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Ross Whitaker and Ingrid Hotz

Abstract Fundamentally, data visualization is the process of placing dabs of ink or
color on a 2D plane. However, the complexity of data is increasing so that we see
large numbers of instances, dimensions, parameters, etc. Such data surpasses what
can readily be shown on a 2D or 3D display. One solution to this challenge is the
development of better or more complex interfaces, that include, for instance, linked
views, large displays, dynamic visualizations, and sophisticated user interactions.
The alternative and complementary approach is to develop sets of mathematical
and statistical tools to transform, map, or summarize data and thereby reduce its
complexity so that visualization and understanding of large and complex becomes
more feasible. The role of visualization research, in this case, is to identify common
use cases and develop methods and tools that can readily be adapted to particular
applications. To address the challenges of complexity in the data, previous works
have proposed reducing items and attributes and associated visualization conven-
tions and practices. Here we take deeper (and complementary) look at the analytical
frameworks and approaches for transforming data into forms that are appropriate for
display devices, considered generally. The approach in this chapter is to begin by
characterizing different types of data in a way that is well suited for this discussion.
We will then focus on a few particular classes of data and different ways of summa-
rizing and transforming data of those types. Finally, we will broaden the discussion
to other types of data and how they map into the various methodologies.
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Fig. 6.1 In visualization, the placement of color or ink in 2D depicts instances that are generated
from a process (scatterplot-right) or satisfy some constraint (graph of function-left)

6.1 Types of Data

Here we break different types of data down into a roughly hierarchical taxonomy and
introduce some terminology and data properties that will facilitate the subsequent
discussion. As we do so, we should bear in mind that this partitioning of data types
and visualization goals is not unique and can be applied in different ways under
different circumstances. As we shall see, even the same data set can be viewed as
one type or another, depending on one’s perspective or the goals of the analysis or
visualization.

The first distinction to make is that of instances versus mappings. When visualiz-
ing instances, we are typically considering independent examples of data that share
some common characteristics or sample space. Points in the x-y plane, shown as
a scatterplot (each dot is an instance) in Fig.6.1, are an example of a collection of
instances. Alternatively, we are sometimes interested in visualizing a mapping that
shows a relationship between two sets. A function y = f(x), where f : i — N, isa
special case of a mapping. Figure 6.1 shows the graph of a particular function f (x).
A graph of a function shares some properties with the scatterplot, because it shows,
via ink on the page, all of the instances that satisfy the relation y = f(x).

As we consider the distinction between instances and mappings, we should note
that for a particular data set the difference may be in how we think about the data
or the goals of the visualization. A discrete sampling of n points from of a function
y = f(x) could also be considered a set of instances, (x1, y1), (X2, ¥2), - - ., (Xu, Yn)>
but in general we are interested in different questions about these two cases. In the
case of instances, there is typically an assumption (explicit or not) that these instances
are generated from some kind of stochastic process or probability distribution, and
one would like to understand, in geometric terms, the relative densities of data and
the relationships between points. With functions, the structure of the independent
axis (here the x-axis) is given, and we typically want to interrogate the geometric
structure of y = f(x), rather than densities and distances.
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| x| y| z| |Name|Age| City | Stats |

5.2mm|3.1mm|7.5mm Kim | 32 St. Louis member

1.4mm|3.2mm|6.3mm Samir| 27 |San Francisco| nonmember

2.6mm|3.4mm|5.1mm Hari | 45 |Salt Lake City [senior member
(@) (b)

Fig. 6.2 Data sets often consist of lists or arrays of instances, where the data for each instance
may exist in a physical space with commensurate quantities (a), or may consist of heterogeneous
quantities (b)

Another consideration for types of data is whether or not the data has an inherent
structure. This distinction is most important in the case of instances. Some data sets
consist of instances (or points) that have a consistent structure, e.g, each instance
consists of values derived from a common set of fields. Each field might consist
of a numerical value from a discrete or continuous space, a categorical value, or an
ordinal value (ordered, but not quantitative). Often, structured data is defined in terms
of a data model, where the model describes the structure of the fields, the possible
values they can take, and their physical or semantic meaning. Figure 6.2 shows two
examples of structured data sets. The first is a small set of records that contain points
in three dimensions, and thus the attributes are all similar (e.g., same units, meters
in this case) and where the space (three dimensions, %) has a special structure. The
second example is a heterogeneous mixture of attributes—but where each record still
contains the same attributes.

Alternatively, some data sets consist of unstructured data. In the case of unstruc-
tured data, instances each contain some set of data, but the data is not consistently
organized into distinct fields with well-defined values, as itis in Fig. 6.2. Unstructured
data is commonly text-heavy, but it often also contains other nontext data such as
dates, numbers, and categorical attributes. A typical case of unstructured data comes
in the form of free-form text, which one might see in online/electronic reviews, notes
taken by a doctor/clinician in a medical exam, or other electronic communication,
such text messages or email.

In the context of visualization, the type of data becomes important, because ulti-
mately, visualization deals with the problem of how to assign colors to pixels in a
2D (or 3D) display. The choices of colors and where to put them are quantitative
decisions; pixels are associated with 2D coordinates and colors are chosen from a
multi-dimensional color palate. Similar decisions of placement, size, and color are
important even when one is dealing with conventional visualization techniques such
as graphs, glyphs, and various kinds of charts. Virtually all data visualization strate-
gies require one to represent instances or functions with relatively few quantities.

In many or most cases, the data does not come in a form that maps directly onto
these quantities, and typically a transformation from the original data into the desired
visualization scheme is required. Even when the data lends itself to direct mapping
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into a 2D domain, as in the case of 2D, scalar fields (or images), one is often interested
in some particular property of the data, rather than the entire data set, and this often
entails some kind of transformation of the data to produce a set of relevant features.

6.2 Functions

Here we begin with a very brief overview of the transformations that are relevant for
2D, 3D, and high-dimensional functions. Please note that in the context of scientific
visualization, such functions are also often called fields (Chap. 5). We do not discuss
particular algorithms for fast or efficient rendering of such functions, but focus on
the mathematics of the transformations. For functional data, we are considering
mappings from R to N*, and we assume that k is relatively small. We also treat
these objects, unless otherwise stated, as continuous mappings (e.g., the domain is
continuous) and assume that discrete representations are suitably interpolated, as in
Chap. 5, such that they are defined over continuous domains.

There are some trivial examples, such as m = k = 1, where one can simply graph
the function to see its structure. Also, for m = 2 and k = 1, one can use the pixels
on the 2D viewing plane to assign color values to points, thus treating the function
as an image, and we can use the notation f(x, y) to denote the values at each 2D
point. While there are many interesting and important questions about displaying
such scalar data using various color maps, it is a topic that is studied extensively in
the literature [55]. It is also possible to graph such data as height-fields in 3D space
and project the resulting surfaces on a 2D screen.

The topic of transforming 2D, scalar data for better visualization or interpretation
is (or was) covered extensively in the field of image processing [13]. Here we only
mention a few basic ideas. One of the main strategies is to transform the range with
a function g : M — N, so that we obtain a new image, f'(x, y) = g(f(x, y)). Of
course, g(-) could also be g : )t > N3 and thereby represent the operation of color
mapping scalar values in a function.

Understanding such transformations entails studying the structure of g(-). Typical
mappings will lighten or darken images. Another common operation is to increase
or decrease the overall range of a function. For enhancing the contrast in images,
often it is advisable to consider the histogram of values of the image (histogram of
values in the range). There are a variety of methods for flattening histograms (e.g.
histogram equalization), or targeting or matching certain histograms [13].

For visualization, amore challenging exampleisk = 1,andm = 3, where we have
scalar values given in a 3D volume f(x, y, z). This kind of data arises, for instance,
in medical imaging in the case of MRI or CT or in physical simulations, e.g., of
temperature fields. The challenge with volume data is that the dimensionality does
not lend itself to direct display of the raw data. Graphs of such functions would require
4D displays and a direct display of values as colors would require a 3D display. Thus,
mappings onto 2D grids or displays are important. One approach is to provide some
slicing capability, often arranged along the grid axes by fixing one coordinate, for
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instance, to the kth slice. The resulting function f'(u,v) = f(x =u,y =v,z =k)
is defined over a 2D domain. More generally, arbitrary, 2D surfaces can be sampled
from the 3D domain and then be displayed as (flat) images or rendered as texture-
mapped surfaces, illustrated in Fig. 6.4a.

