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Figure 4.1 Examples of data interpolation and global optimization: (a) scattered data interpolation (curve
fitting) (Bishop 2006) © 2006 Springer; (b) graphical model interpretation of first-order regularization; (c) col-
orization using optimization (Levin, Lischinski, and Weiss 2004) © 2004 ACM; (d) multi-image photomontage
formulated as an unordered label MRF (Agarwala, Dontcheva et al. 2004) © 2004 ACM.
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In the previous chapter, we covered a large number of image processing operators that take
as input one or more images and produce some filtered or transformed version of these images.
In many situations, however, we are given incomplete data as input, such as depths at a sparse
number of locations, or user scribbles suggesting how an image should be colorized or segmented
(Figure 4.1c–d).

The problem of interpolating a complete image (or more generally a function or field) from
incomplete or varying quality data is often called scattered data interpolation. We begin this chapter
with a review of techniques in this area, since in addition to being widely used in computer vision,
they also form the basis of most machine learning algorithms, which we will study in the next
chapter.

Instead of doing an exhaustive survey, we present in Section 4.1 some easy-to-use techniques,
such as triangulation, spline interpolation, and radial basis functions. While these techniques are
widely used, they cannot easily be modified to provide controlled continuity, i.e., to produce the
kinds of piecewise continuous reconstructions we expect when estimating depth maps, label maps,
or even color images.

For this reason, we introduce in Section 4.2 variational methods, which formulate the interpo-
lation problem as the recovery of a piecewise smooth function subject to exact or approximate data
constraints. Because the smoothness is controlled using penalties formulated as norms of the func-
tion, this class of techniques are often called regularization or energy-based approaches. To find the
minimum-energy solutions to these problems, we discretize them (typically on a pixel grid), result-
ing in a discrete energy, which can then be minimized using sparse linear systems or related iterative
techniques.

In the last part of this chapter, Section 4.3, we show how such energy-based formulations are
related to Bayesian inference techniques formulated as Markov random fields, which are a special
case of general probabilistic graphical models. In these formulations, data constraints can be in-
terpreted as noisy and/or incomplete measurements, and piecewise smoothness constraints as prior
assumptions or models over the solution space. Such formulations are also often called generative
models, since we can, in principle, generate random samples from the prior distribution to see if they
conform with our expectations. Because the prior models can be more complex than simple smooth-
ness constraints, and because the solution space can have multiple local minima, more sophisticated
optimization techniques have been developed, which we discuss in this section.

4.1 Scattered data interpolation

The goal of scattered data interpolation is to produce a (usually continuous and smooth) function
f(x) that passes through a set of data points dk placed at locations xk such that

f(xk) = dk. (4.1)

The related problem of scattered data approximation only requires the function to pass near the data
points (Amidror 2002; Wendland 2004; Anjyo, Lewis, and Pighin 2014). This is usually formulated
using a penalty function such as

ED =
∑

k

‖f(xk)− dk‖2, (4.2)

with the squared norm in the above formula sometimes replaced by a different norm or robust func-
tion (Section 4.1.3). In statistics and machine learning, the problem of predicting an output function
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Figure 4.2 Some simple scattered data interpolation and approximation algorithms: (a) a Delaunay triangu-
lation defined over a set of data point locations; (b) data structure and intermediate results for the pull-push
algorithm (Gortler, Grzeszczuk et al. 1996) © 1996 ACM.

given a finite number of samples is called regression (Section 5.1). The x vectors are called the
inputs and the outputs y are called the targets. Figure 4.1a shows an example of one-dimensional
scattered data interpolation, while Figures 4.2 and 4.8 show some two-dimensional examples.

At first glance, scattered data interpolation seems closely related to image interpolation, which
we studied in Section 3.5.1. However, unlike images, which are regularly gridded, the data points
in scattered data interpolation are irregularly placed throughout the domain, as shown in Figure 4.2.
This requires some adjustments to the interpolation methods we use.

If the domain x is two-dimensional, as is the case with images, one simple approach is to tri-
angulate the domain x using the data locations xk as the triangle vertices. The resulting triangular
network, shown in Figure 4.2a, is called a triangular irregular network (TIN), and was one of the
early techniques used to produce elevation maps from scattered field measurements collected by
surveys.

The triangulation in Figure 4.2a was produced using a Delaunay triangulation, which is the most
widely used planar triangulation technique due to its attractive computational properties, such as the
avoidance of long skinny triangles. Algorithms for efficiently computing such triangulation are read-
ily available1 and covered in textbooks on computational geometry (Preparata and Shamos 1985; de
Berg, Cheong et al. 2008). The Delaunay triangulation can be extended to higher-dimensional do-
mains using the property of circumscribing spheres, i.e., the requirement that all selected simplices
(triangles, tetrahedra, etc.) have no other vertices inside their circumscribing spheres.

Once the triangulation has been defined, it is straightforward to define a piecewise-linear inter-
polant over each triangle, resulting in an interpolant that is C0 but not generally C1 continuous.
The formulas for the function inside each triangle are usually derived using barycentric coordinates,
which attain their maximal values at the vertices and sum up to one (Farin 2002; Amidror 2002).

If a smoother surface is desired as the interpolant, we can replace the piecewise linear functions
on each triangle with higher-order splines, much as we did for image interpolation (Section 3.5.1).
However, since these splines are now defined over irregular triangulations, more sophisticated tech-
niques must be used (Farin 2002; Amidror 2002). Other, more recent interpolators based on ge-
ometric modeling techniques in computer graphics include subdivision surfaces (Peters and Reif
2008).

An alternative to triangulating the data points is to use a regular n-dimensional grid, as shown in

1For example, https://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html

https://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html
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Figure 4.2b. Splines defined on such domains are often called tensor product splines and have been
used to interpolate scattered data (Lee, Wolberg, and Shin 1997).

An even faster, but less accurate, approach is called the pull-push algorithm and was originally
developed for interpolating missing 4D lightfield samples in a Lumigraph (Gortler, Grzeszczuk et
al. 1996). The algorithm proceeds in three phases, as schematically illustrated in Figure 4.2b.

First, the irregular data samples are splatted onto (i.e., spread across) the nearest grid vertices,
using the same approach we discussed in Section 3.6.1 on parametric image transformations. The
splatting operations accumulate both values and weights at nearby vertices. In the second, pull,
phase, values and weights are computed at a hierarchical set of lower resolution grids by combining
the coefficient values from the higher resolution grids. In the lower resolution grids, the gaps (re-
gions where the weights are low) become smaller. In the third, push, phase, information from each
lower resolution grid is combined with the next higher resolution grid, filling in the gaps while not
unduly blurring the higher resolution information already computed. Details of these three stages
can be found in (Gortler, Grzeszczuk et al. 1996).

The pull-push algorithm is very fast, since it is essentially linear in the number of input data
points and fine-level grid samples.

4.1.1 Radial basis functions

While the mesh-based representations I have just described can provide good-quality interpolants,
they are typically limited to low-dimensional domains, because the size of the mesh grows combina-
torially with the dimensionality of the domain. In higher dimensions, it is common to use mesh-free
approaches that define the desired interpolant as a weighted sum of basis functions, similar to the
formulation used in image interpolation (3.64). In machine learning, such approaches are often
called kernel functions or kernel regression (Bishop 2006, Chapter 6; Murphy 2012, Chapter 14;
Schölkopf and Smola 2001).

In more detail, the interpolated function f is a weighted sum (or superposition) of basis functions
centered at each input data point

f(x) =
∑

k

wkφ(‖x− xk‖), (4.3)

where the xk are the locations of the scattered data points, the φs are the radial basis functions (or
kernels), and wk are the local weights associated with each kernel. The basis functions φ() are called
radial because they are applied to the radial distance between a data sample xk and an evaluation
point x. The choice of φ determines the smoothness properties of the interpolant, while the choice
of weights wk determines how closely the function approximates the input.

Some commonly used basis functions (Anjyo, Lewis, and Pighin 2014) include

Gaussian φ(r) = exp(−r2/c2) (4.4)

Hardy multiquadric φ(r) =
√

(r2 + c2) (4.5)

Inverse multiquadric φ(r) = 1/
√

(r2 + c2) (4.6)

Thin plate spline φ(r) = r2 log r. (4.7)

In these equations, r is the radial distance and c is a scale parameter that controls the size (radial
falloff) of the basis functions, and hence its smoothness (more compact bases lead to “peakier”
solutions). The thin plate spline equation holds for two dimensions (the general n-dimensional
spline is called the polyharmonic spline and is given in (Anjyo, Lewis, and Pighin 2014)) and is the
analytic solution to the second degree variational spline derived in (4.19).
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If we want our function to exactly interpolate the data values, we solve the linear system of
equations (4.1), i.e.,

f(xk) =
∑

l

wlφ(‖xk − xl‖) = dk, (4.8)

to obtain the desired set of weights wk. Note that for large amounts of basis function overlap
(large values of c), these equations may be quite ill-conditioned, i.e., small changes in data values
or locations can result in large changes in the interpolated function. Note also that the solution of
such a system of equations is in general O(m3), where m is the number of data points (unless we
use basis functions with finite extent to obtain a sparse set of equations).

A more prudent approach is to solve the regularized data approximation problem, which involves
minimizing the data constraint energy (4.2) together with a weight penalty (regularizer) of the form

EW =
∑

k

‖wk‖p, (4.9)

and to then minimize the regularized least squares problem

E({wk}) = ED + λEW (4.10)

=
∑

k

‖
∑

l

wlφ(‖xk − xl‖)− dk‖2 + λ
∑

k

‖wk‖p. (4.11)

When p = 2 (quadratic weight penalty), the resulting energy is a pure least squares problem, and
can be solved using the normal equations (Appendix A.2), where the λ value gets added along the
diagonal to stabilize the system of equations.

In statistics and machine learning, the quadratic (regularized least squares) problem is called
ridge regression. In neural networks, adding a quadratic penalty on the weights is called weight
decay, because it encourages weights to decay towards zero (Section 5.3.3). When p = 1, the
technique is called lasso (least absolute shrinkage and selection operator), since for sufficiently large
values of λ, many of the weights wk get driven to zero (Tibshirani 1996; Bishop 2006; Murphy 2012;
Deisenroth, Faisal, and Ong 2020). This results in a sparse set of basis functions being used in the
interpolant, which can greatly speed up the computation of new values of f(x). We will have more
to say on sparse kernel techniques in the section on Support Vector Machines (Section 5.1.4).

An alternative to solving a set of equations to determine the weights wk is to simply set them
to the input data values dk. However, this fails to interpolate the data, and instead produces higher
values in higher density regions. This can be useful if we are trying to estimate a probability density
function from a set of samples. In this case, the resulting density function, obtained after normalizing
the sum of sample-weighted basis functions to have a unit integral, is called the Parzen window or
kernel approach to probability density estimation (Duda, Hart, and Stork 2001, Section 4.3; Bishop
2006, Section 2.5.1). Such probability densities can be used, among other things, for (spatially)
clustering color values together for image segmentation in what is known as the mean shift approach
(Comaniciu and Meer 2002) (Section 7.5.2).

