
Chapter 14
Constrained Reconstructions in X-ray
Phase Contrast Imaging: Uniqueness,
Stability and Algorithms

Simon Maretzke and Thorsten Hohage

Abstract This chapter considers the inverse problem of X-ray phase contrast imag-
ing (XPCI), as introduced in Chap.2. It is analyzed how physical a priori knowledge,
e.g. of the approximate size of the imaged sample (support knowledge), affects the
inverse problem: uniqueness and—for a linearized model—even well-posedness are
shown to hold under support constraints, ensuring stability of reconstruction from
real-world noisy data. In order to exploit these theoretical insights, regularized New-
tonmethods are proposed as a class of reconstruction algorithms that flexibly incorpo-
rate constraints and account for the inherent nonlinearity of XPCI. A Kaczmarz-type
variant of the approach is considered for 3D image-recovery in tomographic XPCI,
which remains applicable for large-scale data. The relevance of constraints and the
capabilities of the proposed algorithms are demonstrated by numerical reconstruction
examples.
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14.1 Forward Models

We aim to describe (propagation-based) X-ray phase contrast imaging (XPCI) in the
language of inverse problems. To this end, we deduce forward operators F : X → Y ,
that model the dependence of the measured near-field diffraction patterns (called
holograms) I ∈ Y from the sample-characterizing parameters f ∈ X (the sought
image). Different models F are obtained for various settings of practical interest,
including X-ray phase contrast tomography (XPCT).
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Fig. 14.1 Basic physical model of XPCI: incident plane waves scatter on the imaged object, that is
parametrized by a spatially varying refractive index n. The resulting diffraction-pattern (hologram)
is recorded in the optical near-field at some distance behind the sample

14.1.1 Physical Model and Preliminaries

The basic physicalmodel ofXPCI is detailed inChap.2 and summarized by Fig. 14.1:
incidentmonochromaticX-rays,modeledbyplanewaves, are scatteredby the imaged
sample, that is parametrized by its spatially varying refractive index n(x, z) = 1 −
δ(x, z) + iβ(x, z) (δ,β: refractive- and absorption decrement). By the scattering-
interaction, a perturbation (the image) is imprinted upon the transmitted X-ray wave-
field. The intensity I of the perturbed wave-field is recorded by a detector placed at
a finite distance d > 0 behind the sample.

As derived in Sect. 2.1, the dependence of the hologram-intensities I from the
sample-parameters δ and β is given by

I (x) = |Ψ (x, d)|2 = |D (exp (−μ − iφ)) (x)|2 for all x ∈ R
2,

φ(x) = k
∫
R

δ(x, z) dz, μ(x) := k
∫
R

β(x, z) dz. (14.1)

The phase- and absorption-images φ and μ are 2D-projections of the 3D-
densities δ and β (k: X-ray wavenumber) along the incident z-direction. The Fresnel-
propagator D, modeling free-space propagation of the X-rays between object and
detector, is defined by

D( f ) �→ F (
mf · F−1( f )

)
with mf(ξ) := exp

(−iξ2/(2f)
)
. (14.2)

Here, F( f )(ξ) := (2π)−m/2
∫
Rm exp(−iξ · x) f (x) dx is the Fourier-transform

and f = kb2/d > 0 is the modified1 Fresnel-number associated with the physical
length b, that is identified with 1 in the chosen dimensionless coordinates.

1The classical Fresnel-number is given by f̄(b) := b2/(λd) = f/(2π). However, using the parameter
f is notationally more convenient as it avoids excessive occurence of 2π-factors.

http://dx.doi.org/10.1007/978-3-030-34413-9_2
http://dx.doi.org/10.1007/978-3-030-34413-9_2
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XPCI-experiments provide intensity data I of the form (14.1) (up to data errors),
whereas the images φ, μ are the quantities of interest. Hence, the following principal
inverse problem has to be solved:

Inverse Problem 1 (XPCI) For some set A, reconstruct a 2D-image h =
μ + iφ ∈ A from measured holograms I of the form (14.1).

By rotating the object in Fig. 14.1, holograms Iθ j may be acquired for different
incident directions θ j ∈ S

2 = {x ∈ R
3 : |x| = 1} of the X-rays onto the sample (in

Fig. 14.1, the incident direction coincides with the z-axis). This is the setting of X-
ray phase contrast tomography (XPCT). A mathematical model will be provided
in Sect. 14.1.3. XPCT allows to probe 3D-variations of the parameters δ,β beyond
mere projections φ,μ.

Inverse Problem 2 (XPCT) For some set A, recover a 3D-image f = kβ +
ikδ ∈ A from holograms {Iθ j } measured under different incident directions
{θ j } ⊂ S

2.

14.1.1.1 A Priori Constraints

The set of admissible images A in inverse Problems 1 and 2 is highly relevant. In
order to facilitate and stabilize image reconstruction, the set A should be restricted
as far as possible by available physical a priori knowledge:

• Support constraints: real-world samples are of finite size. This implies that the
functions f ∈ {φ,μ, δ,β} : R

m → R have a compact support, i.e. are identically
zero outside some bounded object-domain Ω ⊂ R

m .
• Non-negativity: by the physics of hard X-rays, the decrements δ,β—and thus also

φ,μ—are always non-negative.
• Pure phase object: especially for biological samples, β and μ are typically orders
ofmagnitude smaller than δ andφ. Assuming a purely shifting-, i.e. non-absorbing
object β,μ = 0, is then a good approximation.

• Homogeneous objects: as is rigorously true for samples composed of a single
material, proportionality of δ and β [φ and μ] may often be assumed.

• Regularity: realistic images φ,μ, δ,β are not arbitrarily singular functions, but
typically have some characteristic smoothness properties.

• Tomographic consistency: Images φ and μ that arise as tomographic projections
of one object under different incident directions are correlated.

Focussing on support-knowledge, we study the role of such constraints on inverse
Problems 1 and 2 and outline how to exploit them algorithmically.
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14.1.1.2 Additional Notation

We study inverse Problems 1 and 2 in spaces of square-integrable functions:

L2(Rm) = { f : R
m → C : ‖ f ‖L2 < ∞}, ‖ f ‖2L2 :=

∫
Rm

| f (x)|2 dx (14.3)

The focus lies on functions f ∈ L2(Rm) that have compact support supp( f ), i.e.
that vanish outside some bounded domain Ω ⊂ R

m :

supp( f ) ⊂ Ω :⇔ f |Rm\Ω = 0, (14.4)

f |B denotes the restriction of f to B ⊂ R
m , defined by f |B(x) = f (x) if x ∈ B

and f |B(x) = 0 otherwise. For Ω ⊂ R
m , we write

L2(Ω) = { f ∈ L2(Rm) : supp( f ) ⊂ Ω}. (14.5)

Furthermore, we define spaces of real-valued L2-functions:

L2(Ω, R) = { f ∈ L2(Ω) : Im( f ) = 0}, (14.6)

where Re(·), Im(·) denote the real- and imaginary parts, respectively.

14.1.2 Forward Operators for XPCI

BasedonSect. 14.1.1,we introduce forwardmaps F : X → Y modelingdifferent set-
tings ofXPCI. Note that we define themaps in arbitrary dimensionsm ∈ {1, 2, 3, . . .}
although the natural case are images and holograms inm = 2 dimensions. The benefit
of this will be seen in Sect. 14.3.4.1.