More commonly, 3D functions are rendered after some kind of projection onto
a 2D viewing plane. Typically, the projection is a line integral following a ray from
each point in the view plane into the 3D volumes, as illustrated in Fig.6.3. The
simplest case is:

fu,v) = / fu,v, a)da, (6.23)

which is a projection along the z axis to form a 2D function, which is then mapped
onto pixel/display intensities. The specific bounds for the integration are a visualiza-
tion decision, where the bounds should include some finite viewing frustrum. Other
views can be obtained by applying a coordinate transformation, ¢ : > > %> (which
should probably smooth and invertible),

fu,v) = / f(pu,v,a))da. (6.24)

The transformation ¢ could include rotations and translations, but also could encode
a perspective projection, or even nonlinear curves through the volume, effectively
warping the 3D data. In the discussion that follows, we will leave off this coordinate
transformation for simplicity (and without a loss of generality).

Another simple projection of 3D functions that is useful is, for instance, the
maximum intensity projection, which takes the maximum value of f(-) along the
rays associated with each pixel (along the z direction in this case),

f(u,v) =sup f(u,v, a). (6.25)

Fig. 6.3 3D functions or
volumes are often
transformed into 2D
functions by accumulating
data along rays that intersect
the volume and a viewing
plane (in blue)

e

Image Plane

Viewing rays
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The field of volume rendering [10] addresses various levels of complexity for
these kinds of projections. A typical formulation of the volume rendering equation
is (Fig.6.4):

fu,v) = / Gw,v,a, f(-), Df(),..., 0())da, (6.26)

1383

where the “-” notation indicates volume coordinates (u, v, o). The occlusion function
O(u, v, o) quantifies how much a point contributes to the rendering. It also is a line
integral (from the viewing plane to the 3D point) depending on the opacity of the
volume that lies between the point and the viewing plane. The range of G (-) is mostly
a 3D color space. The positional information, u, v, @, can also be used for view-
dependent lighting effects. The first derivatives of f, denoted Df, indicates the local
gradient vector, which provides normals, for lighting/shading, or edge enhancement
in volumes, which are characterized by high gradients. Many other parameters have
been considered in the function G(-), indicated by the ellipses (...), for instance
higher order derivatives of f () [25]. The mapping of values of f(-) and its derivatives
into colors and opacities is called a transfer function. The transfer function defines
which parts of the data will be visible in the final rendering and essentially contributes
to a good visualization result [32].

The integral in Eq. 6.26 describes many of the most basic options for high-quality
volume rendering. Research beyond this basic formulation has focused on fast meth-
ods for volume rendering, e.g., on specialized hardware [49] and more realistic
models and volume illumination. Early work focuses on methods for efficiently
approximating light transport by restricting the type and number of light sources,
e.g., the seminal method by Kniss et al. [26]. Deep shadow maps by Hadwiger
et al. [16] enable complex lighting models in interactive direct volume rendering

B

(c)

Fig. 6.4 Volume visualization of an electron microscopy data set of a feline calicivirus. a A slice
through the data sets shows the entire data range in the respective slice. b Volume rendering using
ray casting highlights selected scalar values in the data set. ¢ Transfer function used for the volume
rendering, overlaid with the data-histogram. The scalar values are mapped to the x-axis, and the
y-axis shows the transparency assigned to the scalar values. Visualization: Martin Falk, https://
inviwo.org
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(a) (b)

Fig. 6.5 Visualization of the blood flow in an aneurysm. a Vector-like glyphs represent the flow
on a vertical slice through the aneurysm. A texture shows the flow an a horizontal slice through the
aneurysm. b A selected set of streamlines illustrates the overall flow behavior. Visualization: Wito
Engelke

(DVR). Early approaches aiming at full global illumination include the work by
Hernell et al. [18]. More recently, volumetric illumination with multiple scattering
based on photon mapping and Monte Carlo ray tracing has been introduced [20].
For a fuller account of the development of illumination in DVR, see the survey by
Jonsson et al. [21].

For domains of higher-dimension, e.g., m = 4, the situation becomes even more
challenging. If the dimensions are space and time, as is often the case, then there
is a natural mapping into a dynamic visualization (e.g. a cine of a 3D rendering).
For other situations, visualizations often depend on application-dependent choices of
2-3 coordinates to render, with some interaction or dynamics to convey the behavior
across other coordinates.

For functions with higher-dimensional range k > 1, there are several approaches,
with some depending on the specific application. An example from imaging is color
images for which extensions for volume rendering exist [11]. Another special case
is that of vector fields, where commonly m = k € {2, 3}, and the domain and range
are the same space. Direct visualization using vector-like glyphs is often feasible.
However, such representations easily suffer from clutter or miss important details
of the data. An alternative strategy is to map the vector field onto a scalar quantity,
such as the magnitude (or length) of the vector or its orientation. Most commonly
used methods are integration-based. They represent a set of lines (e.g., streamlines)
following the vector field through the domain or generate textures conveying the
directional properties of the field [37]. Figure 6.5 shows some examples of basic
vector field visualizations. More advanced vector field visualization methods have
been motivated through the task of flow analysis with very domain-specific demands.
The analysis includes questions related to material transport and characteristic flow
structures, as vortices, which are often expressed by derived scalar fields which will
be discussed in the next section that discusses the features.

Another example is that of fensor fields, which often arise from physical pro-
cesses, such as diffusion [2] or mechanical deformations and stresses [29]. The
most direct visualization of tensors is displaying glyphs (e.g., [23, 28]) in selected
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Fig. 6.6 Basic visualization of a stress tensor field of a solid block with one pushing and one
pulling force. a Hybrid visualization: volume rendering of a derived scalar field, here an anisotropy
measure, a slice with a texture highlighting the principal stress directions and glyphs in a selected
region. b A slice showing glyphs (Reynolds glyphs) displaying the entire tensor information in
selected locations. Visualization: Jochen Jankoway, https://inviwo.org

positions. Glyphs represent the entire tensor information but are limited to low reso-
lution. Continuous visualization methods entail the extraction of scalar values from
the tensors, such as tensor magnitudes, eigenvalues, anisotropy, or orientations of
eigenvectors. Tensor lines following the main eigenvector direction or textures are
used [19] to emphasize the directional character of the tensors. Most commonly used
visualizations are hybrid methods combining glyphs with textures and volume ren-
dering of scalar fields [27]. Figure 6.6 shows an example of some basic tensor field
visualizations.

More advanced methods consider physically derived fields of tensors or vec-
tors, which often resemble derivatives in their mathematical structure and as such
are invariants (e.g., to coordinate transformations), of these objects are particularly
interesting, as described in the next section.

There is some work on more general, higher-dimensional transfer functions. These
would typically be defined with user input and require effective controls and inter-
faces, e.g., [35]. The other option is to perform dimensionality reduction on this data,
treating the collection of pixel positions in the range as instance data, and using some
of the techniques in Sect. 6.4 to find lower-dimensional proxies for the data in the
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Fig. 6.7 Isosurface rendering. a CT imaging of a human lung, isosurfaces for two different den-
sities emphasizing the vessel structure in the lung; b nested isosurface for a Fullerene molecule.
Visualization: Martin Falk, https://inviwo.org

range. One can also deal with such data by visualizing a lower-dimensional feature
extracted from the function, rather than the function directly; this is the topic of the
next section.

6.3 Extracting Features from Functions

Often, functions are best understood in terms of specific structural attributes, rather
than a description or depiction of the complete function. These special, or meaningful,
attributes of a function often consist of subsets of the domain and are referred to as
features. They can come in the form of points, curves, surfaces, or regions in the image
domain. They sometimes include attributes associated with the original function data.

