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12.1 Introduction

Global attention to sustainability in energy use and reduction of greenhouse gas (GHG)
emission has become a major driving force for the development and adoption of
renewable and low-emission energy technologies. In the on-going development of the
existing power grid towards amore sustainable energy future, the adoption of such novel
technologies introduces the opportunity to shift towardsmore advanced energynetworks.
Under the smart energy network concept, the integration of distributed energy resources
(DER) into existing communities provides the potential for more efficient and economic
operation. These advantages may be achieved through the optimization of energy flows
and through the coordinated operation of various distributed energy technology compo-
nents within the network. With respect to its applicability to existing communities, there
are near-term benefits for adopting smart energy network principles, particularly in
consideration of the impacts of DER andmobility electrification on the residential sector.

12.1.1 Literature Review on Energy Hubs

The energy hub framework is an overarching concept for encapsulating the prin-
ciples of smart energy networks for optimized energy vector dispatch and for the

A. Maroufmashat (*) · Q. Kong · M. Fowler
Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
e-mail: amaroufm@uwaterloo.ca; qhkong@uwaterloo.ca; mfowler@uwaterloo.ca

A. Elkamel
Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada

College of Engineering, Khalifa University of Science and Technology, The Petroleum
Institute, Abu Dhabi, UAE
e-mail: aelkamel@uwaterloo.ca

© Springer Nature Switzerland AG 2020
A. Ahmadian et al. (eds.), Electric Vehicles in Energy Systems,
https://doi.org/10.1007/978-3-030-34448-1_12

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34448-1_12&domain=pdf
mailto:amaroufm@uwaterloo.ca
mailto:qhkong@uwaterloo.ca
mailto:mfowler@uwaterloo.ca
mailto:aelkamel@uwaterloo.ca
https://doi.org/10.1007/978-3-030-34448-1_12


coordinated utility of DERs, which have generally been studied via mathematical
modelling techniques. Most notably, the formulation of the energy hub model as a
mixed integer linear programming (MILP) problem was proposed by Geidl in
[1]. This model has been further developed in [2] by Evins et al. to more accurately
account for realistic operating characteristics of energy systems. The use of
probabilistic considerations to account for uncertainty is presented in [3] by
Alipour et al., which is implemented as a mixed integer non-linear programming
(MINLP) model. Meanwhile, an iterative approach is discussed in [4] by Batic
et al., which was aimed at addressing non-linearity in objective functions for
energy vector dispatch within the model. Multi-objective optimization have also
been considered, an example of which has been presented in [5] by Beigvand et al.
for economic and energy utility criteria. In consideration of the flexibility of the
energy hub model, it has been used as the basis for a number of energy hub
simulation studies, most of which have been investigative works for unique energy
systems or evaluative efforts that applied the energy hub model to examine various
operating and optimization strategies. For example in [6], Vahid-Pakdel et al.
applies the energy hub model to investigate a multi-energy vector system consid-
ering the presence of both thermal and electrical energy storage systems (ESS),
demand response programs, and markets, as well as wind-based renewable energy
resource (RES) adoption. In a study presented in [7], Moghaddam et al. applies an
adaptation of the model using a MINLP approach for a system containing com-
bined heat and power (CHP), electrical heat pump, boiler, absorption chiller, and
electrical and thermal ESS technologies. Lastly in [8], Maroufmashat et al. con-
sider an expansion of the energy hub to a network of interconnected hubs, in order
to study the potential for more optimized energy vector dispatch resulting from
diversity in energy consumption behavior and network size.

While the literature on energy hubs is fairly populated, there are particular
topic areas that are of significant relevance to the content of this work. Specifically,
the viability of RES integration for adoption into energy systems is critical for
their consideration as DER. This characteristic has been investigated in a number
of previous works, which have effectively concluded on their emission-reduction
and economic potentials within existing energy systems. In [9], a study was
conducted by Perera et al. to examine the potential for optimal integration of
non-dispatchable renewable resources into electrical energy hubs. The study
shows that optimal operation of the electrical energy hub can support RES inte-
gration to satisfy more than 60% of the annual electrical demand of the energy hub,
under a Sri Lanka context. In another study, Sharma et al. [10] evaluated a
centralized energy management system for residential energy hubs considering
solar PV availability. The study shows that their energy dispatch strategy can
potentially reduce energy consumption and costs by up to 8% and 17%, respec-
tively. In [11], Ha et al. investigated the optimal operation of a residential energy
hub implementing solar PV, solar-thermal, and battery ESS under a time-of-use
electricity pricing scheme. Zhang et al. [12] present a multi-energy vector
energy hub model implementing wind- and solar-based generation with hydrogen
as the core energy vector. Both studies investigate the applicability of distributed
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RES within the energy hub framework, while noting the need to address the
intermittent nature of renewable energy technologies for significant integration
into energy hub systems.

