
Declarative Approach to Model Checking
for Context-Aware Applications

Ammar Alsaig(B), Vangalur Alagar, and Nematollaah Shiri

Concordia University, Montreal, QC, Canada
{A_alsaig,alagar,shiri}@encs.concordia.ca

Abstract. Systems need to be formally verified to ensure that their
claimed properties hold at all times of system operation. Deterministic
Finite State Machines (FSM) are widely used as model checkers to verify
system properties. However, for context-aware systems that have regular
inputs and contextual inputs, FSM models become more complex and
less intuitive, and do not precisely represent the system behavior. In this
paper we use simple examples to introduce the declarative reasoning
framework Contelog , a theoretically and practically well grounded work
in progress, as a complementary approach that can be used to represent,
reason, verify data-centric and contextual properties of context-aware
systems.

Keywords: Formal verification · Context-aware modeling · Model
checking · Context-based knowledge base systems

1 Background

As technologies progress, their dependence on pervasive, ubiquitous, and Knowl-
edge base system features is increasing in order to meet application demands in
different fields. In many of these application domains safety-criticality plays a
crucial role in decision making. Some examples are (1) rule-based medical diag-
nosis systems [8,10], (2) rule-based access control [7] systems to enforce secu-
rity/privacy, and (3) rule-based expert systems [6] for prediction. Due to this
criticality, formal verification is necessary on the modeled system to ensure that
safety, security, and privacy properties hold at all times throughout the opera-
tion of the system. One method of formal verification is through model check-
ing [9]. Many model checkers that are available for hardware/software checking
are also being used to model check context-aware system properties. However,
it is pointed out [13] that traditional checking models are insufficient, ineffi-
cient, and non-intuitive for verifying properties of context-aware systems. The
dynamism, and the rapid change of the behaviour of context-aware systems make
them prone to adaptation-faults and unexpected behaviours [12]. This makes
context-aware verification a challenging process. It is in this context that we
propose Contelog reasoner for model checking context-aware systems.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
P. C. Vinh and A. Rakib (Eds.): ICCASA 2019/ICTCC 2019, LNICST 298, pp. 3–10, 2019.
https://doi.org/10.1007/978-3-030-34365-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34365-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-34365-1_1

4 A. Alsaig et al.

Example in Fig. 1 is to motivate where and how contexts arise and how they
can be brought into FSM modeling. The illustrated scenario is that of entry to an
emergency room in a hospital. Based on access control model, both patients and
doctors are authenticated to enter the room. Whereas a doctor is allowed to enter
using the authorized barcode at any time, patients and other staff are allowed
to access the room only at specific time periods using their authorized bar-
codes. Because there might exist many emergency rooms, a person may require
to use the same or different bar code to enter many rooms subject to time con-
straints for entry, the pairs “〈 times, emergency room locations 〉” become the set
of contexts at which barcode authentication should be certified for valid entry.
Because any combination logic can be represented as a deterministic Finite State
Machine (FSM) [16], the above example can be represented as an FSM as shown
in Fig. 2. However, the FSM representation in Fig. 2B in complicated scenarios
becomes complicated and non-intuitive. This is because it is less descriptive as
it reduces most of the details to context. Although there is a rich volume of
literature [4,14] dedicated to increasing the expressiveness of FSMs, their repre-
sentation, understandability, and verification become more challenging when a
variety of contexts, that are multi-dimensional objects, need to be represented.
As observed in [11,12], standard FSM can have states, input, and outputs, but
adding context can only be in terms of inputs which does not represent the
actual conceptual relevance of context to the system. Thus, we are motivated to
introduce our framework Contelog to model context-aware systems. Contelog is
a Datalog program [1] in which context is integrated as a first class citizen in
order to enable contextual reasoning. The declarative semantics of Contelog can
prove theoretically that certain property holds for the entire world of inputs and
contexts embedded in it.

Fig. 1. Illustration (A) gives general overview of the example, illustration (B) gives
the scenario in if-statement diagram

1.1 Outline
In Sect. 2 we briefly introduce the theoretical foundation of Contelog . In Sect. 3
we discuss the reasoning tool and comment on the Book of Examples [2] that
we have implemented using the reasoning tool. In Sect. 4 we describe Contelog
programs for the Microwave Example, the most often cited first example in
model checking, and the access control example Fig. 2. We conclude the paper
in Sect. 5 with a brief description of our work in progress.

Declarative Approach to Model Checking for Context-Aware Applications 5

Fig. 2. Illustration (A) represents Fig. 1 in FSM (B) provides an equivalent diagram
using context

2 Formalization of Context, and Contelog

In this section we briefly summarize our results on context formalization [3] and
the work completed so far on Contelog creation. Context is a multi-disciplinary
concept that has diverse conceptualizations. However, it has been commonly per-
ceived as the “settings of a system” and “a surrounding environment” [5,15]. Our
context theory is conceptualized in three layers, in order to allow maximum flex-
ibility for system designers to choose meaningful contexts and at the same time
provide sufficient formalism for building a context calculus on which contexts can
be manipulated at system level. The layers are respectively Context Schema(CS)
layer, Typed Context Schema(TCS) layer, and Context Instances(CI) layer. Con-
texts are viewed as multi-dimensional objects where a dimension represent a type
of the settings being described, and attributes associated with each dimension
give the detailed description for a particular dimension.

