
Falko Dressler
Christian Scheideler (Eds.)

LN
CS

 1
19

31

15th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2019
Munich, Germany, September 12–13, 2019
Revised Selected Papers

Algorithms
for Sensor Systems

Lecture Notes in Computer Science 11931

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Falko Dressler • Christian Scheideler (Eds.)

Algorithms
for Sensor Systems
15th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2019
Munich, Germany, September 12–13, 2019
Revised Selected Papers

123

Editors
Falko Dressler
Paderborn University
Paderborn, Germany

Christian Scheideler
Paderborn University
Paderborn, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34404-7 ISBN 978-3-030-34405-4 (eBook)
https://doi.org/10.1007/978-3-030-34405-4

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1989-1750
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.1007/978-3-030-34405-4

Preface

The papers in this volume were presented at the 15th International Symposium on
Algorithms and Experiments for Wireless Sensor Networks (ALGOSENSORS 2019),
held during September 12–13, 2019, as part of the ALGO 2019 event in Munich,
Germany.

ALGOSENSORS is an international symposium dedicated to the algorithmic
aspects of wireless networks. Originally focused on sensor networks, it now covers
algorithmic issues arising in wireless networks of all types of computational entities,
static or mobile, including sensor networks, sensor-actuator networks, and autonomous
robots. The focus is on the design and analysis of algorithms, models of computation,
and experimental analysis.

This year the Program Committee (PC) was organized into two tracks: an
Algorithms and Theory track headed by Christian Scheideler and an Experiments and
Applications track headed by Falko Dressler.

The 11 full papers presented in this volume were carefully selected from
16 submissions. We would like to thank all the authors who submitted their work to
ALGOSENSORS 2019 and the PC members for their valuable and insightful reviews
and comments. Finally, we also thank the Steering Committee chair Sotiris Nikoletseas
for his valuable advice and the Organizing Committee of ALGO 2019 for their time
and effort to ensure a successful meeting.

September 2019 Falko Dressler
Christian Scheideler

Organization

Program Committee

Matthew Andrews Nokia Bell Labs, USA
Amotz Bar-Noy City University of New York, USA
Aaron Becker University of Houston, USA
Naveed Anwar Bhatti RISE Stockholm, Sweden
Costas Busch Lousiana State University, USA
Ioannis Chatzigiannakis Sapienza University of Rome, Italy
Yingying Chen Rutgers University, USA
Bogdan Chlebus Augusta University, USA
Shantanu Das Aix-Marseille University, France
Falko Dressler Paderborn University, Germany
Sándor Fekete Braunschweig University of Technology, Germany
Jie Gao Stony Brook University, USA
Bernhard Haeupler CMU, USA
Taisuke Izumi Nagoya Institute of Technology, Japan
Irina Kostitsyna Eindhoven University of Technology, The Netherlands
Evangelos Kranakis Carleton University, Canada
Olaf Landsiedel Kiel University, Germany
Mo Li Nanyang Technological University, Japan
Marina Petrova KTH Royal Institute of Technology, Sweden
Christian Scheideler Paderborn University, Germany
Michael Segal Ben Gurion University, Israel
Tigran Tonoyan Reykjavik University, Iceland

Additional Reviewers

Shibata, Masahiro
van Renssen, André
Wang, Haotian

Contents

Mobility Management

Evacuation of Equilateral Triangles by Mobile Agents of Limited
Communication Range. 3

Iman Bagheri, Lata Narayanan, and Jaroslav Opatrny

Fast Dispersion of Mobile Robots on Arbitrary Graphs 23
Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma

Pushing Lines Helps: Efficient Universal Centralised Transformations
for Programmable Matter . 41

Abdullah Almethen, Othon Michail, and Igor Potapov

Foundations

Existence of Connected Intersection-Free Subgraphs in Graphs
with Redundancy and Coexistence Property . 63

Lucas Böltz and Hannes Frey

Vertex-Connectivity for Node Failure Identification in Boolean
Network Tomography . 79

Nicola Galesi, Fariba Ranjbar, and Michele Zito

Reception Capacity: Definitions, Game Theory and Hardness 96
Michael Dinitz and Naomi Ephraim

Wireless Communication

Collaborative Broadcast in Oðlog log nÞ Rounds . 119
Christian Schindelhauer, Aditya Oak, and Thomas Janson

Multi-channel Assignment and Link Scheduling for Prioritized
Latency-Sensitive Applications . 137

Shih-Yu Tsai, Hao-Tsung Yang, Kin Sum Liu, Shan Lin,
Rezaul Chowdhury, and Jie Gao

Throughput and Packet Displacements of Dynamic
Broadcasting Algorithms . 158

Mark de Berg, Corrie Jacobien Carstens, and Michel Mandjes

Faulty Robots

Chauffeuring a Crashed Robot from a Disk . 177
Debasish Pattanayak, H. Ramesh, and Partha Sarathi Mandal

Optimal Circle Search Despite the Presence of Faulty Robots 192
Konstantinos Georgiou, Evangelos Kranakis, Nikos Leonardos,
Aris Pagourtzis, and Ioannis Papaioannou

Author Index . 207

viii Contents

Mobility Management

Evacuation of Equilateral Triangles
by Mobile Agents of Limited

Communication Range

Iman Bagheri, Lata Narayanan(B), and Jaroslav Opatrny

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

imanbag@gmail.com,{lata,opatrny}@cs.concordia.ca

Abstract. We consider the problem of evacuating k ≥ 2 mobile agents
from a unit-sided equilateral triangle through an exit located at an
unknown location on the perimeter of the triangle. The agents are ini-
tially located at the centroid of the triangle and they can communicate
with other agents at distance at most r with 0 ≤ r ≤ 1. An agent can
move at speed at most one, and finds the exit only when it reaches the
point where the exit is located. The agents can collaborate in the search
for the exit. The goal of the evacuation problem is to minimize the evac-
uation time, defined as the worst-case time for all the agents to reach
the exit. We propose and analyze several algorithms for the problem of
evacuation by k ≥ 2 agents; our results indicate that the best strategy
to be used varies depending on the values of r and k. For two agents,
we give four algorithms, the last of which achieves the best performance
for all sub-ranges of r in the range 0 < r ≤ 1. We also show a lower
bound on the evacuation time of two agents for any r < 0.336. For k > 2
agents, we study three strategies for evacuation: in the first strategy,
called X3C, agents explore all three sides of the triangle before connect-
ing to exchange information; in the second strategy, called X1C, agents
explore a single side of the triangle before connecting; in the third strat-
egy, called CXP, the agents travel to the perimeter to locations in which
they are connected, and explore it while always staying connected. For
3 or 4 agents, we show that X3C works better than X1C for small values
of r, while X1C works better for larger values of r. Finally, we show that
for any r, evacuation of k = 6 + 2�(1

r
− 1� agents can be done using the

CXP strategy in time 1 +
√

3/3, which is optimal in terms of time, and
asymptotically optimal in terms of the number of agents.

1 Introduction

Consider the situation where several mobile agents/robots are located inside a
closed region, that has a single exit point on the perimeter of the region at a
location unknown to the agents. Due to some emergency, the agents all need to

This research was supported by NSERC, Canada.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-34405-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_1

4 I. Bagheri et al.

leave this region as quickly as possibly. Thus the agents need to collaboratively
search for the exit and minimize the time that is needed for all of them to
reach the exit. This evacuation problem has already been considered for several
different regions and agents of different capabilities.

Two models of communication between the agents have been considered in
the context of group search and evacuation. In the first model, called the face-
to-face model, the agents can communicate only when they are in the same place
at the same time. In the second model, called the wireless model, the agents can
communicate at any time and over any distance. The algorithms for evacuation in
the wireless and face-to-face models are in general, quite different. It is natural to
ask how the agents would perform evacuation if their communication range was
limited to some r with 0 ≤ r ≤ ∞ where the diameter of the region is assumed
to be 1. Note that r = 0 gives the face-to-face model, and r = ∞ corresponds to
the wireless model. In any region of diameter 1, since agents never need to be at
distance greater than one to communicate with other agents, a communication
range of r > 1 confers no advantages. Thus the wireless model is equivalent to
the case r = 1.

In this paper we study the problem of evacuating an equilateral triangle
whose sides are of size 1 with agents located initially in the centroid of the
triangle, and whose communication capabilities are limited to a given, fixed
distance 0 < r < 1. To the best of our knowledge, the case of limited range
communication of agents in evacuation problems has not been considered yet.
Since the evacuation of the equilateral triangle was previously studied for the
face-to-face model [10] and the wireless model [15], it will allow us to evaluate the
impact of the limited transmission range on the evacuation algorithms. When
there are three or more agents, then an agent can act as a relay between two
other agents, thereby increasing the effective communication range of the agents.
Indeed a virtual meeting can occur between many agents, even when they are not
co-located, so long as the network of communication they create is connected.
This suggests that the interplay between the communication range r and the
number of agents k should be considered in the design of evacuation algorithms.

1.1 Our Results

We first study in detail the case of k = 2 agents. In Sect. 3 we propose four evac-
uation algorithms for two agents, parametrized by r, each subsequent algorithm
improving evacuation times. As shown in Table 1, throughout the entire range
0 ≤ r ≤ 1, our algorithms take advantage of increased communication range to
achieve lower evacuation time. Our first algorithm uses a simple fast exploration
of the perimeter strategy in which agents move together to the midpoint of an
edge, and then move in opposite directions to explore the boundary of the tri-
angle. In [10], it was shown that for r = 0, the evacuation time is improved by
making several detours into the interior of the triangle. Our second and third
algorithm for two agents and r > 0 uses the same type of detours as that of [10].
We show here that in this algorithm a detour is useful only for r < 0.7375, while
using more than one detour is not useful for r > 0.4725. Our last two-agent

Evacuation of Triangles with Limited Communication Range 5

algorithm employs a new kind of detour that attempts to balance better the
evacuation time at different possible locations of the exit. We show that our new
algorithm achieves the best evacuation time for all values of r > 0. Finally, we
show a lower bound of 1 + 2/

√
3 − r on the evacuation time of two agents for

any r < 0.366.
For k > 2 agents, we investigate three different strategies for evacuation. In

the first strategy, called Explore 3 sides before Connecting (X3C), the perimeter
of the triangle is partitioned into k + 1 segments. The agents move to explore
k segments on all three sides, subsequently entering the interior of the triangle
to form a connected network in order to communicate the results to the other
agents, after which they either move to the exit or they all explore the remaining
segment. In the second strategy, called Explore 1 Side before Connecting (X1C)
only one of the sides of the triangle is partitioned into multiple segments, each
to be explored by an agent. At the end of the exploration of the edge, two
of the agents explore the remaining two sides of the triangle, while the other
agents move inside to create and maintain connectivity of all agents. As soon as
the exit is found, all agents can move to the exit. In the final strategy (which
is only possible if the number of agents is large enough relative to r), called
Connected Exploration of Perimeter (CXP), the agents move to positions over
two sides of the perimeter to ensure that the agents are connected before they
start exploration, and they stay connected during the entire exploration.

We study in detail the case of 3 and 4 agents in Sect. 4. Note that the CXP
strategy cannot apply in these cases, and thus we study only the X3C and X1C
strategies. Our results show that X3C works better than X1C for smaller values
of r and X1C is better for larger values of r; see Table 1.

Finally we consider in Sect. 5 the problem of the optimal evacuation of k
agents. It was shown in [15] that for any r, regardless of the number of agents,
evacuation cannot be done in time less that 1 +

√
3/3; on the other hand, this

time can be achieved by 6 agents and r = 1. In this paper we show that for any
r > 0, evacuation can achieved in the optimal time of 1+

√
3/3 if the number of

agents is 6+2�(1r −1)�. Indeed for r = 1/2, eight agents suffice, and for r = 1/3,
ten agents suffice, for r = 1/4, twelve agents suffice. We also show that Ω(1/r)
agents are required to evacuate in time 1 +

√
3/3.

We conjecture that for any k ≥ 6 agents, there exist r1, r2 with 0 < r1 <
r2 < 1 such that X3C is the best strategy of the three for 0 ≤ r ≤ r1, X1C is the
best strategy for r1 < r ≤ r2, and CXP is the best strategy for r2 < r ≤ 1.

All omitted proofs can be found in [3].

1.2 Related Work

The evacuation problem was introduced in [12] for agents inside a disk in both
the wireless and face-to-face communication models. The authors gave optimal
algorithms for 2 agents in the wireless model, and proved upper and lower bounds
for the evacuation time for 2 agents in the face-to-face model. They also con-
sidered the problem for 3 agents and showed asymptotically tight bounds for
k agents in both models. The problem for the face-to-face model was revisited

6 I. Bagheri et al.

Table 1. A summary of the evacuation times of our algorithms.

Two agents Three agents Four agents

r Evac. time Algorithm Evac. time Algorithm Evac. time Algorithm

0 2.3367 See [10] 2.0887 see [10] 1.98157 See [10]

0.1 2.23473 1-Detour-new 2.08871 X3C 1.96199 X3C

0.2 2.15903 1-Detour-new 2.07642 X3C 1.88392 X1C

0.3 2.09612 1-Detour-new 1.93620 X1C 1.67649 X1C

0.4 2.04052 1-Detour-new 1.78880 X1C 1.62573 X1C

0.5 1.99003 1-Detour-new 1.68958 X1C 1.61912 X1C

0.6 1.94355 1-Detour-new 1.67532 X1C 1.61302 X1C

0.7 1.90049 1-Detour-new 1.66666 X1C 1.61050 X1C

0.8 1.86047 1-Detour-new 1.66666 X1C 1.61050 X1C

0.9 1.82326 1-Detour-new 1.66666 X1C 1.61050 X1C

1 1.78867 See [16] 1.66666 See [15] 1.61050 See [15]

in [13], and the results further improved in [7]. The evacuation of an equilat-
eral triangle with agents in the wireless model was considered in [15], and in
the face-to-face communication model in [10]. We should also mention the work
on polygons [20], evacuation of circle with faulty agents [13], and the case of
multiple exits on a circle [11,26].

The evacuation problem is related to many other problems that have been
considered previously. It can be seen as a variation of a search problem. In
this context we should mention the classical cow-path problem, i.e., a problem
of searching on a line [2,4,5], several of its versions [17,24,25], a group search
on a line [9], and a search on a line with faulty agents [14]. There are many
studies involving mobile, autonomous agents in the plane [21]. The problem of
search [8,19], gathering of agents [1,18] in the plane, pattern formation [22], etc.,
have been done. The cop-and robber games [6], and graph searches [23] are also
related.

2 Model and Notation

The search domain considered in this paper is the perimeter of an equilateral
triangle with side 1. We denote the triangle by T , with vertices A, B and C
starting at the top of the triangle, going counter-clockwise, and the centroid of
the triangle by O, as in Fig. 1a. Point M is the midpoint of the segment BC. The
height of the triangle is denoted by h and y = h/3. The line segment connecting
any two points P and Q is denoted by PQ and its length by |PQ|. Agents are
initially located at the centroid O of the triangle. Each agent can move at speed
at most 1, and it has a wireless transmitter/receiver with range r ≤ 1. Unless
specified otherwise in the algorithm, agents always move with speed 1. Agents

Evacuation of Triangles with Limited Communication Range 7

are able to carry out simple computations, e.g., if an agent finds the exit it can
calculate the path to follow in order to inform other agents about the exit. In
this paper agents are assumed to be non-faulty, meaning that they: follow their
assigned trajectory, recognize the exit if they reach its location, and they can
always exchange information if their distance is less than or equal to r.

Each agent follows a path, called its trajectory, assigned to it before the explo-
ration begins. We specify each evacuation algorithm by specifying a trajectory
of each agent and its actions. An agent may leave its predetermined trajectory
only if either it has found the exit point, or it has been notified by another agent
about the location of the exit. For each of these two situations the algorithm
specifies the action to be followed.

We denote the time that point x is seen for the first time by either of the
agents by tx. By EA(k, r) we mean the worst-case evacuation time of algorithm
A with k agents, k ≥ 2 and communication range of r, 0 ≤ r ≤ 1. We denote
the optimal evacuation time by k agents by E∗(k, r), that is:

E∗(k, r) = minAEA(k, r)

We define an r-interception to be the action of moving to a point in which
the agent is at distance at most r of the other agent(s). In all our algorithms, the
trajectory of each agent is a sequence of line segments. To analyze the algorithms,
we identify on each segment a critical point, defined to be the point or the
immediate neighbourhood of a point where the evacuation time on the segment is
maximized. In order to minimize the maximum evacuation time, after identifying
these critical points, we optimize the algorithms by adjusting some parameters
in the trajectories.

3 Evacuation of Two Agents

In this section we give upper and lower bounds on the evacuation time for two
agents with 0 < r < 1. Recall that the best known algorithm described in [10]
for the face-to-face model (r = 0), evacuates two agents in time 2.3367 and
employs two detours per agent. In [16], an optimal algorithm for the wireless
model (r = 1) with evacuation time of 3/2 + y ≈ 1.78867 is described. Hence if
the agents are capable of communication within a certain range 0 < r < 1, it is
clear that the evacuation time should lie between these two values. We divide the
triangle into two halves by a vertical line through A and O, as shown in Fig. 1a.
The trajectories of the two agents presented in this section are symmetric with
respect to line AO. Thus the trajectory of the first agent R1 includes exploration
of the left half of the perimeter, and the second agent R2 is responsible for
exploration of the right half of T . Therefore, without loss of generality, in the
analysis of algorithms we will assume that the exit is located in the right half of
the triangle throughout this section.

The evacuation algorithms for two agents presented in this section use the
same generic Algorithm 1 given below. They only differ in the trajectories of the
agents.

8 I. Bagheri et al.

Algorithm 1. Generic 2-agent Evacuation Algorithm Followed by an Agent.
function Exploration

found← false
while not<found> and not<msg recd > do

move along the predetermined trajectory

action

function Action
if found then

P ← current location
if the other agent is not within communication range then

calculate the closest point U , where the other agent can be r-intercepted
go to U

send(P) to the other agent

go to P and exit

Let S1 and S2 be points on the sides AB and AC at distance r from A,
shown in Fig. 1a. Points S1, S2, A form an equilateral triangle at the top of T
with side r. If the agents do not find the exit outside ΔS1AS2 and enter this
smaller triangle, they are always within communication range with each other,
and the evacuation time for the three algorithms described in this section, is
independent of the exit position and will always be tS1 + r.

3.1 The No-Detour Algorithm

The trajectories of both agents are shown in Fig. 1a and defined in Trajectories 1.
The trajectory of R1 is shown in blue, the green trajectory is for R2. Clearly,
these trajectories do the fastest possible exploration of the perimeter of T , and
these trajectories are known to give the optimal time of y + 1.5 for the wireless
evacuation of T by two agents starting in O.

Trajectories 1. No-Detour
R1 follows the trajectory :< O,M,B,A >
R2 follows the trajectory :< O,M,C,A >

The Algorithm No-Detour uses the generic Algorithm 1 with respect to Trajec-
tories 1. For the analysis of this algorithm, we assume the exit is found by R2.
Then we show that the maximum evacuation time is when the exit is located at
point C.

In order to determine the critical point of some segments in T we use the
following lemma, which is a simple generalization of Theorem1 in [7] for the case
r > 0.

Lemma 1. [7] Suppose R1 and R2 with r > 0 are looking for an exit on lines
L1 and L2 respectively, as on Fig. 2. Assume the exit is found by R2 at point N ,
and Q be the point where R1 is r-intercepted. Let S be the line connecting N and
Q, β be the angle between L2 and S, and γ be the angle between L1 and S by γ.

Evacuation of Triangles with Limited Communication Range 9

Fig. 1. Trajectories for 2 agent exploration (Color figure online)

If 2 cos β+cos γ < 1 then shifting the exit in the direction of the movement of
R2 yields a larger evacuation time, while if 2 cos β + cos γ > 1, then shifting the
exit in the opposite direction of the movement of R2 yields a larger evacuation
time.

Proof. Omitted.

Lemma 2. Vertex C is the critical point on segments MC and CA.

Proof. Omitted.

Theorem 1. ENo-Detour = y + 0.5 + r + 2(1−r2)
2r+1 .

Proof. We established that C is the critical point for MC and CA. When the
exit is located at C, the evacuation time will be t = y +0.5+ |BQ|+ |QC| where

10 I. Bagheri et al.

Q is the point that R1 is r-intercepted. Since both agents travel equal distances
at the point of interception, we get |BQ| = |QC| − r. On the other hand by
using the Cosine Rule we have |QC| =

√
BQ2 + 1 − BQ. By solving for |BQ|

we obtain t = y + 0.5 + r + 2(1−r2)
2r+1 . �

R1

N

Q

L1

2L

R 2

S

γ

β

Fig. 2. Illustration for Lemma 1.

3.2 Trajectories with Detours as in [10]

In Theorem 1 we showed that placing the exit at point C causes the maximum
evacuation time when using the No-Detour algorithm. In this section we gener-
alize the detour trajectories given in [10] for the face-to-face model to arbitrary
r > 0, with the goal of improving the evacuation time by decreasing the evacua-
tion time at C. The inclusion of a detour in the trajectories of each agent consist
of the agent stopping exploration at some point of the perimeter and moving
inside the triangle to improve the evacuation time when the exit is located in
some segments around C or B. When the agents realize that the exit was not
found in these segments, they return to the same point on the boundary where
they left off and resume the exploration of the perimeter. We first consider the
inclusion of one detour in the trajectories.

The 1-Detour-oldAlgorithm: The trajectories are symmetric and thus we define
the detour for R1 only. We fix point Q1 on the side AB, see Fig. 1b. The exact
location of this point will be specified later. Point J1 is on segment Q1C such
that it satisfies the equation |BQ1| + |Q1J1| = |CJ1| − r. Point P1 is located on
segment J1Q2 such that P1 satisfies the equation |Q1J1| + |J1P1| = |Q2P1| − r.
Points Q2, J2 and P2 are located symmetrically with those of points Q1, J1 and
P1 respectively, with respect to line AM .

The trajectory of each agent is defined in Trajectories 2, see also Fig. 1b.
We show below that if R1 reaches point P1 and it is not notified about the

exit by the other agent, then it realizes that the exit has not been found yet. Thus
it returns to point Q1 where it started the detour and resumes the exploration
of the perimeter. Algorithm1 with respect to Trajectories 2 is referred to as the
1-Detour-old algorithm.

Trajectories 2. 1-Detour-old
R1 :< O,M,B,Q1, J1, P1, Q1, A >
R2 :< O,M,C,Q2, J2, P2, Q2, A >

Evacuation of Triangles with Limited Communication Range 11

Lemma 3. If the exit is located at some point N on segment MC, then R1 will
be r-intercepted at or prior to reaching J1.

Proof. Omitted.

Lemma 4. Suppose the exit is located at some point N on segment CQ2, then
R1 will be r-intercepted while moving on segment J1P1.

Proof. We know that if the exit is located at Q2, then R1 will be r-intercepted
when it is at point P1. In order to show that if the exit is before Q2, agent R1

can be intercepted before reaching P1 it is enough to prove |CN | + |NP1| − r ≤
|CQ2| + |Q2P1| − r. For the purpose of contradiction suppose not, meaning
|CN |+ |NP1|− r > |CQ2|+ |Q2P1|− r = |CN |+ |NQ2|+ |Q2P1|− r and we get
|NP1| > |NQ2|+ |Q2P1| which according to the triangle inequality is impossible.
Hence a contradiction. �

We now split the trajectory of R2 into segments MC, CQ2, Q2S2, S2A, and
determine the critical point for each segment and the evacuation time of the
critical point for each segment.

Lemma 5. On segments MC and CQ2 point C is the critical point, and the
evacuation time for this segment is at most y + 0.5 + |BQ1| + |Q1C|.
Proof. Omitted.

Lemma 6. Assume the exit is located at point N inside segment Q2S2 and let Z
be a point on segment Q1A such that Q1Z +r = Q2Z. Then the evacuation time
for this exit is at most y+0.5+ |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1Z|+ |ZQ2|.
Proof. Omitted.

As mentioned before, the evacuation time for an exit in segment S2A is
tS1 + r, which is less than the evacuation time for exit located in segment Q2S2.
Thus, combining the results of the previous lemmas we can now give a value for
E1-Detour-old (2, r).

Theorem 2. Let t1 = y + 0.5 + |BQ1| + |Q1C| and t2 = y + 0.5 + |BQ1| +
|Q1J1| + |J1P1| + |P1Q1| + |Q1Z| + |ZQ2|, where point Z is the point that if the
exit is located right after Q2, agent R1 will be r-intercepted at or before Z. Then
E1-Detour-old (2, r) = max{t1, t2}.
Observe that by increasing the size of segment BQ1, time t1 increases, and on
the other hand, decreasing length of BQ1, increases t2. Best value for |BQ1| is
obtained when t1 = t2. Clearly, there is exactly one value of Q1 which equates
t1 and t2. However, because of the complexity of the equations, we do not have
an explicit solution for Q1 as a function of r. As shown there, the 1-Detour-
old algorithm with one detour has a lower evacuation time than the No-Detour
algorithm for 0 < r < 0.7.

12 I. Bagheri et al.

Observation: The 1-Detour-old algorithm does not allow a detour for r ≥
0.7375: As can be seen from Table 2, the improvement provided by using 1-
Detour-old algorithm diminishes when r increases, and it does not give any
improvement for r = 0.7375. This is because the values r and |Q1J1| are inversely
related. Increasing r will decrease the value of |Q1J1| up to a point when |Q1J1|
is equal to zero. At this point we would have r =

√|BQ1|2 + 1 − |BQ1|−|BQ1|.
By substituting this value in f(r, |BQ1|) = g(r, |BQ1|) and solving that equation
we get the values of 0.1843512042 and 0.7374048168 for |BQ1| and r respectively.
If we increase r, we get negative value for |Q1J1| which is invalid.

The 2-Detour-old Algorithm: It is shown in [10], that for r = 0, i.e., the face-
to-face communication, the evacuation time can be improved by using more than
one detour. We now show that for smaller values of r, a further improvement
in evacuation time can be similarly achieved by making more detours. Consider
the situation in the execution of the 1-Detour-old algorithm when R1 and R2

reach vertices B and C respectively, assuming no agent have found the exit so
far. The remaining search problem will be a triangle with two unexplored sides
of length 1, call this problem P1. Now consider the time when the two agents
finish their detour and get back to points Q1 and Q2 with no exit found. Call
the remaining search problem P2. It is obvious that P2 is a scaled down version
of P1, however with proportionally larger r.

Thus, if r is not too large yet for problem P2, another detour could be done
in the upper part of the triangle. The trajectory of two agents with two detours
shown in Fig. 1c is specified in Trajectories 3.

Trajectories 3. 2-Detour-old
R1 :< O,M,B,Q1, J1, P1, Q1, Q3, J3, P3, Q3, A >
R2 :< O,M,C,Q2, J2, P2, Q2, Q4, J4, P4, Q4, A >

Algorithm 1 with respect to Trajectories 3 is called 2-Detour-old algorithm. In
the case of two detours, similarly as in the case of one detour, it can be shown
that there exists three critical points, namely C, and the points right after Q2

and Q4. The evacuation times for these points will be as follows:

1. t1 = y + |MB| + |BQ1| + |Q1C|
2. t2 = y + |MB| + |BQ1| + |Q1J1| + |J1P1| + |P1Q1| + |Q1Q3| + |Q3Q2|
3. t3 = y+ |MB|+ |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1Q3|+ |Q3J3|+ |J3P3|+

|P3Q3| + |Q3V | + |V Q4|

where V is a point on segment Q3S1, such that |Q3V | = |V Q4| − r.

By equating these three values we obtain an optimized two detour evacuation
algorithm.

It has been shown in [10] that for the face-to-face communication model,
detours can be recursively added to improve the evacuation time, though the
improvement obtained by successive detours decreases rapidly. In contrast, we
showed above that for r > 0.7374, not even one detour improves the evacuation

Evacuation of Triangles with Limited Communication Range 13

time. Similarly it can be shown that a second detour is not helpful for r >
0.472504.

3.3 A New Kind of Detour Trajectory

In this section, we propose and analyze a different detour. Since 1-Detour-old
trajectories have been shown in the previous subsection not to be applicable for
r greater than 0.7375, we consider now trajectories with a new type of a detour
that will be shown to be applicable to any value of r. The trajectories are again
symmetric and thus we only describe the detour for R1 in detail.

We fix point Q1 on the side AB, see Fig. 1d. The exact location of this point
will be specified later. Point J1 is on segment Q1C such that it satisfies the
equation

|BQ1| + |Q1J1| = |CJ1| − r

This is similar to the 1-Detour-old algorithm, and ensures that if agent R2

finds the exit at C, it can intercept the agent R1 at J1. We differ from the
1-Detour-old algorithm in the definitions of point V2 located on segment CQ2,
and point P1 located on the segment Q1V2. The locations of V2 and P1 are
determined by the following equations.

|BQ1| + |Q1J1| + |J1P1| = |CV2| + |V2P1| − r

|Q1J1| + |J1P1| + |P1Q1| + |Q1V2| = |Q1C|

The first equation ensures that if the exit is found by agent R2 at V2, it can
intercept agent R1 at point P1. If however, agent R2 finds the exit after point V2,
it can only intercept agent R1 after R1 finishes its detour. The second equation
ensures that the time taken by agent R1 to reach V1 from Q1 after the detour is
the same as the time taken by agent R1 to reach point C before the detour.

Points V1, Q2, J2 and P2 are located symmetrically with points V2, Q1, J1

and P1 respectively, with respect to line AM . The trajectories of the two agents
are defined in Trajectories 4 and shown in Fig. 1d. Algorithm 1 with respect to
Trajectories 4 is referred to as the 1-Detour-new algorithm.

Trajectories 4. 1-Detour-new
R1 :< O,M,B,Q1, J1, P1, Q1, A >
R2 :< O,M,C,Q2, J2, P2, Q2, A >

The following lemmas are implied by the definitions of the trajectories.

Lemma 7. If the exit is located at some point N on segment MC, then R1 will
be r-intercepted at or prior to reaching J1.

Lemma 8. Suppose the exit is located at some point N on segment CV2, then
R1 will be r-intercepted while moving on segment J1P1.

Lemma 9. Suppose the exit is located at some point N on segment V2S2, then
R1 will be r-intercepted while moving on segment Q1S1.

14 I. Bagheri et al.

We now split the trajectory of R2 into segments MC, CV2, V2Q2, Q2S2, S2A,
and determine the critical point for each segment and the evacuation time of the
critical point for each segment.

Lemma 10. On segments MC and CV2 point C is the critical point, and the
evacuation time for this segment is at most y + 0.5 + |BQ1| + |Q1C|.
Lemma 11. On segment V2Q2 the evacuation time is maximal in the immediate
neighbourhood of point V2 and the evacuation time for this segment is at most
y + 0.5 + |BQ1| + |Q1C|.
Lemma 12. Assume the exit is located at point N inside segment Q2S2 and let
Z be a point on segment Q1A such that Q1Z + r = Q2Z. Then the evacuation
time for this exit is at most y +0.5+ |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1Z|+
|ZQ2|.
Proof. Omitted.

Clearly, the evacuation time for an exit in segment S2A is tS1 + r, which is
less than the evacuation time for exit located in segment Q2S2. Thus, combining
the results of the previous lemmas we can now give a value for E1-Detour-new (2, r).

Theorem 3. Let t1 = y + 0.5 + |BQ1| + |Q1C| and t2 = y + 0.5 + |BQ1| +
|Q1J1| + |J1P1| + |P1Q1| + |Q1Z| + |ZQ2|, where point Z is the point that if the
exit is located right after Q2, agent R1 will be r-intercepted at or before Z. Then
E1-Detour-new (2, r) = max{t1, t2}.

As for 1-Detour-old algorithm, by increasing the size of segment BQ1, time
t1 increases, and on the other hand, decreasing length of BQ1, increases t2, and
we establish the best value for |BQ1| when t1 = t2. We obtained values of Q1 for
which t1 = t2 for specific values of r by numerical calculations. We remark that
we can further improve the evacuation time by doing more detours, but have
not done any calculations for this.

Our results for two agents are summarized in Table 2 below. It can be seen
that even with one detour, the performance of our new algorithm is very close
to that of 2-Detour-old, the old detour algorithm with 2 detours.

3.4 A Lower Bound for Evacuating Two Agents

We say two points have opposite positions if one point is a vertex of T and
the other point is located on the opposite edge of that vertex. To prove a lower
bound for two agents we need the following lemma.

Lemma 13. (Meeting Lemma for r > 0). Assume that points p1, p2 ∈ T have
opposite positions. In any algorithm in which one of the agents visits p1 in time
t′ ≥ 0.5 + y and the other visits p2 in time t with t′ < t < 0.5 + h + y − r =
0.5 + 4y − r the two agents cannot exchange any information between times t′

and t.

Evacuation of Triangles with Limited Communication Range 15

Proof. Omitted.

Theorem 4. Assume that two agents with transmission range r ≤ 3y − 0.5 ≈
0.366 are initially located at a centroid of an equilateral triangle with sides 1.
The evacuation time of any algorithm for two agents is at least 1 + 4y − r =
1 + 2

√
3/3 − r.

Proof. For the purpose of contradiction assume there exists algorithm A
such that EA(2, r) < 1 + 4y − r. Initially we focus on the set of points
S = {A,B,C,M1,M2,M3}. We give an adversary argument. There exists some
input I in which the exit is the last point visited by an agent. Suppose time t is
the time that the fifth point from set S is visited; call the point v. Wlog assume
that v is visited by R1. Since at time t, at least five of the points in S have been
visited, at least 3 points should be visited by one of the agents and t ≥ y + 1.
On the other hand because the algorithm should satisfy EA(2, r) < 1 + 4y − r,
then t < 0.5 + 4y − r ≤ 0.5 + 4y since the adversary can place the exit at the
sixth point, and then R1 would need additional time 0.5 to get to the exit.

Now, by considering the exhaustive cases of v being one of the midpoints
or the vertices of the triangle, it is tedious but straightforward to establish the
lower bound, using arguments similar to the case for r = 0 given in [10]. �

The following table shows the evacuation time of two agents for different
values of r and different algorithms.

Table 2. Evacuation times of 2 Agents algorithms.

Evacuation times Lower bound

r 1-Detour-new 2-Detour-old 1-Detour-old No-Detour Theorem 4

0.00 2.34433 2.3367 2.3838 2.78867

0.10 2.23473 2.25424 2.27422 2.53867 2.0547

0.20 2.15903 2.18584 2.19427 2.36010 2.0447

0.30 2.09612 2.12325 2.12651 2.22617 2.0347

0.40 2.04405 2.06506 2.06593 2.12200 N/A

0.50 1.99003 N/A 2.01050 2.03867 N/A

0.60 1.94355 N/A 1.95926 1.97049 N/A

0.70 1.90049 N/A 1.91169 1.91367 N/A

0.80 1.86047 N/A N/A 1.86559 N/A

0.90 1.82326 N/A N/A 1.82438 N/A

4 Evacuation of Three or Four Agents

Algorithms for the evacuation of three agents from the centroid have been pre-
viously proposed for both r = 0 in [10], and r = 1 in [15]. These two algorithms

16 I. Bagheri et al.

use very different trajectories. The X3C and X1C strategies described in Sect. 1
can be considered generalizations of the algorithm for 3 agents for the r = 0
case in [10] and the r = 1 case in [15] respectively. However, the best partition-
ing of the perimeter into segments is non-trivial to find, and requires significant
experimentation. Additionally, the positions where the agents should connect
after their initial exploration is also not obvious for arbitrary r, while it should
clearly be the centroid for the r = 0 case and no meeting is required for the
r = 1 case.

We describe the X3C algorithm for 3 agents for the case r > 0 in Sect. 4.1
and the X1C algorithm for three agents in Sect. 4.2. Finally in Sect. 4.3, we
briefly describe the algorithm for 4 agents. An important consideration in the
design of algorithms for three agents is the fact that we can use one of them
as a relay which can extend the range at which an agent can send a message
with the location of the exit. Both algorithms that are proposed in the following
subsections follow the generic Algorithm 2, but they differ in the trajectories
assigned to each agent.

Algorithm 2. Evacuation Algorithm for Three and Four Agents.
function Exploration

found← false
while not<found> and not<msg recd> do

move along the predetermined trajectory

action

function Action
if found then

P ← current location
while the other two agents are not in effective communication range do

continue moving on the trajectory

broadcast < P >
go to P and exit

4.1 Explore 3 Sides Before Connecting (X3C)

The Explore 3 sides before Connecting (X3C) Trajectories of the three agents
are defined in Trajectories 5 and shown in Fig. 3a. We partition the perimeter
of T into 4 segments. Three of the segments are assigned to individual agents
for exploration. After the exploration of these segments are finished, they move
inside T to distributed meeting points J1, J2 and J3. These points have the
following properties:

– They are at distance r from each other.
– Their distances to point O are equal.
– Points J1, J2 and J3 are located on line segments OM2, OM3 and OM1

respectively.

Evacuation of Triangles with Limited Communication Range 17

Fig. 3. Trajectories for 3 agents.

After the information is exchanged at the distributed meeting points, if the
exit is not found, they all move toward the fourth segment.

Trajectories 5.
R1 :< O,P1, B,Q1, J1, P3 and wait for R3, P2 >
R2 :< O,Q1, A,Q2, J2, P3 and wait for R3, P2 >
R3 :< O,Q2, C, P2, J3, P1, P2 >

From the above it follows that |J1C| = |J2B| = |J3A|. At this point, due to
the difference between the distance of each agent to point P1, they don’t move
together. Only R3 moves toward point P1 and both R1 and R2 move toward P3,
the midpoint of segment P1P2 and wait there for R3. If R3 has found the exit,
they move back toward point P1 and if not, they move toward point P2 together.
It is obvious that R1 and R2 moving to P3 does not have any negative effect on
the worst case evacuation time, since if the exit is close to point P1, agent R3

from P1 has to travel |P1P2|
2 to inform the other two agents and it takes another

|P1P2|
2 for them to get to the exit, and if the exit is located near P2, it again

takes |P1P2| for R3 to get to the exit from P1.
We design the trajectories so that agents arrive at the distributed meeting

points at the same time. Therefore we have:

1. t1 = |OP1| + |P1B| + |BQ1| + |Q1J1|
2. t2 = |OQ1| + |Q1A| + |AQ2| + |Q2J2|
3. t3 = |OQ2| + |Q2C| + |CP2| + |P2J3|
On the other hand, at the end of the first phase when information is exchanged,
there will be two critical points: (1) for R2 to reach point B, and (2) for R3 to
finish the unexplored part of the triangle. Putting the constraints together, we
obtain the following equations:

1. t1 = t2 = t3 and
2. |J2B| = |J3P1| + |P1P2|

18 I. Bagheri et al.

Solving these equations with Maple software, we achieve the results.
Notice that if r = 0, algorithm X3C converges to Equal Travel Early Meeting

algorithm in [10] and our result for r = 0 is identical to their results. This
algorithm has the lowest evacuation time for r = 0.1761, and from then on the
total evacuation time starts to increase.

4.2 Explore 1 Side Before Connecting (X1C)

As r increases, the evacuation time in the X3C algorithm starts to get larger.
The X1C strategy yields a lower evacuation time than X3C for larger values of r.
The trajectories of agents are illustrated in Fig. 3b and defined in Trajectories 6.

Fig. 4. Trajectories for 4 agents.

Trajectories 6.
R1 follows the trajectory: < O,P1, B,A >,
R2 follows the trajectory: < O,P1, P2, Q1, A >,
R3 follows the trajectory: < O,P2, C,A >,

where P1 and P2 are located at the same distance from M .

The locations of points Q2, Q1 and Q3 are selected so that agents R1, R2 and
R3 reach them at the same time, say t, and after that, they will be in effective
communication range with each other.

The location of point Q1 depends on the value of r:
Case 1: (0 ≤ r < 0.5) Point Q1 is the midpoint of segment Q2Q3, where

Q2 and Q3 are chosen so that |AQ2| = |AQ3| = 2r. Since at time t agents R1

and R2 should be at points Q2 and Q1 respectively, we have |OP1| + |P1B| +
|BQ2| = |OP1| + |P1P2| + |P2Q1|. Using |P2Q1| =

√|Q1M |2 + (|P1P2|/2)2
and |Q1M | = 3y − |AQ1|, we get (1 − |P1P2|)/2 + (1 − 2r) = |P1P2|+

Evacuation of Triangles with Limited Communication Range 19

√
(3y − √

3r2 − 4r + 1)2 + (|P1P2|/2)2 from which |P1P2| can be obtained as
a function of r. Evacuation time for this case is |OP1| + |P1B| + |BQ2| + |Q2C|.
Case 2: (0.5 ≤ r < 2/3) Point Q1 is positioned on segment MP2 such
that |BP1| = |P1P2| + |P2Q1| and |BQ1| = r By solving these two equa-
tions we get P1P2 = r/2. The evacuation time is |OP1| + |P1B| + |BC| =√

y2 + (r/4)2 + (1/2 − r/4) + 1.
Case 3: (r ≥ 2/3) Point Q1 is at distance 2/3 from B. Then we have |P1P2| = 1/3
and the evacuation time is |OP1| + |P1B| + |BC| =

√
y2 + (1/6)2 + 1/3 + 1.

As seen from Table 3a, algorithm X1C has better evacuation time than X3C
for r > 0.22589, and for r ≥ 0.7 it achieves the same evacuation time as the
algorithm in [15] that uses r = 1.

4.3 Evacuation of Four Agents

X3C and X1C can be generalized for 4 agents, with the difference that the com-
munication range for small value of r can now be extended to 2r in X3C algo-
rithm employing two agents as relays. See Fig. 4a and b for the trajectories and
Table 3b for evacuation times;

Table 3. A comparison of evacuation times of Algorithms X3C and X1C for (a) three
agents and (b) four agents.

r X3C X1C

0 2.08872 2.64971
0.1 2.07849 2.37052
0.2 2.07642 2.13056

0.22589 2.07714 2.07572
0.25 2.07828 2.02747
0.3 2.08210 1.93620
0.4 2.09689 1.78880
0.5 2.13037 1.68958
0.6 N/A 1.67532

≥ 0.7 N/A 1.666667

(a)

r X3C X1C

0.0 1.98157 2.59944
0.1 1.96199 2.19408

0.11619 1.95993 2.13688
0.1721 1.95993 1.95993
0.2 1.95993 1.88392
0.3 N/A 1.67649
0.4 N/A 1.62573
0.5 N/A 1.61912
0.6 N/A 1.61302
0.7 N/A 1.61050
1.0 N/A 1.61050

(b)

5 Evacuation of k > 4 Agents

It is shown in [15] that 1 + 2y ≈ 1.5773 is a lower bound on the evacuation
time of k wireless agents (i.e., r = 1) from the centroid of the triangle, for any
number k of agents. It follows that this is also a lower bound for any 0 ≤ r ≤ 1.
It is shown in [15] that this time can be achieved with 6 agents with r = 1. We
show below that for any 0 < r < 1, evacuation can be done in time 1 + 2y using

20 I. Bagheri et al.

the CXP strategy, however, the minimum number of agents needed is inversely
proportional to r.

First, we show that for 0 < r < 1, the lower bound on the evacuation time
of 1 + 2y cannot be achieved with a constant number of agents.

Theorem 5. Given transmission range r, the number of agents needed to
achieve the optimal evacuation time 1 + 2y is at least 1/r + 1.

Proof. Let t be the time the first agent, say R1, reaches a vertex, say A. Clearly,
t ≥ 2y. Since the adversary can place the exit at either B or C, for the evacuation
time to be exactly 1 + 2y, it must be that t = 2y, and furthermore, another
agent must have reached either B or C or both, and must be able to instantly
communicate the presence of the exit to R1. For this communication to happen,
an additional 1/r − 1 agents are needed, for a total of 1/r + 1 agents. �

B

O

C
M

A

Fig. 5. Trajectories of 12 agents, 6 red agents are exploring, 6 agents form a relay
network. (Color figure online)

Next we show that for any 0 < r < 1, the CXP strategy can achieve this
lower bound with a sufficient number of agents.

Theorem 6. For any 0 < r < 1, the evacuation of k = 6 + 2�(1r − 1)� agents of
transmission range r from the centroid of an equilateral triangle can be done in
time 1 + 2y ≈ 1.5773, which is optimal.

Proof. Let i = � 1
r −1�. The trajectories of the agents are as shown in Fig. 5. Each

vertex is reached by two agents and they explore the perimeter of the triangle
from that vertex until the mid-point on each edge. Notice that the exploration
terminates at time 2y + 0.5, and if an agent finds the exit at time 2y + t, other
exploration agents are at distance at most 1 − t from it.

Furthermore, 2i agents go to edges AB and AC into equidistant positions to
form a relay network for the 6 agents doing the exploration. When an exploring
agent reaches a relay agent, the relay agent starts to move to its final position on
the interior dashed triangle. In this way the relay agents can perform the relay
function for the exploring agents, and are also able to reach the exit when it is
found within the bound 1+2y. �

Evacuation of Triangles with Limited Communication Range 21

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. BaezaYates, R.A., Culberson, J.C., Rawlins, G.: Searching in the plane. Inf. Com-
put. 106(2), 234–252 (1993)

3. Bagheri, I.: Evacuation of equilateral triangles by mobile agents of limited com-
munication range. Master’s thesis, Concordia University, Canada (2019)

4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
5. Beck, A., Newman, D.: Yet more on the linear search problem. Israel J. Math.

8(4), 419–429 (1970)
6. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American

Mathematical Society, Providence (2011)
7. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-

out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

8. Brandt, S., Uitto, J., Wattenhofer, R.: A tight bound for semi-synchronous collab-
orative grid exploration. In: 32nd International Symposium on Distributed Com-
puting (DISC) (2018)

9. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

10. Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating an equi-
lateral triangle in the face-to-face model. In: Proceedings of OPODIS 2017, pp.
11:1–11:16 (2017)

11. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating
two robots from multiple unknown exits in a circle. Theor. Comput. Sci. 709, 20–30
(2018)

12. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-
uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 9

13. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhu-
ber, B.: Evacuating robots from a disk using face-to-face communication (extended
abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 10

14. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Proceedings of PODC, pp. 405–413. ACM (2016)

15. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende,
S.: Wireless autonomous robot evacuation from equilateral triangles and squares,
extended version, in preparation

16. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

17. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret.
Comput. Sci. 361(2), 342–355 (2006)

https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-19662-6_13

22 I. Bagheri et al.

18. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms (TALG) 11(1), 1 (2014)

19. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does
it take to find the food? Theor. Comput. Sci. 608, 255–267 (2015)

20. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W.,
Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17458-2 3

21. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots (Synthesis Lectures on Distributed Computing Theory). Morgan
& Claypool Publishers, San Rafael (2016)

22. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1–3),
412–447 (2008)

23. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theoret. Comput. Sci. 345(2–3), 331–344 (2005)

24. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1),
63–79 (1996)

25. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 135

26. Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots
from two unknown exits on the perimeter of a disk with wireless communication.
In: Proceedings of ICDCN 2018, pp. 20:1–20:4 (2018)

https://doi.org/10.1007/978-3-642-17458-2_3
https://doi.org/10.1007/3-540-61440-0_135

Fast Dispersion of Mobile Robots on Arbitrary
Graphs

Ajay D. Kshemkalyani1, Anisur Rahaman Molla2, and Gokarna Sharma3(B)

1 University of Illinois at Chicago, Chicago, USA
ajay@uic.edu

2 Indian Statistical Institute, Kolkata, India
molla@isical.ac.in

3 Kent State University, Kent, USA
sharma@cs.kent.edu

Abstract. The dispersion problem on graphs asks k ≤ n robots placed ini-
tially arbitrarily on the nodes of an n-node anonymous graph to reposition
autonomously to reach a configuration in which each robot is on a distinct node
of the graph. This problem is of significant interest due to its relationship to other
fundamental robot coordination problems, such as exploration, scattering, load
balancing, and relocation of self-driven electric cars (robots) to recharge stations
(nodes). In this paper, we provide a novel deterministic algorithm for dispersion
in arbitrary graphs in a synchronous setting where all robots perform their actions
in every time step. Our algorithm has O(min(m, kΔ) · log k) steps runtime using
O(log n) bits of memory at each robot, where m is the number of edges and Δ
is the maximum degree of the graph. This is a significant improvement over the
O(mk) steps best previously known algorithm that uses logarithmic memory at
each robot. In particular, the runtime of our algorithm is optimal (up to aO(log k)
factor) in constant-degree arbitrary graphs.

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a region is
a problem of significant interest in distributed robotics, e.g., see [14,15]. Recently, this
problem has been formulated by Augustine and Moses Jr. [1] in the context of graphs.
They defined the problem as follows: Given any arbitrary initial configuration of k ≤ n
robots positioned on the nodes of an n-node graph, the robots reposition autonomously
to reach a configuration where each robot is positioned on a distinct node of the graph
(which we call the DISPERSION problem). This problem has many practical applica-
tions, for example, in relocating self-driven electric cars (robots) to recharge stations
(nodes), assuming that the cars have smart devices to communicate with each other
to find a free/empty charging station [1,16]. This problem is also important due to its
relationship to many other well-studied autonomous robot coordination problems, such
as exploration, scattering, load balancing, covering, and self-deployment [1,16]. One

A. R. Molla was supported in part by DST Inspire Faculty research grant DST/INSPIRE/04/2015/
002801.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 23–40, 2019.
https://doi.org/10.1007/978-3-030-34405-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_2

24 A. D. Kshemkalyani et al.

of the key aspects of mobile-robot research is to understand how to use the resource-
limited robots to accomplish some large task in a distributed manner [10,11]. In this
paper, we study trade-off between memory requirement and time to solve DISPERSION.

Augustine and Moses Jr. [1] studied DISPERSION assuming k = n. They proved a
memory lower bound of Ω(log n) bits at each robot and a time lower bound of Ω(D)
(Ω(n) in arbitrary graphs) for any deterministic algorithm in any graph, where D is the
diameter of the graph. They then provided deterministic algorithms using O(log n) bits
at each robot to solve DISPERSION on lines, rings, and trees in O(n) time. For arbitrary
graphs, they provided two algorithms, one usingO(log n) bits at each robot withO(mn)
time and another using O(n log n) bits at each robot with O(m) time, where m is the
number of edges in the graph. Recently, Kshemkalyani and Ali [16] provided an Ω(k)
time lower bound for arbitrary graphs for k ≤ n. They then provided three deterministic
algorithms for DISPERSION in arbitrary graphs: (i) The first algorithm usingO(k logΔ)
bits at each robot with O(m) time, (ii) The second algorithm using O(D logΔ) bits at
each robot with O(ΔD) time, and (iii) The third algorithm using O(log(max(k,Δ)))
bits at each robot with O(mk) time, where Δ is the maximum degree of the graph.
Randomized algorithms are presented in [18] to solve DISPERSION where the random
bits are mainly used to reduce the memory requirement at each robot.

In this paper, we provide a new deterministic algorithm for solving DISPERSION

in arbitrary graphs. Our algorithm improves significantly on the runtime of the best
previously known algorithm with logarithmic memory at each robot; see Table 1.

Overview of the Model and Results. We consider the same model as in Augustine
and Moses Jr. [1] and Kshemkalyani and Ali [16] where a system of k ≤ n robots
are operating on an n-node anonymous graph G. The robots are distinguishable, i.e.,
they have unique IDs in the range [1, k]. The robots have no visibility; but they can
communicate with each other only when they are at the same node of G. The graph
G is assumed to be connected and undirected. The nodes of G are indistinguishable
(G is anonymous) but the ports (leading to incident edges) at each node have unique
labels from [1, δ], where δ is the degree of that node. It is assumed that the robots know
m,n,Δ, k1. Similar assumptions are made in the previous work in DISPERSION [1].
The nodes of G do not have memory and the robots have memory. Synchronous setting
is considered as in [1] where all robots are activated in a round and they perform their
operations simultaneously in synchronized rounds. Runtime is measured in rounds (or
steps). We establish the following theorem in an arbitrary graph.

Theorem 1. Given any initial configuration of k ≤ n mobile robots in an arbitrary,
anonymous n-node graph G having m edges and maximum degree Δ, DISPERSION

can be solved in O(min(m, kΔ) · log k) time with O(log n) bits at each robot.

Theorem 1 improves significantly over the O(mk) time algorithm of [16] with log-
arithmic memory (Table 1). Notice that, when Δ ≤ k, the runtime depends only on k,

1 In fact, it is enough to know only m, Δ and k to accomplish the results. Without robots know-
ing m, Theorem 1 achieves DISPERSION in O(kΔ · log k) time with O(log(max(k, Δ))) bits
memory at each robot, which is better in terms of memory of O(log n) bits in Theorem 1 but
not the time O(min(m, kΔ) · log k) when m < kΔ.

Fast Dispersion of Mobile Robots on Arbitrary Graphs 25

i.e., O(k2 log k). For constant-degree arbitrary graphs (i.e., when Δ = O(1)), the time
becomes near-optimal – only a O(log k) factor away from the time lower bound Ω(k).

Table 1. The results on DISPERSION for k ≤ n robots on n-node arbitrary graphs with m edges,
D diameter, and Δ maximum degree.

Algorithm Memory per robot (in bits) Time (in rounds)

Lower bound Ω(log(max(k, Δ))) Ω(k)

First algorithm of [1]a O(log n) O(mn)

Second algorithm of [1] O(n logn) O(m)

First algorithm of [16] O(k logΔ) O(m)

Second algorithm of [16] O(D logΔ) O(ΔD)

Third algorithm of [16] O(log(max(k, Δ))) O(mk)

Theorem 1 O(log n) O(min(m, kΔ) · log k)
aThe results in [1] are only for k = n.

Challenges and Techniques. The well-known Depth First Search (DFS) traversal
approach [5] was used in the previous papers to solve DISPERSION [1,16]. If all k
robots are positioned initially on a single node of G, then the DFS traversal finishes
in min(4m − 2n + 2, kΔ) rounds solving DISPERSION. If k robots are initially on k
different nodes of G, then DISPERSION is solved by doing nothing. However, if not all
of them are on a single node initially, then the robots on nodes with multiple robots
need to reposition (except one) to reach to free nodes and settle. The natural approach
is to run DFS traversals in parallel to minimize time.

The challenge arises when two or more DFS traversals meet before all robots settle.
When this happens, the robots that have not settled yet need to find free nodes. For this,
they may need to re-traverse the already traversed part of the graph by the DFS traversal.
Care is needed here otherwise they may re-traverse sequentially and the total time for
the DFS traversal increases by a factor of k to min(4m − 2n + 2, kΔ) · k rounds, in
the worst-case. This is in fact the case in the previous algorithms of [1,16]. We design
a smarter way to synchronize the parallel DFS traversals so that the total time increases
only by a factor of log k to min(4m − 2n + 2, kΔ) · log k rounds, in the worst-case.
This approach is a non-trivial extension and requires overcoming many challenges on
synchronizing the parallel DFS traversals efficiently.

Related Work. One problem closely related to DISPERSION is the graph exploration.
The exploration problem has been heavily studied in the literature for specific as well
as arbitrary graphs, e.g., [2,4,8,13,17]. It was shown that a robot can explore an anony-
mous graph using Θ(D logΔ)-bits memory; the runtime of the algorithm is O(ΔD+1)
[13]. In the model where graph nodes also have memory, Cohen et al. [4] gave two
algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at each node, and
the second algorithm uses O(logΔ) bits at the robot and 1 bit at each node. The runtime
of both algorithms is O(m) with preprocessing time of O(mD). The trade-off between
exploration time and number of robots is studied in [17]. The collective exploration by
a team of robots is studied in [12] for trees. Another problem related to DISPERSION

26 A. D. Kshemkalyani et al.

is the scattering of k robots in graphs. This problem has been studied for rings [9,20]
and grids [3]. Recently, Poudel and Sharma [19] provided a Θ(

√
n)-time algorithm for

uniform scattering in a grid [7]. Furthermore, DISPERSION is related to the load balanc-
ing problem, where a given load at the nodes has to be (re-)distributed among several
processors (nodes). This problem has been studied quite heavily in graphs, e.g., [6,21].
We refer readers to [10,11] for other recent developments in these topics.
Paper Organization.We discuss details of the model and some preliminaries in Sect. 2.
We discuss the DFS traversal of a graph in Sect. 3. We present an algorithm for arbitrary
graphs in Sect. 4. Finally, we conclude in Sect. 5 with a short discussion.

2 Model Details and Preliminaries

Graph. We consider the same graph model as in [1,16]. Let G = (V,E) be an n-node
m-edge graph, i.e., |V | = n and |E| = m. G is assumed to be connected, unweighted,
and undirected. G is anonymous, i.e., nodes do not have identifiers but, at any node,
its incident edges are uniquely identified by a label (aka port number) in the range
[1, δ], where δ is the degree of that node. The maximum degree of G is Δ, which is the
maximum among the degree δ of the nodes in G. We assume that there is no correlation
between two port numbers of an edge. Any number of robots are allowed to move along
an edge at any time. The graph nodes do not have memory.

Robots.We also consider the same robot model as in [1,16]. Let R = {r1, r2, . . . , rk}
be a set of k ≤ n robots residing on the nodes of G. For simplicity, we sometime use i
to denote robot ri. No robot can reside on the edges of G, but one or more robots can
occupy the same node of G. Each robot has a unique �log k�-bit ID taken from [1, k].
Robot has no visibility and hence a robot can only communicate with other robots
present on the same node. Following [1,16], it is assumed that when a robot moves
from node u to node v in G, it is aware of the port of u it used to leave u and the port of
v it used to enter v. Furthermore, it is assumed that each robot is equipped with memory
to store information, which may also be read and modified by other robots on the same
node. Each robot is assumed to know parameters m,n,Δ, k. Such assumptions are also
made in the previous work on DISPERSION [1].

Time Cycle. At any time a robot ri ∈ R could be active or inactive. When a robot
ri becomes active, it performs the “Communicate-Compute-Move” (CCM) cycle as
follows: (i) Communicate: For each robot rj ∈ R that is at node vi where ri is, ri can
observe the memory of rj . Robot ri can also observe its own memory; (ii) Compute:
ri may perform an arbitrary computation using the information observed during the
“communicate” portion of that cycle. This includes determination of a (possibly) port
to use to exit vi and the information to store in the robot rj that is at vi; and (iii)Move:
At the end of the cycle, ri writes new information (if any) in the memory of rj at vi,
and exits vi using the computed port to reach to a neighbor of vi.

Time and Memory Complexity. We consider the synchronous setting where every
robot is active in every CCM cycle and they perform the cycle in synchrony. Therefore,
time is measured in rounds or steps (a cycle is a round or step). Another important
parameter is memory. Memory comes from the number of bits stored at each robot.

Fast Dispersion of Mobile Robots on Arbitrary Graphs 27

Mobile Robot Dispersion. The DISPERSION problem can be defined as follows.

Definition 1 (DISPERSION). Given any n-node anonymous graph G = (V,E) having
k ≤ n robots positioned initially arbitrarily on the nodes of G, the robots reposition
autonomously to reach a configuration where each robot is on a distinct node of G.

The goal is to solve DISPERSION optimizing two performance metrics: (i) Time –
the number of rounds, and (ii)Memory – the number of bits stored at each robot.

Table 2. Description of the variables used in Sects. 3 and 4. These variables are maintained by
each robot and may be read/updated by other robots (at the same node).

Symbol Description

round The counter that indicates the current round. Initially, round ← 0

pass The counter that indicates the current pass. Initially, pass ← 0

parent The port from which robot entered a node in forward phase. Initially,
parent ← 0

child The smallest port (except parent port) that was not taken yet. Initially,
child ← 0

treelabel The label of a DFS tree. Initially, treelabel ← �
settled A boolean flag that stores either 0 (false) or 1 (true). Initially, settled ← 0

mult The number of robots at a node at the start of Stage 2. Initially, mult ← 1

home The lowest ID unsettled robot at a node at the start of Stage 2 sets this to the ID
of the settled robot at that node. Initially, home ← �

3 DFS Traversal of a Graph

Consider an n-node arbitrary anonymous graph G. Let Cinit be the initial configuration
of k ≤ n robots positioned on a single node, say v, of G. Let the robots on v be
represented as N(v) = {r1, . . . , rk}, where ri is the robot with ID i. We describe here
a DFS traversal algorithm, DFS(k), that disperses the robots in N(v) to the k nodes
of G guaranteeing exactly one robot per node. DFS(k) will be used in Sect. 4.

