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Abstract The enormous growing problem with antibiotic resistance in pathogenic 
microbes is one of the greatest threats we are facing today. In the context of ortho-
pedic applications, infections also lead to the limited healing ability of infected and 
defected bone. Generally, these problems are treated with a load of antibiotics or 
surgical intervention. Therefore, having antibacterial properties integrated with a 
biomaterial would reduce the time of healing and treatment, amount of antibiotic 
needed, and total cost. Currently, there exists several strategies and materials with 
the potential of tackling these challenges. Some materials with antibacterial proper-
ties currently employed are silver nanoparticles (AgNPs), cerium oxide nanoparti-
cles (CeO2NPs), selenium nanoparticles (SeNPs), copper nanoparticles (CuNPs), 
antimicrobial peptides (AMPs), biopolymers (such as chitosan), and carbon nano-
structures. On the other hand, osteoinductive and osteoconductive materials are 
important to promote bone healing and regeneration. Within this framework, mate-
rials which have been employed widely are bioactive glasses (BG), calcium phosphates 
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(CaPs) (e.g., hydroxyapatite (HA), tricalcium β-phosphate (β-TCP), and biphasic 
calcium phosphate (BCP)), peptides, growth factors, and other elements (e.g., mag-
nesium (Mg), zinc (Zn), strontium (Sr), silicon (Si), selenium (Se), and Cu, to name 
a few). Some of the current technological solutions that have been employed are, for 
instance, the use of a co-delivery system, where both the antibacterial and the osteo-
inducing agents are delivered from the same delivery system. However, this 
approach requires overcoming challenges with local delivery in a sustained and 
prolonged way, thus avoiding tissue toxicity. To address these challenges and pro-
mote novel biomaterials with dual action, sophisticated thinking and approaches 
have to be employed. For this, it is of the utmost importance to have a solid funda-
mental understanding of current technologies, bacteria behavior and response to 
treatments, and also a correlation between the material of use, the host tissue and 
bacteria. We hope by highlighting these aspects, we will promote the invention of 
the next generation of smart biomaterials with dual action ability to both inhibit 
infection and promote tissue growth.

Keywords Antibacterial · Osteoinduction · Osteoconduction · Biomaterials  
Orthopedic treatment · Tissue engineering · Defect · Infection · Antibiotic resistant  
Dentistry

 Introduction

Currently, there is no doubt that the grand challenging problem with the prevalence 
of multi-antibiotic resistant microbes due to the overuse of antibiotics is among the 
greatest threats to society and the healthcare system. With respect to orthopedic 
challenges, infection also plays an important role in negatively impacting the treat-
ment and healing process significantly [1]. For instance, defected or damaged bone 
can be treated with osteoinductive biomaterials in order to promote healing and 
regeneration; however, these materials does not prevent infection. There are several 
challenges in orthopedic problems associated with infections, foremost, they could 
be difficult to detect at an early stage, as vide supra stated an increased challenge to 
treat multidrug-resistant organisms, and persistence and recurrence of infection, 
particularly associated with implants [2, 3]. In the context of implants associated 
with a risk of microbial infection, the general approaches are, for instance, implant 
replacement, or in worst case amputation or mortality [4]. Hence, integrating anti-
microbial properties with the implant would provide huge advantages [4]. 
Furthermore, a great solution to the vide supra mentioned challenges would be the 
development of dual functional biomaterials with the ability to promote the healing 
of the bone by displaying osteoinductive properties, and simultaneously inherent 
antibacterial properties, without the use of antibiotics [5]. This could enable the 
treatment or prevention of future conceivable infections [6, 7]. Here, over the years, 
a plethora of biomaterials with antibacterial or osteoinductive properties have been 
reported. Examples of the latter, in particularly, in their nanoparticle forms are silver 
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nanoparticles (AgNPs) [8], cerium oxide nanoparticles (CeO2NPs) [9] selenium 
nanoparticles (SeNPs) [10], and polymers or materials such as carbon nanostruc-
tures [11], chitosan [12], natural-based polyphenols [13–15], and antimicrobial pep-
tides (AMPs) [16] (Fig. 1). Examples of biomaterials with osteoinductive properties 
are those which include osteogenic growth factors (OGF), fibroblast growth factor 
(FGF), vascular endothelial growth factor (VEGF) and epidermal growth factor 
(EGF), bioactive glass (BG), bone morphogenic proteins (BMP), hydroxyapatite 
(HA), elements (e.g., magnesium (Mg), zinc (Zn), silicon (Si), selenium (Se), and 
copper (Cu)), and peptides such as those in parathyroid hormone (PTH) and 
arginine- glycine-aspartic acid (RGD) [17–21] (Fig. 1). In this chapter, the current 
challenges with bone repair/regeneration and antibacterial infection will be high-
lighted. Furthermore, fundamental aspects of antimicrobial and osteoinductive 
properties will be discussed providing the reader an essential platform information 
within this topic and then some examples of antimicrobial and osteoinductive bio-
materials. Subsequently biomaterials displaying dual functions or dual delivery sys-
tems with both antimicrobial and osteoinductive properties in various orthopedic 
applications will be presented.