If, instead of just estimating a density, we wish to actually interpolate a set of data values dk, we
can use a related technique known as kernel regression or the Nadaraya-Watson model, in which we
divide the data-weighted summed basis functions by the sum of all the basis functions,

f(x) =

∑
k dkφ(‖x− xk‖)∑
l φ(‖x− xl‖)

. (4.12)

Note how this operation is similar, in concept, to the splatting method for forward rendering we
discussed in Section 3.6.1, except that here, the bases can be much wider than the nearest-neighbor
bilinear bases used in graphics (Takeda, Farsiu, and Milanfar 2007).
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Kernel regression is equivalent to creating a new set of spatially varying normalized shifted basis
functions

φ′k(x) =
φ(‖x− xk‖)∑
l φ(‖x− xl‖)

, (4.13)

which form a partition of unity, i.e., sum up to 1 at every location (Anjyo, Lewis, and Pighin 2014).
While the resulting interpolant can now be written more succinctly as

f(x) =
∑

k

dkφ
′
k(‖x− xk‖), (4.14)

in most cases, it is more expensive to precompute and store the K φ′k functions than to evaluate
(4.12).

While not that widely used in computer vision, kernel regression techniques have been applied by
Takeda, Farsiu, and Milanfar (2007) to a number of low-level image processing operations, including
state-of-the-art handheld multi-frame super-resolution (Wronski, Garcia-Dorado et al. 2019).

One last scattered data interpolation technique worth mentioning is moving least squares, where
a weighted subset of nearby points is used to compute a local smooth surface. Such techniques
are mostly widely used in 3D computer graphics, especially for point-based surface modeling, as
discussed in Section 13.4 and (Alexa, Behr et al. 2003; Pauly, Keiser et al. 2003; Anjyo, Lewis, and
Pighin 2014).

4.1.2 Overfitting and underfitting

When we introduced weight regularization in (4.9), we said that it was usually preferable to ap-
proximate the data but we did not explain why. In most data fitting problems, the samples dk (and
sometimes even their locations xk) are noisy, so that fitting them exactly makes no sense. In fact,
doing so can introduce a lot of spurious wiggles, when the true solution is likely to be smoother.

To delve into this phenomenon, let us start with a simple polynomial fitting example taken from
(Bishop 2006, Chapter 1.1). Figure 4.3 shows a number of polynomial curves of different orders M
fit to the blue circles, which are noisy samples from the underlying green sine curve. Notice how
the low-order (M = 0 and M = 1) polynomials severely underfit the underlying data, resulting in
curves that are too flat, while the M = 9 polynomial, which exactly fits the data, exhibits far more
wiggle than is likely.

How can we quantify this amount of underfitting and overfitting, and how can we get just the
right amount? This topic is widely studied in machine learning and covered in a number of texts,
including Bishop (2006, Chapter 1.1), Glassner (2018, Chapter 9), Deisenroth, Faisal, and Ong
(2020, Chapter 8), and Zhang, Lipton et al. (2021, Section 4.4.3).

One approach is to use regularized least squares, introduced in (4.11). Figure 4.4 shows an
M = 9th degree polynomial fit obtained by minimizing (4.11) with the polynomial basis functions
φk(x) = xk for two different values of λ. The left plot shows a reasonable amount of regularization,
resulting in a plausible fit, while the larger value of λ on the right causes underfitting. Note that the
M = 9 interpolant shown in the lower right quadrant of Figure 4.3 corresponds to the unregularized
λ = 0 case.

If we were to now measure the difference between the red (estimated) and green (noise-free)
curves, we see that choosing a good intermediate value of λ will produce the best result. In practice,
however, we never have access to samples from the noise-free data.

Instead, if we are given a set of samples to interpolate, we can save some in a validation set
in order to see if the function we compute is underfitting or overfitting. When we vary a parameter
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Figure 4.3 Polynomial curve fitting to the blue circles, which are noisy samples from the green sine curve
(Bishop 2006) © 2006 Springer. The four plots show the 0th order constant function, the first order linear fit, the
M = 3 cubic polynomial, and the 9th degree polynomial. Notice how the first two curves exhibit underfitting,
while the last curve exhibits overfitting, i.e., excessive wiggle.

Figure 4.4 RegularizedM = 9 polynomial fitting for two different values of λ (Bishop 2006) © 2006 Springer.
The left plot shows a reasonable amount of regularization, resulting in a plausible fit, while the larger value of λ
on the right causes underfitting.
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Figure 4.5 Fitting (training) and validation errors as a function of the amount of regularization or smoothing ©
Glassner (2018). The less regularized solutions on the right, while exhibiting lower fitting error, perform less well
on the validation data.

Figure 4.6 The more heavily regularized solution log λ = 2.6 exhibits higher bias (deviation from original
curve) than the less heavily regularized version (log λ = −2.4), which has much higher variance (Bishop 2006)
© 2006 Springer. The red curves on the left are M = 24 Gaussian basis fits to 25 randomly sampled points on
the green curve. The red curve on the right is their mean.
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such as λ (or use some other measure to control smoothness), we typically obtain a curve such as the
one shown in Figure 4.5. In this figure, the blue curve denotes the fitting error, which in this case is
called the training error, since in machine learning, we usually split the given data into a (typically
larger) training set and a (typically smaller) validation set.

To obtain an even better estimate of the ideal amount of regularization, we can repeat the process
of splitting our sample data into training and validation sets several times. One well-known tech-
nique, called cross-validation (Craven and Wahba 1979; Wahba and Wendelberger 1980; Bishop
2006, Section 1.3; Murphy 2012, Section 1.4.8; Deisenroth, Faisal, and Ong 2020, Chapter 8;
Zhang, Lipton et al. 2021, Section 4.4.2), splits the training data into K folds (equal sized pieces).
You then put aside each fold, in turn, and train on the remaining data. You can then estimate the
best regularization parameter by averaging over allK training runs. While this generally works well
(K = 5 is often used), it may be too expensive when training large neural networks because of the
long training times involved.

Cross-validation is just one example of a class of model selection techniques that estimate hy-
perparameters in a training algorithm to achieve good performance. Additional methods include
information criteria such as the Bayesian information criterion (BIC) (Torr 2002) and the Akaike
information criterion (AIC) (Kanatani 1998), and Bayesian modeling approaches (Szeliski 1989;
Bishop 2006; Murphy 2012).

One last topic worth mention with regard to data fitting, since it comes up often in discussions
of statistical machine learning techniques, is the bias-variance tradeoff (Bishop 2006, Section 3.2).
As you can see in Figure 4.6, using a large amount of regularization (top row) results in much
lower variance between different random sample solutions, but much higher bias away from the true
solution. Using insufficient regularization increases the variance dramatically, although an average
over a large number of samples has low bias. The trick is to determine a reasonable compromise in
terms of regularization so that any individual solution has a good expectation of being close to the
ground truth (original clean continuous) data.

4.1.3 Robust data fitting

When we added a regularizer on the weights in (4.9), we noted that it did not have to be a quadratic
penalty and could, instead, be a lower-order monomial that encouraged sparsity in the weights.

This same idea can be applied to data terms such as (4.2), where, instead of using a quadratic
penalty, we can use a robust loss function ρ(),

ER =
∑

k

ρ(‖rk‖), with rk = f(xk)− dk, (4.15)

which gives lower weights to larger data fitting errors, which are more likely to be outlier measure-
ments. (The fitting error term rk is called the residual error.)

Some examples of loss functions from (Barron 2019) are shown in Figure 4.7 along with their
derivatives. The regular quadratic (α = 2) penalty gives full (linear) weight to each error, whereas
the α = 1 loss gives equal weight to all larger residuals, i.e., it behaves as an L1 loss for large
residuals, and L2 for small ones. Even larger values of α discount large errors (outliers) even more,
although they result in optimization problems that are non-convex, i.e., that can have multiple local
minima. We will discuss techniques for finding good initial guesses for such problems later on in
Section 8.1.4.

In statistics, minimizing non-quadratic loss functions to deal with potential outlier measurements
is known as M-estimation (Huber 1981; Hampel, Ronchetti et al. 1986; Black and Rangarajan 1996;
Stewart 1999). Such estimation problems are often solved using iteratively reweighted least squares,
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Figure 4.7 A general and adaptive loss function (left) and its gradient (right) for different values of its shape
parameter α (Barron 2019) © 2019 IEEE. Several values of α reproduce existing loss functions: L2 loss (α = 2),
Charbonnier loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α = −2), and Welsch loss (α = −1).

which we discuss in more detail in Section 8.1.4 and Appendix B.3. The Appendix also discusses
the relationship between robust statistics and non-Gaussian probabilistic models.

The generalized loss function introduced by Barron (2019) has two free parameters. The first
one, α, controls how drastically outlier residuals are downweighted. The second (scale) parameter c
controls the width of the quadratic well near the minimum, i.e., what range of residual values roughly
corresponds to inliers. Traditionally, the choice of α, which corresponds to a variety of previously
published loss functions, was determined heuristically, based on the expected shape of the outlier
distribution and computational considerations (e.g., whether a convex loss was desired). The scale
parameter c could be estimated using a robust measure of variance, as discussed in Appendix B.3.

In his paper, Barron (2019) discusses how both parameters can be determined at run time by
maximizing the likelihood (or equivalently, minimizing the negative log-likelihood) of the given
residuals, making such an algorithm self-tuning to a wide variety of noise levels and outlier distri-
butions.

4.2 Variational methods and regularization

The theory of regularization we introduced in the previous section was first developed by statisticians
trying to fit models to data that severely underconstrained the solution space (Tikhonov and Arsenin
1977; Engl, Hanke, and Neubauer 1996). Consider, for example, finding a smooth surface that
passes through (or near) a set of measured data points (Figure 4.8). Such a problem is described
as ill-posed because many possible surfaces can fit this data. Since small changes in the input can
sometimes lead to large changes in the fit (e.g., if we use polynomial interpolation), such problems
are also often ill-conditioned. Since we are trying to recover the unknown function f(x, y) from
which the data points d(xi, yi) were sampled, such problems are also often called inverse problems.
Many computer vision tasks can be viewed as inverse problems, since we are trying to recover a full
description of the 3D world from a limited set of images.
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(a) (b)

Figure 4.8 A simple surface interpolation problem: (a) nine data points of various heights scattered on a grid;
(b) second-order, controlled-continuity, thin-plate spline interpolator, with a tear along its left edge and a crease
along its right (Szeliski 1989) © 1989 Springer.

In the previous section, we attacked this problem using basis functions placed at the data points,
or other heuristics such as the pull-push algorithm. While such techniques can provide reasonable
solutions, they do not let us directly quantify and hence optimize the amount of smoothness in
the solution, nor do they give us local control over where the solution should be discontinuous
(Figure 4.8).

