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Figure 1.1 The human visual system has no problem interpreting the subtle variations in translucency and
shading in this photograph and correctly segmenting the object from its background.
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(a) (b)

(c) (d)

Figure 1.2 Some examples of computer vision algorithms and applications. (a) Face detection algorithms,
coupled with color-based clothing and hair detection algorithms, can locate and recognize the individuals in this
image (Sivic, Zitnick, and Szeliski 2006) © 2006 Springer. (b) Object instance segmentation can delineate each
person and object in a complex scene (He, Gkioxari et al. 2017) © 2017 IEEE. (c) Structure from motion algo-
rithms can reconstruct a sparse 3D point model of a large complex scene from hundreds of partially overlapping
photographs (Snavely, Seitz, and Szeliski 2006) © 2006 ACM. (d) Stereo matching algorithms can build a de-
tailed 3D model of a building façade from hundreds of differently exposed photographs taken from the internet
(Goesele, Snavely et al. 2007) © 2007 IEEE.
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1.1 What is computer vision?

As humans, we perceive the three-dimensional structure of the world around us with apparent ease.
Think of how vivid the three-dimensional percept is when you look at a vase of flowers sitting
on the table next to you. You can tell the shape and translucency of each petal through the subtle
patterns of light and shading that play across its surface and effortlessly segment each flower from the
background of the scene (Figure 1.1). Looking at a framed group portrait, you can easily count and
name all of the people in the picture and even guess at their emotions from their facial expressions
(Figure 1.2a). Perceptual psychologists have spent decades trying to understand how the visual
system works and, even though they can devise optical illusions1 to tease apart some of its principles
(Figure 1.3), a complete solution to this puzzle remains elusive (Marr 1982; Wandell 1995; Palmer
1999; Livingstone 2008; Frisby and Stone 2010).

Researchers in computer vision have been developing, in parallel, mathematical techniques for
recovering the three-dimensional shape and appearance of objects in imagery. Here, the progress in
the last two decades has been rapid. We now have reliable techniques for accurately computing a 3D
model of an environment from thousands of partially overlapping photographs (Figure 1.2c). Given
a large enough set of views of a particular object or façade, we can create accurate dense 3D surface
models using stereo matching (Figure 1.2d). We can even, with moderate success, delineate most
of the people and objects in a photograph (Figure 1.2a). However, despite all of these advances, the
dream of having a computer explain an image at the same level of detail and causality as a two-year
old remains elusive.

Why is vision so difficult? In part, it is because it is an inverse problem, in which we seek
to recover some unknowns given insufficient information to fully specify the solution. We must
therefore resort to physics-based and probabilistic models, or machine learning from large sets of
examples, to disambiguate between potential solutions. However, modeling the visual world in all
of its rich complexity is far more difficult than, say, modeling the vocal tract that produces spoken
sounds.

The forward models that we use in computer vision are usually developed in physics (radiometry,
optics, and sensor design) and in computer graphics. Both of these fields model how objects move
and animate, how light reflects off their surfaces, is scattered by the atmosphere, refracted through
camera lenses (or human eyes), and finally projected onto a flat (or curved) image plane. While
computer graphics are not yet perfect, in many domains, such as rendering a still scene composed of
everyday objects or animating extinct creatures such as dinosaurs, the illusion of reality is essentially
there.

In computer vision, we are trying to do the inverse, i.e., to describe the world that we see in one
or more images and to reconstruct its properties, such as shape, illumination, and color distributions.
It is amazing that humans and animals do this so effortlessly, while computer vision algorithms
are so error prone. People who have not worked in the field often underestimate the difficulty
of the problem. This misperception that vision should be easy dates back to the early days of
artificial intelligence (see Section 1.2), when it was initially believed that the cognitive (logic proving
and planning) parts of intelligence were intrinsically more difficult than the perceptual components
(Boden 2006).

The good news is that computer vision is being used today in a wide variety of real-world appli-
cations, which include:

• Optical character recognition (OCR): reading handwritten postal codes on letters (Fig-

1Some fun pages with striking illusions include https://michaelbach.de/ot, https://www.illusionsindex.org, and http:
//www.ritsumei.ac.jp/∼akitaoka/index-e.html.

https://michaelbach.de/ot
https://www.illusionsindex.org
http://www.ritsumei.ac.jp/~akitaoka/index-e.html
http://www.ritsumei.ac.jp/~akitaoka/index-e.html
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Figure 1.3 Some common optical illusions and what they might tell us about the visual system: (a) The classic
Müller-Lyer illusion, where the lengths of the two horizontal lines appear different, probably due to the imagined
perspective effects. (b) The “white” square B in the shadow and the “black” square A in the light actually have
the same absolute intensity value. The percept is due to brightness constancy, the visual system’s attempt to
discount illumination when interpreting colors. Image courtesy of Ted Adelson, http://persci.mit.edu/gallery/
checkershadow. (c) A variation of the Hermann grid illusion, courtesy of Hany Farid. As you move your eyes
over the figure, gray spots appear at the intersections. (d) Count the red Xs in the left half of the figure. Now count
them in the right half. Is it significantly harder? The explanation has to do with a pop-out effect (Treisman 1985),
which tells us about the operations of parallel perception and integration pathways in the brain.

http://persci.mit.edu/gallery/checkershadow
http://persci.mit.edu/gallery/checkershadow
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(c) (d)

(e) (f)

Figure 1.4 Some industrial applications of computer vision: (a) optical character recognition (OCR),
http://yann.lecun.com/exdb/lenet; (b) mechanical inspection, http://www.cognitens.com; (c) warehouse pick-
ing, https://covariant.ai; (d) medical imaging, http://www.clarontech.com; (e) self-driving cars, (Monte-
merlo, Becker et al. 2008) © 2008 Wiley; (f) drone-based photogrammetry, https://www.pix4d.com/blog/
mapping-chillon-castle-with-drone.

http://yann.lecun.com/exdb/lenet
http://www.cognitens.com
https://covariant.ai
http://www.clarontech.com
https://www.pix4d.com/blog/mapping-chillon-castle-with-drone
https://www.pix4d.com/blog/mapping-chillon-castle-with-drone
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ure 1.4a) and automatic number plate recognition (ANPR);

• Machine inspection: rapid parts inspection for quality assurance using stereo vision with spe-
cialized illumination to measure tolerances on aircraft wings or auto body parts (Figure 1.4b)
or looking for defects in steel castings using X-ray vision;

• Retail: object recognition for automated checkout lanes and fully automated stores (Wingfield
2019);

• Warehouse logistics: autonomous package delivery and pallet-carrying “drives” (Guizzo
2008; O’Brian 2019) and parts picking by robotic manipulators (Figure 1.4c; Ackerman
2020);

• Medical imaging: registering pre-operative and intra-operative imagery (Figure 1.4d) or per-
forming long-term studies of people’s brain morphology as they age;

• Self-driving vehicles: capable of driving point-to-point between cities (Figure 1.4e; Monte-
merlo, Becker et al. 2008; Urmson, Anhalt et al. 2008; Janai, Güney et al. 2020) as well as
autonomous flight (Kaufmann, Gehrig et al. 2019);

• 3D model building (photogrammetry): fully automated construction of 3D models from
aerial and drone photographs (Figure 1.4f);

• Match move: merging computer-generated imagery (CGI) with live action footage by track-
ing feature points in the source video to estimate the 3D camera motion and shape of the
environment. Such techniques are widely used in Hollywood, e.g., in movies such as Jurassic
Park (Roble 1999; Roble and Zafar 2009); they also require the use of precise matting to insert
new elements between foreground and background elements (Chuang, Agarwala et al. 2002).