Definition 1. Let D be a finite, non-empty set of dimensions, A be a set of
attributes, and V T is a set of values of type T . A context Schema C is a set of
pairs defined as follows:

CS = C = {< d,Ad > | d ∈ D ∧ Ad ⊆ A}

TCS = C T = {< d,Ad > | d ∈ D ∧ Ad ⊆ AT }
CI = Ii(C T) = {< d, Vd > | d ∈ D ∧ Vd ⊆ V T } �

As described in [3], context operations are Join (⊕) and Meet (�). The defini-
tions of operations on context schemas lead to a closed lattice structure, thus
making our context calculus a complete universe. Datalog also considers closed
world under Herbrand structures. Consequently, when we integrate it with the
declarative semantics of Datalog we achieve “closed world assumption” for con-
text reasoning. Thus, Contelog is a logic-based framework that uses “context” as
a first class citizen, extends Datalog’s syntax and semantics to reason with con-
textual knowledge in a declarative fashion. Contelog syntax is formally presented
as follows:

Definition 2. A Contelog program P (C -program) is a four-tuple 〈T, SC ∗ ,
F,R〉 whose components are defined as follows:

6 A. Alsaig et al.

1. T is the set of truth values {True, False}
2. SC ∗ is a set of instantiated contexts partially ordered by 	. We assume that

< SC ∗ ,	,⊕,� > is a complete lattice. The least upper bound is denoted by
C�, and the greatest lower bound by C⊥.

3. F is a finite set of annotated ground atoms, each of which is in the form q@c,
where q is a ground atom, and c is a context name in SC ∗ .

4. R is a finite set of rules, each of which is in the form:

r : H : - B1, B2, . . . , Bn

where H,B1, . . . , Bn are annotated atoms. Standard datalog predicates may
be annotated with context C where C is a context variable, e.g., q(X̄)@C.

As in datalog, we use uppercase letters for variables and lower case letters for
constants in the universe. As is customary in database and logic programming
frameworks, we restrict the semantics of (C -program) to Herbrand structures.
We have developed the declarative semantics for (C -program) P to be the least
model of P, defined by the intersection of all the Herbrand models of P. We also
developed a bottom-up, fixpoint semantics of (C -program) and show that the
fixpoint model of any (C -program) P coincides with the least model of P. We
have built a running prototype of the Contelog framework which computes the
fixpoint semantics of (C -program) . The prototype system has been tested with
a number of examples and is available for evaluation at the link [2].

3 Contelog System

Contelog system is a tool that implements both context calculus and Contelog
reasoner. This prototype tool is a playground for Contelog programs to be able
to implement simple and small-sized Contelog programs. The system can be
accessed online through this link [2]. The system allows input in two modes.
These are respectively context and code input modes. The rationale is to allow
context calculus to be tried independently from executing a Contelog program.
In context input mode, context representation, as formalized by us, should be
used. The user interface guides the user to input syntactically correct input
with correct typed values. In code input mode the syntax of Contelog is used
to guide the user to create the program. The syntax checker will ensure that
only those contexts that have already been constructed are used in the program
rules. This is to avoid any inconsistency in reasoning. The reasoning is currently
operating using the naive reasoning method. The complexity is polynomial, as
for Datalog programs, yet it is an exhaustive approach and not efficient for large-
sized applications. The current running version is just a proof of concept, just
to demonstrate the different kinds of examples that we have implemented, and
give users a forum to use the system and give us feedback.

Declarative Approach to Model Checking for Context-Aware Applications 7

Fig. 3. Contelog structure

4 Reasoning with Contelog : Access Control
and Microwave Examples

We claim that a FSM for context-aware systems can be represented using
Contelog in three steps. In Step 1, each non-contextual input/edge is rep-
resented as a ground predicate (fact) in Contelog . For instance, the bar-
code input in Fig. 1 is represented as input(barcode) in Contelog . In Step 2,
each contextual input or any input that is dynamic in nature is represented
as context using our notation. For instance, staff context is represented as
Cstaff = {time_constraint : [none], type : [staff]}, where time_constraint
and type are dimensions. Each state is represented as a rule, while the edge
(condition) to move from one state to another is represented in the rule body.
For instance, to represent the event of moving from “init state” to “open state”
we write state(open-door)@C : -input(barcode), type(staff)@C. Finally, the ini-
tial state is given as a ground fact. Following this transformation rule we get
the two contexts Cs = {time : [no], type : [staff]}, and patient context
Cp = {time : [yes], type : [patient]} for medical staff and patient categories.
Inputs, states, and events are represented in terms of facts and rules. The result-
ing Contelog program and its execution in our Contelog system are shown below:

