
Chapter 8

Image alignment and stitching

8.1 Pairwise alignment . 403
8.1.1 2D alignment using least squares . 403
8.1.2 Application: Panography . 405
8.1.3 Iterative algorithms . 406
8.1.4 Robust least squares and RANSAC . 408
8.1.5 3D alignment . 410

8.2 Image stitching . 411
8.2.1 Parametric motion models . 412
8.2.2 Application: Whiteboard and document scanning 414
8.2.3 Rotational panoramas . 414
8.2.4 Gap closing . 416
8.2.5 Application: Video summarization and compression 417
8.2.6 Cylindrical and spherical coordinates . 418

8.3 Global alignment . 421
8.3.1 Bundle adjustment . 421
8.3.2 Parallax removal . 424
8.3.3 Recognizing panoramas . 425

8.4 Compositing . 426
8.4.1 Choosing a compositing surface . 426
8.4.2 Pixel selection and weighting (deghosting) 430
8.4.3 Application: Photomontage . 435
8.4.4 Blending . 435

8.5 Additional reading . 437
8.6 Exercises . 438

© Springer Nature Switzerland AG 2022
R. Szeliski, Computer Vision, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-34372-9_8

401

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34372-9_8&domain=pdf

402 8 Image alignment and stitching

(a) (b)

(c)

(d) (e)

Figure 8.1 Image stitching: (a) geometric alignment of 2D images for stitching (Szeliski and Shum 1997) ©
1997 ACM; (b) a spherical panorama constructed from 54 photographs (Szeliski and Shum 1997) © 1997 ACM;
(c) a multi-image panorama automatically assembled from an unordered photo collection; a multi-image stitch
(d) without and (e) with moving object removal (Uyttendaele, Eden, and Szeliski 2001) © 2001 IEEE.

8.1 Pairwise alignment 403

y

x

similarity

Euclidean affine

projective

translation

Figure 8.2 Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is to
match these features across different images (Section 7.1.3). An important component of this match-
ing is to verify whether the set of matching features is geometrically consistent, e.g., whether the fea-
ture displacements can be described by a simple 2D or 3D geometric transformation. The computed
motions can then be used in other applications such as image stitching (Section 8.2) or augmented
reality (Section 11.2.2).

In this chapter, we look at the topic of geometric image registration, i.e., the computation of 2D
and 3D transformations that map features in one image to another (Section 8.1). In Chapter 11, we
look at the related problems of pose estimation, which is determining a camera’s position relative
to a known 3D object or scene, and structure from motion, i.e., how to simultaneously estimate 3D
geometry and camera motion.

8.1 Pairwise alignment

Feature-based alignment is the problem of estimating the motion between two or more sets of
matched 2D or 3D points. In this section, we restrict ourselves to global parametric transforma-
tions, such as those described in Section 2.1.1 and shown in Table 2.1 and Figure 8.2, or higher
order transformation for curved surfaces (Shashua and Toelg 1997; Can, Stewart et al. 2002). Ap-
plications to non-rigid or elastic deformations (Bookstein 1989; Kambhamettu, Goldgof et al. 1994;
Szeliski and Lavallée 1996; Torresani, Hertzmann, and Bregler 2008) are examined in Sections 9.2.2
and 13.6.4.

8.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x′i)} and a planar parametric transformation1 of the form

x′ = f(x; p), (8.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this is to
use least squares, i.e., to minimize the sum of squared residuals

ELS =
∑

i

‖ri‖2 =
∑

i

‖f(xi; p)− x′i‖2, (8.2)

where
ri = x′i − f(xi; p) = x̂′i − x̃′i (8.3)

1For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997) and Shashua
and Wexler (2001).

404 8 Image alignment and stitching

Transform Matrix Parameters p Jacobian J

translation

[
1 0 tx
0 1 ty

]
(tx, ty)

[
1 0

0 1

]

Euclidean

[
cθ −sθ tx
sθ cθ ty

]
(tx, ty, θ)

[
1 0 −sθx− cθy
0 1 cθx− sθy

]

similarity

[
1 + a −b tx
b 1 + a ty

]
(tx, ty, a, b)

[
1 0 x −y
0 1 y x

]

affine

[
1 + a00 a01 tx
a10 1 + a11 ty

]
(tx, ty, a00, a01, a10, a11)

[
1 0 x y 0 0

0 1 0 0 x y

]

projective




1 + h00 h01 h02
h10 1 + h11 h12
h20 h21 1




(h00, h01, . . . , h21) (see Section 8.1.3)

Table 8.1 Jacobians of the 2D coordinate transformations x′ = f(x; p) shown in Table 2.1, where we have
re-parameterized the motions so that they are identity for p = 0.

is the residual between the measured location x̂′i and its corresponding current predicted location
x̃′i = f(xi; p). (See Appendix A.2 for more on least squares and Appendix B.2 for a statistical
justification.)

Many of the motion models presented in Section 2.1.1 and Table 2.1, i.e., translation, similarity,
and affine, have a linear relationship between the amount of motion ∆x = x′ − x and the unknown
parameters p,

∆x = x′ − x = J(x)p, (8.4)

where J = ∂f/∂p is the Jacobian of the transformation f with respect to the motion parameters
p (see Table 8.1). In this case, a simple linear regression (linear least squares problem) can be
formulated as

ELLS =
∑

i

‖J(xi)p−∆xi‖2 (8.5)

= pT

[∑

i

JT (xi)J(xi)

]
p− 2pT

[∑

i

JT (xi)∆xi

]
+
∑

i

‖∆xi‖2 (8.6)

= pTAp− 2pTb + c. (8.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of normal
equations2

Ap = b, (8.8)

where
A =

∑

i

JT (xi)J(xi) (8.9)

2For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p = ∆xi

instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely arise in image
registration.

8.1 Pairwise alignment 405

Figure 8.3 A simple panograph consisting of three images automatically aligned with a translational model and
then averaged together.

is called the Hessian and b =
∑
i J

T (xi)∆xi. For the case of pure translation, the resulting equa-
tions have a particularly simple form, i.e., the translation is the average translation between corre-
sponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points are
matched with the same accuracy. This is often not the case, since certain points may fall into more
textured regions than others. If we associate a scalar variance estimate σ2

i with each correspondence,
we can minimize the weighted least squares problem instead,3

EWLS =
∑

i

σ−2i ‖ri‖2. (8.10)

As shown in Section 9.1.3, a covariance estimate for patch-based matching can be obtained by
multiplying the inverse of the patch Hessian Ai (9.48) with the per-pixel noise covariance σ2

n (9.37).
Weighting each squared residual by its inverse covariance Σ−1i = σ−2n Ai (which is called the
information matrix), we obtain

ECWLS =
∑

i

‖ri‖2Σ−1
i

=
∑

i

rTi Σ−1i ri =
∑

i

σ−2n rTi Airi. (8.11)

8.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and scaled
before being blended with simple averaging (Figure 8.3). This process mimics the photographic
collages created by artist David Hockney, although his compositions use an opaque overlay model,
being created out of regular photographs.

In most of the examples seen on the web, the images are aligned by hand for best artistic ef-
fect.4 However, it is also possible to use feature matching and alignment techniques to perform the
registration automatically (Nomura, Zhang, and Nayar 2007; Zelnik-Manor and Perona 2007).

3Problems where each measurement can have a different variance or uncertainty are called heteroscedastic models.
4https://www.flickr.com/groups/panography.

https://www.flickr.com/groups/panography

406 8 Image alignment and stitching

Consider a simple translational model. We want all the corresponding features in different im-
ages to line up as best as possible. Let tj be the location of the jth image coordinate frame in the
global composite frame and xij be the location of the ith matched feature in the jth image. In order
to align the images, we wish to minimize the least squares error

EPLS =
∑

ij

‖(tj + xij)− xi‖2, (8.12)

where xi is the consensus (average) position of feature i in the global coordinate frame. (An alterna-
tive approach is to register each pair of overlapping images separately and then compute a consensus
location for each frame—see Exercise 8.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the frame
and point locations tj and xi). To fix this, either pick one frame as being at the origin or add a
constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are left as an
exercise (Exercise 8.2). See if you can create some collages that you would be happy to share with
others on the web.

8.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in com-
puter vision do not have a simple linear relationship between the measurements and the unknowns.
In this case, the resulting problem is called non-linear least squares or non-linear regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation (trans-
lation plus rotation) between two sets of points. If we parameterize this transformation by the
translation amount (tx, ty) and the rotation angle θ, as in Table 2.1, the Jacobian of this transfor-
mation, given in Table 8.1, depends on the current value of θ. Notice how in Table 8.1, we have
re-parameterized the motion matrices so that they are always the identity at the origin p = 0, which
makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update ∆p to the current
parameter estimate p by minimizing

ENLS(∆p) =
∑

i

‖f(xi; p + ∆p)− x′i‖2 (8.13)

≈
∑

i

‖J(xi; p)∆p− ri‖2 (8.14)

= ∆pT

[∑

i

JTJ

]
∆p− 2∆pT

[∑

i

JT ri

]
+
∑

i

‖ri‖2 (8.15)

= ∆pTA∆p− 2∆pTb + c, (8.16)

where the “Hessian”5 A is the same as Equation (8.9) and the right-hand side vector

b =
∑

i

JT (xi)ri (8.17)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the parameters
are pulled in the direction of the prediction error with a strength proportional to the Jacobian.

5The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (8.13). Instead, it is
the approximate Hessian, which neglects second (and higher) order derivatives of f(xi;p + ∆p).

8.1 Pairwise alignment 407

Once A and b have been computed, we solve for ∆p using

(A + λdiag(A))∆p = b, (8.18)

and update the parameter vector p ← p + ∆p accordingly. The parameter λ is an additional
damping parameter used to ensure that the system takes a “downhill” step in energy (squared error)
and is an essential component of the Levenberg–Marquardt algorithm (described in more detail in
Appendix A.3). In many applications, it can be set to 0 if the system is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3× 3 set of normal equations in the
unknowns (δtx, δty, δθ). An initial guess for (tx, ty, θ) can be obtained by fitting a four-parameter
similarity transform in (tx, ty, c, s) and then setting θ = tan−1(s/c). An alternative approach is
to estimate the translation parameters using the centroids of the 2D points and to then estimate the
rotation angle using polar coordinates (Exercise 8.3).

For the other 2D motion models, the derivatives in Table 8.1 are all fairly straightforward, ex-
cept for the projective 2D motion (homography), which arises in image-stitching applications (Sec-
tion 8.2). These equations can be re-written from (2.21) in their new parametric form as

x′ =
(1 + h00)x+ h01y + h02

h20x+ h21y + 1
and y′ =

h10x+ (1 + h11)y + h12
h20x+ h21y + 1

. (8.19)

The Jacobian is therefore

J =
∂f

∂p
=

1

D

[
x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y

]
, (8.20)

where D = h20x+ h21y + 1 is the denominator in (8.19), which depends on the current parameter
settings (as do x′ and y′).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiplying both
sides of the equations in (8.19) through by the denominator, which yields the linear set of equations,

[
x̂′ − x
ŷ′ − y

]
=

[
x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y

]


h00

...
h21


 . (8.21)

However, this is not optimal from a statistical point of view, since the denominator D, which was
used to multiply each equation, can vary quite a bit from point to point.6

One way to compensate for this is to reweight each equation by the inverse of the current estimate
of the denominator, D,

1

D

[
x̂′ − x
ŷ′ − y

]
=

1

D

[
x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y

]


h00

...
h21


 . (8.22)

While this may at first seem to be the exact same set of equations as (8.21), because least squares
is being used to solve the over-determined set of equations, the weightings do matter and produce a
different set of normal equations that performs better in practice.

6Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct linear
transform, but that term is more commonly associated with pose estimation (Section 11.2). Note also that our definition of
the hij parameters differs from that used in their book, since we define hii to be the difference from unity and we do not
leave h22 as a free parameter, which means that we cannot handle certain extreme homographies.

408 8 Image alignment and stitching

The most principled way to do the estimation, however, is to directly minimize the squared resid-
ual Equations (8.13) using the Gauss–Newton approximation, i.e., performing a first-order Taylor
series expansion in p, as shown in (8.14), which yields the set of equations

[
x̂′ − x̃′
ŷ′ − ỹ′

]
=

1

D

[
x y 1 0 0 0 −x̃′x −x̃′y
0 0 0 x y 1 −ỹ′x −ỹ′y

]



∆h00
...