• Motion capture (mocap): using retro-reflective markers viewed from multiple cameras or
other vision-based techniques to capture actors for computer animation;

• Surveillance: monitoring for intruders, analyzing highway traffic and monitoring pools for
drowning victims (e.g., https://swimeye.com);

• Fingerprint recognition and biometrics: for automatic access authentication as well as
forensic applications.

David Lowe’s website of industrial vision applications (http://www.cs.ubc.ca/spider/lowe/vision.
html) lists many other interesting industrial applications of computer vision. While the above appli-
cations are all extremely important, they mostly pertain to fairly specialized kinds of imagery and
narrow domains.

In addition to all of these industrial applications, there exist myriad consumer-level applications,
such as things you can do with your own personal photographs and video. These include:

• Stitching: turning overlapping photos into a single seamlessly stitched panorama (Figure 1.5a),
as described in Section 8.2;

• Exposure bracketing: merging multiple exposures taken under challenging lighting condi-
tions (strong sunlight and shadows) into a single perfectly exposed image (Figure 1.5b), as
described in Section 10.2;

• Morphing: turning a picture of one of your friends into another, using a seamless morph
transition (Figure 1.5c);

https://swimeye.com
http://www.cs.ubc.ca/spider/lowe/vision.html
http://www.cs.ubc.ca/spider/lowe/vision.html
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• 3D modeling: converting one or more snapshots into a 3D model of the object or person you
are photographing (Figure 1.5d), as described in Section 13.6;

• Video match move and stabilization: inserting 2D pictures or 3D models into your videos by
automatically tracking nearby reference points (see Section 11.4.4)2 or using motion estimates
to remove shake from your videos (see Section 9.2.1);

• Photo-based walkthroughs: navigating a large collection of photographs, such as the interior
of your house, by flying between different photos in 3D (see Sections 14.1.2 and 14.5.5);

• Face detection: for improved camera focusing as well as more relevant image searching (see
Section 6.3.1);

• Visual authentication: automatically logging family members onto your home computer as
they sit down in front of the webcam (see Section 6.2.4).

The great thing about these applications is that they are already familiar to most students; they
are, at least, technologies that students can immediately appreciate and use with their own personal
media. Since computer vision is a challenging topic, given the wide range of mathematics being
covered3 and the intrinsically difficult nature of the problems being solved, having fun and relevant
problems to work on can be highly motivating and inspiring.

The other major reason why this book has a strong focus on applications is that they can be used
to formulate and constrain the potentially open-ended problems endemic in vision. Thus, it is better
to think back from the problem at hand to suitable techniques, rather than to grab the first technique
that you may have heard of. This kind of working back from problems to solutions is typical of an
engineering approach to the study of vision and reflects my own background in the field.

First, I come up with a detailed problem definition and decide on the constraints and specifica-
tions for the problem. Then, I try to find out which techniques are known to work, implement a few
of these, evaluate their performance, and finally make a selection. In order for this process to work,
it is important to have realistic test data, both synthetic, which can be used to verify correctness and
analyze noise sensitivity, and real-world data typical of the way the system will finally be used. If
machine learning is being used, it is even more important to have representative unbiased training
data in sufficient quantity to obtain good results on real-world inputs.

However, this book is not just an engineering text (a source of recipes). It also takes a scientific
approach to basic vision problems. Here, I try to come up with the best possible models of the
physics of the system at hand: how the scene is created, how light interacts with the scene and
atmospheric effects, and how the sensors work, including sources of noise and uncertainty. The task
is then to try to invert the acquisition process to come up with the best possible description of the
scene.

The book often uses a statistical approach to formulating and solving computer vision prob-
lems. Where appropriate, probability distributions are used to model the scene and the noisy image
acquisition process. The association of prior distributions with unknowns is often called Bayesian
modeling (Appendix B). It is possible to associate a risk or loss function with misestimating the an-
swer (Section B.2) and to set up your inference algorithm to minimize the expected risk. (Consider
a robot trying to estimate the distance to an obstacle: it is usually safer to underestimate than to
overestimate.) With statistical techniques, it often helps to gather lots of training data from which to

2For a fun student project on this topic, see the “PhotoBook” project at http://www.cc.gatech.edu/dvfx/videos/dvfx2005.
html.

3These techniques include physics, Euclidean and projective geometry, statistics, and optimization. They make computer
vision a fascinating field to study and a great way to learn techniques widely applicable in other fields.

http://www.cc.gatech.edu/dvfx/videos/dvfx2005.html
http://www.cc.gatech.edu/dvfx/videos/dvfx2005.html
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(a)

(b)

(c)

(d)

Figure 1.5 Some consumer applications of computer vision: (a) image stitching: merging different views
(Szeliski and Shum 1997) © 1997 ACM; (b) exposure bracketing: merging different exposures; (c) morph-
ing: blending between two photographs (Gomes, Darsa et al. 1999) © 1999 Morgan Kaufmann; (d) smartphone
augmented reality showing real-time depth occlusion effects (Valentin, Kowdle et al. 2018) © 2018 ACM.
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learn probabilistic models. Finally, statistical approaches enable you to use proven inference tech-
niques to estimate the best answer (or distribution of answers) and to quantify the uncertainty in the
resulting estimates.

Because so much of computer vision involves the solution of inverse problems or the estimation
of unknown quantities, my book also has a heavy emphasis on algorithms, especially those that
are known to work well in practice. For many vision problems, it is all too easy to come up with a
mathematical description of the problem that either does not match realistic real-world conditions or
does not lend itself to the stable estimation of the unknowns. What we need are algorithms that are
both robust to noise and deviation from our models and reasonably efficient in terms of run-time
resources and space. In this book, I go into these issues in detail, using Bayesian techniques, where
applicable, to ensure robustness, and efficient search, minimization, and linear system solving algo-
rithms to ensure efficiency.4 Most of the algorithms described in this book are at a high level, being
mostly a list of steps that have to be filled in by students or by reading more detailed descriptions
elsewhere. In fact, many of the algorithms are sketched out in the exercises.

Now that I’ve described the goals of this book and the frameworks that I use, I devote the rest
of this chapter to two additional topics. Section 1.2 is a brief synopsis of the history of computer
vision. It can easily be skipped by those who want to get to “the meat” of the new material in this
book and do not care as much about who invented what when.

The second is an overview of the book’s contents, Section 1.3, which is useful reading for every-
one who intends to make a study of this topic (or to jump in partway, since it describes chapter in-
terdependencies). This outline is also useful for instructors looking to structure one or more courses
around this topic, as it provides sample curricula based on the book’s contents.

1.2 A brief history

In this section, I provide a brief personal synopsis of the main developments in computer vision over
the last fifty years (Figure 1.6) with a focus on advances I find personally interesting and that have
stood the test of time. Readers not interested in the provenance of various ideas and the evolution of
this field should skip ahead to the book overview in Section 1.3.

1970s. When computer vision first started out in the early 1970s, it was viewed as the visual
perception component of an ambitious agenda to mimic human intelligence and to endow robots
with intelligent behavior. At the time, it was believed by some of the early pioneers of artificial
intelligence and robotics (at places such as MIT, Stanford, and CMU) that solving the “visual input”
problem would be an easy step along the path to solving more difficult problems such as higher-level
reasoning and planning. According to one well-known story, in 1966, Marvin Minsky at MIT asked
his undergraduate student Gerald Jay Sussman to “spend the summer linking a camera to a computer
and getting the computer to describe what it saw” (Boden 2006, p. 781).5 We now know that the
problem is slightly more difficult than that.6

What distinguished computer vision from the already existing field of digital image processing
(Rosenfeld and Pfaltz 1966; Rosenfeld and Kak 1976) was a desire to recover the three-dimensional

4In some cases, deep neural networks have also been shown to be an effective way to speed up algorithms that previously
relied on iteration (Chen, Xu, and Koltun 2017).