Also of significance to this work is the deploy-ability of CHP and ESS technol-
ogies, which have been studied in existing literature under the contexts of various
unique systems. These studies, however, were aimed at justifying the deployment of
such technologies and, as such, did not consider the relevance of EV adoption within
complex energy hub systems. In [13], Mohsenzadeh et al. evaluate the operational
and cost benefits of CHP implementation within energy hubs. Their study used a
simulated energy hub system with electricity and gas energy vectors to demonstrate
the potential total and operational cost savings of CHP implementation of up to 9.4%
and 10.8%, respectively, as well as improved network reliability and reduced power
losses of up to 15.4% and 16.8%, respectively. Similarly, Biglia et al. [14] examined
the applicability of CHP implementation in a hospital energy hub based on energy
and economic evaluation, under a Sardinia, Italy context. Wang et al. [15] explored
the implementation of CHP technology in an integrated energy hub system
containing heat pumps and electric boilers. The study investigated the effect of
CHP implementation on both heat and electricity networks and the optimal operation
of CHP technologies within the energy hub framework. Shams et al. [16] investi-
gated the optimization of a multi-energy vector energy hub model with the presence of
CHP technology, distributed renewable generation, and energy storage technologies.
The presence of CHP technology in the multi-energy vector systemwas noted to affect
the impact of electricity prices on the demand imposed on the natural gas network.

Meanwhile, the role of ESS technologies in energy hubs have been evaluated in
[17] by Thang et al., who notes the advantages of ESS implementation within
competitive electricity markets, highlighting the improvement in operational effi-
ciency and flexibility due to inclusion of an energy storage system. Gabrielli et al.
[18] discusses the role of both short-term and seasonal ESS technologies in
maintaining system efficiency and flexibility in an energy hub subject to significant
RES integration. Their study presents an optimized energy hub model incorporating
thermal, battery, and hydrogen ESS, along with solar-based generation technologies,
heat pumps, and power-to-gas systems. Another study, conducted by Maroufmashat
et al. in [19], also considered the potential of hydrogen as a core energy vector in an
energy hub containing renewable solar-based generation, hydrogen storage capabil-
ities, and power-to-gas systems. The role of energy storage within a network of
interconnected energy hubs has also been explored by Maroufmashat et al. in
[20]. Their work illustrates that consideration of energy storage capabilities in
combination with a variety of distributed generation technologies in large energy
hub networks provides yields lower overall system costs and increased opportunities
for integration of distributed generation resources into the network. In [21], Brahman
et al. investigates the roles of electrical and thermal ESS within a multi-energy vector
energy hub considering demand response programs in the energy vector dispatch
optimization problem. Similarly, Javadi et al. [22] presents a study on the optimal
operation of a multi-energy vector energy hub with the presence of battery ESS,
while accounting for cycling degradation costs of the ESS in the optimization. In
[23], Ye et al. incorporates both demand response programs and ESS functionality
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into an energy hub model and simulated the optimal dispatch of energy vectors
within the energy hub based on a cost objective function. The study indicates the
cost-cutting benefits of storage technologies in energy hubs that are subject to a time-
of-use electricity pricing scheme.

Across these studies, the applicability of various DER technologies have been
considered under a number of unique energy systems and conditions, which has
established the viability and benefits of different DER technologies within energy
hubs. However, recent market trends in electric mobility introduces EVs as another
potentially disruptive energy technology that should be considered in the context of
smart energy systems.

12.1.2 Plug-in Electric Vehicles in Energy Hubs

As an emerging technology, EVs have been developing at a rapid rate and has been
projected to make up to 47% of the total light duty vehicle fleet by 2050 [24]. In
comparison to traditional fossil fuel-based vehicles, EVs rely on grid-generated
electricity and battery energy storage technologies for fuel. This allows EVs to
incur significantly less GHG emissions during operation, particularly in energy
systems that can meet their charging demand with electricity derived from renewable
or low-emission energy resources. However, significant penetration of EVs into the
automotive market will consequently result in tremendous increases in electricity
consumption demand due to the charging behavior necessary to fuel EVs. This poses
a major challenge to the power grid, which must allocate appropriate generation
capacity to accommodate the additional demand. Realistically, much of the charging
demand of EV fleets will originate from the residential sector, which provides the
context for the adoption of EVs into residential energy systems as manageable
components. Most importantly, significant EV charging demands can negatively
impact the flexibility of the local energy system and, as such, must be appropriately
managed to maintain energy reliability.