∆h21


 . (8.23)

While these look similar to (8.22), they differ in two important respects. First, the left-hand side
consists of unweighted prediction errors rather than point displacements and the solution vector is
a perturbation to the parameter vector p. Second, the quantities inside J involve predicted feature
locations (x̃′, ỹ′) instead of sensed feature locations (x̂′, ŷ′). Both of these differences are subtle
and yet they lead to an algorithm that, when combined with proper checking for downhill steps
(as in the Levenberg–Marquardt algorithm), will converge to a local minimum. Note that iterating
Equations (8.22) is not guaranteed to converge, since it is not minimizing a well-defined energy
function.

Equation (8.23) is analogous to the additive algorithm for direct intensity-based registration
(Section 9.2), since the change to the full transformation is being computed. If we prepend an
incremental homography to the current homography instead, i.e., we use a compositional algorithm
(described in Section 9.2), we get D = 1 (since p = 0) and the above formula simplifies to

[
x̂′ − x
ŷ′ − y

]
=

[
x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

]



∆h00
...

∆h21


 , (8.24)

where we have replaced (x̃′, ỹ′) with (x, y) for conciseness.

8.1.4 Robust least squares and RANSAC

While regular least squares is the method of choice for measurements where the noise follows a
normal (Gaussian) distribution, more robust versions of least squares are required when there are
outliers among the correspondences (as there almost always are). In this case, it is preferable to use
an M-estimator (Huber 1981; Hampel, Ronchetti et al. 1986; Black and Rangarajan 1996; Stewart
1999), which involves applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑

i

ρ(‖ri‖) (8.25)

instead of squaring them.7

We can take the derivative of this function with respect to p and set it to 0,

∑

i

ψ(‖ri‖)
∂‖ri‖
∂p

=
∑

i

ψ(‖ri‖)
‖ri‖

rTi
∂ri
∂p

= 0, (8.26)

where ψ(r) = ρ′(r) is the derivative of ρ and is called the influence function. If we introduce a
weight function, w(r) = ψ(r)/r, we observe that finding the stationary point of (8.25) using (8.26)
is equivalent to minimizing the iteratively reweighted least squares (IRLS) problem

EIRLS =
∑

i

w(‖ri‖)‖ri‖2, (8.27)

7The plots for some commonly used robust penalty functions ρ can be found in Figure 4.7.

8.1 Pairwise alignment 409

where the w(‖ri‖) play the same local weighting role as σ−2i in (8.10). The IRLS algorithm alter-
nates between computing the influence functions w(‖ri‖) and solving the resulting weighted least
squares problem (with fixed w values). Other incremental robust least squares algorithms can be
found in the work of Sawhney and Ayer (1996), Black and Anandan (1996), Black and Rangarajan
(1996), and Baker, Gross et al. (2003) and in textbooks and tutorials on robust statistics (Huber
1981; Hampel, Ronchetti et al. 1986; Rousseeuw and Leroy 1987; Stewart 1999).

While M-estimators can definitely help reduce the influence of outliers, in some cases, starting
with too many outliers will prevent IRLS (or other gradient descent algorithms) from converging to
the global optimum. A better approach is often to find a starting set of inlier correspondences, i.e.,
points that are consistent with a dominant motion estimate.8

Two widely used approaches to this problem are called RANdom SAmple Consensus, or RANSAC
for short (Fischler and Bolles 1981), and least median of squares (LMS) (Rousseeuw 1984). Both
techniques start by selecting (at random) a subset of k correspondences, which is then used to com-
pute an initial estimate for p. The residuals of the full set of correspondences are then computed
as

ri = x̃′i(xi; p)− x̂′i, (8.28)

where x̃′i are the estimated (mapped) locations and x̂′i are the sensed (detected) feature point loca-
tions.9

The RANSAC technique then counts the number of inliers that are within ε of their predicted
location, i.e., whose ‖ri‖ ≤ ε. (The ε value is application dependent but is often around 1–3 pixels.)
Least median of squares finds the median value of the ‖ri‖2 values. The random selection process is
repeated S times and the sample set with the largest number of inliers (or with the smallest median
residual) is kept as the final solution. Either the initial parameter guess p or the full set of computed
inliers is then passed on to the next data fitting stage.

When the number of measurements is quite large, it may be preferable to only score a subset
of the measurements in an initial round that selects the most plausible hypotheses for additional
scoring and selection. This modification of RANSAC, which can significantly speed up its per-
formance, is called Preemptive RANSAC (Nistér 2003). In another variant on RANSAC called
PROSAC (PROgressive SAmple Consensus), random samples are initially added from the most
“confident” matches, thereby speeding up the process of finding a (statistically) likely good set of
inliers (Chum and Matas 2005). Raguram, Chum et al. (2012) provide a unified framework from
which most of these techniques can be derived as well as a nice experimental comparison.

Additional variants on RANSAC include MLESAC (Torr and Zisserman 2000), DSAC (Brach-
mann, Krull et al. 2017), Graph-Cut RANSAC (Barath and Matas 2018), MAGSAC (Barath, Matas,
and Noskova 2019), and ESAC (Brachmann and Rother 2019). Some of these algorithms, such
as DSAC (Differentiable RANSAC), are designed to be differentiable so they can be used in end-
to-end training of feature detection and matching pipelines (Section 7.1). The MAGSAC++ paper
by Barath, Noskova et al. (2020) compares many of these variants. Yang, Antonante et al. (2020)
claim that using a robust penalty function with a decreasing outlier parameter, i.e., graduated non-
convexity (Blake and Zisserman 1987; Barron 2019), can outperform RANSAC in many geometric
correspondence and pose estimation problems. To ensure that the random sampling has a good
chance of finding a true set of inliers, a sufficient number of trials S must be evaluated. Let p be the
probability that any given correspondence is valid and P be the probability of success after S trials.
The likelihood in one trial that all k random samples are inliers is pk. Therefore, the likelihood that

8For pixel-based alignment methods (Section 9.1.1), hierarchical (coarse-to-fine) techniques are often used to lock onto
the dominant motion in a scene.

9For problems such as epipolar geometry estimation, the residual may be the distance between a point and a line.

410 8 Image alignment and stitching

k p S

3 0.5 35
6 0.6 97
6 0.5 293

Table 8.2 Number of trials S to attain a 99% probability of success (Stewart 1999).

S such trials will all fail is
1− P = (1− pk)S (8.29)

and the required minimum number of trials is

S =
log(1− P)

log(1− pk)
. (8.30)

Stewart (1999) gives examples of the required number of trials S to attain a 99% probability of
success. As you can see from Table 8.2, the number of trials grows quickly with the number of
sample points used. This provides a strong incentive to use the minimum number of sample points k
possible for any given trial, which is how RANSAC is normally used in practice.

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the computation of
uncertainty (see Appendix B.6). For linear problems, this estimate can be obtained by inverting
the Hessian matrix (8.9) and multiplying it by the feature position noise, if these have not already
been used to weight the individual measurements, as in Equations (8.10) and (8.11). In statistics,
the Hessian, which is the inverse covariance, is sometimes called the (Fisher) information matrix
(Appendix B.1).

When the problem involves non-linear least squares, the inverse of the Hessian matrix provides
the Cramer–Rao lower bound on the covariance matrix, i.e., it provides the minimum amount of
covariance in a given solution, which can actually have a wider spread (“longer tails”) if the energy
flattens out away from the local minimum where the optimal solution is found.

8.1.5 3D alignment

Instead of aligning 2D sets of image features, many computer vision applications require the align-
ment of 3D points. In the case where the 3D transformations are linear in the motion parameters,
e.g., for translation, similarity, and affine, regular least squares (8.5) can be used.

The case of rigid (Euclidean) motion,

ER3D =
∑

i

‖x′i −Rxi − t‖2, (8.31)

which arises more frequently and is often called the absolute orientation problem (Horn 1987),
requires slightly different techniques. If only scalar weightings are being used (as opposed to full
3D per-point anisotropic covariance estimates), the weighted centroids of the two point clouds c

and c′ can be used to estimate the translation t = c′ −Rc.10 We are then left with the problem of
10When full covariances are used, they are transformed by the rotation, so a closed-form solution for translation is not

possible.

8.2 Image stitching 411

estimating the rotation between two sets of points {x̂i = xi − c} and {x̂′i = x′i − c′} that are both
centered at the origin.

One commonly used technique is called the orthogonal Procrustes algorithm (Golub and Van
Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of the 3 × 3
correlation matrix

C =
∑

i

x̂′x̂T = UΣVT . (8.32)

The rotation matrix is then obtained as R = UVT . (Verify this for yourself when x̂′ = Rx̂.)
Another technique is the absolute orientation algorithm (Horn 1987) for estimating the unit

quaternion corresponding to the rotation matrix R, which involves forming a 4 × 4 matrix from
the entries in C and then finding the eigenvector associated with its largest positive eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two addi-
tional techniques proposed in the literature, but find that the difference in accuracy is negligible (well
below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D covari-
ances are being used or when the 3D alignment is part of some larger optimization, the incremental
rotation update introduced in Section 2.1.3 (2.35–2.36), which is parameterized by an instantaneous
rotation vector ω, can be used (See Section 8.2.3 for an application to image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between data points
is not known a priori. In this case, iterative algorithms that start by matching nearby points and then
update the most likely correspondence can be used (Besl and McKay 1992; Zhang 1994; Szeliski and
Lavallée 1996; Gold, Rangarajan et al. 1998; David, DeMenthon et al. 2004; Li and Hartley 2007;
Enqvist, Josephson, and Kahl 2009). These techniques are discussed in more detail in Section 13.2.1.

8.2 Image stitching

Algorithms for aligning images and stitching them into seamless photo-mosaics are among the oldest
and most widely used in computer vision (Milgram 1975; Peleg 1981). Image stitching algorithms
create the high-resolution photo-mosaics used to produce today’s digital maps and satellite photos.
They are also now a standard mode in smartphone cameras and can be used to create beautiful ultra
wide-angle panoramas.

Image stitching originated in the photogrammetry community, where more manually intensive
methods based on surveyed ground control points or manually registered tie points have long been
used to register aerial photos into large-scale photo-mosaics (Slama 1980). One of the key advances
in this community was the development of bundle adjustment algorithms (Section 11.4.2), which
could simultaneously solve for the locations of all of the camera positions, thus yielding globally
consistent solutions (Triggs, McLauchlan et al. 1999). Another recurring problem in creating photo-
mosaics is the elimination of visible seams, for which a variety of techniques have been developed
over the years (Milgram 1975, 1977; Peleg 1981; Davis 1998; Agarwala, Dontcheva et al. 2004)

In film photography, special cameras were developed in the 1990s to take ultra-wide-angle
panoramas, often by exposing the film through a vertical slit as the camera rotated on its axis (Mee-
han 1990). In the mid-1990s, image alignment techniques started being applied to the construc-
tion of wide-angle seamless panoramas from regular hand-held cameras (Mann and Picard 1994;
Chen 1995; Szeliski 1996). Subsequent algorithms addressed the need to compute globally con-
sistent alignments (Szeliski and Shum 1997; Sawhney and Kumar 1999; Shum and Szeliski 2000),
to remove “ghosts” due to parallax and object movement (Davis 1998; Shum and Szeliski 2000;
Uyttendaele, Eden, and Szeliski 2001; Agarwala, Dontcheva et al. 2004), and to deal with varying

412 8 Image alignment and stitching

exposures (Mann and Picard 1994; Uyttendaele, Eden, and Szeliski 2001; Levin, Zomet et al. 2004;
Eden, Uyttendaele, and Szeliski 2006; Kopf, Uyttendaele et al. 2007).11

While early techniques worked by directly minimizing pixel-to-pixel dissimilarities, today’s al-
gorithms extract a sparse set of features and match them to each other, as described in Chapter 7.
Such feature-based approaches (Zoghlami, Faugeras, and Deriche 1997; Capel and Zisserman 1998;
Cham and Cipolla 1998; Badra, Qumsieh, and Dudek 1998; McLauchlan and Jaenicke 2002; Brown
and Lowe 2007) have the advantage of being more robust against scene movement and are usually
faster,12 Their biggest advantage, however, is the ability to “recognize panoramas”, i.e., to auto-
matically discover the adjacency (overlap) relationships among an unordered set of images, which
makes them ideally suited for fully automated stitching of panoramas taken by casual users (Brown
and Lowe 2007).