5Boden (2006) cites (Crevier 1993) as the original source. The actual Vision Memo was authored by Seymour Papert
(1966) and involved a whole cohort of students.

6To see how far robotic vision has come in the last six decades, have a look at some of the videos on the Boston Dynamics
https://www.bostondynamics.com, Skydio https://www.skydio.com, and Covariant https://covariant.ai websites.

https://www.bostondynamics.com
https://www.skydio.com
https://covariant.ai
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Figure 1.6 A rough timeline of some of the most active topics of research in computer vision.

structure of the world from images and to use this as a stepping stone towards full scene understand-
ing. Winston (1975) and Hanson and Riseman (1978) provide two nice collections of classic papers
from this early period.

Early attempts at scene understanding involved extracting edges and then inferring the 3D struc-
ture of an object or a “blocks world” from the topological structure of the 2D lines (Roberts 1965).
Several line labeling algorithms (Figure 1.7a) were developed at that time (Huffman 1971; Clowes
1971; Waltz 1975; Rosenfeld, Hummel, and Zucker 1976; Kanade 1980). Nalwa (1993) gives a nice
review of this area. The topic of edge detection was also an active area of research; a nice survey of
contemporaneous work can be found in (Davis 1975).

Three-dimensional modeling of non-polyhedral objects was also being studied (Baumgart 1974;
Baker 1977). One popular approach used generalized cylinders, i.e., solids of revolution and swept
closed curves (Agin and Binford 1976; Nevatia and Binford 1977), often arranged into parts re-
lationships7 (Hinton 1977; Marr 1982) (Figure 1.7c). Fischler and Elschlager (1973) called such
elastic arrangements of parts pictorial structures (Figure 1.7b).

A qualitative approach to understanding intensities and shading variations and explaining them
by the effects of image formation phenomena, such as surface orientation and shadows, was champi-
oned by Barrow and Tenenbaum (1981) in their paper on intrinsic images (Figure 1.7d), along with
the related 21/2 -D sketch ideas of Marr (1982). This approach has seen periodic revivals, e.g., in the
work of Tappen, Freeman, and Adelson (2005) and Barron and Malik (2012).

More quantitative approaches to computer vision were also developed at the time, including
the first of many feature-based stereo correspondence algorithms (Figure 1.7e) (Dev 1974; Marr
and Poggio 1976, 1979; Barnard and Fischler 1982; Ohta and Kanade 1985; Grimson 1985; Pol-
lard, Mayhew, and Frisby 1985) and intensity-based optical flow algorithms (Figure 1.7f) (Horn and
Schunck 1981; Huang 1981; Lucas and Kanade 1981; Nagel 1986). The early work in simulta-
neously recovering 3D structure and camera motion (see Chapter 11) also began around this time
(Ullman 1979; Longuet-Higgins 1981).

7In robotics and computer animation, these linked-part graphs are often called kinematic chains.
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(a) (b) (c)

(d) (e) (f)

Figure 1.7 Some early (1970s) examples of computer vision algorithms: (a) line labeling (Nalwa 1993) © 1993
Addison-Wesley, (b) pictorial structures (Fischler and Elschlager 1973) © 1973 IEEE, (c) articulated body model
(Marr 1982) © 1982 David Marr, (d) intrinsic images (Barrow and Tenenbaum 1981) © 1973 IEEE, (e) stereo
correspondence (Marr 1982) © 1982 David Marr, (f) optical flow (Nagel and Enkelmann 1986) © 1986 IEEE.

A lot of the philosophy of how vision was believed to work at the time is summarized in David
Marr’s (1982) book.8 In particular, Marr introduced his notion of the three levels of description of
a (visual) information processing system. These three levels, very loosely paraphrased according to
my own interpretation, are:

• Computational theory: What is the goal of the computation (task) and what are the con-
straints that are known or can be brought to bear on the problem?

• Representations and algorithms: How are the input, output, and intermediate information
represented and which algorithms are used to calculate the desired result?

• Hardware implementation: How are the representations and algorithms mapped onto actual
hardware, e.g., a biological vision system or a specialized piece of silicon? Conversely, how
can hardware constraints be used to guide the choice of representation and algorithm? With
the prevalent use of graphics chips (GPUs) and many-core architectures for computer vision,
this question is again quite relevant.

As I mentioned earlier in this introduction, it is my conviction that a careful analysis of the problem
specification and known constraints from image formation and priors (the scientific and statistical
approaches) must be married with efficient and robust algorithms (the engineering approach) to
design successful vision algorithms. Thus, it seems that Marr’s philosophy is as good a guide to
framing and solving problems in our field today as it was 25 years ago.

8More recent developments in visual perception theory are covered in (Wandell 1995; Palmer 1999; Livingstone 2008;
Frisby and Stone 2010).
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(a) (b) (c)

(d) (e) (f)

Figure 1.8 Examples of computer vision algorithms from the 1980s: (a) pyramid blending (Burt and Adelson
1983b) © 1983 ACM, (b) shape from shading (Freeman and Adelson 1991) © 1991 IEEE, (c) edge detection
(Freeman and Adelson 1991) © 1991 IEEE, (d) physically based models (Terzopoulos and Witkin 1988) © 1988
IEEE, (e) regularization-based surface reconstruction (Terzopoulos 1988) © 1988 IEEE, (f) range data acquisition
and merging (Banno, Masuda et al. 2008) © 2008 Springer.

1980s. In the 1980s, a lot of attention was focused on more sophisticated mathematical techniques
for performing quantitative image and scene analysis.

Image pyramids (see Section 3.5) started being widely used to perform tasks such as image
blending (Figure 1.8a) and coarse-to-fine correspondence search (Rosenfeld 1980; Burt and Adelson
1983b; Rosenfeld 1984; Quam 1984; Anandan 1989). Continuous versions of pyramids using the
concept of scale-space processing were also developed (Witkin 1983; Witkin, Terzopoulos, and
Kass 1986; Lindeberg 1990). In the late 1980s, wavelets (see Section 3.5.4) started displacing or
augmenting regular image pyramids in some applications (Mallat 1989; Simoncelli and Adelson
1990a; Simoncelli, Freeman et al. 1992).

The use of stereo as a quantitative shape cue was extended by a wide variety of shape-from-X
techniques, including shape from shading (Figure 1.8b) (see Section 13.1.1 and Horn 1975; Pentland
1984; Blake, Zisserman, and Knowles 1985; Horn and Brooks 1986, 1989), photometric stereo
(see Section 13.1.1 and Woodham 1981), shape from texture (see Section 13.1.2 and Witkin 1981;
Pentland 1984; Malik and Rosenholtz 1997), and shape from focus (see Section 13.1.3 and Nayar,
Watanabe, and Noguchi 1995). Horn (1986) has a nice discussion of most of these techniques.

Research into better edge and contour detection (Figure 1.8c) (see Section 7.2) was also active
during this period (Canny 1986; Nalwa and Binford 1986), including the introduction of dynamically
evolving contour trackers (Section 7.3.1) such as snakes (Kass, Witkin, and Terzopoulos 1988), as
well as three-dimensional physically based models (Figure 1.8d) (Terzopoulos, Witkin, and Kass
1987; Kass, Witkin, and Terzopoulos 1988; Terzopoulos and Fleischer 1988).