Currently, several levels of EV charging rates are available for EV charging,
which can affect the shape of the electricity demand imposed on the energy hub by
uncontrolled EV charging behavior. In level 1 charging, the low charging rate
generally results in long charge durations, as well as in a flat charging profile. This
contributes to increasing the base load of the energy hub during EV fleet charging
periods. Meanwhile, the relatively higher rate of charging provided by level 2 charg-
ing will result in higher peaks in power demand, with a shorter charge period
compared to a level 1 charging scenario. Finally, DC fast charging provides a
significantly faster charge rate as compared to the other options. Thus, the charging
profiles imposed by uncontrolled DC fast charging will be composed of short but
significant power peaks during uncontrolled EV charging periods. However, EV
charging stations with DC fast charging capabilities are unlikely to be implemented
within residential energy hubs due to their high cost, and are therefore not considered
in this work.
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Within the existing literature, several forecasting efforts have been made to
evaluate the relative impact of large-scale EV integration on the power grid. These
works are often set in the context of unique power grid systems and broadly estimate
the effects of uncontrolled EV fleet charging via total annual and peak charging
demand criteria. For example, Clement et al. present in [25] a forecasting study on
the impacts of uncontrolled EV charting at the residential level, based upon historic
data of EV charging behaviors. A more recent evaluation of these impacts has been
conducted by Fischer et al. in [26]. Both studies, however, evaluate scenarios of EV
adoption within existing energy system conditions and do not consider how the
energy hub concept may be leveraged to mitigate uncontrolled EV charging behav-
iors. Other notable developments in literature include the work of Dias et al. in [27],
who compare impact scenarios between uncontrolled and controlled EV charging
strategies within the residential sector. This study, again, is set in the context of
conventional power systems and do not account for the role of DERs or for the
energy hub concept. Meanwhile, further research has been conducted by Ul-Haq
et al. in [28] to provide more realistic estimations of uncontrolled EV loads via
stochastic methods. Concisely, there is a gap in the literature in evaluating scenarios
of EV adoption into residential energy systems with uncontrolled charging behavior
under an energy hub context, which may prove to be the most effective means of
regulating volatile EV charging demands under medium to high market penetrations
scenarios of EV fleets into the transportation sector.

In response to the significant impacts of uncontrolled EV charging behaviors,
several strategies have been proposed to regulate EV charging. In one case, the
controlled or smart EV charging mode has been considered for managing EV fleets
as flexible loads via advanced communication and information technology. Sim-
ilarly, the vehicle-to-grid (V2G) charging mode considers the adoption of
bi-directional power flow infrastructure and intelligent centralized controls, in
order to integrate EV fleets into energy systems as mobile BESS grid components.
These two alternative charging modes have been discussed in a number of studies,
which have aimed to justify their operational or economic feasibility. For instance,
notable contributions to the feasibility evaluation of the V2G concept has been
made by Kempton et al. in [29, 30], who concluded that V2G may contribute
significantly to battery degradation in EVs and is consequently only economically
justified for the provision of high-value services such as peak shaving. In another
study, conducted by Locment et al. in [31], the coordinated dispatch of power is
studied for an EV charging station system, which aimed to leverage controlled EV
charging to improve the energy utility of local solar PV generation components.
Anastasiadis et al. proposed a harmony search algorithm in [32] for controlling EV
charging behavior in a microgrid containing mixed commercial and residential
loads, as well as various DER components. Yao et al. [33] considered a particle
swarm optimization approach for economic dispatch of power to a EV fleet with
V2G enabled. The energy hub considered for this study contained both renewable
and conventional energy technologies. In [34], Moeini-Aghtaei et al. presents a
framework for scheduling the charging demands of a EV fleet considering charg-
ing patterns. The coordination of EV fleet charging demands is addressed using a
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particle swarm optimization approach for multi-objective optimization, consider-
ing financial factors, RES utilization, and a convenience criterion for EV usage.
Alkahafaji et al. [35] considered the optimization of energy vector dispatch within
a system containing EV fleets, using a mixed integer quadratic programming
approach for the multi-objective optimization of financial and environmental
criterion. The study indicates the cost-cutting potential of discharging EV fleets
to maintain stability and reliability of the energy hub system. A scheme of
integrating EV fleets into smart buildings is simulated and discussed in [36] by
Wang et al. In [37], Liu et al. considers the economic and environmental optimi-
zation of an energy hub containing a EV fleet operating under both grid-connected
and islanded modes. The study presents a comprehensive learning particle swarm
optimization model for the coordinated dispatch of energy vectors within the
energy hub. Similarly, Khederzadeh et al. [38] investigates the effects of EV
fleet penetration in an energy hub operating between grid-connected and islanded
modes, with a focus on the roles of the EV fleet, ESS, and responsive loads for
maintaining islanded operation of the energy hub. In [39], Munkhammar et al.
examine the potential of home-charging of EVs considering solar PV implemen-
tation at the household level, using a case study of Westminister London. The
study notes the compatibility of solar PV generation and EV charging behavior,
both at the single household level as well as at the grid level.

