
Chapter 6

Recognition

6.1 Instance recognition . 276
6.2 Image classification . 278

6.2.1 Feature-based methods . 278
6.2.2 Deep networks . 285
6.2.3 Application: Visual similarity search . 287
6.2.4 Face recognition . 289

6.3 Object detection . 295
6.3.1 Face detection . 295
6.3.2 Pedestrian detection . 299
6.3.3 General object detection . 301

6.4 Semantic segmentation . 307
6.4.1 Application: Medical image segmentation 310
6.4.2 Instance segmentation . 311
6.4.3 Panoptic segmentation . 312
6.4.4 Application: Intelligent photo editing . 314
6.4.5 Pose estimation . 315

6.5 Video understanding . 316
6.6 Vision and language . 319
6.7 Additional reading . 326
6.8 Exercises . 329

© Springer Nature Switzerland AG 2022
R. Szeliski, Computer Vision, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-34372-9_6

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34372-9_6&domain=pdf

274 6 Recognition

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1 Various kinds of recognition: (a) face recognition with pictorial structures (Fischler and Elschlager
1973) © 1973 IEEE; (b) instance (known object) recognition (Lowe 1999) © 1999 IEEE; (c) real-time face
detection (Viola and Jones 2004) © 2004 Springer; (d) feature-based recognition (Fergus, Perona, and Zisserman
2007) © 2007 Springer; (e) instance segmentation using Mask R-CNN (He, Gkioxari et al. 2017) © 2017 IEEE;
(f) pose estimation (Güler, Neverova, and Kokkinos 2018) © 2018 IEEE; (g) panoptic segmentation (Kirillov, He
et al. 2019) © 2019 IEEE; (h) video action recognition (Feichtenhofer, Fan et al. 2019); (i) image captioning (Lu,
Yang et al. 2018) © 2018 IEEE.

6 Recognition 275

Of all the computer vision topics covered in this book, visual recognition has undergone the
largest changes and fastest development in the last decade, due in part to the availability of much
larger labeled datasets as well as breakthroughs in deep learning (Figure 5.40). In the first edition
of this book (Szeliski 2010), recognition was the last chapter, since it was considered a “high-level
task” to be layered on top of lower-level components such as feature detection and matching. In fact,
many introductory vision courses still teach recognition at the end, often covering “classic” (non-
learning) vision algorithms and applications first, and then shifting to deep learning and recognition.

As I mentioned in the preface and introduction, I have now moved machine and deep learning to
early in the book, since it is foundational technology widely used in other parts of computer vision.
I also decided to move the recognition chapter right after deep learning, since most of the modern
techniques for recognition are natural applications of deep neural networks. The majority of the old
recognition chapter has been replaced with newer deep learning techniques, so you will sometimes
find terse descriptions of classical recognition techniques along with pointers to the first edition and
relevant surveys or seminal papers.

A good example of the classic approach is instance recognition, where we are trying to find
exemplars of a particular manufactured object such as a stop sign or sneaker (Figure 6.1b). (An
even earlier example is face recognition using relative feature locations, as shown in Figure 6.1a.)
The general approach of finding distinctive features while dealing with local appearance variation
(Section 7.1.2), and then checking for their co-occurrence and relative positions in an image, is
still widely used for manufactured 3D object detection (Figure 6.3), 3D structure and pose recovery
(Chapter 11), and location recognition (Section 11.2.3). Highly accurate and widely used feature-
based approaches to instance recognition were developed in the 2000s (Figure 7.27) and, despite
more recent deep learning-based alternatives, are often still the preferred method (Sattler, Zhou et
al. 2019). We review instance recognition in Section 6.1, although some of the needed components,
such as feature detection, description, and matching (Chapter 7), as well as 3D pose estimation and
verification (Chapter 11), will not be introduced until later.

The more difficult problem of category or class recognition (e.g., recognizing members of highly
variable categories such as cats, dogs, or motorcycles) was also initially attacked using feature-based
approaches and relative locations (part-based models), such as the one depicted in Figure 6.1d. We
begin our discussion of image classification (another name for whole-image category recognition)
in Section 6.2 with a review of such “classic” (though now rarely used) techniques. We then show
how the deep neural networks described in the previous chapter are ideally suited to these kinds of
classification problems. Next, we cover visual similarity search, where instead of categorizing an
image into a predefined number of categories, we retrieve other images that are semantically similar.
Finally, we focus on face recognition, which is one of the longest studied topics in computer vision.

In Section 6.3, we turn to the topic of object detection, where we categorize not just whole
images but delineate (with bounding boxes) where various objects are located. This topic includes
more specialized variants such as face detection and pedestrian detection, as well as the detection of
objects in generic categories. In Section 6.4, we study semantic segmentation, where the task is now
to delineate various objects and materials in a pixel-accurate manner, i.e., to label each pixel with
an object identity and class. Variants on this include instance segmentation, where each separate
object gets a unique label, panoptic segmentation, where both objects and stuff (e.g., grass, sky) get
labeled, and pose estimation, where pixels get labeled with people’s body parts and orientations.
The last two sections of this chapter briefly touch on video understanding (Section 6.5) and vision
and language (Section 6.6).

Before starting to describe individual recognition algorithms and variants, I should briefly men-
tion the critical role that large-scale datasets and benchmarks have played in the rapid advancement

276 6 Recognition

Figure 6.2 Recognizing objects in a cluttered scene (Lowe 2004) © 2004 Springer. Two of the training images
in the database are shown on the left. They are matched to the cluttered scene in the middle using SIFT features,
shown as small squares in the right image. The affine warp of each recognized database image onto the scene is
shown as a larger parallelogram in the right image.

of recognition systems. While small datasets such as Xerox 10 (Csurka, Dance et al. 2006) and
Caltech-101 (Fei-Fei, Fergus, and Perona 2006) played an early role in evaluating object recogni-
tion systems, the PASCAL Visual Object Class (VOC) challenge (Everingham, Van Gool et al. 2010;
Everingham, Eslami et al. 2015) was the first dataset large and challenging enough to significantly
propel the field forward. However, PASCAL VOC only contained 20 classes. The introduction of
the ImageNet dataset (Deng, Dong et al. 2009; Russakovsky, Deng et al. 2015), which had 1,000
classes and over one million labeled images, finally provided enough data to enable end-to-end
learning systems to break through. The Microsoft COCO (Common Objects in Context) dataset
spurred further development (Lin, Maire et al. 2014), especially in accurate per-object segmenta-
tion, which we study in Section 6.4. A nice review of crowdsourcing methods to construct such
datasets is presented in (Kovashka, Russakovsky et al. 2016). We will mention additional, some-
times more specialized, datasets throughout this chapter. A listing of the most popular and active
datasets and benchmarks is provided in Tables 6.1–6.4.

6.1 Instance recognition

General object recognition falls into two broad categories, namely instance recognition and class
recognition. The former involves re-recognizing a known 2D or 3D rigid object, potentially being
viewed from a novel viewpoint, against a cluttered background, and with partial occlusions.1 The
latter, which is also known as category-level or generic object recognition (Ponce, Hebert et al.
2006), is the much more challenging problem of recognizing any instance of a particular general
class, such as “cat”, “car”, or “bicycle”.

Over the years, many different algorithms have been developed for instance recognition. Mundy
(2006) surveys earlier approaches, which focused on extracting lines, contours, or 3D surfaces from
images and matching them to known 3D object models. Another popular approach was to acquire
images from a large set of viewpoints and illuminations and to represent them using an eigenspace

1The Microsoft COCO dataset paper (Lin, Maire et al. 2014) introduced the newer concept of instance segmentation,
which is the pixel-accurate delineation of different objects drawn from a set of generic classes (Section 6.4.2). This now
sometimes leads to confusion, unless you look at these two terms (instance recognition vs. segmentation) carefully.

6.1 Instance recognition 277

(a) (b) (c) (d)

Figure 6.3 3D object recognition with affine regions (Rothganger, Lazebnik et al. 2006) © 2006 Springer: (a)
sample input image; (b) five of the recognized (reprojected) objects along with their bounding boxes; (c) a few of
the local affine regions; (d) local affine region (patch) reprojected into a canonical (square) frame, along with its
geometric affine transformations.

decomposition (Murase and Nayar 1995). More recent approaches (Lowe 2004; Lepetit and Fua
2005; Rothganger, Lazebnik et al. 2006; Ferrari, Tuytelaars, and Van Gool 2006b; Gordon and Lowe
2006; Obdržálek and Matas 2006; Sivic and Zisserman 2009; Zheng, Yang, and Tian 2018) tend to
use viewpoint-invariant 2D features, such as those we will discuss in Section 7.1.2. After extracting
informative sparse 2D features from both the new image and the images in the database, image
features are matched against the object database, using one of the sparse feature matching strategies
described in Section 7.1.3. Whenever a sufficient number of matches have been found, they are
verified by finding a geometric transformation that aligns the two sets of features (Figure 6.2).

Geometric alignment

To recognize one or more instances of some known objects, such as those shown in the left column
of Figure 6.2, the recognition system first extracts a set of interest points in each database image and
stores the associated descriptors (and original positions) in an indexing structure such as a search
tree (Section 7.1.3). At recognition time, features are extracted from the new image and compared
against the stored object features. Whenever a sufficient number of matching features (say, three or
more) are found for a given object, the system then invokes a match verification stage, whose job
is to determine whether the spatial arrangement of matching features is consistent with those in the
database image.

Because images can be highly cluttered and similar features may belong to several objects, the
original set of feature matches can have a large number of outliers. For this reason, Lowe (2004)
suggests using a Hough transform (Section 7.4.2) to accumulate votes for likely geometric trans-
formations. In his system, he uses an affine transformation between the database object and the
collection of scene features, which works well for objects that are mostly planar, or where at least
several corresponding features share a quasi-planar geometry.2

Another system that uses local affine frames is the one developed by Rothganger, Lazebnik et
al. (2006). In their system, the affine region detector of Mikolajczyk and Schmid (2004) is used to
rectify local image patches (Figure 6.3d), from which both a SIFT descriptor and a 10× 10 UV color
histogram are computed and used for matching and recognition. Corresponding patches in different
views of the same object, along with their local affine deformations, are used to compute a 3D affine

2When a larger number of features is available, a full fundamental matrix can be used (Brown and Lowe 2002; Gordon and
Lowe 2006). When image stitching is being performed (Brown and Lowe 2007), the motion models discussed in Section 8.2.1
can be used instead.

278 6 Recognition

model for the object using an extension of the factorization algorithm of Section 11.4.1, which can
then be upgraded to a Euclidean reconstruction (Tomasi and Kanade 1992). At recognition time,
local Euclidean neighborhood constraints are used to filter potential matches, in a manner analogous
to the affine geometric constraints used by Lowe (2004) and Obdržálek and Matas (2006). Figure 6.3
shows the results of recognizing five objects in a cluttered scene using this approach.

While feature-based approaches are normally used to detect and localize known objects in
scenes, it is also possible to get pixel-level segmentations of the scene based on such matches.
Ferrari, Tuytelaars, and Van Gool (2006b) describe such a system for simultaneously recognizing
objects and segmenting scenes, while Kannala, Rahtu et al. (2008) extend this approach to non-rigid
deformations. Section 6.4 re-visits this topic of joint recognition and segmentation in the context of
generic class (category) recognition.

While instance recognition in the early to mid-2000s focused on the problem of locating a known
3D object in an image, as shown in Figures 6.2–6.3, attention shifted to the more challenging prob-
lem of instance retrieval (also known as content-based image retrieval), in which the number of
images being searched can be very large. Section 7.1.4 reviews such techniques, a snapshot of
which can be seen in Figure 7.27 and the survey by Zheng, Yang, and Tian (2018). This topic is also
related to visual similarity search (Section 6.2.3 and 3D pose estimation (Section 11.2).

6.2 Image classification

While instance recognition techniques are relatively mature and are used in commercial applica-
tions such as traffic sign recognition (Stallkamp, Schlipsing et al. 2012), generic category (class)
recognition is still a rapidly evolving research area. Consider for example the set of photographs in
Figure 6.4a, which shows objects taken from 10 different visual categories. (I’ll leave it up to you
to name each of the categories.) How would you go about writing a program to categorize each of
these images into the appropriate class, especially if you were also given the choice “none of the
above”?

As you can tell from this example, visual category recognition is an extremely challenging prob-
lem. However, the progress in the field has been quite dramatic, if judged by how much better
today’s algorithms are compared to those of a decade ago.

In this section, we review the main classes of algorithms used for whole-image classification.
We begin with classic feature-based approaches that rely on handcrafted features and their statistics,
optionally using machine learning to do the final classification (Figure 5.2b). Since such techniques
are no longer widely used, we present a fairly terse description of the most important techniques.
More details can be found in the first edition of this book (Szeliski 2010, Chapter 14) and in the
cited journal papers and surveys. Next, we describe modern image classification systems, which
are based on the deep neural networks we introduced in the previous chapter. We then describe
visual similarity search, where the task is to find visually and semantically similar images, rather
than classification into a fixed set of categories. Finally, we look at face recognition, since this topic
has its own long history and set of techniques.

6.2.1 Feature-based methods

In this section, we review “classic” feature-based approaches to category recognition (image classi-
fication). While, historically, part-based representations and recognition algorithms (Section 6.2.1)
were the preferred approach (Fischler and Elschlager 1973; Felzenszwalb and Huttenlocher 2005;
Fergus, Perona, and Zisserman 2007), we begin by describing simpler bag-of-features approaches

6.2 Image classification 279

(a) (b)

Figure 6.4 Challenges in image recognition: (a) sample images from the Xerox 10 class dataset (Csurka, Dance
et al. 2006) © 2007 Springer; (b) axes of difficulty and variation from the ImageNet dataset (Russakovsky, Deng
et al. 2015) © 2015 Springer.

that represent objects and images as unordered collections of feature descriptors. We then review
more complex systems constructed with part-based models, and then look at how context and scene
understanding, as well as machine learning, can improve overall recognition results. Additional
details on the techniques presented in this section can be found in older survey articles, paper collec-
tions, and courses (Pinz 2005; Ponce, Hebert et al. 2006; Dickinson, Leonardis et al. 2007; Fei-Fei,
Fergus, and Torralba 2009), as well as two review articles on the PASCAL and ImageNet recognition
challenges (Everingham, Van Gool et al. 2010; Everingham, Eslami et al. 2015; Russakovsky, Deng
et al. 2015) and the first edition of this book (Szeliski 2010, Chapter 14).

Bag of words

One of the simplest algorithms for category recognition is the bag of words (also known as bag of
features or bag of keypoints) approach (Csurka, Dance et al. 2004; Lazebnik, Schmid, and Ponce
2006; Csurka, Dance et al. 2006; Zhang, Marszalek et al. 2007). As shown in Figure 6.6, this
algorithm simply computes the distribution (histogram) of visual words found in the query image
and compares this distribution to those found in the training images. We will give more details of
this approach in Section 7.1.4. The biggest difference from instance recognition is the absence of

280 6 Recognition

(a)

(b)

Figure 6.5 Sample images from two widely used image classification datasets: (a) Pascal Visual Object Cate-
gories (VOC) (Everingham, Eslami et al. 2015) © 2015 Springer; (b) ImageNet (Russakovsky, Deng et al. 2015)
© 2015 Springer.

6.2 Image classification 281

Figure 6.6 A typical processing pipeline for a bag-of-words category recognition system (Csurka, Dance et
al. 2006) © 2007 Springer. Features are first extracted at keypoints and then quantized to get a distribution
(histogram) over the learned visual words (feature cluster centers). The feature distribution histogram is used to
learn a decision surface using a classification algorithm, such as a support vector machine.

a geometric verification stage (Section 6.1), since individual instances of generic visual categories,
such as those shown in Figure 6.4a, have relatively little spatial coherence to their features (but see
the work by Lazebnik, Schmid, and Ponce (2006)).

Csurka, Dance et al. (2004) were the first to use the term bag of keypoints to describe such
approaches and among the first to demonstrate the utility of frequency-based techniques for category
recognition. Their original system used affine covariant regions and SIFT descriptors, k-means
visual vocabulary construction, and both a naı̈ve Bayesian classifier and support vector machines
for classification. (The latter was found to perform better.) Their newer system (Csurka, Dance et
al. 2006) uses regular (non-affine) SIFT patches and boosting instead of SVMs and incorporates a
small amount of geometric consistency information.

Zhang, Marszalek et al. (2007) perform a more detailed study of such bag of features systems.
They compare a number of feature detectors (Harris–Laplace (Mikolajczyk and Schmid 2004) and
Laplacian (Lindeberg 1998b)), descriptors (SIFT, RIFT, and SPIN (Lazebnik, Schmid, and Ponce
2005)), and SVM kernel functions.

Instead of quantizing feature vectors to visual words, Grauman and Darrell (2007b) develop a
technique for directly computing an approximate distance between two variably sized collections
of feature vectors. Their approach is to bin the feature vectors into a multi-resolution pyramid
defined in feature space and count the number of features that land in corresponding bins Bil and
B′il. The distance between the two sets of feature vectors (which can be thought of as points in
a high-dimensional space) is computed using histogram intersection between corresponding bins,
while discounting matches already found at finer levels and weighting finer matches more heavily.
In follow-on work, Grauman and Darrell (2007a) show how an explicit construction of the pyramid
can be avoided using hashing techniques.

Inspired by this work, Lazebnik, Schmid, and Ponce (2006) show how a similar idea can be
employed to augment bags of keypoints with loose notions of 2D spatial location analogous to the
pooling performed by SIFT (Lowe 2004) and “gist” (Torralba, Murphy et al. 2003). In their work,
they extract affine region descriptors (Lazebnik, Schmid, and Ponce 2005) and quantize them into
visual words. (Based on previous results by Fei-Fei and Perona (2005), the feature descriptors are
extracted densely (on a regular grid) over the image, which can be helpful in describing texture-
less regions such as the sky.) They then form a spatial pyramid of bins containing word counts
(histograms) and use a similar pyramid match kernel to combine histogram intersection counts in a
hierarchical fashion.

The debate about whether to use quantized feature descriptors or continuous descriptors and

282 6 Recognition

Figure 6.7 Using pictorial structures to locate and track a person (Felzenszwalb and Huttenlocher 2005) ©
2005 Springer. The structure consists of articulated rectangular body parts (torso, head, and limbs) connected in
a tree topology that encodes relative part positions and orientations. To fit a pictorial structure model, a binary
silhouette image is first computed using background subtraction.

also whether to use sparse or dense features went on for many years. Boiman, Shechtman, and Irani
(2008) show that if query images are compared to all the features representing a given class, rather
than just each class image individually, nearest-neighbor matching followed by a naı̈ve Bayes classi-
fier outperforms quantized visual words. Instead of using generic feature detectors and descriptors,
some authors have been investigating learning class-specific features (Ferencz, Learned-Miller, and
Malik 2008), often using randomized forests (Philbin, Chum et al. 2007; Moosmann, Nowak, and
Jurie 2008; Shotton, Johnson, and Cipolla 2008) or combining the feature generation and image
classification stages (Yang, Jin et al. 2008). Others, such as Serre, Wolf, and Poggio (2005) and
Mutch and Lowe (2008) use hierarchies of dense feature transforms inspired by biological (visual
cortical) processing combined with SVMs for final classification.

