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Preface

When the American scientist John S. Dexter discovered mutant fruit flies 
(Drosophila melanogaster) in his research laboratory at Olivet College (Olivet, 
Michigan) more than a century ago, he could not have expected the tremendous 
impact that the characteristic notch-wing phenotype (a nick or notch in the wingtip 
that gave the responsible gene the name Notch) would later have for many fields of 
biology and medicine, including embryology, genetics, and cancer. During the last 
decades, a huge mountain of impressive scientific process has convincingly dem-
onstrated that Notch signaling represents one of the most fascinating pathways that 
govern cellular core processes including cell fate decisions, embryogenesis, and 
adult tissue homeostasis. Therefore, it is no surprise that the first edition of the 
book Notch Signaling in Embryology and Cancer, published by Landes and 
Springer in 2012 in the prestigious series Advances in Experimental Medicine and 
Biology, was very successful, for it fulfilled the need to provide a broad audience 
(ranging from medical students to basic scientists, physicians, and all other health-
care professionals) with up-to-date information in a comprehensive, highly read-
able format. At this time, it was the benchmark on this topic, with individual 
chapters being written by highly respected experts in the field. Because of the 
enormous progress that has been made on this topic in recent years, we have 
decided that it is now the right time to publish an updated and extended version. 
The second edition of the abovementioned book has been expanded substantially 
and consequently has been divided in three separate volumes to include many new 
chapters. In its different volumes, leading experts in the field present a comprehen-
sive, highly readable overview on selected aspects of three important topics related 
to Notch signaling, namely, the underlying molecular mechanisms that mediate its 
biological effects (Volume I), its role in embryogenesis (Volume II), and last but 
not least its relevance for pathogenesis, progression, prevention, and therapy of 
cancer (Volume III). This second volume summarizes the fascinating role of this 
pathway, which was first developed during the evolution in metazoans and was first 
discovered in the fruit fly Drosophila melanogaster, for embryology. We are con-
vinced that it will be as successful as the previous edition and are very grateful for 
the willingness of all authors to contribute to this book. We would also like to 
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express our thanks to Murugesan Tamilselvan, Anthony Dunlap, Larissa Albright, 
and all other members of the Springer staff for their expertise, diligence, and 
patience in helping us complete this book.

Enjoy the reading!

Homburg, Saarland, Germany� Jörg Reichrath 
Sandra Reichrath

�

Preface
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Chapter 1
Notch Signaling and Tissue Patterning 
in Embryology: An Introduction

Jörg Reichrath and Sandra Reichrath

Abstract  The attention of science first turned to the gene that later earned the name 
Notch over a century ago, when the American scientist John S. Dexter discovered in 
his laboratory at Olivet College the characteristic notched-wing phenotype (a nick 
or notch in the wingtip) in mutant fruit flies Drosophila melanogaster. At present, it 
is generally accepted that the Notch pathway governs tissue patterning and many 
key cell fate decisions and other core processes during embryonic development and 
in adult tissues. Not surprisingly, a broad variety of independent inherited diseases 
(including CADASIL, Alagille, Adams-Oliver, and Hajdu-Cheney syndromes) have 
now convincingly been linked to defective Notch signaling. In the second edition of 
the book entitled Notch Signaling in Embryology and Cancer, leading researchers 
provide a comprehensive, highly readable overview on molecular mechanisms of 
Notch signaling (Volume I), and notch’s roles in embryology (Vol. II) and cancer 
(Vol. III). In these introductory pages of Vol. II, we give a short overview on its 
individual chapters, which are intended to provide both basic scientists and clini-
cians who seek today’s clearest understanding of the broad role of Notch signaling 
in embryology with an authoritative day-to-day source.

Keywords  Notch · Notch signaling · Notch pathway · Embryonic development · 
Jagged · Delta-like ligand · Cell fate decisions · Tissue patterning

It is now generally accepted that, from sponges, roundworms, Drosophila melano-
gaster, and mice to humans, the Notch pathway governs tissue patterning and many 
key cell fate decisions and other core processes during embryonic development and 
in adult tissues (Andersson et al. 2011). When the first edition of Notch Signaling 
in Embryology and Cancer was published by Landes and Springer in 2012 in the 
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prestigious series Advances in Experimental Medicine and Biology, it was the 
benchmark on this topic, providing a broad audience (ranging from medical stu-
dents to basic scientists, physicians, and all other health-care professionals) with 
up-to-date information in a comprehensive, highly readable format. As the result of 
the huge mountain of new scientific findings that has been build up in the meantime, 
which underlines the high biological/clinical relevance of Notch signaling and fur-
ther unravels their underlying molecular mechanisms, we have decided that it is 
now the right time to publish an updated and extended version. The second edition 
of this book has been expanded substantially and has been divided in three separate 
volumes to include many new chapters. In the different volumes of this book, lead-
ing researchers provide a comprehensive, highly readable overview on three impor-
tant topics related to Notch signaling, namely, the underlying molecular mechanisms 
that mediate its biological effects (volume I), its role in embryonic development 
(volume II), and finally its relevance for pathogenesis, progression, prevention, and 
therapy of cancer (volume III). This second volume summarizes the role of the 
Notch pathway, which first developed during evolution in metazoans (Gazave et al. 
2009; Richards and Degnan 2009) and that was first discovered in a fruit fly 
(Drosophila melanogaster), for tissue patterning and embryonic development. 
As outlined elsewhere in this book (Reichrath and Reichrath 2020a), the tale that 
created the name Notch began over a century ago, when the American scientist John 
S. Dexter discovered in his laboratory at Olivet College (Olivet, Michigan, USA) 
the characteristic notched-wing phenotype (a nick or notch in the wingtip) in mutant 
fruit flies Drosophila melanogaster (Dexter 1914). The alleles causing this pheno-
type were identified 3 years later at Columbia University (New York City, New York, 
USA) by another American scientist, Thomas Hunt Morgan (1866–1945) (Morgan 
1917), who discovered various mutant loci in the chromosomes of these fruit flies 
that were associated with several distinct notched-wing phenotypes. Although the 
majority of them were lethal, these alleles were associated with the characteristic 
phenotype (a nick in the wingtip and bristle phenotype specifically in female fruit 
flies), suggesting an association of these alleles with the X chromosome (Morgan 
1928). Notably, this discovery and similar investigations that supported the chromo-
somal theory of inheritance earned Thomas Hunt Morgan in 1933 the Nobel Prize 
in physiology/medicine. In subsequent decades, despite the extensive research on 
the Notch locus, researchers struggled to identify the function for the Notch gene 
due to the lethality early in embryogenesis and the broad variety of phenotypic con-
sequences of Notch mutants. In the following years, many additional alleles were 
identified, which were associated with the Notch phenotype. These observations 
were finally confirmed by cloning and sequencing of the mutant Notch locus in the 
laboratories of Spyros Artavanis-Tsakonas and Michael W. Young, more than half a 
century later (Wharton et al. 1985; Kidd et al. 1986).

Moreover, a broad variety of independent inherited diseases linked to defective 
Notch signaling has now been identified, highlighting its clinical relevance. The 
discovery of these congenital diseases started in 1996 in patients diagnosed with 
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy, an autosomal dominant hereditary stroke disorder resulting in 
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vascular dementia) (Joutel et al. 1996), with the linkage analysis-based discovery of 
heterozygous NOTCH3 mutations on chromosome 19. In the next year, two labora-
tories published independently the identification of JAG1 as the gene within chro-
mosome 20p12 that causes Alagille syndrome (Li et  al. 1997; Oda et  al. 1997). 
Since these pioneer investigations, several additional inherited disorders, including 
Adams-Oliver and Hajdu-Cheney syndromes, have now convincingly been linked 
to defective Notch signaling. Many of these congenital diseases are rare (preva-
lences of just a few cases per 100,000), presenting on the one hand severe hurdles to 
investigating the impact of these genes in humans but demonstrating on the other 
hand how important Notch pathway components are for human survival. Fortunately, 
the generation and investigation of knockout mice and other animal models have in 
recent years resulted in a huge mountain of new information concerning Notch gene 
function, allowing to separate the role of specific Notch components in human 
development and disease.

This volume is intended to provide both basic scientists and clinicians who seek 
today’s clearest understanding of the broad role of Notch signaling in embryology 
with an authoritative day-to-day source. In the first chapter following this 
introduction, Reichrath and Reichrath give a short overview on the role of Notch 
signaling for the embryonic development of several selected tissues, namely, the 
brain, skin, kidneys, liver, pancreas, sensory organs, skeleton, heart, and vascular 
system (Reichrath and Reichrath 2020a).

In the following chapter, Shahrzad Bahrampour and Stefan Thor discuss the 
impact of Notch signaling for brain development in detail (Bahrampour and Thor 
2020). They point out that, during central nervous system (CNS) development, a 
complex series of events play out, starting with the establishment of neural progeni-
tor cells, followed by their asymmetric division and formation of lineages and the 
differentiation of neurons and glia. Studies in the Drosophila melanogaster embry-
onic CNS have revealed that the Notch signal transduction pathway plays at least 
five different and distinct roles during these events. In their chapter, Bahrampour 
and Thor review these many faces of Notch signaling and discuss the mechanisms 
that ensure context-dependent and compartment-dependent signaling. The authors 
conclude by discussing some outstanding issues regarding Notch signaling in this 
system, which likely have bearing on Notch signaling in many species.

In the next chapter Wei, Phang, and Jiao underline that the simplicity of the 
Notch pathway in Drosophila melanogaster, in combination with the availability of 
powerful genetics, makes it an attractive model for studying the fundamental mech-
anisms of how Notch signaling is regulated and how it functions in various cellular 
conditions during embryonic development (Wei et  al. 2020). In this context, the 
authors summarize the research advances in Drosophila development on the epigen-
etic mechanisms by which the chromatin assembly factor-1 (CAF-1) regulates 
Notch signaling activity, which enables Notch to orchestrate different biological 
inputs and outputs in specific cellular contexts. They convincingly demonstrate that 
epigenetic regulation of Notch signaling by CAF-1 and other epigenetic regulators 
plays essential roles in fine-tuning the transcriptional output of Notch signaling to 
coordinate multicellular organism development. The authors conclude that it 
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remains an open question as to why and how different epigenetic regulators are 
involved in mediating different histone modifications status, leading to different 
transcriptional outputs of either gene repression or gene activation in one specific 
signal transduction pathway.

Underlining the many facettes of Notch signaling for embryonic development, 
Makoto Sato and Tetsuo Yasugi discuss in the following chapter the relevance of a 
combination of Notch-mediated lateral inhibition and epidermal growth factor 
(EGF)-mediated reaction diffusion for the regulation of proneural wave propagation 
(Sato and Yasugi 2020). They report that during various biological processes, Notch 
has to act together with other signaling systems to regulate binary cell fate choice 
via lateral inhibition resulting in salt-and-pepper pattern formation. However, they 
emphasize that it is in many cases not clear what happens when Notch is combined 
with other signaling systems and that mathematical modelling and the use of a sim-
ple biological model system will be essential to address this uncertainty. They 
explain that a wave of differentiation in the Drosophila visual center, the “proneural 
wave,” accompanies the activity of the Notch and EGF signaling pathways and that, 
although all of the Notch signaling components required for lateral inhibition are 
involved in the proneural wave, no salt-and-pepper pattern is found during the  
progression of the proneural wave. Instead, Notch is activated along the wave front 
and regulates proneural wave progression. Makoto Sato and Tetsuo Yasugi ask the 
question how does Notch signaling control wave propagation without forming a 
salt-and-pepper pattern? As they point out, a mathematical model of the proneural 
wave based on biological evidence convincingly demonstrated that Notch-mediated 
lateral inhibition is implemented within the proneural wave and that the diffusible 
action of EGF cancels salt-and-pepper pattern formation. They discuss that the 
results from numerical simulation have been confirmed by genetic experiments 
in vivo and suggest that the combination of Notch-mediated lateral inhibition and 
EGF-mediated reaction diffusion enables a novel function of Notch signaling that 
regulates propagation of the proneural wave. Makoto Sato and Tetsuo Yasugi 
conclude that similar mechanisms may play important roles in diverse biological 
processes found in embryonic development and cancer pathogenesis.

In the following chapter, Tetsuichiro Saito convincingly demonstrates that a 
nucleolar protein, Nepro, is essential for the maintenance of early neural stem cells 
and preimplantation embryos (Saito 2020). He points out that Notch signaling is 
required for maintaining neural stem cells (NSCs) in the developing brain and that 
NSCs have potential to give rise to many neuronal types in the early telencephalon, 
and the potential decreases as embryonic development proceeds. Tetsuichiro Saito 
explains that Nepro, which encodes a unique nucleolar protein and is activated 
downstream of Notch, is essential for maintaining NSCs in the early telencephalon. 
Nepro is also expressed at basal levels and required for maintaining the preimplan-
tation embryo, by repressing mitochondria-associated p53 apoptotic signaling. 
Tetsuichiro Saito points out that Notch signaling also controls dendritic complexity 
in mitral cells, major projection neurons in the olfactory bulb, and concludes that 
many steps of neural development involve Notch signaling.

J. Reichrath and S. Reichrath
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In the following chapter, Sergio Córdoba and Carlos Estella (2020) summa-
rize our present understanding of the role of Notch signaling for leg development 
in Drosophila melanogaster. They explain that the Notch pathway plays diverse 
and fundamental roles during animal development. One of the most relevant, 
which arises directly from its unique mode of activation, is the specification of 
cell fates and tissue boundaries. The development of the leg of Drosophila mela-
nogaster is a fine example of this Notch function, as it is required to specify the 
fate of the cells that will eventually form the leg joints, the flexible structures that 
separate the different segments of the adult leg. Notch activity is accurately acti-
vated and maintained at the distal end of each segment in response to the prox-
imo-distal patterning gene network of the developing leg. Region-specific 
downstream targets of Notch in turn regulate the formation of the different types 
of joints. The authors discuss recent findings that shed light on the molecular and 
cellular mechanisms that are ultimately governed by Notch to achieve epithelial 
fold and joint morphogenesis. Finally, they briefly summarize the role that Notch 
plays in inducing the nonautonomous growth of the leg. Overall, this book chap-
ter aims to highlight leg development as a useful model to study how patterning 
information is translated into specific cell behaviors that shape the final form of 
an adult organ.

In the next chapter, Nicolas Daudet and Magdalena Żak explain the role of Notch 
signalling as the multitask manager of inner ear development and regeneration 
(Daudet and Żak 2020). They point out that Notch signalling is a major regulator of 
tissue patterning in metazoans, exerting its effects both by lateral inhibition (whereby 
Notch mediates competitive interactions between cells to limit adoption of a given 
developmental fate) and by lateral induction (a cooperative mode of action that was 
originally described during the patterning of the Drosophila wing disc and creates 
boundaries or domains of cells of the same character). In their chapter, Nicolas 
Daudet and Magdalena Żak introduce these two signalling modes and explain how 
they contribute to distinct aspects of the development and regeneration of the verte-
brate inner ear, the organ responsible for the perception of sound and head move-
ments. Moreover, Nicolas Daudet and Magdalena Żak discuss in this chapter some 
of the factors that influence the context-specific outcomes of Notch signalling in the 
inner ear, and the ongoing efforts to target this pathway for the treatment of hearing 
loss and vestibular dysfunction.

In the last chapter, Reichrath and Reichrath give a short overview on inherited 
diseases related to defective Notch signaling, including CADASIL (cerebral auto-
somal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) 
and Alagille, Adams-Oliver, Hajdu-Cheney, and lateral meningocele syndromes 
(Reichrath and Reichrath 2020b). They point out that the evolutionary highly con-
served Notch pathway governs many cellular core processes including cell fate 
decisions, although it is characterized by a simple molecular design. Moreover, 
Notch signaling, which first developed in metazoans, represents one of the most 
important pathways that govern embryonic development. Consequently, a broad 
variety of independent inherited diseases linked to defective Notch signaling has now 
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been identified, including Alagille, Adams-Oliver, and Hajdu-Cheney syndromes, 
CADASIL, early-onset arteriopathy with cavitating leukodystrophy, lateral menin-
gocele syndrome (LMS), and infantile myofibromatosis. In their review, Reichrath 
and Reichrath give a brief overview on molecular pathology and clinical findings 
in congenital diseases linked to the Notch pathway (Reichrath and Reichrath 
2020b). Moreover, they discuss the emerging role of Notch as a promising thera-
peutic target. In this context, it is of interest that in a mouse model of LMS 
(Notch3tm1.1Ecan), cancellous bone osteopenia was no longer detected after intraperi-
toneal administration of antibodies directed against the negative regulatory region 
(NRR) of Notch3 (Yu et al. 2019, reviewed in Reichrath and Reichrath 2020b). In 
that study, anti-Notch3 NRR antibody suppressed expression of Hes1, Hey1, and 
Hey2 (Notch target genes) and decreased Tnfsf11 (receptor activator of NF kappa 
B ligand) messenger RNA in Notch3tm1.1Ecan osteoblast cultures (Yu et  al. 2019, 
reviewed in Reichrath and Reichrath 2020b). This study indicates that cancellous 
bone osteopenia of Notch3tm1.1Ecan mutants can be reversed by anti-Notch3 NRR 
antibodies, thereby opening new avenues for treatment of bone osteopenia in LMS 
patients (Yu et al. 2019, reviewed in Reichrath and Reichrath 2020b).

We hope that this volume will provide both basic scientists and clinicians who 
seek today’s clearest understanding of the broad and fascinating role of Notch 
signaling for the embryonic development with an authoritative day-to-day source.
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Chapter 2
Notch Signaling and Embryonic 
Development: An Ancient Friend, 
Revisited

Jörg Reichrath and Sandra Reichrath

Abstract  The evolutionary highly conserved Notch pathway, which first developed 
during evolution in metazoans and was first discovered in fruit flies (Drosophila 
melanogaster), governs many core processes including cell fate decisions during 
embryonic development. A huge mountain of scientific evidence convincingly dem-
onstrates that Notch signaling represents one of the most important pathways that 
regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and 
mice to humans. In this review, we give a brief introduction on how Notch orches-
trates the embryonic development of several selected tissues, summarizing some 
of the most relevant findings in the central nervous system, skin, kidneys, liver, 
pancreas, inner ear, eye, skeleton, heart, and vascular system.

Keywords  Notch · Notch signaling · Notch pathway · Embryonic development · 
Jagged · Delta-like ligand
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IPC	 Intermediate progenitor cell
KO	 Knockout
LV	 Lateral ventricle
LW	 Lateral wall
MET	 Mesenchymal-to-epithelial transition
NEPs	 Neuroepithelial cells
NICD	 Notch intracellular domain
NSCs	 Neural stem cells
OB	 Olfactory bulb
P	 Postnatal day
RA	 Retinoic acid
RGC	 Radial glia cell
RMS	 Rostral migratory stream
SGZ	 Subgranular zone
Shh	 Sonic hedgehog
SVZ	 Subventricular zone
VZ	 Ventricular zone
Wnt	 Wingless

�Introduction

There is now general consensus that Notch signaling, which is evolutionary highly 
conserved since it first developed in metazoans (Gazave et al. 2009; Richards and 
Degnan 2009) and was first discovered in the fruit fly Drosophila melanogaster, 
represents one of the most important cellular pathways that govern and orchestrate 
embryonic development. Notably, the Notch pathway, which is simple in design but 
has a striking versatility in function, regulates many key cell decisions and other 
core processes during embryogenesis from sponges, roundworms, Drosophila 
melanogaster, and mice to humans (Andersson et al. 2011). The tale that earned the 
gene the name Notch started over a century ago at Olivet College (Olivet, Michigan, 
USA), where at that time the American scientist John S. Dexter observed the char-
acteristic notched-wing phenotype (a nick or notch in the wingtip) in his mutant 
fruit flies Drosophila melanogaster (Dexter 1914). The alleles that caused this phe-
notype were discovered 3  years later at Columbia University (New York City, 
New York, USA) by another American scientist, Thomas Hunt Morgan (September 
25, 1866–December 4, 1945), who observed several mutant loci in the chromo-
somes of these fruit flies that were associated with several distinct notched-wing 
phenotypes (Morgan 1917). Although the majority of them were lethal, these alleles 
were associated with the characteristic phenotype with a nick in the wingtip and 
bristle phenotype specifically in female fruit flies, suggesting an association of 
these alleles with the X chromosome (Morgan 1928). The studies of Dexter (1914) 
and Morgan (1917, 1928) represent important steps in the transition of embryological 
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research from traditional, largely descriptive morphology to an experimental 
embryology that sought physical and chemical explanations for organismal devel-
opment. In the following years, many additional alleles were identified, which 
were associated with the Notch phenotype (Morgan 1928). Notably, these and 
related investigations that supported the chromosomal theory of inheritance earned 
Thomas Hunt Morgan in 1933 the Nobel Prize in Physiology/Medicine. Although 
the following decades were characterized by extensive research on the Notch locus, 
scientists had to overcome many difficulties to reach their goal to better understand 
the function of the Notch gene. These obstacles were due to the lethality early in 
embryogenesis and the broad phenotypic consequences of many Notch mutants. A 
milestone that finally confirmed the thoughtful observations that Thomas Hunt 
Morgan published in 1917 was the cloning and sequencing of the mutant Notch 
locus by the laboratories of Spyros Artavanis-Tsakonas and Michael W.  Young 
more than half a century later (Wharton et al. 1985; Kidd et al. 1986). During the 
last decades, a huge mountain of scientific information has convincingly shown 
that Notch plays multiple roles both in embryogenesis and in adult tissue homeo-
stasis. Although it is simple in design, the Notch pathway is extraordinarily versa-
tile in function (Andersson et  al. 2011). The flagship functions include many 
important cell fate decisions, such as keeping precursor and stem cells in a non-
differentiated state, and the ability to activate and orchestrate cell proliferation. 
In general, these functions involve canonical, ligand-dependent Notch activation. 
However, ligand-independent Notch activation has also been described in several 
cellular contexts.

Until today, a huge mountain of studies – ranging from the elucidation of the 
Notch pathway (reviewed by Bray 2016; Kopan and Ilagan 2009) to the generation 
of knockouts in model organisms and the discovery of Notch genes mutated in 
humans (Gridley 2003) – has confirmed an essential role for Notch signaling in 
human development. Consequently, a variety of independent inherited diseases 
related to defective Notch signaling has been identified, underlining the relevance of 
Notch for embryogenesis. The discovery of these congenital diseases started in 
1996, when a pioneer study reported the linkage analysis-based detection of hetero-
zygous NOTCH3 mutations on chromosome 19  in patients diagnosed with 
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy, an autosomal dominant hereditary stroke disorder resulting in 
vascular dementia) (Joutel et al. 1996). In the following year, two laboratories inde-
pendently published that JAG1 was the gene within chromosome 20p12 that was 
responsible for Alagille syndrome (Li et al. 1997; Oda et al. 1997). Since then, sev-
eral other inherited disorders, involving pathological embryonic development of 
various tissues, including Adams-Oliver and Hajdu-Cheney syndromes, have now 
convincingly been linked to defective Notch signaling (reviewed in Reichrath and 
Reichrath 2019). In this review, we give a brief introduction on the role of Notch 
signaling for the embryonic development of several selected tissues, namely, the 
brain, skin, kidneys, liver, pancreas, sensory organs, skeleton, heart, and vascular 
system, and discuss the role of Notch as an emerging therapeutic target.
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�Challenge and Promise: The Impact of Notch Signaling 
for the Embryogenesis of the Central Nervous System (CNS)

�Embryogenesis of the Central Nervous System (CNS): A Brief 
Introduction

The embryonic development of the brain and of other parts of the central nervous 
system (CNS) is tightly regulated in time and space by a complex network of many 
different signaling pathways, including the Notch pathway (reviewed in Engler 
et al. 2018). Notably, Notch signaling represents a key regulator of cell fate deci-
sions, and maintenance mechanisms of neural stem cells (NSCs), which generate 
both in the developing embryonic and in the adult brain all neurons, are highly 
conserved during evolution and are present from Drosophila melanogaster to 
humans (Artavanis-Tsakonas et  al. 1999; Kazanis et  al. 2008; Fuentealba et  al. 
2015; reviewed in Engler et al. 2018). Notch signaling is linked to many different 
aspects of embryonic brain development, during which the generating of the neural 
plate, a process that is named neurulation, begins in mice around embryonic day 8 
(E8) (reviewed in Engler et al. 2018). This tightly regulated process is induced via 
a well-balanced orchestration of stimulating factors and inhibiting signals acting 
on several anatomical structures, namely, the notochord, the dorsal ectoderm, and 
the Spemann organizer (Tam and Loebel 2007; reviewed in Engler et al. 2018). 
After the neural plate has been generated on the dorsal side of the embryo by neu-
ral ectodermal cells (radial progenitors spanning the thickness of the neural plate 
also named neuroepithelial cells (NEPs)), these cells begin to become regional-
ized, a process that has been linked to Notch signaling (reviewed in Engler et al. 
2018). Notably, the NEPs at the lateral edges of the plate become the multipotent 
neural crest stem cells, the precursors of the peripheral nervous system, melano-
cytes, and, in some regions of the embryo, specific bones and muscles (Bhatt et al. 
2013; Sauka-Spengler and Bronner 2010; reviewed in Engler et al. 2018). The neu-
ral plate then invaginates into the embryo at the midline and the lateral edges of the 
neural plate fold dorsally (reviewed in Engler et al. 2018). Thereafter, the two lat-
eral edges of the neural plate meet and fuse at the dorsal midline, zippering closed 
in the anterior and posterior directions, a process that begins at the future hindbrain 
region (reviewed in Engler et al. 2018). The neural plate then generates the neural 
tube (reviewed in Engler et al. 2018). Notably, NEPs in the neuroepithelium of the 
neural tube represent the first stem cells of the central nervous system (reviewed in 
Engler et al. 2018).

It has convincingly been shown that NSCs are the origins of the neurogenic lin-
eage (reviewed in Engler et  al. 2018). In the developing brain, radial glia in the 
ventricular zone (VZ) are the stem cells (Greig et al. 2013; reviewed in Engler et al. 
2018). These cells are characterized by a high proliferation rate, transforming to 
intermediate progenitors that amplify the progenitor pool and neuronal progeny, a 
process influenced by Notch signaling (Noctor et al. 2004; reviewed in Engler et al. 
2018). Under the control of a tightly regulated network of various pathways, including 
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Notch, these committed neural progenitors migrate out of the VZ and colonize the 
subventricular zone where they divide and generate neuroblasts, thus amplifying the 
progenitor pool and consequently the number of neuronal progeny (reviewed in 
Engler et  al. 2018). The neuroblasts migrate radially through the cortex forming 
layers in an inside-out fashion according to their age (reviewed in Engler et  al. 
2018). While neuroblasts of projection neurons migrate along the radial glial fibers 
of the radial glia to the superficial layers in the pallium, the interneurons are gener-
ated in the ganglionic eminences of the subpallium and undergo a long-range tan-
gential migration to reach the cortex (Marin 2013, reviewed in Engler et al. 2018). 
During the neurogenic phase of brain development (embryonic neurogenesis), and 
under the control of a tightly regulated network of various pathways, including 
Notch, NSCs have to divide to generate differentiated progeny but also maintain the 
stem cell pool (reviewed in Engler et al. 2018). Hence, following cell division one 
of the daughter cells must remain as a NSC. Some of these retained NSCs are main-
tained from the embryo even into the adult brain where they later can function as a 
source for adult-born neurons (Fuentealba et  al. 2015; Furutachi et  al. 2015; 
reviewed in Engler et al. 2018). Adult NSCs are found in two distinct niches, the 
lateral wall (LW) of the subventricular zone (SVZ) and the subgranular zone (SGZ) 
of the dentate gyrus (DG) (reviewed in Engler et al. 2018). Adult NSCs generate 
differentiated neurons through intermediate progenitors/transient amplifying pro-
genitors that rapidly divide and consecutively give rise to neuroblasts and neurons 
(reviewed in Engler et al. 2018). Under the control of a tightly regulated network of 
various pathways, including Notch, neuroblasts of the LW migrate along the rostral 
migratory stream (RMS) into the olfactory bulb (OB) where they differentiate and 
integrate into local circuits, while the adult-born neurons in the SGZ integrate 
locally (reviewed in Engler et al. 2018).

It was reported that the tightly regulated and balanced interplay between many 
different signaling pathways, including sonic hedgehog (Shh), wingless (Wnt), reti-
noic acid (RA), fibroblast growth factor (FGF), and bone morphogenetic protein 
(BMP), induces and regulates the formation of the neural tube by NEPs (Greig et al. 
2013; Franco and Muller 2013; Lupo et al. 2006; reviewed in Engler et al. 2018) and 
its regionalization in several well-defined structural domains including four impor-
tant segments, namely, the forebrain, the midbrain, the hindbrain, and the spinal 
cord. Notably, the forebrain includes two important cortical structures – the neocor-
tex and the hippocampus – that are both generated embryonically and in the early 
postnatal period (reviewed in Engler et al. 2018). It has been shown that the genera-
tion of the neocortex, which involves Notch signaling, begins by E11.5 and that at 
least its neuronal architecture is finished by birth, whereas the generation of the 
hippocampus begins by E17.5 and is in mice anatomically complete around postna-
tal day 14 (P14) (Nicola et al. 2015; Rolando and Taylor 2014; reviewed in Engler 
et al. 2018). It has been demonstrated that these two anatomical regions also contain 
the NSC niches and supply the known neurogenic regions of the adult brain with 
stem cells. In mice, the neuroepithelium represents at E9 a pseudostratified single 
layer of NEPs (reviewed in Engler et al. 2018).
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When the generation of neurons from the neuroepithelium, which involves Notch 
signaling, begins, the NEPs transform into radial glia cells (RGCs), which generate 
the VZ and function during embryonic development as NSCs (Noctor et al. 2004, 
reviewed in Engler et al. 2018). These populations of precursor and progenitor cells 
show characteristic features of the embryonic brain (reviewed in Engler et al. 2018). 
While the soma of RGCs remains in the VZ, these cells span with their radial pro-
cess the thickness of the cortex from the apical to the basal surface (Gotz and 
Huttner 2005, reviewed in Engler et al. 2018). RGCs are characterized by a polar-
ized structure spanning the thickness of the neural tube with an apical process 
anchored at the lumen of the tube and a long basolateral process to the forming 
surface of the brain (reviewed in Engler et al. 2018). It has been shown that interme-
diate progenitor cells (IPCs) are the progeny of RGCs (reviewed in Engler et al. 
2018). The SVZ harbors this characteristic cell population, which is not connected 
to either surface of the neural tube (reviewed in Engler et al. 2018). While RGCs 
represent the NSCs of the mammalian brain, it has been shown that IPCs are short-
lived intermediate cells (reviewed in Engler et al. 2018). The generation of the neo-
cortex, which involves Notch signaling, can be separated into an initial expansion 
period followed during mid-late embryogenesis (E9-E18) by a neurogenic period 
and then by a gliogenic period (reviewed in Engler et al. 2018). Under the control of 
a tightly regulated network of various pathways, including Notch, NSCs undergo, 
during the expansion period, symmetric cell divisions, while during the neurogenic 
period of embryonic development, NSCs primarily divide asymmetrically, thereby 
generating one daughter cell that remains as a stem cell and another daughter cell 
that progresses to an IPC that is committed to differentiation (Noctor et al. 2007; 
Noctor et al. 2004, reviewed in Engler et al. 2018). Notably, before E15.5, direct 
neurogenesis of NSCs has been reported, generating neurons independent from the 
presence of an IPC (Telley et al. 2016). The excitatory neurons of the neocortex are 
produced in a sequential manner by the NSCs to generate in an inside-out fashion 
the characteristic six individual layers of the isocortex (Franco and Muller 2013; 
Guo et al. 2013; reviewed in Engler et al. 2018). During the later steps of the neuro-
genic period, the NSCs switch in their fate and begin to form glial cells (reviewed 
in Engler et al. 2018). Interestingly, a part of the NSC population is separated and 
reserved during embryonic development of the neocortex as a supply for the adult 
NSC pools (reviewed in Engler et al. 2018). It has been shown that this characteris-
tic population of cells exit cell cycle during the embryogenesis and remain relatively 
inactive until postnatal and adult periods (Fuentealba et al. 2015; Liu et al. 2011; 
Greig et al. 2013; Furutachi et al. 2015; reviewed in Engler et al. 2018).

�Embryonic Neural Stem Cells and Notch Signaling

It has now been convincingly demonstrated that Notch signaling represents one 
of the key control mechanisms that govern maintenance of NSCs (reviewed in 
Engler et al. 2018). In the embryonic brain, NSCs express Notch receptors, and via 
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mechanisms that involve active sig-(NICD)-Rbpj-Maml, expression of the basic 
helix-loop-helix factors HES1 and HES5 is induced (Honjo 1996; Artavanis-
Tsakonas et al. 1999; Ohtsuka et al. 1999; Kageyama et al. 2007; reviewed in Engler 
et al. 2018) (Table 2.1). One important function of HES1 and HES5 is the suppres-
sion of the expression of various proneural genes (Ascl1, Atoh1, Neurog1, and 
Neurog2), which in turn blocks NSC differentiation and neuron production (Lutolf 
et al. 2002; Hatakeyama et al. 2004; Hatakeyama et al. 2001; reviewed in Engler 
et al. 2018) (Table 2.1). It has now been demonstrated that, as in the formation of the 
somites, Notch signaling and Hes1 expression fluctuate in neural stem/progenitor 
cells of the developing embryo (Masamizu et al. 2006; Shimojo et al. 2008, reviewed 
in Engler et al. 2018), a process for which the cyclical synthesis and degradation of 
Hes1 mRNA and protein are of high importance. Moreover, it was shown that HES1 
binds its own promoter and thereby suppresses its own expression, counteracting 
activation of Notch (reviewed in Engler et al. 2018). In neural stem/progenitor cells, 
the period of Hes1 pulsatory expression is around 2–3 h, and this periodicity of 
fluctuation projects onto the expression of the proneural genes and Delta-like 1 
(Dll1), which represents a repressed target gene of Notch (via Hes-mediated sup-
pression (Hirata et al. 2002, reviewed in Engler et al. 2018)). However, in differen-
tiating neurons Hes expression is suppressed, resulting in sustained expression of 
Ngn2 and Dll1 (Shimojo et al. 2008) (Table 2.1). Notably, the Hes-mediated Notch 
signaling feedback mechanism governs neural fate separation into stem/progenitor 
and neurons (Shimojo et al. 2011) (Table 2.1). Interestingly, deletion of either Hes1 
or Hes5 has during embryonic development no obvious effects on neural develop-
ment and NSCs activity (reviewed in Engler et  al. 2018). However, it has been 
shown that the simultaneous deletion of Hes1 and Hes5 results in distinct pheno-
types characterized by severe pathologies, causing in the embryo disorganization of 
the neural tube, premature neuronal differentiation, and loss of radial glia 
(Hatakeyama et al. 2004; reviewed in Engler et al. 2018). Moreover, Hes1 has previ-
ously been identified to represent an important target of BMP-mediated and other 
signaling pathways (Kageyama et al. 2007). In summary, a broad body of scientific 
evidence, including the findings outlined above, now convincingly demonstrates the 
important function of the Notch pathway for the maintenance of NSCs during the 
development of the brain (reviewed in Engler et al. 2018).

�Unraveling Hidden Secrets: Notch Signaling in the Embryonic 
Development of Skin and Hair Follicles

A large body of evidence has convincingly shown the importance of Notch signal-
ing for the embryonic development of all anatomical structures of the skin, includ-
ing the epidermal compartment and appendages such as hair follicles (HF). It was 
demonstrated that, in response to external cues, embryonic skin cells have to make 
a cell fate decision whether or not to differentiate and generate stratified epidermis, 
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Table 2.1  Notch signaling in embryonic development: lessons learned from in vitro investigations 
and animal studies

Organ Molecular target Intervention and biological effect References

Central 
nervous 
system 
(CNS)/brain

Hes-mediated 
Notch signaling 
feedback 
mechanism

Governs neural fate separation into 
stem/progenitor cells and neurons

Shimojo et al. (2011)
Reviewed in Engler 
et al. (2018)

Notch receptors Expressed in embryonic brain, induce 
via mechanisms that involve active 
sig-(NICD)-Rbpj-Maml expression of 
HES1 and HES5 who suppress 
expression of proneural genes (Ascl1, 
Atoh1, Neurog1, and Neurog2)

Reviewed in Engler 
et al. (2018)

Notch1 KO: in embryonic neurogenesis lethal 
(E9.5)

Conlon et al. (1995)

GOF: in embryonic neurogenesis glial, 
instead of neuronal fate

Reviewed in Engler 
et al. (2018)

cKO: in embryonic neurogenesis 
precocious cell cycle exit, 
neurogenesis increased
cKO: in adult neurogenesis block of 
NSCs self-renewal

Gaiano et al. (2000)
Lutolf et al. (2002)
Mason et al. (2006)
Reviewed in Engler 
et al. (2018)

Notch2 KO: in embryonic neurogenesis lethal 
(E9.5)

Hamada et al. (1999)
Reviewed in Engler 
et al. (2018)

Rbpj KO: in embryonic neurogenesis lethal 
(E10.5), delayed CNS development
KO: in adult neurogenesis depletion 
and exhaustion of NSCs

de la Pompa et al. 
(1997)
Reviewed in Engler 
et al. (2018)

Hes1 In embryonic neurogenesis: 
expression suppressed in 
differentiating neurons, resulting in 
sustained expression of Ngn2 and Dll1

Shimojo et al. (2008)
Reviewed in Engler 
et al. (2018)

KO: in embryonic neurogenesis 
redundancy by Hes5

Hatakeyama et al. 
(2004)
Reviewed in Engler 
et al. (2018)

Compound KO Hes1 and Hes5: in 
embryonic neurogenesis loss of NSCs

Reviewed in Engler 
et al. (2018)

Hes5 KO: in embryonic neurogenesis 
redundancy by Hes1
In adult neurogenesis expressed in 
NSCs and astrocytes

Reviewed in Engler 
et al. (2018)

Jag K0: in embryonic neurogenesis lethal 
(E10.5)

Xue et al. (1999)
Reviewed in Engler 
et al. (2018)

cKO: in embryonic neurogenesis 
defects in migration, differentiation, 
survival
cKO: in adult neurogenesis inhibition 
of NSCs self-renewal

Weller et al. (2006)
Reviewed in Engler 
et al. (2018)

(continued)
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Table 2.1  (continued)

Organ Molecular target Intervention and biological effect References

Dll1 In embryonic neurogenesis expressed 
till E13.5

Stump et al. (2002)
Reviewed in Engler 
et al. (2018)cKO: in adult neurogenesis loss of 

quiescent NSCs
Dll4 In embryonic neurogenesis weak 

expression
Stump et al. (2002)
Reviewed in Engler 
et al. (2018)GOF: in adult neurogenesis stimulated 

NSC proliferation and survival
Kidney Notch2ICD Overexpression increases Wnt4 

expression at E11.5, leading to 
premature tubule differentiation and 
depletion of nephron progenitors by 
E14.5 and subsequently to the 
formation of multiple cysts and 
deterioration of the kidney

Fujimura et al. (2010)
Reviewed in Mašek 
and Andersson (2017)

Liver Jag1 Expression arises around E12.5 in the 
portal vein mesenchyme and is 
associated with the onset of embryonic 
bile duct development

Hofmann et al. (2010)
Zong et al. (2009)
Reviewed in Mašek 
and Andersson (2017)

Pancreas Jag1 Conditional deletion in pancreatic 
epithelial cells results in abnormal 
ductal formation, fibrosis, and chronic 
pancreatitis
Governs embryonic pancreas 
development during embryonic stages 
via inhibition of Dll1-Notch signaling 
and during postnatal stages via 
stimulation of Notch signaling

Golson et al. (2009b)
Reviewed in Mašek 
and Andersson (2017)

Notch1 and 
Notch2

Conditional compound deletion in 
pancreatic epithelial cells results only 
in weak effects on pancreatic 
epithelial cell proliferation

Nakhai et al. (2008)
Reviewed in Mašek 
and Andersson (2017)

Heart Notch1 Ablation has negative effect on the 
formation of coronary vasculature in 
the compact myocardium
Increased expression of Notch1ICD 
abrogates subepicardial ECM, reduces 
thickness of compact myocardium, 
and disturbs integrity of the 
myocardium

MacGrogan et al. 
(2016)
Del Monte et al. 
(2011)
Reviewed in Mašek 
and Andersson (2017)

Jag1 In the endocardium, ablation results in 
outflow tract defects, aortic valve 
hyperplasticity, tetralogy of Fallot, and 
valve calcification
Governs, in combination with Jag2, 
the maturation and compaction of the 
chamber myocardium

Jag2 Governs, in combination with Jag1, 
the maturation and compaction of the 
chamber myocardium

(continued)
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or to invaginate and initiate morphogenesis of HF (Fuchs 2007). In the skin, the 
epidermis is maintained throughout life through the proliferation of stem cells and 
differentiation of their progeny. The innermost (basal) layer of the epidermis con-
sists of proliferative progenitor cells which give rise to multiple differentiating lay-
ers, a stratified epithelium providing a barrier that keeps the inside of the body moist 
and protects the body from outside assaults by physical, environmental, and biologi-
cal factors (Massi and Panelos 2012). Data from ongoing studies indicate that Notch 
signaling orchestrates the process of epidermal differentiation and proliferation 
through the sequential activity of different Notch ligands, receptors, and down-
stream pathways. Investigations using transgenic mice have demonstrated that in 
contrast to embryonic development of the HF that can be achieved without Notch, 

Table 2.1  (continued)

Organ Molecular target Intervention and biological effect References

Skeleton Jag1 Ablation results in progressive bone 
loss in adult mice

Canalis et al. 
(2016) Zanotti and 
Canalis (2013)

Notch2 Ablation results in progressive bone 
loss in adult mice
Mice harboring a gain-of-function 
mutation (Q2319X) exhibit enhanced 
osteoclastogenesis, leading to 
cancellous and bone osteopenia and 
increased bone resorption

Nobta et al. (2005)
Hilton et al. (2008)
Youngstrom et al. 
(2016) Zanotti and 
Canalis (2013)
Reviewed in Mašek 
and Andersson (2017)

Eye Notch2 Deletion (via lens-cre) disrupts lens 
differentiation

Le et al. (2012)
Reviewed in Mašek 
and Andersson (2017)

Ear Jag1 Mutant mouse strains (named Slalom, 
Headturner, Ozzy, and Nodder) show 
impaired balance and deafness

Tsai et al. (2001)
Hansson et al. (2010)
Kiernan et al. (2001)
Vrijens et al. (2006)
Reviewed in Mašek 
and Andersson (2017)

Skin Notch receptors 
and 
corresponding 
ligands

Around E13.5, cell fate decisions of 
epidermal keratinocytes whether or 
not to transit from basal to suprabasal 
cell layers begin and are associated 
with stratification of the epidermis and 
activation of Notch receptors by 
corresponding ligands, which is on the 
molecular level mediated by 
enzymatic cleavage of NICD and its 
translocation to the nucleus, where it 
associates in suprabasal keratinocytes 
with DNA-binding protein RBP-j to 
regulate downstream target genes

Blanpain et al. (2006)

Abbreviations: cKO conditional knockout, Dll Delta-like, E embryonic day, GOF gain of function, 
Hes hairy and enhancer of split, jag jagged, KO knockout, NICD Notch intracellular domain, NSC 
neural stem cell
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its postnatal development requires an intact Notch signaling in two important 
compartments of the hair, the bulb and the outer root sheath (reviewed in Aubin-
Houzelstein 2012, reviewed in Massi and Panelos 2012). In the hair bulb, Notch 
governs cell differentiation, ensuring the proper development of every layer of both 
the hair shaft and the inner root sheath (reviewed in Aubin-Houzelstein 2012, 
reviewed in Massi and Panelos 2012). Among the many roles played by Notch in the 
skin and HF, it has to be highlighted that in the bulge, Notch controls a cell fate 
switch in hair follicle stem cells or their progenitors, preventing them from adopting 
an epidermal fate (reviewed in Aubin-Houzelstein 2012). Notch function in the skin 
and HF is both cell autonomous and cell nonautonomous and involves intercellular 
communication between adjacent cell layers (reviewed in Aubin-Houzelstein 2012, 
reviewed in Massi and Panelos 2012). This tightly regulated process depends on 
Wnt-mediated signals from adjacent epidermal cells and suppressing bone morpho-
genetic protein (BMP)-mediated signals from underlying mesenchymal conden-
sates, which converge to activate sonic hedgehog (Shh) in the developing hair bud. 
Loss of Shh signaling widely disturbs this highly regulated epithelial-mesenchymal 
crosstalk, impairing HF downgrowth and maturation in the embryo and distorting 
homeostasis throughout postnatal skin epithelium (Chiang et al. 1999; Gritli-Linde 
et al. 2007; Oro and Higgins 2003). Notably, it was shown that epidermal morpho-
genesis not only precedes but also may be observed independent of Hh signaling 
(Oro and Higgins 2003).