What, then, are the essential problems in image stitching? As with image alignment, we must
first determine the appropriate mathematical model relating pixel coordinates in one image to pixel
coordinates in another; Section 8.2.1 reviews the basic models we have studied and presents some
new motion models related specifically to panoramic image stitching. Next, we must somehow
estimate the correct alignments relating various pairs (or collections) of images. Chapter 7 dis-
cusses how distinctive features can be found in each image and then efficiently matched to rapidly
establish correspondences between pairs of images. Chapter 9 discusses how direct pixel-to-pixel
comparisons combined with gradient descent (and other optimization techniques) can also be used
to estimate these parameters. When multiple images exist in a panorama, global optimization tech-
niques can be used to compute a globally consistent set of alignments and to efficiently discover
which images overlap one another. In Section 8.3, we look at how each of these previously devel-
oped techniques can be modified to take advantage of the imaging setups commonly used to create
panoramas.

Once we have aligned the images, we must choose a final compositing surface for warping the
aligned images (Section 8.4.1). We also need algorithms to seamlessly cut and blend overlapping
images, even in the presence of parallax, lens distortion, scene motion, and exposure differences
(Section 8.4.2–8.4.4).

8.2.1 Parametric motion models

Before we can register and align images, we need to establish the mathematical relationships that
map pixel coordinates from one image to another. A variety of such parametric motion models
are possible, from simple 2D transforms, to planar perspective models, 3D camera rotations, lens
distortions, and mapping to non-planar (e.g., cylindrical) surfaces.

We already covered several of these models in Sections 2.1 and 8.1. In particular, we saw in
Section 2.1.4 how the parametric motion describing the deformation of a planar surface as viewed
from different positions can be described with an eight-parameter homography (2.71) (Mann and
Picard 1994; Szeliski 1996). We also saw how a camera undergoing a pure rotation induces a
different kind of homography (2.72).

In this section, we review both of these models and show how they can be applied to different
stitching situations. We also introduce spherical and cylindrical compositing surfaces and show
how, under favorable circumstances, they can be used to perform alignment using pure translations
(Section 8.2.6). Deciding which alignment model is most appropriate for a given situation or set of

11A collection of some of these papers was compiled by Benosman and Kang (2001) and they are surveyed by Szeliski
(2006a).

12See a discussion of the pros and cons of direct vs. feature-based techniques in (Triggs, Zisserman, and Szeliski 2000)
and in the first edition of this book (Szeliski 2010, Section 8.3.4).

8.2 Image stitching 413

(a) translation [2 dof] (b) affine [6 dof] (c) perspective [8 dof] (d) 3D rotation [3+ dof]

Figure 8.4 Two-dimensional motion models and how they can be used for image stitching.

data is a model selection problem (Torr 2002; Bishop 2006; Robert 2007; Hastie, Tibshirani, and
Friedman 2009; Murphy 2012), an important topic we do not cover in this book.

Planar perspective motion

The simplest possible motion model to use when aligning images is to simply translate and rotate
them in 2D (Figure 8.4a). This is exactly the same kind of motion that you would use if you
had overlapping photographic prints. It is also the kind of technique favored by David Hockney
to create the collages that he calls joiners (Zelnik-Manor and Perona 2007; Nomura, Zhang, and
Nayar 2007). Creating such collages, which show visible seams and inconsistencies that add to
the artistic effect, is popular on websites such as Flickr, where they more commonly go under the
name panography (Section 8.1.2). Translation and rotation are also usually adequate motion models
to compensate for small camera motions in applications such as photo and video stabilization and
merging (Exercise 8.1 and Section 9.2.1).

In Section 2.1.4, we saw how the mapping between two cameras viewing a common plane can
be described using a 3 × 3 homography (2.71). Consider the matrix M10 that arises when mapping
a pixel in one image to a 3D point and then back onto a second image,

x̃1 ∼ P̃1P̃
−1
0 x̃0 = M10x̃0. (8.33)

When the last row of the P0 matrix is replaced with a plane equation n̂0 · p + c0 and points are
assumed to lie on this plane, i.e., their disparity is d0 = 0, we can ignore the last column of M10

and also its last row, since we do not care about the final z-buffer depth. The resulting homography
matrix H̃10 (the upper left 3 × 3 sub-matrix of M10) describes the mapping between pixels in the
two images,

x̃1 ∼ H̃10x̃0. (8.34)

This observation formed the basis of some of the earliest automated image stitching algorithms
(Mann and Picard 1994; Szeliski 1994, 1996). Because reliable feature matching techniques had not
yet been developed, these algorithms used direct pixel value matching, i.e., direct parametric motion
estimation, as described in Section 9.2 and Equations (8.19–8.20).

More recent stitching algorithms first extract features and then match them up, often using robust
techniques such as RANSAC (Section 8.1.4) to compute a good set of inliers. The final computa-
tion of the homography (8.34), i.e., the solution of the least squares fitting problem given pairs of

414 8 Image alignment and stitching

corresponding features,

x1 =
(1 + h00)x0 + h01y0 + h02

h20x0 + h21y0 + 1
and (8.35)

y1 =
h10x0 + (1 + h11)y0 + h12

h20x0 + h21y0 + 1
, (8.36)

uses iterative least squares, as described in Section 8.1.3 and Equations (8.21–8.23).

8.2.2 Application: Whiteboard and document scanning

The simplest image-stitching application is to stitch together a number of image scans taken on a
flatbed scanner. Say you have a large map, or a piece of child’s artwork, that is too large to fit on your
scanner. Simply take multiple scans of the document, making sure to overlap the scans by a large
enough amount to ensure that there are enough common features. Next, take successive pairs of
images that you know overlap, extract features, match them up, and estimate the 2D rigid transform
(2.16),

xk+1 = Rkxk + tk, (8.37)

that best matches the features, using two-point RANSAC, if necessary, to find a good set of inliers.
Then, on a final compositing surface (aligned with the first scan, for example), resample your images
(Section 3.6.1) and average them together. Can you see any potential problems with this scheme?

One complication is that a 2D rigid transformation is non-linear in the rotation angle θ, so you
will have to either use non-linear least squares or constrain R to be orthonormal, as described in
Section 8.1.3.

A bigger problem lies in the pairwise alignment process. As you align more and more pairs,
the solution may drift so that it is no longer globally consistent. In this case, a global optimization
procedure, as described in Section 8.3, may be required. Such global optimization often requires
a large system of non-linear equations to be solved, although in some cases, such as linearized
homographies (Section 8.2.3) or similarity transforms (Section 8.1.2), regular least squares may be
an option.

A slightly more complex scenario is when you take multiple overlapping handheld pictures of a
whiteboard or other large planar object (He and Zhang 2005; Zhang and He 2007). Here, the natural
motion model to use is a homography, although a more complex model that estimates the 3D rigid
motion relative to the plane (plus the focal length, if unknown), could in principle be used.

8.2.3 Rotational panoramas

The most typical case for panoramic image stitching is when the camera undergoes a pure rotation.
Think of standing at the rim of the Grand Canyon. Relative to the distant geometry in the scene,
as you snap away, the camera is undergoing a pure rotation, which is equivalent to assuming that all
points are very far from the camera, i.e., on the plane at infinity (Figure 8.5).13 Setting t0 = t1 = 0,
we get the simplified 3 × 3 homography

H̃10 = K1R1R
−1
0 K−10 = K1R10K

−1
0 , (8.38)

13In a more general (e.g., indoor) scene, if we want to ensure that there is no parallax (visible relative movement between
objects at different depths), we need to rotate the camera around the lens’s front no-parallax point (Littlefield 2006). This
can be achieved by using a specialized panoramic rotation head with a built-in translation stage (Houghton 2013) or by
determining the front nodal point using observations of collinear points—see Debevec, Wenger et al. (2002) and Szeliski
(2010, Figure 6.7).

8.2 Image stitching 415

Π∞:
(0,0,0,1)·p= 0

R10

x1 = (x1,y1,f1)~x0 = (x0,y0,f0)~

Figure 8.5 Pure 3D camera rotation. The form of the homography (mapping) is particularly simple and depends
only on the 3D rotation matrix and focal lengths.

where Kk = diag(fk, fk, 1) is the simplified camera intrinsic matrix (2.59), assuming that cx =

cy = 0, i.e., we are indexing the pixels starting from the image center (Szeliski 1996). This can also
be re-written as 


x1
y1
1


 ∼



f1

f1
1


R10



f−10

f−10

1





x0
y0
1


 (8.39)

or 

x1
y1
f1


 ∼ R10



x0
y0
f0


 , (8.40)

which reveals the simplicity of the mapping equations and makes all of the motion parameters ex-
plicit. Thus, instead of the general eight-parameter homography relating a pair of images, we get
the three-, four-, or five-parameter 3D rotation motion models corresponding to the cases where
the focal length f is known, fixed, or variable (Szeliski and Shum 1997).14 Estimating the 3D ro-
tation matrix (and, optionally, focal length) associated with each image is intrinsically more stable
than estimating a homography with a full eight degrees of freedom, which makes this the method
of choice for large-scale image stitching algorithms (Szeliski and Shum 1997; Shum and Szeliski
2000; Brown and Lowe 2007).

Given this representation, how do we update the rotation matrices to best align two overlapping
images? Given a current estimate for the homography H̃10 in (8.38), the best way to update R10

is to prepend an incremental rotation matrix R(ω) to the current estimate R10 (Szeliski and Shum
1997; Shum and Szeliski 2000),

H̃(ω) = K1R(ω)R10K
−1
0 = [K1R(ω)K−11][K1R10K

−1
0] = DH̃10. (8.41)

Note that here we have written the update rule in the compositional form, where the incremental
update D is prepended to the current homography H̃10. Using the small-angle approximation to
R(ω) given in (2.35), we can write the incremental update matrix as

D = K1R(ω)K−11 ≈ K1(I + [ω]×)K−11 =




1 −ωz f1ωy
ωz 1 −f1ωx

−ωy/f1 ωx/f1 1


 . (8.42)

14An initial estimate of the focal lengths can be obtained using the intrinsic calibration techniques described in Sec-
tion 11.1.3 or from EXIF tags.

416 8 Image alignment and stitching

Notice how there is now a nice one-to-one correspondence between the entries in the D matrix and
the h00, . . . , h21 parameters used in Table 8.1 and Equation (8.19), i.e.,

(h00, h01, h02, h00, h11, h12, h20, h21) = (0,−ωz, f1ωy, ωz, 0,−f1ωx,−ωy/f1, ωx/f1). (8.43)

We can therefore apply the chain rule to Equations (8.24 and 8.43) to obtain

[
x̂′ − x
ŷ′ − y

]
=

[
−xy/f1 f1 + x2/f1 −y

−(f1 + y2/f1) xy/f1 x

]

ωx
ωy
ωz


 , (8.44)

which give us the linearized update equations needed to estimate ω = (ωx, ωy, ωz).15 Notice that
this update rule depends on the focal length f1 of the target view and is independent of the focal
length f0 of the template view. This is because the compositional algorithm essentially makes small
perturbations to the target. Once the incremental rotation vector ω has been computed, the R1

rotation matrix can be updated using R1 ← R(ω)R1.
The formulas for updating the focal length estimates are a little more involved and are given in

Shum and Szeliski (2000). We will not repeat them here, since an alternative update rule, based on
minimizing the difference between back-projected 3D rays, is given in Section 8.3.1. Figure 8.1a
shows the alignment of four images under the 3D rotation motion model.

8.2.4 Gap closing

The techniques presented in this section can be used to estimate a series of rotation matrices and
focal lengths, which can be chained together to create large panoramas. Unfortunately, because of
accumulated errors, this approach will rarely produce a closed 360° panorama. Instead, there will
invariably be either a gap or an overlap (Figure 8.6).

We can solve this problem by matching the first image in the sequence with the last one. The
difference between the two rotation matrix estimates associated with the repeated first image indi-
cates the amount of misregistration. This error can be distributed evenly across the whole sequence
by taking the quotient of the two quaternions associated with these rotations and dividing this “er-
ror quaternion” by the number of images in the sequence (Szeliski and Shum 1997). We can also
update the estimated focal length based on the amount of misregistration. To do this, we first con-
vert the error quaternion into a gap angle, θg and then update the focal length using the equation
f ′ = f(1− θg/360◦).

Figure 8.6a shows the end of registered image sequence and the first image. There is a big gap
between the last image and the first, which are in fact the same image. The gap is 32° because the
wrong estimate of focal length (f = 510) was used. Figure 8.6b shows the registration after closing
the gap with the correct focal length (f = 468). Notice that both mosaics show very little visual
misregistration (except at the gap), yet Figure 8.6a has been computed using a focal length that
has 9% error. Related approaches have been developed by Hartley (1994b), McMillan and Bishop
(1995), Stein (1995), and Kang and Weiss (1997) to solve the focal length estimation problem using
pure panning motion and cylindrical images.

