
Chapter 11

Structure from motion and SLAM

11.1 Geometric intrinsic calibration . 545
11.1.1 Vanishing points . 547
11.1.2 Application: Single view metrology . 548
11.1.3 Rotational motion . 549
11.1.4 Radial distortion . 550

11.2 Pose estimation . 552
11.2.1 Linear algorithms . 552
11.2.2 Iterative non-linear algorithms . 554
11.2.3 Application: Location recognition . 555
11.2.4 Triangulation . 558

11.3 Two-frame structure from motion . 560
11.3.1 Eight, seven, and five-point algorithms . 560
11.3.2 Special motions and structures . 564
11.3.3 Projective (uncalibrated) reconstruction 565
11.3.4 Self-calibration . 566
11.3.5 Application: View morphing . 568

11.4 Multi-frame structure from motion . 568
11.4.1 Factorization . 568
11.4.2 Bundle adjustment . 570
11.4.3 Exploiting sparsity . 571
11.4.4 Application: Match move . 574
11.4.5 Uncertainty and ambiguities . 575
11.4.6 Application: Reconstruction from internet photos 576
11.4.7 Global structure from motion . 578
11.4.8 Constrained structure and motion . 580

11.5 Simultaneous localization and mapping (SLAM) 583
11.5.1 Application: Autonomous navigation . 585
11.5.2 Application: Smartphone augmented reality 587

11.6 Additional reading . 588
11.7 Exercises . 590

© Springer Nature Switzerland AG 2022
R. Szeliski, Computer Vision, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-34372-9_11

543

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34372-9_11&domain=pdf

544 11 Structure from motion and SLAM

(a) (b)

(c) (d)

(e) (f) (g)

(h)

Figure 11.1 Structure from motion examples: (a) a two-dimensional calibration target (Zhang 2000) © 2000
IEEE; (b) single view metrology (Criminisi, Reid, and Zisserman 2000) © 2000 Springer. (c–d) line matching
(Schmid and Zisserman 1997) © 1997 IEEE; (e–g) 3D reconstructions of Trafalgar Square, Great Wall of China,
and Prague Old Town Square (Snavely, Seitz, and Szeliski 2006) © 2006 ACM; (h) smartphone augmented reality
showing real-time depth occlusion effects (Valentin, Kowdle et al. 2018) © 2018 ACM.

11.1 Geometric intrinsic calibration 545

The reconstruction of 3D models from images has been one of the central topics in computer vision
since its inception (Figure 1.7). In fact, it was then believed that the construction of 3D models was
a prerequisite for scene understanding and recognition (Marr 1982), although work in the last few
decades has proven otherwise. However, 3D modeling has also proven to be immensely useful in
applications such as virtual tourism (Section 11.4.6), autonomous navigation (Section 11.5.1), and
augmented reality (Section 11.5.2).

In the last three chapters, we focused on techniques for establishing correspondences between
2D images and using these in a variety of applications such as image stitching, video enhancement,
and computational photography. In this chapter, we turn to the topic of using such correspondences
to build sparse 3D models of a scene and to re-localize cameras with respect to such models. While
this process often involves simultaneously estimating both 3D geometry (structure) and camera pose
(motion), it is commonly known (for historical reasons) as structure from motion (Ullman 1979).

The topics of projective geometry and structure from motion are extremely rich and some ex-
cellent textbooks and surveys have been written on them (Faugeras and Luong 2001; Hartley and
Zisserman 2004; Moons, Van Gool, and Vergauwen 2010; Ma, Soatto et al. 2012). This chapter
skips over a lot of the richer material available in these books, such as the trifocal tensor and alge-
braic techniques for full self-calibration, and concentrates instead on the basics that we have found
useful in large-scale, image-based reconstruction problems (Snavely, Seitz, and Szeliski 2006).

We begin this chapter in Section 11.1 with a review of commonly used techniques for calibrat-
ing the camera intrinsics, e.g., the focal length and radial distortion parameters we introduced in
Sections 2.1.4–2.1.5. Next, we discuss how to estimate the extrinsic pose of a camera from 3D
to 2D point correspondences (Section 11.2) as well as how to triangulate a set of 2D correspon-
dences to estimate a point’s 3D location. We then look at the two-frame structure from motion
problem (Section 11.3), which involves the determination of the epipolar geometry between two
cameras and which can also be used to recover certain information about the camera intrinsics using
self-calibration (Section 11.3.4). Section 11.4.1 looks at factorization approaches to simultaneously
estimating structure and motion from large numbers of point tracks using orthographic approxima-
tions to the projection model. We then develop a more general and useful approach to structure from
motion, namely the simultaneous bundle adjustment of all the camera and 3D structure parameters
(Section 11.4.2). We also look at special cases that arise when there are higher-level structures, such
as lines and planes, in the scene (Section 11.4.8). In the last part of this chapter (Section 11.5), we
look at real-time systems for simultaneous localization and mapping (SLAM), which reconstruct a
3D world model while moving through an environment, and can be applied to both visual navigation
and augmented reality.

11.1 Geometric intrinsic calibration

As we discuss in the next section (Equations (11.14–11.15)), the computation of the internal (intrin-
sic) camera calibration parameters can occur simultaneously with the estimation of the (extrinsic)
pose of the camera with respect to a known calibration target. This, indeed, is the “classic” approach
to camera calibration used in both the photogrammetry (Slama 1980) and the computer vision (Tsai
1987) communities. In this section, we look at simpler alternative formulations that may not involve
the full solution of a non-linear regression problem, the use of alternative calibration targets, and the
estimation of the non-linear part of camera optics such as radial distortion. In some applications,
you can use the EXIF tags associated with a JPEG image to obtain a rough estimate of a camera’s
focal length and hence to initialize iterative estimation algorithms; but this technique should be used
with caution as the results are often inaccurate.

546 11 Structure from motion and SLAM

(a) (b)

Figure 11.2 Calibration patterns: (a) a three-dimensional target (Quan and Lan 1999) © 1999 IEEE; (b) a two-
dimensional target (Zhang 2000) © 2000 IEEE. Note that radial distortion needs to be removed from such images
before the feature points can be used for calibration.

Calibration patterns

The use of a calibration pattern or set of markers is one of the more reliable ways to estimate a
camera’s intrinsic parameters. In photogrammetry, it is common to set up a camera in a large field
looking at distant calibration targets whose exact location has been precomputed using surveying
equipment (Slama 1980; Atkinson 1996; Kraus 1997). In this case, the translational component
of the pose becomes irrelevant and only the camera rotation and intrinsic parameters need to be
recovered.

If a smaller calibration rig needs to be used, e.g., for indoor robotics applications or for mobile
robots that carry their own calibration target, it is best if the calibration object can span as much
of the workspace as possible (Figure 11.2a), as planar targets often fail to accurately predict the
components of the pose that lie far away from the plane. A good way to determine if the calibration
has been successfully performed is to estimate the covariance in the parameters (Section 8.1.4) and
then project 3D points from various points in the workspace into the image in order to estimate their
2D positional uncertainty.

If no calibration pattern is available, it is also possible to perform calibration simultaneously
with structure and pose recovery (Sections 11.1.3 and 11.4.2), which is known as self-calibration
(Faugeras, Luong, and Maybank 1992; Pollefeys, Koch, and Van Gool 1999; Hartley and Zisserman
2004; Moons, Van Gool, and Vergauwen 2010). However, such an approach requires a large amount
of imagery to be accurate.

Planar calibration patterns

When a finite workspace is being used and accurate machining and motion control platforms are
available, a good way to perform calibration is to move a planar calibration target through the
workspace volume and use the known 3D point locations for calibration. This approach is some-
times called the N-planes calibration approach (Gremban, Thorpe, and Kanade 1988; Champleboux,
Lavallée et al. 1992b; Grossberg and Nayar 2001) and has the advantage that each camera pixel can
be mapped to a unique 3D ray in space, which takes care of both linear effects modeled by the
calibration matrix K and non-linear effects such as radial distortion (Section 11.1.4).

A less cumbersome but also less accurate calibration can be obtained by waving a planar calibra-

11.1 Geometric intrinsic calibration 547

x1 x0

x2

x1 x0

x2

c

(a) (b)

Figure 11.3 Calibration from vanishing points: (a) any pair of finite vanishing points (x̂i, x̂j) can be used to
estimate the focal length; (b) the orthocenter of the vanishing point triangle gives the image center of the image c.

tion pattern in front of a camera (Figure 11.2b). In this case, the pattern’s pose has to be recovered in
conjunction with the intrinsics. In this technique, each input image is used to compute a separate ho-
mography (8.19–8.23) H̃ mapping the plane’s calibration points (Xi, Yi, 1) into image coordinates
(xi, yi),

xi =

xi
yi
1

 ∼ K

[
r0 r1 t

]

Xi

Yi
1

 ∼ H̃pi, (11.1)

where the ri are the first two columns of R and ∼ indicates equality up to scale. From these, Zhang
(2000) shows how to form linear constraints on the nine entries in the B = K−TK−1 matrix,
from which the calibration matrix K can be recovered using a matrix square root and inversion. The
matrix B is known as the image of the absolute conic (IAC) in projective geometry and is commonly
used for camera calibration (Hartley and Zisserman 2004, Section 8.5). If only the focal length is
being recovered, the even simpler approach of using vanishing points described below can be used
instead.

11.1.1 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at a man-
ufactured or architectural scene with long extended rectangular patterns such as boxes or building
walls. In this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
vanishing points, as described in Section 7.4.3, and use these to determine the intrinsic and extrinsic
calibration parameters (Caprile and Torre 1990; Becker and Bove 1995; Liebowitz and Zisserman
1998; Cipolla, Drummond, and Robertson 1999; Antone and Teller 2002; Criminisi, Reid, and Zis-
serman 2000; Hartley and Zisserman 2004; Pflugfelder 2008).

Let us assume that we have detected two or more orthogonal vanishing points, all of which are fi-
nite, i.e., they are not obtained from lines that appear to be parallel in the image plane (Figure 11.3a).
Let us also assume a simplified form for the calibration matrix K where only the focal length is un-
known (2.59). It is often safe for rough 3D modeling to assume that the optical center is at the center
of the image, that the aspect ratio is 1, and that there is no skew. In this case, the projection equation
for the vanishing points can be written as

x̂i =

xi − cx
yi − cy
f

 ∼ Rpi = ri, (11.2)

where pi corresponds to one of the cardinal directions (1, 0, 0), (0, 1, 0), or (0, 0, 1), and ri is the
ith column of the rotation matrix R.

548 11 Structure from motion and SLAM

(a) (b)

Figure 11.4 Single view metrology (Criminisi, Reid, and Zisserman 2000) © 2000 Springer: (a) input image
showing the three coordinate axes computed from the two horizontal vanishing points (which can be determined
from the sidings on the shed); (b) a new view of the 3D reconstruction.

From the orthogonality between columns of the rotation matrix, we have

ri · rj ∼ (xi − cx)(xj − cx) + (yi − cy)(yj − cy) + f2 = 0, i 6= j (11.3)

from which we can obtain an estimate for f2. Note that the accuracy of this estimate increases as
the vanishing points move closer to the center of the image. In other words, it is best to tilt the
calibration pattern a decent amount around the 45° axis, as in Figure 11.3a. Once the focal length
f has been determined, the individual columns of R can be estimated by normalizing the left-hand
side of (11.2) and taking cross products. Alternatively, the orthogonal Procrustes algorithm (8.32)
can be used.

If all three vanishing points are visible and finite in the same image, it is also possible to estimate
the image center as the orthocenter of the triangle formed by the three vanishing points (Caprile and
Torre 1990; Hartley and Zisserman 2004, Section 8.6) (Figure 11.3b). In practice, however, it is
more accurate to re-estimate any unknown intrinsic calibration parameters using non-linear least
squares (11.14).

11.1.2 Application: Single view metrology

A fun application of vanishing point estimation and camera calibration is the single view metrology
system developed by Criminisi, Reid, and Zisserman (2000). Their system allows people to inter-
actively measure heights and other dimensions as well as to build piecewise-planar 3D models, as
shown in Figure 11.4.

The first step in their system is to identify two orthogonal vanishing points on the ground plane
and the vanishing point for the vertical direction, which can be done by drawing some parallel sets
of lines in the image. Alternatively, automated techniques such as those discussed in Section 7.4.3
or by Schaffalitzky and Zisserman (2000) could be used. The user then marks a few dimensions
in the image, such as the height of a reference object, and the system can automatically compute
the height of another object. Walls and other planar impostors (geometry) can also be sketched and
reconstructed.

In the formulation originally developed by Criminisi, Reid, and Zisserman (2000), the system
produces an affine reconstruction, i.e., one that is only known up to a set of independent scaling

11.1 Geometric intrinsic calibration 549

Figure 11.5 Four images taken with a hand-held camera registered using a 3D rotation motion model, which
can be used to estimate the focal length of the camera (Szeliski and Shum 1997) © 2000 ACM.

factors along each axis. A potentially more useful system can be constructed by assuming that the
camera is calibrated up to an unknown focal length, which can be recovered from orthogonal (finite)
vanishing directions, as we have just described in Section 11.1.1. Once this is done, the user can
indicate an origin on the ground plane and another point a known distance away. From this, points
on the ground plane can be directly projected into 3D, and points above the ground plane, when
paired with their ground plane projections, can also be recovered. A fully metric reconstruction of
the scene then becomes possible.

Exercise 11.4 has you implement such a system and then use it to model some simple 3D scenes.
Section 13.6.1 describes other, potentially multi-view, approaches to architectural reconstruction,
including an interactive piecewise-planar modeling system that uses vanishing points to establish
3D line directions and plane normals (Sinha, Steedly et al. 2008).

11.1.3 Rotational motion

When no calibration targets or known structures are available but you can rotate the camera around
its front nodal point (or, equivalently, work in a large open environment where all objects are distant),
the camera can be calibrated from a set of overlapping images by assuming that it is undergoing pure
rotational motion, as shown in Figure 11.5 (Stein 1995; Hartley 1997b; Hartley, Hayman et al. 2000;
de Agapito, Hayman, and Reid 2001; Kang and Weiss 1999; Shum and Szeliski 2000; Frahm and
Koch 2003). When a full 360° motion is used to perform this calibration, a very accurate estimate of
the focal length f can be obtained, as the accuracy in this estimate is proportional to the total number
of pixels in the resulting cylindrical panorama (Section 8.2.6) (Stein 1995; Shum and Szeliski 2000).

To use this technique, we first compute the homographies H̃ij between all overlapping pairs
of images, as explained in Equations (8.19–8.23). Then, we use the observation, first made in
Equation (2.72) and explored in more detail in Equation (8.38), that each homography is related to
the inter-camera rotation Rij through the (unknown) calibration matrices Ki and Kj ,

H̃ij = KiRiR
−1
j K−1j = KiRijK

−1
j . (11.4)

550 11 Structure from motion and SLAM

The simplest way to obtain the calibration is to use the simplified form of the calibration matrix
(2.59), where we assume that the pixels are square and the image center lies at the geometric center
of the 2D pixel array, i.e., Kk = diag(fk, fk, 1). We subtract half the width and height from the
original pixel coordinates to that the pixel (x, y) = (0, 0) lies at the center of the image. We can
then rewrite Equation (11.4) as

R10 ∼ K−11 H̃10K0 ∼

h00 h01 f−10 h02
h10 h11 f−10 h12
f1h20 f1h21 f−10 f1h22

 , (11.5)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right-hand

side of (11.5) is known only up to a scale, we obtain

h200 + h201 + f−20 h202 = h210 + h211 + f−20 h212 (11.6)

and
h00h10 + h01h11 + f−20 h02h12 = 0. (11.7)

From this, we can compute estimates for f0 of

f20 =
h212 − h202

h200 + h201 − h210 − h211
if h2

00 + h2
01 6= h2

10 + h2
11 (11.8)

or
f20 = − h02h12

h00h10 + h01h11
if h00h10 6= −h01h11. (11.9)

If neither of these conditions holds, we can also take the dot products between the first (or second)
row and the third one. Similar results can be obtained for f1 as well, by analyzing the columns of
H̃10. If the focal length is the same for both images, we can take the geometric mean of f0 and f1
as the estimated focal length f =

√
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate. A more general (upper-
triangular) estimate of K can be obtained in the case of a fixed-parameter camera Ki = K using the
technique of Hartley (1997b). Extensions to the cases of temporally varying calibration parameters
and non-stationary cameras are discussed by Hartley, Hayman et al. (2000) and de Agapito, Hayman,
and Reid (2001).

The quality of the intrinsic camera parameters can be greatly increased by constructing a full
360° panorama, as mis-estimating the focal length will result in a gap (or excessive overlap) when
the first image in the sequence is stitched to itself (Figure 8.6). The resulting misalignment can be
used to improve the estimate of the focal length and to re-adjust the rotation estimates, as described
in Section 8.2.4. Rotating the camera by 90° around its optical axis and re-shooting the panorama is
a good way to check for aspect ratio and skew pixel problems, as is generating a full hemi-spherical
panorama when there is sufficient texture.

Ultimately, however, the most accurate estimate of the calibration parameters (including radial
distortion) can be obtained using a full simultaneous non-linear minimization of the intrinsic and
extrinsic (rotation) parameters, as described in Section 11.2.2.