To do this, we use norms (measures) on function derivatives (described below) to formulate the
problem and then find minimal energy solutions to these norms. Such techniques are often called
energy-based or optimization-based approaches to computer vision. They are also often called vari-
ational, since we can use the calculus of variations to find the optimal solutions. Variational meth-
ods have been widely used in computer vision since the early 1980s to pose and solve a number of
fundamental problems, including optical flow (Horn and Schunck 1981; Black and Anandan 1993;
Brox, Bruhn et al. 2004; Werlberger, Pock, and Bischof 2010), segmentation (Kass, Witkin, and
Terzopoulos 1988; Mumford and Shah 1989; Chan and Vese 2001), denoising (Rudin, Osher, and
Fatemi 1992; Chan, Osher, and Shen 2001; Chan and Shen 2005), and multi-view stereo (Faugeras
and Keriven 1998; Pons, Keriven, and Faugeras 2007; Kolev, Klodt et al. 2009). A more detailed
list of relevant papers can be found in the Additional Reading section at the end of this chapter.

In order to quantify what it means to find a smooth solution, we can define a norm on the
solution space. For one-dimensional functions f(x), we can integrate the squared first derivative of
the function,

E1 =

∫
f2x(x) dx (4.16)

or perhaps integrate the squared second derivative,

E2 =

∫
f2xx(x) dx. (4.17)

(Here, we use subscripts to denote differentiation.) Such energy measures are examples of function-
als, which are operators that map functions to scalar values. They are also often called variational
methods, because they measure the variation (non-smoothness) in a function.

In two dimensions (e.g., for images, flow fields, or surfaces), the corresponding smoothness
functionals are

E1 =

∫
f2x(x, y) + f2y (x, y) dx dy =

∫
‖∇f(x, y)‖2 dx dy (4.18)
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and

E2 =

∫
f2xx(x, y) + 2f2xy(x, y) + f2yy(x, y) dx dy, (4.19)

where the mixed 2f2xy term is needed to make the measure rotationally invariant (Grimson 1983).
The first derivative norm is often called the membrane, since interpolating a set of data points

using this measure results in a tent-like structure. (In fact, this formula is a small-deflection approx-
imation to the surface area, which is what soap bubbles minimize.) The second-order norm is called
the thin-plate spline, since it approximates the behavior of thin plates (e.g., flexible steel) under
small deformations. A blend of the two is called the thin-plate spline under tension (Terzopoulos
1986b).

The regularizers (smoothness functions) we have just described force the solution to be smooth
and C0 and/or C1 continuous everywhere. In most computer vision applications, however, the fields
we are trying to model or recover are only piecewise continuous, e.g., depth maps and optical flow
fields jump at object discontinuities. Color images are even more discontinuous, since they also
change appearance at albedo (surface color) and shading discontinuities.

To better model such functions, Terzopoulos (1986b) introduced controlled-continuity splines,
where each derivative term is multiplied by a local weighting function,

ECC =

∫
ρ(x, y){[1− τ(x, y)][f2x(x, y) + f2y (x, y)]

+ τ(x, y)[f2xx(x, y) + 2f2xy(x, y) + f2yy(x, y)]} dx dy. (4.20)

Here, ρ(x, y) ∈ [0, 1] controls the continuity of the surface and τ(x, y) ∈ [0, 1] controls the local
tension, i.e., how flat the surface wants to be. Figure 4.8 shows a simple example of a controlled-
continuity interpolator fit to nine scattered data points. In practice, it is more common to find first-
order smoothness terms used with images and flow fields (Section 9.3) and second-order smoothness
associated with surfaces (Section 13.3.1).

In addition to the smoothness term, variational problems also require a data term (or data
penalty). For scattered data interpolation (Nielson 1993), the data term measures the distance be-
tween the function f(x, y) and a set of data points di = d(xi, yi),

ED =
∑

i

[f(xi, yi)− di]2. (4.21)

For a problem like noise removal, a continuous version of this measure can be used,

ED =

∫
[f(x, y)− d(x, y)]2 dx dy. (4.22)

To obtain a global energy that can be minimized, the two energy terms are usually added together,

E = ED + λES, (4.23)

where ES is the smoothness penalty (E1, E2 or some weighted blend such as ECC) and λ is the
regularization parameter, which controls the smoothness of the solution. As we saw in Sec-
tion 4.1.2, good values for the regularization parameter can be estimated using techniques such as
cross-validation.
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4.2.1 Discrete energy minimization

In order to find the minimum of this continuous problem, the function f(x, y) is usually first dis-
cretized on a regular grid.2 The most principled way to perform this discretization is to use finite
element analysis, i.e., to approximate the function with a piecewise continuous spline, and then
perform the analytic integration (Bathe 2007).

Fortunately, for both the first-order and second-order smoothness functionals, the judicious
selection of appropriate finite elements results in particularly simple discrete forms (Terzopoulos
1983). The corresponding discrete smoothness energy functions become

E1 =
∑

i,j

sx(i, j)[f(i+ 1, j)− f(i, j)− gx(i, j)]2

+ sy(i, j)[f(i, j + 1)− f(i, j)− gy(i, j)]2
(4.24)

and

E2 = h−2
∑

i,j

cx(i, j)[f(i+ 1, j)− 2f(i, j) + f(i− 1, j)]2

+ 2cm(i, j)[f(i+ 1, j + 1)− f(i+ 1, j)− f(i, j + 1) + f(i, j)]2

+ cy(i, j)[f(i, j + 1)− 2f(i, j) + f(i, j − 1)]2,

(4.25)

where h is the size of the finite element grid. The h factor is only important if the energy is being
discretized at a variety of resolutions, as in coarse-to-fine or multigrid techniques.

The optional smoothness weights sx(i, j) and sy(i, j) control the location of horizontal and ver-
tical tears (or weaknesses) in the surface. For other problems, such as colorization (Levin, Lischin-
ski, and Weiss 2004) and interactive tone mapping (Lischinski, Farbman et al. 2006), they control
the smoothness in the interpolated chroma or exposure field and are often set inversely proportional
to the local luminance gradient strength. For second-order problems, the crease variables cx(i, j),
cm(i, j), and cy(i, j) control the locations of creases in the surface (Terzopoulos 1988; Szeliski
1990a).

The data values gx(i, j) and gy(i, j) are gradient data terms (constraints) used by algorithms,
such as photometric stereo (Section 13.1.1), HDR tone mapping (Section 10.2.1) (Fattal, Lischinski,
and Werman 2002), Poisson blending (Section 8.4.4) (Pérez, Gangnet, and Blake 2003), gradient-
domain blending (Section 8.4.4) (Levin, Zomet et al. 2004), and Poisson surface reconstruction
(Section 13.5.1) (Kazhdan, Bolitho, and Hoppe 2006; Kazhdan and Hoppe 2013). They are set
to zero when just discretizing the conventional first-order smoothness functional (4.18). Note how
separate smoothness and curvature terms can be imposed in the x, y, and mixed directions to produce
local tears or creases (Terzopoulos 1988; Szeliski 1990a).

The two-dimensional discrete data energy is written as

ED =
∑

i,j

c(i, j)[f(i, j)− d(i, j)]2, (4.26)

where the local confidence weights c(i, j) control how strongly the data constraint is enforced.
These values are set to zero where there is no data and can be set to the inverse variance of the data
measurements when there is data (as discussed by Szeliski (1989) and in Section 4.3).

The total energy of the discretized problem can now be written as a quadratic form

E = ED + λES = xTAx− 2xTb + c, (4.27)
2The alternative of using kernel basis functions centered on the data points (Boult and Kender 1986; Nielson 1993) is

discussed in more detail in Section 13.3.1.
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f (i, j) sx(i, j)

f (i, j+1)

sy(i, j)c(i, j)

d (i, j)

f (i+1, j)
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Figure 4.9 Graphical model interpretation of first-order regularization. The white circles are the unknowns
f(i, j) while the dark circles are the input data d(i, j). In the resistive grid interpretation, the d and f values
encode input and output voltages and the black squares denote resistors whose conductance is set to sx(i, j),
sy(i, j), and c(i, j). In the spring-mass system analogy, the circles denote elevations and the black squares denote
springs. The same graphical model can be used to depict a first-order Markov random field (Figure 4.12).

where x = [f(0, 0) . . . f(m− 1, n− 1)] is called the state vector.3

The sparse symmetric positive-definite matrix A is called the Hessian since it encodes the second
derivative of the energy function.4 For the one-dimensional, first-order problem, A is tridiagonal;
for the two-dimensional, first-order problem, it is multi-banded with five non-zero entries per row.
We call b the weighted data vector. Minimizing the above quadratic form is equivalent to solving
the sparse linear system

Ax = b, (4.28)

which can be done using a variety of sparse matrix techniques, such as multigrid (Briggs, Hen-
son, and McCormick 2000) and hierarchical preconditioners (Szeliski 2006b; Krishnan and Szeliski
2011; Krishnan, Fattal, and Szeliski 2013), as described in Appendix A.5 and illustrated in Fig-
ure 4.11. Using such techniques is essential to obtaining reasonable run-times, since properly pre-
conditioned sparse linear systems have convergence times that are linear in the number of pixels.

While regularization was first introduced to the vision community by Poggio, Torre, and Koch
(1985) and Terzopoulos (1986b) for problems such as surface interpolation, it was quickly adopted
by other vision researchers for such varied problems as edge detection (Section 7.2), optical flow
(Section 9.3), and shape from shading (Section 13.1) (Poggio, Torre, and Koch 1985; Horn and
Brooks 1986; Terzopoulos 1986b; Bertero, Poggio, and Torre 1988; Brox, Bruhn et al. 2004). Pog-
gio, Torre, and Koch (1985) also showed how the discrete energy defined by Equations (4.24–4.26)
could be implemented in a resistive grid, as shown in Figure 4.9. In computational photography
(Chapter 10), regularization and its variants are commonly used to solve problems such as high-
dynamic range tone mapping (Fattal, Lischinski, and Werman 2002; Lischinski, Farbman et al.
2006), Poisson and gradient-domain blending (Pérez, Gangnet, and Blake 2003; Levin, Zomet et
al. 2004; Agarwala, Dontcheva et al. 2004), colorization (Levin, Lischinski, and Weiss 2004), and
natural image matting (Levin, Lischinski, and Weiss 2008).

3We use x instead of f because this is the more common form in the numerical analysis literature (Golub and Van Loan
1996).

