty (III) [27]. (¢) The 40 mm defect of goat
shank with fixation before (I) and after implantation of biomaterial (II) [28]. (d) Goat tibia defects
model with external fixation. (I) A periosteal segmental defect of 26 mm length was created at the
right tibia; (II) the defect was filled with BMSCs/B-TCP construct; (III) radiographs of goat tibial
defects taken at different time points post-operation [29]

With regard to large animals, goats and sheep have relatively large limbs that
are convenience for modeling surgery using internal fixators. Both the femur and
tibia of goat may be used in bone defect models. The segmental defects in the femur
is located in the middle of the shaft, and the length of the osteotomy defect could
reach up to 25 mm [39]. The sizes of the tibial defect in goats are reported to be dif-
ferent (e.g., 26 mm [38] and 40 mm [28]). For sheep models, the tibia is the most
widely used bone and the lengths of defect is either 3.0 cm [36, 37] or 3.5 cm [43],
or even 5 cm [40].
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Comments on the Models

Segmental defect models of long bone model requires osteotomy to make bone
defects and needs to fix the defect ends with fixator, which makes this type of model
complicated. However, in real clinical practice, fractures and bone defects usually
occur on the weight-bearing bones of the extremities and internal and external fix-
ators are frequently used in treatment. Thus, the segmental defect models are
close to clinical scenarios. Besides, if the design purpose of a novel bone substitute
material is to repair a long bone defect of the limbs, the segmental defect model of
weight-bearing bone is more suitable. In addition, real bone fractures are often
accompanied by peripheral soft tissue injury and inadequate blood supply. The mid-
dle and lower segments of the tibia are in contact with subcutaneous tissue without
muscle in between, rendering the tibia defect model similar to the clinical factures.

Segmental Defect Models of Non-weight Bearing Long Bone

The non-weight-bearing bones include ulnar, radius, and the fibula. When these
bones are truncated, the stability of the broken ends may not be destroyed and the
defect ends usually need no fixation, which obviously simplifies the preparation pro-
cess of the model. To prevent the displacement of the testing material, cerclage
wires can be used to prevent dislocation during modeling [46, 47, 49].

CSD in Segmental Defect Models of Non-weight Bearing Long Bone

For mice, the shaft of the radius is most commonly used and the lengths of defects
are usually 1.5 and 2.5 mm [50, 51].

For rats, 5-mm osteotomy is usually created on the bilateral radial shaft [45, 52]
(Fig. 3a). Although the segmental fibular defect model has two different defect sizes
(2 mm and 4 mm) [53], 4 mm is generally considered to be the CSD for fibula
[1, 54]. The segmental fibular defect model can also be performed in bilateral fibu-
lar bone [54] which can reduce the required number of animals. Besides, two differ-
ent materials can be compared on one individual rat, which could reduce the
experimental error and make the results more consistent.

In rabbit model radius is the most commonly used bone to generate a CSD. It is
generally believed that the CSD value in long bone should be at least two times the
diameter of the diaphysis [46, 47, 49] (Fig. 3b, c). The radius diameter of adult New
Zealand white rabbit is approximately 5-6 mm. Therefore, some scholars have
determined 10 mm-defect as the CSD [16, 55-58], although 15 mm-defect has also
been used [59, 60]. Moreover, the osteotomy site of the defect is suggested to be
selected at 2.5 cm above the radio-carpal joint. Besides the radius, the rabbit ulnar
shaft can also be used. Two sizes, 15 mm [61] and 20 mm [62], are commonly
adopted as the CSD values of the ulnar. Only a few scholars adopted nonstandardized
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Fig. 3 Non-weight-bearing long bone segmental defect models: (a) Postoperative radiographs of chi-
tosan (CS)-gelatin (Gel) scaffolds in rat radial bone defect (5 mm) at 2, 5, and 8 weeks [45]. (b) Radius
of rabbit exposed by dissection of surrounding muscles and an osteoperiosteal segmental defect was
created on the middle portion of each radius at least twice that of the diameter of the diaphysis [46].
(c) (I) Xenogenic growth plate grafting in radius defect of rabbit; (II-1II) Radiographs of forelimb on
14th day post opertation (II-autograft, III-growth plate xenograft) [47]. (d) Radiographs of the postop-
erative changes in canine segmental ulnar defects filled with BMP and cells [48]

ulnar stem defects. For example, evaluate recombinant human bone morphogenetic
protein-2 in promoting bone healing, Bouxsein et al. built a blade-width (0.5—-1 mm)
defect in the ulna [63].