11.1.4 Radial distortion

When images are taken with wide-angle lenses, it is often necessary to model lens distortions such as
radial distortion. As discussed in Section 2.1.5, the radial distortion model says that coordinates in

11.1 Geometric intrinsic calibration 551

the observed images are displaced towards (barrel distortion) or away (pincushion distortion) from
the image center by an amount proportional to their radial distance (Figure 2.13a–b). The simplest
radial distortion models use low-order polynomials (c.f. Equation (2.78)),

x̂ = x(1 + κ1r
2 + κ2r

4)

ŷ = y(1 + κ1r
2 + κ2r

4),
(11.10)

where (x, y) = (0, 0) at the radial distortion center (2.77), r2 = x2 + y2, and κ1 and κ2 are called
the radial distortion parameters (Brown 1971; Slama 1980).1

A variety of techniques can be used to estimate the radial distortion parameters for a given lens,
if the digital camera has not already done this in its capture software. One of the simplest and most
useful is to take an image of a scene with a lot of straight lines, especially lines aligned with and near
the edges of the image. The radial distortion parameters can then be adjusted until all of the lines in
the image are straight, which is commonly called the plumb-line method (Brown 1971; Kang 2001;
El-Melegy and Farag 2003). Exercise 11.5 gives some more details on how to implement such a
technique.

Another approach is to use several overlapping images and to combine the estimation of the ra-
dial distortion parameters with the image alignment process, i.e., by extending the pipeline used for
stitching in Section 8.3.1. Sawhney and Kumar (1999) use a hierarchy of motion models (translation,
affine, projective) in a coarse-to-fine strategy coupled with a quadratic radial distortion correction
term. They use direct (intensity-based) minimization to compute the alignment. Stein (1997) uses
a feature-based approach combined with a general 3D motion model (and quadratic radial distor-
tion), which requires more matches than a parallax-free rotational panorama but is potentially more
general. More recent approaches sometimes simultaneously compute both the unknown intrinsic
parameters and the radial distortion coefficients, which may include higher-order terms or more
complex rational or non-parametric forms (Claus and Fitzgibbon 2005; Sturm 2005; Thirthala and
Pollefeys 2005; Barreto and Daniilidis 2005; Hartley and Kang 2005; Steele and Jaynes 2006; Tardif,
Sturm et al. 2009).

When a known calibration target is being used (Figure 11.2), the radial distortion estimation can
be folded into the estimation of the other intrinsic and extrinsic parameters (Zhang 2000; Hartley
and Kang 2007; Tardif, Sturm et al. 2009). This can be viewed as adding another stage to the general
non-linear minimization pipeline shown in Figure 11.7 between the intrinsic parameter multiplica-
tion box fC and the perspective division box fP. (See Exercise 11.6 on more details for the case of a
planar calibration target.)

Of course, as discussed in Section 2.1.5, more general models of lens distortion, such as fisheye
and non-central projection, may sometimes be required. While the parameterization of such lenses
may be more complicated (Section 2.1.5), the general approach of either using calibration rigs with
known 3D positions or self-calibration through the use of multiple overlapping images of a scene
can both be used (Hartley and Kang 2007; Tardif, Sturm, and Roy 2007). The same techniques
used to calibrate for radial distortion can also be used to reduce the amount of chromatic aberration
by separately calibrating each color channel and then warping the channels to put them back into
alignment (Exercise 11.7).

1Sometimes the relationship between x and x̂ is expressed the other way around, i.e., using primed (final) coordinates
on the right-hand side, x = x̂(1 + κ1r̂2 + κ2r̂4). This is convenient if we map image pixels into (warped) rays and then
undistort the rays to obtain 3D rays in space, i.e., if we are using inverse warping.

552 11 Structure from motion and SLAM

11.2 Pose estimation

A particular instance of feature-based alignment, which occurs very often, is estimating an object’s
3D pose from a set of 2D point projections. This pose estimation problem is also known as extrinsic
calibration, as opposed to the intrinsic calibration of internal camera parameters such as focal length,
which we discuss in Section 11.1. The problem of recovering pose from three correspondences,
which is the minimal amount of information necessary, is known as the perspective-3-point-problem
(P3P),2 with extensions to larger numbers of points collectively known as PnP (Haralick, Lee et al.
1994; Quan and Lan 1999; Gao, Hou et al. 2003; Moreno-Noguer, Lepetit, and Fua 2007; Persson
and Nordberg 2018).

In this section, we look at some of the techniques that have been developed to solve such prob-
lems, starting with the direct linear transform (DLT), which recovers a 3 × 4 camera matrix, fol-
lowed by other “linear” algorithms, and then looking at statistically optimal iterative algorithms.

11.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of rational linear equations
analogous to those used for 2D motion estimation (8.19) from the camera matrix form of perspective
projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Zi + p23

(11.11)

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Zi + p23

, (11.12)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D feature
locations (Figure 11.6). As with (8.21), this system of equations can be solved in a linear fashion
for the unknowns in the camera matrix P by multiplying the denominator on both sides of the
equation.Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1,
or find the smallest singular vector of the set of linear equations. The resulting algorithm is called
the direct linear transform (DLT) and is commonly attributed to Sutherland (1974). (For a more
in-depth discussion, see Hartley and Zisserman (2004).) To compute the 12 (or 11) unknowns in P,
at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (8.21–8.23), more accurate results for the entries in
P can be obtained by directly minimizing the set of Equations (11.11–11.12) using non-linear least
squares with a small number of iterations. Note that instead of taking the ratios of theX/Z and Y/Z
values as in (11.11–11.12), it is also possible to take a cross product of the 3-vector (xi, yi, 1) image
measurement and the 3-D ray (X,Y, Z) and set the three elements of this cross-product to 0. The
resulting three equations, when interpreted as a set of least squares constraints, in effect compute the
squared sine of the angle between the two rays.

Once the entries in P have been recovered, it is possible to recover both the intrinsic calibration
matrix K and the rigid transformation (R, t) by observing from Equation (2.56) that

P = K[R|t]. (11.13)

Because K is upper-triangular (see the discussion in Section 2.1.4), both K and R can be obtained
from the front 3 × 3 sub-matrix of P using RQ factorization (Golub and Van Loan 1996).3

2The “3-point” algorithms actually require a 4th point to resolve a 4-way ambiguity.
3Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular matrix; in

computer vision, R is an orthogonal rotation.

11.2 Pose estimation 553

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 11.6 Pose estimation by the direct linear transform and by measuring visual angles and distances be-
tween pairs of points.

In most applications, however, we have some prior knowledge about the intrinsic calibration
matrix K, e.g., that the pixels are square, the skew is very small, and the image center is near the
geometric center of the image (2.57–2.59). Such constraints can be incorporated into a non-linear
minimization of the parameters in K and (R, t), as described in Section 11.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Section 11.1), we
can perform pose estimation using as few as three points (Fischler and Bolles 1981; Haralick, Lee
et al. 1994; Quan and Lan 1999). The basic observation that these linear PnP (perspective n-point)
algorithms employ is that the visual angle between any pair of 2D points x̂i and x̂j must be the same
as the angle between their corresponding 3D points pi and pj (Figure 11.6).

A full derivation of this approach can be found in the first edition of this book (Szeliski 2010,
Section 6.2.1) and also in (Quan and Lan 1999), where the authors provide accuracy results for this
and other techniques, which use fewer points but require more complicated algebraic manipulations.
The paper by Moreno-Noguer, Lepetit, and Fua (2007) reviews other alternatives and also gives a
lower complexity algorithm that typically produces more accurate results. An even more recent
paper by Terzakis and Lourakis (2020) reviews papers published in the last decade.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer from
bas-relief ambiguities (e.g., depth reversals) (Section 11.4.5), it is prudent to optimize the initial
estimates from PnP using the iterative technique described in Section 11.2.2. An alternative pose es-
timation algorithm involves starting with a scaled orthographic projection model and then iteratively
refining this initial estimate using a more accurate perspective projection model (DeMenthon and
Davis 1995). The attraction of this model, as stated in the paper’s title, is that it can be implemented
“in 25 lines of [Mathematica] code”.

CNN-based pose estimation

As with other areas on computer vision, deep neural networks have also been applied to pose es-
timation. Some representative papers include Xiang, Schmidt et al. (2018), Oberweger, Rad, and
Lepetit (2018), Hu, Hugonot et al. (2019), Peng, Liu et al. (2019), and (Hu, Fua et al. 2020) for
object pose estimation, and papers such as Kendall and Cipolla (2017) and Kim, Dunn, and Frahm
(2017) discussed in Section 11.2.3 on location recognition. There is also a very active community
around estimating pose from RGB-D images, with the most recent papers (Hagelskjær and Buch
2020; Labbé, Carpentier et al. 2020) evaluated on the BOP (Benchmark for 6DOF Object Pose)
(Hodaň, Michel et al. 2018).4

4https://bop.felk.cvut.cz/challenges/bop-challenge-2020, https://cmp.felk.cvut.cz/sixd/workshop 2020

https://bop.felk.cvut.cz/challenges/bop-challenge-2020
https://cmp.felk.cvut.cz/sixd/workshop_2020

554 11 Structure from motion and SLAM

fC(x) = Kx

k

fP(x) = p/z fR(x) = Rx

qj

fT(x) = x-c

cj

pixi
y(1)y(2)y(3)

Figure 11.7 A set of chained transforms for projecting a 3D point pi to a 2D measurement xi through a series
of transformations f (k), each of which is controlled by its own set of parameters. The dashed lines indicate the
flow of information as partial derivatives are computed during a backward pass.

11.2.2 Iterative non-linear algorithms

The most accurate and flexible way to estimate pose is to directly minimize the squared (or robust)
reprojection error for the 2D points as a function of the unknown pose parameters in (R, t) and
optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher and Witkin 1992).
We can write the projection equations as

xi = f(pi; R, t,K) (11.14)

and iteratively minimize the robustified linearized reprojection errors

ENLP =
∑

i

ρ

(
∂f

∂R
∆R +

∂f

∂t
∆t +

∂f

∂K
∆K− ri

)
, (11.15)

where ri = x̃i − x̂i is the current residual vector (2D error in predicted position) and the partial
derivatives are with respect to the unknown pose parameters (rotation, translation, and optionally
calibration). The robust loss function ρ, which we first introduced in (4.15) in Section 4.1.3, is used
to reduce the influence of outlier correspondences. Note that if full 2D covariance estimates are
available for the 2D feature locations, the above squared norm can be weighted by the inverse point
covariance matrix, as in Equation (8.11).

An easier to understand (and implement) version of the above non-linear regression problem can
be constructed by re-writing the projection equations as a concatenation of simpler steps, each of
which transforms a 4D homogeneous coordinate pi by a simple transformation such as translation,
rotation, or perspective division (Figure 11.7). The resulting projection equations can be written as

y(1) = fT(pi; cj) = pi − cj , (11.16)

y(2) = fR(y(1); qj) = R(qj) y(1), (11.17)

y(3) = fP(y(2)) =
y(2)

z(2)
, (11.18)

xi = fC(y(3); k) = K(k) y(3). (11.19)

Note that in these equations, we have indexed the camera centers cj and camera rotation quaternions
qj by an index j, in case more than one pose of the calibration object is being used (see also
Section 11.4.2.) We are also using the camera center cj instead of the world translation tj , as this is
a more natural parameter to estimate.

The advantage of this chained set of transformations is that each one has a simple partial deriva-
tive with respect both to its parameters and to its input. Thus, once the predicted value of x̃i has

11.2 Pose estimation 555

been computed based on the 3D point location pi and the current values of the pose parameters
(cj ,qj ,k), we can obtain all of the required partial derivatives using the chain rule

∂ri
∂p(k)

=
∂ri
∂y(k)

∂y(k)

∂p(k)
, (11.20)

where p(k) indicates one of the parameter vectors that is being optimized. (This same “trick” is used
in neural networks as part of backpropagation, which we presented in Figure 5.31.)

The one special case in this formulation that can be considerably simplified is the computation
of the rotation update. Instead of directly computing the derivatives of the 3 × 3 rotation matrix
R(q) as a function of the unit quaternion entries, you can prepend the incremental rotation matrix
∆R(ω) given in Equation (2.35) to the current rotation matrix and compute the partial derivative
of the transform with respect to these parameters, which results in a simple cross product of the
backward chaining partial derivative and the outgoing 3D vector, as explained in Equation (2.36).

Target-based augmented reality

A widely used application of pose estimation is augmented reality, where virtual 3D images or
annotations are superimposed on top of a live video feed, either through the use of see-through
glasses (a head-mounted display) or on a regular computer or mobile device screen (Azuma, Baillot
et al. 2001; Haller, Billinghurst, and Thomas 2007; Billinghurst, Clark, and Lee 2015). In some
applications, a special pattern printed on cards or in a book is tracked to perform the augmentation
(Kato, Billinghurst et al. 2000; Billinghurst, Kato, and Poupyrev 2001). For a desktop application,
a grid of dots printed on a mouse pad can be tracked by a camera embedded in an augmented mouse
to give the user control of a full six degrees of freedom over their position and orientation in a 3D
space (Hinckley, Sinclair et al. 1999). Today, tracking known targets such as movie posters is used
in some phone-based augmented reality systems such as Facebook’s Spark AR.5

Sometimes, the scene itself provides a convenient object to track, such as the rectangle defining a
desktop used in through-the-lens camera control (Gleicher and Witkin 1992). In outdoor locations,
such as film sets, it is more common to place special markers such as brightly colored balls in
the scene to make it easier to find and track them (Bogart 1991). In older applications, surveying
techniques were used to determine the locations of these balls before filming. Today, it is more
common to apply structure-from-motion directly to the film footage itself (Section 11.5.2).

Exercise 8.4 has you implement a tracking and pose estimation system for augmented-reality
applications.

11.2.3 Application: Location recognition

One of the most exciting applications of pose estimation is in the area of location recognition, which
can be used both in desktop applications (“Where did I take this holiday snap?”) and in mobile
smartphone applications. The latter case includes not only finding out your current location based
on a cell-phone image, but also providing you with navigation directions or annotating your images
with useful information, such as building names and restaurant reviews (i.e., a pocketable form
of augmented reality). This problem is also often called visual (or image-based) localization (Se,
Lowe, and Little 2002; Zhang and Kosecka 2006; Janai, Güney et al. 2020, Section 13.3) or visual
place recognition (Lowry, Sünderhauf et al. 2015).

5https://sparkar.facebook.com/ar-studio

https://sparkar.facebook.com/ar-studio

556 11 Structure from motion and SLAM

(a) (b) (c)

Figure 11.8 Feature-based location recognition (Schindler, Brown, and Szeliski 2007) © 2007 IEEE: (a) three
typical series of overlapping street photos; (b) handheld camera shots and (c) their corresponding database photos.

Some approaches to location recognition assume that the photos consist of architectural scenes
for which vanishing directions can be used to pre-rectify the images for easier matching (Robertson
and Cipolla 2004). Other approaches use general affine covariant interest points to perform wide
baseline matching (Schaffalitzky and Zisserman 2002), with the winning entry on the ICCV 2005
Computer Vision Contest (Szeliski 2005) using this approach (Zhang and Kosecka 2006). The Photo
Tourism system of Snavely, Seitz, and Szeliski (2006) (Section 14.1.2) was the first to apply these
kinds of ideas to large-scale image matching and (implicit) location recognition from internet photo
collections taken under a wide variety of viewing conditions.

The main difficulty in location recognition is in dealing with the extremely large community
(user-generated) photo collections on websites such as Flickr (Philbin, Chum et al. 2007; Chum,
Philbin et al. 2007; Philbin, Chum et al. 2008; Irschara, Zach et al. 2009; Turcot and Lowe 2009;
Sattler, Leibe, and Kobbelt 2011, 2017) or commercially captured databases (Schindler, Brown, and
Szeliski 2007; Klingner, Martin, and Roseborough 2013; Torii, Arandjelović et al. 2018). The preva-
lence of commonly appearing elements such as foliage, signs, and common architectural elements
further complicates the task (Schindler, Brown, and Szeliski 2007; Jegou, Douze, and Schmid 2009;
Chum and Matas 2010b; Knopp, Sivic, and Pajdla 2010; Torii, Sivic et al. 2013; Sattler, Havlena et
al. 2016). Figure 7.26 shows some results on location recognition from community photo collec-
tions, while Figure 11.8 shows sample results from denser commercially acquired datasets. In the
latter case, the overlap between adjacent database images can be used to verify and prune poten-
tial matches using “temporal” filtering, i.e., requiring the query image to match nearby overlapping
database images before accepting the match. Similar ideas have been used to improve location
recognition from panoramic video sequences (Levin and Szeliski 2004; Samano, Zhou, and Calway
2020) and to combine local SLAM reconstructions from image sequences with matching against
a precomputed map for higher reliability (Stenborg, Sattler, and Hammarstrand 2020). Recogniz-
ing indoor locations inside buildings and shopping malls poses its own set of challenges, including
textureless areas and repeated elements (Levin and Szeliski 2004; Wang, Fidler, and Urtasun 2015;
Sun, Xie et al. 2017; Taira, Okutomi et al. 2018; Taira, Rocco et al. 2019; Lee, Ryu et al. 2021).
The matching of ground-level to aerial images has also been studied (Kaminsky, Snavely et al. 2009;
Shan, Wu et al. 2014).