It has been demonstrated that the cell fate decisions of epidermal keratinocytes 
whether or not to transit from basal to suprabasal cell layers begin around embry-
onic day 13.5 (E13.5). At this time, the activation of Notch receptors by their cor-
responding ligands is associated with the stratification of the epidermis (Blanpain 
et al. 2006). On the molecular level, this process is mediated by enzymatic cleavage 
of Notch intracellular domain (NICD) and its translocation to the nucleus, where it 
associates in keratinocytes of suprabasal cell layers with DNA-binding protein 
RBP-j to regulate downstream target genes (Kopan and Ilagan 2009; Lowell et al. 
2000; Moriyama et al. 2008; Okuyama et al. 2004; Wang et al. 2008).

During the embryonic development of the epidermis, Notch signaling triggers a 
terminal differentiation program that culminates in skin barrier formation (Nguyen 
et al. 2006). Investigations using transgenic mice carrying loss-of-function muta-
tions have shown that NICD-RBP-j activation is essential for the early transition of 
basal progenitors to committed, suprabasal “spinous” cells, a switch that is charac-
terized by downregulation of cytokeratins K5/K14 and induction of cytokeratins 
K1/K10 and by dramatic downstream architectural changes in cytoskeletal and 
intercellular adhesion (Blanpain et  al. 2006). However, little is known about the 
events residing upstream of Notch-NICD-RBP-j that induce its activation.

The importance of Notch signaling for skin embryogenesis is underlined by 
Adams-Oliver syndrome, a rare genetic disorder that has been linked to mutations 
in several different genes, including DLL4 (OMIM 605185; cytogenetic location: 
15q15.1) and NOTCH1 (OMIM 190198; cytogenetic location: 9q34.3), as well as in 
RBPJ (OMIM 147183; cytogenetic location: 4q15.2), EOGT (OMIM 614789; cyto-
genetic location: 3p14.1), ARHGAP31 (OMIM 610911; cytogenetic location: 
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3q13.2-3q13.33), and DOCK6 (OMIM 614194; cytogenetic location: 19p13.2) 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019). Adams-Oliver syn-
drome is diagnosed based on the presence of aplasia cutis congenita and several 
other clinical hallmarks, namely, terminal transverse limb malformations, and a par-
tial absence of skull bones (reviewed in Mašek and Andersson 2017; Meester et al. 
2019; Zanotti and Canalis 2016). Typically, aplasia cutis congenita is found in the 
skull region; however, other body parts, including the abdomen, may also be affected 
(reviewed in Meester et al. 2019; Zanotti and Canalis 2016). The severity and symp-
toms of aplasia cutis congenita may greatly vary (reviewed in Meester et al. 2019; 
Zanotti and Canalis 2016). At birth, the affected skin region typically presents as 
healed but scarred skin, and skin histology (Fig. 2.1) shows characteristic findings 
that may include absent epidermis, dermal atrophy, and a lack of elastic fibers and 
other skin structures (reviewed in Meester et al. 2019; Zanotti and Canalis 2016). 
However, symptoms may range from a localized region with complete absence of 
skin to patches of skin that lack hair (reviewed in Meester et al. 2019; Zanotti and 
Canalis 2016).

�From the Bench to the Patient: The Impact of the Notch 
Pathway for Embryonic Kidney Development, Notch2, Jag1, 
and Beyond

Embryonic development of the kidneys is tightly controlled by Notch signaling. 
Consequently, many patients with Alagille syndrome present with serious kidney 
problems (Kamath et al. 2013, reviewed in Mašek and Andersson 2017), although 

Fig. 2.1  Skin histology of 
aplasia cutis congenita, a 
clinical hallmark of 
Adams-Oliver syndrome. 
Please note dermal atrophy 
with lack of elastic fibers 
and rarefication of 
epidermal appendages and 
other skin structures
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this is not a diagnostic criterion. During embryonic kidney development, expression 
of Notch2 arises first in the branched ureteric bud and the surrounding cap mesen-
chyme, while Jag1 is first expressed in epithelial vesicles (the aggregates derived 
from cap mesenchyme via mesenchymal-to-epithelial transition – MET), together 
with its corresponding receptors Notch2 and Notch1. These vesicles transform 
through the stages of comma-shaped bodies and S-shaped bodies into fully devel-
oped nephrons in which Jag1 is expressed in the glomerular endothelium, and both 
Notch1 and Notch2 are expressed in glomerular epithelial cells (reviewed in Kamath 
et al. 2013; Kopan et al. 2014, reviewed in Mašek and Andersson 2017). In line with 
these expression patterns, it has been demonstrated that mice haplo-insufficient for 
Notch2 and lacking one allele of Jag1 show defective glomerulogenesis (reviewed 
in Mašek and Andersson 2017, McCright et al. 2001), while the cap mesenchyme-
specific depletion of the corresponding receptor Notch2, but not of the receptor 
Notch1, leads postnatal to early lethality, which is caused by the blockade of the 
development of podocytes and proximal tubules prior to S-shaped body formation 
(Cheng et al. 2007, reviewed in Mašek and Andersson 2017). Notably, receptors 
Notch1 and 2 can both be activated by their corresponding ligands Jag1 or Dll1 
(Liu et al. 2013, reviewed in Mašek and Andersson 2017). It has been speculated 
that this unequal requirement for signaling mediated by Notch receptors 1 and 2 
during renal embryonic development may likely be caused by differences in their 
extracellular domains and/or by interaction with the Lfng. Indeed, Lfng enhances 
Notch2-mediated signaling to a greater extent as compared to Notch1-induced sig-
naling, and it has been speculated that it therefore may be an important factor 
required to gain the threshold needed for stimulation of proximal structure forma-
tion (Liu et  al. 2013, reviewed in Mašek and Andersson 2017). However, this 
hypothesis remains to be confirmed in genetic experiments. One should also keep in 
mind that, although Notch signaling-independent MET has been reported (Cheng 
et al. 2007; Chung et al. 2016, reviewed in Mašek and Andersson 2017), the Notch 
pathway can compensate for Wnt/β-catenin signaling during MET (Boyle et  al. 
2011, reviewed in Mašek and Andersson 2017), and its activity in medial and proxi-
mal segments, which is stimulated by BMP signaling, is mutually exclusive, with 
high activity of the Wnt/β-catenin pathway (Lindström et  al. 2015, reviewed in 
Mašek and Andersson 2017). While the investigations described above underline 
key roles for receptor Notch2 and its corresponding ligand Jag1 in embryonic kid-
ney development, it is not known in humans how individual mutations associated 
with syndromes linked to Notch signaling cause kidney defects. In this context, it 
has to be noted that no kidney phenotype has been reported in the Hajdu-Cheney 
syndrome mouse model harboring the Notch2Q2319X mutation (Canalis et al. 2016, 
reviewed in Mašek and Andersson 2017). Moreover, several investigations convinc-
ingly demonstrate that high levels of Notch signaling negatively affect embryonic 
kidney development. In line with this assumption, it was shown in the metanephric 
mesenchyme that constitutively active Notch1 intracellular domain (ICD) (Cheng 
et  al. 2007, reviewed in Mašek and Andersson 2017) or Notch2ICD (Six2-GFP: 
Cre) (Fujimura et al. 2010, reviewed in Mašek and Andersson 2017) promotes path-
ological embryonic kidney development. In contrast to overexpression of 
Notch1ICD, which promotes single ureteric bud formation and is associated with 
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greatly increased proximal tubule transformation into podocytes and distal tubules 
(at the expense of mesenchymal progenitor differentiation) (Cheng et  al. 2007, 
reviewed in Mašek and Andersson 2017), it was shown that overabundance of 
Notch2ICD stimulates Wnt4 expression at E11.5 (Table 2.1), leading to premature 
tubule differentiation and depletion of nephron progenitors by E14.5, a process that 
is followed by formation of multiple cysts and general deterioration of the kidney 
(Fujimura et al. 2010, reviewed in Mašek and Andersson 2017).

�Notch Receptor 2 and Its Corresponding Ligand Jag1 Are Key 
Players for Embryonic Liver Development

In mammalians and humans, embryonic liver development is a tightly regulated, 
complex process that is controlled by a network of many signaling pathways, includ-
ing the Notch pathway, which is closely linked with the development of bile ducts 
(reviewed in Gordillo et al. 2015, reviewed in Mašek and Andersson 2017). Notably, 
it has been shown in mice that when expression of Jag1 arises in the portal vein mes-
enchyme (PVM) around E12.5, this process is associated with the onset of embry-
onic bile duct development (Hofmann et  al. 2010; Zong et  al. 2009, reviewed in 
Mašek and Andersson 2017) (Table 2.1). It has been demonstrated that Jag1 stimu-
lates the expression of Hes1, Hnf1β, and Sox9 via binding to its corresponding recep-
tor Notch2 in adjacent biliary epithelial cells. The upregulation of these genes then 
further controls the morphogenesis of the intrahepatic bile duct (Antoniou et  al. 
2009; Geisler et al. 2008; Kodama et al. 2004; Zong et al. 2009, reviewed in Mašek 
and Andersson 2017). Notably, it has been demonstrated previously that the presence 
of Jag1 is not required in biliary epithelial cells (Loomes et al. 2007, reviewed in 
Mašek and Andersson 2017) and in the portal vein endothelium (PVE) (Hofmann 
et al. 2010, reviewed in Mašek and Andersson 2017), but specifically in the portal 
vein mesenchyme (PVM). However, presence of Jag1 has also been shown in these 
anatomical structures, namely, biliary epithelial cells and PVE. Interestingly, it has 
been found that hypomorphic mice heterozygous for Jag1 and Notch2 mimic several 
characteristic features of Alagille syndrome, including jaundice, growth retardation, 
disrupted differentiation of intrahepatic bile ducts, and heart, eye, and kidney defects 
(McCright et al. 2002, reviewed in Mašek and Andersson 2017). Moreover, it was 
shown that backcrossing of Jag1+/− into a C57BL/6J background leads to defects 
similar to those observed in Jag1/Notch2 double heterozygotes (reviewed in Mašek 
and Andersson 2017, Thakurdas et al. 2016), indicating that the biliary phenotype 
highly depends on the genetic background, similar to other Jag1 phenotypes (Kiernan 
et al. 2007, reviewed in Mašek and Andersson 2017).

In that study, it was also demonstrated that stability of Jag1 is suppressed by 
O-glucosyltransferase 1 (POGLUT1, also named Rumi). Moreover, this suppression 
of Rumi rescues in Jag1+/−/Rumi+/− animals the biliary phenotype of Jag1-deficient 
animals. Deficiency of Notch2 results perinatally in agenesis of the bile duct and 
after weaning to secondary bile duct formation (Falix et al. 2014, reviewed in Mašek 
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and Andersson 2017), a process that presumably does not depend on Notch signal-
ing (reviewed in Mašek and Andersson 2017, Walter et al. 2014). Interestingly, in 
Alagille syndrome, a similar recovery of the liver phenotype with age was demon-
strated (reviewed in Mašek and Andersson 2017, Riely et al. 1979). However, it is 
unknown which JAG1 or NOTCH2 genotypes, if any, are involved in this recovery.

�The Role of Notch Signaling for Embryonic Development 
of the Pancreas

Interestingly, pancreatitis and other disorders characterized by pathological pancre-
atic function have been associated with Alagille syndrome (reviewed in Mašek and 
Andersson 2017, Rovner et al. 2002, Devriendt et al. 1996). However, recent inves-
tigations using different methodological approaches demonstrated alterations in 
pancreatic function in only two out of forty-two patients with Alagille syndrome 
(Kamath et al. 2012, reviewed in Mašek and Andersson 2017). Notably, it has been 
reported that Notch2 and Jag1 are of high importance for murine embryonic pan-
creas development and that their impaired function may in humans, at least in some 
patients, be responsible for pancreas defects. Notch signaling governs both the pri-
mary (Ahnfelt-Rønne et  al. 2012; Jensen et  al. 2000, reviewed in Mašek and 
Andersson 2017) and secondary (reviewed in Mašek and Andersson 2017, Murtaugh 
et al. 2003; Shih et al. 2012) waves of pancreatic progenitor differentiation, which 
take place at E8.5-E12.0 and at E13.0-E16.0 of mouse gestation, respectively. These 
events lead to full set of endocrine (α-, β-, δ-, ε-, and PP-cells), acinar, and duct cells 
(Li et  al. 2016; reviewed in Afelik and Jensen 2013, reviewed in Mašek and 
Andersson 2017). Jag1 governs embryonic pancreas development via inhibition of 
Dll1-Notch signaling during embryonic stages and via stimulation of Notch signal-
ing during postnatal stages (Golson et al. 2009a, reviewed in Mašek and Andersson 
2017) (Table 2.1). Conditional deletion of pancreatic epithelial Jag1 (using Pdx1-
Cre) results in abnormal ductal formation, fibrosis, and chronic pancreatitis (Golson 
et  al. 2009b, reviewed in Mašek and Andersson 2017) (Table  2.1). Remarkably, 
conditional compound deletion of Notch1 and Notch2 results only in weak effects 
on pancreatic epithelial cell proliferation (Nakhai et al. 2008, reviewed in Mašek 
and Andersson 2017). It has been speculated that this observation can be explained 
by a rescue of the phenotype by Notch3 (Apelqvist et al. 1999, reviewed in Mašek 
and Andersson 2017).

�Notch2 and Jag1 Function in Embryonic Heart Development

It has been shown that heart embryogenesis depends on a tightly regulated complex 
interplay of morphogenesis events, including tube formation and looping (reviewed 
in Sedmera 2011, reviewed in Mašek and Andersson 2017). On the cellular level, 
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these events are associated with multiple cell fate decisions in many different cell 
types involved, including proliferation, differentiation, and migration. Jag1 and its 
corresponding receptor Notch2 are both expressed from early stages of the forma-
tion of the heart and – together with other components of the Notch signaling path-
way (reviewed in D’Amato et al. 2016a; reviewed in Luxán et al. 2016, reviewed in 
Mašek and Andersson 2017)  – govern different key steps of embryonic cardiac 
development. Although it is still not known how distinct JAG1 mutations, which 
have variable effects on JAG1 trafficking and activity, can be linked to the range of 
cardiac defects observed in individuals with Alagille syndrome (Bauer et al. 2010, 
reviewed in Mašek and Andersson 2017), it has been demonstrated that balanced 
activities of Jag1 and Notch2 are required for the development of several compart-
ments of the heart.

Notch signaling governs many steps of embryonic mammalian heart develop-
ment, being present and exerting important activities in various tissue types and 
compartments. It has been reported that loss-of-function mutations in NOTCH1 
(Garg et al. 2005; Theodoris et al. 2015, reviewed in Mašek and Andersson 2017) 
and the E3 ubiquitin ligase mind bomb1 (MIB1) (Luxán et al. 2013; reviewed in 
Mašek and Andersson 2017) are of importance for calcific aortic valve disease 
(CAVD) and left ventricular noncompaction (LVNC) congenital cardiovascular dis-
eases, respectively. Dll4 is an important stimulator of its corresponding receptor 
Notch1 that governs endothelial-to-mesenchymal transformation (EndoMT) 
(MacGrogan et al. 2016; reviewed in Mašek and Andersson 2017). Because Dll4 
expression in the endocardium is reduced with the progression of endocardial cush-
ion formation around E10, Jag1/Notch1 signaling-mediated expression of heparin-
binding epidermal growth factor (EGF)-like growth factor (Hbegf) becomes 
important to inhibit the BMP-mediated proliferation of cardiac valve mesenchyme 
(MacGrogan et al. 2016; reviewed in Mašek and Andersson 2017). Jag1, in combi-
nation with Jag2, also governs the maturation and compaction of the myocardium 
of the ventricular chamber. At first, Jag1/Jag2-induced activation of their corre-
sponding receptor Notch1 is inhibited by Dll4 and Mfng in the endocardium, but 
after E11, expression of Dll4 and Mfng is reduced and Jag1/2 can stimulate signal-
ing mediated by its corresponding receptor Notch1, promoting proliferation and 
compaction of the chamber myocardium. The Notch pathway also has a role in the 
epicardium, which is an important source of cells for coronary vessel formation 
(reviewed in Perez-Pomares and de la Pompa 2011; reviewed in Mašek and 
Andersson 2017). It has been shown that, as a prerequisite for correct heart develop-
ment, Notch signaling in/from the epicardium needs to be in an equilibrium 
(Grieskamp et al. 2011; reviewed in Mašek and Andersson 2017). In line with this 
finding, the ablation of Notch1 has a negative impact on the formation of coronary 
vasculature in the compact myocardium, while increased expression of Notch1ICD 
abrogates subepicardial ECM, reduces the thickness of compact myocardium, and 
disturbs the integrity of the epicardium (Del Monte et al. 2011, reviewed in Mašek 
and Andersson 2017). However, the precise functions of Jag1 and its corresponding 
receptor Notch2, which are also present in the epicardium, and Notch3 and its cor-
responding ligand Dll4, which are present in epicardium-derived vSMCs, need to be 
further investigated.
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Moreover, ablation of Jag1 expression in the endocardium results in outflow tract 
(OFT) defects, aortic valve hyperplasticity, tetralogy of Fallot, and valve calcifica-
tion (Table 2.1), summarizing the spectrum of cardiac pathologies often found in 
Alagille syndrome (Hofmann et  al. 2012; MacGrogan et  al. 2016; reviewed in 
Mašek and Andersson 2017). These characteristic phenotypes are, at least in part, 
connected to cardiac neural crest (CNC) cells, a cell population with high migratory 
activity that develops from the neural plate border (Jiang et al. 2000; reviewed in 
Mašek and Andersson 2017). Investigations using CNC-specific deletion (using 
Pax3-Cre) of either Jag1 (Manderfield et al. 2012; reviewed in Mašek and Andersson 
2017) or Notch2 (Varadkar et al. 2008; reviewed in Mašek and Andersson 2017) 
demonstrated that they are not a prerequisite for CNC migration, but that Jag1 is an 
important stimulator of CNC-derived vSMC differentiation. Notch2-mediated sig-
naling, meanwhile, sustains vSMC proliferation around the aortic arch arteries and 
OFT (Varadkar et al. 2008; reviewed in Mašek and Andersson 2017). Moreover, 
impaired Jag1 and Notch2 signaling also causes ventricular septation defects, aortic 
arch patterning defects, and pulmonary artery stenosis, all of which are conditions 
found in patients with Alagille syndrome (Manderfield et al. 2012; Varadkar et al. 
2008; reviewed in Mašek and Andersson 2017). Another possible reason for the 
congenital heart disease present in individuals with Hajdu-Cheney syndrome 
(Crifasi et al. 1997; reviewed in Mašek and Andersson 2017) is delivered by the role 
of Notch2 in the formation of trabecular myocardium: under physiological condi-
tions, Notch2 activity must be inhibited by Numb and Numbl to balance the forma-
tion of compact versus trabecular myocardium, and its increased expression results 
in hypertrabeculation, noncompaction, and septation defects (Yang et  al. 2012; 
reviewed in Mašek and Andersson 2017). Future investigations are needed to deter-
mine how Notch2 exerts these functions, keeping in mind that Notch2 mRNA 
expression is absent in the developing myocardium (D’Amato et al. 2016b; reviewed 
in Mašek and Andersson 2017).

�Notch2 and Jag1 Function During Skeletal Development

It has been convincingly demonstrated that Notch signaling is of high importance 
for the developing skeleton and, consequently, skeletal defects are present in many 
congenital Notch disorders, including Alagille and Hajdu-Cheney syndromes and 
spondylocostal dysostosis (reviewed by Zanotti and Canalis 2016; reviewed in 
Mašek and Andersson 2017). However, it has to be noted that the systemic deletion 
of Jag1 or Notch2 does not cause any characteristic somite-related phenotype that 
would indicate a contribution of these mediators of Notch signaling to the early 
events of bone formation (Hamada et al. 1999; Xue et al. 1999; reviewed in Mašek 
and Andersson 2017). It has been shown that both Jag1 and Notch2 negatively affect 
the differentiation of mesenchymal progenitors into osteoblasts in the skeletogenic 
mesenchyme, an observation that was reported in  vitro and in adolescent mice. 
Moreover, it was reported that ablation of Jag1 and Notch2 results in progressive bone 
loss in adult mice (Hilton et al. 2008; Nobta et al. 2005; Youngstrom et al. 2016; 
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reviewed in Mašek and Andersson 2017) (Table  2.1). Notably, deletion of Jag1 
leads in mesenchymal progenitors to extension of the cortical bone, while reducing 
trabecular bone mass, indicating contrary effects of Jag1-mediated Notch signaling 
on cortical as compared with trabecular osteoblasts (Youngstrom et  al. 2016; 
reviewed in Mašek and Andersson 2017). This disequilibrium then causes spine 
defects and the formation of butterfly vertebrae, a typical feature of Alagille syn-
drome (Emerick et  al. 1999; Youngstrom et  al. 2016; reviewed in Mašek and 
Andersson 2017). Additionally, both clinical and genome-wide association studies 
suggest an association between mutations in JAG1 and reduced bone mineral den-
sity as well as osteoporotic fractures (Bales et al. 2010; Kung et al. 2010; reviewed 
in Mašek and Andersson 2017). The formation of craniofacial bone, which develops 
from intramembranous ossification of neural crest (NC)-derived mesenchyme, also 
depends on Jag1: its ablation in NC cells disturbs mesenchymal differentiation and 
results in abrogated mineralization and deformities of the craniofacial skeleton, 
another feature found both in patients with Alagille and Hajdu-Cheney syndromes 
(Hill et al. 2014; Humphreys et al. 2012; reviewed in Mašek and Andersson 2017).

Recently, gain-of-function Notch2 mice harboring a Q2319X mutation were 
demonstrated to exhibit enhanced osteoclastogenesis, leading to cancellous and cor-
tical bone osteopenia and increased bone resorption (Canalis et al. 2016; reviewed 
in Mašek and Andersson 2017). This characteristic is strikingly different from the 
phenotypes observed in odontoblast- and osteocyte-specific Notch1ICD gain-of-
function mice (Canalis et al. 2013; reviewed in Mašek and Andersson 2017). This 
variation might be the result of differences between constitutive and Cre-dependent 
methodological approaches, different levels of Notch activation, or other unknown 
factors extrinsic to skeletogenic mesenchyme that cause the Hajdu-Cheney syn-
drome phenotype.

�The Impact of the Notch Pathway for Angiogenesis

It has convincingly been shown that components of the Notch signaling pathway 
govern various important aspects of vascular development, from vascular growth 
and endothelial tip and stalk cell selection to vSMC development. Because of result-
ing defects in angiogenesis of the embryonic and yolk sac vasculature, the systemic 
knockout of Jag1 is embryonic lethal in mice at ∼E11.5 (Kiernan et al. 2007; Xue 
et al. 1999; reviewed in Mašek and Andersson 2017). A similar picture is found in 
homozygous Notch2 knockout mice, which are characterized by widespread apop-
tosis and die at ∼E10.5 (Hamada et al. 1999; McCright et al. 2006; reviewed in 
Mašek and Andersson 2017). The endothelial-specific ablation (via Tie1- or Tie2-
Cre) of Jag1 phenocopies systemic Jag1 deletion, demonstrating that a lack of Jag1 
signaling from the vascular endothelium likely results in the differentiation defects, 
loss of vSMCs, and severe disruption of angiogenesis that can be found in Jag1 
mutants (Benedito et al. 2009; High et al. 2008). A similar loss of vSMCs has been 
demonstrated in embryos with homozygous hypomorphic Notch2 (McCright et al. 
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2001; Wang et al. 2012). Additionally, it has been speculated that the perivascular 
coverage of newly formed vessels by vSMCs and pericytes is mediated by Jag1-
induced expression of integrin αvβ3, which facilitates binding to a basement 
membrane-specific von Willebrand factor protein (Scheppke et al. 2012). In adults, 
Jag1 instead functions downstream of Dll4/Notch1 signaling to stimulate matura-
tion of vSMCs after injury through P27kip1-mediated inhibition of proliferation 
(Boucher et al. 2013; Pedrosa et al. 2015; reviewed in Mašek and Andersson 2017).

Jag1 also governs angiogenesis-associated sprouting; both gain- and loss-of-
function investigations in endothelial cells demonstrate that Jag1 stimulates the 
sprouting of new tip cells during retinal angiogenesis (High et al. 2008; reviewed in 
Benedito and Hellström 2013; reviewed in Mašek and Andersson 2017). Notably, 
balanced sprouting is achieved by Dll4-induced “high” Notch signaling and inhibi-
tion of sprouting, via suppression of VEGFR signaling in tip cells, which is antago-
nized in stalk endothelial cells exhibiting Jag1-mediated “low” Notch signaling 
(Benedito et al. 2009; Pedrosa et al. 2015; reviewed in Mašek and Andersson 2017). 
Although these different aspects of Jag1 and Notch2 signaling have not yet been 
connected to Alagille or Hajdu-Cheney syndromes, they may be of relevance for the 
severity of these conditions and the risk for vascular accidents, including ruptured 
aneurysms and bleeding (Kamath et al. 2004; reviewed in Mašek and Andersson 2017).

�Roles for Notch2 and Jag1 in the Embryonic Development 
of Inner Ear and Eye, Tissues with Important Sensory 
Functions

The importance of Jag1 and Notch2 for the embryonic development of organs with 
sensory functions is underlined by the characteristic presence of inner ear and eye 
defects in individuals with Alagille syndrome. Posterior embryotoxon (an irregular-
ity of Schwalbe’s line, a benign defect that is relatively common in the general 
population) (Emerick et  al. 1999; Ozeki et  al. 1997; reviewed in Mašek and 
Andersson 2017) represents one of the most easily detected hallmarks of Alagille 
syndrome. However, it must be recognized that posterior embryotoxon is difficult to 
study in rodents, which instead often present with eye defects, such as iris abnor-
malities (Xue et al. 1999; reviewed in Mašek and Andersson 2017). Jag1 and Notch2 
are both present in the developing lens and ciliary body (CB), and Notch2 is present 
in the retinal pigmented epithelium (RPE) (Le et  al. 2009; Saravanamuthu et  al. 
2012; reviewed in Mašek and Andersson 2017). During embryonic development, 
the Jag1-expressing inner CB interacts with the Notch2-expressing outer CB 
(derived from RPE) to control proliferation and bone morphogenetic protein (BMP) 
signaling during CB morphogenesis (Zhou et  al. 2013; reviewed in Mašek and 
Andersson 2017). Moreover, it was demonstrated that the ectoderm-specific dele-
tion (using Ap2a-Cre) of Jag1 results in arrested separation of the lens vesicle from 
the surface ectoderm and an arrest in lens development (Le et al. 2012; reviewed in 
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Mašek and Andersson 2017). In the lens, deletion of Notch2 (via Lens-Cre) also 
disrupts lens differentiation (Saravanamuthu et  al. 2012; reviewed in Mašek and 
Andersson 2017) (Table 2.1). However, this phenotype is comparable to the pheno-
type of the heterozygous Lens-Cre-expressing mouse strain itself (Dorà et al. 2014; 
reviewed in Mašek and Andersson 2017).

Additionally, the Notch signaling pathway regulates via Jag1 and Notch2 also 
the embryonic development of the inner ear. Notably, impaired balance and deaf-
ness have been detected in four ethylnitrosourea (ENU)-induced Jag1 mutant mouse 
strains, named Slalom (Tsai et al. 2001; reviewed in Mašek and Andersson 2017), 
Headturner (Kiernan et al. 2001; reviewed in Mašek and Andersson 2017), Ozzy 
(Vrijens et al. 2006; reviewed in Mašek and Andersson 2017), and Nodder (Hansson 
et al. 2010) (Table 2.1). It has been reported that these characteristic phenotypes are 
the result of the failure of Jag1-dependent Notch signaling in defining the presump-
tive sensory epithelium of the ear and in maintaining an adequate ratio of prolifera-
tion between populations of hair cells and supporting cells, presumably via 
Hes1-dependent expression of p27kip (Brooker et  al. 2006; Kiernan et  al. 2006; 
Murata et  al. 2009; Pan et  al. 2010; reviewed in Mašek and Andersson 2017). 
Conversely, expression of Notch1ICD (Notch1 intracellular domain) in the develop-
ing otic vesicle results in ectopic formation of sensory and supportive cells in both 
the vestibule and the cochlea (Pan et al. 2010; reviewed in Mašek and Andersson 
2017), a process that may be responsible for the characteristic hearing deficits pres-
ent in individuals with Hajdu-Cheney syndrome (Isidor et  al. 2011; reviewed in 
Mašek and Andersson 2017). Embryonic development of sensory organs demon-
strates a dose sensitivity that is comparable with other Notch-regulated processes, 
wherein a carefully titrated, moderate inhibition of Notch signaling activity medi-
ated by the glycosyltransferases lunatic fringe (Lfng) and manic fringe (Mfng) rep-
resents a border between the pro-sensory primordium of the cochlear domain and 
Kölliker’s organ. This process takes place before the cell fate decision of the first 
differentiating inner hair cells and their associated supporting cells, affirming the 
sensitivity of this organ to even very small changes in Notch signaling intensity 
(Basch et  al. 2016; reviewed in Mašek and Andersson 2017). Notably, truncated 
posterior semicircular canals and missing ampullae can be found in Jag1del1/+ and 
Foxg1Cre+/−; Jag1fl/+ heterozygous mice (Kiernan et al. 2006; reviewed in Mašek and 
Andersson 2017), and the severity of the vestibular phenotype in Jag1del1/+ mice 
strongly correlates with the genetic background.

�Conclusions

The evolutionary highly conserved Notch pathway governs many core processes 
including cell fate decisions during embryonic development. A huge mountain of 
scientific evidence convincingly demonstrates that Notch signaling represents one 
of the most important pathways that regulate embryogenesis in humans. 
Therapeutically, targeting tissues during embryogenesis may prove difficult. 
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However, there are some promising first scientific findings indicating that inhibition 
of Notch signaling through small-molecule inhibitors or antibodies may be a prom-
ising strategy to treat various disorders (Reichrath and Reichrath 2019). In contrast, 
therapeutic activators of Notch signaling have proven to be more difficult to 
develop – but may also represent promising candidates for the treatment of many 
diseases (Reichrath and Reichrath 2019).
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Chapter 3
The Five Faces of Notch Signalling During 
Drosophila melanogaster Embryonic CNS 
Development

Shahrzad Bahrampour and Stefan Thor

Abstract  During central nervous system (CNS) development, a complex series of 
events play out, starting with the establishment of neural progenitor cells, followed 
by their asymmetric division and formation of lineages and the differentiation of 
neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have 
revealed that the Notch signal transduction pathway plays at least five different and 
distinct roles during these events. Herein, we review these many faces of Notch 
signalling and discuss the mechanisms that ensure context-dependent and 
compartment-dependent signalling. We conclude by discussing some outstanding 
issues regarding Notch signalling in this system, which likely have bearing on 
Notch signalling in many species.

Keywords  CNS development · Notch signalling

�Introduction

The Notch signalling pathway is well conserved throughout evolution and controls 
a number of biological events. Research on Notch pathway dates back to more than 
a century, when the Notch mutant was first identified in Drosophila melanogaster 
[described in Poulson (1937)]. The importance of the Notch pathway is increasing, 
regarding its role both in development and in disease biology. Notch signalling is 
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essential for many different organs and plays an instrumental role during the 
development of the central nervous system (CNS). The powerful molecular and 
genetic tools developed in Drosophila and the relative simplicity of its CNS, when 
compared to mammals, have made it an invaluable model system for developmental 
neurobiology and for decoding Notch signalling (Allan and Thor 2015; Skeath and 
Thor 2003). In this chapter, we will focus on the contributions of this model system 
to our understanding of the different roles of Notch signal transduction specifically 
during Drosophila embryonic CNS development.

We start by providing an insight into the molecular aspects of the pathway. 
Similar to many other signal transduction pathways, the Notch pathway proceeds 
both along a more frequently used, so-called canonical pathway, and along one 
(perhaps several) unusual, non-canonical routes.

We then go through five well-characterized biological roles for the Notch pathway 
in the Drosophila embryonic CNS:

First, the selection of neural progenitor cells (neuroblasts; NBs) in the 
neuroectoderm.

Second, the control of proliferation of daughter cells generated by NBs, the 
so-called Type I->0 daughter cell proliferation switch.

Third, the role of Notch during daughter cell asymmetric cell division, acting to 
promote different neuronal cell fates in the sibling cells.

Fourth, the role of Notch signalling in the development of the glia/axon scaffold, 
which involves glia to interneuron axon interactions.

Fifth, the role of Notch in motor axon pathfinding.

Intriguingly, these studies collectively reveal that the same NB, and its daughter 
cells, its lineage, may be involved in up to four of these five Notch-mediated signal-
ling events during the course of embryonic CNS development. A number of asym-
metrically distributed proteins and several feedback loops act to gate Notch signalling 
during these temporally tightly interwoven events. However, the dynamics of these 
events indicate that some control mechanisms likely remain undiscovered.

Against the backdrop of the pervasive role of Notch signalling during mamma-
lian development and adult homeostasis, as well as its frequent involvement in 
human disease, studies in the Drosophila embryonic CNS have provided seminal 
insight into this pathway and many of these findings have had direct bearing on 
human biology.

�Notch Canonical Molecular Pathway

The Notch mutation was first identified in Drosophila more than a decade ago 
(Poulson 1937). However, its features at the molecular level remained elusive until 
the 1980s (Artavanis-Tsakonas et al. 1983; Wharton et al. 1985). The Notch protein 
is a Type I transmembrane glycoprotein, and the Notch extracellular domain con-
tains several epidermal growth factor (EGF)-like and cell LINeage defective-12 
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(LIN-12/Notch repeat) motifs (Wharton et al. 1985) (Fig. 3.1). The Notch intracel-
lular part has cdc10/ankyrin (ANK) motifs (Zweifel et al. 2003). In Drosophila, two 
Notch ligands have been identified: Delta (Dl) and Serrate (Ser), both of which are 
also Type I transmembrane domain proteins containing multiple EGF repeats in the 
extracellular domain (Fleming et al. 1990; Thomas et al. 1991; Vassin et al. 1987).

Activation of the Notch pathway in a canonical manner occurs between two 
cells, i.e. a signal-receiving and a signal-sending cell (juxtacrine signalling). 
Generally, Notch receptor expression is broad, when compared to the expression 
pattern of the two ligands Dl and Ser (Bachmann and Knust 1998; Bender et al. 
1993; Kopczynski and Muskavitch 1989; Thomas et al. 1991). Hence, the spatio-
temporal expression pattern of Dl and Ser helps determine the place and time of 
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Fig. 3.1  Molecular aspects of canonical Notch signalling during Drosophila development. (Top) 
cartoon illustrating the Drosophila canonical Notch signalling pathway between two adjacent cells. 
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cell, which is forced to an NB fate. (Bottom) The domain organization of the Drosophila Notch 
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Notch activation. However, in many cases, such as in the process of lateral inhibition, 
it has been found that both of the two adjacent cells express both receptor and 
ligand. Strikingly, Dl-Notch can interact both in the canonical trans manner, leading 
to trans-activation of the Notch receptor, and in cis, leading to cis-inhibition of 
Notch (Miller et al. 2009).

During translation Notch is proteolytically cleaved (S1 cleavage) in the Golgi, in 
the extracellular domain, but the protein domain cleaved off remains attached to the 
extracellular part of the remaining transmembrane protein (Johansen et al. 1989; 
Kidd et al. 1989) (Fig. 3.1). Notch receptor activity is also modified by extensive 
glycosylation, conducted by several different enzymes, i.e. Fringe (Fng), Rumi, 
Ofut1 and EGF-domain O-GlcNAc transferase (Eogt) (Acar et al. 2008; Moloney 
et al. 2000; Okajima et al. 2003; Wang et al. 2001). These modifications can play 
several roles, e.g. Fng, which displays spatiotemporally restricted expression, 
promotes Notch-Dl connection and suppresses Notch-Ser interaction (Panin et al. 
1997). An in-depth description of the glycosylation of Notch is outside the scope of 
this book chapter, and we refer the reader to recent reviews (Handford et al. 2018; 
Varshney and Stanley 2018).

Specific interaction between the Notch receptor and its ligands is necessary for 
the proper Notch activation; however, it is not sufficient. Upon ligand-receptor 
interaction, the Notch receptor is cleaved for the second time (S2) in the extracel-
lular domain, by Kuzbanian (Kuz), an ADAM metallopeptidase, which leaves the 
Notch extracellular domain truncated but attached as a membrane-attached portion 
(Pan and Rubin 1997; Lieber et al. 2002; Qi et al. 1999). In addition, the cytoplas-
mic part of the ligands Dl and Ser must be mono-ubiquitinated for them to interact 
with the Notch receptor correctly. This is carried out by Mindbomb 1 (Mib1) and 
Neuralized (Neur), both of which are E3 ubiquitin ligases that ubiquitinate Ser and 
Dl (Deblandre et al. 2001; Lai et al. 2001; Pavlopoulos et al. 2001; Pitsouli and 
Delidakis 2005). Following S2 cleavage on Notch, an intramembrane protease com-
plex, named gamma-secretase, implements the third cleavage (S3) on the Notch 
extracellular truncation (NEXT). Consequently, the intracellular domain of Notch 
(NICD or Notch-intra) is released into the cytosol [reviewed in Bray (2006) and 
Fortini (2009)] (Fig. 3.1).

Characteristically, NICD moves to the nucleus and partners with Suppressor of 
Hairless (Su(H)), a transcription factor (TF) (Bailey and Posakony 1995; Fortini 
and Artavanis-Tsakonas 1994; Schweisguth and Posakony 1994) and its cofac-
tor, Mastermind (Mam) (Nam et al. 2006; Petcherski and Kimble 2000; Wilson 
and Kovall 2006; Wu et al. 2000), to form a transcriptional activation complex. 
The interaction of NICD with Su(H) in the nucleus alters the role of Su(H), from 
a repressor TF to an activator one. The Su(H)-Mam-NICD complex activates the 
expression of the enhancer of split complex (E(spl)-C) (Bailey and Posakony 
1995; Jennings et al. 1994; Lecourtois and Schweisguth 1995). E(spl)-C encodes 
seven bHLH repressor TFs (E(spl)-m3, m5, m7, m8, mβ, mγ, mδ) (Delidakis 
et al. 1991; Klambt et al. 1989; Knust et al. 1992). E(spl)-C represses the expres-
sion of the proneural bHLH TFs of the achaete-scute complex (AS-C) dur-
ing neurodevelopment (Nakao and Campos-Ortega 1996; Oellers et  al. 1994). 
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The function of these proneural TFs, as well as other Notch target genes, is crucial 
during neurodevelopment (as explained in the sections below).

Finally, the termination of Notch signalling is not as well understood as its 
activation. However, one important mechanism revolves around the degradation of 
several components, including Notch itself and the Dl ligand (Lai 2002). Studies on 
mammalian systems suggest that NICD degradation necessitates NICD phosphory-
lation mediated by CDK8 (cyclin-dependent kinase 8), which facilitates NICD 
ubiquitination by the ubiquitin E3 ligase FBXW7 [reviewed in Yeh et al. (2018)]. 
The Drosophila FBXW7 orthologue Archipelago (Ago) displays Notch-related 
phenotypes and regulates Notch target genes (Bivik Stadler et al. 2019; Nicholson 
et al. 2011). However, it is unclear if Drosophila Ago plays the same role as the 
mammalian FBXW7 protein.

�Notch Non-canonical Molecular Pathway

In the majority of contexts, Notch appears to function along the canonical cascade, 
i.e. controlling the transcription of Notch downstream target genes. However, there 
are exceptions. One of the most studied and the best examples of the non-canonical 
function of Notch is the Notch/Abl signalling pathway. Notch/Abl pathway func-
tions in the growth and pathfinding of pioneer axons in the Drosophila embryonic 
CNS (Giniger 2012; Giniger et  al. 1993). In this concept, Notch directly inter-
acts with Disabled (Dab) and Trio proteins, the two upstream factors of the Abl 
tyrosine kinase pathway, to locally suppress Abl signalling (Crowner et al. 2003; 
Giniger 1998; Kuzina et al. 2011; Le Gall et al. 2008) (Fig. 3.2). Dab is an adaptor 
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protein that activates Abl kinase activates by localizing Abl protein (Kannan et al. 
2017; Song and Giniger 2011), and Trio is a guanine exchange factor (GEF), which 
acts via Rac GTPase to trigger Abl pathway (Newsome et al. 2000).