 Current Challenges

Reviewing the historical development of bone tissue engineering and its advance-
ments, it is clear to see that a large impact has been mainly made due to the integra-
tion of multidisciplinary fields such as biology, material science and engineering, 

Fig. 1 Examples of biomaterials with antimicrobial and osteoinductive properties widely 
employed in orthopedic applications
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and clinical avenues [22]. Starting from the first example of prosthetics employed in 
humans in the 1960s, and then further through a more sophisticated design and 
development of biomaterials by 1984 [23]. Here, the dogma transformed from 
designing a bioinert tissue responsive material to a bioactive one, which more 
resembles the host bone and also with similar mechanical properties. These types of 
biomaterials mainly consisted of ceramics, glasses, and glass-ceramics, and were 
thought to have better performance due to their ability to promote cellular functions 
such as colonization, proliferation, and differentiation within the surrounding envi-
ronment of the implant. Therefore, this class of materials was further implemented 
into various orthopedics and dentistry applications [24]. The incorporation of vari-
ous bioactive components (such as HA) onto implants and prostheses improved their 
performance and osteoinduction properties [25, 26]. Further, important features of 
this new class of biomaterials, besides resembling the native bone, both structurally 
and mechanically, were that they were also resorbable [27]. This property allowed 
for the chemical breakdown of the material, thus, eventually being completely 
replaced by newly formed tissue. In this regard, an important study by Hench on the 
impact of time on the resorption of the Dexon sutures in vivo promoted the employ-
ment of resorbable polymers as implants [27]. To date, a wide range of implant 
products have been approved by the Food and Drug Administration (FDA) for a 
wide range of applications and are available for clinical use, displaying properties 
such as bioinertness, bioactivity, and resorption [22, 23]. Nevertheless, great research 
efforts have been devoted to further improve biomaterial properties and perfor-
mance, thus overcoming some current limitations leading to imperfect implant func-
tion and survival (Fig. 2a). One of the greatest challenges to be addressed is the 
precise control of the biomaterial features such as material composition, surface 
chemistry, pore size, porosity, morphology, degradation rate, and mechanical perfor-
mance (Fig. 2b) [28]. In order to tackle these problems, a fundamental understand-
ing of the vital processes such as osteogenesis, biomaterial and bone interactions, a 
mechanistic interfacial interaction between the host tissue and the biomaterial 
impact at the cellular level are important aspects. All of these features would highly 
promote the invention of the next generation of materials. Furthermore, the more 
sophisticated challenge of designing a material which displays both osteoconductive 
and antimicrobial properties functioning for a wide range of applications is an 
important research topic. This would allow for the design of biomaterials that are 
resistant to infections, prevent drug resistance and at the same time promote bone 
healing and regeneration. To pursue this vision, the right optimization between its 
fabrication (sustainable and eco-friendly technologies), safety, and performance 
need to be included, without impeding one another [29]. As vide supra mentioned, 
an optimal biomaterial for promoting the healing and regeneration of bone defects 
should not only possess the right mechanical and degradation properties, but also the 
right surface chemistry to endorse cellular processes such as cell attachment, prolif-
eration, migration, differentiation, and remodeling leading to vascularization and 
eventually the formation of new bone tissue [30]. Some of the central challenges and 
desired properties in such a devised biomaterial for orthopedic engineering are high-
lighted in Fig. 2.
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Nowadays, the concept of taking biomaterial features to the next level is paramount, 
where it should not only function as a replacement, but rather regenerate the damaged/
defected tissue [23]. This paradigm shift is highly dependent on the biomaterial design, 
hence due to the general lack of synthetic biomaterials responding to physiological 
stimuli [31], naturally or biologically derived materials can be employed. For instance, 
decellularization of biological structures has proven to be able to function as vascular-
ized scaffolds [32]. The aim here is to promote vascularization, allowing the transport 
of oxygen and nutrients to cells and simultaneously removal of waste products [33]. 
Biomaterials for bone tissue regeneration are  generally more challenging to design due 

Fig. 2 Demonstrating (a) scaffold engineering incentives and (b) their influencing factors and 
challenges
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to the lack of proximal blood supply, thus, less access to existing blood supply compa-
rable for instance to cartilage tissues [34]. However, several strategies have been devel-
oped to address these challenges, such as the employment of prevascularized scaffolds 
and/or the use of growth factors [35, 36]. Another important parameter of the scaffolds 
is the porosity, since this will play an important role in the interaction with the local-
ized blood vessels, which indirectly impact vascularization [37]. Here, the design of 
the scaffolds which smoothly integrate with the host vasculature is another challenge 
and necessity [38]. To date, several biomaterials with various properties have been 
developed for improving vascularization (Fig. 3) [39].

Furthermore, features on the implant surface play a crucial role since they have 
the ability to direct protein adsorption or cellular attachments. This mechanism can 
start a cascade reaction where it promotes the vascularization and subsequently 
endorses the proliferation of osteoblasts. In this context, Bielby et al. demonstrated 
the differentiation of murine embryonic stem cells into osteogenic cells which fur-
ther enhanced proliferation through the incorporation of soluble ions onto the scaf-
fold [40, 41]. Several reports have disclosed various strategies for improving the 
interface between the implant and host bone, for instance through the employment 
of interconnected porous biomaterials [42], which also can be loaded with cells 
[43]. Here, in the context of direct cell transplantation in implants, it is vital that the 