Researchers noticed that a lot of the stereo, flow, shape-from-X, and edge detection algorithms
could be unified, or at least described, using the same mathematical framework if they were posed
as variational optimization problems and made more robust (well-posed) using regularization (Fig-
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(a) (b) (c)

(d) (e) (f)

Figure 1.9 Examples of computer vision algorithms from the 1990s: (a) factorization-based structure from
motion (Tomasi and Kanade 1992) © 1992 Springer, (b) dense stereo matching (Boykov, Veksler, and Zabih
2001), (c) multi-view reconstruction (Seitz and Dyer 1999) © 1999 Springer, (d) face tracking (Matthews, Xiao,
and Baker 2007), (e) image segmentation (Belongie, Fowlkes et al. 2002) © 2002 Springer, (f) face recognition
(Turk and Pentland 1991).

ure 1.8e) (see Section 4.2 and Terzopoulos 1983; Poggio, Torre, and Koch 1985; Terzopoulos 1986b;
Blake and Zisserman 1987; Bertero, Poggio, and Torre 1988; Terzopoulos 1988). Around the same
time, Geman and Geman (1984) pointed out that such problems could equally well be formulated
using discrete Markov random field (MRF) models (see Section 4.3), which enabled the use of better
(global) search and optimization algorithms, such as simulated annealing.

Online variants of MRF algorithms that modeled and updated uncertainties using the Kalman
filter were introduced a little later (Dickmanns and Graefe 1988; Matthies, Kanade, and Szeliski
1989; Szeliski 1989). Attempts were also made to map both regularized and MRF algorithms onto
parallel hardware (Poggio and Koch 1985; Poggio, Little et al. 1988; Fischler, Firschein et al. 1989).
The book by Fischler and Firschein (1987) contains a nice collection of articles focusing on all of
these topics (stereo, flow, regularization, MRFs, and even higher-level vision).

Three-dimensional range data processing (acquisition, merging, modeling, and recognition; see
Figure 1.8f) continued being actively explored during this decade (Agin and Binford 1976; Besl and
Jain 1985; Faugeras and Hebert 1987; Curless and Levoy 1996). The compilation by Kanade (1987)
contains a lot of the interesting papers in this area.

1990s. While a lot of the previously mentioned topics continued to be explored, a few of them
became significantly more active.

A burst of activity in using projective invariants for recognition (Mundy and Zisserman 1992)
evolved into a concerted effort to solve the structure from motion problem (see Chapter 11). A lot



14 1 Introduction

of the initial activity was directed at projective reconstructions, which did not require knowledge
of camera calibration (Faugeras 1992; Hartley, Gupta, and Chang 1992; Hartley 1994a; Faugeras
and Luong 2001; Hartley and Zisserman 2004). Simultaneously, factorization techniques (Sec-
tion 11.4.1) were developed to solve efficiently problems for which orthographic camera approxima-
tions were applicable (Figure 1.9a) (Tomasi and Kanade 1992; Poelman and Kanade 1997; Anandan
and Irani 2002) and then later extended to the perspective case (Christy and Horaud 1996; Triggs
1996). Eventually, the field started using full global optimization (see Section 11.4.2 and Taylor,
Kriegman, and Anandan 1991; Szeliski and Kang 1994; Azarbayejani and Pentland 1995), which
was later recognized as being the same as the bundle adjustment techniques traditionally used in pho-
togrammetry (Triggs, McLauchlan et al. 1999). Fully automated 3D modeling systems were built
using such techniques (Beardsley, Torr, and Zisserman 1996; Schaffalitzky and Zisserman 2002;
Snavely, Seitz, and Szeliski 2006; Agarwal, Furukawa et al. 2011; Frahm, Fite-Georgel et al. 2010).

Work begun in the 1980s on using detailed measurements of color and intensity combined with
accurate physical models of radiance transport and color image formation created its own subfield
known as physics-based vision. A good survey of the field can be found in the three-volume collec-
tion on this topic (Wolff, Shafer, and Healey 1992a; Healey and Shafer 1992; Shafer, Healey, and
Wolff 1992).

Optical flow methods (see Chapter 9) continued to be improved (Nagel and Enkelmann 1986;
Bolles, Baker, and Marimont 1987; Horn and Weldon Jr. 1988; Anandan 1989; Bergen, Anandan
et al. 1992; Black and Anandan 1996; Bruhn, Weickert, and Schnörr 2005; Papenberg, Bruhn et al.
2006), with (Nagel 1986; Barron, Fleet, and Beauchemin 1994; Baker, Scharstein et al. 2011) being
good surveys. Similarly, a lot of progress was made on dense stereo correspondence algorithms (see
Chapter 12, Okutomi and Kanade (1993, 1994); Boykov, Veksler, and Zabih (1998); Birchfield and
Tomasi (1999); Boykov, Veksler, and Zabih (2001), and the survey and comparison in Scharstein
and Szeliski (2002)), with the biggest breakthrough being perhaps global optimization using graph
cut techniques (Figure 1.9b) (Boykov, Veksler, and Zabih 2001).

Multi-view stereo algorithms (Figure 1.9c) that produce complete 3D surfaces (see Section 12.7)
were also an active topic of research (Seitz and Dyer 1999; Kutulakos and Seitz 2000) that continues
to be active today (Seitz, Curless et al. 2006; Schöps, Schönberger et al. 2017; Knapitsch, Park
et al. 2017). Techniques for producing 3D volumetric descriptions from binary silhouettes (see
Section 12.7.3) continued to be developed (Potmesil 1987; Srivasan, Liang, and Hackwood 1990;
Szeliski 1993; Laurentini 1994), along with techniques based on tracking and reconstructing smooth
occluding contours (see Section 12.2.1 and Cipolla and Blake 1992; Vaillant and Faugeras 1992;
Zheng 1994; Boyer and Berger 1997; Szeliski and Weiss 1998; Cipolla and Giblin 2000).

Tracking algorithms also improved a lot, including contour tracking using active contours (see
Section 7.3), such as snakes (Kass, Witkin, and Terzopoulos 1988), particle filters (Blake and Is-
ard 1998), and level sets (Malladi, Sethian, and Vemuri 1995), as well as intensity-based (direct)
techniques (Lucas and Kanade 1981; Shi and Tomasi 1994; Rehg and Kanade 1994), often ap-
plied to tracking faces (Figure 1.9d) (Lanitis, Taylor, and Cootes 1997; Matthews and Baker 2004;
Matthews, Xiao, and Baker 2007) and whole bodies (Sidenbladh, Black, and Fleet 2000; Hilton,
Fua, and Ronfard 2006; Moeslund, Hilton, and Krüger 2006).

Image segmentation (see Section 7.5) (Figure 1.9e), a topic which has been active since the
earliest days of computer vision (Brice and Fennema 1970; Horowitz and Pavlidis 1976; Riseman
and Arbib 1977; Rosenfeld and Davis 1979; Haralick and Shapiro 1985; Pavlidis and Liow 1990),
was also an active topic of research, producing techniques based on minimum energy (Mumford and
Shah 1989) and minimum description length (Leclerc 1989), normalized cuts (Shi and Malik 2000),
and mean shift (Comaniciu and Meer 2002).
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(a) (b) (c)

(d) (e) (f)

Figure 1.10 Examples of computer vision algorithms from the 2000s: (a) image-based rendering (Gortler,
Grzeszczuk et al. 1996), (b) image-based modeling (Debevec, Taylor, and Malik 1996) © 1996 ACM, (c) in-
teractive tone mapping (Lischinski, Farbman et al. 2006) (d) texture synthesis (Efros and Freeman 2001), (e)
feature-based recognition (Fergus, Perona, and Zisserman 2007), (f) region-based recognition (Mori, Ren et al.
2004) © 2004 IEEE.

Statistical learning techniques started appearing, first in the application of principal component
eigenface analysis to face recognition (Figure 1.9f) (see Section 5.2.3 and Turk and Pentland 1991)
and linear dynamical systems for curve tracking (see Section 7.3.1 and Blake and Isard 1998).