However, Notch/Abl nontraditional Notch activity requires Notch receptor-
ligand interaction, including the cascades of proteolytic cleavages of Notch (S1-S3) 
(Fig. 3.1). Additionally, it requires Notch direct interaction with Dab and Trio, ear-
lier, and following Notch-ligand activation. Further, Notch is required to be 
tyrosine-phosphorylated for its association with Dab and Trio, while canonical 
Notch activity does not necessitate a tyrosine-phosphorylated form of Notch 
(Kannan et al. 2018).

�Neuroblast Selection and Delamination

The Drosophila CNS can be subdivided into the brain and the ventral nerve cord 
(VNC). The VNC originates from the two ventrolateral neurogenic regions, during 
early embryogenesis. The ventral neurogenic regions fuse during gastrulation and 
form a uniform layer of cells, named neuroectoderm. The neuroectoderm is a mono-
layer cell sheet that is segmented both along the anterior-posterior (A-P) and the 
dorsoventral (D-V) axis. Segmentation of neuroectoderm and CNS is due to the 
sequential action of a distinct set of genes, including segment polarity and columnar 
genes, which regulate (A-P) and (D-V) patterning, respectively [reviewed in 
Lawrence et al. (1996)]. The brain forms from the two anterior neurogenic regions 
and undergoes an even more complex set of patterning events (Cohen and Jurgens 
1990; Hirth and Reichert 1999; Thor 1995). The brain is segmented into three 
regions (B1–B3), while the VNC contains several neuromeric segments, replicated 
along the A-P axis (S1-S3, T1-T3, A1-A10) (Urbach et al. 2003, 2016; Birkholz 
et al. 2013). Each segment displays a bilateral symmetry and can be divided into 
two equivalent hemisegments, separated by specialized midline progenitors 
(Wheeler et al. 2009).

After generation and segmentation of the neuroectodermal cell sheet, stereotypi-
cally spaced clusters of 5–6 cells form the so-called proneural clusters, also known 
as neural equivalence groups [reviewed in Bhat (1999), Skeath (1999) and Skeath 
and Thor (2003)]. After a process denoted lateral inhibition, one single cell per 
cluster is assigned NB fate, while the other cells within the cluster subsequently 
differentiate into epidermal cells (Fig. 3.3). The lateral inhibition process is con-
trolled by the canonical Notch pathway, which includes the E(spl) genes (see sec-
tion “Notch Canonical Molecular Pathway”), collectively referred to as neurogenic 
genes, because the mutants display an increase in NBs. One of the key outputs of 
Notch signalling during lateral inhibition is the regulation of the proneural genes, 
which promote neuronal fate. Proneural genes are a set of related bHLH TFs, 
encoded by the acheate (ac), scute (sc) and lethal of scute (l(1)sc) genes, which are 
located in a genomic region denoted the achaete-scute complex (AS-C) (Bhat 1999; 
Skeath 1999; Skeath and Thor 2003).
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During NB selection, binding of Dl to the Notch receptor, and ubiquitination of 
Dl by the E3 ligase Neuralized (Neur), triggers cleavage of the Notch intracellular 
domain (NICD), followed by its transfer to the nucleus, where NICD partners with 
Suppressor of Hairless [Su(H)], a DNA-binding protein, and its co-factor 
Mastermind (Mam). This tripartite protein complex promotes the expression of the 
E(spl) bHLH TFs. The E(spl) genes in turn repress the expression of the AS-C, Dl 
and neur genes. Hence, activation of NICD leads to downregulation of proneural 
genes, thus preventing NB fate in favour of epidermal cell differentiation. In con-
trast, expression of proneural genes continues in the cells with low/no Notch activ-
ity within each proneural cluster, and the proneural genes will continue driving 
expression of Dl and neur. Therefore, cells with low Notch activity will continue 
presenting Dl to neighbouring cells, activating Notch in those cells and inhibiting 
them from acquiring NB fate.
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Fig. 3.3  NB selection and Notch signalling in the Drosophila neuroectoderm. (a) Lateral view of 
early embryos depicting NB generation within the neuroectoderm. (b) Magnified view of a pro-
neural cluster within the neuroectoderm (left) and NB selection and delamination (right). (c) Two 
equipotent cells within a proneural cluster (left), which undergo lateral inhibition to select one cell, 
with low/no Notch activity, that acquires NB fate (right)
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The selected NBs will enlarge and segregate from the neuroectoderm, to move 
inside the embryo, in a process known as NB delamination (Doe and Technau 1993). 
The neuroectoderm displays apico-basal polarity, and NBs break out from this sheet 
of cells and delaminate towards the basal side of the neuroectoderm. Delaminating 
NBs abridge their apical side from the neuroectodermal cells (apical constriction) 
by repeated myosin pulsation and eliminating adherens junctions from their adja-
cent cells (Simoes et  al. 2017). NBs downregulate some aspects of apico-basal 
polarity machinery, such as the Crumbs complex, while maintaining others, such as 
the Par and Scribble complexes. In addition, NBs activate the expression of compo-
nents of the NB asymmetric cell division machinery, such as inscuteable, miranda 
and prospero. The process of delamination of NBs from the neuroectoderm, and 
the establishment of the NB asymmetric cell division, is outside the scope of this 
book chapter, and we refer to recent reviews. The connection between the canonical 
Notch pathway, the proneural genes and the apico-basal and asymmetric cell divi-
sion machinery is not clear. Immediately after delamination, NBs commence divid-
ing asymmetrically to generate their lineages (see section “The Type I->0 Daughter 
Cell Proliferation Switch”) (Fig. 3.3).

�The Type I->0 Daughter Cell Proliferation Switch

The second role for Notch signalling pertains to its role in controlling alternate 
daughter cell proliferation in the developing VNC. This, more recently identified, 
role for the Notch pathway emerged from a forward genetic screen, aimed at iden-
tifying genes involved in the later stages of NB5-6T lineage progression of one 
specific NB lineage in the thoracic VNC (Ulvklo et al. 2012).

As outlined above, in each hemisegment of the embryonic VNC, there are some 
30 lateral NBs. Most, if not all, of these NBs begin neurogenesis by proliferating in 
the Type I daughter proliferation mode. This refers to that they generate a daughter 
cell, a ganglion mother cell (GMC), which divides once to generate two neurons/
glia (Baumgardt et al. 2014; Boone and Doe 2008; Doe and Technau 1993). During 
subsequent developmental stages, many NBs switch to the Type 0 daughter prolif-
eration mode, referring to that they generate daughter cells that differentiate directly 
(Baumgardt et al. 2014) (Fig. 3.4a). Two model lineages, NB5-6T, which was used 
for the aforementioned genetic screen, and NB3-3A, have been particularly helpful 
in decoding the Type I->0 daughter cell proliferation switch (Baumgardt et al. 2009, 
2014; Bivik et al. 2016; Ulvklo et al. 2012). Intriguingly, detailed lineage analysis 
has revealed that the lineage topology is different for NB5-6T and NB3-3A: NB5-6T 
undergoes nine rounds of Type I proliferation, followed by five rounds of Type 0, 
while, in contrast, NB3-3A undergoes one round of Type I, followed by 11 rounds 
of Type 0 proliferation (Baumgardt et al. 2009, 2014; Bivik et al. 2016; Ulvklo et al. 
2012). This means that both the Type I->0 switch and the NB cell cycle exit are 
precisely controlled and that these decisions are executed at different lineage 
progression stages in different lineages.
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The forward genetic screen, using NB5-6T as readout, was based upon a trans-
genic reporter, where the enhancer for the neuropeptide gene FMRFamide (FMRFa) 
was used to drive green fluorescent protein (GFP) reporter. FMRFa is expressed in 
the last-born cell in the NB5-6T lineage, in the Type 0 window, and hence mutants 
with additional FMRFa-GFP cells may reflect problems with executing the Type 
I->0 switch. The screen identified a number of such mutants, and two of them 
mapped to the Notch pathway: neuralized (neur) and kuzbanian (kuz). Analysis of 
these mutants was complex, because strong Notch pathway mutants also increased 
FMRFa-GFP due to the lateral inhibition effect and hence generation of additional 
NB5-6T lineages. This was indeed evident in the neur mutants. However, due to the 
maternal load of kuz, this Notch pathway mutant could be used to selectively anal-
yse the Type I->0 switch without the confounding issue of additional lineages being 
generated. Moreover, using Gal4 drivers that drive expression of various Notch 
components after NB delamination further allowed for dissecting late from early 
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roles of Notch signalling. These studies revealed that the canonical Notch pathway 
was involved in the Type I->0 switch, in both NB5-6T and NB3-3A (Ulvklo et al. 
2012), as well as globally (Bivik et al. 2016) (Fig. 3.4a).

The role of Notch in the Type I->0 switch is surprising, given that NB generation 
is critically dependent upon Notch signalling being OFF in early ectodermal cells. 
However, studies reveal that there is gradual activation of the Notch pathway late in 
NBs, thereby triggering the switch. Hence, similar to late temporal genes (Baumgardt 
et al. 2014), Notch can be seen as also acting in a temporal manner with respect to 
the Type I->0 switch.

While the seven TFs encoded in the E(spl) complex are generally considered to 
act redundantly, studies of the Type I->0 switch revealed differential function of the 
E(spl) complex genes, with different genes acting in different NBs (Fig. 3.4b).

The canonical Notch pathway appears to, at least in part, gate the Type I->0 
switch by NICD-Su(H)-Mam activating the cell cycle repressor Dacapo (mamma-
lian cdkn1a, encoding p21Cip1) expression and E(spl) repressing the cell cycle acti-
vators cyclin E, E2f1 and String (mammalian cdc25) (Fig. 3.4c).

The role of Notch in the Type I->0 switch appears to be independent of the con-
trol of the Type I daughter proliferation itself, i.e. ensuring that GMCs can divide, 
but only once. In most, if not all, NBs, the repetitive rounds of Type I proliferation, 
typically playing in the first part of NB lineages, are gated by the Prospero (Pros) 
factor. Inside NBs, Pros is tethered cortically and is asymmetrically distributed to 
the GMC at cell division. Inside the GMC, Pros enters the nucleus, where it 
represses E2f1 and CycE gene expression, thereby triggering cell cycle exit after 
one division has been completed by the GMC (Hirata et al. 1995; Knoblich et al. 
1995; Spana and Doe 1995; Choksi et al. 2006; Li and Vaessin 2000). The switch 
from Type I to Type 0 daughter cell proliferation is triggered by the activation of 
Dap expression in NBs. Dap acts in the daughter cell, against the backdrop of 
declining E2f1 and CycE levels, to block the cell entry into S-phase, and thereby 
stops Type 0 daughter cells from dividing (Baumgardt et  al. 2014). While pros 
mutants display extensive overgrowth of daughter cells in the Type I window, there 
was no apparent effect observed in the Type 0 daughter cells (Ulvklo et al. 2012). 
Conversely, Notch pathway interference only affected Type 0 daughter cells. This 
prompted the investigators to generate pros, kuz double mutants, which intrigu-
ingly displayed overgrowth of both Type I and Type 0 daughters and hence massive 
lineage expansion.

In addition to the canonical Notch pathway, the aforementioned genetic screen 
(Ulvklo et al. 2012) also identified other genes that may relate to Notch signalling. 
These included sequoia (seq) (Gunnar et al. 2016), which encodes a C2H2 zinc-
finger transcription factor homologous to Drosophila Tramtrack. In addition, the 
screen identified Ctr9 (Cln Three Requiring 9) (Bahrampour and Thor 2016), 
which encodes a key component of the Paf1 epigenetic complex. Both seq and 
Ctr9 affect the expression of Notch pathway components, but their interplay with 
Notch signalling is nebulous (Bahrampour and Thor 2016; Gunnar et al. 2016).
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�Dictating Asymmetric Cell Fate Between Sibling Neurons

The third role for Notch signalling pertains to its role in controlling asymmetric cell 
division of GMCs. Intriguingly, not only is the NB->GMC division asymmetric (as 
outlined above), in most, if not all, cases when a GMC divides, it also divides asym-
metrically. While Notch signalling does not appear to control the asymmetric 
NB->GMC division, it does influence the GMC->2-neurons asymmetric division.

Specifically, as each GMC divides, it generates two daughter cells that differenti-
ate, which usually, perhaps always, acquire different cell fate. The most well-studied 
examples of this are the aCC/pCC, RP2/RP2sib, U/Usib and dMP2/vMP2 sibling 
pairs, where the two siblings are easily distinguishable by both markers and axonal 
projections (Garces and Thor 2006; Bhat et al. 2011; Skeath and Doe 1998; Spana 
and Doe 1996). Studies of these model sibling pairs have revealed that a number of 
cell fate determinants distribute unequally between the two daughter cells and act 
therein to govern different cell fates, by regulating Notch signalling. One key such 
asymmetric determinant is the Numb protein (Doe 1996; Fuerstenberg et al. 1998; 
Doe and Bowerman 2001; Spana and Doe 1996). Numb segregates into one daugh-
ter cell, where it inhibits Notch signalling dictating the default “Notch OFF”, or “B” 
fate. By contrast, the absence of Numb in the other sibling cell allows for Notch 
signalling, and this cell then acquires the “Notch ON” or “A” fate (Cau and Blader 
2009). In addition, the transmembrane protein Sanpodo (Spdo) also regulates Notch 
signalling only during the asymmetric division decision and promotes the “Notch 
ON” fate (Skeath and Doe 1998; O’Connor-Giles and Skeath 2003) (Fig. 3.5). Spdo 
plays two roles upon the Notch pathway, acting both to amplify Notch signalling in 
the Numb-lacking cell and to inhibit Notch signalling in the Numb-expressing cell 
(Babaoglan et  al. 2009). The precise underlying molecular mechanisms of Spdo 
function upon Notch are still nebulous. Moreover, why Spdo only acts to modify 
Notch signalling during GMC asymmetric division is also unclear. Intriguingly, the 
activation of Notch signalling in the “A” neuron, as an effect of “A” cells having no 
Numb protein, results in the activation of a different HES-related TF, Hey, which is 
not activated by Notch in the early ectoderm (Monastirioti et al. 2010; Ulvklo et al. 
2012). The role of hey is still unclear, although mutants are late embryonic/early 
larval lethal, and there was no apparent effect upon the sibling decision in several of 
the model pairs. However, misexpression of hey could indeed affect sibling cell fate, 
imposing “A” fate in “B” siblings (Monastirioti et al. 2010). Understanding Notch 
activation of the E(spl) HES genes versus hey may provide a powerful means of 
addressing context dependency of Notch nuclear output.

In many cases, it has been found that asymmetric Notch signalling not only 
dictates two different postmitotic neuronal cell fates, but it can also gate between 
programmed cell death (PCD) and survival (Lundell et al. 2003; Miguel-Aliaga and 
Thor 2004; Bhat et al. 2011). Notch signalling can act in either direction and allow 
for the survival, and therefore the specification of a particular neural fate, or can 
induce PCD. Global mapping studies reveal that most, if not all, NBs produce cells 
that become subsequently removed by PCD (Rogulja-Ortmann et al. 2007). If PCD 
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is blocked, cells that normally are removed by PCD can often differentiate as 
neurons and project axons. The stereotyped PCD observed in many siblings in the 
Drosophila developing CNS can be likened to the specification of a unique cell fate 
within the nervous system (Miguel-Aliaga and Thor 2009).

�Glia Development

The fourth role of the Notch pathway during Drosophila embryonic CNS develop-
ment pertains to the role of the Notch receptor in glia development. This aspect of 
Notch pathway function stems from findings that the longitudinal axon scaffold is 
lost in Notch mutants (Giniger 1998; Giniger et al. 1993). Longitudinal axons form 
on each side of the VNC midline and contain a large number of interneuron axons, 
projecting up and down the VNC. These tracts develop in intimate relation to a set 
of specialized glia, the longitudinal glia (LG). By using a number of selective 
genetic tools, such as temperature-sensitive alleles and Gal4/UAS-driven transgenic 
expression using highly selective drivers, a picture has emerged where it appears 
that Dl is provided by longitudinal axons, which activates canonical Notch signal-
ling in the longitudinal glia (LG). Activation of Notch in LG is promoted by Fringe, 

NB

NotchOFFNotchON

A B

Type I

Spdo
Numb
Hey

dividing
GMC

vMP2

dMP2

A
B

A B

MP2wild type

vMP2

vMP2

A
A

MP2numb

Notch controls asymmetric sibling cell fate

Fig. 3.5  Notch controls asymmetric sibling cell fate. (a) Schematic presentation of a dividing 
GMC, born within a Type I window. GMCs divide asymmetrically and segregate Spdo and 
Numb to opposite poles. After GMC cell division, the sibling cell that inherits Numb protein will 
be Notch-OFF and acquire fate B, while the sibling cell inheriting Spdo protein will be Notch-ON, 
express the Hey bHLH factor and acquire fate A. (b) A well-studied example of a Notch-mediated 
sibling decision is the vMP2/dMP2 sibling pairs. In wild type, the MP2 progenitor cell under-
goes an asymmetric cell division, generating two different types of neurons, projecting their 
axons in opposite directions. In numb mutants, both neurons become Notch-ON and acquire the 
vMP2 cell fate
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a glycosylation enzyme that enhances Notch responsiveness to the Dl ligand (see 2 
above). Activated Notch, in turn, activates Pros, and Pros promotes LG fate in 
several ways, including promoting proliferation and differentiation (Thomas and 
van Meyel 2007; Griffiths et al. 2007; Griffiths and Hidalgo 2004) (Fig. 3.6). A key 
effector gene downstream of Notch-Fng signalling is the glutamate transporter 
Eaat1, a key enzyme for LG function (Stacey et al. 2010). Complicating the issue 
is that non-canonical Notch signalling also acts inside axons that project along 
longitudinal connectives, which are ensheathed by LGs (Kuzina et al. 2011).

�Axon Pathfinding

The fifth role of the Notch pathway during Drosophila embryonic CNS develop-
ment pertains to the role of the Notch receptor in motor axon pathfinding.

The Drosophila neuromuscular system has been a useful experimental frame-
work for studies aimed at addressing the mechanisms underlying the assembly of 
neuronal networks. In the Drosophila embryonic nerve cord, in each abdominal 
hemisegment, a stereotyped array of ~40 motor neurons innervate a stereotyped 
scaffold of 30 somatic muscles (Landgraf et  al. 1997; Schmid et  al. 1999). The 
axons from the ~40 motor neurons project out of the nerve cord along three main 
branches, the intersegmental nerve (ISN), the segmental nerve (SN) and the trans-
verse nerve (TN). Two of these main branches, the ISN and SN, branch further into 
sub-branches: the ISN, ISNb, ISNd, SNa and SNc. The ISN class of motor neurons 
project their axons dorsally, while those of the other five classes project laterally 
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Longitudinal 
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Notch
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Abl, Trio

Rac

Pros

AA B

Notch controls glia proliferation/specification

Fig. 3.6  Notch controls glia development. (a) Cartoon depicting Drosophila embryo on the left 
and a magnified section view of the VNC on the right, where longitudinal interneuron axons proj-
ect on each side of the midline, supported by longitudinal glia (LG). (b) The longitudinal axons 
present Dl to the longitudinal glia (LG) and activate canonical Notch signalling, which activates 
Pros expression and represses Abl, Tri and Rac signalling
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and ventrally. Hence, based on their axonal projections, the ~40 motor neurons 
can be subdivided into six distinct subclasses and display a general 1:1, muscle/
motor neuron, connection ratio [reviewed in Landgraf and Thor (2006) and Thor 
and Thomas (2002)].

Studies of Notch in motor axon pathfinding have primarily focused on the path-
finding of the ISNb motor nerve. These studies initially relied on a temperature-
sensitive allele of Notch (Notchts1), which allowed for removing Notch activity late 
in embryonic development, well after most neuronal identities have been specified. 
Late temperature shift resulted in ISNb motor axons bypassing their normal exit 
point, where they typically enter into their target muscle field (Fig. 3.7). Moreover, 
a similar phenotype was observed for a Dl temperature-sensitive allele. Importantly, 
providing Dl activity to tracheal cells, i.e. back to the cells that constitute the axon 
choice point, rescued the Dl ts  phenotype. In contrast, there was no effect in Serrate 
mutants (Crowner et al. 2003; Giniger et al. 1993). Further studies revealed that Abl 
interacted genetically with Notch, but not Su(H), and that overexpression of Notch 
suppressed the Abl overexpression phenotype. Hence, Notch acts in a non-canoni-
cal manner with respect to motor axon pathfinding, via interaction with the Abl 
tyrosine kinase signalling network (Crowner et al. 2003; Giniger 1998; Kuzina et al. 
2011; Le Gall et al. 2008) (see section “Notch Non-canonical Molecular Pathway” 
for more detailed description of the molecular details). Briefly, a combination of 
biochemical, molecular and genetic studies have demonstrated that upon activation 
by Delta, Notch promotes the growth and guidance of motor axons in the Drosophila 
embryo by locally suppressing the Abl signalling events (Crowner et  al. 2003; 
Giniger 1998; Kuzina et al. 2011).
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Fig. 3.7  Notch controls axon pathfinding. Schematic illustration of non-canonical Notch pathway 
regulation of motor axon pathfinding during Drosophila embryonic CNS development. (a) Motor 
axons project along the two sub-branches of the intersegmental (ISN) motor neurons: ISN and 
ISNb. The ISN motor neurons project axons dorsally, while ISNb motor axons leave the main ISN 
fascicle to innervate the lateral muscles. In Notch or Dl mutants, ISNb axons bypass their exit point 
and continue along the common ISN tract. (b) Schematic illustration of interneuron axons in a 
wild-type and Notch mutant Drosophila embryo. (See the text for more detailed description)

S. Bahrampour and S. Thor



53

�Conclusions

Studies of the developing Drosophila CNS, and in particular the VNC, has unrav-
elled a daunting complexity of how the Notch signal transduction pathway is used, 
demonstrating that Notch signalling acts during, at least, five different stages, con-
trolling five entirely different biological outcomes (Fig. 3.8). The five events, i.e. 
NB selection, Type I->0 daughter proliferation switch, asymmetric GMC division, 
glia proliferation/fate and motor axon pathfinding, occur during a short time span of 
embryonic development.

The use of conditional mutants (temperature-sensitive alleles) and highly 
selective transgenic expression of a range of dominant-negative and dominant-
activated constructs, as well as the use of selective reporters and markers of Notch 
activity, has allowed investigators to dissect these different roles of Notch from 
one another.

A single NB may be involved in at least four out of five Notch-mediated deci-
sions. While our current understanding of Notch signalling reveals that some of this 
gating is controlled by asymmetric distribution of a number of different proteins, it 
is still intriguing to ponder the dynamic control of Notch signalling.
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There are a number of outstanding issues regarding Notch signalling in the 
Drosophila embryonic CNS: How is the context dependency of Notch controlled, 
other TFs, co-TFs, chromatin? For example, how is activation of E(spl) in NBs ver-
sus Hey in siblings controlled? Why do only certain components, such as Spdo, act 
in certain decisions? How is the choice between canonical and non-canonical Notch 
signalling controlled?

In mammals, Notch signalling plays a number of roles during CNS development. 
However, given that novel roles for Notch signalling have emerged recently in the 
high-resolution and genetically tractable Drosophila system, it is likely that the 
study of Notch biology will yield many surprising findings in the years to come also 
in the mammalian CNS.
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Chapter 4
Epigenetic Regulation of Notch Signaling 
During Drosophila Development

Chuanxian Wei, Chung-Weng Phang, and Renjie Jiao

Abstract  Notch signaling exerts multiple important functions in various develop-
mental processes, including cell differentiation and cell proliferation, while mis-
regulation of this pathway results in a variety of complex diseases, such as cancer and 
developmental defects. The simplicity of the Notch pathway in Drosophila melano-
gaster, in combination with the availability of powerful genetics, makes this an 
attractive model for studying the fundamental mechanisms of how Notch signaling is 
regulated and how it functions in various cellular contexts. Recently, increasing evi-
dence for epigenetic control of Notch signaling reveals the intimate link between 
epigenetic regulators and Notch signaling pathway. In this chapter, we summarize 
the research advances of Notch and CAF-1  in Drosophila development and the 
epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as 
other epigenetic modification machineries, which enables Notch to orchestrate 
different biological inputs and outputs in specific cellular contexts.

Keywords  Notch · CAF-1 · Signal transduction · Gene expression · Epigenetic 
regulation · Chromatin assembly factors · Development · Drosophila

�Introduction

The Notch pathway is an evolutionarily conserved signaling cascade present in 
most of multicellular organisms and plays important roles in development and phys-
iology. Notch signaling regulates a variety of biological processes, including cell 
proliferation, differentiation, and apoptosis (Radtke et al. 2005). Mis-regulation of 
Notch signaling activity has been associated with various complex diseases, such as 
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cancer and neurological disorders (Salazar and Yamamoto 2018). Understanding 
the mechanisms of signaling regulation, as well as the outcome of signaling in vari-
ous tissues, is therefore of great importance. The existence of multiple paralogues 
of Notch receptor (Notch 1–4) and ligands (Delta 1–4 and Jagged 1–2) in mammals 
and other vertebrates makes Notch-related studies more complicated in those ani-
mals. However, the situation is much simpler in Drosophila, which has only one 
Notch receptor and two ligands, Delta (Dl) and Serrate (Ser). All of these three 
proteins share highly conserved sequences with their mammalian counterparts 
(Muskavitch 1994). The simplicity of the Notch signaling pathway in Drosophila, 
in combination with the availability of well-established powerful genetic tools and 
materials (Zacharioudaki and Bray 2014), makes Drosophila an extremely attrac-
tive system for studying Notch pathway. Recent studies in both Drosophila and 
mammals provide insights into the epigenetic regulation of Notch signaling, and 
this chapter summarizes the current understanding of how Notch signaling is epige-
netically regulated, mainly by CAF-1.

�Notch Signaling

A century ago, Notch was first described as a wing margin developmental defect phe-
notype in Drosophila melanogaster (Bray 2016; Ntziachristos et al. 2014). Notch locus 
was identified as a gene that is responsible for the notched wing phenotype (Welshons 
1958a, b), which gives the name to the pathway. Notch gene encodes a single-pass 
type I transmembrane receptor, the extracellular domain of which includes a variable 
number of EGF-like repeats, with the functions of ligand binding (Fig. 4.1).

Fig. 4.1  Phenotype of Drosophila with Notch pathway mutations. (a) Drawing of a Notch recep-
tor mutant fly with a notched wing tip. (b, c) Photo of a wing from a fly carrying a Notch mutation 
(b) and a mutation in Serrate (c). (Images are adapted from Alabi et al. (2018))
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Mutants with defects in other genes that are part of the Notch pathway were later 
identified because they had similar phenotypes and were named Delta (Dl) and 
Serrate (Ser) (Siren and Portin 1989; Shepard et al. 1989; Thomas et al. 1991). 
Dl and Ser are also transmembrane proteins and share the similar EGF repeats 
with Notch. Thus, in order for Notch signaling to occur, the ligand-expressing 
cells (or signal sending cells) have to be in intimate contact with the receptor-
expressing cells (or signal receiving cells) (Fig. 4.2).

The canonical Notch signaling pathway is rather simple. While vertebrates have 
several Notch receptors and ligands, the Drosophila genome only contains one 
Notch receptor and two ligands, Delta (Dl) and Serrate (Ser) (Klueg and Muskavitch 
1999). Like many other signaling pathways, Notch signaling is initiated by receptor-
ligand interaction between neighboring cells with close contact or direct contact. 
The Notch receptor can be activated by binding with the ligands Dl or Ser that are 
expressed in adjacent cells. Upon activation by this intimate binding, the Notch 
receptor undergoes two consecutive cleavage events, which are catalyzed sequen-
tially by an ADAM family metalloprotease (Kuz and Tace in Drosophila) (Alabi 
et al. 2018) and by the γ-secretase complex (containing Presenilin/Psn, Nicastrin/
Nct, PEN2, and APH1) (De Strooper et al. 1999; Yang et al. 2019), resulting in the 
release of the intracellular portion of the protein, called the Notch intracellular 
domain (NICD), which then migrates into the nucleus and joins a protein complex 
directly bound to chromatin to initiate the transcription of target genes (Borggrefe 
and Oswald 2016). This complex includes the transcription factors Suppressor of 
Hairless (Su(H)), as well as other potential co-regulators, such as the transcriptional 

Fig. 4.2  The core Notch signaling pathway and the main components of Notch pathway in 
Drosophila and mammals
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coactivator Mastermind (Mam), thereby leading to the expression of Notch-
dependent target genes (Borggrefe and Liefke 2012).

As we mentioned above, Notch signaling is an evolutionally conserved pathway 
throughout metazoans. Over time, it became clear that it is repeatedly employed in 
cell fate decisions, cell differentiation, cell proliferation, and cell survival in diverse 
contexts and at distinct stages of development (Bray 2016). In many developmental 
contexts, Notch specifies cell fate decisions. In the developing vertebrate eye, for 
example, Notch regulates which cells develop into glial cells and which develop 
into optic neurons (Genethliou et al. 2009). Not surprisingly, mutations leading to 
dysregulated Notch signaling have also been implicated in cancer, including hema-
tological malignancies (Bugeon et al. 2011) and solid tumors (Mutvei et al. 2015). 
Mis-regulation of Notch signaling in ovarian follicle cells disturbs the balance 
between cell proliferation and cell differentiation in Drosophila oogenesis, leading 
to cell death and sterility (Deng et al. 2001; Lopez-Schier and St Johnston 2001; 
Palmer et al. 2014). In other developmental contexts, Notch regulates the survival of 
cells (Giraldez and Cohen 2003). For example, loss of Notch function results in 
increased cell death of neuron cells in the mouse nervous system (Mason et  al. 
2006). Notch signaling has also been associated with cell survival in B-cell malig-
nancies, prostate cancer cells, and myeloma cells (Zhang et al. 2018; Nefedova et al. 
2008; Zweidler-McKay et al. 2005).

Notch signaling must be under extremely tight control to keep its proper activity. 
Emerging evidence indicates that the regulation of Notch signaling seems to be 
considerately complicated; multiple levels of regulation are added to the pathway 
via receptor-ligand internalization, posttranslational modification, protein stability, 
and ligand availability (Kovall et al. 2017). Productive Notch ligand-receptor bind-
ing depends on the proper posttranslational modification, such as glycosylation of 
the receptor (Haines and Irvine 2003). The retention time of Notch and ligands on 
plasm membrane is determined by the endocytosis of the receptor and ligands 
(Kandachar and Roegiers 2012), mediated mainly by lysosomal degradation. 
Mutants that stabilize NICD can cause T-cell acute lymphoblastic leukemia in 
humans (Grabher et al. 2006). Polarity proteins, such as Numb (Song and Lu 2012) 
and Crumbs (Nemetschke and Knust 2016), are also required for local distribution 
of Notch in the plasm membrane, which results in region-specific Notch activity. 
Like Notch, Dl and Ser are also subject to transmembrane domain cleavage by the 
γ-secretase complex, with this process called ligand processing, which may be used 
to downregulate the activity of Notch pathway. Alternatively, ligand processing also 
could generate biologically soluble ligands that may act as antagonists of Notch 
signaling (Masuya et  al. 2002). Although the mechanisms of signal transduction 
from the cell surface to the nucleus are relatively simple and clear, it is not fully 
understood how such a straightforward pathway can result in tremendously com-
plex outcomes in different cellular contexts. Recent studies have revealed that 
epigenetic modifiers play important roles in regulating Notch activity and may 
provide a novel angle to explain how and why the various developmental outputs 
occur in different contexts by a single Notch signaling pathway.
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�The Advantages of Drosophila as Model Organism for Notch 
Signaling Study

Drosophila melanogaster is an ideal model organism and has been extensively used 
in scientific research for over 100  years since Professor Thomas H.  Morgan 
(1866–1945), who won the Nobel Prize in Physiology or Medicine in 1933, started 
to use the Drosophila for genetic studies. Owing to several practical advantages that 
are suitable for laboratory study, Drosophila has significantly pushed forward the 
development of biological research in various fields, such as developmental biology, 
immunobiology, and metabolism (Mirth et al. 2019). First, Drosophila has a short 
life cycle (about 10 days in the laboratory conditions) and has high fecundity, which 
allow producing large number of progenies in a short time. Besides, it is relatively 
easy and cost-effective to maintain the stable Drosophila stocks. Second, Drosophila 
has a low number of chromosomes, which make it as one of the most studied organ-
isms in biological research, particularly in genetics and developmental biology 
(Perrimon 2014; Tolwinski 2017). Notably, the genome sequencing of Drosophila 
reveals that approximately 75% of known human disease-associated genes have 
counterparts in Drosophila (McGurk et al. 2015; Chen and Crowther 2012). The 
high similarity and conservation in genomic features between Drosophila and 
human enables fly to benefit the biomedical studies of human diseases. Third, a 
large number of genetic tools are available for Drosophila researchers mostly 
through stock centers, such as the Bloomington Drosophila Stock Center (BDSC) 
and the Vienna Drosophila Resource Center (VDRC) (Zacharioudaki and Bray 
2014; Housden et al. 2014). Large-scale mutagenesis and screen projects are easy to 
carry out to discover the novel components or novel regulators of a classic pathway. 
In particular, for those genes that are humongously lethal or semilethal when 
mutated, somatic or germline clonal analysis based on FRT recombination system 
would be a good choice. Other FRT system-derived methods, such as MARCM 
(mosaic analysis with a repressible cell marker) (Lee and Luo 2001), are further 
developed to create mutant cells in a wild-type background tissue, facilitating 
reduction of the inter-organismal variability when analyzing mutant versus wild-
type tissues.

Notch and its ligands are broadly expressed in many tissues/organs in the 
Drosophila. Therefore, it is of great importance to develop tools to directly examine 
where the pathway is activated or inhibited. The current arsenal of genetic and bio-
logical tools makes Drosophila such a valuable model to study the fundamental 
principles of how Notch signaling transduces the signal and how it is regulated in 
different cellular contexts, which can deepen the understanding of its roles in physi-
ological and pathological conditions in humans. Table  4.1 shows the commonly 
used biochemical (antibodies) and genetic (transgenic flies) tools for studying 
Notch signaling in vitro and in vivo.

Further genetic methods include (1) conditional gene expression and silencing 
with the Gal4-UAS system, (2) genome-scale bioinformatics analysis, (3) genomic 
tagging and disruption of genes using CRISPR/Cas9 genome editing for gene 
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activation and inactivation (Yu et al. 2013a, 2014), and (4) advanced imaging tech-
nology, such as light-sheet microscopy (Lu et al. 2019). All these methods and tools 
are likely to further facilitate the use of this sophisticated model to better understand 
the Notch signaling.

It is worth mentioning that Guangzhou Drosophila Stock Center (GDSC), a 
newly established stock center for generating mutants through genome-wide gene 
targeting using CRISPR/Cas9 system, has generated more than 1000 mutant stocks. 
This resource would benefit a lot to those who use Drosophila as model for studying 
Notch signaling and other biological fields.

�The Chromatin Assembly Factor CAF-1

Drosophila CAF-1 was first biochemically identified as a chromatin assembly 
factor about 30 years ago (Smith and Stillman 1989). Drosophila genome has three 
CAF-1-coding genes encoding three subunits, CAF-1 p180, CAF-1 p105, and 
CAF-1 p55, which correspond to human p150, p60, and p48, respectively (Ridgway 
and Almouzni 2000) (Table 4.2). Notably, there are two distinct CAF-1 complexes 
in Drosophila, each with three subunits of p180, p105, and p55 or p180, p75, 
and p55. Among them, p75 is a C-terminally truncated form of p105 in  vivo. 

Table 4.1  Commonly used tools for studying Notch signaling in Drosophila

Target gene reporters
E(spl)mβ 
1.5-lacZ

Enhancer trap of P-LacZ element in E(spl)mβ-locus

vg[BE]-lacZ Enhancer trap of P-LacZ element in vg[BE]-lacZ locus
wg-lacZ Enhancer trap of P-LacZ element in the wg locus
Cut lacZ Enhancer trap of P-LacZ element in the cut locus
Antibodies
Anti-Notch ICD Recognizes amino acids 1791–2504 of Notch intracellular domain (C17.9C6, 

DSHB)
Anti-Delta Recognizes amino acids 190–833 of Dl protein (C594.9B, DSHB)
Anti-Cut Recognizes amino acids 1616–1836 of Cut protein (2B10, DSHB)
anti-Wg Recognizes amino acids 3–468 of Wg protein (4D4, DSHB)
Anti-Hnt Recognizes amino acids 824–1125 of Peb/Hnt (IG9,DSHB)
Tools to perturb or activate Notch pathway
N1 Loss of function of Notch
UAS-NICD Express Notch intracellular domain under UAS control
UAS-Notch RNAi RNAi targeting the Notch receptor
H1 Loss of function of Hairless
Su(H)del47 Loss of function of Su(H)
UAS-Dl Expressing full length Dl under UAS control

All transgenic flies are available from Bloomington Drosophila Stock Center. DSHB indicates 
antibodies available from Developmental Studies Hybridoma Bank, University of Iowa
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Though p105 and p75 have similar functions, p105 is predominantly expressed during 
embryogenesis, while p75 dominates after larval formation (Tyler et al. 2001).

CAF-1 has been biochemically well-characterized to be responsible for nucleo-
some assembly by guiding the histone trafficking and depositing them into chroma-
tin by mediating H3 and H4 dimers onto newly synthesized DNA during DNA 
replication and DNA repair (Burgess and Zhang 2013). Reduction of CAF-1 activ-
ity in culture cells leads to reduced and delayed packaging of the DNA into chroma-
tin, accompanied with DNA replication defects, S-phase arrest, checkpoint 
activation defects in cell cycle, and even cell death (Klapholz et al. 2009; Jiao et al. 
2012; Krude 1995; Collins and Moon 2013). CAF-1 mutant mice exhibit develop-
mental arrest at the embryonic stage with severe alterations in the nuclear organiza-
tion of constitutive heterochromatin (Houlard et al. 2006). In Drosophila, knocking 
out any of the CAF-1 three subunits results in a similar lethal larval phenotype, and 
tissue-specific knockdown of CAF-1 p180 in the eye results in eye developmental 
defects, indicating the CAF-1 complex is also indispensable for the normal develop-
ment in multicellular organism, including Drosophila (Jiao et al. 2012; Song et al. 
2007; Huang et al. 2010; Yu et al. 2013b; Wen et al. 2012; Anderson et al. 2011).

However, genes encoding all three subunits CAF-1 are not essential in yeast 
(Kaufman et al. 1997; Monson et al. 1997; Enomoto and Berman 1998) and plants 
(Exner et al. 2006; Kirik et al. 2006; Endo et al. 2006; Schonrock et al. 2006), with 
the CAF-1 mutant in these species being viable, although mutants also exhibit some 
growth defects. The nonessential role of CAF-1 in unicellular eukaryotes (yeast) 
and plants appears to be inconsistent with the well-established role of CAF-1  in 
nucleosome assembly during DNA replication and DNA repair, an activity that 
might have been expected to be essential for all eukaryotic cells.

Interestingly, emerging evidence reported that CAF-1 p55, the small subunit of 
Drosophila CAF-1, not only functions in the CAF-1 complex but also is a compo-
nent in several chromatin-modulating complexes, such as PRC1 (Jones et al. 1998) 
and NuRD (Campbell et al. 2018), indicating that CAF-1 may have multiple func-
tional roles that are not restricted to acting as a histone chaperone. Moreover, it is 
reasonable to propose that CAF-1 may serve as a protein platform for chromatin 
metabolism that integrates epigenetic regulation cues of gene transcription by 
interacting with chromatin modification machinery or transcriptional factors 
(Yu et al. 2015).

Table 4.2  Evolutionarily conserved subunits of CAF-1 complex

Species Large subunit Medium subunit Small subunit

Homo sapiens p150 p60 p48
Mus musculus p150 p60 p48
Drosophila melanogaster p180 pl05 p55
Schmidtea mediterranea p150 p60 p48
Caenorhabditis elegans Chaf1 Chaf2 Rba1
Saccharomyces cerevisiae Cac1 Cac2 Cac3
Arabidopsis thaliana FAS1 FAS2 MSII
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�Epigenetic Regulation of Notch Signaling by CAF-1

In a search for which signaling pathway is regulated by CAF-1 in Drosophila devel-
opment, Yu et al. found that tissue-specific knockdown of the Drosophila CAF-1 
p105, the medium subunit of CAF-1 complex, results in a notched wing phenotype, 
resembling that of Notch loss-of-function mutations (Yu et al. 2013b). Moreover, 
the notched wing phenotype could be enhanced by combination with loss of func-
tion of Notch, revealing a synergistic genetic interaction between CAF-1 p105 
Notch signaling. This study also establishes a functional connection between CAF-1 
complex and Notch signaling for the first time.

Similar to wing development, eye development defects caused by eye-specific 
knockdown of CAF-1 p105 are also significantly enhanced in heterozygous mutant 
backgrounds of several Notch-positive regulatory components such as Mam (Yu 
et  al. 2013b). Altogether, these results suggest that CAF-1 p105 synergistically 
interacts with the Notch signaling pathway to regulate normal tissue development.

To further confirm that CAF-1 p105 is required for the normal activity of Notch 
pathway, Yu et.al generated a null allele of dCAF-1 p105, namely, CAF-1 p10536, 
and performed clonal analyses in wing discs to investigate the effect of dCAF-1 
p105 null mutation on Notch signaling, by examination of the developmental defects 
and the expression change of Notch target genes in the absence of CAF-1 p105. As 
expected, flies carrying CAF-1 p10536 clones exhibited a notched wing phenotype, 
and the protein expression level of cut and wg, two well-characterized Notch target 
genes, was also significantly decreased in CAF-1 p10536 clones, compared with 
control (Fig. 4.3). The transcriptional level of cut is also significantly downregu-
lated when CAF-1 p105 is depleted. These results indicate that the activity of Notch 
signaling is compromised in the absence of CAF-1 p105 and thus CAF-1 p105 func-
tions as a positive regulator of the Notch signaling pathway by promoting its target 
gene transcription.

As CAF-1 functions as a histone chaperone, it is likely that its reduction may 
trigger dilution of newly assembled nucleosomes at key enhancer elements and 
loosening of chromatin structure, resulting in a more accessible chromatin structure 
for efficient transcription factor binding to their target loci and activation of key 
target genes. However, the CAF-1 p105 specifically regulates the output of Notch 
signaling in the wing disc, since the Hedgehog (Hh) signaling is not affected in 
CAF-1 p105 mutant clone.