Fig. 3 Biomaterial design strategies for improving vascularization post-implantation in the region 
of tissue defects
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right cell type is employed, considering, its accessibility, generated in high yield, 
and efficiently to promote the repair of the tissue and with a high survival rate [44]. 
These will overcome the limitations due to poor adjacent vascularization and cell–
cell interactions, causing cell death due to insufficient nutrient and oxygen uptake. 
The overall goal is to obtain a smooth host-tissue cell scaffold interphase, which 
eventually will allow for incorporation into the surrounding host bone and endure a 
normal bone remodeling processes [38, 45]. Recently, we have seen blossom 
advances and interest in the employment of stem cells in various regenerative and 
tissue engineering applications. However, despite the great promise of stem cell 
technology and their potential, several contemplations have to be made such as 
developing a solid controlled approach for stem cell differentiation to the desired 
phenotype, acceptable purities and negligible carcinogenic latent [23, 46]. Over the 
years, several types of stem cells have been distinguished starting from the earliest 
embryonically derived stem cells to stem cells from the bone marrow, gut, liver, 
brain, and the circulatory system [47, 48]. In the context of orthopedic applications, 
the induced pluripotent stem cells (iPS cells) have been shown to be good candi-
dates [46]. However, despite the improvement of implant scaffolds through surface 
tailoring or the addition of cells into the scaffolds, other challenges remain, in order 
to devise a material with high performance and with no limitations. Here, orthope-
dic implants can also promote bacterial adhesion and growth ensuing a negative 
impact on clinical outcomes and increase healthcare expense [2]. This is also one of 
the major factors leading to orthopedic implant failure. There are several mecha-
nisms triggering this failure, for instance, lapses in surgical hygiene, contact with 
microbial flora, or the invasion of microorganisms due to implant failure [49]. 
Moreover, the bacterial adhesion on the implant causes several problems, firstly it 
promotes colonization leading to biofilm formation and this in turn can hinder tissue 
integration and thereby block various cellular functions and regeneration processes 
[50]. Furthermore, these also result in a prodigious negative impact on the patient 
leading to pain, surgical intervention for removal or replacement of the implant, and 
continuation of antibiotic treatment. Nevertheless, we have witnessed the problem 
with the frequent use of antibiotics promoting drug-resistant bacteria such as 
methicillin- resistant Staphylococcus aureus (MRSA) [51]. Over the years, several 
strategies and technologies have been invented to overcome these grand challenges, 
such as implant coatings with/without releasing bactericidal agents, but with the 
ability to prevent or reduce bacterial adhesion [52–54]. In this regard, a bactericidal 
agent frequently employed within such a coating is silver or their respective 
nanoparticle system (AgNPs) [55]. Nevertheless, they have to be engineered to 
provide a sustained, controlled and prolonged release preferable for at least 1 year 
[51, 55]. Interestingly, common food ingredients or natural medicinal components, 
such as garlic extracts and Aloe Vera, have been successfully demonstrated for their 
incorporation with implants promoting bone repair and preventing bacterial infec-
tions [56–58]. Additionally, bactericidal agents or strategies that have been employed 
to reduce bacteria adhesion and prevent plausible biofilm formation are the employ-
ment of nitric oxide [59] or the use of self-assembled monolayers (SAMs) to block 
bacterial attachment [60]. Furthermore, these strategies can be designed to provide 
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both bacterial protective and at the same time promote bone healing/repair processes 
through the incorporation of osteoinductive components, such as BMP [61] and 
transforming growth factor beta (TGF-β) [62]. There are several challenges encoun-
tered when designing a system and materials with dual functions, such as the pre-
cise control of the delivery of each component, longstanding over the desired time 
frame, early and long-term osseointegration, and controlled resorbability [28]. Here 
resorbability, allowing the material to degrade into non-toxic components, is an 
important feature of the biomaterials; however, it requires a sophisticated design, in 
particular when it comes to the precise control of the in vivo degradation rate [63, 
64]. Figure 4 highlights some of the most common bone grafting materials, includ-
ing their resorptions mechanism [65]. Ideally, the material should degrade at the 
same rate as the tissue ingrowth and healing process [51]. However, this is highly 

Fig. 4 Selected bone graft substitutes and their resorption mechanisms. Reproduced with permis-
sion [65]. Copyright 2010, Elsevier Ltd. (CC BY) license
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influenced and dependent on several factors such as the site of implantation, the 
in vivo conditions, and the nature and degree of the infected/defected site, which 
make it a great challenge in devising biomaterials with the desired resorbability.

Despite all the current challenges, the vast advancement and innovations in the 
field of biomaterial technology will, most probably, successively promote inven-
tions of grand solutions. For instance, the advancement of wireless technologies has 
the potential of providing tools to monitor or remotely control the healing process, 
the delivery of drugs in situ, or even indirectly stimulate the formation of bone 
tissue [51]. In this context, a great complementary would be the development of 
personalized medicine, this would allow overcoming current limitations, such as 
mechanical variations arising from the biomaterial and the treated person, and 
irregularities in various procedures [66, 67].

 The Fundamental Basics of Antimicrobial and Osteoinductive 
Properties

One of the ideal approaches solving the problems posed by the grand challenges is not 
only to identify the fundamental mechanism leading to the problem, but also the fun-
damentals behind the solution. In the context of orthopedics, the biomaterial employed 
should display an ability to support the adhesion and localization of proteins, osseous 
cells, and growth factors in the region of the bone defect in order to promote the repair 
and regeneration of bone [68]. The process of successful bone formation promoted 
through biomaterials is depicted in Fig. 5. In step 1, osteogenesis starts, where mature 
osteoblasts are differentiated into progenitor cells, followed by osteoconduction, where 
bone starts growing on the surface of the biomaterial and simultaneously osseointegra-
tion takes place, meaning the direct contact between bone and biomaterial [69, 70]. 
Next, the osteoinduction process takes place, where cells are developed into bone 
forming cells (osteoprogenitor cells), and the progression of of osteogenesis is induced. 
Subsequently, the process of angiogenesis is promoted and cells are recruited and 
afterward the bone is fruitfully formed (Fig. 5) [71].