Ulna defects are often made in dog models. The ulna is exposed through cranio-
lateral approach [64], and the osteotomy site is located at the proximal 4 cm of the
ulnar styloid process [65]. The length of the osteotomy has various sizes in litera-
ture: 20 mm [65], 22.5 mm [64], and 25 mm [48, 66, 67] (Fig. 3d). The radius of the
dog can also be used to build segmental bone defects with a size of 10 mm [68].

Comments on the Models
Compared with the weight-bearing long bone defect models, the non-weight

bearing long bone segmental defect models are relatively simple to create. However,
the forearm defect model cannot avoid the interactions between radius and ulna, and
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the pathological and biomechanical changes in one could be compensated by
another. Other shortcomings of these models include the great variations in the bone
diameter and resultant sizes of defects created (Table 3).

Metaphyseal Defect Model

When preparing a metaphyseal defect model, a small drill is used to make a lateral
cylindrical defect which is vertical to the axis of the femoral shaft [71-74], and
then the bone substitute materials with proper diameters are implanted into the
cylindrical defect.

Femur or tibia is commonly selected for this model due to their large sizes and
good accessibility to their condyles. The metaphyseal bone is located subcutane-
ously and usually no extra fixation is needed after defect creation, which makes the
model relatively simple to create with a high success rate [75].

CSD in Metaphyseal Defect Models

In mice metaphyseal defect model, defects with 1 mm in diameter were usually cre-
ated at the proximal tibia [76] and distal femur [77, 78]. However, these small
defects are difficult to evaluate bone substitutes. These defects are mainly used to
test drug or investigate the mechanism of fracture healing.

For rats, bone defects with 3.5 mm in diameter at the proximal tibial diaphysis
are often used for evaluating biomaterials [79]. Bone defects with different sizes,
5 mm in diameter and 5 mm in depth [80], 6 mm in diameter and 10 mm in depth
[69, 73] (Fig. 4a), and 6.1 mm in diameter [70] (Fig. 4b) were fabricated on the
metaphysis of rabbit femur. The size of defect in canine femoral condyles could
reach 20 mm in depth and 8 mm in diameter [81] or 20 mm in depth and 10 mm in
diameter [82].

Comment on the Models

The metaphyseal defect model only simulates a bone defect environment, not a long
bone fracture or defect in clinical scenarios. Only a few categories of materials are
suitable for evaluating by this type of models, including bone filler or substitutes for
localized bone defects, granular or colloidal materials without structural support
capabilities, and bone cement, etc. Besides simple modeling without the requirement
for fixation, another advantage of the condyle defect model is that it can avoid the
displacement of testing material (Table 4).
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Fig. 4 Metaphyseal defect models: (a) Rabbit femoral condyle bone defects surgical procedure;
(I) CSD (6 mm in diameter and 10 mm in length) was transversally created in the femoral condyles
of rabbits; (II) the defect was filled with nHA/CS composite scaffolds [69]. (b) Micro-CT sagittal
images of the rabbits’ distal femurs from a top view of the CO;Ap blocks (I-IV) and HAp blocks
(V=VII) immediately after implantation (day 0) (I, V) and at 4 (II, VI), 12 (III, VII), and 24 (IV,
VII) weeks after implantation in rabbits’ distal femurs [70]

Vertebral Body Defect Models

In some studies, the injectable biomaterials were evaluated on long bone defect
models [79]. However, the different parts of the bone have varied mechanical envi-
ronment, which may lead to varied material degradation behavior and bone tissue
response in vivo [83, 84]. To simulate the actual environment, materials specifically
for vertebral repair or augmentation are strongly recommended to be evaluated
by vertebral defect models (refer to [85] for illustrative images).
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Small Animal Vertebral Body Defect Models