14.1.2.1 General Nonlinear Forward Operator

The most general (and most challenging) XPCI-setting is the reconstruction of both
phase φ and absorption μ from a single hologram. According to (14.1), this setting
is modeled by the forward map

N (h) = I − 1 = |D (exp (−h))|2 − 1, (14.7)

for complex-valued images h = μ + iφ. Note that the constant background intensity
1 has been subtracted, such that N (0) = 0. As a benefit, N can be analyzed as an
operator on L2-spaces: for any bounded Ω ⊂ R

m ,
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N : L2(Ω) → L2(Rm) (14.8)

is essentially2 a well-defined, nonlinear operator. Moreover, it can be shown [1, 2]
thatN is continuously Fréchet-differentiable, i.e. sufficiently smooth to admit local
linear approximations. The derivative is given by

N ′[ f ]h = −2Re
(D (exp (− f )) · D (exp (− f ) · h)

)
. (14.9)

14.1.2.2 Linearized Forward Map and Contrast-Transfer-Functions

The nonlinearity of the forward map N causes difficulties in both analysis and
practical image reconstruction. It is therefore standard [3–7] to resort to a lineariza-
tion valid for weakly scattering samples (see e.g. [7] for details on the regime-of-
validity): the idea is that the image f is sufficiently “small” so that higher-order
terms are negligible:

N (h) = T (h) + O(h2) ≈ T (h) with T (h) := −2Re (D(h)) . (14.10)

The linearized forward map T = N ′[0] is also known as the contrast-transfer-
function- (CTF-)model, which refers to the following alternate form (compare with
Sect. 2.2):

T (−μ − iφ) = −2F−1

(
sin

( |ξ|2
2f

)
︸ ︷︷ ︸

=:s0(ξ)

F(φ) + cos

( |ξ|2
2f

)
︸ ︷︷ ︸

=:c0(ξ)

F(μ)

)
(14.11)

According to (14.11), the linearized contrast in Fourier-space is given by a super-
position of the Fourier-transforms of phase- and absorption-image φ,μ modulated
by the oscillatory CTFs s0 and c0, respectively.

As |s0(ξ)|, |c0(ξ)| ≤ 1 for all ξ ∈ R
m ,T : L2(Rm) → L2(Rm) is a bounded (R)-

linear operator with ‖T (h)‖L2 ≤ 2‖h‖L2 for all h ∈ L2(Rm).

14.1.2.3 Homogeneous Objects and Pure Phase Objects

The cases of homogeneous objects and pure phase objects, see Sect. 14.1.1.1, may be
treated in a unified manner, by expressing the complex-valued image h = μ + iφ =
ie−iνϕ in terms of a single real-valued functionϕ and a parameter ν = arctan(β/δ) ∈
[0;π/2) (ν = 0: pure phase object).

Such a homogeneity-constraint may be incorporated into the general forward
model, via a modified forward map

2To ensure well-definedness on the whole space L2(Ω), the exponential has to be suitably truncated
for the physically irrelevant case of negative absorption Re( f ) = μ < 0.

http://dx.doi.org/10.1007/978-3-030-34413-9_2
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Nν : L2(Ω, R) → L2(Rm);
ϕ �→ N (ie−iνϕ) = ∣∣D (

exp(−ie−iνϕ)
)∣∣2 − 1. (14.12)

The linearized model under a homogeneity constraint may be expressed via a
single CTF sν(ξ) := sin

(|ξ|2/(2f) + ν
)
: for ϕ ∈ L2(Rm, R), it holds that

Sν(ϕ) := −2F−1 (sν · F(ϕ)) = T (ie−iνϕ). (14.13)

Although (14.13) only holds for real-valued ϕ, we define Sν : L2(Rm) →
L2(Rm) (‖Sν‖ = 2) on general L2-spaces. For its properties, it is widely irrele-
vant if real- or complex-valued functions are considered, as Sν commutes with the
pointwise real-part: Re (Sν(h)) = Sν(Re (h)) for all h ∈ L2(Rm).

14.1.2.4 Multiple Holograms

In order to obtain richer data in XPCI, it is standard to acquire multiple holo-
grams I1, I2, . . . , I� at several object-to-detector-distances, corresponding to dif-
ferent Fresnel-numbers f1, f2, . . . , f�. This may be modeled by combining the for-
ward maps for the individual holograms Fj : X → L2(Rm); h �→ I j − 1, Fj ∈
{N (f j ),N

(f j )
ν ,T (f j ),S

(f j )
ν } to a “vector-valued” operator:

F (f1,...,f�) : X → L2(Rm)�; h �→ (F1(h), . . . , F�(h)) (14.14)

14.1.3 Forward Operators for XPCT

In X-ray phase contrast tomography (XPCT), holograms are measured under dif-
ferent incident directions θ ∈ S

2. According to the basic model (14.1), the resulting
intensities Iθ are then given by

Iθ = |D (exp (−Pθ(kβ + ikδ))) (x)|2 , (14.15)

where Pθ is the parallel-beam projector along θ (θ ⊥ nx ⊥ ny ⊥ θ):

Pθ( f )(x, y) :=
∫
R

f (xnx + yny + zθ) dz, x, y ∈ R, (14.16)

According to the standard theory of computed tomography, projection-data
{Pθ( f )}θ∈Θ for a suitable set of incident-directions Θ allows to reconstruct the
underlying 3D-function f : R

3 → C. Analogously, the goal of XPCT is to recon-
struct 3D-variations of the decrements δ and β of the sample’s refractive index from
a tomographic series of holograms {Iθ}θ∈Θ .
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Compositionof theprojectorsPθ with anyof the forwardmaps F ∈ {N ,Nν,T ,Sν} :
X → L2(Rm) from Sect. 14.1.2 induces a corresponding XPCT-model: for Θ =
{θ1, . . . ,θt }, the tomographic hologram-data is modeled by

FPCT : f �→ (
F (Pθ( f ))

)
θ∈Θ

= (
Iθ − 1

)
θ∈Θ

. (14.17)

14.2 Uniqueness Theory

In practice, it is highly relevant whether the measured intensity data I uniquely
determines the sought image h = μ + iφ (or f = kβ + ikδ in XPCT). Otherwise,
it might happen that two structurally different samples are indistinguishable by the
imaging method, which is not desirable. (Non-)uniqueness of an inverse problem is
equivalent to (non-)injectivity of the governing forward operator F : X → Y . Hence,
it depends on different aspects:

1. The richness of the data, i.e. the size of the data-space Y : for example, it is com-
monly argued that measuring several holograms I1, I2, . . . at different Fresnel-
numbers (see Sect. 14.1.2.4) helps to ensure uniqueness in XPCI.

2. Available a priori knowledge, i.e. the size of the object-space X : the smaller
X the more likely it is that any two images h1, h2 ∈ X with h1 
= h2 induce
distinguishable data F(h1) 
= F(h2).

In addition, it may happen that the nonlinear forward model is unique but its lin-
earization is non-unique or vice verser. Accordingly, the different forward models
from Sect. 14.1.2 have to be investigated individually.

14.2.1 Preliminary Results and Counter-Examples

We first review some known results on (non-)uniqueness of XPCI. Firstly, image
reconstruction from a single hologram is generally non-unique:

• Linearizedmodel:T : L2(Rm) → L2(Rm); h �→ −2Re(h)has a hugenull-space
composed of all h for which D(h) is purely imaginary-valued:

kern(T ) := {h ∈ L2(Rm) : T (h) = 0} = D−1
(
iL2(Rm, R)

)
(14.18)

• Nonlinear model (example from [8]): Images h± : R
2 \ {0} → C; x �→ a(|x|) ±

iν arctan2(x) for ν ∈ N and smooth functions a : R≥0 → R give rise to so-called
phase-vortices in the wave-field. The sign of the vortex is not determined by
Fresnel-intensities (A := exp(−a)):
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|D(exp(−h+))|2 = |D(A · exp(−iν arctan2(·))|2
= |D(A · exp(iν arctan2(·))|2 = |D(exp(−h−))|2 (14.19)

Based on these negative results, it is typically argued that at least two holograms
and/or a homogeneity-constraint are required for uniqueness. Indeed, the situation
improves substantially in the latter settings:

• Uniqueness under homogeneity-constraints (linear): the operatorSν : L2(Rm) →
L2(Rm) from Sect. 14.1.2.3 is injective, as the zero-manifolds of the Fourier-
multiplier sν are sets of the Lebesgue-measure 0 in R

m .
• Uniqueness for two holograms (linear): in [9], it is shown by a similar argu-
ment based on the CTF-representation (14.11) that also the operator T (f1,f2) :
L2(Rm) → L2(Rm)2 (see Sect. 14.1.2.4) is injective for f1 
= f2.

Moreover, it is argued in [9] that both results carry over to the nonlinear model, pro-
vided that the image h is compactly supported. Indeed, a much stronger uniqueness
result holds true under such an assumption, as will be seen in the following.