Further, it is found that CAF-1 forms a functional complex with NICD and 
Su(H), the core transcriptional factor for Notch target gene expression. And this 
complex directly binds to the enhancer region of one of the Notch target genes, 
E(spl)mβ. The occupancy of Su(H) at Notch target genes is highly increased to effi-
ciently initiate gene transcription when Notch signaling is activated. In the absence 
of CAF-1 p105, the abundance of Su(H) at the E(spl)mβ enhancer region is dramati-
cally decreased, proposing that CAF-1 probably regulates Notch target gene expres-
sion, at least in part, by controlling the accessibility and binding abundance of 
Su(H) to their enhancer regions.
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It is reported that CAF-1 could act as a chromatin platform that is permissive for 
transcription by regulating histone modifications by forming complex with other 
chromatin remodeling complexes (Yu et  al. 2015), and histone H4 acetylation is 
believed to be associated with active promoters of Notch target genes (Giaimo et al. 
2018). As expected, H4ac level in the E(spl)mβ enhancer region is significantly 
reduced in CAF-1 p105 mutant flies. These results reveal that CAF-1 p105 pro-
motes Notch target gene expression by maintaining a high level of histone H4 acety-
lation in the enhancer region of the Notch target genes to establish a local active 
chromatin structure. Interestingly, CAF-1 function in regulating Notch signaling is 
dependent on its integrity as a triple subunit complex. Knockdown of any compo-
nent of CAF-1 complex causes the reduction of cut expression and the notched wing 
phenotype in Drosophila (Yu et al. 2013b). However, there are still open questions 
for how CAF-1 directs the H4 acetylation modification. One possibility is that 

Fig. 4.3  CAF-1-p105 is required for the normal wing development and proper expression of 
Notch target genes cut and wg. (a, b) Induction of CAF-1 p10536 mutant clones leads to a notched 
wing (b), whereas induction of mock clones leads to wild-type wings (a). (c–f′) In CAF-1 p10536 
mutant clones, the expression of Cut (e, e′, GFP-negative area, arrowheads) and Wg (f, f′, 
FP-negative area, arrowheads) is abolished in a cell-autonomous manner, whereas in the mock 
clones the expression of both Cut (c, c′) and Wg (d, d′) is unaffected. (Images are adapted from Yu 
et al. (2013b))
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CAF-1 recruits histone acetylation machinery, such as p300/Nejire, directly or 
indirectly, to change the landscape of local chromatin modification, thus enhancing 
target gene transcription. CAF-1 has functions beyond its classic role in histone 
assembly and the newly established positive role in Notch signaling in wing devel-
opment and plays an essential role in proliferating cells.

However, in contrast to the positive role of CAF-1 on Notch target gene expres-
sion in wing development, a recent study reported that CAF-1 play a negative role 
in regulating Notch signaling in Drosophila ovarian mitotic follicle cells (Lo et al. 
2019). Loss of function of either CAF-1 p105 or CAF-1 p180 caused the increased 
activation of Notch signaling target genes in Drosophila ovarian follicle cells. 
Further, Notch is functionally responsible for these phenotypes observed in both the 
CAF-1 p105- and CAF-1 p180-deficient follicle cells. It is still unclear how CAF-1 
p180 and CAF-1 p150 suppress Notch target gene expression in mitotic follicle 
cells. It is likely that CAF-1 have physical interaction with Su(H), which is known 
to be involved in maintaining the repressive chromatin status for inhibiting Notch 
target gene expression when it is associated with other repressive subunits, such as 
Hairless, Gro, or CtBP (Yu et al. 2015; Cheloufi and Hochedlinger 2017; Yuan et al. 
2016). Thus, the molecular basis for that CAF-1 play a dual role to sustain cell pro-
liferation positively (in imaginal discs) or negatively (in ovarian follicle cells) may 
lie in that CAF-1 recruits different histone modification machineries in imaginal 
discs and follicle cells to regulate Drosophila Notch signaling in a tissue context-
dependent manner.

Two recent studies in mammals confirmed the negative role of CAF-1  in ret-
rotransposon jumping and gene expression. Hatanaka et  al. reported that CAF-1 
mediates repressive histone modifications to protect preimplantation mouse 
embryos from endogenous retrotransposons (Hatanaka et al. 2015). Multiple classes 
of retrotransposons are derepressed in morula embryos when CAF-1 is depleted, 
likely through affecting the histone methylation status, thus influencing local chro-
matin accessibility. The other study found that the p150 and p60, two subunits of 
mammalian CAF-1 complex, are the most prominent chromatin-modulating factors 
during transcription factor-mediated reprogramming of mouse fibroblasts to induced 
pluripotent stem cells (iPS cells) (Cheloufi et al. 2015). Suppression of CAF-1 leads 
to a more accessible chromatin structure at enhancer elements and the increased 
binding of Sox2 to pluripotency-specific targets and activation of associated genes 
during reprogramming (Cheloufi et al. 2015).

Altogether, CAF-1 functions not only as histone chaperone for nucleosome 
assembly but also as an epigenetic regulation switch for regulating Notch signaling 
target gene expression in response to integrated proliferation and differentiation 
signals during animal development. However, CAF-1 does not harbor the histone 
modification enzyme activity; thus it is likely that CAF-1 works together with the 
histone modification machinery (histone methylation, histone acetylation, etc.) to 
regulate Notch signaling activity at the chromatin level through modifying the 
chromatin structure.
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�Epigenetic Regulation of Notch Signaling by Other Epigenetic 
Regulators

In addition to the epigenetic regulation of Notch signaling by the CAF-1 complex, 
this paragraph briefly summarizes the epigenetic regulation of Notch signaling by 
other epigenetic regulators. Several epigenetic regulators that are involved in Notch 
signaling are listed in Table 4.3. Among them, histone acetylation and methylation 
are main executors for epigenetic regulation of gene transcription (Tchasovnikarova 
and Kingston 2018).

Table 4.3  Several epigenetic regulators that are involved in Notch signaling

Epigenetic regulators Molecular activity Functions References

UTX H3K27me3 
demethylase

Negatively regulate 
Notch signaling

Herz et al. (2010)

SIRT1 H4K16 deacetylase Negatively regulates 
Notch signaling

Mulligan et al. (2011)

LSD1/KDM1A H3K4 demethylase Negatively regulates 
Notch signaling

Mulligan et al. (2011); 
Lopez et al. (2016)

CoREST CoREST complex Negatively regulates 
Notch signaling

Lopez et al. (2016)

CoREST CoREST complex Positively regulates 
Notch signaling

Domanitskaya and 
Schupbach (2012)

HDAC1 Histone deacetylase Positively regulates 
Notch signaling

Wang et al. (2018); Mao 
et al. 2017)

HDAC1 Histone deacetylase Negatively regulates 
Notch signaling

Kao et al. (1998); Cunliffe 
(2004); Yamaguchi et al. 
(2005); Wu et al. (2016)

Kdm5A H3K4 demethylase Negatively regulates 
Notch signaling

Liefke et al. (2010); 
Dreval et al. (2019)

Brms1 Histone deacetylase Positively regulates 
Notch signaling

Zhang et al. (2014)

Tet2/3 Methylcytosine 
dioxygenases

Positively regulates 
Notch signaling

Li et al. (2015)

Nipped-A SAGA and Tip60 Positively regulates 
Notch signaling

Gause et al. (2006)

BAP55 SWI/SNF Complex Positively regulates 
Notch signaling

Pillidge and Bray (2019)

p300 Histone 
acetyltransferase

Positively regulates 
Notch signaling

Franz Oswald et al. (2001)

Tip60 Histone 
acetyltransferase

Positively regulates 
Notch signaling

Medgett and Langer 
(1984)

Nurf 301 NURF complex Positively regulates 
Notch signaling

Kugler and Nagel (2010)

Pc PRC1 complex Positively regulates 
Notch signaling

Saj et al. (2010); Tolhuis 
et al. (2006)
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Histone deacetylases are generally associated with transcriptional repressor 
complexes, such as Sin3 (Barnes et  al. 2018), NuRD (Feng and Zhang 2003; 
Ahringer 2000), and CoREST (You et  al. 2001; Domanitskaya and Schupbach 
2012) complexes, and have regulatory functions in various signaling pathways. It is 
generally accepted that HDAC1 forms a transcriptional corepressor complex to 
modify chromatin structure for target gene silencing. For example, HDAC1 physi-
cally interacts with CBF1 (homolog of Su(H) in Drosophila), and treatment of 
HDAC1 inhibitor derepresses Notch target gene ESR-1 expression in mammalian 
cells (Kao et al. 1998). In zebrafish, her4 and her6, two of Notch target genes, are 
upregulated in HDAC1 mutant fish (Cunliffe 2004; Yamaguchi et  al. 2005). 
Furthermore, overexpression of HDAC1 represses the expression of Notch target 
gene Hey2 in mice (Wu et al. 2016). In these contexts, HDAC1 negatively regulates 
Notch signaling. Unexpectedly, opposite to the inhibitory role of HDAC1 in Notch 
signaling, knockdown of HDAC1 causes a notched wing phenotype and reduces 
Notch target gene expression in Drosophila (Wang et al. 2018), suggesting a posi-
tive role of HDAC1 in regulating the Notch pathway during Drosophila wing devel-
opment, although the molecular mechanism behind this remains largely unknown. 
It is highly possible that HDAC1 directly regulates histone deacetylation status at 
the Notch target gene locus. Notably, a recent study reported that HDAC1 could 
activate the Notch signaling pathway to promote metastasis in a similar way (Mao 
et al. 2017).

The complicated regulation network by other epigenetic regulators, such as 
LSD1 (Mulligan et al. 2011; Lopez et al. 2016), Brms1 (Zhang et al. 2014), histone 
acetylase p300 (Franz Oswald et al. 2001), Brahma SWI/SNF chromatin remodel-
ing complex (Pillidge and Bray 2019), UTX (Herz et al. 2010), H3K4 demethylase 
Kdm5A (Liefke et  al. 2010; Dreval et  al. 2019), methylcytosine dioxygenases 
Tet2/3 (Li et al. 2015), SAGA and Tip60 complex (Gause et al. 2006; Medgett and 
Langer 1984), PcG-TrxG complex (Saj et  al. 2010; Tolhuis et  al. 2006), Putzig-
NURF complex (Kugler and Nagel 2010), and many others, may directly influence 
Notch-mediated gene transcription activity at the chromatin level and thus explain, 
at least in part, the pleiotropic effects of Notch in the complex biological processes 
that affect cell growth, differentiation, and cell death.

�Conclusion

The Notch signaling pathway is a highly conserved molecular network that, depend-
ing on the cellular context, acts through the regulation of cell proliferation, differen-
tiation, and apoptosis. In order to better control the expression of Notch target gene 
expression, the Notch signaling must be precisely regulated at different steps in a 
series of developmental events. Epigenetic regulation of Notch signaling by CAF-1 
and other epigenetic regulators plays essential roles in fine-tuning the transcrip-
tional output of Notch signaling to coordinate multicellular organism development. 
It remains an open question as to why and how different epigenetic regulators are 
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involved in mediating different histone modifications status, leading to different 
transcriptional outputs of either gene repression or gene activation in one specific 
signal transduction pathway.
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Chapter 5
Regulation of Proneural Wave Propagation 
Through a Combination of Notch-
Mediated Lateral Inhibition and EGF-
Mediated Reaction Diffusion

Makoto Sato and Tetsuo Yasugi

Abstract  Notch-mediated lateral inhibition regulates binary cell fate choice, result-
ing in salt-and-pepper pattern formation during various biological processes. In 
many cases, Notch signaling acts together with other signaling systems. However, it 
is not clear what happens when Notch signaling is combined with other signaling 
systems. Mathematical modeling and the use of a simple biological model system 
will be essential to address this uncertainty. A wave of differentiation in the 
Drosophila visual center, the “proneural wave,” accompanies the activity of the 
Notch and EGF signaling pathways. Although all of the Notch signaling compo-
nents required for lateral inhibition are involved in the proneural wave, no salt-and-
pepper pattern is found during the progression of the proneural wave. Instead, Notch 
is activated along the wave front and regulates proneural wave progression. How 
does Notch signaling control wave propagation without forming a salt-and-pepper 
pattern? A mathematical model of the proneural wave, based on biological evi-
dence, has demonstrated that Notch-mediated lateral inhibition is implemented 
within the proneural wave and that the diffusible action of EGF cancels salt-and-
pepper pattern formation. The results from numerical simulation have been con-
firmed by genetic experiments in vivo and suggest that the combination of 
Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a 
novel function of Notch signaling that regulates propagation of the proneural wave. 
Similar mechanisms may play important roles in diverse biological processes found 
in animal development and cancer pathogenesis.
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�The Proneural Wave

Notch is evolutionarily conserved throughout the animal kingdom and regulates 
various biological processes (Artavanis-Tsakonas et al. 1999). In many cases, the 
Notch receptor is activated by binding to its membrane-bound ligand, Delta, and 
represses the expression of target genes, including Delta itself (Fig. 5.1a, b). Since 
Delta activates Notch on neighboring cells, these molecules form a feedback loop 
between adjacent cells and establish a binary cell fate through a process called lat-
eral inhibition (Simpson 1990; Collier et al. 1996). Notch-mediated lateral inhibi-
tion plays an essential role in specifying differentiated cells from a group of 
undifferentiated cells in a spatially regulated manner by forming a salt-and-pepper 
pattern (Fig. 5.1c).

Notch-mediated lateral inhibition was discovered through a series of studies 
focusing on sensory bristles, which are part of the peripheral nervous system of 
Drosophila melanogaster (Simpson 1990). Individual sensory bristles are formed 
from sensory organ precursors (SOPs), which are differentiated from undifferenti-
ated epithelial cells by the function of proneural transcription factors of the Achaete-
Scute complex (AS-C) (Fig. 5.1d) (Ghysen et al. 1993). Although AS-C expression 
is widely upregulated in sheets of epithelial cells, only a small number of cells 
become SOPs as a result of Notch-mediated lateral inhibition. In differentiating 
epithelial cells, AS-C upregulates Delta expression, which then represses AS-C 
expression in adjacent cells through Notch signaling (Fig. 5.1a, b) (Kunisch et al. 
1994). AS-C expression is downregulated in cells in which Notch signaling is acti-
vated and Delta expression is reduced. Furthermore, Delta autonomously represses 
Notch function in differentiating cells through cis-inhibition (Fig.  5.1a,  b) (del 
Alamo et al. 2011; Sprinzak et al. 2010). Thus, Delta, Notch, and AS-C form a feed-
back loop between adjacent cells that enables a binary cell fate decision. As a result, 
a small number of epithelial cells are selected as SOPs, while the surrounding cells 
are kept undifferentiated, forming a salt-and-pepper pattern (Fig. 5.1c).

Notch-mediated lateral inhibition is also widely conserved in other developmental 
processes. However, Notch signaling often cooperates with other signaling systems 
and shows behavior that is complex in comparison with that in the classic case of 
sensory bristle formation (Doroquez and Rebay 2006; Dutt et al. 2004; Sundaram 
2005). Within the diverse repertoire of such developmental processes, the waves of 
differentiation found in the developing eye and brain of Drosophila are unique exam-
ples (Heberlein et al. 1993; Ma et al. 1993; Sato et al. 2013; Yasugi et al. 2008).

The development of the retina in flies, fish, and chickens includes waves of 
differentiation that accompany Notch and secreted factors, such as Hedgehog (Hh), 
that trigger neural differentiation (Heberlein et al. 1993; Ma et al. 1993; Neumann 
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and Nuesslein-Volhard 2000; Yang et al. 2009). Previous mathematical models have 
revealed essential roles of Notch signaling in the formation of a salt-and-pepper pat-
tern of photoreceptor neurons (Formosa-Jordan et al. 2012; Lubensky et al. 2011; 
Pennington and Lubensky 2010). The mathematical model of neural differentiation 
in the retina suggests that Delta restricts the propagation of the differentiation wave 
(Formosa-Jordan et al. 2012). However, Notch signaling plays an early role in undif-
ferentiated cells to enable them to acquire a proneural state prior to wave progression 
in the fly retina (Baonza and Freeman 2001; Baker and Yu 1997). Therefore, it is 
technically difficult to address this hypothesis by using the fly retina.
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Fig. 5.1  Molecular mechanisms of proneural wave progression. (a)  Notch signaling between 
adjacent cells mediates the binary cell fate decision. (b) The differentiating cells prevent the neigh-
boring cells from differentiating through Delta/Notch signaling. (c) The process of lateral inhibi-
tion establishes the formation of salt-and-pepper patterns. (d–g) Neural differentiation under the 
control of proneural transcription factors, AS-C and Ato, and diffusible EGF. Sensory organ pre-
cursor (SOP) differentiation of external sensory (ES) organs does not propagate (d). Induction of 
Ato autoregulation by EGF regulates the propagation of chordotonal SOP differentiation (e). Since 
EGF does not induce Ato expression, R1–8 differentiation does not propagate in the retina  (f). 
Induction of AS-C expression by EGF regulates proneural wave propagation (g). (h–k) The pro-
neural wave sweeps across the neuroepithelial (NE) sheet (blue). The NE cells express L’sc (green), 
triggering the differentiation from NEs into neuroblasts (NBs) (red). (h) Schema showing the rela-
tive distributions of the AS-C family (L’sc, Sc, and Ase), Rho and Dl expression, and the activities 
of the EGF and Notch signaling pathways. (i) Wild type. (j, k) In clones mutant for EGF and Notch 
signaling pathways, the proneural wave is eliminated (j) and accelerated (k), respectively
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The wave of differentiation in the developing fly brain is called the “proneural 
wave,” which occurs in the largest component of the fly visual center, the medulla 
(Fig. 5.1i) (Sato et  al. 2013; Yasugi et  al. 2008). The proneural wave progresses 
along the two-dimensional sheet of neuroepithelial cells (NEs) on the surface of the 
developing fly brain, and all of the NEs are sequentially differentiated into neural 
stem cells called neuroblasts (NBs) behind the proneural wave. Notch signaling is 
activated along the proneural wave front, and the wave progression and NB differ-
entiation are accelerated in Notch mutant clones (Fig. 5.1h, k). Because an early 
proneural function of Notch has not been reported in the brain, we can focus on its 
specific function in proneural wave propagation. Therefore, the proneural wave is 
an excellent model system with which to investigate the complex interplay between 
Notch and other signaling systems. To elucidate the dynamics of the interactions 
between Notch and other signaling pathways, we and others have performed inter-
disciplinary studies combining molecular genetics and mathematical modeling and 
focusing on the proneural wave (Sato et al. 2016; Jorg et al. 2019).

EGF and Notch signaling are activated at the proneural wave front and positively 
and negatively regulate wave progression, respectively (Fig. 5.1h, j) (Yasugi et al. 
2010). EGF signaling is evidently essential for proneural wave progression because 
wave progression is completely abolished when EGF signaling is blocked (Fig. 5.1j). 
Because of the evolutionarily conserved genetic cassette containing AS-C, Delta, 
and Notch, it is natural to assume that the proneural wave also accompanies Notch-
mediated lateral inhibition (Ghysen et al. 1993).

However, the roles of Notch signaling in the proneural wave are very unclear 
because there is no salt-and-pepper pattern during proneural wave progression 
(Fig. 5.1i) (Reddy et al. 2010; Yasugi et al. 2008, 2010). Notch signaling appears to 
regulate the speed of proneural wave propagation instead of generating the salt-and-
pepper pattern, because wave progression is accelerated in Notch mutant clones 
(Fig. 5.1k). How does Notch control wave propagation without forming a salt-and-
pepper pattern?

In this book chapter, we summarize the recent advances in our understanding of 
the function of Notch signaling within a complex system that includes multiple 
signal transduction pathways. Although we mainly focus on the proneural wave in 
the developing fly brain, we believe that the essential mechanisms are conserved in 
other biological systems.

�The Link Between Proneural Transcription Factors and Notch 
Signaling

The cell differentiation process of the proneural wave is highly analogous to that of 
SOP development, in which SOPs, which are neural progenitor cells, are selected 
from a group of undifferentiated epithelial cells by the expression of proneural tran-
scription factors in the AS-C, including Achaete (Ac), Scute (Sc), Lethal of Scute 
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(L’sc), and Asense (Ase) (Ghysen et al. 1993). These factors all belong to the basic 
helix-loop-helix (bHLH) transcription factor family. Delta expression in differenti-
ating SOPs under the control of AS-C represses neuronal differentiation in the sur-
rounding cells. Therefore, only a small number of epithelial cells are selected as 
SOPs showing a salt-and-pepper pattern (Fig. 5.1c) (Ghysen et al. 1993; Kunisch 
et al. 1994; Corson et al. 2017).

During proneural wave progression, sheet-like NEs sequentially differentiate 
into NBs as a result of the action of AS-C family proteins (Fig. 5.1g, h). The tran-
sient expression of L’sc among these proteins defines the wave front in which NEs 
differentiate into NBs. AS-C proteins, including L’sc, act redundantly to trigger 
differentiation (Yasugi et al. 2008).

Although L’sc expression is strikingly restricted to the wave front cells, the spe-
cific function of L’sc is unclear, because small deletions of l’sc together with a 
subset of other AS-C family genes show only minor delay in NB differentiation 
(Yasugi et al. 2008). Thus, the functions of the AS-C genes are highly redundant. 
When all AS-C genes are deleted, wave progression is significantly delayed, but 
NBs are eventually differentiated (Yasugi et al. 2008). All of the AS-C transcription 
factors need to dimerize with another bHLH transcription factor, Daughterless (Da), 
to regulate target gene transcription (Cabrera and Alonso 1991). Indeed, wave pro-
gression is significantly delayed in da mutant cells. However, NBs are eventually 
differentiated in the absence of da (Yasugi et al. 2008). Thus, there are unidentified 
additional mechanisms that trigger NB differentiation in the absence of AS-C 
function.

Consistent with the function of Delta and Notch in SOP development, Delta is 
expressed in L’sc-positive differentiating NEs at the wave front (Fig. 5.1h). Thus, 
L’sc and other AS-C proteins most likely upregulate Delta expression at the wave 
front. As a result, Notch signaling is activated in nearby NEs. Thus, the relationship 
between AS-C, Delta, and Notch is highly conserved between SOP development 
and proneural wave progression (Fig. 5.1a).

�The Link Between Proneural Transcription Factors and EGF 
Signaling

The most prominent characteristic of the proneural wave is its propagation along the 
NE sheet, which requires the involvement of EGF signaling (Yasugi et al. 2010). 
EGF plays a central role in controlling proneural wave progression, because the 
EGF ligand is produced and secreted from L’sc-positive wave front cells and acti-
vates EGF signaling in neighboring NEs. Additionally, EGF signaling triggers NB 
differentiation through expression of AS-C proteins, including L’sc, and EGF sig-
naling is mandatory for proneural wave propagation (Fig. 5.1g, h). In the absence of 
the EGF signal, NB differentiation is completely blocked and proneural wave pro-
gression is terminated (Fig. 5.1j).
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EGF signaling plays essential roles during the development of SOPs in the chor-
dotonal organ, a stretch receptor (Fig. 5.1e). Chordotonal SOPs use Atonal (Ato) as 
a bHLH proneural transcription factor, which also dimerizes with Da and triggers 
SOP differentiation (Jarman et al. 1993). Under the control of Ato, SOPs express the 
EGF ligand, which then triggers differentiation of surrounding cells as secondary 
SOPs by augmenting the autoregulation of Ato (Fig. 5.1e) (zur Lage et al. 2003). 
The link between EGF and Ato enables the propagation of chordotonal SOP dif-
ferentiation in the leg disc, a phenomenon very similar to the proneural wave.

Similar developmental processes occur during photoreceptor differentiation in 
the fly retina. Ato triggers the differentiation of the primary photoreceptor R8 and 
recruits the differentiation of the other photoreceptors, R1–7, through EGF signal-
ing (Fig. 5.1f) (Jarman et al. 1994; Freeman 1996). In the retina, the progression of 
the wave of differentiation is essentially driven by Hh (Heberlein et al. 1993; Ma 
et al. 1993). Although EGF signaling is involved in the differentiation of R1–7 cells 
adjacent to R8, Ato function is not cell autonomously required for R1–7 differentia-
tion (Jarman et  al. 1994; Freeman 1996). In contrast to the case of chordotonal 
SOPs, EGF signaling does not trigger R1–7 differentiation through Ato in the retina. 
As a result, R1–7 differentiation does not propagate and is restricted to the cells near 
R8. These observations suggest that EGF signaling alone is not sufficient for propa-
gation of the wave of differentiation (Fig. 5.1f).

The proneural wave may involve a mechanism similar to that involved in the 
propagation of chordotonal SOPs. Instead of Ato, AS-C may be linked with EGF 
signaling. Since EGF signaling has been shown to trigger NB differentiation by 
upregulating AS-C proneural transcription factors (Yasugi et al. 2010), we assume 
that EGF directly activates AS-C expression (Fig. 5.1g). In Drosophila, one of the 
major EGF ligands is Spitz (Spi), a membrane-bound ligand that is cleaved by the 
metalloprotease Rhomboid (Rho). Upon Rho expression, membrane-bound Spi 
(mSpi) is processed into the secreted active form, sSpi, which then binds to EGF 
receptor (EGFR) and activates EGF signaling (Urban et al. 2001). We assume that 
AS-C activates EGF signaling by upregulating the transcription of Rho, because 
inactivation of AS-C function results in reductions in EGF signaling (Sato et  al. 
2016). Thus, mutual regulation between AS-C and EGF signaling is the core mecha-
nism of proneural wave propagation (Fig. 5.1g).

�Establishing a Mathematical Model of the Proneural Wave

Extensive genetic screening has revealed that the Jak/Stat and Hippo signaling path-
ways play essential roles in proneural wave progression in addition to the EGF and 
Notch pathways (Yasugi et al. 2008; Kawamori et al. 2011). We assume that we 
have already identified all of the signaling systems essential for proneural wave 
progression. Among these four signaling systems, the EGF and Notch systems are 
activated at the wave front (Fig. 5.1h). Therefore, we initially focused on the roles 
of EGF and Notch.
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As discussed above, Notch-mediated lateral inhibition established by the feed-
back loop of AS-C, Delta, and Notch is evolutionarily conserved and is observed in 
many biological processes (Ghysen et  al. 1993). Therefore, this feedback loop 
should be conserved in the proneural wave.

On the basis of these biological observations, we established a mathematical 
model containing four variables (Fig. 5.2a, b). In this model, E is a composite vari-
able for the EGF ligand concentration and EGF signaling. Note that the behavior of 
the model is essentially the same when diffusion of the EGF ligand and activation 
of EGF signaling are considered separately. The rate of change in E is influenced by 
its diffusion (deΔE;  Δ = (∂2/∂x2) + (∂2/∂y2)) because the EGF ligand diffuses and 
activates EGF signaling in surrounding cells. E is reduced by degradation (keE) 
because all molecules are degraded, and EGF ligands and EGF signaling compo-
nents should also be degraded proportionally to E.

The variables N and D are Notch signaling activity and Delta expression, respec-
tively, and are reduced by degradation (knN and kdD). When we consider the lateral 
inhibition mediated by Notch and Delta, Notch signaling in the ith and jth cell (Ni,j) is 
activated by Delta expressed in the adjacent lth and mth cells (trans-Dl; dtDl,m) and 
inhibited by Delta expressed in the same ith and jth cell (cis-Dl; dcDi,j) (del Alamo et al. 
2011; Sprinzak et al. 2010). When cis-inhibition is stronger than trans-activation, Ni,j 
may have a negative value. The positive and negative values of Notch signaling corre-
spond to the functions of the transcription factor Su(H) as an activator and repressor 
downstream of Notch signaling, respectively (Yuan et al. 2016). Alternatively, the term 
of cis-inhibition can be -dcDi,jNi,j to maintain Ni,j nonnegative (Tanaka et al. 2018).

A is a relatively abstract variable indicating the state of differentiation (A = 0 in 
undifferentiated NEs, A = 1 in differentiated NBs), which is closely related to the 
expression levels of AS-C proteins, including L’sc, Sc, and Ase. These proteins are 
expressed near the proneural wave front and act redundantly to regulate NB differ-
entiation (Egger et al. 2007; Orihara-Ono et al. 2011; Yasugi et al. 2008). A is upreg-
ulated by E but downregulated by N, because AS-C expression is positively and 
negatively regulated by E and N, respectively (Fig. 5.2a, b). Secreted EGF ligands 
and Delta are produced only in undifferentiated NEs. Once the cells have differenti-
ated into NBs, the cell type is completely switched and the cells start producing 
multiple types of neurons inside the brain (Fig. 5.1h) (Li et al. 2013; Suzuki et al. 
2013). Because NB differentiation is an irreversible process, the state of differentia-
tion must be maintained in differentiated NBs (A = 1). This maintenance was incor-
porated into the model by setting the rate of change in A to ea (1 − A) max{E − N, 0}. 
When N is greater than E, the value of E − N is regarded as 0 to reflect a lack of 
dedifferentiation of NB cells (Fig. 5.2b).

AS-C triggers the expression of Dl (Kunisch et al. 1994). Loss of AS-C function 
downregulates EGF signaling activity (Sato et al. 2016). Thus, A upregulates E and 
D. We included the EGF and Delta production terms ae A (1 − A) and ad A(1 − A), 
respectively, to reflect that the production of these proteins is positively regulated 
by A when the cells are undifferentiated. These terms recapitulate the in vivo situa-
tion in which the EGF ligand and Delta are produced only in wave front cells but not 
in differentiated NBs (Fig. 5.1h).
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For simplicity, the terms for EGF autoregulation, EGF activation by Notch, and 
Delta upregulation by EGF were omitted from the original mathematical model 
(Sato et al. 2016). We have demonstrated that proneural wave progression in various 
mutant backgrounds can be reproduced even in the absence of these terms.

�Phenomenological Versus Mechanistic Models

Mathematical modeling is an essential method with which to address complex sys-
tems that include multiple signaling systems. We can sometimes use a phenomeno-
logical model that recapitulates the behavior of a system without considering the 
detailed molecular mechanisms included in the system. Even if it is not based on 
real molecular mechanisms, such a phenomenological model provides fruitful bio-
logical suggestions. However, we can gain realistic biological insights only from a 
mechanistic model in which each one of the equations is based on a real molecular 
mechanism.

Although we tried to establish a mechanistic model of the proneural wave, it is 
virtually impossible to mechanistically model the process of cell differentiation, 
because differentiation is a very complex nonlinear process, which includes many 
genetic factors that induce differentiation and epigenetic factors that change the 
global state of the chromosomes. Nevertheless, it is widely accepted that the char-
acteristics of cells are irreversibly and dramatically changed upon differentiation. 
We therefore assume that the expression level of AS-C is directly related to the state 
of differentiation, A, and that EGF (E) and Delta (D) increase only when NEs are 
being differentiated (0 < A < 1) (Sato et al. 2016). Indeed, a variable for the state of 
differentiation has been commonly used in other mathematical biological studies 
(Jorg et al. 2019; Corson et al. 2017).

In contrast to the case in the Jorg model, EGF (E) does not propagate on its own 
in our model. According to the biological observations discussed above, mutual 
regulation between EGF and AS-C is the core mechanism of proneural wave propa-
gation (Fig. 5.1g).

Fig. 5.2  (continued)  production rate, A and N show fluctuations in silico. (e, f) When EGF signal-
ing is partially reduced in vivo, L’sc expression (arrows) and Notch activity (arrowheads) become 
stochastic. (g) AS-C expression becomes uniform and stochastic when EGF signaling is enhanced 
and reduced, respectively. (h, i) Phase diagrams of the 4-component model. Acceleration of wave 
progression in Notch mutant clones is observed in a wide range of parameter settings (h). Salt-and-
pepper patterns are observed when the standard deviation of N is increased within the white or black 
dotted lines. Orange dotted lines indicate the area in which Notch signaling and EGF signaling are 
roughly equivalent. (j) Notch mutant clones are indicated by white dotted lines. E is activated when 
the proneural wave encounters Notch mutant cells (arrowhead), but is quickly inactivated (arrow). 
(k) EGF signaling (white) is transiently upregulated when the proneural wave encounters Su(H) 
mutant cells (arrowhead), but is eventually downregulated (arrow)
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Our model is not stable when A = 0. Even a very small amount of noise added to 
E causes spontaneous differentiation that propagates the entire NE field (Tanaka 
et al. 2018). If we allow phenomenological modeling, it is possible to add an artifi-
cial term to the model to avoid such spontaneous differentiation. For example, a 
nonlinear reaction term, which has a small negative value when E has a small non-
negative value, would make the model resistant to noise because small fluctuations 
in E suppress further increases in E (Jorg et al. 2019). This is a common strategy for 
adding noise resistance to a model. Instead of artificially manipulating the model, 
we added noise resistance in a mechanistic manner by including Jak/Stat, a signal-
ing system that has been shown to suppress NB differentiation by augmenting Notch 
signaling (Fig. 5.1h, i) (Yasugi et al. 2008; Tanaka et al. 2018). Since Jak/Stat sig-
naling constantly suppresses increases in A even in the presence of noise related to 
E, the model clearly becomes resistant to noise. Importantly, the noise-canceling 
effect of Jak/Stat has been experimentally reproduced by mildly reducing Stat activ-
ity through RNA interference (RNAi) (Tanaka et al. 2018). This is a good example 
of a mechanistic model revealing a new biological mechanism.

�The Mathematical Model Reproduces the Essential Behaviors 
of the Proneural Wave

Our mathematical model reproduces the progression of the proneural wave in wild-
type and various mutant conditions (Fig.  5.1i–k) (Sato et  al. 2016). In the EGF 
mutant area, wave progression and NB differentiation disappear autonomously 
(Fig. 5.1j). In contrast, wave progression is accelerated in Notch and Delta mutant 
cells (Fig. 5.1k). Thus, the simple combination of EGF-mediated reaction diffusion 
and Notch-mediated lateral inhibition is sufficient to reproduce the essential behav-
iors of the proneural wave.

Although the model explicitly includes the lateral inhibition system, it repro-
duces wave propagation in the absence of a salt-and-pepper pattern (Fig. 5.2c). The 
lack of a salt-and-pepper pattern can be explained by the diffusible action of 
EGF. For simplicity, imagine that AS-C is activated in a small number of cells show-
ing a salt-and-pepper pattern (Fig. 5.2g, top). In this context, EGF is produced from 
AS-C-positive cells and diffuses to neighboring undifferentiated cells. As a result, 
AS-C is upregulated in all NEs, obscuring the salt-and-pepper pattern (Fig. 5.2g, 
bottom).

If EGF counteracts salt-and-pepper pattern formation, reductions in EGF pro-
duction should reproduce the formation of the salt-and-pepper pattern (Fig. 5.2g). 
This idea was tested by decreasing EGF production in the computer simulation, 
which resulted in salt-and-pepper-like fluctuations in AS-C and Notch (Fig. 5.2d). 
However, it will be important to test if this idea is true in vivo. Complete loss of 
EGF signaling eliminates proneural wave propagation (Fig. 5.1j) (Yasugi et  al. 
2010). We found a condition in which a partial reduction in EGF signaling caused 
salt-and-pepper-like fluctuations in L’sc expression and Notch activity 
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(Fig. 5.2e, f) (Sato et al. 2016). Although EGF signaling was uniformly reduced, 
the expression of L’sc and Notch activity became stochastic.

Theoretically, AS-C expression and Notch activity should become complemen-
tary as a result of the bistable nature of lateral inhibition (Fig. 5.1a). AS-C is upregu-
lated in differentiating cells, while Notch is activated in adjacent undifferentiated 
cells. Importantly, this complementary pattern was also reproduced, as demon-
strated by L’sc and Notch activity upon a partial reduction in EGF signaling 
(Fig. 5.2f, arrows and arrowheads), suggesting that Notch-mediated lateral inhibi-
tion is indeed implemented in the proneural wave in vivo.

Unfortunately, even in the presence of fluctuating L’sc expression, NBs were 
uniformly formed behind the proneural wave, as demonstrated by the expression of 
Dpn, an NB marker (Sato et al. 2016). As discussed earlier, NB differentiation is 
delayed but is eventually accomplished in the absence of AS-C activity (Yasugi 
et al. 2008). The final pattern of NB differentiation may be rescued by unidentified 
mechanisms.

Prior to the development of the mathematical model, it was not clear if Notch-
mediated lateral inhibition was implemented in the proneural wave in vivo. As 
shown above, our model suggested that a simple combination of EGF diffusion and 
Notch-mediated lateral inhibition is sufficient to explain the diverse behavior of the 
proneural wave. Furthermore, our model predicted that a partial reduction in EGF 
signaling would cause the salt-and-pepper pattern. We validated this prediction by 
manipulating EGF signaling in real fly brains (Sato et al. 2016). Thus, molecular 
genetics studies that prove the mathematical prediction verify the validity of the 
mathematical model and provide new biological findings.

�Two Distinct Functions of Notch Signaling

The above results indicate that Notch signaling has two distinct functions: regula-
tion of wave progression speed and formation of the salt-and-pepper pattern. In the 
fly brain, the former is prominent but the latter is obscure. Extensive numerical 
simulations using more than 4000 parameter settings reproduced these two distinct 
outcomes (Fig. 5.2h, i) (Sato et al. 2016). Importantly, repression of AS-C expres-
sion was the only direct output of Notch signaling in our model (Fig.  5.2a). 
Nevertheless, the control of wave speed by Notch occurred over a wide range of 
parameter settings (Fig.  5.2h), while the salt-and-pepper pattern formation was 
restricted to a very narrow range of parameters (Fig. 5.2i). The result also indicates 
that the salt-and-pepper pattern is not formed when the magnitudes of EGF and 
Notch signals are roughly equivalent. This finding is consistent with in vivo obser-
vations that the salt-and-pepper pattern is hardly detectable in wild-type brains 
(Fig. 5.2e). Thus, we do not need to assume two distinct outputs of Notch signaling 
to explain its two distinct functions. Since the model is sufficient to reproduce the 
two distinct Notch functions, the mechanisms that differently control the dual Notch 
functions will be revealed by mathematical studies in the future.
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�Using the Model to Solve the Paradox of the Notch Mutant 
Phenotype

Proneural wave progression is accelerated in clones of cells in which Notch signal-
ing is mutated (Fig. 5.1k) (Reddy et al. 2010; Yasugi et al. 2010). In addition, EGF 
signaling is also abolished in Notch mutant clones. On the other hand, EGF signal-
ing is essential for proneural wave propagation in vivo (Fig.  5.1j) (Yasugi et  al. 
2010). If EGF signaling is lost in Notch mutant clones, the proneural wave should 
be eliminated because EGF is essential for wave progression. However, the proneu-
ral wave is accelerated in Notch and Delta mutant clones (Fig. 5.1k) (Reddy et al. 
2010; Yasugi et al. 2010).

Results obtained with Delta EGF double mutant clones suggest that EGF signal-
ing plays a key role in this paradoxical phenomenon. The wave is accelerated in 
Delta mutant clones. However, this phenotype is suppressed and wave progression 
is abolished in Delta EGF double mutant clones in vivo (as in Fig. 5.1j) (Yasugi 
et al. 2010). Simultaneous removal of Notch and EGF causes essentially the same 
result in numerical simulations (Fig. 5.2j) (Sato et al. 2016).

Therefore, we focused on the behavior of EGF signaling in the Notch mutant area 
in silico. Interestingly, the value of E was significantly elevated at the wave front 
within the Notch mutant area, but it was quickly diminished behind the wave front 
(Fig.  5.2j, arrow). Note that the value of E at the wave front in the Notch clone 
(shown by white dotted lines) was comparable to that in the control area (Fig. 5.2j, 
arrowhead). Thus, when Notch activity was instantaneously abolished in the Notch 
mutant area, the EGF activity was essentially unchanged at first. Because the time 
difference for A is positively regulated by the value of E − N in our model (Fig. 5.2b), 
NB differentiation is accelerated if N tends to be zero, while E remains unchanged. 
The temporal increase in the value of E − N at the wave front causes the wave accel-
eration (Fig. 5.2j).

It was important to confirm whether the above explanation was applicable to the 
in vivo situation. In Su(H) mutant clones, in which Notch signaling is eliminated, 
the proneural wave was accelerated, as demonstrated by visualization of L’sc 
expression (Fig. 5.2k, left). As reported previously, EGF signaling was abolished in 
the mutant clone behind the wave front (Fig.  5.2k, arrow). However, significant 
EGF signal activity as strong as that in neighboring control wave front cells was 
found at the mutant wave front (Fig.  5.2k, arrowhead). Thus, the mathematical 
model recapitulates proneural wave acceleration in Notch signaling mutant clones 
and clearly explains the hidden mechanism (Sato et al. 2016).

�Expanding the Roles of Notch to Other Biological Phenomena

Notch signaling plays diverse roles when combined with other signaling systems 
(Doroquez and Rebay 2006; Dutt et  al. 2004; Sundaram 2005; Kageyama et  al. 
2012; Kulesa et al. 2007). When these signaling systems form multiple feedback 
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loops and demonstrate complex behaviors such as wave propagation or oscillation, 
mathematical modeling based on a mechanistic view point is essential to understand 
the core mechanism of the system behavior.

There are many examples of the interplay among multiple signaling systems 
during development. In the developing cerebral cortex, the oscillatory behavior of 
Notch signaling in neural progenitor cells is important for cell fate determination 
(Imayoshi et al. 2013). During this process, Notch signaling seems to regulate lat-
eral inhibition. Additionally, the combined action of Notch and EGF maintains neu-
ral stem cells and neural progenitor cells (Aguirre et al. 2010). Similarly, vertebrate 
segmentation is controlled by the interplay between Notch and FGF signaling path-
ways (Kageyama et al. 2012). Notch signaling controls the synchronization between 
adjacent cells and regulates boundary formation. In contrast, Notch-mediated lat-
eral inhibition causes desynchronization of NB differentiation between neighboring 
cells and negatively regulates NB formation during proneural wave progression 
(Sato et al. 2016). Thus, the roles of Notch signaling in the proneural wave appear 
to be the opposite of those observed in vertebrate segmentation.

The interplay between Notch and other signaling systems may also play impor-
tant roles in cancer pathogenesis. The cross talk between Notch and EGF plays 
essential roles in lung and breast cancers (Pancewicz-Wojtkiewicz 2016; Baker 
et al. 2014). Understanding the cross talk of these pathways in cancer pathogenesis 
will be essential to improve and optimize cancer therapy in the future.