In small animals, rats are often used to fabricate vertebral body defect models. The
CSD of rat vertebra was explored by Liang et al. [85]. Two different sizes of defect,
2 mm x 3 mm x 1.5 mm and 2 mm x 3 mm x 3 mm, were made in anterior part of
L4, L5, and L6 vertebra, and the former bone defect was found to be the
CSD. Besides, the bone defect model can also be constructed in the caudal vertebra
of rats. For example, a cylindrical defect (1.8 mm in diameter and 2 mm in depth)
in the center of the third caudal vertebra was created through a left posterolateral
approach [86]. The advantages of caudal vertebra model include simple anatomy
approach and free of the risk to important organs and vessels. Meanwhile, there is
even simpler method of modeling, such as PMMA directly injected into the L1-L6
vertebral body of New Zealand rabbits [87]. However, the clinical significance of
such modeling methods for biomaterial evalution is questionable.

Large Animal Vertebral Body Defect Models

Sheep vertebral body defect model is most frequently used. The similarity of body
weight and bone size of sheep to those of humans allows testing biomaterials designed
for clinical study. The L.2-L5 vertebrae are usually used to create the model. Usually, a
cylindrical hole with a certain diameter and depth is drilled in the center of vertebral
body to simulate the space created by balloon in kyphoplasty (KP) and then the
defect is filled with injectable biomaterials. The diameters of the hole include 4 mm
[88], 6 mm [88, 89], 8 mm [90, 91], and 10 mm [92], while the depths of the hole are
9 mm [88], 10 mm [89], 15 mm [90-92], and even 20 mm [93].

In addition to these common cylindrical defects, the rectangular defect with
8 mm high, 10 mm deep, and 20 mm long, was used to test injectable calcium
phosphate cement [94]. Verron et al. [94] built an osteoporosis vertebral bone
defect model, which was in line with the fact that most of the patients receiving
the treatment of bone filling material suffer from osteoporosis. However, the
establishment of this osteoporotic model needs a long modeling time (4—6 months)
and high costs.

Canines are less used in vertebral defect model than sheep. In the modeling
process, the lateral side of the lumbar spine is shown through the dorsal to the
transverse process. The central vertebral defect with the size of
18 mm x 5 mm x 22 mm was produced, and the researcher injected the biomaterial
into the defect for testing [95].

The bone defect in swine vertebral body can be created by percutaneous punc-
ture under fluoroscopic guidance [96]. The lumbar vertebrae of mini-swine were also
used for preparing defect model (15 mm in depth and 4 mm in diameter) [97].
Compared with other species, swine models are noisier and more aggressive,
and their daily management is more difficult [98] (Table 5).
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Other Bone Defect Models
Femoral Wedge Bone Defect Model

Volker et al. produced femoral wedge bone defect model in rat to resemble clini-
cally relevant situations of osteoporotic bone [100]. In Volker’s research, a 5-mm
wedge-shaped osteotomy as critical size defect was conducted at the distal metaph-
yseal area of rat femur and fixed using a T-shaped plate.

Multiple-Defect Model in Canine Femur and Tibia

Bone defects could be established at various sites on canine bones. The middle sec-
tion of the femur can produce two bone defects with 4-mm in diameter for testing
biomaterials [101]. The canine femoral multiple defect (CFMD) is in the lateral
cortex of the upper segment of the femur. During modeling, a specific device is
fixed to the lateral cortex of the proximal femur by two screws: one upper and one
lower. The four consecutive fabricated bone defects are cylindrical with 10 mm
in diameter and 15 mm in length [102—104]. In addition, each bone defect is at least
1.5 cm [102] or 1.2 cm [105] apart from the normal bone and bone marrow. This
model is suitable for evaluating different materials in the same animal at the same
time. Thus, accurate data comparison could be reached, and the number of animals
could also be reduced. It is also an effective comparison tool for the evalution of cell
delivery [103] and growth factor delivery [102, 105].

The canine tibia could also be used to prepare tibil a multiple-defect model
(CTMD) [106]. In a previous study, the tibia was exposed via a medial approach,
and then an electrical motor was used to create consecutive cylindrical bone defects
with 4 mm in diameter, where different materials could be implanted at the same
time [106].