While these advanced charging modes have been considered in detail in research,
they have yet to be successfully adopted in a real, large-scale energy system.
Meanwhile, current trends of increasing EV penetration into the automotive market
are likely to manifest in significant uncontrolled charging demands on existing
power grids. As such, there is an immediate research need to evaluate the realistic
impacts of uncontrolled EV charging behavior within energy hub systems, particu-
larly for high impact areas such as the residential sector. Furthermore, an under-
standing of how these uncontrollable charging demands interact with grid
components will provide insight into how best to implement available DER and
technologies to mitigate their impact on the grid.

12.1.3 Contributions of This Chapter

In this chapter, we aim to address the research need of evaluating the potential of
energy hubs for mitigating and regulating probable uncontrolled EV fleet charging
demands considering systems with complex DER technology configurations. Spe-
cifically, we consider a case study of residential energy networks with solar PV
arrays, CHP, electrical and thermal ESS, and conventional boiler heating technolo-
gies. This work employs an energy hub model based on [1] to simulate MILP-
optimized system operation via a multi-objective approach based on economic and
environmental criteria. The novelty of this study is the evaluation of realistic, near-
term impacts of EV adoption into residential energy systems under than energy hub
context. Furthermore, consideration of various scenarios of DER technology
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configurations provides insights into the planning and design of DER integration
into the residential sector in consideration of disruptive EV integration into existing
communities.

The contents of this chapter are structured as follows: the modelling approach and
the simulation scenarios are discussed in Sect. 12.2, followed by a description of the
examined energy hub system in Sect. 12.3. In Sect. 12.4, the results of the simulated
scenarios are shown, and environmental and economic analysis of the results are
presented. Lastly, concluding remarks for this work are made in Sect. 12.5.

12.2 EV Fleet Demand and Energy Hub Modelling
Approach

12.2.1 Energy Hub Model

The operation of the residential energy hub considered in this work is formulated as a
mixed-integer linear programming (MILP) problem and was modelled using the
GAMS software, which is a mathematical modelling tool designed for linear,
nonlinear, and mixed-integer optimization problems. The formulation of this
model is based on the energy balance concept and is as shown in (12.1). In this
approach, the operational flows of energy vectors within the residential energy hub is
modelled as a process of energy vector transformation, conversion, and storage,
beginning with grid feed and ending with consumption at the end-user. A holistic
diagram of this energy hub model is as shown in Fig. 12.1.

Using this model, the aim of this work is to simulate the performance of the
energy hub system under various energy technology configurations and loads, which
is set by specifying the coupling matrix and the outflow energy vector set,

Fig. 12.1 Holistic diagram of the residential energy hub model
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respectively. The coupling matrix is representative of conversion efficiencies of
implemented energy technologies while the outflow energy vector set represents
the various demand loads of end-users within the energy hub system. Furthermore,
technology constraints such as flow and capacity constraints, as well as operational
constraints, are accounted for by limiting the range of energy vector flows of the
inflow energy vectors, as shown in (12.2). Optimization of energy vector flows is
done using a weighted multi-objective MILP approach based on economic and
environmental criteria, which are evaluated in correlation to the inflow energy vector
set. The form of the overall objective function is as shown in (12.3). On the basis of
optimizing the objective function, simulation of the energy hub under various
scenarios is intended to reflect the optimal performance of the system under the
specified conditions of each scenario.

O tð Þ þ QEV tð Þ
εEV

¼ CijI tð Þ þ _E tð Þ ð12:1Þ

Where:
O(t) is the energy demand load set of the energy hub
QEV(t) is the charging required for the EV fleet
εEV is the efficiency of EV charging
Cij is the coupling matrix for input energy vector i to load j
I(t) is the inflow energy vector set
_E tð Þ is the flow of energy into storage system

Imin � I tð Þ � Imax ð12:2Þ

Where:
Imin is the set of minimum flow capacities for the inflow energy set
Imax is the set of maximum flow capacities for the inflow energy set

Z ¼ μ ∙ Z1 þ 1� μð Þ ∙ Z2 ð12:3Þ

Where:
Z is the overall objective function
Z1 is the operating cost objective function
Z2 is the emissions objective function
μ is the weight factor

The individual cost and emission objective functions are evaluated as shown in
(12.4) and (12.5).