Perhaps the most notable development in computer vision during this decade was the increased
interaction with computer graphics (Seitz and Szeliski 1999), especially in the cross-disciplinary
area of image-based modeling and rendering (see Chapter 14). The idea of manipulating real-world
imagery directly to create new animations first came to prominence with image morphing techniques
(Figure1.5c) (see Section 3.6.3 and Beier and Neely 1992) and was later applied to view interpola-
tion (Chen and Williams 1993; Seitz and Dyer 1996), panoramic image stitching (Figure1.5a) (see
Section 8.2 and Mann and Picard 1994; Chen 1995; Szeliski 1996; Szeliski and Shum 1997; Szeliski
2006a), and full light-field rendering (Figure 1.10a) (see Section 14.3 and Gortler, Grzeszczuk et al.
1996; Levoy and Hanrahan 1996; Shade, Gortler et al. 1998). At the same time, image-based mod-
eling techniques (Figure 1.10b) for automatically creating realistic 3D models from collections of
images were also being introduced (Beardsley, Torr, and Zisserman 1996; Debevec, Taylor, and
Malik 1996; Taylor, Debevec, and Malik 1996).

2000s. This decade continued to deepen the interplay between the vision and graphics fields,
but more importantly embraced data-driven and learning approaches as core components of vision.
Many of the topics introduced under the rubric of image-based rendering, such as image stitch-
ing (see Section 8.2), light-field capture and rendering (see Section 14.3), and high dynamic range
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(HDR) image capture through exposure bracketing (Figure1.5b) (see Section 10.2 and Mann and Pi-
card 1995; Debevec and Malik 1997), were re-christened as computational photography (see Chap-
ter 10) to acknowledge the increased use of such techniques in everyday digital photography. For
example, the rapid adoption of exposure bracketing to create high dynamic range images necessi-
tated the development of tone mapping algorithms (Figure 1.10c) (see Section 10.2.1) to convert
such images back to displayable results (Fattal, Lischinski, and Werman 2002; Durand and Dorsey
2002; Reinhard, Stark et al. 2002; Lischinski, Farbman et al. 2006). In addition to merging multiple
exposures, techniques were developed to merge flash images with non-flash counterparts (Eisemann
and Durand 2004; Petschnigg, Agrawala et al. 2004) and to interactively or automatically select
different regions from overlapping images (Agarwala, Dontcheva et al. 2004).

Texture synthesis (Figure 1.10d) (see Section 10.5), quilting (Efros and Leung 1999; Efros and
Freeman 2001; Kwatra, Schödl et al. 2003), and inpainting (Bertalmio, Sapiro et al. 2000; Bertalmio,
Vese et al. 2003; Criminisi, Pérez, and Toyama 2004) are additional topics that can be classified as
computational photography techniques, since they re-combine input image samples to produce new
photographs.

A second notable trend during this decade was the emergence of feature-based techniques (com-
bined with learning) for object recognition (see Section 6.1 and Ponce, Hebert et al. 2006). Some
of the notable papers in this area include the constellation model of Fergus, Perona, and Zisser-
man (2007) (Figure 1.10e) and the pictorial structures of Felzenszwalb and Huttenlocher (2005).
Feature-based techniques also dominate other recognition tasks, such as scene recognition (Zhang,
Marszalek et al. 2007) and panorama and location recognition (Brown and Lowe 2007; Schindler,
Brown, and Szeliski 2007). And while interest point (patch-based) features tend to dominate current
research, some groups are pursuing recognition based on contours (Belongie, Malik, and Puzicha
2002) and region segmentation (Figure 1.10f) (Mori, Ren et al. 2004).

Another significant trend from this decade was the development of more efficient algorithms for
complex global optimization problems (see Chapter 4 and Appendix B.5 and Szeliski, Zabih et al.
2008; Blake, Kohli, and Rother 2011). While this trend began with work on graph cuts (Boykov,
Veksler, and Zabih 2001; Kohli and Torr 2007), a lot of progress has also been made in message
passing algorithms, such as loopy belief propagation (LBP) (Yedidia, Freeman, and Weiss 2001;
Kumar and Torr 2006).

The most notable trend from this decade, which has by now completely taken over visual recog-
nition and most other aspects of computer vision, was the application of sophisticated machine
learning techniques to computer vision problems (see Chapters 5 and 6). This trend coincided with
the increased availability of immense quantities of partially labeled data on the internet, as well as
significant increases in computational power, which makes it more feasible to learn object categories
without the use of careful human supervision.

2010s. The trend towards using large labeled (and also self-supervised) datasets to develop ma-
chine learning algorithms became a tidal wave that totally revolutionized the development of image
recognition algorithms as well as other applications, such as denoising and optical flow, which pre-
viously used Bayesian and global optimization techniques.

This trend was enabled by the development of high-quality large-scale annotated datasets such
as ImageNet (Deng, Dong et al. 2009; Russakovsky, Deng et al. 2015), Microsoft COCO (Common
Objects in Context) (Lin, Maire et al. 2014), and LVIS (Gupta, Dollár, and Girshick 2019). These
datasets provided not only reliable metrics for tracking the progress of recognition and semantic
segmentation algorithms, but more importantly, sufficient labeled data to develop complete solutions
based on machine learning.
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(a) (b) (c)

(d) (e) (f)

Figure 1.11 Examples of computer vision algorithms from the 2010s: (a) the SuperVision deep neural network
© Krizhevsky, Sutskever, and Hinton (2012); (b) object instance segmentation (He, Gkioxari et al. 2017) © 2017
IEEE; (c) whole body, expression, and gesture fitting from a single image (Pavlakos, Choutas et al. 2019) © 2019
IEEE; (d) fusing multiple color depth images using the KinectFusion real-time system (Newcombe, Izadi et al.
2011) © 2011 IEEE; (e) smartphone augmented reality with real-time depth occlusion effects (Valentin, Kowdle
et al. 2018) © 2018 ACM; (f) 3D map computed in real-time on a fully autonomous Skydio R1 drone (Cross
2019).

Another major trend was the dramatic increase in computational power available from the devel-
opment of general purpose (data-parallel) algorithms on graphical processing units (GPGPU). The
breakthrough SuperVision (“AlexNet”) deep neural network (Figure 1.11a; Krizhevsky, Sutskever,
and Hinton 2012), which was the first neural network to win the yearly ImageNet large-scale vi-
sual recognition challenge, relied on GPU training, as well as a number of technical advances, for
its dramatic performance. After the publication of this paper, progress in using deep convolutional
architectures accelerated dramatically, to the point where they are now the only architecture con-
sidered for recognition and semantic segmentation tasks (Figure 1.11b), as well as the preferred
architecture for many other vision tasks (Chapter 5; LeCun, Bengio, and Hinton 2015), including
optical flow (Sun, Yang et al. 2018)), denoising, and monocular depth inference (Li, Dekel et al.
2019).

Large datasets and GPU architectures, coupled with the rapid dissemination of ideas through
timely publications on arXiv as well as the development of languages for deep learning and the
open sourcing of neural network models, all contributed to an explosive growth in this area, both in
rapid advances and capabilities, and also in the sheer number of publications and researchers now
working on these topics. They also enabled the extension of image recognition approaches to video
understanding tasks such as action recognition (Feichtenhofer, Fan et al. 2019), as well as structured
regression tasks such as real-time multi-person body pose estimation (Cao, Simon et al. 2017).