Unfortunately, this gap-closing heuristic only works for the kind of “one-dimensional” panorama
where the camera is continuously turning in the same direction. In Section 8.3, we describe a
different approach to removing gaps and overlaps that works for arbitrary camera motions.

15This is the same as the rotational component of instantaneous rigid flow (Bergen, Anandan et al. 1992) and the update
equations given by Szeliski and Shum (1997) and Shum and Szeliski (2000).

8.2 Image stitching 417

(a) (b)

Figure 8.6 Gap closing (Szeliski and Shum 1997) © 1997 ACM: (a) A gap is visible when the focal length is
wrong (f = 510). (b) No gap is visible for the correct focal length (f = 468).

8.2.5 Application: Video summarization and compression

An interesting application of image stitching is the ability to summarize and compress videos taken
with a panning camera. This application was first suggested by Teodosio and Bender (1993), who
called their mosaic-based summaries salient stills. These ideas were then extended by Irani, Hsu,
and Anandan (1995) and Irani and Anandan (1998) to additional applications, such as video com-
pression and video indexing. While these early approaches used affine motion models and were
therefore restricted to long focal lengths, the techniques were generalized by Lee, Chen et al. (1997)
to full eight-parameter homographies and incorporated into the MPEG-4 video compression stan-
dard, where the stitched background layers were called video sprites (Figure 8.7).

While video stitching is in many ways a straightforward generalization of multiple-image stitch-
ing (Steedly, Pal, and Szeliski 2005; Baudisch, Tan et al. 2006), the potential presence of large
amounts of independent motion, camera zoom, and the desire to visualize dynamic events impose
additional challenges. For example, moving foreground objects can often be removed using median
filtering. Alternatively, foreground objects can be extracted into a separate layer (Sawhney and Ayer
1996) and later composited back into the stitched panoramas, sometimes as multiple instances to
give the impressions of a “Chronophotograph” (Massey and Bender 1996) and sometimes as video
overlays (Irani and Anandan 1998). Videos can also be used to create animated panoramic video
textures (Section 14.5.2), in which different portions of a panoramic scene are animated with inde-
pendently moving video loops (Agarwala, Zheng et al. 2005; Rav-Acha, Pritch et al. 2005; Joshi,
Mehta et al. 2012; Yan, Liu, and Furukawa 2017; He, Liao et al. 2017; Oh, Joo et al. 2017), or to
shine “video flashlights” onto a composite mosaic of a scene (Sawhney, Arpa et al. 2002).

Video can also provide an interesting source of content for creating panoramas taken from mov-
ing cameras. While this invalidates the usual assumption of a single point of view (optical center),
interesting results can still be obtained. For example, the VideoBrush system of Sawhney, Kumar
et al. (1998) uses thin strips taken from the center of the image to create a panorama taken from a
horizontally moving camera. This idea can be generalized to other camera motions and compositing
surfaces using the concept of mosaics on an adaptive manifold (Peleg, Rousso et al. 2000), and also
used to generate panoramic stereograms (Ishiguro, Yamamoto, and Tsuji 1992; Peleg, Ben-Ezra,
and Pritch 2001).16 Related ideas have been used to create panoramic matte paintings for multi-

16A similar technique was likely used in the Google Cardboard Camera, https://blog.google/products/google-vr/

https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios

418 8 Image alignment and stitching

+ + + · · ·+ =

Figure 8.7 Video stitching the background scene to create a single sprite image that can be transmitted and
used to re-create the background in each frame (Lee, Chen et al. 1997) © 1997 IEEE.

plane cel animation (Wood, Finkelstein et al. 1997), for creating stitched images of scenes with
parallax (Kumar, Anandan et al. 1995), and as 3D representations of more complex scenes using
multiple-center-of-projection images (Rademacher and Bishop 1998) and multi-perspective panora-
mas (Román, Garg, and Levoy 2004; Román and Lensch 2006; Agarwala, Agrawala et al. 2006;
Kopf, Chen et al. 2010).

Another interesting variant on video-based panoramas is concentric mosaics (Section 14.3.3)
(Shum and He 1999). Here, rather than trying to produce a single panoramic image, the complete
original video is kept and used to re-synthesize views (from different camera origins) using ray
remapping (light field rendering), thus endowing the panorama with a sense of 3D depth. The same
dataset can also be used to explicitly reconstruct the depth using multi-baseline stereo (Ishiguro,
Yamamoto, and Tsuji 1992; Peleg, Ben-Ezra, and Pritch 2001; Li, Shum et al. 2004; Zheng, Kang
et al. 2007).

8.2.6 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to align images is to first warp the images into
cylindrical coordinates and then use a pure translational model to align them (Chen 1995; Szeliski
1996). Unfortunately, this only works if the images are all taken with a level camera or with a known
tilt angle.

Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the identity,
R = I, so that the optical axis is aligned with the z-axis and the y-axis is aligned vertically. The 3D
ray corresponding to an (x, y) pixel is therefore (x, y, f).

We wish to project this image onto a cylindrical surface of unit radius (Szeliski 1996). Points
on this surface are parameterized by an angle θ and a height h, with the 3D cylindrical coordinates
corresponding to (θ, h) given by

(sin θ, h, cos θ) ∝ (x, y, f), (8.45)

cardboard-camera-ios.

https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios
https://blog.google/products/google-vr/cardboard-camera-ios

8.2 Image stitching 419

p = (X,Y,Z)

x = (sinθ,h,cosθ)
θ
h

x

y

p = (X,Y,Z)

x = (sinθ cosφ, sinφ,
cosθ cosφ)θ

φ

x

y

(a) (b)

Figure 8.8 Projection from 3D to (a) cylindrical and (b) spherical coordinates.

as shown in Figure 8.8a. From this correspondence, we can compute the formula for the warped or
mapped coordinates (Szeliski and Shum 1997),

x′ = sθ = s tan−1
x

f
, (8.46)

y′ = sh = s
y√

x2 + f2
, (8.47)

where s is an arbitrary scaling factor (sometimes called the radius of the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of the image.17 The inverse of this
mapping equation is given by

x = f tan θ = f tan
x′

s
, (8.48)

y = h
√
x2 + f2 =

y′

s
f
√

1 + tan2 x′/s = f
y′

s
sec

x′

s
. (8.49)

Images can also be projected onto a spherical surface (Szeliski and Shum 1997), which is useful
if the final panorama includes a full sphere or hemisphere of views, instead of just a cylindrical strip.
In this case, the sphere is parameterized by two angles (θ, φ), with 3D spherical coordinates given
by

(sin θ cosφ, sinφ, cos θ cosφ) ∝ (x, y, f), (8.50)

as shown in Figure 8.8b.18 The correspondence between coordinates is now given by (Szeliski and
Shum 1997):

x′ = sθ = s tan−1
x

f
, (8.51)

y′ = sφ = s tan−1
y√

x2 + f2
, (8.52)

while the inverse is given by

x = f tan θ = f tan
x′

s
, (8.53)

y =
√
x2 + f2 tanφ = tan

y′

s
f
√

1 + tan2 x′/s = f tan
y′

s
sec

x′

s
. (8.54)

17The scale can also be set to a larger or smaller value for the final compositing surface, depending on the desired output
panorama resolution—see Section 8.4.

18Note that these are not the usual spherical coordinates, first presented in Equation (2.8). Here, the y-axis points at the
north pole instead of the z-axis, since we are used to viewing images taken horizontally, i.e., with the y-axis pointing in the
direction of the gravity vector.

420 8 Image alignment and stitching

(a) (b)

Figure 8.9 A cylindrical panorama (Szeliski and Shum 1997) © 1997 ACM: (a) two cylindrically warped
images related by a horizontal translation; (b) part of a cylindrical panorama composited from a sequence of
images.

Note that it may be simpler to generate a scaled (x, y, z) direction from Equation (8.50) followed by
a perspective division by z and a scaling by f .

Cylindrical image stitching algorithms are most commonly used when the camera is known to
be level and only rotating around its vertical axis (Chen 1995). Under these conditions, images at
different rotations are related by a pure horizontal translation.19 This makes it attractive as an initial
class project in an introductory computer vision course, since the full complexity of the perspective
alignment algorithm (Sections 8.1, 9.2, and 8.2.3) can be avoided. Figure 8.9 shows how two cylin-
drically warped images from a leveled rotational panorama are related by a pure translation (Szeliski
and Shum 1997).

Professional panoramic photographers often use pan-tilt heads that make it easy to control the tilt
and to stop at specific detents in the rotation angle. Motorized rotation heads are also sometimes used
for the acquisition of larger panoramas (Kopf, Uyttendaele et al. 2007).20 Not only do they ensure
a uniform coverage of the visual field with a desired amount of image overlap but they also make it
possible to stitch the images using cylindrical or spherical coordinates and pure translations. In this
case, pixel coordinates (x, y, f) must first be rotated using the known tilt and panning angles before
being projected into cylindrical or spherical coordinates (Chen 1995). Having a roughly known
panning angle also makes it easier to compute the alignment, as the rough relative positioning of all
the input images is known ahead of time, enabling a reduced search range for alignment. Figure 8.1b
shows a full 3D rotational panorama unwrapped onto the surface of a sphere (Szeliski and Shum
1997).

One final coordinate mapping worth mentioning is the polar mapping, where the north pole lies
along the optical axis rather than the vertical axis,

(cos θ sinφ, sin θ sinφ, cosφ) = s (x, y, z). (8.55)

In this case, the mapping equations become

x′ = sφ cos θ = s
x

r
tan−1

r

z
, (8.56)

y′ = sφ sin θ = s
y

r
tan−1

r

z
, (8.57)

19Small vertical tilts can sometimes be compensated for with vertical translations.
20See also https://gigapan.org.

https://gigapan.org

8.3 Global alignment 421

where r =
√
x2 + y2 is the radial distance in the (x, y) plane and sφ plays a similar role in the

(x′, y′) plane. This mapping provides an attractive visualization surface for certain kinds of wide-
angle panoramas and is also a good model for the distortion induced by fisheye lenses, as discussed
in Section 2.1.5. Note how for small values of (x, y), the mapping equations reduce to x′ ≈ sx/z,
which suggests that s plays a role similar to the focal length f .

8.3 Global alignment

So far, we have discussed how to register pairs of images using a variety of motion models. In most
applications, we are given more than a single pair of images to register. The goal is then to find a
globally consistent set of alignment parameters that minimize the misregistration between all pairs
of images (Szeliski and Shum 1997; Shum and Szeliski 2000; Sawhney and Kumar 1999; Coorg and
Teller 2000).

In this section, we extend the pairwise matching criteria (8.2, 9.1, and 9.43) to a global energy
function that involves all of the per-image pose parameters (Section 8.3.1). Once we have computed
the global alignment, we often need to perform local adjustments, such as parallax removal, to
reduce double images and blurring due to local misregistrations (Section 8.3.2). Finally, if we are
given an unordered set of images to register, we need to discover which images go together to form
one or more panoramas. This process of panorama recognition is described in Section 8.3.3.

8.3.1 Bundle adjustment

One way to register a large number of images is to add new images to the panorama one at a time,
aligning the most recent image with the previous ones already in the collection (Szeliski and Shum
1997) and discovering, if necessary, which images it overlaps (Sawhney and Kumar 1999). In
the case of 360° panoramas, accumulated error may lead to the presence of a gap (or excessive
overlap) between the two ends of the panorama, which can be fixed by stretching the alignment of
all the images using a process called gap closing (Section 8.2.4). However, a better alternative is
to simultaneously align all the images using a least-squares framework to correctly distribute any
misregistration errors.

The process of simultaneously adjusting pose parameters and 3D point locations for a large
collection of overlapping images is called bundle adjustment in the photogrammetry community
(Triggs, McLauchlan et al. 1999). In computer vision, it was first applied to the general structure
from motion problem (Szeliski and Kang 1994) and then later specialized for panoramic image
stitching (Shum and Szeliski 2000; Sawhney and Kumar 1999; Coorg and Teller 2000).

In this section, we formulate the problem of global alignment using a feature-based approach,
since this results in a simpler system. An equivalent direct approach can be obtained either by
dividing images into patches and creating a virtual feature correspondence for each one (Shum
and Szeliski 2000) or by replacing the per-feature error metrics with per-pixel metrics (Irani and
Anandan 1999).

Before we describe this in more details, we should mention that a simpler, although less accurate,
approach is to compute pairwise rotation estimates between overlapping images, and to then use
a rotation averaging approach to estimate a global rotation for each camera (Hartley, Trumpf et
al. 2013). However, since the measurement errors in each feature point location are not being
counted correctly, as is the case in bundle adjustment, the solution will not have the same theoretical
optimality.