14.2.2 Sources of Non-uniqueness—The Phase Problem

According to the basic physical model (14.1), image-formation mathematically
amounts to three operations: pointwise exponential, h �→ exp(−h), Fresnel-
propagation, exp(−h) �→ D(exp(−h)), and computation of the pointwise squared
modulus, D(exp(−h)) �→ |D(exp(−h))|2. Among those, D is an invertible opera-
tion, i.e. does not destroy information. This is not true for the other two operations,
which give rise to different sources of non-uniqueness:

• Phase-wrapping: The exponential is 2π-periodic in the imaginary-part of its argu-
ment. Hence, the phase-image φ = Im(h) may only be determined by the data
up to increments by multiples of 2π.

• Phase problem: The squared modulus, arising from the restriction of X-ray detec-
tors to measuring intensities, eliminates the phase-information.

The first aspect is simpler to analyze and often turns out to be of lesser practical
impact in XPCI: for moderately strongly scattering samples, φ is a priori known to
assume values within [0; 2π), so that non-uniqueness due to phase-wrapping is not
an issue. In the following, we therefore focus on possible ambiguities due to the
phase problem.

14.2.3 Relation to Classical Phase Retrieval Problems

Up to possibly remaining phase-wrapping ambiguities, the image reconstruction
problem in XPCI may be rephrased as follows:
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Given data I = |D(O)|2, reconstruct the object-transmission-function (OTF)
O := exp(−h) ∈ Ã from some admissible set Ã.

Such settings are known as phase retrieval problems as recovering O is equivalent
to retrieving the missing phase ofD(O) (and then invertingD). Uniqueness of phase
retrieval has been extensively studied ever since the pioneeringworks ofWalther [10]
and Akutowicz [11, 12], primarily for the case where D is replaced by the Fourier-
transform F , i.e. for the reconstruction from phaseless Fourier-data. We refer to
[13–17] for reviews.

Indeed, Fresnel-data may be readily reduced to the classical Fourier-setting, by
rewriting the Fresnel-propagator in the form

D( f )(x) = u0f
m
2 nf(x) · F (

nf · f
)
(fx) for all x ∈ R

m (14.20)

with nf(x) = exp(ifx2/2) and u0 = exp(−imπ/4). Hence, if we define Õ := nf · O ,
then the holograms in XPCI provide Fourier-data for Õ:

I (ξ/f) = |D(O)(ξ/f)|2 = fmF(Õ)(ξ) for all ξ ∈ R
m . (14.21)

Based on the identification in (14.21), uniqueness results for Fourier-phase
retrieval may be adapted to the Fresnel-regime. Notably, however, most of such
uniqueness theorems assume a compact support of the objective. Importantly, this is
not justified in the setting of XPCI:

The OTF O is not a compactly supported function in any realistic setting. Only
the contrast o := O − 1 typically has compact support.

14.2.4 Holographic Nature of Phase Retrieval in XPCI

In order to emphasize the structural difference to classical phase retrieval problems,
it is illustrative to rewrite the XPCI-model in the form

I = |D(O)|2 = |D(1) + D(o)|2 = 1 + 2Re(D(o))︸ ︷︷ ︸
=D(o)+D(o)

+ |D(o)|2 , (14.22)
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where it has been used thatD maps constant functions onto themselves.3 According
to the physical model from Sect. 14.1.1, the summands on the r.h.s. of (14.22) can be
interpreted in terms of the scattered- and transmitted parts of the X-ray wave-field:
the constant 1 is the intensity of the incident plane wave and the last summand that of
the waves scattered by the object, whereas the second term describes the interference
of these two wave-field components on the detector.

Formula (14.22) places the inverse problem of XPCI in the realm of holographic
phase retrieval problems, i.e. reconstruction in the presence of a reference signal—
here provided by the unscattered part of the incident X-rays. Several theoretical
and practical works have shown that such a holographic reference facilitates phase
retrieval, see e.g. [18–21].

14.2.5 General Uniqueness Under Support Constraints

According to (14.22), image reconstruction in XPCI is equivalent to retrieving o =
exp(−h) − 1 from data of the form (14.22) (up to possible phase-wrapping). By
invertibility of the Fresnel-propagator D, uniqueness thus holds if it is possible to
disentangle the summands D(o), D(o), and |D(o)|2. As shown in [22] using the
theory of entire functions, the latter is indeed possible whenever o is known to have
compact support, which is true for any sample of finite size. The principal result
reads as follows:

Theorem 14.1 (Uniqueness of XPCI [22]) Let o (= exp(−h) − 1) be a compactly
supported function (or distribution).

Then o is uniquely determined by XPCI-data I = |D(1 + o)|2. Furthermore,
uniqueness is retained if only restricted data I |K is available, measured for any
detection-domain K ⊂ R

m that contains an open set.
For any such K and Ω ⊂ R

m bounded, NK : h �→ N (h)|K is injective up to
phase-wrapping: ifN (h1)|K = N (h2)|K for h1, h2 ∈ L2(Ω), then

h1(x) − h2(x) ∈ 2πiZ for almost all x ∈ R
m . (14.23)

Importantly, Theorem 14.1 establishes uniqueness in the most challenging setting
of XPCI: single hologram, no homogeneity-constraint. The result trivially extends
to every less difficult case with more data or additional constraints. However, note
that the extension of uniqueness to restricted measurements I |K is based on analytic
continuation of the data—a very unstable procedure in practice.

3Note that this behavior ofD is fundamentally different from that of the Fourier-transformF , which
maps constants to Dirac-deltas centered at the origin.
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14.2.5.1 Uniqueness for the Linearized Model

Uniqueness for the linearized XPCI-model has to be shown individually. According
to Sect. 14.1.2.2, it corresponds to data of the form Ilin = 1 − D(h) − D(h). Com-
pared to (14.22), merely the quadratic term |D(o)|2 is omitted and o = exp(−h) − 1
is replaced by −h (note that this rules out phase-wrapping!). Hence, the principal
uniqueness argument from [22] remains valid: the summands D(h) and D(h) may
be disentangled owing to their different “finger-prints” as entire functions:

Corollary 14.1 (Uniqueness of linearized XPCI [22]) For any bounded domain
Ω ⊂ R

m and any K ⊂ R
m that contains an open set, the linearized forward operator

TK : L2(Ω) → L2(Rm); h �→ T (h)|K is injective.

14.2.5.2 Uniqueness for XPCT

By combining with standard results on uniqueness of tomographic reconstruction
described by the theory of the Radon transform, the uniqueness theorems may be
easily extended to XPCT. We refer to [22] for details.

14.3 Stability Theory

The uniqueness results of the precedingSect. 14.2, suprisingly strong though they are,
do not guarantee that accurate images may actually be reconstructed from holograms
acquired in real-world XPCI-setups. Experimental data always contains errors due
to noise and/or inaccuracies of the physical model. As detailed in Chap.5 such data
errors may lead to arbitrarily strongly corrupted images due to the phenomenon of
ill-posedness: even if a forward model F : X → Y is injective, its inverse F−1 :
F(X) → X may be discontinuous such that small perturbations in the data gobs =
F( f ) + ε may be arbitrarily amplified in the reconstruction F−1(F( f ) + ε).

The aim of this section is thus to supplement the uniqueness results with an
analysis of stability, exploring how susceptible image reconstruction is to data errors.
Thereby, it sheds a light on the questionwhich reconstructions are feasible in practice.
Due to difficulties arising from nonlinearity, the stability analysis is restricted to the
linearized forward models.