Z1 ¼ Costfixed þ
X

t

Costoper,conv tð Þ þ Costfuel tð Þ þ Costoper,stor tð Þ� � ð12:4Þ

Where:
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Costfixed is the fixed cost of the energy technology systems
Costoper, conv(t) is the operating cost of energy conversion systems
Costfuel(t) is the cost of fuels consumed in the energy hub during operation
Costoper,stor(t) is the operating cost of energy storage systems

Z2 ¼
X

t

EF ∙ I tð Þ ð12:5Þ

Where:
EF is the set of emission factors associated with inflow energy vector set I(t).

12.2.2 Energy Storage Model

Energy storage technologies are incorporated into the mathematical model differ-
ently as compared to the energy conversion technologies, which are represented by
the coupling matrix. Instead, energy storage technologies are constrained not only by
their energy conversion efficiencies and power flow limitations, but also by their
storage capacities and their temporal state-of-charge, which represents the current
amount of energy stored. As such, these technologies are incorporated into the model
as discrete temporal systems, where their performance are additionally constrained
by a steady-state energy balance, as shown in (12.6). The state-of-charge of the
technology is as calculated using a discrete temporal method as shown in (12.7).
Further constraints were specified to limit the storage capacity of the energy storage
systems, as shown in (12.8). Additionally, due to the bidirectional power flow of
energy storage technologies, a further operational constraint is placed such that
inflow and outflow of power cannot occur simultaneously.

_Ek tð Þ ¼ Qcharge,k tð Þ ∙ εcharge,k �
Qdischarge,k tð Þ
εdischarge,k

� _Eloss tð Þ ð12:6Þ

Where:
_Ek tð Þ is the flow of energy into storage system for energy vector k
Qcharge,k(t), Qdischarge,k(t) are the power charged and discharged to storage system k,

respectively
εcharge,k, εdischarge,k are the charge and discharge efficiencies for storage system k,

respectively
Eloss(t) is the standby loss of energy from the storage system k

SoCk tð Þ ¼ SoCk t � 1ð Þ þ _Ek tð Þ
Emax ,k

ð12:7Þ

Where:
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SoCk(t) is the state of charge of the storage system k at timestep t
SoCk(t � 1) is the state of charge of the storage system k at timestep t � 1
Emax, kis the maximum storage capacity of storage system k

SoCk,min � SoCk tð Þ � SoCk,max ð12:8Þ

Where:
SoCk, min is the minimum charge capacity of the storage system k
SoCk, max is the maximum charge capacity of the storage system k

12.2.3 Monte Carlo Simulation of EV Fleet Charging
Demand

The fleet charging demand of the EV fleet used in this work is derived using a Monte
Carlo simulation, which considers stochastic elements affecting individual EV
charging behavior including arrival and departure times, daily travelled distance,
EV battery capacities, the efficiencies of EV charging nodes, and the non-linear
charging characteristics of EV batteries. The use of the Monte Carlo method in this
work is for the generation of representative fleet charging behaviors of hypothetical
vehicle fleets based upon realistic vehicle use behavior. As the basis of this approach,
2009 National Household Travel Survey (NHTS) data [40] was used to derive the
driving requirements of a fleet of light-duty vehicles in a residential context. A flow
diagram of the Monte Carlo simulation used in this study is as shown in Fig. 12.2.

Based on this Monte Carlo approach, the following EV fleet charging profiles
were derived for an EV fleet composed of 50 vehicles considering both level 1 and
level 2 uncontrolled charging behavior. Under the level 1 charging mode, EVs were
assumed to be able to charge at a power flow rate of 1.44 kW, whereas the level
2 charging mode was assumed to operate with a power flow rate of 7.2 kW. Under
each of these charging level scenarios, the EV charging impact was evaluated and
incorporated into the electricity consumption demand of the energy hub system, later
described in this chapter. The electricity demand profiles were assumed to be
consistent on a daily basis across the annual simulation, which represented the
average annual charging requirement of the EV fleet. These profiles are as shown
in Fig. 12.3. In the case of the level 1 charging scenario, an aggregate charging
demand of 436 kWh was consumed for EV fleet charging, whereas the level
2 charging scenario required 458 kWh.

12.2.4 Model Inputs

In this mathematical formulation, the inputs to the model consist of the end-user
energy vector consumption demands of the energy hub system, as represented by the
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Fig. 12.2 Flow diagram of Monte Carlo simulation for EV fleet charging demand
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outflow energy vector set. As well, environmental inputs must be specified with
respect to the relevant energy technologies, such as solar irradiation data for solar PV
arrays. The range of sizes, efficiencies, and operating capacities should also be
specified for each of the energy storage and conversion technology components in
the energy hub, as well as the operating cost and emission factors associated with the
operation of each energy technology. Lastly, relevant grid energy vector pricing
schemes and emission factors are also required to reflect the operating cost and
emission considerations with respect to grid-purchased energy vector consumed by
the energy hub system. These factors contribute to the overall operating costs and
emissions of the system and are thus relevant to the objective functions used in this
model.