11.2 Pose estimation 557

Some of the initial research on location recognition was organized around the Oxford 5k and
Paris 6k datasets (Philbin, Chum et al. 2007, 2008; Radenović, Iscen et al. 2018), as well as the Vi-
enna (Irschara, Zach et al. 2009) and Photo Tourism (Li, Snavely, and Huttenlocher 2010) datasets,
and later around the 7 scenes indoor RGB-D dataset (Shotton, Glocker et al. 2013) and Cambridge
Landmarks (Kendall, Grimes, and Cipolla 2015). The NetVLAD paper (Arandjelovic, Gronat et al.
2016) was tested on Google Street View Time Machine data. Currently, the most widely used visual
localization datasets are collected at the Long-Term Visual Localization Benchmark6 and include
such datasets as Aachen Day-Night (Sattler, Maddern et al. 2018) and InLoc (Taira, Okutomi et al.
2018). And while most localization systems work from collections of ground-level images, it is also
possible to re-localize based on textured digital elevation (terrain) models for outdoor (non-city)
applications (Baatz, Saurer et al. 2012; Brejcha, Lukáč et al. 2020).

Some of the most recent approaches to localization use deep networks to generate feature de-
scriptors (Arandjelovic, Gronat et al. 2016; Kim, Dunn, and Frahm 2017; Torii, Arandjelović et al.
2018; Radenović, Tolias, and Chum 2019; Yang, Kien Nguyen et al. 2019; Sarlin, Unagar et al.
2021), perform large-scale instance retrieval (Radenović, Tolias, and Chum 2019; Cao, Araujo, and
Sim 2020; Ng, Balntas et al. 2020; Tolias, Jenicek, and Chum 2020; Pion, Humenberger et al. 2020
and Section 6.2.3), map images to 3D scene coordinates (Brachmann and Rother 2018), or perform
end-to-end scene coordinate regression (Shotton, Glocker et al. 2013), absolute pose regression
(APR) (Kendall, Grimes, and Cipolla 2015; Kendall and Cipolla 2017), or relative pose regression
(RPR) (Melekhov, Ylioinas et al. 2017; Balntas, Li, and Prisacariu 2018). Recent evaluations of
these techniques have shown that classical approaches based on feature matching followed by geo-
metric pose optimization typically outperform pose regression approaches in terms of accuracy and
generalization (Sattler, Zhou et al. 2019; Zhou, Sattler et al. 2019; Ding, Wang et al. 2019; Lee, Ryu
et al. 2021; Sarlin, Unagar et al. 2021).

The Long-Term Visual Localization benchmark has a leaderboard listing the best-performing
localization systems. In the CVPR 2020 workshop and challenge, some of the winning entries were
based on recent detectors, descriptors, and matchers such as SuperGlue (Sarlin, DeTone et al. 2020),
ASLFeat (Luo, Zhou et al. 2020), and R2D2 (Revaud, Weinzaepfel et al. 2019). Other systems that
did well include HF-Net (Sarlin, Cadena et al. 2019), ONavi (Fan, Zhou et al. 2020), and D2-
Net (Dusmanu, Rocco et al. 2019). An even more recent trend is to use DNNs or transformers to
establish dense coarse-to-fine matches (Jiang, Trulls et al. 2021; Sun, Shen et al. 2021).

Another variant on location recognition is the automatic discovery of landmarks, i.e., frequently
photographed objects and locations. Simon, Snavely, and Seitz (2007) show how these kinds of ob-
jects can be discovered simply by analyzing the matching graph constructed as part of the 3D model-
ing process in Photo Tourism. More recent work has extended this approach to larger datasets using
efficient clustering techniques (Philbin and Zisserman 2008; Li, Wu et al. 2008; Chum, Philbin,
and Zisserman 2008; Chum and Matas 2010a; Arandjelović and Zisserman 2012), combining meta-
data such as GPS and textual tags with visual search (Quack, Leibe, and Van Gool 2008; Crandall,
Backstrom et al. 2009; Li, Snavely et al. 2012), and using multiple descriptors to obtain real-time
performance in micro aerial vehicle navigation (Lim, Sinha et al. 2012). It is now even possible
to automatically associate object tags with images based on their co-occurrence in multiple loosely
tagged images (Simon and Seitz 2008; Gammeter, Bossard et al. 2009).

The concept of organizing the world’s photo collections by location has even been recently ex-
tended to organizing all of the universe’s (astronomical) photos in an application called astrometry.7

The technique used to match any two star fields is to take quadruplets of nearby stars (a pair of

6https://www.visuallocalization.net
7https://astrometry.net

https://www.visuallocalization.net
https://astrometry.net

558 11 Structure from motion and SLAM

A

B

C
D

(a) (b)

Figure 11.9 Locating star fields using astrometry, https://astrometry.net. (a) Input star field and some selected
star quads. (b) The 2D coordinates of stars C and D are encoded relative to the unit square defined by A and B.

stars and another pair inside their diameter) to form a 30-bit geometric hash by encoding the relative
positions of the second pair of points using the inscribed square as the reference frame, as shown
in Figure 11.9. Traditional information retrieval techniques (k-d trees built for different parts of a
sky atlas) are then used to find matching quads as potential star field location hypotheses, which can
then be verified using a similarity transform.

11.2.4 Triangulation

The problem of determining a point’s 3D position from a set of corresponding image locations
and known camera positions is known as triangulation. This problem is the converse of the pose
estimation problem we studied in Section 11.2.

One of the simplest ways to solve this problem is to find the 3D point p that lies closest to
all of the 3D rays corresponding to the 2D matching feature locations {xj} observed by cameras
{Pj = Kj [Rj |tj]}, where tj = −Rjcj and cj is the jth camera center (2.55–2.56). As you
can see in Figure 11.10, these rays originate at cj in a direction v̂j = N (R−1j K−1j xj), where
N (v) normalizes a vector v to unit length. The nearest point to p on this ray, which we denote as
qj = cj + djv̂j , minimizes the distance

‖qj − p‖2 = ‖cj + dj v̂j − p‖2, (11.21)

which has a minimum at dj = v̂j · (p− cj). Hence,

qj = cj + (v̂j v̂
T
j)(p− cj) = cj + (p− cj)‖, (11.22)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2j = ‖(I− v̂j v̂
T
j)(p− cj)‖2 = ‖(p− cj)⊥‖2. (11.23)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular least
squares problem by summing over all the r2j and finding the optimal value of p,

p =

∑

j

(I− v̂jv̂
T
j)

−1
∑

j

(I− v̂jv̂
T
j)cj

 . (11.24)

https://astrometry.net

11.2 Pose estimation 559

p

x1x0

R0

c0 c1

R1

v0
v1

d0 d1
q0

^^

q1

Figure 11.10 3D point triangulation by finding the point p that lies nearest to all of the optical rays cj + dj v̂j .

An alternative formulation, which is more statistically optimal and which can produce signifi-
cantly better estimates if some of the cameras are closer to the 3D point than others, is to minimize
the residual in the measurement equations

xj =
p
(j)
00 X + p

(j)
01 Y + p

(j)
02 Z + p

(j)
03W

p
(j)
20 X + p

(j)
21 Y + p

(j)
22 Z + p

(j)
23W

(11.25)

yj =
p
(j)
10 X + p

(j)
11 Y + p

(j)
12 Z + p

(j)
13W

p
(j)
20 X + p

(j)
21 Y + p

(j)
22 Z + p

(j)
23W

, (11.26)

where (xj , yj) are the measured 2D feature locations and {p(j)00 . . . p
(j)
23 } are the known entries in

camera matrix Pj (Sutherland 1974).
As with Equations (8.21, 11.11, and 11.12), this set of non-linear equations can be converted

into a linear least squares problem by multiplying both sides of the denominator, again resulting
in the direct linear transform (DLT) formulation. Note that if we use homogeneous coordinates
p = (X,Y, Z,W), the resulting set of equations is homogeneous and is best solved as a singu-
lar value decomposition (SVD) or eigenvalue problem (looking for the smallest singular vector or
eigenvector). If we set W = 1, we can use regular linear least squares, but the resulting system may
be singular or poorly conditioned, i.e., if all of the viewing rays are parallel, as occurs for points far
away from the camera.

For this reason, it is generally preferable to parameterize 3D points using homogeneous coor-
dinates, especially if we know that there are likely to be points at greatly varying distances from
the cameras. Of course, minimizing the set of observations (11.25–11.26) using non-linear least
squares, as described in (8.14 and 8.23), is preferable to using linear least squares, regardless of the
representation chosen.

For the case of two observations, it turns out that the location of the point p that exactly min-
imizes the true reprojection error (11.25–11.26) can be computed using the solution of degree six
polynomial equations (Hartley and Sturm 1997). Another problem to watch out for with triangula-
tion is the issue of cheirality, i.e., ensuring that the reconstructed points lie in front of all the cameras
(Hartley 1998). While this cannot always be guaranteed, a useful heuristic is to take the points that
lie behind the cameras because their rays are diverging (imagine Figure 11.10 where the rays were
pointing away from each other) and to place them on the plane at infinity by setting their W values
to 0.

560 11 Structure from motion and SLAM

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x0

e0 e1

x1

l1l0

Figure 11.11 Epipolar geometry: The vectors t = c1 − c0, p − c0 and p − c1 are co-planar and define the
basic epipolar constraint expressed in terms of the pixel measurements x0 and x1.

11.3 Two-frame structure from motion

So far in our study of 3D reconstruction, we have always assumed that either the 3D point positions
or the 3D camera poses are known in advance. In this section, we take our first look at structure from
motion, which is the simultaneous recovery of 3D structure and pose from image correspondences.
In particular, we examine techniques that operate on just two frames with point correspondences.
We divide this section into the study of classic “n-point” algorithms, special (degenerate) cases,
projective (uncalibrated) reconstruction, and self-calibration for cameras whose intrinsic calibrations
are unknown.

11.3.1 Eight, seven, and five-point algorithms

Consider Figure 11.11, which shows a 3D point p being viewed from two cameras whose relative
position can be encoded by a rotation R and a translation t. As we do not know anything about the
camera positions, without loss of generality, we can set the first camera at the origin c0 = 0 and at
a canonical orientation R0 = I.

The 3D point p0 = d0x̂0 observed in the first image at location x̂0 and at a z distance of d0 is
mapped into the second image by the transformation

d1x̂1 = p1 = Rp0 + t = R(d0x̂0) + t, (11.27)

where x̂j = K−1j xj are the (local) ray direction vectors. Taking the cross product of the two
(interchanged) sides with t in order to annihilate it on the right-hand side yields8

d1[t]×x̂1 = d0[t]×Rx̂0. (11.28)

Taking the dot product of both sides with x̂1 yields

d0x̂
T
1 ([t]×R)x̂0 = d1x̂

T
1 [t]×x̂1 = 0, (11.29)

because the right-hand side is a triple product with two identical entries. (Another way to say this
is that the cross product matrix [t]× is skew symmetric and returns 0 when pre- and post-multiplied
by the same vector.)

8The cross-product operator []× was introduced in (2.32).

11.3 Two-frame structure from motion 561

We therefore arrive at the basic epipolar constraint

x̂T1 E x̂0 = 0, (11.30)

where
E = [t]×R (11.31)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that, for the cameras to be ori-

ented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting the two camera
centers c1− c0 = −R−11 t and the rays corresponding to pixels x0 and x1, namely R−1j x̂j , must be
co-planar. This requires that the triple product

(x̂0,R
−1x̂1,−R−1t) = (Rx̂0, x̂1,−t) = x̂1 · (t×Rx̂0) = x̂T1 ([t]×R)x̂0 = 0. (11.32)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0 = [t]×Rx̂0 in
image 1, because x̂T1 l1 = 0 (Figure 11.11). All such lines must pass through the second epipole e1,
which is therefore defined as the left singular vector of E with a 0 singular value, or, equivalently,
the projection of the vector t into image 1. The dual (transpose) of these relationships gives us the
epipolar line in the first image as l0 = ET x̂1 and e0 as the zero-value right singular vector of E.

Eight-point algorithm. Given this fundamental relationship (11.30), how can we use it to re-
cover the camera motion encoded in the essential matrix E? If we have N corresponding mea-
surements {(xi0,xi1)}, we can form N homogeneous equations in the nine elements of E =

{e00 . . . e22},
xi0xi1e00 +yi0xi1e01 +xi1e02 +

xi0yi1e00 +yi0yi1e11 +yi1e12 +

xi0e20 +yi0e21 +e22 = 0

(11.33)

where xij = (xij , yij , 1). This can be written more compactly as

[xi1 xTi0]⊗E = Zi ⊗E = zi · f = 0, (11.34)

where ⊗ indicates an element-wise multiplication and summation of matrix elements, and zi and f

are the vectorized forms of the Zi = x̂i1x̂
T
i0 and E matrices.9 Given N ≥ 8 such equations, we can

compute an estimate (up to scale) for the entries in E using an SVD.
In the presence of noisy measurements, how close is this estimate to being statistically opti-

mal? If you look at the entries in (11.33), you can see that some entries are the products of image
measurements such as xi0yi1 and others are direct image measurements (or even the identity). If
the measurements have comparable noise, the terms that are products of measurements have their
noise amplified by the other element in the product, which can lead to very poor scaling, e.g., an
inordinately large influence of points with large coordinates (far away from the image center).

To counteract this trend, Hartley (1997a) suggests that the point coordinates should be translated
and scaled so that their centroid lies at the origin and their variance is unity, i.e.,

x̃i = s(xi − µx) (11.35)

ỹi = s(yi − µy) (11.36)

9We use f instead of e to denote the vectorized form of E to avoid confusion with the epipoles ej .

562 11 Structure from motion and SLAM

such that
∑
i x̃i =

∑
i ỹi = 0 and

∑
i x̃

2
i +

∑
i ỹ

2
i = 2n, where n is the number of points.10

Once the essential matrix Ẽ has been computed from the transformed coordinates
{(x̃i0, x̃i1)}, where x̃ij = Tj x̂ij and Tj is the 3 × 3 matrix that implements the shift and scale
operations in (11.35–11.36), the original essential matrix E can be recovered as

E = TT
1 ẼT0. (11.37)

In his paper, Hartley (1997a) compares the improvement due to his re-normalization strategy to
alternative distance measures proposed by others such as Zhang (1998a,b) and concludes that his
simple re-normalization in most cases is as effective as (or better than) alternative techniques. Torr
and Fitzgibbon (2004) recommend a variant on this algorithm where the norm of the upper 2 × 2
sub-matrix of E is set to 1 and show that it has even better stability with respect to 2D coordinate
transformations.

7-point algorithm. Because E is rank-deficient, it turns out that we actually only need seven
correspondences of the form of Equation (11.34) instead of eight to estimate this matrix (Hartley
1994a; Torr and Murray 1997; Hartley and Zisserman 2004). The advantage of using fewer corre-
spondences inside a RANSAC robust fitting stage is that fewer random samples need to be generated.
From this set of seven homogeneous equations (which we can stack into a 7 × 9 matrix for SVD
analysis), we can find two independent vectors, say f0 and f1 such that zi · fj = 0. These two vectors
can be converted back into 3 × 3 matrices E0 and E1, which span the solution space for

E = αE0 + (1− α)E1. (11.38)

To find the correct value of α, we observe that E has a zero determinant, as it is rank deficient, and
hence

|αE0 + (1− α)E1| = 0. (11.39)

This gives us a cubic equation in α, which has either one or three solutions (roots). Substituting
these values into (11.38) to obtain E, we can test this essential matrix against other unused feature
correspondences to select the correct one.

The normalized “eight-point algorithm” (Hartley 1997a) and seven-point algorithm described
above are not the only way to estimate the camera motion from correspondences. Additional variants
include a five-point algorithm that requires finding the roots of a 10th degree polynomial (Nistér
2004) as well as variants that handle special (restricted) motions or scene structures, as discussed
later on in this section. Because such algorithms use fewer points to compute their estimates, they
are less sensitive to outliers when used as part of a random sampling (RANSAC) strategy.11

Recovering t and R. Once an estimate for the essential matrix E has been recovered, the
direction of the translation vector t can be estimated. Note that the absolute distance between the
two cameras can never be recovered from pure image measurements alone, regardless of how many
cameras or points are used. Knowledge about absolute camera and point positions or distances,
often called ground control points in photogrammetry, is always required to establish the final scale,
position, and orientation.

10More precisely, Hartley (1997a) suggests scaling the points “so that the average distance from the origin is equal to
√

2”
but the heuristic of unit variance is faster to compute (does not require per-point square roots) and should yield comparable
improvements.

11You can find an experimental comparison of a number of RANSAC variants at https://opencv.org/
evaluating-opencvs-new-ransacs/.

https://opencv.org/evaluating-opencvs-new-ransacs/
https://opencv.org/evaluating-opencvs-new-ransacs/

11.3 Two-frame structure from motion 563

To estimate this direction t̂, observe that under ideal noise-free conditions, the essential matrix
E is singular, i.e., t̂TE = 0. This singularity shows up as a singular value of 0 when an SVD of E

is performed,

E = [̂t]×R = UΣVT =
[
u0 u1 t̂

]

1

1

0

vT0
vT1
vT2

 . (11.40)

When E is computed from noisy measurements, the singular vector associated with the smallest
singular value gives us t̂. (The other two singular values should be similar but are not, in general,
equal to 1 because E is only computed up to an unknown scale.)