Part-based models

Recognizing an object by finding its constituent parts and measuring their geometric relationships
is one of the oldest approaches to object recognition (Fischler and Elschlager 1973; Kanade 1977;
Yuille 1991). Part-based approaches were often used for face recognition (Moghaddam and Pentland
1997; Heisele, Ho et al. 2003; Heisele, Serre, and Poggio 2007) and continue being used for pedes-
trian detection (Figure 6.24) (Felzenszwalb, McAllester, and Ramanan 2008) and pose estimation
(Güler, Neverova, and Kokkinos 2018).

In this overview, we discuss some of the central issues in part-based recognition, namely, the
representation of geometric relationships, the representation of individual parts, and algorithms for
learning such descriptions and recognizing them at run time. More details on part-based models for
recognition can be found in the course notes by Fergus (2009).

The earliest approaches to representing geometric relationships were dubbed pictorial structures
by Fischler and Elschlager (1973) and consisted of spring-like connections between different feature
locations (Figure 6.1a). To fit a pictorial structure to an image, an energy function of the form

E =
∑

i

Vi(li) +
∑

ij∈E
Vij(li, lj) (6.1)

is minimized over all potential part locations or poses {li} and pairs of parts (i, j) for which an
edge (geometric relationship) exists in E. Note how this energy is closely related to that used with

6.2 Image classification 283

Markov random fields (4.35–4.38), which can be used to embed pictorial structures in a probabilistic
framework that makes parameter learning easier (Felzenszwalb and Huttenlocher 2005).

Part-based models can have different topologies for the geometric connections between the parts
(Carneiro and Lowe 2006). For example, Felzenszwalb and Huttenlocher (2005) restrict the con-
nections to a tree, which makes learning and inference more tractable. A tree topology enables the
use of a recursive Viterbi (dynamic programming) algorithm (Pearl 1988; Bishop 2006), in which
leaf nodes are first optimized as a function of their parents, and the resulting values are then plugged
in and eliminated from the energy function, To further increase the efficiency of the inference al-
gorithm, Felzenszwalb and Huttenlocher (2005) restrict the pairwise energy functions Vij(li, lj) to
be Mahalanobis distances on functions of location variables and then use fast distance transform
algorithms to minimize each pairwise interaction in time that is closer to linear in N .

Figure 6.7 shows the results of using their pictorial structures algorithm to fit an articulated
body model to a binary image obtained by background segmentation. In this application of pictorial
structures, parts are parameterized by the locations, sizes, and orientations of their approximating
rectangles. Unary matching potentials Vi(li) are determined by counting the percentage of fore-
ground and background pixels inside and just outside the tilted rectangle representing each part.

A large number of different graphical models have been proposed for part-based recognition.
Carneiro and Lowe (2006) discuss a number of these models and propose one of their own, which
they call a sparse flexible model; it involves ordering the parts and having each part’s location depend
on at most k of its ancestor locations.

The simplest models are bags of words, where there are no geometric relationships between dif-
ferent parts or features. While such models can be very efficient, they have a very limited capacity to
express the spatial arrangement of parts. Trees and stars (a special case of trees where all leaf nodes
are directly connected to a common root) are the most efficient in terms of inference and hence also
learning (Felzenszwalb and Huttenlocher 2005; Fergus, Perona, and Zisserman 2005; Felzenszwalb,
McAllester, and Ramanan 2008). Directed acyclic graphs come next in terms of complexity and can
still support efficient inference, although at the cost of imposing a causal structure on the part model
(Bouchard and Triggs 2005; Carneiro and Lowe 2006). k-fans, in which a clique of size k forms the
root of a star-shaped model have inference complexityO(Nk+1), although with distance transforms
and Gaussian priors, this can be lowered toO(Nk) (Crandall, Felzenszwalb, and Huttenlocher 2005;
Crandall and Huttenlocher 2006). Finally, fully connected constellation models are the most gen-
eral, but the assignment of features to parts becomes intractable for moderate numbers of parts P ,
since the complexity of such an assignment is O(NP) (Fergus, Perona, and Zisserman 2007).

The original constellation model was developed by Burl, Weber, and Perona (1998) and consists
of a number of parts whose relative positions are encoded by their mean locations and a full covari-
ance matrix, which is used to denote not only positional uncertainty but also potential correlations
between different parts. Weber, Welling, and Perona (2000) extended this technique to a weakly su-
pervised setting, where both the appearance of each part and its locations are automatically learned
given whole image labels. Fergus, Perona, and Zisserman (2007) further extend this approach to
simultaneous learning of appearance and shape models from scale-invariant keypoint detections.

The part-based approach to recognition has also been extended to learning new categories from
small numbers of examples, building on recognition components developed for other classes (Fei-
Fei, Fergus, and Perona 2006). More complex hierarchical part-based models can be developed
using the concept of grammars (Bouchard and Triggs 2005; Zhu and Mumford 2006). A simpler
way to use parts is to have keypoints that are recognized as being part of a class vote for the estimated
part locations (Leibe, Leonardis, and Schiele 2008). Parts can also be a useful component of fine-
grained category recognition systems, as shown in Figure 6.9.

284 6 Recognition

(a) (b) (c) (d) (e)

Figure 6.8 The importance of context (images courtesy of Antonio Torralba). Can you name all of the objects
in images (a–b), especially those that are circled in (c–d). Look carefully at the circled objects. Did you notice
that they all have the same shape (after being rotated), as shown in column (e)?

Context and scene understanding

Thus far, we have mostly considered the task of recognizing and localizing objects in isolation from
that of understanding the scene (context) in which the object occur. This is a big limitation, as
context plays a very important role in human object recognition (Oliva and Torralba 2007). Context
can greatly improve the performance of object recognition algorithms (Divvala, Hoiem et al. 2009),
as well as providing useful semantic clues for general scene understanding (Torralba 2008).

Consider the two photographs in Figure 6.8a–b. Can you name all of the objects, especially
those circled in images (c–d)? Now have a closer look at the circled objects. Do see any similarity
in their shapes? In fact, if you rotate them by 90°, they are all the same as the “blob” shown in
Figure 6.8e. So much for our ability to recognize object by their shape!

Even though we have not addressed context explicitly earlier in this chapter, we have already
seen several instances of this general idea being used. A simple way to incorporate spatial infor-
mation into a recognition algorithm is to compute feature statistics over different regions, as in the
spatial pyramid system of Lazebnik, Schmid, and Ponce (2006). Part-based models (Figure 6.7) use
a kind of local context, where various parts need to be arranged in a proper geometric relationship
to constitute an object.

The biggest difference between part-based and context models is that the latter combine objects
into scenes and the number of constituent objects from each class is not known in advance. In
fact, it is possible to combine part-based and context models into the same recognition architecture
(Murphy, Torralba, and Freeman 2003; Sudderth, Torralba et al. 2008; Crandall and Huttenlocher
2007).

Consider an image database consisting of street and office scenes. If we have enough training
images with labeled regions, such as buildings, cars, and roads, or monitors, keyboards, and mice,
we can develop a geometric model for describing their relative positions. Sudderth, Torralba et al.
(2008) develop such a model, which can be thought of as a two-level constellation model. At the
top level, the distributions of objects relative to each other (say, buildings with respect to cars) is
modeled as a Gaussian. At the bottom level, the distribution of parts (affine covariant features) with
respect to the object center is modeled using a mixture of Gaussians. However, since the number of
objects in the scene and parts in each object are unknown, a latent Dirichlet process (LDP) is used to
model object and part creation in a generative framework. The distributions for all of the objects and
parts are learned from a large labeled database and then later used during inference (recognition) to
label the elements of a scene.

6.2 Image classification 285

Another example of context is in simultaneous segmentation and recognition (Section 6.4 and
Figure 6.33), where the arrangements of various objects in a scene are used as part of the labeling
process. Torralba, Murphy, and Freeman (2004) describe a conditional random field where the
estimated locations of building and roads influence the detection of cars, and where boosting is
used to learn the structure of the CRF. Rabinovich, Vedaldi et al. (2007) use context to improve
the results of CRF segmentation by noting that certain adjacencies (relationships) are more likely
than others, e.g., a person is more likely to be on a horse than on a dog. Galleguillos and Belongie
(2010) review various approaches proposed for adding context to object categorization, while Yao
and Fei-Fei (2012) study human-object interactions. (For a more recent take on this problem, see
Gkioxari, Girshick et al. (2018).)

Context also plays an important role in 3D inference from single images (Figure 6.41), using
computer vision techniques for labeling pixels as belonging to the ground, vertical surfaces, or sky
(Hoiem, Efros, and Hebert 2005a). This line of work has been extended to a more holistic approach
that simultaneously reasons about object identity, location, surface orientations, occlusions, and
camera viewing parameters (Hoiem, Efros, and Hebert 2008).

A number of approaches use the gist of a scene (Torralba 2003; Torralba, Murphy et al. 2003) to
determine where instances of particular objects are likely to occur. For example, Murphy, Torralba,
and Freeman (2003) train a regressor to predict the vertical locations of objects such as pedestrians,
cars, and buildings (or screens and keyboards for indoor office scenes) based on the gist of an image.
These location distributions are then used with classic object detectors to improve the performance
of the detectors. Gists can also be used to directly match complete images, as we saw in the scene
completion work of Hays and Efros (2007).

Finally, some of the work in scene understanding exploits the existence of large numbers of
labeled (or even unlabeled) images to perform matching directly against whole images, where the
images themselves implicitly encode the expected relationships between objects (Russell, Torralba
et al. 2007; Malisiewicz and Efros 2008; Galleguillos and Belongie 2010). This, of course, is one of
the central benefits of using deep neural networks, which we discuss in the next section.

6.2.2 Deep networks

As we saw in Section 5.4.3, deep networks started outperforming “shallow” learning-based ap-
proaches on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) with the introduc-
tion of the “AlexNet” SuperVision system of Krizhevsky, Sutskever, and Hinton (2012). Since that
time, recognition accuracy has continued to improve dramatically (Figure 5.40) driven to a large
degree by deeper networks and better training algorithms. More recently, more efficient networks
have become the focus of research (Figure 5.45) as well as larger (unlabeled) training datasets (Sec-
tion 5.4.7). There are now open-source frameworks such as Classy Vision3 for training and fine
tuning your own image and video classification models. Users can also upload custom images on
the web to the Computer Vision Explorer4 to see how well many popular computer vision models
perform on their own images.

In addition to recognizing commonly occurring categories such as those found in the Ima-
geNet and COCO datasets, researchers have studied the problem of fine-grained category recog-
nition (Duan, Parikh et al. 2012; Zhang, Donahue et al. 2014; Krause, Jin et al. 2015), where the
differences between sub-categories can be subtle and the number of exemplars is quite low (Fig-
ure 6.9). Examples of categories with fine-grained sub-classes include flowers (Nilsback and Zisser-
man 2006), cats and dogs (Parkhi, Vedaldi et al. 2012), birds (Wah, Branson et al. 2011; Van Horn,

3https://classyvision.ai
4https://vision-explorer.allenai.org

https://classyvision.ai
https://vision-explorer.allenai.org

286 6 Recognition

Part-Based R-CNNs for Fine-Grained Category Detection 835

Input images with region proposals

Nearest neighbors used in geometric constraints

Top scored object and part detections

Object detection and part localizations Pose-normalized representation

classifier

Northern
Flicker

c

Fig. 1. Overview of our part localization Starting from bottom-up region pro-
posals (top-left), we train both object and part detectors based on deep convolutional
features. During test time, all the windows are scored by all detectors (middle), and
we apply non-parametric geometric constraints (bottom) to rescore the windows and
choose the best object and part detections (top-right). The final step is to extract fea-
tures on the localized semantic parts for fine-grained recognition for a pose-normalized
representation and then train a classifier for the final categorization. Best viewed in
color.

and can achieve performance rivaling previously reported methods requiring the
ground truth bounding box at test time to filter false positive detections.

The recent success of convolutional networks, like [26], on the ImageNet Chal-
lenge [22] has inspired further work on applying deep convolutional features to
related image classification [14] and detection tasks [21]. In [21], Girshick et al.
achieved breakthrough performance on object detection by applying the CNN
of [26] to a set of bottom-up candidate region proposals [40], boosting PASCAL
detection performance by over 30% compared to the previous best methods.
Independently, OverFeat [37] proposed localization using a CNN to regress to
object locations. However, the progress of leveraging deep convolutional fea-
tures is not limited to basic-level object detection. In many applications such
as fine-grained recognition, attribute recognition, pose estimation, and others,
reasonable predictions demand accurate part localization.

Feature learning has been used for fine-grained recognition and attribute esti-
mation, but was limited to engineered features for localization. DPD-DeCAF [47]
used DeCAF [14] as a feature descriptor, but relied on HOG-based DPM [17] for
part localization. PANDA [48] learned part-specific deep convolutional networks
whose location was conditioned on HOG-based poselet models. These models
lack the strength and detection robustness of R-CNN [21]. In this work we ex-
plore a unified method that uses the same deep convolutional representation for
detection as well as part description.

Figure 6.9 Fine-grained category recognition using parts (Zhang, Donahue et al. 2014) © 2014 Springer. Deep
neural network object and part detectors are trained and their outputs are combined using geometric constraints.
A classifier trained on features from the extracted parts is used for the final categorization.

(a) (b)

Figure 6.10 Fine-grained category recognition. (a) The iNaturalist website and app allows citizen scientists to
collect and classify images on their phones (Van Horn, Mac Aodha et al. 2018) © 2018 IEEE. (b) Attributes can
be used for fine-grained categorization and zero-shot learning (Lampert, Nickisch, and Harmeling 2014) © 2014
Springer. These images are part of the Animals with Attributes dataset.

6.2 Image classification 287

Branson et al. 2015), and cars (Yang, Luo et al. 2015). A recent example of fine-grained categoriza-
tion is the iNaturalist system (Van Horn, Mac Aodha et al. 2018),5 which allows both specialists and
citizen scientists to photograph and label biological species, using a fine-grained category recogni-
tion system to label new images (Figure 6.10a).

Fine-grained categorization is often attacked using attributes of images and classes (Lampert,
Nickisch, and Harmeling 2009; Parikh and Grauman 2011; Lampert, Nickisch, and Harmeling
2014), as shown in Figure 6.10b. Extracting attributes can enable zero-shot learning (Xian, Lam-
pert et al. 2019), where previously unseen categories can be described using combinations of such
attributes. However, some caution must be used in order not to learn spurious correlations between
different attributes (Jayaraman, Sha, and Grauman 2014) or between objects and their common con-
texts (Singh, Mahajan et al. 2020). Fine-grained recognition can also be tackled using metric learn-
ing (Wu, Manmatha et al. 2017) or nearest-neighbor visual similarity search (Touvron, Sablayrolles
et al. 2020), which we discuss next.

6.2.3 Application: Visual similarity search

Automatically classifying images into categories and tagging them with attributes using computer
vision algorithms makes it easier to find them in catalogues and on the web. This is commonly used
in image search or image retrieval engines, which find likely images based on keywords, just as
regular web search engines find relevant documents and pages.

Sometimes, however, it’s easier to find the information you need from an image, i.e., using visual
search. Examples of this include fine-grained categorization, which we have just seen, as well
as instance retrieval, i.e., finding the exact same object (Section 6.1) or location (Section 11.2.3).
Another variant is finding visually similar images (often called visual similarity search or reverse
image search), which is useful when the search intent cannot be succinctly captured in words.6

The topic of searching by visual similarity has a long history and goes by a variety of names,
including query by image content (QBIC) (Flickner, Sawhney et al. 1995) and content-based image
retrieval (CBIR) (Smeulders, Worring et al. 2000; Lew, Sebe et al. 2006; Vasconcelos 2007; Datta,
Joshi et al. 2008). Early publications in these fields were based primarily on simple whole-image
similarity metrics, such as color and texture (Swain and Ballard 1991; Jacobs, Finkelstein, and
Salesin 1995; Manjunathi and Ma 1996).

Later architectures, such as that by Fergus, Perona, and Zisserman (2004), use a feature-based
learning and recognition algorithm to re-rank the outputs from a traditional keyword-based image
search engine. In follow-on work, Fergus, Fei-Fei et al. (2005) cluster the results returned by im-
age search using an extension of probabilistic latest semantic analysis (PLSA) (Hofmann 1999) and
then select the clusters associated with the highest ranked results as the representative images for
that category. Other approaches rely on carefully annotated image databases such as LabelMe (Rus-
sell, Torralba et al. 2008). For example, Malisiewicz and Efros (2008) describe a system that, given
a query image, can find similar LabelMe images, whereas Liu, Yuen, and Torralba (2009) com-
bine feature-based correspondence algorithms with the labeled database to perform simultaneous
recognition and segmentation.

Newer approaches to visual similarity search use whole-image descriptors such as Fisher kernels
and the Vector of Locally Aggregated Descriptors (VLAD) (Jégou, Perronnin et al. 2012) or pooled
CNN activations (Babenko and Lempitsky 2015a; Tolias, Sicre, and Jégou 2016; Cao, Araujo, and
Sim 2020; Ng, Balntas et al. 2020; Tolias, Jenicek, and Chum 2020) combined with metric learning

5https://www.inaturalist.org
6Some authors use the term image retrieval to denote visual similarity search, (e.g., Jégou, Perronnin et al. 2012; Raden-

ović, Tolias, and Chum 2019).

https://www.inaturalist.org

288 6 Recognition

(a) (b)

Figure 6.11 The GrokNet product recognition service is used for product tagging, visual search, and recom-
mendations © Bell, Liu et al. (2020): (a) recognizing all the products in a photo; (b) automatically sourcing data
for metric learning using weakly supervised data augmentation.

KDD ’20, August 22–27, 2020, San Diego, CA, USA Sean Bell, et al.

GeM
Pooling

2048

400 400

L2

ArcFace loss
(~188k product IDs)

Multi-Label ArcFace loss
(~43k search queries)

Embedding

Trunk (ResNeXt101 32x4d)

Categories & Attributes (80 Softmax Losses)

Object Category

Pairwise Double-Margin Loss
(~3M product IDs)

Search Queries

Vehicle Attributes

Home Attributes
Fashion Attributes

Input Data Loader

Sample from datasets:
 - Home Product ID
 - Home Attributes
 - Fashion Product ID
 - Fashion Attributes
 - Vehicle Product ID
 - Vehicle Attributes
 - Object Category
 - Search Query Trunk

Features

Figure 6: GrokNet training architecture: 7 datasets, 83 loss functions (80 categorical losses + 3 embedding losses). The data
loader samples a fixed number of images per batch from each dataset, and the losses are combined with a weighted sum. At
inference time, we further compress the embedding (not shown here) from 400 dimensions to 256 bits (see §4.0.1).