Nonunion Models

The short stumpy limbs of swine might restrict the creation of standard CSD mod-
els. Thus, some special models, such as nonunion model, have emerged. Schubert
et al. [107] created a critical bone defect with a size 1.5 times that of the diameter of
the femoral shaft in miniature swine (aged not older than 6 months and weighing
<50 kg) and used two 4.5-mm locking compression plates for stabilization. Canines
can also be used to produce nonunion model. Saifzadeh et al. produced a 2-mm
transverse defect in the right medial radial diaphysis [108], where the defect ends
were not fixed to create a nonunion model for testing autogenous greater omentum
(Table 6).
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Selection of Bone Defect Model

A suitable bone defect model for biomaterials and tissue engineering study is criti-
cal. The selection of bone defect model involves the considerations of characteris-
tics of animal models, research purposes, and biological characteristics and design
specifications of bone substitute materials.

Age and Sex of Animal

The bone repair ability is very high in young animals. For rats, the speed of bone
repair in immature bones was more than that of the mature ones [109, 110]. For
example, the healing time of femoral fractures is only 4 weeks for 6-week-old rats,
whereas the healing time is 26 weeks for 52 week-old rats [111]. The similar results
have been found in rabbit models [112], which might be related to the varied secre-
tion of bone morphogenetic protein (BMP) [113]. The ability of fast bone repair
could affect the test results of bone substitute material. Therefore, adult rats were
usually selected in the establishment of bone defect models [1, 109, 114, 115].
Similarly, rabbit bone growth stops within 19-32 weeks [116] and therefore 6-9
month-old male rabbits are usually selected for study [72, 73].

Estrogen cycle also has a significant effect on bone repair and turnover. In ovari-
ectomized rats, particularly in elderly rats, the delayed union of the femoral frac-
tures and reduction of bone mineral density (BMD) would occur [117]. Therefore,
the ovariectomized rats were often used to establish osteoporotic fracture models.
Studies on non-osteoporotic bones should select male animals to avoid this interfer-
ence. But it is worthy mentioning that male animals usually have a strong sense of
territory and the use of individual cages may be required to prevent fights, injuries,
or even deaths among male animals. Thus, the age and sex of the animal should be
well controlled for study and reported in details.

Comparison between Different Animal Species

In bone tissue engineering and osteoinductive biomaterial researches, the ani-
mal species used for model is also critical for reliable and consistent results. The
animals of each species have their own unique skeletal characteristics including
bone morphology, bone microstructure, bone turnover, and bone remodeling. The
ideal animal for bone defect model should have bone characteristics highly similar
to that of human, in order to guarantee that the results of animal experiments could
be safely extrapolated to humans. However, the availability, costs, and ethical con-
sideration will also be involved in the selection of animal species. A general sum-
mary of various commonly used species is provided below.
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Rodents

There is a great discrepancy between the bone microstructures of rodents and
human. Different from the osteon structure in adult humans, the long bone cortex of
rats consisted mainly of primary and cancellous bone, which lacks a Haversian
canal system [118].

Intramembrane and endochondral ossifications are two typical bone formation
mechanisms during fracture healing [119]. In the fracture healing of rodents, endo-
chondral ossification is more predominant although both kinds of fracture healing
mechanisms are present [120, 121]. The bone healing capability of rodents is
greater than that of human [1]. Unlike human bone that ceases to grow after sexual
maturity, the bones of the sexually mature rodent would continue to grow
for extended time [122].

Mice are inexpensive and widely available, easy to manage, and have pure strain
and strong infection-resistance. The mouse genome is also thoroughly researched,
and it means that bone substitute material can be studied at the molecular level.
When the inbred line mice are used in the model, the differences between individu-
als are small, which makes the results more reliable. Furthermore, nude mice are
well-developed animal model that has no immunological rejection for bone tissue
engineering substitutes that incorporated with human cells. However, the mouse
skeleton is too small to establish a large defect model. Moreover, for some bone
implants, shrinking to the appropriate size of the defect to evaluated the clinical
outcome is difficult [123]. In addition, compared with mouse model, the rat model
has better practical value in biomechanical tests.

Rabbit

Both the macro- and microstructure of rabbit’s bones are distinctly different from
those of human [124]. Unlike the mature human bones with secondary hierarchi-
cal structure, rabbit skeletal bone has a primary vascular longitudinal tissue struc-
ture. It forms a vascular access to the Haversian canal that is wrapped around the
medullary cavity and distributed on the periosteal surface [125]. The bones between
these lamellar structures are composed of dense Haversian bone [125]. However,
the bone structure of rabbit is still more representative for human than that of
mouse [126].