Each robot ri stores in its memory four variables ri.parent (initially assigned 0),
ri.child (initially assigned 0), ri.treelabel (initially assigned �), and ri.settled (ini-
tially assigned 0). DFS(k) executes in two phases, forward and backtrack [5]. Vari-
able ri.treelabel stores the ID of the smallest ID robot. Variable ri.parent stores the
port from which ri entered the node where it is currently positioned in the forward
phase. Variable ri.child stores the smallest port of the node it is currently positioned
at that has not been taken yet (while entering/exiting the node). Let P (x) be the set of
ports at any node x ∈ G.

We are now ready to describeDFS(k). In round 1, the maximum ID robot rk writes
rk.treelabel ← 1 (the ID of the smallest robot in N(v), which is 1), rk.child ← 1 (the
smallest port at v among P (v)), and rk.settled ← 1. The robots N(v)\{rk} exit v

28 A. D. Kshemkalyani et al.

following port rk.child; rk stays (settles) at v. In the beginning of round 2, the robots
N(w) = N(v)\{rk} reach a neighbor node w of v. Suppose the robots entered w
using port pw ∈ P (w). As w is free, robot rk−1 ∈ N(w) writes rk−1.parent ← pw,
rk−1.treelabel ← 1 (the ID of the smallest robot in N(w)), and rk−1.settled ← 1. If
rk−1.child ≤ δw, rk−1 writes rk−1.child ← rk−1.child + 1 if port rk−1.child + 1 	=
pw and rk−1.child + 1 ≤ δw, otherwise rk−1.child ← rk−1.child + 2. The robots
N(w)\{rk−1} decide to continue DFS in forward/backtrack phase as described below.

– (forward phase) if (pw = rk−1.parent or pw = old value of rk−1.child) and (there
is (at least) a port at w that has not been taken yet). The robots N(w)\{rk−1} exit
w through port rk−1.child.

– (backtrack phase) if (pw = rk−1.parent or pw = old value of rk−1.child) and (all
the ports of w have been taken already). The robots N(w)\{rk−1} exit w through
port rk−1.parent.

Assume that in round 2, the robots decide to proceed in forward phase. In the begin-
ning of round 3, N(u) = N(w)\{rk−1} robots reach some other node u (neighbor of
w) of G. The robot rk−2 stays at u writing necessary information in its variables. In
the forward phase in round 3, the robots N(u)\{rk−2} exit u through port rk−2.child.
However, in the backtrack phase in round 3, rk−2 stays at u and robots N(u)\{rk−2}
exit u through port rk−2.parent. This takes robots N(u)\{rk−2} back to node w along
rk−1.child. Since rk−1 is already at w, rk−1 updates rk−1.child with the next port to
take. Depending on whether ri.child ≤ δw or not, the robots {r1, . . . , rk−3} exit w
using either rk−1.child (forward phase) or rk−1.parent (backtrack phase).

There is another condition, denoting the onset of a cycle, under which choosing
backtrack phase is in order. When robots enter x through px and robot r is settled at x,

– (backtrack phase) if (px 	= r.parent and px 	= old value of r.child). The robots
exit x through port px and no variables of r are altered.

This process then continues for DFS(k) until at some node y ∈ G, N(y) = {r1}. The
robot r1 then stays at y and DFS(k) finishes.

Lemma 1. Algorithm DFS(k) correctly solves DISPERSION for k ≤ n robots initially
positioned on a single node of a n-node arbitrary graph G in min(4m − 2n + 2, kΔ)
rounds using O(log(max(k,Δ))) bits at each robot.

Proof. We first show that DISPERSION is achieved by DFS(k). Because every robot
starts at the same node and follows the same path as other not-yet-settled robots until
it is assigned to a node, DFS(k) resembles the DFS traversal of an anonymous port-
numbered graph [1] with all robots starting from the same node. Therefore, DFS(k)
visits k different nodes where each robot is settled.

We now prove time and memory bounds. In kΔ rounds, DFS(k) visits at least k
different nodes of G. If 4m−2n+2 < kΔ, DFS(k) visits all n nodes of G. Therefore,
it is clear that the runtime of DFS(k) is min(4m − 2n + 2, kΔ) rounds. Regarding
memory, variable treelabel takes O(log k) bits, settled takes O(1) bits, and parent
and child take O(logΔ) bits. The k robots can be distinguished through O(log k) bits
since their IDs are in the range [1, k]. Thus, each robot requires O(log(max(k,Δ)))
bits.
�

Fast Dispersion of Mobile Robots on Arbitrary Graphs 29

4 Algorithm

We present and analyze an algorithm, Graph Disperse(k), that solves DISPERSION of
k ≤ n robots on an arbitrary n-node graph inO(min(m, kΔ)·log k) time withO(log n)
bits of memory at each robot. This algorithm significantly improves the O(mk) time of
the best previously known algorithm [16] for arbitrary graphs (Table 1).

4.1 High Level Overview of the Algorithm

Algorithm Graph Disperse(k) runs in passes and each pass is divided into two stages.
Each pass runs for O(min(m, kΔ)) rounds and there will be total O(log k) passes until
DISPERSION is solved. The algorithm uses O(log n) bits memory at each robot. To
be able to run passes and stages in the algorithm, we assume following [1] that robots
know n,m, k, and Δ. At their core, each of the two stages uses a modified version of
the DFS traversal by robots (Algorithm DFS(k)) described in Sect. 3.

At the start of stage 1, there may be multiple nodes, each with more than one robot
(top left of Fig. 1). The (unsettled) robots at each such node begin a DFS in parallel,
each such DFS instance akin to DFS(k) described in Sect. 3. Each such concurrently
initiated DFS induces a DFS tree where the treelabel of the robots that settle is com-
mon, and the same as the ID of the robot with the smallest ID in the group.

Unlike DFS(k), here a DFS traversal may reach a node where there is a settled
robot belonging to another (concurrently initiated) DFS instance. As the settled robot
cannot track variables (treelabel, parent, child) for the multiple DFS trees owing to
its limited memory, it tracks only one DFS tree instance and the other DFS instance(s)
is/are stopped. Thus, some DFS instances may not run to completion and some of their
robots may not be settled by the end of stage 1. Thus, groups of stopped robots exist at
different nodes at the end of stage 1 (top right of Fig. 1).

In stage 2, all the groups of stopped robots at different nodes in the same connected
component of nodes with settled robots are gathered together into one group at a sin-
gle node in that connected component (bottom left of Fig. 1). Since stopped robots in
a group do not know whether there are other groups of stopped robots, and if so, how
many and where, one robot from each such group initiates a DFS traversal of its con-
nected component of nodes with settled robots, to gather all the stopped robots at its
starting node. The challenge is that due to such parallel initiations of DFS traversals,
robots may be in the process of movement and gathering in different parts of the con-
nected component of settled nodes. The algorithm ensures that despite the unknown
number of concurrent initiations of the DFS traversals for gathering, all stopped robots
in a connected component of settled robots get collected at a single node in that com-
ponent at the end of stage 2. Our algorithm has the property that the number of nodes
with such gathered (unsettled) robots in the entire graph at the end of stage 2 is at most
half the number of nodes with more than one robot at the start of stage 1 (of the same
pass). This implies the sufficiency of log k passes, each comprised of these two stages,
to collect all graph-wide unsettled robots at one node. In the first stage of the last pass,
DISPERSION is achieved (bottom right of Fig. 1).

30 A. D. Kshemkalyani et al.

Fig. 1. An illustration of the two stages in a pass of Algorithm 1 for k = 14 robots in an 15-node
graph G. (top left) shows Cinit with one or more robots at 5 nodes of G; the rest of the nodes
of G are empty. (top right) shows the configuration after Stage 1 finishes for DFS(.) started
by 4 nodes with multiple robots on them; the respective DFS trees formed are shown through
colored edges (the same colored edges belong to the same DFS tree). A single robot (14) at a
node settles there. (bottom left) shows the configuration after Stage 2 finishes for DFS((., .))
started by two nodes with more than one robot (see top right) on them when Stage 1 finishes. The
robots 3,4,6 are collected at the node of G where robot 10 is settled since DFS((3, 4)) started
from there has higher lexico-priority than DFS((2, 3)) started from the node of G where 5 is
settled. (bottom right) shows the configuration after Stage 1 of the next pass in which all k robot
settle on k different nodes of G. There is only one DFS tree DFS(3) started from the node of
G (where 10 is settled and all robots are collected in Stage 2) that traverses G until all 3, 4, 6
are settled reaching the empty nodes of G. The nodes where they are settled are shown inside a
circle. (Color figure online)

Fast Dispersion of Mobile Robots on Arbitrary Graphs 31

4.2 Detailed Description of the Algorithm

The pseudocode of the algorithm is given in Algorithm 1. The variables used by each
robot are described in Table 2. We now describe the two stages of the algorithm; Fig. 1
illustrates the working principle of the stages.

Stage 1. We first introduce some terminology. A settled/unsettled robot i is one for
which i.settled = 1/0. For brevity, we say a node is settled if it has a settled robot.
At the start of stage 1, there may be multiple (≥ 1) unsettled robots at some of the
nodes. Let Us1/Ue1/Ue2 be the set of unsettled robots at a node at the start of stage
1/end of stage 1/end of stage 2. In general, we define a U -set to be the (non-empty) set
of unsettled robots at a node. Let the lowest robot ID among Us1 at a node be Us1

min.
We use r to denote a settled robot.

In stage 1, the unsettled robots at a node beginDFS(|Us1|), following the lowest ID
(= Us1

min) robot among them. Each instance of the DFS algorithm, begun concurrently
by differentUs1-sets from different nodes, induces a DFS tree in which the settled nodes
have robots with the same treelabel, which is equal to the corresponding Us1

min. During
this DFS traversal, the robots visit nodes, at each of which there are four possibilities.

The node may be free, or may have a settled robot r, where r.treelabel is less than,
equals, or is greater than x.ID, where x is the visiting robot with the lowest ID. The
second and fourth possibilities indicate that two DFS trees, corresponding to different
treelabels meet. As each robot is allowed only O(log n) bits memory, it can track the
variables for only one DFS tree. We deal with these possibilities as described below.

1. If the node is free (line 6), the logic of DFS(k) described in Sect. 3 is followed.
Specifically, the highest ID robot from the visiting robots (call it r) settles, and sets
r.settled to 1 and r.treelabel to x.ID. Robot x continues its DFS, after setting
r.parent, r.child and r.phase for its own DFS as per the logic ofDFS(k) described
in Sect. 3; and other visiting robots follow x.

2. If r.treelabel < x.ID (line 11), all visiting robots stop at this node and discontinue
growing their DFS tree.

3. If r.treelabel = x.ID (line 13), robot x’s traversal is part of the same DFS tree
as that of robot r. Robot x continues its DFS traversal and takes along with it all
unsettled (including stopped) robots from this node, after updating r.child if needed
as per the logic of DFS(k) described in Sect. 3.

4. If r.treelabel > x.ID (line 16), robot x continues growing its DFS tree and takes
along all unsettled robots from this node with it. To continue growing its DFS tree, x
overwrites robot r’s variables set for r’s old DFS tree by including this node and r in
its own DFS tree. Specifically, r.treelabel ← x.ID, r.parent is set to the port from
which x entered this node, and r.child is set as per the logic described for DFS(k)
in Sect. 3.

Note that if the robots stop at a node where r.treelabel < x.ID, they will start
moving again if a robot x′ arrives such that x′.ID ≤ r.treelabel. At the end of stage
1, either all the robots from any Us1 are settled or some subset of them are stopped at
some node where r.treelabel < Us1

min.

32 A. D. Kshemkalyani et al.

Algorithm 1: Algorithm Graph Disperse(k) to solve DISPERSION.

1 if i is alone at node then
2 i.settled ← 1; do not set i.treelabel

3 for pass = 1, log k do
4 Stage 1 (Graph DFS: for group dispersion of unsettled robots)

5 for round = 0,min(4m − 2n + 2, kΔ) do
6 if visited node is free then
7 highest ID robot r settles; r.treelabel ← x.ID, where x is robot with lowest

ID
8 x continues its DFS after r sets its parent, child for DFS of x
9 other visitors follow x

10 else if visited node has a settled robot r then
11 if r.treelabel < x.ID for visitors x then
12 all visiting robots: stop until ordered to move

13 else if r.treelabel ≤ y.ID for visitors y and r.treelabel = x.ID for some
visitor x then

14 x continues its DFS after r updates child if needed
15 all other unsettled robots follow x

16 else if visitor x(x �= r) has lowest ID and lower than r.treelabel then
17 r.treelabel ← x.ID
18 x continues its DFS after r sets its parent, child for DFS of x
19 all other unsettled robots follow x

20 All settled robots: reset parent, child
21 Stage 2 (Connected Component DFS Traversal: for gathering unsettled robots)

22 All robots: mult ← count of local robots
23 if i has the lowest ID among unsettled robots at its node then
24 i.home ← r.ID, r.treelabel ← i.ID, where r is the settled robot at that node
25 i initiates DFS traversal of connected component of nodes with settled robots

26 for round = 0,min(4m − 2n + 2, 2kΔ) do
27 if visited node is free then
28 ignore the node; all visitors backtrack, i.e., retrace their step

29 else if visited node has a settled robot r then
30 if lexico-priority of r is highest and greater than that of all visitors then
31 all visiting robots: stop until ordered to move

32 else if lexico-priority of r is highest but equal to that of some visitor x then
33 x continues its DFS traversal after r updates child if needed (until

x.home = r.ID and all ports at the node where r is settled are explored)
34 all other unsettled robots: follow x if x.home �= r.ID

35 else if visitor x(x �= r) has highest lexico-priority and higher than that of r
then

36 r.treelabel ← x.ID, r.mult ← x.mult
37 x continues its DFS traversal after r sets parent, child for DFS of x
38 all other unsettled robots follow x

39 reset parent, child, treelabel, mult, home

Fast Dispersion of Mobile Robots on Arbitrary Graphs 33

Lemma 2. For any Us1-set, at the end of stage 1, either (i) all the robots in Us1 are
settled or (ii) the unsettled robots among Us1 are present all together along with robot
with ID Us1

min (and possibly along with other robots outside of Us1) at a single node
with a settled robot r having r.treelabel < Us1

min.

Proof. The DFS traversal of the graph can complete in 4m − 2n + 2 steps as each tree
edge gets traversed twice, and each back edge, i.e., non-tree edge of the DFS tree, gets
traversed 4 times (twice in the forward direction and twice in the backward direction)
if the conditions in lines (6), (13), or (16) hold. The DFS traversal of the graph required
to settle k robots and hence discover k new nodes, can also complete in kΔ steps as a
node may be visited multiple times (at most its degree which is at most Δ times). As
k ≥ |Us1|, possibility (i) is evident.

In the DFS traversal, if condition in line (11) holds, the unsettled robots remaining
in Us1, including that with ID Us1

min, stop together at a node with a settled robot r
′ such

that r′.treelabel < Us1
min. They may move again together (lines (15) or (19)) if visited

by a robot with ID U ′
min equal to or lower than r′.treelabel (lines (13) or (16)), and

may either get settled (possibility (i)), or stop (the unsettled ones together) at another
node with a settled robot r′′ such that r′′.treelabel < U ′

min. This may happen up to
k − 1 times. However, the remaining unsettled robots from Us1 never get separated
from each other. If the robot with ID Us1

min is settled at the end of stage 1, so are all
the others in Us1. If Us1

min robot is not settled at the end of stage 1, the remaining
unsettled robots from Us1 have always moved and stopped along with Us1

min robot. This
is because, if the robot with ID Us1

min stops at a node with settled robot r′′′ (line 12),
r′′′.treelabel < Us1

min and hence r′′′.treelabel is also less than the IDs of the remaining
unsettled robots from Us1. If the stopped robot with ID Us1

min begins to move (line 15
or 19), so do the other stopped (unsettled) robots from Us1 because they are at the same
node as the robot with ID Us1

min. Hence, (ii) follows.
�
Let us introduce some more terminology. Let Us1 be the set of all Us1. Let Us1

min be
minUs1∈Us1(Us1

min). The set of robots in that Us1 having Us1
min = Us1

min are dispersed
at the end of stage 1 because the DFS traversal of the robots in that Us1 is not stopped at
any node by a settled robot having a lower treelabel than thatUs1

min. Let u
s1
p , ue1

p = us2
p ,

and ue2
p denote the number of nodes with unsettled robots at the start of stage 1, at the

end of stage 1(or at the start of stage 2), and at the end of stage 2 respectively, all for a
pass p of the algorithm. Thus, us1

p (= |Us1
p |) is the number of U -sets at the start of stage

1 of pass p. Analogously, for ue1
p = us2

p , and ue2
p .

We now have the following corollary to Lemma 2.

Corollary 1. ue1
p ≤ us1

p − 1.

In stage 1, each set of unsettled robots Us1 induces a partial DFS tree, where the
treelabel of settled robots is Us1

min. This identifies a sub-component SCUs1
min

. Note that
some subset of Us1 may be stopped at a node outside SCUs1

min
, where the treelabel <

Us1
min.

Definition 2. A sub-component SCα is the set of all settled nodes having treelabel =
α. SC is used to denote the set of all SCs at the end of stage 1.

34 A. D. Kshemkalyani et al.

Theorem 2. There is a one-to-one mapping from the set of sub-components SC to the
set of unsettled robots Us1. The mapping is given by: SCα
→ Us1, where α = Us1

min.

Proof. From Definition 2, each SCα corresponds to a treelabel = α. The treelabel
is set to the lowest ID among visiting robots, and this corresponds to a unique set of
unsettled robots Us1 whose minimum ID robot has ID α, i.e., Us1

min = α.
�
Lemma 3. Sub-component SCα is a connected sub-component of settled nodes, i.e.,
for any a, b ∈ SCα, there exists a path (a, b) in G such that each node on the path has
a settled robot.

Proof. For any nodes a and b in SCα, the robot with ID Umin (= α) has visited a and
b. Thus there is some path from a to b in G that it has traversed. On that path, if there
was a free node, a remaining unsettled robot from U (there is at least the robot with ID
Umin that is unsettled) would have settled there. Thus there cannot exist a free node on
that path and the lemma follows.
�

Within a sub-component, there may be stopped robots belonging to one or more
different sets Us1 (having a higher Us1

min than the treelabel at the node where they
stop). There may be multiple sub-components that are adjacent in the sense that they
are separated by a common edge. Together, these sub-components form a connected
component of settled nodes.

Definition 3. A connected component of settled nodes (CCSN) is a set of settled nodes
such that for any a, b ∈ CCSN , there exists a path (a, b) in G with each node on the
path having a settled robot.

Lemma 4. If not all the robots of Us1 are settled by the end of stage 1, then SCUs1
min

is
part of a CCSN containing nodes from at least two sub-components.

Proof. Let the unsettled robots in Us1 begin from node a. The unsettled robots of Us1

stopped (line 12), and possibly moved again (line 15 or 19) only to be stopped again
(line 12), c times, where |Us1| > c ≥ 1.

Consider the first time the robots arriving along edge (u, v) were stopped at some
node v. Us1

min > r.treelabel, where robot r is settled at v. Henceforth till the end
of stage 1, r.treelabel is monotonically non-increasing, i.e., it may only decrease if
a visitor arrives with a lower ID (line 16). The path traced from a to u must have all
settled nodes, each belonging to possibly more than one sub-component, i.e., possibly
in addition to SCUs1

min
, at the end of stage 1, which together form one or more adjacent

sub-components. In any case, these sub-components are necessarily adjacent to the sub-
component SCα, where α = r.treelabel. Thus, at least two sub-components including
SCUs1

min
and SCα are (possibly transitively) adjacent and form part of a CCSN.

Extending this reasoning to each of the c times the robots stopped, it follows that
there are at least c + 1 sub-components in the resulting CCSN.(Additionally, (1) unset-
tled robots from the sub-component that stopped the unsettled robots of Us1 for the
c-th time may be (transitively) stopped by robots in yet other sub-components, (2)
other groups of unsettled robots may (transitively or independently) be stopped at

Fast Dispersion of Mobile Robots on Arbitrary Graphs 35

nodes in the above identified sub-components, (3) other sub-components correspond-
ing to even lower treelabels may join the already identified sub-components, (4) other
sub-components may have a node which is adjacent to one of the nodes in an above-
identified sub-component. This only results in more sub-components, each having dis-
tinct treelabels (Definition 2) and corresponding to as many distinct U -sets (Theo-
rem 2), being adjacent in the resulting CCSN.)
�
Theorem 3. For any Us1 at a, its unsettled robots (if any) belong to a single Ue1 at b,
where a and b belong to the same connected component of settled nodes (CCSN).

Proof. From Lemma 2, it follows that the unsettled robots from Us1 (at a) end up at a
single node b in the set Ue1. It follows that there must exist a path from a to b that these
unsettled robots traversed. On this path, if there was a free node, a robot that belongs to
Us1 and Ue1 would have settled. Thus, there cannot exist such a free node. It follows
that a and b belong to the same CCSN.
�

Using the reasoning of Lemma 2 and Corollary 1, if there are s sub-components
within a CCSN, there may be stopped (unsettled) robots at at most s−1 nodes. In stage
2, all such unsettled robots within a CCSN are collected at a single node within that
component.

Stage 2. Stage 2 begins with each robot setting variable mult to the count of robots at
its node. The lowest ID unsettled robot x at each node (having mult > 1) concurrently
initiates a DFS traversal of the CCSN after setting x.home to the ID of the settled robot
r and setting the r.treelabel of the settled robot to its ID, x.ID. The DFS traversal is
initiated by a single unsettled robot at a node rather than all unsettled robots at a node.

In the DFS traversal of the CCSN, there are four possibilities, akin to those in stage
1. If a visited node is free (line 27), the robot ignores that node and backtracks. This
is because neither the free node nor any paths via the free node need to be explored to
complete a DFS traversal of the CCSN.

If a visited node has a settled robot, the visiting robots may need to stop for two
reasons. (i) Only the highest “priority” unsettled robot should be allowed to complete
its DFS traversal while collecting all other unsettled robots. Other concurrently initiated
DFS traversals for gathering unsettled robots should be stopped so that only one traver-
sal for gathering succeeds. (ii) With the limited memory of O(log n) at each robot, only
one DFS traversal can be enabled at each settled robot r in its r.treelabel, r.parent,
and r.child. That is, the settled robot can record in its data structures, only the details
for one DFS tree that is induced by one DFS traversal. The decision to continue the
DFS or stop is based, not by comparing treelabel of the settled robot with the visiting
robot ID, but by using a lexico-priority, defined next.

Definition 4. The lexico-priority is defined by a tuple, (mult, treelabel/ID). A higher
value of mult is a higher priority; if mult is the same, a lower value of treelabel or ID
has the higher priority.

The lexico-priority of a settled robot r that is visited, (r.mult, r.treelabel), is com-
pared with (x.mult, x.ID) of the visiting robots x. The lexico-priority is a total order.
There are three possibilities, as shown in lines (30), (32), and (35).

36 A. D. Kshemkalyani et al.

– (line 30): Lexico-priority of r > lexico-priority of all visitors: All visiting robots stop
(until ordered later to move) because they have a lower lexico-priority than r. The
DFS traversal of the unsettled robot x′ corresponding to x′.ID = r.treelabel kills
the DFS traversal of the visitors.

– (line 32): The visiting robot x having the highest lexico-priority among the visiting
robots, and having the same lexico-priority as r continues the DFS traversal because
it is part of the same DFS tree as r. r updates r.child if needed as per the logic of
DFS(k) described in Sect. 3. This DFS search of x continues unless x is back at its
home node from where it began its search and all ports at the home node have been
explored. As x continues its DFS traversal, it takes along with it all unsettled robots
at r.

– (line 35): The visiting robot x having the highest lexico-priority that is also higher
than that of r overrides the treelabel and mult of r. It kills the DFS traversal and
corresponding DFS tree that r is currently storing the data structures for. Robot x
includes r in its own DFS traversal by setting r.treelabel ← x.ID, r.mult ←
x.mult, and r.parent to the port from which x entered this node; r.child is set as
per the logic of DFS(k) described in Sect. 3. Robot x continues its DFS traversal
and all other unsettled robots follow it.

The reason we use the lexico-priority defined on the tuple rather than on just the
treelabel/ID is that the sub-component with the lowest treelabel may have no unset-
tled robots, but yet some node(s) in it are adjacent to those in other sub-components,
thus being part of the same CCSN. The nodes in the sub-component with the low-
est treelabel would then stop other traversing robots originating from other sub-
components, but no robot from that sub-component would initiate the DFS traversal.

Lemma 5. Within a connected component of settled nodes (CCSN), let x be the unset-
tled robot with the highest lexico-priority at the start of Stage 2.

1. x returns to its home node from where it begins the DFS traversal of the component,
at the end of Stage 2.

2. All settled nodes in the connected component have the same lexico-priority as x at
the end of Stage 2.

Proof. (Part 1): Robot x encounters case in line (35) for the first visit to each node in
its CCSN and includes that node in its own DFS traversal, and on subsequent visits
to that node, encounters the case in line (32) and continues its DFS traversal. Within
min(4m − 2n + 2, 2kΔ) steps, it can complete its DFS traversal of the CCSN and
return to its home node. This is because it can visit all the nodes of the graph within
4m − 2n + 2 steps. The robot can also visit the at most k settled nodes in 2kΔ steps;
kΔ steps may be required in the worst case to visit the k settled nodes in its CCSN and
another at most kΔ steps to backtrack from adjacent visited nodes that are free.

(Part 2): When x visits a node with a settled robot r for the first time (line 35),
the lexico-priority of r is changed to that of x (line 36). Henceforth, if other unsettled
robots y visit r, r will not change its lexico-priority (line 30) because its lexico-priority
is now highest.
�

Fast Dispersion of Mobile Robots on Arbitrary Graphs 37

Analogous to stage 1, unsettled robots beginning from different nodes may move
and then stop (on reaching a higher lexico-priority lp node), and then resume movement
again (when visited by a robot with lexico-priority lp or higher). This may happen up to
s − 1 times, where s is the number of sub-components in the CCSN. We show that,
despite the concurrently initiated DFS traversals and these concurrent movements of
unsettled robots, they all gather at the end of stage 2, at the home node of the unsettled
robot having the highest lexico-priority (in the CCSN) at the start of stage 2.

Lemma 6. Within a connected component of settled nodes (CCSN), let x be the unset-
tled robot with the highest lexico-priority at the start of Stage 2. All the unsettled robots
in the component gather at the home node of x at the end of Stage 2.

Proof. Let y be any unsettled robot at the start of the stage. At time step t, let y be at
a node denoted by v(t). Let τ be the earliest time step at which y is at a node with the
highest lexico-priority that it encounters in Stage 2. We have the following cases.

1. lexico-priority(settled robot at v(τ)) < lexico-priority(x): We have a contradiction
because at t = min(4m − 2n + 2, 2kΔ), settled robots at all nodes have lexico-
priority that of x, which is highest.

2. lexico-priority(settled robot at v(τ)) > lexico-priority(x): This contradicts the defi-
nition of x.

3. lexico-priority(settled robot at v(τ)) = lexico-priority(x).
(a) v(τ) = x.home: Robot y will not move from x.home (line 32) and the lemma

stands proved.
(b) v(τ) 	= x.home: y ends up at another node with lexico-priority that of x at time

step τ . It will not move from node v(τ) unless robot x visits v(τ) at or after τ ,
in which case y will accompany x to x.home and the lemma stands proved.
We need to analyze the possibility that x does not visit v(τ) at or after τ .

That is, the last visit by x to v(τ) was before τ . By definition of τ , lexico-
priority(settled robot at v(τ − 1)) < lexico-priority(settled robot at v(τ)) (=
lexico-priority of x in this case). By Lemma 5, x is yet to visit v(τ − 1), so the
first visit of x to v(τ − 1) is after τ − 1. As v(τ − 1) and v(τ) are neighbors
and x is doing a DFS, x will visit v(τ) at or after τ +1. This contradicts that the
last visit by x to v(τ) was before τ and therefore rules out the possibility that x
does not visit v(τ) at or after τ .

�
4.3 Correctness of the Algorithm

Having proved the properties of stage 1 and stage 2, we now prove the correctness of
the algorithm.

Lemma 7. ue2
p = us1

p+1 ≤ 1
2 · us1

p

Proof. From Lemma 2, for any Us1 at the end of stage 1, (i) a set of unsettled robots
Us1 is fully dispersed, or (ii) a subset of Us1 of unsettled robots is stopped and present
together at at most one node with a settled robot r such that r.treelabel < Us1

min.

38 A. D. Kshemkalyani et al.

In case (i), there are two possibilities. (i.a) There is no group of unsettled robots
stopped at nodes in the CCSN where the robots of U have settled. In this case, this
Us1-set does not have its robots in any Ue1-set. (i.b) z(≥ 1) groups of unsettled robots
are stopped at nodes in the CCSN where the robots of U have settled. These groups
correspond to at least z+1 unique U -sets and at least z+1 sub-components that form a
CCSN (by using reasoning similar to that in the proof of Lemma 4). In case (ii), at least
two sub-components, each having distinct treelabels and corresponding to as many
distinct U -sets (Theorem 2), are adjacent in the CCSN (Lemma 4).

From Lemma 2, we also have that any Us1-set cannot have unsettled robots in more
than one Ue1. Each robot in each Us1-set in the CCSN, that remains unsettled at the end
of stage 1, belongs to some Ue1-set that also belongs to the same CCSN (Theorem 3).
From Lemma 6 for stage 2, all the unsettled robots in these Ue1-sets in the CCSN, are
gathered at one node in that CCSN. Thus, each unsettled robot from each Us1-set in
the same CCSN is collected at a single node as a Ue2-set in the same CCSN. Thus,
in cases (i-b) and (ii) above, two or more sub-components, each corresponding to a
distinct treelabel and a distinct Us1-set (Theorem 2), combine into a single CCSN
(Lemma 4) and in stage 2, there is a single node with unsettled robots from all the Us1-
sets belonging to the same CCSN, i.e., a single Ue2-set, or a single Us1-set for the next
round. Note that each sub-component SCα is a connected sub-component (Lemma 3)
and hence belongs to the same CCSN; thus when sub-components merge, i.e., their
corresponding Us1-sets merge, and we have a single Ue2-set in the CCSN, there is no
double-counting of the same SCα and of its corresponding Us1-set in different CCSNs.
Thus, ue2

p (= us1
p+1), the number of U -sets after stage 2, is ≤ 1

2 · us1
p , where us1

p is the
number of U -sets before stage 1.
�
Theorem 4. DISPERSION is solved in log k passes in Algorithm 1.

Proof. us1
1 ≤ k/2. From Lemma 7, it will take at most log k − 1 passes for there to

be a single U -set. In the first stage of the log k-th pass, there will be a single U -set. By
Lemma 2, case (i) holds and all robots in the U -set get settled. (Case (ii) will not hold
because there is no node with a treelabel < Umin as all treelabels of settled nodes are
reset to � (the highest value) at the end of stage 2 of the previous pass and all singleton
robots before the first pass settle with treelabel = � (line 2)). Thus, DISPERSION will
be achieved by the end of stage 1 of pass log k.
�

Note that the DFS traversal of stage 2 is independent of the DFS traversal of stage
1 within a pass (but the treelabels are not erased), and the DFS traversal of stage 1 of
the next pass is independent of the DFS traversal of stage 2 of the current pass.

Proof of Theorem 1 : Theorem 4 proved that DISPERSION is achieved by Algorithm 1.
The time complexity is evident due to the two loops of O(min(4m−2n+2, 2Δk)) for
the two stages nested within the outer loop of O(log k) passes. The space complexity is
evident from the size of the variables: treelabel (log k bits), parent (logΔ bits), child
(logΔ bits), settled (1 bit), mult (log k bits), home (log k bits), pass (log log k bits),
round (O(log n) bits to maintain the value O(min(m, kΔ) for each pass).
�

We have the following corollary to Theorem 1 when Δ ≤ k.

Fast Dispersion of Mobile Robots on Arbitrary Graphs 39

Corollary 2. Given k ≤ n robots in an n-node arbitrary graph G with maximum
degree Δ ≤ k, Algorithm Graph Disperse(k) solves DISPERSION in O(min(m, k2) ·
log k) rounds with O(log n) bits at each robot.

We also have the following corollary to Theorem 1 when Δ = O(1).

Corollary 3. Given k ≤ n robots in an n-node arbitrary graph G with maxi-
mum degree Δ = O(1), algorithm Graph Disperse(k) solves DISPERSION in
O(min(m, k) · log k) rounds with O(log n) bits at each robot.

5 Concluding Remarks

We have presented a deterministic algorithm for solving DISPERSION of k ≤ n robots
on n-node arbitrary graphs. Our result significantly improves the O(mk) runtime of
the best previously known algorithm with logarithmic memory at each robot [16] to
O(min(m, kΔ) · log k) with logarithmic memory at each robot. For future work, it will
be interesting to solve DISPERSION on arbitrary graphs with time O(k) or improve the
existing time lower bound of Ω(k) to Ω(min(m, kΔ)). Another interesting direction
is to remove the log k factor from the time bound in Theorem 1. Furthermore, it will
be interesting to achieve Theorem 1 without each robot knowing parameters m,Δ,
and k. Finally, another interesting direction will be to extend our algorithms to solve
DISPERSION in semi-synchronous and asynchronous settings.

References

1. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-
offs. CoRR, abs/1707.05629, [v4] (2018). (A preliminary version in ICDCN 2018)

2. Bampas, E., G ↪asieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour
lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805,
pp. 423–435. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0 44

3. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of
autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)

4. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph explo-
ration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
The MIT Press, Cambridge (2009)

6. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput. 7(2), 279–301 (1989)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots
with lights. Theor. Comput. Sci. 609, 171–184 (2016)

8. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph
exploration. Inf. Comput. 243(C), 37–49 (2015)

9. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci.
412(8–10), 783–795 (2011)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots.
Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

https://doi.org/10.1007/978-3-642-04355-0_44

40 A. D. Kshemkalyani et al.

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities. Theoret-
ical Computer Science and General Issues, vol. 1. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-11072-7

12. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks
48(3), 166–177 (2006)

13. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite
automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

14. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online dispersion
algorithms for swarms of robots. In: SoCG, pp. 382–383 (2003)

15. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for
rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick,
J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol.
7, pp. 77–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-45058-0 6

16. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN,
pp., 218–227 (2019)

17. Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph explo-
ration. Inf. Process. Lett. 127, 17–20 (2017)

18. Molla, A.R., Moses, W.K.: Dispersion of mobile robots: the power of randomness. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–500. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14812-6 30

19. Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237
(2019)

20. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of
mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)

21. Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp.
220–225 (1994)

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-540-45058-0_6
https://doi.org/10.1007/978-3-030-14812-6_30

Pushing Lines Helps: Efficient Universal
Centralised Transformations
for Programmable Matter

Abdullah Almethen(B), Othon Michail, and Igor Potapov

Department of Computer Science, University of Liverpool, Liverpool, UK
{A.Almethen,Othon.Michail,Potapov}@liverpool.ac.uk

Abstract. In this paper, we study a discrete system of entities residing
on a two-dimensional square grid. Each entity is modelled as a node occu-
pying a distinct cell of the grid. The set of all n nodes forms initially a
connected shape A. Entities are equipped with a linear-strength pushing
mechanism that can push a whole line of entities, from 1 to n, in par-
allel in a single time-step. A target connected shape B is also provided
and the goal is to transform A into B via a sequence of line movements.
Existing models based on local movement of individual nodes, such as
rotating or sliding a single node, can be shown to be special cases of the
present model, therefore their (inefficient, Θ(n2)) universal transforma-
tions carry over. Our main goal is to investigate whether the parallelism
inherent in this new type of movement can be exploited for efficient,
i.e., sub-quadratic worst-case, transformations. As a first step towards
this, we restrict attention solely to centralised transformations and leave
the distributed case as a direction for future research. Our results are
positive. By focusing on the apparently hard instance of transforming
a diagonal A into a straight line B, we first obtain transformations of
time O(n

√
n) without and with preserving the connectivity of the shape

throughout the transformation. Then, we further improve by provid-
ing two O(n log n)-time transformations for this problem. By building
upon these ideas, we first manage to develop an O(n

√
n)-time univer-

sal transformation. Our main result is then an O(n log n)-time universal
transformation. We leave as an interesting open problem a suspected
Ω(n log n)-time lower bound.

1 Introduction

As a result of recent advances in components such as micro-sensors, elec-
tromechanical actuators, and micro-controllers, a number of interesting systems
are now within reach. A prominent type of such systems concerns collections
of small robotic entities. Each individual robot is equipped with a number
of actuation/sensing/communication/computation components that provide it

The full version of the paper with all omitted details is available on arXiv
at: https://arxiv.org/abs/1904.12777.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 41–59, 2019.
https://doi.org/10.1007/978-3-030-34405-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_3&domain=pdf
https://arxiv.org/abs/1904.12777
https://doi.org/10.1007/978-3-030-34405-4_3

42 A. Almethen et al.

with some autonomy; for instance, the ability to move locally and to communi-
cate with neighbouring robots. Still, individual local dynamics are uninteresting,
and individual computations are restricted due to limited computational power,
resources, and knowledge. What makes these systems interesting is the collec-
tive complexity of the population of devices. A number of fascinating recent
developments in this direction have demonstrated the feasibility and potential
of such collective robotic systems, where the scale can range from milli/micro
[BG15,GKR10,KCL+12,RCN14,YSS+07] down to nano [DDL+09,Rot06].

This progress has motivated the parallel development of a theory of such
systems. It has been already highlighted [MS18] that a formal theory (includ-
ing modelling, algorithms, and computability/complexity) is necessary for fur-
ther progress in systems. This is because theory can accurately predict the most
promising designs, suggest new ways to optimise them, by identifying the crucial
parameters and the interplay between them, and provide with those (centralised
or distributed) algorithmic solutions that are best suited for each given design
and task, coupled with provable guarantees on their performance. As a result, a
number of sub-areas of theoretical computer science have emerged such as mobile
and reconfigurable robotics [ABD+13,BKRT04,CFPS12,CKLWL09,DFSY15,
DDG+18,DGMRP06,DDG+14,DGR+15,DGR+16,DLFS+19,DLFP+18,
FPS12,KKM10,MSS19,SMO+18,YS10,YUY16,YSS+07], passively-mobile sys-
tems [AAD+06,AAER07,MS16,MS18] including the theory of DNA self-
assembly [Dot12,RW00,Win98,WCG+13], and metamorphic systems [DP04,
DSY04a,DSY04b,NGY00,WWA04]; connections are even evident with the the-
ory of puzzles [BDF+19,Dem01,HD05]. A latest ongoing effort is to join these
theoretical forces and developments within the emerging area of “Algorithmic
Foundations of Programmable Matter” [FRRS16]. Programmable matter refers
to any type of matter that can algorithmically change its physical properties.
“Algorithmically” means that the change (or transformation) is the result of
executing an underlying program.

In this paper, we embark from the model studied in [DP04,DSY04a,DSY04b,
MSS19], in which a number of spherical devices are given in the form of a (typi-
cally connected) shape A lying on a two-dimensional square grid, and the goal is
to transform A into a desired target shape B via a sequence of valid movements
of individual devices. In those papers, the considered mechanisms were the abil-
ity to rotate and slide a device over neighbouring devices (always through empty
space). We here consider an alternative (linear-strength) mechanism, by which
a line of one or more devices can translate by one position in a single time-step.

As our main goal is to determine whether the new movement under consider-
ation can in principle be exploited for sub-quadratic worst-case transformations,
we naturally restrict our attention to centralised transformations. We generally
allow the transformations to break connectivity, even though we also develop
some connectivity-preserving transformations on the way. Our main result is a
universal transformation of O(n log n) worst-case running time that is permitted
to break connectivity. Distributed transformations and connectivity-preserving
universal transformations are left as interesting future research directions.

Pushing Lines Helps: Efficient Universal Centralised Transformations 43

1.1 Our Approach

In [MSS19], it was proved that if the devices (called nodes from now on) are
equipped only with a rotation mechanism, then the decision problem of trans-
forming a connected shape A into a connected shape B is in P, and a constructive
characterisation of the (rich) class of pairs of shapes that are transformable to
each other was given. In the case of combined availability of rotation and sliding,
universality has been shown [DP04,MSS19], that is, any pair of connected shapes
are transformable into each other. Still, in these and related models, where in
any time step at most one node can move a single position in its local neighbour-
hood, it can be proved (see, for instance, [MSS19]) that there will be pairs of
shapes that require Ω(n2) steps to be transformed into each other. This follows
directly from the inherent “distance” between the two shapes and the fact that
this distance can be reduced by only a constant in every time step. An immediate
question is then “How can we come up with more efficient transformations?”

Two main alternatives have been explored in the literature in an attempt to
answer this question. One is to consider parallel time, meaning that the trans-
formation algorithm can move more than one node (up to a linear number of
nodes if possible) in a single time step, such as transformations based on pipelin-
ing [DSY04b,MSS19,RCN14]. The other approach is to consider more powerful
actuation mechanisms, that have the potential to reduce the inherent distance
faster than a constant per sequential time-step. Prominent examples in the lit-
erature are the linear-strength models of Aloupis et al. [ABD+13,ACD+08],
in which nodes are equipped with extend/contract arms and of Woods et al.
[WCG+13], in which a whole line of nodes can rotate around a single node (act-
ing as a linear-strength rotating arm). The present paper follows this approach,
by introducing and investigating a linear-strength model in which a node can
push a line of consecutive nodes one position (towards an empty cell) in a single
time-step.

In terms of transformability, our model can easily simulate the combined
rotation and sliding mechanisms of [DP04,MSS19] by restricting movements to
lines of length 1 (i.e., individual nodes). It follows that this model is also capable
of universal transformations, with a time complexity at most twice the worst-
case of those models, i.e., again O(n2). Naturally, our focus is set on exploring
ways to exploit the parallelism inherent in moving lines of larger length in order
to speed-up transformations and, if possible, to come up with a more efficient in
the worst case universal transformation. Further, as reversibility of movements
is still valid for any line movement in our model, we adopt the approach of
transforming any given shape A into a spanning line L (vertical or horizontal).
This is convenient, because if one shows that any shape A can transform fast
into a line L, then any pair of shapes A and B can then be transformed fast to
each other by first transforming fast A into L and then L into B by reversing
the fast transformation of B into L.

We start this investigation by identifying the diagonal shape D (which is
considered connected in our model and is very similar to the staircase worst-
case shape of [MSS19]) as a potential worst-case initial shape to be transformed

44 A. Almethen et al.

into a line L. This intuition is supported by the O(n2) individual node distance
between the two shapes and by the initial unavailability of long line movements:
the transformation may move long lines whenever available, but has to pay first
a number of movements of small lines in order to construct longer lines. In this
benchmark (special) case, the trivial lower and upper bounds Ω(n) and O(n2),
respectively, hold.

First, we prove that by partitioning the diagonal into
√

n diagonal segments
of length

√
n each, we can first transform each segment in time quadratic in its

length into a straight line segment, then push all segments down to a “collec-
tion row” y0 in time O(n

√
n) and finally re-orient all line segments to form a

horizontal line in y0, paying a linear additive factor. Thus, this transformation
takes total time O(n

√
n), which constitutes our first improvement compared to

the Ω(n2) lower bound of [MSS19]. We then take this algorithmic idea one step
further, by developing two transformations building upon it, that can achieve
the same time-bound while preserving connectivity throughout their course: one
is based on folding segments and the other on extending them.

As the O(
√

n) length of uniform partitioning into segments is optimal for the
above type of transformation, we turn our attention into different approaches,
aiming at further reducing the running time of transformations. Allowing once
more to break connectivity, we develop an alternative transformation based on
successive doubling. The partitioning is again uniform for individual “phases”,
but different phases have different partitioning length. The transformation starts
from a minimal partitioning into n/2 lines of length 2, then matches them to
the closest neighbours via shortest paths to obtain a partitioning into n/4 lines
of length 4, and, continuing in the same way for log n phases, it maintains the
invariant of having n/2i individual lines in each phase i, for 1 ≤ i ≤ log n.
By proving that the cost of pairwise merging through shortest paths in each
phase is linear in n, we obtain that this approach transforms the diagonal into
a line in time O(n log n), thus yielding a substantial improvement. Observe that
the problem of transforming the diagonal into a line seems to involve solving
the same problem into smaller diagonal segments (in order to transform those
into corresponding line segments). Then, one may naturally wonder whether a
recursive approach could be applied in order to further reduce the running time.
We provide a negative answer to this, for the special case of uniform recursion
and at the same time obtain an alternative O(n log n) transformation for the
diagonal-to-line problem.

Our final aim is to generalise the ideas developed for the above benchmark
case in order to come up with equally efficient universal transformations. We suc-
cessfully generalise both the O(n

√
n) and the O(n log n) approaches, obtaining

universal transformations of worst-case running times O(n
√

n) and O(n log n),
respectively. We achieve this by enclosing the initial shape into a square bounding
box and then subdividing the box into square sub-boxes of appropriate dimen-
sion. For the O(n

√
n) bound, a single such partitioning into sub-boxes of dimen-

sion
√

n turns out to be sufficient. For the O(n log n) bound we again employ
a successive doubling approach through phases of an increasing dimension of
the sub-boxes, that is, through a new partitioning in each phase. Therefore, our

Pushing Lines Helps: Efficient Universal Centralised Transformations 45

ultimate theorem (followed by a constructive proof, providing the claimed trans-
formation) states that: “In this model, when connectivity need not necessarily be
preserved during the transformation, any pair of connected shapes A and B can
be transformed to each other in sequential time O(n log n)”.

Table 1 summarises the running times of all the transformations developed
in this paper.

Table 1. A summary of our transformations and their corresponding worst-case run-
ning times (the trivial lower bound is in all cases Ω(n)). The Diagonal, Diagonal
Connected, and Universal problems correspond to the DiagonalToLine, Diagonal-
ToLineConnected, and UniversalTransformation problems, respectively (being
formally defined in Sect. 2).

Transformation Problem Running time Lower bound

DL-Partitioning Diagonal O(n
√

n) Ω(n)

DL-Doubling Diagonal O(n log n) Ω(n)

DL-Recursion Diagonal O(n log n) Ω(n)

DLC-Folding Diagonal Connected O(n
√

n) Ω(n)

DLC-Extending Diagonal Connected O(n
√

n) Ω(n)

U-Box-Partitioning Universal O(n
√

n) Ω(n)

U-Box-Doubling Universal O(n log n) Ω(n)

Section 2 brings together all definitions and basic facts that are used through-
out the paper. In Sect. 3, we study the problem of transforming a diagonal shape
into a line, without and with connectivity preservation. Section 4 presents our
universal transformations. In Sect. 5 we conclude and discuss further research
directions that are opened by our work.

2 Preliminaries and Definitions

The transformations considered here run on a two-dimensional square grid. Each
cell of the grid possesses a unique location addressed by non-negative coordinates
(x, y), where x denotes columns and y indicates rows. A shape S is a set of n
nodes on the grid, where each individual node u ∈ S occupies a single cell
cell(u) = (xu, yu), therefore we may also refer to a node by the coordinates of
the cell that it occupies at a given time. Two distinct nodes (x1, y1), (x2, y2) are
neighbours (or adjacent) iff x2 − 1 ≤ x1 ≤ x2 + 1 and y2 − 1 ≤ y1 ≤ y2 + 1
(i.e., their cells are adjacent vertically, horizontally or diagonally). A shape S
is connected iff the graph defined by S and the above neighbouring relation on
S is connected. Throughout, n denotes the number of nodes in a shape under
consideration.

A line, L ⊆ S, is defined by one or more consecutive nodes in a column or
row. That is, L = (x0, y0), (x1, y1), . . . , (xk, yk), for 0 ≤ k ≤ n, k ∈ Z, is a line iff

46 A. Almethen et al.

x0 = x1 = · · · = xk and |yk − y0| = k, or y0 = y1 = · · · = yk and |xk − x0| = k.
A line move, is an operation by which all nodes of a line L move together in a
single step, towards an empty cell adjacent to one of L’s endpoints. A line move
may also be referred to as step (or move or movement) and time is discrete and
measured in number of steps throughout. A move in this model is equivalent to
choosing a node u and a direction d ∈ {up, down, left, right} and moving u one
position in direction d. This will additionally push by one position the whole
line L of nodes in direction d, L (possibly empty) starting from a neighbour of
u in d and ending at the first empty cell.

More formally and in slightly different terms: A line L = (x1, y),
(x2, y), . . . , (xk, y) of length k, where 1 ≤ k ≤ n, can push all k nodes right-
wards in a single step to positions (x2, y), (x3, y), . . . , (xk+1, y) iff there exists an
empty cell to the right of L at (xk+1, y). The “down”, “left”, and “up” move-
ments are defined symmetrically, by rotating the whole system 90◦, 180◦, and
270◦ clockwise, respectively.

As already mentioned, we know that there are related settings in which any
pair of connected shapes A and B of the same order (“order” of a shape S
meaning the number of nodes of S throughout the paper) can be transformed
to each other while preserving the connectivity throughout the course of the
transformation.1 This, for example, has been proved for the case in which the
available movements to the nodes are rotation and sliding [DP04,MSS19]. It
can be shown that the model of [DP04,MSS19] is a special case of our model,
implying all transformations established there (with their running time at most
doubled, including universal transformations, are also valid transformations in
the present model).

Lemma 1. The minimum number of line moves by which a line of length k,
1 ≤ k ≤ n, can completely change its orientation2, is 2k − 2.

A property that typically facilitates the development of universal transfor-
mations, is reversibility of movements. To this end, we next show that line move-
ments are reversible.

Lemma 2 (Reversibility). Let (SI , SF) be a pair of connected shapes of the
same number of nodes n. If SI → SF (“→” denoting “can be transformed to via
a sequence of line movements”) then SF → SI .

Definition 1 (Nice Shape). A connected shape S ∈ NICE if there exists a
central line LC ⊆ S, such that every node u ∈ S \ LC is connected to LC via a
line perpendicular to LC .

Proposition 1. Let SNice be a nice shape and SL a straight line, both of the
same order n. Then SNice → SL (and SL → SNice) in O(n) steps.
1 In this paper, whenever transforming into a target shape B, we allow any placement

of B on the grid, i.e., any shape B′ obtained from B through a sequence of rotations
and translations.

2 From vertical to horizontal and vice versa.

Pushing Lines Helps: Efficient Universal Centralised Transformations 47

We now formally define the problems to be considered in this paper.
DiagonalToLine. Given an initial connected diagonal line SD and a target
vertical or horizontal connected spanning line SL of the same order, transform
SD into SL, without necessarily preserving the connectivity during the transfor-
mation.
DiagonalToLineConnected. Restricted version of DiagonalToLine in
which connectivity must be preserved during the transformation.
UniversalTransformation. Give a general transformation, such that, for all
pairs of shapes (SI , SF) of the same order, where SI is the initial shape and SF

the target shape, it will transform SI into SF , without necessarily preserving
connectivity during its course.

3 Transforming the Diagonal into a Line

We begin our study from the case in which the initial shape is a diagonal line
SD of order n. Our goal throughout the section is to transform SD into a span-
ning line SL, i.e., solve the DiagonalToLine and/or DiagonalToLineCon-
nected problems. We do this, because these problems seem to capture the
worst-case complexity of transformations in this model.

3.1 An O(n
√
n)-Time Transformation

We start from DiagonalToLine (i.e., no requirement to preserve connectiv-
ity). Our strategy (called DL-Partitioning) is as follows. We partition the diag-
onal into equal segments, as in Fig. 1(a). Then in each segment, we perform
a trivial (inefficient, but enough for our purposes) line formation by moving
each node independently to the leftmost column in that segment (Fig. 1(b)),
which transforms all segments into lines (Fig. 1(c)). Then, we transfer each line
segment all the way down to the bottommost row of the diagonal SD, see
Fig. 1(d). Finally, we change the orientation of all line segments to form the
target spanning line (Fig. 1(e)). More formally, let SD be a diagonal, occupying
(x, y), (x + 1, y + 1), . . . , (x + n − 1, y + n − 1), such that x and y are the left-
most column and the bottommost row of SD, respectively. SD is divided into
�√n� segments, l1, l2, . . . , l�√

n�, each of length 	√n
, apart possibly from a sin-
gle smaller one. Figure 1(a) illustrates the case of integer

√
n and in what follows,

w.l.o.g., we present the case of integer
√

n for simplicity. This strategy consists
of three phases:

Phase 1: Transforms each diagonal segment l1, l2, . . . , l√n into a line segment.
Notice that segment lk, 1 ≤ k ≤ √

n, contains
√

n nodes occupying positions
(x + hk, y + hk), (x + hk + 1, y + hk + 1), . . . , (x + hk +

√
n − 1, y + hk +

√
n − 1),

for hk = n − k
√

n; see Fig. 1(b). Each of these nodes moves independently to
the leftmost column of lk, namely column x + hk, and the new positions of the
nodes become (x+hk, y +hk), (x+hk, y +hk +1), . . . , (x+hk, y +hk +

√
n−1).

Due to symmetry, any segment follows the same procedure of gathering at its

48 A. Almethen et al.

Fig. 1. (a) Dividing the diagonal into
√

n segments of length
√

n each (integer
√

n case).
(b) A closer view of a single segment, where 1, 2, 3, . . . ,

√
n−1 are the required distances

for the nodes to form a line segment at the leftmost column (of the segment). (c) Each
line segment is transformed into a line and transferred towards the bottommost row of
the shape, ending up as in (d). (e) All line segments are turned into the bottommost
row to form the target spanning line.

bottommost row. By the end of Phase 1,
√

n vertical line segments have been
created (Fig. 1(c)).
Phase 2: Transfers all

√
n line segments from Phase 1 down to the bottommost

row y of the diagonal SD. Observe that line segment lk has to move distance hk

(see Fig. 1(d)).
Phase 3: Turns all

√
n line segments into the bottommost row y (Fig. 1(e)). In

particular, line lk will be occupying positions (x+hk, y), (x+hk +1, y), . . . , (x+
hk +

√
n − 1, y).

Theorem 1. Given an initial diagonal of n nodes, DL-Partitioning solves the
DiagonalToLine problem in O(n

√
n) steps.

Going one step further, we provide two O(n
√

n)-time transformations, DLC-
Folding and DLC-Extending, that additionally preserve connectivity of the shape
throughout the transformation.3

Theorem 2. Given an initial connected diagonal of n nodes, DLC-Folding and
DLC-Extending solve the DiagonalToLineConnected problem in O(n

√
n)

steps.
3 Due to space restrictions, these can be found in the full version of the paper.

Pushing Lines Helps: Efficient Universal Centralised Transformations 49

3.2 An O(n logn)-Time Transformation

We now investigate another approach (called DL-Doubling) for DiagonalTo-
Line (i.e., without necessarily preserving connectivity). The main idea is as fol-
lows. The initial configuration can be viewed as n lines of length 1. We start (in
phases) to successively double the length of lines (while halving their number)
by matching them in pairs through shortest paths, until a single spanning line
remains. Let the lines existing in each phase be labelled 1, 2, 3, . . . from top-right
to bottom-left. In each phase, we shall distinguish two types of lines, free and
stationary, which correspond to the odd (1, 3, 5, . . .) and even (2, 4, 6, . . .) lines
from top-right to bottom-left, respectively. In any phase, only the free lines move,
while the stationary stay still. In particular, in phase i, every free line j moves
via a shortest path to merge with the next (top-right to bottom-left) stationary
line j + 1. This operation merges two lines of length k into a new line of length
2k residing at the column of the stationary line. In general, at the beginning of
every phase i, 1 ≤ i ≤ log n, there are n/2i−1 lines of length 2i−1 each. These
are interchangeably free and stationary, starting from a free top-right one, and
at distance 2i−1 from each other. The minimum number of steps by which any
free line of length ki, 1 ≤ ki ≤ n/2 can be merged with the stationary next to it
is roughly at most 4ki = 4 · 2i (by two applications of turning of Lemma 1). By
the end of phase i (as well as the beginning of phase i + 1), there will be n/2i

lines of length 2i each, at distances 2i from each other. The total cost for phase i
is obtained then by observing that each of n/2i free lines is paying at most 4 · 2i
to merge with the next stationary. Thus, the transformation performs a linear
number of steps in each of the log n phases. See Fig. 2 for an illustration.

Lemma 3. By the end of phase i, for all 1 ≤ i ≤ log n, DL-Doubling has created
n/2i lines, each of length 2i, by performing O(n) steps in that phase.

Theorem 3. DL-Doubling transforms any diagonal SD of order n into a line
SL in O(n log n) steps.

An interesting observation for DiagonalToLine (i.e., without necessarily
preserving connectivity), is that the problem is essentially self-reducible. This
means that any transformation for the problem can be applied to smaller parts of
the diagonal, resulting in small lines, and then trying to merge those lines into
a single spanning line. An immediate question is then whether such recursive
transformations can improve upon the O(n log n) best upper bound established
so far. The extreme application of this idea is to employ a full uniform recur-
sion (call it DL-Recursion), where SD is first partitioned into two diagonals of
length n/2 each, and each of them is being transformed into a line of length
n/2, by recursively applying to them the same halving procedure. Finally, the
top-right half has to pay a total of at most 4(n/2) = 2n to merge with the
bottom-left half and form a single spanning line (and the same is being recur-
sively performed by smaller lines). By analysing the running time of such a
uniform recursion, we obtain that it is still O(n log n), partially suggesting that
recursive transformations might not be enough to improve upon O(n log n) (also

50 A. Almethen et al.

Fig. 2. The process of the O(n log n)-time DL-Doubling. Nodes reside inside the black
and grey cells.

possibly because of an Ω(n log n) matching lower bound, which is left as an
open question). If we denote by Tk the total time needed to split and merge
lines of length k, then the recursion starts from 1 line incurring Tn and ends
up with n lines incurring T1. In particular, we analyse the recurrence relation:
Tn = 2Tn/2 + 2n = 2(2Tn/4 + n) + 2n = 4Tn/4 + 4n = 4(2Tn/8 + n/2) + 4n =
8Tn/8 + 6n = · · · = 2iTn/2i + 2i · n = · · · = 2lognTn/2log n + 2(log n)n =
n · T1 + 2n log n = n + 2n log n = O(n log n), because T1 = 1.

Theorem 4. DL-Recursion transforms any diagonal SD of order n into a line
SL of the same order in O(n log n) steps.

4 Universal Transformations

4.1 An O(n
√
n)-Time Universal Transformation

In this section, we develop a universal transformation, called U-Box-Partitioning,
which exploits line movements in order to transform any initial connected shape
SI into any target shape SF of the same order n, in O(n

√
n) steps. Due to

reversibility (Lemma 2), it is sufficient to show that any initial connected shape
SI can be transformed into a spanning line (implying then that any pair of shapes
can be transformed to each other via the line and by reversing one of the two
transformations). We maintain our focus on transformations that are allowed to
break connectivity during their course. Observe that any initial connected shape

Pushing Lines Helps: Efficient Universal Centralised Transformations 51

SI of order n can be enclosed in an appropriately positioned n×n square (called
a box). Our universal transformation is divided into three phases:

Phase A: Partition the n×n box into
√

n×√
n sub-boxes (n in total in order to

cover the whole n×n box). For each sub-box move all nodes in it down towards
the bottommost row of that sub-box as follows. Start filling in the bottommost
row from left to right, then if there is no more space continue to the next row
from left to right and so on until all nodes in the sub-box have been exhausted
(resulting in zero or more complete rows and at most one incomplete row).
Moving down is done via shortest paths (where in the worst case a node has to
move distance 2

√
n); see Fig. 3.