Specialized sensors and hardware for computer vision tasks also continued to advance. The
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Microsoft Kinect depth camera, released in 2010, quickly became an essential component of many
3D modeling (Figure 1.11d) and person tracking (Shotton, Fitzgibbon et al. 2011) systems. Over
the decade, 3D body shape modeling and tracking systems continued to evolve, to the point where
it is now possible to infer a person’s 3D model with gestures and expression from a single image
(Figure 1.11c).

And while depth sensors have not yet become ubiquitous (except for security applications on
high-end phones), computational photography algorithms run on all of today’s smartphones. In-
novations introduced in the computer vision community, such as panoramic image stitching and
bracketed high dynamic range image merging, are now standard features, and multi-image low-light
denoising algorithms are also becoming commonplace (Liba, Murthy et al. 2019). Lightfield imag-
ing algorithms, which allow the creation of soft depth-of-field effects, are now also becoming more
available (Garg, Wadhwa et al. 2019). Finally, mobile augmented reality applications that perform
real-time pose estimation and environment augmentation using combinations of feature tracking and
inertial measurements are commonplace, and are currently being extended to include pixel-accurate
depth occlusion effects (Figure 1.11e).

On higher-end platforms such as autonomous vehicles and drones, powerful real-time SLAM
(simultaneous localization and mapping) and VIO (visual inertial odometry) algorithms (Engel,
Schöps, and Cremers 2014; Forster, Zhang et al. 2017; Engel, Koltun, and Cremers 2018) can build
accurate 3D maps that enable, e.g., autonomous flight through challenging scenes such as forests
(Figure 1.11f).

In summary, this past decade has seen incredible advances in the performance and reliability
of computer vision algorithms, brought in part by the shift to machine learning and training on
very large sets of real-world data. It has also seen the application of vision algorithms in myriad
commercial and consumer scenarios as well as new challenges engendered by their widespread use
(Su and Crandall 2021).

1.3 Book overview

In the final part of this introduction, I give a brief tour of the material in this book, as well as a few
notes on notation and some additional general references. Since computer vision is such a broad
field, it is possible to study certain aspects of it, e.g., geometric image formation and 3D structure
recovery, without requiring other parts, e.g., the modeling of reflectance and shading. Some of the
chapters in this book are only loosely coupled with others, and it is not strictly necessary to read all
of the material in sequence.

Figure 1.12 shows a rough layout of the contents of this book. Since computer vision involves
going from images to both a semantic understanding as well as a 3D structural description of the
scene, I have positioned the chapters horizontally in terms of where in this spectrum they land, in
addition to vertically according to their dependence.9

Interspersed throughout the book are sample applications, which relate the algorithms and math-
ematical material being presented in various chapters to useful, real-world applications. Many of
these applications are also presented in the exercises sections, so that students can write their own.

At the end of each section, I provide a set of exercises that the students can use to implement,
test, and refine the algorithms and techniques presented in each section. Some of the exercises are
suitable as written homework assignments, others as shorter one-week projects, and still others as

9For an interesting comparison with what is known about the human visual system, e.g., the largely parallel what and
where pathways (Goodale and Milner 1992), see some textbooks on human perception (Palmer 1999; Livingstone 2008;
Frisby and Stone 2010).
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2D (what?)

8. Image alignment 
and stitching

11. Structure from 
motion and SLAM

9. Motion
estimation

10. Computational 
photography

12. Depth 
estimation

13. 3D 
reconstruction

14. Image-based 
rendering

4. Model fitting
and optimization

5. Deep learning

2. Image formation

7. Feature detection 
and matching

3. Image processing

6. Recognition

3D (where?)

Figure 1.12 A taxonomy of the topics covered in this book, showing the (rough) dependencies between differ-
ent chapters, which are roughly positioned along the left–right axis depending on whether they are more closely
related to images (left) or 3D geometry (right) representations. The “what-where” along the top axis is a reference
to separate visual pathways in the visual system (Goodale and Milner 1992), but should not be taken too seriously.
Foundational techniques such as optimization and deep learning are widely used in subsequent chapters.
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open-ended research problems that make for challenging final projects. Motivated students who
implement a reasonable subset of these exercises will, by the end of the book, have a computer
vision software library that can be used for a variety of interesting tasks and projects.

If the students or curriculum do not have a strong preference for programming languages,
Python, with the NumPy scientific and array arithmetic library plus the OpenCV vision library,
are a good environment to develop algorithms and learn about vision. Not only will the students
learn how to program using array/tensor notation and linear/matrix algebra (which is a good founda-
tion for later use of PyTorch for deep learning), you can also prepare classroom assignments using
Jupyter notebooks, giving you the option to combine descriptive tutorials, sample code, and code to
be extended/modified in one convenient location.10

As this is a reference book, I try wherever possible to discuss which techniques and algorithms
work well in practice, as well as provide up-to-date pointers to the latest research results in the
areas that I cover. The exercises can be used to build up your own personal library of self-tested and
validated vision algorithms, which is more worthwhile in the long term (assuming you have the time)
than simply pulling algorithms out of a library whose performance you do not really understand.

The book begins in Chapter 2 with a review of the image formation processes that create the
images that we see and capture. Understanding this process is fundamental if you want to take a
scientific (model-based) approach to computer vision. Students who are eager to just start imple-
menting algorithms (or courses that have limited time) can skip ahead to the next chapter and dip
into this material later. In Chapter 2, we break down image formation into three major components.
Geometric image formation (Section 2.1) deals with points, lines, and planes, and how these are
mapped onto images using projective geometry and other models (including radial lens distortion).
Photometric image formation (Section 2.2) covers radiometry, which describes how light interacts
with surfaces in the world, and optics, which projects light onto the sensor plane. Finally, Sec-
tion 2.3 covers how sensors work, including topics such as sampling and aliasing, color sensing, and
in-camera compression.

Chapter 3 covers image processing, which is needed in almost all computer vision applications.
This includes topics such as linear and non-linear filtering (Section 3.3), the Fourier transform (Sec-
tion 3.4), image pyramids and wavelets (Section 3.5), and geometric transformations such as image
warping (Section 3.6). Chapter 3 also presents applications such as seamless image blending and
image morphing.

Chapter 4 begins with a new section on data fitting and interpolation, which provides a concep-
tual framework for global optimization techniques such as regularization and Markov random fields
(MRFs), as well as machine learning, which we cover in the next chapter. Section 4.2 covers classic
regularization techniques, i.e., piecewise-continuous smoothing splines (aka variational techniques)
implemented using fast iterated linear system solvers, which are still often the method of choice
in time-critical applications such as mobile augmented reality. The next section (4.3) presents the
related topic of MRFs, which also serve as an introduction to Bayesian inference techniques, cov-
ered at a more abstract level in Appendix B. The chapter also discusses applications to interactive
colorization and segmentation.

Chapter 5 is a completely new chapter covering machine learning, deep learning, and deep neural
networks. It begins in Section 5.1 with a review of classic supervised machine learning approaches,
which are designed to classify images (or regress values) based on intermediate-level features. Sec-
tion 5.2 looks at unsupervised learning, which is useful for both understanding unlabeled training
data and providing models of real-world distributions. Section 5.3 presents the basic elements of

10You may also be able to run your notebooks and train your models using the Google Colab service at https://colab.
research.google.com.

https://colab.research.google.com
https://colab.research.google.com
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n̂

2. Image formation 3. Image processing 4. Optimization

5. Deep learning 6. Recognition 7–8. Features & alignment

9. Motion estimation 10. Computational Photography 11. Structure from motion

12. Depth estimation 13. 3D reconstruction 14. Image-based Rendering

Figure 1.13 A pictorial summary of the chapter contents. Sources: Burt and Adelson (1983b); Agarwala,
Dontcheva et al. (2004); Glassner (2018); He, Gkioxari et al. (2017); Brown, Szeliski, and Winder (2005); Butler,
Wulff et al. (2012); Debevec and Malik (1997); Snavely, Seitz, and Szeliski (2006); Scharstein, Hirschmüller et
al. (2014); Curless and Levoy (1996); Gortler, Grzeszczuk et al. (1996)—see the figures in the respective chapters
for copyright information.
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feedforward neural networks, including weights, layers, and activation functions, as well as meth-
ods for network training. Section 5.4 goes into more detail on convolutional networks and their
applications to both recognition and image processing. The last section in the chapter discusses
more complex networks, including 3D, spatio-temporal, recurrent, and generative networks.