14.3.1 Lipschitz-Stability and its Meaning

Although other (weaker) concepts of stability are common in the field of inverse
problems, the notion of Lipschitz-stability turns out to be most suitable for XPCI: a
forward map F : X → Y between normed spaces X,Y is said to be Lipschitz-stable
if a stability estimate of the form

http://dx.doi.org/10.1007/978-3-030-34413-9_5
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‖F( f1) − F( f2)‖Y ≥ Cstab‖ f1 − f2‖X for all f1, f2 ∈ X (14.24)

holds for some constant Cstab > 0. In this case, F has a Lipschitz-continuous inverse
F−1: ‖F−1(g1) − F−1(g2)‖X ≤ C−1

stab‖g1 − g2‖Y for all g1, g2 ∈ F(X). Notably,
this implies robustness to data errors: givenmeasurements gε = F( f †) + ε ∈ F(X),
the resulting reconstruction-error is bounded by

∥∥ f † − F−1(gε)
∥∥
X = ∥∥F−1(F( f †)) − F−1(F(gε))

∥∥
X ≤ C−1

stab‖ε‖Y . (14.25)

The bound (14.25) states that data errors manifest at most amplified by a finite
factor C−1

stab in the recovered object. Therefore Cstab should be as large as possible: if
Cstab � 1, the error-amplification predicted by (14.25) may be too large to guarantee
accurate reconstructions at realistic noise-levels ‖ε‖Y .

Notably, for linear forward models F : X → Y , (14.24) is equivalent to

Cstab = inf
f ∈X,‖ f ‖X=1

‖F(h)‖Y > 0. (14.26)

Moreover, a linear inverse problem is well-posed if and only if (14.26) holds.

14.3.2 Stability for General Objects and one Hologram

Firstly, we consider the most challenging setting of reconstructing arbitrary phase-
and absorption-images φ,μ from a single (linearized) hologram I ≈ 1 + T (h). Sta-
ble inversion of the forward map T is commonly argued to be infeasible. Indeed,
as seen in Sect. 14.2.1, the forward model is not even unique for general images
φ,μ ∈ L2(Rm), but only if φ,μ are compactly supported. Accordingly, we assume
a support contraint in the following:

h = μ + iφ ∈ L2(Ω) for some Ω ⊂ R
m bounded. (14.27)

14.3.2.1 Analytical Approach

Our approach to analyzing stability is ultimately based on the principle of holographic
reconstruction [23], that earned Dennis Gabor the Nobel Prize in physics in 1971.
The idea is to rewrite the forward map in the form

−T (h) = 2Re (D(h)) = D(h) + D(h) = D(h) + D−1(h), (14.28)

which reveals linearized XPCI data to be a superposition of a propagated image
D(h) and the back-propagated twin-image h. Applying the Fresnel-propagator D to
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Fig. 14.2 Idea of the stability analysis of T [24]: by applying the propagator D to linear XPCI-
data I − 1 ≈ T (h), the twin-image h becomes sharp, see logo in central panel. By restricting to the
complement of Ω ⊃ supp(h), h is eliminated and incomplete Fresnel data D2(h)|Ωc is obtained
(right panel). Images show real parts of images computed from a hologram (left panel) acquired at
GINIX [25, 26], P10-beamline, DESY

a hologram thus recovers the twin-image h, perturbed by a fringe-pattern originating
from the doubly propagated image D2(h):

−D(
T (h)

) = D2(h) + h, (14.29)

This is Gabor’s original idea of holographic reconstruction, which is illustrated
in the first and second panel of Fig. 14.2 for a real-data example.

For stability analysis, we use the idea in a converse manner. By the constraint h ∈
L2(Ω), the sharp twin-image (the valuable part ins Gabor’s eyes!) can be eliminated
from (14.29) by restricting to the complement Ωc of Ω:

−D(
T (h)

)|Ωc = D2(h)|Ωc + h|Ωc
supp(h)⊂Ω= D2(h)|Ωc . (14.30)

By (14.30), we are left with incomplete (but phased!) Fresnel-data D2(h)|Ωc .
Notably, to this point, only stable operations have been applied to the XPCI-data,
which do not amplify data errors in L2-norm: for any g ∈ L2(Rm), it holds that
‖D(g)|Ωc‖L2 ≤ ‖g‖L2 . When applied to (14.30) this bound yields

‖T (h)‖L2 ≥ ∥∥D(
T (h)

)|Ωc

∥∥
L2 = ∥∥D2(h)|Ωc

∥∥
L2 . (14.31)

Finally, by employing the alternate form (14.20) of D, the Fresnel-data on the
r.h.s. of (14.31) may be identified with incomplete Fourier-data:

‖T (h)‖L2 ≥ ∥∥D2(h)|Ωc

∥∥
L2 = ‖F(h̃)|Ωc

f
‖L2 (14.32)

with h̃ = nf/2 · h and Ωf := {x ∈ R
m : (2/f) · x ∈ Ω}.
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14.3.2.2 Stability Bound

Since ‖h̃‖L2 = ‖h‖L2 , the bound (14.32) can be regarded as a relative stability esti-
mate: recovering an image h ∈ L2(Ω) from XPCI-data T (h) is at least as sta-
ble as the reconstruction of h̃ ∈ L2(Ω) from Fourier-data outside the domain Ωf.
Reconstruction from incomplete Fourier-data in turn is a well-studied problem: an
uncertainty principle from [27] implies that Lipschitz-stability holds, ‖F(h̃)|Ωc

f
‖ ≥

Cgen
stab‖h̃‖ for someCgen

stab > 0, provided thatΩ is bounded along at least one dimension.
For rectangular domains Ω , the stability-constant Cgen

stab may be expressed in terms
of the principal eigenvalue of a compact selfadjoint operator, for which asymptotics
are derived in [28]. Via (14.32), these results yield stability estimates for linearized
XPCI:

Theorem 14.2 (Stability estimate for general images [24])LetΩ = [− 1
2 ; 1

2 ]m. Then

Cgen
stab(Ω, f) := inf

h∈L2(Ω),‖h‖=1
‖T (h)‖ > 0 (14.33)

i.e. the reconstruction of images h with support in Ω from linearized XPCI-data is
well-posed. For f → ∞, the stability constant satisfies the bound

Cgen
stab(Ω, f) ≥ m

1
2 (2πf)

1
4

(
1 − 3

8f
+ O

(
f−2

))
exp (−f/8) . (14.34)

While Theorem 14.2 only gives a worst-case bound on the data-contrast
‖T (h)‖/‖h‖ over all images h, the result may be sharpened considerably, as detailed
in [24]: for any h ∈ L2(Ω), an individual lower bound for ‖T (h)‖ may be given
based on the eigenvalues from [28] and the images that minimize ‖T (h)‖/‖h‖ may
be characterized in terms of the associated eigenmodes.

14.3.2.3 Stability in a Practical Sense?

Numerical computations in [24] indicate that the bound (14.34) is quite sharp. While
this is good news for a (pure) mathematician, it is bad news from an applied perspec-
tive: the predicted (quasi) exponential decay Cgen

stab(Ω, f) ∼ exp(f/8) implies that the
constant quickly becomes very small for larger values of f, e.g. Cgen

stab(Ω, f) � 10−5,
for f � 100. Notably, f = kb2/d is the modified Fresnel-number associated with the
width of the support-domainΩ , i.e. with the diameter of the imaged sample.4 In typi-
cal XPCI-experiments at synchrotrons, one has 102 � f � 105, so that Theorem 14.2
only guarantees stability in practice for imaging settings at the lower end of typical
Fresnel-numbers.

4The lateral lengthscale b associated with f is implicitly fixed to the width of Ω by assuming the
latter to be 1 in Theorem 14.2, as will also be done in all subsequent results.
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Notably, this is in line with empirics: after all, independent reconstruction of
phase- and absorption-image φ and μ from a single hologram, as analyzed here, is
widely considered as infeasible by practioners. It is thus highly surprising in the first
place that the problem is technically well-posed at all.

14.3.2.4 Extension to Other Domains

Theorem 14.2 seemingly only applies to a very particular choice of the domain
Ω ⊂ R

m . Yet, it may be readily generalized via the following properties:

• Translation- and rotation-invariance:As themapT is invariant under shifts and/or
rotations of the coordinates, it holds that Cgen

stab(Ω̃, f) = Cgen
stab(Ω, f) whenever Ω̃ is

a shifted and/or rotated version of Ω ⊂ R
m .

• Monotonicity: Cgen
stab(Ω1, f) ≥ Cgen

stab(Ω2, f) for any Ω1 ⊂ Ω2 ⊂ R
m .

• Scaling: Cgen
stab(r · Ω, f) ≥ Cgen

stab(Ω, r2f) for any Ω ⊂ R
m and r > 0.

Analogous properties hold for the stability constants in Sect. 14.3.3.