Perhaps the most common or prevalent derived feature associated with the visu-
alization of functional data is isocontours (isosurfaces for 3D domains), also called
level sets. In 2D, these contours can help show qualitative features such as high and
low points (e.g., their locations and shapes), as well as ridges and valleys. In 3D,
these features form surfaces, which allow the use of 3D rendering tools associated
with graphics conventions and protocols to facilitate their display. Figure 6.7 shows
two examples of level set visualization.

Mathematically, the specification of level sets of functions is stated as a subset of
the domain that satisfies a constraint. In 3D, for the kth level set (or isosurface), we
have

S ={(x,y,2) € D|f(x,y,2) =k}, (6.27)
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which means that the isosurface is the set of points in the domain of f such that the
function evaluates to k at those points. Often, when discussing level sets of functions,
we consider for simplicity only the zero sets of a function, with the understanding
that the kth level set of f(-) is the zero level set of f'(-) = f(-) — k. Often, we
only consider functions that are considered generic, which means that the functions
have nonzero derivatives almost everywhere and that the level sets follow certain
structures. Level sets in any dimension have several important properties:

e Level sets are closed, except at the boundaries of the domain.

e If f is smooth and generic, level sets are smooth almost everywhere.

e Level sets of different values of k cannot cross and they are nested (enclose each
other) according to the values of k, Fig. 6.7b.

Figure 6.9 depicts the general structure of the level sets and the particular examples
of singularities for 2D domains.

This focuses on mathematical transformations, rather than specific numerical
algorithms, but here we mention that extraction and representation of level sets from
functions is itself an important consideration. The most common way to represent
level sets is to construct a mesh of simplicies, which are edges in 2D and triangles
in 3D. These discrete geometric objects are typically computed from a continuous
representation of f(-). There are several strategies. The most common approach is
to cover the domain of f(-) with a regular background grid (for instance, squares
or cubes) and to identify the cells where the level intersects the boundaries of those
cells. From those intersections, the algorithm typically infers some connectivity to
insert simplices within the cell that appropriately intersect the cell boundaries. For
instance, in 2D, the 2D grid lines intersect the 2D level sets at points, and line seg-
ments are used to connect those points within the cell according to a case table (as in
Fig.6.8). For 3D domains, the conversion of cubic or hexahedral intersections with
isosurfaces into small patches of a triangular mesh forms the underlying machinery
of the marching cubes algorithm [33].

Some other methods for identifying and representing level sets are: placing mesh
vertices in cells/cubes that are adjacent to level sets and deforming the resulting
mesh onto the level set [56]; placing systems of particles or points near level sets and
attracting them to the level set [38]; and finding level-set points and growing surface
representations outward from such points [30].

When one varies the value of k, the result is a family of level sets of f, parame-
terized by k. One can study or visualize the behavior of these sets as f continuously
varies. The sets can split, merge, disappear, or appear with different values of k.
These behaviors are well defined and these events, combined with the nesting struc-
ture of the levels sets, have led to a family of visualization algorithms that represent
functions as the family of nested level sets and the special events that occur when
these sets exhibit isolated, not smooth, behaviors such as merging or splitting, as
illustrated in Fig.6.9.

Beyond level sets of f(-), it is also helpful to consider the derivatives of f(-).
Here we use the notation D to represent the set of partial derivatives in vector/tensor
format, so that in 3D we have:
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(@)

Fig. 6.8 Marching cubes algorithm for contour and isosurface computation. a Height field of 2D
scalar field over one cell and its discrete approximation using lines. b Examples of two case for

the approximation of isosurface using triangular simplicies. ¢ Example of a mesh resulting from a
marching cubes computation

(a) (b) (©

Fig. 6.9 Level sets or isocontours of a 2D analytical data set. a Displayed as a height field over the
domain; b nested contours are shown in the domain; the red dots show the points where the gradient
is zero. In maxima and minima, the contours degenerate to points. In saddle points, contours merge
or split. ¢ The contour tree tracks the changes of the contours when changing the isovalue k
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The magnitude or norm of Df, denoted ||Df||, is a conventional measure of the
contrast a point in the image domain. It is sometimes used to filter level sets of f,

so that we can restrict the set to include only those locations in a region that have
sufficiently high contrast:
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L7 ={(x,y,2) € Z|f(x,y,z) =k and ||Df|| = T}. (6.29)

The derivatives of f also help to define the extrema or singularities of f, which are
the set of points:
& ={(x,y,2|Df(x,y,2) =0}, (6.30)

where the comparison with zero indicates that all partial derivatives are zero. This
operation can be used to produce a set of singularities that can be viewed as an
intersection of level sets. That is, the zero-crossing of each partial derivative produces
a level set (on a derivative), or isosurface, and the intersections of those isosurfaces
(there are 2 in 2D and 3 in 3D) consist of points that represent the singularities.

These extremal points come in several different forms, depending on the dimen-
sion of the domain. In 2D, there are minima, maxima, and saddle points. One can
categorize these by examining the eigenvalues of the matrix D?> f = DD f (atevery
point), which is also called the Hessian of f, see also Chap.5.

When considering or computing features on functions using derivatives, one must
keep in mind how these features transform under some basic operations. For instance,
the choice of axes for independent coordinates is often arbitrary (e.g., spatial coordi-
nates), and therefore one would expect the features not to depend on that choice. For
this reason, we often consider differential invariants, that is, features that commute
with the rigid transformations (rotation, translation). If we denote the transformation
as T : ® — N3, the invariant feature operator G would behave as follows (in 3D) :

gx,y,2)=Go f(x,y,2) < g(T(x,y,2))=Go f(T(x,y,2)). (6.31)

One can easily confirm, for instance, that the length of the gradient vector, ||Df]],
does not change with a change in coordinates. Likewise, singular points are also
invariant to rotations/translations of the domain.

Several other aspects of differential operators and invariants are important for
visualization. First, many features are developed to characterize local contrast or
variation in function values. This is true, for instance, of the gradient magnitude,
||Df |, which is typically considered a place of high contrast in f, also called edge.
Second, zero crossings of differential operators are often used to find points or fea-
tures in the domain that are extremal in some property of f.

For instance, the famous Canny edge [3] is defined, mostly simply, as the zero
crossings of the directional derivatives of || Df||?, in the particular direction of Df.
This gives the following condition for these extremal points (in 3D):

€ ={(x,y,2)g(x, y,2) = 0} where g = (Df)" D* f(Df), (6.32)

and thus we see that edges are zero level sets of a differential invariant. For robust
edges, one typically imposes addition criteria, such as a minimal value (threshold) of
||Df ]| and that the directional derivative of g be negative (for a maximum), although
this is rarely necessary when using a threshold.
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There are many such invariants and features that can be derived by either thresh-
olding them or finding zero crossings of their derivatives. Other examples include:

e Edges of various types by considering zero sets of second derivatives, as in the
Canny edge above, and alternatives such as D" Df = 0, as proposed by Marr and
Hildredth [36].

e Extremal points of level sets (local max/min of curvature) by considering level sets
of second derivatives of the gradient (third derivatives of f) along the direction(s)
perpendicular to the level set. Special care must be taken in 3D, where there is a
tangent plane to the level set.

e Ridges on f by considering extremal points of the eigenvalues of D? f in various
directions. There are various choices here, described extensively by Eberly [7].

Kindlmann [24] gives a compelling overview of this strategy along with various prac-
tical considerations. In particular, derivatives are prone to high-frequency artifacts
(amplify the magnitudes of small features) and can increase the effects of noise and
errors associated with approximations from a discrete grid. The solution to this is
usually some combination of smoothing and approximating functions with higher
order smoothness guarantees.

In considering these differential invariants, transformations and features on vector
fields are also important. For this discussion, we consider vector fields of the form
v : W = RN, and where the domain and the range are the same space (e.g., the
vector is expressed in the same coordinates as the domain). Often, in 2D this would
entail v(x, y) = v, (x, y), v,(x, y), and where the subscripts represent components
of v associated with those coordinate directions. This representation is important
because it means that the domain and range of v transform with the same operations
(e.g., rotations affect both the domain and range).