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R? Recall
that the cross-product operator [̂t]× (2.32) projects a vector onto a set of orthogonal basis vectors
that include t̂, zeros out the t̂ component, and rotates the other two by 90°,

[̂t]× = SZR90◦S
T =

[
s0 s1 t̂

]

1

1

0

0 −1

1 0

1

sT0
sT1
t̂T

 , (11.41)

where t̂ = s0 × s1. From Equations (11.40 and 11.41), we get

E = [̂t]×R = SZR90◦S
TR = UΣVT , (11.42)

from which we can conclude that S = U. Recall that for a noise-free essential matrix, (Σ = Z),
and hence

R90◦U
TR = VT (11.43)

and
R = URT

90◦V
T . (11.44)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V are not
guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For this reason,
we have to generate all four possible rotation matrices

R = ±URT
±90◦V

T (11.45)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair of
potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 259), we need to pair
them with both possible signs of the translation direction ±t̂ and select the combination for which
the largest number of points is seen in front of both cameras.12

The property that points must lie in front of the camera, i.e., at a positive distance along the
viewing rays emanating from the camera, is known as cheirality (Hartley 1998). In addition to
determining the signs of the rotation and translation, as described above, the cheirality (sign of the
distances) of the points in a reconstruction can be used inside a RANSAC procedure (along with
the reprojection errors) to distinguish between likely and unlikely configurations.13 cheirality can
also be used to transform projective reconstructions (Sections 11.3.3 and 11.3.4) into quasi-affine
reconstructions (Hartley 1998).

12In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points, downweighting
the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

13Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in cheirality become
more likely.

564 11 Structure from motion and SLAM

e

xi0

xi1

Figure 11.12 Pure translational camera motion results in visual motion where all the points move towards
(or away from) a common focus of expansion (FOE) e. They therefore satisfy the triple product condition
(x0,x1, e) = e · (x0 × x1) = 0.

11.3.2 Special motions and structures

In certain situations, specially tailored algorithms can take advantage of known (or guessed) camera
arrangements or 3D structures.

Pure translation (known rotation). In the case where we know the rotation, we can pre-rotate
the points in the second image to match the viewing direction of the first. The resulting set of 3D
points all move towards (or away from) the focus of expansion (FOE), as shown in Figure 11.12.14

The resulting essential matrix E is (in the noise-free case) skew symmetric and so can be estimated
more directly by setting eij = −eji and eii = 0 in (11.33). Two points with non-zero parallax now
suffice to estimate the FOE.

A more direct derivation of the FOE estimate can be obtained by minimizing the triple product
∑

i

(xi0,xi1, e)2 =
∑

i

((xi0 × xi1) · e)2, (11.46)

which is equivalent to finding the null space for the set of equations

(yi0 − yi1)e0 + (xi1 − xi0)e1 + (xi0yi1 − yi0xi1)e2 = 0. (11.47)

Note that, as in the eight-point algorithm, it is advisable to normalize the 2D points to have unit
variance before computing this estimate.

In situations where a large number of points at infinity are available, e.g., when shooting outdoor
scenes or when the camera motion is small compared to distant objects, this suggests an alternative
RANSAC strategy for estimating the camera motion. First, pick a pair of points to estimate a ro-
tation, hoping that both of the points lie at infinity (very far from the camera). Then, compute the
FOE and check whether the residual error is small (indicating agreement with this rotation hypoth-
esis) and whether the motions towards or away from the epipole (FOE) are all in the same direction
(ignoring very small motions, which may be noise-contaminated).

Pure rotation. The case of pure rotation results in a degenerate estimate of the essential matrix
E and of the translation direction t̂. Consider first the case of the rotation matrix being known. The
estimates for the FOE will be degenerate, because xi0 ≈ xi1, and hence (11.47), is degenerate. A
similar argument shows that the equations for the essential matrix (11.33) are also rank-deficient.

This suggests that it might be prudent before computing a full essential matrix to first compute
a rotation estimate R using (8.32), potentially with just a small number of points, and then compute
the residuals after rotating the points before proceeding with a full E computation.

14Fans of Star Trek and Star Wars will recognize this as the “jump to hyperdrive” visual effect.

11.3 Two-frame structure from motion 565

Dominant planar structure. When a dominant plane is present in the scene, DEGENSAC,
which tests whether too many correspondences are co-planar, can be used to recover the fundamental
matrix more reliably than the seven-point algorithm (Chum, Werner, and Matas 2005).

As you can tell from the previous special cases, there exist many different specialized cases of
two-frame structure-from-motion as well as many alternative appropriate techniques. The OpenGV
library developed by Kneip and Furgale (2014) contains open-source implementations of many of
these algorithms.15

11.3.3 Projective (uncalibrated) reconstruction

In many cases, such as when trying to build a 3D model from internet or legacy photos taken by
unknown cameras without any EXIF tags, we do not know ahead of time the intrinsic calibration
parameters associated with the input images. In such situations, we can still estimate a two-frame
reconstruction, although the true metric structure may not be available, e.g., orthogonal lines or
planes in the world may not end up being reconstructed as orthogonal.

Consider the derivations we used to estimate the essential matrix E (11.30–11.32). In the un-
calibrated case, we do not know the calibration matrices Kj , so we cannot use the normalized ray
directions x̂j = K−1j xj . Instead, we have access only to the image coordinates xj , and so the
essential matrix equation (11.30) becomes

x̂T1 Ex̂1 = xT1 K−T1 EK−10 x0 = xT1 Fx0 = 0, (11.48)

where
F = K−T1 EK−10 (11.49)

is called the fundamental matrix (Faugeras 1992; Hartley, Gupta, and Chang 1992; Hartley and
Zisserman 2004).

Like the essential matrix, the fundamental matrix is (in principle) rank two,

F = UΣVT =
[
u0 u1 e1

]

σ0

σ1
0

vT0
vT1
eT0

 . (11.50)

Its smallest left singular vector indicates the epipole e1 in the image 1 and its smallest right singular
vector is e0 (Figure 11.11). The fundamental matrix can be factored into a skew-symmetric cross
product matrix [e]× and a homography H̃,

F = [e]×H̃. (11.51)

The homography H̃, which in principle from (11.49) should equal

H̃ = K−T1 RK−10 , (11.52)

cannot be uniquely recovered from F, as any homography of the form H̃′ = H̃ + evT results in the
same F matrix. (Note that [e]× annihilates any multiple of e.)

Any one of these valid homographies H̃ maps some plane in the scene from one image to the
other. It is not possible to tell in advance which one it is without either selecting four or more co-
planar correspondences to compute H̃ as part of the F estimation process (in a manner analogous
to guessing a rotation for E) or mapping all points in one image through H̃ and seeing which ones

15https://laurentkneip.github.io/opengv

https://laurentkneip.github.io/opengv

566 11 Structure from motion and SLAM

line up with their corresponding locations in the other. The resulting representation is often referred
to as plane plus parallax (Kumar, Anandan, and Hanna 1994; Sawhney 1994) and is described in
more detail in Section 2.1.4.

To create a projective reconstruction of the scene, we can pick any valid homography H̃ that
satisfies Equation (11.49). For example, following a technique analogous to Equations (11.40–
11.44), we get

F = [e]×H̃ = SZR90◦S
T H̃ = UΣVT (11.53)

and hence
H̃ = URT

90◦Σ̂VT , (11.54)

where Σ̂ is the singular value matrix with the smallest value replaced by a reasonable alternative
(say, the middle value).16 We can then form a pair of camera matrices

P0 = [I|0] and P0 = [H̃|e], (11.55)

from which a projective reconstruction of the scene can be computed using triangulation (Sec-
tion 11.2.4).

While the projective reconstruction may not be useful on its own, it can often be upgraded
to an affine or metric reconstruction, as described below. Even without this step, however, the
fundamental matrix F can be very useful in finding additional correspondences, as they must all lie
on corresponding epipolar lines, i.e., any feature x0 in image 0 must have its correspondence lying
on the associated epipolar line l1 = Fx0 in image 1, assuming that the point motions are due to a
rigid transformation.

11.3.4 Self-calibration

The results of structure from motion computation are much more useful if a metric reconstruction is
obtained, i.e., one in which parallel lines are parallel, orthogonal walls are at right angles, and the
reconstructed model is a scaled version of reality. Over the years, a large number of self-calibration
(or auto-calibration) techniques have been developed for converting a projective reconstruction into
a metric one, which is equivalent to recovering the unknown calibration matrices Kj associated with
each image (Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen 2010).

In situations where additional information is known about the scene, different methods may be
employed. For example, if there are parallel lines in the scene, three or more vanishing points,
which are the images of points at infinity, can be used to establish the homography for the plane at
infinity, from which focal lengths and rotations can be recovered. If two or more finite orthogonal
vanishing points have been observed, the single-image calibration method based on vanishing points
(Section 11.1.1) can be used instead.

In the absence of such external information, it is not possible to recover a fully parameterized
independent calibration matrix Kj for each image from correspondences alone. To see this, consider
the set of all camera matrices Pj = Kj [Rj |tj] projecting world coordinates pi = (Xi, Yi, Zi,Wi)

into screen coordinates xij ∼ Pjpi. Now consider transforming the 3D scene {pi} through an
arbitrary 4 × 4 projective transformation H̃, yielding a new model consisting of points p′i = H̃pi.
Post-multiplying each Pj matrix by H̃−1 still produces the same screen coordinates and a new set
calibration matrices can be computed by applying RQ decomposition to the new camera matrix
P′j = PjH̃

−1.

16Hartley and Zisserman (2004, p. 256) recommend using H̃ = [e]×F (Luong and Viéville 1996), which places the
camera on the plane at infinity.

11.3 Two-frame structure from motion 567

For this reason, all self-calibration methods assume some restricted form of the calibration ma-
trix, either by setting or equating some of their elements or by assuming that they do not vary over
time. While most of the techniques discussed by Hartley and Zisserman (2004); Moons, Van Gool,
and Vergauwen (2010) require three or more frames, in this section we present a simple technique
that can recover the focal lengths (f0, f1) of both images from the fundamental matrix F in a two-
frame reconstruction (Hartley and Zisserman 2004, p. 472).

To accomplish this, we assume that the camera has zero skew, a known aspect ratio (usually
set to 1), and a known image center, as in Equation (2.59). How reasonable is this assumption in
practice? The answer, as with many questions, is “it depends”.

If absolute metric accuracy is required, as in photogrammetry applications, it is imperative to
pre-calibrate the cameras using one of the techniques from Section 11.1 and to use ground control
points to pin down the reconstruction. If instead, we simply wish to reconstruct the world for
visualization or image-based rendering applications, as in the Photo Tourism system of Snavely,
Seitz, and Szeliski (2006), this assumption is quite reasonable in practice.

Most cameras today have square pixels and an image center near the middle of the image, and are
much more likely to deviate from a simple camera model due to radial distortion (Section 11.1.4),
which should be compensated for whenever possible. The biggest problems occur when images
have been cropped off-center, in which case the image center will no longer be in the middle, or
when perspective pictures have been taken of a different picture, in which case a general camera
matrix becomes necessary.17

Given these caveats, the two-frame focal length estimation algorithm based on the Kruppa equa-
tions developed by Hartley and Zisserman (2004, p. 456) proceeds as follows. Take the left and right
singular vectors {u0,u1,v0,v1} of the fundamental matrix F (11.50) and their associated singular
values {σ0, σ1} and form the following set of equations:

uT1 D0u1

σ2
0v

T
0 D1v0

= − uT0 D0u1

σ0σ1vT0 D1v1
=

uT0 D0u0

σ2
1v

T
1 D1v1

, (11.56)

where the two matrices

Dj = KjK
T
j = diag(f2j , f

2
j , 1) =

f2j

f2j
1

 (11.57)

encode the unknown focal lengths. For simplicity, let us rewrite each of the numerators and denom-
inators in (11.56) as

eij0(f20) = uTi D0uj = aij + bijf
2
0 , (11.58)

eij1(f21) = σiσjv
T
i D1vj = cij + dijf

2
1 . (11.59)

Notice that each of these is affine (linear plus constant) in either f20 or f21 . Hence, we can cross-
multiply these equations to obtain quadratic equations in f2j , which can readily be solved. (See also
the work by Bougnoux (1998) and Kanatani and Matsunaga (2000) for some alternative formula-
tions.)

An alternative solution technique is to observe that we have a set of three equations related by
an unknown scalar λ, i.e.,

eij0(f20) = λeij1(f21) (11.60)

17In Photo Tourism, our system registered photographs of an information sign outside Notre Dame with real pictures of
the cathedral.

568 11 Structure from motion and SLAM

(Richard Hartley, personal communication, July 2009). These can readily be solved to yield (f20 , λf
2
1 , λ)

and hence (f0, f1).
How well does this approach work in practice? There are certain degenerate configurations,

such as when there is no rotation or when the optical axes intersect, when it does not work at
all. (In such a situation, you can vary the focal lengths of the cameras and obtain a deeper or
shallower reconstruction, which is an example of a bas-relief ambiguity (Section 11.4.5).) Hartley
and Zisserman (2004) recommend using techniques based on three or more frames. However, if you
find two images for which the estimates of (f20 , λf

2
1 , λ) are well conditioned, they can be used to

initialize a more complete bundle adjustment of all the parameters (Section 11.4.2). An alternative,
which is often used in systems such as Photo Tourism, is to use camera EXIF tags or generic default
values to initialize focal length estimates and refine them as part of bundle adjustment.

11.3.5 Application: View morphing

An interesting application of basic two-frame structure from motion is view morphing (also known
as view interpolation, see Section 14.1), which can be used to generate a smooth 3D animation from
one view of a 3D scene to another (Chen and Williams 1993; Seitz and Dyer 1996).

To create such a transition, you must first smoothly interpolate the camera matrices, i.e., the
camera positions, orientations, and focal lengths. While simple linear interpolation can be used
(representing rotations as quaternions (Section 2.1.3)), a more pleasing effect is obtained by easing
in and easing out the camera parameters, e.g., using a raised cosine, as well as moving the camera
along a more circular trajectory (Snavely, Seitz, and Szeliski 2006).

To generate in-between frames, either a full set of 3D correspondences needs to be established
(Section 12.3) or 3D models (proxies) must be created for each reference view. Section 14.1 de-
scribes several widely used approaches to this problem. One of the simplest is to just triangulate the
set of matched feature points in each image, e.g., using Delaunay triangulation. As the 3D points
are re-projected into their intermediate views, pixels can be mapped from their original source im-
ages to their new views using affine or projective mapping (Szeliski and Shum 1997). The final
image is then composited using a linear blend of the two reference images, as with usual morphing
(Section 3.6.3).

11.4 Multi-frame structure from motion

While two-frame techniques are useful for reconstructing sparse geometry from stereo image pairs
and for initializing larger-scale 3D reconstructions, most applications can benefit from the much
larger number of images that are usually available in photo collections and videos of scenes.

In this section, we briefly review an older technique called factorization, which can provide
useful solutions for short video sequences, and then turn to the more commonly used bundle ad-
justment approach, which uses non-linear least squares to obtain optimal solutions under general
camera configurations.

11.4.1 Factorization

When processing video sequences, we often get extended feature tracks (Section 7.1.5) from which
it is possible to recover the structure and motion using a process called factorization. Consider the
tracks generated by a rotating ping pong ball, which has been marked with dots to make its shape

11.4 Multi-frame structure from motion 569

(a) (b) (c)

Figure 11.13 3D reconstruction of a rotating ping pong ball using factorization (Tomasi and Kanade 1992) ©
1992 Springer: (a) sample image with tracked features overlaid; (b) subsampled feature motion stream; (c) two
views of the reconstructed 3D model.

and motion more discernable (Figure 11.13). We can readily see from the shape of the tracks that
the moving object must be a sphere, but how can we infer this mathematically?

It turns out that, under orthography or related models we discuss below, the shape and motion
can be recovered simultaneously using a singular value decomposition (Tomasi and Kanade 1992).
The details of how to do this are presented in the paper by Tomasi and Kanade (1992) and also in
the first edition of this book (Szeliski 2010, Section 7.3).

Once the rotation matrices and 3D point locations have been recovered, there still exists a bas-
relief ambiguity, i.e., we can never be sure if the object is rotating left to right or if its depth reversed
version is moving the other way. (This can be seen in the classic rotating Necker Cube visual
illusion.) Additional cues, such as the appearance and disappearance of points, or perspective effects,
both of which are discussed below, can be used to remove this ambiguity.

For motion models other than pure orthography, e.g., for scaled orthography or para-perspective,
the approach above must be extended in the appropriate manner. Such techniques are relatively
straightforward to derive from first principles; more details can be found in papers that extend the
basic factorization approach to these more flexible models (Poelman and Kanade 1997). Additional
extensions of the original factorization algorithm include multi-body rigid motion (Costeira and
Kanade 1995), sequential updates to the factorization (Morita and Kanade 1997), the addition of
lines and planes (Morris and Kanade 1998), and re-scaling the measurements to incorporate individ-
ual location uncertainties (Anandan and Irani 2002).

A disadvantage of factorization approaches is that they require a complete set of tracks, i.e., each
point must be visible in each frame, for the factorization approach to work. Tomasi and Kanade
(1992) deal with this problem by first applying factorization to smaller denser subsets and then
using known camera (motion) or point (structure) estimates to hallucinate additional missing values,
which allows them to incrementally incorporate more features and cameras. Huynh, Hartley, and
Heyden (2003) extend this approach to view missing data as special cases of outliers. Buchanan
and Fitzgibbon (2005) develop fast iterative algorithms for performing large matrix factorizations
with missing data. The general topic of principal component analysis (PCA) with missing data also
appears in other computer vision problems (Shum, Ikeuchi, and Reddy 1995; De la Torre and Black
2003; Gross, Matthews, and Baker 2006; Torresani, Hertzmann, and Bregler 2008; Vidal, Ma, and
Sastry 2016).