Additionally, alongside with promoting bone healing and repair, a secondary 
fundamental pursuit in biomaterial design is the prevention of bacterial infections 
and biofilm formation on the biomaterial employed [70]. In this regard, what makes 
it difficult is to predict any possible infection due to challenges of early detection. 
Here, when biomaterials, for instance titanium, are implanted in vivo, several mech-
anisms are triggered in the process of integration with the microenvironment pro-
moting osteointegration and the prevention of bacterial infections [72]. Initially 
(Phase I), negatively charged biomolecules are adsorbed onto the positively charged 
titanium surface and further interact through various non-covalent forces such as 
hydrophobic, electrostatic, hydrogen bonding, and Van der Waals forces. This 
 process proceeds within seconds. Next (Phase II), cells and bacterial attachment 
starts (minutes), followed by (Phase III) non-specific cellular adhesion resulting in 
fixing the cells with the aid of extracellular matrix (ECM) attaching proteins to the 
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surface (can take hours). In the next stage (Phase IV) (days to weeks) migration, 
proliferation and differentiation proceeds, and lasts (V) the entire process of miner-
alization and bone remodeling which starts (Weeks) (Fig. 6) [72]. Therefore, tailor-
ing the surface of the biomaterial is an important strategy [73]. For instance, 
introducing nanotopographies on the surface has shown to successfully promote the 
detachment of bacteria [74–76]. Other approaches regarding surface fabrication are 
coating of the surface to provide different properties or altering the surface rough-
ness and surface energy [73, 77, 78]. Figure  7 presents the various antibacterial 
arsenals and therapeutics available to combat against infections and biofilm 
formation.

 Antimicrobial Biomaterials

To date, we are entering an era where antimicrobial diseases are on the rise and pre-
dicted to cause enormous of death, even more than all cancers together [80]. Therefore, 
the development of novel materials with antimicrobial properties would provide an 
alternative to traditional antibiotics for various biomedical applications [81]. In this 

Fig. 5 The mechanism of a scaffold’s promotion of bone repair and regeneration through the 
endorsing of osteogenic, osteoinductive, and osteoconductive processes in vivo
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context, nanotechnology presents a potential approach to antimicrobial resistance, 
which could stimulate innovation and create a new generation of antibiotic treatment 
for future medicines [82]. Within this topic, AgNPs are some of the most employed 
antimicrobial agents in the biomedical field due to its wide antibacterial activity [83]. 
Additionally, other materials and elements, and their respective nanoparticle (such as 
Se, cerium (Ce), gold (Au), titanium (Ti), Cu, iron (Fe), carbon (carbon nanotubes 
(CNT), fullerene, graphene, etc.)) have been proven to display antimicrobial proper-
ties [84]. Noteworthy, while some of these materials, for instance, Ag and Cu, are 
intrinsically antibacterial even in their bulk state, others such as iron oxide need to be 
transformed to their respective nanoform in order to display antibacterial properties. 
The success of these strategies and nanotechnologies have led to several commercial-

Fig. 6 The proposed in vivo local reaction onto the surface of a titanium-based implant. 
Reproduced with permission [72, 79]. Copyright 2017, Basel, Switzerland (CC BY) license
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ized products for applications in bacterial diagnosis, antibiotic delivery, and medical 
devices [83]. Several strategies have been developed in order to enhance the antibacte-
rial properties of these nanomaterials. Some of these strategies are: their incorporation 
into biomaterials thus controlling the release, protection from aggregation, improved 
solubility, and engineering their size and shape. All of these aspects are also important 
for providing low toxicity for in vivo applications [83, 85].

 Elements

In this section, various elements with antibacterial properties demonstrated in the lit-
erature will be presented (Fig. 8a). In this context, AgNPs constitute a very promising 
approach for the development of new antimicrobial technologies [86]. Nanoparticle 
formulations can add significant improvements to the antibacterial activity of ele-
ments through specific actions, such as improved adsorption at the bacterial surface 
[8, 87, 88]. AgNPs have attracted increasing interest due to their chemical stability, 
catalytic activity, localized surface plasma resonance, and high conductivity. In addi-
tion, previous reports have shown that the reactive oxygen species (ROS) formed at 
the surface of the AgNPs, or the release of free silver ions under certain conditions 
may induce cell death of either mammalian cells or microbial cells, which endows the 
AgNPs with unique antibacterial and antifungal effects [89, 90]. Based on these 
effects, AgNPs hold great potential in preventing wound inflammation and hence pro-
moting wound healing in the form of topical  administration. Here, for topical use, skin 
penetration ability and safety of AgNPs should be assessed [88, 91]. Small silver 
particles (e.g., 4–122 nm) with lower toxicity to humans have been developed, but 
must be released in a controlled manner to minimize side effects and maximize anti-
microbial activity [84, 88]. To date, a vast number of reports have been disclosed 
demonstrating AgNPs and combinations as an efficient antimicrobial agent for a 
wide range of bacteria [8, 92, 93]. Prominently, despite the promising potential of 
AgNPs, some reports have demonstrated bacterial resistance against silver [94]. 

Fig. 7 Examples of various antibacterial arsenals and therapeutics for combatting bacterial 
biofilms and the mechanism of biofilm formation
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However, which the high antibacterial effect of AgNPs has been widely described the 
exact mechanism of their action has yet to be fully elucidated. In fact, their potent 
antibacterial and broad-spectrum activity against morphologically and metabolically 
different microorganisms seems to be correlated with a multifaceted mechanism by 
which the nanoparticles interact with the microbes. As depicted in Fig. 8b, the mecha-
nism may proceed via various pathways, such as an interaction with the bacterial cell 
wall to cause leakage, interaction with various metabolic pathways, inhibited protein 
synthesis and promoted ROS triggering DNA damage and degradation [8, 79, 95, 96]. 
Furthermore, elemental Se has also shown to be a good antimicrobial candidate, 
particularly in its nanoform (SeNPs) [10, 97]. Interestingly, despite its broad and 
high antibacterial performance, an in vitro study demonstrated a safe toxicity profile 
[10, 98]. Several groups have demonstrated the successful employment of SeNPs 
and its derivative against various bacteria [99–101]. For instance, they have been 
employed as a medical device coating for preventing biofilm formation [98, 102]. 
Moreover, Ce in its oxide form (CeO2NPs) also displays antibacterial properties 
through a similar mechanism as the AgNPs [9, 83, 103].