The magnitude of such a vector field, ||v]||, is an invariant. So too are singularities,
where v = 0 (once again, the crossing of level set curves/surfaces). Often, such
vector fields are the output of a physical simulation, and they represent a physical
quantity such as a fluid flow or a mechanical deformation. In these cases, the second
derivatives are also important, and they are characterized by the Jacobian matrix:

— T _ | ox
J=Dv = iﬁ (6.33)
dy ady

The Jacobian of a vector field bears a resemblance to the Hessian of a scalar
function—indeed, the Hessian is a special case. It is the Jacobian of the gradient
field of a function. While the Hessian is symmetric, Jacobians in general need not
be.

A typical strategy in computing features from the Jacobian is to compute invari-
ants of this matrix. For instance, the eigenvalues of the Jacobian, which might be
complex-valued, are invariant (to coordinate transformations) and of interest because
the real parts describe how the field is pushed in or away from a point, where the
imaginary part describes the rotation of the field (around a point). There has been
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a considerable amount of visualization work that has sought to identify singular-
ities in flow fields (where the flow is zero) and to characterize the rotations and
compressions/expansions around those points.

Generally, there is a mathematical system for computing invariants of the Jacobian.
Two invariants of particular interest are the trace of J, which is Tr(J) = Ji; + Jx
and is also the sum of the eigenvalues. The norm, which is Tr(JJ7) =Y, , J3. is
the sum of the squared magnitudes of the eigenvalues. The determinant of J, also the
product of eigenvalues, is also relevant to understanding the structure of the field.

In the context of displacement fields, we are often interested in the total amount
of deformation pointwise, which is captured in the symmetrized Jacobian

e==(J+J7), (6.34)

1
2
and the norms of ¢ produce scalars that summarize this deformation.

In the context flows, the vorticity of the vector field gives the rate rotation at each
point—i.e, how would in infinitesimal circle/sphere rotation if its surface followed
the flow. In two-dimensions, the vorticity is

v, v,
w, = 2 2 (6.35)
dy ax

and it has the convention of being a vector perpendicular to the plane (either inward-
or outward-facing, depending on the sign). In 3D, the vorticity is written as the curl
of the velocity

w=V XYV, (6.36)

and the vector is along the axis of rotation (with direction defined according to
the right-hand rule). In both the 2D and 3D cases, vorticity computation results in
another scalar or vector field, respectively. Scalar invariants such as magnitude or
the acceleration magnitude combined with extremal analysis or level sets produce
subsets that allow for the visualization of vortex structures in flows [22]. It is worth
noting that in many fluid applications the velocity fields are dynamic, and are func-
tions of space and time, e.g., v(x, y, t). In such cases, the analysis of vorticity and
other flow properties over time becomes important but is beyond the scope of this
discussion [15].

6.3.1 Integral Curves of Functional Data

In addition to transformations that rely on derivatives of functions, many transfor-
mations done for visualization rely on integrals of vector fields. Here we consider
v: R — N3, as above.
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Fig. 6.10 Topology guided uniform streamline placement. a 2D jet flow. b Surface blood flow of
an aneurysm. The background color represents wall shear stress. Visualization: Olufemi Rosanwo,
Amira

In analyzing or visualizing such flow fields, the integral lines of v. Thus, one can
define a streamline u, parameterized with s as:

a_u x v(u(s)) =0, (6.37)
as

which says that the tangents to the curve u(s) are parallel to the vector field. In
practice, these curves are usually computed via integration:

u(s) = /S v(u(a))da, (6.38)
0

where u(0) = uy is the starting point of the streamline. A typical streamline visu-
alization of a vector field consists of a rendering (in 2D or 3D) of a collection of
polylines or tubes that give the overall structure of the field, see Fig. 6.5b. The place-
ment of the initial points for these lines requires some care, so that streamlines are too
sparse or too cluttered, and this is an area of significant attention in the visualization
community [46], see Fig.6.10.

When considering dynamic vector fields (vector fields that are functions of time),
several more options for integrating curves arise. One option is to let s in the integral
above be ¢, the dynamic parameter of v(x, y, t), and let the vector field change with
t. This is called a pathline, and it is the equivalent of letting a particle loose in the
flow and rendering the path it travels. A second option is to simulate the path of a
continuous stream of particles placed into the flow at a point. This dynamic curve is
called a streakline.

A special kind of vector field is a gradient field, which arises when v is the gra-
dient of f, i.e., g = Df, where we use g to denote this special case. Under these
circumstances, the field is curl free by construction (and the vorticity of such a field
would always be zero). Because of this property, the integral curves of such a gra-
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dient field always connect singularities, where Df = 0 These singularities consist
of different types: minima, maxima, and saddle points. The status of a singularity is
determined by evaluating the eigenvalues of the Hessian. If we consider the eigen-

values in descending order, ki, ..., k,, for an m-dimensional domain, we have the
following:
ki...,k, > 0 minimum
ki...,kj >0, kjt1,...,ky <0 saddle (6.39)
ki...,k, <0 maximum

Notice that we do not normally consider cases where the eigenvalues are zero, because
these are not considered generic or regular points, and they show up with very low
probability (in theory). In practice, special care must be taken to avoid the numerical
problems associated with data sets that do not meet these criteria.

Virtually every point in the domain of a (generic, regular) function has a gradient.
The integral curve of the gradient field from that point terminates at a maximum. A
relatively few points will terminate at a saddle. From saddle points, one can trace
curves (in the directions of the eigenvectors of the Hessian) toward sets of maxima
(e.g., pairs in 2D). This same analysis extends to toward minima/saddle points if one
integrates the negative of the gradient field, —g. Note that a very similar concept can
be applied to general vector fields. Here, limit sets play the role of critical points. As
for the gradient field, there are locally defined limit sets. These are sources, sinks,
and saddle points. In addition, there are, however, also nonlocal limit sets. In 2D,
these are periodic orbits; in 3D, more complex configurations are possible [17].

Using these ideas, we can partition the domain of the image into regions that each
share the same minimum. The set of points in the domain whose integral curves of
—g lead to the same minimum is often called a watershed, because if the function
were treated as a topographical surface and water were to flow toward minima (due
to gravity), the water falling (e.g., in a rainstorm) on that region of the domain would
all flow toward the same location. This kind of watershed segmentation has shown
up extensively in the image processing literature (and software) for partitioning
images around edge-like features, such as the gradient magnitude, as in Fig.6.11.
In performing this kind of analysis, one must recognize that the number of minima
and/or maxima in a field of data (function) can be arbitrarily large, especially in
regions of the image where the gradients are small (nearly flat regions). To address
this, we typically filter this partitioning of the domain, and combine regions based on
the depth of the watershed, as in Fig. 6.11. Each watershed has along its boundaries a
sequence of maxima and saddle points. The difference between the function value at
the minimum and the saddle point of least value is the watershed depth. More recent
work has referred to this depth as the persistence of a watershed region, and which
shows stability under certain conditions [8]. Watersheds that are not deep (shallow)
are often combined with adjacent watersheds to form larger, deeper regions. This
can be done interactively by users, with an appropriate interface [5].

Several other aspects of this kind of topological analysis are important for visual-
ization. First, if one considers the ascending and descending integral curves (integrat-
ing negative and positive gradient fields), they (almost always) terminate at maxima
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and minima points, respectively. The sets of points that share maxima and minima
(terminations of descending and ascending gradient flows) also form a partitioning of
the domain, which is sometimes called the Morse—Smale complex and the individual
elements (region and min/max pair) are crystals. The boundaries of these regions
consist of ascending/descending integral curves (surfaces, or families of curves, in
3D) that pass through saddle points.

This strategy, of reducing a function to it singularities (minima, maxima, and
saddles) and connecting those singularities by either the Morse—Smale crystals or
the curves that connect saddles along the boundaries, has been proposed as a way of
visualizing the structure of complex or high-dimensional functions [31]. Much like
level sets and streamlines, this kind of analysis produces a discrete set of geometric

1

“Catchment Basin”

Fig. 6.11 Top: a watershed decomposition of a function tracks regions for which the integrals
of the gradient fields terminate in a common minimum (or maximum). Bottom-left: the gradient
magnitude of an anatomical image indicates boundaries of regions. Bottom-right: a partitioning of
the function (overlaid with white lines on the original color image) shows watershed regions
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Fig.6.12 Figures from Gerber et al. [ 12] show a rendering of a Morse—Smale (M-S) decomposition
of the high-dimensional parameter space associated with climate simulations, including selected
parameter values from the two M-S crystals

objects that are more easily rendered than the original function. Virtually any visu-
alization method that relies on this kind of topological analysis must include some
manner, as described above, of removing/combining shallow, small, or otherwise
insignificant regions.