Phase B: Choose one of the four length-n boundaries of the n × n box, say
w.l.o.g. the left boundary. This is where the spanning line will be formed. Then,
transfer every line via a shortest path to that boundary (incurring a maximum
distance of n − √

n per line).

Phase C: Turn all lines (possibly consisting of more than one line on top of each
other), by a procedure similar to that of Fig. 1(e), to end up with a spanning
line of n nodes on the left boundary.

Fig. 3. An example of moving all nodes in a
√

n×√
n sub-box to fill in the bottommost

rows of the sub-box (Phase A).

Lemma 4. A connected shape SI of order n, occupies O(
√

n) sub-boxes.

Proof. It follows directly from Corollary 1, which states that for a given con-
nected shape SI of n nodes enclosed by a square box of size n×n and any uniform
partitioning of that box into sub-boxes of dimension d, then, it holds that SI

can occupy at most O(nd) sub-boxes. Here, U-Box-Partitioning is dividing the
n × n square box into

√
n × √

n sub-boxes of dimension d =
√

n, therefore, SI

can occupy at most n√
n

= O(
√

n) sub-boxes. ��

Lemma 5. Starting from any connected shape SI of order n, Phases A and B
complete in O(n

√
n) steps each.

Lemma 6. Consider any length-n boundary and n nodes forming k lines, where
1 ≤ k ≤ n, that are perpendicular to that boundary. Then, by line movements,
the k lines require at most O(n) steps to form a line of length n on that boundary.
This implies that Phase C is completed in O(n) steps.

52 A. Almethen et al.

Proof. See Fig. 4. Observe that the k lines of n nodes are connected perpendic-
ularly to the length-n boundary via k nodes, where 1 ≤ k ≤ n. It means that
there are n − k nodes still waiting to be pushed into that boundary. According
to Lemma 1, each of the n−k nodes requires 2 steps to occupy the border, with
a total of 2(n − k) steps for all n − k nodes to completely fill up the boundary
of length n. Following that, U-Box-Partitioning pushes all k lines in a total t of
at most,

t = 2(n − k) = 2n − 2k

= O(n). ��

length-n gathering boundary

Δ = n

l1
l2

lk

Fig. 4. The dashed line is a length-n gathering boundary of the n × n box, which is
connected perpendicularly to k lines of n nodes.

Lemma 7. U-Box-Partitioning transforms any connected shape SI into a
straight line SL of the same order n, in O(n

√
n) steps.

Putting Lemma 7 and reversibility (Lemma 2) together gives:

Theorem 5. For any pair of connected shapes SI and SF of the same order n,
U-Box-Partitioning can be used to transform SI into SF (and SF into SI) in
O(n

√
n) steps.

4.2 An O(n logn)-Time Universal Transformation

We now present an alternative universal transformation, called U-Box-Doubling,
that transforms any pair of connected shapes, of the same order, to each other
in O(n log n) steps. Given a connected shape SI of order n, do the following.
Enclose SI into an arbitrary n × n box as in U-Box-Partitioning (Sect. 4.1). For
simplicity, we assume that n is a power of 2, but this assumption can be dropped.
Proceed in log n phases as follows: In every phase i, where 1 ≤ i ≤ log n, partition

Pushing Lines Helps: Efficient Universal Centralised Transformations 53

the n × n box into 2i × 2i sub-boxes, disjoint and completely covering the n × n
box. Assume that from any phase i − 1, any 2i−1 × 2i−1 sub-box is either empty
or has its k, where 0 ≤ k ≤ 2i−1, bottommost rows completely filled in with
nodes, possibly followed by a single incomplete row on top of them containing
l, where 1 ≤ l < 2i−1, consecutive nodes that are left aligned on that row. This
case holds trivially for phase 1 and inductively for every phase. That is, in odd
phases, we assume that nodes fill in the leftmost columns of boxes in a symmetric
way. Every 2i × 2i sub-box (of phase i) consists of four 2i−1 × 2i−1 sub-boxes
from phase i − 1, each of which is either empty or occupied as described above.

Consider the case where i is odd, thus, the nodes in the 2i−1 × 2i−1 sub-
boxes are bottom aligned. For every 2i × 2i sub-box, move each line from the
previous phase that resides in the sub-box to the left as many steps as required
until that row contains a single line of consecutive nodes, starting from the left
boundary of the sub-box, as shown in Fig. 5(a). With a linear procedure similar
to that of Lemma 6 (and of nice shapes), start filling in the columns of the 2i×2i

sub-box from the leftmost column and continuing to the right. If an incomplete
column remains, push the nodes in it to the bottom of that column; see Fig. 5(b)
for an example. The case of even i is symmetric, the only difference being that
the arrangement guarantee from i − 1 is left alignment on the columns of the
2i−1 × 2i−1 sub-boxes and the result will be bottom alignment on the rows of
the 2i × 2i sub-boxes of the current phase. This completes the description of the
transformation. We first prove correctness:

(a) (b)

Fig. 5. (a) Pushing left in each 2i×2i sub-box. (b) Cleaning the orientation by aligning
(filling) the leftmost columns.

Lemma 8. Starting from any connected shape SI of order n, U-Box-Doubling
forms by the end of phase log n a line of length n.

Proof. In phase log n, the procedure partitions into a single box, which is the
whole original n × n box. Independently of whether gathering will be on the
leftmost column or on the bottommost row of the box, as all n nodes are con-
tained in it, the outcome will be a single line of length n, vertical or horizontal,
respectively. ��

Now, we shall analyse the running time of U-Box-Doubling. To facilitate
exposition, we break this down into a number of lemmas.

Lemma 9. In every phase i, the “super-shape” formed by the occupied 2i × 2i

sub-boxes is connected.

54 A. Almethen et al.

Proof. By induction on the phase number i (starting from SI connected) and
the observation that a sub-box is occupied iff any of its own sub-boxes (of any
size) had ever been occupied, because nodes are not transferred between 2i × 2i

sub-boxes before phase i + 1. ��
Lemma 10. Given that U-Box-Doubling starts from a connected shape SI of
order n, the number of occupied sub-boxes in any phase i is O(n

2i).

Proof. First, observe that a 2i×2i sub-box of phase i is occupied in that phase iff
SI was originally going through that box. This follows from the fact that nodes
are not transferred by this transformation between 2i×2i sub-boxes before phase
i + 1. Therefore, the 2i × 2i sub-boxes occupied in (any) phase i are exactly the
2i × 2i sub-boxes that the original shape SI would have occupied, thus, it is
sufficient to upper bound the number of 2i × 2i sub-boxes that a connected
shape of order n can occupy. Or equivalently, we shall lower bound the number
Nk of nodes needed to occupy k sub-boxes.

In order to simplify the argument, whenever SI occupies another unoccupied
sub-box, we will award it a constant number of additional occupations for free
and only calculate the additional distance (in nodes) that the shape has to cover
in order to reach another unoccupied sub-box. In particular, pick any node of SI

and consider as freely occupied that sub-box and the 8 sub-boxes surrounding
it. Giving sub-boxes for free can only help the shape, therefore, any lower bound
established including the free sub-boxes will also hold for shapes that do not have
them (thus, for the original problem). Given that free boxes are surrounding the
current node, in order for SI to occupy another sub-box, at least one surrounding
2i × 2i sub-box must be exited. This requires covering a distance of at least 2i,
through a connected path of nodes. Once this happens, SI has just crossed the
boundary between an occupied sub-box and an unoccupied sub-box. Then, by
giving it for free at most 5 more unoccupied sub-boxes, SI has to pay another
2i nodes to occupy another unoccupied sub-box. We then continue applying this
5-for-free strategy until all n nodes have been used.

To sum up, the shape has been given 8 sub-boxes for free, and then for every
sub-box covered it has to pay 2i and gets 5 sub-boxes. Thus, to occupy k = 8+l·5
sub-boxes, at least l · 2i nodes are needed, that is, Nk ≥ l · 2i = k−8

5 · 2i. But
shape SI has order n, which means that the number of nodes available is upper
bounded by n, i.e., Nk ≤ n, which gives k−8

5 · 2i ≤ Nk ≤ n ⇒ k−8
5 · 2i ≤ n ⇒

k−8
5 ≤ n

2i ⇒ k ≤ 5
(
n
2i

)
+ 8. We conclude that the number of 2i × 2i sub-boxes

that can be occupied by a connected shape SI , and, thus, also the number of
2i × 2i sub-boxes that are occupied by the transformation in phase i, is at most
5(n

2i) + 8 = O(n
2i). ��

As a corollary of this, we obtain:

Corollary 1. Given a uniform partitioning of n × n square box containing a
connected shape SI of order n into d × d sub-boxes, it holds that SI can occupy
at most O(nd) sub-boxes.

Pushing Lines Helps: Efficient Universal Centralised Transformations 55

By using Lemma 10, we can then show that:

Lemma 11. Starting from any connected shape of n nodes, U-Box-Doubling
performs O(n log n) steps during its course.

Proof. We prove this by showing that in every phase i, 1 ≤ i ≤ log n, the
transformation performs at most a linear number of steps. We partition the
occupied 2i ×2i sub-boxes into two disjoint sets, B1 and B0, where sub-boxes in
B1 have at least 1 complete line (from the previous phase), i.e., a line of length
2i−1, and sub-boxes in B0 have 1 to 4 incomplete lines, i.e., lines of length
between 1 and 2i−1 − 1. For B1, we have that |B1| ≤ n

2i−1 . Moreover, for every
complete line, we pay at most 2i−1 to transfer it left or down, depending on the
parity of i. As there are at most n

2i−1 such complete lines in phase i, the total
cost for this is at most 2i · (n

2i−1) = n.
Each sub-box in B1 may also have at most 4 incomplete lines from the pre-

vious phase, where at most two of them may have to pay a maximum of 2i−1 to
be transferred left or down, depending on the parity of i (as the other two are
already aligned). As there are at most n

2i−1 sub-boxes in B1, the total cost for
this is at most 2 · 2i−1 · (

n
2i−1

)
= 2n.

Therefore, the total cost for pushing all lines towards the required border in
B1 sub-boxes is at most n + 2n = 3n. For B0, we have (by Lemma 10) that
the total number of occupied sub-boxes in phase i is at most 5

(
n

2i−1

)
+ 8, then

|B0| ≤ 5
(

n
2i−1

)
+8 (taking into account also the worst case where every occupied

sub-box may be of type B0). There is again a maximum of 2 incomplete lines per
such sub-box that need to be transferred a distance of at most 2i−1, therefore,
the total cost for this to happen in every B0 sub-box is at most 2·2i−1(5· n

2i +8) =
5n+8·2i ≤ 13n. By paying the above costs, all occupied sub-boxes have their lines
aligned horizontally to their left or vertically to their bottom border, and the final
task of the transformation for this phase is to apply a linear procedure in order
to fill in the left (bottom) border. This procedure costs at most 2k for every k
nodes aligned as above (Lemma 1), therefore, in total at most 2n. This completes
the operation of the transformation for phase i. Putting everything together, we
obtain that the total cost Ti, in steps, for phase i is Ti ≤ 3n + 13n + 2n = 18n.
As there is a total of log n phases, we conclude that the total cost T of the
transformation is T ≤ 18n · log n = O(n log n). ��

Finally, Lemmas 8 and 11, and reversibility (Lemma 2) imply that:

Theorem 6. For any pair of connected shapes SI and SF of the same order n,
transformation U-Box-Doubling can be used to transform SI into SF (and SF

into SI) in O(n log n) steps.

5 Conclusions

In this work, we studied a new linear-strength model of line movements. The
nodes can now move in parallel by translating a line of any length by one position
in a single time-step. This model, having the model of [DP04,MSS19] as a special

56 A. Almethen et al.

case, adopts all its transformability results (including universal transformations).
Then, our focus naturally turned to investigating if pushing lines can help achieve
a substantial gain in performance (compared to the Θ(n2) of those models).
Even though it can be immediately observed that there are instances in which
this is the case (e.g., initial shapes in which there are many long lines, thus,
much initial parallelism to be exploited), it was not obvious that this holds also
for the worst case. By identifying the diagonal as a potentially worst-case shape
(essentially, because in it any parallelism to be exploited does not come for free),
we managed to first develop an O(n

√
n)-time transformation for transforming

the diagonal into a line, then to improve upon this by two transformations that
achieve the same bound while preserving connectivity, and finally to provide
an O(n log n)-time transformation (that breaks connectivity). Going one step
further, we developed two universal transformations that can transform any pair
of connected shapes to each other in time O(n

√
n) and O(n log n), respectively.

There is a number of interesting problems that are opened by this work. The
obvious first target (and apparently intriguing) is to answer whether there is an
o(n log n)-time transformation (e.g., linear) or whether there is an Ω(n log n)-
time lower bound matching our best transformations. We suspect the latter, but
do not have enough evidence to support or prove it. Moreover, we didn’t con-
sider parallel time in this paper. If more than one line can move in parallel in
a time-step, then are there variants of our transformations (or alternative ones)
that further reduce the running time? In other words, are there parallelisable
transformations in this model? In particular, it would be interesting to inves-
tigate whether the present model permits an O(log n) parallel time (universal)
transformation, i.e., matching the best transformation in the model of Aloupis
et al. [ACD+08]. It would also be worth studying in more depth the case in
which connectivity has to be preserved during the transformations. In the rele-
vant literature, a number of alternative types of grids have been considered, like
triangular (e.g., in [DDG+14]) and hexagonal (e.g., in [WWA04]), and it would
be interesting to investigate how our results translate there. Finally, an immedi-
ate next goal is to attempt to develop distributed versions of the transformations
provided here.

References

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Compu-
tation in networks of passively mobile finite-state sensors. Distrib. Com-
put. 18(4), 235–253 (2006)

[AAER07] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

[ABD+13] Aloupis, G., et al.: Efficient reconfiguration of lattice-based modular
robots. Comput. Geom. 46(8), 917–928 (2013)

[ACD+08] Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V.,
Wuhrer, S.: Reconfiguration of cube-style modular robots using O(logn)
parallel moves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.)
ISAAC 2008. LNCS, vol. 5369, pp. 342–353. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-92182-0 32

https://doi.org/10.1007/978-3-540-92182-0_32

Pushing Lines Helps: Efficient Universal Centralised Transformations 57

[BDF+19] Becker, A.T., Demaine, E.D., Fekete, S.P., Lonsford, J., Morris-Wright,
R.: Particle computation: complexity, algorithms, and logic. Nat. Com-
put. 18(1), 181–201 (2019)

[BG15] Bourgeois, J., Goldstein, S.C.: Distributed intelligent MEMS: progresses
and perspective. IEEE Syst. J. 9(3), 1057–1068 (2015)

[BKRT04] Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control
for lattice-based self-reconfigurable robots. Int. J. Rob. Res. 23(9), 919–
937 (2004)

[CFPS12] Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed com-
puting by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879
(2012)

[CKLWL09] Cornejo, A., Kuhn, F., Ley-Wild, R., Lynch, N.: Keeping mobile robot
swarms connected. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805,
pp. 496–511. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04355-0 50

[DDG+14] Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.,
Strothmann, T.: Brief announcement: Amoebot-a new model for pro-
grammable matter. In: Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 220–222. ACM
(2014)

[DDG+18] Daymude, J.J., et al.: On the runtime of universal coating for pro-
grammable matter. Nat. Comput. 17(1), 81–96 (2018)

[DDL+09] Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.:
Self-assembly of DNA into nanoscale three-dimensional shapes. Nature
459(7245), 414 (2009)

[Dem01] Demaine, E.D.: Playing games with algorithms: algorithmic combinato-
rial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001.
LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44683-4 3

[DFSY15] Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of
geometric patterns with oblivious mobile robots. Distrib. Comput. 28(2),
131–145 (2015)

[DGMRP06] Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-
tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006).
https://doi.org/10.1007/11864219 4

[DGR+15] Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: An algorithmic framework for shape formation problems in self-
organizing particle systems. In: Proceedings of the Second Annual Inter-
national Conference on Nanoscale Computing and Communication, p.
21. ACM (2015)

[DGR+16] Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Universal shape formation for programmable matter. In: Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 289–299. ACM (2016)

[DLFP+18] Di Luna, G.A., Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Line
recovery by programmable particles. In: Proceedings of the 19th Inter-
national Conference on Distributed Computing and Networking, ICDCN
2018, pp. 4:1–4:10. ACM, New York (2018)

https://doi.org/10.1007/978-3-642-04355-0_50
https://doi.org/10.1007/978-3-642-04355-0_50
https://doi.org/10.1007/3-540-44683-4_3
https://doi.org/10.1007/3-540-44683-4_3
https://doi.org/10.1007/11864219_4

58 A. Almethen et al.

[DLFS+19] Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.:
Shape formation by programmable particles. Distrib. Comput. (2019).
https://doi.org/10.1007/s00446-019-00350-6

[Dot12] Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78–88
(2012)

[DP04] Dumitrescu, A., Pach, J.: Pushing squares around. In: Proceedings of the
Twentieth Annual Symposium on Computational Geometry, pp. 116–123.
ACM (2004)

[DSY04a] Dumitrescu, A., Suzuki, I., Yamashita, M.: Formations for fast locomo-
tion of metamorphic robotic systems. Int. J. Rob. Res. 23(6), 583–593
(2004)

[DSY04b] Dumitrescu, A., Suzuki, I., Yamashita, M.: Motion planning for meta-
morphic systems: feasibility, decidability, and distributed reconfiguration.
IEEE Trans. Rob. Autom. 20(3), 409–418 (2004)

[FPS12] Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Obliv-
ious Mobile Robots. Synthesis Lectures on Distributed Computing The-
ory, vol. 3(2), pp. 1–185. Morgan & Claypool Publishers, San Rafael
(2012)

[FRRS16] Fekete, S., Richa, A.W., Römer, K., Scheideler, C.: Algorithmic founda-
tions of programmable matter (Dagstuhl Seminar 16271). In: Dagstuhl
Reports, vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
(2016). Also in ACM SIGACT News, vol. 48.2, pp. 87–94 (2017)

[GKR10] Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules
for programmable matter through self-disassembly. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2485–2492.
IEEE (2010)

[HD05] Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puz-
zles and other problems through the nondeterministic constraint logic
model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

[KCL+12] Knaian, A.N., Cheung, K.C., Lobovsky, M.B., Oines, A.J., Schmidt-
Neilsen, P., Gershenfeld, N.A.:. The milli-motein: a self-folding chain of
programmable matter with a one centimeter module pitch. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1447–
1453. IEEE (2012)

[KKM10] Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous
Problem in the Ring. Synthesis Lectures on Distributed Computing The-
ory, vol. 1(1), pp. 1–122. Morgan & Claypool Publishers, San Rafael
(2010)

[MS16] Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed
stable network construction. Distrib. Comput. 29(3), 207–237 (2016)

[MS18] Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks.
Commun. ACM 61(2), 72–81 (2018)

[MSS19] Michail, O., Skretas, G., Spirakis, P.G.: On the transformation capability
of feasible mechanisms for programmable matter. J. Comput. Syst. Sci.
102, 18–39 (2019)

[NGY00] Nguyen, A., Guibas, L.J., Yim, M.: Controlled module density helps
reconfiguration planning. In: Proceedings of 4th International Workshop
on Algorithmic Foundations of Robotics, pp. 23–36 (2000)

[RCN14] Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in
a thousand-robot swarm. Science 345(6198), 795–799 (2014)

https://doi.org/10.1007/s00446-019-00350-6

Pushing Lines Helps: Efficient Universal Centralised Transformations 59

[Rot06] Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns.
Nature 440(7082), 297–302 (2006)

[RW00] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-
assembled squares. In: Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC), pp. 459–468. ACM (2000)

[SMO+18] Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uni-
form deployment of mobile agents in asynchronous rings. J. Parallel Dis-
trib. Comput. 119, 92–106 (2018)

[WCG+13] Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin,
P.: Active self-assembly of algorithmic shapes and patterns in polylog-
arithmic time. In: Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, pp. 353–354. ACM (2013)

[Win98] Winfree, E.: Algorithmic self-assembly of DNA. Ph.D thesis, California
Institute of Technology, June 1998

[WWA04] Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of
metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)

[YS10] Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable
by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28),
2433–2453 (2010)

[YSS+07] Yim, M., et al.: Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Rob. Autom. Mag. 14(1), 43–52 (2007)

[YUY16] Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: pattern
formation problem for synchronous mobile robots in the three dimen-
sional Euclidean space. In: Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, pp. 447–449. ACM (2016)

Foundations

Existence of Connected Intersection-Free
Subgraphs in Graphs with Redundancy

and Coexistence Property

Lucas Böltz(B) and Hannes Frey

University of Koblenz-Landau, 56070 Koblenz, Germany
{boeltz,frey}@uni-koblenz.de

Abstract. Constructing connected intersection-free graphs is a relevant
building block for local algorithmic solutions for data communication,
task coordination and network maintenance in wireless sensor networks,
sensor-actuator networks and distributed robotics. One way to construct
such graph is to remove edges from the given network graph. Though
an intersection-free graph can always be constructed that way, assuring
connectivity at the same time is not possible for arbitrary graphs. It
requires the underlying graph to have a supporting structure. In search
of algorithms for constructing intersection-free subgraphs in wireless net-
works redundancy and coexistence have been identified as such proper-
ties. Practical evidence shows that these properties may hold with high
probability in many practical wireless network graphs. In this work we
study graphs obeying redundancy and coexistence. We demonstrate that
so far existing solutions cannot guarantee connectivity of the constructed
intersection-free subgraphs. Thus, one fundamental question stood open
so far, if graphs obeying redundancy and coexistence property always
contain a connected intersection-free subgraph at all. The contribution
of this work is in answering this question in the positive.

Keywords: Redundancy property · Coexistence property · Connected
subgraph · Intersection-free subgraph

1 Introduction

1.1 Connected and Intersection-Free Subgraphs

Constructing intersection-free and connected graphs based on a given connected
network graph is a key building block for many local algorithmic solutions in the
context of wireless networks including sensor networks, sensor-actuator networks,
and autonomous robots. Here connected means that for each vertex at least one
path has to exist in the constructed graph. Intersection-free means that the graph
is given with its vertices embedded on the euclidean plane, it’s edges represented

This work is funded in part by the DFG grant FR 2978/1-2.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 63–78, 2019.
https://doi.org/10.1007/978-3-030-34405-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_4

64 L. Böltz and H. Frey

by a line drawing (typically a straight line) and none of it’s edges are allowed to
intersect with another one. Two edges are said to intersect if they have a point
in common that is not an endpoint of both edges.

The network graph can be given directly with it’s vertices representing the
devices (typically the device positions) and devices being connected if they
can communicate. Alternatively, we are given a virtual overlay graph draw-
ing where none of the vertices and edges are direct physical network devices
and connections. Such virtual overlay vertices and edges then have representa-
tives/responsibilities among the physical devices. In all cases the task is to find
connected intersection-free graph drawings.

The most prominent local algorithms resorting to intersection-free draw-
ings are all sorts of local data communication1 including geographic unicast
routing (Karp and Kung (2000); Bose et al. (2001)), multicast (Sanchez et al.
(2007); Frey et al. (2008)), geocast (Stojmenovic (2004)), anycast (Mitton et al.
(2009)), mobicast (Huang et al. (2004)), and broadcast (Seddigh et al. (2001);
Stojmenovic et al. (2002)). Other algorithmic solutions include void and bound-
ary detection (Fang et al. (2004)), distributed data storage (Ratnasamy et al.
(2003); Deng and Stojmenovic (2009)), tracking of mobile objects (Tsai et al.
(2007)), localized address autoconfiguration (Li et al. (2010)), or coordination
of mobile sensors (Tan (2008)).

Many approaches to construct connected intersection-free subgraphs in the
context of wireless networks are known. The majority of the approaches require
the network graph to be given as a unit disk graph. In such graph two vertices are
connected iff their euclidean distance is less or equal than a prescribed unit disk
radius. Well known representatives working on unit disk graphs include Gabriel
graph (Bose et al. (2001)), relative neighborhood graph (Karp and Kung (2000)),
Delaunay triangulation based approaches (Gao et al. (2001)); Li et al. (2002))
and approaches based on geographic clustering (Frey (2005)).

The search for solutions beyond the simplified unit disk graph model yielded
the concept of quasi unit disk graphs defined by Barrière et al. (2003). In such
graph two vertices are connected if their distance is less or equal than a minimum
transmission radius r and they are not connected if their distance is more than
a maximum transmission radius R. In between both radii vertices are allowed
to be connected but need not to be. In the work of Barrière et al. (2003); Kuhn
et al. (2003) a concept to add virtual links to such quasi unit disk graphs is
described and analyzed. Based on that extended graph an intersection-free con-
nected drawing can always be found, provided the relation between maximum
and minimum radius is at most

√
2.

With the introduction of quasi unit disk graphs the gap between theoretical
algorithmic research and its practical applicability in real wireless networks was
significantly reduced. However, it still remains of particular importance to further
narrow and finally close that gap, for example by getting rid of circle geometry
in the graph requirements. The principle idea is to find structural properties

1 Many more paper can be listed here and the following paragraph for most of the
discussed problems and approaches. To avoid clutter we pick only one or two repre-
sentative references for each specific algorithm class.

Existence of Connected Intersection-Free RCG Subgraphs 65

inherent or at least highly probable in realistic wireless networks which can be
exploited algorithmically with provable guarantees.

1.2 Redundancy and Coexistence Property

Gao et al. (2001) observed and proved (Lemma 4.1 in that paper) for unit disk
graphs that for any two intersecting edges at least one edge end point has to
be connected to all other ones. We term this as redundancy property in the
following. Frey and Görgen (2005) observed an proved (Theorem 1 in that paper)
that this property is inherited when constructing an overlay graph F of a given
graph G based on a hexagon tessellation of the plane. If the underlying graph G is
unit disk then the redundancy property is as well satisfied for the so constructed
overlay graph F . This was as well observed by Philip et al. (2006)2 for the same
principle applied on square tessellations (Lemma 2 and the discussion thereafter
in that paper), and proved there by referring to the proof in the report by Philip
(2005).

Philip et al. (2006) studied for the first time if a connected undirected graph
satisfying redundancy property can be transformed into a connected intersection-
free subgraph by just removing edges. For the algorithm defined there (Algo-
rithms 1 and 2) the authors observed that the resulting graphs are always
intersection-free but sometimes not connected. This is not a peculiarity of that
algorithm as it was later theoretically substantiated by Frey and Simplot-Ryl
(2007) showing with a simple example (Fig. 5(b) in that paper) that in general
there are connected graphs which satisfy redundancy property but which can
not be transformed into a connected intersection-free subgraph by just remov-
ing edges. Thus, the question remained open, which additional structural graph
property besides redundancy assures that unit disk graphs can be transformed
into such subgraphs.

The problem then seemed to be solved theoretically by Mathews and Frey
(2012) introducing the LLRAP algorithm (see Theorem 1 there). The assump-
tions made for LLRAP are graphs satisfying redundancy and one additional
property termed coexistence there. The latter assures whenever three vertices
are forming a connected triangle, all vertices inside the triangle will be con-
nected to the triangle vertices. It is easy to see as written in Lemma 1 of the
work introducing LLRAP that this is an additional structural property inherent
to unit disk graphs.

1.3 Empirical Evidence for Log-Normal Shadowing

LLRAP and variants thereof were subject to different simulations studies based
on log-normal shadowing (LNS) modeled graphs. The LNS model is a well estab-
lished realistic physical layer model where a communication link exists between
two vertices whenever a stochastically described distance dependent received
signal strength value is above a given threshold.

2 the term redundancy property was used there for the first time.

66 L. Böltz and H. Frey

The LLRAP precursor CLDR described by Mathews and Frey (2011) removes
links only if it is safe to do so, such that subgraph connectivity is assured.
This is at the expense that possible intersections have to be tolerated in the
solution. However, in simulation studies under log-normal shadowing performed
in that work, only a small fraction of simulated graphs were not intersection-
free. A similar simulation study repeated for LLRAP by Mathews and Frey
(2012) even showed in the log-normal shadowing simulation settings used there
that LLRAP produced intersection-free subgraphs in all cases. A more extensive
simulation study was delivered at a later stage by Mathews [2012]. Here LLRAP
was applied on overlay graphs resulting from geographical clustering. In the
simulation studies based on log-normal shadowing modeled graphs the resulting
subgraphs are almost always connected and intersection-free.

Though redundancy and coexistence are not assured in graphs pertaining to
the log-normal shadowing model, the promising simulation results on LLRAP
and its variants under log-normal shadowing motivated Neumann et al. (2016)
to further study by simulation, how far redundancy and coexistence can be
assumed for networks pertaining to that model. For the considered simulation
settings the network graph satisfies coexistence and redundancy with a high
relative frequency.

In conclusion, all empirical studies so far suggest that designing algorithms for
graphs with redundancy and coexistence property is a promising link to narrow
the gap between theoretic algorithmic research on constructing intersection-free
subgraphs and applicability of such algorithms in realistic wireless multihop
networks.

1.4 Contribution and Outline of This Work

The contribution of this work is two fold. We study the correctness proof of
LLRAP and show that within the proof one additional assumption on the under-
lying network graph was implicitly made which assures that the intersection-free
result of LLRAP is always connected. We construct an example with a few ver-
tices dropping that implicit assumption. With that example we observe that con-
nectivity depends on the order in which LLRAP is processing the links. Though
the simple example could be resolved locally, we show a way to construct arbi-
trary large so called cyclic redundant paths (Theorem 1) which finally leads to
the question if redundancy and coexistence of connected graphs is sufficient to
assure that an intersection-free connected subgraph has to exist at all. Answer-
ing that question is the second contribution of this paper. First of all we show
by an example that the class of unit disk graphs and the class of graphs satis-
fying redundancy and coexistence are not isomorphous, i.e. that we are facing
a problem at all. We derive necessary conditions as building blocks to support
a recursive construction of a connected intersection-free subgraph. This is then
exploited in our main theorem (Theorem 2) which shows by an induction argu-
ment that such subgraph always exists.

The remainder of this paper is structured as follows. In the next section we
define the terms and notation used throughout the paper. Then Sect. 3 is dedi-

Existence of Connected Intersection-Free RCG Subgraphs 67

cated to analysis of LLRAP correctness. We derive the term of cyclic redundancy
which leads to the general question on existence of intersection-free connected
subgraphs. Existence is then affirmed in Sect. 4 by an induction proof. Finally,
in Sect. 5 we conclude the relevance of our findings and point towards two main
next research directions.

2 Terms and Notations

We consider undirected network graphs G = (V,E) with a finite vertex set V
and an edge set E of undirected pairs of vertices. The vertices are located in 2D
euclidean space. We use u to refer to both, the address of that vertex and its
position. We use the short hand notation uv to refer to edge {u, v}. Notation
uv also stands for the straight line segment connecting vertices u and v. We use
notation u ∈ G and uv ∈ G as synonyms for u ∈ V and uv ∈ E. Removing
vertices or edges from a graph G will be expressed by short hand notation G\u
and G\uv, respectively.

A path from u to v in G is denoted by p(u; v). We denote the concatenation
of two paths p(u; v) and p(v;w) by p(u; v) + p(v;w). We say two vertices are
connected in a graph if there exists at least one path between these two vertices in
that graph. We say a graph is connected if each pair of its vertices are connected.

In a unit disk graph (UDG) two vertices are connected by an edge iff their
euclidean distance is less or equal than a given unit disk radius. We say two
edges uv and wx intersect if they have a point in common which is not an end
vertex of both edges.

Fig. 1. Redundancy and Coexsistence property

A graph satisfies redundancy property if for all intersecting edges uv and wx
at least one of the vertices {u, v, w, x} is a neighbor of all other vertices in that
set (see Fig. 1(a) where the dashed edges may exist or not). Three vertices of a
graph are forming a triangle Δ(u, v, w) if all edges uv, vw and wu exist in that
graph. A graph satisfies coexistence property if for each vertex x located in a

68 L. Böltz and H. Frey

triangle Δ(u, v, w) the edges ux, vx and wx exist (see Fig. 1(b)). A graph that
satisfies both properties is called a redundancy coexistence graph (RCG).

Observe that the graph classes UDG and RCG are not isomorphous in the
sense that for every graph from RCG vertices can be relocated such that redun-
dancy and coexistence property are retained and all edges satisfy the unit disk
graph property in addition. If that would be the case, obviously each connected
graph from RCG could be transformed into a connected graph in UDG where
existence of connected intersection-free subgraphs is well known. Retransforma-
tion of any such subgraph then yields a solution. The following example shows
that it is not that simple, i.e. there are graphs in RCG which can not be trans-
formed into graphs in UDG in the sense as mentioned before.

Corollary 1 (Quadrilateral property of UDGs). Let u, v, w, x be vertices
connected in a UDG forming a quadrilateral, without a triangle formed by 3 of
the 4 vertices (see Fig. 2(a)). Each vertex z located inside the quadrilateral is
connected by an edge to at least two of the vertices of the quadrilateral.

Proof. Consider the quadrilateral formed by the edges uv, vw, wx and xu. Since
uv and vw exist, the vertices u and w have to be located inside the unit disk
around v. We term the vertex triple (u, v, w) a virtual triangle Δuvw (we term
it virtual since the edge uw does not exist by assumption). The virtual triangle
Δuvw is completely contained in the unit disk around v. The same holds for
the virtual triangles Δvwx in the unit disk around w, Δwxu in the unit disk
around x and Δxuv in the unit disk around u. Since each vertex z inside the
quadrilateral is contained in at least two virtual triangles, it is also contained
in at least two unit disks and therefore connected by an edge with at least two
vertices of the quadrilateral. ��

The example in Fig. 2(b) shows a valid RCG with a quadrilateral and an
additional triangle with one vertex of the quadrilateral and one located inside and
the other one outside the quadrilateral, i.e. the quadrilateral property does not
hold for the class of RCGs in general. Thus, the class of UDGs and RCGs are not
isomorphous. However, since every UDG satisfies redundancy and coexistence as
discussed, the class of UDGs is contained within the class of RCGs.

Fig. 2. Difference between RCG and UDG

Existence of Connected Intersection-Free RCG Subgraphs 69

3 LLRAP and Connectivity

The Localized Link Removal and Addition based Planarization algorithm (LLRAP)
of Mathews and Frey (2012) is a localized topology control algorithm based on link
removal for removing all intersections from an RCG. The algorithm is divided into
two phases, the local crosslink detection and removal phase and the local link addi-
tion phase. In the first phase, all pairs of intersecting edges are detected in the
original network graph G and removed according to the following rule. Each edge
uv, which is intersected by an edge wx in G is deleted if either the path p(u;w; v)
containing the edges uw and wv or the path p(u;x; v) containing the edges ux and
xv exists in G. In the subsequent addition phase an edge uv is added to the graph
again, if it does not intersect with an edge of the so far constructed graph G′. This
leads to the graph G′′ = G′ + uv in that step. Since all intersections are eval-
uated and removed in the removal phase and edges added in the addition phase
only if they don’t intersect with the intermediate result, the final resulting graph
is obviously an intersection-free drawing. However, in the addition phase there is
no specific order for adding edges. Therefore the case that an added edge blocks all
other edges required to connect two disjoint components may occur (see Fig. 3).
A first approach to solve this problem might be that we require for an added edge
that it has to connect two disjoint components in the so far constructed graph. This
might be a plausible approach, because adding an edge that connects two vertices
of the same componentwill only block other possible edgeswhich could be re-added
to the graph, but is no improvement on the way to construct a connected graph.
Unfortunately, there are still graphs were LLRAP does not work, even if we add
the condition that an edge can only be added if it connects two unconnected com-
ponents of the graph (see Fig. 3). Therefore there is no easy way to determine the
order in which the edges should be re-added to the graph. However, this order is
determining whether the algorithm finds a solution or not.

Fig. 3. Example for a graph where LLRAP could fail

In this example the reason why the graph gets disconnected is that an edge
wx is removed because there is an alternative path p(w; y;x) containing the edges

70 L. Böltz and H. Frey

wy and xy. However, the edge wy is also removed since there is an alternative
path p(w;x; y) containing the edges wx and xy. So the edges wx and wy are
part of the alternative path for each other. However, such a dependence can
also contain more than two edges and therefore arbitrary long cycles can occur.
To show this we need to introduce the following notation. Let uv and wx be
intersecting edges in an RCG and let v be the vertex that is connected by an
edge to both end vertices of the intersecting edge wx. Then vw and vx are
called redundancy edges for uv. If there is a sequence S of edges e1, . . . , ek such
that ei is a redundancy edge for ei−1 for i ∈ 2, ..., k we call the sequence S
redundancy sequence. If for a sequence e1 is redundancy edge for ek we call the
sequence a redundancy cycle and its edges cyclic redundant edges. We define the
distance |uv,wx| between two edges uv and wx as the length of the shortest
path connecting a vertex of the edge uv with a vertex of the edge wx.

Theorem 1 (Arbitrarily long redundancy cycles). For each n ∈ N, one
can always construct a redundancy cycle R, such that for each edge u0v0 ∈ R
holds, that another edge uivi ∈ R exists with |u0v0, uivi| > n.

Proof. A graph containing an arbitrarily large redundancy cycle can be con-
structed by using the following scheme: Set two vertices v0 and v1 and the edge
v0v1. After that, add node v2 and the edges v0v2 and v1v2 to the graph (see
Fig. 4).

Then repeat the following for each 3 ≤ i ≤ 2m + 2,m ∈ N: Set vi and xi,
such that vixi only intersects vi−3vi−1 and vi−2vi−1 and ∀ 2 ≤ j ≤ i holds that
Δvj−2vj−1vj = ∅ and vi−1vi does not intersect vj−2vj−1. Then add the edge
vi−1xi, to let G satisfy redundancy property (see Fig. 4(a)). It also holds that,
v2m = v0, v2m+1 = v1 and v2m+2 = v2.

Each graph which is constructed this way satisfies redundancy property and

R = {{v0, ..., v2m−1}, {(v0, v1), (v1, v2), ..., (v2m−2, v2m−1), (v2m−1, v0)}}

Fig. 4. The scheme to construct arbitrary long redundancy cycles

Existence of Connected Intersection-Free RCG Subgraphs 71

is a redundancy cycle with |ER| = 2m. All edges (vi, vi+2) are not part of R.
These edges form two envelopes: An outer envelope and an inner envelope (see
Fig. 4(b)).

Due to the fact, that all vi, vi+1, vi+2 form triangles, edges (vi, vi+2) and
(vi+1, vi+3) cannot be part of the same envelope. Hence, all of the edges (vi, vi+2)
with even indices form one envelope, whereas all of these edges with odd indices
form the other one. It follows, that each envelope contains m edges. It is also
clear, that the shortest path between two cyclic redundant edges does not con-
tain any other cyclic redundant edge, because every cyclic redundant edge has
a vertex on each envelope. Hence, the maximum distance between two cyclic
redundant edges is 	m

2
.
Let a graph be constructed as described above with m ≥ 2(n + 1). Then, for

each edge (vi, vi+1) ∈ R holds, that there exists another edge (uj , vj+1) ∈ R, 0 ≤
i, j ≤ m − 1 with |(vi, vi+1), (vj , vj+1)| > n. ��

The lemma shows that it is not possible to find out with local information
if two edges are part of the same redundancy cycle. If such a redundancy cycle
would not occur the LLRAP algorithm would work correctly, since for each
deleted edge an alternative path would still exists in the graph.

Another question is now, is it possible that two cycles are intersecting and
form and even bigger cycle that can never be broken? The answer is no, as we
will state in the following section.

4 Existence of a Solution

To find a connected intersection-free drawing of an RCG we need to show three
properties first. These are then used to show the main theorem of this paper.

Lemma 1 (Robustness against vertex deletion). Deleting a vertex v in
an RCG yields again an RCG G′ = G\v

Proof. For the redundancy property assume there is an intersection of the edges
uv and wx in G′ but no of the four vertices u, v, w, x is connected by an edge to
the other three. However, in G there has to be a vertex that is connected with
all other three vertices. Assume wlog. this vertex is v and uv is not contained in
G′. Then u or v are not contained in G′ which is obviously a contradiction.

For the coexistence property assume that there is a triangle Δuvw and a
vertex x in this triangle, but x is not connected to all three vertices of the
triangle Δuvw. Let wlog. xw be the missing edge. Since the edge xw has to exist
in G one of the vertices x or w have to be missing in G′, a contradiction.

Therefore deleting a vertex from an RCG yields again an RCG. ��
Lemma 2 (Clique property). All vertices that are located inside a triangle
form a clique.

72 L. Böltz and H. Frey

Proof. If there are no vertices inside a triangle Δuvw the statement is obviously
true. So assume by induction that it holds for n vertices located in the triangle.
Adding another vertex x yields by coexistence the existence of the edges ux vx
and wx and therefore the triangles Δuvx, Δuwx and Δwvx have to exist.

Since all n vertices in the triangle Δuvw lie in (at least) one of the triangles
Δuvx, Δuwx or Δwvx an edge from x to all of this vertices exists and these n
vertices together with x as well as u, v and w form again a clique. ��
Lemma 3 (Reconnection property). Let G be an RCG. Let F be a con-
nected intersection-free subgraph of G\v. Let uv be an edge in G which intersects
with some edges wixi of F . Consider for all wixi,

(1) w1x1 is closest to v and one of the edges vw1 or vx1 exist: then F can be
transformed into a connected intersection-free subgraph F ′ with vertices of
G that contains all edges of F and a path p(v;w1) or p(v;x1) that does not
intersect with an edge of F and not with uv (see Fig. 5(a)).

(2) w1x1 is closest to u and one of the edges uw1 or ux1 exist: then F can be
transformed into a connected intersection-free subgraph F ′ with vertices of
G\v that contains all edges of F and a path p(u;w1) or p(u;x1) that does
not intersect with an edge of F and not with uv (see Fig. 5(b) with one of
the paths p(u;w1) or p(u;x1)).

(3) w1x1 is closest to u and both edges uw1 and ux1 exist: then F can be trans-
formed into a connected intersection-free subgraph F ′ with nodes of G\v
which does not contain the edge w1x1 (see Fig. 5(b)).

Fig. 5. The situations of Lemma 3

Proof. Let the intersection point of uv and w1x1 be p (p is not a vertex).
(1) and (2): We show the case (1). The proof for case (2) is analogous. Assume

that the edge w1x1 is the edge of F with intersection point closest to v and the
edge vw1 exists. By redundancy property at least one of the edges vx1 or uw1

has to exist also. Wlog. this is uw1 and therefore the triangle Δvw1u exists.
Then regard the vertices that form the convex hull of the vertices inside triangle
Δvpw1 This leads to the situation that the triangle is divided in two parts, one
containing all vertices in the triangle and another one that is empty. By Lemma 2
all vertices in the triangle Δvw1u (and therefore also in Δvpw1) are connected
and therefore the path p(v;w1) on the boundary of the convex hull of the vertices
inside the triangle Δvpw1 exists in G.

Existence of Connected Intersection-Free RCG Subgraphs 73

This path cannot be intersected by another edge of F since otherwise the edge
uv has to be intersected by another edge of F which has its intersection point
closer to v or the edge w1x1 has to be intersected, which is both a contradiction.
Therefore F ′ = F + p(v;w1) satisfies the condition.

(3): Now the triangle Δ(uw1x1) has to exist. The triangle Δuw1x1 can be
split into two triangles Δupw1 and Δupx1. Then regard the vertices that form
the convex hull of the vertices inside the triangle Δupw1 and as well the vertices
that form the convex hull of the vertices inside triangle Δupx1. This leads to the
situation that the triangles are divided in two parts, one containing all vertices
in the triangle and another one that is empty. By Lemma 2 all vertices in the
triangle Δuw1x1 (and therefore also in Δupw1 and Δupx1) are connected and
therefore the path p(u;w1) on the boundary of the convex hull of the vertices
inside the triangle Δupw1 and the path p(u;x1) on the boundary of the convex
hull of the vertices inside the triangle Δupx1 exists in G.

Both paths cannot be intersected by another edge of F since otherwise the
edge uv has to be intersected by another edge of F with intersection point closer
to u or the edge w1x1 has to be intersected, which is both a contradiction.
Therefore F ′ = F\w1x1 + p(u;w1) + p(u;x1) satisfies the condition.

Theorem 2 (Existence of connected intersection-free subgraphs). For
each connected RCG G there exists a spanning subgraph G′ such that G′ is
connected and an intersection-free drawing.

Proof. To find a connected intersection-free drawing of the given RCG G we
follow a recursive approach by adding vertices to an empty initial solution and
restructuring the existing graph with Lemma 3 whenever this is necessary.

To show correctness of that approach we apply an induction argument. Start-
ing with an single-vertex graph it is clear that the properties are satisfied. We
assume as induction hypothesis that every RCG with at most n vertices con-
tains a intersection-free connected spanning subgraph G′. So we take for an
arbitrary connected RCG with n + 1 vertices a spanning tree (not necessary an
intersection-free drawing) and delete a leaf v of this tree, therefore G\v is still
connected.

The graph G\v is by Lemma 1 still an RCG and by induction hypothesis
there exists a connected intersection-free drawing F containing all vertices and
a subset of edges of G\v. If there is an edge that connects v to a vertex of G\v
without intersecting an edge of F then we can add this edge and we are done.

So assume that all edges incident with v are intersected by an edge of F . Pick
one edge uv and the first intersecting edge wx ∈ F , that is the edge that has its
intersection point p closest to v (see Fig. 6). By redundancy property one of the
four vertices u, v, w, x has to be connected by an edge to all others. If this vertex
is not u then at least one of the edges vw or vx has to exist, say wlog. vw. By
Lemma 3(1) a path p(v;w) in the convex hull of the triangle Δvpw can be found
and this path together with the edges of F forms an intersection-free drawing
containing all vertices of G (see Fig. 6(a)). Other edges intersecting with uv can
be ignored since they can not enter the triangle Δvpw.

74 L. Böltz and H. Frey

Thus, we can assume that only the edges uw and ux exist. If there is no other
edge of F intersecting with uv or for all other intersecting edges, u is connected
by an edge to both end vertices of the intersecting edges, Lemma 3(3) can be
applied multiple times and uv can be added to F . Therefore it can be assumed
that there is an intersecting edge w1x1 where u is not connected by an edge with
both end vertices of this edge.

Now we regard the edge w1x1 ∈ F , intersecting with uv, with intersection
point closest to u, where u is not connected by an edge to both end vertices
of the intersecting edge (see Fig. 6(b)). For all previous intersections we apply
Lemma 3(3). Now we have to distinguish two cases. In the first case v is connected
by an edge with both end vertices of w1x1. If w or x are inside the triangle
Δw1x1v there has to exist one of the edges vw or vx by coexistence property
in contradiction to the assumption. Otherwise the edges w1v and wu as well
as x1v and xu are intersecting. Then by redundancy property either one of the
edges vw or vx has to exist or both of the edges w1u and x1u. This is also a
contradiction to the assumption (see Fig. 6(b)).

Fig. 6. The easy cases when u or v are connected to the intersecting edges

Thus, the only remaining case is that neither u nor v are connected by an
edge with w1 and x1 (see Fig. 7). Then w1 or x1 have to be connected by an
edge with u and v, say w1. Since we took the first (remaining) intersecting edge
starting from u with intersection point p1, by Lemma 3(2) we can find a path
p(u;w1) in the convex hull of the triangle Δup1w1 that is not intersected by an
edge of F . However, it is not sure that such a path can also be constructed in
the triangle Δw1p1v since there can be intersecting edges of F .

Now w1 can be considered as the vertex u and the same procedure can be
started according to the edge vw1, while u is renamed in w0. Regard the sequence
S of edges vwn which are constructed in this way. Since there are only a finite
number of vertices and therefore also edges in G this procedure terminates at
one point if there does not occur a cycle with wr = ws for some r �= s. So it is
enough to show that such a cycle can not exist. If there was an edge vwk that
does not intersect with wx but all previous edges of the sequence did, then w or

Existence of Connected Intersection-Free RCG Subgraphs 75

x lie in the triangle Δvwkwk−1 and therefore by coexistence property the edge
vw or vx would exist in contrast to the assumption (see Fig. 7(a)).

Fig. 7. Two situations of sequences of edges vwk

Now assume an edge wkxk ∈ F would intersect with vwk−1 and the intersec-
tion point pk is located between v and the intersection point of the edges vwk−1

and wx, pk−1. Then one of the vertices wk or xk, say wk, has to be located in
the triangle Δvppk−1, because otherwise the edge wx would be intersected or
there would be an intersection point on the edge uv between v and p which is
both a contradiction. Then wk is also located in a triangle Δvwj−1wj with j < k
and therefore an edge between v and wk has to exist by coexistence property, in
contradiction to the assumption that such an edge does not exist (see Fig. 7(b)).
This means that all edges of the sequence S have to intersect with the edge wx
and therefore the vertex that forms an edge with v has to be located in the cone
C1 formed by v, w and x, but outside the (virtual) triangle Δvwx.

Fig. 8. Possible sequences of edges vwk to illustrate the termination

76 L. Böltz and H. Frey

If there would be an edge wtxt ∈ F such that wt = wr for r < t then xt has
to be located outside the cone C2 that contains wr and all edges wsxs ∈ F with
r < s < t. Since vwt−1 is located inside C2, wtxt can not intersect with vwt−1 if
xt is located outside C2, a contradiction (see Fig. 8(a)).

That means the process terminates at some time (see Fig. 8(b)), so the proof
follows by induction. ��

5 Conclusion

We studied graphs obeying the redundancy and coexistence property and
answered a so far open question that connected graphs obeying these two prop-
erties always contain a connected intersection-free subgraph. In proving this
we also derived additional structural properties resulting from redundancy and
coexistence. Moreover, we have demonstrated that cyclic redundancy which is
possible in such graphs is the reason why so far existing solutions can not guar-
antee connectivity and intersection-free sub graph at the same time.

Our ongoing research is at two frontiers. (1) The proof of Theorem 2 for
showing existence of an intersection-free connected subgraph also suggests how
such a subgraph can be constructed recursively (just following the inductive
construction). However, this is not a local solution. The goal of our research
here is to find a local algorithm which is provably correct under redundancy and
coexistence and which has low error rate in case these properties hold only with
high probability. (2) We continue on substantiating that redundancy and coex-
istence describe a graph class way beyond the simplified unit disk assumption,
also showing when and when not these properties can be assumed to hold very
likely in practice. To show this we are conducting ongoing simulation studies
and theoretical investigations based on stochastic point process theory.

References

Barrière, L., Fraigniaud, P., Narayanan, L., Opatrny, J.: Robust position-based routing
in wireless ad hoc networks with irregular transmission ranges. Wireless Commun.
Mob. Comput. 3(2), 141–153 (2003)

Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in
ad hoc wireless networks. Wireless Netw. 7(6), 609–616 (2001)

Deng, Y., Stojmenovic, I.: Partial delaunay triangulations based data-centric storage
and routing with guaranteed delivery in wireless ad hoc and sensor networks. In:
2009 Mexican International Conference on Computer Science, pp. 24–32 (2009)

Fang, Q., Gao, J., Guibas, L.J.: Locating and bypassing routing holes in sensor net-
works. In: IEEE INFOCOM 2004, vol. 4, pp. 2458–2468, March 2004

Frey, H.: Geographical cluster based multihop ad hoc network routing with guaranteed
delivery. In: Proceedings of the 2nd IEEE International Conference on Mobile Adhoc
and Sensor Systems (MASS), pp. 510–519. IEEE, November 2005

Frey, H., Görgen, D.: Planar graph routing on geographical clusters. Ad Hoc Netw.
3(5), 560–574 (2005)

Existence of Connected Intersection-Free RCG Subgraphs 77

Frey, H., Simplot-Ryl, D.: Localized topology control algorithms for ad hoc and sensor
networks. In: Nayak, A., Stojmenovic, I. (eds.) Handbook of Applied Algorithms,
pp. 439–464. Wiley (2007)

Frey, H., Ingelrest, F., Simplot-Ryl, D.: Localized minimum spanning tree based multi-
cast routing with energy-efficient guaranteed delivery in ad hoc and sensor networks.
In: 2008 International Symposium on a World of Wireless, Mobile and Multimedia
Networks, pp. 1–8, June 2008

Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanner for rout-
ing in mobile networks. In: Proceedings of the 2nd ACM International Symposium
on Mobile Ad hoc Networking & Computing - MobiHoc 2001 (2001)

Huang, Q., Lu, C., Roman, G.C.: Reliable mobicast via face-aware routing. In: IEEE
INFOCOM 2004, vol. 3, pp. 2108–2118, March 2004

Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks.
In: Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, pp. 243–254 (2000)

Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs.
In: Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC 2003, pp. 69–78. ACM (2003)

Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed construction of a planar spanner
and routing for ad hoc wireless networks. In: Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Communications Society, INFOCOM 2002,
vol. 3, pp. 1268–1277. IEEE Computer Society (2002)

Li, X., Deng, Y., Narasimhan, V., Nayak, A., Stojmenovic, I.: Localized address auto-
configuration in wireless ad hoc networks. In: 2010 International Conference on Wire-
less Communications Signal Processing (WCSP), pp. 1–6 (2010)

Mathews, E.: Planarization of geographic cluster-based overlay graphs in realistic wire-
less networks. In: 2012 Ninth International Conference on Information Technology -
New Generations, pp. 95–101, April 2012

Mathews, E., Frey, H.: A localized planarization algorithm for realistic wireless net-
works. In: Proceedings of the 11th IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, WoWMoM (2011)

Mathews, E., Frey, H.: A localized link removal and addition based planarization algo-
rithm. In: Proceedings of the 13th International Conference on Distributed Comput-
ing and Networking (ICDCN), pp. 337–350 (2012)

Mitton, N., Simplot-Ryl, D., Stojmenovic, I.: Guaranteed delivery for geographical
anycasting in wireless multi-sink sensor and sensor-actor networks. IEEE INFOCOM
2009, 2691–2695 (2009)

Neumann, F., Estevao, D.V., Ockenfeld, F., Radak, J., Frey, H.: Short paper: structural
network properties for local planarization of wireless sensor networks. In: Proceedings
of the 15th International Conference on Ad-Hoc Networks and Wireless, ADHOC-
NOW 2016, vol. 9724, pp. 229–233 (2016)

Philip, S.J.: Scalable location management for geographic routing in mobile ad hoc
networks. Tech. rep. Computer Science Tech Report TR-2005-21, SUNY at Buffalo
(2005)

Philip, S.J., Ghosh, J., Ngo, H.Q., Qiao, C.: Routing on overlay graphs in mobile
ad hoc networks. In: Proceedings of the IEEE Global Communications Conference,
Exhibition & Industry Forum, GLOBECOM 2006 (2006)

Ratnasamy, S., et al.: Data-centric storage in sensornets with GHT, a geographic hash
table. Mob. Netw. Appl. 8(4), 427–442 (2003)

78 L. Böltz and H. Frey

Sanchez, J.A., Ruiz, P.M., Liu, J., Stojmenovic, I.: Bandwidth-efficient geographic
multicast routing protocol for wireless sensor networks. IEEE Sens. J. 7(5), 627–636
(2007)

Seddigh, M., González, J.S., Stojmenovic, I.: RNG and internal node based broad-
casting algorithms for wireless one-to-one networks. SIGMOBILE Mob. Comput.
Commun. Rev. 5(2), 37–44 (2001)

Stojmenovic, I.: Geocasting with guaranteed delivery in sensor networks. IEEE Wirel.
Commun. 11(6), 29–37 (2004)

Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-
based broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib.
Syst. 13(1), 14–25 (2002)

Tan, J.: A scalable graph model and coordination algorithms for mobile sensor net-
works. In: Li, Y., Thai, M.T., Wu, W. (eds.) Wireless Sensor Networks and Applica-
tions. Signals and Communication Technology, pp. 65–83. Springer, Boston (2008)

Tsai, H.-W., Chu, C.-P., Chen, T.-S.: Mobile object tracking in wireless sensor net-
works. Comput. Commun. 30(8), 1811–1825 (2007)

Vertex-Connectivity for Node Failure
Identification in Boolean Network

Tomography

Nicola Galesi1, Fariba Ranjbar1, and Michele Zito2(B)

1 Universitá La Sapienza, Rome, Italy
2 University of Liverpool, Liverpool, UK

michele@liverpool.ac.uk

Abstract. In this paper we study the node failure identification prob-
lem in undirected graphs by means of Boolean Network Tomography.
We argue that vertex connectivity plays a central role. We show tight
bounds on the maximal identifiability in a particular class of graphs,
the Line of Sight networks. We prove slightly weaker bounds on arbi-
trary networks. Finally we initiate the study of maximal identifiability
in random networks. We focus on two models: the classical Erdős-Rényi
model, and that of Random Regular graphs. The framework proposed in
the paper allows a probabilistic analysis of the identifiability in random
networks giving a tradeoff between the number of monitors to place and
the maximal identifiability.

1 Introduction

A central issue in communication networks is to ensure that the structure works
reliably. To this end it is of the utmost importance to discover as quickly as pos-
sible those components that develop some sort of failure. Network Tomography
is a family of distributed failure detection algorithms based on the spreading of
end-to-end measurements [8,23] rather than directly measuring individual net-
work components. Typically a network G = (V,E) is given as a graph along with
a collection of paths P in it and the goal is to take measurements along such paths
to infer properties of the given network. Quoting from [12] “A key advantage
of tomographic methods is that they require no participation from network ele-
ments other than the usual forwarding of packets. This distinguishes them from
well-known tools such as traceroute and ping, that require ICMP responses
to function. In some networks, ICMP response has been restricted by adminis-
trators, presumably to prevent probing from external sources. Another feature

The first two authors kindly acknowledge the partial support by the MIUR under
the grant “Dipartimenti di eccellenza 2018–2022” of the Department of Computer
Science of Sapienza University. The research was also partly supported by a visiting
fellowship of the University of Liverpool and the Networks Sciences & Technologies
(NeST) initiative of the University of Liverpool (https://www.liverpool.ac.uk/network-
science-technologies/).

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 79–95, 2019.
https://doi.org/10.1007/978-3-030-34405-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_5&domain=pdf
https://www.liverpool.ac.uk/network-science-technologies/
https://www.liverpool.ac.uk/network-science-technologies/
https://doi.org/10.1007/978-3-030-34405-4_5

80 N. Galesi et al.

of tomography is that probing and the recovery of probe data may be embed-
ded within transport protocols, thus co-opting suitably enabled hosts to form
impromptu measurement infrastructures”. The approach is strongly related to
group testing [11] where, in general, one is interested in making statements about
individuals in a population by taking group measurements. The main concern
is to do so with the minimum number of tests. In our setting, the connectivity
structure of the network constrains the set of feasible tests. Graph-constrained
group testing has been studied before, starting with [7]. We are interested in
using structural graph-theoretic properties to make statements about the qual-
ity of the testing process.

Research in Network Tomography is vast. The seminal works of Vardi [23],
and Coates et al. [8], or more recent surveys like [6] each have more that 500 cita-
tions, according to Google Scholar. Methods and algorithms vary dramatically
depending on the network property of interest, or the measurements one has to
rely on. Boolean Network Tomography (BNT) aims to identify corrupted compo-
nents in a network using boolean measurements (i.e. assuming that elementary
network components can be in one of two states: “working” or “not-working”).
Introduced in [12], the paradigm has recently attracted a lot of interest [14,19]
because of its simplicity. In this work we use BNT to identify failing nodes.
Assume to have a set P of measurement paths over a node set V . We would
like to know the state xv (with xv = 0 corresponding to “v in working order”
and xv = 1 corresponding to “v in a faulty state”) of each node v ∈ V . The
localization of the failing nodes in P is captured by the solutions of the system:

∧

p∈P

(
∨

v∈p

xv ≡ bp

)
(1)

where bp models the (boolean) state of the path p ∈ P. Of course, systems of
this form may have several solutions and therefore, in general, the availability of
a collection of end-to-end measurements does not necessarily lead to the unique
identification of the failing nodes. We will investigate properties of the underly-
ing network that facilitate the solution of this problem. In particular, we follow
the approach initiated by Ma et al. [18] based on the notion of maximal iden-
tifiability (see Sect. 2 for a precise definition). The metric aims to capture the
maximal number of simultaneously failing nodes that can be uniquely identified
in a network by means of measurement along a given path system. It turns out
that the network maximal identifiability is an interesting combinatorial measure
and several studies [2,15,18,20] have investigated variants of this measure in
connection with various types of path systems. However, it seems difficult to
come up with simple graph-theoretic properties that affect the given network
identifiability. We contend that the maximal identifiability using measures over
the collection of all simple paths between two disjoint sets of vertices S and T
enables us to make good progress on this issue. More specifically we show that
the proposed approach provides an almost tight characterization of the maximal
identifiability in augmented hypergrids (see definition in Sect. 2) and more gen-
eral Line-of-Sight (LoS) networks. LoS networks were introduced by Frieze et al.