Compared with primates and rodents, rabbits have faster bone remodeling, par-
ticularly in Haversian remodeling of cortical bones [127-129]. Thus, it is not
advised to extrapolate from the rabbit’s findings to possible human clinical
responses [130].

Rabbits are easy to manage, and the cost is less than larger animals. Compared
with rodents, the biggest advantage of rabbit is the large size of bones that benefits
for bone defect creation. Also, the ear margin vein of rabbit is convenient for obtain-
ing blood samples, which is beneficial for blood analysis.
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Canine

Canine bone components are highly similar to those of humans, including hydroxy-
proline, extractable proteins, IGF-1 content [131], as well as water fraction, organic
fraction, volatile inorganic fraction, and ash fraction [132]. Microscopically, canine
bone has secondary osteonal structures, known as plexiform bone or laminar bone
in the adjacent endosteum and periosteum [124]. The plexiform bone is found in the
rapid growth of children, or in rapidly growing large animals [133]. Therefore,
canine bone is considered as one of the best representatives of human bone structure
[131]. Thus, dogs are suitable for animal models in biomaterials research and bone
tissue engineering. However, canine bone defect models have not been widely used
due to the high costs and difficult breeding as well as ethical limitations in some
countries.

When using canine as animal model, it should be noted that bone remodeling
process of dogs is quite different from that in humans. The mean bone turnover rate
of young adult female beagles is much higher than that of humans [134, 135], which
could partially explain the high fusion rates in canine lumbar fusion models and the
low nonunion rates [98]. The rate of bone remodeling in different bones varies sig-
nificantly for dogs. Considering adult male beagles, the bone turnover rate is close to
200% and 12% annually in the lumbar vertebra and talus, respectively. Although, the
mean total turnover of trabecular bone is approximately 100% annually [134].

Goat and Sheep

Sheep and goats have the similar weight as humans, and their limbs can provide suf-
ficient testing space for clinically sized implants [128, 136, 137]. The structure of
sheep bone is remarkably different from that of human histologically. Compared
with human bone that mainly consists of secondary bone structure [138], the sheep
bone has mostly primary bone structure where osteons is <100 pm in diameter and
contains at least two central blood vessels. Bone structure changes in sheep are
related to age. Before the age of 3—4 years, the sheep’s plexiform bone structure
consists of a combination of woven and lamellar bone with sandwiched vascular
plexuses [128]. When the sheep is 7-9 years old, Haversian remodeling occurs
[128] and becomes more common as age increases [139]. Furthermore, the location
of bone remodeling seemed to vary with bone types and the earliest indications of
remodeling include the distal femur, radial shaft, and humerus [128]. Similar to
sheep, the Haversian systems of goats are unevenly distributed in the whole skele-
ton, which mainly located in skull and the medial part of tibial shaft [140]. After
comparing sheep with menopausal women in terms of bone mass, bone volume, and
mineral deposition rate, Turner et al. concluded that old sheep were suitable as mod-
els for osteoporosis in the elderly [141].

Although the microscopic structure of sheep bone is different from humans, many
studies have confirmed that bone turnover and remodeling activities in the sheep
model are similar to those of humans [142], which makes the sheep as a valuable
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model animal for testing bone substitutes [136, 143]. Although the amount of bone
ingrowth in sheep was greater than that in humans, Willie et al. found that sheep and
humans had similar patterns in terms of bone ingrowth into porous implants [144].
Lamerigts et al. found similar sequences of events occurring in humans and goats for
bone grafts [145]. Furthermore, Dai et al. found that the bone healing capacity and
the blood supply of goat tibia were both similar to those of humans [38].

There are some differences between goats and sheep, including microscopic
structure, bone metabolism, and remodeling. However, these two models were very
similar in general. Therefore, choosing goats or sheep as animal models depends on
availability and other personal preferences.