An example of this kind of topological analysis is the work of Gerber et al. [12],
where they visualize high-dimensional scalar functions by rendering the function as a
graph, with extremal points as vertices, connected by edges, rendered as curves/tubes,
that represent the structure of the Morse—Smale crystals that connect those extrema.
See Fig.6.12. The method relies on embedding discrete sets of singularities into
lower-dimensional spaces (2D or 3D) as described later in this chapter.

Also important to these topological analysis methods are the methods that combine
the analysis of singularities with levels sets (or contours). If one considers the level
sets of a function at some value &, then the family of level-set curves or surfaces forms
patterns that adhere to certain rules. For k increasing and considering a contour to be
a curve with an interior defined with f(-) < k, we can track the behavior of contours:

A. Topologically separate contours form/begin at minima (of value k), as points and
then isolated, closed contours (curves or surfaces).

B. Contours join/merge at saddle points, and the new structures can achieve alter-
native/complex topologies (e.g., holes) as they merge.

C. Isolated holes in contours contract to points (and annihilate) at maxima.

This kind of analysis [9] forms a graph (sometimes referred to as the Reeb graph) that
facilitates the visualization of a function in terms of its associated Reeb graph [34],
as in Fig.6.13.
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Fig. 6.13 The structure of a 3D function is characterized by a volume rendering and a rendering
of the associated Reeb graph. Image courtesy of Vijay Natarajan and Harish Doraiswamy

6.4 Visualizing Instances by Dimensionality Reduction

A typical visualization problem is as follows. A data set consists of a number of
instances of structured data. In the following discussion, we also refer to an instance
as a data point. One would like to visualize these points to understand the following:

e Do the points group together or form clusters? If so, how distinct are these clusters,
how many are there, etc.?

e Are there trends or relationships among points and variables that could give qual-
itative or quantitative insights into the collection of data?

e Does the data conform to expectations of samples from known probability distri-
butions, such as normal distributions?

e Does the set contain instances that are unusual or very different from the other
instances? How different and how many are there?

If the data points are samples in a 2D (or even 3D) space, one can typically rely on
direct visualization via a scatterplot, where individual points are represented via the
positions of symbols or glyphs (e.g., dots, squares) on a 2D graph (or a 3D cloud
within a 3D or interactive display). Figure 6.14 shows examples of 2D scatterplots
that demonstrate some of the properties above.
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Fig. 6.14 Scatterplots show clustering, correlation, and nonlinear structure

Of course, as we consider the analysis of data points, we must be aware of the
opportunity and/or need for quantitative analyses. For instance, often when looking
for relationships among variables, one considers the correlations among variables
or the best-fitting linear model (e.g., fitting a line in the 2D case). Anscombe [1]
describes a quartet of examples where best-fitting lines for 2D data points can be
misleading, as a motivation for direct data visualization. This danger, of being poten-
tially misled (or at least underinformed) by a simple model, is a very general threat
to people using and analyzing data; it goes beyond linear models. For instance,
people will often consider the mean and (co)variance of a distribution, which often
misses important aspects of a data set (such as outliers, skew), and the whisker plot
(or box plot) is a common visualization tool for 1D points, using rank statistics,
that helps evaluate properties beyond mean and variance. In general, virtually any
parameterization or low-dimensional model of a set of instances risks missing some
important aspects of the data. Yet, for high-dimensional data, direct visualization is
often impossible. Thus, a complementary approach that combines visualization and
analysis is often required.

One of the most common methods for visualizing point sets (instances) of more
than 2 dimensions (and assuming a metric space) is to project the data onto a 2D sub-
space. The most widely used method for this is principal component analysis (PCA),
which is equivalent to finding the k-dimensional, linear subspace that minimizes the
projection distance onto subspace. The procedure, mathematically, is as follows: A
point set X is represented as a matrix

X111 X12 «-. Xin
X21 X22 ... X2

X=1 . . , (6.40)
Xml Xm2 + -+« Xmn

where x;; is the ith coordinate of the jth data point. The data is first centered, so that
the mean is zero. Thus, we have X = X — x, where x € %™ is the mean across the
data. That is
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R 1
x,-j:xi_,-—;Zx,-j. (641)
J

From the centered data, next compute the inner product, or correlation matrix
Cc=xx". (6.42)

The k-dimensional basis for the projection consists of the first k eigenvectors (ordered
by decreasing eigenvalue) of C, which we denote, E = ey, ..., e;. The lower-
dimensional coordinates for centered data points are the loadings of the data onto
this new basis:

A

Y =ETX. (6.43)

These coordinates can then be used for visualization, e.g., when k = 2.

The new coordinates, Y are in terms of the basis vectors, V, which form a k-
dimensional, hyperplane in :™. The hyperplane coordinates for the data are com-
puted as

X,=EE"X +7%, (6.44)

where X, is the projection of the data onto the best-fitting, k-dimensional hyperplane.

This kind of transformation, of finding a lower-dimensional space (and a smaller
set of coordinates) to represent a set of points etc. is sometimes called an embedding
of the data, because it assumes that the original D data is positioned on a kD
manifold (in this case, a hyperplane) that is embedded in the higher-dimensional
space. As we consider this process, it is important to keep several things in mind.
First is the accuracy of the representation. For PCA, the projection error of the
points onto the kD hyperplane is given by the root of the sum of squares of the
eigenvalues associated with the n — k smaller eigenvectors. To visualize the effects
of projection, we often use a scree plot, which shows the percentage of the total
variance captured in the first k eigenvalues, as shown in Fig.6.15. Also note that
PCA is the optimal choice of kD hyperplanes to model data since it minimizes this
projection error, or residual. Also worth noting is that in some cases the number of
samples is smaller than the dimensionality of the ambient space (i.e., m < n). In this
case, the better computational strategy is to work on the dual of the original problem,
which operates on the linear subspace defined by the data points. For this, we conduct
the eigenanalysis on the matrix C' == XXT, which has the same eigenstructure, E’,
as C, defined in (Eq. 6.42). The basis is obtained by multiplication with the data itself:

E=XA:E, (6.45)
where Lamda is the diagonal matrix of eigenvalues. In cases where m and n are

both very large, the construction of the associated (large) covariance matrix can
be prohibitive. In these cases, the largest eigenvectors/values can be found through
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Fig. 6.15 a A scree plot of MNIST handwritten digit data depicting percentage of variance
explained by PCA modes. b A 2D embedding/layout using PCA loadings (units are arbitrary).
¢ A 2D embedding using t-SNE

iterative methods, such as power methods, that do not require explicit construction
or decomposition of the matrix (e.g., the power method).

Notice that the dual formulation of the PCA problem relies on the analysis of
the n x n, inner product matrix (also called a Gramm matrix). This opens up the
possibility of embedding data points that may not be given in a conventional, metric
space, but for which there exists only an inner product (or similarity) operator. This
situation arises, for instance, when using the kernel method for analysis of data.

An alternative method for formulating the embedding of data points into low-
dimensional spaces is via the matrix of distances between all pairs of data points,
which we denote as D, with elements d;;. The goal is to find parameters Y € %* so
that the distances between points in 9i¥ match, as closely as possible, those given in
D. This problem is sometimes called multi-dimensional scaling (MDS), and MDS
is often used to refer to the family of methods that try to find such coordinates, Y.
The classic approach to MDS (indeed, called cMDS) is an algorithm that centers the
matrix D and then computes the eigenvectors, as in PCA. The algorithm is:

A. Construct the squared distance matrix, D®, where d.(jz) =d}.

3
B. Center and negate the squared distance matrix:

1 1
B = —EJD(Z)J where J =1 — —117 (6.46)
n

and 1 is a vector with values of 1 and length n.
C. The coordinates are Y = Ej A,{mcn.