3.1.5 Marketplace SearchQueries. Here we describe howwe create
a dataset of image-query pairs from search logs. Facebook Market-
place is a global-scale marketplace of items for sale, where buyers
can list items for sale along with photos, price, description, and
other metadata. Users can browse and search for products using
Marketplace Feed and Search. Once a buyer has found a product,
they can choose to message buyers about the product, such as ask-
ing questions about the product or its availability, or arranging a
sale. We do not have access to message contents and only know
the fact that users interacted with each other. We consider this
as a proxy for an add-to-cart action on an e-commerce website.
For this project, we use anonymized search log data from Mar-
ketplace Search to create a dataset of image-query pairs. Figure 5
describes how we create our dataset, following the same technique
as MSURU [26]. We further extend MSURU data collection with
dataset cleaning methods (described later in §5.2), which automati-
cally reject irrelevant image-query pairs and reduce noise in the
training set. The end result is a dataset of 56M images, with each
image having a list of text queries estimated to be relevant for that
image. We keep the top 45k most common queries, which improves
precision and ensures that we have at least 300 images per query.

3.2 Trunk Architecture
GrokNet is a large-scale unification of several datasets and machine
learning tasks – in total we have 7 datasets (§3.1) and 83 differ-
ent loss functions (§3.3), as shown in Figure 6. In this section, we
describe the underlying convolutional neural network model that
forms the “trunk” of the model. We build our system as a distributed
PyTorch [1] workflow in the FBLearner framework [11].

The trunkmodel forGrokNet uses ResNeXt-101 32×4d, which has
101 layers, 32 groups, and group width 4 (8B multiply-add FLOPs,
43M parameters) [32]. We initialize weights from [19], which was
pre-trained on 3.5B images and 17k hashtags. We then fine-tune
on our datasets using Distributed Data Parallel GPU training on
8-GPU hosts, across 12 hosts (96 total GPUs).

3.2.1 GeM Pooling. At the top of the trunk, we replace average
pooling with generalized mean (GeM) pooling [4, 10, 22, 27], which
is a parameterized pooling operation that is equivalent to average

pooling forp = 1, andmax pooling forp = ∞. Intuitively, this allows
the embedding to concentrate more of the network’s attention to
salient parts of the image for each feature. We follow the method of
[22], and learn the pooling parameterp directly for our experiments.
After training, our final model converges to a value p ≈ 3. In
separate held-out experiments on a single dataset, we found a +26%
relative improvement in Precision@1 compared to average pooling.

3.3 Loss Functions
GrokNet unifies several distinct tasks into a single architecture
(Figure 6), combining several loss functions and loss function types
in a weighted sum. To train the 80 category and attribute heads,
we use Softmax and Multi-label Softmax [19]. To train the unified
embedding head, we use 3 metric learning losses operating over
the same space—ArcFace [9], Multi-label ArcFace, and Pairwise
Embedding Loss. The latter two are new extensions on past work,
and we describe all losses in detail below.

3.3.1 Softmax Losses. We add categorical labels to our model us-
ing softmax with cross-entropy Loss, as is standard in the litera-
ture [12]. These labels are described in §3.1 and include object cate-
gories, home attributes, fashion attributes, and vehicle attributes.
We group together categories/attributes that are mutually exclu-
sive with respect to each other—for example, “object category” is a
single group, “dress color” is another group. There are 80 groups
and thus 80 softmaxes. For multi-label datasets, we use multi-label
cross entropy, where each positive target is set to be 1/k if there
are k positive labels for the image [19]. Since there are so many
different losses, most gradients will be zero in most iterations.

3.3.2 Multi-Label ArcFace Loss. ArcFace loss [9] is a modified clas-
sification objective originally introduced for face recognition. Arc-
Face loss expects a single label per training example. However our
Marketplace Search Queries dataset (§3.1.5) often associates each
product image with multiple search queries. To address this, we
extend ArcFace loss to allow for multiple labels per image.

Multi-Label ArcFace uses cosine similarity between embeddings
xi and “class center” vectorsw j for each class, where each image is
pulled towards multiple class centers (vs. a single center in ArcFace).

Figure 6.12 The GrokNet training architecture uses seven datasets, a common DNN trunk, two branches, and
83 loss functions (80 categorical losses + 3 embedding losses) © Bell, Liu et al. (2020).

(Bell and Bala 2015; Song, Xiang et al. 2016; Gordo, Almazán et al. 2017; Wu, Manmatha et
al. 2017; Berman, Jégou et al. 2019) to represent each image with a compact descriptor that can be
used to measure similarity in large databases (Johnson, Douze, and Jégou 2021). It is also possible to
combine several techniques, such as deep networks with VLAD (Arandjelovic, Gronat et al. 2016),
generalized mean (GeM) pooling (Radenović, Tolias, and Chum 2019), or dynamic mean (DAME)
pooling (Yang, Kien Nguyen et al. 2019) into complete systems that are end-to-end tunable. Gordo,
Almazán et al. (2017) provide a comprehensive review and experimental comparison of many of
these techniques, which we also discuss in Section 7.1.4 on large-scale matching and retrieval. Some
of the latest techniques for image retrieval use combinations of local and global descriptors to obtain
state-of-the art performance on the landmark recognition tasks (Cao, Araujo, and Sim 2020; Ng,
Balntas et al. 2020; Tolias, Jenicek, and Chum 2020). The ECCV 2020 Workshop on Instance-Level
Recognition7 has pointers to some of the latest work in this area, while the upcoming NeurIPS’21
Image Similarity Challenge8 has new datasets for detecting content manipulation.

A recent example of a commercial system that uses visual similarity search, in addition to cat-
egory recognition, is the GrokNet product recognition service described by Bell, Liu et al. (2020).
GrokNet takes as input user images and shopping queries and returns indexed items similar to the
ones in the query image (Figure 6.11a). The reason for needing a similarity search component is
that the world contains too many “long-tail” items such as “a fur sink, an electric dog polisher, or a

7https://ilr-workshop.github.io/ECCVW2020
8https://www.drivendata.org/competitions/79/

https://ilr-workshop.github.io/ECCVW2020
https://www.drivendata.org/competitions/79/

6.2 Image classification 289

Figure 6.13 Humans can recognize low-resolution faces of familiar people (Sinha, Balas et al. 2006) © 2006
IEEE.

gasoline powered turtleneck sweater”,9 to make full categorization practical.
At training time, GrokNet takes both weakly labeled images, with category and/or attribute la-

bels, and unlabeled images, where features in objects are detected and then used for metric learning,
using a modification of ArcFace loss (Deng, Guo et al. 2019) and a novel pairwise margin loss (Fig-
ure 6.11b). The overall system takes in large collections of unlabeled and weakly labeled images
and trains a ResNeXt101 trunk using a combination of category and attribute softmax losses and
three different metric losses on the embeddings (Figure 6.12). GrokNet is just one example of a
large number of commercial visual product search systems that have recently been developed. Oth-
ers include systems from Amazon (Wu, Manmatha et al. 2017), Pinterest (Zhai, Wu et al. 2019),
and Facebook (Tang, Borisyuk et al. 2019). In addition to helping people find items they may with
to purchase, large-scale similarity search can also speed the search for harmful content on the web,
as exemplified in Facebook’s SimSearchNet.10

6.2.4 Face recognition

Among the various recognition tasks that computers are asked to perform, face recognition is the
one where they have arguably had the most success.11 While even people cannot readily distin-
guish between similar people with whom they are not familiar (O’Toole, Jiang et al. 2006; O’Toole,
Phillips et al. 2009), computers’ ability to distinguish among a small number of family members
and friends has found its way into consumer-level photo applications. Face recognition can be used
in a variety of additional applications, including human–computer interaction (HCI), identity veri-
fication (Kirovski, Jojic, and Jancke 2004), desktop login, parental controls, and patient monitoring
(Zhao, Chellappa et al. 2003), but it also has the potential for misuse (Chokshi 2019; Ovide 2020).

Face recognizers work best when they are given images of faces under a wide variety of pose, il-
lumination, and expression (PIE) conditions (Phillips, Moon et al. 2000; Sim, Baker, and Bsat 2003;
Gross, Shi, and Cohn 2005; Huang, Ramesh et al. 2007; Phillips, Scruggs et al. 2010). More recent
widely used datasets include labeled Faces in the Wild (LFW) (Huang, Ramesh et al. 2007; Learned-
Miller, Huang et al. 2016), YouTube Faces (YTF) (Wolf, Hassner, and Maoz 2011), MegaFace
(Kemelmacher-Shlizerman, Seitz et al. 2016; Nech and Kemelmacher-Shlizerman 2017), and the
IARPA Janus Benchmark (IJB) (Klare, Klein et al. 2015; Maze, Adams et al. 2018), as tabulated in

9https://www.google.com/search?q=gasoline+powered+turtleneck+sweater
10https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
11Instance recognition, i.e., the re-recognition of known objects such as locations or planar objects, is the other most

successful application of general image recognition. In the general domain of biometrics, i.e., identity recognition, specialized
images such as irises and fingerprints perform even better (Jain, Bolle, and Pankanti 1999; Daugman 2004).

https://www.google.com/search?q=gasoline+powered+turtleneck+sweater
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content

290 6 Recognition

Name/URL Contents/Reference

CMU Multi-PIE database 337 people’s faces in various poses
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie Gross, Matthews et al. (2010)

Faces in the Wild 5,749 internet celebrities
http://vis-www.cs.umass.edu/lfw Huang, Ramesh et al. (2007)

YouTube Faces (YTF) 1,595 people in 3,425 YouTube videos
https://www.cs.tau.ac.il/∼wolf/ytfaces Wolf, Hassner, and Maoz (2011)

MegaFace 1M internet faces
https://megaface.cs.washington.edu Nech and Kemelmacher-Shlizerman (2017)

IARPA Janus Benchmark (IJB) 31,334 faces of 3,531 people in videos
https://www.nist.gov/programs-projects/face-challenges Maze, Adams et al. (2018)

WIDER FACE 32,203 images for face detection
http://shuoyang1213.me/WIDERFACE Yang, Luo et al. (2016)

Table 6.1 Face recognition and detection datasets, adapted from Maze, Adams et al. (2018).

Table 6.1. (See Masi, Wu et al. (2018) for additional datasets used for training.)
Some of the earliest approaches to face recognition involved finding the locations of distinctive

image features, such as the eyes, nose, and mouth, and measuring the distances between these fea-
ture locations (Fischler and Elschlager 1973; Kanade 1977; Yuille 1991). Other approaches relied
on comparing gray-level images projected onto lower dimensional subspaces called eigenfaces (Sec-
tion 5.2.3) and jointly modeling shape and appearance variations (while discounting pose variations)
using active appearance models (Section 6.2.4). Descriptions of “classic” (pre-DNN) face recog-
nition systems can be found in a number of surveys and books on this topic (Chellappa, Wilson,
and Sirohey 1995; Zhao, Chellappa et al. 2003; Li and Jain 2005) as well as the Face Recognition
website.12 The survey on face recognition by humans by Sinha, Balas et al. (2006) is also well
worth reading; it includes a number of surprising results, such as humans’ ability to recognize low-
resolution images of familiar faces (Figure 6.13) and the importance of eyebrows in recognition.
Researchers have also studied the automatic recognition of facial expressions. See Chang, Hu et al.
(2006), Shan, Gong, and McOwan (2009), and Li and Deng (2020) for some representative papers.

Active appearance and 3D shape models

The need to use modular or view-based eigenspaces for face recognition, which we discussed in
Section 5.2.3, is symptomatic of a more general observation, i.e., that facial appearance and identi-
fiability depend as much on shape as they do on color or texture (which is what eigenfaces capture).
Furthermore, when dealing with 3D head rotations, the pose of a person’s head should be discounted
when performing recognition.

In fact, the earliest face recognition systems, such as those by Fischler and Elschlager (1973),
Kanade (1977), and Yuille (1991), found distinctive feature points on facial images and performed
recognition on the basis of their relative positions or distances. Later techniques such as local feature
analysis (Penev and Atick 1996) and elastic bunch graph matching (Wiskott, Fellous et al. 1997)
combined local filter responses (jets) at distinctive feature locations together with shape models to
perform recognition.

A visually compelling example of why both shape and texture are important is the work of
Rowland and Perrett (1995), who manually traced the contours of facial features and then used

12https://www.face-rec.org

http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie
http://vis-www.cs.umass.edu/lfw
https://www.cs.tau.ac.il/~wolf/ytfaces
https://megaface.cs.washington.edu
https://www.nist.gov/programs-projects/face-challenges
http://shuoyang1213.me/WIDERFACE
https://www.face-rec.org

6.2 Image classification 291

(a) (b) (c) (d) (e)

Figure 6.14 Manipulating facial appearance through shape and color (Rowland and Perrett 1995) © 1995 IEEE.
By adding or subtracting gender-specific shape and color characteristics to an input image (b), different amounts
of gender variation can be induced. The amounts added (from the mean) are: (a) +50% (gender enhancement),
(b) 0% (original image), (c) –50% (near “androgyny”), (d) –100% (gender switched), and (e) –150% (opposite
gender attributes enhanced).

these contours to normalize (warp) each image to a canonical shape. After analyzing both the
shape and color images for deviations from the mean, they were able to associate certain shape
and color deformations with personal characteristics such as age and gender (Figure 6.14). Their
work demonstrates that both shape and color have an important influence on the perception of such
characteristics.

Around the same time, researchers in computer vision were beginning to use simultaneous shape
deformations and texture interpolation to model the variability in facial appearance caused by iden-
tity or expression (Beymer 1996; Vetter and Poggio 1997), developing techniques such as Active
Shape Models (Lanitis, Taylor, and Cootes 1997), 3D Morphable Models (Blanz and Vetter 1999;
Egger, Smith et al. 2020), and Elastic Bunch Graph Matching (Wiskott, Fellous et al. 1997).13

The active appearance models (AAMs) of Cootes, Edwards, and Taylor (2001) model both the
variation in the shape of an image s, which is normally encoded by the location of key feature points
on the image, as well as the variation in texture t, which is normalized to a canonical shape before
being analyzed. Both shape and texture are represented as deviations from a mean shape s̄ and
texture t̄,

s = s̄ + Usa (6.2)

t = t̄ + Uta, (6.3)

where the eigenvectors in Us and Ut have been pre-scaled (whitened) so that unit vectors in a

represent one standard deviation of variation observed in the training data. In addition to these
principal deformations, the shape parameters are transformed by a global similarity to match the
location, size, and orientation of a given face. Similarly, the texture image contains a scale and
offset to best match novel illumination conditions.

13We will look at the application of PCA to 3D head and face modeling and animation in Section 13.6.3.

292 6 Recognition

(a) (b)

(c) (d)

Figure 6.15 Principal modes of variation in active appearance models (Cootes, Edwards, and Taylor 2001) ©
2001 IEEE. The four images show the effects of simultaneously changing the first four modes of variation in
both shape and texture by ±σ from the mean. You can clearly see how the shape of the face and the shading are
simultaneously affected.

As you can see, the same appearance parameters a in (6.2–6.3) simultaneously control both
the shape and texture deformations from the mean, which makes sense if we believe them to be
correlated. Figure 6.15 shows how moving three standard deviations along each of the first four
principal directions ends up changing several correlated factors in a person’s appearance, including
expression, gender, age, and identity.

Although active appearance models are primarily designed to accurately capture the variability
in appearance and deformation that are characteristic of faces, they can be adapted to face recog-
nition by computing an identity subspace that separates variation in identity from other sources of
variability such as lighting, pose, and expression (Costen, Cootes et al. 1999). The basic idea, which
is modeled after similar work in eigenfaces (Belhumeur, Hespanha, and Kriegman 1997; Moghad-
dam, Jebara, and Pentland 2000), is to compute separate statistics for intrapersonal and extrapersonal
variation and then find discriminating directions in these subspaces. While AAMs have sometimes
been used directly for recognition (Blanz and Vetter 2003), their main use in the context of recog-
nition is to align faces into a canonical pose (Liang, Xiao et al. 2008; Ren, Cao et al. 2014) so that
more traditional methods of face recognition (Penev and Atick 1996; Wiskott, Fellous et al. 1997;
Ahonen, Hadid, and Pietikäinen 2006; Zhao and Pietikäinen 2007; Cao, Yin et al. 2010) can be
used.

Active appearance models have been extended to deal with illumination and viewpoint variation
(Gross, Baker et al. 2005) as well as occlusions (Gross, Matthews, and Baker 2006). One of the
most significant extensions is to construct 3D models of shape (Matthews, Xiao, and Baker 2007),
which are much better at capturing and explaining the full variability of facial appearance across
wide changes in pose. Such models can be constructed either from monocular video sequences
(Matthews, Xiao, and Baker 2007), as shown in Figure 6.16a, or from multi-view video sequences
(Ramnath, Koterba et al. 2008), which provide even greater reliability and accuracy in reconstruction
and tracking (Murphy-Chutorian and Trivedi 2009).

6.2 Image classification 293

(a) (b)

Figure 6.16 Head tracking and frontalization: (a) using 3D active appearance models (AAMs) (Matthews,
Xiao, and Baker 2007) © 2007 Springer, showing video frames along with the estimated yaw, pitch, and roll
parameters and the fitted 3D deformable mesh; (b) using six and then 67 fiducial points in the DeepFace system
(Taigman, Yang et al. 2014) © 2014 IEEE, used to frontalize the face image (bottom row).

Figure 6.17 The DeepFace architecture (Taigman, Yang et al. 2014) © 2014 IEEE, starts with a frontalization
stage, followed by several locally connected (non-convolutional) layers, and then two fully connected layers with
a K-class softmax.

Facial recognition using deep learning

Prompted by the dramatic success of deep networks in whole-image categorization, face recognition
researchers started using deep neural network backbones as part of their systems. Figures 6.16b–
6.17 shows two stages in the DeepFace system of Taigman, Yang et al. (2014), which was one
of the first systems to realize large gains using deep networks. In their system, a landmark-based
pre-processing frontalization step is used to convert the original color image into a well-cropped
front-looking face. Then, a deep locally connected network (where the convolution kernels can vary
spatially) is fed into two final fully connected layers before classification.