4In numerical analysis, A is called the coefficient matrix (Saad 2003); in finite element analysis (Bathe 2007), it is called
the stiffness matrix.
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Robust regularization

While regularization is most commonly formulated using quadratic (L2) norms, i.e., the squared
derivatives in (4.16–4.19) and squared differences in (4.24–4.25), it can also be formulated using
the non-quadratic robust penalty functions first introduced in Section 4.1.3 and discussed in more
detail in Appendix B.3. For example, (4.24) can be generalized to

E1R =
∑

i,j

sx(i, j)ρ(f(i+ 1, j)− f(i, j))

+ sy(i, j)ρ(f(i, j + 1)− f(i, j)),

(4.29)

where ρ(x) is some monotonically increasing penalty function. For example, the family of norms
ρ(x) = |x|p is called p-norms. When p < 2, the resulting smoothness terms become more piecewise
continuous than totally smooth, which can better model the discontinuous nature of images, flow
fields, and 3D surfaces.

An early example of robust regularization is the graduated non-convexity (GNC) algorithm of
Blake and Zisserman (1987). Here, the norms on the data and derivatives are clamped,

ρ(x) = min(x2, V ). (4.30)

Because the resulting problem is highly non-convex (it has many local minima), a continuation
method is proposed, where a quadratic norm (which is convex) is gradually replaced by the non-
convex robust norm (Allgower and Georg 2003). (Around the same time, Terzopoulos (1988) was
also using continuation to infer the tear and crease variables in his surface interpolation problems.)

4.2.2 Total variation

Today, many regularized problems are formulated using the L1 (p = 1) norm, which is often called
total variation (Rudin, Osher, and Fatemi 1992; Chan, Osher, and Shen 2001; Chambolle 2004;
Chan and Shen 2005; Tschumperlé and Deriche 2005; Tschumperlé 2006; Cremers 2007; Kaftory,
Schechner, and Zeevi 2007; Kolev, Klodt et al. 2009; Werlberger, Pock, and Bischof 2010). The
advantage of this norm is that it tends to better preserve discontinuities, but still results in a convex
problem that has a globally unique solution. Other norms, for which the influence (derivative) more
quickly decays to zero, are presented by Black and Rangarajan (1996), Black, Sapiro et al. (1998),
and Barron (2019) and discussed in Section 4.1.3 and Appendix B.3.

Even more recently, hyper-Laplacian norms with p < 1 have gained popularity, based on the
observation that the log-likelihood distribution of image derivatives follows a p ≈ 0.5 − 0.8 slope
and is therefore a hyper-Laplacian distribution (Simoncelli 1999; Levin and Weiss 2007; Weiss and
Freeman 2007; Krishnan and Fergus 2009). Such norms have an even stronger tendency to prefer
large discontinuities over small ones. See the related discussion in Section 4.3 (4.43).

While least squares regularized problems using L2 norms can be solved using linear systems,
other p-norms require different iterative techniques, such as iteratively reweighted least squares
(IRLS), Levenberg–Marquardt, alternation between local non-linear subproblems and global quadratic
regularization (Krishnan and Fergus 2009), or primal-dual algorithms (Chambolle and Pock 2011).
Such techniques are discussed in Section 8.1.3 and Appendices A.3 and B.3.

4.2.3 Bilateral solver

In our discussion of variational methods, we have focused on energy minimization problems based
on gradients and higher-order derivatives, which in the discrete setting involves evaluating weighted
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(a) (b) (c)

Figure 4.10 Colorization using optimization (Levin, Lischinski, and Weiss 2004) © 2004 ACM: (a) grayscale
image with some color scribbles overlaid; (b) resulting colorized image; (c) original color image from which the
grayscale image and the chrominance values for the scribbles were derived. Original photograph by Rotem Weiss.

errors between neighboring pixels. As we saw previously in our discussion of bilateral filtering in
Section 3.3.2, we can often get better results by looking at a larger spatial neighborhood and combin-
ing pixels with similar colors or grayscale values. To extend this idea to a variational (energy mini-
mization) setting, Barron and Poole (2016) propose replacing the usual first-order nearest-neighbor
smoothness penalty (4.24) with a wider-neighborhood, bilaterally weighted version

EB =
∑

i,j

∑

k,l

ŵ(i, j, k, l)[f(k, l)− f(i, j)]2, (4.31)

where

ŵ(i, j, k, l) =
w(i, j, k, l)∑

m,n w(i, j,m, n)
, (4.32)

is the bistochastized (normalized) version of the bilateral weight function given in (3.37), which
may depend on an input guide image, but not on the estimated values of f .5

To efficiently solve the resulting set of equations (which are much denser than nearest-neighbor
versions), the authors use the same approach originally used to accelerate bilateral filtering, i.e.,
solving a related problem on a (spatially coarser) bilateral grid. The sequence of operations resem-
bles those used for bilateral filtering, except that after splatting and before slicing, an iterative least
squares solver is used instead of a multi-dimensional Gaussian blur. To further speed up the conju-
gate gradient solver, Barron and Poole (2016) use a multi-level preconditioner inspired by previous
work on image-adapted preconditioners (Szeliski 2006b; Krishnan, Fattal, and Szeliski 2013).

Since its introduction, the bilateral solver has been used in a number of video processing and 3D
reconstruction applications, including the stitching of binocular omnidirectional panoramic videos
(Anderson, Gallup et al. 2016). The smartphone AR system developed by Valentin, Kowdle et al.
(2018) extends the bilateral solver to have local planar models and uses a hardware-friendly real-
time implementation (Mazumdar, Alaghi et al. 2017) to produce dense occlusion effects.

4.2.4 Application: Interactive colorization

A good use of edge-aware interpolation techniques is in colorization, i.e., manually adding colors
to a “black and white” (grayscale) image. In most applications of colorization, the user draws some
scribbles indicating the desired colors in certain regions (Figure 4.10a) and the system interpolates

5Note that in their paper, Barron and Poole (2016) use different σr values for the luminance and chrominance components
of pixel color differences.
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Figure 4.11 Speeding up the inhomogeneous least squares colorization solver using locally adapted hierarchical
basis preconditioning (Szeliski 2006b) © 2006 ACM: (a) input gray image with color strokes overlaid; (b) solution
after 20 iterations of conjugate gradient; (c) using one iteration of hierarchical basis function preconditioning; (d)
using one iteration of locally adapted hierarchical basis functions.

the specified chrominance (u, v) values to the whole image, which are then re-combined with the
input luminance channel to produce a final colorized image, as shown in Figure 4.10b. In the sys-
tem developed by Levin, Lischinski, and Weiss (2004), the interpolation is performed using locally
weighted regularization (4.24), where the local smoothness weights are inversely proportional to lu-
minance gradients. This approach to locally weighted regularization has inspired later algorithms for
high dynamic range tone mapping (Lischinski, Farbman et al. 2006)(Section 10.2.1, as well as other
applications of the weighted least squares (WLS) formulation (Farbman, Fattal et al. 2008). These
techniques have benefitted greatly from image-adapted regularization techniques, such as those de-
veloped in Szeliski (2006b), Krishnan and Szeliski (2011), Krishnan, Fattal, and Szeliski (2013),
and Barron and Poole (2016), as shown in Figure 4.11. An alternative approach to performing the
sparse chrominance interpolation based on geodesic (edge-aware) distance functions has been de-
veloped by Yatziv and Sapiro (2006). Neural networks can also be used to implement deep priors
for image colorization (Zhang, Zhu et al. 2017).

4.3 Markov random fields

As we have just seen, regularization, which involves the minimization of energy functionals defined
over (piecewise) continuous functions, can be used to formulate and solve a variety of low-level
computer vision problems. An alternative technique is to formulate a Bayesian or generative model,
which separately models the noisy image formation (measurement) process, as well as assuming
a statistical prior model over the solution space (Bishop 2006, Section 1.5.4). In this section, we
look at priors based on Markov random fields, whose log-likelihood can be described using local
neighborhood interaction (or penalty) terms (Kindermann and Snell 1980; Geman and Geman 1984;
Marroquin, Mitter, and Poggio 1987; Li 1995; Szeliski, Zabih et al. 2008; Blake, Kohli, and Rother
2011).

The use of Bayesian modeling has several potential advantages over regularization (see also
Appendix B). The ability to model measurement processes statistically enables us to extract the
maximum information possible from each measurement, rather than just guessing what weighting
to give the data. Similarly, the parameters of the prior distribution can often be learned by observing
samples from the class we are modeling (Roth and Black 2007a; Tappen 2007; Li and Huttenlocher
2008). Furthermore, because our model is probabilistic, it is possible to estimate (in principle)
complete probability distributions over the unknowns being recovered and, in particular, to model
the uncertainty in the solution, which can be useful in later processing stages. Finally, Markov
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random field models can be defined over discrete variables, such as image labels (where the variables
have no proper ordering), for which regularization does not apply.

According to Bayes’ rule (Appendix B.4), the posterior distribution p(x|y) over the unknowns
x given the measurements y can be obtained by multiplying the measurement likelihood p(y|x) by
the prior distribution p(x) and normalizing,

p(x|y) =
p(y|x)p(x)

p(y)
, (4.33)

where p(y) =
∫
x
p(y|x)p(x) is a normalizing constant used to make the p(x|y) distribution proper

(integrate to 1). Taking the negative logarithm of both sides of (4.33), we get

− log p(x|y) = − log p(y|x)− log p(x) + C, (4.34)

which is the negative posterior log likelihood.
To find the most likely (maximum a posteriori or MAP) solution x given some measurements y,

we simply minimize this negative log likelihood, which can also be thought of as an energy,

E(x,y) = ED(x,y) + EP(x). (4.35)

(We drop the constant C because its value does not matter during energy minimization.) The first
term ED(x,y) is the data energy or data penalty; it measures the negative log likelihood that the
data were observed given the unknown state x. The second term EP(x) is the prior energy; it plays
a role analogous to the smoothness energy in regularization. Note that the MAP estimate may not
always be desirable, as it selects the “peak” in the posterior distribution rather than some more stable
statistic—see the discussion in Appendix B.2 and by Levin, Weiss et al. (2009).

For the remainder of this section, we focus on Markov random fields, which are probabilistic
models defined over two or three-dimensional pixel or voxel grids. Before we dive into this, how-
ever, we should mention that MRFs are just one special case of the more general family of graphical
models (Bishop 2006, Chapter 8; Koller and Friedman 2009; Nowozin and Lampert 2011; Murphy
2012, Chapters 10, 17, 19), which have sparse interactions between variables that can be captured
in a factor graph (Dellaert and Kaess 2017; Dellaert 2021), such as the one shown in Figure 4.12.
Graphical models come in a wide variety of topologies, including chains (used for audio and speech
processing), trees (often used for modeling kinematic chains in tracking people (e.g., Felzenszwalb
and Huttenlocher 2005)), stars (simplified models for people; Dalal and Triggs 2005; Felzenszwalb,
Girshick et al. 2010, and constellations (Fergus, Perona, and Zisserman 2007). Such models were
widely used for part-based recognition, as discussed in Section 6.2.1. For graphs that are acyclic,
efficient linear-time inference algorithms based on dynamic programming can be used.