Vertex-Connectivity for Node Failure Identification in BNT 81

in [13] and have been widely studied (see for instance [9,10,21,22]) as models for
communication patterns in a geometric environment containing obstacles. Like
grids, LoS networks can be embedded in a finite cube of Zd, for some positive
integer d. But LoS networks generalize grids in that edges are allowed between
nodes that are not necessarily next to each other in the network embedding.

Using the network vertex-connectivity, κ(G), (i.e. the size of the minimal set
of nodes disconnecting the graph) we are able to prove the following:

Theorem 1. Let H be an augmented hypergrid. For every pair of disjoint S, T ⊆
V (H), the maximal identifiability of H, μ(H) using measures over simple paths
between S and T satisfies: μ(H) ≤ κ(H). Furthermore, there is a way to choose
S and T that guarantees μ(H) ≥ κ(H) − 1.

The result on hypergrids immediately suggests the related question about
general graphs. In this work we prove upper and lower bounds on the maxi-
mal identifiability of any network G. The following statement summarizes our
findings (here κST (G) is the size of smallest set of vertices separating S and T):

Theorem 2. Let G = (V,E) be an arbitrary graph. For every pair of disjoint
S, T ⊆ V (G), the maximal identifiability of G, μ(G) using measures over simple
paths between S and T satisfies: μ(G) ≤ min(δ(G), κST (G)). Furthermore, there
is a way to choose S and T that guarantees μ(G) ≥ �κ(G)/2� − 1.

In both results, the upper bound is proved by showing that there are sets
of κ(G) + 1 vertices that cannot be identified. The lower bounds which require
the construction of paths separating large sets of nodes in the graph, are based
on a well-known relationship between κ(G) and the existence of collections of
vertex-disjoint paths between certain sets of nodes in G. In fact a much higher
lower bound can be proved for graphs with low connectivity. The following result
applies to arbitrary LoS networks, and to many topologies studied in relation
to communication problems including various types of grids, butterflies, hyper-
cubes, and sparsely connected sensor networks.

Theorem 3. Let G = (V,E) be an arbitrary network with κ(G) ≤ |V |/3. Let
μ(G) denote the maximal identifiability of G using measures over simple paths
between two disjoint sets of vertices S and T .

1. For all pairs of disjoint S, T ⊆ V , μ(G) ≤ κ(G).
2. There is a pair of disjoint S, T ⊆ V (G) such that μ(G) ≥ κ(G) − 2.

Finally, we look at random networks (Erdős-Rényi and Random Regular
Graphs). In these structures we are able to show a trade-off between the suc-
cess probability of the relevant path construction processes and the size of the
sets S and T defining the path set P. Random graphs also give us alternative
constructions of networks with large identifiability.

The rest of the paper is organized as follows. After a section devoted to
preliminaries and important definitions, we have a section that focuses on The-
orem 1. Section 4 focuses on arbitrary graphs. First we look at the proof of

82 N. Galesi et al.

Theorem 2. Then describe a different construction that leads to the proof of
Theorem 3. Finally Sect. 5 is dedicated to the analysis of the maximal identi-
fiability in random graphs. First we look at Erdős-Rényi graphs, then random
regular graphs.

2 Preliminaries

Sets, Graphs, Paths, and Connectivity. If U and W are sets, U	W = (U \W)∪
(W \ U) is the symmetric difference between U and W . Graphs (we will use
the terms network and graph interchangeably) in this paper will be undirected,
simple and loop-less. A path (of length k) in a graph G = (V,E) from a node
u to a node v is a sequence of nodes p = u1, u2, . . . , uk+1 such that u1 = u,
uk+1 = v and {uiui+1} ∈ E for all i ∈ [k]. The path p is simple of no two ui

and uj in p are the same. Any sub-sequence ux, . . . , ux+y (x ∈ {1, . . . , k + 1},
y ∈ {0, . . . , k + 1 − x}) is said to be contained in p, and dually we say that p
contains the sequence or passes through it. We say that path p and q intersect
if they contain a common sub-sequence. The intersection of a path p and an
arbitrary set of nodes W is the set of elements of W that are contained in
p. When p intersect W sometimes we say that p touches W . For an arbitrary
U ⊆ V (G), N(U) is the set of neighbours of u ∈ U . If U = {u} we write N(u)
instead of N({u}). The degree of u, deg(u), is the cardinality of N(u), and let
δ(G) = minu∈V deg(u) be the minimum degree of G.

In what follows κ(G) denotes the vertex-connectivity of the given graph G =
(V,E), namely κ(G) is the size of the minimal subset K of V , such that removing
K from G disconnects G. In particular it is well-known (see for example [16],
Theorem 5.1, p. 43) that

κ(G) ≤ δ(G). (2)

It will also be convenient to work with sets of vertices disconnecting particular
parts of G. If S, T ⊆ V , then κST (G) is the size of the smallest vertex separator
of S and T in G, i.e. the smallest set of vertices whose removal disconnects S
and T (set κST (G) = ∞ if S ∩ T
= ∅ or there are s ∈ S and t ∈ T such that
{s, t} ∈ E). Notice that κST (G) ≥ κ(G).

Grids and LoS Networks. For positive integers d, and n ≥ 2, let Z
d
n be the

d-dimensional cube {1, . . . , n}d. We say that distinct points P1 and P2 in a
cube share a line of sight if their coordinates differ in a single place. A graph
G = (V,E) is said to be a Line of Sight (LoS) network of size n, dimension
d, and range parameter ω if there exists an embedding fG : V → Z

d
n such

that {u, v} ∈ E if and only if fG(u) and fG(v) share a line of sight and the
(Euclidean) distance between fG(u) and fG(v) is less than ω. In the rest of the
paper a LoS network G is always given along with some embedding fG in Z

d
n

for some d and n, and with slight abus de langage we will often refer to the
vertices of G, u, v ∈ V in terms of their corresponding points fG(u), fG(v), . . .
in Z

d
n, and in fact the embedding fG will not be mentioned explicitly. Note that

d-dimensional hypergrids, Hn,d, as defined in [15] are particular LoS networks

Vertex-Connectivity for Node Failure Identification in BNT 83

with ω = 2 and all possible nd vertices. In the forthcoming sections we will study
augmented hypergrids Hn,d,ω (or simply Hn,ω in the 2-dimensional case), namely
d-dimensional LoS networks with range parameter ω > 2 containing all possible
nd nodes. Fig. 1 gives an example of 2-dimensional augmented hypergrid, and a
(more general) LoS network.

Paths, Monitors and Identifiability. In BNT one takes measurements along
paths, and the quality of the monitoring scheme depends on the choice of such
paths. Let P be a set of paths over some node set V . For a node v ∈ V , let P(v) be
the set of paths in P passing through v. For a set of nodes U , P(U) =

⋃
u∈U P(u).

Hence if U ⊆ V , P(U) ⊆ P(V). Crucially, we identify two disjoint sets of vertices
S and T , and assume that P is the set of all S − T paths in G, i.e. simple paths
with one end-point in S and the other one in T . This is similar to the CSP
probing scheme analyzed in [17], but the scheme in that paper does not assume
S ∩ T = ∅.

Traditionally in Network Tomography all measurements originate and end
at special monitoring stations that are connected to the structure under obser-
vation. For any tomographic process to have any chance of succeeding one has
to assume that such monitors are infallible. It is therefore customary to assume
that the monitors are external to the given network, but connected to it through
a designated set of nodes. S ∪T is such set in our case. We call the pair (S, T) a
monitor placement. In this settings, two sets of vertices U and W are separable
if P(U)	P(W)
= ∅. A set of vertices N is k-identifiable (with respect to the
probing scheme (P, S, T)) if and only if any U,W ⊆ N , with U	W
= ∅ and
|U |, |W | ≤ k, U are separable. The maximal identifiability of N with respect to
(P, S, T), μ(N,P, S, T), is the largest k such that N is k-identifiable. For a graph
G = (V,E), we write μ(G,P, S, T) to indicate the maximal identifiability of the
set of nodes in V which are used in at least a path of P. In what follows we
usually omit the dependency of μ on the probing scheme (P, S, T) when this is
clear from the context.

u

v

s2

2t

t1

s1

)b()a(

Fig. 1. On the left, the network Hn,ω for n = 5 and ω = 4 (note that vertices u and v
are not adjacent); on the right a more general example of LoS network, having ω = 3,
embedded in Z

2
5 (represented as a dashed grid).

84 N. Galesi et al.

Note that k-identifiability is monotone: if G is k-identifiable then it is k′-
identifiable for any k′ < k. This implies that to prove that μ(N) ≤ k − 1 it is
sufficient to show that N is not k-identifiable. By the definition given above this
boils down to showing the existence of two distinct node sets U and W in N of
cardinality at most k that are not separable.

Conversely, if we want to prove that μ(N) ≥ k for some k, then it is enough
to argue that all distinct node sets U and W of cardinality |U |, |W | ≤ k are
separable. To prove this we have to show that for any two distinct node sets U
and W of cardinality at most k there exists a path in P intersecting exactly one
between U and W .

3 Failure Identifiability in Augmented Hypergrids

Let ω > 2 be an integer. In this section we analyze the maximal identifiability
of augmented hypergrids. To maximize clarity, we provide full details for the
special case of Hn,ω, the 2-dimensional augmented hypergrid. The proof of the
result for d-dimensional structures, which we state at the end of this section, is
left for the full version of this work.

In [15] two of us showed that μ(G) ≤ δ(G) for any (P, S, T). In Hn,ω each node
u has ω−1 edges for each one of the possible directions (north, south, east, west).
Hence the minimal degree in Hn,ω is reached at the corner nodes and it is 2(ω−1).
Thus μ(Hn,ω) ≤ 2(ω − 1) for any (P, S, T). In the remainder of this section we
pair this up with a tight lower bound for a specific monitor placement. Note
that these results readily imply the upper bound in Theorem 1 as in augmented
hypegrids the vertex connectivity is actually equal to the network’s minimum
degree. The rest of this section focuses on the second inequality in that theorem.

We say that nodes with coordinates (1, j) in Hn,ω, for some j ∈ {1, . . . , n},
are on the north border of Hn,ω. Analogously we can define nodes on the south,
west and east borders of Hn,ω. Given a node u of Hn,ω, identified as a pair
(i, j) ∈ Z

2
n, and a positive integer k, we define:

SEk(u) = {(i′, j′) ∈ Z
2
n : i + k ≥ i′ ≥ i ∧ j + k ≥ j′ ≥ j}

and
NWk(u) = {(i′, j′) ∈ Z

2
n : i − k ≤ i′ ≤ i ∧ j − k ≤ j′ ≤ j}.

In particular we denote by SE(u) (resp. NW (u)) the union of all SEk(u) (resp.
NWk(u)). Furthermore ∂SEk(u) (resp. ∂NWk(u)) is the set of all points in
SEk(u) (resp. NWk(u)) with coordinates (i′, j) or (i, j′). Expressions ∂SE(u)
and ∂NW (u) are defined analogously. Also, we say that a direction X (north,
south, west, east) is W -saturated on u all neighbours of u in direction X are
in W .

Definition 1 (W -unreachability). Let u = (i, j) be a node in Hn,ω and W be a
set of nodes in Hn,ω. A node u′ = (i′, j′) for i′ ≥ i and j′ ≥ j is W -unreachable
from u if either ∂SE(u) ⊆ W or ∂NW (u′) ⊆ W . Otherwise we say that u′ is
W -reachable from u.

Vertex-Connectivity for Node Failure Identification in BNT 85

A canonical monitor placement for Hn,ω is a pair (S, T), such that S is formed
by the node (1, 1) and its neighbours, and T formed by (n, n) and it neighbours.
Hence |S| = |T | = 2ω − 1. We are now ready to state the main result in this
section.

Theorem 4. Let n, ω ∈ N, ω > 2 and n > 3(ω − 1). Let (S, T) be a canonical
monitor placement for Hn,ω. Then μ(Hn,ω) ≥ 2(ω − 1) − 1.

Proof. We have to prove that for any pair of node sets U , and W of cardinality
at most 2(ω − 1) − 1, with U	W
= ∅ we can build an S − T path touching
exactly one of them. Assume without loss of generality that u ∈ U \ W . Since
|S| = |T | = 2(ω − 1) and |W | < 2(ω − 1), there is a node in s ∈ S \ W and
a node t ∈ T \ W . Assume without loss of generality that s = (1, 1) (the case
s
= (1, 1) is similar, and give even better results). Similarly for T , assume that
t = (n, n)
∈ W .

We build two disjoint paths iu and ou such that their concatenation is an
S − T path passing through u and not touching nodes in W . We show how to
build iu (ou is analogous).

If u = (i, j) and min(i, j) > ω−1 and u is W -reachable from s we proceed by
a careful induction on |NW (u)|. In the inductive step, two things can happen.
If u is far from the north and west borders there is at a least a direction X
between North and West which is not W -saturated. Hence there is a node u′ ∈
NW (u) \ W on direction X from u at distance less than ω. Hence there is an
edge {u′, u} ∈ Hn,ω. Since NW (u′) ⊂ NW (u) the inductive hypothesis applied
on u′, give us a path iu′ and the path iu = iu′ , u. Alternatively if u is close to s
(i.e. min(i, j) ≤ ω − 1) we know that u is W -reachable and this guarantees the
existence of a neighbour u′ of u in NW (u) that is NOT in W and the inductive
hypothesis can be applied to u′ again to complete iu.

The induction reaches a base case in one of two possible ways. If |NW (u)| =
1, then u = s and we have done: iu is s. Otherwise |NW (u)| > 1 but u is W -
unreachable from s. In such case we proceed as follows (see also Fig. 2 for an
example). Notice that in this case it must be that u has less than ω−1 neighbours
either in direction North or West, for otherwise it would not be possible for W ,
which is of size at most 2(ω−1)−1, to cover ∂NW (u) or ∂SE(s). Let u = (i, j),
hence, by unreachability property, it must be that in NW (u) there are at least
t = (i−1)+(j −1) ≥ 2 nodes in W . Let us look at the neighbours of u in SE(u)
which are South of u at distance at most ω−1−i from u and East of u at distance
at most ω − 1 − j. (Notice that these nodes are at distance at most ω − 1 from
the North and West borders). First we claim that either in direction South or
direction East, there is a neighbour (say wlog direction South) u′ = (i′, j) of
u at distance at most ω − 1 − i from u such that both u′ and u′′ = (i′, 1) are
not in W . This is because the sum of nodes at distance at most ω − i − 1 from
u in direction South and at distance at most ω − j − 1 in direction East is at
most 2ω − i − j. Hence there are at most 2ω − i − j pairs of nodes of the type
(u′, u′′), but only 2ω − i − j − 1 nodes in W (the latter is because |W | ≤ 2ω − 3
and t = (i − 1) + (j − 1) nodes of W are already used in NW (u)). Then there

86 N. Galesi et al.

is at least a pair (u′, u′′) such that neither u′ nor u′′ are in W . Hence the path
iu = s, u′′, u′, u connecting s to u without touching W . This path iu is ok, unless
u′ is already on the path we have built by induction so far. In that case we can
cut iu at u′ and link it to the inductive path.

◦
(1, 1)

◦

◦ u = (i, j)

◦u′ = (i′, j)◦u′′ = (i′, 1)

Fig. 2. An example of how to build iu when u is not W -reachable and in SEk((1, 1))
for some k < ω − 1.

The argument presented so far leaves a gap in che case when u ∈ U \ W is
close to s and it is W -unreachable. This case is in fact not very different from the
last one we have considered. As in that case we consider the neighbours of u in
∂SEω−i(u) at distance ω − i in the South direction (instead of distance ω − i−1
as in the previous case) and at distance ω − j in the East direction (instead
of ω − j − 1). Exactly the same counting argument now justifies three pairs of
nodes (u′, u′′), (v′, v′′) and (w′, w′′) such that none of u′, u′′, v′, v′′, w′, w′′ are in
W (notice that as before, u′′, v′′ and w′′ are nodes on the border of Hn,ω). If
either one between v′ and w′, say wlog w′, is exactly at distance ω−1 from u, then
we can define a path iu touching u and not touching W as iu = (1, 1), u′′, u′, u, w′

(see also Fig. 3). If both of v′ and w′′ are at distance < ω−1, then two among u′,
v′ and w′, say u′, and v′ are on the same direction, say wlog South, and hence
one of them, say wlog u′ is northern of the other. In this case we define iu as the
path (1, 1), u′′, u′, u, v′.

◦
(1, 1)

◦

◦ u = (i, j)

◦u′ = (i′, j)◦u′′ = (i′, 1)

◦ w′ = (i + ω − 1, j)

Fig. 3. An example where u ∈ SEk(1, 1)) for some k < ω − 1 and w′ is at South
distance exactly ω − 1 from u.

��

Vertex-Connectivity for Node Failure Identification in BNT 87

Theorem 4 generalizes to d-dimensional augmented hypergrids. We leave the
details to the full version of this work.

Theorem 5. Let d, n, ω ∈ N, d, n ≥ 2 and ω > 2. There is a monitor placement
for Hn,d,ω for which μ(Hn,d,ω,P, S, T) ≥ d(ω − 1) − 1.

4 General Topologies

We now look at the maximal identifiability in arbitrary networks. Theorem 2
stated in Sect. 1 will be a consequence of two independent results. In [15] it was
proved that μ(G) ≤ δ(G), for any monitor placement (S, T). Here we show that
μ(G) can be upper bounded in terms of κST , the size of the minimal node set
separating S from T .

Theorem 6. Let G = (V,E) be a graph and (S, T) be a monitor placement.
Then μ(G) ≤ κST (G).

Proof. If there is no vertex set in G separating S and T , κST (G) = ∞ and the
result is trivial. Let K be the set witnessing the minimal separability of S from T
in G. Hence |K| = κST (G). Let N(K) be the set of neighbours of nodes in K and
notice this cannot be empty since K is disconnecting G. Pick one w ∈ N(K) and
define U := K and W := U ∪ {w}. Clearly P(U) ⊆ P(W). To see the opposite
inclusion assume that there exists a path from S to T passing from w but not
touching U = K. Then K is not separating S from T in G. Contradiction. ��

Note that, while in general κST (G) may be larger than δ(G), if S and T
are separated by a set of κ(G) vertices then, by inequality (2), the bound in
Theorem 6 is at least as good as the minimum degree bound proved earlier by
the first two authors [15]. This implies the upper bound in Theorem 2.

Moving to lower bounds, in this section we prove the following:

Theorem 7. Let G = (V,E) and (S, T) be a monitor placement for G. Then
μ(G) ≥ min(κ(G) − 1, |S|, |T |) − 1.

The lower bound in Theorem 2 can be derived easily from Theorem 7. Let K
be a vertex separator in G of size κ(G), set SK to be the first �κ(G)/2� elements
of K and TK = K \ SK . By Theorem 7 the maximal identifiability of G is at
least |SK | − 1 = �κ(G)/2� − 1.

The proof of Theorem 7 uses Menger’s Theorem, a well-known result in graph
theory (see [16, Theorem 5.10, p. 48] for its proof).

Theorem 8 (Menger’s Theorem). Let G = (V,E) be a connected graph. Then
κ(G) ≥ k if and only if each pair of nodes in V is connected by at least k
node-disjoint paths in G.

Menger’s Theorem is central to the following Lemma which is used in the
proof of Theorem 7.

88 N. Galesi et al.

Lemma 1. Let G = (V,E). Let W ⊆ V such that |W | ≤ κ(G) − 2. Then any
pair of vertices in V \W is connected by at least two vertex-disjoint simple paths
not touching W .

Proof. By Menger’s Theorem, for any pair of nodes u and v in V \ W there are
at least κ(G) vertex-disjoint paths from u to v in G. Call P the set of such paths.
Since |W | ≤ κ(G) − 2, then the nodes of W can be in at most κ(G) − 2 of paths
in P. Hence there are at least two paths in P not touching W . ��

Proof of Theorem 7. Let G = (V,E) be an undirected connected graph and (S, T)
be a monitor placement in G. Note that without loss of generality min(κ(G) −
1, |S|, |T |) > 1 (for otherwise there is nothing to prove).

Assume first that |S| ≥ κ(G) − 1 and |T | ≥ κ(G) − 1. We claim that

μ(G) ≥ κ(G) − 2.

We show that for any distinct non-empty subsets U and W of V of size at most
κ(G) − 2, there is a path in P touching exactly one between U and W . Given
such U and W , fix a node u ∈ U	W and assume w.l.o.g. that u ∈ U . Since
|W | ≤ κ(G) − 2 and |S| ≥ κ(G) − 1 there is at least a node in s ∈ S \ W . By the
Claim above applied to nodes s and u and to the set W , there are two vertex-
disjoint simple paths πs

1, π
s
2 from s to u not touching W . The same reasoning

applied to T , guarantees the existence of a node t ∈ T \ W and two vertex-
disjoint paths πt

1, π
t
2 from u to t not touching W . If at least one between πs

1,
and πs

2 only intersects one of πt
1, and πt

2 at u then the concatenation of such
paths is a (longer) simple path from s to t passing through u and not touching
W . Otherwise the concatenation of one between πs

1, and πs
2 with one between

πt
1, and πt

2 is a non simple path. In what follows we show that the subgraph
of G induced by the four paths does contain a simple path from s to t passing
through u and not touching W . In the construction below we exploit the fact
that πs

1, and πs
2 (resp. πt

1, and πt
2) are simple and vertex disjoint. Let p be a path

from s to u. Define an order on the nodes of p as follows: v ≺p w if going from
v to u we pass though w. From now on we will use ≺ instead of ≺p when the
path under consideration will be clear from the context. Let Zj

1 be the nodes
in πs

1 ∩ πt
j . Z1

1 and Z2
1 are disjoint but there will be a node in those sets, say

z, which is minimal according to ≺. Without loss of generality let us say that
z ∈ Z1

1 . The subpath πs
1[s . . . z] of πs

1 going from s to z, is intersecting neither
πt
1 nor πt

2. Hence the concatenation of the following three disjoint paths defines
a simple path from s to t passing through u avoiding W , hence a path in P with
the required properties:

1. πs
1[s . . . z], going form s to z;

2. πt
1[z . . . u] a sub path of πt

1 going from u to z and traversed in the other
direction;

3. πt
2, connecting u to t.

Vertex-Connectivity for Node Failure Identification in BNT 89

Now assume that at least one between |S| and |T | is less than κ(G) − 1.
Let r = min(|S|, |T |) − 1. As before we prove that for all distinct non-empty U
and W subsets of V of size at most r, there is an S − T path in G, hence in
P, touching exactly one between U and W . Let u ∈ U	W and without loss of
generality assume u ∈ U . Notice that r+1 = min(|S|, |T |), then both |S| ≥ r+1
and |T | ≥ r + 1. Since |W | ≤ r, as before there are s ∈ S \ W and t ∈ T \ W .
Furthermore, since κ(G) ≥ min(|S|, |T |), then by previous observation on |S| and
|T |, κ(G) ≥ r+1 and, since |W | ≤ r, then κ(G)−|W | ≥ 2, that is |W | ≤ κ(G)−2.
As in the previous case we can apply the Claim above once to s, u and W getting
the vertex-disjoint paths πs

1 and πs
2 from s to u, and once to t, u and W getting

the vertex-disjoint paths πt
1 and πt

2 from t to u. The proof then follows by the
same steps as in the previous case. We then have proved that if |S| or |T | are
smaller than κ(G)−1, then μ(G) ≥ min(|S|, |T |)−1 and the proof of Theorem 7
is complete. ��
Proof of Theorem 3. We complete this section investigating a different way to
relate the graph vertex connectivity to μ(G). It is easy to see that, in general,
the bounds in Theorem 2 are not very tight, particularly when κ(G) is large.
However, if κ(G) is small, we can do better.

In what follows let K be a minimal vertex separator in G. Let GK
i =

(V K
i , EK

i), i ∈ {1, . . . , rK} be the rK ≥ 2 connected components remaining
in G after removing K. Since κ(G) ≤ n

3 , then 2κ(G) ≤ n − κ(G) and one can
define disjoint sets S, and T with κ(G) vertices each in such a way that the
smallest among the V K

i ’s contains only elements of S. This can be done as fol-
lows: if the smallest V K

i ’s has less than κ(G) − � nodes, then assign all its nodes
to S. Then use the other components GK

j ’s to assign � nodes to S and κ(G)
other nodes to T . If the smallest V K

i has more than κ(G) nodes, choose κ(G)
among them and put them in S. Choose κ(G) nodes in other components and
assign them to T .

We now prove that the set of simple paths between S and T defined as
above allow a very high identifiability. The lower bound on μ(G) follows from
Theorem 7 noticing that |S| = |T | > κ(G)−1. We now prove that μ(G) ≤ κ(G).
Let GK

i be the component where all the S-nodes are assigned. Let w be a node
in V K

i ∩ N(K). This node has to exists since G was connected and the removal
of K is disconnecting GK

i from K. Fix U = K and W = K ∪ {w}. We will
show that P(U) = P(W). It suffices to prove that P({w}) ⊆ P(K), since clearly
P(U) ⊆ P(W). Observe that no S−T path p in G can live entirely inside GK

i , i.e.
have all of its nodes in V K

i . This is because at least one end-point (that in T) it is
necessarily missing in any path entirely living only in GK

i . Hence a path touching
w is either entering or leaving GK

i . But outside of GK
i w is connected only to K,

since otherwise K would not be a minimal vertex separator. Hence it must be
P({w}) ⊆ P(K). We have found U,W of size ≤ κ(G) such that P(U) = P(W).
The upper bound follows.

Arbitrary LoS networks have minimum degree, and hence also vertex con-
nectivity at most 2d(ω −1). The next corollary follows directly from Theorem 3.

90 N. Galesi et al.

output monitors

input monitors

v
U

W

Fig. 4. A node v ∈ UΔW and a possible way to connect it to S and T .

Corollary 1. Let G be an arbitrary LoS network over n nodes and with fixed
range parameter ω, independent of n, such that n ≥ ω. Then μ(G) ≥ κ(G) − 2.

5 Random Networks and Tradeoffs

The main aim of this work is to characterize the identifiability in terms of the
vertex connectivity. In this section we prove that tight results are possible in
random graphs. Also we show an interesting trade-off between the success prob-
ability of the various random processes and the size of the sets S and T . Finally,
random graphs give us constructions of networks with large identifiability.

5.1 Sub-linear Separability in Erdős-Rényi Graphs

We start our investigation of the identifiability of node failures in random graphs
by looking at the binomial model G(n, p), for fixed p ≤ 1/2 (in this section only
we follow the traditional random graph jargon and use p to denote the graph
edge probability rather than a generic path). The following equalities, which
hold with probability approaching one as n tends to infinity (that is with high
probability (w.h.p.)), are folklore:

κ(G(n, p)) = δ(G(n, p)) = np − o(n). (3)

(see [5]). Here we describe a simple method which can be used to separate sets
of vertices of sublinear size.

We assume, for now, that S and T are each formed by γ = γ(n) nodes with
κ(G(n, p)) ≤ γ < n/2. Let M = S ∪ T . Let U and W be two arbitrary subsets
of V \M of size k (see Fig. 4). The probability that U and W are separable is at
least the probability that an element v of UΔW (w.l.o.g. assume v ∈ U \ W) is
directly connected to a node in S and to a node in T . This event has probability
(1 − (1 − p)γ)2. Hence the probability that U and W cannot be separated is at
most 1 − (1 − (1 − p)γ)2 = 2(1 − p)γ − (1 − p)2γ and therefore the probability
that some pair of sets U and W of size k (not intersecting M) fail is at most
2
(
n−2γ
2k

)(
2k
k

)
(1 − p)γ .

Vertex-Connectivity for Node Failure Identification in BNT 91

Theorem 9. For fixed p with p ≤ 1/2, under the assumptions above about the
way monitors are placed in G(n, p), the probability that G(n, p) is not k-vertex
separable is at most 2k

(
n
k

)2e(2k−γ)p.

Proof. The argument above works if both U and W contain no vertex in M . The
presence of elements of vertices in M in U or W may affect the analysis in two
ways. First v could be in M (say v ∈ S). In this case U and W are separable if v is
directly connected to a vertex in T . This happens with probability (1−(1−p)γ) >
(1 − (1 − p)γ)2. Second, M might contain some elements of U and W different
from v. In the worst case when v is trying to connect to M , it must avoid at
most 2k element of such set. There is at most

∑
h≤k

(
n
h

)2 ≤ k
(
n
k

)2 pairs of U
and W of size at most k. Thus the probability that G(n, p) fails to be k-vertex
separable is at most 2k

(
n
k

)2(1 − p)γ−2k. and the result follows as 1 − p ≤ e−p. ��
Note that the bound in Theorem 9 can only be small if k = o(n) for otherwise

the factor e(2k−γ)p is large. In fact it has to be k = O(nε) for sufficiently small
positive ε otherwise the large factor

(
n
k

)2 is not “killed off” by the magnitude of
the small exponential.

5.2 Linear Separability in Erdős-Rényi Graphs

The argument above cannot be pushed all the way up to κ(G(n, p)). When trying
to separate vertex sets containing Ω(n) vertices the problem is that these sets
can form a large part of M and the existence of direct links from v to S \W and
T \ W is not guaranteed with sufficiently high probability. However a different
argument allow us to prove the following:

Theorem 10. For fixed p ≤ 1/3, κ(G(n, p)) − 1 ≤ μ(G(n, p)) ≤ κ(G(n, p))
w.h.p.

Full details of the proof are left to the final version of this paper, but here
is an informal explanation. The upper bound follows immediately from (3) and
Theorem 6. For the lower bound we claim that the chance that two sets of size
at most κ(G(n, p)) − 1 are not vertex separable is small. First note that w.h.p.
G(n, p) has a single vertex of minimum degree. Choose S of size at least n/3 so
that it contains such vertex. Choose T of size at least n/3 in V \ (S ∪ N(S))
arbitrarily. To believe our claim pick two sets U and W , assume without loss
of generality that U \ W
= ∅ and remove, W from the graph. G(n, p) \ W is
still a random graph on at least n − np = Ω(n) vertices and constant edge
probability. Results in [4] imply that G(n, p) \ W has a Hamilton path starting
at any s ∈ S with probability at least 1 − o(2−n) (and in fact one can use
well-known algorithmic techniques [1] to find one such path in polynomial time,
w.h.p.). Such Hamiltonian path, by definition, contains a path from S to T
passing through v
∈ W , for every possible choice of v. This proves, w.h.p., the
separability of sets of size up to κ(G(n, p)) − 1 (if |W | = κ(G(n, p)) − 1, v is
the unique vertex of minimum degree and W ⊆ N(v) then one needs to use a
Hamiltonian path starting at v).

92 N. Galesi et al.

5.3 Random Regular Graphs

A standard way to model random graphs with fixed vertex degrees is Bollobas’
configuration model [3]. There’s n buckets, each with r free points. A random
pairing of these free points has a constant probability of not containing any pair
containing two points from the same bucket or two pairs containing points from
just two buckets. These configurations are in one-to-one correspondence with
r-regular n-vertex simple graphs. Denote by Cn,r the set of all configurations
C(n, r) on n buckets each containing r points, and let G(r-reg) be a random
r-regular graph.

As before assume |S| = |T | = γ. The main result of this section is the
following:

Theorem 11. Let r ≥ 3 be a fixed integer. r−2−o(1) ≤ μ(G(r-reg)) ≤ r w.h.p.

The result resembles Theorem 3 but its proof uses different techniques. The
upper bound is true of any r-regular graph G as μ(G) ≤ δ(G) = r. The lower
bound is a consequence of the following:

Lemma 2. Let r ≥ 3 be a fixed integer. Two sets U and W with U,W ⊆ V (G(r-
reg)) and max(|U |, |W |) ≤ k are separable w.h.p. if k = r − 2 − o(1).

Proof. In what follows we often use graph-theoretic terms, but we actually work
with a random configuration C(n, r). Let U and W be two sets of k buckets. For
simplicity assume that (the vertices corresponding to the elements of) both U
and W are subsets of V \M . The probability that U and W can be separated is at
least the probability that a (say) random element v of U	W (w.l.o.g. v ∈ U \W)
is connected to S by a path of length at most �s and to T by a path of length
at most �t, neither of which “touch” W . Figure 5 provides a simple example of
the event under consideration. The desired paths can be found using algorithm
PathFinder below that builds the paths and C(n, r) at the same time.

PathFinder(v, �s, �t,W)

SimplePaths(v, �s, �t,W). Starting from v, build a simple path ps

of length �s that avoids W . Similarly, starting from v, build a
simple path pt of length �t that avoids W .

RandomShooting(ps, pt). Pair up all un-matched points in ps and
pt.

Complete the configuration C(n, r) by pairing up all remaining
points.

Sub-algorithm SimplePaths can complete its constructions by pairing points
starting from elements of the bucket v then choosing a random un-matched
point in a bucket u, then picking any other point u and then again a random
un-matched point and so on, essentially simulating two random walks RWs and
RWt on the set of buckets. Note that the process may fail if at any point we re-
visit a previously visited bucket or if we hit W or even M . However the following
can be proved easily.

Vertex-Connectivity for Node Failure Identification in BNT 93

T

S

j = 5

= 4i

v

Fig. 5. Assume r = 4. The picture represents a bucket (i.e. vertex) v ∈ U�W and
two possible “paths” (sequences of independent edges such that consecutive elements
involve points from the same bucket) of length 3 and 5, respectively connecting it to
S and T .

Claim. RWs and RWt succeed w.h.p. provided �s, �t ∈ o(n).

As to RandomShooting, the process succeeds if we manage to hit an ele-
ment of S from ps and an element of T from pt.

Claim. RandomShooting(qs, qt, S, T) succeeds w.h.p. if �s, �t ∈ ω(1).

Any un-matched point in ps or pt after SimplePaths is complete is called
useful. Path ps (resp. pt) contains qs = (r − 2)�s + 1 (resp qt = (r − 2)�t + 1)
useful points. During the execution of RandomShooting a single useful point
“hits” its target set, say S, with probability proportional to the cardinality of S.
Hence the probability that none of the qs useful points hits S is (1 − γ

n)qs and
the overall success probability is (1 − (1 − γ

n)qs)(1 − (1 − γ
n)qt).

Back to the proof of Lemma 2 Set �s = �t = � and q the common value of qs

an qt. The argument above implies that the success probability for U and W is
asymptotically approximately (1− (1− γ

n)q)2 and the rest of the argument (and
its conclusion) is very similar to the G(n, p) case (the final bound is slightly
weaker, though). The chance that a random r-regular graph is not k-vertex
separable is at most

O(n2k) × (1 − (1 − (1 − γ

n
)q)2) ≤ O(n2k) × 2(1 − γ

n
)q ≤ O(n2k) × 2e− γ

n q,

which goes to zero as n−C provided � is at least logarithmic in n. The constraints
on � from the claims above imply that the parameter can be traded-off agains γ
to achieve high identifiability. ��

References

1. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)

94 N. Galesi et al.

2. Bartolini, N., He, T., Khamfroush, H.: Fundamental limits of failure identifiability
by Boolean network tomography. In: INFOCOM 2017. IEEE (2017)

3. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)

4. Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths
and cycles in random graphs. Combinatorica 7, 327–341 (1987)

5. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol.
73, 2nd edn. Cambridge University Press, Cambridge (2001)

6. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent
developments. Stat. Sci. 19(3), 499–517 (2004)

7. Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group
testing. IEEE Trans. Inf. Theory 58(1), 248–262 (2012)

8. Coates, M., Hero, A.O., Nowak, R., Yu, B.: Internet tomography. IEEE Signal
Process. Mag. 19, 47–65 (2002)

9. Czumaj, A., Wang, X.: Communication problems in random line-of-sight ad-hoc
radio networks. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.)
SAGA 2007. LNCS, vol. 4665, pp. 70–81. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74871-7 7

10. Devroye, L., Farczadi, L.: Connectivity for line-of-sight networks in higher dimen-
sions. Discrete Math. Theor. Comput. Sci. 15(2), 71–86 (2013)

11. Du, D.-M., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientific, Singapore (2000)

12. Duffield, N.G.: Simple network performance tomography. In: Proceedings of the 3rd
ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL,
USA, 27–29 October 2003, pp. 210–215. ACM (2003)

13. Frieze, A.M., Kleinberg, J.M., Ravi, R., Debany, W.: Line-of-sight networks. In:
Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, 7–9 January 2007, pp. 968–977. SIAM (2007)

14. Ghita, D., Karakus, C., Argyraki, K., Thiran, P.: Shifting network tomography
toward a practical goal. In: Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, CoNEXT 2011, pp. 24:1–24:12. ACM,
New York (2011)

15. Galesi, N., Ranjbar, F.: Tight bounds for maximal identifiability of failure nodes
in boolean network tomography. In: 2018 IEEE 38th International Conference on
Distributed Computing Systems, pp. 212–222. IEEE (2018)

16. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
17. Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Inferring link metrics from

end-to-end path measurements: identifiability and monitor placement. IEEE/ACM
Trans. Netw. 22(4), 1351–1368 (2014)

18. Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K., Lowe, J.: Node failure local-
ization via network tomography. In: Williamson, C., Akella, A., Taft, N. (eds.)
Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Vancouver,
BC, Canada, 5–7 November 2014, pp. 195–208. ACM (2014)

19. Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K.: Network capability in local-
izing node failures via end-to-end path measurements. IEEE/ACM Trans. Netw.
25(1), 434–450 (2017)

20. Ren, W., Dong, W.: Robust network tomography: K-identifiability and monitor
assignment. In: 35th Annual IEEE International Conference on Computer Com-
munications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp.
1–9. IEEE (2016)

https://doi.org/10.1007/978-3-540-74871-7_7
https://doi.org/10.1007/978-3-540-74871-7_7

Vertex-Connectivity for Node Failure Identification in BNT 95

21. Sangha, P., Wong, P.W.H., Zito, M.: Independent sets in restricted line of sight
networks. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.)
ALGOSENSORS 2017. LNCS, vol. 10718, pp. 211–222. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72751-6 16

22. Sangha, P., Zito, M.: Finding large independent sets in line of sight networks.
In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp.
332–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9 29

23. Vardi, Y.: Network tomography: estimating source-destination traffic intensities
from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)

https://doi.org/10.1007/978-3-319-72751-6_16
https://doi.org/10.1007/978-3-319-53007-9_29

Reception Capacity: Definitions, Game
Theory and Hardness

Michael Dinitz1 and Naomi Ephraim2(B)

1 Johns Hopkins University, Baltimore, MD, USA
mdinitz@cs.jhu.edu

2 Cornell University, Ithaca, NY, USA
nephraim@cs.cornell.edu

Abstract. The capacity of wireless networks is a classic and important
topic of study. Informally, the capacity of a network is simply the total
amount of information which it can transfer. In the context of mod-
els of wireless radio networks, this has usually meant the total number
of point-to-point messages which can be sent or received in one time
step. This definition has seen intensive study in recent years, particu-
larly with respect to more accurate models of radio networks such as the
SINR model. This paper is motivated by an obvious fact: radio anten-
nae are (at least traditionally) omnidirectional, and hence point-to-point
connections are not necessarily the best definition of the true capacity of
a wireless network. To fix this, we introduce a new definition of reception
capacity as the maximum number of messages which can be received in
one round, and show that this is related to a new optimization prob-
lem we call the Maximum Perfect Dominated Set (MaxPDS) problem.
Using this relationship we give a tight lower bound for approximating
this capacity which essentially matches a known upper bound. As our
main result, we analyze this notion of capacity under game-theoretic
constraints, giving tight bounds on the average quality achieved at any
coarse correlated equilibrium (and thus at any Nash). This immediately
gives bounds on the average behavior of the natural distributed algo-
rithm in which every transmitter uses online learning algorithms to learn
whether to transmit.

1 Introduction

A fundamental quantity of a wireless network is its capacity, which informally is
just the maximum amount of data which it can transfer. There is a large litera-
ture on analyzing and computing the capacity of wireless networks under various
modeling assumptions, including models of how interference works and assump-
tions on how nodes are distributed in space. The last decade has witnessed a
flurry of activity in this area, particularly for worst-case (rather than random)

M. Dinitz—Supported in part by NSF awards CCF-1464239 and CCF-1535887.
N. Ephraim—Supported in part by NSF Award SATC-1704788 and NSF Award IIS-
1703846.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 96–115, 2019.
https://doi.org/10.1007/978-3-030-34405-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_6

Reception Capacity: Definitions, Game Theory and Hardness 97

node distributions, motivated by the ability to apply ideas from multiple areas of
theoretical computer science (approximation algorithms and algorithmic game
theory in particular) to these problems.

We continue that line of work in this paper, but with a new definition of
capacity. Much of the research in the last decade (see, e.g., [2,18–24]) has used a
point-to-point definition of capacity: given a collection of disjoint pairs (si, ti) of
nodes (called the demands), and some model of interference, the point-to-point
capacity is the maximum number of pairs which can simultaneously successfully
transmit a message from si to ti. This is sometimes motivated by its utility
in scheduling: if we are trying to support many unicast demands in a wireless
network, a natural thing to do is make as much progress as possible in each time
step, i.e., maximize the number of successful transmissions.

But while well-motivated by scheduling, this is not the only possible defini-
tion of capacity. In particular, a natural notion of “capacity” is of the best case:
what is the absolute limit on the usefulness of a network in even the best possi-
ble situation? With this intuition, there are two main issues with point-to-point
capacity: the existence of demands, and the requirement for unicast communica-
tion. First, since we want to talk about the capacity of a network, why should the
capacity be a function of any set of input demands (which are, after all, external
to the network itself)? Instead we should allow any set of demands and take
the best possible. So one might instead define the “capacity” of the network to
be the maximum number of (si, ti) pairs which can simultaneously successfully
transmit a message, but not restrict (si, ti) to come from any particular input
subset (or equivalently, require the set of input demands to always be V × V
where V is the set of nodes).

Even if we remove the demands, though, there is still something restrictive
about this notion of capacity: it only allows unicast, point-to-point communica-
tion. One of the defining features of traditional wireless networks is that antennas
are omnidirectional. Thus, if we want to truly understand the “capacity” of a
given wireless network, we should surely take into account the ability for a single
node to successfully send the same message to many other nodes in one time
slot, since in the best case we can obtain significant benefits from this ability.

For example, suppose we are in a classical radio network represented by a
communication graph, where each node is a transmitter who can communicate
with its neighboring nodes. In this model, interference is destructive: u will
receive a message from v if v sends a message, u does not send a message,
and no other neighbor of u sends a message. Suppose that we are given a star
topology with r as the center and leaves x1, . . . , xn. What is the capacity of this
network? Traditionally, the answer would be 1: only one of the unicast links can
be successful, since r can only send or receive one message at a time. On the
other hand, if r really only has a single message which it is trying to send to all
of its neighbors, then there can be n successful receptions in a single round, and
hence the capacity should be n.

Motivated by this, we define a new notion of capacity in radio networks which
we call the reception capacity. Informally, this is simply the maximum number of

98 M. Dinitz and N. Ephraim

successful message receptions in a single round. Note that there are no demands,
and there is no requirement that different receptions correspond to different
messages. Hence this definition is the true limit on the single-step “usefulness”
of the network. We emphasize that there are many notions of capacity, each of
which is appropriate and interesting in different contexts, and we are not claiming
that reception capacity is the right definition. We are merely claiming that it is
a natural definition of “best-case usefulness”, so bounds on it are bounds on the
utility of a network even in the best possible situation.

In this paper we study this notion of capacity in radio networks. We first
show that maximizing this capacity is equivalent to a new optimization prob-
lem we call the Maximum Perfect Dominated Set (MaxPDS) problem. While
this problem as defined is new, we show that the classical Decay protocol of [4]
gives an O(log n)-approximation algorithm. We also give a tight lower bound on
its approximability which matches this upper bound, under plausible complex-
ity assumptions. Both of these results are with respect to networks defined by
general communication graphs (the networks are not restricted to having any
specific structure). Together, these two bounds give us a tight understanding of
the approximability of maximizing the reception capacity.

The main technical contribution of this paper, though, is the study of the
capacity achieved by self-interested agents. What if every transmitter has its own
goals, which do not necessarily align with the global objective of maximizing
the reception capacity? While there are many ways to model this, we take a
first step by considering a natural model in which every transmitter wants to
broadcast its message to as many of its neighbors as possible, but is penalized
for unsuccessful transmissions. This intuitively corresponds to a setting where
transmitters want to get their message out to many of their neighbors (e.g., if it
is an important piece of information which the transmitter wants to disseminate)
but are discouraged from placing an unnecessary load on the network if there
will be many unsuccessful transmissions.

This type of setting is naturally modeled as a game, where each transmitter
is a player that is trying to maximize its own utility. In such a game, what
can we say about the achieved reception capacity? Does the selfishness of the
transmitters mean the network is being underutilized, or do they naturally arrive
at an equilibrium with close to optimal reception capacity? In the unicast setting,
Dinitz [9] showed that equilibria of the related unicast-specific game can be
arbitrarily far from optimal: can the same thing happen with reception capacity?

We completely characterize the behavior of a broad class of equilibria known
as ε-coarse correlated equilibria (ε-CCE), which both generalize Nash equilibria
and to which natural distributed online learning algorithms (known as no-regret
algorithms) will converge [5]. In particular, for a network with n nodes, we prove
that at every ε-CCE the achieved reception capacity of the transmitters is at
least Ω(1/

√
n) of the true reception capacity (unlike the unicast setting), and

moreover there exist instances in which every ε-CCE achieves reception capacity
that is at most O(1/

√
n) of the true reception capacity.

Reception Capacity: Definitions, Game Theory and Hardness 99

1.1 Modeling

To model the notion of reception capacity, we consider the classical radio network
model. In this model there is a communication graph G = (V,E), and each node
in V can act as either a transmitter or a receiver. In a given unit of time (we
make the standard assumption of synchronous rounds), each node can either
broadcast a message to all of its neighbors, or choose to not broadcast and thus
act as a receiver. Interference is modeled by requiring that a receiver can only
receive one message in each round, or else the messages interfere and cannot be
decoded. In other words, a vertex i can successfully decode a message from a
neighbor j if and only if i is not broadcasting (and so is acting as a receiver), j
is broadcasting, and no other neighbor of i is broadcasting. If multiple neighbors
of i are broadcasting then their messages all interfere with each other at i, and
so i would not receive any message.

In this model, the equivalent of the unicast notion of “capacity” used in
recent work would be a maximum induced matching (or if there is a set of
input demands, a maximum induced matching subject to being a subset of the
demands). This is because, in the unicast setting, each node can only transmit
to a single neighbor or receive a message from a single broadcasting neighbor.
Therefore, maximizing the unicast capacity is equivalent to finding a set S of
broadcasters and a set T of receivers such that the bipartite subgraph induced
by S and T is a matching, and maximizing the size of this matching.

However, this may be significantly smaller than the number of nodes which
can successfully hear a message, as the star example shows. So we will instead
adopt a different notion of capacity:

Definition 1. The reception capacity of a wireless network is the maximum
number of nodes which can simultaneously successfully receive a message.

We note that this differs from the traditional unicast or multicast setting
because there are no demands from broadcasters to receivers. The reception
capacity is rather the total number of messages that can be received in one
round, without any assumptions on whether one node “wants” to send a message
to another node. Thus it is a true upper bound on the “capacity” (usefulness)
of the network.

2 Our Results

2.1 MaxPDS and Approximability

We first observe that it is straightforward to relate reception capacity to reason-
ably well-studied notions in graph theory. In particular, since each node success-
fully receives a message if and only if it does not broadcast and exactly one of its
neighbors does broadcast, we would like each receiver to be perfectly dominated
by the set of broadcasting nodes.

100 M. Dinitz and N. Ephraim

Definition 2. Given a graph G = (V,E) and a set S ⊆ V , we say that a node
v ∈ V \ S is perfectly dominated by S if there exists exactly one node u ∈ S
such that u is a neighbor of v.

For every subset S ⊆ V , let D(S) = {v : v is perfectly dominated by S}.
This immediately lets us relate the reception capacity to perfect domination.

Lemma 1. The reception capacity of a wireless network G = (V,E) is exactly
max
S⊆V

|D(S)|.

Proof. Let S ⊆ V . If every node in S broadcasts a message, by the definition of
the radio network model, a node receives a message if and only if it is in D(S).
Hence the reception capacity is at least maxS⊆V |D(S)|. On the other hand, let
S be the set of nodes who transmit when the reception capacity is achieved,
and suppose that v receives a message. Then v ∈ D(S), and hence the reception
capacity is at most maxS⊆V |D(S)|. ��

Thus computing the reception capacity of a network is equivalent to the
following optimization problem.

Definition 3. Given a graph G = (V,E), the Maximum Perfect Dominated
Set Problem (MaxPDS) is to find a set S ⊆ V which maximizes |D(S)|.
This problem seems to be new, despite the vast literature on variations of dom-
inating sets. It is superficially similar to the well-studied Minimum Perfect
Dominating Set problem [27,28], in which the goal is to find the set S of min-
imum size such that D(S) = V \S (note that some such S always exists since we
could set S = V). Despite their superficial similarity, though, the problems are
quite different: in MaxPDS nodes not in S may still not be perfectly dominated,
so both the feasible solutions and the objective functions of the two problems
are quite different.

Therefore, our first goal is to characterize the hardness of MaxPDS. We
observe that the classical Decay protocol [4] can be used to obtain a simple
O(log(n)) approximation algorithm for MaxPDS. We compliment this with
an essentially matching lower bound for MaxPDS. The precise lower bound
depends on the hardness assumption, but all are essentially polylogarithmic.

Theorem 1. MaxPDS cannot be approximated to better than a polylogarithmic
factor. More precisely:

– Let ε > 0 be an arbitrary small constant. Suppose that NP �⊆ BPTIME(2nε

).
Then there is no polynomial time algorithm which approximates MaxPDS to
within O(logσ n) for some constant σ = σ(ε).

– Under Feige’s Random 3SAT Hypothesis [14], no polynomial time algorithms
approximates MaxPDS to within O(log1/3−σ n) for arbitrarily small constant
σ > 0.

– Under the assumption that the Balanced Bipartite Independent Set Problem
(BBIS) cannot be approximated better than O(nε) for some constant ε > 0
(Hypothesis 3.22 of [8]), there is no polynomial time algorithm which approx-
imates MaxPDS to within o(log n).

Reception Capacity: Definitions, Game Theory and Hardness 101

This lower bound is obtained through a connection to the Unique Coverage
Problem (UCP). Informally, UCP is a variation of Maximum Coverage with
a similar uniqueness requirement as in MaxPDS (an element only counts as
covered if it is contained in exactly one chosen set). Upper and lower bounds for
UCP are known [8], so we derive our lower bound by reducing from UCP to
MaxPDS (in particular, the different lower bounds and their hardness assump-
tions are all direct from equivalent bounds and assumptions for UCP). The lower
bound is given in Sect. 3 and the upper bound is given in Appendix A.

2.2 Reception Capacity with Self-interested Agents

The above algorithmic results provide us with a comprehensive understanding of
the problem of maximizing the reception capacity in arbitrary radio networks.
However, they do not imply bounds on the usability of these networks with
respect to their reception capacity. That is, for a given network, we would like to
investigate the capacity that is utilized under reasonable behavioral assumptions.
We focus on the model of self-interested agents due to the competitive nature of
a network with fully destructive interference, and because it is a tractable and
standard model in the literature on algorithmic game theory.

Therefore, the main focus of this paper is a natural game-theoretic formal-
ization which we call the reception capacity game. Informally, this is a game in
which the nodes are self-interested players, and the utility of each node is 0 if it
does not transmit, and otherwise is a linear function of the number of neighbors
who successfully heard its message and the number who did not (we define this
game formally in Sect. 4). In other words, each node gets some positive utility
from successfully transmitting its message to a neighbor, but pays a price for an
unsuccessful transmission.

While this game may seem somewhat arbitrary, it is quite natural. Clearly
there has to be some penalty for unsuccessful transmissions, or else the only
equilibrium is for all nodes to broadcast all the time. This motivated the previous
work on unicast capacity in which a similar game is analyzed [2,3,9], and in fact
our game is the obvious generalization of the earlier unicast capacity game. It also
motivated previous work on clique networks [15], where they analyzed equilibria
in which all nodes were required to transmit with probability strictly smaller
than 1. Thus, while it may not be a perfect model of the incentives of selfish
transmitters, it is reasonable in at least some situations (e.g., if every transmitter
is trying to broadcast an advertisement of some kind). More importantly, it
provides insight into the limits of the performance of radio networks in the
presence of self-interested agents.

When we analyze behavior in a game, the natural approach is to study the
quality of the solution at some notion of equilibrium (this is the well-studied
notion of inefficiency of equilibrium in algorithmic game theory). While the
most popular notion of equilibrium to study is the famous Nash equilibria, we
provide stronger results by studying coarse-correlated equilibria (CCE), or more
precisely, approximate versions known as ε-CCE. We define these formally in
Sect. 4, but CCE are generalizations of Nash equilbria, and hence if we can

102 M. Dinitz and N. Ephraim

prove that all CCE are close to optimal, or if we can prove that all CCE are far
from optimal, then these bounds immediately hold for Nash equilibria as well.
Moreover, CCE are an important class of equilibria in a distributed context
since (unlike Nash equilibria) natural distributed learning algorithms will have
an empirical distribution of play which converges to a CCE, and thus CCEs can
be computed efficiently even in distributed settings. We note that these equilibria
are precisely those analyzed and used in [3,9] to design distributed algorithms
for unicast capacity. However, it was shown in [9] that in arbitrary graphs, no
nontrivial bounds were possible: there are examples in which there is a solution
with Ω(n) successful transmissions, while any CCE has an average of at most
O(1) successful transmissions. On the other hand, we will prove that even in
arbitrary graphs, the expected number of receptions in any CCE is at most an
O(

√
n) factor worse than OPT (the true reception capacity). We will also show

that this is tight by designing instances in which all CCE are Ω(
√

n) worse than
OPT. More formally, we prove the following theorems.

Theorem 2. In any instance of the reception capacity game, the expected num-
ber of successful receptions in any ε-CCE is at least OPT · Ω

(
1√
n

− ε)
)
.

Theorem 3. There is an instance of the reception capacity game in which in
every ε-CCE, the expected number of successful receptions is at most OPT·O((1+
ε)/

√
n).

Note that since every Nash equilibrium is a 0-CCE, our bounds immediately
imply bounds on the more classical Price of Anarchy/Stability, in which we
compare the optimal solution to the worst/best Nash. We prove Theorem 2 in
Sect. 4.2 and Theorem 3 in Sect. 4.3.

Interestingly, like the unicast capacity game studied in [2,3,9] but unlike most
algorithmic game theory settings, our notion of “quality” is not the social welfare,
i.e., it is not just the sum of the utilities of the players. Our notion of quality
is number of successful receptions, which can be dramatically different from the
social welfare. This means that standard techniques such as smoothness [26]
cannot be used to analyze this game.

2.3 Related Work

Capacity in Wireless Networks. As discussed earlier, this paper follows an
extensive line of work on computing the capacity of wireless networks. There has
been a particular focus on the SINR or physical model, in which we explicitly
reason about the signal strength and interference at each receiver. However,
there has also been significant work directly on graph-based models (e.g., [9])
and on the relationship between graph models and the SINR model [23] (which
shows in particular that graphs can do a surprisingly good job of representing
the physical model, motivating continued study of graph models).

From the perspective of computing the capacity, the most directly related
work (and much of the inspiration for this paper) are [2] and [19], which to a

Reception Capacity: Definitions, Game Theory and Hardness 103

large extent introduced the unicast capacity problem for worst-case inputs and
gave the first approximation bounds. These bounds were improved in a series of
papers, most notably including a constant-factor approximation [24], and have
been generalized to even more general models and metrics, e.g. [20,22].

Much of this paper focuses on analyzing a natural game-theoretic version of
reception capacity. This is directly inspired by a line of work on a related game
for unicast capacity, initiated by [2] and continued in [3,9]. These papers study
various equilibria for the unicast capacity game (Nash equilibria in [2], coarse
correlated equilibria in [3,9]) and prove what are essentially price of anarchy or
total anarchy bounds (upper bounds on the gap between the optimal capacity
and the capacity at equilibrium).

Radio Networks. There is a long line of research on the radio network model
under various assumptions. Much of this work focuses on the radio broadcast
problem [6,7], in which there is a graph representing the network and a source
node s. The problem is to minimize the number of rounds that it takes for a
message, originating at s, to be successfully propogated through the network.

The literature on this model includes many algorithmic results. NP-hardness
results were shown in [7,13], approximation algorithms were given by [4,6,11,16,
17], and inaproximability results were given in [1,10,12,25]. Despite the vast work
on this problem, reception capacity differs from the radio broadcast problem in
that there we are trying to determine the optimal set of broadcasters in each
round, rather than determining a broadcasting schedule given a set of nodes who
are allowed to transmit.

Nevertheless, some results in the radio network models apply to the case of
reception capacity. In particular, the Decay protocol, introduced as a means of
giving an approximation algorithm to the radio broadcast problem, yields an
approximation algorithm for MaxPDS [4] (given in Appendix A). Another line
of work which focuses on testing communication lines between nodes in networks
provides results which imply that MaxPDS is NP-hard. In particular, Even et
al. show a reduction from a similar setting to a variant of the Exact Cover
problem (which is a variant of Set Cover in which each element must be covered
by exactly one set) [13]. Their proof can be used to show that the MaxPDS on
bipartite graphs is NP-hard, thus implying hardness for the general case.

A notable variant of the radio broadcast problem is that of gossiping in
radio networks, which is sometimes called all-to-all communication [17]. This
problem studies the number of rounds for n messages, one originating at each
of n nodes, to be propagated through the network. While this problem shares
a closer resemblance to MaxPDS than that of radio broadcasting, we are not
aware of any results that directly imply results for MaxPDS.

2.4 Notation

Given any graph G = (V,E), we refer to undirected graphs with |V | = n.
Additionally, for any vertex v ∈ V , we define N(v) as the open neighborhood of
v, that is, N(v) = {u ∈ V : {v, u} ∈ E}, and we let d(v) denote the degree of v.

104 M. Dinitz and N. Ephraim

3 Hardness of Approximation

In this section, we present our hardness of approximation result for the Maxi-
mum Perfect Dominated Set Problem. We begin by defining the Unique
Coverage Problem [8].

Definition 4 ([8]). Given a universe U of elements and a collection S of subsets
of U , the Unique Coverage Problem (UCP) is to find a subcollection S ⊆ S
of subsets which maximizes the number of elements that are uniquely covered,
i.e., are in exactly one set of S.

Demaine et al. [8] proved the equivalent of Theorem 1 for UCP (all bounds
and assumptions are exactly the same, just for UCP rather than MaxPDS) and
an O(log n)-approximation for UCP. Because of the similarity between UCP and
MaxPDS, we base our lower approximability bound on UCP, and in particular,
show an approximation-preserving reduction from UCP to MaxPDS.

Theorem 4. Assuming UCP cannot be approximated to within O(logc(n)) for
some constant c satisfying Theorem 1, then MaxPDS is hard to approximate to
within O(logc(n)).