Some of the more recent deep face recognizers omit the frontalization stage and instead use
data augmentation (Section 5.3.3) to create synthetic inputs with a larger variety of poses (Schroff,
Kalenichenko, and Philbin 2015; Parkhi, Vedaldi, and Zisserman 2015). Masi, Wu et al. (2018)
provide an excellent tutorial and survey on deep face recognition, including a list of widely used
training and testing datasets, a discussion of frontalization and dataset augmentation, and a section
on training losses (Figure 6.18). This last topic is central to the ability to scale to larger and larger

294 6 Recognition

Figure 6.18 A typical modern deep face recognition architecture, from the survey by Masi, Wu et al. (2018) ©
2018 IEEE. At training time, a huge labeled face set (a) is used to constrain the weights of a DCNN (b), optimizing
a loss function (c) for a classification task. At test time, the classification layer is often discarded, and the DCNN
is used as a feature extractor for comparing face descriptors.

numbers of people. Schroff, Kalenichenko, and Philbin (2015) and Parkhi, Vedaldi, and Zisserman
(2015) use triplet losses to construct a low-dimensional embedding space that is independent of the
number of subjects. More recent systems use contrastive losses inspired by the softmax function,
which we discussed in Section 5.3.4. For example, the ArcFace paper by Deng, Guo et al. (2019)
measures angular distances on the unit hypersphere in the embedding space and adds an extra margin
to get identities to clump together. This idea has been further extended for visual similarity search
(Bell, Liu et al. 2020) and face recognition (Huang, Shen et al. 2020; Deng, Guo et al. 2020a).

Personal photo collections

In addition to digital cameras automatically finding faces to aid in auto-focusing and video cameras
finding faces in video conferencing to center on the speaker (either mechanically or digitally), face
detection has found its way into most consumer-level photo organization packages and photo sharing
sites. Finding faces and allowing users to tag them makes it easier to find photos of selected people
at a later date or to automatically share them with friends. In fact, the ability to tag friends in photos
is one of the more popular features on Facebook.

Sometimes, however, faces can be hard to find and recognize, especially if they are small, turned
away from the camera, or otherwise occluded. In such cases, combining face recognition with person
detection and clothes recognition can be very effective, as illustrated in Figure 6.19 (Sivic, Zitnick,
and Szeliski 2006). Combining person recognition with other kinds of context, such as location
recognition (Section 11.2.3) or activity or event recognition, can also help boost performance (Lin,
Kapoor et al. 2010).

6.3 Object detection 295

(a)

(b)

Figure 6.19 Person detection and re-recognition using a combined face, hair, and torso model (Sivic, Zitnick,
and Szeliski 2006) © 2006 Springer. (a) Using face detection alone, several of the heads are missed. (b) The
combined face and clothing model successfully re-finds all the people.

6.3 Object detection

If we are given an image to analyze, such as the group portrait in Figure 6.20, we could try to apply
a recognition algorithm to every possible sub-window in this image. Such algorithms are likely to
be both slow and error-prone. Instead, it is more effective to construct special-purpose detectors,
whose job it is to rapidly find likely regions where particular objects might occur.

We begin this section with face detectors, which were some of the earliest successful examples
of recognition. Such algorithms are built into most of today’s digital cameras to enhance auto-focus
and into video conferencing systems to control panning and zooming. We then look at pedestrian
detectors, as an example of more general methods for object detection. Finally, we turn to the
problem of multi-class object detection, which today is solved using deep neural networks.

6.3.1 Face detection

Before face recognition can be applied to a general image, the locations and sizes of any faces must
first be found (Figures 6.1c and 6.20). In principle, we could apply a face recognition algorithm
at every pixel and scale (Moghaddam and Pentland 1997) but such a process would be too slow in
practice.

Over the last four decades, a wide variety of fast face detection algorithms have been developed.
Yang, Kriegman, and Ahuja (2002) and Zhao, Chellappa et al. (2003) provide comprehensive sur-
veys of earlier work in this field. According to their taxonomy, face detection techniques can be
classified as feature-based, template-based, or appearance-based. Feature-based techniques attempt

296 6 Recognition

Figure 6.20 Face detection results produced by Rowley, Baluja, and Kanade (1998) © 1998 IEEE. Can you
find the one false positive (a box around a non-face) among the 57 true positive results?

to find the locations of distinctive image features such as the eyes, nose, and mouth, and then verify
whether these features are in a plausible geometrical arrangement. These techniques include some
of the early approaches to face recognition (Fischler and Elschlager 1973; Kanade 1977; Yuille
1991), as well as later approaches based on modular eigenspaces (Moghaddam and Pentland 1997),
local filter jets (Leung, Burl, and Perona 1995; Penev and Atick 1996; Wiskott, Fellous et al. 1997),
support vector machines (Heisele, Ho et al. 2003; Heisele, Serre, and Poggio 2007), and boosting
(Schneiderman and Kanade 2004).

Template-based approaches, such as active appearance models (AAMs) (Section 6.2.4), can deal
with a wide range of pose and expression variability. Typically, they require good initialization near
a real face and are therefore not suitable as fast face detectors.

Appearance-based approaches scan over small overlapping rectangular patches of the image
searching for likely face candidates, which can then be refined using a cascade of more expen-
sive but selective detection algorithms (Sung and Poggio 1998; Rowley, Baluja, and Kanade 1998;
Romdhani, Torr et al. 2001; Fleuret and Geman 2001; Viola and Jones 2004). To deal with scale
variation, the image is usually converted into a sub-octave pyramid and a separate scan is performed
on each level. Most appearance-based approaches rely heavily on training classifiers using sets of
labeled face and non-face patches.

Sung and Poggio (1998) and Rowley, Baluja, and Kanade (1998) present two of the earliest ap-
pearance-based face detectors and introduce a number of innovations that are widely used in later
work by others. To start with, both systems collect a set of labeled face patches (Figure 6.20) as well
as a set of patches taken from images that are known not to contain faces, such as aerial images or
vegetation. The collected face images are augmented by artificially mirroring, rotating, scaling, and
translating the images by small amounts to make the face detectors less sensitive to such effects.

The next few paragraphs provide quick reviews of a number of early appearance-based face
detectors, keyed by the machine algorithms they are based on. These systems provide an interesting
glimpse into the gradual adoption and evolution of machine learning in computer vision. More
detailed descriptions can be found in the original papers, as well as the first edition of this book
(Szeliski 2010).

6.3 Object detection 297

Figure 6.21 A neural network for face detection (Rowley, Baluja, and Kanade 1998) © 1998 IEEE. Overlapping
patches are extracted from different levels of a pyramid and then pre-processed. A three-layer neural network is
then used to detect likely face locations.

Clustering and PCA. Once the face and non-face patterns have been pre-processed, Sung and
Poggio (1998) cluster each of these datasets into six separate clusters using k-means and then fit
PCA subspaces to each of the resulting 12 clusters. At detection time, the DIFS and DFFS metrics
first developed by Moghaddam and Pentland (1997) are used to produce 24 Mahalanobis distance
measurements (two per cluster). The resulting 24 measurements are input to a multi-layer perceptron
(MLP), i.e., a fully connected neural network.

Neural networks. Instead of first clustering the data and computing Mahalanobis distances to
the cluster centers, Rowley, Baluja, and Kanade (1998) apply a neural network (MLP) directly to
the 20 × 20 pixel patches of gray-level intensities, using a variety of differently sized hand-crafted
“receptive fields” to capture both large-scale and smaller scale structure (Figure 6.21). The resulting
neural network directly outputs the likelihood of a face at the center of every overlapping patch in a
multi-resolution pyramid. Since several overlapping patches (in both space and resolution) may fire
near a face, an additional merging network is used to merge overlapping detections. The authors also
experiment with training several networks and merging their outputs. Figure 6.20 shows a sample
result from their face detector.

Support vector machines. Instead of using a neural network to classify patches, Osuna, Fre-
und, and Girosi (1997) use support vector machines (SVMs), which we discussed in Section 5.1.4,
to classify the same preprocessed patches as Sung and Poggio (1998). An SVM searches for a se-
ries of maximum margin separating planes in feature space between different classes (in this case,
face and non-face patches). In those cases where linear classification boundaries are insufficient,
the feature space can be lifted into higher-dimensional features using kernels (5.29). SVMs have
been used by other researchers for both face detection and face recognition (Heisele, Ho et al. 2003;
Heisele, Serre, and Poggio 2007) as well as general object recognition (Lampert 2008).

Boosting. Of all the face detectors developed in the 2000s, the one introduced by Viola and Jones
(2004) is probably the best known. Their technique was the first to introduce the concept of boosting
to the computer vision community, which involves training a series of increasingly discriminating

298 6 Recognition

(a) (b)

Figure 6.22 Simple features used in boosting-based face detector (Viola and Jones 2004) © 2004 Springer:
(a) difference of rectangle feature composed of 2–4 different rectangles (pixels inside the white rectangles are
subtracted from the gray ones); (b) the first and second features selected by AdaBoost. The first feature measures
the differences in intensity between the eyes and the cheeks, the second one between the eyes and the bridge of
the nose.

simple classifiers and then blending their outputs (Bishop 2006, Section 14.3; Hastie, Tibshirani,
and Friedman 2009, Chapter 10; Murphy 2012, Section 16.4; Glassner 2018, Section 14.7).

In more detail, boosting involves constructing a classifier h(x) as a sum of simple weak learners,

h(x) = sign

m−1∑

j=0

αjhj(x)

 , (6.4)

where each of the weak learners hj(x) is an extremely simple function of the input, and hence is not
expected to contribute much (in isolation) to the classification performance.

In most variants of boosting, the weak learners are threshold functions,

hj(x) = aj [fj < θj] + bj [fj ≥ θj] =

{
aj if fj < θj
bj otherwise,

(6.5)

which are also known as decision stumps (basically, the simplest possible version of decision trees).
In most cases, it is also traditional (and simpler) to set aj and bj to ±1, i.e., aj = −sj , bj = +sj ,
so that only the feature fj , the threshold value θj , and the polarity of the threshold sj ∈ ±1 need to
be selected.14

In many applications of boosting, the features are simply coordinate axes xk, i.e., the boosting
algorithm selects one of the input vector components as the best one to threshold. In Viola and
Jones’ face detector, the features are differences of rectangular regions in the input patch, as shown
in Figure 6.22. The advantage of using these features is that, while they are more discriminating than
single pixels, they are extremely fast to compute once a summed area table has been precomputed,
as described in Section 3.2.3 (3.31–3.32). Essentially, for the cost of an O(N) precomputation
phase (where N is the number of pixels in the image), subsequent differences of rectangles can be
computed in 4r additions or subtractions, where r ∈ {2, 3, 4} is the number of rectangles in the
feature.

The key to the success of boosting is the method for incrementally selecting the weak learners
and for re-weighting the training examples after each stage. The AdaBoost (Adaptive Boosting)

14Some variants, such as that of Viola and Jones (2004), use (aj , bj) ∈ [0, 1] and adjust the learning algorithm accordingly.

6.3 Object detection 299

(a) (b) (c) (d) (e) (f) (g)

Figure 6.23 Pedestrian detection using histograms of oriented gradients (Dalal and Triggs 2005) © 2005 IEEE:
(a) the average gradient image over the training examples; (b) each “pixel” shows the maximum positive SVM
weight in the block centered on the pixel; (c) likewise, for the negative SVM weights; (d) a test image; (e) the
computed R-HOG (rectangular histogram of gradients) descriptor; (f) the R-HOG descriptor weighted by the
positive SVM weights; (g) the R-HOG descriptor weighted by the negative SVM weights.

algorithm (Bishop 2006; Hastie, Tibshirani, and Friedman 2009; Murphy 2012) does this by re-
weighting each sample as a function of whether it is correctly classified at each stage, and using
the stage-wise average classification error to determine the final weightings αj among the weak
classifiers.

To further increase the speed of the detector, it is possible to create a cascade of classifiers,
where each classifier uses a small number of tests (say, a two-term AdaBoost classifier) to reject
a large fraction of non-faces while trying to pass through all potential face candidates (Fleuret and
Geman 2001; Viola and Jones 2004; Brubaker, Wu et al. 2008).

Deep networks. Since the initial burst of face detection research in the early 2000s, face de-
tection algorithms have continued to evolve and improve (Zafeiriou, Zhang, and Zhang 2015). Re-
searchers have proposed using cascades of features (Li and Zhang 2013), deformable parts models
(Mathias, Benenson et al. 2014), aggregated channel features (Yang, Yan et al. 2014), and neural
networks (Li, Lin et al. 2015; Yang, Luo et al. 2015). The WIDER FACE benchmark15,16 (Yang,
Luo et al. 2016) contains results from, and pointers to, more recent papers, including RetinaFace
(Deng, Guo et al. 2020b), which combines ideas from other recent neural networks and object de-
tectors such as Feature Pyramid Networks (Lin, Dollár et al. 2017) and RetinaNet (Lin, Goyal et al.
2017), and also has a nice review of other recent face detectors.

6.3.2 Pedestrian detection

While a lot of the early research on object detection focused on faces, the detection of other objects,
such as pedestrians and cars, has also received widespread attention (Gavrila and Philomin 1999;
Gavrila 1999; Papageorgiou and Poggio 2000; Mohan, Papageorgiou, and Poggio 2001; Schneider-
man and Kanade 2004). Some of these techniques maintained the same focus as face detection on
speed and efficiency. Others, however, focused on accuracy, viewing detection as a more challenging

15http://shuoyang1213.me/WIDERFACE
16The WIDER FACE benchmark has expanded to a larger set of detection challenges and workshops: https://

wider-challenge.org/2019.html.

http://shuoyang1213.me/WIDERFACE
https://wider-challenge.org/2019.html
https://wider-challenge.org/2019.html

300 6 Recognition

(a) (b) (c) (d)

Figure 6.24 Part-based object detection (Felzenszwalb, McAllester, and Ramanan 2008) © 2008 IEEE: (a) An
input photograph and its associated person (blue) and part (yellow) detection results. (b) The detection model is
defined by a coarse template, several higher resolution part templates, and a spatial model for the location of each
part. (c) True positive detection of a skier and (d) false positive detection of a cow (labeled as a person).

variant of generic class recognition (Section 6.3.3) in which the locations and extents of objects are
to be determined as accurately as possible (Everingham, Van Gool et al. 2010; Everingham, Eslami
et al. 2015; Lin, Maire et al. 2014).

An example of a well-known pedestrian detector is the algorithm developed by Dalal and Triggs
(2005), who use a set of overlapping histogram of oriented gradients (HOG) descriptors fed into
a support vector machine (Figure 6.23). Each HOG has cells to accumulate magnitude-weighted
votes for gradients at particular orientations, just as in the scale invariant feature transform (SIFT)
developed by Lowe (2004), which we will describe in Section 7.1.2 and Figure 7.16. Unlike SIFT,
however, which is only evaluated at interest point locations, HOGs are evaluated on a regular over-
lapping grid and their descriptor magnitudes are normalized using an even coarser grid; they are
only computed at a single scale and a fixed orientation. To capture the subtle variations in orien-
tation around a person’s outline, a large number of orientation bins are used and no smoothing is
performed in the central difference gradient computation—see Dalal and Triggs (2005) for more
implementation details. Figure 6.23d shows a sample input image, while Figure 6.23e shows the
associated HOG descriptors.

Once the descriptors have been computed, a support vector machine (SVM) is trained on the
resulting high-dimensional continuous descriptor vectors. Figures 6.23b–c show a diagram of the
(most) positive and negative SVM weights in each block, while Figures 6.23f–g show the corre-
sponding weighted HOG responses for the central input image. As you can see, there are a fair
number of positive responses around the head, torso, and feet of the person, and relatively few
negative responses (mainly around the middle and the neck of the sweater).

Much like face detection, the fields of pedestrian and general object detection continued to ad-
vance rapidly in the 2000s (Belongie, Malik, and Puzicha 2002; Mikolajczyk, Schmid, and Zisser-
man 2004; Dalal and Triggs 2005; Leibe, Seemann, and Schiele 2005; Opelt, Pinz, and Zisserman
2006; Torralba 2007; Andriluka, Roth, and Schiele 2009; Maji and Berg 2009; Andriluka, Roth, and
Schiele 2010; Dollár, Belongie, and Perona 2010).

A significant advance in the field of person detection was the work of Felzenszwalb, McAllester,
and Ramanan (2008), who extend the histogram of oriented gradients person detector to incorporate
flexible parts models (Section 6.2.1). Each part is trained and detected on HOGs evaluated at two
pyramid levels below the overall object model and the locations of the parts relative to the parent
node (the overall bounding box) are also learned and used during recognition (Figure 6.24b). To
compensate for inaccuracies or inconsistencies in the training example bounding boxes (dashed

6.3 Object detection 301

Figure 6.25 Pose detection using random forests (Rogez, Rihan et al. 2008) © 2008 IEEE. The estimated pose
(state of the kinematic model) is drawn over each input frame.

white lines in Figure 6.24c), the “true” location of the parent (blue) bounding box is considered a
latent (hidden) variable and is inferred during both training and recognition. Since the locations of
the parts are also latent, the system can be trained in a semi-supervised fashion, without needing
part labels in the training data. An extension to this system (Felzenszwalb, Girshick et al. 2010),
which includes among its improvements a simple contextual model, was among the two best object
detection systems in the 2008 Visual Object Classes detection challenge (Everingham, Van Gool
et al. 2010). Improvements to part-based person detection and pose estimation include work by
Andriluka, Roth, and Schiele (2009) and Kumar, Zisserman, and Torr (2009).

An even more accurate estimate of a person’s pose and location is presented by Rogez, Rihan et
al. (2008), who compute both the phase of a person in a walk cycle and the locations of individual
joints, using random forests built on top of HOGs (Figure 6.25). Since their system produces full 3D
pose information, it is closer in its application domain to 3D person trackers (Sidenbladh, Black, and
Fleet 2000; Andriluka, Roth, and Schiele 2010), which we will discussed in Section 13.6.4. When
video sequences are available, the additional information present in the optical flow and motion
discontinuities can greatly aid in the detection task, as discussed by Efros, Berg et al. (2003), Viola,
Jones, and Snow (2003), and Dalal, Triggs, and Schmid (2006).

Since the 2000s, pedestrian and general person detection have continued to be actively devel-
oped, often in the context of more general multi-class object detection (Everingham, Van Gool et
al. 2010; Everingham, Eslami et al. 2015; Lin, Maire et al. 2014). The Caltech pedestrian detec-
tion benchmark17 and survey by Dollár, Belongie, and Perona (2010) introduces a new dataset and
provides a nice review of algorithms through 2012, including Integral Channel Features (Dollár,
Tu et al. 2009), the Fastest Pedestrian Detector in the West (Dollár, Belongie, and Perona 2010),
and 3D pose estimation algorithms such as Poselets (Bourdev and Malik 2009). Since its original
construction, this benchmark continues to tabulate and evaluate more recent detectors, including
Dollár, Appel, and Kienzle (2012), Dollár, Appel et al. (2014), and more recent algorithms based
on deep neural networks (Sermanet, Kavukcuoglu et al. 2013; Ouyang and Wang 2013; Tian, Luo
et al. 2015; Zhang, Lin et al. 2016). The CityPersons dataset (Zhang, Benenson, and Schiele 2017)
and WIDER Face and Person Challenge18 also report results on recent algorithms.