422 8 Image alignment and stitching

Consider the feature-based alignment problem given in Equation (8.2), i.e.,

Epairwise−LS =
∑

i

‖ri‖2 = ‖x̃′i(xi; p)− x̂′i‖2. (8.58)

For multi-image alignment, instead of having a single collection of pairwise feature correspon-
dences, {(xi, x̂′i)}, we have a collection of n features, with the location of the ith feature point in
the jth image denoted by xij and its scalar confidence (i.e., inverse variance) denoted by cij .21 Each
image also has some associated pose parameters.

In this section, we assume that this pose consists of a rotation matrix Rj and a focal length
fj , although formulations in terms of homographies are also possible (Szeliski and Shum 1997;
Sawhney and Kumar 1999). The equation mapping a 3D point xi into a point xij in frame j can be
re-written from Equations (2.68) and (8.38) as

x̃ij ∼ KjRjxi and xi ∼ R−1j K−1j x̃ij , (8.59)

where Kj = diag(fj , fj , 1) is the simplified form of the calibration matrix. The motion mapping a
point xij from frame j into a point xik in frame k is similarly given by

x̃ik ∼ H̃kj x̃ij = KkRkR
−1
j K−1j x̃ij . (8.60)

Given an initial set of {(Rj , fj)} estimates obtained from chaining pairwise alignments, how do we
refine these estimates?

One approach is to directly extend the pairwise energy Epairwise−LS (8.58) to a multiview for-
mulation,

Eall−pairs−2D =
∑

i

∑

jk

cijcik‖x̃ik(x̂ij ; Rj , fj ,Rk, fk)− x̂ik‖2, (8.61)

where the x̃ik function is the predicted location of feature i in frame k given by (8.60), x̂ij is the ob-
served location, and the “2D” in the subscript indicates that an image-plane error is being minimized
(Shum and Szeliski 2000). Note that since x̃ik depends on the x̂ij observed value, we actually have
an errors-in-variable problem, which in principle requires more sophisticated techniques than least
squares to solve (Van Huffel and Lemmerling 2002; Matei and Meer 2006). However, in practice, if
we have enough features, we can directly minimize the above quantity using regular non-linear least
squares and obtain an accurate multi-frame alignment.

While this approach works pretty well, it suffers from two potential disadvantages. First, because
a summation is taken over all pairs with corresponding features, features that are observed many
times are overweighted in the final solution. (In effect, a feature observed m times gets counted

(
m
2

)

times instead of m times.) Second, the derivatives of x̃ik with respect to the {(Rj , fj)} are a little
cumbersome, although using the incremental correction to Rj introduced in Section 8.2.3 makes
this more tractable.

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to solve
not only for the pose parameters {(Rj , fj)} but also for the 3D point positions {xi},

EBA−2D =
∑

i

∑

j

cij‖x̃ij(xi; Rj , fj)− x̂ij‖2, (8.62)

where x̃ij(xi; Rj , fj) is given by (8.59). The disadvantage of full bundle adjustment is that there
are more variables to solve for, so each iteration and also the overall convergence may be slower.

21Features that are not seen in image j have cij = 0. We can also use 2 × 2 inverse covariance matrices Σ−1
ij in place of

cij , as shown in Equation (8.11).

8.3 Global alignment 423

(Imagine how the 3D points need to “shift” each time some rotation matrices are updated.) How-
ever, the computational complexity of each linearized Gauss–Newton step can be reduced using
sparse matrix techniques (Section 11.4.3) (Szeliski and Kang 1994; Triggs, McLauchlan et al. 1999;
Hartley and Zisserman 2004).

An alternative formulation is to minimize the error in 3D projected ray directions (Shum and
Szeliski 2000), i.e.,

EBA−3D =
∑

i

∑

j

cij‖x̃i(x̂ij ; Rj , fj)− xi‖2, (8.63)

where x̃i(xij ; Rj , fj) is given by the second half of (8.59). This has no particular advantage over
(8.62). In fact, since errors are being minimized in 3D ray space, there is a bias towards estimating
longer focal lengths, since the angles between rays become smaller as f increases.

However, if we eliminate the 3D rays xi, we can derive a pairwise energy formulated in 3D ray
space (Shum and Szeliski 2000),

Eall−pairs−3D =
∑

i

∑

jk

cijcik‖x̃i(x̂ij ; Rj , fj)− x̃i(x̂ik; Rk, fk)‖2. (8.64)

This results in the simplest set of update equations (Shum and Szeliski 2000), since the fk can be
folded into the creation of the homogeneous coordinate vector as in Equation (8.40). Thus, even
though this formula over-weights features that occur more frequently, it is the method used by Shum
and Szeliski (2000) and Brown, Szeliski, and Winder (2005). To reduce the bias towards longer
focal lengths, we multiply each residual (3D error) by

√
fjfk, which is similar to projecting the 3D

rays into a “virtual camera” of intermediate focal length.

Up vector selection. As mentioned above, there exists a global ambiguity in the pose of the 3D
cameras computed by the above methods. While this may not appear to matter, people prefer that
the final stitched image is “upright” rather than twisted or tilted. More concretely, people are used
to seeing photographs displayed so that the vertical (gravity) axis points straight up in the image.
Consider how you usually shoot photographs: while you may pan and tilt the camera any which
way, you usually keep the horizontal edge of your camera (its x-axis) parallel to the ground plane
(perpendicular to the world gravity direction).

Mathematically, this constraint on the rotation matrices can be expressed as follows. Recall from
Equation (8.59) that the 3D to 2D projection is given by

x̃ik ∼ KkRkxi. (8.65)

We wish to post-multiply each rotation matrix Rk by a global rotation RG such that the projection
of the global y-axis, ̂ = (0, 1, 0) is perpendicular to the image x-axis, ı̂ = (1, 0, 0).22

This constraint can be written as
ı̂TRkRG̂ = 0 (8.66)

(note that the scaling by the calibration matrix is irrelevant here). This is equivalent to requiring that
the first row of Rk, rk0 = ı̂TRk be perpendicular to the second column of RG, rG1 = RG̂. This
set of constraints (one per input image) can be written as a least squares problem,

rG1 = arg min
r

∑

k

(rT rk0)2 = arg min
r

rT

[∑

k

rk0r
T
k0

]
r. (8.67)

22Note that here we use the convention common in computer graphics that the vertical world axis corresponds to y. This is
a natural choice if we wish the rotation matrix associated with a “regular” image taken horizontally to be the identity, rather
than a 90° rotation around the x-axis.

424 8 Image alignment and stitching

Thus, rG1 is the smallest eigenvector of the scatter or moment matrix spanned by the individual
camera rotation x-vectors, which should generally be of the form (c, 0, s) when the cameras are
upright.

To fully specify the RG global rotation, we need to specify one additional constraint. This is
related to the view selection problem discussed in Section 8.4.1. One simple heuristic is to prefer the
average z-axis of the individual rotation matrices, k =

∑
k k̂TRk to be close to the world z-axis,

rG2 = RGk̂. We can therefore compute the full rotation matrix RG in three steps:

1. rG1 = min eigenvector (
∑
k rk0r

T
k0);

2. rG0 = N ((
∑
k rk2)× rG1);

3. rG2 = rG0 × rG1,

where N (v) = v/‖v‖ normalizes a vector v.

8.3.2 Parallax removal

Once we have optimized the global orientations and focal lengths of our cameras, we may find that
the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry or ghosted
in some places. This can be caused by a variety of factors, including unmodeled radial distortion,
3D parallax (failure to rotate the camera around its front nodal point), small scene motions such as
waving tree branches, and large-scale scene motions such as people moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial distortion can be esti-
mated (potentially ahead of time) using one of the techniques discussed in Section 2.1.5. For ex-
ample, the plumb-line method (Brown 1971; Kang 2001; El-Melegy and Farag 2003) adjusts radial
distortion parameters until slightly curved lines become straight, while mosaic-based approaches ad-
just them until misregistration is reduced in image overlap areas (Stein 1997; Sawhney and Kumar
1999).

3D parallax can be handled by doing a full 3D bundle adjustment, i.e., by replacing the projection
Equation (8.59) used in Equation (8.62) with Equation (2.68), which models camera translations.
The 3D positions of the matched feature points and cameras can then be simultaneously recovered,
although this can be significantly more expensive than parallax-free image registration. Once the 3D
structure has been recovered, the scene could (in theory) be projected to a single (central) viewpoint
that contains no parallax. However, to do this, dense stereo correspondence needs to be performed
(Section 12.3) (Li, Shum et al. 2004; Zheng, Kang et al. 2007), which may not be possible if the
images contain only partial overlap. In that case, it may be necessary to correct for parallax only
in the overlap areas, which can be accomplished using a multi-perspective plane sweep (MPPS)
algorithm (Kang, Szeliski, and Uyttendaele 2004; Uyttendaele, Criminisi et al. 2004).

When the motion in the scene is very large, i.e., when objects appear and disappear completely,
a sensible solution is to simply select pixels from only one image at a time as the source for the
final composite (Milgram 1977; Davis 1998; Agarwala, Dontcheva et al. 2004), as discussed in Sec-
tion 8.4.2. However, when the motion is reasonably small (on the order of a few pixels), general 2D
motion estimation (optical flow) can be used to perform an appropriate correction before blending
using a process called local alignment (Shum and Szeliski 2000; Kang, Uyttendaele et al. 2003).
This same process can also be used to compensate for radial distortion and 3D parallax, although
it uses a weaker motion model than explicitly modeling the source of error and may, therefore, fail
more often or introduce unwanted distortions.

8.3 Global alignment 425

(a) (b) (c)

Figure 8.10 Deghosting a mosaic with motion parallax (Shum and Szeliski 2000) © 2000 IEEE: (a) composite
with parallax; (b) after a single deghosting step (patch size 32); (c) after multiple steps (sizes 32, 16 and 8).

The local alignment technique introduced by Shum and Szeliski (2000) starts with the global
bundle adjustment (8.64) used to optimize the camera poses. Once these have been estimated, the
desired location of a 3D point xi can be estimated as the average of the back-projected 3D locations,

x̄i ∼
∑

j

cij x̃i(x̂ij ; Rj , fj)

/∑

j

cij , (8.68)

which can be projected into each image j to obtain a target location x̄ij . The difference between
the target locations x̄ij and the original features xij provide a set of local motion estimates

uij = x̄ij − xij , (8.69)

which can be interpolated to form a dense correction field uj(xj). In their system, Shum and
Szeliski (2000) use an inverse warping algorithm where the sparse −uij values are placed at the
new target locations x̄ij , interpolated using bilinear kernel functions (Nielson 1993) and then added
to the original pixel coordinates when computing the warped (corrected) image. To get a reasonably
dense set of features to interpolate, Shum and Szeliski (2000) place a feature point at the center of
each patch (the patch size controls the smoothness in the local alignment stage), rather than relying
on features extracted using an interest operator (Figure 8.10).

An alternative approach to motion-based deghosting was proposed by Kang, Uyttendaele et al.
(2003), who estimate dense optical flow between each input image and a central reference image.
The accuracy of the flow vector is checked using a photo-consistency measure before a given warped
pixel is considered valid and is used to compute a high dynamic range radiance estimate, which is
the goal of their overall algorithm. The requirement for a reference image makes their approach
less applicable to general image mosaicing, although an extension to this case could certainly be
envisaged.

The idea of combining global parametric warps with local mesh-based warps or multiple motion
models to compensate for parallax has been refined in a number of more recent papers (Zaragoza,
Chin et al. 2013; Zhang and Liu 2014; Lin, Pankanti et al. 2015; Lin, Jiang et al. 2016; Her-
rmann, Wang et al. 2018b; Lee and Sim 2020). Some of these papers use content-preserving warps
(Liu, Gleicher et al. 2009) for their local deformations, while others include a rolling shutter model
(Zhuang and Tran 2020).

8.3.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique to recognize which
images actually go together, which Brown and Lowe (2007) call recognizing panoramas. If the user

426 8 Image alignment and stitching

takes images in sequence so that each image overlaps its predecessor and also specifies the first and
last images to be stitched, bundle adjustment combined with the process of topology inference can be
used to automatically assemble a panorama (Sawhney and Kumar 1999). However, users often jump
around when taking panoramas, e.g., they may start a new row on top of a previous one, jump back
to take a repeat shot, or create 360° panoramas where end-to-end overlaps need to be discovered.
Furthermore, the ability to discover multiple panoramas taken by a user over an extended period of
time can be a big convenience.