Proof. Consider an instance of UCP with a universe U of elements and a col-
lection S of subsets of U . For specified parameters α′, β′, given a subcollection
S ′ ⊂ S, we define the following two cases.

1. S ′ is a Yes-instance of UCP if the number of elements uniquely covered is at
least α′.

2. S ′ is a No-instance of UCP if the number of elements uniquely covered is less
than β′.

Given an instance of this problem, construct an undirected bipartite graph
G′ = (V ′, E′) such that V ′ consists of a vertex si for each set Si ∈ S and a
vertex xi for each element ei ∈ U. Let {si, xj} ∈ E′ if ej ∈ Si. Let A denote
the set of vertices si corresponding to sets in S, and let B denote the vertices
corresponding the elements in U.

Construct a new bipartite graph G = (V,E) such that V consists of A and
k copies of B, denoted B1, B2, . . . , Bk. Let V have an additional vertex v that
is adjacent to all vertices in A. Let E consist of k copies of E′, one for each
bipartite subgraph over (A,Bi) for all i ∈ [k].

Consider some solution S ′ to the UCP instance. Define D = {si : Si ∈
S ′} ∪ {v}. If S ′ is a Yes-instance of UCP, then the number of vertices perfectly
dominated by D is α ≥ α′k, because in each of the Bi, there are at least α′

perfectly dominated vertices. On the other hand, if S ′ is a No-instance of UCP,
then there are only β < |S| + kβ′ vertices perfectly dominated by D, because
{si : Si ∈ S ′} perfectly dominates less than kβ′ of the vertices in the Bi and v
perfectly dominates the |S| vertices in A.

Now, set k = |S| . Then α ≥ α′ |S| = α′k and β < |S| + |S| β′ = k + kβ′ =
k(β′ + 1). Therefore, the approximation ratio for MaxPDS in this setting is

Reception Capacity: Definitions, Game Theory and Hardness 105

α
β > α′k

k(β′+1) = α′
β′+1 ≥ α′

2β′ when β′ ≥ 1, which is trivially true. Since all we have
done is create |S| repetitions of B, this can be done in polynomial time.

Therefore, this reduction begins with an instance of UCP with an approx-
imation ratio of α′

β′ and transforms the problem into an instance of MaxPDS

with an approximation ratio of α
β . Let n′ be the size of the input to this reduc-

tion, and let n be the size of the resulting instance of MaxPDS. By assump-
tion, α′

β′ = Ω(logc(n′)). Therefore, we want to show that α
β = Ω(logc(n)).

We start with n′ = |S| + |E′| and we end with n = |S| + k |E′|. Then
n = |S| + k |E′| = |S| + |S| |E′| = |S| (1 + |E′|) ≤ 2 |S| |E′| < 2(n′)2, and
hence logc(n) ≤ logc(2(n′)2) ≤ 4c logc(n′), implying that logc(n′) ≥ 1

4c logc(n).
Therefore, α

β ≥ α′
2β′ ≥ 1

2 logc(n′) ≥ 1
4c+1 logc(n) = Ω(logc(n)) as desired, thus

showing that MaxPDS is hard to approximate to within O(logc(n)). ��
This reduction from UCP to MaxPDS shows that MaxPDS is hard to

approximate to within O(logc(n)) under any hardness assumption for which
UCP is hard to approximate to within O(logc(n)). In particular, this holds for
the three different hardness assumptions used to show the hardness of approxi-
mating UCP in [8], thus proving Theorem 1.

4 The Reception Capacity Game

In this section, we study reception capacity as a game in a distributed setting
with self-interested players. Formally, an instance of the reception capacity game
is represented by a graph G = (V,E), where we let V = [n] represent the
players. Each player has two actions: broadcast (represented by 1) or be silent
(represented by 0). Let S = {0, 1}n be the strategy space, where for each s ∈ S,
si represents the action of player i for each i ∈ [n]. For any s, if si = 1 define
ri(s) =

∣∣∣
{

j ∈ N(i) : sj = 0 ∧ ∑
k∈N(j) sk = 1

}∣∣∣ as the number of neighbors of i

not broadcasting and receiving exactly one message under s, and if si = 0, let
ri(s) = 0. That is, when i broadcasts, ri(s) is the number of neighbors of i that
successfully receive its message, and |N(i)| − ri(s) is the number of neighbors of
i that are either broadcasting or receiving multiple messages, and thus result in
a failure for i. With this notation, we can define the reception capacity game.

Definition 5. For constants c, d ≥ 1, an instance of the reception capacity
game is given by a graph G = (V,E). The utility for player i is ui : S → Z,
defined by ui(s) = c ·ri(s)−d · (|N(i)|−ri(s)) if si = 1, and ui(s) = 0 otherwise.

This game intuitively models the fact that each node would like to send its
message to its neighbors, and gets a benefit proportional to the number of suc-
cesses but with a penalty for failures (possibly due to either the cost of wasting
the transmission power, or more altruistically, a payment for the interference
caused). The parameters c and d provide a means by which to model a differ-
ence between the reward of a successful broadcast and the cost of a failure (in
the simplest case we can think of c = d = 1).

106 M. Dinitz and N. Ephraim

Definition 6. A coarse correlated equilibrium (CCE) is a distribution over S
such that in expectation, no player has any incentive to deviate. Formally, p is
a CCE if for any i ∈ [n] and any s′

i ∈ {0, 1}, Es∼p [ui(s)] ≥ Es∼p [ui(s−i, s
′
i)],

where s−i, s
′
i is a vector formed by replacing the i’th coordinate of s with s′

i.

Clearly any Nash equilibrium is a CCE, but a CCE is not necessarily a
Nash since every Nash is a product distribution over S while a CCE does not
have to be a product distribution. This definition can be relaxed to that of an
approximate CCE. In particular, we say that p is an ε-CCE if for any i ∈ [n]
and any s′

i ∈ {0, 1}, it holds that Es∼p [ui(s)] ≥ Es∼p [ui(s−i, s
′
i)] − ε. Note that

a true CCE is a 0-CCE, and in the reception capacity game, every distribution
over S is a (c + d)n-CCE.

4.1 Notation

In the following sections, we let G = (V,E) with V = [n] be an instance of
the reception capacity game. Without loss of generality we assume that G is
connected, since the results below directly extend to the case where G is discon-
nected by applying the upper and lower bound to each connected component.
We next define a few important sets and quantities.

For every s ∈ S, we will let B(s) = {i ∈ [n] : si = 1} be the vertices which are
broadcasting, R(s) = {i ∈ [n] : si = 0∧∑

j∈N(i) sj = 1} be the vertices which are
successfully receiving a transmission, F (s) = {i ∈ [n] : si = 0 ∧ ∑

j∈N(i) sj ≥ 2}
be the vertices which are receiving at least two transmissions (and thus are
failing to successfully receive any transmission), and A(s) = {i ∈ [n] : si =
0∧∑

j∈N(i) sj = 0} be the vertices which are neither broadcasting nor receiving
any message.

Let p be a distribution over S which is an ε-CCE. Note that ε ≥ 0 without
loss of generality, since if ε ≤ 0 then we are at a true CCE and so are at a 0-
approximate CCE. With respect to p, we can define B =

∑
s∈S p(s)|B(s)| as the

expected number of broadcasters, R =
∑

s∈S p(s)|R(s)| as the expected number
of successful receptions (note that this is the quantity which we are trying to
compare to OPT), F =

∑
s∈S p(s)|F (s)| as the expected number of failures, and

A =
∑

s∈S p(s)|A(s)| as the expected number of nodes who neither broadcast
nor hear a transmission.

4.2 Lower Bound on Successful Receptions

In this section we prove Theorem 2 by showing a lower bound on the expected
number of successful receptions in any ε-CCE, i.e., showing that the quality of
any CCE is not too far from OPT.

We begin with some lemmas that let us relate B and F to R, but for which
we need some more notation. Recall that for every s ∈ S and i ∈ [n], we defined
ri(s) = |R(s) ∩ N(i)| if si = 1 and ri(s) = 0 if si = 0. In other words, if i
is broadcasting in s, then ri(s) is the number of its neighbors that successfully
receive its message, and otherwise ri(s) is 0. Similarly, let fi(s) = |F (s) ∩ N(i)|

Reception Capacity: Definitions, Game Theory and Hardness 107

if si = 1 and let fi(s) = 0 if si = 0, and let bi(s) = |B(s) ∩ N(i)| if si = 1 and
let bi(s) = 0 if si = 0.

Since p is an ε-CCE we know that every vertex i gets expected utility
that is at least −ε, since otherwise it would have incentive to get utility 0
by never broadcasting. The expected utility of vertex i under p is precisely∑

s∈S p(s) (c · ri(s) − d(fi(s) + bi(s))), since if si = 0 then c · ri(s) − d(fi(s) +
bi(s)) = 0 which is the utility obtained by i by not broadcasting, while if si = 1
then ri(s) is exactly the number of neighbors that successfully receive i’s mes-
sage, and fi(s)+bi(s) is the number of neighbors of i that are either broadcasting
or receiving multiple messages, and thus do not successfully receive i’s transmis-
sion. Thus, for every i ∈ [n] it holds that

∑
s∈S

p(s) (c · ri(s) − d(fi(s) + bi(s))) ≥ −ε. (1)

We proceed by using this to relate B and F to R.

Lemma 2. B ≤ c+d
d · R + εn

d .

Proof. For any s ∈ S and i ∈ [n], clearly if si = 1 then ri(s) + fi(s) + bi(s) =
|N(i)| (since every neighbor of i either successfully receives i’s transmission or
fails because it is broadcasting or also receiving another transmission). There-
fore, (1) implies that

∑
s∈S p(s)si (c · ri(s) − d(|N(i)| − ri(s))) ≥ −ε, and thus∑

s∈S p(s)si ((c + d)ri(s) − d) ≥ −ε (since |N(i)| ≥ 1). Rearranging, we get that

(c + d)
∑
s∈S

p(s)ri(s) = (c + d)
∑
s∈S

p(s)siri(s) ≥ d
∑
s∈S

p(s)si − ε.

We can now use this to bound the expected number of broadcasters:

B =
∑
s∈S

p(s)|B(s)| =
∑
s∈S

p(s)
n∑

i=1

si =
n∑

i=1

∑
s∈S

p(s)si

≤
n∑

i=1

(
c + d

d

∑
s∈S

p(s)ri(s) +
ε

d

)

=
c + d

d

n∑
i=1

∑
s∈S

p(s)ri(s) +
εn

d
=

c + d

d

∑
s∈S

p(s)
n∑

i=1

ri(s) +
εn

d
.

Since every successful reception can be uniquely attributed to a single trans-
mitter, we know that

∑n
i=1 ri(s) = |R(s)| for every s ∈ S. Thus we get that

B ≤ c+d
d

∑
s∈S p(s)|R(s)| + εn

d = c+d
d · R + εn

d , as claimed. ��
Lemma 3. F ≤ c

2d · R + εn
2d .

Proof. For any s ∈ S, note that every failure is due to a collision between at
least two messages. Thus |F (s)| ≤ 1

2

∑n
i=1 fi(s). Moreover, we know from (1) that

108 M. Dinitz and N. Ephraim

∑
s∈S p(s) · d · fi(s) ≤ ∑

s∈S p(s)(c · ri(s) − d · bi(s)) + ε ≤ ∑
s∈S p(s) · c · ri(s) + ε

for all i ∈ [n]. Putting this together, we get that

F =
∑
s∈S

p(s)|F (s)| ≤ 1
2

∑
s∈S

p(s)
n∑

i=1

fi(s) =
1
2

n∑
i=1

∑
s∈S

p(s)fi(s)

≤ 1
2

n∑
i=1

1
d

(∑
s∈S

c · p(s)ri(s) + ε

)
=

c

2d

n∑
i=1

∑
s∈S

p(s)ri(s) +
εn

2d

=
c

2d

∑
s∈S

p(s)
n∑

i=1

ri(s) +
εn

2d
=

c

2d

∑
s∈S

p(s)|R(s)| +
εn

2d
=

c

2d
R +

εn

2d
.

��
The quantity A is more difficult to bound, and will require us to split the

nodes into two sets: nodes with large contribution to A, and nodes whose contri-
bution to A is bounded. In particular, define a = (d+ 2

3c+ ε)/(c+ d), which will

be the threshold. Let X =
{

i ∈ [n] :
∑

s∈S:i∈A(s) p(s) > a
}

be the nodes which

contribute a significant amount to A. Note that if ε > 1
3c then X is empty. Let

Y = V \ X. Let dX
i = |N(i) ∩ X| and let dY

i = |N(i) ∩ Y |. We begin with a
simple equation which follows directly from the fact that p is an ε-CCE.

Lemma 4. For every i ∈ [n], it holds that c · ∑
j∈N(i)

∑
s∈S:

si=0∧j∈A(s)
p(s) ≤

d · ∑
j∈N(i)

∑
s∈S:

si=0∧j 	∈A(s)
p(s) + ε.

Proof. Let i ∈ [n]. Note that for any s ∈ S with si = 0, if node i were to
transmit, then every neighbor in A(s) would result in a successful reception while
every neighbor that is not in A(s) (i.e., every neighbor in B(s) ∪ R(s) ∪ F (s))
would result in a failed reception. Formally, we have that Es∼p [ui(s−i, 1)] =∑

s∈S:si=0 p(s)(c · |N(i) ∩ A(s)| − d · |N(i) \ A(s)|) +
∑

s∈S:si=1 p(s)ui(s), and
the second summations is equal to Es∼p [ui(s)], because i gets utility 0 if si = 0.
By the definition of an ε-CCE we know that Es∼p [ui(s−i, 1)] −Es∼p [ui(s)] ≤ ε,
and thus c · ∑

s∈S:si=0 p(s) |N(i) ∩ A(s)| ≤ d · ∑
s∈S:si=0 p(s) |N(i) \ A(s)|) + ε.

Rearranging each sum gives the lemma. ��
Now we can use this lemma to prove some relationships between X and Y .

Lemma 5. For every i ∈ [n], it holds that d · dY
i ≥ dX

i (a(c + d) − d) − ε.

Proof. We bound both sides of the inequality in Lemma 4. First, we have that
∑

j∈N(i)

∑
s∈S:
si=0

∧j∈A(s)

p(s) ≥
∑

j∈N(i)∩X

∑
s∈S:
si=0

∧j∈A(s)

p(s)

=
∑

j∈N(i)∩X

∑
s∈S:

j∈A(s)

p(s) ≥
∑

j∈N(i)∩X

a = a · dX
i ,

Reception Capacity: Definitions, Game Theory and Hardness 109

where we used the fact that for j ∈ N(i), if j ∈ A(s) for some s ∈ S then si = 0.
On the other hand,

∑
j∈N(i)

∑
s∈S:

si=0∧j 	∈A(s)

p(s) =
∑

j∈N(i)∩X

∑
s∈S:

si=0∧j 	∈A(s)

p(s) +
∑

j∈N(i)∩Y

∑
s∈S:

si=0∧j 	∈A(s)

p(s)

≤
∑

j∈N(i)∩X

∑
s∈S:

j 	∈A(s)

p(s) +
∑

j∈N(i)∩Y

1

<
∑

j∈N(i)∩X

(1 − a) + dY
i = (1 − a) · dX

i + dY
i .

Therefore, we can combine these two inequalities with Lemma 4 to get that
ac·dX

i ≤ d(1−a)dX
i +d·dY

i +ε. Therefore, we get that d·dY
i ≥ dX

i (a(c+d)−d)−ε,
which concludes the proof. ��
Lemma 6. Let i ∈ X. Then dY

i ≥ 1.

Proof. Let i ∈ X. Suppose that dY
i = 0. Lemma 5 then implies that

ε ≥ |N(i)| (a(c + d) − d) ≥ 2
3c + ε because |N(i)| ≥ 1, which is a

contradiction. ��
With these lemmas we can now show that R must be large.

Theorem 5. R ≥ Ω
(

cd
(c+d)5/2

√
n − ε

c+dn
)
.

Proof. The theorem is trivially true when ε ≥ 1
6c, since for sufficiently large n

the right hand side becomes negative. Thus we will assume that ε < 1
6c (which

implies that a < 1).
Our first step is to bound |Y |. We get that

n = |Y | + |X| ≤ |Y | +
∑
i∈X

dY
i = |Y | +

∑
i∈Y

dX
i (by Lemma 6)

≤ |Y | +
∑
i∈Y

(
d

a(c + d) − d
· dY

i +
ε

a(c + d) − d

)
(by Lemma 5)

≤ a(c + d) + ε

a(c + d) − d
|Y |2 =

2
3c + d + 2ε

2
3c + ε

|Y |2 < O
(
(c + d) |Y |2

)

and thus |Y | ≥ Ω
(√

n
c+d

)
. We now relate |Y | to R. Note that for every node

i ∈ Y , it holds that
∑

s∈S:i	∈A(s) p(s) > 1 − a. Thus

(1 − a)|Y | ≤
∑
i∈Y

∑
s∈S:i	∈A(s)

p(s) ≤
∑
i∈[n]

∑
s∈S:i	∈A(s)

p(s) =
∑
s∈S

(n − |A(s)|) · p(s)

=
∑
s∈S

(|B(s)| + |R(s)| + |F (s)|) · p(s) = B + R + F

110 M. Dinitz and N. Ephraim

≤
(

c + d

d
+ 1 +

c

2d

)
R +

2εn

d
=

3c + 4d

2d
· R +

2εn

d
,

where we use Lemma 2 to bound B and Lemma 3 to bound F . Therefore
R = Ω

(
d(1−a)

c+d |Y | − εn
c+d

)
= Ω

(
cd

(c+d)2 |Y | − εn
c+d

)
= Ω

(
cd

(c+d)5/2

√
n − ε

c+dn
)
,

as claimed. ��
This immediately gives Theorem 2: since OPT ≤ n and c and d are constants,

Theorem 5 implies that R ≥ Ω
(
n

(
1√
n

− ε
))

≥ Ω
(
OPT

(
1√
n

− ε
))

.

4.3 Upper Bound on Successful Receptions

We now prove Theorem 3 by upper bounding the expected number of successful
receptions in any ε-CCE in a specific instance of the reception capacity game.

Theorem 6. There exists an instance of the reception capacity game with R ≤
O ((c + d + ε)

√
n) .

Proof. For any q ∈ N, let G = (V,E) be a graph composed of n = dq(3cq + 1) +
3cq+1 = 3cdq2 +dq+3cq+q+1 vertices, defined as follows. Let V = K ∪L and
L =

⋃
i∈[3cq+1] Li, where K is a clique on 3cq + 1 vertices, and for each i ∈ K,

the set Li is an independent set of size dq such that vi is adjacent to each vertex
in Li.

We proceed by bounding the value of any ε-CCE. More formally, if p is a
distribution over S which is an ε-CCE, we need to bound R =

∑
s∈S p(s)|R(s)|.

It is easy to see that a vertex in Li successfully receives a message if and only if
it does not broadcast and vertex i ∈ K does broadcast, and thus

∑
s∈S

p(s)|R(s)| ≤
∑
s∈S

p(s)

(
|K| +

∑
i∈K

|Li|si

)
=

∑
s∈S

p(s)

(
3cq + 1 +

∑
i∈K

dqsi

)

= 3cq + 1 + dq
∑
i∈K

∑
s∈S

p(s)si,

so we just need to bound
∑

i∈K

∑
s∈S p(s)si. To do this, we partition the strategy

vectors into “good” vectors (where i might have positive utility), “bad” vectors
(where i has negative utility), and “irrelevant” vectors (where i has zero utility).
Formally, we partition S into the following three sets:

Gi = {s ∈ S : si = 1 ∧
∑
j∈K

sj = 1}

Bi = {s ∈ S : si = 1 ∧
∑
j∈K

sj ≥ 2}

Ii = {s ∈ S : si = 0}
If s ∈ Gi then i broadcasts a message which is successfully heard by all K and
by at most all nodes in Li. On the other hand, if s ∈ Bi, then i broadcasts a

Reception Capacity: Definitions, Game Theory and Hardness 111

message which may be heard successfully by all nodes in Li but which results
in a failure at all nodes in K \ {i}. Thus the expected utility of i under ε-CCE
p is at most

∑
s∈Gi

p(s)(3cq + dq)c +
∑
s∈Bi

p(s)(−3cqd + dqc)

= (3c + d)cq
∑
s∈Gi

p(s) − 2cqd
∑
s∈Bi

p(s).

Since p is an ε-CCE we know that this expected utility must be at least −ε,
since i can receive utility 0 by not broadcasting. Then we can rearrange to get∑

s∈Bi
p(s) ≤ 3c+d

2d

∑
s∈Gi

p(s)+ ε
2cdq . We can now use this inequality to get our

desired bound:

∑
i∈K

∑
s∈S

p(s)si =
∑
i∈K

(∑
s∈Gi

p(s) +
∑
s∈Bi

p(s)

)

≤
∑
i∈K

(
ε

2cdq
+

(
3c + d

2d
+ 1

) ∑
s∈Gi

p(s)

)

=
ε · (3cq + 1)

2cdq
+

3c + 3d

2d

∑
i∈K

∑
s∈Gi

p(s) ≤ ε · (3cq + 1)
2cdq

+
3(c + d)

2d
.

The last inequality is because Gi∩Gj = ∅ for i, j ∈ K with i �= j by the definition
of Gi and Gj , and thus

∑
i∈K

∑
s∈Gi

p(s) ≤ 1. Therefore, we get that

R ≤ 3cq + 1 + dq

(
ε · (3cq + 1)

2cdq
+

3(c + d)
2d

)

= 3cq + 1 +
ε(3cq + 1)

2c
+

3
2
q(c + d) =

9
2
cq + 1 +

3
2
qε +

ε

2c
+

3
2
dq.

Since n ≥ 3cdq2 we know that q ≤ √
n, and thus this shows that any ε-CCE has

value at most O((c + d + ε)
√

n) = O((c + d + ε)
√

n). ��
This immediately implies Theorem 3 as a corollary.

5 Open Questions

We hope that this is only the beginning of analyzing the reception capacity of
wireless networks. Many interesting open questions remain, paralleling the work
on unicast capacity. For example, what if we consider restricted classes of graphs,
such as unit-disc graphs, which are typically used to model wireless networks?
Does MaxPDS become easier, and are equilibria in the reception capacity game
closer to optimum? And what happens if we work in the SINR model rather
than the graph model? For the unicast capacity game, [9] showed that arbitrary
graphs are very easy to analyze but the SINR setting is more complicated. Can
we analyze the Price of Anarchy of the reception capacity game in the SINR
model?

112 M. Dinitz and N. Ephraim

A Approximation Algorithm for MaxPDS

In this section, we give an approximation algorithm for MaxPDS. Despite the
similarities between MaxPDS and UCP, we remark that degenerate cases pre-
vent us from presenting it as a black-box reduction to UCP by invoking the
approximation algorithm given by Demaine et al. for UCP. Nevertheless, we
observe that the classical decay protocol of Bar-Yehuda et al. for transmitting
in radio networks [4] yields a simple approximation algorithm for MaxPDS. We
note that the resulting algorithm is also a straightforward adaptation of that
of [8] for UCP.

The decay protocol is given in the classical radio broadcasting setting, where
transmissions occur over multiple rounds, and there is a subset B of nodes that
have already received the message. The decay protocol, for every node in B, is
the following: for each round i, broadcast to all neighbors; then, with probability
1
2 , continue to the next round and otherwise stop transmitting. In [4], they
observe that for any node v, with constant probability there is a round in which
exactly one of v’s neighbors will broadcast, and thus v will successfully receive the
message (with high probability). This can be modified to a single-round protocol
by having each node broadcast with probability 1/2i for some i ∈ [log(n)].
By setting i appropriately, we obtain an O(log(n)) randomized approximation
algorithm.

For completeness, we prove the following theorem.

Theorem 7. There is a polynomial time O(log(n))-approximation algorithm for
MaxPDS.

Proof. Let G = (V,E) be an instance of MaxPDS with |V | = n. For any set S
of vertices, let f(S) = |D(S)| denote the number of perfectly dominated vertices
by S. Let ALG be an initially empty set and let OPT denote the optimal set of
dominating vertices in the above instance.

Partition the vertices into log(n) groups Gi such that v ∈ Gi if 2i ≤ d(v) <
2i+1. Then there must exist a group i� such that |Gi� | ≥ 1

log(n) · n ≥ 1
log(n) ·

f(OPT) since f(OPT) ≤ n.
Our solution ALG is now constructed by randomly adding each vertex v to

ALG independently with probability 1
2i� when i� > 0, and with probability 1

2
when i� = 0.

Let S ⊂ V be the vertices that are perfectly dominated by ALG. For any
vertex v ∈ Gi� , let d = d(v) ∈ [2i�

, 2i�+1). Then, the probability that v is
perfectly dominated by ALG is the probability that exactly one of N(v) is in
ALG and the remaining vertices in N(v) are not in ALG. Since each vertex is
chosen to be in ALG independently, when i� > 0 we have that

Pr [v ∈ S] =
(

d · 1
2i�

)(
1 − 1

2i�

)d−1

≥
(

1 − 1
2i�

)2i�+1−1

≥
(

1 − 1
2i�

)2i�+1

≥ 1
e4

.

Reception Capacity: Definitions, Game Theory and Hardness 113

When i� = 0, then d = 1 and Pr [v ∈ S] =
(
d · 1

2

) (
1 − 1

2

)d−1 = 1
2 · (

1
2

)0 = 1
2 .

Therefore,

E [f(ALG)] =
∑
v∈V

Pr [v ∈ S] ≥
∑

v∈Gi�

Pr [v ∈ S] ≥ min
{

1
e4

,
1
2

}
|Gi� |

≥ 1
e4 log(n)

f(OPT).

Therefore, f(OPT)
E[f(ALG)] = O(log(n)) as desired.

Note that while the above algorithm is randomized, it is straightforward
to derandomize in polynomial time using the standard method of conditional
expectations. ��

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

2. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the
SINR model: complexity and game theory. In: Proceedings of IEEE INFOCOM,
pp. 1332–1340. IEEE (2009)

3. Asgeirsson, E.I., Mitra, P.: On a game theoretic approach to capacity maximiza-
tion in wireless networks. In: Proceedings of IEEE INFOCOM, pp. 3029–3037.
IEEE (2011). https://doi.org/10.1109/INFCOM.2011.5935146. http://dx.doi.org/
10.1109/INFCOM.2011.5935146

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

5. Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price
of total anarchy. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May
2008, pp. 373–382. ACM (2008)

6. Chlamtac, I.: The wave expansion approach to broadcasting in multihop radio
networks. IEEE Trans. Commun. 39(3), 426–433 (1991)

7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

8. Demaine, E., Feige, U., Hajiaghayi, M., Salavatipour, M.: Combination can be
hard: approximability of the unique coverage problem. SIAM J. Comput. 38(4),
1464–1483 (2008)

9. Dinitz, M.: Distributed algorithms for approximating wireless network capacity. In:
Proceedings of IEEE INFOCOM, pp. 1–9, March 2010. https://doi.org/10.1109/
INFCOM.2010.5461905

10. Elkin, M., Kortsarz, G.: Logarithmic inapproximability of the radio broadcast prob-
lem. J. Algorithms 52(1), 8–25 (2004)

11. Elkin, M., Kortsarz, G.: Improved schedule for radio broadcast. In: Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 222–
231. Society for Industrial and Applied Mathematics (2005)

https://doi.org/10.1109/INFCOM.2011.5935146
http://dx.doi.org/10.1109/INFCOM.2011.5935146
http://dx.doi.org/10.1109/INFCOM.2011.5935146
https://doi.org/10.1109/INFCOM.2010.5461905
https://doi.org/10.1109/INFCOM.2010.5461905

114 M. Dinitz and N. Ephraim

12. Elkin, M., Kortsarz, G.: Polylogarithmic additive inapproximability of the radio
broadcast problem. SIAM J. Discrete Math. 19(4), 881–899 (2005)

13. Even, S., Goldreich, O., Moran, S., Tong, P.: On the np-completeness of certain
network testing problems. Networks 14(1), 1–24 (1984)

14. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, STOC 2002, pp. 534–543. ACM, New York (2002). https://doi.org/
10.1145/509907.509985. http://doi.acm.org/10.1145/509907.509985

15. Fiat, A., Mansour, Y., Nadav, U.: Efficient contention resolution protocols for
selfish agents (2007)

16. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. J. Algo-
rithms 46(1), 1–20 (2003)

17. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 129–137. ACM (2005)

18. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R.: Algorithms for wireless
capacity. IEEE/ACM Trans. Netw. 22(3), 745–755 (2014). https://doi.org/10.
1109/TNET.2013.2258036. http://dx.doi.org/10.1109/TNET.2013.2258036

19. Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of
arbitrary wireless networks. In: Proceedings of IEEE INFOCOM, pp. 1872–1880.
IEEE (2009). https://doi.org/10.1109/INFCOM.2009.5062108. http://dx.doi.org/
10.1109/INFCOM.2009.5062108

20. Halldórsson, M.M., Mitra, P.: Wireless capacity with oblivious power in gen-
eral metrics. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2011, pp. 1538–1548. Society for Industrial
and Applied Mathematics, Philadelphia (2011). http://dl.acm.org/citation.cfm?
id=2133036.2133155

21. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, pp. 516–526. Society for Industrial and Applied Mathematics,
Philadelphia (2012). http://dl.acm.org/citation.cfm?id=2095116.2095160

22. Halldórsson, M.M., Mitra, P.: Wireless capacity with arbitrary gain matrix.
Theor. Comput. Sci. 553, 57–63 (2014). https://doi.org/10.1016/j.tcs.2013.09.035.
http://dx.doi.org/10.1016/j.tcs.2013.09.035

23. Halldorsson, M.M., Tonoyan, T.: How well can graphs represent wireless interfer-
ence? In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2015, pp. 635–644 ACM, New York (2015). https://doi.org/
10.1145/2746539.2746585. http://doi.acm.org/10.1145/2746539.2746585

24. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: Randall, D. (ed.) Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1549–1559. SIAM (2011). https://doi.org/10.1137/1.9781611973082.
120. http://dx.doi.org/10.1137/1.9781611973082.120

25. Kushilevitz, E., Mansour, Y.: An ω(d\log(n/d)) lower bound for broadcast in radio
networks. SIAM J. Comput. 27(3), 702–712 (1998)

26. Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM 62(5),
32:1–32:42 (2015). https://doi.org/10.1145/2806883. http://doi.acm.org/10.1145/
2806883

https://doi.org/10.1145/509907.509985
https://doi.org/10.1145/509907.509985
http://doi.acm.org/10.1145/509907.509985
https://doi.org/10.1109/TNET.2013.2258036
https://doi.org/10.1109/TNET.2013.2258036
http://dx.doi.org/10.1109/TNET.2013.2258036
https://doi.org/10.1109/INFCOM.2009.5062108
http://dx.doi.org/10.1109/INFCOM.2009.5062108
http://dx.doi.org/10.1109/INFCOM.2009.5062108
http://dl.acm.org/citation.cfm?id=2133036.2133155
http://dl.acm.org/citation.cfm?id=2133036.2133155
http://dl.acm.org/citation.cfm?id=2095116.2095160
https://doi.org/10.1016/j.tcs.2013.09.035
http://dx.doi.org/10.1016/j.tcs.2013.09.035
https://doi.org/10.1145/2746539.2746585
https://doi.org/10.1145/2746539.2746585
http://doi.acm.org/10.1145/2746539.2746585
https://doi.org/10.1137/1.9781611973082.120
https://doi.org/10.1137/1.9781611973082.120
http://dx.doi.org/10.1137/1.9781611973082.120
https://doi.org/10.1145/2806883
http://doi.acm.org/10.1145/2806883
http://doi.acm.org/10.1145/2806883

Reception Capacity: Definitions, Game Theory and Hardness 115

27. Weichsel, P.M.: Dominating sets in n-cubes. J. Graph Theory 18(5), 479–488
(1994). https://doi.org/10.1002/jgt.3190180506. http://dx.doi.org/10.1002/jgt.
3190180506

28. Yen, C.C., Lee, R.: The weighted perfect domination problem. Inf. Process. Lett.
35(6), 295–299 (1990). https://doi.org/http://dx.doi.org/10.1016/0020-0190(90)
90031-R. http://www.sciencedirect.com/science/article/pii/002001909090031R

https://doi.org/10.1002/jgt.3190180506
http://dx.doi.org/10.1002/jgt.3190180506
http://dx.doi.org/10.1002/jgt.3190180506
https://doi.org/http://dx.doi.org/10.1016/0020-0190(90)90031-R
https://doi.org/http://dx.doi.org/10.1016/0020-0190(90)90031-R
http://www.sciencedirect.com/science/article/pii/002001909090031R

Wireless Communication

Collaborative Broadcast in O(log logn)
Rounds

Christian Schindelhauer1(B) , Aditya Oak2 , and Thomas Janson1

1 University of Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg im Breisgau,
Germany

schindel@tf.uni-freiburg.de
2 Technical University of Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

oak@st.informatik.tu-darmstadt.de

Abstract. We consider the multihop broadcasting problem for n nodes
placed uniformly at random in a disk and investigate the number of hops
required to transmit a signal from the central node to all other nodes
under three communication models: Unit-Disk-Graph (UDG), Signal-
to-Noise-Ratio (SNR), and the wave superposition model of multiple
input/multiple output (MIMO).

In the MIMO model, informed nodes cooperate to produce a stronger
superposed signal. We do not consider the problem of transmitting a full
message nor do we consider interference with other messages. In each
round, the informed senders try to deliver to other nodes the required
signal strength such that the received signal can be distinguished from
the noise.

We assume a sufficiently high node density ρ = Ω(log n) in order to
launch the broadcasting process. In the unit-disk graph model, broad-
casting takes O(

√
n/ρ) rounds. In the other models, we use an Expand-

ing Disk Broadcasting Algorithm, where in a round only triggered nodes
within a certain distance from the initiator node contribute to the broad-
casting operation.

This algorithm achieves a broadcast in only O
(

log n
log ρ

)
rounds in

the SNR-model. Adapted to the MISO model, it broadcasts within
O(log log n − log log ρ) rounds. All bounds are asymptotically tight and
hold with high probability, i.e. 1 − n−O(1).

1 Introduction

Understanding the limits of multi hop communications and broadcasting is
important for the development of new technologies in the wireless communi-
cation sector. In the recent decades, ever more realistic models for communica-
tion have been considered. First, graph models have been used to describe the
communication between wireless communication nodes, resulting in the Radio
Broadcast model [29]. However, this model neglects the communication range,
which has led to a geometric graph model, the Unit-Disk Graph (UDG) [2],
which we also consider here. It is based on the observation that the power of a
c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 119–136, 2019.
https://doi.org/10.1007/978-3-030-34405-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_7&domain=pdf
http://orcid.org/0000-0002-8320-8581
http://orcid.org/0000-0002-9964-5794
http://orcid.org/0000-0001-6186-9007
https://doi.org/10.1007/978-3-030-34405-4_7

120 C. Schindelhauer et al.

wireless signal decreases as it suffers from the path loss while traveling through
the medium. In order to distinguish the signal from noise, the signal to noise
energy ratio (SNR) has to be above certain threshold, which leads to the disk
shaped model for radio coverage.

For our theoretical analysis, we concentrate on an open space model with
no interfering communications. We want to find the theoretical limitations of a
collaborative multi-hop broadcast. For this, we are interested in sending a carrier
signal with no further modulated information. This signal is sent by the sender
node positioned at the center of a disk in which all other nodes are randomly
distributed. Thus, in the first round the first sender activates some small number
of neighboring nodes. Then, in every subsequent round, all of them try to extend
the set of informed nodes as far as possible, who then join in the next round,
until all nodes of the disk are informed (or the process cannot reach any further
nodes).

Due to space limitations some proofs are omitted. A full version is available
as a technical report [30].

2 Related Work

Broadcasting algorithms have been widely optimized for speed, throughput, and
energy consumption. A lot of algorithms apply MAC (medium access control)
protocols like TDMA (Time Division Multiple Access) [2,8,10,20], CDMA (Code
Division Multiple Access) [4,32], FDMA (Frequency Division Multiple Access)
[32] to increase spatial reuse. Physical models with high path loss exponent α > 2
are beneficial here and increase the spatial reuse with only local interference.
With spatial reuse, parallel point-to-point communications are possible which
either spread the same broadcast message in the network or pipeline multiple
broadcast messages at the same time. The latter can achieve a constant broad-
casting rate for path loss exponent α > 2. Cooperative transmission with MISO
(Multiple Input Single Output) or MIMO (Multiple Input Multiple Output) is
applied to increase the transmission range and broadcast speed by a constant
factor (where underlying MAC protocols still work).

Broadcasting has been first considered for a graph based model, where inter-
ference prevents communication and a choice has to be made which link should
be used for propagation. Since we do not consider interference and allow the
usage of all links, a simple flooding algorithm achieves the optimal bound of the
diameter of the network. So, these works (see [29] for a survey) do not apply
here. However, even if interference is considered there is only a constant fac-
tor slow down in the Unit-Disk-Graph model [8]. Note that Unit-Disk-Graphs
are connected, when the node density of the randomly placed nodes is large
enough [35].

Launched by the seminal paper of [9], the SNR (Signal to Noise Ratio) model
has gained a lot of interest. Here, signals can be received if the energy of the
sending nodes is a constant factor larger than the sum of noise energy and
interference. This model leads to a smooth receiver area with near convexity
properties [1].

Collaborative Broadcast in O(log log n) Rounds 121

If the energy of each sender is constrained, Lebhar et al. [20] show that
the SNR-model does not give much improvement compared to the UDG-model.
So, they incorporate the unit disk model into the SINR (Signal to Interfer-
ence and Noise) model. The focus of their work is finding TDMA scheduling
schemes to enhance the network capacity while the path-loss exponent in the
SINR model is chosen with α > 2 such that interferences have only local effects
for unsynchronized transmitters. In this context, the SNR model is used for each
sender separately. So, the problem of broadcast mainly reduces to range assign-
ment and scheduling problem, for which the number of rounds approaches the
diameter [10].

For the superposition model the problem of point-to-point communication
has been considered mostly for beam-forming for senders (MISO/MIMO) or
receivers (SIMO/MIMO). For MIMO (Multiple Input Multiple Output), most
of the research is concerned with the energy gain and diversity gain, as well as the
trade-off. For an excellent survey we refer to [34]. Besides the approach, where
sender antennas and receiver antennas are connected to one device and only a
one hop communication is considered, a lot of work is dedicated to collaboration
of independent senders and receivers, for which we now discuss some noteworthy
contributions.

A transmission with cooperative beamforming requires phase synchronization
of the collaborating transmitters to produce a beam and sharing the data to
transmit. Dong et al. [3] present for this a two phase scheme: in phase one,
the message is spread among nodes in a disk in the plane around the node
holding the original message. The open-loop and closed-loop approach can be
used to synchronize nodes to the destination or a known node position and
time synchronization. In phase two, the synchronized nodes jointly transmit the
message towards the destination.

In [7] a three phase scheme is presented. In order to save energy for a Wireless
Sensor Network, in the first phase, a sensor sends its message via SIMO to a
group of nearby nodes. In the second phase the nodes use MIMO beamforming
to another group of nodes nearby of the receiver and in the final phase the last
group of nodes sends the message via MISO to the recipient.

For the MIMO model in [22,27] the authors give a recursive construction,
which provides a capacity of n for n senders using MIMO communication using
its diversity gain. Yet, in [6], an upper bound of

√
n for such a diversity gain

has been proved. These seemingly contradicting statements have been addressed
in [28], where they address the question whether distributed MIMO provides
significant capacity gain over traditional multi-hop in large ad hoc networks
with n source-destination pairs randomly distributed over an area A. It turns
out that the capacity depends on the ratio

√
A/λ, which describes the spatial

degree of freedom. If it is larger than n it allows n degrees of freedom [27], if
it is less than

√
n the bound of [6] holds. For all regimes optimal constructions

are provided in these papers. While in [27] path loss exponents α ∈ (2, 3] are
considered, for α > 3 the regularity of the node placement must be taken into
account [22].

122 C. Schindelhauer et al.

While this research is largely concerned with the diversity gain, we study the
physical limitations of the energy gain in MIMO. In [24,25], a method is pre-
sented to amplify the signal by using spatially distributed nodes. They explore
the trade-off between energy efficiency and spectral efficiency with respect to
network size. In [21], a distributed algorithm is presented in which rectangu-
lar collaborative clusters of increasing size are used to produce stronger signal
beams.

Janson et al. [15] analyze the asymptotic behavior of the rounds for a unicast
in great detail and prove an upper and lower bound of Θ(log log n) rounds. If the
nodes are placed on the line it takes an exponential number of rounds [14]. The
generalization of these observations for different path loss models can be found
in [12]. In [16] it is shown that the sum of all cooperating sender power can be
reduced to the order of one sender, while maintaining a logarithmic number of
rounds to send a message over an n hop distance.

A practical approach already uses this technology. Glossy [4] is a network
architecture for time synchronization and broadcast including a network protocol
for flooding, integration in network protocols of the application, and implemen-
tation in real-world sensor nodes. If multiple nodes transmit the same packet
in a local area, the same symbol of the different transmitters will overlap at
a receiver without inter-symbol interference if the synchronization is sufficient.
The superposed signals of the same message have random phase shifts and in
the expectation add up constructively. Faraway, out of sync, transmitters pro-
duce noise-like interference the influence of which is alleviated at the receiver via
pseudo-noise codes. While a high node density increases interference in common
network protocols, a higher density is beneficial here and increases the transmis-
sion range and reduces the number of broadcasting rounds.

Glossy is the underlying technology for the so-called Low-Power Wireless
Bus [5], where this multi-hop broadcast allows to flood the network with a broad-
casting message. The energy efficiency was further improved in Zippy [33], which
is an on-demand flooding technique providing robust wake-up in the network.
Unlike Glossy, Zippy uses an asynchronous wake-up flooding. In [19] the problem
of Rayleigh fading for synchronized identical signals is addressed by producing
a low frequency wake-up signal, which results from the beat frequency of closely
chosen frequencies. This allows the usage of a passive receiver technology.

Sirkeci-Mergen et al. [32] propose a multistage cooperative broadcast algo-
rithm similar to our work. Their nodes are also uniformly distributed in a disk.
A continuum approximation is used to approximate the behavior of the disk
with high node density. A minimum SNR threshold is assumed for successful
reception of the message. Their algorithm works in stages, in the first stage, the
node at the center of the disk transmits the message. All nodes which receive
this message are considered as level one. In the next stage, level one nodes re-
transmit the message, in this way set of informed nodes keeps growing in radially
outward direction. Nodes belonging to same levels form concentric rings. Source
node emits single block of data.

Collaborative Broadcast in O(log log n) Rounds 123

A similar problem and a similar algorithm has been considered in [31]. Sirkeci-
Mergen et al. consider source node transmitting a continuous message signal.
Initially source node which is at the center of the disk, transmits the message
signal. In the next round, level one nodes, i.e. the set of nodes that received the
message in the previous round, transmit the message signal which is received
by next level and the source node does not transmit message. In the following
round, the source transmits the next message block. In this way, levels send and
receive the message block in alternate rounds. In our work, we consider that in
each round, all informed nodes send a single message cooperatively and we prove
bounds on the number of rounds needed.

Jeon et al. [18] also consider a system model similar to our work. They use
two phase opportunistic broadcasting to achieve linear increase in propagation
distance. In phase one, nodes inside a disk of specific radius broadcast message
with different random phases while in phase two, a node broadcasts the message
to its neighboring nodes. These phases are performed repeatedly to broadcast
the message. Improving on this work we obtain better bounds by coordinating
the phase of the nodes, while we consider only the path loss factor of α = 2.

To our knowledge, no research so far has evaluated the asymptotic number of
rounds to cover the disk using cooperative broadcast using MIMO, which is the
main focus of this work. While [4,5,19,33] use only simulation and [18,31,32]
prove all their statements only for the expectation in the continuum limit, i.e.
when the number of nodes approaches infinity. Our results are to our knowledge
the first asymptotic results in MIMO that hold for a finite number of nodes n
with high probability, i.e. 1 − n−O(1).

Notations. The L2-norm is denoted by ‖p‖2 =
√

x2 + y2 for p = (x, y) ∈ R
2. For

representation of signal waves we use complex numbers C where the imaginary
number is i =

√−1. For z = a + bi the complex conjugate is z∗ = a − bi, the
absolute value |z| =

√
z · z∗ =

√
a2 + b2 and the real part is �(z) = a = z+z∗

2 ,
the imaginary part is �(z) = b = z−z∗

2 . The exponent for the base of the Euler
number e gives ea+bi = ea(cos b + i sin b).

3 The Models

We assume n nodes v1, . . . , vn ∈ R
2 uniformly distributed in a disk of radius R

centered at origin, where the additional node v0 resides. The density is denoted
by ρ = n/(πR2). Each node knows the disk radius R ≥ 1.

We concentrate on broadcasting a pure sinusoidal signal and leave the prob-
lem of broadcasting a complete message to subsequent work. The sinusoidal
signal has wavelength λ and we normalize the speed of light as c = 1 by choos-
ing proper units for time and space. In our theoretical framework we assume that
every node knows its exact position in the plane, is synchronized (well enough in
order to emit phase-coordinated signals) and is able to precisely emit the signal
at a given point in time with a certain phase shift and a fixed amplitude.

124 C. Schindelhauer et al.

We consider three communication models in our analysis: Unit-Disk-Graph
(UDG), the Signal-to-Noise Ratio (SNR), and MIMO/MISO (Multiple Input—
Single/Multiple Output) for coordinated senders. The difference between MIMO
and MISO is whether we consider a single receiver or multiple receivers. Since,
MIMO is the more general term we prefer this term throughout this paper.

The coordination of nodes refers here to synchronized signals allowing a radi-
ation pattern containing strong beams, i.e. a beamforming gain. Many physical
properties are covered in the Multiple Input/Multiple Output (MIMO)
model based on superposition of waves. Every node can serve either as sender
or as receiver. A node can demodulate a received signal rx(t) ∈ C if the square
of the length of the Fourier coefficient over an interval of δ � λ is larger than
β, i.e.

z =
1
δ

t0+δ∫

t=t0

rx(t) e−i2πt/λdt ,

|z|2/N0 ≥ β . (1)

with imaginary number i =
√−1 and t denoting time. In this notation we

normalize the energy with respect to the time period and assume δ, N0 and
β are constant. The bound (1) demands that the signal-to-noise energy ratio is
large enough to allow a successful signal reception, i.e. SNR ≥ β for signal power
|z|2 and additive white noise with power N0 over time δ.

Each sending node j ∈ {1, . . . , n} can start sending at a designated time t1
and stops at t2, described by the function

sj(t) =

{
a · ei2π(t−t1)/λ , t ∈ [t1, t2] ,

0 , otherwise ,

where a ∈ C may encode some signal information, e.g. via Quadrature Amplitude
Modulation (QAM). Since we are only interested in transmitting a single signal
we choose a = 1 or a = eiϕ, when we use a phase shift ϕ. The total signal
received at a node q ∈ R

2 is modeled by

rx(t) =
n∑

j=1

sj(t − ‖q − vj‖2)
‖q − vj‖2 ,

which models the free space transmission model with a path loss factor of two
for the logarithm of sender and receiver energy ratio. We are aware, that this
equation describes only the far-field behavior, which starts at some constant
numbers cf > 1 of wavelengths, i.e. ‖q−vi‖2 ≥ cfλ. Hence, every time ‖r−vi‖ <
cfλ, we will replace the denominator ‖q − vi‖2 by cfλ in this expression. We
assume that cfλ ≤ 1 and therefore λ < 1.

For nodes v1, . . . , vn, the geometric Unit Disk Graph is defined by the
set of edges (vi, vj) where nodes have distance ‖vi, vj‖2 ≤ 1. In each round a
message or signal can be sent from a node to an adjacent node. So, collaborative

Collaborative Broadcast in O(log log n) Rounds 125

sending is simply ignored. Yet, we also ignore the negative effect of interference.
In this model messages can be sent along edge in parallel, independently from
what happens somewhere else.

The following Lemma shows the strong relationship between the single sender
MIMO model and the UDG model.

Lemma 1. If only one sender u sends a signal in the MIMO model with ampli-
tude a ∈ R

+, then a node v in distance d receives it if and only if d ≤ a√
βN0

.

This Lemma implies that if a2 = βN0, then the MIMO model is equivalent to
the Unit-Disk Graph (UDG) model with sending radius 1, if only one sender
is active. In order to fairly compare these two models, we fix a = 1 and set
βN0 = 1.

The Signal-to-Noise-Ratio (SNR) model adds the received signal energy
of all senders, i.e. a signal is received at q in the SNR model, if for sender energy
Sj := a2

j , where aj denotes the amplitude of sender vj the sum of the received
signal energy is large enough:

RS :=
n∑

j=1

Sj

(‖q − vj‖2)2 , where
RS

N0
≥ β .

If we assume that the senders’ starting time is not coordinated but independently
chosen at random, then the following Lemma shows that the MIMO model in
the expectation is equivalent to the SNR model.

Lemma 2. At the receiver q the expected signal energy S of senders v1, . . . , vn

with random phase shift φi and amplitude ai in the MIMO model is

E [S] = RS =
n∑

j=1

a2
j

(‖q − vj‖2)2 .

For the proof we refer to [13,30]. Unlike in the coordinated MIMO model, in the
SNR model signals are sent with random phasing which induces a more regular
radiation pattern.

Under the assumption that E
[|z|2] /N0 ≥ β induces a successful reception,

aj = 1 and βN0 = 1 we derive the Signal-to-Noise Ratio (SNR) model, where
the energy of the uncorrelated received signals add up. Again, this model reduces
to the UDG model if only one node is sending.

4 Lower Bounds

We denote the density of nodes by ρ = n
πR2 . A constant density ρ = Θ(1)

implies that the expected number of nodes in a constant diameter disk is again
a constant. However, there is also constant probability that such a disk is void,
and by that argument any constant area region may be empty then. So, by
this argument the central node (or any other node) in a Unit-Disk-Graphs may
be disconnected with constant probability. So, a higher density is necessary to
ensure broadcasting.

126 C. Schindelhauer et al.

4.1 UDG

Since in the UDG model every transmission has a maximum reach of one unit,
it takes
R� rounds until every possible node position can be reached. However,
some areas might be empty. For constant density ρ > 1 the disk rim with nodes
in distance of at least R − 1 from the center is not empty with extremely high
probability. So, it takes at least
R� − 1 hops to broadcast in the UDG model,
where R2 = n

πρ .

Lemma 3. For ρ > 1 in the UDG model, broadcasting needs Ω(
√

n/ρ) rounds
to inform all nodes with high probability.

Proof. The probability that none of the n−1 non centered nodes are at a distance
larger than R − 1 from the center is for R > 1:

(
1 − 2R − 1

R2

)n−1

≤ e− n−1
R = e−Θ(

√
nρ).

Hence, with high probability some nodes are in this outer rim, which can be
reached only after at least R − 2 = Ω(

√
nρ) rounds. �

For large enough density ρ = Ω(log n) this bound is tight. The probability that
n−1 nodes are not in a given area of size π/8 is less than 1/nc for ρ ≥ 8

π c ln(n+1)
for any c > 1 and n ≥ 2. From a simple geometric argument [30], it follows that
UDG is connected and that the diameter of the UDG is at most 8R = O

(√
n/ρ

)

(see [35] for a better bound).

Theorem 1. For ρ = Ω(log n) in the UDG model, broadcasting needs Θ(
√

n/ρ)
rounds to inform all nodes with high probability.

Proof. Consider two nodes vj and vk with distance d ≤ R. We have seen that
each subregion around a node depicted in Fig. 1 contains at least a node with
high probability. Now, we route starting from vj along the line L connecting
vj and vk by choosing a node from a sector which is closer to rk in a sector
which in a corridor of width 2 around L. We pick a node from this sector and
observe that the messages advances by a distance of at least 1

4 in the direction
towards vk.

Hence, it takes at most 4R hops, where R2 = n
πρ . �

4.2 SNR

The expected number of nodes n(r) in a disk of radius r around the origin is
sharply concentrated around the expectation ρπr2, if it is at least logarithmic
in n, which follows from an application of Chernoff bounds.

Collaborative Broadcast in O(log log n) Rounds 127

d

1
2

1

≥ 1
4 ≥ 1

4
≥ 1

4
≥ 1

4
≥ 1

4
≥ 1

4
≥ 1

4

vj
vk

≥ 1
4

Fig. 1. Routing from vj to vk using the unit-disk graph and non-empty sectors.

Lemma 4. For n randomly distributed nodes in a disk of radius R and a given
smaller disk of radius r within this disk, let n(r) denote the number of nodes
there within. Then we observe:

E [n(r)] = πρr2 ,

Prob [n(r) ≥ (1 + c)E [n(r)]] ≤ e− 1
3 min{c,c2}πρr2

,

Prob
[
n(r) ≤ 1

2E [n(r)]
] ≤ e− 1

8πρr2
.

These bounds can be used to upper bound the available signal energy in an area
and establish a lower bound for collaborative broadcasting in the SNR model.

Theorem 2. In the SNR-model for πρ ≥ 1 and ρ = o(n) at least
Ω

(
log n

max{1,log ρ}
)
rounds are necessary to broadcast the signal to all n nodes with

high probability.

Proof. We start with the center node in the middle of the disk and denote by
rj the maximum distance of an informed node from the center of the disk. Let
nj denote the number of informed nodes in round j. By definition r0 = 0 and
n0 = 1. Then, in round one we have r1 = 1 by applying the SNR model for one
sender.

We consider two cases.

1. πρ ≥ k log n.
Then, the expected number of nodes n1 is πρ. By Lemma 4 it is bounded as
n1 ≤ 2πρ with high probability by choosing c = 3k. Consider a receiver in
distance d and assume for the lower bound argument that all nodes n(rj) in
radius rj send the signal. Since πρr2j ≥ k log n we have n(rj) ≥ 1

2πρ2 with
high probability. So, for d ≥ 4

√
ρr and ρ ≥ 1 we have d − r >

√
2πρr. Then,

128 C. Schindelhauer et al.

the received energy is at most n(r)
(d−r)2 < 1 with high probability. So, no node

farther away than rj+1 = 4
√

ρrj is informed in the SNR model in round j.
By induction only nodes in distance of at most rt =

(
4
√

ρ
)t can be informed

after t rounds with probability larger than 1
nO(1) , which only can inform all

nodes outside the disk of radius R − 1 = n
πρ − 1 if t ≥ Ω

(
log n
log ρ

)
for ρ = o(n).

2. πρ ≥ 1 and πρ ≤ k log n.
We overestimate the first radius by r1 =

√
k
πρ ln n. Then, E [n(r1)] = 3k ln n

and n(r1) ≥ 2E [n(r1)] only with small probability, i.e. 1/nk.
Like in the first case we assume that in round rj all nodes in this radius
send. So, for d ≥ 4

√
ρr and ρ ≥ 1 the received energy is less than 1 within a

distance of at most ri+1 = 4
√

ρrj implying rt = (4
√

ρ)t−1r1. After t rounds
nodes in distance of at most rt can be informed, which can inform all nodes
in the disk of radius R = n

πρ if

4(4
√

ρ)t−2

√
k

π
ln n ≥ R − 1

yielding t = Ω
(

log n
max{1,log ρ}

)
since ρ = o(n).

�

4.3 MIMO

If the unit length amplitudes of all senders in a disk of range r are superposi-
tioned, in the best case, this results in a received absolute amplitude proportional
to the number of senders divided by the distance.

Lemma 5. Assuming that randomly placed senders are in a disk of radius r,
then the maximum distance of a node which can be activated is at most 4πρr2

with high probability for ρr2 = Ω(log n).

Proof. The expected number of senders in a disk of radius r is πρr2. Using
Lemma 4 and ρr2 = Ω(log n) one can show that this number does not exceed
2πρr2 with high probability.

Now, in the best case, all waves at a receiver r perfectly add up resulting in a
received signal of at most |rx| ≤ ∑2πρr2

i=1
1

‖r−si‖2
. We overestimate this signal by

replacing the denominator with d−r, where d is the distance of the receiver from
the senders’ disk’s center. Hence, we receive a signal if |rx|2 = (2πρr2)2 ≥ (d−r)2

and get d ≤ r + 2πρr2 ≤ 4πρr2. �

So, the radius of the disk of informed nodes increases by a polynomial recursion.

Corollary 1. Any broadcast algorithm using MIMO needs at least Ω(log log n−
log log ρ) rounds to inform all n nodes with high probability.

Collaborative Broadcast in O(log log n) Rounds 129

Proof. We use Lemma 5 by overestimating the effect of triggered nodes which
are bound to disks with radii rj . We assume that we start with r0 = log n for
ρ ≥ 1. Now, let rj+1 = 4πρr2j denote the largest distance of a node in the next
round.

So rj ≤ (4πρ log n)2
j

, which reaches R − 1 =
√

n/(πρ) − 1 at the earliest for
some j = Ω(log log n − log log ρ). �

This claim also follows from the considerations in [14] and [17] and more extensive
in [12] where a lower bound of Ω(log log n) rounds for the unicast problem has
been shown. Here, we adapt this argument to include the density ρ.

5 Expanding Disk Broadcasting

For the SNR model a simple flooding algorithm works as well as the algorithm
we propose. A straight-forward observation is a monotony property, i.e. every
increase in sending amplitude and every additional sending node increases the
coverage area. For the upper bound we use Algorithm 1 which is slower, yet
still asymptotically tight to the lower bound and easier to analyze. We choose
rj+1 = 1

4

√
ρrj , starting with r1 = 1 and prove the following Lemma.

Algorithm Expanding Disk Broadcast
Sender v0 starts sending ;
j ← 1 ;
while rj < R do

for all v ∈ {v1, . . . , vn} which are informed and where ‖v − v0‖2 ≤ rj

do
Node v starts sending ;

end
j ← j + 1;

end

end
Algorithm 1: Expanding Disk Broadcast

Lemma 6. If ρ = Ω(log n), then in round j ≥ 1 all nodes in distance rj+1 from
the origin have been informed with high probability.

Proof. Lemma 4 states that the expected number of nodes n(rj) in the disk of
radius rj is ρπr2j . It also shows that Prob

[
n(ri) ≤ 1

2πρr2j
] ≤ e− 1

8ρπr2
j ≤ e− 1

8ρ,
which is a small probability 1/nc for ρ = Ω(log n).

The maximum distance from any node in the disk of radius rj+1 to a node in
this disk is at most rj +rj+1 ≤ 2rj+1. Hence, the received signal has an expected
SNR of at least n(rj)

(2rj+1)2
≥ β = 1 . �

130 C. Schindelhauer et al.

Therefore rj = (ρ/16)(j−1)/2 and for j ≥ 1 + 2 log n−log(πρ)
(log ρ)−4 = Θ(log n/ log ρ) we

have rj ≥ R and all nodes are informed.

Corollary 2. In the SNR-model collaborative broadcasting needs O(log n/ log ρ)
rounds for ρ > 16, if broadcasting starts with at least Ω(log n) nodes, or ρ =
Ω(log n).

We conjecture that the result of Corollary 2 not only holds for our (line-of-
sight, path loss exponent 2) SNR model but also holds for the model proposed
in [22,26] where the path loss exponent is α ≤ 2. Then, the channel from sender
vj to receiver vk has an contribution of sj(t)hj,k(t) for emitted signal sj(t) and
hj,k(t) = ‖vk − vj‖−α/2

2 · ei·θj,k(t) with random phase shift θj,k(t) at time t. We
discuss further conjectures about the influence of the path loss factor in the
Outlook.

6 MIMO

In MIMO the coverage area is far from being convex. Also adding a sender node
might cause destructive wave interference. So, bounding the sending area by a
disk, as in the expanding broadcasting algorithm, simplifies the analysis. We use
a start radius r1 = c2/λ and the expansion rj+1 = c1ρr

3/2
j λ1/2 for a constant

c1 > 0. In the subsequent MIMO rounds, the senders vk are synchronized with
a phase shift ϕ� = −2π‖v� − v0‖2/λ such that the resulting signal of v� is
ei(2πt/λ+ϕ�). These phases try to imitate the pattern of single sender in the
center, the energy of which grows double exponentially in each round.