Fig. 8 (a) Various elements with antibacterial activity. (b) The proposed mechanism of the anti-
bacterial activity of AgNPs. Reproduced with permission [79]. Copyright 2014, Springer Science 
Business Media New York
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 Polymers and Miscellaneous

Polymers have also been shown to have characteristic antimicrobial activity, but 
here it is well established that polymers with cationic components interact better 
with the negatively charge bacteria membrane and promote damage and cell lysis 
[104]. A good example within the subject is nitrogen containing compounds such as 
chitosan, poly-ε-lysine, polyethyleneimine, and polyguanidines [105]. A careful 
material design will allow for the tailoring of the antibacterial properties of the 
polymers, for instance, addition of a hydrophobic group will endorse infiltration 
into the hydrophobic bacterial membrane [85, 106, 107]. Here, chitosan is probably 
one of the most known and widely employed nitrogen containing polymer with 
antimicrobial properties [108]. As depicted in Fig.  9a, chitosan is obtained after 
deacetylation from chitin, a polysaccharide extracted from the exoskeletons from 
insects, cell walls of fungi, and from invertebrates [109]. It is well known that 
materials with a quaternary amine moiety displayed increased antibacterial proper-
ties [110]; here several studies have confirmed increased antibacterial performance 
of quaternary chitosan compared to pure chitosan [111–114]. Interestingly, the 

Fig. 9 (a) The generation of chitosan through a deacetylation step from chitin and their chemical 
structures. (b) The plausible antibacterial mechanisms of chitosan. Reproduced with permission 
[108]. Copyright 2019, Elsevier B.V
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antibacterial property of chitosan can be improved through several strategies, by the 
length of the alkyl moiety on the amine generating quaternary amine, where gener-
ally an increased alkyl chain promotes higher performance, molecular weight, and 
degree of acetylation, where lower molecular weight and lower degree of acetyla-
tion result in improved performance [115]. The plausible antibacterial mechanism 
of action of chitosan is depicted in Fig. 9b, which proceeds through several path-
ways [108]. As vide supra mentioned, the positive charge interferes with the nega-
tively charge bacteria surface, or through inhibition of the mRNA and protein 
synthesis, chelation of important metals and nutrients and thereby changing cell 
permeability or preventing nutrients from entering the cell through electrostatic 
interaction with the cell wall [115–117].

Furthermore, antimicrobial peptides (AMPs), widely found in nature, have also 
shown the potential for being a source of antibacterial material for a wide range of 
microbials [16, 85, 118]. These AMPs can be categorized based on their structure as 
following: α-helical AMPs, cysteine-rich AMPs, β-sheet AMPs, AMPs rich in regu-
lar amino acids, and AMPs with rare modified amino acids [16]. Moreover, some 
modes of action of these AMPs are, for instance, bacteria membrane disruption and 
ion channel formation leading to leakage of potassium ions and other components 
[16]. Going further, carbon nanostructure such as fullerene [11, 119], carbon nano-
tubes (CNTs), and graphene all have inherent antibacterial properties and proceed 
with a wide range of mode of actions [11, 120–123]. Some of the antibacterial 
mechanisms are, for instance, reduction of biofilm formation and cell attachment, 
generation of oxidative stress and ROS, and promoted the loss of the cellular integ-
rity [11, 124, 125]. Nevertheless, the antibacterial efficiency and mode of action 
depend on several factors such as the composition of the material, size, type of 
microbe, etc., and can also be tailored through surface modification [11, 125]. Here, 
in 2007, Kang et al. disclosed a seminal work demonstrating the evidence of the 
antimicrobial activity of single-walled carbon nanotubes (SWCNT). The authors 
concluded that the SWCNT promoted membrane damage causing cell inactivation 
and bacterial cell death. Considering the high cost of a pure carbon nanostructure 
material, a good alternative could be the merging with other materials. In this regard, 
Aslan et  al. incorporated the polymer poly(lactic-co-glycolic acid) (PLGA) with 
SWCNT and employed the constructs against Escherichia coli (E. coli) and 
Staphylococcus epidermidis (S. epidermidis), providing up to 98% bacteria death 
[124]. Furthermore, graphene in various forms, such as graphene oxide (GO) [126], 
graphene oxide nanoribbons (O-GNR) [127], and graphene-wrapped silver nanow-
ires (AgNWs) [128] have all been reported to be good candidates for eliminating or 
reducing various bacterial types. There have also been reports where several types 
of carbon nanostructures have been merged in order to provide for higher antibacte-
rial performance [129]. Nevertheless, in order for the carbon materials to find 
translational applications, limitations such as high cost and also in some cases rela-
tively low solubility or insolubility in water must not be overlooked. Furthermore, 
another class of natural based omnipresent materials with antimicrobial properties 
are polyphenols [130] such as lignin [131–133] and tannin [134, 135], which are 
widely found in nature [13, 136]. Besides displaying antimicrobial properties, 
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these components have several additional advantages such as being cheap, readily 
available and renewable, and valorization of these products is of great interest and 
importance, and therefore they are good candidates, particularly in the quest for 
fighting microbial resistance challenges [137–139]. It is believed that the hydroxyl 
(OH) groups in the polyphenol structure are inherent for its antibacterial properties 
[140]. However, the unique structure of polyphenols allows for a wide range of 
interaction possibilities such as covalent and physical interactions, e.g., hydrogen 
bonding, metal coordination, hydrophobic, imine and amine formation through a 
Schiff base reaction, and ionic based interaction [141]. All these interaction possi-
bilities will promote the interaction with the bacterial cell wall and membrane, inhi-
bition of biofilm formation, inhibition of bacterial enzymes and substrate deprivation, 
protein regulation, and metal iron deprivation due to chelating ability [140].