To recognize panoramas, Brown and Lowe (2007) first find all pairwise image overlaps using
a feature-based method and then find connected components in the overlap graph to “recognize”
individual panoramas (Figure 8.11). The feature-based matching stage first extracts scale invariant
feature transform (SIFT) feature locations and feature descriptors (Lowe 2004) from all the input
images and places them in an indexing structure, as described in Section 7.1.3. For each image pair
under consideration, the nearest matching neighbor is found for each feature in the first image, using
the indexing structure to rapidly find candidates and then comparing feature descriptors to find the
best match. RANSAC is used to find a set of inlier matches; pairs of matches are used to hypothesize
similarity motion models that are then used to count the number of inliers. A RANSAC algorithm
tailored specifically for rotational panoramas is described by Brown, Hartley, and Nistér (2007).

In practice, the most difficult part of getting a fully automated stitching algorithm to work is
deciding which pairs of images actually correspond to the same parts of the scene. Repeated struc-
tures such as windows (Figure 8.12) can lead to false matches when using a feature-based approach.
One way to mitigate this problem is to perform a direct pixel-based comparison between the regis-
tered images to determine if they actually are different views of the same scene. Unfortunately, this
heuristic may fail if there are moving objects in the scene (Figure 8.13). While there is no magic
bullet for this problem, short of full scene understanding, further improvements can likely be made
by applying domain-specific heuristics, such as priors on typical camera motions as well as machine
learning techniques applied to the problem of match validation.

8.4 Compositing

Once we have registered all of the input images with respect to each other, we need to decide how
to produce the final stitched mosaic image. This involves selecting a final compositing surface
(flat, cylindrical, spherical, etc.) and view (reference image). It also involves selecting which pixels
contribute to the final composite and how to optimally blend these pixels to minimize visible seams,
blur, and ghosting.

In this section, we review techniques that address these problems, namely compositing surface
parameterization, pixel and seam selection, blending, and exposure compensation. Our emphasis is
on fully automated approaches to the problem. Since the creation of high-quality panoramas and
composites is as much an artistic endeavor as a computational one, various interactive tools have
been developed to assist this process (Agarwala, Dontcheva et al. 2004; Li, Sun et al. 2004; Rother,
Kolmogorov, and Blake 2004). Some of these are covered in more detail in Section 10.4.

8.4.1 Choosing a compositing surface

The first choice to be made is how to represent the final image. If only a few images are stitched
together, a natural approach is to select one of the images as the reference and to then warp all of
the other images into its reference coordinate system. The resulting composite is sometimes called

8.4 Compositing 427

(a)

(b)

(c)

Figure 8.11 Recognizing panoramas (Brown, Szeliski, and Winder 2005), figures courtesy of Matthew Brown:
(a) input images with pairwise matches; (b) images grouped into connected components (panoramas); (c) individ-
ual panoramas registered and blended into stitched composites.

428 8 Image alignment and stitching

Figure 8.12 Matching errors (Brown, Szeliski, and Winder 2004): accidental matching of several features can
lead to matches between pairs of images that do not actually overlap.

Figure 8.13 Validation of image matches by direct pixel error comparison can fail when the scene contains
moving objects (Uyttendaele, Eden, and Szeliski 2001) © 2001 IEEE.

8.4 Compositing 429

a flat panorama, since the projection onto the final surface is still a perspective projection, and hence
straight lines remain straight (which is often a desirable attribute).23

For larger fields of view, however, we cannot maintain a flat representation without excessively
stretching pixels near the border of the image. (In practice, flat panoramas start to look severely dis-
torted once the field of view exceeds 90° or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Chen 1995; Szeliski 1996) or spherical (Szeliski and Shum 1997) projec-
tion, as described in Section 8.2.6. In fact, any surface used for environment mapping in computer
graphics can be used, including a cube map, which represents the full viewing sphere with the six
square faces of a cube (Greene 1986; Szeliski and Shum 1997). Cartographers have also developed
a number of alternative methods for representing the globe (Bugayevskiy and Snyder 1995).

The choice of parameterization is somewhat application-dependent and involves a tradeoff be-
tween keeping the local appearance undistorted (e.g., keeping straight lines straight) and providing a
reasonably uniform sampling of the environment. Automatically making this selection and smoothly
transitioning between representations based on the extent of the panorama is discussed in Kopf, Uyt-
tendaele et al. (2007). A recent trend in panoramic photography has been the use of stereographic
projections looking down at the ground (in an outdoor scene) to create “little planet” renderings.24

View selection. Once we have chosen the output parameterization, we still need to determine
which part of the scene will be centered in the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a reasonable choice is the one that is
geometrically most central. For example, for rotational panoramas represented as a collection of 3D
rotation matrices, we can choose the image whose z-axis is closest to the average z-axis (assuming
a reasonable field of view). Alternatively, we can use the average z-axis (or quaternion, but this is
trickier) to define the reference rotation matrix.

For larger, e.g., cylindrical or spherical, panoramas, we can use the same heuristic if a subset of
the viewing sphere has been imaged. In the case of full 360° panoramas, a better choice is to choose
the middle image from the sequence of inputs, or sometimes the first image, assuming this contains
the object of greatest interest. In all of these cases, having the user control the final view is often
highly desirable. If the “up vector” computation described in Section 8.3.1 is working correctly, this
can be as simple as panning over the image or setting a vertical “center line” for the final panorama.

Coordinate transformations. After selecting the parameterization and reference view, we still
need to compute the mappings between the input and output pixels coordinates.

If the final compositing surface is flat (e.g., a single plane or the face of a cube map) and the input
images have no radial distortion, the coordinate transformation is the simple homography described
by Equation (8.38). This kind of warping can be performed in graphics hardware by appropriately
setting texture mapping coordinates and rendering a single quadrilateral.

If the final composite surface has some other analytic form (e.g., cylindrical or spherical), we
need to convert every pixel in the final panorama into a viewing ray (3D point) and then map it
back into each image according to the projection (and optionally radial distortion) equations. This
process can be made more efficient by precomputing some lookup tables, e.g., the partial trigono-
metric functions needed to map cylindrical or spherical coordinates to 3D coordinates or the radial
distortion field at each pixel. It is also possible to accelerate this process by computing exact pixel
mappings on a coarser grid and then interpolating these values.

23Techniques have also been developed to straighten curved lines in cylindrical and spherical panoramas (Carroll,
Agrawala, and Agarwala 2009; Kopf, Lischinski et al. 2009; Carroll, Agarwala, and Agrawala 2010).

24These are inspired by The Little Prince by Antoine De Saint-Exupery. Go to https://www.flickr.com and search for “little
planet projection”.

https://www.flickr.com

430 8 Image alignment and stitching

When the final compositing surface is a texture-mapped polyhedron, a slightly more sophisti-
cated algorithm must be used. Not only do the 3D and texture map coordinates have to be properly
handled, but a small amount of overdraw outside the triangle footprints in the texture map is nec-
essary, to ensure that the texture pixels being interpolated during 3D rendering have valid values
(Szeliski and Shum 1997).

Sampling issues. While the above computations can yield the correct (fractional) pixel ad-
dresses in each input image, we still need to pay attention to sampling issues. For example, if the
final panorama has a lower resolution than the input images, prefiltering the input images is neces-
sary to avoid aliasing. These issues have been extensively studied in both the image processing and
computer graphics communities. The basic problem is to compute the appropriate prefilter, which
depends on the distance (and arrangement) between neighboring samples in a source image. As dis-
cussed in Sections 3.5.2 and 3.6.1, various approximate solutions, such as MIP mapping (Williams
1983) or elliptically weighted Gaussian averaging (Greene and Heckbert 1986) have been developed
in the graphics community. For highest visual quality, a higher order (e.g., cubic) interpolator com-
bined with a spatially adaptive prefilter may be necessary (Wang, Kang et al. 2001). Under certain
conditions, it may also be possible to produce images with a higher resolution than the input images
using the process of super-resolution (Section 10.3).

8.4.2 Pixel selection and weighting (deghosting)

Once the source pixels have been mapped onto the final composite surface, we must still decide
how to blend them in order to create an attractive-looking panorama. If all of the images are in
perfect registration and identically exposed, this is an easy problem, i.e., any pixel or combination
will do. However, for real images, visible seams (due to exposure differences), blurring (due to
misregistration), or ghosting (due to moving objects) can occur.

Creating clean, pleasing-looking panoramas involves both deciding which pixels to use and how
to weight or blend them. The distinction between these two stages is a little fluid, since per-pixel
weighting can be thought of as a combination of selection and blending. In this section, we discuss
spatially varying weighting, pixel selection (seam placement), and then more sophisticated blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take an average value at each pixel,

C(x) =
∑

k

wk(x)Ĩk(x)

/∑

k

wk(x) , (8.70)

where Ĩk(x) are the warped (re-sampled) images and wk(x) is 1 at valid pixels and 0 elsewhere. On
computer graphics hardware, this kind of summation can be performed in an accumulation buffer
(using the A channel as the weight).

Simple averaging usually does not work very well, since exposure differences, misregistrations,
and scene movement are all very visible (Figure 8.14a). If rapidly moving objects are the only
problem, taking a median filter (which is a kind of pixel selection operator) can often be used to
remove them (Figure 8.14b) (Irani and Anandan 1998). Conversely, center-weighting (discussed
below) and minimum likelihood selection (Agarwala, Dontcheva et al. 2004) can sometimes be used
to retain multiple copies of a moving object (Figure 8.17).

A better approach to averaging is to weight pixels near the center of the image more heavily and
to down-weight pixels near the edges. When an image has some cutout regions, down-weighting

8.4 Compositing 431

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.14 Final composites computed by a variety of algorithms (Szeliski 2006a): (a) average, (b) median,
(c) feathered average, (d) p-norm p = 10, (e) Voronoi, (f) weighted ROD vertex cover with feathering, (g) graph
cut seams with Poisson blending, and (h) with pyramid blending.

432 8 Image alignment and stitching

(a) (b) (c)

Figure 8.15 Computation of regions of difference (RODs) (Uyttendaele, Eden, and Szeliski 2001) © 2001
IEEE: (a) three overlapping images with a moving face; (b) corresponding RODs; (c) graph of coincident RODs.

pixels near the edges of both cutouts and the image is preferable. This can be done by computing a
distance map or grassfire transform,

wk(x) = arg min
y
{‖y‖ | Ĩk(x + y) is invalid }, (8.71)

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel (Sec-
tion 3.3.3). The Euclidean distance map can be efficiently computed using a two-pass raster al-
gorithm (Danielsson 1980; Borgefors 1986).

Weighted averaging with a distance map is often called feathering (Szeliski and Shum 1997;
Chen and Klette 1999; Uyttendaele, Eden, and Szeliski 2001) and does a reasonable job of blending
over exposure differences. However, blurring and ghosting can still be problems (Figure 8.14c).
Note that weighted averaging is not the same as compositing the individual images with the classic
over operation (Porter and Duff 1984; Blinn 1994a), even when using the weight values (normalized
to sum up to one) as alpha (translucency) channels. This is because the over operation attenuates
the values from more distant surfaces and, hence, is not equivalent to a direct sum.

One way to improve feathering is to raise the distance map values to some large power, i.e., to use
wpk(x) in Equation (8.70). The weighted averages then become dominated by the larger values, i.e.,
they act somewhat like a p-norm. The resulting composite can often provide a reasonable tradeoff
between visible exposure differences and blur (Figure 8.14d).

In the limit as p→∞, only the pixel with the maximum weight is selected. This hard pixel se-
lection process produces a visibility mask-sensitive variant of the familiar Voronoi diagram, which
assigns each pixel to the nearest image center in the set (Wood, Finkelstein et al. 1997; Peleg, Rousso
et al. 2000). The resulting composite, while useful for artistic guidance and in high-overlap panora-
mas (manifold mosaics) tends to have very hard edges with noticeable seams when the exposures
vary (Figure 8.14e).

Xiong and Turkowski (1998) use this Voronoi idea (local maximum of the grassfire transform) to
select seams for Laplacian pyramid blending (which is discussed below). However, since the seam
selection is performed sequentially as new images are added in, some artifacts can occur.

Optimal seam selection. Computing the Voronoi diagram is one way to select the seams be-
tween regions where different images contribute to the final composite. However, Voronoi images
totally ignore the local image structure underlying the seam. A better approach is to place the seams
in regions where the images agree, so that transitions from one source to another are not visible. In
this way, the algorithm avoids “cutting through” moving objects where a seam would look unnatural
(Davis 1998). For a pair of images, this process can be formulated as a simple dynamic program
starting from one edge of the overlap region and ending at the other (Milgram 1975, 1977; Davis
1998; Efros and Freeman 2001).