For the analysis we consider only the signal strength at one receiver and
analyze whether MISO works for this sender. We prove that the SNR ratio of
the collaborative broadcast signal at every receiver is above the threshold with
high probability. So, MISO with high probability results in MIMO with high
probability for all receivers in the next disk rim.

Algorithm MIMO Broadcast
Inform all nodes in the disk of radius 15r1;
j ← 1 ;
while rj < R do

for all v ∈ {v1, . . . , vn} which are informed and where ‖v − v0‖2 ≤ rj

do
Node v starts sending with phase shift ϕ = −2π‖v − v0‖2/λ ;

end
j ← j + 1;

end

end
Algorithm 2: MIMO Broadcast

Recall that the density is defined as ρ = n
πR2 and let ρ ≥ c3 log n.

Collaborative Broadcast in O(log log n) Rounds 131

Theorem 3. For constant wavelength λ, density ρ = Ω(log n) every receiver in
distance d can be triggered with high probability, if 15rj ≤ d ≤ c1ρr

3/2
j λ1/2, for

a constant c1.

Proof. We consider an arbitrary node q in distance d from the first sender v0 in
the center. We prove that this node is triggered with high probability and thus
all receivers in this distance will be triggered likewise with this probability.

First we analyze the expected received signal of a receiver in distance d, which
is given by an integral. The complex value of this integral will be asymptotically
estimated using a geometric argument over the intersection of ellipses with equal
phase shift impact and the sender disk.

Define for p = (px, py): Δd(p) :=
√

p2x + p2y +
√

(d − px)2 + p2y − d .

Lemma 7. For 0 ≤ w ≤ τ + λ/2 and senders v1, . . . , vn ∈ D(v0, r) the received
signal is given as rx(t) = rx · ei2π(t−d)/λ, where

rx =
n∑

j=1

e−i2πΔd(vj)/λ

‖q − vj‖2 .

There is an easy characterization by ellipses Eτ with focal points in v0 = (0, 0)
and q = (d, 0), which characterize whether senders help or interfere, see Fig. 2.

Eτ := {p ∈ R
2 | ‖p‖2 + ‖p − q‖2 = d + τ} .

The term 2πτ/λ describes the phase at which the sender’s signal arrives at
the receiver q. The main contributor to the received signal comes from the area
within E≤τ := {p ∈ R

2 | ‖p‖2+‖p−q‖2 ≤ d+τ} intersected with Dr for τ = λ/2,
where we Dr denotes the disk with center (0, 0) and radius r. This intersection
has an area of Θ(r3/2λ1/2), which corresponds to the innermost dark ellipse in
Fig. 2. We prove that the other areas cancel themselves out and their sum of
signals is much smaller than this area.

To prove this, we give a formula which describes exactly the expected signal at
a given point t0. This expectation will be estimated by carefully chosen bounds.

Lemma 8. The expected received signal at a receiver in distance d from the
center of the sender disk of radius r is the following.

E [rx] =
1
d

+
n − 1
2πr2

∫∫

(x,y)∈Dr

e−iΔd(x,y)2π/λ dx dy
√

(x − d)2 + y2
.

In order to estimate this expectation we define for the unit disk D1:

ud,λ(w) :=
∫∫

(x,y)∈E≤w∩D1

e−iΔd(x,y)2π/λ

√
(x − d)2 + y2

dx dy .

The relationship between u with normalized sender radius and expected signal
is: E [rx] = 1

d + n−1
2πr ud/r,λ/r(2). The following lower bound is essential.

132 C. Schindelhauer et al.

q

Fig. 2. Senders in a disk of radius 10, colored according to the phase difference per-
ceived by a receiver located at point (100, 0) for wavelength λ = 1 [23].

Lemma 9. For λ ≤ 2 and d > 15: �(ud,λ(2)) ≥ 9
2,240

√
2

√
λ

d+1 .

The main steps of this proof, presented in detail in [30], are the following.
In order to evaluate the integral we perform a coordinate transformation, where
(x, y) are replaced by the distance to the center (0, 0) and to the receiver (d, 0).
For large enough d ≥ 15r the influence of the denominator

√
(x − d)2 + y2 can

be estimated by d. It remains to estimate the areas of positive and negative
super-positioned signals.

For this, we analyze the first and second derivative of the area function of the
intersecting ellipse with the sender disk f(τ, d) := |E≤τ ∩D1|. We show that the
second derivative f ′′(x, y) := d2f(x,y)

d2x is negative, i.e. f ′′(x, y) < − 1
8 . This means

that every dark area in Fig. 2 cancels out the next outer light area with opposite
signal. It remains to show that the contribution of the combined first dark and
light area is large enough. This is done by proving f ′(x, y) ≥ 7

5f ′(x + λ/2, d) for
f ′(x, y) := df(x,y)

dx and x ≤ λ/2. The claim then follows from
√

x < f(x, y) <
7
3

√
x for all x ∈ [0, 2].
While there is a closed form for f and its derivatives, they are too involved

for a manual analysis. Hence, we use automatized proofs to prove these inequal-
ities. For this, we bounded the input and output values of all terms by interval
arithmetics over rational numbers. We divide the input intervals of the functions
into small enough partitions and recursively compute lower and upper rational

Collaborative Broadcast in O(log log n) Rounds 133

bounds, which comply with the proposed bounds. Since d can be arbitrarily
large, the second parameter has been substituted for these proofs with z = 1

d
and the limit for d → z has been added for the automatized analysis.

From this we deduce the following Lemma, which lowerbounds the complex
component of the received signal in distance d.

Lemma 10. For d > 15r:

E [�[rx]] ≥ 9
4, 480π

√
2

m
√

λ

d
√

r
.

Now, we apply the Hoeffding bound (Theorem 2 of [11]) and prove that the
received signal has the necessary strength with high probability.

Lemma 11. For d ≥ 15r, constant c, c′ > 0

Prob

[

�[rx] ≤ c
(n − 1)

√
λ

d
√

r

]

≤ exp
(

−c′ λm

r

)
.

Note that �(z) ≥ a implies |z|2 = �(z)2 + �(z)2 ≥ a2. For r = Ω(ln n/ρ) we
have n = Ω

(
r
λ log n

)
, which implies the following lemma.

Lemma 12. For r = Ω(log n/ρ), constants c, c′ and d > 15r:

Prob
[
|rx|2 ≥ c

(
(n−1)

√
λ

d
√

r

)2
]

≤ n−c′
.

The right side is larger than the SNR threshold β = 1 if d ≤ c(n − 1)r1/2λ1/2.
Using that n ≥ 1 + 1

2ρπr2 holds with high probability, the claim follows. �

Theorem 4. For constant wavelength λ MIMO broadcasting takes O(log log n−
log log ρ) rounds to broadcast the signal.

Proof. The algorithm works in two phases. In the first phase, we inform all nodes
in radius r1 = O(1) using the UDG Broadcast algorithm with single senders.
This takes at most O(1) rounds.

In the second phase we use the phase shift ϕ� = ‖v� − v0‖2 for all senders v�.
Now the radii increase double exponentially with rj+1 = c1ρr

3/2
j λ

1
2 . Note that

rj+1 ≥ 15rj if rj ≥ 225
c21ρ2λ

≥ c2
λ = r1 which holds for large enough number of

nodes n. After j = O(log log n − log log ρ) rounds we have reached

rj = r
(3
2)

j

1

(
c1ρλ

1
2

)1+ 3
2+...+(3

2)
j−1

= r
(3
2)

j

t

(
c1ρλ

1
2

)2(3
2)

j−2

≥ R =
√

n

πρ
.

In the first round nodes in the radius 15r1 nodes are informed. So, the minimum
distance of 15r1 from the senders is upheld. In every other round we increase rj

by a factor of at least 15 to ensure the minimum distance of 15rj . �

134 C. Schindelhauer et al.

7 Conclusions and Outlook

We have compared the number of rounds of collaborative broadcasting in three
communication models. All of them are derived from the far-field superposition
MISO/MIMO model where the signal-to-noise ratio allows a communication
range of one unit. For the UDG model the delimiting factor is the diameter
of the graph, proportional to

√
n/ρ. For the SNR-model broadcasting takes a

logarithmic number of rounds which is caused by the addition of the senders’
signal energy. This allows to extend the disk of informed nodes by a factor of
Θ(

√
ρ), where ρ is the sender density.

For the MIMO model it is already known that beamforming increases the
energy beyond the SNR model. It is possible to achieve logarithmic number of
rounds for unicast on the line [14] and O(log log n) for the plane [15].

We have focused on broadcasting only a single sinusoidal signal and not a
message consisting of many different signals. For dealing with inter-signal inter-
ference and inter-symbol interference tighter bounds and special encodings might
be necessary.

Another question concerns the influence of the path loss exponent α, which
we choose as α = 2. As an anonymous reviewer pointed out in the SNR model
one expects for α < 2 a bound of O(log log n) for broadcasting, for α = 2 we have
proved a bound of Θ(log n) and for α > 2 we conjecture a bound of O(n1/2).

We conjecture for MIMO that our results can be generalized for α < 3
because of area size of around Θ(r3/2λ1/2) of nearly synchronous senders. For
larger path loss the asymptotic number of rounds increases. For α = 3 we con-
jecture a logarithmic bound and for α > 3 the same behavior as in the Unit Disk
Graph.

Acknowledgments. We like to thank the organizers of the Dagstuhl Seminar 17271,
July 2–7, 2017, Foundations of Wireless Networking, where this research has begun and
first results have been found. We would like to thank Alexander Leibold, who performed
and checked the automated proofs and anonymous reviewers of a previous version for
their detailed and valuable input. We would also like to thank Tigran Tonoyan, Magnús
M. Halldórsson and Zvi Lotker for many fruitful discussions.

References

1. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams:
convexity and its applications in wireless networks. J. ACM 59(4), 18 (2012)

2. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–
3), 165–177 (1990)

3. Dong, L., Petropulu, A., Poor, H.: A cross-layer approach to collaborative beam-
forming for wireless ad hoc networks. IEEE Trans. Signal Process. 56(7), 2981–2993
(2008)

4. Ferrari, F., Zimmerling, M., Thiele, L., Saukh, O.: Efficient network flooding and
time synchronization with glossy. In: Proceedings of the 10th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks, pp. 73–84. IEEE,
Chicago, April 2011

Collaborative Broadcast in O(log log n) Rounds 135

5. Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wireless bus. In:
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems,
SenSys 2012, pp. 1–14. ACM, New York (2012)

6. Franceschetti, M., Migliore, M.D., Minero, P.: The capacity of wireless networks:
information-theoretic and physical limits. IEEE Trans. Inf. Theory 55(8), 3413–
3424 (2009)

7. de Freitas, E.P., da Costa, J.P.C.L., de Almeida, A.L.F., Marinho, M.: Applying
MIMO techniques to minimize energy consumption for long distances communi-
cations in wireless sensor networks. In: Andreev, S., Balandin, S., Koucheryavy,
Y. (eds.) NEW2AN/ruSMART -2012. LNCS, vol. 7469, pp. 379–390. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32686-8 35

8. Gandhi, R., Mishra, A., Parthasarathy, S.: Minimizing broadcast latency and
redundancy in ad hoc networks. IEEE/ACM Trans. Network. (TON) 16(4), 840–
851 (2008)

9. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
ory 46, 388–404 (2000)

10. Halldórsson, M.M., Tonoyan, T.: Leveraging indirect signaling for topology infer-
ence and fast broadcast. In: Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC 2018, pp. 85–93. ACM, New York (2018)

11. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

12. Janson, T.: Energy-efficient collaborative beamforming in wireless ad hoc networks.
Ph.D. thesis, University of Freiburg, Germany (2015)

13. Janson, T., Schindelhauer, C.: Analyzing randomly placed multiple antennas for
MIMO wireless communication. In: Fifth International Workshop on Selected Top-
ics in Mobile and Wireless Computing (IEEE STWiMob), Barcelona (2012)

14. Janson, T., Schindelhauer, C.: Broadcasting in logarithmic time for ad hoc network
nodes on a line using MIMO. In: Proceedings of the 25th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2013. ACM, July 2013

15. Janson, T., Schindelhauer, C.: Ad-Hoc network unicast in O(log log n) using beam-
forming. http://arxiv.org/abs/1405.0417, May 2014

16. Janson, T., Schindelhauer, C.: Cooperative beamforming in ad-hoc networks with
sublinear transmission power. In: IEEE 10th International Conference on Wireless
and Mobile Computing. Networking and Communications (WiMob), pp. 144–151.
IEEE, Larnaca, October 2014

17. Janson, T., Schindelhauer, C.: Self-synchronized cooperative beamforming in ad-
hoc networks. In: 16th International Symposium on Stabilization, Safety, and Secu-
rity of Distributed Systems (SSS 2014), Paderborn, Germany, September 2014

18. Jeon, S.W., Chung, S.Y.: Two-phase opportunistic broadcasting in large wireless
networks. In: IEEE International Symposium on Information Theory, ISIT 2007,
pp. 2771–2775. IEEE (2007)

19. Kumberg, T., Schindelhauer, C., Reindl, L.: Exploiting concurrent wake-up trans-
missions using beat frequencies. Sensors 17(8), 1717 (2017)

20. Lebhar, E., Lotker, Z.: Unit disk graph and physical interference model: putting
pieces together. In: IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS 2009), pp. 1–8, May 2009

21. Merzakreeva, A., Özgür, A., Lévêque, O.: Telescopic beamforming for large wire-
less networks. In: IEEE International Symposium on Information Theory, Istanbul
(2013)

22. Niesen, U., Gupta, P., Shah, D.: On capacity scaling in arbitrary wireless networks.
IEEE Trans. Inf. Theory 55(9), 3959–3982 (2009)

https://doi.org/10.1007/978-3-642-32686-8_35
http://arxiv.org/abs/1405.0417

136 C. Schindelhauer et al.

23. Oak, A.: Analysis of a collaborative iterative MISO broadcasting algorithm. Mas-
ter’s thesis, University of Freiburg, Freiburg, Germany, March 2018

24. Oyman, O., Paulraj, A.J.: Power-bandwidth tradeoff in dense multi-antenna relay
networks. IEEE Trans. Wireless Commun. 6(6) (2007)

25. Oyman, O., Paulraj, A.J.: Cooperative OFDMA and distributed MIMO relaying
over dense wireless networks, uS Patent 8,027,301, 27 September 2011

26. Ozgur, A., Lévêque, O., David, N.: Hierarchical cooperation achieves optimal
capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572
(2007)

27. Özgür, A., Leveque, O., Tse, D.: Hierarchical cooperation achieves optimal capacity
scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)

28. Özgür, A., Lévêque, O., Tse, D.: Spatial degrees of freedom of large distributed
mimo systems and wireless ad hoc networks. IEEE J. Sel. Areas Commun.
31(EPFL–ARTICLE–185421), 202–214 (2013)

29. Peleg, D.: Time-efficient broadcasting in radio networks: a review. In: Janowski, T.,
Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77115-9 1

30. Schindelhauer, C., Oak, A., Janson, T.: Collaborative broadcast in O(log log n)
rounds. arXiv e-prints arXiv:1906.05153, June 2019

31. Sirkeci-Mergen, B., Gastpar, M.C.: On the broadcast capacity of wireless networks
with cooperative relays. IEEE Trans. Inf. Theory 56(8), 3847–3861 (2010)

32. Sirkeci-Mergen, B., Scaglione, A., Mergen, G.: Asymptotic analysis of multistage
cooperative broadcast in wireless networks. IEEE/ACM Trans. Netw. 14(SI),
2531–2550 (2006)

33. Sutton, F., Buchli, B., Beutel, J., Thiele, L.: Zippy: on-demand network flooding.
In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, pp. 45–58. ACM (2015)

34. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge
University Press, New York (2005)

35. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless
networks. Wireless Netw. 10(2), 169–181 (2004)

https://doi.org/10.1007/978-3-540-77115-9_1
http://arxiv.org/abs/1906.05153

Multi-channel Assignment and Link
Scheduling for Prioritized

Latency-Sensitive Applications

Shih-Yu Tsai1(B), Hao-Tsung Yang1, Kin Sum Liu1, Shan Lin2,
Rezaul Chowdhury1, and Jie Gao1

1 Department of Computer Science, Stony Brook University, Stony Brook, USA
{shitsai,haotyang,kiliu,rezaul,jgao}@cs.stonybrook.edu

2 Department of Electrical and Computer Engineering, Stony Brook University,
Stony Brook, USA

shan.x.lin@stonybrook.edu

Abstract. Current wireless networks mainly focus on delay-tolerant
applications while demands for latency-sensitive applications are ris-
ing with VR/AR technologies and machine-to-machine IoT applica-
tions. In this paper we consider multi-channel, multi-radio scheduling
at the MAC layer to optimize for the performance of prioritized, delay-
sensitive demands. Our objective is to design an interference-free sched-
ule that minimizes the maximum weighted refresh time among all edges,
where the refresh time of an edge is the maximum number of time slots
between two successive slots of that edge and the weights reflect given
priorities. In the single-antenna unweighted case with k channels and n
transceivers, the scheduling problem reduces to the classical edge color-
ing problem when k ≥ �n/2� and to strong edge coloring when k = 1,
but it is neither edge coloring nor strong edge coloring for general k.
Further, the priority requirement introduces extra challenges. In this
paper we provide a randomized algorithm with an approximation fac-

tor of Õ
(
max

{√
Δp,

Δp√
k

}
log m

)
in expectation, where Δp denotes the

maximum degree of the unweighted multi-graph, which is formed by
duplicating each edge ei for wi times (wi is ei’s integral priority value),
and m is the number of required link communications (f(n) ∈ Õ(h(n))
means that f(n) ∈ O

(
h(n) logk(h(n))

)
for some positive constant k.

The results are generalized to the multi-antenna settings. We evaluate
the performance of our methods in different settings using simulations).

Keywords: Latency sensitive scheduling · Multi-channel scheduling ·
Fairness

1 Introduction

Today’s communication networks have provided great support to delay-tolerant
applications (e.g., web, email). But demands for latency-sensitive applications in
c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 137–157, 2019.
https://doi.org/10.1007/978-3-030-34405-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_8

138 S.-Y. Tsai et al.

wireless and mobile networks are rising, with emerging applications from video-
conferencing, real-time interactions using Virtual Reality/Augmented Reality
(VR/AR), vehicular networking and distributed robotics. These new applica-
tions require more stringent delay guarantees. To support latency-sensitive appli-
cations, one must develop network control algorithms at various layers with
latency guarantees.

In this paper, we look at the MAC layer and consider a TDMA-based (Time-
Division Multiple Access) multi-channel link scheduling problem. Multi-radio
multi-channel architecture is widely adopted in wireless mesh networks deploy-
ments (e.g., in MIT Roofnet, WING [1,4,5,8,24]) and is increasingly supported
in IEEE standards (e.g., 02.11 and 802.16) [7,9,11]. We assume that there are k
channels of different frequencies to use and each node may have one or multiple
radio interfaces, possibly operating on different channels. At each time slot, each
of the radio interfaces may be assigned one of the k channels and if two nodes
within the same communication range have two radio interfaces on the same
channel, the message can be successfully received provided there is no inter-
ference in the neighborhood. The general question on channel assignment and
scheduling is to decide for each link which channel to use and when, given an
optimization objective. In this paper, we examine the following problem.

Min Max Weighted Refresh Time Scheduling. Given k channels and a
simple weighted graph G = (V,E) with |V | = n and |E| = m in which edge
ei ∈ E has integer weight wi with the minimum edge weight being 1, we would
like to design a periodic schedule for all edges in G,1 which specifies a set of edges
for each time slot and the channels they use. The channel assignment for an edge
(u, v) specifies the channel that the transceivers at u and v adopt. If a node has
r radio interfaces, different radio interfaces may operate on different channels.
A feasible schedule must follow the following rules to avoid interference:

– There are at most r active edges incident to any node at any given time, since
a node has r radio interfaces.

– Two edges that are active at the same time must use different channels if
they are within the interference distance from each other, i.e., they have a
common endpoint or some of their endpoints are neighbors2.

Here, we consider interference at the protocol level, leaving the physical model
(SINR model) for future exploration. Our goal is to find a feasible schedule of
all edges that minimizes

max
i∈{1,...,m}

wiTi.

Here, Ti denotes the maximum refresh time for edge ei, i.e., the maximum num-
ber of time slots until edge ei appears again in the given schedule. We name this
1 Schedules are restricted to be periodic because each non-periodic infinite schedule

with a finite max weighted refresh time can be turned to a periodic schedule with
the same refresh time. See Appendix for a proof.

2 This is the case of �-hop interference model (wireless links � + 1 or more hops away
from one another can be scheduled to transmit data at the same time) when � = 2.

Multi-channel Assignment and Link Scheduling 139

problem as Min Max Weighted Refresh Time Scheduling problem for the case
of non-uniform weights; Min Max Refresh Time Scheduling otherwise.

In this paper, we focus on the algorithmic aspect of the scheduling problem
and assume that the networking issues (synchronization, packet loss, and re-
transmissions) are handled in the standard manner. We assume relatively long
streaming traffic flow such that the schedules for traffic demands are updated
when traffic demands change substantially.

Motivation and Related Work. A lot of prior work on channel assign-
ment and scheduling focused on maximizing network throughput (i.e., the total
number of links one can schedule in a single slot without interference), or
makespan (i.e., minimize the time slots to complete a given demand vector),
which will be reviewed in the next section. For latency sensitive applications
fairness is important as well, in order for traffic flows to experience steady
and predictable latency over time. Our problem provides guaranteed share of
resources for each edge. Further, we wish to allow prioritized treatment for
emergency oriented applications (compared to recreational applications). This
can be implemented by edges on the routes of traffic with high priority carry-
ing higher weights. In our problem, these edges are scheduled more frequently.

a b

c d

Fig. 1. The edges
(a, b), (c, d) can be
colored the same in
edge coloring but
cannot be colored the
same in strong edge
coloring (due to the
edge (a, d)).

Mathematically, our problem is closely related to edge
coloring and strong edge coloring problems. The problem
of edge coloring is to assign a color to each edge such that
no two adjacent edges have the same color. The minimum
number of colors used is called the chromatic index, which
is either Δ or Δ + 1, where Δ is the maximum degree in
the graph (Vizing’s Theorem), although deciding which
one is the optimal index is NP-hard [13]. Greedy coloring,
i.e., use a color that is not yet used in the neighboring
edges, gives a 2-approximation. In strong edge coloring,
two edges e, e′ cannot have the same color if they share a
common endpoint or their endpoints are connected by an
edge (Fig. 1). In the wireless network setting, this maps to
the scenario when protocol level interference is considered and shall be eliminated
in the schedule [3,17,20,21]. The minimum number of colors used is called the
strong chromatic index. Counting the number of edges that could be in conflict
with any edge shows that the strong chromatic index is between Δ and 2Δ(Δ−
1)+1. Erdös and Nešetřil conjectured that the strong chromatic index is at most
5Δ2/4, which is still open. For a given graph, computing its strong chromatic
index is NP-hard [25], and a greedy algorithm gives a Θ(Δ) approximation.
Closing the gap appears to be a long-standing problem (see [16]).

Our problem adds more complications by considering k possible channels
and r radios per node. As we will show in this paper, our scheduling problem
includes edge coloring and strong edge coloring as special cases. As far as we are
aware, our problem has not been studied before.

140 S.-Y. Tsai et al.

Our Contribution. In this paper, we initiate the study of the Min Max
Weighted Refresh Time Scheduling problem. We consider the single radio case
first, i.e., r = 1. When edges have the same weight, our problem reduces to the
classical edge coloring problem if k is at least �n/2� and the strong edge coloring
problem if k = 1. For a general k, a greedy algorithm that assigns each edge the
earliest possible time slot with the first available channel achieves an approx-
imation factor of

⌈
2(Δ−1)

k

⌉
+ 2, where Δ is the maximum degree of the given

graph. Notice that this bound is a smooth transition from the 2-approximation
for edge coloring to Θ(Δ)-approximation for strong edge coloring, when k varies
between 1 and n/2.

When edges have different priorities/weights, the problem becomes tricky.
Intuitively, an edge with a higher weight should be scheduled more frequently.
That is, we may want to create multiple copies of this edge so that we can apply
the scheduling algorithm for the unweighted setting by treating each duplicate
edge as a different edge. But how many copies should we make for an edge
of weight wi? Second, the duplicated copies of the same edge, ideally, shall be
spread uniformly in the schedule, avoiding a large gap somewhere. However, it
is not clear how to ensure the uniform placement of the duplicated copies of
ei, for every edge ei, with non-trivial interference patterns to avoid. Last, we
need to obtain a lower bound for the optimal refresh time in order to prove
approximation factors.

Our insights come from understanding the optimal schedule. Suppose the
optimal schedule repeats every T slots. There is a lower bound L(S) of the
optimum maximum refresh time – by simply dividing T by μi, the number of
times ei appears in one cycle, for each edge ei. Next, we show that this lower
bound achieves the minimum value �∗ if μi is Cwi, for some integer C. This is
useful for the algorithm design as we know that the number of copies duplicated
for ei shall be proportional to wi, but we still do not know what C is. By using
the probabilistic method, we show that if we set C = 1 and take the schedule
that minimizes the lower bound L(S), then the value of L(S) is at most a factor
of 7 log m of �∗, where m is the number of distinct edges to be scheduled. This
way we are only losing a factor of O(log m).

The analysis above suggests the following simple scheduling algorithm for the
weighted setting. We first make wi copies of edge ei, generate a random permu-
tation of these edges (possibly with duplicates), and partition the permutation
into chunks of equal length. For each chunk, run the aforementioned greedy
scheduling algorithm and then combine the schedules together. We ensure that
the length of each chunk is small enough such that for each edge e, only O(1)
edges in expectation may interfere with e. Hence, the greedy schedule uses O(1)
time slots for each chunk. Further, in a random permutation, the duplicated
edges are likely to be placed evenly – the maximum gap can be bounded by
the standard balls and bins problem. In summary, the approximation factor (in
expectation) is bounded as

O

(
max

{√
Δp,

Δp√
k

}
log m

log Wmax

log log Wmax

)
,

Multi-channel Assignment and Link Scheduling 141

where Δp denotes the maximum degree of the unweighted multi-graph, which is
formed by duplicating each edge ei for wi times, and Wmax is the highest weight
of all edges. Notice that the endpoints of the edge of maximum weight has degree
at least Wmax in the multi-graph. That is, Δp ≥ Wmax. Hence, the provided

approximation factor can be written concisely as Õ
(
max

{√
Δp,

Δp√
k

}
log m

)
.

Finally, both the weighted and unweighted algorithms can be extended to
the multi-antenna case, i.e., r > 1. We also run simulations empirically (in
Appendix) to evaluate the performance of our algorithms. The simulations show
that our unweighted algorithm works as efficiently for large graphs as for small
graphs when they have similar densities. When we have a reasonable number
of channels, our algorithm can efficiently use them for large graphs to keep
the latency low. On the other hand, our weighted algorithm can efficiently use
only two available channels for graphs with uniform weight distribution. It is
approximately two times better than with only one channel.

The rest of this paper is organized as follows. Section 2 discusses related work.
We address the single antenna case in Sect. 3 and Sect. 4, and extend our result
to the multi-antenna case in Sect. 5. Section 6 concludes this paper.

2 Related Work

Channel assignment and link scheduling with wireless interference have mainly
focused on throughput optimization (maximizing the number of edges that can
be scheduled at the same time). This problem is closely related to finding the
maximum independent set. For a given demand vector, a commonly formulated
problem is to minimize the number of slots to meet the demand, called the
makespan.

For the centralized setting, Hajek and Sasaki [12] considered the prob-
lem of minimizing makespan but ignored wireless interference, proposing
two polynomial-time algorithms for direct messages and relayed messages.
Ramanathan and Lloyd [19] considered wireless interference and focused on
trees and planar graphs. Balakrishnan et al. [2] looked at unit disk graphs and
proposed PTAS and distributed constant factor polynomial-time approxima-
tion algorithms. Sharma [22] considered approximation algorithms for the k-hop
interference model.

A few papers [6,15] considered fully distributed scheduling algorithms that
optimize for throughput or makespan. For 1-hop interference model, the maxi-
mum number of edges that could be scheduled at the same time is the maximum
matching. A greedy maximal matching algorithm has at least half of edges of the
optimal, and in general has an approximation factor depending on the ‘interfer-
ence degree’ [6,14,28].

The results have been generalized to multi-hop communication scenarios.
Kumar et al. [15] studied the problem of minimizing makespan for given packets
in a wireless setting with 2-hop interference (the same as ours) and proposed a
distributed algorithm with an approximation bound of Θ(Δ log2 n) for arbitrary
graphs. They also show that it is hard to approximate the minimum makespan

142 S.-Y. Tsai et al.

within a factor of Δ1−ε for any positive constant ε < 1, even in the centralized
setting. On the other hand, with the same greedy idea, Wan et al. [26] scheduled
replicated edges (traffic demands on direct-communicated links) in any multi-hop
wireless network under any arbitrary interference model. The proposed algorithm
achieves a 1 + μ ln α approximation ratio using a μ−approximate algorithm for
finding a maximal set of transmitting edges to greedily schedule the edges, where
α is the maximum number of edges that can transmit simultaneously. Further-
more, in the multi-antenna scenario under the binary interference model, they
also considered a variant in which traffic demands are given on the node-level
links and proposed a constant factor approximation algorithm [27].

Fairness is not considered in the scheduling literature as much as through-
put. Shi et al. [23] discussed the existing fairness models of channel assignment
and compared them systematically. They also stated several challenges, such as
designing fairness strategies under distributed scenarios (since we consider wire-
less networks), corrective strategies for unfairness, and how to assign weights
to nodes and how to allocate resources according to the weights. Most studies
have focused on resource allocation but the weight assignment strategies have
not received much attention. Chaporkar et al. [6] proposed the use of a token
generation mechanism together with maximal scheduling for fairness, but no
guarantee is provided.

3 Min Max Refresh Time in the Single-Antenna Setting

We start with the case in which all edges are unweighted and each node has
only one antenna (r = 1) and show the connection of our problem (i.e., the
Min Max Refresh Time Scheduling problem defined in Sect. 1) with other graph
problems. For different k, the number of channels, the problem in the single-
antenna unweighted case maps equivalently to different graph coloring problems.

– When k = 1, this problem is equivalent to the strong edge coloring problem.
The edges of the same color are scheduled during the same time slot.

– When k ≥ �|V |/2�, the problem is equivalent to the edge coloring problem,
where V is the set of transceivers. Again the edges of the same color are
scheduled during the same time slot – though they may use different channels.

– In between the problem is neither edge coloring nor strong edge coloring. We
show that a greedy algorithm gives a �2(Δ − 1)/k� + 2 factor approximation
to the optimal solution.

Theorem 1. In the single-antenna case with unit weights, the Min Max Refresh
Time Scheduling problem with only one channel available is equivalent to strong
edge coloring.

Proof. In a strong edge coloring problem, the edges of the same color form an
induced matching. Let us identify the colors by unique integers from {1, · · · , c}.
Here c is the number of available colors. We schedule all edges of color i during
time slot i, for all i ∈ {1, · · · , c}. We repeat this finite schedule forever to form

Multi-channel Assignment and Link Scheduling 143

our final infinite schedule. In each slot, the edges do not cause any interference.
Further, the maximum refresh time for any one edge is exactly c in this schedule.

In the other direction, given an infinite schedule solution with the maximum
refresh time t, it can be transformed into a periodic schedule by finding the
prefix schedule that achieves the maximum refresh time. Focus on this prefix
schedule (cycle), it will create an induced matching for each slot and we remove
any duplicate edges in this cycle. If we color the edges in the same time slot by
the same color, this becomes a valid strong edge coloring solution. The maximum
refresh time t implies that the cycle cannot have a length more than t, so the valid
strong edge coloring solution has at most t colors. Therefore, the two problems
are equivalent. 	

Theorem 2. In the single-antenna case with unit weights, the Min Max Refresh
Time Scheduling problem with at least �|V |/2� channels is equivalent to the edge
coloring problem.

Proof. Suppose we are given an edge coloring solution with c colors. Observe that
it is a decomposition of the given graph G into c matchings. Assign a new time
slot to each matching. In each time slot, assign each edge in the corresponding
matching to a different channel. There are at most �|V |/2� edges in a matching
of G so we have enough channels to build this schedule. Form a periodic schedule
by repeating this schedule of c time slots. The refresh time for any edge is at
most c.

On the other hand, given an infinite schedule with maximum refresh time
t, it must have a smallest periodic cycle of length at most t. By eliminating
any duplicate edges, each edge appears exactly once now, i.e., this cycle par-
titions the edges into at most t time slots. The edges scheduled for a given
time slot cannot share any common vertices – since each node is given only one
channel. That means each time slot gives a matching, so this graph is t edge
colorable. 	

For any k, we show that the following greedy algorithm has an approximation
ratio of �2(Δ − 1)/k� + 2. We examine the edges one by one. For each edge e,
we check the first slot with the first channel to see if e can be scheduled without
violating any constraints. If not, we move on to the next channel and check
again. If we run out of channels, we move on to the next time slot. When we go
through all the edges, denote the number of slots used as h. We then repeat the
schedule an infinite number of times. The refresh time for all edges is precisely h.

To show the approximation factor, we observe that the optimal schedule for
G, for any k, is at least Δ – this is because these Δ edges attached to the common
node must be placed in different slots.

Theorem 3. In the single-antenna unweighted case, the greedy algorithm gives
a schedule with a maximum refresh time of at most � 2(Δ−1)2

k � + 2(Δ − 1) + 1.
Therefore, this algorithm is a � 2(Δ−1)

k � + 2−approximate algorithm for the Min
Max Refresh Time Scheduling problem.

144 S.-Y. Tsai et al.

Proof. We consider the edges that are placed in the last time slot of the generated
finite schedule. Take one of these edges, say, edge e. The reason e is placed at
the h-th slot, by the greedy rule, is that it cannot be placed anywhere earlier.
For each of the previous slot, at least one of the following two events happens:
the first event is that an edge incident to one endpoint of e is scheduled and so
we cannot schedule e. The second event is that we run out of channels for e.
For each of the k channels, there is an edge e′ that is at most one hop away
from e and is scheduled with this channel. (Here, at most one hop away means
that edges e and e′ have a common endpoint or some of their endpoints are
neighbors.)

Since e is incident to at most 2(Δ − 1) edges, the number of slots of the first
type is at most 2(Δ− 1). At most 2(Δ− 1)2 edges are one hop away from e. For
the second event to happen we need to use k such edges. Therefore, there are at
most �2(Δ − 1)2/k� slots of the second type.

The worst case happens if, for each slot, exactly one of the two events hap-
pens. This amounts to a total of at most �2(Δ − 1)2/k� + 2(Δ − 1) + 1 slots.
Furthermore, the lower bound of optimal max refresh time Δ means that this
greedy algorithm produces a (�2(Δ − 1)/k� + 2)-approximate solution. 	

Remark. When k = Θ(Δ), the greedy algorithm is a constant approximation.
The upper bound �2(Δ − 1)2/k� + 2(Δ − 1) + 1 is nearly tight – for k = 1 there
are graphs that require Ω(Δ2) slots. For example, a 5-cycle must use 5 colors
for strong edge coloring. If we glue two 5-cycles together as in Fig. 2, the graph
requires 20 colors. In general, if we glue l of the 5-cycles together, this amounts
to 5Δ2/4, where Δ = 2l.

a b c d e

a′ b′ c′ d′ e′

Fig. 2. Two 5-cycles abcde
and a′b′c′d′e′ glued to each
other (by the blue edges). The
graph requires 20 colors/slots
to schedule if a single channel
is used. (Color figure online)

Remark. The bounds here work for general
graphs. Specifically, in the case of unit disk graphs,
using packing argument, we can show that the
greedy algorithm mentioned above has a O(1)
approximation factor [3].

4 Min Max Weighted Refresh
Time in the Single-Antenna Setting

In this section, we discuss the Min Max Weighted
Refresh Time Scheduling problem under the
single-antenna setting. Let G = (V,E) be a weighted graph, where E is the
set of m edges e1, ..., em with weights w1, ..., wm, respectively. We would like to
minimize maxi wiTi, where Ti is the maximum refresh time for edge ei. When
wi’s are not the same, the algorithm in the previous section does not work. If
an edge is more important, then we would like to schedule it more frequently.

4.1 Lower Bound of the Optimal Solution

We first try to understand the structure of the optimal solution. Let us consider
the optimal periodic schedule and consider one cycle S∗ of the optimal periodic

Multi-channel Assignment and Link Scheduling 145

schedule. Suppose S∗ has T ∗ time slots and the maximum refresh time for edge
ei is T ∗

i and edge ei appears μ∗
i times in S∗. We can picture this periodic schedule

as wrapping S∗ around on a cycle. T ∗
i is the maximum gap between adjacent

appearances of i on the cycle. Clearly, T ∗
i ≥ T ∗/μ∗

i by the pigeonhole principle.
Define L(S∗) = maxi∈{1,...,m} wiT

∗/μ∗
i . Therefore, the optimal solution is lower

bounded as follows.

O(S∗) = max
i∈{1,...,m}

wiT
∗
i ≥ max

i∈{1,...,m}
wiT

∗/μ∗
i = L(S∗). (1)

Now let us suppose we have a collection of edges in which edge ei is duplicated
μi times and consider a feasible finite schedule S for these edges and denote by
T (S) the total number of time slots. For each feasible finite schedule S, let us
define

L(S) = max
i∈{1,...,m}

wiT (S)/μi.

Here, μi is the number of occurrences of edge ei in S. Now, we want to understand
when we can get the minimum value of L(S) among all feasible finite schedules
S. Since S∗ is one finite feasible schedule, the minimum value of L(S) is a lower
bound of L(S∗), hence, a lower bound of O(S∗) as well.

Lemma 1. Among all possible feasible schedules S, L(S) is minimized when the
schedule has μi = Cwi for some integer C, for all i.

Proof. Assume otherwise. Let S be a schedule that achieves the minimum L(S)
but not every μi is exactly Cwi for some integer C. We will create a feasible
schedule S′ with L(S′) < L(S), yielding a contradiction.

First, we repeat the schedule D times for some big integer D, which will be
determined later. Now we take the edge ei that has the largest wiT (S)/μi among
all edges (i.e., i realizes the value L(S)). We create a slot that only contains edge
ei and add this slot at the end of the enlarged schedule. In the new schedule S′,
we have a total of T (S′) = DT (S) + 1 slots.

Now we calculate the ratio wjT (S′)/μ′
j , for each edge ej in the new schedule

S′. First, for edge ei, we have

wiT (S′)
μ′

i

=
wi(DT (S) + 1)

Dμi + 1
<

wiT (S)
μi

= L(S)

The inequality is true because μi < T (S).
Now consider an edge ej , j �= i. There are two cases.

– If wjT (S)/μj < wiT (S)/μi, then we can show that

wjT (S′)/μ′
j < wiT (S′)/μ′

i = L(S)

by taking
D >

wj

wiμj − wjμi
.

146 S.-Y. Tsai et al.

– If wjT (S)/μj = wiT (S)/μi = L(S), we repeat the same procedure as above.
Notice that in every iteration we remove one edge that realizes L(S).

At the end we can argue that we find a new schedule S′ such that for all edges
j, wjT (S′)/μ′

j < L(S). Thus L(S′) < L(S). This is a contradiction to the opti-
mality of S. Hence, the statement of this lemma is true. 	

Therefore, L(S) is minimized when μi = Cwi, for all i and some constant C.
Next, we show that it does not hurt too much to consider μi = wi if we only
care about minimizing L(S).

Suppose we have two scheduling problems, in the first one, each edge ei is
duplicated μ′

i = wi times and we take S′ to be one of the best finite feasible
schedules for these edges that minimize L(S′); while in the second one, each
edge ei is duplicated μ′′

i = Cwi times, for a variable C taking all possible integer
values. Let S′′ be one of the optimal schedules that minimize L(S′′). Clearly
L(S′′) ≤ L(S′) by definition. We now argue that,

Lemma 2. L(S′) ≤ 7 log mL(S′′), where m is the number of edges of G.

To prove this lemma, we first need the following lemma.

Lemma 3. Given a bipartite graph with vertex sets X and Y . If all the degree
of yi ∈ Y is a multiple of C for a fixed constant C and |X| is also a multiple of
C, then there is a subset X ′ ⊆ X such that |X ′| = |X| · β/C and for each vertex
y ∈ Y , the number of neighbors of y in X ′ is at least d(y)/C, where d(y) is the
degree of y and β = 7 log m with m = |Y |.
Proof. We will use a probabilistic argument to prove that such an X ′ exists.
Partition the vertex set X into disjoint subsets X1 and X2 randomly with |X1| =
|X|β/C. Hence, each vertex in X has probability β/C to be in X1. Now, for each
vertex yi ∈ Y , denote by Yi the number of edges incident to yi and a vertex in
X1. Clearly the expectation of Yi is E(Yi) = d(yi) · β/C. By Chernoff bound,

Prob{Yi ≤ d(yi)/C} = Prob{Yi ≤ E(Yi)
(
1 − (1 − 1/β)

)}
≤ exp{−βd(yi)/C · (1 − 1/β)2/3}.

Since d(yi)/C ≥ 1 and (1 − 1/β)2 > 1/2 for β = 7 log m,

Prob{Yi ≤ d(yi)/C} < exp{−β/6}.

Therefore, the probability that all nodes in Y have at least 1/C fraction of edges
in X1 can be estimated by the union bound.

Prob{All nodes in Y have at least 1/C fraction of edges in X1}
≥ 1 − ∑

i Prob{Yi ≤ d(yi)/C} > 1 − m/ exp{β/6} > 0.

Thus, the probability that all vertices in Y have at least 1/C of their edges in
X1 is positive. This implies that such a partition must exist. Therefore, such X ′

exists. 	

Multi-channel Assignment and Link Scheduling 147

Now, we are ready to prove Lemma 2.

Proof of Lemma 2. We will prove this by forming a feasible schedule which has
edge ei with occurrence μi from schedule S′′ and this feasible schedule consists
of at most T (S′′)7 log m/C time slots, where m is the number of edges of G.
(If T (S′′) is not a multiple of C, we supplement with empty slots to make it a
multiple of C.) Such a feasible schedule exists by Lemma 3. Here, the bipartite
graph with vertex set X ∪ Y is the following. X consists of T (S′′) vertices and
each represents a time slot. On the other hand, Y consists of m vertices and each
represents an edge in G. We connect a vertex (time slot) in X with a vertex (an
edge in G) ei in Y if the edge ei in G is scheduled in that time slot. Note that
for each vertex y ∈ Y , if its corresponding edge in G is ei, then the degree of y
is exactly Cwi. Hence, Lemma 3 shows that there is a subset of the time slots
in S′′ such that each edge ei appears at least wi times in these time slots. This
generates a scheduling with at most T (S′′)β/C slots, where β = 7 log m.

Recall that S′ is the optimal schedule with the smallest T (S′). Thus, T (S′) ≤
T (S′′)β/C. On the other hand, μ′ = wi and μ′′ = Cwi yield L(S′) = T (S′)
and L(S′′) = T (S′′)/C. Combining them, we get L(S′) ≤ βL(S′′) = 7 log m ·
L(S′′). 	

Now for the first scheduling problem (we duplicate edge ei exactly wi times
and minimize L(S′)), by the same idea of the max unweighted refresh time
in Sect. 3, we can get a similar lower bound on T (S′). Define an unweighted
multigraph Gm = (V,Em) by duplicating edge ei for wi times. Let Δp denote the
maximum degree of Gm. That is, T (S′) ≥ Δp. Combined with the inequality in
Lemma 2, we have L(S′′) ≥ L(S′)/(7 log m) = T (S′)/(7 log m) ≥ Δp/(7 log m).
On the other hand, as discussed before, the minimum value of L(S) among all
feasible finite schedules S serves as a lower bound for O(S∗) and the minimum
value occurs when μi = Cwi for all i, which is the second scheduling problem.
Hence, O(S∗) ≥ L(S′′). Now, we get a lower bound on the optimal solution as
in Theorem 4.

Theorem 4. The optimal solution for the Min Max Weighted Refresh Time
Scheduling problem has O(S∗) ≥ Δp

7 log m .

4.2 Algorithm

Our algorithm for the Min Max Weighted Refresh Time Scheduling problem
works as follows. First, generate a random permutation of the edges in Em.
Second, partition these edges into g = �W/b� buckets of equal length b, where
W =

∑
i wi and b will be determined later. The last bucket may have length less

than b and that is alright. For each bucket Bi, consider the induced unweighted
multigraph, Gi, which consists of the edges that appear in this bucket and
the edges whose two endpoints appear in edges of this bucket. Observe that
Gi includes all edges in Bi but may contain other edges, too (e.g., an edge e
that is not in Bi but have both vertices appearing in Bi, but we only include
one copy of e if it is a duplicate edge). Finally, run the greedy algorithm in
Sect. 3 on Gi. (In fact, the greedy algorithm works for unweighted multigraphs.)

148 S.-Y. Tsai et al.

This generates a schedule Si for all the edges in Gi. Keep only the edges in
Bi in the schedule Si to form a new schedule S′

i. Our final schedule will run
S′
1, S

′
2, ..., S

′
g in sequence and periodically.

4.3 Analysis of the Approximation Ratio

Now we bound the approximation ratio of the aforementioned algorithm. First,
we examine how many time slots in expectation are needed for each bucket.
Second, we use the balls and bins technique to analyze the maximum weighted
refresh time. Let us consider two cases, k = 1 and k > 1 separately.

Lemma 4. Suppose k = 1 and b = W/Δ2
p. Then the number of time slots needed

for the edges in a specific bucket Bi is O(1) in expectation.

Proof. The number of time slots needed for a bucket Bi, by the greedy algo-
rithm, depends on the degree of the induced subgraph Gi (Theorem 3). We first
analyze the probability that a specific edge ej = (u, v) falls inside the induced
subgraph Gi. In order for this event to happen, either edge ej is placed in Bi

(with probability at most b/W as there are �W/b� buckets in total), or both
endpoints u and v of ej appear in Bj (as other edges incident to u (v) are placed
in Bi). We can bound the probability as follows. Recall that b = W/Δ2

p. By
limx→∞(1 − 1/x)x = 1/e and Taylor’s Formula, we get

Prob{ej ∈ Gi} ≤ b/W + (1 − (1 − b/W)Δp)2

≤ 1/Δ2
p + (1 − (1 − 1/Δ2

p)
Δp)2

≤ 1/Δ2
p + (1 − e−1/Δp)2 ≤ 2/Δ2

p.

Let edge ej be the last edge be added to the last time slot in the schedule for
Gi. The number of slots used for Gi depends on the number of edges that can
interfere with ej . Specifically, we have to analyze the following two parameters:

– Δi(ej): the number of edges in Gi, counting duplication, that share a common
vertex with ej .

– Δ′
i(ej): the number of edges in Gi, counting duplication, that are exactly one

hop away from ej . That is, some of their endpoints are neighbors and they
don’t share any common endpoints.

For bounding Δi(ej) from above, we consider the edges incident to ej in Gm,
each appearing in Gi with probability at most 2/Δ2

p. The total number of these
edges other than ej is wj − 1 + 2(Δp − wj). Therefore,

E[Δi(ej)] ≤ (wj − 1 + 2(Δp − wj)) · 2/Δ2
p < 4/Δp ≤ 4.

Similarly, E[Δ′
i(ej)] ≤ 2Δ2

p · 2/Δ2
p = 4.

By the linearity of expectation, E[Δi(ej) + Δ′
i(ej)] = O(1). That is, it intro-

duces O(1) edges, in expectation, in the interference range of the last edge ej .
Hence, the number of slots needed to resolve interference for bucket i, in expec-
tation, is bounded by O(1). 	

Multi-channel Assignment and Link Scheduling 149

Now, we can analyze the maximum refresh time for each edge e using balls
and bins results.

Theorem 5. With k = 1 and b = W/Δ2
p, the proposed algorithm in Sect. 4.2 ,

for the Min Max Weighted Refresh Time Scheduling problem, has an approxima-
tion factor of O(Δp log m log Wmax/ log log Wmax) in expectation, where Wmax is
the highest possible weight and Δp is the maximum degree in Gm.

Proof. For each edge ei, we would like to evaluate the maximum refresh time
Ti, i.e., the maximum number of time slots before edge ei is scheduled again.
Recall that edge ei is duplicated wi times and the schedule is produced from
a random permutation of all (duplicate) edges. We examine each gap between
adjacent appearances of edge ei in the permutation (wrapped as a cycle).

The number of edges in this gap can be upper bounded by the balls and bins
analysis. Here these wi duplicated edges ei are placed first on the cycle and each
of the W − wi remaining edges is randomly placed in one of these wi gaps. We
recall the balls and bins results:

Lemma 5. [10,18] Throwing R balls independently and uniformly at random
into Z bins. If R = Ω(Z log Z), then the maximum number of balls in one bin is
O(R/Z) with probability 1 − O(1/R); if R = o(Z log Z), then the maximum load
of bins is O(log Z

log log Z) with probability 1 − O(1/R).

If W = Ω(wi log wi), the maximum gap among these wi gaps is bounded
by O(W/wi), with high probability in W . The number of buckets in this gap

is O(W
bwi

) = O(Δ2
p

wi
). w.h.p. in W . Since each bucket uses a constant number of

slots in expectation and the maximum load (number of buckets in the maximum
gap) is highly concentrated around its mean in the balls and bins setting, we
can directly multiply these two expected values to obtain the expected value for
the refresh time for edge ei. That is, the weighted refresh time for ei is bounded

by wiTi = wi · O(Δ2
p

wi
) = O(Δ2

p) in expectation.
If W = o(wi log wi), a similar argument shows that the weighted refresh time

for ei is bounded by O(wi log wi

b log log wi
) = O(Δ2

p log wi

log log wi
) in expectation. Now compared

to the lower bound of the optimal solution as in Theorem 4, our algorithm has
an approximation factor of O(Δp log m log Wmax

log log Wmax
) in expectation. 	

When the number of channels k is not 1, we will change the size of the buckets
b to min{√

Δp,
√

k}W/Δ2
p. The analysis is similar but a bit more technical.

Theorem 6. Suppose we have k channels. Take b = min{√
Δp,

√
k}W/Δ2

p, then
the algorithm in Sect. 4.2 has an expected approximation factor of

O

(
max

{√
Δp,

Δp√
k

}
log m log Wmax/ log log Wmax

)
.

Proof. Given k channels, observe that Theorem 4 is for general k, i.e., Δp

7 log m
gives a lower bound of the optimal solution. On the other hand, Lemma 4 also

150 S.-Y. Tsai et al.

holds for general k and b = min{√
Δp,

√
k}W/Δ2

p. For convenience, let h =
min{√

Δp,
√

k}. Hence, b = hW/Δ2
p.

Prob{ej ∈ Gi} ≤ b/W + (1 − (1 − b/W)Δp)2

≤ h/Δ2
p + (1 − e−h/Δp)2

≤ h/Δ2
p + h2/Δ2

p ≤ 2h2/Δ2
p since h ≥ 1.

E[Δi(ej)] ≤ (wj − 1 + 2(Δp − wj)) · 2h2/Δ2
p ≤ 4h2/Δp

Similarly, we can get E[Δ′
i(ej)] ≤ 2Δ2

p · 2h2/Δ2
p = 4h2.

By the linearity of expectation and the key idea of the proof of Theorem 3, the
number of slots for bucket i, in expectation, is bounded by O(4h2/Δp + 4h2/k).
By h = min{√

Δp,
√

k}, O(4h2/Δp + 4h2/k) = O(8).
Next, let us analyze the number of edges in the gaps of edge ei. If W =

Ω(wi log wi), the number of bins in this gap is at most O
(

W
bwi

)
= O

(
Δ2

p

hwi

)
w.h.p.

in W . Because of the high concentration around its mean in the balls and bins
problem, we can calculate the expectation of the weighted refresh time directly
by multiplying these two values mentioned earlier. That is, in expectation,

wiTi = wiO

(
Δ2

p

hwi

)
O(4h2/Δp + 4h2/k) = O(h(Δp + Δ2

p/k)).

Similarly, if W = o(wi log wi), the weighted refresh time in expectation for
ei is at most

wiTi = wiO
(

log wi

b log log wi

)
O(4h2/Δp + 4h2/k)

= O
(

wiΔ
2
p log wi

Xh log log wi

)
O(4h2/Δp + 4h2/k)

= O
(

log wi

log log wi
h(Δp + Δ2

p/k)
)

Combining these two upper bounds, in expectation, its approximation factor
is bounded by O(min{√

Δp,
√

k} · Δp log m log Wmax/k log log Wmax). Then by
case analysis, we get the approximation factor as Theorem 6 states. 	

5 Min Max (Weighted) Refresh Time in the
Multi-antenna Setting

In this section, we discuss the multi-antenna case. Since each node has r > 1
radios, it now can have at most r adjacent edges that are active in a time
slot. The interference rule is the same as in the single-antenna setting: in a
time slot, if two active edges are within interference range, then they must use
different channels. The only difference is that now j adjacent edges incident to
the same vertex v can be active in the same slot if they use different channels
and different radio interfaces on v. The problem becomes more complicated than
before. Fortunately, our algorithms for the weighted and unweighted problems
can be generalized to the multi-antenna case.

Multi-channel Assignment and Link Scheduling 151

Considering these two problems in the multi-antenna scenario, we have the
following bounds for the optimal solution and the approximation factor for our
scheduling algorithm.

Lemma 6. In the multi-antenna case, the optimal solution has a maximum
refresh time of at least

⌈
2Δ−1

min{2r,k}
⌉
.

Proof. In the multi-antenna scenario, given an arbitrary edge e, at most
min{2r, k} edges that are incident to e can appear in the same time slot. The
reason is that for each endpoint of e, it can transmit at most min{r, k} messages
successfully at the same time. There are at most 2min{r, k} possible transmis-
sions in total. They are within the interference area of e so they must use different
channels. Hence, the maximum number of successful transmissions in a time slot
is min{k, 2min{r, k}}, which is equivalent to min{2r, k}. Remember that there
are at most 2Δ − 1 edges in the interference range of edge e, so the maximum
refresh time of the optimal solution is bounded from below by

⌈
2Δ−1

min{2r,k}
⌉

. 	

Theorem 7. In the multi-antenna case, the greedy algorithm gives a sched-
ule of maximum refresh time at most

⌈
2(Δ−1)2

k

⌉
+

⌈
2(Δ−1)
min{r,k}

⌉
+ 1. There-

fore, this solution for the Min Max Refresh Time Scheduling problem is a⌈
min{2r,k}(Δ−1)

k

⌉
+ 2−approximation.

Proof. It is similar to the proof of Theorem 3. The event “an edge incident to one
endpoint of e is scheduled so we cannot schedule e” now becomes “we run out of
channels or radios for one endpoint of e”. That means for each of the r radios,
an edge e′ that is adjacent to e is scheduled with this radios or for each of the
k channels, e′ is scheduled with this channel. For this event to happen, we need
to use at least min{r, k} such edges. Hence, there are at most

⌈
2(Δ−1)
min{r,k}

⌉
slots of

this type. The maximum refresh time now is at most
⌈
2(Δ−1)2

k

⌉
+

⌈
2(Δ−1)
min{r,k}

⌉
+1.

Furthermore, the lower bound of optimal max refresh time
⌈

2Δ−1
min{2r,k}

⌉
implies

that this greedy algorithm produces a
⌈
min{2r,k}(Δ−1)

k

⌉
+2-approximation of the

optimal. 	

Lemma 7. In the multi-antenna case, the optimal solution for the Min Max
Weighted Refresh Time Scheduling problem has O(S∗) ≥ Δp

7 log mmin{r,k} .

Proof. First of all, notice that Lemmas 1 and 2 still hold in the multi-antenna
scenario. Only the proof of Lemma 1 is different. That is inserting ei may remove
more than one occurrence for any ej , but no more than min{r, k} occurrences.
With at most min{r, k} occurrences, we still can give a sufficiently large D that
yields contradiction. Now we get an inequality, T (S) ≥ Δp/min{r, k}. Combin-
ing with Lemma 2, we get Δp

7 log mmin{r,k} as a lower bound for optimal.
Before ending this proof, let us clarify why an edge now can appear at most

min{r, k} times in the same time slot. It is because that for edges that have

152 S.-Y. Tsai et al.

common endpoints, if we require these edges appear in the same time slot, then
they must use different radios with different channels. Different radios represent
different interfaces in the endpoints and different channels mean no interference
occurs. Hence, there are at most min{r, k} duplicate edges in a time slot. 	

Theorem 8. In the multi-antenna case with b = min{√

Δp min{r, k},
√

k}
W/Δ2

p, our algorithm for the Min Max Weighted Refresh Time Scheduling prob-
lem has an expected approximation factor

– O(Δp

√
k · log m log Wmax/ log log Wmax), if k ≤ r;

– O(rΔp/
√

k · log m log Wmax/ log log Wmax), if k > r and k ≤ rΔp;
– O(

√
rΔp · log m log Wmax/ log log Wmax), if k > rΔp.

Proof. In the multi-antenna setting with k channels, Lemma 7 still holds. That
is, Δp

7 log mmin{r,k} serves as a lower bound for the optimal solution. On the other

hand, Lemma 4 also holds for general k and b = min{√
Δp min{r, k},

√
k}W/Δ2

p.
The only difference is the following. By the linearity of expectation and the key
idea of the proof of Theorem 7, the number of slots for bucket i, in expectation,
is bounded by O

(
4h2

Δp min{r,k} + 4h2

k

)
. Using h = min

{√
Δp min{r, k},

√
k
}

, we
get

O

(
4h2

Δp min{r, k} +
4h2

k

)
= O(8).

The analysis for the number of edges in gaps of edge ei remains the same.
Hence, when W = Ω(wi log wi), in expectation,

wiTi = wiO

(
Δ2

p

hwi

)
O

(
4h2

Δp min{r, k} +
4h2

k

)
= O

(
h

(
Δp

min{r, k} +
Δ2

p

k

))
.

Similarly, when W = o(wi log wi), wiTi = O
(

log wi

log log wi
h

(
Δp

min{r,k} + Δ2
p

k

))
.

As a result, the expected upper bound is

wiTi = O

(
log Wmax

log log Wmax
h

(
Δp

min{r, k} +
Δ2

p

k

))
.

Its approximation factor is bounded from above by

O

(
log Wmax

log log Wmax
min{

√
Δp min{r, k},

√
k}·

(
1

min{r, k} +
Δp

k

)
log m min{r, k}

)
.

Then by case analysis, we get the expected approximation factors, which is
stated in Theorem 8. 	

Multi-channel Assignment and Link Scheduling 153

6 Conclusion and Future Work

There are a few directions to explore in future work. One direction is to consider
the physical model (SINR model) as our interference model. Another direction
is to generalize the problem. In general, the problem of fair scheduling with con-
flicting constraints (low delay and interference) goes beyond scheduling wireless
links. We expect our techniques can be applied to a broader setting.

Acknowledgements. This work was supported in part by NSF grants CCF-1439084,
CCF-1535900, CNS-1553510, CNS-1618391, CNS-1553273, and DMS-1737812.

A Appendix: Omitted Proof

A.1 Proof on Schedule Periodicity

Given any infinite schedule S with a finite maximum refresh time, we can find
a periodic schedule with max refresh time for each edge ei no worse than that
in S. Let the max refresh time of all edges in S be L. Consider the family of
all possible schedules of the edges of G with no interference with length L. The
number of these schedules is finite.

Now, let’s construct a periodic schedule S′ from S. We divide S into sub-
schedules of length L each. Since the configuration of these sub-schedules of
length L is finite and S is infinitely long, there exists a subschedule M that
repeats at some point in S. Extract the subschedule of S that starts from the
first appearance of M and ends right before the second appearance of M . We
now repeat this sub-schedule periodically and call it S′.