6.3.3 General object detection

While face and pedestrian detection algorithms were the earliest to be extensively studied, computer
vision has always been interested in solving the general object detection and labeling problem, in

17http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians
18https://wider-challenge.org/2019.html

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
https://wider-challenge.org/2019.html

302 6 Recognition

(a) (b)

Figure 6.26 Intersection over union (IoU): (a) schematic formula, (b) real-world example © 2020 Ross Gir-
shick.

addition to whole-image classification. The PASCAL Visual Object Classes (VOC) Challenge (Ev-
eringham, Van Gool et al. 2010), which contained 20 classes, had both classification and detection
challenges. Early entries that did well on the detection challenge include a feature-based detector
and spatial pyramid matching SVM classifier by Chum and Zisserman (2007), a star-topology de-
formable part model by Felzenszwalb, McAllester, and Ramanan (2008), and a sliding window SVM
classifier by Lampert, Blaschko, and Hofmann (2008). The competition was re-run annually, with
the two top entries in the 2012 detection challenge (Everingham, Eslami et al. 2015) using a sliding
window spatial pyramid matching (SPM) SVM (de Sande, Uijlings et al. 2011) and a University of
Oxford re-implementation of a deformable parts model (Felzenszwalb, Girshick et al. 2010).

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), released in 2010, scaled up
the dataset from around 20 thousand images in PASCAL VOC 2010 to over 1.4 million in ILSVRC
2010, and from 20 object classes to 1,000 object classes (Russakovsky, Deng et al. 2015). Like
PASCAL, it also had an object detection task, but it contained a much wider range of challenging
images (Figure 6.4). The Microsoft COCO (Common Objects in Context) dataset (Lin, Maire et al.
2014) contained even more objects per image, as well as pixel-accurate segmentations of multiple
objects, enabling the study of not only semantic segmentation (Section 6.4), but also individual
object instance segmentation (Section 6.4.2). Table 6.2 list some of the datasets used for training
and testing general object detection algorithms.

The release of COCO coincided with a wholescale shift to deep networks for image classifica-
tion, object detection, and segmentation (Jiao, Zhang et al. 2019; Zhao, Zheng et al. 2019). Fig-
ure 6.29 shows the rapid improvements in average precision (AP) on the COCO object detection
task, which correlates strongly with advances in deep neural network architectures (Figure 5.40).

Precision vs. recall

Before we describe the elements of modern object detectors, we should first discuss what metrics
they are trying to optimize. The main task in object detection, as illustrated in Figures 6.5a and
6.26b, is to put accurate bounding boxes around all the objects of interest and to correctly label
such objects. To measure the accuracy of each bounding box (not too small and not too big), the
common metric is intersection over union (IoU), which is also known as the Jaccard index or Jaccard
similarity coefficient (Rezatofighi, Tsoi et al. 2019). The IoU is computed by taking the predicted
and ground truth bounding boxes Bpr and Bgt for an object and computing the ratio of their area of

6.3 Object detection 303

(a) (b)

Figure 6.27 Object detector average precision © 2020 Ross Girshick: (a) a precision-recall curve for a single
class and IoU threshold, with the AP being the area under the P-R curve; (b) average precision averaged over
several IoU thresholds (from looser to tighter).

intersection and their area of union,

IoU =
Bpr ∩Bgt

Bpr ∪Bgt
, (6.6)

as shown in Figure 6.26a.
As we will shortly see, object detectors operate by first proposing a number of plausible rect-

angular regions (detections) and then classifying each detection while also producing a confidence
score (Figure 6.26b). These regions are then run through some kind of non-maximal suppression
(NMS) stage, which removes weaker detections that have too much overlap with stronger detections,
using a greedy most-confident-first algorithm.

To evaluate the performance of an object detector, we run through all of the detections, from
most confident to least, and classify them as true positive TP (correct label and sufficiently high
IoU) or false positive FP (incorrect label or ground truth object already matched). For each new
decreasing confidence threshold, we can compute the precision and recall as

precision =
TP

TP+FP
(6.7)

recall =
TP
P
, (6.8)

where P is the number of positive examples, i.e., the number of labeled ground truth detections in
the test image.19 (See Section 7.1.3 on feature matching for additional terms that are often used in
measuring and describing error rates.)

Computing the precision and recall at every confidence threshold allows us to populate a precision-
recall curve, such as the one in Figure 6.27a. The area under this curve is called average precision
(AP). A separate AP score can be computed for each class being detected, and the results averaged to
produce a mean average precision (mAP). Another widely used measure if the While earlier bench-
marks such as PASCAL VOC determined the mAP using a single IoU threshold of 0.5 (Everingham,
Eslami et al. 2015), the COCO benchmark (Lin, Maire et al. 2014) averages the mAP over a set
of IoU thresholds, IoU ∈ {0.50, 0.55, . . . , 0.95}, as shown in Figure 6.27a. While this AP score

19Another widely reported measure is the F-score, which is the harmonic mean of the precision and recall.

304 6 Recognition

(a) (b)

Figure 6.28 The R-CNN and Fast R-CNN object detectors. (a) R-CNN rescales pixels inside each proposal
region and performs a CNN + SVM classification (Girshick, Donahue et al. 2015) © 2015 IEEE. (b) Fast R-
CNN resamples convolutional features and uses fully connected layers to perform classification and bounding
box regression (Girshick 2015) © 2015 IEEE.

continues to be widely used, an alternative probability-based detection quality (PDQ) score has re-
cently been proposed (Hall, Dayoub et al. 2020). A smoother version of average precision called
Smooth-AP has also been proposed and shown to have benefits on large-scale image retrieval tasks
(Brown, Xie et al. 2020).

Modern object detectors

The first stage in detecting objects in an image is to propose a set of plausible rectangular regions
in which to run a classifier. The development of such region proposal algorithms was an active
research area in the early 2000s (Alexe, Deselaers, and Ferrari 2012; Uijlings, Van De Sande et al.
2013; Cheng, Zhang et al. 2014; Zitnick and Dollár 2014).

One of the earliest object detectors based on neural networks is R-CNN, the Region-based Con-
volutional Network developed by Girshick, Donahue et al. (2014). As illustrated in Figure 6.28a,
this detector starts by extracting about 2,000 region proposals using the selective search algorithm
of Uijlings, Van De Sande et al. (2013). Each proposed regions is then rescaled (warped) to a 224
square image and passed through an AlexNet or VGG neural network with a support vector machine
(SVM) final classifier.

The follow-on Fast R-CNN paper by Girshick (2015) interchanges the convolutional neural net-
work and region extraction stages and replaces the SVM with some fully connected (FC) layers,
which compute both an object class and a bounding box refinement (Figure 6.28b). This reuses the
CNN computations and leads to much faster training and test times, as well as dramatically better
accuracy compared to previous networks (Figure 6.29). As you can see from Figure 6.28b, Fast
R-CNN is an example of a deep network with a shared backbone and two separate heads, and hence
two different loss functions, although these terms were not introduced until the Mask R-CNN paper
by He, Gkioxari et al. (2017).

The Faster R-CNN system, introduced a few month later by Ren, He et al. (2015), replaces the
relatively slow selective search stage with a convolutional region proposal network (RPN), resulting
in much faster inference. After computing convolutional features, the RPN suggests at each coarse
location a number of potential anchor boxes, which vary in shape and size to accommodate different
potential objects. Each proposal is then classified and refined by an instance of the Fast R-CNN
heads and the final detections are ranked and merged using non-maximal suppression.

R-CNN, Fast R-CNN, and Faster R-CNN all operate on a single resolution convolutional fea-
ture map (Figure 6.30b). To obtain better scale invariance, it would be preferable to operate on a
range of resolutions, e.g, by computing a feature map at each image pyramid level, as shown in
Figure 6.30a, but this is computationally expensive. We could, instead, simply start with the various

6.3 Object detection 305

Figure 6.29 Best average precision (AP) results by year on the COCO object detection task (Lin, Maire et al.
2014) © 2020 Ross Girshick.

Figure 6.30 A Feature Pyramid Network and its precursors (Lin, Dollár et al. 2017) © 2017 IEEE: (a) deep
features extracted at each level in an image pyramid; (b) a single low-resolution feature map; (c) a deep feature
pyramid, with higher levels having greater abstraction; (d) a Feature Pyramid Network, with top-down context for
all levels.

306 6 Recognition

(a) (b)

Figure 6.31 Speed/accuracy trade-offs for convolutional object detectors: (a) (Huang, Rathod et al. 2017) ©
2017 IEEE; (b) YOLOv4 © Bochkovskiy, Wang, and Liao (2020).

levels inside the convolutional network (Figure 6.30c), but these levels have different degrees of
semantic abstraction, i.e., higher/smaller levels are attuned to more abstract constructs. The best so-
lution is to construct a Feature Pyramid Network (FPN), as shown in Figure 6.30d, where top-down
connections are used to endow higher-resolution (lower) pyramid levels with the semantics inferred
at higher levels (Lin, Dollár et al. 2017).20 This additional information significantly enhances the
performance of object detectors (and other downstream tasks) and makes their behavior much less
sensitive to object size.

DETR (Carion, Massa et al. 2020) uses a simpler architecture that eliminates the use of non-
maximum suppression and anchor generation. Their model consists of a ResNet backbone that
feeds into a transformer encoder-decoder. At a high level, it makes N bounding box predictions,
some of which may include the “no object class”. The ground truth bounding boxes are also padded
with “no object class” bounding boxes to obtain N total bounding boxes. During training, bipartite
matching is then used to build a one-to-one mapping from every predicted bounding box to a ground
truth bounding box, with the chosen mapping leading to the lowest possible cost. The overall training
loss is then the sum of the losses between the matched bounding boxes. They find that their approach
is competitive with state-of-the-art object detection performance on COCO.

Single-stage networks

In the architectures we’ve looked at so far, a region proposal algorithm or network selects the loca-
tions and shapes of the detections to be considered, and a second network is then used to classify
and regress the pixels or features inside each region. An alternative is to use a single-stage network,
which uses a single neural network to output detections at a variety of locations. Two examples of
such detectors are SSD (Single Shot MultiBox Detector) from Liu, Anguelov et al. (2016) and the
family of YOLO (You Only Look Once) detectors described in Redmon, Divvala et al. (2016),Red-
mon and Farhadi (2017), and Redmon and Farhadi (2018). RetinaNet (Lin, Goyal et al. 2017) is also
a single-stage detector built on top of a feature pyramid network. It uses a focal loss to focus the
training on hard examples by downweighting the loss on well-classified samples, thus preventing

20It’s interesting to note that the human visual system is full of such re-entrant or feedback pathways (Gilbert and Li 2013),
although the extent to which cognition influences perception is still being debated (Firestone and Scholl 2016).

6.4 Semantic segmentation 307

(a) (b) (c) (d)

Figure 6.32 Examples of image segmentation (Kirillov, He et al. 2019) © 2019 IEEE: (a) original image; (b)
semantic segmentation (per-pixel classification); (c) instance segmentation (delineate each object); (d) panoptic
segmentation (label all things and stuff).

the larger number of easy negatives from overwhelming the training. These and more recent convo-
lutional object detectors are described in the recent survey by Jiao, Zhang et al. (2019). Figure 6.31
shows the speed and accuracy of detectors published up through early 2017.

The latest in the family of YOLO detectors is YOLOv4 by Bochkovskiy, Wang, and Liao (2020).
In addition to outperforming other recent fast detectors such as EfficientDet (Tan, Pang, and Le
2020), as shown in Figure 6.31b, the paper breaks the processing pipeline into several stages, in-
cluding a neck, which performs the top-down feature enhancement found in the feature pyramid
network. The paper also evaluates many different components, which they categorize into a “bag of
freebies” that can be used during training and a “bag of specials” that can be used at detection time
with minimal additional cost.

While most bounding box object detectors continue to evaluate their results on the COCO dataset
(Lin, Maire et al. 2014),21 newer datasets such as Open Images (Kuznetsova, Rom et al. 2020), and
LVIS: Large Vocabulary Instance Segmentation (Gupta, Dollár, and Girshick 2019) are now also
being used (see Table 6.2). Two recent workshops that highlight the latest results using these datasets
are Zendel et al. (2020) and Kirillov, Lin et al. (2020) and also have challenges related to instance
segmentation, panoptic segmentation, keypoint estimation, and dense pose estimation, which are
topics we discuss later in this chapter. Open-source frameworks for training and fine-tuning object
detectors include the TensorFlow Object Detection API22 and PyTorch’s Detectron2.23

6.4 Semantic segmentation

A challenging version of general object recognition and scene understanding is to simultaneously
perform recognition and accurate boundary segmentation (Fergus 2007). In this section, we examine
a number of related problems, namely semantic segmentation (per-pixel class labeling), instance
segmentation (accurately delineating each separate object), panoptic segmentation (labeling both
objects and stuff), and dense pose estimation (labeling pixels belonging to people and their body
parts). Figures 6.32 and 6.43 show some of these kinds of segmentations.

The basic approach to simultaneous recognition and segmentation is to formulate the problem
as one of labeling every pixel in an image with its class membership. Older approaches often did
this using energy minimization or Bayesian inference techniques, i.e., conditional random fields
(Section 4.3.1). The TextonBoost system of Shotton, Winn et al. (2009) uses unary (pixel-wise)
potentials based on image-specific color distributions (Section 4.3.2), location information (e.g.,

21See https://codalab.org for the latest competitions and leaderboards.
22https://github.com/tensorflow/models/tree/master/research/object detection
23https://github.com/facebookresearch/detectron2

https://codalab.org
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2

308 6 Recognition

Name/URL Extents Contents/Reference

Object recognition

Oxford buildings dataset Pictures of buildings 5,062 images
https://www.robots.ox.ac.uk/∼vgg/data/oxbuildings Philbin, Chum et al. (2007)

INRIA Holidays Holiday scenes 1,491 images
https://lear.inrialpes.fr/people/jegou/data.php Jégou, Douze, and Schmid (2008)

PASCAL Segmentations, boxes 11k images (2.9k with segmentations)
http://host.robots.ox.ac.uk/pascal/VOC Everingham, Eslami et al. (2015)

ImageNet Complete images 21k (WordNet) classes, 14M images
https://www.image-net.org Deng, Dong et al. (2009)

Fashion MNIST Complete images 70k fashion products
https://github.com/zalandoresearch/fashion-mnist Xiao, Rasul, and Vollgraf (2017)

Object detection and segmentation

Caltech Pedestrian Dataset Bounding boxes Pedestrians
http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians Dollár, Wojek et al. (2009)

MSR Cambridge Per-pixel segmentations 23 classes
https://www.microsoft.com/en-us/research/project/image-understanding Shotton, Winn et al. (2009)

LabelMe dataset Polygonal boundaries >500 categories
http://labelme.csail.mit.edu Russell, Torralba et al. (2008)

Microsoft COCO Segmentations, boxes 330k images
https://cocodataset.org Lin, Maire et al. (2014)

Cityscapes Polygonal boundaries 30 classes, 25,000 images
https://www.cityscapes-dataset.com Cordts, Omran et al. (2016)

Broden Segmentation masks A variety of visual concepts
http://netdissect.csail.mit.edu Bau, Zhou et al. (2017)

Broden+ Segmentation masks A variety of visual concepts
https://github.com/CSAILVision/unifiedparsing Xiao, Liu et al. (2018)

LVIS Instance segmentations 1,000 categories, 2.2M images
https://www.lvisdataset.org Gupta, Dollár, and Girshick (2019)

Open Images Segs., relationships 478k images, 3M relationships
https://g.co/dataset/openimages Kuznetsova, Rom et al. (2020)

Table 6.2 Image databases for classification, detection, and localization.

foreground objects are more likely to be in the middle of the image, sky is likely to be higher,
and road is likely to be lower), and novel texture-layout classifiers trained using shared boosting.
It also uses traditional pairwise potentials that look at image color gradients. The texton-layout
features first filter the image with a series of 17 oriented filter banks and then cluster the responses
to classify each pixel into 30 different texton classes (Malik, Belongie et al. 2001). The responses
are then filtered using offset rectangular regions trained with joint boosting (Viola and Jones 2004)
to produce the texton-layout features used as unary potentials. Figure 6.33 shows some examples
of images successfully labeled and segmented using TextonBoost

The TextonBoost conditional random field framework has been extended to LayoutCRFs by
Winn and Shotton (2006), who incorporate additional constraints to recognize multiple object in-
stances and deal with occlusions, and by Hoiem, Rother, and Winn (2007) to incorporate full 3D
models. Conditional random fields continued to be widely used and extended for simultaneous
recognition and segmentation applications, as described in the first edition of this book (Szeliski

https://www.robots.ox.ac.uk/~vgg/data/oxbuildings
https://lear.inrialpes.fr/people/jegou/data.php
http://host.robots.ox.ac.uk/pascal/VOC
https://www.image-net.org
https://github.com/zalandoresearch/fashion-mnist
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
https://www.microsoft.com/en-us/research/project/image-understanding
http://labelme.csail.mit.edu
https://cocodataset.org
https://www.cityscapes-dataset.com
http://netdissect.csail.mit.edu
https://github.com/CSAILVision/unifiedparsing
https://www.lvisdataset.org
https://g.co/dataset/openimages

6.4 Semantic segmentation 309

Figure 6.33 Simultaneous recognition and segmentation using TextonBoost (Shotton, Winn et al. 2009) © 2009
Springer.

2010, Section 14.4.3), along with approaches that first performed low-level or hierarchical segmen-
tations (Section 7.5).

The development of fully convolutional networks (Long, Shelhamer, and Darrell 2015), which
we described in Section 5.4.1, enabled per-pixel semantic labeling using a single neural network.
While the first networks suffered from poor resolution (very loose boundaries), the addition of con-
ditional random fields at a final stage (Chen, Papandreou et al. 2018; Zheng, Jayasumana et al.
2015), deconvolutional upsampling (Noh, Hong, and Han 2015), and fine-level connections in U-
nets (Ronneberger, Fischer, and Brox 2015), all helped improve accuracy and resolution.

Modern semantic segmentation systems are often built on architectures such as the feature pyra-
mid network (Lin, Dollár et al. 2017), which have top-down connections to help percolate semantic
information down to higher-resolution maps. For example, the Pyramid Scene Parsing Network
(PSPNet) of Zhao, Shi et al. (2017) uses spatial pyramid pooling (He, Zhang et al. 2015) to ag-
gregate features at various resolution levels. The Unified Perceptual Parsing network (UPerNet) of
Xiao, Liu et al. (2018) uses both a feature pyramid network and a pyramid pooling module to label
image pixels not only with object categories but also materials, parts, and textures, as shown in Fig-
ure 6.34. HRNet (Wang, Sun et al. 2020) keeps high-resolution versions of feature maps throughout
the pipeline with occasional interchange of information between channels at different resolution lay-
ers. Such networks can also be used to estimate surface normals and depths in an image (Huang,
Zhou et al. 2019; Wang, Geraghty et al. 2020).