Chapter 6 covers the topic of recognition. In the first edition of this book this chapter came
last, since it built upon earlier methods such as segmentation and feature matching. With the advent
of deep networks, many of these intermediate representations are no longer necessary, since the
network can learn them as part of the training process. As so much of computer vision research is
now devoted to various recognition topics, I decided to move this chapter up so that students can
learn about it earlier in the course.

The chapter begins with the classic problem of instance recognition, i.e., finding instances of
known 3D objects in cluttered scenes. Section 6.2 covers both traditional and deep network ap-
proaches to whole image classification, i.e., what used to be called category recognition. It also
discusses the special case of facial recognition. Section 6.3 presents algorithms for object detection
(drawing bounding boxes around recognized objects), with a brief review of older approaches to
face and pedestrian detection. Section 6.4 covers various flavors of semantic segmentation (generat-
ing per-pixel labels), including instance segmentation (delineating separate objects), pose estimation
(labeling pixels with body parts), and panoptic segmentation (labeling both things and stuff). In Sec-
tion 6.5, we briefly look at some recent papers in video understanding and action recognition, while
in Section 6.6 we mention some recent work in image captioning and visual question answering.

In Chapter 7, we cover feature detection and matching. A lot of current 3D reconstruction and
recognition techniques are built on extracting and matching feature points (Section 7.1), so this is
a fundamental technique required by many subsequent chapters (Chapters 8 and 11) and even in
instance recognition (Section 6.1). We also cover edge and straight line detection in Sections 7.2
and 7.4, contour tracking in Section 7.3, and low-level segmentation techniques in Section 7.5.

Feature detection and matching are used in Chapter 8 to perform image alignment (or registra-
tion) and image stitching. We introduce the basic techniques of feature-based alignment and show
how this problem can be solved using either linear or non-linear least squares, depending on the
motion involved. We also introduce additional concepts, such as uncertainty weighting and robust
regression, which are essential to making real-world systems work. Feature-based alignment is then
used as a building block for both 2D applications such as image stitching (Section 8.2) and compu-
tational photography (Chapter 10), as well as 3D geometric alignment tasks such as pose estimation
and structure from motion (Chapter 11).

The second part of Chapter 8 is devoted to image stitching, i.e., the construction of large panora-
mas and composites. While stitching is just one example of computational photography (see Chap-
ter 10), there is enough depth here to warrant a separate section. We start by discussing various
possible motion models (Section 8.2.1), including planar motion and pure camera rotation. We then
discuss global alignment (Section 8.3), which is a special (simplified) case of general bundle adjust-
ment, and then present panorama recognition, i.e., techniques for automatically discovering which
images actually form overlapping panoramas. Finally, we cover the topics of image compositing
and blending (Section 8.4), which involve both selecting which pixels from which images to use and
blending them together so as to disguise exposure differences.

Image stitching is a wonderful application that ties together most of the material covered in ear-
lier parts of this book. It also makes for a good mid-term course project that can build on previously
developed techniques such as image warping and feature detection and matching. Sections 8.2–
8.4 also present more specialized variants of stitching such as whiteboard and document scanning,
video summarization, panography, full 360° spherical panoramas, and interactive photomontage for



1.3 Book overview 23

blending repeated action shots together.
In Chapter 9, we generalize the concept of feature-based image alignment to cover dense intensity-

based motion estimation, i.e., optical flow. We start with the simplest possible motion models,
translational motion (Section 9.1), and cover topics such as hierarchical (coarse-to-fine) motion es-
timation, Fourier-based techniques, and iterative refinement. We then present parametric motion
models, which can be used to compensate for camera rotation and zooming, as well as affine or
planar perspective motion (Section 9.2). This is then generalized to spline-based motion models
(Section 9.2.2) and finally to general per-pixel optical flow (Section 9.3). We close the chapter in
Section 9.4 with a discussion of layered and learned motion models as well as video object seg-
mentation and tracking. Applications of motion estimation techniques include automated morphing,
video denoising, and frame interpolation (slow motion).

Chapter 10 presents additional examples of computational photography, which is the process of
creating new images from one or more input photographs, often based on the careful modeling and
calibration of the image formation process (Section 10.1). Computational photography techniques
include merging multiple exposures to create high dynamic range images (Section 10.2), increasing
image resolution through blur removal and super-resolution (Section 10.3), and image editing and
compositing operations (Section 10.4). We also cover the topics of texture analysis, synthesis, and
inpainting (hole filling) in Section 10.5, as well as non-photorealistic rendering and style transfer.

Starting in Chapter 11, we delve more deeply into techniques for reconstructing 3D models
from images. We begin by introducing methods for intrinsic camera calibration in Section 11.1
and 3D pose estimation, i.e., extrinsic calibration, in Section 11.2. These sections also describe
the applications of single-view reconstruction of building models and 3D location recognition. We
then cover the topic of triangulation (Section 11.2.4), which is the 3D reconstruction of points from
matched features when the camera positions are known.

Chapter 11 then moves on to the topic of structure from motion, which involves the simultane-
ous recovery of 3D camera motion and 3D scene structure from a collection of tracked 2D features.
We begin with two-frame structure from motion (Section 11.3), for which algebraic techniques ex-
ist, as well as robust sampling techniques such as RANSAC that can discount erroneous feature
matches. We then cover techniques for multi-frame structure from motion, including factorization
(Section 11.4.1), bundle adjustment (Section 11.4.2), and constrained motion and structure mod-
els (Section 11.4.8). We present applications in visual effects (match move) and sparse 3D model
construction for large (e.g., internet) photo collections. The final part of this chapter (Section 11.5)
has a new section on simultaneous localization and mapping (SLAM) as well as its applications to
autonomous navigation and mobile augmented reality (AR).

In Chapter 12, we turn to the topic of stereo correspondence, which can be thought of as a special
case of motion estimation where the camera positions are already known (Section 12.1). This addi-
tional knowledge enables stereo algorithms to search over a much smaller space of correspondences
to produce dense depth estimates using various combinations of matching criteria, optimization al-
gorithm, and/or deep networks (Sections 12.3–12.6). We also cover multi-view stereo algorithms
that build a true 3D surface representation instead of just a single depth map (Section 12.7), as well
as monocular depth inference algorithms that hallucinate depth maps from just a single image (Sec-
tion 12.8). Applications of stereo matching include head and gaze tracking, as well as depth-based
background replacement (Z-keying).

Chapter 13 covers additional 3D shape and appearance modeling techniques. These include
classic shape-from-X techniques such as shape from shading, shape from texture, and shape from
focus (Section 13.1). An alternative to all of these passive computer vision techniques is to use active
rangefinding (Section 13.2), i.e., to project patterned light onto scenes and recover the 3D geometry
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through triangulation. Processing all of these 3D representations often involves interpolating or
simplifying the geometry (Section 13.3), or using alternative representations such as surface point
sets (Section 13.4) or implicit functions (Section 13.5).