Note that cMDS minimizes the normalized strain of the embedding in the case where
the original distances are from a Euclidean space (e.g. X € ). However, this same
algorithm is used in many other settings for visualizing data, e.g., k = 2, 3, with
useful results.

There are many other approaches to MDS, but one that it also very widely used is
to directly minimize the stress associated with the embedding. The stress is typically
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Stressp(Y) = | D (dij — Ilyi — y;ID* | (6.47)

ij

where y;, the ith column of Y, are the new, embedded coordinates for the ith
data point. This function is bounded by an approximation that is quadratic in the
unknowns, and minimization is solved efficiently using the iterative SMACOF algo-
rithm.

There is a deep relationship between (squared) distance matrices and the matrix of
inner products, also called the Gramian matrix, which is used in the dual formulation
of PCA. Under certain conditions (e.g., distances/products in Euclidean space) one
can be derived from the other. For embedding points for the purposes of visualization,
these two types of matrices are used in a similar manner; their eigenvectors are used
to construct coordinates in a new, lower-dimensional space. Thus, for many visual-
ization applications, practitioners will use either distance or inner product matrices,
depending on what is available and appropriate for the original data.

The ability to compute low-dimensional coordinates using only distances (or
similarities, inner products) gives rise to some important technologies for visualizing
collections of points, even if these data points do not have well-defined coordinates
in some metric space. Here we give several examples of how this is useful.

When modeling high-dimensional data, it is sometimes useful to treat the data
as existing on a lower-dimensional, curved (or nonlinear) surface, or manifold.
The so-called manifold learning problem has received a great deal of attention
in machine learning and statistics, but has become less important in recent years
because of advances in machine learning technologies that can learn directly on
complex, high-dimensional data sets. However, for visualization, manifold learning
is still a useful dimensionality reduction method. A relatively easy to use for discov-
ering manifold coordinates is the method of isomap [51]. The isomap algorithm is
designed to construct an approximate distance matrix that captures distances within
the manifold, which is embedded in a high-dimensional, mD, space. The isomap
algorithm works as follows:

A. Compute the distance matrix D for the original data.

B. Determine the K nearest neighbors (kNN) for each point (K is a free parameter),
and construct the KNN graph with edge lengths being distance.

C. Compute the distance between each pair of points on the KNN graph (e.g., using
breadth-first search), and construct a new distance matrix D’.

D. Determine new coordinates from MDS (any method) on D’.

This algorithm has been shown, in some cases, to learn the manifold structure from
very curved or convoluted manifolds in high-dimensions. The main challenge with
the isomap algorithm is the selection of the number of nearest neighbors K, because
this determines which jumps on the NN graph will be considered within the manifold.
If K istoo small, the graph becomes disconnected (and the eigenstructure of D’ shows
this), and if K is too large (in the limit), the method produces results that resemble
MDS on the original distances.
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An alternative to preserving distances between points is to pose the embedding
problem as preserving data density, which is the strategy of the f-sne embedding
method [54]. Local probability densities are computed with nonparametric density
estimation, and the target coordinates Y are constructed so that every point has a
similar nearby density of points. The method is widely used and generally effective,
but has the effect of preserving or enhancing clusters in the data (which have higher
data density).

Another case in which MDS-like methods are useful is when the data points have
intrinsically no coordinates, but where distances or similarities are readily available.
This comes often in the context of graph layout. The edges of a graph often have
weights that are associated with either dissimilarity (approximate distance) or sim-
ilarity (inner products). This happens, for instance, when vertices have associated
signals, such as voting patterns for politicians, weather patterns for cities or stations,
or, in biology, interactions between genes, molecules, or organisms. In these cases,
it is sometimes helpful to embed the graph vertices in 2D as part of the visualization.
As above, the affinities/similarities or distances are part of the computation of 2D
coordinates for the vertices. Stress minimization, as above, is often the method of
choice, in part because it can be combined with other criteria. The problem of graph
layout is widely studied, and effective solutions often address concerns in addition
to distance, such as edge crossings, and edge/vertex density.

6.5 Data Summaries

In many cases, we are presented with a collection of instances, where each individ-
ual instance may be a data point or some more complex object, such as function,
unstructured document/record, or a graph. Organizing these data as points or icons
in a 2D display, as in the previous section, can often be helpful, it is sometimes effec-
tive to summarize the overall structure and relationships of these instances. This
section describes some methods of summarizing collections of instances. Here we
assume that the data is homogeneous and structured, and we leave the discussion of
more complex data types for the next section. Of course, the choices we make in
summarizing data depend on the kinds of questions we are trying to answer and the
applications we have in mind. Here we give some examples of the most widely used
strategies.

A typical problem in visualization of instances or points sets is to understand the
relationships among samples and if the data naturally form groups or clusters (and
the nature of those clusters). The notion of clustering is a longstanding problem in
pattern recognition and data analysis, and there are a wide variety of approaches.
Typically, data is said to consist of clusters if there are two or more subsets of the
data for which the point-to-point distances are smaller than the distances to nearby
groups.

A typical formulation of the clustering problem is as follows. Inter- and intragroup
distances are quantified (e.g., as sums over distances between point pairs), giving
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rise to an objective (or energy) function that can be optimized. Because the energy
involves assignments to groups, it is combinatoric and nonconvex, and thus it is
often solved iteratively. A widely used and generally effective clustering algorithm
for points in a metric space (distances can be computed) is K-means, which is the
following algorithm, for input data X = {x;, ..., xg} € &, where Z is the domain
of the data points:

A. The user decides on the number of clusters K, and the cluster centers Cy, ..., Cg
€ 2 are initialized (usually at random).

B. Each data point is assigned to the nearest cluster center.

C. The cluster centers are updated and assigned to the average of the data points to
which they are assigned.

D. If the update is sufficiently small, terminate, otherwise, go to step B.

The output is the positions of the cluster centers and their assigned data points.

This kind of clustering or grouping of data points can impact visualization in
several ways. In some cases, it is useful to visualize the clusters themselves. Thus,
the clusters would be embedded (e.g., using MDS, as above) in 2D, and each cluster
would be represented with a mark or glyph, which might also encode information
about the cluster, such as its number of elements, extent/variability, or center ele-
ment. Another use for clusters is to modify the glyphs in a visualization of a 2D
embedding/projection, which can help identify differences in data along dimensions
that are not well captured in the embedding. Finally, some embedding algorithms are
designed to preserve information about clusters in the data, where the separation of
clusters (detected as a preprocessing step) is a criterion that is built into the objective
function that is optimized for the embedding. The general strategy of clustering data
is useful in other contexts, where collapsing or summarizing groups of instances aids
in interpretation. For instance, clustering of edges in large graphs has been used for
edge bundling, to reduce complexity in graph visualization [6].

The problem of clustering data points has also been examined from a very different
point of view—using hierarchies of graphs. We consider the e-graph of a data set
as consisting of a vertex for each data point and edges connecting every vertex pair
x;, x; if and only if d;; < e. Then we can consider the connected components of that
graph to be individual clusters. This is sometimes called single-linkage clustering and
it is known to be unstable when one makes small perturbations to the data points.
However, if one considers the hierarchy of clusters as a function of ¢, as in the
dendritic tree, this can provide information about the texture/structure of the point
set. Also, clusters that are stable or persistent through a wider range of ¢ values might
be considered more important (e.g., more robust to perturbations in data), sharing the
same mathematical underpinnings as the watershed depth, described in the previous
section.

This kind of basic, distance-based, cluster analysis is the simplest example of a
very rich set of methods in computational topology called persistent homology [4, 8].
Here we give only a high-level view of the methodology. First, one extends the notion
of the e-graph, as above, to include a filtration (nested sequence) of simplices, which
are not only vertices and edges, but also triangles, tetrahedra, etc. There are several
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approaches for constructing those filtrations of simplices. One can then compute,
in a very precisely defined manner, topological summaries, including not only the
number of connected components, but also tunnels (holes in one-dimension, loops in
higher-dimensions), and cavities (2D holes, hollow regions enclosed by a surface).
We can also track changes in these summaries (or the corresponding feature, such as
a hole) as ¢ increases. These summaries are sometimes visualized as a collection of
stacked horizontal line segments (or bars), where the ends of each bar correspond to
the appearance (or birth) and disappearance (or death) of the associated feature, as a
function of ¢.