12.2.5 Model Optimization and Solution Methodology

Using a weighted multi-objective optimization, the objective function considered in
the GAMS optimization account for both the operating costs and GHG emissions
resulting from energy hub operation. The overall model is implemented as a mixed-
integer linear programing problem, which is solved using the CPLEX solver. The
optimization results in optimized energy vector flows within the system and pur-
chases from the grid. The operating cost and emissions-related implications of these
power flows are determined under the economic and environmental factors that were
inputted into the model. The optimization is also dependent on the availability of
energy transformation and storage technologies, as well as the type of load demand
experienced by the energy hub. Thus, different optimized power flows will result
under different simulation scenarios due to the conditions that the energy hub is
subject to. A diagram illustrating the overall optimization process and optimization
criterion, variables, and constraints is as shown in Fig. 12.4.

Fig. 12.3 Simulated charging demand of EV fleet for level 1 and level 2 uncontrolled charging
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12.2.6 Simulation Scenarios

A total of 6 simulation scenarios were considered for the residential energy hub
system. These scenarios were selected to evaluate the effect of different EV charging
levels and the presence of distributed energy resources on the optimized operation of
the energy hub, under the implemented optimization approach. A summary of these
simulation scenarios is as shown in Table 12.1.

12.3 Residential Energy Hub System Case Study

In this study, the operational energy loads of a single residential complex were
modelled and optimized under various simulated scenarios regarding EV fleet size
and DER configurations. Within the energy hub model, the thermal and electrical
loads of a 10-story residential complex was considered as the base load of the energy
hub. The reference building model consists of 10 floors with a total floor area of

Fig. 12.4 Diagram of optimization process used in energy hub model
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7765 m2. The thermal and electrical loads of this building model have been consid-
ered to follow hourly profiles, which were assumed to vary monthly. The hourly
profiles for the thermal and electrical demands of the building are as shown in
Figs. 12.5 and 12.6, respectively.

The costs of grid-purchased electricity are evaluated using a time-of-use pricing
scheme, as reflective of Ontario, Canada conditions. Under this scheme, the cost of
electricity is evaluated in tiers that consist of off-peak, mid-peak, and on-peak prices,
which vary between summer and winter seasons and between weekdays and week-
ends. The values used for off-peak, mid-peak, and on-peak prices were 0.072 $CDN/
kWh, 0.109 $CDN/kWh, and 0.129 $CDN/kWh, respectively. A summary of this
pricing scheme for seasonal weekdays is as shown in Fig. 12.7 [41]. The price for
weekends is valued consistently at off-peak prices. Meanwhile, the costs of natural
gas were evaluated at a rate of 0.22 $CDN/m3, based on Ontario conditions.

The emission factors used to evaluate the GHG emissions associated with
energy hub operation are derived based on the fuels and grid-purchased electricity
used to support energy hub operation. For grid-purchased electricity, a time-
averaged emission factor of 0.187 kg CO2/kWh was used to reflect Ontario,
Canada conditions, which produces most of its electricity using a grid mix as
shown in Fig. 12.8 [42]. Meanwhile, an emission factor of 1.9 kg CO2/kWh was
used for natural gas.

Table 12.1 Summary of
simulation scenarios

Scenario EV charging level DER adoption

1 (Base Case) No EV Fleet Without DER

2 No EV Fleet CHP and PV

3 Level 1 Without DER

4 Level 1 No CHP, only PV

5 Level 1 CHP and PV

6 Level 2 CHP and PV
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Fig. 12.5 Hourly profiles for heat demand of the residential energy hub system
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Fig. 12.7 Time-of-use
pricing scheme for
electricity costs in Ontario,
Canada for: (a) summer
weekdays (May 1st–
October 31st) and (b) winter
weekdays (November 1st–
April 30th)
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12.4 Results and Discussion

A summary of the overall energy consumption behavior of the energy hub system in
each of the simulated scenarios is as shown in Fig. 12.9. From these results, it is seen
that the presence of uncontrolled EV fleet charging contributes to approximately
17.1% additional electricity consumption in the energy hub in comparison to a
scenario in which a EV fleet was not considered. The significant increase in electrical
power consumption of the residential energy hub indicates the potential for escalat-
ing power demand on the electrical grid as a result of EV penetration into the
automotive market. Meanwhile, residential energy hubs must also adapt the neces-
sary charging and power transfer infrastructure to accommodate the integration of
EV fleets.