Since each sub-schedule has length L, any edge ei appears at least once
in each sub-schedule. Thus, all the gap between two successive time slots of the
same edge ei in S′ also happens in the original schedule S. Hence, the constructed
periodic schedule has a maximum refresh time for each edge ei which is no worse
than that in the original schedule S. 	

B Evaluation

In this section, we evaluate our unweighted and weighted channel assignment
algorithms under different scenarios in the single antenna case. Without loss of
generality, we can assume that the smallest weight is 1 and all other weights
are rounded to integer values. We consider model networks such as random node
placement and perturbed grid placement with unit disk communication capacity,
and also a real testbed network (denoted the Tmote network) which consists of
48 TMotes in a building that uses the ChipCon CC2420 radio. We vary network
parameters such as node degree, the number of channels, weight distributions
and measure the performance of our algorithms using the maximum fresh time
divided by maximum (weighted) degree and Δp as the metric. For each network,
we ran our algorithm 50 times to compute the average performance.

154 S.-Y. Tsai et al.

Fig. 3. Unit disk network with random node placement. The node degree is kept similar
or increases when the scale of network increases to thousand of edges.

The network topology in Fig. 3 is constructed by throwing random nodes
with a uniform circular range in a 2D unit square. This imitates random node
placement in the wild. For each evaluation, we generate 50 networks. In Fig. 3.a,
we increase the number of nodes in the unit square from 50 to 600 while keeping
the average degrees the same (by scaling down the communication range of
each node), so every node continues to have a similar number of interfering
counterparts even when the network scale increases. The almost flat slopes of
curves indicate that our algorithm still works as efficiently for large graphs as
for small graphs when those graphs have similar densities. Besides, the result
shows that when we have a reasonable number of channels, our algorithm can
efficiently assign channels to a large network while keeping the latency low. In
Fig. 3b, we increase the number of nodes but keep the communication range
the same, i.e., when the number of nodes increases, the network becomes denser.
That means a lot of implicit interferences occur. Therefore, the maximum refresh
time increases unavoidably. Still, when we have a reasonable number of channels,
our algorithm can keep the max refresh time moderate.

Random node placement often leads to many small holes in the network. To
make the network more robust, perturbed grid placement is preferred which gives
a more stable node degree among the network while reducing the number of gaps
inside. Therefore, we often see an almost grid placement in real-world sensor
networks. In order to evaluate on such wireless networks, we use a perturbed
7 × 7 grid placement network shown in Fig. 4a and also a Tmote network as
shown in Fig. 4b. In the Tmote network, these nodes are deployed on walls and
ceilings of a building. We collect traces of 3,600,000 packet transmissions using
IEEE 802.15.4 standard for each pair of nodes. With the transmission traces, we
define two nodes are connected if and only if the packet reception rate of its link
is over 90%.

In Fig. 5, we evaluate our algorithm on these two networks when weight
distributions are uniform and power-law. In both networks, our algorithm can
efficiently use channels to reduce the refresh time. However, when the weight

Multi-channel Assignment and Link Scheduling 155

Fig. 4. Visualization of the network topologies

0

5

10

15

1 2 3 4 5
Number of channels

R
ef

re
sh

 ti
m

e
/ D

p

uniform-Grid
power-Grid
uniform-Tmote
power-Tmote

Fig. 5. Performance of weighted channel assignment on perturb grid and Tmote net-
work with varying number of channels and weight distributions.

distribution is power-law, the benefit diminishes because some implicit interfer-
ence is unavoidable. Note that some edges have very high priorities and they
contribute to the weighted degree which makes the maximum weighted degree
pretty high. The ratio of the maximum weighted degree to the total weight is
0.32 for the perturbed grid and it is 0.12 for the Tmote network. The node with
the maximum weighted degree creates more unavoidable interferences in the per-
turbed grid. Hence, the performance of the Tmote network is better than the
one of the perturb grid. On the other hand, for both networks under the uniform
distribution, the ratios are the same, 0.06, which is quite small and leaves room
for improvement of our algorithm. When we vary the number of channels from
one to two, our algorithm improves the most. It is almost twice as better than
the case of only one channel.

156 S.-Y. Tsai et al.

References

1. Al Islam, A.A., Islam, M.J., Nurain, N., Raghunathan, V.: Channel assignment
techniques for multi-radio wireless mesh networks: a survey. IEEE Commun. Surv.
Tutorials 18(2), 988–1017 (2015)

2. Balakrishnan, H., Barrett, C.L., Kumar, V.S., Marathe, M.V., Thite, S.: The
distance-2 matching problem and its relationship to the mac-layer capacity of ad
hoc wireless networks. IEEE J. Sel. A. Commun. 22(6), 1069–1079 (2006)

3. Barrett, C.L., Istrate, G., Kumar, V.S.A., Marathe, M.V., Thite, S., Thulasidasan,
S.: Strong edge coloring for channel assignment in wireless radio networks. In:
Fourth Annual IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOMW 2006), pp. 105–110, March 2006

4. Bicket, J., Aguayo, D., Biswas, S., Morris, R.: Architecture and evaluation of an
unplanned 802.11 b mesh network. In: Proceedings of the 11th Annual International
Conference on Mobile Computing and Networking, pp. 31–42. ACM (2005)

5. Chambers, B.: A rooftop ad hoc wireless network (2002). http://www.pdos.lcs.mit.
edu/grid/

6. Chaporkar, P., Kar, K., Luo, X., Sarkar, S.: Throughput and fairness guarantees
through maximal scheduling in wireless networks. IEEE Trans. Inf. Theory 54(2),
572–594 (2008)

7. Committee, L.S., et al.: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHZ Band, vol.
802, no. 1. IEEE Std., Piscataway (1999)

8. CREATE-NET and Technion: WING: wireless mesh network for next-generation
internet (2012). http://www.wingproject.org. Accessed 15 June 2019

9. Ghosh, A., Wolter, D.R., Andrews, J.G., Chen, R.: Broadband wireless access
with WiMax/802.16: current performance benchmarks and future potential. IEEE
Commun. Mag. 43(2), 129–136 (2005)

10. Gonnet, G.H.: Expected length of the longest probe sequence in hash code search-
ing. J. ACM (JACM) 28(2), 289–304 (1981)

11. Group, I.W., et al.: Part 11: wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in
the 2.4 GHZ Band. ANSI/IEEE Std 802.11 (1999)

12. Hajek, B., Sasaki, G.: Link scheduling in polynomial time. IEEE Trans. Inf. Theory
34(5), 910–917 (1988)

13. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–
720 (1981)

14. Joo, C., Lin, X., Shroff, N.B.: Understanding the capacity region of the greedy
maximal scheduling algorithm in multi-hop wireless networks. In: IEEE INFOCOM
2008 - The 27th Conference on Computer Communications, pp. 1777–1785, April
2008

15. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end
packet-scheduling in wireless ad-hoc networks. In: Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, Philadel-
phia, PA, USA, pp. 1021–1030 (2004)

16. Mahdian, M.: The strong chromatic index of graphs. Dissertation, Department of
Computer Science, University of Toronto (2000)

17. Nandagopal, T., Kim, T.E., Gao, X., Bharghavan, V.: Achieving MAC layer fair-
ness in wireless packet networks. In: Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking, pp. 87–98. ACM (2000)

http://www.pdos.lcs.mit.edu/grid/
http://www.pdos.lcs.mit.edu/grid/
http://www.wingproject.org

Multi-channel Assignment and Link Scheduling 157

18. Raab, M., Steger, A.: “Balls into Bins”—a simple and tight analysis. In: Luby, M.,
Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6 13

19. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks.
IEEE/ACM Trans. Networking 1(2), 166–177 (1993)

20. Ramanathan, S.: A unified framework and algorithm for channel assignment in
wireless networks. Wireless Netw. 5(2), 81–94 (1999)

21. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks.
IEEE/ACM Trans. Network. (TON) 1(2), 166–177 (1993)

22. Sharma, G., Mazumdar, R.R., Shroff, N.B.: On the complexity of scheduling in
wireless networks. In: Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, MobiCom 2006, pp. 227–238. ACM, New
York (2006)

23. Shi, H., Prasad, R.V., Onur, E., Niemegeers, I.G.M.M.: Fairness in wireless net-
works: issues, measures and challenges. IEEE Commun. Surv. Tutorials 16(1), 5–24
(2014)

24. Si, W., Selvakennedy, S., Zomaya, A.Y.: An overview of channel assignment meth-
ods for multi-radio multi-channel wireless mesh networks. J. Parallel Distrib. Com-
put. 70(5), 505–524 (2010)

25. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

26. Wan, P.J., Frieder, O., Jia, X., Yao, F., Xu, X., Tang, S.: Wireless link scheduling
under physical interference model. IEEE (2011)

27. Wan, P.J., Jia, X., Dai, G., Du, H., Wan, Z., Frieder, O.: Scalable algorithms
for wireless link schedulings in multi-channel multi-radio wireless networks. In:
INFOCOM, 2013 Proceedings IEEE, pp. 2121–2129 (2013)

28. Wu, X., Srikant, R., Perkins, J.R.: Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks. IEEE Trans. Mob. Comput. 6(6), 595–
605 (2007)

https://doi.org/10.1007/3-540-49543-6_13

Throughput and Packet Displacements
of Dynamic Broadcasting Algorithms

Mark de Berg1(B), Corrie Jacobien Carstens2, and Michel Mandjes2

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

M.T.d.Berg@tue.nl
2 Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands

{c.j.carstens,m.r.h.mandjes}@uva.nl

Abstract. Most dynamic broadcasting algorithms focus on maximizing
throughput. We present several broadcasting algorithms focusing on low
maximum displacement, that is, that limit how far out of order packets
may be received. Experiments show that in many settings our algorithms
have smaller displacement than existing algorithms, while still guaran-
teeing high throughput. As a result of independent interest, we show that
modelling decisions on the order of edge activations in one round of a
broadcasting algorithm can have substantial impact on the throughput.

1 Introduction

Background. Traditionally communication networks were wired and changed
slowly over time. Nowadays wireless ad-hoc networks, which have little to no
infrastructure [1,10,18], play an important role as well. Such networks can be
used to extend a network in areas where there is no infrastructure or to allow for
communication between mobile agents. There are many new challenges in the
transition from wired to wireless networks. In particular routing policies need to
be adapted in order to work efficiently in the wireless case.

There are many different (application specific) requirements and difficulties
in designing good routing policies. Here we focus on policies for packet broad-
casting. Broadcasting is a fundamental network functionality and is often used
for management, control, and data exchange purposes in self-organising wire-
less networks [4,16,17]. Another application of broadcasting is the simultaneous
streaming of packets to all nodes in a network, for instance to stream live video
footage of a sports event or to share tactical information to deployed army troops
connected by a mobile ad-hoc network [2,12].

Previous Work. One of the most common performance measures of a routing
policy is its throughput, i.e. the rate at which packets are delivered at their
destinations. In their seminal work, Tassiulas and Ephremides introduced the
backpressure algorithm and proved that it is throughput optimal [14]. It was

Funded by the NWO Gravitation project NETWORKS, grant no. 024.002.003.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 158–174, 2019.
https://doi.org/10.1007/978-3-030-34405-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_9

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 159

designed for the anycast/unicast setting (where a packet is delivered when it
reaches a single target node) in a static setting, but it can be adapted to dynamic
networks in which it has been shown to be throughput optimal as well [9].

Recently Sinha et al. [12] extended the idea of the backpressure algorithm
to the broadcast setting, overcoming the difficulty of dealing with packet dupli-
cation required in broadcasting. They introduced a policy for directed acyclic
graphs [11,13] and for general directed graphs [12], proved that their algorithms
are throughput optimal, and extended their algorithms for dynamic networks.
Another approach that surprisingly leads to throughput optimal routing on
directed networks, is the random useful packet forwarding algorithm [8]. This
policy has also been extended to the dynamic setting, including throughput
optimality under certain assumptions [15]. A main focus in all these works was
on obtaining high throughput, which indeed is an important requirement for a
good broadcasting algorithm. Less attention has been paid to the order of packet
arrivals, which is important for applications such as video streaming (as a packet
can only be ‘used’ when all preceding packets have been received). In this article,
we explicitly focus on the order in which packets arrive.

Our Contribution. We quantify the level of disorder in packet arrivals at a node
by the displacement, defined as the difference between (the indices of) the oldest
missing packet and the newest received packet of the node. The displacement
has implications for the required buffer size and the time delay before content
can be played, since packets need to be stored until they can be used.

Section 2 describes our network model, several existing broadcasting policies,
and our new policies that limit the displacement to a user-specified value. To
fairly analyze these policies, Sect. 3 focuses on the impact of the precise modelling
assumptions on the throughput, showing that assumptions on the edge-activation
order in each round in which packets are sent have a crucial effect. Section 4
analyzes low-displacement policies, showing (i) that many broadcast algorithms
are throughput optimal for networks with at most a single spanning tree, (ii)
that greedy in-order routing has zero-displacement, and (iii) that there are fixed
displacement policies with relatively low displacement and high throughput. We
then focus on the storage requirements and delays of policies with high broadcast
rate in Sect. 5, identifying a trade-off between storage requirements and the
broadcast rate and the delay. Section 6 provides a discussion and directions for
future research.

2 Model and Algorithms

Following Sinha et al. [12] we analyze the performance of dynamic broadcasting
algorithms on static graphs. It simplifies the simulations and allows us to talk
about throughput optimal broadcast algorithms: for static graphs the broad-
cast capacity is known to equal the maximum number of edge-disjoint spanning
trees [3], whereas the broadcast capacity of dynamic graphs is not known [6].

Model and Definitions. We model a communication network as a directed
graph G = (V,E), and define n := |V | and m := |E|. Packets arrive at a source

160 M. de Berg et al.

node s according to a Poisson arrival process A(t) of rate λ. All packets are
indexed by consecutive integers and we often refer to a packet by its index (i.e.
“packet i”). Packet transmissions take place in synchronized timeslots (rounds),
that is, at each timeslot t ∈ N certain packets are sent over the links. Packets
are duplicated whenever they are sent. We assume each edge sends at most a
single packet in a timeslot. Within this model there are still different choices for
the order in which transmissions take place within a timeslot; see Sect. 3.

For each vertex v we define Pv(t) as the set of packets it has received up to
time t and we write P(t) := {Pv(t)}v∈V for the state of the network. Let Rπ(t) :=
| ∩v∈V Pπ

v (t)| be the number of packets received by all vertices at time t under
policy π. A broadcast policy π has a broadcast rate or throughput of λ if for
a packet arrival rate of λ we have Rπ(t)/t = λ as t → ∞, in probability (i.e.,
for any ε > 0, P (|Rπ(t)/t − λ| > ε) → 0 as t → ∞). The broadcast capacity
λ∗ of a network G is the supremum of arrival rates λ for which there exists a
policy π with broadcast rate λ. A policy is throughput optimal if it has broadcast
throughput λ∗ − ε for any ε > 0. The delay, or latency, L(p) of a packet p is
the difference between its time of arrival at the source node and the time that
it is successfully broadcast, i.e. the first time that all vertices have received p.
Finally, we introduce a measure for how much out-of-order packets are received.

Definition 1. The displacement Δv(t) at vertex v at time t is the difference
between the largest index pmax(v, t) of any packet received by v at t and the
smallest index pmiss(v, t) of any packet not yet received by v at t. More precisely,

Δv(t) :=

{
0 if Pv(t) = ∅ or pmiss(v, t) > pmax(v, t)
pmax(v, t) − pmiss(v, t) otherwise

.

Routing Algorithms. We compare (i) a generalisation of the well-known back-
pressure policy π∗ [12], (ii) the random useful packet forwarding policy πrnd [8],
and (iii) two fixed-displacement policies π̃∗

� and π̃rnd
� that we introduce.

The original back-pressure algorithm uses queue lengths, the number of pack-
ets present at nodes, to make routing decisions for packets in the anycast1 set-
ting. In this setting packets do not get duplicated. Due to packet duplications
in broadcasting, it is not straightforward to define queues and packet weights
in this setting. We use the following definitions to describe virtual queues that
can be used to define packet weights [12]. Let G = (V,E) be a directed network,
let P(t) denote the set of packets in the network at time t and let F ⊂ V be
a subset of the vertices of the network. A packet p ∈ P(t) is called a class-F
packet at time t if it is present at all vertices in F and nowhere else. The size,
QF (t), of a virtual queue at F , is defined as the number of class-F packets at
time t. Thus QF (t) := |{p ∈ P(t)|p ∈ Pv(t) ⇐⇒ v ∈ F}|. Finally define the
following weight function: given an edge e = (u, v) and a packet p ∈ Pu(t)\Pv(t),
let wp,e(t) := QFp

(t) − QFp∪{v}(t) where Fp is the class of packet p.

1 In the anycast setting packets have a set of one or more destination nodes and leave
the network when they reach any one of these nodes.

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 161

We now describe the routing decisions of the different broadcasting policies,
that is, we describe how each policy decides which packet to send over an edge
e = (u, v) given the current state of the network {Pv(t)}v∈V . Following Sinha
et al. [12] we focus on routing decisions only. We refer to Sect. 6 for a discussion
on scheduling decisions in the wireless case.

Broadcast Policy π∗. The policy π∗ proposed by Sinha et al. [12] uses packet
weights to determine which packet to send. Let w := maxp∈Pu(t)\Pv(t) wp,e(t). If
w is non-negative, then send a packet p over e for which wp,e(t) = w. If there
are multiple packets with maximum weight, select one of these uniformly at
random. If w < 0, then send nothing. Note that to run the policy π∗, detailed
state-information needs to be maintained as we need to keep track of the F
classes and the packets present in each class.

Broadcast Policy πrnd. The random useful packet forwarding policy introduced
by Towsley and Twigg [15] simply transmits, for each edge (u, v), a packet chosen
uniformly at random from the set Pu(t)\Pv(t).

Low-Displacement Policies π̃∗
� , π̃rnd

� ∈ Π̃�. We introduce a new class of broadcast
policies, denoted by Π̃�. Algorithms in this class ensure that packets are delivered
with at most displacement �. Formally, under any policy π ∈ Π̃�, a node can only
receive packet p if it has already received packets 1, . . . , p−�. For policies π ∈ Π̃�

the network state is simplified. For each node, the packets it has received can
be stored by the integer pmiss (see Definition 1) together with a set of packets of
size at most � − 1, corresponding to the packets that have been received by the
node with index larger than pmiss.

We introduce two policies in the policy space Π̃�: π̃∗
� and π̃rnd

� . We first
define P̃e(t) for the edge e = (u, v) as the subset of packets in Pu(t)\Pv(t)
that are allowed to be send to v under a policy π ∈ Π̃�. The policy π̃∗

� ∈ Π̃�

computes the weights wp := wp,e(t) for all packets p ∈ Pe(t). If w = maxp wp > 0
a randomly selected packet p is transmitted for which wp = w. The policy
π̃rnd

� ∈ Π̃� randomly selects a packet p ∈ Pe(t) and sends it to v.
When � is large enough, the requirement that the packet displacement is

smaller than � is always satisfied and the policies π̃∗
� and π̃rnd

� effectively do the
same as π∗ and πrnd. In Sect. 4 we show experimentally that the parameter �
gives a trade-off between displacement and throughput. Note that Π̃1 contains
in-order policies, which send packets in the exact order of arrival.

3 Effect of Modelling Assumptions on Throughput

Before analyzing the performance of the above broadcasting policies we show
that assumptions on the order in which edges are activated in each round severely
affect the throughput. Previously, it was shown that for any in-order policy the
broadcast rate on the graph D4 shown in Fig. 1 is at most 5

3 [11, Lemma 1].
The proof implicitly relies on a specific model, namely the regular slotted model
below. We show (see Example 1) that under different edge activation assumptions

162 M. de Berg et al.

an in-order policy can obtain broadcast rate 2 for D4. We also show that in the
regular slotted model, any locally deterministic policy has broadcast rate λ ≤ 1
regardless of the underlying network. However, this result does not hold under
different modelling assumptions; see Lemma 2(ii) and (iii).

Edge Activation Models. For static graphs it is commonly assumed that in
a given timeslot, each edge makes a routing decision based on the state of the
network P(t) at the start of the time-slot. Hernce in this edge activation model,
a regular slotted model, there are instantaneous edge activations.

In the mini-slot model each time-slot is divided into m mini-slots; a routing
decision is made for a single randomly chosen edge based on the network state
at the start of that mini-slot. [12, Lemma 1] shows its equivalence to the regular
slotted model in terms of throughput, which seems to indicate we may as well
work in the mini-slot model. However, Example 1 below shows that, when updat-
ing the state after each packet transmission, we can construct an edge activation
pattern such that in-order routing is a throughput optimal policy on D4.

Example 1. Let D4 be the directed graph on four nodes {s, x, y, z} as displayed
in Fig. 1. We choose to activate the edges, during every timeslot, in the following
order: (s, x), (x, y), (y, z) followed by (s, y), (s, z), (z, x). Routing packets in-order
using the updated network state after each packet transmission then corresponds
to routing packets round-robin over the two edge-disjoint spanning trees. It is
well-known that this has broadcast rate 2.

Even though the edge activation model in this example is artificial, it illus-
trates the importance of explicitly stating the edge-activation model. We will also
investigate a third model, the random sequential model, which is a version of
the mini-slot model where each edge is activated exactly once in a time-slot and
the order of edge activations is chosen uniformly at random. Routing decisions
are made based on the state of the network at the start of that mini-slot.

Throughput of Locally Deterministic Policies. We now show that in the
regular slotted model some randomness or non-local information is needed to get
a broadcast rate of more than 1. We define a locally deterministic routing policy
to be a routing policy that, given an edge (u, v), makes a deterministic decision
about which packet to route from vertex u to v based only on the set of packets
Pu received by vertex u and the set of packets Pv received by vertex v.

Lemma 1. In the regular slotted model, any locally deterministic policy has
broadcast rate at most 1, for any network G and arrival process A(t).

Proof. By definition of the broadcast rate it suffices to show a node v ∈ V exists
for which |Pv(t)| ≤ t for all t. We use induction to show that this is true for all
v ∈ Nout(s), where Nout(s) is the set of out-neighbours of the source s.

Assume that for t the following holds: (1) the sets Pv(t) are identical for all
v ∈ Nout(s), (2) |Pv(t)| ≤ t for all v ∈ Nout(s) and (3) for any u ∈ V \{{s} ∪
Nout(s)} and v ∈ Nout(s) we have Pu(t) ⊆ Pv(t).

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 163

Clearly (1)–(3) hold for t = 0. Now assuming they hold for t, two things can
happen. Firstly, if Ps(t) > Pv(t), then all nodes v ∈ Nout(s) receive the same
packet from s since the policy is locally deterministic and Pv(t) is equal for all
v ∈ Nout(s). Furthermore no node in Nout(s) can receive a packet via incoming
edges from nodes y in V \{{s} ∪ Nout(s)}, since Pu(t) ⊆ Pv(t), so that at t + 1
(1) and (2) hold. Secondly, if Ps(t) = Pv(t) the nodes v in Nout(s) receive no
packets at all, so that (1) and (2) hold trivially. Note that (3) holds for t + 1
in both cases, because any packet that arrives in the network at node s has to
travel through the nodes Nout(s) before it can reach other nodes in the network.
Now Pu(t) ⊆ Pv(t) holds for all u ∈ V \{{s}∪Nout(s)} and v ∈ Nout(t) because
the sets Pv(t) are identical for all v. This finishes the proof. �

Influence of Edge-Activation Model on the Broadcast Rate. We now
show that Lemma 1 does not hold under the mini-slot model and the random
sequential model. We illustrate the differences that can occur using a small
network D3 (see Fig. 1) and the greedy in-order broadcasting policy πg

1 . This
policy routes packets in order of arrival (i.e. first packet 1 then packet 2 etc.)
and transmits a packet whenever possible. For this policy, we can describe the
packets received by a node v at time t by a single number, namely the index of
the last packet received, which we will denote by Lv(t).

s

x y

s

x y

z

D3 D4
D3 and D4 both have two spanning
trees, shown in black and grey.

Fig. 1. The directed graphs D3 and D4.

Note that the broadcast capacity λ∗ of D3 equals 2, since its edges can be
decomposed into two edge-disjoint spanning trees. For simplicity, we assume
that there is an infinite number of packets at the source node s and that at time
zero there are no packets at vertices x and y. Lemma 2 implies shows that the
broadcast rate of the greedy in-order routing policy differs for significantly for
the various edge-activation models. In the remainder of the article we use the
regular slotted time model.

Lemma 2. The broadcast rate of πg
1 on D3 equals 1 for the regular slotted model,

while its expected broadcast rate on D3 equals 4
3 for the mini-slot model and

1.26333 for the random sequential model.

Proof. We prove the three cases mentioned in the lemma separately.

– We prove the first case by induction on t, in particular we show that Lx(t) =
Ly(t) = t for all t ∈ N. For t = 0 this is true by assumption. Now if Lx(t) =

164 M. de Berg et al.

Ly(t) = t at time t, then both edge (s, x) and (s, y) will send packet t + 1
to vertex x and vertex y respectively. Neither edge (x, y) nor edge (y, x) will
send a packet since Lx(t) = Ly(t). Hence Lx(t + 1) = Ly(t + 1) = t + 1.

– We can describe the state of the packets in the entire network by the numbers
Lx(t) and Ly(t). Due to the symmetry of D3, the states Lx(t) = k, Ly(t) = �
and Lx(t) = �, Ly(t) = k are equivalent, hence we can describe the system by
two integers (k, �). We only distinguish between qualitatively different states
(i, i), (i, i+1), etc. We can now describe the policy πg

1 in the mini-slot model
as a discrete-time Markov chain. In each mini-slot a single, randomly chosen,
edge is activated. When we are in state (i, i) selecting edge (x, y) or (y, x)
results in staying in the state (i, i) and happens with probability 1

2 . With
probability 1

2 the selected edge is (s, x) or (s, y) and we move to the state
(i, i + 1). It is not hard to see that when we are in state (i, i + j) we have
a probability of 1

4 of moving to state (i, i + j + 1) and a probability of 1
2 of

moving to (i + 1, i + j) = (i, i + j − 1). This leads to the birth-death Markov
chain displayed in Fig. 2(a). This Markov chain has stationary distribution
π0 = 1

3 and πj = 2
3
1
2

j for j > 0, where πj is the probability of finding the
Markov chain in state (i, i + j). This implies that the Markov chain spends
two thirds of the time in states (i, i+ j) with j > 0 and 1

3 of the time in state
(i, i). When the chain is in state (i, i + j) there is a probability 1

2 of moving
to the state (i + 1, i + j) which increases the broadcast rate by 1. When the
chain is in state (i, i) the broadcast rate can not go up. Hence we find that
on average the broadcast rate increases by 2

3 × 1
2 ×1 = 1

3 per mini-slot. There
are four mini-slots in each timeslot, hence the expected broadcast rate is 4

3 .
– For the random sequential model we take full timeslots as our time unit. In

each slot, all edges are activated once. It is not hard to see that the difference
between Lx(t) and Ly(t) can be at most one at any time. Hence the state of
this system is either (i, i) or (i, i + 1). We derived the transition probabili-
ties between these two states by recording the effect of the 24 different edge
activation orders, each occurring with probability 1

24 , see Fig. 2(b). Note that
there is a probability of 2

3 to stay in state (i, i) and the broadcast rate to go
up by 1 (e.g. when the edges are activated in order (x, y), (y, x), (s, x), (s, y))
and also a probability of 1

12 to remain in state (i, i) and for the broadcast
rate to go up by 2 (e.g. when the edges are activated in order (s, x), (x, y),
(s, y), (y, x)). Similarly there is a probability of remaining in state (i, i + 1)
with the broadcast rate going up by one, and a probability of remaining in
this state where the broadcast rate goes up by two. The stationary distribu-
tion is πi,i = 0.76 and πi,i+1 = 0.24. We find an expected broadcast rate of
0.76

(
2
3 + 1

4 + 2 1
12

)
+ 0.24

(
1
6 + 2(1

24 + 19
24)

)
= 1.26333.

�

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 165

i, i i, i+ 1 i, i+ 2 i, i+ 3

0.5 0.25 0.25 0.25

0.5 0.5 0.5 0.5

0.5 0.25 0.25 0.25

+1 +1 +1 +1

(a) Mini-slot model

i, i i, i+ 1

1/4

19/24

2/3 1/6

1/12 1/24

+1

+2

+1 +1

+2 +2

(b) Random sequential model

Fig. 2. Markov chains that describe the network state under greedy in-order routing
on D3.

4 Broadcast Rate of Low-Displacement Policies

A good broadcasting policy should have a high throughput. Both π∗ and πrnd

have previously been shown to be throughput optimal (though the former in a
mini-slot setup) and suited to routing on dynamic networks. We will study the
trade-off between low packet displacement and high throughput. The broadcast
capacity of a network equals the maximum number of edge-disjoint spanning
trees in the network. In most real networks this number is not very high (at
most the edge-connectivity of the network) whereas in planar networks there
can at most be two edge-disjoint spanning trees [7].

We will show that in a network with at most a single spanning tree, there
are many throughput optimal routing strategies. In particular, the greedy in-
order routing policy is throughput optimal and has zero displacement. When
a network contains more than a single spanning tree, there no longer exists a
throughput optimal policy with zero displacement. We show that in this case,
the static algorithm which routes packets round-robin over disjoint spanning
trees has bounded displacement. We then show experimentally that π∗ and πrnd,
developed specifically for dynamic networks, do not appear to share this prop-
erty. Instead, the maximum displacement seems to keep growing over time and
both have relatively high displacement. Our fixed-displacement policies provide
a trade-off between low displacement and high throughput, and are capable of
reaching a high throughput while keeping the maximum displacement low.

Networks with Broadcast Capacity 1. On networks that do not have two
edge-disjoint spanning trees—networks that consists of a single spanning tree,
possibly with some ‘redundant’ edges—any policy which forwards a packet over
an edge (u, v) whenever possible (i.e. when Pu(t)\Pv(t) is non-empty) is through-
put optimal. To see this, first assume that the graph is a tree. Note that an
immediate neighbour of the source receives a packet whenever there are more
packets at the source than at the node itself. The source node can be modelled
as a discrete queue and is expected to always have more packets than its neigh-
bours [19, Chapter 15]. This implies that neighbours of the node receive a packet
at each time step. Nodes that are further removed from the source node receive
the packets that their parent node has received in the previous time slot. Thus,
all nodes are expected to receive packets at rate 1. Since packets are arriving at
the source node at rate 1, all nodes receive the same packets eventually, hence

166 M. de Berg et al.

the policy has broadcast rate 1 and is throughput optimal. Adding redundant
edges to a tree can only improve the broadcast rate for a policy which forwards
a packet whenever possible.

We conclude that any policy which forwards a packet whenever possible is
throughput optimal for any graph which contains just a single spanning tree.
We may then choose such a policy with other desirable properties. For instance,
the greedy in-order routing policy is throughput-optimal, has zero displacement
and minimal delay.

Networks with Higher Broadcast Capacity. We now consider the more
complicated setting of networks that contain multiple edge-disjoint spanning
trees. In this case it is impossible to find throughput optimal policies with
zero displacement: if we require zero-displacement for each node, then all out-
neighbours of the source have to receive packets in-order, limiting the broadcast
rate to one. But do there exist throughput optimal policies with low displacement
in this setting? We first show that the policy which routes packets round-robin
over spanning trees always has bounded displacement. We then show that π∗ and
πrnd may have large maximum displacement even for relatively small graphs.

Lemma 3. Let G = (V,E) be a network with c > 1 edge-disjoint spanning trees
T1, . . . , Tc. Let πr be a policy routing packets round-robin (in some order) over
these trees. The displacement of packets at any node is bounded by dmaxc−1 under
the policy πr, where dmax is the biggest difference in distance from the source s to
any node via distinct spanning trees. That is, dmax := maxv∈V maxTi �=Tj

|di(v)−
dj(v)|, where di(v) is the hop distance from s to v via spanning tree Ti.

Proof. We will assume that during every round (time slot) there are enough
packets at the source (at least c) to route a unique packet over each spanning
tree, because we can only obtain the maximum displacement if this is the case.
Given an order of the spanning trees (i1, . . . , ic), the policy πr in round t routes
packet 1 + c(t − 1) over tree Ti1 , packet 2 + c(t − 1) over tree Ti2 and so on.

We will show that it is possible to obtain a displacement of dmaxc − 1 at a
node v for which there exists a pair of spanning trees Tred and Tblue such that
dred(v) − dblue(v) = dmax. Note that dred(v) is the longest distance and dblue(v)
is the shortest distance from s to v on spanning trees.

Let p be a packet leaving the source in round t over the spanning tree Tred.
It will take dred(v) rounds until this packet arrives at node v, that is p arrives
at node v in round t + dred(v) − 1. Let p′ be the packet that gets routed over
spanning tree Tblue in round t, then p′ + c will get routed over Tblue in round
t + 1, p′ + 2c will get routed over Tblue in round t + 2 and so on. All packets p′,
p′ + c, . . . , p′ + (dmax − 1)c will arrive at v before p does (i.e. prior to round
t + dred(v) − 1). We know that pmiss ≤ p in round t + dred(v) − 2, and hence we
find Δv(t + dred(v) − 2) ≥ p′ + (dmax − 1)c − p. This value is maximized when p
is the first packet routed in round t and p′ the last, that is when p′ = p + c − 1.
This leads to a displacement of p + c − 1 + (dmax − 1)c − p = dmaxc − 1 at v
if pmiss = p. In fact, pmiss has to equal p since all packets with index smaller

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 167

than p have been sent prior to round t and must have arrived at v by round
t + dred(v) − 1 since dred(v) is the longest distance from s to v over all spanning
trees. Figure 3 illustrates the above construction.

Note that this construction explicitly maximises the displacement at v. Since
dmax is maximised over all nodes the value dmaxc − 1 is an upper bound on the
displacement for all nodes. �

s

v

p

p'

s

v

p p'
s

v

p

p'

p'+c
s

v

p

p'+(dmax-1)c

s

v

p

t t+1

... ...

t+dblue(v)-1 t+dred(v)-2 t+dred(v)-1

Fig. 3. An illustration of the packets routed from s to v by πr. Only a subset of
the edges of the network G is depicted; the paths from s to v on the red and the blue
spanning tree. In round t packets p and p′ are routed over spanning trees Tred and Tblue

respectively. In round t + 1 packet p′ + c is routed over Tblue. In round t + dblue(v)− 1
packet p′ arrives at v, and in all the subsequent rounds packets p′ + c, p′ +2c, . . . arrive
at v. Round t + dred − 2 is the latest round for which p has not yet arrived at v; in
this round packet p′ + (dmax − 1)c arrives via the blue spanning tree. Finally in round
t + dred(v) − 1 packet p arrives at node v. (Color figure online)

Round-robin routing is impractical in a dynamic setting as it requires com-
puting the spanning trees after each network change. Hence, we consider π∗ and
πrnd, which were designed to run on dynamic networks. Figure 4 illustrates that
the maximum displacement of both π∗ and πrnd seems to be growing over time.
The maximum displacement of π∗ grows much more rapidly than that of πrnd.
This can be explained by the way weights are assigned to packets. The displace-
ment at a node v grows rapidly when pmiss(v) remains constant for a while. This
happens when the weight of pmiss(v) is negative or when it is low and there are
other packets with higher weight. Note that all edges (u, v) over which the packet
pmiss can be routed (i.e. all such edges for which pmiss is present at u) have equal
weight wp,(u,v). If it is negative for a single edge then it is negative for all.

We furthermore found that there are more nodes that have relatively high
maximum displacement under π∗ than for πrnd as is illustrated in Fig. 4(b) and
(c). Notice that for both algorithms nodes in the centre of the network have
lower maximum displacement than nodes in the periphery.

We next explore the behaviour of our fixed-displacement policies π̃∗
� and π̃rnd

�

for different �, focusing on the trade-off between � and the achieved broadcast rate

168 M. de Berg et al.

Algorithm
π*
πrnd

m
ax

im
um

 d
is

pl
ac

em
en

t

(a)
maxt Δv(t)

(b) π∗
maxt Δv(t)

(c) πrnd

Fig. 4. (a) Maximum displacement Δmax(t) := maxv∈V Δv(t) of π∗ and πrnd aver-
aged over 100 runs on geometric random graphs on 20 vertices with two edge-disjoint
spanning trees. Packets arrive according to a Poisson process of rate 1.8 (90% of the
broadcast capacity); both algorithms broadcast at this rate. (b) and (c): Distribution
of the maximum displacement over nodes for a single geometric graph with 50 nodes
and two edge-disjoint spanning trees. The grey node is the source node. The colour of
the other nodes corresponds to the largest displacement at the node over time (shown
on the horizontal scale). These scales are very different for π∗ and πrnd: the nodes that
have the highest maximum displacement under π∗ have a maximum displacement of
roughly a hundred times as high as the nodes that have the maximum displacement
under πrnd. The size of each node corresponds to its degree (number of connections).
(Color figure online)

for low values of �. We compare the performance of π̃∗
� and π̃rnd

� on three different
types of directed networks, chosen to assess the impact of the broadcast capacity
λ∗ and the effect of redundant edges on throughput and displacement. We expect
that networks with higher broadcast capacity will have higher displacement due
to packets having to arrive at a node via an increasing number of distinct routes,
and hence potentially being further apart. We also expect that adding edges will
reduce the displacement, because this may introduce ‘short cuts’ in the network.

The simplest networks for which we can fix the broadcast capacity are disjoint
unions of k trees (Gst

k (n)). We create these by generating random trees on n
vertices, until we have found k edge-disjoint trees which we merge into a network
(which has k(n − 1) edges). The second family of networks is Gst+

k (n), made by
adding k(n − 1) edges to Gst

k (n). These networks are used to explore the effect
of redundant edges. The third family Ggeo

k (n) consists of disk graphs, which are
geometric networks commonly used to model ad-hoc networks [5]. We choose n
points uniformly at random in the unit square and connect each pair of vertices
that is at most a distance ε apart (using Euclidean distance). We choose ε as
the smallest radius such that the graph has k edge-disjoint spanning trees.

To assess the impact of � on the broadcast rate we run π̃rnd
� and π̃∗

� for
different �. We measure the difference between the arrival rate λ = 0.9λ∗ and
achieved broadcast rate after 20, 000 time slots. We keep � below 200 because
we are interested in policies with relatively low displacement. Figure 5 shows
that for π̃rnd

� to achieve a broadcast rate of 0.9λ∗, a value of � < 200 suffices
(remaining packet rate equals zero). For π̃∗

� this is only true for networks with

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 169

Fig. 5. Average remaining packet rate (i.e., difference between the arrival rate of a
Poisson process with rate 0.9λ∗ and the broadcast rate after 20, 000 time slots) for a
set of 100 random networks.

two edge-disjoint spanning trees, or networks with many redundant edges and
few nodes (Fig. 5(b)). It is unclear if there always exists a large � for which π̃∗

�

achieves a broadcast rate of 0.9λ∗, since π∗ itself has not been proven to be
throughput optimal in the regular slotted model. Furthermore, the number of
network nodes only slightly affects the value of � for π̃rnd

� , whereas for π̃∗
� the

required value of � increases when the network grows. The required value of �
for π̃∗

� also seems to increase more than that of π̃rnd
� when the number of spanning

trees increases. As expected, the broadcast rate improves for both policies when
there are redundant edges in the grap; see Figs. 5(b–c) and (e–f). This effect is
strongest for π̃rnd

� .
We conclude that fixing the maximum displacement of the policy π̃rnd

� is an
effective way to achieve a high broadcast rate while ensuring low displacement.
For π̃∗

� this strategy is only suited to networks that contain at most two edge-
disjoint spanning trees. In the next section, we compare high-throughput, low-
displacement policies in more detail, based on additional performance measures.

5 Comparing High-Throughput Policies

We now study π∗, π̃∗
� , πrnd and π̃rnd

� for networks with multiple spanning trees
in terms of other performance measures (storage requirements, packet delays).

170 M. de Berg et al.

We first evaluate π∗, πrnd, π̃∗
� , π̃rnd

� on networks with broadcast capacity equal to
two; we then compare πrnd and π̃rnd

� on networks with higher broadcast capacity.

(a) 5× 5 grid (b) Army network (c) Ggeo
2 (25) A (d) Ggeo

2 (25) B (e) Ggeo
2 (25) C

Fig. 6. The networks are a 5×5 grid, a model for a military ad-hoc network (Based on
an illustration found on http://www.miltechmag.com/2012 12 01 archive.html.) and
three distinct random geometric graphs Ggeo

2 (25) with varying number of edges.

Networks with Broadcast Capacity 2. Figure 6 shows the networks with
broadcast capacity 2 that are used for the experiments in this section.

The edges in these networks are bidirectional and all networks have roughly
25 nodes. We run π∗, πrnd, π̃∗

� and π̃rnd
� on these networks for 20,000 time slots.

The values of � are such that the fixed-displacement policies have (almost) opti-
mal throughput: the difference between the arrival rate 0.9λ∗ and the broadcast
rate at the end of the simulation is less than 0.01. For all networks the maximum
displacement grows over time for both π∗ and πrnd; after 20,000 time slots both
are still increasing. Not surprisingly, the maximum displacement is much higher
for π∗ and πrnd than for the fixed displacement policies π̃∗

� and π̃rnd
� . For the

policies π̃∗
� and π̃rnd

� there is always at least one node which has the maximum
packet displacement � at some point in the simulation.

In practice, a high displacement could imply high storage needs, because if
we do not want to drop any packets, nodes need to store packets until they can
be used. We assume a packet can be used as soon as all its preceding packets
have been received. Thus, the number of packets to be stored at a given node
can never exceed the displacement. However, it is possible that only very few
packets need to be stored even though the displacement is high. For instance,
a node which has received packets 1 and 10000 has displacement 9998 but only
stores a single packet. We investigate if the storage requirements of π∗ and πrnd

exceed those of our fixed displacement policies or if, even though the maximum
displacement of π∗ and πrnd is much higher than that of π̃∗

� and π̃rnd
� , they require

a similar amount of storage space per node.
To do so we keep track of the maximum number of packets stored at each

node for a complete run of each routing policy. We find that on average (over
all nodes and 100 runs) the required storage is lowest for π̃rnd

� and highest for
π∗; see Table 1 (mean storage per node). For the average maximum storage
requirement the differences are much larger. It is hard to know which nodes will

http://www.miltechmag.com/2012_12_01_archive.html

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 171

Table 1. The average over 100 runs of (left) the mean storage requirements per node
and (right) the maximum storage requirement over all nodes. The storage requirement
of a node is the largest observed queue at the node during a simulation. The values of
� for π̃∗

� are 170, 250, 30, 50 and 300; the values of � for π̃rnd
� are 20, 80, 20, 20 and 50

(both from top to bottom).

Networks Mean storage Maximum storage

n m π∗ π̃∗
� πrnd π̃rnd

� π∗ π̃∗
� πrnd π̃rnd

�

5 × 5 grid 25 80 638.96 156.15 87.16 20 1429.21 170 161.43 20

Army network 23 74 1102.38 233.22 184.64 72.91 2276.95 250 321.12 80

Ggeo
2 (25) A 25 146 398.20 29.88 50.76 19.54 1000.51 30 151.71 20

Ggeo
2 (25) B 25 104 488.13 49.99 76.5 20 1326.65 50 137.83 20

Ggeo
2 (25) C 25 74 1459.65 253.49 126.22 42.4 3159.31 300 293.61 50

π*

π*~l

πrnd

πrnd~
l

(a) 5× 5 grid

0.00

0.25

0.50

0.75

1.00

10 1000

(b) Army network

0.00

0.25

0.50

0.75

1.00

10 1000

(c) Ggeo
2 (25)

0.00

0.25

0.50

0.75

1.00

10 1000

(d) Ggeo
2 (25)

0.00

0.25

0.50

0.75

1.00

10 1000

(e) Ggeo
2 (25)

Fig. 7. Cumulative frequency of packet delays (i.e., fraction of packets with delay below
the given value). Delay (horizontal axis) is given on a logarithmic scale.

require most storage, and hence we would either have to drop packets (when
giving each node the mean storage) or waste storage (when giving each node the
maximum storage). For dynamic networks the storage requirements would differ
over time, as the topology of the network changes. Then our fixed displacement
policies behave much nicer; we can assign � storage spaces to each node and be
guaranteed that no packet is dropped while maintaining a high broadcast rate.

Now focus on packet delays under the different routing policies. For each
packet we record the difference between the time between it arrived at the root
and the time it has been delivered to all nodes. Packets that have not been
delivered at the end of the simulation have delay ∞. Random policies have lower

172 M. de Berg et al.

delay than weighted policies. Also, fixing the displacement leads to longer delays
(Fig. 7). Thus, even when the fixed-displacement policies have high throughput,
there is still a trade-off between low displacement and packet delay.

Networks with Higher Broadcast Capacity. We compare πrnd and its fixed
displacement variant π̃rnd

� for four random geometric networks on 100 nodes,
two with three edge-disjoint spanning trees and two with four. Table 2 shows the
average storage requirements for πrnd and π̃rnd

� for 100 simulation runs. Here �
is chosen such that the broadcast rate of π̃rnd

� is at least the arrival rate minus
0.01. We see that the mean storage requirement of nodes is again lower for
the fixed displacement policy π̃rnd

� than for the policy πrnd, but this difference
reduces when the number of spanning trees increases. The maximum storage
requirement is again much better for π̃rnd

� than for πrnd. Note that under π̃rnd
� ,

packets have higher delays than under πrnd, in line with what we observed for
networks with two edge-disjoint spanning trees.

Table 2. The average over 100 runs of the mean storage requirements per node (left),
and of the maximum storage requirement over all nodes (right). The storage require-
ment of a node is the largest observed queue at the node.

Networks Mean storage Max storage

n m � πrnd π̃rnd
� πrnd π̃rnd

�

Ggeo
3 (100) A 100 1248 30 58.72 29.99 240.38 30

Ggeo
3 (100) B 100 960 130 139.55 98.19 506.63 130

Ggeo
4 (100) A 100 926 60 54.99 48.80 320.81 60

Ggeo
4 (100) B 100 936 310 128.45 78.76 865.17 310

6 Discussion and Concluding Remarks

The main conclusions from our experiments can be summarized as follows.

– There are many throughput optimal broadcasting policies for networks with a
single spanning tree. Then the greedy in-order routing policy is a good choice:
it is throughput-optimal, has zero displacement and minimal delay.

– For networks with higher broadcast capacity, i.e. networks with multiple edge-
disjoint spanning trees, round-robin routing has bounded maximum displace-
ment. Our results suggest that policies designed for broadcasting on dynamic
networks (π∗ and πrnd) have unbounded maximum displacement.

– For networks with broadcast capacity 2, policies π̃∗
� and π̃rnd

� have low dis-
placement and high throughput. These fixed displacement policies require
less storage but deliver packets with higher delays than π∗ and πrnd.

– When a network has broadcast capacity 3 or more, we recommend using either
policy πrnd or π̃rnd

� depending on what is more important: fixed displacement
and low storage or high throughput and low delays.

Throughput and Packet Displacements of Dynamic Broadcasting Algorithms 173

We also showed that it is crucial to explicitly state the edge activation model
when assessing the throughput, as it has a significant impact. In particular, we
showed that for the regular slotted model, any locally deterministic policy has
broadcast rate λ ≤ 1, which does not hold under different modelling assumptions.

Random useful packet forwarding, being implementable in a distributed way,
often performs very well. It only needs local information (i.e. to decide which
packet to send over the edge (u, v) only knowledge of the packets present at
nodes u and v is needed). For π∗ however, knowledge about the F -sets is needed
to compute the packet weights (i.e. global knowledge). There are issues with πrnd

when scheduling decisions need to be made; in this case π∗ is preferred [12].
We have analyzed broadcasting policies on static networks, even though they

are designed for dynamic networks. This allowed us to compare the throughput
achieved by the policies to the broadcast capacity of the network, and it reduced
the number of parameters in our simulations. To make recommendations for
specific applications, it would be useful to perform experiments on dynamically
evolving networks from those applications.

References

1. Conti, M., Giordano, S.: Mobile ad hoc networking: milestones, challenges, and
new research directions. IEEE Commun. Mag. 52(1), 85–96 (2014)

2. Deshpande, H., Bawa, M., Garcia-Molina, H.: Streaming live media over peers.
Technical report 2002–21, Stanford InfoLab (2002)

3. Edmonds, J.: Edge-disjoint branchings. In: Rustin, R. (ed.) Combinatorial Algo-
rithms, pp. 91–96. Algorithmics Press (1972)

4. Gandhi, R., Mishra, A., Parthasarathy, S.: Minimizing broadcast latency and
redundancy in ad hoc networks. IEEE/ACM Trans. Netw. 16(4), 840–851 (2008)

5. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic
geometry and random graphs for the analysis and design of wireless networks. IEEE
J. Sel. Areas Commun. 27(7), 1029–1046 (2009)

6. Keshavarz-Haddad, A., Ribeiro, V., Riedi, R.: Broadcast capacity in multihop
wireless networks. In Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, pp. 239–250 (2006)

7. Kundu, S.: Bounds on the number of disjoint spanning trees. J. Comb. Theory 17,
199–203 (1974)

8. Massoulié, L., Twigg, A., Gkantsidis, C., Rodriguez, P.: Randomized decentralized
broadcasting algorithms. In: Proceedings of the 26th IEEE International Confer-
ence on Computer Communications, pp. 1073–1081 (2007)

9. Neely, M.J.: Stochastic Network Optimization with Application to Communication
and Queueing Systems, vol. 3. Morgan & Claypool Publishers, San Rafael (2010)

10. Rajaraman, R.: Topology control and routing in ad hoc networks: a survey.
SIGACT News 33(2), 60–73 (2002)

11. Sinha, A., Paschos, G., Li, C., Modiano, E.: Throughput-optimal broadcast on
directed acyclic graphs. In: Proceedings of the IEEE Conference on Computer
Communications, INFOCOM 2015, pp. 1248–1256 (2015)

12. Sinha, A., Paschos, G., Modiano, E.: Throughput-optimal multi-hop broadcast
algorithms. In: Proceedings of the 17th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, pp. 51–60 (2016)

174 M. de Berg et al.

13. Sinha, A., Tassiulas, L., Modiano, E.: Throughput-optimal broadcast in wireless
networks with dynamic topology. In: Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 21–30 (2016)

14. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. IEEE
Trans. Autom. Control 37(12), 1936–1948 (1992)

15. Towsley, D., Twigg, A.: Rate-optimal decentralized broadcasting: the wireless case.
In: International Technology Alliance, pp. 323–333 (2008)

16. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proceedings 3rd ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pp. 194–205 (2002)

17. Zanella, A., Pierobon, G., Merlin, S.: On the limiting performance of broadcast
algorithms over unidimensional ad-hoc radio networks. In: Proceedings of WMPC,
pp. 165–169 (2004)

18. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: overview and challenges. IEEE Commun. Surv. Tutor. 8(1),
24–37 (2006)

19. Zukerman, M.: Introduction to Queueing Theory and Stochastic Teletraffic Models.
https://arxiv.org/abs/1307.2968 (2018)

https://arxiv.org/abs/1307.2968

Faulty Robots

Chauffeuring a Crashed Robot from aDisk

Debasish Pattanayak(B), H. Ramesh, and Partha Sarathi Mandal

Indian Institute of Technology Guwahati, Guwahati, India
{p.debasish,ramesh_h,psm}@iitg.ac.in

Abstract. Evacuation of robots from a disk has recently attained a lot of atten-
tion. We visit the problem from the perspective of fault-tolerance. We consider
two robots trying to evacuate fromadisk via a single hidden exit on the perime-
ter of the disk. The robots communicate wirelessly. The robots are susceptible
to crash faults, after which they stop moving and communicating. We design
the algorithms for tolerating one fault. The objective is to minimize the worst-
case time required to evacuate both the robots from the disk. When the non-
faulty robot chauffeurs the crashed robot, it takes α ≥ 1 amount of time to
travel unit distance. With this, we also provide a lower bound for the evacu-
ation time. Further, we evaluate the worst-case of the algorithms for different
values of α and the crash time.

Keywords: Evacuation ·Mobile robots · Crash faults ·Distributed algorithms

1 Introduction

Searching has always been a classical problem, and by extension, the search of a
hidden object in a domain has piqued the interest. In particular, a variant of search
problem introduced by Czyzowicz et al. [5] as the evacuation problem, which tries to
minimize the time required for the last searcher to reach the target. The searchers, in
this case, aremobile robots which canmove around in the domain. The domain con-
sidered can be a convex shape like a disk, a circle or a triangle [2–4], while the target
is hidden on the boundary. Another variant of the problem considers the domain as
lines and rays [1] with faulty robots [11,13]. The objective is to minimize the compet-
itive ratio between the time required for the robot to reach the exit and the distance
from the exit.

The recent literature has focused on the aspect of collective-collaborative search.
Czyzowicz et al. [5] introduced two robots trying to search for an exit located on the
perimeter of a unit disk. A robot can locate the exit only when it is at the exit. There
are twomodels of communication between the robots, namely,wireless and face-to-
face. In face-to-face, the robots can exchange messages if they are collocated at the
same point at the same time. They showed that the evacuation time for two robots
in the wireless model was 1+ 2π/3+�

3 ≈ 4.826, which was optimal. In the same
paper, they achieved an upper bound of 5.740 and lower bound 5.199 for two robots
in the face-to-face model. In a subsequent paper, Czyzowicz et al. [10] improved the
upper and lower bounds to 5.628 and 5.255, respectively. Later Brandt et al. [2], fur-
ther improved the upper bound to 5.625 with the introduction of a linear detour.
c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 177–191, 2019.
https://doi.org/10.1007/978-3-030-34405-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_10&domain=pdf
http://orcid.org/0000-0002-8632-5767
https://doi.org/10.1007/978-3-030-34405-4_10

178 D. Pattanayak et al.

Recently, Disser et al. [12] improved the upper bound to 5.6234 by introducing a sec-
ond detour.

Further, Czyzowicz et al. [7] studied priority evacuation of a particular robot from
the disk, namely the Queen, while other servant robots search for the exit. This paper
established the upper and lower bounds for evacuation for one, two, and three ser-
vants. Another paper by Czyzowicz et al. [8] presented the bounds for n ≥ 4.

Another aspect of this evacuation problem deals with fault-tolerance. The two
types of faults considered are crash fault and byzantine fault. The type of crash fault
considered in [6,11] does not detect the target when it passes through or does not
communicate when it finds the target. The robots with byzantine faults in [6,9] even
lie about the position of the target. Czyzowicz et al. [6] focused on minimizing the
evacuation time for the latest non-faulty robot. They achieved a lower bound of 5.188
and upper bound 6.309 for three robots out of which at most one is susceptible to
crash fault with wireless communication. We initiate the study on a type of crash
fault, where the robot stops moving and sending messages altogether (unlike [6]).
Instead of abandoning the crashed robot, our objective is to chauffeur it to the exit
in the least time. As a natural outcome, we consider the robot which chauffeurs the
crashed robots incurs an extra cost. The chauffeur carrying the crashed robot travels
at a fraction of its original speed.

Our Contributions: In this paper, we consider a variant of the crash fault where the
affected robot stopsmoving and communicating after it has crashed.We address the
problem of evacuation for two robots out of which at most one can be faulty. We
propose three evacuation algorithms in the wireless communication model, where
the non-faulty robot chauffeurs the crashed robot.

– We present a lower bound for evacuation time.
– We rigorously analyze our algorithms to provide the worst-case evacuation time

corresponding to the crash time w at which a robot becomes faulty.
– We compare the performance of the algorithms given particular values of the

crash time (w) and the chauffeuring cost (α).

The rest of the paper is organized as follows. First, we delve into themodel and nota-
tions in Sect. 2. We establish a lower bound for evacuation time in Sect. 3. Next, we
describe three algorithms, namely, the trivial Algorithm A0 in Sect. 4.1, Algorithm
A1, where robots start from the same point on the perimeter in Sect. 4.2 and Algo-
rithmA2, where robots start at the endpoints of an arc of length ζ on the perimeter
in Sect. 4.3. Finally, we compare the algorithms in Sect. 5 before concluding in Sect. 6.

2 Model and Preliminaries

We consider the evacuation of two robots from a unit disk, i.e., a disk with radius one.
Let R1 and R2 be the robots. The disk contains an exit located on its perimeter. Both
robots have to evacuate the disk. Initially, the robots are situated at the center of the
disk and startmoving at the same time towards the perimeter of the disk. A robot can
find an exit only when it reaches the position of that exit.

Chauffeuring a Crashed Robot from a Disk 179

We follow a convention that �AE denotes the arc along the perimeter on the disk
starting at A and ending at E moving in the counter-clockwise direction. Accordingly,
�EA is the complement of the arc �AE . We abuse the notation �AE to denote the length
of the arc and AE to denote the length of the chord corresponding to the arc �AE .
Note that, the length of a chord corresponding to an arc of length ζ is 2sin(ζ/2).

Both robots travel at a uniform speed of one unit distance per unit time. We con-
sider that the robots are susceptible to crash faults. A crashed robot stops moving
and communicating after the crash. At most a single robot is faulty. Suppose, R1 has
crashed, R2 can still chauffeur R1 to the exit. A non-faulty robot chauffeuring the
crashed robot travels at speed 1/α times the original speed. In other words, it takes
α time to travel unit distance, where α≥ 1.

The robots can communicate by sending messages wirelessly. The communica-
tion is reliable. For analytical purposes, we ignore the message propagation delay.
The robots frequently communicate with each other. Without loss of generality, let
w be the time after which R1 crashes. So w −1 is the distance traveled by the robot
after reaching the perimeter at a speed of one unit distance per unit of time before
it crashes at time w . We also follow a convention that x is the distance of the exit in
the counter-clockwise direction, starting from the point where R1 has reached the
perimeter. So, �AE = x as shown in Fig. 2. We assume that O is the origin and OA is
the positive x-axis.

Evacuation Problem (2, 1)-Crash Fault: The objective is to minimize the time
required by the latest robot to evacuate from the unit disk via an exit located on the
perimeter of the disk starting from the center of the disk, where both robots travel at
uniform speed of one unit distance per unit time and at most one robot is faulty out
of the two. Chauffeuring the faulty robot increases the time formovement by a factor
α≥ 1 for the non-faulty robot.

3 Lower Bounds forWireless Communication

The lower bound for wireless communicationmodel without faults is 1+2π/3+�
3≈

4.826 [5]. Hence, the lower bound is applicable to the crash fault model if the crash
time w ≥ 1+2π/3+�

3. We have the following theorems if the robot crashes before
evacuation.

Theorem 1. The lower bound for evacuation with crash fault for crash time w < 1 is
2π+w +α(1−w).

Proof. Consider the simple case where the robot crashes at the center of the disk
immediately after it is activated. As the adversary can always place the exit at a posi-
tion which is still unexplored, it requires at least 2π time to search for the exit on the
perimeter by the non-faulty robot. Additionally, α is the minimum time required for
the faulty robot to be carried to the exit from the center. Since the non-faulty robot
can also travel to the perimeter while carrying the faulty robot, it does not need addi-
tional time to reach the perimeter. Then the worst-case time for evacuation for the
faulty robot is always greater than 2π+α. Similarly, if 0 < w ≤ 1, we have the lower
bound for evacuation at

2π+w +α(1−w) (1)

180 D. Pattanayak et al.

where the robots travel together for a distance w , and the non-faulty robot chauf-
feurs the faulty robot rest of the 1−w distance to the perimeter. ��
Lemma 1 (Lemma 5 from[5]). Consider a perimeter of a disk whose subset of total
length u+ ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. Then there exist
two unexplored boundary points between which the distance along the perimeter is at
least u.

Intuitively, the proof follows from this argument. If u is the unexplored part of the
perimeter and it is a continuous arc, then the endpoints of the arc are separated by
at least the same distance along the perimeter. Otherwise, the unexplored part is
separated intomultiple arcs, and the distance between two farthest endpoints of the
multiple arcs are at least separated by a distancewhich is greater than the unexplored
part u ≤π. A detailed proof is available in [5].