Semantic segmentation algorithms were initially trained and tested on datasets such as MSRC
(Shotton, Winn et al. 2009) and PASCAL VOC (Everingham, Eslami et al. 2015). More recent
datasets include the Cityscapes dataset for urban scene understanding (Cordts, Omran et al. 2016)
and ADE20K (Zhou, Zhao et al. 2019), which labels pixels in a wider variety of indoor and out-
door scenes with 150 different category and part labels. The Broadly and Densely Labeled Dataset
(Broden) created by Bau, Zhou et al. (2017) federates a number of such densely labeled datasets,
including ADE20K, Pascal-Context, Pascal-Part, OpenSurfaces, and Describable Textures to obtain

310 6 Recognition

Figure 6.34 The UPerNet framework for Unified Perceptual Parsing (Xiao, Liu et al. 2018) © 2018 Springer.
A Feature Pyramid Network (FPN) backbone is appended with a Pyramid Pooling Module (PPM) before feeding
it into the top-down branch of the FPN. before feeding it into the top-down branch of the FPN. Various layers of
the FPN and/or PPM are fed into different heads, including a scene head for image classification, object and part
heads from the fused FPN features, a material head operating on the finest level of the FPN, and a texture head
that does not participate in the FPN fine tuning. The bottom gray squares give more details into some of the heads.

a wide range of labels such as materials and textures in addition to basic object semantics. While this
dataset was originally developed to aid in the interpretability of deep networks, it has also proven
useful (with extensions) for training unified multi-task labeling systems such as UPerNet (Xiao, Liu
et al. 2018). Table 6.2 list some of the datasets used for training and testing semantic segmentation
algorithms.

One final note. While semantic image segmentation and labeling have widespread applications
in image understanding, the converse problem of going from a semantic sketch or painting of a scene
to a photorealistic image has also received widespread attention (Johnson, Gupta, and Fei-Fei 2018;
Park, Liu et al. 2019; Bau, Strobelt et al. 2019; Ntavelis, Romero et al. 2020b). We look at this topic
in more detail in Section 10.5.3 on semantic image synthesis.

6.4.1 Application: Medical image segmentation

One of the most promising applications of image segmentation is in the medical imaging domain,
where it can be used to segment anatomical tissues for later quantitative analysis. Figure 4.21 shows
a binary graph cut with directed edges being used to segment the liver tissue (light gray) from its
surrounding bone (white) and muscle (dark gray) tissue. Figure 6.35 shows the segmentation of a
brain scan for the detection of brain tumors. Before the development of the mature optimization and
deep learning techniques used in modern image segmentation algorithms, such processing required
much more laborious manual tracing of individual X-ray slices.

6.4 Semantic segmentation 311

Figure 6.35 3D volumetric medical image segmentation using a deep network (Kamnitsas, Ferrante et al.
2016) © 2016 Springer.

Initially, optimization techniques such as Markov random fields (Section 4.3.2) and discrimina-
tive classifiers such as random forests (Section 5.1.5) were used for medical image segmentation
(Criminisi, Robertson et al. 2013). More recently, the field has shifted to deep learning approaches
(Kamnitsas, Ferrante et al. 2016; Kamnitsas, Ledig et al. 2017; Havaei, Davy et al. 2017).

The fields of medical image segmentation (McInerney and Terzopoulos 1996) and medical image
registration (Kybic and Unser 2003) (Section 9.2.3) are rich research fields with their own special-
ized conferences, such as Medical Imaging Computing and Computer Assisted Intervention (MIC-
CAI), and journals, such as Medical Image Analysis and IEEE Transactions on Medical Imaging.
These can be great sources of references and ideas for research in this area.

6.4.2 Instance segmentation

Instance segmentation is the task of finding all of the relevant objects in an image and producing
pixel-accurate masks for their visible regions (Figure 6.36b). One potential approach to this task
is to perform known object instance recognition (Section 6.1) and to then backproject the object
model into the scene (Lowe 2004), as shown in Figure 6.1d, or matching portions of the new scene
to pre-learned (segmented) object models (Ferrari, Tuytelaars, and Van Gool 2006b; Kannala, Rahtu
et al. 2008). However, this approach only works for known rigid 3D models.

For more complex (flexible) object models, such as those for humans, a different approach is to
pre-segment the image into larger or smaller pieces (Section 7.5) and to then match such pieces to
portions of the model (Mori, Ren et al. 2004; Mori 2005; He, Zemel, and Ray 2006; Gu, Lim et al.
2009). For general highly variable classes, a related approach is to vote for potential object locations
and scales based on feature correspondences and to then infer the object extents (Leibe, Leonardis,
and Schiele 2008).

With the advent of deep learning, researchers started combining region proposals or image pre-
segmentations with convolutional second stages to infer the final instance segmentations (Hariharan,
Arbeláez et al. 2014; Hariharan, Arbeláez et al. 2015; Dai, He, and Sun 2015; Pinheiro, Lin et al.
2016; Dai, He, and Sun 2016; Li, Qi et al. 2017).

A breakthrough in instance segmentation came with the introduction of Mask R-CNN (He,
Gkioxari et al. 2017). As shown in Figure 6.36a, Mask R-CNN uses the same region proposal
network as Faster R-CNN (Ren, He et al. 2015), but then adds an additional branch for predicting
the object mask, in addition to the existing branch for bounding box refinement and classification.24

As with other networks that have multiple branches (or heads) and outputs, the training losses corre-

24Mask R-CNN was the first paper to introduce the terms backbone and head to describe the common deep convolutional
feature extraction front end and the specialized back end branches.

312 6 Recognition

(a) (b)

Figure 6.36 Instance segmentation using Mask R-CNN (He, Gkioxari et al. 2017) © 2017 IEEE: (a) system
architecture, with an additional segmentation branch; (b) sample results.

Figure 6.37 Person keypoint detection and segmentation using Mask R-CNN (He, Gkioxari et al. 2017) ©
2017 IEEE

sponding to each supervised output need to be carefully balanced. It is also possible to add additional
branches, e.g., branches trained to detect human keypoint locations (implemented as per-keypoint
mask images), as shown in Figure 6.37.

Since its introduction, the performance of Mask R-CNN and its extensions has continued to
improve with advances in backbone architectures (Liu, Qi et al. 2018; Chen, Pang et al. 2019). Two
recent workshops that highlight the latest results in this area are the COCO + LVIS Joint Recognition
Challenge (Kirillov, Lin et al. 2020) and the Robust Vision Challenge (Zendel et al. 2020).25 It is
also possible to replace the pixel masks produced by most instance segmentation techniques with
time-evolving closed contours, i.e., “snakes” (Section 7.3.1), as in Peng, Jiang et al. (2020). In order
to encourage higher-quality segmentation boundaries, Cheng, Girshick et al. (2021) propose a new
Boundary Intersection-over-Union (Boundary IoU) metric to replace the commonly used Mask IoU
metric.

6.4.3 Panoptic segmentation

As we have seen, semantic segmentation classifies each pixel in an image into its semantic category,
i.e., what stuff does each pixel correspond to. Instance segmentation associates pixels with individ-

25You can find the leaderboards for instance segmentation and other COCO recognition tasks at https://cocodataset.org.

https://cocodataset.org

6.4 Semantic segmentation 313

Figure 6.38 Panoptic segmentation results produced using a Panoptic Feature Pyramid Network (Kirillov, Gir-
shick et al. 2019) © 2019 IEEE.

Figure 6.39 Detectron2 panoptic segmentation results on some of my personal photos. (Click on the “Colab
Notebook” link at https://github.com/facebookresearch/detectron2 and then edit the input image URL to try your
own.)

ual objects, i.e., how many objects are there and what are their extents (Figure 6.32). Putting both of
these systems together has long been a goal of semantic scene understanding (Yao, Fidler, and Ur-
tasun 2012; Tighe and Lazebnik 2013; Tu, Chen et al. 2005). Doing this on a per-pixel level results
in a panoptic segmentation of the scene, where all of the objects are correctly segmented and the
remaining stuff is correctly labeled (Kirillov, He et al. 2019). Producing a sensible panoptic quality
(PQ) metric that simultaneously balances the accuracy on both tasks takes some careful design. In
their paper, Kirillov, He et al. (2019) describe their proposed metric and analyze the performance of
both humans (in terms of consistency) and recent algorithms on three different datasets.

The COCO dataset has now been extended to include a panoptic segmentation task, on which
some recent results can be found in the ECCV 2020 workshop on this topic (Kirillov, Lin et al.
2020). Figure 6.38 show some segmentations produced by the panoptic feature pyramid network
described by Kirillov, Girshick et al. (2019), which adds two branches for instance segmentation
and semantic segmentation to a feature pyramid network.

https://github.com/facebookresearch/detectron2

314 6 Recognition

(a) (b) (c) (d)

Figure 6.40 Scene completion using millions of photographs (Hays and Efros 2007) © 2007 ACM: (a) orig-
inal image; (b) after unwanted foreground removal; (c) plausible scene matches, with the one the user selected
highlighted in red; (d) output image after replacement and blending.

(a) (b) (c) (d) (e)

Figure 6.41 Automatic photo pop-up (Hoiem, Efros, and Hebert 2005a) © 2005 ACM: (a) input image; (b)
superpixels are grouped into (c) multiple regions; (d) labels indicating ground (green), vertical (red), and sky
(blue); (e) novel view of resulting piecewise-planar 3D model.

6.4.4 Application: Intelligent photo editing

Advances in object recognition and scene understanding have greatly increased the power of intel-
ligent (semi-automated) photo editing applications. One example is the Photo Clip Art system of
Lalonde, Hoiem et al. (2007), which recognizes and segments objects of interest, such as pedestri-
ans, in internet photo collections and then allows users to paste them into their own photos. Another
is the scene completion system of Hays and Efros (2007), which tackles the same inpainting prob-
lem we will study in Section 10.5. Given an image in which we wish to erase and fill in a large
section (Figure 6.40a–b), where do you get the pixels to fill in the gaps in the edited image? Tra-
ditional approaches either use smooth continuation (Bertalmio, Sapiro et al. 2000) or borrow pixels
from other parts of the image (Efros and Leung 1999; Criminisi, Pérez, and Toyama 2004; Efros and
Freeman 2001). With the availability of huge numbers of images on the web, it often makes more
sense to find a different image to serve as the source of the missing pixels.

In their system, Hays and Efros (2007) compute the gist of each image (Oliva and Torralba
2001; Torralba, Murphy et al. 2003) to find images with similar colors and composition. They
then run a graph cut algorithm that minimizes image gradient differences and composite the new
replacement piece into the original image using Poisson image blending (Section 8.4.4) (Pérez,
Gangnet, and Blake 2003). Figure 6.40d shows the resulting image with the erased foreground
rooftops region replaced with sailboats. Additional examples of photo editing and computational
photography applications enabled by what has been dubbed “internet computer vision” can be found
in the special journal issue edited by Avidan, Baker, and Shan (2010).

A different application of image recognition and segmentation is to infer 3D structure from a
single photo by recognizing certain scene structures. For example, Criminisi, Reid, and Zisserman

6.4 Semantic segmentation 315

Figure 6.42 OpenPose real-time multi-person 2D pose estimation (Cao, Simon et al. 2017) © 2017 IEEE.

(2000) detect vanishing points and have the user draw basic structures, such as walls, to infer the 3D
geometry (Section 11.1.2). Hoiem, Efros, and Hebert (2005a), on the other hand, work with more
“organic” scenes such as the one shown in Figure 6.41. Their system uses a variety of classifiers
and statistics learned from labeled images to classify each pixel as either ground, vertical, or sky
(Figure 6.41d). To do this, they begin by computing superpixels (Figure 6.41b) and then group them
into plausible regions that are likely to share similar geometric labels (Figure 6.41c). After all the
pixels have been labeled, the boundaries between the vertical and ground pixels can be used to infer
3D lines along which the image can be folded into a “pop-up” (after removing the sky pixels), as
shown in Figure 6.41e. In related work, Saxena, Sun, and Ng (2009) develop a system that directly
infers the depth and orientation of each pixel instead of using just three geometric class labels. We
will examine techniques to infer depth from single images in more detail in Section 12.8.

6.4.5 Pose estimation

The inference of human pose (head, body, and limb locations and attitude) from a single images
can be viewed as yet another kind of segmentation task. We have already discussed some pose
estimation techniques in Section 6.3.2 on pedestrian detection section, as shown in Figure 6.25.
Starting with the seminal work by Felzenszwalb and Huttenlocher (2005), 2D and 3D pose detection
and estimation rapidly developed as an active research area, with important advances and datasets
(Sigal and Black 2006a; Rogez, Rihan et al. 2008; Andriluka, Roth, and Schiele 2009; Bourdev and
Malik 2009; Johnson and Everingham 2011; Yang and Ramanan 2011; Pishchulin, Andriluka et al.
2013; Sapp and Taskar 2013; Andriluka, Pishchulin et al. 2014).

More recently, deep networks have become the preferred technique to identify human body
keypoints in order to convert these into pose estimates (Tompson, Jain et al. 2014; Toshev and

316 6 Recognition

Figure 6.43 Dense pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of
the human body (Güler, Neverova, and Kokkinos 2018) © 2018 IEEE. The paper describes DensePose-COCO,
a large-scale ground-truth dataset containing manually annotated image-to-surface correspondences for 50K per-
sons and a DensePose-RCNN trained to densely regress UV coordinates at multiple frames per second.

Szegedy 2014; Pishchulin, Insafutdinov et al. 2016; Wei, Ramakrishna et al. 2016; Cao, Simon et
al. 2017; He, Gkioxari et al. 2017; Hidalgo, Raaj et al. 2019; Huang, Zhu et al. 2020).26 Figure 6.42
shows some of the impressive real-time multi-person 2D pose estimation results produced by the
OpenPose system (Cao, Hidalgo et al. 2019).

The latest, most challenging, task in human pose estimation is the DensePose task introduced
by Güler, Neverova, and Kokkinos (2018), where the task is to associate each pixel in RGB im-
ages of people with 3D points on a surface-based model, as shown in Figure 6.43. The authors
provide dense annotations for 50,000 people appearing in COCO images and evaluate a number of
correspondence networks, including their own DensePose-RCNN with several extensions. A more
in-depth discussion on 3D human body modeling and tracking can be found in Section 13.6.4.

6.5 Video understanding

As we’ve seen in the previous sections of this chapter, image understanding mostly concerns itself
with naming and delineating the objects and stuff in an image, although the relationships between
objects and people are also sometimes inferred (Yao and Fei-Fei 2012; Gupta and Malik 2015;
Yatskar, Zettlemoyer, and Farhadi 2016; Gkioxari, Girshick et al. 2018). (We will look at the topic
of describing complete images in the next section on vision and language.)

What, then, is video understanding? For many researchers, it starts with the detection and de-
scription of human actions, which are taken as the basic atomic units of videos. Of course, just as
with images, these basic primitives can be chained into more complete descriptions of longer video
sequences.

Human activity recognition began being studied in the 1990s, along with related topics such as
human motion tracking, which we discuss in Sections 9.4.4 and 13.6.4. Aggarwal and Cai (1999)
provide a comprehensive review of these two areas, which they call human motion analysis. Some
of the techniques they survey use point and mesh tracking, as well as spatio-temporal signatures.

In the 2000s, attention shifted to spatio-temporal features, such as the clever use of optical flow
in small patches to recognize sports activities (Efros, Berg et al. 2003) or spatio-temporal feature
detectors for classifying actions in movies (Laptev, Marszalek et al. 2008), later combined with
image context (Marszalek, Laptev, and Schmid 2009) and tracked feature trajectories (Wang and
Schmid 2013). Poppe (2010), Aggarwal and Ryoo (2011), and Weinland, Ronfard, and Boyer (2011)

26You can find the leaderboards for human keypoint detection at https://cocodataset.org.

https://cocodataset.org

6.5 Video understanding 317

Name/URL Metadata Contents/Reference

Charades Actions, objects, descriptions 9.8k videos
https://prior.allenai.org/projects/charades Sigurdsson, Varol et al. (2016)

YouTube8M Entities 4.8k visual entities, 8M videos
https://research.google.com/youtube8m Abu-El-Haija, Kothari et al. (2016)

Kinetics Action classes 700 action classes, 650k videos
https://deepmind.com/research/open-source/kinetics Carreira and Zisserman (2017)

“Something-something” Actions with objects 174 actions, 220k videos
https://20bn.com/datasets/something-something Goyal, Kahou et al. (2017)

AVA Actions 80 actions in 430 15-minute videos
https://research.google.com/ava Gu, Sun et al. (2018)

EPIC-KITCHENS Actions and objects 100 hours of egocentric videos
https://epic-kitchens.github.io Damen, Doughty et al. (2018)

Table 6.3 Datasets for video understanding and action recognition.

provide surveys of algorithms from this decade. Some of the datasets used in this research include
the KTH human motion dataset (Schüldt, Laptev, and Caputo 2004), the UCF sports action dataset
(Rodriguez, Ahmed, and Shah 2008), the Hollywood human action dataset (Marszalek, Laptev, and
Schmid 2009), UCF-101 (Soomro, Zamir, and Shah 2012), and the HMDB human motion database
(Kuehne, Jhuang et al. 2011).

In the last decade, video understanding techniques have shifted to using deep networks (Ji, Xu et
al. 2013; Karpathy, Toderici et al. 2014; Simonyan and Zisserman 2014a; Tran, Bourdev et al. 2015;
Feichtenhofer, Pinz, and Zisserman 2016; Carreira and Zisserman 2017; Varol, Laptev, and Schmid
2017; Wang, Xiong et al. 2019; Zhu, Li et al. 2020), sometimes combined with temporal models
such as LSTMs (Baccouche, Mamalet et al. 2011; Donahue, Hendricks et al. 2015; Ng, Hausknecht
et al. 2015; Srivastava, Mansimov, and Salakhudinov 2015).

While it is possible to apply these networks directly to the pixels in the video stream, e.g., using
3D convolutions (Section 5.5.1), researchers have also investigated using optical flow (Chapter 9.3)
as an additional input. The resulting two-stream architecture was proposed by Simonyan and Zisser-
man (2014a) and is shown in Figure 6.44a. A later paper by Carreira and Zisserman (2017) compares
this architecture to alternatives such as 3D convolutions on the pixel stream as well as hybrids of
two streams and 3D convolutions (Figure 6.44b).