14.3.3 Homogeneous Objects and Multiple Holograms

In most practical works, one aims to stabilize image reconstruction in XPCI by one
of the following approaches (often both, actually):

1. Impose a homogeneity-constraint, e.g. assuming a pure phase object h = iφ if
absorption is negligible (μ ≈ 0), see Sect. 14.1.2.3.

2. Reconstruct from more than one hologram, see Sect. 14.1.2.4.

According to Sect. 14.2.1, uniqueness then also holdswithout support constraints, but
image reconstruction is still ill-posed in general: the associated forward maps Sν :
L2(Rm) → L2(Rm) and T (f1,...,f�) : L2(Rm) → L2(Rm)� do not have a bounded
inverse due to zeros of the CTFs.

When both homogeneity- and support constraints can be assumed,well-posedness
holds true with an improved stability constant compared to (14.34):

Theorem 14.3 (Stability estimate for homogeneous objects [24]) Let Ω ⊂ R
m be a

ball of diameter 1, w.l.o.g. Ω = {x ∈ R
m : |x| ≤ 1

2 }. Then

Chom
stab (Ω, f, ν) := inf

ϕ∈L2(Ω),‖ϕ‖L2=1
‖Sν(ϕ)‖L2

≥ max
{
min

{
c1, c2f

−1
}
,min

{
c3ν, c4f

− 1
2

}}
(14.35)

for some constants c j > 0 that depend only on m.
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By Theorem 14.3, the original decay Cgen
stab ∼ exp(−f/8) of the stability constant

as f → ∞ improves to Chom
stab (Ω, f, ν) ∼ f−γ with γ = 1 for ν = 0 and γ = 1/2 for

ν > 0. This ensures practical stability also at larger Fresnel-numbers.
A similar improvement applies for the reconstruction of general objects (no

homogeneity-constraint) from two holograms:

Theorem 14.4 (Stability estimate for two holograms [24]) Let T (f1,f2) : h �→
(T (f1)(h),T (f2)(h))denote the linearizedXPCI-model for twohologramsatFresnel-
numbers f1 
= f2 (see Sect.14.1.2.4). LetS

(f−)

0 be the forwardmap fromTheorem14.3
for ν = 0 and f = f− := |f−1

1 − f−1
2 |−1. Then

∥∥T (f1,f2)(h)
∥∥
L2 ≥ 2− 1

2

∥∥∥S (f−)

0 (h)

∥∥∥
L2

for all h ∈ L2(Rm). (14.36)

In particular, for any support-domainΩ ⊂ R
m, the following stability estimate holds

true:

Ctwo
stab(Ω, f1, f2) := inf

h∈L2(Ω)
‖h‖L2=1

∥∥T (f1,f2)(h)
∥∥
L2 ≥ 2− 1

2Chom
stab (Ω, f−, 0). (14.37)

Note that the r.h.s. of the stability bound (14.37) increases with the difference f−1
−

between the reciprocal Fresnel-numbers f−1
1 , f−1

2 . Improved stability is thus guar-
anteed only if f1 and f2 differ strongly, i.e. if the two holograms are acquired in
significantly different experimental setups.

14.3.3.1 Order-Optimality

For ν = 0, it can be shown that the ∼ f−1 order of the decay in Theorem 14.3 cannot
be improved: for a fixed bounded domain Ω ⊂ R

m with non-empty interior, there
exists a constant cmax(Ω) > 0 such that

Chom
stab (Ω, f, 0) ≤ cmax(Ω)f−1. (14.38)

This is a consequence of the bound ‖S0(ϕ)‖L2 ≤ 1/f‖Δϕ‖L2 where Δ is the
Laplacian, which in turn follows from |s0(ξ)| ≤ ξ2/(2f) for all ξ ∈ R

m .
Notably, better rates do not even hold in a setting with multiple holograms: for

any Fresnel-numbers f1, . . . , f�, it holds by a similar argument that

inf
ϕ∈L2(Ω),‖ϕ‖L2=1

‖S (f1,...,f�)
0 (ϕ)‖L2 ≤ cmax(Ω)

( �∑
i=1

f−2
i

) 1
2

. (14.39)

The reason for this surprising negative result on the benefit of multiple holograms
is that the CTFs s(fi )

0 (ξ) = sin(ξ2/(2fi )) all share a second order zero at ξ = 0. This



14 Constrained Reconstructions in X-ray Phase Contrast Imaging … 393

corresponds to the well-known low-frequency instability of XPCI that gives rise to
the proven f−1-rates of the stability constant.

14.3.3.2 Numerical Stability Computations

Other than for the setting in Theorem 14.2, the prediction (14.35) for the stability
constant Chom

stab (and thus for C two
stab) is far from sharp if the analytical bounds on the

constants c j from [24] are inserted. Sharp values of Chom
stab may however be computed

numerically by approximating the minimum singular value of the operator Sν via
techniques presented in [29, Sect. 3.4].

14.3.4 Extensions

14.3.4.1 Phase Contrast Tomography

Although the physical setting of XPCI corresponds to m = 2 dimensions, the sta-
bility results in Theorems 14.2 to 14.4 have been formulated for arbitrary m. As a
benefit, stability may be readily extended to XPCT: for the considered linearized
forward models, XPCT data is of the form Iθ − 1 = T (Pθ( f )) for T ∈ {T ,Sν}
and incident directions θ ∈ Θ ⊂ S

2, compare Sect. 14.1.3. As noted in [30, 31], the
order of the projector Pθ and T may be interchanged:

Iθ − 1 = T (Pθ( f )) = Pθ

(
T (3d)( f )

)
, (14.40)

where T (3d) ∈ {T (3d),S (3d)
ν } is the equivalent of T in m = 3 dimensions.

As detailed in [29, Sect. 3.3], the relation (14.40) allows to express stability of
linearized XPCT via known results for tomographic reconstruction, combined with
stability bounds for T (3d),S (3d)

ν : L2(Ω) → L2(R3) where Ω ⊂ R
3. Stability then

depends on a three-dimensional support constraint supp(β + iδ) ⊂ Ω ⊂ R
3 for the

imaged sample’s refractive index.

14.3.4.2 Imaging with Finite Detectors

There are a number of idealizing assumptions underlying to the obtained stability
estimates: in addition to the neglected nonlinearity and idealizations in the basic
physical model such as full coherence, it has also been assumed that the hologram
I is measured in the whole detector-plane in Fig. 14.1. Due to the finite size of real-
world detectors (and—more fundamentally—the finite width of illuminating X-ray
beams), however, only restrictions I |K to some bounded domain K are available in
practice.



394 S. Maretzke and T. Hohage

According to Theorem 14.1, such restricted data has no impact on uniqueness
(if K contains an open set). The situation is quite different in terms of stability, as
analyzed in [32]: for any bounded K ⊂ R

m—however large—the inverse problem
of XPCI becomes severely ill-posed, i.e. Lipschitz-stability is lost so that data errors
may severely corrupt the reconstructed images. Yet, it is also proven in [32] that the
situation may be repaired by restricting to images h = μ + iφ of finite resolution
(smoothness constraint in the sense of Sect. 14.1.1.1): by imposing that the h are
B-splines on a Cartesian grid of sufficiently large spacing r(Ω, K , f) > 0 (i.e. pixe-
lated images in some sense), Lipschitz-stability can be restored in the finite-detector
setting. Physically, the necessity of such a restriction corresponds to a resolution
limit that arises due to the finite numerical aperture associated with the detector size.

14.4 Regularized Newton Methods for XPCI

The following section considers regularized Newton-type methods for image recon-
struction in XPCI. The proposed algorithm is motivated by the theoretical insights
gained from Sects. 14.2 and 14.3.

14.4.1 Motivation

14.4.1.1 Significance of Constraints

The stability results of Sect. 14.3 heavily rely on support constraints—without such,
XPCI is ill-posed or even non-unique. To guarantee stability in practice, image recon-
struction methods must thus be able to exploit support-knowledge. Also other types
of a priori knowledge (see Sect. 14.1.1.1) are known to be beneficial. In particular,
imposing non-negativity often has a similar stabilizing effect as support constraints.