For image processing applications, the unknowns x are the set of output pixels

x = [f(0, 0) . . . f(m− 1, n− 1)], (4.36)

and the data are (in the simplest case) the input pixels

y = [d(0, 0) . . . d(m− 1, n− 1)] (4.37)

as shown in Figure 4.12.
For a Markov random field, the probability p(x) is a Gibbs or Boltzmann distribution, whose

negative log likelihood (according to the Hammersley–Clifford theorem) can be written as a sum of
pairwise interaction potentials,

EP(x) =
∑

{(i,j),(k,l)}∈N (i,j)

Vi,j,k,l(f(i, j), f(k, l)), (4.38)
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Figure 4.12 Graphical model for anN4 neighborhood Markov random field. (The blue edges are added for an
N8 neighborhood.) The white circles are the unknowns f(i, j), while the dark circles are the input data d(i, j).
The sx(i, j) and sy(i, j) black boxes denote arbitrary interaction potentials between adjacent nodes in the random
field, and the c(i, j) denote the data penalty functions. The same graphical model can be used to depict a discrete
version of a first-order regularization problem (Figure 4.9).

where N (i, j) denotes the neighbors of pixel (i, j). In fact, the general version of the theorem says
that the energy may have to be evaluated over a larger set of cliques, which depend on the order
of the Markov random field (Kindermann and Snell 1980; Geman and Geman 1984; Bishop 2006;
Kohli, Ladický, and Torr 2009; Kohli, Kumar, and Torr 2009).

The most commonly used neighborhood in Markov random field modeling is the N4 neigh-
borhood, where each pixel in the field f(i, j) interacts only with its immediate neighbors. The
model in Figure 4.12, which we previously used in Figure 4.9 to illustrate the discrete version of
first-order regularization, shows an N4 MRF. The sx(i, j) and sy(i, j) black boxes denote arbitrary
interaction potentials between adjacent nodes in the random field and the c(i, j) denote the data
penalty functions. These square nodes can also be interpreted as factors in a factor graph version
of the (undirected) graphical model (Bishop 2006; Dellaert and Kaess 2017; Dellaert 2021), which
is another name for interaction potentials. (Strictly speaking, the factors are (improper) probability
functions whose product is the (un-normalized) posterior distribution.)

As we will see in (4.41–4.42), there is a close relationship between these interaction potentials
and the discretized versions of regularized image restoration problems. Thus, to a first approxima-
tion, we can view energy minimization being performed when solving a regularized problem and
the maximum a posteriori inference being performed in an MRF as equivalent.

While N4 neighborhoods are most commonly used, in some applications N8 (or even higher
order) neighborhoods perform better at tasks such as image segmentation because they can better
model discontinuities at different orientations (Boykov and Kolmogorov 2003; Rother, Kohli et al.
2009; Kohli, Ladický, and Torr 2009; Kohli, Kumar, and Torr 2009).

Binary MRFs

The simplest possible example of a Markov random field is a binary field. Examples of such fields
include 1-bit (black and white) scanned document images as well as images segmented into fore-
ground and background regions.

To denoise a scanned image, we set the data penalty to reflect the agreement between the scanned
and final images,

ED(i, j) = wδ(f(i, j), d(i, j)) (4.39)
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and the smoothness penalty to reflect the agreement between neighboring pixels

EP(i, j) = sδ(f(i, j), f(i+ 1, j)) + sδ(f(i, j), f(i, j + 1)). (4.40)

Once we have formulated the energy, how do we minimize it? The simplest approach is to
perform gradient descent, flipping one state at a time if it produces a lower energy. This approach
is known as contextual classification (Kittler and Föglein 1984), iterated conditional modes (ICM)
(Besag 1986), or highest confidence first (HCF) (Chou and Brown 1990) if the pixel with the largest
energy decrease is selected first.

Unfortunately, these downhill methods tend to get easily stuck in local minima. An alternative
approach is to add some randomness to the process, which is known as stochastic gradient descent
(Metropolis, Rosenbluth et al. 1953; Geman and Geman 1984). When the amount of noise is de-
creased over time, this technique is known as simulated annealing (Kirkpatrick, Gelatt, and Vecchi
1983; Carnevali, Coletti, and Patarnello 1985; Wolberg and Pavlidis 1985; Swendsen and Wang
1987) and was first popularized in computer vision by Geman and Geman (1984) and later applied
to stereo matching by Barnard (1989), among others.

Even this technique, however, does not perform that well (Boykov, Veksler, and Zabih 2001). For
binary images, a much better technique, introduced to the computer vision community by Boykov,
Veksler, and Zabih (2001) is to re-formulate the energy minimization as a max-flow/min-cut graph
optimization problem (Greig, Porteous, and Seheult 1989). This technique has informally come to be
known as graph cuts in the computer vision community (Boykov and Kolmogorov 2011). For simple
energy functions, e.g., those where the penalty for non-identical neighboring pixels is a constant, this
algorithm is guaranteed to produce the global minimum. Kolmogorov and Zabih (2004) formally
characterize the class of binary energy potentials (regularity conditions) for which these results
hold, while newer work by Komodakis, Tziritas, and Paragios (2008) and Rother, Kolmogorov et
al. (2007) provide good algorithms for the cases when they do not, i.e., for energy functions that are
not regular or sub-modular.

In addition to the above mentioned techniques, a number of other optimization approaches have
been developed for MRF energy minimization, such as (loopy) belief propagation and dynamic
programming (for one-dimensional problems). These are discussed in more detail in Appendix B.5
as well as the comparative survey papers by Szeliski, Zabih et al. (2008) and Kappes, Andres et
al. (2015), which have associated benchmarks and code at https://vision.middlebury.edu/MRF and
http://hciweb2.iwr.uni-heidelberg.de/opengm.

Ordinal-valued MRFs

In addition to binary images, Markov random fields can be applied to ordinal-valued labels such
as grayscale images or depth maps. The term “ordinal” indicates that the labels have an implied
ordering, e.g., that higher values are lighter pixels. In the next section, we look at unordered labels,
such as source image labels for image compositing.

In many cases, it is common to extend the binary data and smoothness prior terms as

ED(i, j) = c(i, j)ρd(f(i, j)− d(i, j)) (4.41)

and

EP(i, j) = sx(i, j)ρp(f(i, j)− f(i+ 1, j)) + sy(i, j)ρp(f(i, j)− f(i, j + 1)), (4.42)

which are robust generalizations of the quadratic penalty terms (4.26) and (4.24), first introduced in
(4.29). As before, the c(i, j), sx(i, j), and sy(i, j) weights can be used to locally control the data

https://vision.middlebury.edu/MRF
http://hciweb2.iwr.uni-heidelberg.de/opengm
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(a) (b) (c) (d)

Figure 4.13 Grayscale image denoising and inpainting: (a) original image; (b) image corrupted by noise
and with missing data (black bar); (c) image restored using loopy belief propagation; (d) image restored using
expansion move graph cuts. Images are from https://vision.middlebury.edu/MRF/results (Szeliski, Zabih et al.
2008).

weighting and the horizontal and vertical smoothness. Instead of using a quadratic penalty, however,
a general monotonically increasing penalty function ρ() is used. (Different functions can be used
for the data and smoothness terms.) For example, ρp can be a hyper-Laplacian penalty

ρp(d) = |d|p, p < 1, (4.43)

which better encodes the distribution of gradients (mainly edges) in an image than either a quadratic
or linear (total variation) penalty.6 Levin and Weiss (2007) use such a penalty to separate a trans-
mitted and reflected image (Figure 9.16) by encouraging gradients to lie in one or the other image,
but not both. Levin, Fergus et al. (2007) use the hyper-Laplacian as a prior for image deconvolution
(deblurring) and Krishnan and Fergus (2009) develop a faster algorithm for solving such problems.
For the data penalty, ρd can be quadratic (to model Gaussian noise) or the log of a contaminated
Gaussian (Appendix B.3).

When ρp is a quadratic function, the resulting Markov random field is called a Gaussian Markov
random field (GMRF) and its minimum can be found by sparse linear system solving (4.28). When
the weighting functions are uniform, the GMRF becomes a special case of Wiener filtering (Sec-
tion 3.4.1). Allowing the weighting functions to depend on the input image (a special kind of
conditional random field, which we describe below) enables quite sophisticated image processing
algorithms to be performed, including colorization (Levin, Lischinski, and Weiss 2004), interac-
tive tone mapping (Lischinski, Farbman et al. 2006), natural image matting (Levin, Lischinski, and
Weiss 2008), and image restoration (Tappen, Liu et al. 2007).

When ρd or ρp are non-quadratic functions, gradient descent techniques such as non-linear least
squares or iteratively re-weighted least squares can sometimes be used (Appendix A.3). However, if
the search space has lots of local minima, as is the case for stereo matching (Barnard 1989; Boykov,
Veksler, and Zabih 2001), more sophisticated techniques are required.

The extension of graph cut techniques to multi-valued problems was first proposed by Boykov,
Veksler, and Zabih (2001). In their paper, they develop two different algorithms, called the swap
move and the expansion move, which iterate among a series of binary labeling sub-problems to

6Note that, unlike a quadratic penalty, the sum of the horizontal and vertical derivative p-norms is not rotationally invari-
ant. A better approach may be to locally estimate the gradient direction and to impose different norms on the perpendicular
and parallel components, which Roth and Black (2007b) call a steerable random field.

https://vision.middlebury.edu/MRF/results
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(a) initial labeling (b) standard move (c) α-β-swap (d) α-expansion

Figure 4.14 Multi-level graph optimization from Boykov, Veksler, and Zabih (2001) © 2001 IEEE: (a) initial
problem configuration; (b) the standard move only changes one pixel; (c) the α-β-swap optimally exchanges all
α and β-labeled pixels; (d) the α-expansion move optimally selects among current pixel values and the α label.

find a good solution (Figure 4.14). Note that a global solution is generally not achievable, as the
problem is provably NP-hard for general energy functions. Because both these algorithms use a
binary MRF optimization inside their inner loop, they are subject to the kind of constraints on the
energy functions that occur in the binary labeling case (Kolmogorov and Zabih 2004).

Another MRF inference technique is belief propagation (BP). While belief propagation was
originally developed for inference over trees, where it is exact (Pearl 1988), it has more recently
been applied to graphs with loops such as Markov random fields (Freeman, Pasztor, and Carmichael
2000; Yedidia, Freeman, and Weiss 2001). In fact, some of the better performing stereo-matching
algorithms use loopy belief propagation (LBP) to perform their inference (Sun, Zheng, and Shum
2003). LBP is discussed in more detail in comparative survey papera on MRF optimization (Szeliski,
Zabih et al. 2008; Kappes, Andres et al. 2015).

Figure 4.13 shows an example of image denoising and inpainting (hole filling) using a non-
quadratic energy function (non-Gaussian MRF). The original image has been corrupted by noise
and a portion of the data has been removed (the black bar). In this case, the loopy belief propagation
algorithm computes a slightly lower energy and also a smoother image than the alpha-expansion
graph cut algorithm.