6.5.1 Statistical Summaries

In visualizing sets of instances of data, it is sometimes difficult to make sense of
the raw data, especially if the individual data points have an inherently complex
structure or if there are especially many of them. In many cases, one would like to
get a high-level or big picture view of the data. This kind of visual analysis is often
for quality control or to inform some other type of quantitative analysis. For this
reason, it is often useful to construct statistical summaries of data and to visualize
those summaries either instead of or in addition to the raw data.

A typical summarization strategy is to compute the mean an variance of a data set.
For instance, if we consider functions f(x), f2(X), ..., f,(X), with 1-2-3D domains,
there is a sample mean f (x) = (1/n) Y, fi(x) and an associated covariance. Here
we avoid a discussion of the technical issues associated with variance in functions
spaces, and instead assume that f; has a finite-dimensional representation (e.g., values
evaluated on a regular grid, as with an image or volume), and each instance is repre-
sented as a vector of length n. The covariance structure can be very high-dimensional
(n x n matrix), and difficult to visualize, so simplifications or approximations are
common. The most common simplification is to compute the variance of f point-
wise over the ensemble for every x in the domain. This is equivalent to considering
only the diagonal of the covariance matrix, and it ignores the correlations between
points. Figure 6.16 shows this mean and pointwise covariance for a data set from a
fluid simulation. Alternatively, one can visualize the eigenvectors of the full covari-
ance matrix (typically, one would use the dual method described in section about
dimension reduction) and visualize the eigenvectors of the covariance.

With functions, one is often interested in features, and how those features behave
within a set or ensembles of functions. As in Sect.5.4, many interesting features
can be represented as zero-crossing of the function itself or fields of data derived
from that function and its derivatives. Several researchers have proposed to extend
the computation of level sets to the probabilistic setting. The problem can be stated
as computing the probability of a level set passing through or between a set of grid
points (or pixels), given a stochastic model of nearby function values. This is the
strategy behind probabilistic marching cubes and several variants [42].

The strategy of computing the mean and (co)variance to summarize data has lim-
itations, in that it reduces the ensemble of (possibly) complex data sets to a relatively
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(b)

(c) (d)

Fig. 6.16 Analysis of a set of pressure data from a fluid simulation, with flow left to right across a
circular obstacle. a One example of a pressure field from this simulation (purple-low, green-high).
b The mean pressure field from an ensemble of 300 samples. ¢ The pointwise variance (heat map).
d The first eigenvector of the covariance matrix

small number of values, and these summaries are sensitive to data outliers, and, as in
the case of point-wise variances, ignore global relationships (e.g., correlations) in the
high-dimensional data. Indeed, these are often the very things that we are attempt-
ing to detect or understand as we visualize such ensembles. Thus, nonparametric is
descriptive approaches to summarizing data are also important.

The descriptive approach to summarizing data is well motivated by one of the
most widely used of all visualization tools—the box or whisker plot, proposed by
Tukey [53] and shown in Fig.6.17. The whisker plot typically shows a summary of
rank statistics of a set of 1D data points, with bars or icons to indicate the median
(and often the mean as well), various percentile ranks (e.g., 25 and 75%), and out-
liers. These rank statistics are computed from an ordering of the data along a single
axis. The extension of this kind of visualization to more complex data requires two
developments. The first development is the generalization of rank statistics to multi-
dimensional and nonmetric data. For this, several researchers have proposed the use
of data depth, which is a tool from descriptive statistics that constructs a center out-
ward ordering of a collection of data points. In such a scheme, the median of a data
sent would typically be the deepest among the given ensemble. There are several
methods for computing the depth of a data point within an ensemble, but a useful
strategy is the method of band depth, where the depth of a data point is computed as
the probability that it lies between a small, random selection of the data. The notion
of between must be defined for each data type, depending on the application, and the
probability of lying within a band formed by a random set of samples is computed
with a Monte Carlo approach, which is a sample average is computing by choosing
small subsets from the given data.

The data depth approach is developed for functions, where the band is formed
by the min/max values at each point in the domain for a small set of j functions
(chosen at random) [41]. Given a set of functions, one can compute the median and
the min/max extent of the functions within a certain rank of the data (e.g., 50%). Sun
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Fig. 6.17 Left: an ensemble of functions have some common structure and show significant vari-
ability. Right: a functional box plot, as proposed by [50]

Fig. 6.18 Left: contour box plots of isocontours of pressure in an ensemble of fluid simulations.
Right: 3D contour box plots from an ensemble of registered brain images

and Genton [50] use function band depth to construct function box plots, which are
the natural extension of whisker plots to functions, as in Fig.6.17.

For points in N", band depth is the probability that a given point lies in the
simplex or convex hull of K > n randomly chosen points. For large n, the availability
of sufficiently many K-sized subset is often prohibitive, and alternatives, such as
half-space depth [52] and spatial depth [48], become desirable. For points in %2, a
depiction of the 50% band and an inflated version of that, with outliers marked, is
called bagplot.

Several researchers have proposed extensions of data depth and associated visu-
alizations, extensions to box plots, to more complex data types. The method applies
to 2D, scalar functions [50], as well as curves in 2D and 3D. Whitaker et al. [57]
have extended data depth to sets and show box plots for level sets (contours) in 2D
and 3D [44]. Figure 6.18 shows some examples of 2D and 3D box plots for differ-
ent objects. Raj and Whitaker have extended data depth to vertices and paths on
graphs [45].
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() (b)

Fig. 6.19 2D layouts of the MNIST “0” digit data. a Layout using an MSD embedding. b Layout
with depth-aware embedding that organizes by depth with contours/colors that show relative depth
of samples

In dimensionality reduction, the projection of data into lower-dimensions often
obscures the relative depth of a data point, and thus outliers can be misrepresented
as being central to the dataset. Raj and Whitaker [43] have proposed dimensionality
reduction techniques that preserve data depth, in addition to distance (or density), as
in Fig.6.19.

6.6 Transformations on Unstructured and Discrete Data

Virtually all of the methods in the previous sections of this chapter rely on quanti-
tative relationships between samples or points in the range or domain of a function.
However, many data sets come in forms that are not well suited to the quantification
of distances, similarities, or coordinates. A very common example is a corpus of
text documents, as one may have from a collection of news articles or emails. Each
instance, in this example, is a document consisting of words, spaces, and punctuation
(we will ignore emojis for this discussion :-)). One might like to visualize the corpus
of documents and understand how they relate to each other. Typically one might
like to know if there trends over time, if they form clusters, if there are outliers, etc.
These kinds of questions might benefit from a scatterplot visualization, a clustering,
or topological analysis. However, these methods will require distances or coordi-
nates for each sample (each document in this case). This chapter discusses some of
the methods by which unstructured data, such as a text document, are encoded for
subsequent analysis or visualization.
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6.6.1 Organizing Data in Bags

A text document consists of a collection of words in a particular order. The actual
words used and the order in which they appear give the document its meaning. How-
ever, practitioners of natural language processing have noticed that some information
about a document can be discerned from the types of words that are used, and their
frequency, while ignoring the ordering of the words, the sentences, grammar, etc.,
in the document. This leads to a way giving coordinates to a document—we sim-
ply count the number of times each word occurs in a document and the resulting
histogram becomes a quantitative descriptor of the document, which induces a dis-
tance and/or inner product computation with other documents. Of course, there are a
great many words in any particular language, and typically the word count strategy
ignores very common words that are present in large numbers in all documents, such
as articles, conjunctions, and prepositions. Through histograms of meaningful words,
documents can be clustered or embedded in kD spaces for analysis and visualization.
Because of the large number of words (bins in the histogram), this analysis is often
combined with PCA to produce a smaller set of descriptors, which make subsequent
computation more tractable. Figure 6.20 shows an example of an embedding of a cor-
pus of news articles by word counts. Notice that this kind of analysis can generally
give information about the general fopic of a document, but it loses the meaning of
the document, because to discern meaning one must typically examine the semantics
of individual sentences.