The latest architectures for video understanding have gone back to using 3D convolutions on the
raw pixel stream (Tran, Wang et al. 2018, 2019; Kumawat, Verma et al. 2021). Wu, Feichtenhofer
et al. (2019) store 3D CNN features into what they call a long-term feature bank to give a broader
temporal context for action recognition. Feichtenhofer, Fan et al. (2019) propose a two-stream
SlowFast architecture, where a slow pathway operates at a lower frame rate and is combined with
features from a fast pathway with higher temporal sampling but fewer channels (Figure 6.44c). Some
widely used datasets used for evaluating these algorithms are summarized in Table 6.3. They include
Charades (Sigurdsson, Varol et al. 2016), YouTube8M (Abu-El-Haija, Kothari et al. 2016), Kinetics
(Carreira and Zisserman 2017), “Something-something” (Goyal, Kahou et al. 2017), AVA (Gu, Sun
et al. 2018), EPIC-KITCHENS (Damen, Doughty et al. 2018), and AVA-Kinetics (Li, Thotakuri
et al. 2020). A nice exposition of these and other video understanding algorithms can be found in
Johnson (2020, Lecture 18).

As with image recognition, researchers have also started using self-supervised algorithms to train
video understanding systems. Unlike images, video clips are usually multi-modal, i.e., they contain

https://prior.allenai.org/projects/charades
https://research.google.com/youtube8m
https://deepmind.com/research/open-source/kinetics
https://20bn.com/datasets/something-something
https://research.google.com/ava
https://epic-kitchens.github.io

318 6 Recognition

(a)

(b)

(c)

Figure 6.44 Video understanding using neural networks: (a) two-stream architecture for video classification ©
Simonyan and Zisserman (2014a); (b) some alternative video processing architectures (Carreira and Zisserman
2017) © 2017 IEEE; (c) a SlowFast network with a low frame rate, low temporal resolution Slow pathway and a
high frame rate, higher temporal resolution Fast pathway (Feichtenhofer, Fan et al. 2019) © 2019 IEEE.

6.6 Vision and language 319

audio tracks in addition to the pixels, which can be an excellent source of unlabeled supervisory
signals (Alwassel, Mahajan et al. 2020; Patrick, Asano et al. 2020). When available at inference
time, audio signals can improve the accuracy of such systems (Xiao, Lee et al. 2020).

Finally, while action recognition is the main focus of most recent video understanding work, it
is also possible to classify videos into different scene categories such as “beach”, “fireworks”, or
“snowing.” This problem is called dynamic scene recognition and can be addressed using spatio-
temporal CNNs (Feichtenhofer, Pinz, and Wildes 2017).

6.6 Vision and language

The ultimate goal of much of computer vision research is not just to solve simpler tasks such as
building 3D models of the world or finding relevant images, but to become an essential component
of artificial general intelligence (AGI). This requires vision to integrate with other components of
artificial intelligence such as speech and language understanding and synthesis, logical inference,
and commonsense and specialized knowledge representation and reasoning.

Advances in speech and language processing have enabled the widespread deployment of speech-
based intelligent virtual assistants such as Siri, Google Assistant, and Alexa. Earlier in this chapter,
we’ve seen how computer vision systems can name individual objects in images and find similar
images by appearance or keywords. The next natural step of integration with other AI components
is to merge vision and language, i.e., natural language processing (NLP).

While this area has been studied for a long time (Duygulu, Barnard et al. 2002; Farhadi, Hejrati
et al. 2010), the last decade has seen a rapid increase in performance and capabilities (Mogadala,
Kalimuthu, and Klakow 2021; Gan, Yu et al. 2020). An example of this is the BabyTalk system
developed by Kulkarni, Premraj et al. (2013), which first detects objects, their attributes, and their
positional relationships, then infers a likely compatible labeling of these objects, and finally gener-
ates an image caption, as shown in Figure 6.45a.

Visual captioning

The next few years brought a veritable explosion of papers on the topic of image captioning and
description, including (Chen and Lawrence Zitnick 2015; Donahue, Hendricks et al. 2015; Fang,
Gupta et al. 2015; Karpathy and Fei-Fei 2015; Vinyals, Toshev et al. 2015; Xu, Ba et al. 2015;
Johnson, Karpathy, and Fei-Fei 2016; Yang, He et al. 2016; You, Jin et al. 2016). Many of these
systems combine CNN-based image understanding components (mostly object and human action
detectors) with RNNs or LSTMs to generate the description, often in conjunction with other tech-
niques such as multiple instance learning, maximum entropy language models, and visual attention.
One somewhat surprising early result was that nearest-neighbor techniques, i.e., finding sets of sim-
ilar looking images with captions and then creating a consensus caption, work surprisingly well
(Devlin, Gupta et al. 2015).

Over the last few years, attention-based systems have continued to be essential components of
image captioning systems (Lu, Xiong et al. 2017; Anderson, He et al. 2018; Lu, Yang et al. 2018).
Figure 6.46 shows examples from two such papers, where each word in the generated caption is
grounded with a corresponding image region. The CVPR 2020 tutorial by (Zhou 2020) summa-
rizes over two dozen related papers from the last five years, including papers that use transformers
(Section 5.5.3) to do the captioning. It also covers video description and dense video captioning
(Aafaq, Mian et al. 2019; Zhou, Kalantidis et al. 2019) and vision-language pre-training (Sun, My-
ers et al. 2019; Zhou, Palangi et al. 2020; Li, Yin et al. 2020). The tutorial also has lectures on

320 6 Recognition

(a)

(b)

(c)

Figure 6.45 Image captioning systems: (a) BabyTalk detects objects, attributes, and positional relationships
and composes these into image captions (Kulkarni, Premraj et al. 2013) © 2013 IEEE; (b–c) DenseCap associates
word phrases with regions and then uses an RNN to construct plausible sentences (Johnson, Karpathy, and Fei-Fei
2016) © 2016 IEEE.

6.6 Vision and language 321

(a)

(b)

Figure 6.46 Image captioning with attention: (a) The “Show, Attend, and Tell” system, which uses hard atten-
tion to align generated words with image regions © Xu, Ba et al. (2015); (b) Neural Baby Talk captions generated
using different detectors, showing the association between words and grounding regions (Lu, Yang et al. 2018) ©
2018 IEEE.

Figure 6.47 An adversarial typographic attack used against CLIP (Radford, Kim et al. 2021) discovered by
©Goh, Cammarata et al. (2021). Instead of predicting the object that exists in the scene, CLIP predicts the output
based on the adversarial handwritten label.

visual question answering and reasoning (Gan 2020), text-to-image synthesis (Cheng 2020), and
vision-language pre-training (Yu, Chen, and Li 2020).

For the task of image classification (Section 6.2), one of the major restrictions is that a model can
only predict a label from the discrete pre-defined set of labels it trained on. CLIP (Radford, Kim et
al. 2021) proposes an alternative approach that relies on image captions to enable zero-shot transfer
to any possible set of labels. Given an image with a set of labels (e.g., {dog, cat, . . . , house}), CLIP
predicts the label that maximizes the probability that the image is captioned with a prompt similar
to “A photo of a {label}”. Section 5.4.7 discusses the training aspect of CLIP, which collects 400
million text-image pairs and uses contrastive learning to determine how likely it is for an image to
be paired with a caption.

Remarkably, without having seen or fine-tuned to many popular image classification benchmarks
(e.g., ImageNet, Caltech 101), CLIP can outperform independently fine-tuned ResNet-50 models
supervised on each specific dataset. Moreover, compared to state-of-the-art classification models,
CLIP’s zero-shot generalization is significantly more robust to dataset distribution shifts, performing
well on each of ImageNet Sketch (Wang, Ge et al. 2019), ImageNetV2 (Recht, Roelofs et al. 2019),
and ImageNet-R (Hendrycks, Basart et al. 2020), without being specifically trained on any of them.

322 6 Recognition

Name/URL Metadata Contents/Reference

Flickr30k (Entities) Image captions (grounded) 30k images (+ bounding boxes)
https://shannon.cs.illinois.edu/DenotationGraph Young, Lai et al. (2014)
http://bryanplummer.com/Flickr30kEntities Plummer, Wang et al. (2017)

COCO Captions Whole image captions 1.5M captions, 330k images
https://cocodataset.org/#captions-2015 Chen, Fang et al. (2015)

Conceptual Captions Whole image captions 3.3M image caption pairs
https://ai.google.com/research/ConceptualCaptions Sharma, Ding et al. (2018)

YFCC100M Flickr metadata 100M images with metadata
http://projects.dfki.uni-kl.de/yfcc100m Thomee, Shamma et al. (2016)

Visual Genome Dense annotations 108k images with region graphs
https://visualgenome.org Krishna, Zhu et al. (2017)

VQA v2.0 Question/answer pairs 265k images
https://visualqa.org Goyal, Khot et al. (2017)

VCR Multiple choice questions 110k movie clips, 290k QAs
https://visualcommonsense.com Zellers, Bisk et al. (2019)

GQA Compositional QA 22M questions on Visual Genome
https://visualreasoning.net Hudson and Manning (2019)

VisDial Dialogs for chatbot 120k COCO images + dialogs
https://visualdialog.org Das, Kottur et al. (2017)

Table 6.4 Image datasets for vision and language research.

In fact, Goh, Cammarata et al. (2021) found that CLIP units responded similarly with concepts
presented in different modalities (e.g., an image of Spiderman, text of the word spider, and a drawing
of Spiderman). Figure 6.47 shows the adversarial typographic attack they discovered that could fool
CLIP. By simply placing a handwritten class label (e.g., iPod) on a real-world object (e.g., Apple),
CLIP often predicted the class written on the label.

As with other areas of visual recognition and learning-based systems, datasets have played an
important role in the development of vision and language systems. Some widely used datasets of
images with captions include Conceptual Captions (Sharma, Ding et al. 2018), the UIUC Pascal
Sentence Dataset (Farhadi, Hejrati et al. 2010), the SBU Captioned Photo Dataset (Ordonez, Kulka-
rni, and Berg 2011), Flickr30k (Young, Lai et al. 2014), COCO Captions (Chen, Fang et al. 2015),
and their extensions to 50 sentences per image (Vedantam, Lawrence Zitnick, and Parikh 2015) (see
Table 6.4). More densely annotated datasets such as Visual Genome (Krishna, Zhu et al. 2017)
describe different sub-regions of an image with their own phrases, i.e., provide dense captioning, as
shown in Figure 6.48. YFCC100M (Thomee, Shamma et al. 2016) contains around 100M images
from Flickr, but it only includes the raw user uploaded metadata for each image, such as the title,
time of upload, description, tags, and (optionally) the location of the image.

Metrics for measuring sentence similarity also play an important role in the development of im-
age captioning and other vision and language systems. Some widely used metrics include BLEU:
BiLingual Evaluation Understudy (Papineni, Roukos et al. 2002), ROUGE: Recall Oriented Un-
derstudy of Gisting Evaluation (Lin 2004), METEOR: Metric for Evaluation of Translation with
Explicit ORdering (Banerjee and Lavie 2005), CIDEr: Consensus-based Image Description Evalu-
ation (Vedantam, Lawrence Zitnick, and Parikh 2015), and SPICE: Semantic Propositional Image
Caption Evaluation (Anderson, Fernando et al. 2016).27

27See https://www.cs.toronto.edu/∼fidler/slides/2017/CSC2539/Kaustav slides.pdf.

https://shannon.cs.illinois.edu/DenotationGraph
http://bryanplummer.com/Flickr30kEntities
https://cocodataset.org/#captions-2015
https://ai.google.com/research/ConceptualCaptions
http://projects.dfki.uni-kl.de/yfcc100m
https://visualgenome.org
https://visualqa.org
https://visualcommonsense.com
https://visualreasoning.net
https://visualdialog.org
https://www.cs.toronto.edu/~fidler/slides/2017/CSC2539/Kaustav_slides.pdf

6.6 Vision and language 323

(a) (b)

(c)

Figure 6.48 Images and data from the Visual Genome dataset (Krishna, Zhu et al. 2017) © 2017 Springer. (a)
An example image with its region descriptors. (b) Each region has a graph representation of objects, attributes,
and pairwise relationships, which are combined into a scene graph where all the objects are grounded to the image,
and also associated questions and answers. (c) Some sample question and answer pairs, which cover a spectrum
of visual tasks from recognition to high-level reasoning.

324 6 Recognition

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

TEXT PROMPT

an armchair in the shape of an avocado […]

AI-GENERATED IMAGES

TEXT PROMPT

a store front that has the word ‘openai’ written on it […]

AI-GENERATED IMAGES

TEXT AND IMAGE PROMPT

the exact same cat on the top as a sketch on the bottom

AI-GENERATED IMAGES

Figure 6.49 Qualitative text-to-image generation results from DALL·E, showing a wide range of generalization
abilities ©Ramesh, Pavlov et al. (2021). The bottom right example provides a partially complete image prompt
of a cat, along with text, and has the model fill in the rest of the image. The other three examples only start with
the text prompt as input, with the model generating the entire image.

Text-to-image generation

The task of text-to-image generation is the inverse of visual captioning, i.e., given a text prompt,
generate the image. Since images are represented in such high dimensionality, generating them to
look coherent has historically been difficult. Generating images from a text prompt can be thought
of as a generalization of generating images from a small set of class labels (Section 5.5.4). Since
there is a near-infinite number of possible text prompts, successful models must be able to generalize
from the relatively small fraction seen during training.

Early work on this task from Mansimov, Parisotto et al. (2016) used an RNN to iteratively draw
an image from scratch. Their results showed some resemblance to the text prompts, although the
generated images were quite blurred. The following year, Reed, Akata et al. (2016) applied a GAN
to the problem, where unseen text prompts began to show promising results. Their generated images
were relatively small (64 × 64), which was improved in later papers, which often first generated
a small-scale image and then conditioned on that image and the text input to generate a higher-
resolution image (Zhang, Xu et al. 2017, 2018; Xu, Zhang et al. 2018; Li, Qi et al. 2019).

DALL·E (Ramesh, Pavlov et al. 2021) uses orders of magnitude of more data (250 million text-
image pairs on the internet) and compute to achieve astonishing qualitative results (Figure 6.49).28

Their approach produces promising results for generalizing beyond training data, even composition-
ally piecing together objects that are not often related (e.g., an armchair and an avocado), producing
many styles (e.g., painting, cartoon, charcoal drawings), and working reasonably well with difficult
objects (e.g., mirrors or text).

The model for DALL·E consists of two components: a VQ-VAE-2 (Section 5.5.4) and a decoder
transformer (Section 5.5.3). The text is tokenized into 256 tokens, each of which is one of 16,384
possible vectors using a BPE-encoding (Sennrich, Haddow, and Birch 2015). The VQ-VAE-2 uses a
codebook of size 8,192 (significantly larger than the codebook of size 512 used in the original VQ-
VAE-2 paper) to compress images as a 32 × 32 grid of vector tokens. At inference time, DALL·E
uses a transformer decoder, which starts with the 256 text tokens to autoregressively predict the 32
× 32 grid of image tokens. Given such a grid, the VQ-VAE-2 is able to use its decoder to generate

28Play with the results at https://openai.com/blog/dall-e.

https://openai.com/blog/dall-e

6.6 Vision and language 325

the final RGB image of size 256 × 256. To achieve better empirical results, DALL·E generates 512
image candidates and reranks them using CLIP (Radford, Kim et al. 2021), which determines how
likely a given caption is associated with a given image.

An intriguing extension of DALL·E is to use the VQ-VAE-2 encoder to predict a subset of the
compressed image tokens. For instance, suppose we are given a text input and an image. The text
input can be tokenized into its 256 tokens, and one can obtain the 32 × 32 image tokens using the
VQ-VAE-2 encoder. If we then discard the bottom half of the image tokens, the transformer decoder
can be used to autoregressively predict which tokens might be there. These tokens, along with the
non-discarded ones from the original image, can be passed into the VQ-VAE-2 decoder to produce
a completed image. Figure 6.49 (bottom right) shows how such a text and partial image prompt can
be used for applications such as image-to-image translation (Section 5.5.4).

Visual Question Answering and Reasoning

Image and video captioning are useful tasks that bring us closer to building artificially intelligent
systems, as they demonstrate the ability to put together visual cues such as object identities, at-
tributes, and actions. However, it remains unclear if the system has understood the scene at a deeper
level and if it can reason about the constituent pieces and how they fit together.

To address these concerns, researchers have been building visual question answering (VQA)
systems, which require the vision algorithm to answer open-ended questions about the image, such
as the ones shown in Figure 6.48c. A lot of this work started with the creation of the Visual Question
Answering (VQA) dataset (Antol, Agrawal et al. 2015), which spurred a large amount of subsequent
research. The following year, VQA v2.0 improved this dataset by creating a balanced set of image
pairs, where each question had different answers in the two images (Goyal, Khot et al. 2017).29 This
dataset was further extended to reduce the influence of prior assumptions and data distributions and
to encourage answers to be grounded in the images (Agrawal, Batra et al. 2018).

Since then, many additional VQA datasets have been created. These include the VCR dataset
for visual commonsense reasoning (Zellers, Bisk et al. 2019) and the GQA dataset and metrics for
evaluating visual reasoning and compositional question answering (Hudson and Manning 2019),
which is built on top of the information about objects, attributes, and relations provided through the
Visual Genome scene graphs (Krishna, Zhu et al. 2017). A discussion of these and other datasets
for VQA can be found in the CVPR 2020 tutorial by Gan (2020), including datasets that test visual
grounding and referring expression comprehension, visual entailment, using external knowledge,
reading text, answering sub-questions, and using logic. Some of these datasets are summarized in
Table 6.4.

As with image and video captioning, VQA systems use various flavors of attention to associate
pixel regions with semantic concepts (Yang, He et al. 2016). However, instead of using sequence
models such as RNNs, LSTMs, or transformers to generate text, the natural language question is first
parsed to produce an encoding that is then fused with the image embedding to generate the desired
answer.

The image semantic features can either be computed on a coarse grid, or a “bottom-up” object
detector can be combined with a “top-down” attention mechanism to provide feature weightings
(Anderson, He et al. 2018). In recent years, the pendulum has swung back and forth between
techniques that use bottom-up regions and gridded feature descriptors, with two of the recent best-
performing algorithms going back to the simpler (and much faster) gridded approach (Jiang, Misra
et al. 2020; Huang, Zeng et al. 2020). The CVPR 2020 tutorial by Gan (2020) discusses these and

29https://visualqa.org

https://visualqa.org

326 6 Recognition

dozens of other VQA systems as well as their subcomponents, such as multimodal fusion variants
(bilinear pooling, alignment, relational reasoning), neural module networks, robust VQA, and mul-
timodal pre-training, The survey by Mogadala, Kalimuthu, and Klakow (2021) and the annual VQA
Challeng workshop (Shrivastava, Hudson et al. 2020) are also excellent sources of additional infor-
mation. And if you would like to test out the current state of VQA systems, you can upload your
own image to https://vqa.cloudcv.org and ask the system your own questions.