Swine

Compared with sheep model, swine model are closer to humans in bone morphol-
ogy, bone metabolism, bone healing, and remodeling [98, 146, 147]. The cross-
sectional diameter and area of femur are very similar to those of human [148]. In
mature bone, the swine have well-developed Haversian systems [149] and a layered
bone structure similar to human [150]. Furthermore, its bone density and bone min-
eral content are almost equal to those of human bones [131], although the trabecular
meshwork of swine is denser than that of humans [151]. The bone growth rate in
swineis 1.2—1.5 mm daily, which is comparable to that of human beings (1.0-1.5 mm
daily). The processes of bone remodeling in swine, including trabecular and intra-
cortical basic multicellular remodeling units (BMU) based remodeling, are all simi-
lar to those in humans [150, 151]. Moreover, mineralization rate of cortical bone
was the same as that in humans [152]. Thus, swines are considered suitable models
for bone-related studies [147].

Nevertheless, pigs weighing over 150 kg are considered not suitable to produce
animal models for biomaterials and bone tissue engineering study. Even for minia-
ture swine, the daily management is difficult, particularly because they are noisy
and aggressive. Thus, in many cases sheep and dogs are preferred over swine as
large animal models [128, 153].

Small animals, such as mice, rat, and rabbits account for >70% [154, 155] of all
the animal models. In general, the advantages of small animals include good afford-
ability, convenient management, and small individual difference. However, some
problems exist when using small animal model to test the potential clinical products.
Considering cell-seeded scaffolds for example, the viability and osteogenic poten-
tial of cells in small scaffolds are easy to maintain to repair bone defects in small
animals but it becomes difficult in large scaffolds used for large bone defect repair.
Besides, small animals have strong bone healing ability and weak immune response,
which is different from the actual bone repair of the human body.

For large animal models, such as sheep, dogs, and swine, its large bones
would allow the evaluation of implants with the size close to those used in
humans. Moreover, compared with small animals, large animal bones have
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higher similarity to human bones. Although with many advantages, large animal
models were not usually used due to the difficulties of accommodation, manage-
ment, availability, and ethics.

Research Related Criteria

For experiments that are expected to get results in a short time, the small animal
model (rodents and rabbits) is recommended due to their fast bone healing process.
When long-term observation is required, large animal models are recommended,
since the bone structure, bone repair mechanism, and immune response in large
animals are closer to those in human body.

The study purpose of osteoinductive biomaterials and bone tissue engineering is
also an important factor when choosing the model. If the experiment was to test the
osteoinductive capability of the materials, skull defect models or long bone metaph-
yseal defect model could be used to simplify the experimental procedure.

However, more complicated models are needed for studies with specific research
goals. For example, long bone segmental defect model should be utilized to test the
substitute materials designed to repair long bone defects, in which fixation devices
would be utilized to fix the ends of defects to simulate clinical practice. When bone
substitute materials are used as bone cement for vertebroplasty (VP) and kypho-
plasty (KP) surgery, the vertebral defect models are recommended.

The characteristics of materials also affect the selection of models. If the bone
substitute materials were colloidal, shapeless granule, or powder, the long bone
metaphyseal defect model or the multiple defect model might be a better choice,
since it can avoid the dislocation and loss of biomaterials or scaffolds.

For materials containing human tissue cells, nude rodent model may be suitable
models to prevent the immune system from interfering with cells. Nude rodent mod-
els are capable of ignoring the source of cells and the reaction between scaffold and
the host; hence, it could be used to study the efficacy of engineered tissue prod-
ucts directly [156]. However, because nude rodents are immune-deficient animals
and cannot reflect the normal immune functions, the data obtained from nude rodent
models may need to be further confirmed by other animal models.

Bone Defect Models Simulating Clinical Scenarios

Actual Situation of Bone Defect in Clinical Settings

It should be recognized that most fractures were simple two-part fractures or minor
comminuted fractures without bone defects. Bone defect is usually caused by com-
minuted broken ends of the fracture. In fact, serious violent injuries not only cause
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fracture end comminution, but also force the fractured fragment to move, rendering
it impossible to maintain the position of the broken ends.

When the bone defect exceeds the self-repairing ability, nonunion would occur
without external intervention therapy. However, the bone defect size is not the only
factor that affects bone healing. The real bone defect is accompanied by severe dam-
age of blood supply at the broken ends of the fracture, which would seriously hamper
the fracture healing. Therefore, the occurrence of bone defect and fracture healing are
not simple processes in clinical practice. Unfortunately, most of the current bone
defect models did not well imitate the actual state of clinical bone defects.