14.4.1.2 Necessity of Iterative Methods

By far the most commonly used reconstruction method for XPCI at synchrotrons is
direct CTF-inversion, as presented in Sect. 2.3. Within the notation of this chapter,
the approach corresponds to quadratic Tikhonov regularization applied to the lin-
earized forward mapsS (f1,...,f�)

ν orT (f1,...,f�). Owing to the linearity and translation-
invariance of thesemaps, the reconstructionmay be implemented via amultiplication
in Fourier-space (deconvolution), which renders the approach computationally fast.

http://dx.doi.org/10.1007/978-3-030-34413-9_2
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However, direct CTF-inversion is incompatible with the above constraints:

• Support constraints supp(h) ⊂ Ω for Ω � R
m break translation-invariance

• Non-negativity is a nonlinear constraint: any reconstruction imposing it depends
nonlinearly on the data I − 1—even for linear forward models!

In either case, reconstructionmay thus no longer be achieved by deconvolution. Thus,
iterative algorithms have to be applied to impose support- and/or nonnegativity-
constraints in lack of efficient direct reconstruction formulas.

14.4.1.3 XPCI Beyond Linear Models

Although the linear CTF-model of XPCI has a surprisingly large regime-of-validity,
there are settings where linear image reconstruction induces severe artifacts arising
from the neglected nonlinearity, as demonstrated in Sect. 13.3. Reconstruction algo-
rithms based on the full nonlinear XPCI-model are thus preferable in principle. The
main obstacle in using such is that direct inversion formulas for the nonlinear model
are not known. However, when iterative methods are needed anyway (Sect. 14.4.1.2),
nonlinear forward maps cause little additional difficulty.

14.4.2 Reconstruction Method

In the following, we propose a reconstruction algorithm that meets the requirements
discussed in Sect. 14.4.1. Details can be found in [33].

By choosing F : X → L2(Rm) ∈ {N ,Nν} with X = L2(Ω, (R)) for Ω ⊂ R
m ,

optional homogeneity- and/or support constraints are incorporated in the forward
operator F . Consequently, such constraints are imposed automatically if image
reconstruction in XPCI is performed by inverting F via any generic regularization
method for inverse problems, see Chap.5. In order to exploit Fréchet-differentiability
of N (see Sect. 14.1.2.1) and the comparably moderate nonlinearity of XPCI, we
choose regularized Newton methods as introduced in Chap.5:

hk+1 ∈ argmin h∈X
∥∥F(hk) + F ′[hk](h − hk) − (I obs − 1)

∥∥2
L2

+ αk‖h − h0‖2Hs + R≥0(h, hk). (14.41)

for k = 0, 1, . . . , kstop, with initial guess h0 ∈ X (usually h0 = 0), observed (noisy)
hologram(s) I obs and regularization parameters αk > 0.

Note that we use a standard squared L2-norm as a data-fidelity term in (14.41), in
lack of an accuratemodel for the data error statistics in flat-field corrected holograms.
The squared Sobolev-term αk‖h − h0‖2Hs (‖ f ‖2Hs := ‖(1 + ξ2)s/2 · F( f )‖2Hs )
imposes tunable (by the choice of s ≥ 0) smoothness of the iterates hk and acts
as a regularizer. Finally, R≥0(h, hk) is a quadratic penalty term that is designed to

http://dx.doi.org/10.1007/978-3-030-34413-9_13
http://dx.doi.org/10.1007/978-3-030-34413-9_5
http://dx.doi.org/10.1007/978-3-030-34413-9_5
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correct negative values of Re(hk) or Im(hk) in the subsequent iterate hk+1, see [33]
for details.

In the numerical algorithm, a discretized analogue of the quadratic minimization
problem in (14.41) is solved for images h∗ ∈ C

N , data Iobs ∈ R
M and forward map

Fdis : C
N → R

M , via a conjugate-gradient method. The αk and kstop are chosen in a
widely automated fashion, as detailed in [33].

14.4.3 Reconstruction Example

We assess the capabilities of the proposed method by reconstructing phase φ and
absorption μ as independent parameters from a single simulated noisy hologram,
which is shown in Fig. 14.3a. The considered test case is detailed in [33], where also
a real-data example is considered for an analogous setting.

The true phase-image φ (Fig. 14.3b) is given by a bulk disk of magnitude 0.2,
whereas the true absorption-image 0 ≤ μ ≤ 0.02 shows a logo-structure (Fig. 14.3c).
Accordingly, no homogeneity-constraint is applicable so that the test-case is situ-
ated in the most challenging, unstable setting of XPCI, which has been analyzed
in Sect. 14.3.2. In particular, recall that image reconstruction is non-unique without
exploiting further constraints.

The data is reconstructed using the regularized Newton method from Sect. 14.4.2,
imposing non-negativity of φ and μ as well as support constraint, allowing nonzero
values of φ,μ only within the circular region marked by the blue dashed line in
Fig. 14.3b, c. The reconstructed images inFig. 14.3d, e show that the proposedmethod
correctly attributes the disk-structure to the phase-image φ and the logo-pattern to
μ, without visible signs of “mixing things up”. The overall lower reconstruction-
quality in μ compared to φ is due to the lower signal-to-noise in this parameter, as a
realistically low absorption-refraction-ratio β/δ ≤ 0.1 has been assumed in the test
case.

Now why does reconstruction of both φ and μ from a single hologram work here,
contrary to the usual experience? The diameter of the circular support corresponds
to a relatively low (modified) Fresnel-number f ≈ 87. According to the analysis in
Sect. 14.3.2, this ensures stability of image reconstruction, as is discussed to greater
detail in [33] and [24, Sect. 6]. By its ability to impose support constraints (and
non-negativity), the proposed Newton-type method allows to exploit this theoretical
stability in practice.

14.5 Regularized Newton-Kaczmarz-SART for XPCT

In the final section, we present a Newton-type reconstruction method for X-ray
phase contrast tomography (XPCT) that is a compromise between flexibility w.r.t.
a priori constraints and computational performance. We note that the method is an
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Fig. 14.3 Reconstruction of a general image h = μ + iφ from a single simulated hologram by
a regularized Newton method (test case from [33]). a Hologram of size 1920 × 1080. b, c True
images φ and μ (zooms to the relevant region, that is marked by a red-dashed line in (a)). d, e
Reconstructed images φ and μ, obtained by imposing non-negativity and support of φ, μ within the
circular region bounded by the blue-dashed line in (b), (c)

all-at-once approach, as also proposed in [30, 31, 34]: the 3D-object parameters
δ,β are recovered directly from the full tomographic hologram-series, instead of
first reconstructing 2D-images φ,μ for each hologram individually. Thereby, tomo-
graphic consistency is imposed as an additional constraint in image reconstruction,
compare Sect. 14.1.1.1.

By replacing F ∈ {N ,Nν} with the corresponding tomographic forward opera-
tor fromSect. 14.1.3, FPCT : X → L2(R2)t ; f �→ (F(Pθ j ( f )))

t
j=1 with X = L2(Ω, (R)),

Ω ⊂ R
3, the regularized Newton method from Sect. 14.4.2 may be readily adapted

to solve the inverse problem of XPCT:
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FPCT( f ) ≈ (I obsθ j
− 1)tj=1 for f = kβ + ikδ ∈ X. (14.42)

This is done in [2]. Yet, typical problem-sizes in XPCTwith∼ 109 dimensions of the
discretized object- and data-space, are too large for this approach to be competitive
in terms of computation times and memory requirements.

As a remedy, we supplement the approach with a Kaczmarz-type strategy that
exploits the block-structure of the XPCT-problem (14.42). The idea is to cycli-
cally perform regularized Newton-steps w.r.t. the small sub-problems I obsθ j

− 1 ≈
F(Pθ j ( f )) defined by themeasured holograms I obsθ j

under the different tomographic
incident directions θ j :

fk+1 ∈ argmin f ∈X
∥∥F(Pθ jk

( fk)) + F ′[Pθ jk
( fk)]Pθ jk

( f − fk) − (
I obsθ jk

− 1
)∥∥2

+ α
(
(1 − γ) ‖ f − fk‖2L2 + γ ‖∇( f − fk)‖2L2

)
(14.43)

for k = 0, 1, . . . , tnstop − 1withnstop ∈ N. The parametersα > 0, 0 ≤ γ ≤ 1 control
the regularization and smoothing w.r.t. the preceding iterate fk .