Visual Dialog. An even more challenging version of VQA is visual dialog, where a chatbot is
given an image and asked to answer open-ended questions about the image while also referring to
previous elements of the conversation. The VisDial dataset was the earliest to be widely used for
this task (Das, Kottur et al. 2017).30 You can find pointers to systems that have been developed for
this task at the Visual Dialog workshop and challenge (Shrivastava, Hudson et al. 2020). There’s
also a chatbot at https://visualchatbot.cloudcv.org where you can upload your own image and start a
conversation, which can sometimes lead to humorous (or weird) outcomes (Shane 2019).

Vision-language pre-training. As with many other recognition tasks, pre-training has had
some dramatic success in the last few years, with systems such as ViLBERT (Lu, Batra et al. 2019),
Oscar (Li, Yin et al. 2020), and many other systems described in the CVPR 2020 tutorial on self-
supervised learning for vision-and-language (Yu, Chen, and Li 2020).

6.7 Additional reading

Unlike machine learning or deep learning, there are no recent textbooks or surveys devoted specif-
ically to the general topics of image recognition and scene understanding. Some earlier surveys
(Pinz 2005; Andreopoulos and Tsotsos 2013) and collections of papers (Ponce, Hebert et al. 2006;
Dickinson, Leonardis et al. 2007) review the “classic” (pre-deep learning) approaches, but given
the tremendous changes in the last decade, many of these techniques are no longer used. Currently,
some of the best sources for the latest material, in addition to this chapter and university computer
vision courses, are tutorials at the major vision conferences such as ICCV (Xie, Girshick et al. 2019),
CVPR (Girshick, Kirillov et al. 2020), and ECCV (Xie, Girshick et al. 2020). Image recognition
datasets such as those listed in Tables 6.1–6.4 that maintain active leaderboards can also be a good
source for recent papers.

Algorithms for instance recognition, i.e., the detection of static manufactured objects that only
vary slightly in appearance but may vary in 3D pose, are still often based on detecting 2D points
of interest and describing them using viewpoint-invariant descriptors, as discussed in Chapter 7 and
(Lowe 2004), Rothganger, Lazebnik et al. (2006), and Gordon and Lowe (2006). In more recent
years, attention has shifted to the more challenging problem of instance retrieval (also known as
content-based image retrieval), in which the number of images being searched can be very large
(Sivic and Zisserman 2009). Section 7.1.4 in the next chapter reviews such techniques, as does the
survey in (Zheng, Yang, and Tian 2018). This topic is also related to visual similarity search (Bell
and Bala 2015; Arandjelovic, Gronat et al. 2016; Song, Xiang et al. 2016; Gordo, Almazán et al.
2017; Rawat and Wang 2017; Bell, Liu et al. 2020), which was covered in Section 6.2.3.

A number of surveys, collections of papers, and course notes have been written on the topic
of feature-based whole image (single-object) category recognition (Pinz 2005; Ponce, Hebert et al.
2006; Dickinson, Leonardis et al. 2007; Fei-Fei, Fergus, and Torralba 2009). Some of these papers

30https://visualdialog.org

https://vqa.cloudcv.org
https://visualchatbot.cloudcv.org
https://visualdialog.org

6.7 Additional reading 327

use a bag of words or keypoints (Csurka, Dance et al. 2004; Lazebnik, Schmid, and Ponce 2006;
Csurka, Dance et al. 2006; Grauman and Darrell 2007b; Zhang, Marszalek et al. 2007; Boiman,
Shechtman, and Irani 2008; Ferencz, Learned-Miller, and Malik 2008). Other papers recognize
objects based on their contours, e.g., using shape contexts (Belongie, Malik, and Puzicha 2002)
or other techniques (Shotton, Blake, and Cipolla 2005; Opelt, Pinz, and Zisserman 2006; Ferrari,
Tuytelaars, and Van Gool 2006a).

Many object recognition algorithms use part-based decompositions to provide greater invariance
to articulation and pose. Early algorithms focused on the relative positions of the parts (Fischler and
Elschlager 1973; Kanade 1977; Yuille 1991) while later algorithms used more sophisticated models
of appearance (Felzenszwalb and Huttenlocher 2005; Fergus, Perona, and Zisserman 2007; Felzen-
szwalb, McAllester, and Ramanan 2008). Good overviews on part-based models for recognition
can be found in the course notes by Fergus (2009). Carneiro and Lowe (2006) discuss a number of
graphical models used for part-based recognition, which include trees and stars, k-fans, and constel-
lations.

Classical recognition algorithms often used scene context as part of their recognition strategy.
Representative papers in this area include Torralba (2003), Torralba, Murphy et al. (2003), Rabi-
novich, Vedaldi et al. (2007), Russell, Torralba et al. (2007), Sudderth, Torralba et al. (2008), and
Divvala, Hoiem et al. (2009). Machine learning also became a key component of classical object
detection and recognition algorithms (Felzenszwalb, McAllester, and Ramanan 2008; Sivic, Russell
et al. 2008), as did exploiting large human-labeled databases (Russell, Torralba et al. 2007; Torralba,
Freeman, and Fergus 2008).

The breakthrough success of the “AlexNet” SuperVision system of Krizhevsky, Sutskever, and
Hinton (2012) shifted the focus in category recognition research from feature-based approaches to
deep neural networks. The rapid improvement in recognition accuracy, captured in Figure 5.40 and
described in more detail in Section 5.4.3 has been driven to a large degree by deeper networks and
better training algorithms, and also in part by larger (unlabeled) training datasets (Section 5.4.7).

More specialized recognition systems such as those for recognizing faces underwent a similar
evolution. While some of the earliest approaches to face recognition involved finding the distinctive
image features and measuring the distances between them (Fischler and Elschlager 1973; Kanade
1977; Yuille 1991), later approaches relied on comparing gray-level images, often projected onto
lower dimensional subspaces (Turk and Pentland 1991; Belhumeur, Hespanha, and Kriegman 1997;
Heisele, Ho et al. 2003) or local binary patterns (Ahonen, Hadid, and Pietikäinen 2006). A variety of
shape and pose deformation models were also developed (Beymer 1996; Vetter and Poggio 1997),
including Active Shape Models (Cootes, Cooper et al. 1995), 3D Morphable Models (Blanz and
Vetter 1999; Egger, Smith et al. 2020), and Active Appearance Models (Cootes, Edwards, and Taylor
2001; Matthews and Baker 2004; Ramnath, Koterba et al. 2008). Additional information about
classic face recognition algorithms can be found in a number of surveys and books on this topic
(Chellappa, Wilson, and Sirohey 1995; Zhao, Chellappa et al. 2003; Li and Jain 2005).

The concept of shape models for frontalization continued to be used as the community shifted to
deep neural network approaches (Taigman, Yang et al. 2014). Some more recent deep face recog-
nizers, however, omit the frontalization stage and instead use data augmentation to create synthetic
inputs with a larger variety of poses (Schroff, Kalenichenko, and Philbin 2015; Parkhi, Vedaldi, and
Zisserman 2015). Masi, Wu et al. (2018) provide an excellent tutorial and survey on deep face recog-
nition, including a list of widely used training and testing datasets, a discussion of frontalization and
dataset augmentation, and a section on training losses.

As the problem of whole-image (single object) category recognition became more “solved”, at-
tention shifted to multiple object delineation and labeling, i.e., object detection. Object detection

328 6 Recognition

was originally studied in the context of specific categories such as faces, pedestrians, cars, etc. Sem-
inal papers in face detection include those by Osuna, Freund, and Girosi (1997); Sung and Poggio
(1998); Rowley, Baluja, and Kanade (1998); Viola and Jones (2004); Heisele, Ho et al. (2003), with
Yang, Kriegman, and Ahuja (2002) providing a comprehensive survey of early work in this field.
Early work in pedestrian and car detection was carried out by Gavrila and Philomin (1999); Gavrila
(1999); Papageorgiou and Poggio (2000); Schneiderman and Kanade (2004). Subsequent papers
include (Mikolajczyk, Schmid, and Zisserman 2004; Dalal and Triggs 2005; Leibe, Seemann, and
Schiele 2005; Andriluka, Roth, and Schiele 2009; Dollár, Belongie, and Perona 2010; Felzenszwalb,
Girshick et al. 2010).

Modern generic object detectors are typically constructed using a region proposal algorithm
(Uijlings, Van De Sande et al. 2013; Zitnick and Dollár 2014) that then feeds selected regions of
the image (either as pixels or precomputed neural features) into a multi-way classifier, resulting in
architectures such as R-CNN (Girshick, Donahue et al. 2014), Fast R-CNN (Girshick 2015), Faster
R-CCNN (Ren, He et al. 2015), and FPN (Lin, Dollár et al. 2017). An alternative to this two-stage
approach is a single-stage network, which uses a single network to output detections at a variety
of locations. Examples of such architectures include SSD (Liu, Anguelov et al. 2016), RetinaNet
(Lin, Goyal et al. 2017), and YOLO (Redmon, Divvala et al. 2016; Redmon and Farhadi 2017,
2018; Bochkovskiy, Wang, and Liao 2020). These and more recent convolutional object detectors
are described in the recent survey by Jiao, Zhang et al. (2019).

While object detection can be sufficient in many computer vision applications such as counting
cars or pedestrians or even describing images, a detailed pixel-accurate labeling can be potentially
even more useful, e.g., for photo editing. This kind of labeling comes in several flavors, including
semantic segmentation (what stuff is this?), instance segmentation (which countable object is this?),
panoptic segmentation (what stuff or object is it?). One early approach to this problem was to pre-
segment the image into pieces and then match these pieces to portions of the model (Mori, Ren et al.
2004; Russell, Efros et al. 2006; Borenstein and Ullman 2008; Gu, Lim et al. 2009). Another popular
approach was to use conditional random fields (Kumar and Hebert 2006; He, Zemel, and Carreira-
Perpiñán 2004; Winn and Shotton 2006; Rabinovich, Vedaldi et al. 2007; Shotton, Winn et al. 2009).
which at that time produced some of the best results on the PASCAL VOC segmentation challenge.
Modern semantic segmentation algorithms use pyramidal fully-convolutional architectures to map
input pixels to class labels (Long, Shelhamer, and Darrell 2015; Zhao, Shi et al. 2017; Xiao, Liu et
al. 2018; Wang, Sun et al. 2020).

The more challenging task of instance segmentation, where each distinct object gets its own
unique label, is usually tackled using a combination of object detectors and per-object segmentation,
as exemplified in the seminal Mask R-CNN paper by He, Gkioxari et al. (2017). Follow-on work
uses more sophisticated backbone architectures (Liu, Qi et al. 2018; Chen, Pang et al. 2019). Two
recent workshops that highlight the latest results in this area are the COCO + LVIS Joint Recognition
Challenge (Kirillov, Lin et al. 2020) and the Robust Vision Challenge (Zendel et al. 2020).

Putting semantic and instance segmentation together has long been a goal of semantic scene
understanding (Yao, Fidler, and Urtasun 2012; Tighe and Lazebnik 2013; Tu, Chen et al. 2005).
Doing this on a per-pixel level results in a panoptic segmentation of the scene, where all of the
objects are correctly segmented and the remaining stuff is correctly labeled (Kirillov, He et al. 2019;
Kirillov, Girshick et al. 2019). The COCO dataset has now been extended to include a panoptic
segmentation task, on which some recent results can be found in the ECCV 2020 workshop on this
topic (Kirillov, Lin et al. 2020).

Research in video understanding, or more specifically human activity recognition, dates back to
the 1990s; some good surveys include (Aggarwal and Cai 1999; Poppe 2010; Aggarwal and Ryoo

6.8 Exercises 329

2011; Weinland, Ronfard, and Boyer 2011). In the last decade, video understanding techniques
shifted to using deep networks (Ji, Xu et al. 2013; Karpathy, Toderici et al. 2014; Simonyan and
Zisserman 2014a; Donahue, Hendricks et al. 2015; Tran, Bourdev et al. 2015; Feichtenhofer, Pinz,
and Zisserman 2016; Carreira and Zisserman 2017; Tran, Wang et al. 2019; Wu, Feichtenhofer et
al. 2019; Feichtenhofer, Fan et al. 2019). Some widely used datasets used for evaluating these
algorithms are summarized in Table 6.3.

While associating words with images has been studied for a while (Duygulu, Barnard et al.
2002), sustained research into describing images with captions and complete sentences started in
the early 2010s (Farhadi, Hejrati et al. 2010; Kulkarni, Premraj et al. 2013). The last decade has
seen a rapid increase in performance and capabilities of such systems (Mogadala, Kalimuthu, and
Klakow 2021; Gan, Yu et al. 2020). The first sub-problem to be widely studied was image caption-
ing (Donahue, Hendricks et al. 2015; Fang, Gupta et al. 2015; Karpathy and Fei-Fei 2015; Vinyals,
Toshev et al. 2015; Xu, Ba et al. 2015; Devlin, Gupta et al. 2015), with later systems using atten-
tion mechanisms (Anderson, He et al. 2018; Lu, Yang et al. 2018). More recently, researchers have
developed systems for visual question answering (Antol, Agrawal et al. 2015) and visual common-
sense reasoning (Zellers, Bisk et al. 2019).

The CVPR 2020 tutorial on recent advances in visual captioning (Zhou 2020) summarizes over
two dozen related papers from the last five years, including papers that use Transformers to do
the captioning. It also covers video description and dense video captioning (Aafaq, Mian et al.
2019; Zhou, Kalantidis et al. 2019) and vision-language pre-training (Sun, Myers et al. 2019; Zhou,
Palangi et al. 2020; Li, Yin et al. 2020). The tutorial also has lectures on visual question answering
and reasoning (Gan 2020), text-to-image synthesis (Cheng 2020), and vision-language pre-training
(Yu, Chen, and Li 2020).

6.8 Exercises

Ex 6.1: Pre-trained recognition networks. Find a pre-trained network for image classification,
segmentation, or some other task such as face recognition or pedestrian detection.

After running the network, can you characterize the most common kinds of errors the network is
making? Create a “confusion matrix” indicating which categories get classified as other categories.
Now try the network on your own data, either from a web search or from your personal photo
collection. Are there surprising results?

My own favorite code to try is Detectron2,31 which I used to generate the panoptic segmentation
results shown in Figure 6.39.

Ex 6.2: Re-training recognition networks. After analyzing the performance of your pre-trained
network, try re-training it on the original dataset on which it was trained, but with modified param-
eters (numbers of layers, channels, training parameters) or with additional examples. Can you get
the network to perform more to you liking?

Many of the online tutorials, such as the Detectron2 Collab notebook mentioned above, come
with instructions on how to re-train the network from scratch on a different dataset. Can you create
your own dataset, e.g., using a web search and figure out how to label the examples? A low effort
(but not very accurate) way is to trust the results of the web search. Russakovsky, Deng et al. (2015),
Kovashka, Russakovsky et al. (2016), and other papers on image datasets discuss the challenges in
obtaining accurate labels.

31Click on the “Colab Notebook” link at https://github.com/facebookresearch/detectron2 and then edit the input image
URL to try your own.

https://github.com/facebookresearch/detectron2

330 6 Recognition

Train your network, try to optimize its architecture, and report on the challenges you faced and
discoveries you made.

Note: the following exercises were suggested by Matt Deitke.

Ex 6.3: Image perturbations. Download either ImageNet or Imagenette.32 Now, perturb each
image by adding a small square to the top left of the image, where the color of the square is unique
for each label, as shown in the following figure:

(a) cassette player (b) golf ball (c) English Springer

Using any image classification model,33 e.g., ResNet, EfficientNet, or ViT, train the model from
scratch on the perturbed images. Does the model overfit to the color of the square and ignore the
rest of the image? When evaluating the model on the training and validation data, try adversarially
swapping colors between different labels.

Ex 6.4: Image normalization. Using the same dataset downloaded for the previous exercise, take
a ViT model and remove all the intermediate layer normalization operations. Are you able to train
the network? Using techniques in Li, Xu et al. (2018), how do the plots of the loss landscape appear
with and without the intermediate layer normalization operations?

Ex 6.5: Semantic segmentation. Explain the differences between instance segmentation, seman-
tic segmentation, and panoptic segmentation. For each type of segmentation, can it be post-processed
to obtain the other kinds of segmentation?

Ex 6.6: Class encoding. Categorical inputs to a neural network, such as a word or object, can be
encoded with one-hot encoded vector.34 However, it is common to pass the one-hot encoded vector
through an embedding matrix, where the output is then passed into the neural network loss function.
What are the advantages of vector embedding over using one-hot encoding?

Ex 6.7: Object detection. For object detection, how do the number of parameters for DETR,
Faster-RCNN, and YOLOv4 compare? Try training each of them on MS COCO. Which one tends
to train the slowest? How long does it take each model to evaluate a single image at inference time?

Ex 6.8: Image classification vs. description. For image classification, list at least two significant
differences between using categorical labels and natural language descriptions.

Ex 6.9: ImageNet Sketch. Try taking several pre-trained models on ImageNet and evaluating
them, without any fine-tuning, on ImageNet Sketch (Wang, Ge et al. 2019). For each of these
models, to what extent does the performance drop due to the shift in distribution?

Ex 6.10: Self-supervised learning. Provide examples of self-supervised learning pretext tasks for
each of the following data types: static images, videos, and vision-and-language.

32Imagenette, https://github.com/fastai/imagenette, is a smaller 10-class subset of ImageNet that is easier to use with
limited computing resources. .

33You may find the PyTorch Image Models at https://github.com/rwightman/pytorch-image-models useful.
34With a categorical variable, one-hot encoding is used to represent which label is chosen, i.e., when a label is chosen, its

entry in the vector is 1 with all other entries being 0.

https://github.com/fastai/imagenette
https://github.com/rwightman/pytorch-image-models

6.8 Exercises 331

Ex 6.11: Video understanding. For many video understanding tasks, we may be interested in
tracking an object through time. Why might this be preferred to making predictions independently
for each frame? Assume that inference speed is not a problem.

Ex 6.12: Fine-tuning a new head. Take the backbone of a network trained for object classifica-
tion and fine-tune it for object detection with a variant of YOLO. Why might it be desirable to freeze
the early layers of the network?

Ex 6.13: Movie understanding. Currently, most video understanding networks, such as those
discussed in this chapter, tend to only deal with short video clips as input. What modifications
might be necessary in order to operate over longer sequences such as an entire movie?

	Chapter 6 Recognition
	6.1 Instance recognition
	6.2 Image classification
	6.2.1 Feature-based methods
	6.2.2 Deep networks
	6.2.3 Application: Visual similarity search
	6.2.4 Face recognition

	6.3 Object detection
	6.3.1 Face detection
	6.3.2 Pedestrian detection
	6.3.3 General object detection

	6.4 Semantic segmentation
	6.4.1 Application: Medical image segmentation
	6.4.2 Instance segmentation
	6.4.3 Panoptic segmentation
	6.4.4 Application: Intelligent photo editing
	6.4.5 Pose estimation

	6.5 Video understanding
	6.6 Vision and language
	6.7 Additional reading
	6.8 Exercises