Of course, the above formula (4.42) for the smoothness term EP(i, j) just shows the simplest
case. In follow-on work, Roth and Black (2009) propose a Field of Experts (FoE) model, which
sums up a large number of exponentiated local filter outputs to arrive at the smoothness penalty.
Weiss and Freeman (2007) analyze this approach and compare it to the simpler hyper-Laplacian
model of natural image statistics. Lyu and Simoncelli (2009) use Gaussian Scale Mixtures (GSMs)
to construct an inhomogeneous multi-scale MRF, with one (positive exponential) GMRF modulating
the variance (amplitude) of another Gaussian MRF.

It is also possible to extend the measurement model to make the sampled (noise-corrupted)
input pixels correspond to blends of unknown (latent) image pixels, as in Figure 4.15. This is the
commonly occurring case when trying to deblur an image. While this kind of a model is still a
traditional generative Markov random field, i.e., we can in principle generate random samples from
the prior distribution, finding an optimal solution can be difficult because the clique sizes get larger.
In such situations, gradient descent techniques, such as iteratively reweighted least squares, can be
used (Joshi, Zitnick et al. 2009). Exercise 4.4 has you explore some of these issues.
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Figure 4.15 Graphical model for a Markov random field with a more complex measurement model. The
additional colored edges show how combinations of unknown values (say, in a sharp image) produce the measured
values (a noisy blurred image). The resulting graphical model is still a classic MRF and is just as easy to sample
from, but some inference algorithms (e.g., those based on graph cuts) may not be applicable because of the
increased network complexity, since state changes during the inference become more entangled and the posterior
MRF has much larger cliques.

Unordered labels

Another case with multi-valued labels where Markov random fields are often applied is that of
unordered labels, i.e., labels where there is no semantic meaning to the numerical difference between
the values of two labels. For example, if we are classifying terrain from aerial imagery, it makes
no sense to take the numerical difference between the labels assigned to forest, field, water, and
pavement. In fact, the adjacencies of these various kinds of terrain each have different likelihoods,
so it makes more sense to use a prior of the form

EP(i, j) = sx(i, j)V (l(i, j), l(i+ 1, j)) + sy(i, j)V (l(i, j), l(i, j + 1)), (4.44)

where V (l0, l1) is a general compatibility or potential function. (Note that we have also replaced
f(i, j) with l(i, j) to make it clearer that these are labels rather than function samples.) An alterna-
tive way to write this prior energy (Boykov, Veksler, and Zabih 2001; Szeliski, Zabih et al. 2008)
is

EP =
∑

(p,q)∈N
Vp,q(lp, lq), (4.45)

where the (p, q) are neighboring pixels and a spatially varying potential function Vp,q is evaluated
for each neighboring pair.

An important application of unordered MRF labeling is seam finding in image compositing
(Davis 1998; Agarwala, Dontcheva et al. 2004) (see Figure 4.16, which is explained in more detail
in Section 8.4.2). Here, the compatibility Vp,q(lp, lq) measures the quality of the visual appearance
that would result from placing a pixel p from image lp next to a pixel q from image lq . As with most
MRFs, we assume that Vp,q(l, l) = 0. For different labels, however, the compatibility Vp,q(lp, lq)
may depend on the values of the underlying pixels Ilp(p) and Ilq (q).

Consider, for example, where one image I0 is all sky blue, i.e., I0(p) = I0(q) = B, while the
other image I1 has a transition from sky blue, I1(p) = B, to forest green, I1(q) = G.

I0 :
p q p q

: I1

In this case, Vp,q(1, 0) = 0 (the colors agree), while Vp,q(0, 1) > 0 (the colors disagree).
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Figure 4.16 An unordered label MRF (Agarwala, Dontcheva et al. 2004) © 2004 ACM: Strokes in each of
the source images on the left are used as constraints on an MRF optimization, which is solved using graph cuts.
The resulting multi-valued label field is shown as a color overlay in the middle image, and the final composite is
shown on the right.

4.3.1 Conditional random fields

In a classic Bayesian model (4.33–4.35),

p(x|y) ∝ p(y|x)p(x), (4.46)

the prior distribution p(x) is independent of the observations y. Sometimes, however, it is useful
to modify our prior assumptions, say about the smoothness of the field we are trying to estimate, in
response to the sensed data. Whether this makes sense from a probability viewpoint is something
we discuss once we have explained the new model.

Consider an interactive image segmentation system such as the one described in Boykov and
Funka-Lea (2006). In this application, the user draws foreground and background strokes, and the
system then solves a binary MRF labeling problem to estimate the extent of the foreground object.
In addition to minimizing a data term, which measures the pointwise similarity between pixel colors
and the inferred region distributions (Section 4.3.2), the MRF is modified so that the smoothness
terms sx(x, y) and sy(x, y) in Figure 4.12 and (4.42) depend on the magnitude of the gradient
between adjacent pixels.7

Since the smoothness term now depends on the data, Bayes’ rule (4.46) no longer applies. In-
stead, we use a direct model for the posterior distribution p(x|y), whose negative log likelihood can
be written as

E(x|y) = ED(x,y) + ES(x,y)

=
∑

p

Vp(xp,y) +
∑

(p,q)∈N
Vp,q(xp, xq,y), (4.47)

using the notation introduced in (4.45). The resulting probability distribution is called a conditional
random field (CRF) and was first introduced to the computer vision field by Kumar and Hebert
(2003), based on earlier work in text modeling by Lafferty, McCallum, and Pereira (2001).

Figure 4.17 shows a graphical model where the smoothness terms depend on the data values. In
this particular model, each smoothness term depends only on its adjacent pair of data values, i.e.,
terms are of the form Vp,q(xp, xq, yp, yq) in (4.47).

7An alternative formulation that also uses detected edges to modulate the smoothness of a depth or motion field and hence
to integrate multiple lower level vision modules is presented by Poggio, Gamble, and Little (1988).
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Figure 4.17 Graphical model for a conditional random field (CRF). The additional green edges show how
combinations of sensed data influence the smoothness in the underlying MRF prior model, i.e., sx(i, j) and
sy(i, j) in (4.42) depend on adjacent d(i, j) values. These additional links (factors) enable the smoothness to
depend on the input data. However, they make sampling from this MRF more complex.

The idea of modifying smoothness terms in response to input data is not new. For example,
Boykov and Jolly (2001) used this idea for interactive segmentation, and it is now widely used
in image segmentation (Section 4.3.2) (Blake, Rother et al. 2004; Rother, Kolmogorov, and Blake
2004), denoising (Tappen, Liu et al. 2007), and object recognition (Section 6.4) (Winn and Shotton
2006; Shotton, Winn et al. 2009).

In stereo matching, the idea of encouraging disparity discontinuities to coincide with intensity
edges goes back even further to the early days of optimization and MRF-based algorithms (Poggio,
Gamble, and Little 1988; Fua 1993; Bobick and Intille 1999; Boykov, Veksler, and Zabih 2001) and
is discussed in more detail in (Section 12.5).

In addition to using smoothness terms that adapt to the input data, Kumar and Hebert (2003)
also compute a neighborhood function over the input data for each Vp(xp,y) term, as illustrated in
Figure 4.18, instead of using the classic unary MRF data term Vp(xp, yp) shown in Figure 4.12.8

Because such neighborhood functions can be thought of as discriminant functions (a term widely
used in machine learning (Bishop 2006)), they call the resulting graphical model a discriminative
random field (DRF). In their paper, Kumar and Hebert (2006) show that DRFs outperform similar
CRFs on a number of applications, such as structure detection and binary image denoising.

Here again, one could argue that previous stereo correspondence algorithms also look at a neigh-
borhood of input data, either explicitly, because they compute correlation measures (Criminisi, Cross
et al. 2006) as data terms, or implicitly, because even pixel-wise disparity costs look at several pixels
in either the left or right image (Barnard 1989; Boykov, Veksler, and Zabih 2001).

What then are the advantages and disadvantages of using conditional or discriminative random
fields instead of MRFs?

Classic Bayesian inference (MRF) assumes that the prior distribution of the data is independent
of the measurements. This makes a lot of sense: if you see a pair of sixes when you first throw a pair
of dice, it would be unwise to assume that they will always show up thereafter. However, if after
playing for a long time you detect a statistically significant bias, you may want to adjust your prior.
What CRFs do, in essence, is to select or modify the prior model based on observed data. This can
be viewed as making a partial inference over additional hidden variables or correlations between the
unknowns (say, a label, depth, or clean image) and the knowns (observed images).

8Kumar and Hebert (2006) call the unary potentials Vp(xp,y) association potentials and the pairwise potentials
Vp,q(xp, yq ,y) interaction potentials.
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Figure 4.18 Graphical model for a discriminative random field (DRF). The additional green edges show how
combinations of sensed data, e.g., d(i, j+1), influence the data term for f(i, j). The generative model is therefore
more complex, i.e., we cannot just apply a simple function to the unknown variables and add noise.

In some cases, the CRF approach makes a lot of sense and is, in fact, the only plausible way
to proceed. For example, in grayscale image colorization (Section 4.2.4) (Levin, Lischinski, and
Weiss 2004), a commonly used way to transfer the continuity information from the input grayscale
image to the unknown color image is to modify the local smoothness constraints. Similarly, for
simultaneous segmentation and recognition (Winn and Shotton 2006; Shotton, Winn et al. 2009), it
makes a lot of sense to permit strong color edges to increase the likelihood of semantic image label
discontinuities.

In other cases, such as image denoising, the situation is more subtle. Using a non-quadratic
(robust) smoothness term as in (4.42) plays a qualitatively similar role to setting the smoothness
based on local gradient information in a Gaussian MRF (GMRF) (Tappen, Liu et al. 2007; Tanaka
and Okutomi 2008). The advantage of Gaussian MRFs, when the smoothness can be correctly
inferred, is that the resulting quadratic energy can be minimized in a single step, i.e., by solving a
sparse set of linear equations. However, for situations where the discontinuities are not self-evident
in the input data, such as for piecewise-smooth sparse data interpolation (Blake and Zisserman 1987;
Terzopoulos 1988), classic robust smoothness energy minimization may be preferable. Thus, as with
most computer vision algorithms, a careful analysis of the problem at hand and desired robustness
and computation constraints may be required to choose the best technique.

Perhaps the biggest advantage of CRFs and DRFs, as argued by Kumar and Hebert (2006), Tap-
pen, Liu et al. (2007), and Blake, Rother et al. (2004), is that learning the model parameters is more
principled and sometimes easier. While learning parameters in MRFs and their variants is not a
topic that we cover in this book, interested readers can find more details in publications by Kumar
and Hebert (2006), Roth and Black (2007a), Tappen, Liu et al. (2007), Tappen (2007), and Li and
Huttenlocher (2008).