570 11 Structure from motion and SLAM

Perspective and projective factorization

Another disadvantage of regular factorization is that it cannot deal with perspective cameras. One
way to get around this problem is to perform an initial affine (e.g., orthographic) reconstruction and
to then correct for the perspective effects in an iterative manner (Christy and Horaud 1996). This
algorithm usually converges in three to five iterations, with the majority of the time spent in the SVD
computation.

An alternative approach, which does not assume partially calibrated cameras (known image cen-
ter, square pixels, and zero skew) is to perform a fully projective factorization (Sturm and Triggs
1996; Triggs 1996). In this case, the inclusion of the third row of the camera matrix in the measure-
ment matrix is equivalent to multiplying each reconstructed measurement xji = Mjpi by its inverse
(projective) depth ηji = d−1ji = 1/(Pj2pi) or, equivalently, multiplying each measured position by
its projective depth dji. In the original paper by Sturm and Triggs (1996), the projective depths dji
are obtained from two-frame reconstructions, while in later work (Triggs 1996; Oliensis and Hartley
2007), they are initialized to dji = 1 and updated after each iteration. Oliensis and Hartley (2007)
present an update formula that is guaranteed to converge to a fixed point. None of these authors
suggest actually estimating the third row of Pj as part of the projective depth computations. In any
case, it is unclear when a fully projective reconstruction would be preferable to a partially calibrated
one, especially if they are being used to initialize a full bundle adjustment of all the parameters.

One of the attractions of factorization methods is that they provide a “closed form” (sometimes
called a “linear”) method to initialize iterative techniques such as bundle adjustment. An alternative
initialization technique is to estimate the homographies corresponding to some common plane seen
by all the cameras (Rother and Carlsson 2002). In a calibrated camera setting, this can correspond to
estimating consistent rotations for all of the cameras, for example, using matched vanishing points
(Antone and Teller 2002). Once these have been recovered, the camera positions can then be ob-
tained by solving a linear system (Antone and Teller 2002; Rother and Carlsson 2002; Rother 2003).

11.4.2 Bundle adjustment

As we have mentioned several times before, the most accurate way to recover structure and motion
is to perform robust non-linear minimization of the measurement (re-projection) errors, which is
commonly known in the photogrammetry (and now computer vision) communities as bundle ad-
justment.18 Triggs, McLauchlan et al. (1999) provide an excellent overview of this topic, including
its historical development, pointers to the photogrammetry literature (Slama 1980; Atkinson 1996;
Kraus 1997), and subtle issues with gauge ambiguities. The topic is also treated in depth in text-
books and surveys on multi-view geometry (Faugeras and Luong 2001; Hartley and Zisserman 2004;
Moons, Van Gool, and Vergauwen 2010).

We have already introduced the elements of bundle adjustment in our discussion on iterative pose
estimation (Section 11.2.2), i.e., Equations (11.14–11.20) and Figure 11.7. The biggest difference
between these formulas and full bundle adjustment is that our feature location measurements xij
now depend not only on the point (track) index i but also on the camera pose index j,

xij = f(pi,Rj , cj ,Kj), (11.61)

18The term “bundle” refers to the bundles of rays connecting camera centers to 3D points and the term “adjustment” refers
to the iterative minimization of re-projection error. Alternative terms for this in the vision community include optimal motion
estimation (Weng, Ahuja, and Huang 1993) and non-linear least squares (Appendix A.3) (Taylor, Kriegman, and Anandan
1991; Szeliski and Kang 1994).

11.4 Multi-frame structure from motion 571

fC(x)
= Kx

fj

fP(x)
= p/z

fR(x)
= Rjx

qj

fT(x)
= x-cj

cj

piy(1)y(2)y(4)
fRD(x)
= ...

y(3)

κj

ρ(||x-xij||Σ)
eij

Σij

xij
~

xij^

^

Figure 11.14 A set of chained transforms for projecting a 3D point pi into a 2D measurement xij through a
series of transformations f (k), each of which is controlled by its own set of parameters. The dashed lines indicate
the flow of information as partial derivatives are computed during a backward pass. The formula for the radial
distortion function is fRD(x) = (1 + κ1r

2 + κ2r
4)x.

and that the 3D point positions pi are also being simultaneously updated. In addition, it is common
to add a stage for radial distortion parameter estimation (2.78),

fRD(x) = (1 + κ1r
2 + κ2r

4)x, (11.62)

if the cameras being used have not been pre-calibrated, as shown in Figure 11.14.
While most of the boxes (transforms) in Figure 11.14 have previously been explained (11.19),

the leftmost box has not. This box performs a robust comparison of the predicted and measured 2D
locations x̂ij and x̃ij after re-scaling by the measurement noise covariance Σij . In more detail, this
operation can be written as

rij = x̃ij − x̂ij , (11.63)

s2ij = rTijΣ
−1
ij rij , (11.64)

eij = ρ̂(s2ij), (11.65)

where ρ̂(r2) = ρ(r). The corresponding Jacobians (partial derivatives) can be written as

∂eij
∂s2ij

= ρ̂′(s2ij), (11.66)

∂s2ij
∂x̃ij

= Σ−1ij rij . (11.67)

The advantage of the chained representation introduced above is that it not only makes the com-
putations of the partial derivatives and Jacobians simpler but it can also be adapted to any camera
configuration. Consider for example a pair of cameras mounted on a robot that is moving around
in the world, as shown in Figure 11.15a. By replacing the rightmost two transformations in Fig-
ure 11.14 with the transformations shown in Figure 11.15b, we can simultaneously recover the po-
sition of the robot at each time and the calibration of each camera with respect to the rig, in addition
to the 3D structure of the world.

11.4.3 Exploiting sparsity

Large bundle adjustment problems, such as those involving reconstructing 3D scenes from thousands
of internet photographs (Snavely, Seitz, and Szeliski 2008b; Agarwal, Furukawa et al. 2010, 2011;
Snavely, Simon et al. 2010), can require solving non-linear least squares problems with millions of

572 11 Structure from motion and SLAM

pi
w

pi
r

(Rt
r,ct

r)

(Rj
c,cj

c)
Y

X

(a)

fR(x)
= Rj

cx

qj
c

fT(x)
= x-cj

c

cj
c

y(1)y(2)
fR(x)
= Rt

rx

qt
r

fT(x)
= x-ct

r

ct
r

pi
wy(0)pi

r

…

(b)

Figure 11.15 A camera rig and its associated transform chain. (a) As the mobile rig (robot) moves around in
the world, its pose with respect to the world at time t is captured by (Rr

t, c
r
t). Each camera’s pose with respect to

the rig is captured by (Rc
j , c

c
j). (b) A 3D point with world coordinates pw

i is first transformed into rig coordinates
pr
i , and then through the rest of the camera-specific chain, as shown in Figure 11.14.

measurements (feature matches) and tens of thousands of unknown parameters (3D point positions
and camera poses). Unless some care is taken, these kinds of problem can become intractable,
because the (direct) solution of dense least squares problems is cubic in the number of unknowns.

Fortunately, structure from motion is a bipartite problem in structure and motion. Each feature
point xij in a given image depends on one 3D point position pi and one 3D camera pose (Rj , cj).
This is illustrated in Figure 11.16a, where each circle (1–9) indicates a 3D point, each square (A–
D) indicates a camera, and lines (edges) indicate which points are visible in which cameras (2D
features). If the values for all the points are known or fixed, the equations for all the cameras
become independent, and vice versa.

If we order the structure variables before the motion variables in the Hessian matrix A (and hence
also the right-hand side vector b), we obtain a structure for the Hessian shown in Figure 11.16c.19

When such a system is solved using sparse Cholesky factorization (see Appendix A.4) (Björck 1996;
Golub and Van Loan 1996), the fill-in occurs in the smaller motion Hessian Acc (Szeliski and Kang
1994; Triggs, McLauchlan et al. 1999; Hartley and Zisserman 2004; Lourakis and Argyros 2009;
Engels, Stewénius, and Nistér 2006). More recent papers (Byröd and Åström 2009; Jeong, Nistér et
al. 2010; Agarwal, Snavely et al. 2010; Jeong, Nistér et al. 2012) explore the use of iterative (conju-
gate gradient) techniques for the solution of bundle adjustment problems. Other papers explore the
use of parallel multicore algorithms (Wu, Agarwal et al. 2011).

In more detail, the reduced motion Hessian is computed using the Schur complement,

A′CC = ACC −AT
PCA−1PPApc, (11.68)

where APP is the point (structure) Hessian (the top left block of Figure 11.16c), APC is the point-

19This ordering is preferable when there are fewer cameras than 3D points, which is the usual case. The exception is when
we are tracking a small number of points through many video frames, in which case this ordering should be reversed.

11.4 Multi-frame structure from motion 573

A B C D

1

2

3

4

5

6
7

8
9

1 2 3 4 5 6 7 8 9 A B C D
1A
1B
2A
2B
3A
3B
4A
4B
4C
5B
5C
6B
6C
7C
7D
8C
8D
9C
9D

1 2 3 4 5 6 7 8 9 A B C D
1
2
3
4
5
6
7
8
9
A
B
C
D

(a) (b) (c)

Figure 11.16 (a) Bipartite graph for a toy structure from motion problem and (b) its associated Jacobian J and
(c) Hessian A. Numbers indicate 3D points and letters indicate cameras. The dashed arcs and light blue squares
indicate the fill-in that occurs when the structure (point) variables are eliminated.

camera Hessian (the top right block), and ACC and A′CC are the motion Hessians before and after
the point variable elimination (the bottom right block of Figure 11.16c). Notice that A′CC has a
non-zero entry between two cameras if they see any 3D point in common. This is indicated with
dashed arcs in Figure 11.16a and light blue squares in Figure 11.16c.

Whenever there are global parameters present in the reconstruction algorithm, such as camera
intrinsics that are common to all of the cameras, or camera rig calibration parameters such as those
shown in Figure 11.15, they should be ordered last (placed along the right and bottom edges of A)
to reduce fill-in.

Engels, Stewénius, and Nistér (2006) provide a nice recipe for sparse bundle adjustment, includ-
ing all the steps needed to initialize the iterations, as well as typical computation times for a system
that uses a fixed number of backward-looking frames in a real-time setting. They also recommend
using homogeneous coordinates for the structure parameters pi, which is a good idea, as it avoids
numerical instabilities for points near infinity.

Bundle adjustment is now the standard method of choice for most structure-from-motion prob-
lems and is commonly applied to problems with hundreds of weakly calibrated images and tens of
thousands of points. (Much larger problems are commonly solved in photogrammetry and aerial
imagery, but these are usually carefully calibrated and make use of surveyed ground control points.)
However, as the problems become larger, it becomes impractical to re-solve full bundle adjustment
problems at each iteration.

One approach to dealing with this problem is to use an incremental algorithm, where new cam-
eras are added over time. (This makes particular sense if the data is being acquired from a video
camera or moving vehicle (Nistér, Naroditsky, and Bergen 2006; Pollefeys, Nistér et al. 2008).) A
Kalman filter can be used to incrementally update estimates as new information is acquired. Unfor-
tunately, such sequential updating is only statistically optimal for linear least squares problems.

For non-linear problems such as structure from motion, an extended Kalman filter, which lin-
earizes measurement and update equations around the current estimate, needs to be used (Gelb
1974; Viéville and Faugeras 1990). To overcome this limitation, several passes can be made through
the data (Azarbayejani and Pentland 1995). Because points disappear from view (and old cam-
eras become irrelevant), a variable state dimension filter (VSDF) can be used to adjust the set of
state variables over time, for example, by keeping only cameras and point tracks seen in the last
k frames (McLauchlan 2000). A more flexible approach to using a fixed number of frames is to

574 11 Structure from motion and SLAM

propagate corrections backwards through points and cameras until the changes on parameters are
below a threshold (Steedly and Essa 2001). Variants of these techniques, including methods that
use a fixed window for bundle adjustment (Engels, Stewénius, and Nistér 2006) or select keyframes
for doing full bundle adjustment (Klein and Murray 2008) are now commonly used in simultaneous
localization and mapping (SLAM) and augmented-reality applications, as discussed in Section 11.5.

When maximum accuracy is required, it is still preferable to perform a full bundle adjustment
over all the frames. To control the resulting computational complexity, one approach is to lock
together subsets of frames into locally rigid configurations and to optimize the relative positions of
these cluster (Steedly, Essa, and Dellaert 2003). A different approach is to select a smaller number
of frames to form a skeletal set that still spans the whole dataset and produces reconstructions of
comparable accuracy (Snavely, Seitz, and Szeliski 2008b). We describe this latter technique in more
detail in Section 11.4.6, where we discuss applications of structure from motion to large image sets.
Additional techniques for efficiently solving large structure from motion and SLAM systems can

be found in the survey by Dellaert and Kaess (2017); Dellaert (2021).
While bundle adjustment and other robust non-linear least squares techniques are the methods of

choice for most structure-from-motion problems, they suffer from initialization problems, i.e., they
can get stuck in local energy minima if not started sufficiently close to the global optimum. Many
systems try to mitigate this by being conservative in what reconstruction they perform early on and
which cameras and points they add to the solution (Section 11.4.6). An alternative, however, is to
re-formulate the problem using a norm that supports the computation of global optima.

Kahl and Hartley (2008) describe techniques for using L∞ norms in geometric reconstruction
problems. The advantage of such norms is that globally optimal solutions can be efficiently com-
puted using second-order cone programming (SOCP). The disadvantage is that L∞ norms are par-
ticularly sensitive to outliers and so must be combined with good outlier rejection techniques before
they can be used.

A large number of high-quality open source bundle adjustment packages have been devel-
oped, including the Ceres Solver,20 Multicore Bundle Adjustment (Wu, Agarwal et al. 2011),21 the
Sparse Levenberg-Marquardt based non-linear least squares optimizer and bundle adjuster,22 and
OpenSfM.23 You can find more pointers to open-source software in Appendix Appendix C.2 and
reviews of open-source and commercial photogrammetry software24 as well as examples of their
application25 on the web.

11.4.4 Application: Match move

One of the neatest applications of structure from motion is to estimate the 3D motion of a video
or film camera, along with the geometry of a 3D scene, in order to superimpose 3D graphics or
computer-generated images (CGI) on the scene. In the visual effects industry, this is known as the
match move problem (Roble 1999), as the motion of the synthetic 3D camera used to render the
graphics must be matched to that of the real-world camera. For very small motions, or motions
involving pure camera rotations, one or two tracked points can suffice to compute the necessary
visual motion. For planar surfaces moving in 3D, four points are needed to compute the homography,

20http://ceres-solver.org
21https://grail.cs.washington.edu/projects/mcba
22https://github.com/chzach/SSBA
23https://www.opensfm.org
24https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020
25https://beforesandafters.com/2020/07/06/tales-from-on-set-lidar-scanning-for-joker-and-john-wick-3, https:

//rd.nytimes.com/projects/reconstructing-journalistic-scenes-in-3d

http://ceres-solver.org
https://grail.cs.washington.edu/projects/mcba
https://github.com/chzach/SSBA
https://www.opensfm.org
https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020
https://beforesandafters.com/2020/07/06/tales-from-on-set-lidar-scanning-for-joker-and-john-wick-3
https://rd.nytimes.com/projects/reconstructing-journalistic-scenes-in-3d
https://rd.nytimes.com/projects/reconstructing-journalistic-scenes-in-3d

11.4 Multi-frame structure from motion 575

which can then be used to insert planar overlays, e.g., to replace the contents of advertising billboards
during sporting events.

The general version of this problem requires the estimation of the full 3D camera pose along
with the focal length (zoom) of the lens and potentially its radial distortion parameters (Roble 1999).
When the 3D structure of the scene is known ahead of time, pose estimation techniques such as view
correlation (Bogart 1991) or through-the-lens camera control (Gleicher and Witkin 1992) can be
used, as described in Section 11.4.4.

For more complex scenes, it is usually preferable to recover the 3D structure simultaneously with
the camera motion using structure-from-motion techniques. The trick with using such techniques
is that to prevent any visible jitter between the synthetic graphics and the actual scene, features
must be tracked to very high accuracy and ample feature tracks must be available in the vicinity
of the insertion location. Some of today’s best known match move software packages, such as the
boujou package from 2d3, which won an Emmy award in 2002, originated in structure-from-motion
research in the computer vision community (Fitzgibbon and Zisserman 1998).

11.4.5 Uncertainty and ambiguities

Because structure from motion involves the estimation of so many highly coupled parameters, of-
ten with no known “ground truth” components, the estimates produced by structure from motion
algorithms can often exhibit large amounts of uncertainty (Szeliski and Kang 1997; Wilson and
Wehrwein 2020). An example of this is the classic bas-relief ambiguity, which makes it hard to si-
multaneously estimate the 3D depth of a scene and the amount of camera motion (Oliensis 2005).26

As mentioned before, a unique coordinate frame and scale for a reconstructed scene cannot
be recovered from monocular visual measurements alone. (When a stereo rig is used, the scale
can be recovered if we know the distance (baseline) between the cameras.) This seven-degree-of-
freedom (coordinate frame and scale) gauge ambiguity makes it tricky to compute the covariance
matrix associated with a 3D reconstruction (Triggs, McLauchlan et al. 1999; Kanatani and Morris
2001). A simple way to compute a covariance matrix that ignores the gauge freedom (indeterminacy)
is to throw away the seven smallest eigenvalues of the information matrix (inverse covariance),
whose values are equivalent to the problem Hessian A up to noise scaling (see Section 8.1.4 and
Appendix B.6). After we do this, the resulting matrix can be inverted to obtain an estimate of the
parameter covariance.