Fracture Model and Nonunion Model

There are two models that simulate the actual state of a bone fracture: closed frac-
ture model and nonunion model. The closed fracture model is the most widely used
animal model for the study of fracture healing, which is caused by exerting strength
damage without incision to completely simulate the clinical practice. To make con-
sistent fracture models, Jackson made fracture of rat femur on a force-controllable
blunt guillotine device after inserting intramedullary needle into marrow cavity
[157]. Bonnarens and Einhorn [158] improved the device to make the whole model-
ing tool portable and easy to operate. Thus, the tools and concepts of closed fracture
model making have been adopted by many scholars. Marturano et al. [159] made
further improvements to the fracture device, making it suitable for preparing models
on the femur of mice. The tibia of mouse may also be used to make a fracture model
using similar methods [160-163]. Compared with femur, the location of tibia has
less muscle attachment. However, the tibia is not an ideal model for fracture-related
research due to the curved long axis, complicating the biomechanical test and the
insufficient soft tissue around the bone [164, 165]. Furthermore, the fibula is acci-
dentally fractured at a rate up to 30% during the modeling process, which can change
the healing rate of the tibia [166].

For creating nonunion model, closed [167-169] or open [170] fractures are cre-
ated first. Subsequently, the 2-mm periosteum of the two fracture ends are cauter-
ized and corroded, which destroy the blood supply at the fracture ends, resulting in
atrophic nonunion [167-170]. These nonunion models are obviously different from
the nonunion caused by severe trauma in clinical practice, which causes not only the
crushing of fracture ends, but also large segmental bone defects, and destroys the
blood supply around the broken ends.

Fracture-Bone Defect Models

Closed fracture models can simulate the fractures seen in clinical practice. However,
the closed fracture models are suitable for fracture healing research without space
for implanting biomaterial or bone tissue engineering scaffolds. More importantly,
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these fracture models can self-heal without external intervention. Although current
nonunion models cannot self-heal, they are not consistent with the clinical practice.
Fracture defect models mimicking the clinical scenarios are still lacking.

For producing fracture-defect model, fracture is first produced. Blunt guillotine
and three-point bending are classic methods of creating fractures, and the tools are
simple and easy to operate. However, unlike aforementioned fracture models that
have transverse fracture, fracture-defect models aim to create comminuted fracture.
After creating the fracture, open operation can be used to expose the fracture ends
and remove the broken pieces of bone to create a bone defect. The incision at the
broken ends can be regarded as an open fracture, which is consistent with the open
fractures in severe traumatic injury. Fracture-defect model can use tibia to prepare.
This is because tibia has less muscle encircling, convenient positioning and
is directly located in the subcutaneous tissue, which makes the removal of broken
bones much easier. In clinical practice, the open comminuted fracture also occurs
mostly in the tibia.

Challenges and Future Prospects

There is no standard answer for how much bone should be removed to reach the
state of nonunion. In bone defect model, there is a concept of CSD and CSD values
have been established in many animal models. While in fracture defect models, the
factors affecting bone healing include not only the size of the defect, but also the
degree of soft tissue injury at the fracture ends. Unfortunately, quantification of soft
tissue damage in the process of modeling is difficult.

The present fracture creation tools are designed for small animal models.
When produce similar models in large animals, redesign and development of new
tools becomes necessary. However, it is not known whether the previous classical
weight fall and the three-point bending principle are applicable to or effective on
large animal models. In addition, small animals, such as mice and rats, used for frac-
ture model have less individual difference and high repeatability. When fracture
defect model is made using large animals, the individual difference between ani-
mals enlarges and the repeatability of the model decreases.

Summary

Compared with other animals, canine and swine are closer to humans in bone mor-
phology, bone metabolism, fracture healing, and remodeling. However, the rat model
is the most widely used bone defect model in the study of biomaterials and bone
tissue engineering. It can be seen that in the actual selection of animal models, the
factors that need to be considered are multifaceted. In the selection of animal species,
researchers should consider the ultimate purpose of the biomaterial evalution,
the material characteristics, their own facility capacity, costs and other resources.
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In addition, it should be recognized that there is a significant difference between the
animal bone defect models and clinical. In the future, the development of fracture
defect models that are close to clinical reality may be come possible, making the
evaluation results more reliable for the studies of biomaterials and bone tissue
engineering.
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