Iterations of the form (14.43) are known as regularized Newton-Kaczmarz [35].
The advantage compared to bulk (i.e. non-Kaczmarz-)methods is that the operator-
blocks f �→ F(Pθ j ( f )) require much less computations to evaluate than the total
XPCT operator FPCT, which permits efficient computation of the iterates (14.41).
Moreover, Kaczmarz-type methods often exhibit fast initial convergence, typically
reaching a good reconstruction already after one or two cycles over the data, i.e.
for nstop ∈ {1, 2}. To promote convergence, the processing order { j1, j2, . . .} ⊂
{1, . . . , t} of the data-blocks should be chosen such that subsequently fitted directions
θ jk ,θ jk+1 differ as strongly as possible, whichwe achieve by following a “multi-level-
scheme” from [36].

14.5.1 Efficient Computation by Generalized SART

Although the processed data-size is reduced by the Kaczmarz-strategy, the iterates
(14.41) still involve a minimization problem on a high-dimensional space of 3D-
objects f . Moreover, if the minimization is performed iteratively, each iteration
requires evaluations of the (discretized) projector Pθ jk

and its adjoint P∗
θ jk

, the
back-projector, both of which typically amount to much higher computational costs
than evaluating the XPCI forward map F .5

Both computational issues can be resolved by computing the iterates (14.41) via
a generalized SART 6 (GenSART-) scheme, as introduced in [38] for a much more
general class of tomographic Kaczmarz-iterations:

5For images of size N × N , the discretized forward maps F = N (f1,...,f�) may be evaluated in
O(�N 2 log N ) operations, while (back-)projecting 3D-arrays of size N × N × N is O(N 3).
6“SART” refers to the simultaneous algebraic reconstruction technique from [37].
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GenSART for Newton-Kaczmarz-iterations:

1. Forward-projection: pk := Pθ jk
( fk)

2. Optimization in projection-space (u j = Pθ j (1Ω)):

Δpk ∈argmin p∈L2(R2,(R))‖F(pk) + F ′[pk](u jk · p) − (I obsθ jk
− 1)‖2L2

+ α
(
(1 − γ)‖u1/2jk

· p‖2L2 + γ‖u1/2jk
· ∇ p‖2L2

)
(14.44)

3. Back-projection update: fk+1 = fk + P∗
θ jk

(Δpk)

The main benefit of the approach is that the required minimization is cast to
projection-space, i.e. no longer needs to be solved on a high-dimensional space of
3D-objects but merely on 2D-images. Moreover, the whole scheme requires only a
single evaluation ofPθ jk

(1.) and its adjointP∗
θ jk

(3.), whereas the optimization (2.)
does not involve any of these costly operations anymore.

As is standard for Kaczmarz-type methods, non-negativity of the iterates fk+1 (in
real- and imaginary part) may be imposed by adding a final step to the GenSART-
scheme: fk+1,≥0 = max{0,Re( fk+1)} + i max{0, Im( fk+1)}.

14.5.2 Parallelization and Large-Scale Implementation

Regularized Newton-Kaczmarz, computed via GenSART-schemes, is well-suited
for large-scale computations and can be efficiently implemented in a parallelized
manner. While we refer to [29, Sect. 6.3] for a detailed discussion, we mention the
most important aspects here:

• Low memory requirements: if the back-projection update (3.) (as well as the
optional non-negativity projection) is implemented as an in-place operation, only
a single 3D-array (storing f0, f1, ( f1,≥0, ) f2, . . .) needs to be kept in memory
throughout the whole Newton-Kaczmarz-reconstruction.

• Parallelized optimization: as the optimization-step (2.) works on 2D-images only,
its memory-requirements are low enough to be performed on a single graphical
processing unit (GPU) even for large-scale data. This permits efficient parallized
implementation of this step.

• Parallelized 3D-computations: The only operations on the 3D-objects fk are
forward- and back-projectionsPθ jk

,P∗
θ jk

and pointwise arithmetics. All of these
can be easily parallelized at low communication requirements between the dif-
ferent processors. In fact, it is possible to implement GenSART-schemes in a
distributed manner: the object-iterates fk may be split into chunks, that are stored
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and managed by dedicated machines throughout the whole reconstruction. This
property allows to run Newton-Kaczmarz reconstructions efficiently on multiple
GPUs.

14.5.3 Reconstruction Example

We assess the Newton-Kaczmarz method for XPCT-data of freeze-dried Deinococ-
cus radiodurans bacteria. The experimental data set, acquired with the GINIX setup
from Chap.3, is composed of 641 holograms of size 2048 × 2048 at tomographic
incident angles θ = 0◦, 0.25◦, . . . , 119◦, 139◦, 139.25◦, . . . , 180◦ (one hologram
per angle). 2D orthoslices of the 3D tomographic data (two spatial and one angu-
lar dimension) are shown in Fig. 14.4a–c, emphasizing the missing data between
θ = 119◦ and θ = 139◦.

The biological sample constitutes a pure phase object to good approximation, i.e.
vanishing absorption β = 0 may be assumed. Moreover, the sample is localized in
a small subdomain of the imaged 2048 × 2048-sized field-of-view, as can be seen
from Fig. 14.4a–c, i.e. support constraints may be imposed.

For comparison, we reconstruct the XPCT-data with different methods:

1. CTF+FBP: direct CTF-inversion for each hologram, followed by filtered back-
projection applied to the recovered projections of δ.

2. Linear Kaczmarz: reconstruction by (14.43) over a single cycle nstop = 1, using
the linearized XPCI-model F = S0. Non-negativity of the reconstructed δ and
support in a centered cube of 5123 voxels is imposed.

3. Newton-Kaczmarz: same as (2.), but with the nonlinear model F = N0.

2D orthoslices through the reconstructed 512 × 512 × 512 volumes are plotted
in Fig. 14.4d–l. We note the following observations:

• The additional constraints exploited in “Linear Kaczmarz” compared to
“CTF+FBP” widely eliminate low-frequency background-artifacts (compare
Fig. 14.4e–h) and thereby enable quantitatively correct reconstructions δ.

• Though the sample-induced phase shifts are moderate, φθ = kPθ(δ) � 1, going
over to the nonlinearXPCI-model has significant effects: especially in Fig. 14.4h, it
can be seen that using the linearizedmodel causes artificial distortions in the recov-
ered object-density compared to the nonlinear Newton-Kaczmarz-reconstruction
in Fig. 14.4i–l.

Accordingly, both the nonlinearity and the ability to exploit a priori constraints
of the proposed Newton-Kaczmarz method turn out to be vital here to accurately
reconstruct the anticipated 3D structure of the imaged bacteria7: cytoplasm with
blob-shaped inclusions containing the DNA, where each of the two compounds is of
approximately uniform density.