8.4 Compositing 433

Figure 8.16 Photomontage (Agarwala, Dontcheva et al. 2004) © 2004 ACM. From a set of five source images
(of which four are shown on the left), Photomontage quickly creates a composite family portrait in which everyone
is smiling and looking at the camera (right). Users simply flip through the stack and coarsely draw strokes using
the designated source image objective over the people they wish to add to the composite. The user-applied strokes
and computed regions (middle) are color-coded by the borders of the source images on the left.

When multiple images are being composited, the dynamic program idea does not readily gen-
eralize. (For square texture tiles being composited sequentially, Efros and Freeman (2001) run a
dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaele, Eden, and Szeliski (2001) observed that, for well-
registered images, moving objects produce the most visible artifacts, namely translucent looking
ghosts. Their system therefore decides which objects to keep and which ones to erase. First, the
algorithm compares all overlapping input image pairs to determine regions of difference (RODs)
where the images disagree. Next, a graph is constructed with the RODs as vertices and edges repre-
senting ROD pairs that overlap in the final composite (Figure 8.15). Since the presence of an edge
indicates an area of disagreement, vertices (regions) must be removed from the final composite until
no edge spans a pair of remaining vertices. The smallest such set can be computed using a vertex
cover algorithm. Since several such covers may exist, a weighted vertex cover is used instead, where
the vertex weights are computed by summing the feather weights in the ROD (Uyttendaele, Eden,
and Szeliski 2001). The algorithm therefore prefers removing regions that are near the edge of the
image, which reduces the likelihood that partially visible objects will appear in the final composite.
(It is also possible to infer which object in a region of difference is the foreground object by the
“edginess” (pixel differences) across the ROD boundary, which should be higher when an object is
present (Herley 2005).) Once the desired excess regions of difference have been removed, the final
composite can be created by feathering (Figure 8.14f).

A different approach to pixel selection and seam placement is described by Agarwala, Dontcheva
et al. (2004). Their system computes the label assignment that optimizes the sum of two objective
functions. The first is a per-pixel image objective that determines which pixels are likely to produce
good composites,

ED =
∑

x

D(x, l(x)), (8.72)

where D(x, l) is the data penalty associated with choosing image l at pixel x. In their system,
users can select which pixels to use by “painting” over an image with the desired object or appear-
ance, which sets D(x, l) to a large value for all labels l other than the one selected by the user
(Figure 8.16). Alternatively, automated selection criteria can be used, such as maximum likelihood,
which prefers pixels that occur repeatedly in the background (for object removal), or minimum like-
lihood for objects that occur infrequently, i.e., for moving object retention. Using a more traditional

434 8 Image alignment and stitching

Figure 8.17 Set of five photos tracking a snowboarder’s jump stitched together into a seamless composite.
Because the algorithm prefers pixels near the center of the image, multiple copies of the boarder are retained.

center-weighted data term tends to favor objects that are centered in the input images (Figure 8.17).
The second term is a seam objective that penalizes differences in labels between adjacent images,

ES =
∑

(x,y)∈N
S(x,y, l(x), l(y)), (8.73)

where S(x,y, lx, ly) is the image-dependent interaction penalty or seam cost of placing a seam
between pixels x and y, and N is the set of N4 neighboring pixels. For example, the simple color-
based seam penalty used in Kwatra, Schödl et al. (2003) and Agarwala, Dontcheva et al. (2004) can
be written as

S(x,y, lx, ly) = ‖Ĩlx(x)− Ĩly (x)‖+ ‖Ĩlx(y)− Ĩly (y)‖. (8.74)

More sophisticated seam penalties can also look at image gradients or the presence of image edges
(Agarwala, Dontcheva et al. 2004). Seam penalties are widely used in other computer vision ap-
plications such as stereo matching (Boykov, Veksler, and Zabih 2001) to give the labeling function
its coherence or smoothness. An alternative approach, which places seams along strong consistent
edges in overlapping images using a watershed computation is described by Soille (2006).

The sum of these two objective functions gives rise to a Markov random field (MRF), for which
good optimization algorithms are described in Sections 4.3 and 4.3.2 and Appendix B.5. For label
computations of this kind, the α-expansion algorithm developed by Boykov, Veksler, and Zabih
(2001) works particularly well (Szeliski, Zabih et al. 2008).

For the result shown in Figure 8.14g, Agarwala, Dontcheva et al. (2004) use a large data penalty
for invalid pixels and 0 for valid pixels. Notice how the seam placement algorithm avoids regions of
difference, including those that border the image and that might result in objects being cut off. Graph
cuts (Agarwala, Dontcheva et al. 2004) and vertex cover (Uyttendaele, Eden, and Szeliski 2001)
often produce similar looking results, although the former is significantly slower since it optimizes
over all pixels, while the latter is more sensitive to the thresholds used to determine regions of
difference. More recent approaches to seam selection include SEAGULL (Lin, Jiang et al. 2016),
which jointly optimizes local alignment and seam selection, and object-centered image stitching
(Herrmann, Wang et al. 2018a), which uses an off-the-shelf object detector to avoid cutting through
objects.

8.4 Compositing 435

8.4.3 Application: Photomontage

While image stitching is normally used to composite partially overlapping photographs, it can also
be used to composite repeated shots of a scene taken with the aim of obtaining the best possible
composition and appearance of each element.

Figure 8.16 shows the Photomontage system developed by Agarwala, Dontcheva et al. (2004),
where users draw strokes over a set of pre-aligned images to indicate which regions they wish to
keep from each image. Once the system solves the resulting multi-label graph cut (8.72–8.73), the
various pieces taken from each source photo are blended together using a variant of Poisson image
blending (8.75–8.77). Their system can also be used to automatically composite an all-focus image
from a series of bracketed focus images (Hasinoff, Kutulakos et al. 2009) or to remove wires and
other unwanted elements from sets of photographs. Exercise 8.14 has you implement this system
and try out some of its variants.

8.4.4 Blending

Once the seams between images have been determined and unwanted objects removed, we still need
to blend the images to compensate for exposure differences and other misalignments. The spatially
varying weighting (feathering) previously discussed can often be used to accomplish this. However,
it is difficult in practice to achieve a pleasing balance between smoothing out low-frequency ex-
posure variations and retaining sharp enough transitions to prevent blurring (although using a high
exponent in feathering can help).

Laplacian pyramid blending. An attractive solution to this problem is the Laplacian pyramid
blending technique developed by Burt and Adelson (1983b), which we discussed in Section 3.5.5.
Instead of using a single transition width, a frequency-adaptive width is used by creating a band-
pass (Laplacian) pyramid and making the transition widths within each level a function of the level,
i.e., the same width in pixels. In practice, a small number of levels, i.e., as few as two (Brown and
Lowe 2007), may be adequate to compensate for differences in exposure. The result of applying this
pyramid blending is shown in Figure 8.14h.

Gradient domain blending. An alternative approach to multi-band image blending is to per-
form the operations in the gradient domain. Reconstructing images from their gradient fields has
a long history in computer vision (Horn 1986), starting originally with work in brightness con-
stancy (Horn 1974), shape from shading (Horn and Brooks 1989), and photometric stereo (Wood-
ham 1981). Related ideas have also been used for reconstructing images from their edges (Elder
and Goldberg 2001), removing shadows from images (Weiss 2001), separating reflections from a
single image (Levin, Zomet, and Weiss 2004; Levin and Weiss 2007), and tone mapping high dy-
namic range images by reducing the magnitude of image edges (gradients) (Fattal, Lischinski, and
Werman 2002).

Pérez, Gangnet, and Blake (2003) show how gradient domain reconstruction can be used to do
seamless object insertion in image editing applications (Figure 8.18). Rather than copying pixels, the
gradients of the new image fragment are copied instead. The actual pixel values for the copied area
are then computed by solving a Poisson equation that locally matches the gradients while obeying
the fixed Dirichlet (exact matching) conditions at the seam boundary. Pérez, Gangnet, and Blake
(2003) show that this is equivalent to computing an additive membrane interpolant of the mismatch

436 8 Image alignment and stitching

(a) (b) (c)

Figure 8.18 Poisson image editing (Pérez, Gangnet, and Blake 2003) © 2003 ACM: (a) The dog and the two
children are chosen as source images to be pasted into the destination swimming pool. (b) Simple pasting fails to
match the colors at the boundaries, whereas (c) Poisson image blending masks these differences.

between the source and destination images along the boundary.25 In earlier work, Peleg (1981) also
proposed adding a smooth function to enforce consistency along the seam curve.

Agarwala, Dontcheva et al. (2004) extended this idea to a multi-source formulation, where it
no longer makes sense to talk of a destination image whose exact pixel values must be matched at
the seam. Instead, each source image contributes its own gradient field and the Poisson equation is
solved using Neumann boundary conditions, i.e., dropping any equations that involve pixels outside
the boundary of the image.

Rather than solving the Poisson partial differential equations, Agarwala, Dontcheva et al. (2004)
directly minimize a variational problem,

min
C(x)
‖∇C(x)−∇Ĩl(x)(x)‖2. (8.75)

The discretized form of this equation is a set of gradient constraint equations

C(x + ı̂)− C(x) = Ĩl(x)(x + ı̂)− Ĩl(x)(x) and (8.76)

C(x + ̂)− C(x) = Ĩl(x)(x + ̂)− Ĩl(x)(x), (8.77)

where ı̂ = (1, 0) and ̂ = (0, 1) are unit vectors in the x and y directions.26 They then solve the
associated sparse least squares problem. Since this system of equations is only defined up to an
additive constraint, Agarwala, Dontcheva et al. (2004) ask the user to select the value of one pixel.
In practice, a better choice might be to weakly bias the solution towards reproducing the original
color values.

In order to accelerate the solution of this sparse linear system, Fattal, Lischinski, and Werman
(2002) use multigrid, whereas Agarwala, Dontcheva et al. (2004) use hierarchical basis precondi-
tioned conjugate gradient descent (Szeliski 1990b, 2006b; Krishnan and Szeliski 2011; Krishnan,
Fattal, and Szeliski 2013) (Appendix A.5). In subsequent work, Agarwala (2007) shows how using
a quadtree representation for the solution can further accelerate the computation with minimal loss

25The membrane interpolant is known to have nicer interpolation properties for arbitrary-shaped constraints than
frequency-domain interpolants (Nielson 1993).

26At seam locations, the right-hand side is replaced by the average of the gradients in the two source images.

8.5 Additional reading 437

in accuracy, while Szeliski, Uyttendaele, and Steedly (2008) show how representing the per-image
offset fields using coarser splines is even faster. This latter work also argues that blending in the
log domain, i.e., using multiplicative rather than additive offsets, is preferable, as it more closely
matches texture contrasts across seam boundaries. The resulting seam blending works very well in
practice (Figure 8.14h), although care must be taken when copying large gradient values near seams
so that a “double edge” is not introduced.

Copying gradients directly from the source images after seam placement is just one approach
to gradient domain blending. The paper by Levin, Zomet et al. (2004) examines several different
variants of this approach, which they call Gradient-domain Image STitching (GIST). The techniques
they examine include feathering (blending) the gradients from the source images, as well as us-
ing an L1norm in performing the reconstruction of the image from the gradient field, rather than
using an L2norm as in Equation (8.75). Their preferred technique is the L1 optimization of a feath-
ered (blended) cost function on the original image gradients (which they call GIST1-l1). Since
L1optimization using linear programming can be slow, they develop a faster iterative median-based
algorithm in a multigrid framework. Visual comparisons between their preferred approach and what
they call optimal seam on the gradients (which is equivalent to the approach of Agarwala, Dontcheva
et al. (2004)) show similar results, while significantly improving on pyramid blending and feathering
algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of com-
pensating for moderate amounts of exposure differences between images. However, when the expo-
sure differences become large, alternative approaches may be necessary.

Uyttendaele, Eden, and Szeliski (2001) iteratively estimate a local correction between each
source image and a blended composite. First, a block-based quadratic transfer function is fit between
each source image and an initial feathered composite. Next, transfer functions are averaged with
their neighbors to get a smoother mapping and per-pixel transfer functions are computed by splin-
ing (interpolating) between neighboring block values. Once each source image has been smoothly
adjusted, a new feathered composite is computed and the process is repeated (typically three times).
The results shown by Uyttendaele, Eden, and Szeliski (2001) demonstrate that this does a better job
of exposure compensation than simple feathering and can handle local variations in exposure due to
effects such as lens vignetting.