Szeliski and Kang (1997) use this approach to visualize the largest directions of variation in typ-
ical structure from motion problems. Not surprisingly, they find that, ignoring the gauge freedoms,
the greatest uncertainties for problems such as observing an object from a small number of nearby
viewpoints are in the depths of the 3D structure relative to the extent of the camera motion.27

It is also possible to estimate local or marginal uncertainties for individual parameters, which
corresponds simply to taking block sub-matrices from the full covariance matrix. Under certain con-
ditions, such as when the camera poses are relatively certain compared to 3D point locations, such
uncertainty estimates can be meaningful. However, in many cases, individual uncertainty measures
can mask the extent to which reconstruction errors are correlated, which is why looking at the first
few modes of greatest joint variation can be helpful.

26Bas-relief refers to a kind of sculpture in which objects, often on ornamental friezes, are sculpted with less depth than
they actually occupy. When lit from above by sunlight, they appear to have true 3D depth because of the ambiguity between
relative depth and the angle of the illuminant (Section 13.1.1).

27A good way to minimize the amount of such ambiguities is to use wide field of view cameras (Antone and Teller 2002;
Levin and Szeliski 2006).

576 11 Structure from motion and SLAM

Figure 11.17 Incremental structure from motion (Snavely, Seitz, and Szeliski 2006) © 2006 ACM. Starting
with an initial two-frame reconstruction of Trevi Fountain, batches of images are added using pose estimation,
and their positions (along with the 3D model) are refined using bundle adjustment.

The other way in which gauge ambiguities affect structure from motion and, in particular, bundle
adjustment is that they make the system Hessian matrix A rank-deficient and hence impossible to
invert. A number of techniques have been proposed to mitigate this problem (Triggs, McLauchlan
et al. 1999; Bartoli 2003). In practice, however, it appears that simply adding a small amount of
the Hessian diagonal λdiag(A) to the Hessian A itself, as is done in the Levenberg–Marquardt
non-linear least squares algorithm (Appendix A.3), usually works well.

11.4.6 Application: Reconstruction from internet photos

The most widely used application of structure from motion is in the reconstruction of 3D objects
and scenes from video sequences and collections of images (Pollefeys and Van Gool 2002). The last
two decades have seen an explosion of techniques for performing this task automatically without
the need for any manual correspondence or pre-surveyed ground control points. A lot of these
techniques assume that the scene is taken with the same camera and hence the images all have the
same intrinsics (Fitzgibbon and Zisserman 1998; Koch, Pollefeys, and Van Gool 2000; Schaffalitzky
and Zisserman 2002; Tuytelaars and Van Gool 2004; Pollefeys, Nistér et al. 2008; Moons, Van Gool,
and Vergauwen 2010). Many of these techniques take the results of the sparse feature matching and
structure from motion computation and then compute dense 3D surface models using multi-view
stereo techniques (Section 12.7) (Koch, Pollefeys, and Van Gool 2000; Pollefeys and Van Gool
2002; Pollefeys, Nistér et al. 2008; Moons, Van Gool, and Vergauwen 2010; Schönberger, Zheng et
al. 2016).

An exciting innovation in this space has been the application of structure from motion and multi-
view stereo techniques to thousands of images taken from the internet, where very little is known
about the cameras taking the photographs (Snavely, Seitz, and Szeliski 2008a). Before the structure
from motion computation can begin, it is first necessary to establish sparse correspondences between
different pairs of images and to then link such correspondences into feature tracks, which associate
individual 2D image features with global 3D points. Because the O(N2) comparison of all pairs of
images can be very slow, a number of techniques have been developed in the recognition community
to make this process faster (Section 7.1.4) (Nistér and Stewénius 2006; Philbin, Chum et al. 2008;
Li, Wu et al. 2008; Chum, Philbin, and Zisserman 2008; Chum and Matas 2010a; Arandjelović and
Zisserman 2012).

To begin the reconstruction process, it is important to select a good pair of images, where there
are both a large number of consistent matches (to lower the likelihood of incorrect correspondences)

11.4 Multi-frame structure from motion 577

(a) (b) (c)

Figure 11.18 3D reconstructions produced by the incremental structure from motion algorithm developed by
Snavely, Seitz, and Szeliski (2006) © 2006 ACM: (a) cameras and point cloud from Trafalgar Square; (b) cameras
and points overlaid on an image from the Great Wall of China; (c) overhead view of a reconstruction of the Old
Town Square in Prague registered to an aerial photograph.

and a significant amount of out-of-plane parallax,28 to ensure that a stable reconstruction can be
obtained (Snavely, Seitz, and Szeliski 2006). The EXIF tags associated with the photographs can
be used to get good initial estimates for camera focal lengths, although this is not always strictly
necessary, because these parameters are re-adjusted as part of the bundle adjustment process.

Once an initial pair has been reconstructed, the pose of cameras that see a sufficient number of
the resulting 3D points can be estimated (Section 11.2) and the complete set of cameras and feature
correspondences can be used to perform another round of bundle adjustment. Figure 11.17 shows
the progression of the incremental bundle adjustment algorithm, where sets of cameras are added
after each successive round of bundle adjustment, while Figure 11.18 shows some additional results.
An alternative to this kind of seed and grow approach is to first reconstruct triplets of images and
then hierarchically merge them into larger collections (Fitzgibbon and Zisserman 1998).

Unfortunately, as the incremental structure from motion algorithm continues to add more cam-
eras and points, it can become extremely slow. The direct solution of a dense system of O(N)

equations for the camera pose updates can take O(N3) time; while structure from motion problems
are rarely dense, scenes such as city squares have a high percentage of cameras that see points in
common. Re-running the bundle adjustment algorithm after every few camera additions results in a
quartic scaling of the run time with the number of images in the dataset. One approach to solving
this problem is to select a smaller number of images for the original scene reconstruction and to fold
in the remaining images at the very end.

Snavely, Seitz, and Szeliski (2008b) develop an algorithm for computing such a skeletal set of
images, which is guaranteed to produce a reconstruction whose error is within a bounded factor
of the optimal reconstruction accuracy. Their algorithm first evaluates all pairwise uncertainties
(position covariances) between overlapping images and then chains them together to estimate a
lower bound for the relative uncertainty of any distant pair. The skeletal set is constructed so that the
maximal uncertainty between any pair grows by no more than a constant factor. Figure 11.19 shows
an example of the skeletal set computed for 784 images of the Pantheon in Rome. As you can see,
even though the skeletal set contains just a fraction of the original images, the shapes of the skeletal
set and full bundle adjusted reconstructions are virtually indistinguishable.

Since the initial publication on large-scale internet photo reconstruction by Snavely, Seitz, and

28A simple way to compute this is to robustly fit a homography to the correspondences and measure reprojection errors.

578 11 Structure from motion and SLAM

(a) (b) (c) (d) (e)

Figure 11.19 Large-scale structure from motion using skeletal sets (Snavely, Seitz, and Szeliski 2008b) © 2008
IEEE: (a) original match graph for 784 images; (b) skeletal set containing 101 images; (c) top-down view of scene
(Pantheon) reconstructed from the skeletal set; (d) reconstruction after adding in the remaining images using pose
estimation; (e) final bundle adjusted reconstruction, which is almost identical.

Szeliski (2008a,b), there have been a large number of follow-on papers exploring even larger datasets
and more efficient algorithms (Agarwal, Furukawa et al. 2010, 2011; Frahm, Fite-Georgel et al.
2010; Wu 2013; Heinly, Schönberger et al. 2015; Schönberger and Frahm 2016). Among these, the
COLMAP open source structure from motion and multi-view stereo system is currently one of the
most widely used, as it can reconstruct extremely large scenes, such as the one shown in Figure 11.20
(Schönberger and Frahm 2016).29

The ability to automatically reconstruct 3D models from large, unstructured image collections
has also brought to light subtle problems with traditional structure from motion algorithms, in-
cluding the need to deal with repetitive and duplicate structures (Wu, Frahm, and Pollefeys 2010;
Roberts, Sinha et al. 2011; Wilson and Snavely 2013; Heinly, Dunn, and Frahm 2014) as well as
dynamic visual objects such as people (Ji, Dunn, and Frahm 2014; Zheng, Wang et al. 2014). It has
also opened up a wide variety of additional applications, including the ability to automatically find
and label locations and regions of interest (Simon, Snavely, and Seitz 2007; Simon and Seitz 2008;
Gammeter, Bossard et al. 2009) and to cluster large image collections so that they can be automati-
cally labeled (Li, Wu et al. 2008; Quack, Leibe, and Van Gool 2008). Some additional applications
related to image-based rendering are discussed in more detail in Section 14.1.2.

11.4.7 Global structure from motion

While incremental bundle adjustment algorithms are still the most commonly used approaches for
large-scale reconstruction (Schönberger and Frahm 2016), they can be quite slow because of the
need to successively solve increasing larger optimization problems. An alternative to iteratively
growing the solution is to solve for all of the structure and motion unknowns in a single global step,
once the feature correspondences have been established.

One approach to this is to set up a linear system of equations that relate all of the camera centers
and 3D point, line, and plane equations to the known 2D feature or line positions (Kaucic, Hartley,
and Dano 2001; Rother 2003). However, these approaches require a reference plane (e.g., building
wall) to be visible and matched in all images, and are also sensitive to distant points, which must
first be discarded. These approaches, while theoretically interesting, are not widely used.

29https://colmap.github.io

https://colmap.github.io

11.4 Multi-frame structure from motion 579

(a)

(b)

Figure 11.20 Large-scale reconstructions created with the COLMAP structure from motion and multi-view
stereo system: (a) sparse model of central Rome constructed from 21K photos (Schönberger and Frahm 2016) ©
2016 IEEE; (b) dense models of several landmarks produced with the MVS pipeline (Schönberger, Zheng et al.
2016) © 2016 Springer.

A second approach, first proposed by Govindu (2001), starts by computing pairwise Euclidean
structure and motion reconstructions using the techniques discussed in Section 11.3.30 Pairwise ro-
tation estimates are then used to compute a globally consistent orientation estimate for each camera,
using a process known as rotation averaging (Govindu 2001; Martinec and Pajdla 2007; Chatter-
jee and Govindu 2013; Hartley, Trumpf et al. 2013; Dellaert, Rosen et al. 2020).31 In a final step,
the camera positions are determined by scaling each of the local camera translations, after they have
been rotated into a global coordinate system (Govindu 2001, 2004; Martinec and Pajdla 2007; Sinha,
Steedly, and Szeliski 2010). In the robotics (SLAM) community, this last step is called pose graph
optimization (Carlone, Tron et al. 2015).

Figure 11.21 shows a more recent pipeline implementing this concept, which includes the initial
feature point extraction, matching, and two-view reconstruction, followed by global rotation esti-
mation, and then a final solve for the camera centers. The pipeline developed by Sinha, Steedly,
and Szeliski (2010) also matches vanishing points, when these can be found, in order to eliminate
rotational drift in the global orientation estimates.

While there are several alternative algorithms for estimating the global rotations, an even wider
variety of algorithms exists for estimating the camera centers. After rotating all of the cameras by
their global rotation estimate, we can compute globally oriented local translation direction in each
reconstructed pair ij and denote this as t̂ij . The fundamental relationship between the unknown
camera centers {ci} and the translation directions can be written as

cj − ci = sij t̂ij (11.69)

30While almost of all of these techniques assume known calibration (focal lengths) for each image, Sweeney, Kneip et al.
(2015) estimate focal lengths from refined fundamental matrices.

31We have already introduced the concept of rotation averaging when we discussed global registration of panoramas in
Section 8.3.1.

580 11 Structure from motion and SLAM

Figure 11.21 Global structure from motion pipeline from Sinha, Steedly, and Szeliski (2010) © 2010 Springer.
Vanishing point and feature-based pairwise rotation estimates are used to first estimate a globally consistent set of
orientations (rotations). The scales of all pairwise reconstructions along with the camera center positions are then
estimated in a single linear least squares minimization.

or
t̂ij × (cj − ci) = 0 (11.70)

(Govindu 2001). The first set of equations can be solved to obtain the camera centers {ci} and the
scale variables sij , while the second directly produces only the camera positions. In addition to
being homogeneous (only known up to a scale), the camera centers also have a translational gauge
freedom, i.e., they can all be translated (but this is always the case with structure from motion).

Because these equations minimize the algebraic alignment between local translation directions
and global camera center differences, they do not correctly weight reconstructions with different
baselines. Several alternatives have been proposed to remediate this (Govindu 2004; Sinha, Steedly,
and Szeliski 2010; Jiang, Cui, and Tan 2013; Moulon, Monasse, and Marlet 2013; Wilson and
Snavely 2014; Cui and Tan 2015; Özyeşil and Singer 2015; Holynski, Geraghty et al. 2020). Some
of these techniques also cannot handle collinear cameras, as in the original formulation, as well
as some more recent ones, we can shift cameras along a collinear segment and still satisfy the
directional constraints.

For community photo collections taken over a large area such as a plaza, this is not a crucial
problem (Wilson and Snavely 2014). However, for reconstructions from video or walks around or
through a building, the collinear camera problem is a real issue. Sinha, Steedly, and Szeliski (2010)
handle this by estimating the relative scales of pairwise reconstructions that share a common camera
and then use these relative scales to constraint all of the global scales.

Two open-source structure from motion pipelines that include some of these global techniques
are Theia32 (Sweeney, Hollerer, and Turk 2015) and OpenMVG33 (Moulon, Monasse et al. 2016).
The papers have nice reviews of the related algorithms.

11.4.8 Constrained structure and motion

The most general algorithms for structure from motion make no prior assumptions about the ob-
jects or scenes that they are reconstructing. In many cases, however, the scene contains higher-level
geometric primitives, such as lines and planes. These can provide information complementary to
interest points and also serve as useful building blocks for 3D modeling and visualization. Further-
more, these primitives are often arranged in particular relationships, i.e., many lines and planes are
either parallel or orthogonal to each other (Zhou, Furukawa, and Ma 2019; Zhou, Furukawa et al.
2020). This is particularly true of architectural scenes and models, which we study in more detail in
Section 13.6.1.

Sometimes, instead of exploiting regularity in the scene structure, it is possible to take advantage
of a constrained motion model. For example, if the object of interest is rotating on a turntable

32http://www.theia-sfm.org
33https://github.com/openMVG/openMVG

http://www.theia-sfm.org
https://github.com/openMVG/openMVG

11.4 Multi-frame structure from motion 581

Figure 11.22 Two images of a toy house along with their matched 3D line segments (Schmid and Zisserman
1997) © 1997 Springer.

(Szeliski 1991b), i.e., around a fixed but unknown axis, specialized techniques can be used to recover
this motion (Fitzgibbon, Cross, and Zisserman 1998). In other situations, the camera itself may be
moving in a fixed arc around some center of rotation (Shum and He 1999). Specialized capture
setups, such as mobile stereo camera rigs or moving vehicles equipped with multiple fixed cameras,
can also take advantage of the knowledge that individual cameras are (mostly) fixed with respect to
the capture rig, as shown in Figure 11.15.34

Line-based techniques

It is well known that pairwise epipolar geometry cannot be recovered from line matches alone, even
if the cameras are calibrated. To see this, think of projecting the set of lines in each image into a set
of 3D planes in space. You can move the two cameras around into any configuration you like and
still obtain a valid reconstruction for 3D lines.

When lines are visible in three or more views, the trifocal tensor can be used to transfer lines
from one pair of images to another (Hartley and Zisserman 2004). The trifocal tensor can also be
computed on the basis of line matches alone.

Schmid and Zisserman (1997) describe a widely used technique for matching 2D lines based
on the average of 15 × 15 pixel correlation scores evaluated at all pixels along their common line
segment intersection.35 In their system, the epipolar geometry is assumed to be known, e.g., com-
puted from point matches. For wide baselines, all possible homographies corresponding to planes
passing through the 3D line are used to warp pixels and the maximum correlation score is used. For
triplets of images, the trifocal tensor is used to verify that the lines are in geometric correspondence
before evaluating the correlations between line segments. Figure 11.22 shows the results of using
their system.

Bartoli and Sturm (2003) describe a complete system for extending three view relations (trifocal
tensors) computed from manual line correspondences to a full bundle adjustment of all the line and
camera parameters. The key to their approach is to use the Plücker coordinates (2.12) to parameterize
lines and to directly minimize reprojection errors. It is also possible to represent 3D line segments
by their endpoints and to measure either the reprojection error perpendicular to the detected 2D line
segments in each image or the 2D errors using an elongated uncertainty ellipse aligned with the line
segment direction (Szeliski and Kang 1994).

34Because of mechanical compliance and jitter, it may be prudent to allow for a small amount of individual camera rotation
around a nominal position.

35Because lines often occur at depth or orientation discontinuities, it may be preferable to compute correlation scores (or
to match color histograms (Bay, Ferrari, and Van Gool 2005)) separately on each side of the line.