The collection of techniques for going from one or more images to partial or full 3D mod-
els is often called image-based modeling or 3D photography. Section 13.6 examines three more
specialized application areas (architecture, faces, and human bodies), which can use model-based
reconstruction to fit parameterized models to the sensed data. Section 13.7 examines the topic of
appearance modeling, i.e., techniques for estimating the texture maps, albedos, or even sometimes
complete bi-directional reflectance distribution functions (BRDFs) that describe the appearance of
3D surfaces.

In Chapter 14, we discuss the large number of image-based rendering techniques that have been
developed in the last three decades, including simpler techniques such as view interpolation (Sec-
tion 14.1), layered depth images (Section 14.2), and sprites and layers (Section 14.2.1), as well as
the more general framework of light fields and Lumigraphs (Section 14.3) and higher-order fields
such as environment mattes (Section 14.4). Applications of these techniques include navigating 3D
collections of photographs using photo tourism.

Next, we discuss video-based rendering, which is the temporal extension of image-based ren-
dering. The topics we cover include video-based animation (Section 14.5.1), periodic video turned
into video textures (Section 14.5.2), and 3D video constructed from multiple video streams (Sec-
tion 14.5.4). Applications of these techniques include animating still images and creating home
tours based on 360° video. We finish the chapter with an overview of the new emerging field of
neural rendering.

To support the book’s use as a textbook, the appendices and associated website contain more
detailed mathematical topics and additional material. Appendix A covers linear algebra and numeri-
cal techniques, including matrix algebra, least squares, and iterative techniques. Appendix B covers
Bayesian estimation theory, including maximum likelihood estimation, robust statistics, Markov ran-
dom fields, and uncertainty modeling. Appendix C describes the supplementary material that can
be used to complement this book, including images and datasets, pointers to software, and course
slides.

1.4 Sample syllabus

Teaching all of the material covered in this book in a single quarter or semester course is a Herculean
task and likely one not worth attempting.11 It is better to simply pick and choose topics related to
the lecturer’s preferred emphasis and tailored to the set of mini-projects envisioned for the students.

Steve Seitz and I have successfully used a 10-week syllabus similar to the one shown in Ta-
ble 1.1 as both an undergraduate and a graduate-level course in computer vision. The undergraduate
course12 tends to go lighter on the mathematics and takes more time reviewing basics, while the
graduate-level course13 dives more deeply into techniques and assumes the students already have
a decent grounding in either vision or related mathematical techniques. Related courses have also
been taught on the topics of 3D photography and computational photography. Appendix C.3 and the
book’s website list other courses that use this book to teach a similar curriculum.

11Some universities, such as Stanford (CS231A & 231N), Berkeley (CS194-26/294-26 & 280), and the University of
Michigan (EECS 498/598 & 442), now split the material over two courses.

12http://www.cs.washington.edu/education/courses/455
13http://www.cs.washington.edu/education/courses/576

http://www.cs.washington.edu/education/courses/455
http://www.cs.washington.edu/education/courses/576
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Week Chapter Topics

1. Chapters 1–2 Introduction and image formation
2. Chapter 3 Image processing
3. Chapters 4–5 Optimization and learning
4. Chapter 5 Deep learning
5. Chapter 6 Recognition
6. Chapter 7 Feature detection and matching
7. Chapter 8 Image alignment and stitching
8. Chapter 9 Motion estimation
9. Chapter 10 Computational photography

10. Chapter 11 Structure from motion
11. Chapter 12 Depth estimation
12. Chapter 13 3D reconstruction
13. Chapter 14 Image-based rendering

Table 1.1 Sample syllabus for a one semester 13-week course. A 10-week quarter could go into lesser depth or
omit some topics.

When Steve and I teach the course, we prefer to give the students several small programming
assignments early in the course rather than focusing on written homework or quizzes. With a suitable
choice of topics, it is possible for these projects to build on each other. For example, introducing
feature matching early on can be used in a second assignment to do image alignment and stitching.
Alternatively, direct (optical flow) techniques can be used to do the alignment and more focus can
be put on either graph cut seam selection or multi-resolution blending techniques.

In the past, we have also asked the students to propose a final project (we provide a set of
suggested topics for those who need ideas) by the middle of the course and reserved the last week
of the class for student presentations. Sometimes, a few of these projects have actually turned into
conference submissions!

No matter how you decide to structure the course or how you choose to use this book, I encourage
you to try at least a few small programming tasks to get a feel for how vision techniques work and
how they fail. Better yet, pick topics that are fun and can be used on your own photographs, and try
to push your creative boundaries to come up with surprising results.

1.5 A note on notation

For better or worse, the notation found in computer vision and multi-view geometry textbooks tends
to vary all over the map (Faugeras 1993; Hartley and Zisserman 2004; Girod, Greiner, and Niemann
2000; Faugeras and Luong 2001; Forsyth and Ponce 2003). In this book, I use the convention I
first learned in my high school physics class (and later multi-variate calculus and computer graphics
courses), which is that vectors v are lower case bold, matrices M are upper case bold, and scalars
(T, s) are mixed case italic. Unless otherwise noted, vectors operate as column vectors, i.e., they
post-multiply matrices, Mv, although they are sometimes written as comma-separated parenthe-
sized lists x = (x, y) instead of bracketed column vectors x = [x y]T . Some commonly used matri-
ces are R for rotations, K for calibration matrices, and I for the identity matrix. Homogeneous coor-
dinates (Section 2.1) are denoted with a tilde over the vector, e.g., x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄

in P2. The cross product operator in matrix form is denoted by [ ]×.
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1.6 Additional reading

This book attempts to be self-contained, so that students can implement the basic assignments and
algorithms described here without the need for outside references. However, it does presuppose
a general familiarity with basic concepts in linear algebra and numerical techniques, which are
reviewed in Appendix A, and image processing, which is reviewed in Chapter 3.

Students who want to delve more deeply into these topics can look in Golub and Van Loan
(1996) for matrix algebra and Strang (1988) for linear algebra. In image processing, there are a
number of popular textbooks, including Crane (1997), Gomes and Velho (1997), Jähne (1997), Pratt
(2007), Russ (2007), Burger and Burge (2008), and Gonzalez and Woods (2017). For computer
graphics, popular texts include Hughes, van Dam et al. (2013) and Marschner and Shirley (2015),
with Glassner (1995) providing a more in-depth look at image formation and rendering. For statistics
and machine learning, Chris Bishop’s (2006) book is a wonderful and comprehensive introduction
with a wealth of exercises, while Murphy (2012) provides a more recent take on the field and Hastie,
Tibshirani, and Friedman (2009) a more classic treatment. A great introductory text to deep learning
is Glassner (2018), while Goodfellow, Bengio, and Courville (2016) and Zhang, Lipton et al. (2021)
provide more comprehensive treatments. Students may also want to look in other textbooks on
computer vision for material that we do not cover here, as well as for additional project ideas (Nalwa
1993; Trucco and Verri 1998; Hartley and Zisserman 2004; Forsyth and Ponce 2011; Prince 2012;
Davies 2017).

There is, however, no substitute for reading the latest research literature, both for the latest ideas
and techniques and for the most up-to-date references to related literature.14 In this book, I have
attempted to cite the most recent work in each field so that students can read them directly and
use them as inspiration for their own work. Browsing the last few years’ conference proceedings
from the major vision, graphics, and machine learning conferences, such as CVPR, ECCV, ICCV,
SIGGRAPH, and NeurIPS, as well as keeping an eye out for the latest publications on arXiv, will
provide a wealth of new ideas. The tutorials offered at these conferences, for which slides or notes
are often available online, are also an invaluable resource.

14For a comprehensive bibliography and taxonomy of computer vision research, Keith Price’s Annotated Computer Vision
Bibliography https://www.visionbib.com/bibliography/contents.html is an invaluable resource.

https://www.visionbib.com/bibliography/contents.html
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