Dense Conditional Random Fields (CRFs)

As with regular Markov random fields, conditional random fields (CRFs) are normally defined over
small neighborhoods, e.g., the N4 neighborhood shown in Figure 4.17. However, images often
contain longer-range interactions, e.g., pixels of similar colors may belong to related classes (Fig-
ure 4.19). In order to model such longer-range interactions, Krähenbühl and Koltun (2011) intro-
duced what they call a fully connected CRF, which many people now call a dense CRF.
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Figure 4.19 Pixel-level classification with a fully connected CRF, from © Krähenbühl and Koltun (2011). The
labels in each column describe the image or algorithm being run, which include a robust Pn CRF (Kohli, Ladický,
and Torr 2009) and a very slow MCMC optimization algorithm.

As with traditional conditional random fields (4.47), their energy function consists of both unary
terms and pairwise terms

E(x|y) =
∑

p

Vp(xp,y) +
∑

(p,q)

Vp,q(xp, xq, yp, yq), (4.48)

where the (p, q) summation is now taken over all pairs of pixels, and not just adjacent ones.9 The y

denotes the input (guide) image over which the random field is conditioned. The pairwise interaction
potentials have a restricted form

Vp,q(xp, xq, yp, yq) = µ(xp, xq)
M∑

m=1

smwm(p, q) (4.49)

that is the product of a spatially invariant label compatibility function µ(xp, xq) and a sum of M
Gaussian kernels of the same form (3.37) as is used in bilateral filtering and the bilateral solver.
In their seminal paper, Krähenbühl and Koltun (2011) use two kernels, the first of which is an
appearance kernel similar to (3.37) and the second is a spatial-only smoothness kernel.

Because of the special form of the long-range interaction potentials, which encapsulate all spa-
tial and color similarity terms into a bilateral form, higher-dimensional filtering algorithms similar
to those used in fast bilateral filters and solvers (Adams, Baek, and Davis 2010) can be used to ef-
ficiently compute a mean field approximation to the posterior conditional distribution (Krähenbühl
and Koltun 2011). Figure 4.19 shows a comparison of their results (rightmost column) with previous
approaches, including using simple unary terms, a robust CRF (Kohli, Ladický, and Torr 2009), and
a very slow MCMC (Markov chain Monte Carlo) inference algorithm. As you can see, the fully
connected CRF with a mean field solver produces dramatically better results in a very short time.

9In practice, as with bilateral filtering and the bilateral solver, the spatial extent may be over a large but finite region.
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Since the publication of this paper, provably convergent and more efficient inference algorithms
have been developed both by the original authors (Krähenbühl and Koltun 2013) and others (Vineet,
Warrell, and Torr 2014; Desmaison, Bunel et al. 2016). Dense CRFs have seen widespread use in
image segmentation problems and also as a “clean-up” stage for deep neural networks, as in the
widely cited DeepLab paper by Chen, Papandreou et al. (2018).

4.3.2 Application: Interactive segmentation

The goal of image segmentation algorithms is to group pixels that have similar appearance (statis-
tics) and to have the boundaries between pixels in different regions be of short length and across
visible discontinuities. If we restrict the boundary measurements to be between immediate neigh-
bors and compute region membership statistics by summing over pixels, we can formulate this as
a classic pixel-based energy function using either a variational formulation (Section 4.2) or as a
binary Markov random field (Section 4.3).

Examples of the continuous approach include Mumford and Shah (1989), Chan and Vese (2001),
Zhu and Yuille (1996), and Tabb and Ahuja (1997) along with the level set approaches discussed
in Section 7.3.2. An early example of a discrete labeling problem that combines both region-based
and boundary-based energy terms is the work of Leclerc (1989), who used minimum description
length (MDL) coding to derive the energy function being minimized. Boykov and Funka-Lea (2006)
present a wonderful survey of various energy-based techniques for binary object segmentation, some
of which we discuss below.

As we saw earlier in this chapter, the energy corresponding to a segmentation problem can be
written (c.f. Equations (4.24) and (4.35–4.42)) as

E(f) =
∑

i,j

ER(i, j) + EP(i, j), (4.50)

where the region term
ER(i, j) = C(I(i, j);R(f(i, j))) (4.51)

is the negative log likelihood that pixel intensity (or color) I(i, j) is consistent with the statistics of
region R(f(i, j)) and the boundary term

EP(i, j) = sx(i, j)δ(f(i, j), f(i+ 1, j)) + sy(i, j)δ(f(i, j), f(i, j + 1)) (4.52)

measures the inconsistency betweenN4 neighbors modulated by local horizontal and vertical smooth-
ness terms sx(i, j) and sy(i, j).

Region statistics can be something as simple as the mean gray level or color (Leclerc 1989), in
which case

C(I;µk) = ‖I − µk‖2. (4.53)

Alternatively, they can be more complex, such as region intensity histograms (Boykov and Jolly
2001) or color Gaussian mixture models (Rother, Kolmogorov, and Blake 2004). For smoothness
(boundary) terms, it is common to make the strength of the smoothness sx(i, j) inversely propor-
tional to the local edge strength (Boykov, Veksler, and Zabih 2001).

Originally, energy-based segmentation problems were optimized using iterative gradient descent
techniques, which were slow and prone to getting trapped in local minima. Boykov and Jolly (2001)
were the first to apply the binary MRF optimization algorithm developed by Greig, Porteous, and
Seheult (1989) to binary object segmentation.

In this approach, the user first delineates pixels in the background and foreground regions using
a few strokes of an image brush. These pixels then become the seeds that tie nodes in the S–T graph
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(a) (b) (c)

Figure 4.20 GrabCut image segmentation (Rother, Kolmogorov, and Blake 2004) © 2004 ACM: (a) the user
draws a bounding box in red; (b) the algorithm guesses color distributions for the object and background and
performs a binary segmentation; (c) the process is repeated with better region statistics.

to the source and sink labels S and T . Seed pixels can also be used to estimate foreground and
background region statistics (intensity or color histograms).

The capacities of the other edges in the graph are derived from the region and boundary en-
ergy terms, i.e., pixels that are more compatible with the foreground or background region get
stronger connections to the respective source or sink; adjacent pixels with greater smoothness also
get stronger links. Once the minimum-cut/maximum-flow problem has been solved using a polyno-
mial time algorithm (Goldberg and Tarjan 1988; Boykov and Kolmogorov 2004), pixels on either
side of the computed cut are labeled according to the source or sink to which they remain connected.
While graph cuts is just one of several known techniques for MRF energy minimization, it is still
the one most commonly used for solving binary MRF problems.

The basic binary segmentation algorithm of Boykov and Jolly (2001) has been extended in a
number of directions. The GrabCut system of Rother, Kolmogorov, and Blake (2004) iteratively
re-estimates the region statistics, which are modeled as a mixtures of Gaussians in color space.
This allows their system to operate given minimal user input, such as a single bounding box (Fig-
ure 4.20a)—the background color model is initialized from a strip of pixels around the box outline.
(The foreground color model is initialized from the interior pixels, but quickly converges to a better
estimate of the object.) The user can also place additional strokes to refine the segmentation as the
solution progresses. Cui, Yang et al. (2008) use color and edge models derived from previous seg-
mentations of similar objects to improve the local models used in GrabCut. Graph cut algorithms
and other variants of Markov and conditional random fields have been applied to the semantic seg-
mentation problem (Shotton, Winn et al. 2009; Krähenbühl and Koltun 2011), an example of which
is shown in Figure 4.19 and which we study in more detail in Section 6.4.

Another major extension to the original binary segmentation formulation is the addition of di-
rected edges, which allows boundary regions to be oriented, e.g., to prefer light to dark transitions
or vice versa (Kolmogorov and Boykov 2005). Figure 4.21 shows an example where the directed
graph cut correctly segments the light gray liver from its dark gray surround. The same approach can
be used to measure the flux exiting a region, i.e., the signed gradient projected normal to the region
boundary. Combining oriented graphs with larger neighborhoods enables approximating continu-
ous problems such as those traditionally solved using level sets in the globally optimal graph cut
framework (Boykov and Kolmogorov 2003; Kolmogorov and Boykov 2005).

More recent developments in graph cut-based segmentation techniques include the addition of
connectivity priors to force the foreground to be in a single piece (Vicente, Kolmogorov, and Rother
2008) and shape priors to use knowledge about an object’s shape during the segmentation process
(Lempitsky and Boykov 2007; Lempitsky, Blake, and Rother 2008).

While optimizing the binary MRF energy (4.50) requires the use of combinatorial optimiza-
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Figure 7. Segmentation via cuts on a directed graph. Compare the results on an undirected graph (c) with the results on a directed graph in (d).

Assume now that an optimal segmentation is already
computed for some initial set of seeds. A user adds a
new “object” seed to pixel p that was not previously
assigned any seed. We need to change the costs for two
t-links at p

t-link initial cost new cost

{p, S} λRp(“bkg”) K

{p, T } λRp(“obj”) 0

and then compute themaximumflow (minimumcut) on
the new graph. In fact, we can start from the flow found
at the end of initial computation. The only problem is
that reassignment of edge weights as above reduces
capacities of some edges. If there is a flow through
such an edge then we may break the flow consistency.
Increasing an edge capacity, on the other hand, is never
a problem. Then, we can solve the problem as follows.

To accommodate the new “object” seed at pixel p
we increase the t-links weights according to the table

t-link initial cost add new cost

{p, S} λRp(“bkg”) K + λRp(“obj”) K + cp
{p, T } λRp(“obj”) λRp(“bkg”) cp

These new costs are consistent with the edge weight
table for pixels inO since the extra constant cp at both
t-links of a pixel does not change the optimal cut.13

Then, a maximum flow (minimum cut) on a new graph
can be efficiently obtained starting from the previ-
ous flow without recomputing the whole solution from
scratch.

Note that the same trick can be done to adjust the
segmentation when a new “background” seed is added
or when a seed is deleted. One has to figure the right
amounts that have to be added to the costs of two
t-links at the corresponding pixel. The new costs should
be consistent with the edge weight table plus or minus
the same constant.

2.7. Using Directed Edges

For simplicity, we previously concentrated on the case
of undirected graphs as in Fig. 3. In fact, the majority
of s-t cut algorithms from combinatorial optimization
can be applied to directed graphs as well. Figure 7(a)
gives one example of such a graph where each pair of
neighboring nodes is connected by two directed edges
(p, q) and (q, p)with distinctweightsw(p,q) andw(q,p).
If a cut separates two neighboring nodes p and q so that
p is connected to the source while q is connected to the
sink then the cost of the cut includesw(p,q) whilew(q,p)

is ignored. Vise versa, if q is connected to the source
and p to the sink then the cost of the cut includes only
w(q,p).
In certain cases one can take advantage of such di-

rected costs to obtain more accurate object boundaries.
For example, compare two segmentations in Fig. 7(c,d)
obtained on a medical image in (b) using the same set
of constraints. A relatively bright object of interest on
the right (liver) is separated from a small bright blob on

Figure 4.21 Segmentation with a directed graph cut (Boykov and Funka-Lea 2006) © 2006 Springer: (a)
directed graph; (b) image with seed points; (c) the undirected graph incorrectly continues the boundary along the
bright object; (d) the directed graph correctly segments the light gray region from its darker surround.

tion techniques, such as maximum flow, an approximate solution can be obtained by converting
the binary energy terms into quadratic energy terms defined over a continuous [0, 1] random field,
which then becomes a classical membrane-based regularization problem (4.24–4.27). The resulting
quadratic energy function can then be solved using standard linear system solvers (4.27–4.28), al-
though if speed is an issue, you should use multigrid or one of its variants (Appendix A.5). Once the
continuous solution has been computed, it can be thresholded at 0.5 to yield a binary segmentation.