 Osteoinductive Biomaterials

Biomaterials employed for various orthopedic applications should possess the abil-
ity to function as a scaffold and induced new bone formation (osteoinductive) [142]. 
Nevertheless, little is known about the exact mechanism for how these processes 
proceed, despite that several materials identified and implemented with an osteoin-
ductive ability [143, 144]. One good strategy for the invention of a new biomaterial 
for bone repair and regeneration could be to mimic the composition of native bone, 
where it mainly consists of collagen (type 1) fibers combined with inorganic miner-
als such as HA and other important materials such as osteogenic factors [143, 145, 
146]. In this context, materials such as calcium phosphates (CaPs) have shown 
osteoinductive and osteoconductive properties due to their resembling of the miner-
als in native bone [17, 147]. Examples of CaPs are HA, β-tricalcium phosphate 
(β-TCP) (both started to be employed in 1980), and biphasic calcium phosphates 
(BCP) (started being employed in 1990) [143]. Some differences between these 
materials are their mechanical properties, solubility, and resorbability [17, 148, 
149]. Therefore, it is important in selecting the appropriate material with suitable 
properties for their intended application without compromising any other  properties. 
For instance, employing a material with high resistance could also mean increased 
brittleness [149]. Alternative approaches surmounting these limitations could be 
through merging with other materials such as polymeric based biomaterials, which 
also would provide an ECM like composition [150–155]. Enduring inorganic mate-
rials, silica-based material bioglasses with an ability to easily form bonds with bone 
and stimulate new bond formation are other types of materials widely employed for 
various orthopedic applications [19, 25]. The conventional BG (45S5Bioglass®) is 
comprised of SiO2 (45 wt%), Na2O (24.5 wt%), CaO (6 wt%), and P2O5 (6 wt%) 
[148, 156]. Advantages with BG except being non-toxic, biocompatible, osteocon-
ductive, and osteoinductive are their fast reaction with tissue and the ability to bind 
both hard tissues like bone and also soft tissues [155, 157]. Lately, BG based on 
borate and borosilicate have demonstrated an improved performance compared to 
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the silica-based materials, due to their controllable degradation; however, one limi-
tation is the concern of toxicity due to boron released [148].

Moreover, the mechanism of BG bioactivity has been well studied and starts with 
the formation of silanol (SiOH) bonds and the release of silicic acid (Si(OH)4), and 
then a polycondensation step of the SiOH takes place generating hydrated silica gel. 
Subsequently, adsorption of an amorphous formed carbonate film composed of 
CaO-P2O5, and then crystallization of hydroxyl carbonate apatite (HCA). Afterwards, 
adsorption of biological moieties in the HCA layer occurs, then BG reacts with 
macrophages, osteoblast stem cells attach, and differentiation and proliferation of 
osteoblasts leading to matrix formation ensues. Next, crystallization of the matrix 
and growth of bone ensues, and finally bone formation takes place [148].

To date, several different BG have been developed and even commercialized; for 
more detailed information within this subject, the readers are referred to other beauti-
ful reviews and articles found in the literature [148, 158–162]. Beside BGs, other 
inorganic biomaterials with osteoinductive properties employed in orthopedics are 
for instance elements such as Mg, Zn, Sr, Si, Se and Cu [20], and also the silicate 
nanoplatelets Laponite® [163]. Interestingly, Si as an element has also proven to be 
an important agent promoting various fundamental processes such as metabolism, 
formation and calcification of bone tissue, increasing bone mineral density and stim-
ulating the formation of collagen and osteoblastic differentiation [164–166]. Here, 
each element contributes differently, for instance, Mg plays a vital role in the struc-
ture, density, and mechanical properties of bone. However, it also promotes ECM 
interactions and the activation of alkaline phosphatase (ALP) and integrins [167]. On 
the other hand, Zn is important for various cellular processes such as formation, min-
eralization, development, and maintenance of healthy bones [17, 148, 168]. Moreover, 
the element Sr not only stimulates bone formation, but also inhibits bone resorption 
and promotes the death of osteoclasts [17, 169–171]. Several reports have demon-
strated the use of Sr as an additive in combination with other osteoinductive bioma-
terials [172–174]. Different from the other elements, Se functions as a protecting 
agent and aids in immune defenses, and antioxidant protection against ROS, reactive 
nitrogen species (RNS) and oxidative damage. However, it also promotes collagen 
expression, calcium (Ca) deposition, and osteoblastic differentiation [175–177]. 
Lastly, the element Cu has proven several  functions, such as promoting the synthesis 
of bone and connective tissues, inhibiting bone resorption, and enhancing angiogen-
esis through functioning as a hypoxia- mimicking material [158, 178–180].