By using a mathematical model based on biological evidence, we found that a 
simple combination of Notch-mediated lateral inhibition and EGF-mediated 
reaction diffusion reproduced the complex behavior of the proneural wave. The key 
results predicted by the mathematical model were proven by molecular genetic 
experiments. Thus, mathematical modeling can be a powerful driving force for 
biological research. The use of similar interdisciplinary approaches may be essen-
tial to elucidate and target the core mechanisms of complex biological phenomena 
in animal development and cancer pathogenesis.
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Chapter 6
A Nucleolar Protein, Nepro, Is Essential 
for the Maintenance of Early Neural Stem 
Cells and Preimplantation Embryos

Tetsuichiro Saito

Abstract  Notch signaling is required for maintaining neural stem cells (NSCs) in 
the developing brain. NSCs have potential to give rise to many neuronal types in the 
early telencephalon, and the potential decreases as embryonic development pro-
ceeds. Nepro, which encodes a unique nucleolar protein and is activated down-
stream of Notch, is essential for maintaining NSCs in the early telencephalon. 
Nepro is also expressed at basal levels and required for maintaining the preimplan-
tation embryo, by repressing mitochondria-associated p53 apoptotic signaling. 
Notch signaling also controls dendritic complexity in mitral cells, major projection 
neurons in the olfactory bulb, showing that many steps of neural development 
involve Notch signaling.

Keywords  Mib1 · Maml1 · Nepro · Hes1 · Neural stem cell · Radial glia · Neuron 
· Dendrite · Neocortex · Telencephalon · Blastocyst · Morula

�Development of the Neocortex

NSCs are defined as cells that are capable to self-renew and give rise to both glial 
cells and at least one type of neurons. The mammalian neocortex is the center of 
higher cognitive functions and contains many types of neurons in a six-layered 
structure (Tasic et al. 2016, 2018; Saunders et al. 2018), which differentiate from 
spatially and temporally distinct populations of NSCs. The vast majority of neurons 
in the neocortex are projection neurons, which are excitatory and glutamatergic. 
They are produced from NSCs in the ventricular zone (VZ) of the dorsal telen-
cephalon and migrate radially. The other neurons are GABAergic interneurons, 
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which are generated from NSCs in the ventral telencephalon and migrate tangentially 
(Lodato and Arlotta 2015).

At the beginning of telencephalon development, neuroepithelial cells divide 
symmetrically to increase their numbers. At around mouse embryonic (E) 9.5, they 
convert to radial glial cells, which function as NSCs at early stages. In the dorsal 
telencephalon, each NSC divides asymmetrically to give rise to a NSC and a neuron 
or a basal progenitor, which divides symmetrically to form two neurons. Those 
neurons migrate into the cortical plate (CP) using radial glial fibers as scaffolds. 
Early-born neurons occupy low layers of the CP, and later-born neurons migrate 
into more superficial layers so that layers are sequentially formed from the layer VI 
to layer II. NSCs change their potential as embryonic development proceeds. Early 
NSCs are competent to generate neurons of all layers, and NSCs gradually lose the 
competence to generate neurons of lower layers (McConnell 1988; Frantz and 
McConnell 1996; Mizutani and Saito 2005). A subpopulation of NSCs become qui-
escent between E13.5 and E15.5 and are reactivated at postnatal stages to give rise 
to adult NSCs, which continue to produce neurons in restricted areas such as the 
hippocampus throughout life (Fuentealba et al. 2015; Furutachi et al. 2015). RGCs 
at later stages, which are no longer NSCs, produce only glial cells such as astrocytes 
(Dwyer et al. 2016). Therefore, the maintenance of NSCs is essential for generating 
the diversity of many cell types and for the function of the neocortex.

�Notch Signaling Is Required for the Maintenance of NSCs

Notch signaling plays a pivotal role in the maintenance of NSCs (Homem et  al. 
2015). Misexpression of a constitutive active form of Notch (caNotch) inhibits neu-
ronal differentiation and maintains NSCs in the dorsal telencephalon (Gaiano et al. 
2000; Saito and Nakatsuji 2001). caNotch-misexpressing NSCs continue cell divi-
sion in the VZ and resume generating neurons after switching off caNotch (Mizutani 
and Saito 2005). The neurons generated from the NSCs that did not produce early-
born neurons by caNotch show the same characters of later-born neurons, indicating 
that the potential of NSCs decreases with embryonic development, despite produc-
ing no neurons (Mizutani and Saito 2005).

NSCs receive ligands such as Dll1 from basal progenitors and neurons, leading 
to the cleavage of the intracellular domains of Notch receptors, which enter the 
nucleus, form a complex with Rbpj and a coactivator Mastermind-like (Maml), and 
activate transcription of target genes, such as Hes1 (Guruharsha et al. 2012). Hes1 
represses proneural genes, such as Ascl1, thereby inhibiting neurogenesis and main-
taining NSCs. Mindbomb homolog 1 (Mib1), which ubiquitinates the intracellular 
domains of Notch ligands, is required for their function (Bray 2016).

At an early stage, NSCs themselves express Dll1 in an oscillatory manner, which 
activates Notch signaling in neighboring NSCs for their maintenance (Shimojo 
et al. 2016).
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�Both Nepro and Hes Are Required for the Maintenance 
of Early NSCs

Nepro is expressed at high levels in NSCs of the brain only at early stages (E9.5 to 
E12.5) and activated downstream of Notch (Muroyama and Saito 2009; Saito 2012). 
Misexpression of caNotch inhibits neuronal differentiation, thereby keeping trans-
fected enhanced yellow fluorescent protein (EYFP)-positive cells as NSCs in the 
VZ (Fig. 6.1a). Cotransfection of a Nepro-specific siRNA or a dominant negative 
form of Nepro (dnNepro) overrides the effect of caNotch, causing differentiation of 
many neurons in the CP (Fig. 6.1b, c). This finding indicates that Nepro is required 
for the maintenance of NSCs downstream of Notch.

On the other hand, Nepro is not sufficient for maintaining NPCs in the absence 
of Notch signaling. A dominant negative form of MAML1 (dnMAML1) blocks 
Notch signaling, leading to precocious differentiation of NSCs into neurons in 
the CP (Fig.  6.2b), compared with the transfection of EYFP alone as a control, 
which labels both NSCs in the VZ and differentiated neurons in the CP (Fig. 6.2a). 

Fig. 6.1  Nepro is required 
for the maintenance of 
NSCs downstream of 
Notch. The neocortex 
2 days after transfection of 
EYFP and caNotch (a), 
with Nepro-specific siRNA 
(b) or dnNepro (c) at 
E11.5. (Reproduced from 
Muroyama and Saito 2009)

Fig. 6.2  Both Hes and Nepro are essential for the maintenance of early NSCs. The neocortex 
2 days after transfection of EYFP as a control (a) and cotransfection of EYFP and dnMAML1 (b), 
with Hes1 (c), or Nepro (d), Hes1 plus Nepro (e) at E11.5. Scale bar: 50 μm. (Reproduced from 
Muroyama and Saito 2009)
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When Notch signaling is blocked, cotransfection of both Hes1 and Nepro efficiently 
maintains NSCs in the VZ (Fig. 6.2e), whereas transfection of either Hes1 or Nepro 
is not sufficient (Fig. 6.2c, d). Similar phenotypes are observed when Notch signal-
ing is blocked by a γ-secretase inhibitor, which inhibits the cleavage and activation 
of Notch (Muroyama and Saito 2009).

Overexpression of Nepro inhibits expression of proneural genes, such as Ascl1 
and Neurog2, and neurogenesis at early stages but not later stages (later than E15.5), 
whereas caNotch and Hes1 inhibit both the early and later stages (Muroyama and 
Saito 2009), suggesting that Nepro requires another unknown early factor (X) for its 
function (Fig. 6.3).

�Nepro Is also Required for the Maintenance 
of the Preimplantation Embryo

Whereas Nepro+/− mice grow normally and are fertile, Nepro−/− embryos do not 
form blastocysts, causing apoptotic cell death at the morula stage (Hashimoto et al. 
2015). In Nepro−/− embryos, cytochrome c release and caspase-3 cleavage are acti-
vated concomitant with the increase of mitochondria-associated p53, suggesting 
that mitochondria-associated p53 apoptotic signaling is repressed downstream of 
Nepro in the preimplantation embryo (Fig. 6.4).

Fig. 6.3  Schematic illustration of the cascades to maintain NSCs in developing dorsal telencepha-
lon at early stages and stages later than E15.5. Early NSCs give rise to neurons of all layers in the 
neocortex, whereas E15.5 NSCs generate only neurons of upper layers
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Nepro is expressed, albeit at low levels, from the two-cell to blastocyst stages in 
the preimplantation embryo (Fig. 6.5a–f). The Nepro protein is localized in nucleo-
lus precursor bodies (NPBs) or nucleoli, which are labeled with a typical nucleolar 
protein NPM1 (alias nucleophosmin 1) (Fig. 6.5g–l).

The size of NPBs and nucleoli is smaller, and their number per nucleus is increased 
in Nepro−/− embryos from the four-cell to morula stages, suggesting that the forma-
tion of the NPB and nucleolus is abnormal in Nepro−/− embryos. Moreover, 18S rRNA 

Fig. 6.4  Schematic 
illustration of Nepro 
cascades in the 
preimplantation embryo 
and early NSCs

Fig. 6.5  Nepro expression 
and localization at 
preimplantation stages. 
Images of differential 
interference contrast (a–c), 
fluorescent in situ 
hybridization of Nepro 
(d–f) and immunostaining 
of Nepro (g–i) and NPM1 
(j–l) in the nucleus at the 
two-cell (left), eight-cell 
(middle), and blastocyst 
(right) stages. Scale bars: 
20 μm. (Reproduced from 
Hashimoto et al. 2015)
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and rpS6, which are well-studied components of the ribosome, are greatly diminished 
in the cytoplasm of Nepro−/− embryos at the morula stage, suggesting that Nepro is 
required for the function of the nucleolus.

Nepro expression is not affected by dnMAML1 in preimplantation embryos, 
suggesting that Nepro is not downstream of Notch at preimplantation stages.

�Notch Signaling Controls Dendritic Complexity of Mitral 
Cells in the Olfactory Bulb

The direct role of Notch signaling in dendrites of neurons was not clear, because 
Notch controls many steps from NSCs to neuronal differentiation, including inhibi-
tion of neuronal differentiation and migration of postmitotic neurons along radial 
glial fibers (Pierfelice et al. 2011). To directly examine the function of Notch signal-
ing in dendrites, it has been perturbed only in mitral cells that finished migration and 
settled in the olfactory bulb, by using a conditional misexpression method, com-
bined with in vivo electroporation (Saito and Nakatsuji 2001; Saito 2006) and the 
Tet-controlled gene expression system (Sato et al. 2013). Whereas misexpression of 
caNotch reduces their dendritic complexity, dnMAML1 increases, suggesting that 
dendritic complexity is controlled by Notch signaling in mitral cells (Muroyama 
et  al. 2016). In vitro cultured mitral cells reduce dendritic complexity by the 
treatment of a Notch ligand Jag1. Moreover, dendritic complexity is affected by a 
dosage of Maml1. Many Maml1+/− pups are defective in homing behavior, which is 
implicated in olfactory information processing. Furthermore, dendritic complexity 
is increased by inhibiting the activity of Notch ligands with a dominant negative form 
of Mib1 in olfactory sensory neurons, indicating that olfactory sensory axons acti-
vate the Notch pathway and control dendrites in their target postsynaptic neurons, 
mitral cells (Muroyama et al. 2016).

�Discussion

Many steps of neural development are controlled by Notch signaling. Its functional 
analyses should be spatially and temporally well designed to dissect individual 
steps. There are contradictory reports for Notch signaling in dendritic complexity of 
neocortex neurons (Sestan et al. 1999; Redmond et al. 2000; Breunig et al. 2007), 
probably because Notch signaling was not examined specifically in a particular step 
or cell type of interest, despite many neuronal types. The role of Notch signaling in 
dendrites has been clarified, by focusing on mitral cells in the olfactory bulb, which 
has a simpler structure and fewer neuronal types than the neocortex. It remains to be 
determined whether Notch-controlled dendritic complexity is specific to mitral cells 
or common to other neuronal types. Dendritic morphologies of neurons are impor-
tant for information processing and characteristic of each neuronal type. The control 
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of mitral cell dendritic complexity by olfactory sensory axons is the first finding that 
axons initiate Notch signaling in their postsynaptic dendrites. Many molecules of 
axons, such as neurotransmitters and neurotrophins, affect dendrites (Lefebvre 
et al. 2015). It will be important to learn how these molecules interact with Notch 
signaling.

Nepro is necessary for two types of multipotent stem cells: blastomeres and early 
NSCs. Another nucleolar protein, GNL3 (alias nucleostemin), which is a GTP bind-
ing protein, is highly expressed in many types of stem cells and cancer cells and is 
required for their proliferation (Tsai 2014). GNL3−/− embryos do not form blasto-
cysts, similar to Nepro−/−. The function of GNL3, however, will be different from 
that of Nepro in the preimplantation embryo, because GNL3 is involved in genome 
maintenance in self-renewal of cells (Tsai 2014). GNL3 homologs are found in not 
only animals but also plants and fungi, in contrast to no invertebrate homolog of 
Nepro. Each vertebrate has a single Nepro homolog.

The temporal change of NSC’s potential is a key to generate cellular diversity 
in the neocortex. Mechanisms underlying the change are still poorly understood. 
The expression and function of Nepro divide the states of NSCs at least into two: 
Nepro-dependent early and Nepro-independent later ones (Fig. 6.3). It remains to be 
determined whether Nepro is involved in multipotency of early NSCs.

In contrast to the preimplantation embryo, mitochondria-associated p53 apop-
totic signaling appears not to be activated by the Nepro-specific siRNA or dnNepro 
in early NSCs, suggesting that cascades downstream of Nepro differ between the 
preimplantation embryo and early NSCs (Fig.  6.4). Nepro is expressed at lower 
levels in the preimplantation embryo than early NSCs, suggesting that Nepro is 
expressed at basal levels in the preimplantation embryo and activated by Notch 
signaling in early NSCs.

�Conclusion

Notch signaling controls a series of events from the onset of neuronal differentiation 
to dendrite morphogenesis. A Notch effector Nepro is essential for the maintenance 
of early NSCs and preimplantation embryos. The function and regulation of Nepro 
differ between those two types of multipotent stem cells.
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Chapter 7
Role of Notch Signaling in Leg 
Development in Drosophila melanogaster

Sergio Córdoba and Carlos Estella

Abstract  Notch pathway plays diverse and fundamental roles during animal 
development. One of the most relevant, which arises directly from its unique mode 
of activation, is the specification of cell fates and tissue boundaries. The develop-
ment of the leg of Drosophila melanogaster is a fine example of this Notch function, 
as it is required to specify the fate of the cells that will eventually form the leg joints, 
the flexible structures that separate the different segments of the adult leg. Notch 
activity is accurately activated and maintained at the distal end of each segment 
in response to the proximo-distal patterning gene network of the developing leg. 
Region-specific downstream targets of Notch in turn regulate the formation of the 
different types of joints. We discuss recent findings that shed light on the molecular 
and cellular mechanisms that are ultimately governed by Notch to achieve epi-
thelial fold and joint morphogenesis. Finally, we briefly summarize the role that 
Notch plays in inducing the nonautonomous growth of the leg. Overall, this book 
chapter aims to highlight leg development as a useful model to study how pattern-
ing information is translated into specific cell behaviors that shape the final form 
of an adult organ.
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�Introduction

The first description of a Notch phenotype was provided in 1914 by John S. Dexter, 
after screening mutant flies that presented notches in their wing margins, and some 
years later, in 1917, Thomas H. Morgan isolated the first Notch allele (Dexter 1914; 
Morgan 1917). More than 100 years later, we have reached a detailed knowledge of 
the molecular components of the pathway and the Notch influence in development 
and disease (Bray 2006; Hori et al. 2013; Penton et al. 2012; Bigas and Espinosa 
2018). The Notch pathway is evolutionarily conserved and plays multiple roles dur-
ing animal development. Notch pathway activation mechanism is unique; it relies in 
direct cell-cell contact between the sender and the receiving cells instead of depend-
ing on a secreted signal, as both Notch receptor and its ligands are transmembrane 
proteins. The efficient binding of Notch receptor to its ligand in an adjacent cell 
causes the proteolytic cleavage of Notch which then translocates into the nucleus to 
regulate target gene expression. Despite its simple mode of activation, the Notch 
pathway is essential for a wide range of developmental processes, ranging from 
binary cell-fate decisions to stem cell renewal (Bray 1998; Andersson et al. 2011). 
Thus, the capability of Notch to direct different developmental processes does not 
arise from the simple molecular design of the core pathway, but rather the transcrip-
tional outcome of Notch activation is dependent on the cellular context and signal-
ing dynamics (Bray and Bernard 2010; Henrique and Schweisguth 2019).

The molecular details of the Notch pathway have been extensively studied and 
are the subject of many specialized reviews (Bray 2006; Henrique and Schweisguth 
2019; Kopan and Ilagan 2009); therefore only a shallow explanation is provided 
in this work. In brief, ligand-receptor interaction triggers the proteolytic cleavage 
of the Notch receptor and the release of its intracellular domain (NotchICD) that 
enters the nucleus to regulate gene transcription. Both ligands and receptor are 
transmembrane proteins that suffer complex post-translational modifications that 
modulate the efficiency of ligand-receptor interaction, the availability of the pro-
teins at the cell surface, as well as the signaling outcome (Bigas and Espinosa 2018; 
Kopan and Ilagan 2009; Panin et al. 1997; Okajima and Irvine 2002; Harvey and 
Haltiwanger 2018).

After Notch receptor cleavage, NotchICD translocates to the nucleus where it 
interacts with a family of proteins known as CSL (named after their initials: CBF1/
RBPJ-k in mammals, Su(H) in Drosophila, and Lag1 in Caenorhabditis elegans) 
which confers DNA-binding specificity to the complex (Kopan and Ilagan 2009; 
Greenwald 2012). When the Notch pathway is not activated, CSL proteins recog-
nize their specific binding sites at the regulatory region of Notch target genes and 
recruit corepressors (Co-R) to inhibit gene transcription, which is known as default 
repression (Barolo et al. 2002). Upon Notch activation, NotchICD binds to CSL, 
displaces Co-R, and allows the direct regulation of target genes. Therefore, Notch 
can regulate transcription in a permissive manner, simply alleviating an existent 
repression. In addition, NotchICD can also play an inductive role, forming a tertiary 
complex with CSL proteins and coactivators to enhance the expression of target 
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genes (Kopan and Ilagan 2009; Bray and Furriols 2001; Lai 2002). Additionally, 
the presence of other tissue-specific transcription factors and the crosstalk with 
other signaling pathways are usually necessary to enhance target gene transcription, 
as Su(H) sites alone are poor mediating transcriptional activation. This requirement 
allows differential signaling outcomes upon Notch activation. Therefore, the same 
transduction mechanism could elicit different responses in different tissues, depend-
ing on the preexistent cellular context (reviewed in Bray and Furriols (2001)).

Notch pathway is remarkably conserved among metazoans, and its core compo-
nents are very similar from the worm C. elegans to mammals (Kopan and Ilagan 
2009). The study of the Notch pathway in model organisms such as C. elegans and 
Drosophila has provided in the past some of the most important breakthroughs in 
the study of Notch mechanism and function (Greenwald 2012). Using Drosophila 
as a model organism presents several advantages in studying Notch function, most 
importantly the lack of redundancy of the pathway components. There is only one 
Notch receptor in Drosophila, whereas four paralogs are present in mammals 
(NOTCH1-4), and two ligands, Delta (Dl), related to mammalian Delta-like (Dll1, 
Dll3, and Dll4), and Serrate (Ser), ortholog of Jagged1 and Jagged2 (Kopan and 
Ilagan 2009). Additionally, Drosophila presents a wide variety of genetic tools that 
allow precise analysis and manipulation (del Valle Rodriguez et al. 2012).

In this chapter, we summarize the regulatory role of Notch pathway during leg 
development in Drosophila. In this context, Notch activation is required, at least, for 
two different processes. First, its restricted activity in discrete bands of cells is nec-
essary for the formation of the joints that separate adult leg segments and allow 
appendage articulation (Fig. 7.1). And second, Notch activity from these borders 
acts as a regulator of leg growth in a nonautonomous manner. Here, we review the 
existent knowledge regarding how Notch signaling is spatially localized in response 
to proximo-distal leg patterning and the molecular and cellular mechanisms down-
stream of Notch activity that direct joint formation and leg growth.

�Leg Segmentation and Positioning of Notch Activity

�Leg Specification and Proximo-distal Patterning

Appendages are structures that project out from an animal’s body wall, including 
legs, antennae, wings, or genitalia, and their presence allows the implementation of 
different biological functions such as feeding, locomotion, or reproduction (Shubin 
et al. 1997). In insects, the presence of flexible joints makes possible the articulation 
of the otherwise rigid limbs. In fact, it is the presence of articulated appendages 
that give arthropods their name (from Greek árthron, “joint,” and pous, “feet”). 
The Drosophila legs are composed of ten segments (from proximal to distal, coxa, 
trochanter, femur, tibia, five tarsal segments (ta1 to ta5), and pretarsus) each one 
separated by a flexible joint (Fig.  7.1a). The proximo-distal (P-D) axis of the 
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Fig. 7.1  P-D patterning of the leg directs Notch activity positioning. (a) Left: Hh is expressed in 
response to En in the posterior compartment and activates dpp (dorsal) and wg (ventral) expression 
in an early leg disc (left). Center: the expression of Hth, dac, and Dll in concentric rings set up the 
P-D patterning of the leg disc. A gradient of EGFR activity (EOC) in the center of the developing 
leg disc further refines distal patterning. (a’) Right: prepupal leg disc everts forming a tubelike 
structure, and the folds that position the future joints are already visible. (a”) Representation of the 
P-D patterning genes in an adult leg. (b) Tarsal region of a prepupal leg disc. The code generated 
by P-D genes serves as a blueprint for Dl/Ser expression and Notch activity positioning. Notch 
regulates joint formation and leg growth. (c, c’) Adult legs (tarsal region and close up of a joint 
below) of a wild-type (c) and a Notch hypomorph mutant (c’) fly

S. Córdoba and C. Estella



107

appendages is formed orthogonally to the anterior-posterior (A-P) and dorsal-
ventral (D-V) axes that are already present in the embryo (Nusslein-Volhard and 
Wieschaus 1980; Reeves and Stathopoulos 2009; Estella et al. 2012).

Drosophila is a holometabolous insect that transits through four life stages 
(embryo, larva, pupa, and adult). Appendages arise from specific primordia, groups 
of ectodermal cells genetically specified during embryogenesis, that will invaginate 
to form the larval structures known as imaginal discs (Bate and Arias 1991; Cohen 
et al. 1993; McKay et al. 2009; Beira and Paro 2016). Imaginal discs are saclike 
epithelial monolayers that grow and become patterned during larval stages and will 
undergo metamorphosis throughout pupation to give rise to most adult cuticular 
structures, i.e., legs, wings, or eye and antenna (Beira and Paro 2016; Fristrom and 
Fristrom 1993; von Kalm et al. 1995; Pastor-Pareja et al. 2004; Aldaz et al. 2010; 
Ruiz-Losada et al. 2018).

The leg imaginal disc is divided into anterior and posterior compartments by the 
expression of the selector gene engrailed (en) in its posterior half, and this compart-
mental division is maintained throughout leg development. Posterior (en-positive) 
cells secrete the short-range ligand Hedgehog (Hh) that signals to adjacent anterior 
compartment boundary cells to activate the expression of two long-range signaling 
molecules, decapentaplegic (dpp) and wingless (wg). While dpp expression occurs 
in the dorsal half of the leg disc and determines dorsal identity, wg is restricted to 
the ventral half and confers ventral identity (Struhl and Basler 1993; Wilder and 
Perrimon 1995; Johnston and Schubiger 1996; Morimura et al. 1996; Theisen et al. 
1996; Svendsen et al. 2015). Both Dpp and Wg inputs act combinatorially to estab-
lish the initial P-D axis of the leg discs. A cascade of transcription factors and the 
cross-regulation between them is responsible for the elaboration of the P-D axis of 
the leg. Briefly, high levels of Wg and Dpp activate Dll expression in the center of 
the leg disc. Dll activate another P-D patterning gene, dachshund (dac), which is 
repressed in the distal domain by peak levels of Wg and Dpp, allowing the forma-
tion of the Dll only domain. Dac then represses Dll expression in the medial region 
of the leg disc (Campbell et al. 1993; Diaz-Benjumea et al. 1994; Lecuit and Cohen 
1997; Estella et al. 2008; Estella and Mann 2008; Giorgianni and Mann 2011). In 
the periphery of the leg discs, where low levels of combined Wg and Dpp are pres-
ent, a third P-D patterning gene, homothorax (hth), is expressed (González-Crespo 
and Morata 1996; Abu-Shaar and Mann 1998; Gonzalez-Crespo et  al. 1998). 
Therefore, the concentric expression domains from proximal to distal of hth, dac, 
dac + Dll, and Dll, also known as the “leg gap” genes, broadly define the P-D axis 
of the leg (reviewed in Estella et al. (2012), Ruiz-Losada et al. (2018)) (Fig. 7.1a).

�Segmentation of the Tarsal Region

The distal-most region of the leg disc will give rise to the adult tarsal region and is 
further patterned during the last stage of larval development by a highly dynamic 
and complex genetic regulatory network (reviewed in Suzanne (2016), Kojima 
(2017)). Interestingly, while the number of proximal segments (coxa, trochanter, 
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femur, and tibia) is conserved among arthropods, the number of tarsal segments is 
variable among species (Snodgrass 1935; Natori et al. 2012; Angelini et al. 2012). 
Nevertheless, the presence of five tarsal segments, as occurs in Drosophila, is 
thought to be the plesiomorphic state in insects (Grimaldi and Engel 2005). The 
regulatory cascade that governs tarsal region segmentation in Drosophila is highly 
dynamic (Natori et al. 2012), and simple changes in timing or extent of gene expres-
sion could potentially explain the variability of tarsal number in other insect species 
(Kojima 2017).

Patterning of the tarsal region is initiated by the activity of the epidermal growth 
factor receptor (EGFR) pathway at the center of early third instar leg discs (Campbell 
2002; Galindo et al. 2002). High levels of Wg and Dpp activate the expression of the 
EGFR ligand Vein (Vn) and the protease rhomboid (Rho), which is necessary for 
ligand activation (Campbell 2002; Galindo et al. 2002, 2005; Newcomb et al. 2018). 
The activation of the EGFR pathway in a distal to proximal gradient creates the 
EGFR organizing center (EOC) that induces the nested expression in concentric 
domains of different tarsal patterning genes in a concentration-dependent manner 
(Fig. 7.1a). However, a recent study has shown that other sources of EGFR activity 
besides the EOC are also responsible to pattern the tarsal segments, as removing 
EOC activity from the distal tip only causes local P-D defects (Newcomb et al. 2018).

The end result of the EGFR activity and the cross-regulation between the differ-
ent transcription factors during third instar leg imaginal disc development is the 
subdivision of the tarsal domain in five segments (ta1-ta5) and the pretarsus (Natori 
et al. 2012) (reviewed in Suzanne (2016), Kojima (2017)). For example, the future 
pretarsal region expresses the homeodomain transcription factors aristaless (al) and 
C15, while Bar, another homeodomain transcription factor, is expressed in the 
future ta5 region and weakly in the ta4 region. The ta4 region is defined by apterous 
(ap), a LIM-homeodomain transcription factor (Pueyo et al. 2000). Meanwhile, the 
tarsal-specific expression of tarsal-less (tal), spineless (ss), rotund (rn), and bric-à-
brac (bab) further patterns the tarsal region (Natori et al. 2012; Godt et al. 1993; 
Duncan et  al. 1998; Chu et  al. 2002; Kozu et  al. 2006; Pueyo and Couso 2008; 
Baanannou et al. 2013) and reviewed in Suzanne (2016), Kojima (2017) (Fig. 7.1b).

In summary, the final result of the interplay between “leg gap” genes, EGFR 
pathway activation, and tarsal-specific transcription factors is the subdivision of the 
leg disc in discrete regions of gene expression that give identity to the future adult 
segments of the leg (reviewed in Suzanne (2016), Kojima (2017)).

�Dl/Ser Positioning and Notch Activation

Besides giving identity to the adult segments, P-D patterning of the leg disc acts as 
a positional blueprint for leg segmentation. The combined expression domains of 
“leg gap” genes and tarsal patterning genes generate a code of transcription factors 
that determines the positioning of the Notch ligands Dl and Ser in a band of cells at 
the distal end of each presumptive leg segment as the leg imaginal disc grows 
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(Rauskolb 2001) (Fig. 7.1b). How this positional information (i.e., a different com-
bination of transcription factors in each segment) is integrated at the molecular level 
to activate Dl and Ser expression in each tarsal segment is largely unknown. 
However, the presence of dedicated cis-regulatory elements (CRMs) within Ser 
regulatory region that integrate positional information in each segment has been 
described (Rauskolb 2001; Cordoba et al. 2016). In this manner, it has been shown 
that Hth and Dac are required for the positioning of proximal rings of Ser expres-
sion, while the transcription factor Sp1 acts together with the tarsal-specific P-D 
transcription factor Ap to promote Ser expression in the ta4 tarsal segment (Rauskolb 
2001; Cordoba et al. 2016). It is therefore reasonable to think that the same logic 
could apply for the positioning of Ser and Dl in the remaining leg segments, despite 
the specific molecular details are yet to be elucidated.

The spatial localization of the Dl/Ser ligands elicits the activation of the Notch 
receptor in nine rings along the P-D axis. This is a key step in leg development, as 
Notch activity is required for the formation of the joints that separate each adult 
segment and for the correct growth of the appendage. Legs mutant for Notch or its 
ligands present fusions and reduction in the size of leg segments, whereas ectopic 
Notch activity induces the folding of the cuticle resembling joint formation (Angelini 
et  al. 2012; de Celis et  al. 1998; Bishop et  al. 1999; Rauskolb and Irvine 1999; 
Cordoba and Estella 2014). Interestingly, each band of Dl/Ser-positive cells acti-
vates Notch signaling only in the adjacent cells located distally to them. The asym-
metric distribution of the planar cell polarity (PCP) core proteins prevents Notch to 
be activated in the proximal side of Dl/Ser stripes. These PCP proteins are associ-
ated to the cell membrane and coordinate the orientation of the cells and cell struc-
tures along the plane of a tissue (Devenport 2014). In the leg imaginal epithelium, 
the cytoplasmic protein Dishevelled (Dsh) and the transmembrane protein Frizzled 
(Fz) are preferentially localized to the distal edge of each cell. Conversely, another 
transmembrane protein, Van Gogh (Vang), is located at the proximal side of the 
cells. Importantly, the direct interaction between Dsh and Notch contributes to the 
inhibition of Notch signaling (Axelrod et al. 1996; Munoz-Descalzo et al. 2010). 
Therefore, in the proximal adjacent cells to Dl/Ser, distally located Dsh blocks 
Notch signaling, whereas in those cells distal to Dl/Ser, Dsh is not present in their 
proximal side, allowing the interaction between the ligand and Notch receptor and 
promoting pathway activation (Capilla et al. 2012). Accordingly, flies mutant for the 
core PCP components result in a double band of Notch activity at both sides of Dl/
Ser and adult tarsal legs with duplicated joints (Capilla et al. 2012).

The bidirectional signaling of the Notch pathway in the leg segments is also 
prevented by additional mechanisms. It has been described that another round of 
EGFR activity prevents the activation of Notch in the proximal cells adjacent to Dl/
Ser in each segment (Galindo et al. 2005). Moreover, the expression of the tran-
scription factor Defective proventriculus (Dve) in the inter-joint region is also 
required to prevent proximal activation of Notch (Shirai et  al. 2007). This role 
could be the result of Dve-mediated repression of Notch target genes. Nevertheless, 
what is the relationship between Dve, EGFR, and the PCP pathway is mostly 
unknown.
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The formation of sharp borders of gene expression is paramount for animal 
development (Dahmann et al. 2011). Indeed, given the relevance of Notch for leg 
development, there are multiple mechanisms that ensure precise localization of 
Notch activity, which often implies the function of transcription factors regulated in 
response to Notch that feed back to refine Notch pathway activation. The transcrip-
tion factor dAP-2 is a target of Notch that is expressed in all leg segments, and its 
loss causes the absence of joint structures and leg shortening (Monge et al. 2001; 
Kerber et al. 2001; Ahn et al. 2011). dAP-2 function seems to be primarily through 
the repression of Notch ligands Dl/Ser, in combination with Dve, to ensure precise 
borders of Notch signaling (Ciechanska et al. 2007).

Other mechanisms of Notch refinement are nevertheless restricted to certain 
regions of the leg. In the proximal leg, the interplay between the nuclear protein 
Lines and Brother of odd with entrails limited (Bowl), a member of the odd-skipped 
family of transcription factors, in response to Notch is confined to the so-called 
“true” joints (see below). drumstick (drm), another odd-skipped family member, is 
expressed in Notch-positive cells and inhibits Lines-mediated degradation of Bowl. 
Bowl, then, represses Dl expression in the Notch activation domain, thus defining a 
sharp border of Notch activity (Greenberg and Hatini 2009). A similar mechanism, 
but governed by the short peptides encoded by the noncanonical gene tal, has been 
proposed for the regulation of Dl/Notch boundaries in the tarsal region of the leg. In 
this case, tal is expressed in Notch-positive cells and represses Dl through the activ-
ity of the Shavenbaby (Svb) transcription factor (Pueyo and Couso 2011). Also at 
the tarsal region, the zinc finger homeodomain-2 (zfh-2) gene is implicated in main-
taining Notch activity, possibly through the regulation of tal (Guarner et al. 2014).

In summary, the P-D segmental identity of the leg provided by a complex inter-
play of transcription factors and regulatory networks is eventually translated in the 
precise positioning of Notch ligands Dl and Ser. The ensuing activation of Notch 
pathway, which is asymmetrically restricted by PCP and refined by multiple feed-
back mechanisms, is then instructive for the formation of the joints and for the cor-
rect growth of the leg disc. In the next section, we will summarize the molecular and 
cellular mechanisms acting downstream of Notch that direct joint morphogenesis 
and growth control.

�Notch Regulation of Leg Development

�Joint Formation in Response to Notch Activity

At the end of larval development, the stripes of Notch-positive cells that will deter-
mine the exact position of joint development are already set along the P-D axis, in 
the distal-most region of each presumptive leg segment. However, the shape changes 
associated with joint morphogenesis will not be evident until the onset of pupal 
development, while the characteristic adult joint structure will form in the late pupa. 
How the morphogenetic mechanisms that shape the joints are orchestrated in 
response to Notch activity is the object of this section.
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Although all adult joints appear similar at first glance, they are not all equivalent 
in terms of their morphology, their evolutionary origin, or the developmental mech-
anisms that shape them (Snodgrass 1935). Attending to morphologic criteria, leg 
joints can be broadly subdivided into two classes. “True” or proximal joints are 
characterized by an asymmetrical architecture and the presence of attached mus-
cles and tendons, which makes them motile. This type of joints is found in the 
proximal segments of the leg and in the tarsus-pretarsus interface (Snodgrass 1935; 
Mirth and Akam 2002; Soler et  al. 2004) (Fig. 7.2a–c). “Tarsal” or distal joints 
present a ball-and-socket structure that is devoid of tendon or muscle attachments 
and are found within the tarsal region (Mirth and Akam 2002; Tajiri et al. 2010, 
2011). Interestingly, it has been proposed that the ground state of a ventral append-
age in the absence of leg and antenna selector gene activity consists of a unique 
proximal segment and a tarsal region containing five tarsi (Casares and Mann 
2001). This data and the variability in the number of segments of the tarsal region, 
which is not observed within the proximal segments, point to different evolutionary 
origins for the proximal and tarsal regions of the leg (Kojima 2017; Natori et al. 
2012; Angelini et al. 2012).

Thus, in order to give rise to these different joint typologies, Notch function 
bifurcates into, at least, two different downstream genetic regulatory programs to 
form proximal and tarsal joints. Accordingly, the restricted expression and activity 
of Notch target genes in either proximal or tarsal joints have been reported. It is 
therefore possible that the function of such genes eventually regulates the different 
developmental programs that shape both types of joint.

Fig. 7.2  Development of proximal and tarsal joints. (a) Scanning electron image of an adult leg, 
showing the proximal and distal regions of the leg. (b and c) Detail of a proximal or “true” joint 
and distal or “tarsal” joint (arrowheads). (d) Notch is activated in each presumptive leg joint in a 
prepupal leg disc. The odd-skipped genes are expressed exclusively at the presumptive proximal 
joints, while dysf is expressed only in the presumptive tarsal joints. (e) dysf expression is regulated 
by Notch through the direct binding of Su(H) to two dedicated binding sites at dysf640 CRM. In 
the absence of Notch (inter-joint region), Su(H) associates with corepressors (Co-R) to inhibit dysf 
expression. When Notch is active (joint region), Co-R are displaced by NotchICD allowing Su(H) 
to activate dysf transcription. Tarsal-specific transcription factors restrict dysf expression to the 
distal leg
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The members of the odd-skipped family of transcription factors odd-skipped 
(odd), sister of odd and bowl (sob), and drumstick (drm) are specifically expressed 
at the presumptive proximal joints in response to Notch (Hao et al. 2003) (Fig. 7.2d). 
Ectopic expression of odd, sob, or drm in the leg imaginal disc is sufficient to form 
ectopic folds in the epithelium, as well as cuticle indentations in the adult leg that 
resemble joint formation. Nevertheless, the elimination of odd, sob, or drm function 
individually does not inhibit joint formation, suggesting that these genes act redun-
dantly during leg development (Hao et al. 2003). Accordingly, the combined down-
regulation of odd, sob, and drm in the beetle Tribolium castaneum results in the loss 
of proximal joints (Angelini et al. 2012). Nevertheless, the molecular and cellular 
mechanisms that are regulated by the odd-skipped family members to prompt epi-
thelial folding and joint formation are largely unknown. Interestingly, another odd-
skipped family member, bowl, has a wider expression pattern, and its loss of function 
suggests that its function is not restricted to proximal joints, but is rather needed for 
specification and segmentation of the tarsal region (Hao et al. 2003; de Celis Ibeas 
and Bray 2003). The POU-domain transcription factor Nubbin (Nub) is also 
expressed in response to Notch activity and restricted to the true joint domain (Ng 
et al. 1995; Rauskolb et al. 1999). It has been reported that strong mutant nub alleles 
cause the development of shorter and gnarled legs (Cifuentes and Garcia-Bellido 
1997). nub expression is not altered in odd gain-of-function experiments, indicating 
that its role on leg formation downstream of Notch is independent from the function 
of the odd-skipped family members (Hao et al. 2003).

Conversely, there are genes which expression pattern is restricted to the pre-
sumptive tarsal joints and that might act downstream of Notch to regulate tarsal-
specific joint morphogenesis. One of the best-characterized Notch targets in the leg 
is the bHLH-PAS transcription factor Dysfusion (Dysf) (Fig. 7.2d). dysf expression 
is restricted to the presumptive four tarsal joints where it overlaps with the known 
Notch target genes big brain (bib) and Enhancer of split mβ (E(spl)mβ) (de Celis 
et al. 1998). A specific cis-regulatory module for dysf (named dysf640 CRM) that 
faithfully reproduces dysf expression in the leg has been identified. Molecular dis-
section of this CRM revealed, at least, two functional Su(H) binding sites that allow 
direct regulation in response to Notch activity (Cordoba and Estella 2014). In the 
absence of Notch signaling (i.e., at the inter-joint domains of the leg segments), 
Su(H) form a complex with corepressors, keeping dysf expression silent (Fig. 7.2e). 
When the Notch pathway is activated, NotchICD translocates to the nucleus, where it 
binds to Su(H) displacing corepressors and activating dysf expression at high levels 
in presumptive joint cells. Importantly, for dysf expression to be restricted only to 
the tarsal domain, an additional layer of regulation besides Notch input must be 
present to dictate precise P-D localization. This regulation is made evident upon 
mutation of the Su(H) binding sites in the dysf640 CRM reporter construct. In this 
case, Notch is unable to activate dysf expression at the presumptive joint cells, and 
the repression exerted by Su(H) at the inter-joint domain is also lost. Mutation of 
Su(H) binding sites in the dysf640 CRM leads to uniform low levels of reporter gene 
expression throughout the tarsal region (Cordoba and Estella 2014). Nevertheless, 
the specific P-D gene or genes that provide this tarsal restriction to dysf expression 
are yet to be described. Therefore, the dysf CRM is a logic integrator of Notch 
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signaling and a P-D input that restricts dysf expression to the presumptive tarsal 
joints. This mode of transcriptional regulation by Notch is compatible with the 
default repression model widely employed by numerous signaling pathways and 
specifically by Notch (Barolo et al. 2002; Lai 2002). This model proposes that the 
transcriptional effectors of signaling pathways activate transcription upon pathway 
activation in a context-specific manner while repress transcription in the absence of 
signaling (Affolter et al. 2008).

Consistently with dysf expression pattern in the tarsal leg disc, adult flies mutant 
for dysf completely lose all tarsal joints, whereas proximal joints remain unaffected. 
Despite dysf mutants display joint defects that resemble Notch loss-of-function phe-
notypes, the Notch pathway is correctly localized and activated throughout the tar-
sal domain in these mutants. Moreover, dysf misexpression causes cuticular folding 
that resembles ectopic joint-like structures in the adult leg and is capable of doing 
so even in the absence of Notch activity (Cordoba and Estella 2014). Therefore, dysf 
is a bona fide Notch target gene during leg tarsal joint development, which is com-
pletely necessary for tarsal joint development.

Several genes besides dysf are also exclusively expressed in the presumptive tar-
sal joints such as tal, deadpan (dpn), or Pox neuro (Poxn). tal is expressed in 
response to Notch and ensures sharp Notch borders by repressing Dl expression 
(Pueyo and Couso 2011). dpn, as dysf, also encodes for a bHLH transcription factor 
expressed in the four tarsal joints, although no Dpn role has been reported in the leg 
yet. Poxn is required for the formation of a subset of tarsal joints; however its rela-
tionship with Notch or dysf needs to be studied (Awasaki and Kimura 2001).