The [0, 1] continuous optimization problem can also be interpreted as computing the probability
at each pixel that a random walker starting at that pixel ends up at one of the labeled seed pixels,
which is also equivalent to computing the potential in a resistive grid where the resistors are equal to
the edge weights (Grady 2006; Sinop and Grady 2007). K-way segmentations can also be computed
by iterating through the seed labels, using a binary problem with one label set to 1 and all the others
set to 0 to compute the relative membership probabilities for each pixel. In follow-on work, Grady
and Ali (2008) use a precomputation of the eigenvectors of the linear system to make the solution
with a novel set of seeds faster, which is related to the Laplacian matting problem presented in
Section 10.4.3 (Levin, Acha, and Lischinski 2008). Couprie, Grady et al. (2009) relate the random
walker to watersheds and other segmentation techniques. Singaraju, Grady, and Vidal (2008) add
directed-edge constraints in order to support flux, which makes the energy piecewise quadratic and
hence not solvable as a single linear system. The random walker algorithm can also be used to solve
the Mumford–Shah segmentation problem (Grady and Alvino 2008) and to compute fast multigrid
solutions (Grady 2008). A nice review of these techniques is given by Singaraju, Grady et al.
(2011).

An even faster way to compute a continuous [0, 1] approximate segmentation is to compute
weighted geodesic distances between the 0 and 1 seed regions (Bai and Sapiro 2009), which can
also be used to estimate soft alpha mattes (Section 10.4.3). A related approach by Criminisi, Sharp,
and Blake (2008) can be used to find fast approximate solutions to general binary Markov random
field optimization problems.
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4.4 Additional reading

Scattered data interpolation and approximation techniques are fundamental to many different branches
of applied mathematics. Some good introductory texts and articles include Amidror (2002), Wend-
land (2004), and Anjyo, Lewis, and Pighin (2014). These techniques are also related to geometric
modeling techniques in computer graphics, which continues to be a very active research area. A nice
introduction to basic spline techniques for curves and surfaces can be found in Farin (2002), while
more recent approaches using subdivision surfaces are covered in Peters and Reif (2008).

Data interpolation and approximation also lie at the heart of regression techniques, which form
the mathematical basis for most of the machine learning techniques we study in the next chapter. You
can find good introductions to this topic (as well as underfitting, overfitting, and model selection)
in texts on classic machine learning (Bishop 2006; Hastie, Tibshirani, and Friedman 2009; Murphy
2012; Deisenroth, Faisal, and Ong 2020) and deep learning (Goodfellow, Bengio, and Courville
2016; Glassner 2018; Zhang, Lipton et al. 2021).

Robust data fitting is also central to most computer vision problems. While introduced in this
chapter, it is also revisited in Appendix B.3. Classic textbooks and articles on robust fitting and
statistics include Huber (1981), Hampel, Ronchetti et al. (1986), Black and Rangarajan (1996),
Rousseeuw and Leroy (1987), and Stewart (1999). The recent paper by Barron (2019) unifies many
of the commonly used robust potential functions and shows how they can be used in machine learn-
ing applications.

The regularization approach to computer vision problems was first introduced to the vision com-
munity by Poggio, Torre, and Koch (1985) and Terzopoulos (1986a,b, 1988) and continues to be
a popular framework for formulating and solving low-level vision problems (Ju, Black, and Jep-
son 1996; Nielsen, Florack, and Deriche 1997; Nordström 1990; Brox, Bruhn et al. 2004; Levin,
Lischinski, and Weiss 2008). More detailed mathematical treatment and additional applications can
be found in the applied mathematics and statistics literature (Tikhonov and Arsenin 1977; Engl,
Hanke, and Neubauer 1996).

Variational formulations have been extensively used in low-level computer vision tasks, includ-
ing optical flow (Horn and Schunck 1981; Nagel and Enkelmann 1986; Black and Anandan 1993;
Alvarez, Weickert, and Sánchez 2000; Brox, Bruhn et al. 2004; Zach, Pock, and Bischof 2007a;
Wedel, Cremers et al. 2009; Werlberger, Pock, and Bischof 2010), segmentation (Kass, Witkin,
and Terzopoulos 1988; Mumford and Shah 1989; Caselles, Kimmel, and Sapiro 1997; Paragios and
Deriche 2000; Chan and Vese 2001; Osher and Paragios 2003; Cremers 2007), denoising (Rudin,
Osher, and Fatemi 1992), stereo (Pock, Schoenemann et al. 2008), multi-view stereo (Faugeras and
Keriven 1998; Yezzi and Soatto 2003; Pons, Keriven, and Faugeras 2007; Labatut, Pons, and Keriven
2007; Kolev, Klodt et al. 2009), and scene flow (Wedel, Brox et al. 2011).

The literature on Markov random fields is truly immense, with publications in related fields such
as optimization and control theory of which few vision practitioners are even aware. A good guide
to the latest techniques is the book edited by Blake, Kohli, and Rother (2011). Other articles that
contain nice literature reviews or experimental comparisons include Boykov and Funka-Lea (2006),
Szeliski, Zabih et al. (2008), Kumar, Veksler, and Torr (2011), and Kappes, Andres et al. (2015).
MRFs are just one version of the more general topic of graphical models, which is covered in several
textbooks and survey, including Bishop (2006, Chapter 8), Koller and Friedman (2009), Nowozin
and Lampert (2011), and Murphy (2012, Chapters 10, 17, 19)).

The seminal paper on Markov random fields is the work of Geman and Geman (1984), who intro-
duced this formalism to computer vision researchers and also introduced the notion of line processes,
additional binary variables that control whether smoothness penalties are enforced or not. Black and
Rangarajan (1996) showed how independent line processes could be replaced with robust pairwise
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potentials; Boykov, Veksler, and Zabih (2001) developed iterative binary graph cut algorithms for
optimizing multi-label MRFs; Kolmogorov and Zabih (2004) characterized the class of binary en-
ergy potentials required for these techniques to work; and Freeman, Pasztor, and Carmichael (2000)
popularized the use of loopy belief propagation for MRF inference. Many more additional refer-
ences can be found in Sections 4.3 and 4.3.2, and Appendix B.5.

Continuous-energy-based (variational) approaches to interactive segmentation include Leclerc
(1989), Mumford and Shah (1989), Chan and Vese (2001), Zhu and Yuille (1996), and Tabb and
Ahuja (1997). Discrete variants of such problems are usually optimized using binary graph cuts
or other combinatorial energy minimization methods (Boykov and Jolly 2001; Boykov and Kol-
mogorov 2003; Rother, Kolmogorov, and Blake 2004; Kolmogorov and Boykov 2005; Cui, Yang et
al. 2008; Vicente, Kolmogorov, and Rother 2008; Lempitsky and Boykov 2007; Lempitsky, Blake,
and Rother 2008), although continuous optimization techniques followed by thresholding can also
be used (Grady 2006; Grady and Ali 2008; Singaraju, Grady, and Vidal 2008; Criminisi, Sharp, and
Blake 2008; Grady 2008; Bai and Sapiro 2009; Couprie, Grady et al. 2009). Boykov and Funka-Lea
(2006) present a good survey of various energy-based techniques for binary object segmentation.

4.5 Exercises

Ex 4.1: Data fitting (scattered data interpolation). Generate some random samples from a smoothly
varying function and then implement and evaluate one or more data interpolation techniques.

1. Generate a “random” 1-D or 2-D function by adding together a small number of sinusoids or
Gaussians of random amplitudes and frequencies or scales.

2. Sample this function at a few dozen random locations.

3. Fit a function to these data points using one or more of the scattered data interpolation tech-
niques described in Section 4.1.

4. Measure the fitting error between the estimated and original functions at some set of location,
e.g., on a regular grid or at different random points.

5. Manually adjust any parameters your fitting algorithm may have to minimize the output sam-
ple fitting error, or use an automated technique such as cross-validation.

6. Repeat this exercise with a new set of random input sample and output sample locations. Does
the optimal parameter change, and if so, by how much?

7. (Optional) Generate a piecewise-smooth test function by using different random parameters
in different parts of of your image. How much more difficult does the data fitting problem
become? Can you think of ways you might mitigate this?

Try to implement your algorithm in NumPy (or Matlab) using only array operations, in order
to become more familiar with data-parallel programming and the linear algebra operators built into
these systems. Use data visualization techniques such as those in Figures 4.3–4.6 to debug your
algorithms and illustrate your results.

Ex 4.2: Graphical model optimization. Download and test out the software on the OpenGM2
library and benchmarks web site http://hciweb2.iwr.uni-heidelberg.de/opengm (Kappes, Andres et
al. 2015). Try applying these algorithms to your own problems of interest (segmentation, de-noising,
etc.). Which algorithms are more suitable for which problems? How does the quality compare to
deep learning based approaches, which we study in the next chapter?

http://hciweb2.iwr.uni-heidelberg.de/opengm
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Ex 4.3: Image deblocking—challenging. Now that you have some good techniques to distin-
guish signal from noise, develop a technique to remove the blocking artifacts that occur with JPEG
at high compression settings (Section 2.3.3). Your technique can be as simple as looking for unex-
pected edges along block boundaries, or looking at the quantization step as a projection of a convex
region of the transform coefficient space onto the corresponding quantized values.

1. Does the knowledge of the compression factor, which is available in the JPEG header infor-
mation, help you perform better deblocking? See Ehrlich, Lim et al. (2020) for a recent paper
on this topic.

2. Because the quantization occurs in the DCT transformed YCbCr space (2.116), it may be
preferable to perform the analysis in this space. On the other hand, image priors make more
sense in an RGB space (or do they?). Decide how you will approach this dichotomy and
discuss your choice.

3. While you are at it, since the YCbCr conversion is followed by a chrominance subsampling
stage (before the DCT), see if you can restore some of the lost high-frequency chrominance
signal using one of the better restoration techniques discussed in this chapter.

4. If your camera has a RAW + JPEG mode, how close can you come to the noise-free true pixel
values? (This suggestion may not be that useful, since cameras generally use reasonably high
quality settings for their RAW + JPEG models.)

Ex 4.4: Inference in deblurring—challenging. Write down the graphical model corresponding
to Figure 4.15 for a non-blind image deblurring problem, i.e., one where the blur kernel is known
ahead of time.

What kind of efficient inference (optimization) algorithms can you think of for solving such
problems?
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