Ultimately, however, the most principled way to deal with exposure differences is to stitch im-
ages in the radiance domain, i.e., to convert each image into a radiance image using its exposure
value and then create a stitched, high dynamic range image, as discussed in Section 10.2 and Eden,
Uyttendaele, and Szeliski (2006).

8.5 Additional reading

Hartley and Zisserman (2004) provide a wonderful introduction to the topics of feature-based align-
ment and optimal motion estimation. Techniques for robust estimation are discussed in more de-
tail in Appendix B.3 and in monographs and review articles on this topic (Huber 1981; Hampel,
Ronchetti et al. 1986; Rousseeuw and Leroy 1987; Black and Rangarajan 1996; Stewart 1999). The
most commonly used robust initialization technique in computer vision is RANdom SAmple Con-
sensus (RANSAC) (Fischler and Bolles 1981), which has spawned a series of more efficient variants
(Torr and Zisserman 2000; Nistér 2003; Chum and Matas 2005; Raguram, Chum et al. 2012; Brach-
mann, Krull et al. 2017; Barath and Matas 2018; Barath, Matas, and Noskova 2019; Brachmann and

438 8 Image alignment and stitching

Rother 2019). The MAGSAC++ paper by Barath, Noskova et al. (2020) compares many of these
variants.

The literature on image stitching dates back to work in the photogrammetry community in the
1970s (Milgram 1975, 1977; Slama 1980). In computer vision, papers started appearing in the early
1980s (Peleg 1981), while the development of fully automated techniques came about a decade later
(Mann and Picard 1994; Chen 1995; Szeliski 1996; Szeliski and Shum 1997; Sawhney and Kumar
1999; Shum and Szeliski 2000). Those techniques used direct pixel-based alignment but feature-
based approaches are now the norm (Zoghlami, Faugeras, and Deriche 1997; Capel and Zisserman
1998; Cham and Cipolla 1998; Badra, Qumsieh, and Dudek 1998; McLauchlan and Jaenicke 2002;
Brown and Lowe 2007). A collection of some of these papers can be found in the book by Benosman
and Kang (2001). Szeliski (2006a) provides a comprehensive survey of image stitching, on which
the material in this chapter is based. More recent publications include Zaragoza, Chin et al. (2013),
Zhang and Liu (2014), Lin, Pankanti et al. (2015), Lin, Jiang et al. (2016), Herrmann, Wang et al.
(2018b), Lee and Sim (2020), and Zhuang and Tran (2020).

High-quality techniques for optimal seam finding and blending are another important component
of image stitching systems. Important developments in this field include work by Milgram (1977),
Burt and Adelson (1983b), Davis (1998), Uyttendaele, Eden, and Szeliski (2001), Pérez, Gangnet,
and Blake (2003), Levin, Zomet et al. (2004), Agarwala, Dontcheva et al. (2004), Eden, Uyttendaele,
and Szeliski (2006), Kopf, Uyttendaele et al. (2007), Lin, Jiang et al. (2016), and Herrmann, Wang
et al. (2018a).

In addition to the merging of multiple overlapping photographs taken for aerial or terrestrial
panoramic image creation, stitching techniques can be used for automated whiteboard scanning (He
and Zhang 2005; Zhang and He 2007), scanning with a mouse (Nakao, Kashitani, and Kaneyoshi
1998), and retinal image mosaics (Can, Stewart et al. 2002). They can also be applied to video
sequences (Teodosio and Bender 1993; Irani, Hsu, and Anandan 1995; Kumar, Anandan et al. 1995;
Sawhney and Ayer 1996; Massey and Bender 1996; Irani and Anandan 1998; Sawhney, Arpa et al.
2002; Agarwala, Zheng et al. 2005; Rav-Acha, Pritch et al. 2005; Steedly, Pal, and Szeliski 2005;
Baudisch, Tan et al. 2006) and can even be used for video compression (Lee, Chen et al. 1997).

8.6 Exercises

Ex 8.1: Feature-based image alignment for flip-book animations. Take a set of photos of an
action scene or portrait (preferably in burst shooting mode) and align them to make a composite
or flip-book animation.

1. Extract features and feature descriptors using some of the techniques described in Sections 7.1.1–
7.1.2.

2. Match your features using nearest neighbor matching with a nearest neighbor distance ratio
test (7.18).

3. Compute an optimal 2D translation and rotation between the first image and all subsequent im-
ages, using least squares (Section 8.1.1) with optional RANSAC for robustness (Section 8.1.4).

4. Resample all of the images onto the first image’s coordinate frame (Section 3.6.1) using either
bilinear or bicubic resampling and optionally crop them to their common area.

5. Convert the resulting images into an animated GIF (using software available from the web) or
optionally implement cross-dissolves to turn them into a “slo-mo” video.

8.6 Exercises 439

6. (Optional) Combine this technique with feature-based (Exercise 3.25) morphing.

Ex 8.2: Panography. Create the kind of panograph discussed in Section 8.1.2 and commonly
found on the web.

1. Take a series of interesting overlapping photos.

2. Use the feature detector, descriptor, and matcher developed in Exercises 7.1–7.4 (or existing
software) to match features among the images.

3. Turn each connected component of matching features into a track, i.e., assign a unique index
i to each track, discarding any tracks that are inconsistent (contain two different features in
the same image).

4. Compute a global translation for each image using Equation (8.12).

5. Since your matches probably contain errors, turn the above least square metric into a robust
metric (8.25) and re-solve your system using iteratively reweighted least squares.

6. Compute the size of the resulting composite canvas and resample each image into its final
position on the canvas. (Keeping track of bounding boxes will make this more efficient.)

7. Average all of the images, or choose some kind of ordering and implement translucent over
compositing (3.8).

8. (Optional) Extend your parametric motion model to include rotations and scale, i.e., the simi-
larity transform given in Table 8.1. Discuss how you could handle the case of translations and
rotations only (no scale).

9. (Optional) Write a simple tool to let the user adjust the ordering and opacity, and add or
remove images.

10. (Optional) Write down a different least squares problem that involves pairwise matching of
images. Discuss why this might be better or worse than the global matching formula given in
(8.12).

Ex 8.3: 2D rigid/Euclidean matching. Several alternative approaches are given in Section 8.1.3
for estimating a 2D rigid (Euclidean) alignment.

1. Implement the various alternatives and compare their accuracy on synthetic data, i.e., random
2D point clouds with noisy feature positions.

2. One approach is to estimate the translations from the centroids and then estimate rotation in
polar coordinates. Do you need to weight the angles obtained from a polar decomposition in
some way to get the statistically correct estimate?

3. How can you modify your techniques to take into account either scalar (8.10) or full two-
dimensional point covariance weightings (8.11)? Do all of the previously developed “short-
cuts” still work or does full weighting require iterative optimization?

Ex 8.4: 2D match move/augmented reality. Replace a picture in a magazine or a book with a
different image or video.

1. Take a picture of a magazine or book page.

440 8 Image alignment and stitching

2. Outline a figure or picture on the page with a rectangle, i.e., draw over the four sides as they
appear in the image.

3. Match features in this area with each new image frame.

4. Replace the original image with an “advertising” insert, warping the new image with the
appropriate homography.

5. Try your approach on a clip from a sporting event (e.g., indoor or outdoor soccer) to implement
a billboard replacement.

Ex 8.5: Direct pixel-based alignment. Take a pair of images, compute a coarse-to-fine affine
alignment (Exercise 9.2) and then blend them using either averaging (Exercise 8.2) or a Lapla-
cian pyramid (Exercise 3.18). Extend your motion model from affine to perspective (homography)
to better deal with rotational mosaics and planar surfaces seen under arbitrary motion.

Ex 8.6: Featured-based stitching. Extend your feature-based alignment technique from Exer-
cise 8.2 to use a full perspective model and then blend the resulting mosaic using either averaging
or more sophisticated distance-based feathering (Exercise 8.13).

Ex 8.7: Cylindrical strip panoramas. To generate cylindrical or spherical panoramas from a hor-
izontally panning (rotating) camera, it is best to use a tripod. Set your camera up to take a series of
50% overlapped photos and then use the following steps to create your panorama:

1. Estimate the amount of radial distortion by taking some pictures with lots of long straight
lines near the edges of the image and then using the plumb-line method from Exercise 11.5.

2. Compute the focal length either by using a ruler and paper (Debevec, Wenger et al. 2002) or
by rotating your camera on the tripod, overlapping the images by exactly 0% and counting the
number of images it takes to make a 360° panorama.

3. Convert each of your images to cylindrical coordinates using (8.45–8.49).

4. Line up the images with a translational motion model using either a direct pixel-based tech-
nique, such as coarse-to-fine incremental or an FFT, or a feature-based technique.

5. (Optional) If doing a complete 360° panorama, align the first and last images. Compute the
amount of accumulated vertical misregistration and re-distribute this among the images.

6. Blend the resulting images using feathering or some other technique.

Ex 8.8: Coarse alignment. Use FFT or phase correlation (Section 9.1.2) to estimate the initial
alignment between successive images. How well does this work? Over what range of overlaps? If it
does not work, does aligning sub-sections (e.g., quarters) do better?

Ex 8.9: Automated mosaicing. Use feature-based alignment with four-point RANSAC for ho-
mographies (Section 8.1.3, Equations (8.19–8.23)) or three-point RANSAC for rotational motions
(Brown, Hartley, and Nistér 2007) to match up all pairs of overlapping images.

Merge these pairwise estimates together by finding a spanning tree of pairwise relations. Visu-
alize the resulting global alignment, e.g., by displaying a blend of each image with all other images
that overlap it.

For greater robustness, try multiple spanning trees (perhaps randomly sampled based on the
confidence in pairwise alignments) to see if you can recover from bad pairwise matches (Zach,
Klopschitz, and Pollefeys 2010). As a measure of fitness, count how many pairwise estimates are
consistent with the global alignment.

8.6 Exercises 441

Ex 8.10: Global optimization. Use the initialization from the previous algorithm to perform a full
bundle adjustment over all of the camera rotations and focal lengths, as described in Section 11.4.2
and by Shum and Szeliski (2000). Optionally, estimate radial distortion parameters as well or sup-
port fisheye lenses (Section 2.1.5).

As in the previous exercise, visualize the quality of your registration by creating composites
of each input image with its neighbors, optionally blinking between the original image and the
composite to better see misalignment artifacts.

Ex 8.11: Deghosting. Use the results of the previous bundle adjustment to predict the location of
each feature in a consensus geometry. Use the difference between the predicted and actual feature
locations to correct for small misregistrations, as described in Section 8.3.2 (Shum and Szeliski
2000).

Ex 8.12: Compositing surface. Choose a compositing surface (Section 8.4.1), e.g., a single ref-
erence image extended to a larger plane, a sphere represented using cylindrical or spherical coordi-
nates, a stereographic “little planet” projection, or a cube map.

Project all of your images onto this surface and blend them with equal weighting, for now (just
to see where the original image seams are).

Ex 8.13: Feathering and blending. Compute a feather (distance) map for each warped source
image and use these maps to blend the warped images.

Alternatively, use Laplacian pyramid blending (Exercise 3.18) or gradient domain blending.

Ex 8.14: Photomontage and object removal. Implement a “Photomontage” system in which users
can indicate desired or unwanted regions in pre-registered images using strokes or other primitives
(such as bounding boxes).

(Optional) Devise an automatic moving objects remover (or “keeper”) by analyzing which incon-
sistent regions are more or less typical given some consensus (e.g., median filtering) of the aligned
images. Figure 8.17 shows an example where the moving object was kept. Try to make this work for
sequences with large amounts of overlaps and consider averaging the images to make the moving
object look more ghosted.

	Chapter 8 Image alignment and stitching
	8.1 Pairwise alignment
	8.1.1 2D alignment using least squares
	8.1.2 Application: Panography
	8.1.3 Iterative algorithms
	8.1.4 Robust least squares and RANSAC
	8.1.5 3D alignment

	8.2 Image stitching
	8.2.1 Parametric motion models
	8.2.2 Application: Whiteboard and document scanning
	8.2.3 Rotational panoramas
	8.2.4 Gap closing
	8.2.5 Application: Video summarization and compression
	8.2.6 Cylindrical and spherical coordinates

	8.3 Global alignment
	8.3.1 Bundle adjustment
	8.3.2 Parallax removal
	8.3.3 Recognizing panoramas

	8.4 Compositing
	8.4.1 Choosing a compositing surface
	8.4.2 Pixel selection and weighting (deghosting)
	8.4.3 Application: Photomontage
	8.4.4 Blending

	8.5 Additional reading
	8.6 Exercises