�Dysfusion Control of Tarsal Joint Morphogenesis

As we have described before, the Notch downstream regulators that differentially 
direct joint formation in tarsal and proximal joints have been identified. Nevertheless, 
the study of the molecular and cellular processes that execute the morphogenetic 
changes required to form a joint has been mainly performed in the tarsal region 
(Suzanne 2016; Kojima 2017; Tajiri et al. 2010), whereas much less is known about 
the formation of proximal joints (Fristrom and Fristrom 1993; Mirth and Akam 2002).

The process of tarsal joint morphogenesis can be roughly divided in three phases: 
an initial sharp epithelial folding, a partial unfolding, and a posterior re-constriction 
of the epithelium to form the characteristic adult joint structure. The first physical 
evidence of tarsal joint formation is observed during prepupal development (0–6 h 
after puparium formation), as the imaginal leg discs telescope out to form a cylinder 
where the central region of the disc becomes the distal-most portion of the leg (see 
Fig. 7.1). At this stage, four deep epithelial folds, transversal to the P-D axis of the 
leg, are formed by bands of cells that undergo apical constriction. These constrictions 
form just distally to Notch-activating cells in each presumptive tarsal segment (de 
Celis et al. 1998; Cordoba and Estella 2014; Manjon et al. 2007; Monier et al. 2015) 
(Fig. 7.3). Later during pupal development, these folds are partially flattened while 
the leg elongates, although certain degree of apical constriction is still maintained 
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(Mirth and Akam 2002). Afterward, starting at 24  h after puparium formation, 
another round of morphogenesis that again requires Notch activity forms the final 
ball-and-socket structure of the adult joint (Kojima 2017; Mirth and Akam 2002; 
Tajiri et al. 2010, 2011). In the next sections, we will focus on the initial steps of 
tarsal joint morphogenesis, which occur during prepupal development.

�Localized Apical Constriction Drives Epithelial Folding to Form the Tarsal 
Joints

Apical constriction is a conserved and widespread mechanism that is reiteratively 
used in animal development for epithelial tissue morphogenesis. It consists on the 
shrinkage of the apical surface of either individual cells, usually leading to delami-
nation (An et al. 2017), or of groups of cells leading to tissue folding or invagination 
(Sawyer et  al. 2010; Martin and Goldstein 2014). In Drosophila, several 

Fig. 7.3  Molecular and cellular mechanisms of tarsal fold formation. (a, a’) Schematic represen-
tation of F-actin and Myosin II (a) and Rho1 (a’) localization as apical constriction and tarsal fold 
formation progresses. (b) Dysf regulates the transcription of proapoptotic genes and Rho GTPase 
regulators. Note that Dysf domain and its transcriptional targets are not completely coincident. (c) 
Proposed model for epithelial fold formation in response to Dysf activity
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developmental processes that use apical constriction have been thoroughly studied, 
and specifically embryonic gastrulation has been greatly informative to unveil the 
molecular mechanisms that cause these cell shape changes (Leptin and Grunewald 
1990; Martin et al. 2009; Weng and Wieschaus 2016; Gilmour et al. 2017).

Apical constriction relies in the tight coordination between the cytoskeleton 
activity and the cell adhesion components that generate and transmit the force to 
neighbor cells, respectively. The contraction of actin filament (F-actin) networks by 
the non-muscle Myosin II (Myo II) generates the force that drives apical constric-
tion (Martin et al. 2009; Roh-Johnson et al. 2012). Myo II is a hexameric protein 
composed by two regulatory light chains (encoded by the gene spaghetti squash 
(sqh)), two heavy chains (encoded by zipper (zip)), and two essential light chains 
(encoded by Myosin light chain cytoplasmic (Mlc-c)). Myo II is activated through 
phosphorylation of Sqh, and its motor activity resides on the function of Zip, which 
pulls on F-actin to generate contractile force (Karess et al. 1991; Tan et al. 1992). 
This force has to be efficiently transmitted to the neighboring cells through the 
binding of F-actin at the level of cell-cell adhesion domains (Martin et al. 2010; 
Mason et al. 2013; Marston et al. 2016; Vasquez and Martin 2016). An important 
player in coordinating cytoskeleton dynamics and cell adhesion in Drosophila is 
the formin protein Diaphanous (Dia), which facilitates the assembly of F-actin at 
the level of adherens junctions (Mason et al. 2013; Homem and Peifer 2008; Liu 
et al. 2010).

During epithelial folding at the presumptive tarsal joints of the leg imaginal disc, 
bands of cells coordinately undergo apical constriction, reducing their apical sur-
face while accumulating high levels of F-actin at their apical domains (Monier et al. 
2015; Cordoba and Estella 2018). Importantly, in dysf loss-of-function conditions, 
this F-actin accumulation is lost, together with the formation of epithelial folds, 
suggesting a functional relationship between both processes (Cordoba and Estella 
2018). Meanwhile, levels of the motor protein Myo II are also incremented in the 
apical region of fold-forming cells, where it is accumulated at the level of the adhe-
rens junctions (Monier et al. 2015; Cordoba and Estella 2018). It would be interest-
ing to study in detail the organization and dynamics of actomyosin networks during 
tarsal epithelial joint formation and compare its molecular mechanisms with better-
known models of apical constriction such as ventral furrow formation (Martin et al. 
2009; Mason et al. 2013; Dawes-Hoang et al. 2005) (Fig. 7.3).

�Dysf-Dependent Rho1 Activity Regulates Apical Constriction

At the regulatory level, apical constriction is globally controlled by the activity of 
the Rho GTPase Rho1 (Martin and Goldstein 2014). The Rho family of small 
GTPases functions as molecular switches controlling a wide number of cellular 
functions including cell division, cell adhesion, apicobasal polarity, cell shape 
changes, or cell migration. Rho GTPases play a central role in the reorganization of 
the actin cytoskeleton and therefore their activity is tightly regulated (Jaffe and Hall 
2005; Bausek and Zeidler 2014; Citi et al. 2014; Mack and Georgiou 2014; Zegers 
and Friedl 2014). The most prominent Rho GTPases are Rho (Rho1 in Drosophila), 
Rac, and Cdc42, which play conserved roles between Drosophila and vertebrates.
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In particular, Rho1 has been reported to control both the generation of contractile 
force and the control of F-actin assembly at adherens junctions (Martin and 
Goldstein 2014; Gilmour et al. 2017; Jaffe and Hall 2005; Zegers and Friedl 2014). 
A well-established target of Rho1 activity is the Rho-associated protein kinase 
(Rok) that activates Myo II contractility through phosphorylation of Sqh (Winter 
et al. 2001; Boettner and Van Aelst 2002; Riento and Ridley 2003; Xu et al. 2008). 
In Drosophila another kinase, Death-associated protein kinase related (Drak), also 
phosphorylates Sqh, and its function becomes necessary when Rok activity is com-
promised (Neubueser and Hipfner 2010; Robertson et al. 2012). Additionally, the 
formin Dia, another downstream target of Rho1, links actin cytoskeleton to adher-
ens junctions providing a molecular framework for Rho1 global control of morpho-
genesis, including apical constriction (Mason et al. 2013; Homem and Peifer 2008; 
Mulinari et al. 2008; Kuhn and Geyer 2014).

During tarsal joint development, Rho1 protein appears specifically localized 
around the apical region of the cells that form the epithelial tarsal folds (Cordoba 
and Estella 2018) (Fig. 7.3). Using a reporter construct for Rho1 activity (Simoes 
et al. 2006), it has been shown that this localization is coupled with increased Rho1 
activity around these folds (Cordoba and Estella 2018). Importantly, both patterned 
Rho1 localization and activity around the forming folds are lost in dysf knockdown 
imaginal discs, indicating that Dysf ultimately regulates Rho1 positioning and 
activity levels during tarsal fold formation (Cordoba and Estella 2018). Moreover, 
direct blocking of Rho1 activity inhibits epithelial fold and adult joint formation, 
phenotypes similar to dysf loss of function (Cordoba and Estella 2014, 2018). As 
expected, knockdown of the Rho1 effectors Rok, Drak, and Dia also disrupts epithe-
lial folding and adult joint formation to different degrees, probably due to the func-
tional redundancy between them (Cordoba and Estella 2018; Neubueser and Hipfner 
2010; Robertson et al. 2012). Therefore, Dysf control of tarsal fold morphogenesis 
is executed through its regulation of precise spatial activation of Rho1 that, in turn, 
coordinates apical constriction in the leg imaginal disc.

�Dysf Transcriptional Control of Apical Constriction

We have described in this review that Dysf controls the cellular mechanisms impli-
cated in apical constriction during tarsal epithelial fold formation, specifically Rho1 
localization and activity. Nevertheless, as a transcription factor, Dysf should control 
these cellular mechanisms at the level of transcriptional regulation, through the acti-
vation of a specific set of effector target genes. Interestingly, Dysf has been reported 
to transcriptionally regulate both Rho GTPase regulators and proapoptotic genes, 
effectors that could promote Rho1 activity and apical constriction ((Cordoba and 
Estella 2014; Manjon et al. 2007; Monier et al. 2015; Greenberg and Hatini 2011) 
and reviewed in Suzanne (2016)).

Rho1 GTPase functions as a molecular switch that cycles between active (GTP-
bound) and inactive (GDP-bound) conformational states. These transitions are mod-
ulated by the activity of guanine exchange factors (GEFs) and GTPase-activating 
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proteins (GAPs) that promote the activation and inactivation, respectively, of Rho 
GTPases (Jaffe and Hall 2005). The precise regulation of Rho1 activity in a cell is 
mediated by an exquisite balance between RhoGEF and RhoGAP protein levels 
in the cytoplasm (Simoes et al. 2006). Interestingly, Rho GTPase regulators have 
been previously implicated in the control of apical constriction and epithelial fold-
ing (Mulinari et al. 2008; Simoes et al. 2006; Fox and Peifer 2007; Kolsch et al. 
2007; Mason et al. 2016). In a comprehensive analysis of Rho GTPase regulators 
expressed in the Drosophila leg imaginal disc, Greenberg and Haitini described at 
least 17 RhoGEFs and RhoGAPs expressed in the presumptive leg joints (Greenberg 
and Hatini 2011). A subset of them, which includes RhoGEF2, RhoGAP71E, and 
RhoGAP68F, are restricted to the tarsal region, and their expression is regulated 
downstream of Notch signaling (Greenberg and Hatini 2011). Interestingly, knock-
ing down the activity of some of these RhoGEFs and RhoGAPs causes defects in 
leg disc epithelial folding and joint morphogenesis (Greenberg and Hatini 2011; de 
Madrid et al. 2015). A detailed comparison between RhoGEF2, RhoGAP71E, and 
dysf expression at the tarsal presumptive joints of the leg imaginal disc indicates 
that their localization partially overlaps. Expression of RhoGEF2 and RhoGAP71E 
extends a couple of cell rows distally of the Dysf domain toward the fold (Fig. 7.3). 
Despite the non-complete coincidence between Dysf and RhoGEF2/RhoGAP71E 
localization, Dysf is absolutely necessary for their expression (Cordoba and 
Estella 2014).

Apoptosis or programmed cell death has been proposed to play an important 
morphogenetic role sculpting structures such as vertebrate digits or fly embryonic 
segments ((Lohmann et  al. 2002; Suzanne et  al. 2010; Hernandez-Martinez and 
Covarrubias 2011; Yamaguchi et  al. 2011) and reviewed in Suzanne and Steller 
(2013)). In the Drosophila leg imaginal disc, localized expression of the proapop-
totic genes reaper (rpr) and heads involution defective (hid) and patterned apoptosis 
is observed around the presumptive tarsal joints (Cordoba and Estella 2014; Manjon 
et al. 2007; Monier et al. 2015). The expression of the proapoptotic genes relies on 
the c-Jun N-terminal kinase pathway (JNK) that is activated by a sharp Dpp border 
at the end of each tarsal segment (Manjon et al. 2007). Importantly, although rpr 
and hid expression domains are only partially overlapping with Dysf, just as occurs 
with RhoGEF2 and RhoGAP71E, Dysf is necessary and sufficient for their expres-
sion in the tarsal region (Cordoba and Estella 2014) (Fig. 7.3).

A functional role for apoptosis in the Drosophila leg was proposed after the 
analysis of defective epithelial folding and joint formation in several conditions 
of cell death inhibition ((Manjon et  al. 2007; Monier et  al. 2015) and reviewed 
in Suzanne (2016)). According to the mechanistic model proposed for apoptosis-
driven epithelial folding, dying cells generate an apicobasal force that causes tran-
sient indentations in the epithelium and Myo II accumulation in the neighboring 
cells (Monier et al. 2015; Ambrosini et al. 2019). The temporal and spatial coor-
dination of individual apoptotic events in bands around the leg disc circumfer-
ence would cause the epithelium to fold in a stable manner (Monier et al. 2015). 
Interestingly, apoptosis involves extensive cytoskeletal remodeling, and the activa-
tion of Rho-dependent actomyosin contractility in its neighbors is necessary for 
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correct cell extrusion ((Rosenblatt et al. 2001; Slattum et al. 2009) and reviewed 
in Monier and Suzanne (2015)). Therefore, it could be proposed that the transcrip-
tional regulation of the proapoptotic genes by Dysf leads to Rho1 GTPase activation 
that induces the folding of the epithelium through Myo II activity.

Nevertheless, a more recent study failed to observe defects in fold or adult joint 
formation when apoptosis was eliminated from the entire tarsal domain. In these 
apoptotic-deficient conditions, apical constriction, apical F-actin accumulation, and 
Rho1 activity at the epithelial folds remained unaffected (Cordoba and Estella 
2018). These results strongly suggest that apoptosis does not play an instructive role 
in tarsal epithelial fold and joint development. Thus, it is possible that the observed 
localized apoptosis is a consequence of tissue remodeling at the tarsal folds, rather 
than the driving force behind folding (Fig.  7.3). Interestingly, Rho1 activity has 
been shown to induce apoptosis (Vidal et al. 2006; Neisch et al. 2010), suggesting 
that the localized cell death present at the tarsal region could appear as a result of 
increased Rho1 activity in epithelial fold cells. However, it cannot be ruled out a 
possible function of cell death in defining the detailed architecture of the joint or 
enhancing the dynamics of fold formation.

In conclusion, Notch controls leg morphogenesis through the differential activation 
of subsidiary transcription factors in the proximal and distal leg territories. In the 
tarsal region, Notch directly activates dysf expression that, through the modulation 
of Rho1 activity, promotes fold and joint formation. Dysf regulation of Rho1 activ-
ity provides a simple model to explain how cellular mechanisms that elicit epithelial 
fold morphogenesis are coordinated downstream of a transcription factor. 
Nevertheless, a detailed molecular explanation of the transcriptional control of 
Rho1 regulators by Dysf is yet to be provided.

�Adult Joint Formation Depends on Notch Activity

As mentioned previously in this review, the differentiation and final shape acquisition 
of the adult joints occurs during the last stages of pupal development. The initial 
constrictions that prefigure the joints are almost completely unfolded after the pre-
pupal stage as the leg disc elongates and reduce its diameter, although cells at the 
presumptive joints remain slightly constricted and are aligned, making them mor-
phologically distinguishable (Fristrom and Fristrom 1993; Mirth and Akam 2002; 
Tajiri et al. 2010). The morphogenetic processes that give leg joints their definitive 
configuration start around 24 h after pupation for both proximal and tarsal joints 
(Fristrom and Fristrom 1993; Mirth and Akam 2002; Tajiri et  al. 2010). At this 
stage, the joint epithelium undergoes shape changes that result in the cells at the 
proximal border of the joint to form a “lip” on top of distal cells. The initial stages 
of this process are similar between proximal and tarsal joints, while the characteris-
tic asymmetries of proximal joints (i.e., the tibial-tarsal joint) arise later, by 36 h of 
pupal development (Mirth and Akam 2002). Interestingly, apical constriction of 
joint cells and apical F-actin accumulation is observed for both proximal and distal 
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joints, suggesting that a mechanism similar to prepupal fold formation could be tak-
ing place (Fristrom and Fristrom 1993; Mirth and Akam 2002; Tajiri et al. 2010).

After this secondary constriction at the joints is set, the adult cuticle starts being 
deposited in the apical side of epithelial cells, at around 45  h after pupation. 
Nevertheless, the details of joint formation at this stage have only been studied to 
date in tarsal joints, which present a characteristic ball-and-socket morphology 
(Tajiri et al. 2010). The ball and the socket structures are located at opposite sides of 
the joint and present a defined and complementary shape that allows its smooth 
flexion. Distinct cell populations will form the ball and the socket in a sequential 
morphogenetic process that requires precise cell shape changes and the secretion of 
chitin to the extracellular matrix (ECM) in a highly stereotyped manner (Tajiri et al. 
2010). Interestingly, continued Notch signaling from approximately 24–78  h of 
pupal development is necessary for the correct differentiation of the ball and socket 
(Tajiri et al. 2011). Notch function is necessary for both the fate specification of ball 
vs. socket cells and for the extensive cell shape changes that form these structures 
(Tajiri et al. 2011). Further investigation would be required to test whether Notch is 
also necessary for proximal joint development at these stages.

�Notch Regulation of Leg Growth

Notch activity is required for leg segmentation and for the development of leg joints. 
Additionally, Notch also controls leg growth in a nonautonomous manner. When 
mutant clones for Notch or its ligand Dl that span two leg segments were generated, 
a clear reduction in leg size was observed that affected both mutant and adjacent 
wild-type tissues (de Celis et al. 1998; Rauskolb and Irvine 1999). Interestingly, the 
ectopic activation of the Notch pathway not only induces the formation of joint-like 
structures but also promotes outgrowths composed of wild-type and mutant cells 
(Rauskolb and Irvine 1999). Therefore, it is likely that Notch activates a down-
stream effector pathway that stimulates leg growth on adjacent leg segments.

One candidate to mediate this effect is the Hippo tumor suppressor pathway that 
controls organ size in insects and mammals (Halder and Johnson 2011). This path-
way is controlled upstream by two atypical cadherin molecules, Dachsous and Fat 
(Ds-Fat), that form heterodimers, and by the Golgi-localized protein kinase four-
jointed (Fj). Fat and Ds bind each other as receptor and ligand, whereas Fj modu-
lates the interaction between them. In the fly, ds and fj viable mutants present 
reduced growth in the proximo-distal axis resulting in shorter legs (Villano and Katz 
1995; Clark et al. 1995; Mao et al. 2006). Both fj and ds are expressed as comple-
mentary gradients in the imaginal discs and these gradients are essential for the 
correct growth and shape of these organs (Halder and Johnson 2011). The current 
model proposes that different levels of Ds/Fj between cells regulate the Hippo path-
way and therefore the size of an organ (Halder and Johnson 2011). In the leg disc, 
the expression of ds and fj is more complex and dynamic, possibly reflecting the 
variety of sizes within the different leg segments. Although very little is known 
about how ds, fat, and fj regulate growth along the P-D axis of the Drosophila leg, 
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in other arthropods such as the cricket Gryllus, fj and ds are expressed as proximal 
and distal gradients, respectively, in each leg segment (Bando et  al. 2009). It is 
possible that the positional information generated by the P-D axis genes together 
with the activation of the Notch pathway at each presumptive leg joint could define 
the Ds/Fj gradients leading to a cell-to-cell signaling mechanism that regulates the 
growth and shape of the leg. Which are the molecular mechanisms that connect the 
Notch pathway with the Hippo pathway to regulate leg growth is mostly unknown; 
however several studies have pointed out this relationship. In the leg, fj is activated 
in Dl and Ser expressing cells and it is negatively regulated by Notch signaling 
(Rauskolb and Irvine 1999). In addition, Fj and Notch act in a feedback loop to 
refine their domain of activity (Buckles et al. 2001). Importantly, ectopic expression 
of fj induces the formation of outgrowths in the leg that are entirely composed of 
wild-type tissue, highlighting its role as a nonautonomous regulator of tissue growth 
(Buckles et al. 2001).

To summarize, the Notch pathway is activated at the boundaries between leg 
segments during Drosophila leg development, and it is required at different stages 
to direct joint formation and to control the correct growth of the leg. The precise 
spatial localization of the Notch pathway in the leg depends on the integration at the 
CRMs of Dl/Ser of the positional information provided by the P-D patterning genes. 
Notch directs the formation of the different leg joints by the spatially localized acti-
vation of subsidiary target genes. In the tarsal region, the Notch target Dysf controls 
actomyosin cytoskeleton dynamics and cell shape changes through the regulation of 
Rho1 during joint morphogenesis. Finally, although the molecular mechanisms that 
control leg growth by Notch are mostly unknown, some reports link Notch to the 
Hippo pathway to execute this function.
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Chapter 8
Notch Signalling: The Multitask Manager 
of Inner Ear Development 
and Regeneration

Nicolas Daudet and Magdalena Żak

Abstract  Notch signalling is a major regulator of cell fate decisions and tissue pat-
terning in metazoans. It is best known for its role in lateral inhibition, whereby 
Notch mediates competitive interactions between cells to limit adoption of a given 
developmental fate. However, it can also function by lateral induction, a cooperative 
mode of action that was originally described during the patterning of the Drosophila 
wing disc and creates boundaries or domains of cells of the same character. In this 
chapter, we introduce these two signalling modes and explain how they contribute 
to distinct aspects of the development and regeneration of the vertebrate inner ear, 
the organ responsible for the perception of sound and head movements. We discuss 
some of the factors that could influence the context-specific outcomes of Notch sig-
nalling in the inner ear and the ongoing efforts to target this pathway for the treat-
ment of hearing loss and vestibular dysfunction.

Keywords  Notch signalling · Lateral inhibition · Lateral induction · Proneural 
genes · Cell fate decisions · Inner ear · Cochlea · Organ of Corti · Development · 
Prosensory specification · Hair cell · Deafness · Hair cell regeneration

�Introduction

A great diversity of fate decisions and cellular processes are regulated by Notch 
signalling, due to context-dependent differences in its transcriptional targets and the 
multitude of factors that influence the spatial pattern and dynamics of Notch activ-
ity. The development of the inner ear provides a great illustration of this versatility. 
Notch controls several key cell determination and patterning events during the dif-
ferentiation of the neurosensory cells of the inner ear, through different ligands and 
modes of signalling. It is critical for the formation of the mechanosensory ‘hair’ 
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cells (HCs) that populate the sensory organs of the inner ear and are essential for 
hearing and our perception of balance. This has prompted considerable interest in 
the potential manipulation of Notch activity to stimulate HC regeneration in the 
damaged ear, a topic discussed at the end of this review.

�The Notch Signalling Pathway

We provide below a very brief overview of the mechanisms of Notch signalling, 
lateral inhibition and lateral induction. For additional molecular and biochemical 
details, or non-canonical modes of action of Notch, we refer the reader to other 
reviews (Bray 2006; Henrique and Schweisguth 2019; Yamamoto et al. 2010).

Basic Components of the Canonical Notch Pathway  Notch receptors (Fig. 8.1) 
are transmembrane proteins, composed of an extracellular domain with multiple 
EGF-like repeats and a Notch intracellular domain (NICD). The Notch receptors are 
activated by transmembrane ligands belonging to the Delta/Serrate/Lag-2 (DSL) 
family. Binding of the DSL ligands to the Notch extracellular domain, however, is 
not sufficient for receptor activation. Their internalization in the ‘signal-sending’ 
cell, which is regulated by the E3-ubiquitin ligases of the Mindbomb and Neuralized 
families, is required to expose two proteolytic sites near the Notch transmembrane 
domain. These are then cleaved by two metalloproteases [protease A-disintegrin 

Fig. 8.1  Notch signalling. The endocytosis of the DSL ligand, which depends on Mib/Neur activ-
ity, triggers the proteolytic cleavage of the Notch receptor in the signal-receiving cell. The Notch 
extracellular domain (in green) is internalized with the DSL ligand, whilst the NICD translocates 
to the nucleus and activates the expression of specific transcriptional target, such as those of the 
Hes family
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and metalloprotease-10 (ADAM10) and tumour necrosis factor alpha converting 
enzyme (TACE)] and the γ-secretase enzyme. The NICD is then released in the 
‘signal-receiving’ cell, whilst the Notch extracellular domain is endocytosed with 
the ligand in the signal-sending cell. Following its cleavage, NICD is translocated 
to the nucleus where it forms a transcriptional complex with CSL (CBF1/SuH/Lag-
1) and Mastermind-like (MAML) to activate the expression of Notch target genes. 
The CSL protein can also function as a transcriptional repressor in the absence of 
NICD, keeping some of the Notch targets silenced. The classic direct targets and 
effectors of Notch belong to the hairy and enhancer of split (Hes) and Hes-related 
gene family, which encode basic helix-loop-helix (bHLH) transcriptional repressors. 
They antagonize the expression and activity of other genes, in particular the 
proneural bHLH factors.

Two Contrasting Modes of Signalling: Lateral Inhibition and Lateral 
Induction  Importantly, Notch activity can feedback positively or negatively on the 
expression of the DSL ligands. This produces two distinct modes of signalling, 
lateral inhibition and lateral induction, which have different outcomes in terms of 
cell differentiation and patterning for interacting cells.

Lateral inhibition Lateral induction

Starting conditions Equivalence group Context-dependent
Target of notch activity Proneural factors Context-dependent
Regulation of DSL expression by notch activity Negative Positive
Cellular outcome Alternate fates Same fate

In lateral inhibition (Fig. 8.2a), interacting cells compete for the adoption of the 
primary fate, defined by the expression of a proneural bHLH factor that (i) promotes 
DSL ligand expression and (ii) is repressed by Notch activity. Starting from a condi-
tion where all cells are (in theory) equal in their developmental potential, random 
variations in the expression of the proneural factor lead some cells to elevate their 
DSL levels – these become better signal-sending cells. The signal-receiving cells, 
on the other hand, reduce their levels of proneural factor and DSL expression; they 
are consequently diverted from the primary fate. The outcome of lateral inhibition 
is a diversification of cell fates, creating a branching point within a cell lineage, or 
a salt-and-pepper mosaic of two cell types within an epithelium. Its failure results in 
the overproduction of cells adopting the primary fate. Lateral inhibition is a very 
common and evolutionary conserved mechanism regulating, for example, cell 
diversification in the sensory organs of Drosophila, neurogenesis, the formation of 
secretory cells in the gut or the production of HCs in the inner ear.

In lateral induction (Fig.  8.2b), interacting cells cooperate to maintain Notch 
activity and adopt the same fate. Lateral induction is not as common as lateral 
inhibition, but it has been well studied in the Drosophila wing disc (see later), and 
it regulates vascular smooth muscle differentiation (Manderfield et al. 2012), neural 
crest induction (Cornell and Eisen 2005), lens fibre differentiation (Saravanamuthu 
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et al. 2009), interactions between the epidermis and the dermis (Ambler and Watt 
2010) and prosensory specification in the inner ear.

Cells with an Edge: Factors Improving Lateral Inhibition  A critical parameter 
for efficient lateral inhibition is the strength of the intercellular feedback loop 
repressing the DSL ligand in the signal-receiving cells. However, signal-sending cells 
can use several tricks to improve their chances of delivering a ‘loud and clear’ message 
to their neighbours. For example, in Drosophila proneural clusters (Fig.  8.2a), 
Neuralized is restricted to the nascent sensory organ precursor (SOP), which enables 
these to deliver efficient lateral inhibition to neighbouring cells (Yamamoto et  al. 
2010). In the following rounds of division, lateral inhibition is also biased by the 
asymmetric inheritance of Neuralized and the endocytotic protein Numb, which 
reduces cell-surface levels of Notch receptors in one of the daughter cells (Couturier 
et al. 2013). The DSL ligands can also bind to Notch receptors in ‘cis’ (within the 
signal-sending cell) to prevent their activation (del Álamo et al. 2011). Finally, the 

Fig. 8.2  Two contrasting modes of Notch signalling. (a) In lateral inhibition, a proneural bHLH 
factor induces DSL expression, and its expression is repressed by Notch in the signal-receiving 
cell. This results in a diversification of cell fates or the formation of a salt-and-pepper cellular 
mosaic. In the proneural clusters giving rise to the adult mechanosensory bristles of Drosophila, 
the proneural bHLH factor Achaete-Scute (As/Sc) is restricted by lateral inhibition to the sensory 
organ precursor cell (SOP). The SOP gains a strong advantage due to the expression of Neuralized 
(Neur). Lateral inhibition also operates in the progeny of the SOP and is biased by the differential 
distribution of Neur and Numb in one of the daughter cells after each round of cell division. (b) In 
lateral induction, interacting cells are at the same time signal-receiving and signal-sending and 
adopt the same character. In the Drosophila wing disc, Delta and Serrate are regulated by lateral 
induction; Fringe, which is expressed in the dorsal compartment, enables strong Notch activation 
at the dorsoventral boundary by reducing Serrate1/Notch and increasing Delta1/Notch signalling. 
In all diagrams, the arrows do not necessarily imply direct regulation or interaction
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expression of dominant-negative HLH (emc in Drosophila, inhibitor of differentiation 
or Id genes in vertebrates) can restrict the activity of the proneural bHLH genes to 
specific cells, which gain a strong competitive advantage in the race for adoption of 
the primary fate (Troost et al. 2015).

Hence, more than the expression levels of a DSL ligand, Notch receptor or pro-
neural gene, it is the activity levels of these components that determine, in a context-
dependent manner, the outcomes of lateral inhibition.

Cells at the Edge: Lateral Induction and the Making of Tissue Boundaries  The 
best-characterized example of lateral induction occurs during the formation of the 
dorsoventral lineage boundary of the Drosophila wing (imaginal) disc (Fig. 8.2b), 
which in the adult gives rise to the peripheral wing margin. The DV boundary acts as 
a cellular fence, which prevents cells belonging to the dorsal ‘compartment’ of the 
wing disc from mixing with those of the ventral compartment during tissue growth 
(reviewed in Dahmann et al. 2011). Notch signalling is necessary for the formation 
of the boundary. Each compartment expresses uniformly a DSL ligand (Serrate in the 
dorsal compartment, Delta in the ventral one), and their expression is stimulated by 
Notch activity (de Celis and Bray 1997). But although the Notch receptor is present 
throughout the wing disc, Notch activity is strongly elicited along the DV boundary 
only, in a one- to three-cell-wide domain where expression of the ligands also 
becomes elevated (de Celis et al. 1996). This restricted activation is due to the action 
of Fringe, a glycosyltransferase present in the dorsal compartment that modifies the 
extracellular domain of the Notch receptor to make it less sensitive to Serrate, but 
promotes Delta/Notch interactions in both cis- and trans-signalling (LeBon et  al. 
2014; Rauskolb et  al. 1999). Consequently, Delta (in ventral cells) can strongly 
activate Notch in the (dorsal) Fringe-expressing cells – creating a longitudinal band 
of Notch activity between the dorsal and ventral compartments.

Hence, the differing modes of regulation of DSL ligands and the modification 
of Notch receptors can radically transform the tissue-level outcomes of Notch sig-
nalling. This versatility is also manifest in the inner ear, where Notch signalling is 
truly multi-tasking and managing through different ligands and modes of action, 
some of the key aspects of its development.

�Introduction to the Inner Ear

Aptly named by the early anatomists the ‘labyrinth’, the membranous part of the 
inner ear is composed of a complex 3D network of fluid-filled canals and chambers, 
lined up by specialized epithelial cells. The mammalian inner ear can be subdivided 
into a dorsal part containing the vestibular system and a ventral part, the cochlea 
(Fig.  8.3). The vestibular system has three semi-circular canals oriented along 
orthogonal axes and connected to three sensory organs, called cristae, which are 
sensitive to the angular rotation of the head. In addition, it contains the maculae of the 
utricle and the saccule, which act as gravity and acceleration sensors. In mammals, 
the cochlea forms a coiled structure resembling a snail shell and hosts a sensory 
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epithelium activated by sound, called the organ of Corti (Fig. 8.3b, c). The semi-
circular canal system is highly conserved, but there are variations in the number and 
morphology of the other sensory organs across vertebrates. However, one universal 
feature is the ‘salt-and-pepper’ mosaic of mechanosensory HCs, interspaced from 
one another by supporting cells (SCs). The HCs are topped by an array of modified 
microvilli, or stereocilia, arranged in neat rows forming a staircase-like pattern. 
The stereociliary bundles are in contact with specialized extracellular gels or mem-
branes and are bathed in a potassium-rich fluid called the endolymph. When inner 
ear fluids are displaced in response to changes in head position or to the vibrations 

Fig. 8.3  Development of the mouse inner ear. (a) The otic cup invaginates in the underlying mes-
enchyme and closes into a vesicle, which then gives rise to the different structures of the inner ear. 
The neuroblasts delaminate from the anterior part of the otic placode/cup to form the CVG gan-
glion, from which the vestibular and auditory neurons innervating the HCs derive. The specifica-
tion of the sensory organs is coupled to their progressive segregation from a large sensory-competent 
domain. By E17, the inner ear has reached an adult-like morphology. (b, c) Transverse representa-
tion of the embryonic cochlear duct, with its prosensory domain, from which the adult SCs and 
HCs of the organ of Corti derive. The IHCs are the main sensory transducers and connected by the 
majority of nerve afferents, whilst the OHCs have electromotile properties essential for the sensi-
tivity and frequency selectivity of the cochlea. Both types of HCs are interspaced by the cell bodies 
and apical surfaces of different types of specialized SCs. (d) Scanning electron microscopy (cour-
tesy of Andy Forge) view of the surface of the organ of Corti and its regular mosaic of HCs (purple) 
and SCs (green). Abbreviations: E embryonic day, Hb hindbrain, CVG cochleo-vestibular gan-
glion, ED endolymphatic duct, SSC semi-circular canal, VG vestibular ganglion, SG spiral gan-
glion, SC supporting cells, IHC inner hair cells, OHC outer hair cells, TM tectorial membrane
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of the middle ear ossicles, mechanotransduction channels located at the top of the 
stereocilia open, leading to an influx of potassium ions and cell depolarisation. 
This causes neurotransmitter release at the synaptic pole of HCs and the stimula-
tion of the afferent neurites of the auditory and vestibular neurons, which relay 
this information to the central nervous system.

Inner Ear Development in a Nutshell  We provide here a very brief summary of 
inner ear development in the mouse (Fig. 8.3) and refer to other reviews for further 
details (Alsina and Whitfield 2017; Basch et al. 2016a; Fritzsch and Beisel 2001).

The majority of the cells that compose the inner ear (including the audio-
vestibular neurons) derive from the otic placode, an epithelial thickening of the head 
ectoderm located on both sides of the embryonic hindbrain. The placode invaginates 
and then pinches off the surface ectoderm to form the otic vesicle or otocyst. As it 
grows, this simple sphere undergoes a drastic remodelling to give rise to various 
vestibular structures dorsally (endolymphatic duct, semi-circular canals) and the 
cochlear duct ventrally. This is accompanied by dynamic changes in the expression 
of molecular factors regulating the specification of otic progenitors. The precursors 
for the sensory organs are located within prosensory domains, which are produced 
sequentially by segregation from a large sensory-competent domain that extends 
along the ventromedial wall of the otic vesicle. The prosensory cells then gradually 
exit the cell cycle and differentiate into HCs and SCs. The first HCs are formed in 
the vestibular patches. In the embryonic organ of Corti, the terminal mitosis of the 
prosensory cells proceeds from the distal end to the base of the cochlear duct 
(around E13–E15  in the mouse), but HC differentiation and other aspects of the 
maturation of the epithelium follow the opposite direction. The onset of function of 
the mouse cochlea occurs at approximately 2 weeks of age.

�Roles of Notch During Inner Ear Development

In 1991, as the roles of Notch and lateral inhibition were uncovered in the nervous 
system of Drosophila and vertebrates, Julian Lewis proposed that the same mech-
anism could control the production of the neurosensory cells of the inner ear 
(Lewis 1991). Since then, the experimental evidence supporting this idea has 
accumulated, and new roles for Notch have been uncovered in prosensory speci-
fication and otic induction.

�Lateral Inhibition and the Regulation of Otic Neurogenesis

Starting from approximately E8 and until E12 in the mouse, the precursor cells 
for the neurons of the cochleo-vestibular ganglion, or neuroblasts, delaminate from 
the antero-medial domain of the otic placode (then vesicle, see Fig.  8.3). The 
neurogenic domain is included within a larger neurosensory competent domain, 
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which gives rise to several of the sensory organs. After their delamination, neuro-
blasts proliferate and differentiate into two populations of neurons: the vestibular 
neurons, which are born first, and the auditory neurons (Koundakjian et al. 2007). 
The selection of neuroblasts is regulated by lateral inhibition (Fig. 8.4). Notch1 is 
present throughout the otic epithelium, but Dll1 is restricted to the neurogenic patch, 
where it is expressed in a scattered manner (Alsina et al. 2004; Daudet et al. 2007). 
The neuroblasts express two proneural bHLH factors, Neurogenin1 (Neurog1) and 
NeuroD, which are, respectively, required for their initial specification and their 
delamination and survival (Kim et al. 2001; Liu et al. 2000; Ma et al. 2000; Matei 
et  al. 2005). Notch effectors and the modulator Lunatic Fringe (Lfng) are also 
expressed there (Adam et  al. 1998; Cole et  al. 2000). The evidence that lateral 
inhibition controls neuroblast formation came first from the mindbomb zebrafish 
mutant, which shows excessive neuronal production throughout its nervous system 
and in the inner ear (Haddon et al. 1998). In the chick otocyst, the pharmacological 
inhibition of Notch activity with a gamma-secretase inhibitor (GSI) or through 
overexpression of a dominant-negative form of Mastermind also leads to excess 
neuronal differentiation and an increase in Dl1 expression (Abelló et  al. 2007; 
Daudet et al. 2007) as predicted by the standard model of lateral inhibition with 
feedback.

The factors that establish otic neural competence are still unclear but involve a 
complex interplay of diffusible signals emanating from the surrounding tissues and 
transcription factors (reviewed in Gálvez et al. 2017; Raft and Groves 2014). Some 
effectors of the Notch pathway could also play a part in this process. In fact, cHairy1 
(an orthologue of Hes1) in the chick and her9 in the zebrafish (Radosevic et  al. 
2011) are expressed outside of the neurogenic domain. However, neither activation 
of canonical Notch nor a particular ligand has been firmly associated with their 
regulation. Instead, the transcription factor Tbx1 and retinoic acid, which promotes 
posterior identity in the otocyst, act upstream of her9 in zebrafish. The inactivation 
of her9 by morpholinos, similar to the absence of retinoic acid or Tbx1 in the mouse 
(Raft 2004), leads to ectopic induction of neurogenesis in posterior regions of the 
otocyst (Radosevic et al. 2011).

Fig. 8.4  Lateral inhibition during otic neurogenesis. The neuroblasts (cells in white on the left 
panel) delaminate from the neurosensory domain of the otic placode/vesicle and express Neurog1 
and NeuroD. The signal-receiving cells remain as neurosensory competent progenitors. Tbx1 and 
some effectors of the Notch pathway antagonize Neurog1 outside of the neurosensory domain. 
The color codes used on the simplified regulatory network (on the right) match those of the drawing 
(on the left) 

N. Daudet and M. Żak



137

�Lateral Inhibition and Hair Cell Fate Decisions

Once prosensory cells exit the cell cycle, they differentiate into HCs or SCs, and this 
decision is controlled by lateral inhibition (Fig. 8.5). Lateral inhibition has been 
most studied in the organ of Corti, partly because defects in the number and organi-
zation of inner HCs and outer HCs, organized, respectively, in one and three parallel 
rows, are very easy to spot. The basic rules of lateral inhibition appear nevertheless 
conserved across all inner ear sensory epithelia. The nascent HCs deliver lateral 
inhibition by expressing, in a transient manner, multiple DSL ligands: Dll1, Jag2 
and Dll3 in the mouse (Hartman et al. 2007; Lanford et al. 1999; Morrison et al. 
1999), DeltaA and DeltaB in the fish (Haddon et al. 1998; Riley et al. 1999) and at 
least Dll1 in the chick (Adam et al. 1998). In the signal-receiving cells, Notch activ-
ity represses the expression of Atonal-homologue 1 (Atoh1 in mammals, cath1 in 
the chick, atoh1a/b in the fish), a bHLH proneural gene required for the formation 
of chordotonal organs in the fly, and HCs as well as other cell types (granule cells in 
the cerebellum, secretory cells of the gut lining, etc.) in vertebrates (Bermingham 
et al. 1999; reviewed in Jarman and Groves 2013). In zebrafish, atoh1a is expressed 
in a large territory before becoming restricted to the first HCs, suggesting that it 
defines a genuine equivalence group (Millimaki et al. 2007). In the mouse cochlea, 
however, Atoh1 is highly expressed in nascent HCs but much harder to detect in the 
prosensory cells (Bermingham et al. 1999; Cai et al. 2013; Chen et al. 2002; Driver 
et al. 2013; Lanford et al. 2000; Woods et al. 2004; Yang et al. 2010), hinting at a 
different mode of regulation.

Redundancies in the Lateral Inhibition Machinery Ensure Robust Cell Fate 
Decisions  In the mindbomb zebrafish, HCs are produced early and in excess at the 
expense of the SCs (Haddon et al. 1998). In the absence of SCs, these HCs do not 
survive long and are rapidly eliminated from the epithelium. This remains to date 
the most dramatic phenotype observed in any Notch mutant, presumably because 

Fig. 8.5  Lateral inhibition during hair cell formation. Left panel: schematic representation of the 
changes in the expression of Atoh1 (in green), DSL ligands (orange) and levels of Notch activity 
(blue) in the course of HC formation are represented. After cell cycle exit, nascent HCs upregulate 
Atoh1 and several DSL, driving high Notch activity in prosensory domains. Following commit-
ment to the HC fate, cells down-regulate Atoh1 and DSL expression; Notch activity decreases in 
the mature sensory epithelium. The right panel represents the basic regulatory circuit during the 
lateral inhibition of HC formation. The autoregulatory feedback loop controlling Atoh1 could lead 
to a rapid elevation of DSL expression levels, ensuring robust lateral inhibition
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the E3-ubiquitin ligase Mib is required for the activities of several DSL ligands 
(Itoh et al. 2003). An overproduction of HCs can also be elicited in organotypic 
cultures of embryonic organ of Corti by GSI treatment (Tang et al. 2006; Yamamoto 
et al. 2006), although high doses are required to achieve the strongest phenotype 
(Doetzlhofer et  al. 2009). Whilst this confirms that Notch signalling is a key 
regulator of HC formation, it also indicates that multiple ligands or receptors must 
mediate lateral inhibition. There is in fact good evidence that the DSL ligands of 
HCs act in a cooperative and partly redundant manner: in the mouse organ of Corti 
of the Jag2 mutant, an additional row of IHCs is present, but the OHCs are unaffected 
(Lanford et al. 1999). In the Dll1 conditional Knock-Out (cKO) (Brooker 2006) or 
hypomorph mutant (Kiernan 2005), both IHCs and OHCs are produced early and in 
excess, but this phenotype becomes much more dramatic in a compound Dll1/Jag2 
mutant, suggesting synergistic effects (Kiernan 2005). The Dll3 mutant does not 
exhibit any defect in HC numbers (Hartman et al. 2007), which suggests either that 
this ligand is not contributing to lateral inhibition or that its absence is entirely 
compensated by Dll1 and Jag2. The Notch1 cKO mouse has a phenotype that is as 
severe as the combined loss of Jag2 and Dll1 (Kiernan 2005), suggesting that it is 
the main mediator of lateral inhibition. Its paralogues Notch2 and Notch3 are also 
expressed in the developing inner ear (Basch et al. 2011; Hao et al. 2012; Lindsell 
et al. 1996; Maass et al. 2015; Yamamoto et al. 2006), but their functions have not 
been tested. On the other hand, multiple Notch effectors of the Hes/Hey family are 
present in prosensory cells and SCs of the organ of Corti, and these interact 
genetically: compound mutants for Hes1, Hes5, Hey1 and Hey2 have more severe 
phenotypes than single mutants, suggesting additive effects between Hes/Hey 
repressors (Benito-Gonzalez and Doetzlhofer 2014; Li et  al. 2008; Tateya et  al. 
2011; Zheng et al. 2000; Zine et al. 2001). Hence, the multiplicity of DSL ligands 
and Notch effectors makes the lateral inhibition of HC fate decisions a robust and 
relatively fail-safe mechanism, although some of its components (e.g. Dll1, Notch1) 
are clearly more critical than others to its operation.