This general strategy for documents is referred to as a bag of words because it treats
each document as a container (bag) for words that ignores the ordering of words, as
well as the construction of phrases and sentences. This bag strategy has been used in
a variety of contexts to deal with large sets of unstructured instances. For instance,
in images, local features (measured through some time of detector and descriptor,
such as corners or textures) are counted, and their location ignored, to determine
the environment of an image or to quantify the similarity/difference between images
in a large collection. Graphs are often unstructured and difficult to compare, but
one can construct a fingerprint of a graph by quantifying different types of local
neighborhood structures around vertices. Researchers have compared histograms of
valences of vertices, numbers of cliques of different sizes, or, if the vertices have
labels, categories of vertices based on their neighborhood structure [40].

If we consider a text document as a string of tokens (words), then the bag approach
has been modified for many variations. For instance, besides documents, one might
also need to quantify or give coordinates to words (this also helps in documents).
In deciding if two words are similar, we can quantify how often they occur with
or are near other words. In this way, cooccurrence (defined at some scale—phrase,
sentence, document) becomes a signature for comparing words. This strategy has
been incorporated into various neural net approaches, as described in subsequent
sections.
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Fig.6.20 A visualization of a corpus of articles from [14] are organized in 2D based on associations
with (probabilities) topics, which are derived from vectors of word counts, i.e., bag of words analysis

6.6.2 [Edit Distance

Another common way of quantifying distances/similarities between unstructured or
complex data types is to consider the cost of converting one instance to another. This
is often done by describing a set of atomic editing operations on the data object and
assigning a cost to each type of edit. For instance, in comparing the lexicographic
words (ignoring their semantics), we could assign a cost to changing a letter in a
word, as well as adding or deleting letters. Thus, to convert the word “Sunday”
to “Saturday”, we notice that first characters are the same, as are the last three. To
convert the middle “un” to “atur”, we might replace “n” with “r”, and then insert a “t”
and an “a”. The precise edit sequence would depend on the cost of each operation,
but the edit distance is typically the cost of the least expensive edit that converts
one object to another. This edit distance is used extensively in genetics to compare
genetic sequences (which are, essentially, strings). If the cost structure is properly
constructed, this edit distance is computed efficiently using Dykstra’s algorithm.
Another example of edit distance is in the analysis of graphs. Unaligned graphs
are graphs where the vertices are not uniquely identified from one graph to another.
Graphs with different types of nodes can be compared by removing, introducing,
or changing the labels on nodes, and by allowing similar edits on edges. This kind
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of edit distance can then be used to cluster ensembles of graphs or embed them in
lower-dimensional spaces, or visualize their evolution in time. Graph edit distance
is computationally challenging; it is NP-hard in general. However, special cases of
graphs (e.g., acyclic) are compared more tractably, and approximate solutions are
often quite effective.

6.6.3 Kernel Methods

A very useful tool in data analysis is to construct a similarity measure between pairs of
instances for a particular data type and then rely on the kernel method or kernel trick
to conduct analysis in the space induced by this similarity measure. Mercer’s theo-
rem states that for any kernel, k(x;, x;), operating on pairs of data points/instances
that it is guaranteed to produce a positive-definite inner product matrix, there is a
corresponding Euclidean space for which this kernel is the Euclidean inner product
(dot product). This technique allows one to define inner products to create high-
dimensional spaces for which there might not be an explicit representation.

If the data points in the analysis have an associated metric space, then monotoni-
cally decreasing functions of point-to-point distance from a Mercer kernel. Indeed,
a widely used kernel is the Gaussian function of distance:

_ 2
k(x1, x2) = exp (—%) , (6.48)

where o is a free parameter that must be tuned to a specific application. The Euclidean
space associated with this kernel is not finite-dimensional, and has no explicit set
of coordinates. All operations in the kernel space are represented in terms of inner
products with the given data ensemble. However, this lifting of the data into the
kernel space provides opportunities for

A variety of methods have been adapted for kernel spaces, including PCA (called
kernel PCA [47]), clustering (also spectral clustering), regression, and classification
(e.g., support vector machines). Kernels or inner products can be defined using bag-
of-words strategies (kernel is typically a function of the product of the histograms),
or some other distance measures on structured or unstructured data. The lifting of
data into the kernel space has the advantages of (i) analysis operations without an
explicit distance measure and (ii) moving the data into spaces where simpler models
(e.g., linear) for regression, clustering, and classification are often more effective.
Likewise, this kind of separation of data in the kernel space can aid in visualizing
trends or clusters.
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Fig. 6.21 a A neural network is a sequence of layers consisting of individual elements (neurons)
that linearly combine outputs of the previous layer and perform a nonlinear activation (e.g., smooth
threshold). b The skip-gram architecture for assigning words to vectors develops a feature vector
that is effective at predicting the context of a given word—i.e., the probability of nearby words

6.6.4 Neural Networks

Recently, technology in the training and application of artificial neural networks
has provided new opportunities for transforming data and embedding data sets into
spaces that are well suited for analysis and visualization. There are a great many
introductions or tutorials on neural networks, and here we assume that the reader is
familiar with the basic technology, which we review briefly.

A neural network (NN) is a set of processing units, each of which performs a linear
combination (weighted sum) of inputs and produces an output, which is a nonlinear
function of that weighted sum:

y=¢ Y wix; ], (6.49)
J

where x; is a vector of inputs and w; are the weights associated with the inputs to this
particular neuron. The nonlinear activation function, ¢ : R — N, is typically some
kind of soft threshold. These individual elements are arranged in layers (where the
elements of a layer share the same inputs, x;), and the network transforms data by
passing it through a sequence of layers, as in Fig. 6.21.

Most NN are trained in a supervised manner, and the weights are modified incre-
mentally so that the outputs of the network approximate the training data for any
particular input. The training of NNs has an associated, and very extensive, set of
methods, research, and theory.
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The conventional wisdom is that the layers of a neural network perform a sequence
of transformations on the input data, making the data progressively better suited to
the task of the final layer, which must produce the desired output from a linear
combination of input data. Thus, the network in its intermediate layers is succes-
sively transforming the data into spaces that are well suited to the task, and thus
the intermediate layers represent transformations of the data that can aid in analysis
and visualization. Besides the architecture and training of the network, the important
issues for embedding are how to encode the inputs and outputs and how to define
the supervised problem. Here we give an example that demonstrates the principles.

A classic problem in the analysis of text and documents is the vectorization of
words, which is the assignment of each word to a coordinate in a space where
distances reflect the similarities between the meaning and usage of words. Recent
work in neural networks has addressed this problem by constructing and training NNs
that learn associations between words in sentences. There are several versions of this
architecture and here we give the skip-gram version of the method. The strategy,
depicted in Fig.6.21, is to train the network to predict nearby words in a sentence
from a single word input. Words are typically coded as binary or hot vectors (17
indicates the presence of the word), and thus the size of the network is proportional
to the size of the vocabulary. The output is a vector (again the size of the vocabulary),
where the signal indicates the probability that a given word appears within a window
of nearby words (5-10 nearby words, typically). The hidden layer is constructed
to be 100-1000 units and the output of the hidden layer (a vector) is used as the
embedding for subsequent processing.

This example demonstrates the general strategy for using NNs to construct trans-
formations. First, one must encode the input in a general manner that has the appro-
priate symmetries. Categorical data, for instance, is often best encoded with binary
vectors, which also allows for sets or bags of examples. Second, the network must
be constructed with a hidden layer appropriate for output into some other part of the
visualization or analysis pipeline. This is sometimes called a latent representation.
Third, the NN must be trained with a task that is appropriate for the transformations.
In the word2vec method, the task is the prediction of context words (nearby words in
sentences), which captures the meaning and usage of words (indeed, the ability of one
word to replace another in a context), which has been shown to capture similarities
between words.
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