582 11 Structure from motion and SLAM

Instead of reconstructing 3D lines, Bay, Ferrari, and Van Gool (2005) use RANSAC to group
lines into likely coplanar subsets. Four lines are chosen at random to compute a homography, which
is then verified for these and other plausible line segment matches by evaluating color histogram-
based correlation scores. The 2D intersection points of lines belonging to the same plane are then
used as virtual measurements to estimate the epipolar geometry, which is more accurate than using
the homographies directly.

An alternative to grouping lines into coplanar subsets is to group lines by parallelism. Whenever
three or more 2D lines share a common vanishing point, there is a good likelihood that they are
parallel in 3D. By finding multiple vanishing points in an image (Section 7.4.3) and establishing
correspondences between such vanishing points in different images, the relative rotations between
the various images (and often the camera intrinsics) can be directly estimated (Section 11.1.1).
Finding an orthogonal set of vanishing points and using these to establish a global orientation is
often called invoking the Manhattan world assumption (Coughlan and Yuille 1999). A generalized
version where streets can meet at non-orthogonal angles was called the Atlanta world by Schindler
and Dellaert (2004).

Shum, Han, and Szeliski (1998) describe a 3D modeling system that constructs calibrated panora-
mas from multiple images (Section 11.4.2) and then has the user draw vertical and horizontal lines in
the image to demarcate the boundaries of planar regions. The lines are used to establish an absolute
rotation for each panorama and are then used (along with the inferred vertices and planes) to build a
3D structure, which can be recovered up to scale from one or more images (Figure 13.20).

A fully automated approach to line-based structure from motion is presented by Werner and
Zisserman (2002). In their system, they first find lines and group them by common vanishing points
in each image (Section 7.4.3). The vanishing points are then used to calibrate the camera, i.e., to
perform a “metric upgrade” (Section 11.1.1). Lines corresponding to common vanishing points are
then matched using both appearance (Schmid and Zisserman 1997) and trifocal tensors. These lines
are then used to infer planes and a block-structured model for the scene, as described in more detail
in Section 13.6.1. More recent work using deep neural networks can also be used to construct 3D
wireframe models from one or more images.

Plane-based techniques

In scenes that are rich in planar structures, e.g., in architecture, it is possible to directly estimate
homographies between different planes, using either feature-based or intensity-based methods. In
principle, this information can be used to simultaneously infer the camera poses and the plane equa-
tions, i.e., to compute plane-based structure from motion.

Luong and Faugeras (1996) show how a fundamental matrix can be directly computed from two
or more homographies using algebraic manipulations and least squares. Unfortunately, this approach
often performs poorly, because the algebraic errors do not correspond to meaningful reprojection
errors (Szeliski and Torr 1998).

A better approach is to hallucinate virtual point correspondences within the areas from which
each homography was computed and to feed them into a standard structure from motion algorithm
(Szeliski and Torr 1998). An even better approach is to use full bundle adjustment with explicit plane
equations, as well as additional constraints to force reconstructed co-planar features to lie exactly
on their corresponding planes. (A principled way to do this is to establish a coordinate frame for
each plane, e.g., at one of the feature points, and to use 2D in-plane parameterizations for the other
points.) The system developed by Shum, Han, and Szeliski (1998) shows an example of such an
approach, where the directions of lines and normals for planes in the scene are prespecified by the
user. In more recent work, Micusik and Wildenauer (2017) use planes as additional constraints

11.5 Simultaneous localization and mapping (SLAM) 583

Figure 11.23 In simultaneous localization and mapping (SLAM), the system simultaneously estimates the
positions of a robot and its nearby landmarks (Durrant-Whyte and Bailey 2006) © 2006 IEEE.

inside a bundle adjustment formulation. Other recent papers that use combinations of lines and/or
planes to reduce drift in 3D reconstructions include (Zhou, Zou et al. 2015), Li, Yao et al. (2018),
Yang and Scherer (2019), and Holynski, Geraghty et al. (2020).

11.5 Simultaneous localization and mapping (SLAM)

While the computer vision community has been studying structure from motion, i.e., the reconstruc-
tion of sparse 3D models from multiple images and videos, since the early 1980s (Longuet-Higgins
1981), the mobile robotics community has in parallel been studying the automatic construction of 3D
maps from moving robots.36 In robotics, the problem was formulated as the simultaneous estimation
of 3D robot and landmark poses (Figure 11.23), and was known as probabilistic mapping (Thrun,
Burgard, and Fox 2005) and simultaneous localization and mapping (SLAM) (Durrant-Whyte and
Bailey 2006; Bailey and Durrant-Whyte 2006; Cadena, Carlone et al. 2016). In the computer vision
community, the problem was originally called visual odometry (Levin and Szeliski 2004; Nistér,
Naroditsky, and Bergen 2006; Maimone, Cheng, and Matthies 2007), although that term is now usu-
ally reserved for shorter-range motion estimation that does not involve building a global map with
loop closing (Cadena, Carlone et al. 2016).

Early versions of such algorithms used range-sensing techniques, such as ultrasound, laser range
finders, or stereo matching, to estimate local 3D geometry, which could then be fused into a 3D
model. Newer techniques can perform the same task based purely on visual feature tracking from a
monocular camera (Davison, Reid et al. 2007). Good introductory tutorials can be found in Durrant-
Whyte and Bailey (2006) and Bailey and Durrant-Whyte (2006), while more comprehensive surveys
of more recent techniques are presented in (Fuentes-Pacheco, Ruiz-Ascencio, and Rendón-Mancha
2015) and Cadena, Carlone et al. (2016).

SLAM differs from bundle adjustment in two fundamental aspects. First, it allows for a variety

36In the 1980s, the vision and robotics communities were essentially the same set of researchers working in these two
sub-fields of artificial intelligence.

584 11 Structure from motion and SLAM

Figure 11.24 The architecture of the LSD-SLAM system (Engel, Schöps, and Cremers 2014) © 2014 Springer,
showing the front end, which does the tracking, data association, and local 3D pose and structure (depth map)
updating, and the back end, which does global map optimization.

of sensing devices, instead of just being restricted to tracked or matched feature points. Second,
it solves the localization problem online, i.e., with no or very little lag in providing the current
sensor pose. This makes it the method of choice for both time-critical robotics applications such as
autonomous navigation (Section 11.5.1) and real-time augmented reality (Section 11.5.2).

Some of the important milestones in SLAM include:

• the application of SLAM to monocular cameras (MonoSLAM) (Davison, Reid et al. 2007);

• parallel tracking and mapping (PTAM) (Klein and Murray 2007), which split the front end
(tracking) and back end (mapping) processes (Figure 11.24) onto two separate threads running
at different rates (Figure 11.27) and then implemented the whole process on a camera phone
(Klein and Murray 2009);

• adaptive relative bundle adjustment (Sibley, Mei et al. 2009, 2010), which maintains collec-
tions of local reconstructions anchored at different keyframes;

• incremental smoothing and mapping (iSAM) (Kaess, Ranganathan, and Dellaert 2008; Kaess,
Johannsson et al. 2012) and other applications of factor graphs to handle the speed-accuracy-
delay tradeoff (Dellaert and Kaess 2017; Dellaert 2021);

• dense tracking and mapping (DTAM) (Newcombe, Lovegrove, and Davison 2011), which
estimates and updates a dense depth map for every frame;

• ORB-SLAM (Mur-Artal, Montiel, and Tardos 2015) and ORB-SLAM2 (Mur-Artal and Tardós
2017), which handle monocular, stereo, and RGB-D cameras as well as loop closures;

• SVO (semi-direct visual odometry) (Forster, Zhang et al. 2017), which combines patch-based
tracking with classic bundle adjustment; and

• LSD-SLAM (large-scale direct SLAM) (Engel, Schöps, and Cremers 2014) and DSO (direct
sparse odometry) (Engel, Koltun, and Cremers 2018), which only keep depth estimates at
strong gradient locations (Figure 11.24).

11.5 Simultaneous localization and mapping (SLAM) 585

• BAD SLAM (bundle adjusted direct RGB-D SLAM) (Schöps, Sattler, and Pollefeys 2019a).

Many of these systems have open source implementations. Some widely used benchmarks include a
benchmark for RGB-D SLAM systems (Sturm, Engelhard et al. 2012), the KITTI Visual Odometry
/ SLAM benchmark (Geiger, Lenz et al. 2013), the synthetic ICL-NUIM dataset (Handa, Whelan et
al. 2014), the TUM monoVO dataset (Engel, Usenko, and Cremers 2016), the EuRoC MAV dataset
(Burri, Nikolic et al. 2016), the ETH3D SLAM benchmark (Schöps, Sattler, and Pollefeys 2019a),
and the GSLAM general SLAM benchmark (Zhao, Xu et al. 2019).

The most recent trend in SLAM has been the integration with visual-inertial odometry (VIO)
algorithms (Mourikis and Roumeliotis 2007; Li and Mourikis 2013; Forster, Carlone et al. 2016),
which combine higher-frequency inertial measurement unit (IMU) measurements with visual tracks,
which serve to remove low-frequency drift. Because IMUs are now commonplace in consumer de-
vices such as cell phones and action cameras, VIO-enhanced SLAM systems serve as the foundation
for widely used mobile augmented reality frameworks such as ARKit and ARCore (Section 11.5.2).
A dataset and evaluation of open-source VIO systems can be found at Schubert, Goll et al. (2018).

As you can tell from this very brief overview, SLAM is an incredibly rich and rapidly evolving
field of research, full of challenging robust optimization and real-time performance problems. A
good source for finding a list of the most recent papers and algorithms is the KITTI Visual Odome-
try/SLAM Evaluation37 (Geiger, Lenz, and Urtasun 2012) and the recent survey paper on computer
vision for autonomous driving (Janai, Güney et al. 2020, Section 13.2).

11.5.1 Application: Autonomous navigation

Since the early days of artificial intelligence and robotics, computer vision has been used to enable
manipulation for dextrous robots and navigation for autonomous robots (Janai, Güney et al. 2020;
Kubota 2019). Some of the earliest vision-based navigation systems include the Stanford Cart (Fig-
ure 11.25a) and CMU Rover (Moravec 1980, 1983), the Terregator (Wallace, Stentz et al. 1985), and
the CMU Nablab (Thorpe, Hebert et al. 1988), which originally could only advance 4m every 10
sec (< 1 mph), and which was also the first system to use a neural network for driving (Pomerleau
1989).

The early algorithms and technologies advanced rapidly, with the VaMoRs system of Dickmanns
and Mysliwetz (1992) operating a 25Hz Kalman filter loop and driving with good lane markings at
100 km/h. By the mid 2000s, when DARPA introduced their Grand Challenge and Urban Challenge,
vehicles equipped with both range-finding lidar cameras and stereo cameras were able to traverse
rough outdoor terrain and navigate city streets at regular human driving speeds (Urmson, Anhalt
et al. 2008; Montemerlo, Becker et al. 2008).38 These systems led to the formation of industrial
research projects at companies such as Google and Tesla,39 as well numerous startups, many of
which exhibit their vehicles at computer vision conferences (Figure 11.25c–d).

A comprehensive review of computer vision technologies for autonomous vehicles can be found
in the survey by Janai, Güney et al. (2020), which also comes with a useful on-line visualization
tool of relevant papers.40 The survey contains chapters on the large number of vision algorithms and
components that go into autonomous navigation, which include datasets and benchmarks, sensors,
object detection and tracking, segmentation, stereo, flow and scene flow, SLAM, scene understand-
ing, and end-to-end learning of autonomous driving behaviors.

37http://www.cvlibs.net/datasets/kitti/eval odometry.php
38Algorithms that use range data as part of their map building and localization are commonly called RGB-D SLAM systems

(Sturm, Engelhard et al. 2012).
39You can find a number of talks about Tesla’s efforts on Andrej Karpathy’s web page, https://karpathy.ai.
40http://www.cvlibs.net/projects/autonomous vision survey

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://karpathy.ai
http://www.cvlibs.net/projects/autonomous_vision_survey

586 11 Structure from motion and SLAM

(a) (b)

(c) (d)

Figure 11.25 Autonomous vehicles: (a) the Stanford Cart (Moravec 1983) ©1983 IEEE; (b) Junior: The
Stanford entry in the Urban Challenge (Montemerlo, Becker et al. 2008) © 2008 Wiley; (c–d) self-driving car
prototypes from the CVPR 2019 exhibit floor.

(a) (b)

Figure 11.26 Fully autonomous Skydio R1 drone flying in the wild © 2019 Skydio: (a) multiple input images
and depth maps; (b) fully integrated 3D map (Cross 2019).

11.5 Simultaneous localization and mapping (SLAM) 587

(a) (b)

Figure 11.27 3D augmented reality: (a) Darth Vader and a horde of Ewoks battle it out on a table-top recovered
using real-time, keyframe-based structure from motion (Klein and Murray 2007) © 2007 IEEE; (b) a virtual teapot
is fixed to the top of a real-world coffee cup, whose pose is re-recognized at each time frame (Gordon and Lowe
2006) © 2007 Springer.

In addition to autonomous navigation for wheeled (and legged) robots and vehicles, computer
vision algorithms are widely used in the control of autonomous drones for both recreational appli-
cations (Ackerman 2019) (Figure 11.26) and drone racing (Jung, Hwang et al. 2018; Kaufmann,
Gehrig et al. 2019). A great talk describing Skydio’s approach to visual autonomous navigation by
Gareth Cross (2019) can be found in the ICRA 2019 Workshop on Algorithms and Architectures
for Learning In-The-Loop Systems in Autonomous Flight41 as well as Lecture 23 in Pieter Abbeel’s
(2019) class on Advanced Robotics, which has dozens of other interesting related lectures.

11.5.2 Application: Smartphone augmented reality

Another closely related application is augmented reality, where 3D objects are inserted into a video
feed in real time, often to annotate or help users understand a scene (Azuma, Baillot et al. 2001;
Feiner 2002; Billinghurst, Clark, and Lee 2015). While traditional systems require prior knowledge
about the scene or object being visually tracked (Rosten and Drummond 2005), newer systems can
simultaneously build up a model of the 3D environment and then track it so that graphics can be
superimposed (Reitmayr and Drummond 2006; Wagner, Reitmayr et al. 2008).

Klein and Murray (2007) describe a parallel tracking and mapping (PTAM) system, which si-
multaneously applies full bundle adjustment to keyframes selected from a video stream, while per-
forming robust real-time pose estimation on intermediate frames (Figure 11.27a). Once an initial
3D scene has been reconstructed, a dominant plane is estimated (in this case, the table-top) and 3D
animated characters are virtually inserted. Klein and Murray (2008) extend this system to handle
even faster camera motion by adding edge features, which can still be tracked even when interest
points become too blurred. They also use a direct (intensity-based) rotation estimation algorithm for
even faster motions.

Instead of modeling the whole scene as one rigid reference frame, Gordon and Lowe (2006) first
build a 3D model of an individual object using feature matching and structure from motion. Once
the system has been initialized, for every new frame they find the object and its pose using a 3D

41https://uav-learning-icra.github.io/2019

https://uav-learning-icra.github.io/2019

588 11 Structure from motion and SLAM

Figure 11.28 Smartphone augmented reality showing real-time depth occlusion effects (Valentin, Kowdle et al.
2018) © 2018 ACM.

instance recognition algorithm, and then superimpose a graphical object onto that model, as shown
in Figure 11.27b.

While reliably tracking such objects and environments is now a well-solved problem, with
frameworks such as ARKit,42 ARCore,43 and Spark AR44 being widely used for mobile AR ap-
plication development, determining which pixels should be occluded by foreground scene elements
(Chuang, Agarwala et al. 2002; Wang and Cohen 2009) still remains an active research area.

One recent example of such work is the Smartphone AR system developed by Valentin, Kowdle
et al. (2018) shown in Figure 11.28. The system proceeds by generating a semi-dense depth map by
matching the current frame to a previous keyframe using a CRF followed by a filtering step. This
map is then interpolated to full resolution using a novel planar bilateral solver, and the resulting
depth map used for occlusion effects. As accurate per-pixel depth is such an essential component
of augmented reality effects, we are likely to see rapid progress in this area, using both active and
passive depth sensing technologies.

11.6 Additional reading

Camera calibration was first studied in photogrammetry (Brown 1971; Slama 1980; Atkinson 1996;
Kraus 1997) but it has also been widely studied in computer vision (Tsai 1987; Gremban, Thorpe,
and Kanade 1988; Champleboux, Lavallée et al. 1992b; Zhang 2000; Grossberg and Nayar 2001).
Vanishing points observed either from rectahedral calibration objects or architecture are often used
to perform rudimentary calibration (Caprile and Torre 1990; Becker and Bove 1995; Liebowitz and
Zisserman 1998; Cipolla, Drummond, and Robertson 1999; Antone and Teller 2002; Criminisi,
Reid, and Zisserman 2000; Hartley and Zisserman 2004; Pflugfelder 2008). Performing camera
calibration without using known targets is known as self-calibration and is discussed in textbooks
and surveys on structure from motion (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman

42https://developer.apple.com/augmented-reality
43https://developers.google.com/ar
44https://sparkar.facebook.com/ar-studio

https://developer.apple.com/augmented-reality
https://developers.google.com/ar
https://sparkar.facebook.com/ar-studio

11.6 Additional reading 589

2004; Moons, Van Gool, and Vergauwen 2010). One popular subset of such techniques uses pure
rotational motion (Stein 1995; Hartley 1997b; Hartley, Hayman et al. 2000; de Agapito, Hayman,
and Reid 2001; Kang and Weiss 1999; Shum and Szeliski 2000; Frahm and Koch 2003).