Are Hair Cell Fate Decisions Biased?  In Drosophila, a number of factors can 
provide a positive or negative bias in the signal-sending or signal-receiving abilities 
of cells interacting by lateral inhibition, but are these at play during HC fate 
decisions? The fact that there are strong differences in the expression levels of 
Atoh1  in prosensory cells (very low/absent) versus nascent HCs (very high) 
suggests that the latter might have a competitive advantage from the onset of lateral 
inhibition, but how this might be achieved is unknown. Numb, an endocytotic 
adaptor protein able to reduce the activity of the Notch receptor during asymmetric 
fate decisions in Drosophila (Couturier et al. 2013), does not appear to have such 
effect in the ear since its overexpression does not bias HC versus SC fate choices 
(Eddison et al. 2000; Eddison et al. 2015). The E3-ubiquitin ligase Mib, which is 
required for the internalization and activity of DSL ligands (Itoh et al. 2003), could 
in theory provide an advantage to some signal-sending cells, but this has not been 
directly tested.
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�Lateral Induction and Prosensory Specification

At the time the role of Jag2/Dll1  in the lateral inhibition of HC formation was 
uncovered, it became clear that an additional DSL ligand, Jag1, had a very distinct 
function. In fact, Jag1 is expressed long before HC differentiation by the prosensory 
cells and later by the SCs, which contact one another – a first hint that its expression 
is not repressed by Notch activity (Adam et al. 1998; Eddison et al. 2000; Morrison 
et al. 1999). Furthermore, the Jag1 mutants had a very distinct phenotype from the 
Dll1 or Jag2-deficient mice: they exhibited a circling behaviour, due to the absence 
of their vestibular cristae, and an organ of Corti with more inner HCs but fewer 
outer HCs than normal (Kiernan et  al. 2001; Tsai et  al. 2001). This, along with 
experiments showing that early and transient overexpression of an active form of 
Notch can induce the formation of ectopic sensory territories and Jag1 expression in 
the chick inner ear (Daudet and Lewis 2005), suggested that Jag1/Notch signalling 
regulates, by lateral induction, prosensory specification (Fig. 8.6).

Notch Activity Promotes Prosensory Specification by Maintaining Sox2 
Expression  Prosensory specification is the series of events leading to the formation 
of the prosensory cells, the population of otic progenitors competent to differentiate 
into HCs and SCs. Fate map experiments relying on the classic chick-quail grafting 
technique have shown that sensory organ progenitors are originally located within a 
large medial domain extending along the anteroposterior axis of the otic placode 
(Sánchez-Guardado et al. 2014). In the early otic vesicle, they are contained within 
a large ‘pan-sensory’ domain extending along the anteroposterior axis, which 
encompasses the anterior neurogenic patch and expresses among other markers 

Fig. 8.6  Lateral induction during prosensory specification and a hypothetical model for sensory 
organ segregation. Left panel: Jag1 and Sox2 are initially expressed in a continuous ‘pan-sensory’ 
domain, but their expression is downregulated in prospective non-sensory territories during sen-
sory organ segregation. The upregulation of Lmx1a could contribute to a reduction of Notch activ-
ity and Sox2 expression during the separation of sensory organs. Right panel: hypothetic regulatory 
circuit linking Notch activity, Lmx1 and Sox2 expression. The arrows do not imply direct regula-
tion or interaction
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FGF10, Sox2 and Jag1 (Adam et al. 1998; Alsina et al. 2004; Cole et al. 2000; Mann 
et al. 2017; Sánchez-Guardado et al. 2013). Next, distinct prosensory patches arise 
progressively by segregation from the pan-sensory domain  – a mechanism that 
could have contributed to the multiplication and diversification of the inner ear 
sensory organs in the course of vertebrate evolution (Fritzsch and Beisel 2001). 
Thus, the original pool of sensory-competent cells must be maintained and expanded 
throughout formation of the sensory organs. Lateral induction is in theory ideally 
suited to fulfil these roles: the positive feedback loop linking Notch and Jag1 
expression could (i) maintain Notch activity and prosensory character within 
interacting cells and (ii) specify new prosensory cells by recruiting ‘naïve’ cells 
(Notch-OFF) into a Notch-ON state. By large, the experimental evidence supports 
this idea but indicates that Notch activity is not sufficient for prosensory specification. 
In fact, overexpression of NICD in the early chick (Daudet and Lewis 2005; Neves 
et al. 2011) or mouse (Hartman et al. 2010; Liu et al. 2012a; Pan et al. 2010; Pan 
et al. 2013) otocyst does not convert all transfected cells into prosensory cells, and 
the capacity of Notch to induce ectopic sensory organs is restricted to a narrow 
developmental window (Liu et al. 2012a). Conversely, blocking Notch activity with 
GSI in cultures of chick otocysts strongly impairs, but does not completely prevent, 
sensory organ formation (Daudet et  al. 2007). Likewise, the RBPJ(k)/CSL cKO 
mouse exhibits a severe atrophy of the vestibular organs but a partial formation of 
the cochlear prosensory domain (Basch et al. 2011; Yamamoto et al. 2011). Some 
studies, however, have reported that GSI or TACE inhibitor treatments can suppress 
prosensory specification in organotypic cultures of embryonic (E12-E13) organ of 
Corti (Hayashi et al. 2008; Munnamalai et al. 2012). These seemingly contradictory 
results may be explained by the differences in experimental approaches and the fact 
that a CSL-null may not be equivalent to a Notch-OFF condition, due to the 
requirement for CSL for the constitutive repression of some of the Notch target 
genes (Barolo et  al. 2002): in the absence of CSL, the Notch targets that would 
normally be repressed by CSL in a Notch-OFF condition might be expressed, 
mimicking in fact a Notch-ON situation. Nevertheless, the fact that the recurrent 
consequence of blocking Jag1/Notch activity at early stages of ear development is a 
strong reduction (as opposed to a complete absence) of prosensory territories 
strongly suggests that the primary function of lateral induction is to maintain 
prosensory specification, rather than inducing it ‘de novo’.

The prosensory factors targeted by Notch activity are still unknown, but are 
likely to include Sox2, which is required for the formation of all inner ear sensory 
organs (Kiernan et  al. 2005) and is positively regulated by Notch (Daudet et  al. 
2007; Pan et al. 2010). The expression of Sox2 is widespread in the early otocyst 
before becoming restricted to the anterior neurosensory competent domain and the 
prosensory patches (Neves et  al. 2007; Neves et  al. 2011; Steevens et  al. 2017). 
Furthermore, recent lineage-tracing studies relying on an inducible Sox2-CreER 
mouse model have confirmed that the early Sox2-expressing cells include prospec-
tive prosensory cells but also a large proportion of cells that will eventually lose Sox2 
and give rise to non-sensory territories (Gu et al. 2016, 2; Steevens et al. 2019). 
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This reduction of Sox2 expression may be due to the localized dampening of lateral 
induction. In fact, Jag1 is downregulated in between segregating sensory organs in 
the chick and zebrafish otocyst (Ma and Zhang 2015; Mann et  al. 2017), and if 
Notch activity is artificially increased, the cristae (as well as other sensory organs) 
fail to segregate (Mann et al. 2017). Thus, the spatial regulation of lateral induction 
could determine the number and size of sensory organs that segregate from the ini-
tial pan-sensory domain. This might explain why forcing Notch activity tends to 
‘induce’ ectopic sensory territories close to the endogenous sensory organs (see, 
e.g. Hartman et  al. 2010; Liu et  al. 2012a): in these experiments, Notch over-
activation could maintain prosensory character (and Sox2) in sensory-competent 
regions that would otherwise lose this character over time.

Besides Sox2 and Notch, many transcription factors and signalling pathways are 
likely to promote or antagonize prosensory specification (Żak et  al. 2015). For 
example, the LIM-homeodomain transcription factor Lmx1a, expressed in non-
sensory domains, antagonizes Notch activity. In the Lmx1a-null mouse, cells nor-
mally contributing to non-sensory territories in between sensory organs adopt (or 
retain) a prosensory character (Mann et al. 2017), producing fused sensory organs 
(Koo et al. 2009; Nichols et al. 2008). Several mutant mice exhibit defects in sen-
sory organ segregation or size, and some of the underlying genes could impact on 
prosensory specification. The interactions between Notch signalling and Sox2 are 
most likely the tip of the iceberg, and much remains to be learnt about the genetic 
and epigenetic factors regulating prosensory specification.

Which Notch Components Mediate Its Prosensory Function?  Jag1 is positively 
regulated by Notch activity and can activate its own expression ‘in trans’, which 
indicate that it functions by lateral induction (Daudet and Lewis 2005; Eddison 
et al. 2000; Hartman et al. 2010; Neves et al. 2011; Pan et al. 2010). However, this 
does not mean that it is the only DSL ligand capable of regulating prosensory 
specification. In fact, Jag2 (Neves et  al. 2011) or Dll1 (Mann et  al. 2017) can 
induce ectopic sensory patches when overexpressed at early stages of chick inner 
ear development. Furthermore, the inner ear of Dll1-null mice exhibits a very small 
(or absent) saccule (Brooker 2006; Kiernan 2005), whilst it is the only sensory 
patch that seems to develop normally in the Jag1-cKO mice (Brooker 2006; 
Kiernan et  al. 2006). This suggests that Notch activity elicited by Dll1 during 
neurogenesis could contribute to the maintenance of the saccule progenitors. If 
several DSL can mediate the prosensory function of Notch, what about Notch 
receptors and their effectors? Receptors other than Notch1 must at least contribute 
to prosensory specification, since HCs do form (and in excess) in the Notch1 cKO 
mouse. The identity of the Notch effectors is equally elusive. It was originally 
proposed that lateral induction may be mediated through Hey1 and Hey2 (also 
known as Hesr1/2), since they are expressed within the prosensory domain before 
HC formation in the organ of Corti (Hayashi et al. 2008) and the vestibular organs 
(Petrovic et al. 2015; Tateya et al. 2011). However, Hey1/Hey2 double KO mice do 
not have any defect in prosensory specification or any reduction in HC numbers 
(Benito-Gonzalez and Doetzlhofer 2014). Prosensory specification is also 
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unaffected in the triple KO for Hes1, Hes5 and Hey1 (Tateya et al. 2011). Some 
Notch receptor(s) and effector(s) specifically involved in lateral induction may 
eventually be identified. However, the great level of functional redundancy seen 
during lateral inhibition is a strong hint that Notch could promote prosensory 
specification through multiple ligands, receptors and effectors. It is also clear that 
some canonical Notch effectors are not solely regulated by Notch in the ear. For 
example, Hey1/2 expression are maintained in the cochlea of RBPJK cKO mice 
(Basch et  al. 2011) and only partly reduced after pharmacological inhibition of 
Notch activity (Petrovic et  al. 2015), whilst FGF, Hedgehog, BMP and Wnt 
signalling can also regulate their expression (Benito-Gonzalez and Doetzlhofer 
2014; Doetzlhofer et al. 2009; Munnamalai et al. 2012; Petrovic et al. 2015; Tateya 
et al. 2013). Although we do not know if these transcriptional effects are direct or 
not, a number of signalling pathways seem able to ‘hijack’ traditional Notch 
effectors to impact on HC fate decisions as well as prosensory specification.

�Notch Signalling During Otic Placode Formation

Notch1, Dll1 and Jag1 and some Notch effectors (Hes1, cHes5.2) are expressed in 
the pre-otic ectoderm on both sides of the hindbrain before the placode itself is 
morphologically recognizable (Jayasena et  al. 2008; Jayasena et  al. 2008; Myat 
et al. 1996; Shida et al. 2015). At this stage, Wnt and FGF signals secreted by the 
neighbouring tissues (neural tube, mesoderm, endoderm) promote otic induction 
(reviewed in Chen and Streit 2013), and Pax2-positive precursors for the otic and 
epibranchial placodes are still intermingled in the pre-otic territory (Groves and 
Bronner-Fraser 2000; Streit 2002). Although it is tempting to imagine that Notch 
signalling could regulate the specification of these different cell types, experimental 
manipulation of Notch activity produced conflicting results. In the mouse, sustained 
NICD overexpression in the Pax2 lineage leads to the expansion of an otic placode-
like epithelium, which expresses the otic marker Pax8, but not others such as Pax2, 
Sox9,Gbx2 and Hmx3 (Jayasena et al. 2008). Since the placode is slightly reduced 
in size in a partial Notch1 mutant, the authors proposed that Notch activity could 
promote otic placode formation, possibly by augmenting Wnt signalling (Jayasena 
et al. 2008). However, in chick embryos, overexpression of NICD inhibits otic plac-
ode formation, whilst cells in which Notch is reduced (by expressing a dominant-
negative form of Dll1 or CSL) tend to adopt an otic fate (Shida et al. 2015). These 
differences may be due to species-specific functions for Notch or to the distinct 
experimental approaches used, since electroporation in the chick embryo would 
affect more cells than those of the Pax2 lineage. Another uncertainty is the mode of 
action (inhibition, induction or something else) of Notch in this context, since the 
consequences of blocking Notch activity on the expression of Dll1 and Jag1 have 
not been investigated. More work is therefore necessary to clarify the roles of Notch 
signalling during otic placode formation.
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�Managing and Multitasking: Specificity and Integration 
of Notch Functions in the Developing Inner Ear

The diversity of functions fulfilled by Notch signalling in the inner ear is remark-
able, and more often than not, these overlap in space and time. How then are the 
effects of different ligands and various modes of signalling integrated and converted 
into distinct responses?

�Competence States Determine the Context-Specific Effects 
of Notch Signalling

What determines the specific cell identities adopted through lateral inhibition or 
induction is the intrinsic competence of the interacting cells, which can be defined 
as their capacity to adopt a particular fate (or express a set of transcription factors) 
when Notch is ON or OFF.  The competence of the neurosensory progenitors 
changes during development. In mammals and birds, they produce neuroblasts first 
and then HC and SC. This transition is at least partly dependent on antagonistic 
cross-interactions between Neurog1 and Atoh1: in the Neurog1-null mouse, some 
of the prospective neuroblasts adopt a prosensory character and upregulate Atoh1 
(Raft et al. 2007), and HCs form earlier than expected (Matei et al. 2005). Among 
the other potential regulators of Atoh1 and Neurog1 are the inhibitors of differentia-
tion (Id1–4) HLH factors, which act as dominant-negative regulators of the proneu-
ral bHLH factors (reviewed in Jones 2004). All Ids are present in the developing 
inner ear (Jones 2006; Kamaid et al. 2010; Ozeki et al. 2007), and the overexpres-
sion of Id1–3 in ovo (Kamaid et al. 2010) or in organotypic cultures of mouse organ 
of Corti (Jones et al. 2006) can prevent HC differentiation, presumably by blocking 
Atoh1 activity. However, the absence of Id1 and Id3 in double KO mice does not 
produce obvious defects in prosensory specification or HC differentiation, at least in 
the cochlea (Jones 2006), suggesting an important level of redundancy between Id 
genes. Another factor that probably regulates the competence state of neurosensory 
progenitors is Sox2: it is required for their formation and can directly regulate Atoh1 
expression, but it can also antagonize its ‘pro-HC’ and ‘proneural’ effects when 
expressed at high levels (reviewed in Gálvez et al. 2017; Raft and Groves 2014), 
which suggests dose-dependent effects very similar to those described during cen-
tral neurogenesis (Pevny and Nicolis 2010).

The Epigenetic Landscape: A Regulator of Neurosensory Competence?  
Interactions between transcription factors are critical for setting up a competence 
state, but their ability to access their genomic targets is dependent on chromatin 
structure. The competence of otic progenitors is therefore expected to be sensitive 
to epigenetic modifications such as post-translational modifications of histones or 
DNA methylation. Explorations of this complex level of regulation have started 
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relatively recently, but there are already some indications of its importance 
(Doetzlhofer and Avraham 2017). For example, de novo mutations in the Chd7 
gene, which encodes a chromatin remodelling enzyme, cause the CHARGE 
syndrome, associated with congenital defects in inner ear morphology and function. 
During otic development, CHD7 expression becomes progressively restricted to the 
neurosensory regions (Hurd et al. 2010). The phenotype of Chd7-deficient mice is 
dose-dependent and complex, but it includes defects in neurogenesis and vestibular 
morphogenesis (absence of cristae and semi-circular canals) as well as a reduction 
of Sox2 and Jag1 expression (Hurd et  al. 2012), consistent with abnormal 
neurosensory specification. Are there any epigenetic modifications specifically 
associated with the specification of the neurosensory lineage? A recent study 
compared the open chromatin landscape of FACS-sorted Sox2-positive and negative 
cells in the embryonic mouse cochlea and found that approximately 29,300 ATAC-
Seq peaks were enriched in the prosensory cell population (Wilkerson et al. 2019), 
suggesting that may be the case. Further studies on more restricted populations of 
cells, or even single cells, will be needed to confirm these first insights and to 
determine if and how epigenetic marks influence the competence states of otic 
progenitors.

In summary, the competence state of otic neurosensory progenitors is the product 
of the interactions between bHLH proneural genes, Sox2, their regulators and the 
epigenetic factors impinging on their activities in a context-specific manner. What a 
cell does in response to Notch activity will change according to its competence 
state, which explains why blocking or activating Notch activity produces different 
outcomes at different stages of inner ear development.

�Integration of Notch Activity from Multiple Ligands and Modes 
of Signalling

Notch Effectors Are Activated in a Dose-Dependent Manner
There are several DSL ligands expressed in the inner ear, regulated in opposite 
ways, which raises the question of how their effects are integrated within signal-
receiving cells. We do not know if there are any receptor(s) other than Notch1 medi-
ating lateral inhibition and induction in the ear. Nevertheless, we can infer from 
other systems that even a single type of Notch receptor can be differentially acti-
vated by distinct DSL ligands. For example, biochemical assays have shown that 
Dll4 can bind 10 times more strongly than Dll1 to the Notch1 receptor (Andrawes 
et al. 2013); in cell lines carrying fluorescent reporters of Notch activity, Dll1 and 
Dll4 trigger, respectively, transient versus sustained activation of the Notch1 recep-
tor (Nandagopal et al. 2018). In the inner ear, Jag1 and Dll1 may also bind differ-
ently to Notch1. In fact, the amount of cleaved Notch1ICD increases drastically 
within sensory patches at the time of HC formation (Murata et al. 2006), suggesting 
that Jag1 is a relatively weak ligand for Notch1 compared to Dll1 or Jag2. Another 
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observation that fits with this idea is that whilst Dll1 immunostaining is detected 
exclusively within intracellular vesicles, Jag1 tends to accumulate at the cell mem-
brane of prosensory cells (Chrysostomou et al. 2012). This suggests that the inter-
nalization of Dll1 and therefore its trans-signalling effect is stronger than that of 
Jag1. The strength of Notch activation could next be translated into a dose-dependent 
expression of Hes/Hey effectors: in chick otocysts, the expression of Hes5 is reduced 
faster than that of Hey1 following GSI treatment, implying that Hes5 requires higher 
levels of Notch activity for its induction (Petrovic et al. 2015). Comparable findings 
were obtained in the mouse organ of Corti: the pharmacological inhibition of Notch 
activity induces dose-dependent changes in the expression of its Hes/Hey effectors, 
and Hey genes are less sensitive than Hes genes to this blockade (Basch et al. 2016b; 
Doetzlhofer et al. 2009; Maass et al. 2015). It is therefore possible that inputs from 
different Notch receptors are simply added and converted into a dose-dependent 
combination of Hes/Hey genes. The subtype of NICD produced may not be critical, 
since substituting the Notch1ICD by the Notch2ICD in transgenic mice (on a mixed 
genetic background) leads to the formation of a normal-looking organ of Corti, 
although the hybrid receptor is not as efficient as the intact Notch1 receptor (Liu 
et al. 2015).

Ligand-Receptor Interactions Are Modulated by Fringe-Dependent 
Glycosylation  If a common set of transcriptional targets is regulated by several 
Notch receptors in a dose-dependent manner, it is at the DSL/Notch binding and 
activation steps that the “specific” effects of a given ligand/receptor pair are 
determined: the more the ligand-receptor interactions, the stronger the Notch 
activation, and the more the Hes/Hey genes are induced. Besides the amount of cell-
surface ligand and receptor, factors modifying these interactions could potentially 
‘tune’ a given Notch receptor to a specific ligand. Among these are Fringe proteins, 
which are expressed in the developing ear (Cole et al. 2000; Morsli et al. 1998). The 
initial analysis of a Lfng mutant mouse cochlea showed no HC patterning defects, 
but surprisingly, the absence of Lfng could partly rescue the overproduction of inner 
HCs elicited by Jag2 absence (Zhang et al. 2000). The authors proposed that Lfng 
could reduce Dll1/Notch activation and its absence could perhaps restore normal 
levels of lateral inhibition in the absence of Jag2, although other scenarios are 
possible. In a recent study, Basch et al. (2016b) revisited the roles of Lfng and its 
paralogue Manic Fringe (Mfng) during cochlear development. They found that Lfng 
is dynamically expressed from the medial to the lateral side of the prosensory 
domain during its specification and then becomes enriched in SCs; Mfng is expressed 
later and is restricted to HCs. However, there is transient co-expression of Lfng and 
Mfng at the medial boundary of the organ of Corti, and when both genes are 
inactivated, supernumerary inner HCs (and their SCs) are produced, resembling the 
Jag2 mutant phenotype and other mutants with a partial loss of Notch function in 
the ear (Basch et al. 2016b), including the Jag1 cKO (Brooker 2006; Kiernan et al. 
2006). This suggests that Mfng and Lfng increase Notch1 sensitivity to its ligands 
and are required for robust lateral inhibition in the inner HCs region, but further 
work will be needed to establish which particular ligand-receptor interactions are 
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modulated by Lfng/Mfng. An interesting hypothesis raised by the authors is that 
Fringe could modulate cis-inhibition, which is the capacity of DSL ligands to inhibit 
the activation of Notch receptors ‘in cis’. We do not know yet if there is any ligand 
acting in this way in the ear, but Dll1 seems to be a relatively poor cis-inhibitor, at 
least in the chick inner ear: its overexpression under the control of either a Notch-
responsive or constitutive promoter can produce large patches of transfected cells 
without HCs (Chrysostomou et al. 2012). This result suggests that Dll1 elicits Notch 
activity in trans but does not prevent Notch activation in cis (otherwise more/all 
Dll1 expressing cells would be HCs), although further work is needed to validate 
this conclusion.

Making Sense of Notch Signalling in the Ear: Mathematical Models to the 
Rescue  As we progress in our description of the mechanisms of Notch signalling 
in the ear, we are faced with an increasingly complex and dynamic picture: multiple 
ligands regulated in a different way, acting in trans or in cis, activating one or more 
Notch receptors, regulating the expression of several Hes/Hey and proneural genes, 
themselves subjected to regulation by external factors and feeding back on ligand 
expression! Evidently, changing the activity of one component can generate 
phenotypes that are difficult to interpret. To understand the logic of Notch signalling 
at a system level, we need mathematical models. The first model of lateral inhibition 
by Collier et al. (1996) used differential equations to compute ligand expression as 
a function of Notch activation. Their simulations showed that starting from random 
conditions, an alternated mosaic of (computer) cells with either high-Notch/low-
ligand or low-Notch/high-ligand could be formed if there was a strong enough 
negative feedback loop between Notch activity and ligand expression in signal-
receiving cells. In an extension of this model, Petrovic et  al. (2014) studied the 
interplay between lateral inhibition and induction by introducing in the model two 
ligands, regulated in opposite manner. They found that the two modes of signalling 
can co-exist and produce a cellular mosaic only if (i) lateral induction does not elicit 
too high levels of Notch activity and (ii) the intercellular lateral inhibition feedback 
loop is reinforced by the positive autoregulation of the proneural gene that it 
controls. These predictions agree with the differential expression of Hes/Hey genes 
in response to Dll1 versus Jag1 in the ear (Petrovic et al. 2014; Petrovic et al. 2015) 
and suggest that the Atoh1 autoregulatory loop (Abdolazimi et al. 2016; Bermingham 
et  al. 1999; Helms et  al. 2000; Woods et  al. 2004) is critical for robust lateral 
inhibition. Another recent study investigated the impact of apical surface area on the 
outcomes of lateral inhibition (Shaya et al. 2017). Using in silico simulations and 
experiments conducted in cell lines, the authors proposed that smaller cells were 
more likely to act as signal-sending cells during lateral inhibition. One observation 
supporting this conclusion was that immature HCs have smaller apical surfaces 
compared to that of SCs in the embryonic basilar papilla, although we do not know 
whether this is also the case for uncommitted HCs. Models are powerful discovery 
tools, and their predictions, at times counter-intuitive, can open up new lines of 
enquiries: Would manipulation of cell size be sufficient to bias HC fate decisions? 
What would happen if the auto-regulatory feedback loop controlling Atoh1 
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expression was altered or if the strength of lateral induction or inhibition was 
artificially boosted? With the recent progress in genome editing technologies, these 
questions can now be tested experimentally in a wide range of model organisms.

�Integration of Notch Signalling with Cell Proliferation 
and Rearrangements

Developing tissues change considerably in form through cell addition and changes 
in cell morphology and position. These can in turn impact on the intercellular sig-
nalling pathways dependent on diffusible or cell-surface molecules. In the mam-
malian cochlea, convergent-extension movements responsible for the elongation of 
the epithelium cause local cell rearrangements during cell differentiation (Yamamoto 
et al. 2009). The situation is even more dynamic in the vestibular organs, where 
proliferation and HC production occur simultaneously and for an extended period 
of time (Burns et al. 2012; Goodyear et al. 1999). Thus, lateral inhibition operates 
in a changing cellular environment, which could explain why transient  contacts 
between immature and more mature HCs are frequently observed in developing 
sensory epithelia (Chrysostomou et al. 2012; Goodyear and Richardson 1997). How 
then are HCs ultimately positioned to their right place? One solution, originally sup-
ported by computational modelling (Podgorski et al. 2007), could be some form of 
differential adhesion that would result in HCs repelling one another whilst adhering 
more strongly to SC. Strong candidates to mediate this function belong to the nectin 
family of immunoglobulin-like adhesion molecules. In the organ of Corti, nectin1 is 
expressed in HCs and binds strongly to nectin3, present in SCs; their inactivation in 
KO mice results in patterning errors, in particular in the outer HC region, but with-
out significant changes in the number of HCs or SCs produced (Fukuda et al. 2014; 
Togashi et al. 2011).

Notch signalling may conversely, through some of its transcriptional targets, 
impact on cell proliferation. The expression of p27Kip1, which triggers the cell 
cycle exit of prosensory cells, is, for example, downregulated in the Jag1 cKO, in 
which IHCs and their SCs are produced in excess (Brooker 2006). Likewise, the 
absence of Hey/Hes genes can result in increased cell proliferation in the organ of 
Corti (Tateya et al. 2011), although the mechanistic link between Notch and the cell 
cycle has not been established.

�Notch Signalling and Hair Cell Regeneration

Hair cells are vulnerable to ototoxic drugs and acoustic trauma, and they spontane-
ously die during ageing. In mammals, the vestibular organs have a limited capacity 
for HC replacement, but the auditory HCs (approximately 15,000 in humans) are 
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only produced during development. Their disappearance leads to irreversible hear-
ing loss, for which the only available treatments are hearing aids or cochlear 
implants (reviewed in Géléoc and Holt 2014). In contrast, non-mammalian verte-
brates can regenerate HCs after damage throughout life. In the avian basilar papilla, 
a classic model for regeneration studies, SCs are normally quiescent, but these are 
in fact ‘tissue stem cells’ that can after tissue damage (i) transdifferentiate directly 
into HCs and (ii) re-enter the cell cycle to produce new HCs and new SCs (reviewed 
in Rubel et al. 2013; Stone and Cotanche 2007). Notch signalling is reactivated in 
the damaged basilar papilla during HC regeneration: Atoh1, DSL ligands and Notch 
effectors are upregulated 1 day after HC loss (Cafaro et al. 2007; Daudet et al. 2009; 
Stone and Rubel 1999). Furthermore, blocking Notch activity with GSI during 
regeneration causes an upregulation of Atoh1 and excess transdifferentiation of SCs 
into HCs in vitro (Daudet et al. 2009; Lewis et al. 2012). This suggests that lateral 
inhibition regulates the regeneration of HCs in a very similar manner to what it does 
during their embryonic formation. But importantly, GSI do not induce spontaneous 
regeneration in an undamaged epithelium, which implies that Notch activity does 
not maintain SCs quiescent (Daudet et al. 2009). The situation differs in the chicken 
utricle, where the continuous turnover of HCs is associated with mosaic Dll1 expres-
sion (Stone and Rubel 1999). There, GSI or ADAM-10 metalloprotease inhibitors 
increase HC regeneration after damage but also cause SC proliferation in the intact 
tissue (Warchol et al. 2017). Interestingly, GSI also stimulate SC proliferation after 
HC damage within the neuromasts of the zebrafish lateral line, another model for 
HC regeneration studies (Ma et al. 2008). However, we do not know for certain if 
these effects are due to inhibition of Notch activity: GSI and ADAM-10 metallopro-
tease inhibitors can interfere with the processing of other transmembrane molecules 
that could potentially impact on cell proliferation. Further studies relying on genetic 
manipulation of Notch activity will be required to clarify this point.

The Limited Regenerative Potential of Mammalian Vestibular Organs Is 
Improved by Notch Inhibition  The adult mammalian vestibular system has a 
limited capacity for spontaneous HC regeneration (Forge et al. 1993; Warchol et al. 
1993), which is thought to rely on transdifferentiation mainly (Rubel et al. 2013). 
This was recently confirmed using a genetic method for ablating utricular HCs and 
tracing the SCs: there is a very slow addition of new HCs (about two per week) in 
the adult mouse utricle, and SCs can convert into new HCs after extensive tissue 
damage (Bucks et al. 2017). We do not know which Notch receptors are expressed 
in the adult vestibular organs, but the utricle and cristae express at least Jag1 
(Oesterle et al. 2008; Wang et al. 2010) and Hes1/5 (Hartman et al. 2009; Slowik 
and Bermingham-McDonogh 2013). Furthermore, Atoh1 is upregulated following 
ototoxic damage, and interfering with Notch activity can improve the regenerative 
response of mammalian vestibular organs in vivo and in vitro (Jung et al. 2013; Lin 
et al. 2011; Slowik and Bermingham-McDonogh 2013; Wang et al. 2010). However 
the capacity of SCs to convert to HCs in response to Notch inhibition remains very 
low in adult compared to neonate vestibular organs (Collado et al. 2011), including 
in organotypic cultures derived from human tissue (Taylor et al. 2018). Combining 
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Notch inhibition with overexpression of Atoh1 is not sufficient to induce robust HC 
regeneration either (Lin et al. 2011; Taylor et al. 2018), suggesting that other signals 
restrict the competence of vestibular SCs to transdifferentiate into HCs.

Notch Activity Is Turned Off in the Adult Organ of Corti: Implications for 
Regenerative Therapies  Any report of successful auditory HC regeneration is 
invariably met, for good reasons, with a mix of excitement and scepticism. Where 
do we stand today with respect to the possibility to use Atoh1 or Notch-targeted 
therapies for hearing loss? The bulk of the evidence indicates that the capacity of 
Atoh1 to trigger ectopic HC differentiation (Zheng and Gao 2000) is limited to 
stages when SCs are still relatively immature (Kelly et al. 2012; Liu et al. 2012b); 
in the adult cochlea, there is no conclusive evidence that Atoh1 overexpression can 
lead to the regeneration of functional HCs (reviewed in Richardson and Atkinson 
2015). Likewise, the initial report that intra-cochlear administration of GSI may 
stimulate HC regeneration in adult mice exposed to acoustic trauma (Mizutari et al. 
2013) has not been replicated so far. A major caveat with regeneration studies is the 
variability of HC death induced by ototoxic drugs or acoustic trauma: if HCs are 
observed several weeks after damage, are these surviving HCs or regenerated ones? 
One way to answer this question is to analyse tissue at different times post-treatment. 
If regeneration occurs, one should find HCs with immature features (e.g. short 
stereociliary bundles; expression of Atoh1) soon after damage, just as in the 
vestibular organs. None of the studies claiming successful regeneration of auditory 
HCs (in the adult epithelium) has provided such evidence. Finally, the expression of 
Notch components decreases rapidly during the maturation of the organ of Corti, as 
does the capacity of SCs to convert into HCs in response to GSI treatment (Maass 
et al. 2015; Maass et al. 2016). Even if a very low level of Notch activity was present 
in the adult damaged cochlea, it may not necessarily regulate HC regeneration. If 
Notch has context-dependent transcriptional targets and functions in the course of 
ear development, why should it be different at adult stages? The uncertainties about 
the molecular targets and therapeutic effects of GSI in the adult organ of Corti are 
valid reasons to advocate caution with regard to the ongoing clinical trials in hearing 
loss sufferers. The recent boom in private and public investment for regenerative 
inner ear therapies (reviewed in Schilder et al. 2019) is welcome and justified by the 
major economical and societal impact of hearing loss, but developing a successful 
cure will depend on our capacity to recognize (and fill) our gaps in the basic 
knowledge of HC development and regeneration.

�Conclusion

Notch signalling has diverse and intertwined functions in the development and 
regeneration of the inner ear. As is the case in other tissues, the context-specific 
outcomes of Notch signalling in the ear are determined by the mode of regulation 
and signalling abilities of the DSL ligands but also, and crucially, by the competence 
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state of the signalling cells, which changes as cells progress along their differen-
tiation route. Understanding the genetic and epigenetic mechanisms responsible for 
these transitions could improve the prospect of regenerative therapies for inner ear 
disorders. Besides exploring the molecular interactions between Notch and the 
other major signalling pathways (FGF, Wnt, Hedgehog, etc.), we need a deeper 
understanding of their integration with the cellular and physiological aspects of 
inner ear development. Whilst this entails significant intellectual and experimental 
challenges, the ongoing progress in single-cell and functional genomics, imaging, 
inner ear organoid cultures and computational modelling are opening up new and 
exciting venues for inner ear (and Notch) aficionados.
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Chapter 9
Notch Pathway and Inherited Diseases: 
Challenge and Promise

Jörg Reichrath and Sandra Reichrath

Abstract  The evolutionary highly conserved Notch pathway governs many cellular 
core processes including cell fate decisions. Although it is characterized by a simple 
molecular design, Notch signaling, which first developed in metazoans, represents 
one of the most important pathways that govern embryonic development. 
Consequently, a broad variety of independent inherited diseases linked to defective 
Notch signaling has now been identified, including Alagille, Adams-Oliver, and 
Hajdu-Cheney syndromes, CADASIL (cerebral autosomal-dominant arteriopathy 
with subcortical infarcts and leukoencephalopathy), early-onset arteriopathy with 
cavitating leukodystrophy, lateral meningocele syndrome, and infantile myofibroma-
tosis. In this review, we give a brief overview on molecular pathology and clinical 
findings in congenital diseases linked to the Notch pathway. Moreover, we discuss 
future developments in basic science and clinical practice that may emerge from 
recent progress in our understanding of the role of Notch in health and disease.

Keywords  Notch · Notch signaling · Notch pathway · Embryonic development · 
Jagged · Delta-like ligand
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CAVD	 Calcific aortic valve disease
CHD	 Congenital heart disease
cKO	 Conditional knockout
CNS	 Central nervous system
Dll	 Delta-like canonical Notch ligand
DOCK	 Dedicator of cytokinesis
E	 Embryonic day
EGF	 Epidermal growth factor
EMT	 Epithelial-to-mesenchymal transition
ENU	 N-Ethyl N-nitrosourea
EOGT	 EGF domain-specific O-linked N-acetylglucosamine transferase
FGF	 Fibroblast growth factor
HCS	 Hajdu-Cheney syndrome
Hes	 Hairy and enhancer of split
HLHS	 Hypoplastic left heart syndrome
IM	 Infantile myofibromatosis
Jag	 Jagged
KO	 Knockout
LMS	 Lateral meningocele syndrome
LOF	 Loss of function
LW	 Lateral wall
MET	 Mesenchymal-to-epithelial transition
NEPs	 Neuroepithelial cells
NICD	 Notch intracellular domain
NRR	 Negative regulatory region
NSCs	 Neural stem cells
OMIM	 Online Mendelian Inheritance in Man
PEST sequence	 Peptide sequence that is rich in proline (P), glutamic acid (E), 

serine (S), and threonine (T)
RBPJ	 Recombination signal binding protein for immunoglobulin kappa 

J region
TAA	 Thoracic aortic aneurysms
TOF	 Tetralogy of Fallot
VSD	 Ventricular septal defect
vSMC	 Vascular smooth muscle cell
Wnt	 Wingless

�Introduction

The Notch pathway, which regulates many cellular core processes including cell 
fate decisions, is characterized by functional diversity, although its design is quite 
simple (Andersson et  al. 2011). It first developed during evolution in metazoans 
(Gazave et  al. 2009; Richards and Degnan 2009) and was first discovered in 

J. Reichrath and S. Reichrath



161

Drosophila melanogaster. In the last decades, a huge mountain of new scientific 
information has clearly demonstrated that Notch signaling represents one of the 
most important pathways that govern embryogenesis in animals and humans. As 
outlined elsewhere in this book (Reichrath and Reichrath 2020a), the tale that earned 
the gene the name Notch began over a century ago, when the American Scientist 
John S. Dexter discovered at Olivet College (Olivet, Michigan, USA) the character-
istic notched-wing phenotype (a nick or notch in the wingtip) in his stock of mutant 
fruit flies Drosophila melanogaster (Dexter 1914). The alleles responsible for this 
phenotype were identified 3 years later at Columbia University (New York City, 
New York, USA) by another American scientist, Thomas Hunt Morgan (Morgan 
1917), who discovered various mutant loci in the chromosomes of these fruit flies 
that were associated with several distinct notched-wing phenotypes. Although the 
majority of them was lethal, these alleles were associated with the characteristic 
phenotype with a nick in the wingtip and bristle phenotype specifically in female 
fruit flies, suggesting an association of these alleles with the X chromosome 
(Morgan 1928). Notably, this discovery and similar investigations that supported the 
chromosomal theory of inheritance earned Thomas Hunt Morgan in 1933 the Nobel 
Prize in physiology/medicine. In subsequent decades, despite the extensive research 
on the Notch locus, researchers struggled to identify the function for the Notch gene 
due to the lethality early in embryogenesis and broad phenotypic consequences of 
Notch mutants.

In the following years, many additional alleles were identified, which were asso-
ciated with the Notch phenotype (Morgan 1928). This observation was finally con-
firmed in the laboratories of Spyros Artavanis-Tsakonas and Michael W.  Young 
more than half a century later by cloning and sequencing of the mutant Notch locus 
(Wharton et al. 1985; Kidd et al. 1986).

Although this pathway is characterized by a relatively simple design, Notch sig-
naling exerts highly versatile functions (Andersson et al. 2011), playing multiple 
roles, both in development and in adult tissue homeostasis, including keeping pre-
cursor and stem cells in a non-differentiated state, having the ability to activate cell 
proliferation and to regulate various other important cell fate decisions (reviewed by 
Kopan and Ilagan 2009; Reichrath and Reichrath 2020). Until today, a huge moun-
tain of studies – ranging from the molecular and functional elucidation of the Notch 
pathway (reviewed in Bray 2016; Kopan and Ilagan 2009) to the generation of 
knockouts in model organisms and the discovery of Notch genes mutated in humans 
(Gridley 2003)  – has confirmed an essential role for Notch signaling in human 
development. Consequently, a broad variety of independent inherited disorders 
linked to defective Notch signaling has now been identified. A major breakthrough 
in the investigation of these congenital diseases was the linkage analysis-based dis-
covery of heterozygous NOTCH3 mutations on chromosome 19  in patients diag-
nosed with CADASIL (cerebral autosomal-dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy, an autosomal-dominant hereditary stroke disor-
der resulting in vascular dementia) that was reported by Joutel et al. in 1996. In the 
following year, two groups independently reported that mutations in JAG1, located 
within chromosome 20p12, cause Alagille syndrome (Li et al. 1997; Oda et al. 1997). 
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Since then, several other inherited disorders, involving pathological embryogenesis 
in multiple tissues, including Adams-Oliver and Hajdu-Cheney syndromes, have 
now convincingly been linked to defective Notch signaling. The fact that many of 
these congenital diseases are rare (with prevalences of just a few per 100,000) not 
only represents serious hurdles to studying the impact of these genes in humans 
(Mašek and Andersson 2017). It has been concluded that it also underlines the cru-
cial importance of Notch signaling for human survival (Mašek and Andersson 
2017). Notably, the generation of knockout mice and investigations using other ani-
mal models have in recent years resulted in the generation of a huge mountain of 
new scientific findings regarding the function of specific Notch components in 
human development and disease (Mašek and Andersson 2017). An important exam-
ple of these animal models are Jag1 mouse mutants generated in N-ethyl 
N-nitrosourea (ENU) mutagenesis screens (ENU is an alkylating agent, acting as a 
potent mutagen, with preference for A→T base transversions and also for AT→GC 
transitions, but also causing GC→AT transitions), such as Ozzy (W167R, Delta/
Serrate LAG-2 domain, Vrijens et al. 2006), Headturner (G289D, EGF-like repeats, 
Kiernan et al. 2001), Slalom (P269S, EGF-like repeats, Tsai et al. 2001), and Nodder 
(H268O, EGF-like repeats; Hansson et al. 2010), that harbor mutations that cluster 
in the N-terminal missense-mutation hotspot typically found in Alagille syndrome. 
Interestingly, recent “big data” analyses of whole-exome and whole-genome 
sequencing have now revealed the presence or absence of mutations in Notch com-
ponents in the human population, confirming that specific Notch components are 
essential to species fitness and presenting exciting future avenues of research 
(Mašek and Andersson 2017). In this review, we give a short overview on molecu-
lar pathology and clinical findings in congenital diseases linked to the Notch path-
way. Moreover, we briefly discuss the emerging role of Notch as a promising 
therapeutic target.