Other strategies stimulating bone production could be through the addition of 
OGF with the potential of stimulating osteoinduction, osteoconduction, and osseo-
integration. Some examples are FGF, TGF, VEGF, BMPs [181, 182], and EGF [18, 
21]. De facto, these materials have been employed by native bone during bone for-
mation (osteogenesis). In order to stimulate several processes simultaneously, 
within this framework, Zhan et al. disclosed the combination of both VEGF and 
BMP-2 in a silk scaffold. Here, VEGF promoted angiogenesis and BMP-2 enhanced 
bone formation [18]. Moreover, in addition to OGF, certain type of peptides have 
also shown important applications in orthopedic challenges, such as RGD peptides 
(promoting the osseointegration), PTH [183], thrombin peptide 508 (TP508), 
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PepGen (P-15), calcitonin gene-related peptides (CGRP) [21], osteogenic growth 
peptide (OGP), and ECM-derived peptides. All these agents play different roles in 
the final quest of improving regeneration and repair of bone tissue. For instance, the 
PTH influences the regulation of calcium phosphate metabolism and activates 
osteoblasts through several processes such as promoting osteoblast proliferation 
and differentiation, and reducing osteoblast apoptosis and peroxisome activator 
receptor [18, 21, 184]. On the other hand, OGP plays an important role to increase 
bone formation through promoting ALP activity, and regulation of osteoprogenitor 
cell proliferation, differentiation, osteocalcin secretion, and collagen and matrix 
mineralization [21].

 Dual Functional Biomaterials

Biomaterial-associated infection in various orthopedic applications is a great chal-
lenge and an increasing problem. Prominently, since the current golden standard of 
treatment includes high doses of antibiotics, or in some cases, additional surgical 
debridement of the infected tissue, such advances are badly needed [185]. 
Consequently, advances in the development of novel technologies for this over-
whelming problem are of great interest. There are several strategies disclosed to 
address this problem, which will be highlighted in this section. One approach could 
be through the use of a co-delivery system, where both osteoinductive and antibac-
terial agents are delivered from a scaffold. However, there are several challenges 
with this strategy. Here, some of the challenges with a co-delivery system are diffi-
culties with precise control of the delivery rate (sustained), sequential or simultane-
ously delivery, site (locally), and avoiding interference between the two agents [6, 
186]. Therefore, the next generation of materials in this context would be a material 
that possesses dual function inherently without the need of adding any antibacterial 
or osteoinductive agents [6]. Nevertheless, designing and inventing these kinds of 
materials requires a sophisticated strategy including rational design. Moreover, the 
material also needs to display other vital properties, such as biocompatibility and 
adequate mechanical and degradation properties [31]. From the perspective of dual 
functional biomaterials, Lobo and coworkers very recently disclosed the fabrication 
and generation of nanofibers based on the combination of polycaprolactone (PCL), 
polyethylene glycol (PEG), and gelatin methacryloyl (GelMA) with the potential to 
promote bone regeneration and repair through stimulating ALP activity and Ca 
deposition [187]. Interestingly, the same material also showed antibacterial activity 
against S. aureus, P. aeruginosa and MRSA [188]. Based on these studies, the mate-
rial could be a potential candidate with dual function for orthopedic applications. 
Very recently, Wang and coauthors designed core shell nanofibers as a co-delivery 
system, where the shell was comprised of PCL and the core of gelatin [189]. The 
nanofibers were designed as a bone regeneration and anti-infective membrane; 
therefore, the core was loaded with the antibiotic metronidazole, while the shell 
with nano-HA. A prolonged release of the antibiotic was observed for more than 
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20 days and showed significant improvement compared to nanofibers without core 
shell structure. There are still several limitations with the presented technology, 
besides employing an antibiotic, with the potential of promoting antibiotic resis-
tance; for example, about 55% of the drug was already released at just day 1. 
Moreover, Shi et al. employed different strategies for inducing both antibacterial 
and osteoinductive properties through the design of a bio-interface consisting of the 
cationic polymer (polyhexamethylene biguanide (PHMB)) [190]. Primarily, the 
material was coated with polydopamine and then further through cation–π interac-
tions with the PHMB bioelectrical environment that could be generated. Surface 
modification or coating is a powerful and facile approach allowing for tailoring of 
the properties of biomaterials and providing osteogenic and antibacterial properties 
[191]. This strategy has been employed by Kumar et al. for the addition of amine 
and carboxylic functionalities onto PCL and multiwall CNT (MWCNT) [192]. The 
material did not only exhibit osteoinductive but also antibacterial properties, never-
theless it also improved mechanical properties (increased tensile strength and elas-
tic modulus) and polymer crystallinity. Other groups have also employed the surface 
coating strategy in order to induce dual functionality on titanium implants [193, 194].

Moreover, chitosan has been widely employed in various orthopedic applications 
due to its favorable antimicrobial property [114, 195]. In the context of dual func-
tional biomaterials for orthopedic applications, it has been merged with BG-poly(3- 
hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) for the generation of microspheres 
[196]. The membrane was designed as a multidrug delivery scaffold against bacte-
rial infection and osteoporosis for periodontal repair, therefore, the antibiotic drug 
tetracycline hydrochloride and the antiosteoporosis agent daidzein were selected as 
the model drugs. Nevertheless, no bacterial test was demonstrated, which could be 
interesting to see if the antibacterial properties could be inherent from the chitosan 
within the membrane, thus avoiding the use of antibiotics [196]. Overall, the mate-
rial displayed multifunctionality, besides antibacterial and antiosteoporosis proper-
ties, it also displayed enhanced osteoblast activity, increased surface roughness, 
improved hydrophilicity, decreased swelling ratio, and decreased degradation. 
Moreover, the quaternary chitosan hydroxypropyltrimethyl ammonium chloride 
chitosan (HACC) has been integrated with BMP-2 for inducing dual function within 
zein-based materials [197]. Here, the BMP-2 was incorporated into the porous silica 
material SBA-15 in order to provide sustained and localized release. The multicom-
ponent scaffold displayed prolonged antibacterial activity for up to 5 days and the 
BMP-2 could be released for more than 27 days. The performance of the material 
was demonstrated using an in  vivo rabbit model of a critical-sized radius bone 
defect, which showed efficient bone formation [197].