The topic of registering 3D point datasets is called absolute orientation (Horn 1987) and 3D
pose estimation (Lorusso, Eggert, and Fisher 1995). A variety of techniques has been developed for
simultaneously computing 3D point correspondences and their corresponding rigid transformations
(Besl and McKay 1992; Zhang 1994; Szeliski and Lavallée 1996; Gold, Rangarajan et al. 1998;
David, DeMenthon et al. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl 2009). When
only 2D observations are available, a variety of algorithms for the linear PnP (perspective n-point)
have been developed (DeMenthon and Davis 1995; Quan and Lan 1999; Moreno-Noguer, Lepetit,
and Fua 2007; Terzakis and Lourakis 2020). More recent approaches to pose estimation use deep
networks (Arandjelovic, Gronat et al. 2016; Brachmann, Krull et al. 2017; Xiang, Schmidt et al.
2018; Oberweger, Rad, and Lepetit 2018; Hu, Hugonot et al. 2019; Peng, Liu et al. 2019). Estimat-
ing pose from RGB-D images is also very active (Drost, Ulrich et al. 2010; Brachmann, Michel et al.
2016; Labbé, Carpentier et al. 2020). In addition to recognizing object pose for robotics tasks, pose
estimation is widely used in location recognition (Sattler, Zhou et al. 2019; Revaud, Weinzaepfel et
al. 2019; Zhou, Sattler et al. 2019; Sarlin, DeTone et al. 2020; Luo, Zhou et al. 2020).

The topic of structure from motion is extensively covered in books and review articles on multi-
view geometry (Faugeras and Luong 2001; Hartley and Zisserman 2004; Moons, Van Gool, and
Vergauwen 2010) with survey of more recent developments in Özyeşil, Voroninski et al. (2017). For
two-frame reconstruction, Hartley (1997a) wrote a highly cited paper on the “eight-point algorithm”
for computing an essential or fundamental matrix with reasonable point normalization. When the
cameras are calibrated, the five-point algorithm of Nistér (2004) can be used in conjunction with
RANSAC to obtain initial reconstructions from the minimum number of points. When the cameras
are uncalibrated, various self-calibration techniques can be found in work by Hartley and Zisserman
(2004) and Moons, Van Gool, and Vergauwen (2010).

Triggs, McLauchlan et al. (1999) provide a good tutorial and survey on bundle adjustment,
while Lourakis and Argyros (2009) and Engels, Stewénius, and Nistér (2006) provide tips on imple-
mentation and effective practices. Bundle adjustment is also covered in textbooks and surveys on
multi-view geometry (Faugeras and Luong 2001; Hartley and Zisserman 2004; Moons, Van Gool,
and Vergauwen 2010). Techniques for handling larger problems are described by Snavely, Seitz, and
Szeliski (2008b), Agarwal, Snavely et al. (2009), Agarwal, Snavely et al. (2010), Jeong, Nistér et al.
(2012), Wu (2013), Heinly, Schönberger et al. (2015), Schönberger and Frahm (2016), and Dellaert
and Kaess (2017). While bundle adjustment is often called as an inner loop inside incremental re-
construction algorithms (Snavely, Seitz, and Szeliski 2006), hierarchical (Fitzgibbon and Zisserman
1998; Farenzena, Fusiello, and Gherardi 2009) and global (Rother and Carlsson 2002; Martinec and
Pajdla 2007; Sinha, Steedly, and Szeliski 2010; Jiang, Cui, and Tan 2013; Moulon, Monasse, and
Marlet 2013; Wilson and Snavely 2014; Cui and Tan 2015; Özyeşil and Singer 2015; Holynski,
Geraghty et al. 2020) approaches for initialization are also possible and perhaps even preferable.

In the robotics community, techniques for reconstructing a 3D environment from a moving robot
are called simultaneous localization and mapping (SLAM) (Thrun, Burgard, and Fox 2005; Durrant-
Whyte and Bailey 2006; Bailey and Durrant-Whyte 2006; Fuentes-Pacheco, Ruiz-Ascencio, and
Rendón-Mancha 2015; Cadena, Carlone et al. 2016). SLAM differs from bundle adjustment in that it
allows for a variety of sensing devices and that it solves the localization problem online. This makes
it the method of choice for both time-critical robotics applications such as autonomous navigation
(Janai, Güney et al. 2020) and real-time augmented reality (Valentin, Kowdle et al. 2018). Important
papers in this field include (Davison, Reid et al. 2007; Klein and Murray 2007, 2009; Newcombe,

590 11 Structure from motion and SLAM

Lovegrove, and Davison 2011; Kaess, Johannsson et al. 2012; Engel, Schöps, and Cremers 2014;
Mur-Artal and Tardós 2017; Forster, Zhang et al. 2017; Dellaert and Kaess 2017; Engel, Koltun, and
Cremers 2018; Schöps, Sattler, and Pollefeys 2019a) as well as papers that integrate SLAM with
IMUs to obtain visual inertial odometry (VIO) (Mourikis and Roumeliotis 2007; Li and Mourikis
2013; Forster, Carlone et al. 2016; Schubert, Goll et al. 2018).

11.7 Exercises

Ex 11.1: Rotation-based calibration. Take an outdoor or indoor sequence from a rotating camera
with very little parallax and use it to calibrate the focal length of your camera using the techniques
described in Section 11.1.3 or Sections 8.2.3–8.3.1.

1. Take out any radial distortion in the images using one of the techniques from Exercises 11.5–
11.6 or using parameters supplied for a given camera by your instructor.

2. Detect and match feature points across neighboring frames and chain them into feature tracks.

3. Compute homographies between overlapping frames and use Equations (11.8–11.9) to get an
estimate of the focal length.

4. Compute a full 360° panorama and update your focal length estimate to close the gap (Sec-
tion 8.2.4).

5. (Optional) Perform a complete bundle adjustment in the rotation matrices and focal length to
obtain the highest quality estimate (Section 8.3.1).

Ex 11.2: Target-based calibration. Use a three-dimensional target to calibrate your camera.

1. Construct a three-dimensional calibration pattern with known 3D locations. It is not easy to
get high accuracy unless you use a machine shop, but you can get close using heavy plywood
and printed patterns.

2. Find the corners, e.g, using a line finder and intersecting the lines.

3. Implement one of the iterative calibration and pose estimation algorithms described in Tsai
(1987), Bogart (1991), or Gleicher and Witkin (1992) or the system described in Section 11.2.2.

4. Take many pictures at different distances and orientations relative to the calibration target and
report on both your re-projection errors and accuracy. (To do the latter, you may need to use
simulated data.)

Ex 11.3: Calibration accuracy. Compare the three calibration techniques (plane-based, rotation-
based, and 3D-target-based).

One approach is to have a different student implement each one and to compare the results.
Another approach is to use synthetic data, potentially re-using the software you developed for Exer-
cise 2.3. The advantage of using synthetic data is that you know the ground truth for the calibration
and pose parameters, you can easily run lots of experiments, and you can synthetically vary the noise
in your measurements.

Here are some possible guidelines for constructing your test sets:

1. Assume a medium-wide focal length (say, 50° field of view).

11.7 Exercises 591

2. For the plane-based technique, generate a 2D grid target and project it at different inclinations.

3. For a 3D target, create an inner cube corner and position it so that it fills most of field of view.

4. For the rotation technique, scatter points uniformly on a sphere until you get a similar number
of points as for other techniques.

Before comparing your techniques, predict which one will be the most accurate (normalize your
results by the square root of the number of points used).

Add varying amounts of noise to your measurements and describe the noise sensitivity of your
various techniques.

Ex 11.4: Single view metrology. Implement a system to measure dimensions and reconstruct a
3D model from a single image of an architectural scene using visible vanishing directions (Sec-
tion 11.1.2) (Criminisi, Reid, and Zisserman 2000).

1. Find the three orthogonal vanishing points from parallel lines and use them to establish the
three coordinate axes (rotation matrix R of the camera relative to the scene). If two of the
vanishing points are finite (not at infinity), use them to compute the focal length, assuming a
known image center. Otherwise, find some other way to calibrate your camera; you could use
some of the techniques described by Schaffalitzky and Zisserman (2000).

2. Click on a ground plane point to establish your origin and click on a point a known distance
away to establish the scene scale. This lets you compute the translation t between the camera
and the scene. As an alternative, click on a pair of points, one on the ground plane and one
above it, and use the known height to establish the scene scale.

3. Write a user interface that lets you click on ground plane points to recover their 3D locations.
(Hint: you already know the camera matrix, so knowledge of a point’s z value is sufficient to
recover its 3D location.) Click on pairs of points (one on the ground plane, one above it) to
measure vertical heights.

4. Extend your system to let you draw quadrilaterals in the scene that correspond to axis-aligned
rectangles in the world, using some of the techniques described by Sinha, Steedly et al. (2008).
Export your 3D rectangles to a VRML or PLY45 file.

5. (Optional) Warp the pixels enclosed by the quadrilateral using the correct homography to
produce a texture map for each planar polygon.

Ex 11.5: Radial distortion with plumb lines. Implement a plumb-line algorithm to determine the
radial distortion parameters.

1. Take some images of scenes with lots of straight lines, e.g., hallways in your home or office,
and try to get some of the lines as close to the edges of the image as possible.

2. Extract the edges and link them into curves, as described in Section 7.2.2 and Exercise 7.8.

3. Fit quadratic or elliptic curves to the linked edges using a generalization of the successive line
approximation algorithm described in Section 7.4.1 and Exercise 7.11 and keep the curves
that fit this form well.

45https://meshlab.net.

https://meshlab.net

592 11 Structure from motion and SLAM

4. For each curved segment, fit a straight line and minimize the perpendicular distance between
the curve and the line while adjusting the radial distortion parameters.

5. Alternate between re-fitting the straight line and adjusting the radial distortion parameters
until convergence.

Ex 11.6: Radial distortion with a calibration target. Use a grid calibration target to determine
the radial distortion parameters.

1. Print out a planar calibration target, mount it on a stiff board, and get it to fill your field of
view.

2. Detect the squares, lines, or dots in your calibration target.

3. Estimate the homography mapping the target to the camera from the central portion of the
image that does not have any radial distortion.

4. Predict the positions of the remaining targets and use the differences between the observed
and predicted positions to estimate the radial distortion.

5. (Optional) Fit a general spline model (for severe distortion) instead of the quartic distortion
model.

6. (Optional) Extend your technique to calibrate a fisheye lens.

Ex 11.7: Chromatic aberration. Use the radial distortion estimates for each color channel com-
puted in the previous exercise to clean up wide-angle lens images by warping all of the channels
into alignment. (Optional) Straighten out the images at the same time.

Can you think of any reasons why this warping strategy may not always work?

Ex 11.8: Triangulation. Use the calibration pattern you built and tested in Exercise 11.2 to test
your triangulation accuracy. As an alternative, generate synthetic 3D points and cameras and add
noise to the 2D point measurements.

1. Assume that you know the camera pose, i.e., the camera matrices. Use the 3D distance to
rays (11.24) or linearized versions of Equations (11.25–11.26) to compute an initial set of 3D
locations. Compare these to your known ground truth locations.

2. Use iterative non-linear minimization to improve your initial estimates and report on the im-
provement in accuracy.

3. (Optional) Use the technique described by Hartley and Sturm (1997) to perform two-frame
triangulation.

4. See if any of the failure modes reported by Hartley and Sturm (1997) or Hartley (1998) occur
in practice.

Ex 11.9: Essential and fundamental matrix. Implement the two-frame E and F matrix estima-
tion techniques presented in Section 11.3, with suitable re-scaling for better noise immunity.

1. Use the data from Exercise 11.8 to validate your algorithms and to report on their accuracy.

11.7 Exercises 593

2. (Optional) Implement one of the improved F or E estimation algorithms, e.g., using renor-
malization (Zhang 1998b; Torr and Fitzgibbon 2004; Hartley and Zisserman 2004), RANSAC
(Torr and Murray 1997), least median of squares (LMS), or the five-point algorithm developed
by Nistér (2004).

Ex 11.10: View morphing and interpolation. Implement automatic view morphing, i.e., com-
pute two-frame structure from motion and then use these results to generate a smooth animation
from one image to the next (Section 11.3.5).

1. Decide how to represent your 3D scene, e.g., compute a Delaunay triangulation of the matched
point and decide what to do with the triangles near the border. (Hint: try fitting a plane to the
scene, e.g., behind most of the points.)

2. Compute your in-between camera positions and orientations.

3. Warp each triangle to its new location, preferably using the correct perspective projection
(Szeliski and Shum 1997).

4. (Optional) If you have a denser 3D model (e.g., from stereo), decide what to do at the “cracks”.

5. (Optional) For a non-rigid scene, e.g., two pictures of a face with different expressions, not
all of your matched points will obey the epipolar geometry. Decide how to handle them to
achieve the best effect.

Ex 11.11: Bundle adjuster. Implement a full bundle adjuster. This may sound daunting, but it
really is not.

1. Devise the internal data structures and external file representations to hold your camera param-
eters (position, orientation, and focal length), 3D point locations (Euclidean or homogeneous),
and 2D point tracks (frame and point identifier as well as 2D locations).

2. Use some other technique, such as factorization, to initialize the 3D point and camera locations
from your 2D tracks (e.g., a subset of points that appears in all frames).

3. Implement the code corresponding to the forward transformations in Figure 11.14, i.e., for
each 2D point measurement, take the corresponding 3D point, map it through the camera
transformations (including perspective projection and focal length scaling), and compare it to
the 2D point measurement to get a residual error.

4. Take the residual error and compute its derivatives with respect to all the unknown motion
and structure parameters, using backward chaining, as shown, e.g., in Figure 11.14 and Equa-
tion (11.19). This gives you the sparse Jacobian J used in Equations (8.13–8.17) and Equa-
tion (11.15).

5. Use a sparse least squares or linear system solver, e.g., MATLAB, SparseSuite, or SPARSKIT
(see Appendix A.4 and A.5), to solve the corresponding linearized system, adding a small
amount of diagonal preconditioning, as in Levenberg–Marquardt.

6. Update your parameters, make sure your rotation matrices are still orthonormal (e.g., by re-
computing them from your quaternions), and continue iterating while monitoring your resid-
ual error.

594 11 Structure from motion and SLAM

7. (Optional) Use the “Schur complement trick” (11.68) to reduce the size of the system being
solved (Triggs, McLauchlan et al. 1999; Hartley and Zisserman 2004; Lourakis and Argyros
2009; Engels, Stewénius, and Nistér 2006).

8. (Optional) Implement your own iterative sparse solver, e.g., conjugate gradient, and compare
its performance to a direct method.

9. (Optional) Make your bundle adjuster robust to outliers, or try adding some of the other im-
provements discussed in (Engels, Stewénius, and Nistér 2006). Can you think of any other
ways to make your algorithm even faster or more robust?

Ex 11.12: Match move and augmented reality. Use the results of the previous exercise to super-
impose a rendered 3D model on top of video. See Section 11.4.4 for more details and ideas. Check
for how “locked down” the objects are.

Ex 11.13: Line-based reconstruction. Augment the previously developed bundle adjuster to in-
clude lines, possibly with known 3D orientations.

Optionally, use co-planar sets of points and lines to hypothesize planes and to enforce co-
planarity (Schaffalitzky and Zisserman 2002; Robertson and Cipolla 2002).

Ex 11.14: Flexible bundle adjuster. Design a bundle adjuster that allows for arbitrary chains of
transformations and prior knowledge about the unknowns, as suggested in Figures 11.14–11.15.

Ex 11.15: Unordered image matching. Compute the camera pose and 3D structure of a scene
from an arbitrary collection of photographs (Brown and Lowe 2005; Snavely, Seitz, and Szeliski
2006).

Ex 11.16: Augmented reality toolkits. Write a simple mobile AR app based on one of the widely
used augmented reality frameworks such as ARKit or ARCore. What fun effects can you create?
What are the conditions that make your AR system lose track? Can you move a large distance and
come back to your original location without too much drift?

	Chapter 11 Structure from motion and SLAM
	11.1 Geometric intrinsic calibration
	11.1.1 Vanishing points
	11.1.2 Application: Single view metrology
	11.1.3 Rotational motion
	11.1.4 Radial distortion

	11.2 Pose estimation
	11.2.1 Linear algorithms
	11.2.2 Iterative non-linear algorithms
	11.2.3 Application: Location recognition
	11.2.4 Triangulation

	11.3 Two-frame structure from motion
	11.3.1 Eight, seven, and five-point algorithms
	11.3.2 Special motions and structures
	11.3.3 Projective (uncalibrated) reconstruction
	11.3.4 Self-calibration
	11.3.5 Application: View morphing

	11.4 Multi-frame structure from motion
	11.4.1 Factorization
	11.4.2 Bundle adjustment
	11.4.3 Exploiting sparsity
	11.4.4 Application: Match move
	11.4.5 Uncertainty and ambiguities
	11.4.6 Application: Reconstruction from internet photos
	11.4.7 Global structure from motion
	11.4.8 Constrained structure and motion

	11.5 Simultaneous localization and mapping (SLAM)
	11.5.1 Application: Autonomous navigation
	11.5.2 Application: Smartphone augmented reality

	11.6 Additional reading
	11.7 Exercises