7The additional object in the top-left of Fig. 14.4e, h, k is a contaminant particle.

http://dx.doi.org/10.1007/978-3-030-34413-9_3
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Fig. 14.4 XPCT-reconstruction of Deinococcus radiodurans bacteria with different algorithms.
Rows show 2D orthoslices for: a–c the stack of 641 holograms of 2048 × 2048 pixels each (x, y:
detector-coordinates, θ: tomographic incident angle) d–l reconstructed object-volumes with dif-
ferent methods (d–f CTF-inversion followed by FBP-reconstruction, g–i Linear Kaczmarz, j–l
Newton-Kaczmarz). The tomographic axis is the y-axis. Scale bars: 1µm. For details, see text



402 S. Maretzke and T. Hohage

References

1. Davidoiu, V., Sixou, B., Langer, M., Peyrin, F.: Nonlinear approaches for the single-distance
phase retrieval problem involving regularizations with sparsity constraints. Appl. Opt. 52(17),
3977–3986 (2013)

2. Maretzke, S.: Regularized Newton methods for simultaneous Radon inversion and phase
retrieval in phase contrast tomography (2015). arXiv preprint arXiv:1502.05073

3. Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J., Schlenker,
M.: Holotomography: Quantitative phase tomography with micrometer resolution using hard
synchrotron radiation X-rays. Appl. Phys. Lett. 75(19), 2912–2914 (1999)

4. Hofmann, R., Moosmann, J., Baumbach, T.: Criticality in single-distance phase retrieval. Opt.
Express 19(27), 25881–25890 (2011)

5. Krenkel, M., Toepperwien, M., Alves, F., Salditt, T.: Three-dimensional single-cell imaging
with X-ray waveguides in the holographic regime. Acta Crystallogr. A 73(4), 282–292 (2017)

6. Langer, M., Cloetens, P., Guigay, J.P., Peyrin, F.: Quantitative comparison of direct phase
retrieval algorithms in in-line phase tomography. Med. Phys. 35(10), 4556–4566 (2008)

7. Turner, L., Dhal, B., Hayes, J., Mancuso, A., Nugent, K., Paterson, D., Scholten, R., Tran,
C., Peele, A.: X-ray phase imaging: Demonstration of extended conditions for homogeneous
objects. Opt. Express 12(13), 2960–2965 (2004)

8. Nugent, K.A.: X-ray noninterferometric phase imaging: a unified picture. J. Opt. Soc. Am. A
24(2), 536–547 (2007)

9. Jonas, P., Louis, A.: Phase contrast tomography using holographic measurements. Inverse
Probl. 20(1), 75 (2004)

10. Walther, A.: The question of phase retrieval in optics. J. Mod. Opt. 10(1), 41–49 (1963)
11. Akutowicz, E.J.: On the determination of the phase of a Fourier integral, i. Proc. Am. Math.

Soc., 179–192 (1956)
12. Akutowicz, E.J.: On the determination of the phase of a Fourier integral, ii. Proc. Am. Math.

Soc. 8(2), 234–238 (1957)
13. Fienup, J.: Phase retrieval algorithms: a personal tour. Appl. Opt. 52(1), 45–56 (2013)
14. Klibanov, M.V., Sacks, P.E., Tikhonravov, A.V.: The phase retrieval problem. Inverse Probl.

11(1), 1 (1995)
15. Luke, D.R.: Phase retrieval, what’s new. SIAG/OPT Views News 25(1), 1–5 (2017)
16. Millane, R.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411

(1990)
17. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval

with application to optical imaging: a contemporary overview. IEEE Signal Proc. Mag. 32(3),
87–109 (2015)

18. Beinert, R.: One-dimensional phase retrieval with additional interference intensity measure-
ments. Results Math. 72(1–2), 1–24 (2017)

19. Bendory, T., Beinert, R., Eldar, Y.C.: Fourier phase retrieval: Uniqueness and algorithms. In:
Compressed Sensing and its Applications, pp. 55–91. Springer (2017)

20. Leshem, B., Xu, R., Dallal, Y., Miao, J., Nadler, B., Oron, D., Dudovich, N., Raz, O.: Direct
single-shot phase retrieval from the diffraction pattern of separated objects. Nat. Commun. 7,
10,820 (2016)

21. Raz, O., Leshem, B., Miao, J., Nadler, B., Oron, D., Dudovich, N.: Direct phase retrieval in
double blind Fourier holography. Opt. Express 22(21), 24935–24950 (2014)

22. Maretzke, S.: A uniqueness result for propagation-based phase contrast imaging from a single
measurement. Inverse Probl. 31, 065,003 (2015)

23. Gabor, D., et al.: A new microscopic principle. Nature 161(4098), 777–778 (1948)
24. Maretzke, S., Hohage, T.: Stability estimates for linearized near-field phase retrieval in X-ray

phase contrast imaging. SIAM J. Appl. Math. 77, 384–408 (2017)
25. Kalbfleisch, S., Neubauer, H., Krüger, S., Bartels, M., Osterhoff, M., Mai, D., Giewekemeyer,

K., Hartmann, B., Sprung, M., Salditt, T.: The göttingen holography endstation of beamline
p10 at petra iii/desy. In: AIP Conference Proceedings, Vol. 1365, pp. 96–99. AIP (2011)

http://arxiv.org/abs/1502.05073


14 Constrained Reconstructions in X-ray Phase Contrast Imaging … 403

26. Salditt, T., Osterhoff, M., Krenkel, M., Wilke, R.N., Priebe, M., Bartels, M., Kalbfleisch, S.,
Sprung, M.: Compound focusing mirror and x-ray waveguide optics for coherent imaging and
nano-diffraction. J. Synchrotron Rad. 22(4), 867–878 (2015)

27. Havin, V., Jöricke, B.: TheUncertainty Principle inHarmonicAnalysis. Springer, Berlin (1994)
28. Slepian, D., Sonnenblick, E.: Eigenvalues associated with prolate spheroidal wave functions

of zero order. Bell Syst. Tech. J. 44(8), 1745–1759 (1965)
29. Maretzke, S.: Inverse problems in propagation-based X-ray phase contrast imaging and tomog-

raphy: stability analysis and reconstruction methods. eDiss Uni Göttingen (2019)
30. Kostenko, A., Batenburg, K.J., King, A., Offerman, S.E., van Vliet, L.J.: Total variation min-

imization approach in in-line X-ray phase-contrast tomography. Opt. Express 21(10), 12185–
12196 (2013)

31. Ruhlandt, A., Salditt, T.: Three-dimensional propagation in near-field tomographicX-ray phase
retrieval. Acta Crystallogr. A 72(2) (2016)

32. Maretzke, S.: Locality estimates for Fresnel-wave-propagation and stability of near-field X-ray
propagation imaging with finite detectors. Inverse Probl. 34(12), 124,004 (2018). https://doi.
org/10.1088/1361-6420/aae78f

33. Maretzke, S., Bartels, M., Krenkel, M., Salditt, T., Hohage, T.: Regularized Newton methods
for X-ray phase contrast and general imaging problems. Opt. Express 24(6), 6490–6506 (2016)

34. Ruhlandt, A., Krenkel, M., Bartels, M., Salditt, T.: Three-dimensional phase retrieval in
propagation-based phase-contrast imaging. Phys. Rev. A 89(3), 033,847 (2014)

35. Burger, M., Kaltenbacher, B.: Regularizing Newton-Kaczmarz methods for nonlinear ill-posed
problems. SIAM J. Numer. Anal. 44(1), 153–182 (2006)

36. Guan, H., Gordon, R.: A projection access order for speedy convergence of ART (algebraic
reconstruction technique): a multilevel scheme for computed tomography. Phys. Med. Biol.
39(11), 2005 (1994)

37. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a supe-
rior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

38. Maretzke, S.: Generalized SART-methods for tomographic imaging. arXiv preprint p.
arXiv:1803.04726 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1088/1361-6420/aae78f
https://doi.org/10.1088/1361-6420/aae78f
http://arxiv.org/abs/1803.04726
http://creativecommons.org/licenses/by/4.0/

	14 Constrained Reconstructions in X-ray Phase Contrast Imaging: Uniqueness, Stability and Algorithms
	14.1 Forward Models
	14.1.1 Physical Model and Preliminaries
	14.1.2 Forward Operators for XPCI
	14.1.3 Forward Operators for XPCT

	14.2 Uniqueness Theory
	14.2.1 Preliminary Results and Counter-Examples
	14.2.2 Sources of Non-uniqueness—The Phase Problem
	14.2.3 Relation to Classical Phase Retrieval Problems
	14.2.4 Holographic Nature of Phase Retrieval in XPCI
	14.2.5 General Uniqueness Under Support Constraints

	14.3 Stability Theory
	14.3.1 Lipschitz-Stability and its Meaning
	14.3.2 Stability for General Objects and one Hologram
	14.3.3 Homogeneous Objects and Multiple Holograms
	14.3.4 Extensions

	14.4 Regularized Newton Methods for XPCI
	14.4.1 Motivation
	14.4.2 Reconstruction Method
	14.4.3 Reconstruction Example

	14.5 Regularized Newton-Kaczmarz-SART for XPCT
	14.5.1 Efficient Computation by Generalized SART
	14.5.2 Parallelization and Large-Scale Implementation
	14.5.3 Reconstruction Example

	References