Alternative to the fibers for periodontal applications, recently, dual functional 
PCL based electrospun materials loaded with zinc oxide nanoparticles (ZnO-NPs) 
have been disclosed [198]. The authors demonstrated the translational application 
of their devised material through an in vivo experiment by implanting the material 
in a rat periodontal defect model. The successful performance of the material could 
be observed in the decreased distance between the cementoenamel junction (CEJ) and 
the bone crest [198]. Moreover, a bone implant composed of calcium silicate- gelatin 
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(CSG) coated with chitosan or chitosan oligosaccharide has been demonstrated as a 
dual functional biomaterial [199]. The authors demonstrate that having 0.2% of 
chitosan or 0.4% of chitosan oligosaccharide displayed comparable antibacterial 
properties against S. aureus and E. coli as to Ag coating. Nevertheless, the Ag 
showed significant toxicity even at a low concentration (0.004%), while the chito-
san-based material did not show any cytotoxicity at <0.4% concentration. In paral-
lel, osteogenic properties were also demonstrated showing an ability to promote cell 
attachment, proliferation, ALP activity, and osteocalcin and Ca deposition.

Furthermore, Bari et al. designed a Cu containing mesoporous BG (Cu-MBG) 
nanoparticle composed of SiO2-CaO as a multifunctional biomaterial for bone 
regeneration. As stated above, Cu has the ability of inducing both antibacterial and 
osteoinductive properties through various mechanisms [200, 201]. The biomaterial 
released copper ions (Cu2+) in a sustained manner for up to 7 days. However, no 
proper biological study was performed on its osteogenic ability, rather through ana-
lyzing the HA-forming ability of the biomaterial. The biomaterial showed improved 
antibacterial properties tested against E. coli, S. aureus, and S. epidermidis com-
pared to the material without Cu (e.g., a 50% reduction against S. epidermidis at day 
3, while in the absence of Cu no reduction was observed). Moreover, the osteoin-
ductive component BMP-2 was merged with AgNPs within a scaffold made from 
PLGA and was successfully demonstrated for the repair of rat femoral infected 
segmental defects [202]. A similar combination with PLGA as the base polymer 
was also demonstrated by other research groups [203, 204]. Additionally, Sun et al. 
employed the same combinations; however, the scaffold employed in this study was 
a collagen composite [205]. Several reports have demonstrated the use of BMP-2 in 
combination with vancomycin employing different scaffolds such as a silica cal-
cium phosphate nanocomposite [206], a calcium sulfate composite [207], poly(2- 
hydroxyethyl methacrylate)-nanocrystalline HA (pHEMA-nHA) [208], and 
polyurethane [209]. Additionally, an interesting strategy and dual combination was 
fruitfully demonstrated for bone regeneration using Sr and Ag combination within 
NTs [210, 211]. Furthermore, Fig. 10 depicts additional antimicrobial and osteoin-
ductive biomaterials, their delivery methods and approaches employed for the 
incorporation of the agents [212].

 Future Perspective and Remarks

A wide range of biomaterials and technologies displaying both antimicrobial and 
osteoinductive functionalities have been presented and developed over the years. 
Despite this fruitful progress, no ideal biomaterials providing dual functionalities 
with high efficiency, controllable triggering mechanisms, avoiding the use of antibi-
otic and long-lasting have been invented. All these should also be integrated with 
facile, scalable and sustainable fabrication and preparation technologies. Organic 
chemistry can play a crucial role in the quest of designing novel dual functional 
biomaterials allowing for the employment of green chemistry parameters such as 

S. Afewerki et al.



23

atom economy, waste reduction, reduced toxicity, and the use of renewable resources 
[213, 214]. This would also allow tailoring the surface of the biomaterials and in 
that way introducing antimicrobial and osteoinductive functionalities [215]. 
Therefore, further advancements within this field are important for not only future 
perspectives, but also the fundamental understanding of various cellular mecha-
nism, material and tissue interactions, long-term performance of such materials, etc. 
These will provide for the development and invention of a more solid technological 
platform which will be easier to translate into the clinic and find useful and suitable 
applications. A co-delivery system is one strategy extensively employed allowing 
the delivery of both agents consecutively without interfering with one and other, 
nevertheless, some of the limitations and challenges that need to be overcome in the 
future are, for instance, controlled local and sustained delivery, thus avoiding sys-
temic toxicity, delivery over the desired time point and avoiding the use of antibiot-
ics, thus circumventing the risk and promotion of the development of antibiotic 
resistance organisms. Moreover, having biomaterials that prevent future infection 
will also promote the healing and repair of bone since infections have the ability to 
decline or hinder the healing process. Besides being dual functional biomaterials, 
they should also display vital properties such as biocompatibility, biodegradability, 
support tissue attachment, regeneration, proliferation, optimal mechanical properties, 

Fig. 10 Antibacterial and osteogenic scaffold constituents and delivery methods
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and good integration with the host tissue. Another option for future advanced 
biomaterial within the discussed topic could be the employment of smart materials 
[31]. Adding properties to existing biomaterials, such as the ability of triggering 
itself in case of any treatment or future damages or infections, is progressing. 
These are some of the future materials we hope will boost this endeavor and advance 
the current topic.
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