Theorem 2. The lower bounds for evacuation with crash fault for crash time w > 1+
2π/3 are

1+2π/3+�
3 for w ≥ 1+2π/3+�

3

1+2π/3+ (α+1)(1+2π/3+�
3−w) for w ∈ [1+2π/3,1+2π/3+�

3/2]

1+2π/3+�
3+ (α−1)(1+2π/3+�

3−w) for w ∈ [1+2π/3+�
3/2,1+2π/3+�

3]

Proof. If w > 1+ 2π/3+�
3, then we claim that the robots evacuate before any of

them fails. By the time 1+ t , two robots can explore at most 2t on the perimeter. The
unexplored part is 2π−2t . According to Lemma1, there exist two unexplored points
such that the smallest arc between them is at least 2π− 2t . If a robot is at one of
the unexplored points, then the adversary can place the exit at the other unexplored
point, and the exit is found. The robot, which does not find the exit, can receive a
message and travel to the exit along a straight line through the disk. The evacuation
time in that case is 1+ t +2sin(t) over all possible values of π/2< t < π. This results
in a worst-case at t = 2π/3, which is 1+2π/3+�

3 ≈ 4.826. Since, the crash time w
is more than the worst-case evacuation time, both robots evacuate before the fault
occurs and the lower bound for evacuation is 1+2π/3+�

3.
If w < 1+ 2π/3+�

3, the robot can fail at any moment before the evacuation
occurs. For this part of the proof, consider that the exit is found at time 1+2π/3 by
R2. In the worst-case R1 travels a distance

�
3 from its position towards the exit in a

straight line. The distance between the two robots is
�
3, so the robots canmeet at the

midpoint of that chord at time 1+2π/3+�
3/2. If R1 fails before the midpoint, then

R2 has to travel extra distance to chauffeur R1. Otherwise, they meet at the midpoint
and travel together. In that case, if R1 fails, R2 chauffeurs the remaining distance. The
following two cases present the evacuation time if the robot fails before or after the
midpoint.

Fault before the midpoint (1+ 2π/3 < w < 1+ 2π/3+�
3/2): R2 has to travel extra

distance of 1+2π/3+�
3/2−w to reach R1 from midpoint and chauffeur it for a

distance 1+ 2π/3+�
3−w . The evacuation time is 1+ 2π/3+ (α+ 1)(1+ 2π/3+�

3−w).

Chauffeuring a Crashed Robot from a Disk 181

Fault after themidpoint (1+2π/3+�
3/2<w < 1+2π/3+�

3):R1 andR2 have already
met and are travelling together. The distanceR2 needs to chauffeurR1 is 1+2π/3+�
3−w . The chauffeuring distance adds the cost by a factor of (α− 1) since the

robots were already travelling towards the same destination. The evacuation time
is 1+2π/3+�

3+ (α−1)(1+2π/3+�
3−w). ��

Theorem 3. The lower bound for evacuationwith crash fault for crash time w ∈ [1,1+
2π/3] ismaxw−1≤t≤2π−2(w−1)

(

1+t+2(α+1)cos(t/4)
)

where 1+t is the time for finding
the exit and w −1 is the part of the perimeter explored by the crashed robot.

Proof. The lower bounds we describe are irrespective of the points where the robots
hit the perimeter starting from the center of the disk. There can be two cases depend-
ing on the relation between crash time w and the time an exit is found (1+ t) by one
of the robots.

Fig. 1. The exit lies in �BA with respect to crash positionC

Case 1: If a robot crashes after the exit is found, i.e.,w ≥ 1+ t , then the robot not near
the exit position is already traveling towards the exit. So, the worst-case time of
evacuationwould happen if and only if the robot crashes at themoment the exit is
found, i.e.,w = 1+t . The worst-case distance from the crash position to exit is the
diameter. If the robot covers part of the perimeter around the antipodal position
(C ′) of the crashed robot position (C), then the maximum distance between the
crashed position and exit is at mostCB = AC = 2sin((2π− (w −1))/4) as shown in
Fig. 1. The worst-case evacuation time is

w +2(α+1)sin((2π− (w −1))/4)

Case 2: Suppose the exit is found at time 1+t >w . By the time the faulty robot crashes
at w , it has covered at most w −1 on the perimeter. Consider two points A and B
as shown in Fig. 1 which are at a distancew−1+ε from the crashed positionC for
some small value of ε> 0. If the adversary places the exit in the �BA, then it would

182 D. Pattanayak et al.

take at least 2π−2(w −1) to explore the arc. The distance from any point on the
arc is greater than 2sin((w −1)/2). The time required for evacuation is at least

1+ t +2(α+1)sin((w −1)/2)

For a value of t < 2π−2(w −1), this still holds. Then the time for evacuation is

1+ t +2(α+1)cos(t/4) (2)

The above expression holds as a lower bound since the robot which finds the exit at
time 1+t has to be at the exit, andwe show the linear distance between exit and crash
position is at least 2cos(t/4). As the robot has already crashed, the optimal path is to
go to the crashed robot and pick up along the chord. ��
Remark 1. For w −1 = 2π/3, expression 2 results in evacuation time 1+2π/3+ (α+
1)
�
3 for t = 2π/3.

4 Upper Bound forWireless Communication

The upper bound for evacuation in the wireless communication model is 1+2π/3+�
3. This is the worst-case evacuation time of the algorithm proposed by Czyzowicz

et al. [5]. In this paper, we also present evacuation strategies which determine the
upper bound with chauffeuring. First, we present a simple strategy to put a ceiling
on the upper bound. Next, we present two algorithms which provide us a tighter
upper bound corresponding to the crash time.

4.1 Trivial Upper Bound (AlgorithmA0(MoveTogether))

Since at most one robot can be faulty, a trivial strategy is to move both robots along
the same path on the perimeter of the disk. Even if one of the robots becomes faulty,
the other robot can chauffeur it and continue its search along the perimeter until it
finds the exit. Then both the robots can evacuate via the exit, as shown in Fig. 2.

The time required for this evacuation algorithm is atmost 1+2π in the casewhere
both robots are free of fault until the evacuation, where the time required to reach the
perimeter is 1 and to search the perimeter is 2π. If a robot becomes faulty after time
w from the activation, then the execution of the algorithm requires the following
time

z0 =w +α(1+2π−w) (3)

where z0 denotes the trivial upper bound with respect to the crash timew andα≥ 1.

4.2 Evacuation AlgorithmA1 (MoveOpposite)

We start with a base algorithm which works with robots without faults. Both robots
move together to an arbitrary point A on the perimeter starting from the center
O and then move in opposite directions, i.e., clockwise and counter-clockwise as
shown in Fig. 3. Once a robot finds the exit, it sends a message to the other robot.

Chauffeuring a Crashed Robot from a Disk 183

Fig. 2. R1 and R2 start fromO, hit the perimeter at A and move together until they find exit at
E and evacuate.

On receiving the message, the other robot finds the position of the sender, which is
also the position of the exit by the time of arrival of the message, knowledge of other
robot’s path and speed. Then it proceeds for evacuation along the straight line join-
ing its current position and the exit.

As one of the robots can be faulty, it cannot communicate after it crashes. To
determine the position of the crashed robot, we assume that the robots communi-
cate with each other regularly in small intervals. If a robot crashes and then it fails to
send a message, which determines the position of the crashed robot. There can be
two simple strategies in the aftermath of the crash. The non-faulty robot can carry
the faulty robot and search together, or the non-faulty robot searches for the exit
without carrying the faulty robot. If both robots are traveling together, then they
evacuate the moment the exit is found. Otherwise, the robot which finds the exit
sends a message and both robots meet on the chord joining them. When the fault
occurs, the non-faulty robot meets the faulty robot, and then it chauffeurs the faulty
robot to the exit. It increases the time required by a factor of α. We describe the two
strategies SearchTogetherAfterCrash and SearchAloneAfterCrash, where the
exit is found after a robot has crashed. An intermediate strategy, where the robot
does not immediately pick up the robot after crash and searches for some distance
on the perimeter, performs worse than the two aforementioned strategies. Please
refer Sect. 4.2 for more details.

SearchTogetherAfterCrash: Two robots start together at the same time from the
center O as shown in Fig. 3. Suppose the robot R1 crashes at C after a time w at a
distance w −1 along the arc from the point A, where the robots reach the perimeter
of the disk, i.e., �AC = w − 1. R2 is at D when R1 crashes at C . R2 moves to C along
the chord DC and continues the search starting from C on �CD .Suppose the exit is
located at E and according to the convention, A is the closest point in the clockwise
direction from E where a robot has reached the perimeter, so �AE = x. By extension,
�CE = x−w +1.The time taken for the evacuation isOA+�DA+DC +α �CE , i.e.,

w +2sin(w −1)+α(x−w +1) (4)

184 D. Pattanayak et al.

Fig. 3. R1 crashes atC and then R2 carries R1 to continue searching for exit until E .

The worst-case position of exit for which the evacuation time is maximum when E
is at an infinitesimally small distance fromD in the clockwise direction, i.e., x = 2π−
(w −1). Then the worst-case evacuation time for this strategy is

z11 =w +2sin(w −1)+α(2π−2(w −1)) (5)

Theworst-case evacuation timewould be themaximum time over all possible values
of w . For w ∈ [1,1+π], the critical point is obtained at ∂z11/∂w = 0, i.e.,

∂z11/∂w = 1−2α+2cos(w −1)= 0 =⇒ w = arccos((2α−1)/2)+1 (6)

Since, ∂2z11/∂w2 =−2sin(w −1)< 0∀w ∈ [1,1+π], the critical point is a local maxi-
mum. The worst-case evacuation time is obtained at w −1= arccos(α−1/2). As the
value of cos(w −1) ranges between −1 and 1, the maximum value of α for which the
critical point acts as the maximum is (2α−1)/2= 1, i.e., α= 1.5.

Remark 2. For w ≤ 1, the SearchTogetherAfterCrash strategy has the same
worst-case evacuation time as algorithmA0.

SearchAloneAfterCrash: Similarly, the robots R1 and R2 start at the center of the
disk at the same time and move towards the perimeter. R1 crashes at C . But R2

continues to move along its path until it finds the exit at E . Let x be the distance
along the arc to the exit from the point where the robots have hit the perimeter, i.e.,
�AE = x. Then the distance from the crashed position of R1 at C to the exit at E is
�CE = x−(w−1) as shown in Fig. 4. The time required for R2 to reach the exit is 2π−x.
The time for evacuation would be,

z12 = 1+2π−x+2(1+α)sin((x− (w −1))/2) (7)

Suppose the crash position of robot R1 is fixed. Then the worst-case location of exit
would be a critical point of z12, i.e., ∂z12/∂x = 0.

(1+α)cos((x− (w −1))/2)= 1 =⇒ x =w −1+2arccos(1/(1+α)) (8)

Chauffeuring a Crashed Robot from a Disk 185

Fig. 4. R1 crashes at C , but R2 continues searching for exit until E and then picks up R1 from
C and goes back to E .

Note that, ∂z12/∂w < 0, so z12 is a monotonically decreasing function with respect to
w . Failure of a robot is not dependent on the position of the exit. So the variables x
andw are independent. Hence, the worst-case evacuation time is obtained atw = 1.
The worst-case evacuation time is 1+2π−2arccos(1/(1+α))+2

�
α2+2α. Now let us

determine the value of α for which the worst-case evacuation time of algorithmA0

exceeds the worst-case of SearchAloneAfterCrash strategy. The worst-case evac-
uation time of algorithmA0 from Eq. 3 is 1+2πα for w = 1. So,

1+2πα= 1+2π−2arccos(1/(1+α))+2
√

α2+2α

=⇒ (1+α)cos(π(1−α)+
√

α2+2α)−1= 0 (9)

The solution to Eq. 9 is the value of α for which the worst-case of
SearchAloneAfterCrash strategy coincides with algorithmA0. The corresponding
α is 1.30346. Hence, for values of α ≤ 1.30346, algorithmA0 has a better worst-case
evacuation time compared to SearchAloneAfterCrash strategy.

For the case where a robot becomes faulty before it reaches the perimeter, the
non-faulty robot searches for the exit and then it picks up the faulty robot. Let (w,0)
be the position of faulty robot and (cos(x),sin(x)) be the position of the exit.

z13 = 1+x+ (1+α)
√

(w −cos(x))2+ sin2(x) (10)

Remark 3. If the exit is found before a robot crashes, then the worst-case would
occur when it crashes on the perimeter.

R1 andR2 startmoving towards each other as soon as the exit is found; and ifR1 finds
the exit, then R2 moves towards the exit moving along the line joining them. Hence,
if R2 crashes on the perimeter, that would result in the worst-case. Conversely, if R2

finds the exit, it moves towards R1 along the line joining them. R2 would move at
most to themidpoint of the line joining them. IfR2 becomes faulty at themidpoint of
the line, then the evacuation time is less compared to when it failed at the perimeter.

186 D. Pattanayak et al.

For α< 1.30346, both strategies performworse compared to the trivial algorithm
at w = 0. Both the strategies can be combined into one since the path of the robots
remain the same until one of them crashes. Note that, the evacuation time has a local
maximum at w = 1+ arccos((2α− 1)/2) for SearchTogetherAfterCrash strategy
for α< 1.5, while it monotonically decreases for SearchAloneAfterCrash strategy.
Since the evacuation time forw = 1 is the same for both strategies atα= 1.30346, the
SearchAloneAfterCrash strategy performs better for all value of w .

Now, let us determine the value ofw for which both strategies perform the same,
i.e., z11 = z12. We have the following.

w −1+2sin(w −1)+α(2π−2(w −1))= 2π−2arccos(1/(1+α))− (w −1)+2
√

α(α+2)

=⇒ (w −1)(1−α)+ sin(w −1)=π(1−α)−arccos(1/(1+α))+
√

α(α+2) (11)

For α < 1.30346, we have the solution for w from Eq. 11. Let w be a solution
to Eq. 11. If w < w , then the other robot follows SearchTogetherAfterCrash,
otherwise it follows SearchAloneAfterCrash strategy. For α ≥ 1.30346, the
SearchAloneAfterCrash strategy performs better than the algorithm A0, where
the worst-case of the SearchTogetherAfterCrash strategy is always greater than
or equal to worst-case of algorithm A0. Hence, combination of the strategies yields
a better result for α≤ 1.30346.

Fig. 5. R2 goes to pick R1 at F after travelling a distance y and search along

Comparison Between Strategies in Wireless Communication. Two robots start
together from the center O at the same time as shown in Fig. 5. Let R1 be the robot
that crashes atC . R2 is at the pointD at the same time. R2 travels up to the point F at
a distance y along the arc before it decides to pick up R1.

Then the worst-case evacuation time appears if the exit is at a small distance
ε(> 0) from F in the unexplored part. The time for evacuation is f =w+ y+2sin(w−
1+ y/2)+α(2π− 2(w − 1)− y). The function is f is monotonically increasing with
respect to y up to w + y/2 = arccos(α− 1) and then monotonically decreases. So if

Chauffeuring a Crashed Robot from a Disk 187

w > arccos(α−1), then it is better to maximize y . And ifw <= arccos(α−1), then it is
better to have y = 0.

Remark 4. Going for meet-up immediately when the other robot fails is better com-
pared to going for the crashed robot later if the exit is not found.

4.3 Evacuation AlgorithmA2 (MoveSameDirection)

In this section, we describe an algorithmwhere the robots start from the center of the
disk at the same time at an angle ζ with each other, where 0≤ ζ≤ 2π. After reaching
the perimeter, both robots start traveling in the counter-clockwise direction.Without
loss of generality, let us assume that R1 crashes at time w . Wemeasure the angle ζ in
the counter-clockwise direction from the faulty robot R1.

Fig. 6. Path of the robots (red color for R1 and blue for R2) in AlgorithmA2 without faults

The base strategy divides the perimeter into two arcs of length ζ and 2π−ζ. Each
robot explores its own arc after reaching the perimeter from the center. For ζ<π, R1

would finish exploring its part of the arc. Then it will try to meet the other robot. Let
us determine ameeting pointM (ref. Fig. 6(a)) such that �AB+BM = �BM . The length,
m, of BM can be determined from the following equation.

ζ+2sin((ζ+m)/2)= ζ+m (12)

We can determine that the points A and M coincide for ζ = 2.24123. So R1 would
move along BM for ζ < 2.24123 (ref. Fig. 6(a)) and along BA for ζ ≥ 2.24123 (ref.
Fig. 6(b)). For ζ>π, a similar path is followed by R2.

188 D. Pattanayak et al.

Now, we describe the action a robot takes if it finds an exit. On finding the exit, a
robot messages the other robot. Then both robots start moving towards each other
along the line joining them andmeet at the midpoint (ref. Fig. 6(c) and (d)). Thence-
forth both robotsmove towards the exit. If both robots are already traveling together,
they evacuate via the exit (ref. Fig. 6(e)).

When R1 crashes, it stops moving and stays there. Once R2 has completely
explored its arc on the perimeter, then itmoves to the position ofR1, and they explore
the remaining part of the perimeter together if the exit is not found by that time.
Since we assume that R1 is the robot which crashes, we claim that if the exit is found
by R1, then it would never result in the worst-case. The claim can be proved by the
fact that if R2 crashes, then the evacuation time would be higher. By symmetricity,
there exists a situation where R1 crashes corresponding to an exit found by R2. So, in
the following cases, we only explain the scenarios with R2 finding the exit.

Case 1: If R1 crashes before the exit is found, then R2 explores its own arc to search
for the exit.
– If exit lies on R2’s arc, then R2 picks up R1 from its crash position. The evacu-

ation time is
z21 = 1+x−ζ+ (α+1)d (13)

whered is the distance from the exit to the crash position and x is the distance
of the exit from the point where R1 reaches the boundary in the counter-
clockwise direction. The coordinates of exit positionE are (cos(x),sin(x)). The
coordinates of the crash positionC are given by

(w,0) for w < 1

(cos(w −1),sin(w −1)) for 1≤w ≤ 1+ζ

(λcos(2ζ+m)+ (1−λ)cos(ζ),λsin(2ζ+m)+ (1−λ)sin(ζ)) for 1+ζ<w

where λ = w−ζ−1
m if ζ < π. Equation13 has two values of x ∈ [ζ,2π], such that

∂z21/∂x = 0. The critical point may be a local maximum according to second
derivative test. Hence the value of x which provides the worst-case evacua-
tion time for a given value of w may be a critical point or a boundary point of
domain of x depending on the value of ζ and α.

– If exit lies on R1’s arc, R2 picks up R1 by travelling along a line joining the
crash position and current position of R2 and they explore the remaining part
together. The evacuation time is

z22 =w +d +α(x−w −1) (14)

where d is the distance between crash position (cos(w − 1),sin(w − 1)) and
position of R2 at time w determined similar to the previous case. In this
case, the worst-case position of exit is just before the point where R2 hits the
perimeter, i.e., x = ζ−ε for an ε→ 0.

Chauffeuring a Crashed Robot from a Disk 189

Case 2: If R1 crashes after the exit is found, then R2 is already moving towards R1

along the line joining them. The evacuation time is

z23 =w + (α+1)d (15)

where the distance d between the crash position and position of R2 at time w
determined similar to Case 1.

Fig. 7. Comparison between algorithms and the lower bound for different values of α

5 Comparison Between Algorithms

We numerically evaluate the behavior of proposed algorithms. The evaluation
includes worst-case evacuation time corresponding to the crash time w for specific
values of α. {1,1.30346, 1.5,2} are chosen as values of α since at these points, the
behavior of the algorithms changes according to the analysis in Sect. 4. The crash
time w is varied in [0,2π+1] because it takes 2π+1 amount of time for a single non-
faulty robot to evacuate from the disk. The evacuation times are evaluated at discrete
values ofw with a gap ofπ/120. For each value ofw , all possible worst-case positions
of the exit are considered for AlgorithmsA0,A1 andA2.

As shown in Fig. 7, AlgorithmA0 performsbetter thanA1 forα< 1.30346. Forw >
1+2π/2+�3/2, AlgorithmA1 is optimal. Observe that,A2 performs better compared
toA1 for w ∈ [1,1+π/2]. The lower bound is dominated by t = 4arcsin(2/(α+1)) for

190 D. Pattanayak et al.

Fig. 8. Value of ζwith respect to the least worst-case evacuation time ofA2

α = 2 for crash time w < 1+ 2π/3. Also, for A2, the smallest worst-case evacuation
time is found for discrete values of ζ ∈ [0,π] with a step size ofπ/600.We also evaluate
the lower bound at the same values ofw . Figure 8 shows the corresponding value of ζ
for which the worst-case evacuation time is obtained forA2 and the four values ofα.
Observe that, for α > 1.30346, ζ = π performs the best for algorithm A2 when crash
time w < 1+2π/3.

6 Conclusion

In this paper, we have introduced and analyzed evacuation algorithms for two
robots, out of which one can be faulty. Alongwith this, we also provide a lower bound
for the evacuation time. For chauffeuring cost α= 1 the worst-case evacuation time
is equal to the lower bound for crash time w = 0. This makes AlgorithmA0 optimal.
As the value of crash time w increases beyond 1+2π/3, the gap between the lower
bound and evacuation time ofA1 is minimal for all values of α. For α= 1, the lower
bound is very close to the minimum evacuation time ofA1 andA2, which says that
the lower bound is tight. But the same does not happen for larger values of α, where
the lower bound is not very close.

This paper revisits the evacuation problem froma fault-tolerance aspectwith one
of the classical crash fault scenarios. Themodel can be further extended for general-
ized crash fault model with k robots out of which f are faulty. Also, it is interesting to
design algorithms which can tighten the bounds presented in this paper.

Chauffeuring a Crashed Robot from a Disk 191

References

1. Brandt, S., Foerster, K., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with
k searchers. In: SIROCCO, Porquerolles, France, pp. 140–157 (2017). https://doi.org/10.
1007/978-3-319-72050-0_9

2. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without commu-
nication: Evacuating two robots from a disk. In: CIAC, Athens, pp. 104–115 (2017). https://
doi.org/10.1007/978-3-319-57586-5_10

3. Chuangpishit, H., Georgiou, K., Sharma, P.: Average case - worst case tradeoffs for evac-
uating 2 robots from the disk in the face-to-face model. In: Algorithms for Sensor Sys-
tems - 14th International Symposium on Algorithms and Experiments forWireless Sensor
Networks, ALGOSENSORS 2018, Helsinki, Finland, August 23–24, 2018, Revised Selected
Papers, pp. 62–82 (2018). https://doi.org/10.1007/978-3-030-14094-6_5

4. Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating an equilateral trian-
gle in the face-to-facemodel. In: OPODIS, Lisbon, Portugal, pp. 11:1–11:16 (2017). https://
doi.org/10.4230/LIPIcs.OPODIS.2017.11

5. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots
via unknown exit in a disk. In: DISC,USA, 12–15October 2014, pp. 122–136 (2014). https://
doi.org/10.1007/978-3-662-45174-8_9

6. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: SIROCCO,
Porquerolles, France, pp. 158–173 (2017). https://doi.org/10.1007/978-3-319-72050-0_10

7. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun with
Algorithms, FUN 2018, 13–15 June 2018, La Maddalena, Italy, pp. 16:1–16:20 (2018).
https://doi.org/10.4230/LIPIcs.FUN.2018.16

8. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots - (extended
abstract). In: Structural Information and Communication Complexity - 25th International
Colloquium, SIROCCO2018,Ma’ale HaHamisha, Israel, 18–21 June 2018, Revised Selected
Papers, pp. 392–407 (2018). https://doi.org/10.1007/978-3-030-01325-7_32

9. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: ISAAC, Sydney, Australia, pp.
27:1–27:12 (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.27

10. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.:
Evacuating robots from a disk using face-to-face communication (extended abstract). In:
CIAC, Paris, France, pp. 140–152 (2015). https://doi.org/10.1007/978-3-319-18173-8_10

11. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with
faulty robots. In: PODC, Chicago, IL, USA, pp. 405–414 (2016). https://doi.org/10.1145/
2933057.2933102

12. Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Proceedings
of the Structural Information and Communication Complexity - 26th International Collo-
quium, SIROCCO 2019, L’Aquila, Italy, 1–4 July 2019, pp. 200–214 (2019). https://doi.org/
10.1007/978-3-030-24922-9_14

13. Kupavskii, A., Welzl, E.: Lower bounds for searching robots, some faulty. In: Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham,
United Kingdom, 23–27 July 2018, pp. 447–453 (2018). https://dl.acm.org/citation.cfm?
id=3212745

https://doi.org/10.1007/978-3-319-72050-0_9
https://doi.org/10.1007/978-3-319-72050-0_9
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-030-14094-6_5
https://doi.org/10.4230/LIPIcs.OPODIS.2017.11
https://doi.org/10.4230/LIPIcs.OPODIS.2017.11
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-72050-0_10
https://doi.org/10.4230/LIPIcs.FUN.2018.16
https://doi.org/10.1007/978-3-030-01325-7_32
https://doi.org/10.4230/LIPIcs.ISAAC.2016.27
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1145/2933057.2933102
https://doi.org/10.1145/2933057.2933102
https://doi.org/10.1007/978-3-030-24922-9_14
https://doi.org/10.1007/978-3-030-24922-9_14
https://dl.acm.org/citation.cfm?id=3212745
https://dl.acm.org/citation.cfm?id=3212745

Optimal Circle Search Despite
the Presence of Faulty Robots

Konstantinos Georgiou1, Evangelos Kranakis2, Nikos Leonardos3,
Aris Pagourtzis4(B), and Ioannis Papaioannou4

1 Department of Mathematics, Ryerson University, Toronto, ON, Canada
konstantinos@ryerson.ca

2 School of Computer Science, Carleton University, Ottawa, ON, Canada
kranakis@scs.carleton.ca

3 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Ilissia, Greece

nikos.leonardos@gmail.com
4 School of Electrical and Computer Engineering,

National Technical University of Athens, Zografou, Greece
pagour@cs.ntua.gr, ipapaioannou@corelab.ntua.gr

Abstract. We consider (n, f)-search on a circle, a search problem of
a hidden exit on a circle of unit radius for n > 1 robots, f of which
are faulty. All the robots start at the centre of the circle and can move
anywhere with maximum speed 1. During the search, robots may commu-
nicate wirelessly. All messages transmitted by all robots are tagged with
the robots’ unique identifiers which cannot be corrupted. The search is
considered complete when the exit is found by a non-faulty robot (which
must visit its location) and the remaining non-faulty robots know the
correct location of the exit.

We study two models of faulty robots. First, crash-faulty robots may
stop operating as instructed, and thereafter they remain nonfunctional.
Second, Byzantine-faulty robots may transmit untrue messages at any
time during the search so as to mislead the non-faulty robots, e.g., lie
about the location of the exit.

When there are only crash fault robots, we provide optimal algorithms
for the (n, f)-search problem, with optimal worst-case search completion

time 1 + (f+1)2π
n

. Our main technical contribution pertains to optimal
algorithms for (n, 1)-search with a Byzantine-faulty robot, minimizing
the worst-case search completion time, which equals 1 + 4π

n
.

Keywords: Adversary · Byzantine · Circle · Exit · Perimeter ·
Robot · Search · Speed · Wireless communication

1 Introduction

Search is a problem of vital importance because of its numerous critical appli-
cations in various branches of mathematics and theoretical computer science.

K. Georgiou and E. Kranakis—Research supported in part by NSERC Discovery grant.

c© Springer Nature Switzerland AG 2019
F. Dressler and C. Scheideler (Eds.): ALGOSENSORS 2019, LNCS 11931, pp. 192–205, 2019.
https://doi.org/10.1007/978-3-030-34405-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34405-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-34405-4_11

Optimal Circle Search Despite the Presence of Faulty Robots 193

Several linear search models concerning non-communicating agents have been
the focus of investigation in numerous research publications, e.g. see the books
Ahlswede and Wegener [1], Alpern and Gal [2], and Stone [15].

In this paper we consider searching for an exit placed at an unknown location
on the perimeter of a unit radius disk by dimensionless robots (also referred to as
mobile agents) that may communicate wirelessly, some of which are either crash-
faulty or Byzantine-faulty. Crash-faulty robots may stop operating, in which
case they can transmit no information. Byzantine robots are malicious in that
they may falsify the information they transmit to peers by misleading them and
thus delaying the overall worst-case search time of the system. Our approach
differs from traditional models to search with mobile agents whereby the faults
were restricted to the underlying search domain (e.g., graph, continuous infinite
line, plane, etc.), in that we are interested in completing the search successfully
when one of the mobile agents is faulty thus placing an additional strain on the
mobile agents. Before giving details of our main results we formally describe the
capabilities of the mobile agents and the computation model.

1.1 Computation Model

Our overall purpose is to design search algorithms which find the exit and whose
running time, as measured by the time it takes the first robot to find the exit
and convince the rest of the robots, is worst-case optimal. In this subsection we
define the main parameters of the model which include communication, robot
movement, crash and Byzantine faults, and the power of the adversary.

Communication. The robots can communicate wirelessly and instantaneously
(no delay) at any time and regardless of their distance from each other. A typical
message may involve information about their location, how far they have moved
from their starting location, whether or not they found the exit, etc. Robots
can deduce their current relative location from each other’s messages, they are
equipped with a pedometer (to measure distances) but otherwise have no need
for GPS. Each message is tagged with the robot’s unique identifier which cannot
be altered by any robot.

Robot Movement. Robots start their movement at the centre of a unit radius
disk. Their maximum speed is 1, and this is the same for all the robots. During
their movement, they may recognize the perimeter of the disk and the exit if they
are at its location as well as move along the perimeter. They are also allowed to
take “shortcuts” by moving in the interior of the disk.

Fault Types. In our algorithms, robots agree on the specific trajectory that
they are supposed to traverse, and in particular they know each others’ trajecto-
ries. Thus, the location of a robot may be deduced by other robots based on the
timing of a message transmission (and the type of the message). A crash-faulty

194 K. Georgiou et al.

robot may at any time stop functioning, meaning that it permanently remains
idle and/or fails to communicate any messages, i.e. it crashes. A Byzantine robot
is malicious in that it may alter its trajectory and provide (or hide) information
whose purpose is to confuse the rest of the robots on the location of the exit.
Note that a Byzantine robot may exhibit the behavior of a crash-faulty robot.

Adversary. For the worst case analysis of our algorithms, we consider an adver-
sary who controls the location of the exit and the behaviour of the malicious
robot (its trajectory as well as the messages it will broadcast) so as to maximize
the resulting search completion time. A search is complete if the exit has been
visited by a non-faulty robot and the rest of the agents, if any, can be convinced
(provably) of the (correct) location of the exit.

1.2 Related Work

There has been extensive literature on line search starting with the seminal
papers of Beck and Bellman [4,5] and Baeza-Yates et al. [3]. Both cases are con-
cerned with linear search: a single mobile agent searching for an exit placed at an
unknown location on an infinite line; in the former case the setting is stochastic
and in the latter deterministic. This line of research continued by several authors
and culminated with the seminal books by Ahlswede and Wegener [1], Alpern
and Gal [2], and Stone [15]. Several other models for line search algorithms were
subsequently investigated, e.g., by Kao et al. [14] for randomized line search
and Demaine et al. [12] for taking into account the turn cost, just to mention a
few. An interesting variant to the linear search above has to do with the pres-
ence of faulty robots. The two main papers in this line of research are [10] for
crash-faulty robots and [9] for Byzantine-faulty robots.

The circle search model (considered in our paper) for n non-faulty robots
was introduced as an evacuation problem (completion time with respect to the
last finder of the hidden exit) in [6] and analyzed in both the wireless and face-
to-face communication models. Since then there have been numerous related
research papers mainly on evacuation, e.g. [13] in the face -to-face model, [11] in
equilateral triangles, etc. The interested reader could consult the recent survey [8]
for additional related literature.

Directly related to our current work is [7]. In this paper, authors investigate
evacuation of robots in the presence of crash and/or Byzantine faults. Evacuation
is different from search in that it measures completion of the algorithm by the
time it takes the last non-faulty robot to find the exit (i.e., all the robots have
to go to the exit), unlike search as studied in our current paper which measures
success by the time it takes the first non-faulty robot to find the exit so that all
non-faulty robots are convinced (provably) that the exit has been found and also
know its location. To the best of our knowledge, the circle search model with a
Byzantine-faulty robot has not been considered in the past.

Optimal Circle Search Despite the Presence of Faulty Robots 195

1.3 Preliminaries and Notation

Assume that n is the number of robots, f of which are faulty. Robots are dimen-
sionless and are initially located on the centre of a unit radius disk. The exit
is located on the unit circle, which is the circumference of the disk. Robots
can move with maximum speed 1. In our algorithms, all honest agents move
at the maximum speed, therefore at each time point all agents know the loca-
tion of every agent that follows the protocol. The n mobile agents are denoted
by a0, a1, . . . , an−1 and exactly f of them are faulty. The indices are treated as
elements of Zn; in particular, index addition and subtraction are performed mod-
ulo n. Throughout the paper, we call our problem (n, f)-search, meaning search
for n > 1 robots, f of which are faulty. Robots will be searching the unit circle
either clockwise (cw) or counter-clockwise (ccw). It is assumed throughout that
whenever an honest agent finds the exit it announces this fact, and whenever it
realizes that an announcement of another agent is faulty it also announces this
to everybody.

Our main contribution pertains to the (n, 1)-search problem with a
Byzantine-faulty robot. By S(n) we denote the infimum, over all algorithms,
of the time required for the first non-faulty robot to reach the exit so that all
robots also know (provably) the correct location of the exit. Similarly, for the
(n, f)-search problem with crash-faulty robots, we denote the optimal search
completion time by Sc(n, f).

1.4 Results of the Paper

For n ≥ 2, we give optimal algorithms for problem (n, 1)-search. Our main result
is that (n, 1)-search on a circle admits a solution with search completion time
1 + 4π

n and this is worst-case optimal. In Sect. 2 we prove a lower bound for
f crash-faulty robots, hence for Byzantine robots too. In Sect. 3 we match the
previous lower bound for crash-faulty robots with a tight upper bound. Then
in Sect. 4 we focus on the upper bounds for searching with 1 Byzantine robots.
In particular, in Subsect. 4.1 we analyze the case of 3 robots, in Subsect. 4.2 the
case of 4 robots, and in Subsect. 4.3 the general case of n robots. In Sect. 5, we
conclude with a relevant discussion and open problems.

2 Lower Bound

In this section we give a lower bound for our search problem. This result builds
on the work in [7]; we extend their arguments to the case of f crash-faulty robots
(hence, Byzantine too).

Theorem 1 (Lower Bound for (n, f)-Search). The worst-case search time
Sc(n, f) for n ≥ f + 1 robots exactly f of which are crash-faulty satisfies

Sc(n, f) ≥ 1 + (f + 1)
2π

n
.

196 K. Georgiou et al.

Proof (Theorem 1). Since the maximum speed of the robots is 1, it takes at least
time 1 for a robot to reach the perimeter of the disk. Further, every point on the
perimeter must be traversed by at least f + 1 robots; for if not, the adversary
will make the at most f robots visiting this point all faulty in that they remain
silent and therefore the non-faulty robots will miss the exit.

Let �i be the perimeter lengths explored by exactly i robots, where 0 ≤
i ≤ n. It is clear from the above discussion that �0 = �1 = · · · �f = 0 and
�f+1 + �f+2 + · · · + �n = 2π. The sum of the parts of the perimeter explored
by the robots is (f + 1)�f+1 + (f + 2)�f+2 + · · · + n�n. If the robots accomplish
this task by exploring the perimeter for time t (after the perimeter of the disk
is reached for the first time), then it must be true that

nt ≥ (f + 1)�f+1 + (f + 2)�f+2 + · · · + n�n

≥ (f + 1)(�f+1 + �f+2 + · · · + �n)
= (f + 1)2π.

It follows that t ≥ (f + 1)2π/n. This completes the proof. ��
Since S(n) ≥ Sc(n, 1), we immediately obtain the following corollary.

Corollary 1 (Lower Bound for Byzantine (n, 1)-Search). The worst-case
search time S(n) for n ≥ 2 robots exactly one of which is Byzantine-faulty sat-
isfies S(n) ≥ 1 + 4π

n .

3 Searching with Crash Faults

In this section we match the lower bound of Theorem 1 when we search with
crash-faulty robots.

Theorem 2 (Upper Bound for (n, f)-Search with Crash Faults). The
worst-case search time Sc(n, f) for n ≥ 2 robots exactly f of which are prone to
crash failures satisfies

Sc(n, f) ≤ 1 + (f + 1)
2π

n
.

Proof. Let θ := 2π/n. Our algorithm is as follows. For each k = 0, . . . , n − 1,
agent ak moves to the point kθ of the unit circle and searches ccw for (f + 1)θ
radians. When (and if) exit is found, it is reported instantaneously.

Clearly, every sector Sj of the circle would be visited by f + 1 robots if
they all followed the protocol. Since there are at most f faulty robots, there
must be at least one honest robot that will visit Sj and announce the correct
location. As there can only be crash failures there will not be any contradicting
announcements. ��

Optimal Circle Search Despite the Presence of Faulty Robots 197

4 Search with One Byzantine Fault

In this section we analyze upper bounds for our search problem with a Byzantine
agent. Our main theorem is the following.

Theorem 3 (Upper Bound for (n, 1)-Search). The worst-case search time
S(n) for n ≥ 2 robots exactly one of which is faulty satisfies

S(n) ≤ 1 +
4π

n
.

Thus, combining Corollary 1 with Theorems 3, we conclude that the worst-case
search completion time for (n, 1)-search satisfies S(n) = 1 + 4π

n .
First observe that it is trivial to prove S(2) = 1 + 2π, for (2, 1)-search since

one of the two robots is faulty and the other non-faulty, hence the non-faulty
has no other option but to search the entire perimeter.

In the next two Subsects. (4.1 and 4.2) we show the upper bound for the
cases (3, 1)-search and (4, 1)-search. Although the algorithms for these cases can
be seen as special cases of the algorithm for the general case (Subsect. 4.3), this
is not the case for their analysis. In addition, presenting them separately allows
to better clarify and illustrate the techniques and notions that we employ.

4.1 (3, 1)-Search with a Byzantine-Faulty Robot

Lemma 1 ((3,1)-Search). The worst-case search time for 3 robots exactly
one of which is faulty satisfies

S(3) ≤ 1 +
4π

3

Proof. We will prove the claim by presenting an algorithm for this case. Consider
agents a0, a1, a2 and set θ = 2π/3. We describe below the agents’ actions in
phases (time intervals) [0, 1), [1, 1 + θ) and [1 + θ, 1 + 2θ) and we explain why
all agents know the location of the exit at time 1 + 2θ.

Phase [0, 1): Each agent ak, k ∈ {0, 1, 2}, moves along a radius to the point kθ
of the unit circle.
Phase [1, 1 + θ): Agent ak searches ccw the arc [kθ, (k + 1)θ).
Phase [1 + θ, 1 + 2θ):

(i) If no announcements were made in time interval [1, 1 + θ) then in time
interval [1 + θ, 1 + 2θ) either there will be one correct announcement or
two announcements. In the latter case the third agent, say ak, is honest
and the correct announcement is the one by ak+1 (otherwise, ak would
have seen in time interval [1, 1 + θ) the exit announced by ak−1).

(ii) If exactly one announcement was made in time interval [1, 1 + θ), say by
agent ak−1, then agent ak moves directly (along a chord) to the location
of the announcement and ak+1 searches ccw for another θ radians. This
takes time at most 2 < 2π

3 . If ak or ak+1 confirms the announcement then

198 K. Georgiou et al.

it is correct; otherwise, ak+1 in this time interval announces the correct
exit point. This case is depicted in Fig. 1.1

(iii) If two announcements were made in time interval [1, 1+ θ), then they are
in consecutive sectors. The silent agent is certainly non-faulty and will
visit one of these sectors in this phase and will thus be able to determine
which announcement was the correct one.

This completes the description of the algorithm and the proof. ��

Fig. 1. (3, 1)-search: robot trajectories in case t < 2π
3
.

4.2 (4, 1)-Search with a Byzantine-Faulty Robot

We will first describe an algorithm for this case. Let θ = π/2. Each agent ak

moves with speed one to its starting point kθ and then continues ccw. We call
the arc from one starting point to the next a sector. We think of each agent
being responsible for the arc of length π that begins at its starting point and
covers at most two consecutive sectors ccw.

Let t denote the length of the arc from the point of the first announcement
to the starting point that corresponds to the agent that made the announcement
1 Figures in this paper depict robot trajectories during the execution of our search
algorithm. They restrict to cases where the first announcement is made while robots
search their first sector of length θ = 2π

n
, and no other announcement is made until

time 1+θ. It is assumed that agent a0 makes the first announcement. A black square
shows the location of the announcement; a white square shows the locations of other
agents at that time. A solid dot shows the starting positions of the robots on the
unit circle (starting from the center of the circle, they move directly, in time 1, to
their starting positions). Recall that the arc length between the starting position of
a0 and the point of the announcement is denoted by t (hence, the announcement
takes place in time 1 + t).

Optimal Circle Search Despite the Presence of Faulty Robots 199

(note, there is always an announcement for some t ≤ π). If t ≥ π
2 , then each

robot checks both sectors that are assigned to it. Otherwise, set y = π − 2 and
suppose an announcement is made by a0 (w.l.o.g.) at t < π

2 . We consider two
cases.

If t < y, then a1 and a3 will search the two sectors that each is responsible
for and a2 will move along the diameter to check the announcement. This case
is depicted in Fig. 2.

Fig. 2. (4, 1)-search: robot trajectories in case t < y.

If y ≤ t < π
2 , then a1 continues to cover distance

√
2 (unless t ≥ √

2) and
then moves along a chord to check the announcement; a2 finishes its first sector
and then moves back along a chord to its starting point and continues cw to
check the arc that a1 didn’t check; a3 continues searching its two sectors. This
case is depicted in Fig. 3.

Fig. 3. (4, 1)-search: robot trajectories in case y ≤ t < π
2
.

This completes the description of the algorithm. We will now prove the cor-
rectness and the upper bound on the execution time.

200 K. Georgiou et al.

Lemma 2 ((4, 1)-Search). The search time for 4 robots exactly one of which
is faulty satisfies

S(4) ≤ 1 + π.

Proof. Recall that we denote by t the length of the arc searched on the circle by
the agent who made the first announcement, at the time of the announcement.

For t ≥ π
2 we argue that when every robot has checked the sectors it is

responsible for (at time 1 + π), all of them know the location of the exit. First,
note that if only one announcement is made, then it has to be a valid one.
Therefore, assume two announcements are made (note that both are no earlier
than π

2). Observe that they have to come from consecutive sectors: the exit must
be at the first sector of the faulty robot, say a3 since nobody spoke earlier than
π
2 , and it is discovered by a2, while searching its second sector, who makes a
correct announcement. The only other announcement can be made by a3 and
is faulty. Therefore, all agents know that the location is at the first of the two
sectors in the ccw direction.

For t < π
2 suppose the first announcement was made by a0. We claim that

in this case the first announcement is checked by two more agents (namely, by
a3 and either a1 or a2) and every point of the perimeter is searched by one of
the three other agents (unless a second announcement is made in which case it
is not necessary to search the whole circle as one of the two must be correct).
Assuming this claim, if the first announcement is verified by any other agent,
then clearly it is valid. If not, then two agents reject it, thus it must be fake. It
follows that another announcement was made which has to be valid. We next
verify the claim and the execution time.

Consider the case t < y. Note that y was defined so that a2 reaches the
announcement in time less than 1 + y + 2 = 1 + π. Thus, the announcement is
checked by a2 and a3 in time, while a1 and a3 search every point of the perimeter.

Consider now y ≤ t < π
2 . First, to see that every sector was searched by the

first three agents by time 1+π, we need to argue that a1 and a2 covered the first
sector. Indeed, a2 searched an arc of length π

2 to finish his first sector, a chord of
length

√
2 to go back to his starting point, and an arc of length at most π

2 − √
2

that was left uncovered by a1; this sums up to at most π
2 +

√
2 + π

2 − √
2 = π

as desired. Next, we need to argue that the announcement location was reached
by a1 in time 1 + π. This is clear if t ≥ √

2. Otherwise, it is not hard to see
that the worst case is t = y. In this case, the chord a1 walks corresponds to an
arc of length φ =

√
2 + π

2 − y = 2 +
√

2 − π
2 . Thus, the total time it needs is

1 +
√

2 + 2 sin φ
2 < 1 + π. ��

4.3 (n, 1)-Search with a Byzantine-Faulty Robot, n ≥ 5

We will first give the description of the algorithm for this case. For each k ∈ Zn,
agent ak moves to the k-th starting point Pk located at kθ, θ = 2π/n, and then
continues ccw. We denote the arc of size θ from the k-th starting point to the
next by Sk and call it the k-th sector. We think of sectors Sk and Sk+1 as being
assigned to agent ak, who is supposed to search them in the ccw direction.

Optimal Circle Search Despite the Presence of Faulty Robots 201

Let t denote the length of the arc from the point of the first announcement to
the starting point that corresponds to the agent that made the announcement.
We now describe the trajectories of agents for the case that agent a0 makes the
first announcement. We will argue later (in the proof of Theorem3) that the
information they exchange is enough for all agents to learn the exit location.

If t ≥ θ, then each agent checks both sectors that are assigned to it. Other-
wise, set

y = 2θ − 2 sin θ

and suppose an announcement is made by a0 at t < θ. Consider two cases.
If t < y, then each agent ak with k /∈ {0, 2} will search its two sectors, while

a2 will start at time 1 + t to move along a chord towards the announcement in
order to verify it.

If y ≤ t < θ, define arc-lengths xk (in Sk but not to be searched by ak)
recursively as follows.

xn−2 = 0; xk = θ + xk+1 − 2 sin
(θ − xk+1

2

)
, for 0 < k < n − 1. (1)

Agent a1 continues to cover distance θ − x1 (unless t ≥ θ − x1) and then moves
along a chord towards the announcement in order to verify it; for 1 < k < n− 1,
agent ak continues to cover distance θ−xk (unless t ≥ θ−xk), then moves along
a chord back to its starting point, and finally searches in the cw direction the
arc (of length at most xk−1) that agent ak−1 didn’t search; agent an−1 continues
with its two sectors. This case is depicted in Fig. 4.

This completes the description of the algorithm. We next show its correctness
and the upper bound on its running time.

Lemma 3 ((n, 1)-Search, for n ≥ 5). The worst-case search time for n ≥ 5
robots exactly one of which is faulty satisfies

S(n) ≤ 1 +
4π

n
.

Proof (Lemma 3). We are going to argue about the correctness and the execution
time of the algorithm described above.

If t ≥ θ, then all agents have searched the sectors assigned to them by time
1 + 2θ. We need to show that all of them know the location of the exit. First,
note that if only one announcement is made, then it has to be a valid one. Thus,
assume two announcements are made. Observe that they have to come from
consecutive sectors: one of them is the true one and was discovered by an honest
agent, say ak, while searching sector Sk+1. It follows that ak+1 is faulty (because
it didn’t make the announcement) and the other announcement must come from
it. Therefore, the agents know that the location is at the first announcement
encountered in the ccw direction.

Otherwise (t < θ), suppose the first announcement was made by a0. We claim
the following.

202 K. Georgiou et al.

Fig. 4. (n, 1)-search: robot trajectories in case y ≤ t < θ.

The first announcement is checked by two more agents and every point of
the perimeter is searched by at least one agent different from a0, unless a
second announcement is made.

Note first that if the first announcement is verified by one more agent, then it
is proved valid to all. If not, then—assuming the claim—two agents reject it
and a0 is proved faulty to all. Furthermore, every point of the perimeter will
be searched by at least one honest agent. It follows—by the second part of the
claim—that another announcement will be made and will be recognized by all
as valid. We next verify the claim and the execution time for the two cases on t.

Consider the case t < y. Note that y was defined so that a2 reaches the
announcement in time less than 1 + y + 2 sin θ = 1 + 2θ. This is because it will
spend less than time y on its first sector and then move along the chord that
corresponds to two sectors. Thus, the announcement is checked by a2 and an−1

in time, while the other agents set forth to search every point of the perimeter.
Consider now y ≤ t < θ. First, we verify that every sector was searched by

one of the agents a1, . . . , an−1 by time 1 + 2θ. It is clear that an−1 searched
sectors Sn−1 and S0. Next, we argue that, for 0 < k < n−1, agents ak and ak+1

covered sector Sk. Note that xk is the length of Sk that was not searched by
agent ak. However, xk is defined so that ak+1 has sufficient time to travel back
to Pk+1 and aid ak. Indeed, the worst case for ak+1 is when t ≤ θ − xk. (It is
not hard to see that when t > θ − xk he will have time to spare.) In this case,
after reaching point θ − xk+1 of Sk+1, it must search a chord corresponding to

Optimal Circle Search Despite the Presence of Faulty Robots 203

an arc of θ − xk+1 radians and an arc of length xk. Since it has θ + xk+1 time
left, the definition of xk is such that he can manage its task. Finally, we need to
argue that the announcement was reached by a1 in time 1 + 2θ. This is clear if
t ≥ θ − x1. Otherwise, it is not hard to see that the worst case is t = y. In this
case, the chord a1 searches corresponds to an arc of length 2θ − x1 − y. Thus,
the total time a1 needs is

T = 1 + (θ − x1) + 2 sin
(2θ − x1 − y

2

)
.

In the sequel we will make use of the following simple facts.

Fact 1. For x ∈ (0, π
2), sin x < x.

Fact 2. For x ∈ (0, π
2), sin x < 2 sin x

2 .

Fact 3. For x ∈ (0, π
4), sin x < x − x3

7 .

Since, for n ≥ 4, 2θ − x1 − y < π, using Fact 1 (twice) and substituting
y = 2θ − 2 sin θ we obtain

T ≤ 1 + (θ − x1) + (2θ − x1 − y) ≤ 1 + 2θ − 2x1 + sin θ.

To provide a lower bound on x1, apply Fact 1 on the recursive definition to
obtain

xn−3 = θ − 2 sin
θ

2
; xk ≥ 2xk+1, for 0 < k < n − 1. (2)

It follows that
x1 ≥ 2n−4

(
θ − 2 sin

θ

2

)
.

Combining with the upper bound on T , to show T ≤ 1 + 2θ, it suffices to argue
that

2n−3
(2π

n
− 2 sin

π

n

)
≥ sin

2π

n
.

Using Fact 2, sin 2π
n ≤ 2 sin π

n . Substituting this and rearranging, it suffices to
show that

2n−3 · π

n
≥ (

2n−3 + 1
)
sin

π

n
.

In view of Fact 3, the sufficient condition simplifies further to

2n−3 ≥ (
2n−3 + 1

)(
1 − π2

7n2

)
⇐⇒ (

2n−3 + 1
)
π2 ≥ 7n2,

which holds for all n ≥ 9.
Finally cases n ∈ {5, 6, 7, 8} have been verified computationally as follows.

In the table below we list values y, x1, . . . , xn−3 for n ∈ {5, 6, 7, 8}. These values
determine the algorithm for these cases. To verify the table, it suffices to verify
y ≤ 2θ − 2 sin θ, T ≥ 1 + (θ − x1) + 2 sin(2θ−x1−y

2), S(n) ≤ 1 + 2θ, and xk ≤
θ +xk+1 −2 sin(θ−xk+1

2) (for 0 < k < n−2). With respect to the xk values, note

204 K. Georgiou et al.

n x5 x4 x3 x2 x1 y T S(n)

5 0.0810 0.2285 0.611 3.51327 3.51327

6 0.047 0.135 0.3 0.36 3.07 3.09

7 0.029 0.085 0.17∗ 0.34∗ 0.2 2.74 2.79

8 0.02 0.04∗ 0.08∗ 0.16∗ 0.32∗ 0.1 2.56 2.57

that those which are double the previous one (marked with an asterisk) need
not be verified in view of inequality (2).

This completes the proof of the lemma. ��
Now we can complete the rest of the proof of Theorem 3.

Proof (Theorem 3). Lemmas 1 and 2 prove the upper bound for n = 3, 4 robots
respectively, and cases n ≥ 5 are covered by Lemma 3. ��

5 Conclusion

In this paper we considered search on a circle with n robots, where either f ≥ 1 of
them are crash-faulty, or one of them is Byzantine-faulty, and we proved that the
optimal worst-case search times are exactly 1+ (f+1)2π

n and 1+ 4π
n , respectively.

The optimality for the Byzantine case is quite surprising given that there are very
few tight bounds for search on a circle even for the wireless model. Extending the
results either to multiple Byzantine-faulty robots or to the evacuation problem
are two challenging open problems in the context of circle search.

References

1. Ahlswede, R., Wegener, I.: Search Problems. Wiley, Hoboken (1987)
2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer,

Heidelberg (2003). https://doi.org/10.1007/b100809
3. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.

106(2), 234–252 (1993)
4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
5. Bellman, R.: An optimal search. Siam Rev. 5(3), 274–274 (1963)
6. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-

uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 9

7. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot.
In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0 10

8. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In:
Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile
Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-11072-7 14

https://doi.org/10.1007/b100809
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-72050-0_10
https://doi.org/10.1007/978-3-030-11072-7_14
https://doi.org/10.1007/978-3-030-11072-7_14

Optimal Circle Search Despite the Presence of Faulty Robots 205

9. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: ISAAC, pp. 27:1–
27:12 (2016)

10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: PODC, pp. 405–414. ACM (2016)

11. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

12. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2), 342–355 (2006)

13. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber,
B.: Evacuating using face-to-face communication. CoRR, abs/1501.04985 (2015)

14. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996)

15. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

https://doi.org/10.1007/978-3-319-19662-6_13

Author Index

Almethen, Abdullah 41

Bagheri, Iman 3
Böltz, Lucas 63

Carstens, Corrie Jacobien 158
Chowdhury, Rezaul 137

de Berg, Mark 158
Dinitz, Michael 96

Ephraim, Naomi 96

Frey, Hannes 63

Galesi, Nicola 79
Gao, Jie 137
Georgiou, Konstantinos 192

Janson, Thomas 119

Kranakis, Evangelos 192
Kshemkalyani, Ajay D. 23

Leonardos, Nikos 192
Lin, Shan 137
Liu, Kin Sum 137

Mandal, Partha Sarathi 177
Mandjes, Michel 158
Michail, Othon 41
Molla, Anisur Rahaman 23

Narayanan, Lata 3

Oak, Aditya 119
Opatrny, Jaroslav 3

Pagourtzis, Aris 192
Papaioannou, Ioannis 192
Pattanayak, Debasish 177
Potapov, Igor 41

Ramesh, H. 177
Ranjbar, Fariba 79

Schindelhauer, Christian 119
Sharma, Gokarna 23

Tsai, Shih-Yu 137

Yang, Hao-Tsung 137

Zito, Michele 79

	Preface
	Organization
	Contents
	Mobility Management
	Evacuation of Equilateral Triangles by Mobile Agents of Limited Communication Range
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Model and Notation
	3 Evacuation of Two Agents
	3.1 The No-Detour Algorithm
	3.2 Trajectories with Detours as in ChuangpishitMNO17
	3.3 A New Kind of Detour Trajectory
	3.4 A Lower Bound for Evacuating Two Agents

	4 Evacuation of Three or Four Agents
	4.1 Explore 3 Sides Before Connecting (X3C)
	4.2 Explore 1 Side Before Connecting (X1C)
	4.3 Evacuation of Four Agents

	5 Evacuation of k>4 Agents
	References

	Fast Dispersion of Mobile Robots on Arbitrary Graphs
	1 Introduction
	2 Model Details and Preliminaries
	3 DFS Traversal of a Graph
	4 Algorithm
	4.1 High Level Overview of the Algorithm
	4.2 Detailed Description of the Algorithm
	4.3 Correctness of the Algorithm

	5 Concluding Remarks
	References

	Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter
	1 Introduction
	1.1 Our Approach

	2 Preliminaries and Definitions
	3 Transforming the Diagonal into a Line
	3.1 An O(nn)-Time Transformation
	3.2 An O(n logn)-Time Transformation

	4 Universal Transformations
	4.1 An O(n n)-Time Universal Transformation
	4.2 An O(n logn)-Time Universal Transformation

	5 Conclusions
	References

	Foundations
	Existence of Connected Intersection-Free Subgraphs in Graphs with Redundancy and Coexistence Property
	1 Introduction
	1.1 Connected and Intersection-Free Subgraphs
	1.2 Redundancy and Coexistence Property
	1.3 Empirical Evidence for Log-Normal Shadowing
	1.4 Contribution and Outline of This Work

	2 Terms and Notations
	3 LLRAP and Connectivity
	4 Existence of a Solution
	5 Conclusion
	References

	Vertex-Connectivity for Node Failure Identification in Boolean Network Tomography
	1 Introduction
	2 Preliminaries
	3 Failure Identifiability in Augmented Hypergrids
	4 General Topologies
	5 Random Networks and Tradeoffs
	5.1 Sub-linear Separability in Erdős-Rényi Graphs
	5.2 Linear Separability in Erdős-Rényi Graphs
	5.3 Random Regular Graphs

	References

	Reception Capacity: Definitions, Game Theory and Hardness
	1 Introduction
	1.1 Modeling

	2 Our Results
	2.1 MaxPDS and Approximability
	2.2 Reception Capacity with Self-interested Agents
	2.3 Related Work
	2.4 Notation

	3 Hardness of Approximation
	4 The Reception Capacity Game
	4.1 Notation
	4.2 Lower Bound on Successful Receptions
	4.3 Upper Bound on Successful Receptions

	5 Open Questions
	A Approximation Algorithm for MaxPDS
	References

	Wireless Communication
	Collaborative Broadcast in O(loglogn) Rounds
	1 Introduction
	2 Related Work
	3 The Models
	4 Lower Bounds
	4.1 UDG
	4.2 SNR
	4.3 MIMO

	5 Expanding Disk Broadcasting
	6 MIMO
	7 Conclusions and Outlook
	References

	Multi-channel Assignment and Link Scheduling for Prioritized Latency-Sensitive Applications
	1 Introduction
	2 Related Work
	3 Min Max Refresh Time in the Single-Antenna Setting
	4 Min Max Weighted Refresh Time in the Single-Antenna Setting
	4.1 Lower Bound of the Optimal Solution
	4.2 Algorithm
	4.3 Analysis of the Approximation Ratio

	5 Min Max (Weighted) Refresh Time in the Multi-antenna Setting
	6 Conclusion and Future Work
	A Appendix: Omitted Proof
	A.1 Proof on Schedule Periodicity

	B Evaluation
	References

	Throughput and Packet Displacements of Dynamic Broadcasting Algorithms
	1 Introduction
	2 Model and Algorithms
	3 Effect of Modelling Assumptions on Throughput
	4 Broadcast Rate of Low-Displacement Policies
	5 Comparing High-Throughput Policies
	6 Discussion and Concluding Remarks
	References

	Faulty Robots
	Chauffeuring a Crashed Robot from a Disk
	1 Introduction
	2 Model and Preliminaries
	3 Lower Bounds for Wireless Communication
	4 Upper Bound for Wireless Communication
	4.1 Trivial Upper Bound (Algorithm A0(MoveTogether))
	4.2 Evacuation Algorithm A1 (MoveOpposite)
	4.3 Evacuation Algorithm A2 (MoveSameDirection)

	5 Comparison Between Algorithms
	6 Conclusion
	References

	Optimal Circle Search Despite the Presence of Faulty Robots
	1 Introduction
	1.1 Computation Model
	1.2 Related Work
	1.3 Preliminaries and Notation
	1.4 Results of the Paper

	2 Lower Bound
	3 Searching with Crash Faults
	4 Search with One Byzantine Fault
	4.1 (3,1)-Search with a Byzantine-Faulty Robot
	4.2 (4,1)-Search with a Byzantine-Faulty Robot
	4.3 (n,1)-Search with a Byzantine-Faulty Robot, n 5

	5 Conclusion
	References

	Author Index