�Defective Notch Signaling and Embryogenesis: Congenital 
Heart Disease (CHD) as an Example for the Broad Variety 
of Pathophysiological Consequences in Individual Tissues

Bicuspid aortic valve (BAV) represents the most common congenital heart defect, 
affecting 1–2% of the general population (reviewed in Meester et al. 2019). While 
in many cases, BAV exerts no or only mild clinical symptoms and remains 
undetected, it can also result in severe cardiovascular complications including cal-
cific aortic valve disease (CAVD) (Garg et  al. 2005; reviewed in Meester et  al. 
2019), coarctation, stenosis, and valve dysfunction (Michelena et al. 2014; reviewed 
in Meester et al. 2019). Moreover, it has been reported that in at least 20% of affected 
patients, BAV is associated with the development of thoracic aortic aneurysms 
(TAA) (Gillis et al. 2017; reviewed in Meester et al. 2019) and that BAV-associated 
complications are associated with significantly increased mortality rates (reviewed 
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in Meester et al. 2019). Despite the fact that BAV is common, very few genes have 
been linked to this condition and the hitherto known genes only explain disease in a 
minority of patients (reviewed in Meester et al. 2019). Garg et al. published in 2005 
the first study reporting the association of NOTCH1 mutations in congenital heart 
disease (CHD) (Garg et al. 2005). In that investigation, truncating NOTCH1 muta-
tions were detected in members of two separate families that suffered from various 
aortic and cardiac defects, including BAV, CAVD, aortic stenosis, aortic insuffi-
ciency, TAA, tetralogy of Fallot (TOF), ventricular septal defect (VSD), mitral atre-
sia, hypoplastic left ventricle, and double-outlet right ventricle (Garg et al. 2005; 
reviewed in Meester et al. 2019). In the following years, many other investigations 
reported associations between variations in NOTCH1 and BAV, BAV/TAA, hypo-
plastic left heart syndrome (HLHS), aortic valve stenosis, and coarctation (reviewed 
in Meester et  al. 2019). However, it has to be noted that most of the mutations 
detected in these investigations are missense mutations, which do not replace or 
create critical cysteine or other conserved residues in the EGF-like domains, of 
which the vast majority has also been reported in public databases (e.g., gnomAD, 
reviewed in Meester et al. 2019), sometimes with high frequencies. Therefore, it has 
been concluded that the causal relationship of these missense mutations with CHD 
is not as convincing as the causal relationship of the loss-of-function (LOF) muta-
tions from the initial report (Garg et al. 2005; reviewed in Meester et al. 2019).

Interestingly, a large-scale screening investigation of 428 patients with left-sided 
CHD (LS-CHD), confined to aortic valve stenosis, BAV, coarctation of the aorta, 
and HLHS reported in 2016 the presence of 14 different NOTCH1 mutations, 
including splicing mutations, truncating mutations, and a whole gene deletion 
(Kerstjens-Frederikse et al. 2016; reviewed in Meester et al. 2019). Interestingly, a 
specific frameshift mutation detected in this investigation (p.Ser2486Leufs∗21) is 
located within the last exon and is therefore predicted to escape nonsense-mediated 
decay (NMD) of the mutant mRNA transcript (Kerstjens-Frederikse et  al. 2016; 
reviewed in Meester et al. 2019). Consequently, it has been hypothesized that this 
mutation should result in a dominant negative effect. Notably, this effect should be 
different from the other truncating mutations reported in this investigation, for 
which it was speculated that haploinsufficiency (HI) would be the most likely mech-
anism of disease (reviewed in Meester et al. 2019). Moreover, it has been reported 
that 18% of mutation carriers suffered from right-sided CHD (RS-CHD) or 
conotruncal heart disease, revealing that the observed CHD has both a left- and 
right-sided localization (Kerstjens-Frederikse et al. 2016; reviewed in Meester et al. 
2019). Furthermore, in 10% of NOTCH1 mutation carriers, TAA has been detected 
(reviewed in Meester et al. 2019). Interestingly, familial segregation revealed that 
25% of mutation carriers were asymptomatic, indicating a significantly decreased 
penetrance (Kerstjens-Frederikse et al. 2016; reviewed in Meester et al. 2019).

However, a recent investigation could not confirm these findings, reporting con-
flicting data (Gillis et al. 2017; reviewed in Meester et al. 2019). Results of that 
study, which investigated 441 patients with BAV/TAA, indicated a possible protec-
tive role for NOTCH1 variants, as missense/splicing variants were observed more 
frequently amongst control populations compared to the BAV/TAA cohort (reviewed 
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in Meester et al. 2019). However, it has to be noted that, as the authors state, sample 
selection bias might have contributed to this observation, as NOTCH1 variants 
appear to associate with early and severe valve calcification and seem to be enriched 
in families with highly penetrant BAV but far lower penetrance of TAA (Gillis et al. 
2017; reviewed in Meester et al. 2019).

To study the role of this receptor, several Notch1 mouse models have been gener-
ated. Homozygous knockout of Notch1 leads to embryonic lethality due to vascular 
defects, indicating an essential role for Notch signaling in early cardiovascular 
development (Krebs et al. 2000; reviewed in Meester et al. 2019). Heterozygosity of 
Notch1 on a Nos3-null background, a model previously known for the development 
of BAV (Lee et al. 2000), is characterized by high penetrance of BAV (Bosse et al. 
2013). It has been shown that endothelial-specific loss of Notch1 contributes to the 
development of BAV (Koenig et al. 2016; Wang et al. 2017; reviewed in Meester 
et  al. 2019). Notably, endothelial Dll4 is required for epithelial-to-mesenchymal 
transition (EMT), a highly coordinated process characterized by the detachment of 
endocardial cells in the atrioventricular canal and outflow tract and their transition 
to mesenchyme cells of the endocardial cushions (reviewed in Meester et al. 2019). 
On the other hand, endocardial Jag1 has been demonstrated to be essential for 
proper cushion formation at post-EMT stages (MacGrogan et al. 2016; reviewed in 
Meester et al. 2019). Interestingly, calcification studies of the aortic valves revealed 
that immortalized Notch1+/− aortic valve interstitial cells resemble a myofibroblast-
like phenotype, expressing higher amounts of mediators of dystrophic calcification 
(Chen et al. 2015; reviewed in Meester et al. 2019). Moreover, recent investigations 
have convincingly demonstrated that a heterozygous loss of Notch1 (Notch1+/−) 
causes the development of TAA on a 129SV background, a phenomenon not 
observed on a mixed background (C59Bl6, 129SV, BTBR) (Koenig et  al. 2017; 
reviewed in Meester et al. 2019).

In summary, there is at present convincing evidence that truncating mutations in 
NOTCH1 cause a wide range of CHD, characterized by incomplete penetrance and 
variable expression. In contrast, the causative potential of NOTCH1 missense vari-
ants for the pathogenesis of CHD is less convincing and needs to be clarified in 
future investigations (reviewed in Meester et al. 2019).

�Alagille Syndrome (ALGS)

�Molecular Biology and Genetics of Alagille Syndrome (ALGS)

This multisystemic inherited disease was first described in 1975 by Alagille et al. 
(1975). It’s prevalence was estimated to be 1 in 70,000. However, this is likely an 
underestimation, as it was based on the presence of neonatal liver disease, and it was 
later discovered that a highly variable phenotype is present (Table 9.1, reviewed in 
Meester et  al. 2019). Alagille syndrome (ALGS) is caused by loss-of-function 
mutations in either JAG1 (OMIM 601920, cytogenetic location: 20p12.2; 94–96% 
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of affected patients) or NOTCH2 (OMIM 600275, cytogenetic location: 1p12; 
1–2% of affected patients) (Table 9.1, Descartes et al. 2014; Gray et al. 2012; Han 
et al. 2015; Isidor et al. 2011a, b; Kamath et al. 2012; Li et al. 1997; Majewski et al. 
2011; McDaniell et al. 2006; Narumi et al. 2013; Oda et al. 1997; Simpson et al. 
2011). Because ALGS is inherited in an autosomal-dominant pattern, one copy of 
the altered gene will cause the disorder (Mašek and Andersson 2017). JAG1 muta-
tions can represent deletions, truncations, splice site, nonsense, or missense. It was 
previously suggested that mutations linked to ALGS could occur anywhere in the 
coding domains (CDS) for JAG1, but analysis of 87 missense mutations revealed 
that the deleterious mutations that are associated with ALGS predominantly cluster 
in the N-terminal region of JAG1 and with two other smaller sub-clusters: one in 
EGF-like repeats 11–12 and one in the von Willebrand factor type C/Jagged Serrate 
domain (also known as the cysteine-rich domain) (Mašek and Andersson 2017). 
Two characteristic types of Alagille NOTCH2 mutations have been detected in 
ALGS, either abrogating cysteines in the ligand-binding EGF-like repeats or argi-
nines in the ankyrin repeats (Descartes et al. 2014; Gray et al. 2012; Han et al. 2015; 
Isidor et al. 2011a, b; Majewski et al. 2011; Narumi et al. 2013; Simpson et al. 2011).

�Clinical Hallmarks of Alagille Syndrome

ALGS has been defined as a multisystemic inherited disease characterized by the 
presence of bile duct paucity in combination with three out of five major criteria, 
including cholestatic liver disease, cardiac anomalies, ocular abnormalities, skeletal 
defects, and characteristic craniofacial features (Table  9.1, Alagille et  al. 1987; 
reviewed in Meester et al. 2019). More in detail, the five clinical hallmarks of this 
inherited disease may include the following symptoms: (1) characteristic facial fea-
tures that include a prominent forehead, pointed chin, and deep-set eyes, (2) poste-
rior embryotoxon (a distinct eye defect), (3) a broad variety of heart defects that 
may range from pulmonary stenosis to tetralogy of Fallot, (4) vertebral defects 
(including typical butterfly vertebrae), and (5) jaundice/cholestasis resulting from 
intrahepatic bile duct paucity. In addition to these diagnostic hallmarks, a significant 
number of patients show growth retardation (50–90%) (Alagille et al. 1975, 1987; 
Emerick et al. 1999), have renal symptoms (40%) (Kamath et al. 2013), and/or pres-
ent with vascular structural anomalies and bleeds (10–25%) (Emerick et al. 1999; 
Kamath et al. 2004).

The vast majority of ALGS patients present with liver disease, including mild 
cholestasis, jaundice, and pruritis, that can progress to liver failure within the first 
3 months of life (reviewed in Meester et al. 2019). ALGS-associated liver damage 
can result in a yellowish tinge in the skin and the whites of the eyes (jaundice), itch-
ing (pruritus), pale stools (acholia), an enlarged liver (hepatomegaly), an enlarged 
spleen (splenomegaly), and deposits of cholesterol in the skin (xanthomas) (reviewed 
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in Meester et al. 2019). Additionally, too few bile ducts may be present (bile duct 
paucity) or, in some cases, bile ducts may be completely lacking (biliary atresia) 
(reviewed in Meester et al. 2019). It was reported that bile duct paucity may lead to 
reduced absorption of fat and vitamins (A, D, E, and K), which may cause rickets or 
a failure to thrive in children (reviewed in Meester et  al. 2019). Around 15% of 
affected patients will develop liver cirrhosis in the course of their disease, and hepa-
tocellular cancer has been observed in some cases (Sijmons 2008).

Approximately 94% of ALGS patients suffer from cardiac manifestations, which 
also vary widely between affected individuals and range from benign heart mur-
murs to significant structural malformations (reviewed in Meester et al. 2019), such 
as tetralogy of Fallot. Other ALGS-associated heart defects include pulmonary ste-
nosis, overriding aorta, ventricular septal defect, atrial septal defects, patent ductus 
arteriosus, coarctation of the aorta, and right ventricular hypertrophy (reviewed in 
Meester et al. 2019). Without therapy, tetralogy of Fallot mortality rates range from 
70% to 95%, by age 10 to age 40, respectively (reviewed in Meester et al. 2019). In 
ALGS patients, complete surgical repair significantly increases both longevity and 
quality of life (reviewed in Meester et al. 2019).

Other presentations of ALGS include a characteristic butterfly shape of one or 
more of the bones of the spinal column, distinct eye defects (such as posterior 
embryotoxon and pigmentary retinopathy), and narrowed pulmonary arteries that 
may increase pressure on the right heart valves (reviewed in Meester et al. 2019). 
Many patients with ALGS have similar facial features, including a broad, prominent 
forehead, deep-set eyes, and a small pointed chin (reviewed in Meester et al. 2019). 
Additionally, the kidneys and the central nervous system can also be affected 
(reviewed in Meester et al. 2019).

Recent studies have indicated that ALGS is accompanied by reduced penetrance 
and markedly variable expression (reviewed in Meester et al. 2019). Importantly, 
familial segregation analyses revealed a substantial number of mutation carriers that 
did not fulfil all clinical diagnostic criteria of ALGS (reviewed in Meester et  al. 
2019). Consequently, it has been hypothesized that the clinical diagnostic criteria 
might be too stringent and more emphasis should be placed on the molecular iden-
tification of pathogenic variants in this disease (reviewed in Meester et al. 2019).

In ALGS, the severity of the clinical phenotype may vary greatly between mem-
bers of the same family, with a broad variety of symptoms ranging from unnoticed 
and/or mild as to severe heart and/or liver diseases that require transplantation 
(Gunadi et al. 2019). Although it is in general difficult to predict the prognosis of an 
individual patient suffering from ALGS, several indicators of earlier death have 
been reported (Emerick et al. 1999). Following liver transplantation in ALGS, the 
effect of long-term immunosuppression on other affected systems has not been eval-
uated well until today. Therefore long-term posttransplant prospective studies are 
urgently needed to address these issues (Singh and Pati 2018, reviewed in Meester 
et al. 2019).
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�Adams-Oliver Syndrome: Highlighting the Impact 
of NOTCH1, DLL4, and RBPJk for Human Embryogenesis

�Historical Considerations

Historically, it has to be noted that until 1945, when Clarence Paul Oliver and 
Forrest H.  Adams reported their thoughtful observations (Adams and Oliver 
1945), newborns presenting with underdeveloped upper or lower extremities were 
considered as having congenital amputations, defects that were attributed to 
amniotic band or umbilical cord constriction of the extremities (amniotic band 
syndrome) (reviewed in Mašek and Andersson 2017; Meester et  al. 2019). In 
1945, Clarence Paul Oliver and Forrest H. Adams described a patient with anoma-
lies in the feet and one hand and also a denuded area of the scalp, with a thinner 
skull. Most importantly, they demonstrated that many family members had simi-
lar symptoms and speculated that the condition was hereditary (Adams and Oliver 
1945). Since then, the diagnosis, genetics, and underlying biology of Adams-
Oliver syndrome, as it has come to be known, has become more complex (reviewed 
in Mašek and Andersson 2017; Meester et  al. 2019). The condition presenting 
with underdeveloped upper or lower extremities is now known as terminal trans-
verse limb deficiencies (reviewed in Mašek and Andersson 2017; Meester 
et al. 2019).

�Molecular Biology and Genetics of Adams-Oliver Syndrome

Adams-Oliver syndrome represents a rare genetic disorder that can be autosomal 
dominant or autosomal recessive or caused by de novo mutations (reviewed in 
Mašek and Andersson 2017; Meester et al. 2019). It has been linked to mutations 
in several different genes, including DLL4 (OMIM 605185, cytogenetic location: 
15q15.1) and NOTCH1 (OMIM 190198, cytogenetic location: 9q34.3), as well as 
in RBPJ (OMIM 147183, cytogenetic location: 4q15.2), EOGT (OMIM 614789, 
cytogenetic location: 3p14.1), ARHGAP31 (OMIM 610911, cytogenetic location: 
3q13.2–3q13.33), and DOCK6 (OMIM 614194, cytogenetic location: 19p13.2) 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019). While mutations 
in DOCK6, which encodes a regulator of Rho GTPase signaling, or in EOGT, 
which encodes a component of the Notch pathway, lead to autosomal-recessive 
forms (Lehman et al. 2014; Shaheen et al. 2011, 2013; Sukalo et al. 2015a, b), 
mutations in NOTCH1, RBPJ, or DLL4, all of which are Notch pathway compo-
nents, or in ARHGAP31, which encodes another Rho GTPase regulator, result in 
dominant forms (Table 9.1, Hassed et al. 2012; Isrie et al. 2014; Meester et al. 2015; 
Southgate et al. 2011, 2015; Stittrich et al. 2014). Some studies indicate that DLL4 
mutations are more randomly distributed in the ligand, even including two trunca-
tion mutations of the C-terminal domain (reviewed in Mašek and Andersson 2017; 
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Meester et al. 2019). NOTCH1 mutations are in most cases missense mutations in 
cysteines, predominantly in the ligand-binding domain of EGF-like repeat 11 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019).

�Clinical Findings in Adams-Oliver Syndrome

Adams-Oliver syndrome is diagnosed based on the presence of several clinical hall-
marks (Table 9.1), namely, (a) terminal transverse limb malformations, (b) a local 
absence of skin (named aplasia cutis congenita, Fig. 9.1), and (c) a partial absence of 
skull bones. Terminal transverse limb defects can resemble amputations, and patients 
may also have syndactyly (Table 9.1, reviewed in Mašek and Andersson 2017; Meester 
et al. 2019; Zanotti and Canalis 2016). In general, aplasia cutis congenita (Fig. 9.1) is 
predominantly found in the skull region; however other body parts, including the 
abdomen, may also be affected (reviewed in Meester et al. 2019; Zanotti and Canalis 
2016). The severity and symptoms of aplasia cutis congenita and of skull symptoms 
may greatly vary (reviewed in Meester et al. 2019; Zanotti and Canalis 2016). At birth, 
the affected skin region typically presents as healed but scarred skin, and skin histol-
ogy shows absent epidermis, dermal atrophy, and a lack of elastic fibers and other skin 
structures (reviewed in Meester et  al. 2019; Zanotti and Canalis 2016). However, 
symptoms may range from a localized region with complete absence of skin to patches 

Fig. 9.1  Skin histology of aplasia congenita, a clinical hallmark of Adams-Oliver syndrome. 
Please note dermal atrophy with lack of elastic fibers and rarefication of epidermal appendages and 
other skin structures (arrows)
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of skin that lack hair (reviewed in Meester et al. 2019; Zanotti and Canalis 2016). 
Similarly, the many facettes of skull symptoms may range from an absence of skull to 
a near-normal skull (Lehman et al. 1993; reviewed in Meester et al. 2019; Zanotti and 
Canalis 2016). Moreover, affected patients may present with vascular anomalies, 
including dilated surface blood vessels, which result in a marbled appearance of 
affected skin areas (termed cutis marmorata telangiectatica), pulmonary or portal 
hypertension, and retinal hypervascularization; around 23% have congenital heart 
defects (around 23%) (reviewed in Mašek and Andersson 2017; Meester et  al. 
2019; Zanotti and Canalis 2016). It has been speculated that most symptoms of 
Adams-Oliver syndrome may be caused by impaired circulation (Patel et al. 2004; 
Stittrich et al. 2014; Swartz et al. 1999).

�Hajdu-Cheney Syndrome (HCS) (OMIN 102500)

�Historical Considerations

Hajdu-Cheney syndrome (HCS) represents a devastating disease that was first 
described in 1948, when Hajdu and Kauntze reported the case of a 37-year-old 
accountant suffering from severe osteoporosis, acroosteolysis, and neurological 
complications, who died 12  years later (Hajdu and Kauntze 1948; reviewed in 
Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 2016). Cheney 
then reported the clinical condition in 1965 as a syndrome (Cheney 1965; reviewed 
in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 2016). HCS 
represents a rare (at present, less than 100 cases have been reported, although its 
prevalence is probably higher) autosomal-dominant inherited disease although 
many sporadic cases occur (reviewed in Mašek and Andersson 2017; Meester et al. 
2019; Zanotti and Canalis 2016).

�Molecular Biology and Genetics of Hajdu-Cheney Syndrome 
(HCS)

The intracellular domain of NOTCH2 (NICD) consists of a transcriptional domain 
formed by an Rbpjk association module (RAM) linked to ankyrin (ANK) repeats 
and a nuclear localization sequence (NLS) (reviewed in Mašek and Andersson 
2017; Meester et al. 2019; Zanotti and Canalis 2016). The C-terminus contains the 
proline (P)-, glutamic acid (E)-, serine (S)-, and threonine (T)-rich motifs (PEST) 
domain which is required for the ubiquitinylation and degradation of the NICD 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 
2016). More than half a century after the original description, whole-exome 
sequencing in individuals affected with HCS revealed the presence of point 
mutations in exon 34 of NOTCH2 leading to the creation of a stop codon and the 
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premature termination of the protein product upstream the PEST domain (Table 9.1, 
Isidor et al. 2011a, b; Simpson et al. 2011; Majewski et al. 2011). There is now 
general consensus that these nonsense mutations in exon 34, which lead to the for-
mation of a truncated protein (consisting of all NOTCH2 sequences necessary for 
the formation of the transcriptional complex, but lacking the PEST domain needed 
for the ubiquitinylation and degradation of NOTCH2), cause HCS. As a result, the 
NOTCH2 protein that is synthesized is stable and active. It is of interest that 
NOTCH2 transcript levels were equivalent to those observed in controls, indicating 
a reduced capacity to activate the process of nonsense-mediated mRNA decay 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 
2016). Since the PEST domain contains sequences necessary for the ubiquitinyl-
ation and degradation of Notch in the proteasome, the mutations lead to a stable 
protein and persistence of NOTCH2 signaling since all sequences required for the 
formation of the Notch transcriptional complex are upstream the PEST domain and 
are therefore preserved characterized by focal bone lysis of distal phalanges and by 
generalized osteoporosis (Hajdu and Kauntze 1948; Cheney 1965; Silverman et al. 
1974; Currarino 2009; Gray et al. 2012).

Hajdu-Cheney and Alagille syndrome can be described as two sides of the same 
coin. Alagille syndrome is caused by haploinsufficiency (HI) for JAG1 (~94% of 
cases) (Li et al. 1997; Oda et al. 1997) or by mutations in NOTCH2 (~2% of patients) 
(McDaniell et al. 2006) and is considered to be a Notch loss-of-function phenotype. 
By contrast, Hajdu-Cheney syndrome, which is driven by production of a stabilized 
NOTCH2 lacking a functional PEST degradation domain, is caused by gain-of-
function mutations in NOTCH2 (Gray et  al. 2012; Han et  al. 2015; Isidor et  al. 
2011a, b; Majewski et al. 2011; Simpson et al. 2011). As we highlight below, a vast 
number of tissues and organs affected in these syndromes are likely a reflection of 
the varied and indispensable roles  – as revealed by various in  vitro studies and 
knockout studies in animal models – of Jag1 and Notch2 in developmental pro-
cesses (reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and 
Canalis 2016).

�Clinical Findings in Hajdu-Cheney Syndrome (HCS)

In general, patients suffering from HCS present with abnormalities of craniofacial 
development that become evident at a young age in childhood and evolve as the 
person matures (Table 9.1). As in other diseases linked to the Notch pathway, 
there are high clinical variability and a phenotypical evolution of the disease. HCS 
is typically associated with facial dysmorphism, synophrys, and epicanthal folds 
(Table 9.1, reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti 
and Canalis 2016). In general, the distance between the eyes is relatively short; 
additionally, thick eyebrows extend toward the midline; malar hypoplasia, a long 
and smooth philtrum, and micrognathia may be present (reviewed in Canalis 2018; 
Descartes et al. 2014). Additional clinical signs may include a flattened nasal bridge 
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that then becomes broad, and facial features are coarse and a short neck (reviewed 
in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 2016). The 
craniofacial developmental defects that have been reported to be present in HCS 
may include wormian bones, open sutures, platybasia, and basilar invagination 
(reviewed in Canalis 2018; Mašek and Andersson 2017; Meester et al. 2019; Zanotti 
and Canalis 2016). It has to be noted that these conditions represent serious mani-
festations of the disease because they can cause severe neurological complications, 
which may even result in central respiratory arrest and sudden death (reviewed in 
Canalis 2018). Abnormal dental eruptions and tooth decay with premature loss of 
teeth have also often been described in HCS (reviewed in Canalis 2018; Canalis and 
Zanotti 2014). Additional clinical signs may include short stature, generalized and 
local joint hypermobility, and vertebral abnormalities (including fractures, kyphosis 
and scoliosis, and long-bone deformities) (reviewed in Mašek and Andersson 2017; 
Meester et al. 2019; Zanotti and Canalis 2016). It has to be noted that only a limited 
number of bone biopsy histologies have been described in the scientific literature, 
revealing inconclusive results that included normal, increased, and decreased bone 
remodeling (reviewed in Canalis 2018; Elias et al. 1978; Nunziata et al. 1990; Udell 
et al. 1986). In selected individuals, an increased number of osteoclasts were found 
suggesting that enhanced bone resorption is responsible for the bone loss (reviewed 
in Canalis 2018; Udell et al. 1986). A characteristic feature of HCS is acroosteolysis 
of the distal phalanges of fingers and toes (reviewed in Mašek and Andersson 2017; 
Meester et al. 2019; Zanotti and Canalis 2016). This finding is associated with a 
local inflammatory reaction, pain, and swelling, a process that may cause the loss of 
the distal phalanges, thereby shortening hands and feet (Table  9.1, reviewed in 
Mašek and Andersson 2017; Meester et  al. 2019; Zanotti and Canalis 2016). 
Histological analysis has shown an inflammatory process, neovascularization, and 
fibrosis; however the underlying mechanisms are still not completely understood 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 
2016). It was shown that patients with HCS often suffer from splenomegaly, and 
effects of Notch2 on B-cell allocation may be of relevance (Adami et al. 2016). As 
already mentioned above, despite the pronounced skeletal abnormalities reported in 
HCS, little is known regarding the mechanisms underlying the bone loss. Although 
the distal phalangeal osteolytic lesions would suggest increased localized bone 
resorption, there is no information on the mechanisms responsible for the general-
ized osteoporosis (Canalis et  al. 2016; reviewed in Mašek and Andersson 2017; 
Meester et al. 2019; Zanotti and Canalis 2016). The focal osteolysis is accompanied 
by neovascularization, inflammation, and fibrosis (reviewed in Zanotti and Canalis 
2013, Nunziata et al. 1990; Udell et al. 1986; Elias et al. 1978). Iliac crest biopsies 
have been reported in a small number of cases of HCS and revealed decreased tra-
becular bone, normal or increased bone remodeling, and normal or decreased bone 
formation (reviewed in Zanotti and Canalis 2013; Udell et al. 1986; Blumenauer 
et al. 2002; Brown et al. 1976; Avela et al. 2011). Whether the osteoblast/osteocyte 
or the osteoclast is the cell responsible for the presumed change in bone turnover 
has not been established (reviewed in Mašek and Andersson 2017; Meester et al. 
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2019; Zanotti and Canalis 2016). In osteoclast precursors, Notch2 induces nuclear 
factor of T-cell 1 transcription and osteoclastogenesis (Fukushima et al. 2008). This 
effect is exclusively observed with Notch2 and not with Notch1, but whether this 
mechanism operates in HCS is not known (reviewed in Mašek and Andersson 2017; 
Meester et al. 2019; Zanotti and Canalis 2016). Notably, the mechanisms that under-
lie the acroosteolysis in HCS are not considered to be the same as those that cause 
the generalized bone loss and fractures that may be present in these patients 
(reviewed in Mašek and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 
2016). Additionally, patients with HCS may present with cardiovascular defects 
(including patent ductus arteriosus, septal defects, and mitral and aortic valve abnor-
malities associated with valvular insufficiency or stenosis) (reviewed in Canalis 
2018; Kaler et al. 1990; Sargin et al. 2013) or polycystic kidneys (about 10% of 
HCS patients). Interestingly, it has been reported that serpentine fibula-polycystic 
kidney syndrome may represent the same disorder as HCS (reviewed in Canalis 
2018; Gray et al. 2012; Isidor et al. 2011a, b; Majewski et al. 1993; Narumi et al. 
2013). Missense mutations in exon 34 of NOTCH2, upstream of sequences encod-
ing for the PEST domain, were detected in patients affected by this disease (reviewed 
in Zanotti and Canalis 2013; Isidor et  al. 2011a, b; Majewski et  al. 1993). 
Bisphosphonate therapy (alendronate and pamidronate) without or together with 
anabolic therapy (teriparatide) has been tried for the treatment of the skeletal mani-
festations of patients with HCS, but there is no convincing evidence that either 
therapy is successful (reviewed in Zanotti and Canalis 2013; Avela et  al. 2011; 
McKiernan 2008; Galli-Tsinopoulou et al. 2012). Although there are only a limited 
number of patients suffering from HCS, the detection of a cluster of mutations in a 
single domain of NOTCH2 in individuals with HCS may improve our understand-
ing of the molecular mechanisms that underlie the development of osteoporosis 
(reviewed in Canalis 2018; Mašek and Andersson 2017; Meester et al. 2019; Zanotti 
and Canalis 2016). Multiple attempts to uncover genetic variants that contribute to 
the risk of osteoporosis have been relatively unsuccessful (reviewed in Zanotti and 
Canalis 2013; Fisher 2011; Richards et al. 2009). Interestingly, bone mineral den-
sity and increased risk of osteoporotic fractures were reported to be associated with 
a distinct allele of JAG1  in seven independent cohorts of Asian and European 
females (reviewed in Zanotti and Canalis 2013; Kung et al. 2010).

�Cerebral Autosomal-Dominant Arteriopathy with Subcortical 
Infarcts and Leukoencephalopathy (CADASIL) (OMIM 
125310)

Heterozygous mutations in NOTCH3 have been shown to be associated with this 
inherited autosomal-dominant hereditary disease, which is at present recognized as 
the most common cause of inherited stroke and vascular cognitive impairment in 
adults (Table 9.1; Joutel 2011, 2015; reviewed in Meester et al. 2019). To date, the 
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minimum prevalence is calculated to be at least 4 in 100,000, but could be as high 
as 1  in 10,000 (reviewed in Meester et al. 2019). CADASIL has an age of onset 
ranging from young to middle-aged adulthood (reviewed in Meester et al. 2019). 
Large phenotypic variability can be observed both between and within families, 
without the presence of clear genotype-phenotype correlations (reviewed in Meester 
et al. 2019). Clinically, CADASIL patients typically suffer from multiple ischemic 
strokes caused by an arteriopathy that shows breakdown of vascular smooth muscle 
cells (vSMCs) – a cell population in which NOTCH3 is highly expressed – and 
vascular dementia (Table 9.1, Joutel et al. 1996). As a diagnostic hallmark of this 
disease, cerebral white matter lesions can be detected by magnetic resonance imag-
ing (MRI) (Joutel et al. 2000). While earlier investigations have reported a cluster-
ing of CADASIL-related NOTCH3 mutations in exon 4 (Joutel et al. 1997) or in 
exon 11 (Dotti et  al. 2005), more recent studies that considered the mapping of 
missense mutations, normalized to exon size, demonstrated four “hotspots” for 
NOTCH3 mutations. Although Notch3 governs in vSMCs many cellular key pro-
cesses, including proliferation, maturation, and survival (Domenga et  al. 2004; 
Wang et al. 2012), it has been reported that most CADASIL-related NOTCH3 muta-
tions do not cause loss of function: they do not abrogate the capacity of the receptor 
to mediate signaling. This interesting observation can be explained on the molecular 
level by the finding that at least the majority of CADASIL-causing NOTCH3 muta-
tions result in deletion or addition of a cysteine residue in the characteristic epider-
mal growth factor (EGF)-like repeats located in the extracellular domain (ECD) of 
this transmembrane receptor protein, thereby causing aggregation of the NOTCH3 
ECD into extracellular deposits of granular osmiophilic material (GOM) close to 
the surface of vSMC, which show a progressive degeneration (reviewed in Meester 
et al. 2019). The presence of GOM can be confirmed histologically after taking a 
skin biopsy (reviewed in Meester et al. 2019). In the vast majority of patients, brain 
MRI reveals extensive hyperintensities of the white matter in the periventricular 
region, external capsule, and anterior part of the temporal lobes, which can be found 
even 10–15 years before clinical symptoms, like cognitive decline, arise (reviewed 
in Meester et  al. 2019). It has to be emphasized that the presence of subcortical 
infarcts and leukoencephalopathy are pathognomonic for the diagnosis of CADASIL 
(reviewed in Meester et al. 2019). It has been concluded that the pathophysiological 
mechanism, which causes the aggregation of GOM in the extracellular space close 
to the surface of vSMC, indicates that NOTCH3 mutations linked to CADASIL do 
not cause loss of function, but rather exert neomorphic or toxic effects. This concept 
is also supported by the surprising clinical finding that patients suffering from 
homozygous CADASIL mutations experience similar or only slightly more severe 
symptoms as compared with patients harboring heterozygous mutations (Abou 
Al-Shaar et  al. 2016; Liem et  al. 2008; Pippucci et  al. 2015; Ragno et  al. 2013; 
Soong et al. 2013; Tuominen et al. 2001; Vinciguerra et al. 2014). It has to be noted 
that if these mutations were associated with loss of function of Notch3, more severe 
clinical symptoms should be found in homozygous patients.
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�Early-Onset Arteriopathy with Cavitating Leukodystrophy 
(EACL)

Recent investigations further underline the relevance of NOTCH3 deficiency for 
the pathogenesis of vascular leukoencephalopathies (Table 9.1, reviewed in Mašek 
and Andersson 2017; Meester et al. 2019; Zanotti and Canalis 2016). While neo-
morphic heterozygous mutations in this gene cause CADASIL, hypomorphic het-
erozygous alleles have been occasionally reported to be associated with a spectrum 
of cerebrovascular phenotypes overlapping CADASIL; however their pathogenic 
potential is still not completely understood (Pippucci et al. 2015). Pippucci et al. 
reported a patient with childhood-onset arteriopathy, cavitating leukoencephalopa-
thy with cerebral white matter abnormalities presented as diffuse cavitations, mul-
tiple lacunar infarctions, and disseminated microbleeds (Pippucci et  al. 2015). 
They identified a novel homozygous c.C2898A (p.C966∗) null mutation in 
NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impair-
ment (Pippucci et  al. 2015). Several NOTCH3 targets, which either exert their 
effects in the regulation of arterial tone (KCNA5) or that are expressed in the vas-
culature (CDH6), were downregulated (Pippucci et  al. 2015). Patient’s vessels 
were characterized by smooth muscle degeneration as in CADASIL, but without 
deposition of granular osmiophilic material (GOM), the CADASIL hallmark 
(Pippucci et al. 2015). Interestingly, the heterozygous showed similar but less pro-
nounced trends in reduced expression of NOTCH3 and its targets, as well as in 
vessel degeneration (Pippucci et al. 2015). This study suggests a functional link 
between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies 
(Pippucci et al. 2015).

�Lateral Meningocele Syndrome (LMS) (OMIM 130720)

Lateral meningocele syndrome (LMS), which has also been named Lehman syn-
drome, represents a very rare inherited disease that has phenotypic overlap with 
Hajdu-Cheney syndrome (Table 9.1, Gripp et al. 2015). Interestingly, heterozygous 
truncating NOTCH3 mutations have been described to be associated with LMS 
(Gripp et al. 2015). In a recent study, all mutations identified cluster into the last 
coding exon, resulting in premature termination of the protein and truncation of the 
negative regulatory proline-glutamate-serine-threonine-rich PEST domain (Gripp 
et al. 2015). These findings indicate that mutant mRNA products escape nonsense-
mediated decay (Gripp et  al. 2015). It has been hypothesized that the truncated 
NOTCH3 may cause gain of function through decreased clearance of the active 
intracellular product, resembling NOTCH2 mutations in the clinically related 
Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing 
CADASIL (Gripp et  al. 2015). Clinically, LMS presents as a skeletal disorder 
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associated with facial anomalies, hypotonia, and/or meningocele-related neurologic 
malfunction (Gripp et  al. 2015). The characteristic lateral meningoceles are the 
clinical hallmarks of the disease (Gripp et al. 2015). Being in general most severe in 
the lower spine, they represent the severe end of the dural ectasia spectrum (Gripp 
et al. 2015). Additional clinical features of LMS include facial abnormality (hyper-
telorism and telecanthus, high-arched eyebrows, ptosis, midfacial hypoplasia, 
micrognathia, high and narrow palate, low-set ears, and a hypotonic appearance) 
and connective tissue abnormalities (hyperextensibility, hernias, and scoliosis) 
(Gripp et al. 2015). Additionally, aortic dilation, a high-pitched nasal voice, worm-
ian bones, and osteolysis may be found (Gripp et al. 2015).

Recently, a mouse model of LMS (Notch3tm1.1Ecan) was established by introduc-
ing a tandem termination codon in the Notch3 locus upstream of the proline (P), 
glutamic acid (E), serine (S), and threonine (T) (PEST) domain (Table 9.1, Yu et al. 
2019). Microcomputed tomography showed that these Notch3tm1.1Ecan mice develop 
osteopenia (Yu et  al. 2019). Interestingly, it was shown that the cancellous bone 
osteopenia was no longer detected after the intraperitoneal administration of anti-
bodies directed against the negative regulatory region (NRR) of Notch3. In that 
study, the anti-Notch3 NRR antibody suppressed the expression of Hes1, Hey1, and 
Hey2 (Notch target genes) and decreased Tnfsf11 (receptor activator of NF kappa B 
ligand) messenger RNA in Notch3tm1.1Ecan osteoblast (OB) cultures (Yu et al. 2019). 
It was shown that bone marrow-derived macrophages (BMMs) from Notch3tm1.1Ecan 
mutants exerted enhanced osteoclastogenesis in culture, and this was increased in 
cocultures with Notch3tm1.1Ecan OB. Moreover, osteoclastogenesis was inhibited by 
anti-Notch3 NRR antibodies in Notch3tm1.1Ecan OB/BMM cocultures. In conclusion, 
the results of this study indicate that cancellous bone osteopenia of Notch3tm1.1Ecan 
mutants can be reversed by anti-Notch3 NRR antibodies, thereby opening new ave-
nues for the treatment of bone osteopenia in patients suffering from LMS (Yu 
et al. 2019).

�Infantile Myofibromatosis-2 (IM-2) (OMIM 615293)

Mutations in the PDGFRB and NOTCH3 genes were recently identified in patients 
with IM (Table  9.1, Martignetti et  al. 2013; reviewed in Mašek and Andersson 
2017). While most cases of IM appear to be sporadic, occurrence of IM within fami-
lies across multiple generations indicates an autosomal-dominant (AD) inheritance 
pattern; however autosomal-recessive (AR) modes of inheritance have also been 
suggested. In 2013, Martignetti et al. published an investigation, in which they per-
formed whole-exome sequencing (WES) in members of nine unrelated families 
clinically diagnosed with AD IM to identify the genetic origin of the disorder 
(Martignetti et al. 2013). In eight of the families, they detected one of two disease-
causing mutations, c.1978C>A (p.Pro660Thr) and c.1681C>T (p.Arg561Cys), in 
PDGFRB. Interestingly, one family did not have either of these PDGFRB mutations 
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on chromosome 5q32, but all affected individuals had a c.4556T>C (p.Leu1519Pro) 
mutation in NOTCH3 (Martignetti et al. 2013). In summary, this report indicates 
two separate forms of IM, namely, IM-1 (OMIM 228550) that is caused by mutations 
in PDGFRB, and a second form of infantile myofibromatosis, infantile myomatosis-
2 (IM-2), that is caused by heterozygous mutation in the NOTCH3 gene on chromo-
some 19p13. Until today, only one such family has been reported.

Clinically, IM is characterized by nonmetastasizing mesenchymal tumors in the 
skin, muscle, bone, and viscera, which in most cases develop in neonates or infants 
under 24 months of age, with few reports of adult onset (reviewed in Mašek and 
Andersson 2017). Most patients typically present with a single or multiple subcu-
taneous swellings. Solitary, multicentric or generalized forms of the disease have 
been reported. Most patients present with a single cutaneous nodule (solitary 
form). The multicentric is characterized by mesenchymal tumors in the skin, sub-
cutaneous tissues, muscles, and bone. The prognosis is in general good, with no 
metastases and in many cases regression of the tumor over a period of 12–18 months. 
In contrast, the generalized form has an unfavorable course, being associated with 
visceral involvement and having a 76% mortality from cardiopulmonary or gastro-
intestinal complications. There is no standard therapy and treatment options vary 
widely. Solitary and even multicentric cutaneous and subcutaneous lesions without 
visceral involvement often regress spontaneously. However, calcification and atro-
phic scars frequently remain after spontaneous regression of the lesions. Extensive 
surgery and chemotherapy were reported to be beneficial for multicentric disease. 
It has been concluded that further studies of the crosstalk between PDGFRB and 
NOTCH pathways may offer new opportunities to identify mutations in other 
genes that result in IM and are a necessary first step toward understanding the 
mechanisms of both tumor growth and regression and its targeted treatment 
(Martignetti et al. 2013).

�Conclusions

The evolutionary highly conserved Notch pathway regulates many cellular core 
processes including cell fate decisions and represents one of the most important 
pathways that govern embryogenesis. Therefore it is no surprise that a broad variety 
of independent inherited diseases has now been identified (including Alagille, 
Adams-Oliver, and Hajdu-Cheney syndromes, CADASIL, EACL, LMS, and IM), 
which are linked to defective Notch signaling. During the last decades, a huge 
mountain of new scientific information has greatly increased our understanding 
how Notch governs cell fate decisions and other cellular core processes, thereby not 
only unraveling hidden secrets concerning the highly orchestrated regulation of 
embryogenesis but also opening new avenues for the clinical management of Notch-
linked inherited diseases.
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