With respect to DER technology options in a residential context, the simulation
results also indicate the distributed energy generation potential of CHP

Nuclear
35%

Gas/Oil
28%

Hydro
23%

Wind
12%

Biofuel
1%

Solar
1%

Nuclear
Gas/Oil
Hydro
Wind
Biofuel
Solar

Fig. 12.8 Generation grid
mix for Ontario, Canada

Fig. 12.9 Summary of energy consumption loads from simulated scenarios
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implementation in a residential context, which is shown to be able to supply up to
70% of the residential energy hub’s overall consumption demand. This indicates the
contribution of CHP implementation to improving energy security for residential
energy hubs, as the overall system becomes significantly less reliant on grid gener-
ation for meeting its operational energy requirements. With respect to scenarios
5 and 6, in which CHP implementation was considered with EV fleet charging
behavior, the results indicate the effects of significant DER implementation on
alleviating the escalating demand of EV integration into residential energy hubs.
This is due to the increased self-efficacy of the residential energy hub system, which
in turn reduces the need for additional power transfer infrastructure and spinning
reserve capacities at the grid level. PV adoption, however, is seen to play a minor
role in meeting the energy hub’s consumption demand, meeting only 3% of the total
electricity requirements of the energy hub, considering the additional load of EV
fleet charging. This is a result of the system’s limitations for solar PV implementa-
tion in the target residential energy hub. Particularly, the lack of available rooftop
surface area for solar PV array installation in residential high-rises limits the overall
generation potential of solar PV technology, relative to the consumption needs of the
building.

12.4.1 Operating Costs Analysis

A summary of the total operating costs derived for each of the scenarios is as
shown in Fig. 12.10. As shown, adoption of fleet charging behavior into the
residential energy hub results in an increase in operating costs. This increase in
costs results from the additional electrical demand imposed onto grid generation
and corresponds to an increase of 12.6% of the total operating costs of a scenario
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Fig. 12.10 Summary of cost analysis of simulated scenarios
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without EV adoption. In comparison to the 17.1% increase in overall electricity
demand determined from the energy analysis, the relatively lower increase in total
operating costs results from the factoring of space heating costs as well as the time-
of-use costs for EV fleet charging. These costs are incurred largely during
mid-peak and off-peak periods, thus incurring a lesser impact on the operating
costs of the residential energy hub as compared to its overall electricity consump-
tion. A comparison between the two levels of EV fleet charging showed that level
1 charging results in lower operating costs for the system, due to the limitations in
the rates of power purchase from the grid. These limitations extend the charging
times of the EV fleet, thus constraining a larger portion of uncontrolled EV fleet
charging behavior to occur during off-peak hours, thereby incurring lower charg-
ing costs during these periods. This indicates the advantages of controlled charging
strategies, which can potentially schedule EV fleet charging to low-peak hours to
minimize the costs of EV fleet charging, while still meeting the charging needs of
the EV fleet.

With respect to DER implementation in the residential energy hub, scenarios
considering DER implementation incur significantly lower operating costs. In com-
parison to scenarios not considering DER implementation, this corresponds to a
reduction in operating costs of up to 34%. In particular, a significant portion of this
cost reduction potential results from the adoption of CHP technology, due to the
relatively cheaper costs of natural gas purchases in comparison to grid electricity
costs. In these scenarios, optimization of the objective function for energy hub
operation resulted in increased reliance on CHP operation, based on its economic
advantage over mid- and on-peak costs of grid generation in Ontario’s time-of-use
pricing scheme. Based on this comparison, it is evident that significant DER
implementation offers an economic advantage for residential energy hub systems,
particularly in grids with high peaking prices for electricity. Lastly, a comparison
between scenarios 3 and 4 indicates that solar PV implementation within the
residential energy hub contributes to reducing the operating costs of the system by
2.5%. Again, the low significance of its contribution to the overall costs of the
system highlights the low applicability of PV technology in residential energy hubs
with spatial constraints for PV implementation.

12.4.2 GHG Emissions Analysis

As shown in Fig. 12.11, the simulation results indicated that the adoption of a EV
fleet increases the operating GHG emissions of the residential energy hub, due to the
additional energy consumption of the EV fleet. This represents an increase in annual
GHG emissions of 11.3%. Meanwhile, it is also seen that the uncontrolled level
1 charging scenario resulted in higher emissions as compared to the uncontrolled
level 2 charging scenario. This was because the optimized energy vector flows in
the energy hub for the lower charging rate scenario satisfied more of its energy
demand from CHP operation, which has a higher emission factor than compared to
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grid-generated electricity. In this case, the charging limitations of the level 1 charging
scenario extended the charging demand of the EV fleet into a profile with a longer
tail, with a less significant charging demand during on-peak periods. In this com-
parison, the results highlight the tradeoff between economic incentive offered by
CHP operation and the environmental demerit incurred by natural gas consumption,
relative to a power grid with a large portion of low emission generation.

Considering the implementation of DER technologies, CHP implementation was
found to significantly increase GHG emissions resulting from energy hub operation.
This was due to the effect of increased natural gas consumption resulting from CHP
implementation, which has a significantly higher emission factor in comparison to
Ontario’s grid generation, which derives most of its generation capacity from low
emission resources. This corresponds an increase in emissions of up to 49% of the
scenario where DER implementation was not considered. These results indicate the
negative environmental impacts of significant CHP implementation as a DER
technology in a low emission power grid. Finally, comparison between scenarios
5 and 6 showed that solar PV implementation reduces the overall emissions of the
energy hub system by 2.1%.

12.5 Conclusion

In this study, the following contributions to the literature has been made:

• Primarily, this work addresses the research gap in understanding the impact of
realistic EV adoption scenarios into existing residential communities and the
potential applicability of the energy hub concept in mitigating the volatile energy
consumption behavior of uncontrolled EV fleet charging.

Fig. 12.11 Summary of operating emissions analysis of simulated scenarios

12 Modelling the Impact of Uncontrolled Electric Vehicles Charging. . . 307



• This work provides insight into the compatibility of different DER technology
configurations with uncontrolled EV fleet charging within residential energy
hubs, which should aid in the planning and design of DER implementation within
such systems.

• A case study of residential systems has been examined under an Ontario, Canada
context, in order to evaluate the relevance of the study to real-world systems and
conditions.

With respect to the results of the case study, analysis of the results based on
energy, operating cost, and emissions criteria showed the impacts of EV adoption
in escalating energy consumption, operating costs, and emissions at the residential
level. Considering these effects, additional power transmission and distribution
infrastructure, as well as spinning reserve capacities, may be necessary at a grid
level to accommodate the additional demand. As well, sufficient charging infra-
structure must also be adopted within residential energy hubs to accommodate the
integration of EV fleets. Results concerning DER technology implementation
indicated the benefits of significant DER implementation within residential energy
hubs. Particularly, increased self-efficacy due to DER implementation allows the
energy hub to address increasing EV fleet charging demand using its own DER
generation resources. This could largely reduce the need for additional power
transmission and distribution infrastructure, as well as the need for spinning
reserve capacities at the grid level. The results also indicated the tradeoff between
operating costs and emissions for the two levels of EV charging considered. The
differences in EV fleet charging behavior indicate the potential benefits of con-
trolled or scheduled charging behaviors, which could leverage time-of-use pricing
schemes to provide economic and environmental benefits for the residential
energy hub.

Appendix A

The nomenclature is shown below.

Nomenclature
BESS Battery energy storage system

CHP Combined heat and power

DC Direct current

DER Distributed energy resource

GHG Greenhouse gas

ESS Energy storage system

MILP Mixed integer linear programming

MILNP Mixed integer non-linear programming

(continued)
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NHTS National Household Travel Survey

EV Electric vehicle

PV Photovoltaic

SOC State of charge

V2G Vehicle-to-grid

Variables
εcharge, k Charge efficiency for storage system k

εdischarge, k Discharge efficiency for storage system k

εEV Efficiency of EV charging

μ Weight factor

Cij Coupling matrix

Capbattery Capacity of plug-in electric vehicle battery

Costfixed Fixed cost of the energy technology systems

Costfuel(t) Cost of fuels consumed in the energy hub during operation

Costoper, conv(t) Operating cost of energy conversion systems

Costoper, stor(t) Operating cost of energy storage systems

dtravelled Distance travelled
_E tð Þ Flow of energy into storage system

_Ek tð Þ Flow of energy into storage system for energy vector k

Eloss(t) Standby loss of energy from the storage system k

Emax, k Maximum storage capacity of storage system k

EF Emission factors associated with inflow energy vector set I(t)

I(t) Inflow energy vector

Imin Minimum flow capacities for the inflow energy set

Imax Maximum flow capacities for the inflow energy set

i Index for inflow energy vector set

j Index for energy demand load set

k Index for energy storage technologies

nPEV Index for plug-in electric vehicle in fleet

ntotal Total number of plug-in electric vehicles in fleet

O(t) Energy demand load of the energy hub

Qcharge, k(t) Power charged to storage system k

Qdischarge, k(t) Power discharged to storage system k

QEV(t) Charging required for the EV fleet

SoCk(t) State of charge of the storage system k at timestep t

SoCk, min Minimum charge capacity of the storage system k

SoCk, max Maximum charge capacity of the storage system k

t Index for time

tarrival Time of arrival at energy hub

tdepart Time of departure from energy hub

Z Overall objective function

Z1 Cost objective function

Z2 Emissions objective function
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