Contelog representation for the motivating example
1 input(1,barcode)@cs.
2 input(2,barcode)@cp.
3 state(X,open)@C:-input(X,Z)@C,time(no)@C,type(staff)@C.
4 state(X,open)@C:-input(X,Z)@C,time(yes)@C.
5 state(X,closed)@C:-state(X,open)@C.
6 ***** RESULTS *****
7 {input(1,barcode)@cs, input(2,barcode)@cp, **state(1,open)@cs,
8 **state(2,open)@cp, **state(1,closed)@cs, **state(2,closed)@cp.}

8 A. Alsaig et al.

Fig. 4. Contelog structure

In the commonly known Microwave example contexts are used to model
“from-to relationship” between states in the FSM shown in Fig. 4. Inputs are
regular facts, while first state is the initial state. The program recursively fires
the rules and generates all output, given the correct set of input. If system is
not given the input “startoven” it will not generate any of the other answers as
they are all chained together through contexts. The Contelog representation for
Microwave example is shown below. In order to verify a feature or a property such
as “heat does not start with door opened”, a query like features(heat)@c1∗c2∗c3
can be used. The idea is to identify all contexts where door is open and use it
in the query. Basically, can heat feature be present in all three contexts at the
same time? If the answer to the query is an empty set (no answer) then heat is
not present in all the three contexts at the same time, which means that heat
while door is closed is satisfied.

Contelog representation for the Microwave example
1 Note: context 4, 41, 42 are edges coming out of the same state.
2 ## CONTEXT ##
3 c1={’to’ :[’startoven’ , ’c2’],
4 ’ features ’ :[’~start ’ , ’~close ’ , ’~heat’ , ’~error ’]}
5 c2={’to’ :[’closedoor’ , ’c5’]},
6 ’ features ’ :[’ start ’ , ’~close ’ , ’~heat’ , ’ error ’]}
7 c5={’to’ :[’opendoor’,’c2’]},
8 ’ features ’ :[’ start ’ , ’ close ’ , ’~heat’ , ’ error ’]}
9 c51={’from’:[’c5’], ’to’ :[’ reset ’ , ’c3’]},

10 ’ features ’ :[’ start ’ , ’ close ’ , ’~heat’ , ’ error ’]}
11 c3={’to’ :[’startoven’ , ’c6’]},
12 ’ features ’ :[’~start ’ , ’ close ’ , ’~heat’ , ’~error ’]}
13 c31={’from’:[’c3’], ’to’ :[’opendoor’,’c1’]},
14 ’ features ’ :[’~start ’ , ’ close ’ , ’~heat’ , ’~error ’]}
15 c6={’to’ :[’warmup’,’c7’]},
16 ’ features ’ :[’ start ’ , ’ close ’ , ’~heat’ , ’~error ’]}
17 c7={’to’ :[’startcooking’ , ’c4’]},
18 ’ features ’ :[’ start ’ , ’ close ’ , ’heat’ , ’~error ’]}
19 c4={’to’ :[’cook’, ’c4’]},
20 ’ features ’ :[’~start ’ , ’ close ’ , ’heat’ , ’~error ’]}
21 c41={’from’:[’c4’], ’to’ :[’done’, ’c3’]},
22 ’ features ’ :[’~start ’ , ’ close ’ , ’heat’ , ’~error ’]}
23 c42={’from’:[’c4’], ’to’ :[’opendoor’,’c1’]},
24 ’ features ’ :[’~start ’ , ’ close ’ , ’heat’ , ’~error ’]}

Declarative Approach to Model Checking for Context-Aware Applications 9

25 ## CODE ##
26 input(startoven).
27 input(closedoor).
28 input(opendoor).
29 input(reset) .
30 input(warmup).
31 input(startcooking).
32 input(done).
33 input(cook).
34 state(1)@c1.
35 state(X)@C:−state(X)@W,input(M),to(M,C)@W.
36 state(X)@C:−state(X)@W,from(W)@C.
37 ### RESULTS ###
38 { input(startoven), input(closedoor), input(opendoor), input(reset) ,
39 input(warmup),input(startcooking),input(done),input(cook),state(1)@c1,
40 ∗∗state(1)@c2,∗∗state(1)@c5,∗∗state(1)@c51,∗∗state(1)@c3,∗∗state(1)@c6,
41 ∗∗state(1)@c31,∗∗state(1)@c7,∗∗state(1)@c4,∗∗state(1)@c41,∗∗state(1)@c42 }

5 Conclusion

In this paper we have proposed Contelog as an approach to model check context-
aware system properties through examples. Our study on Contelog was originally
motivated from the need to provide a formal framework for representing and rea-
soning about contextual knowledge. With that goal we have completed a context
formalism, Contelog semantics, and constructed a prototype implementation as
a proof concept of what we have achieved. We believe that our approach needs
to be fine-tuned with query optimization techniques to deal with the reason-
ing of large context-aware systems. We are undertaking a deeper study of model
checking methods, especially for protocol and contract specifications, investigate
how contextual reasoning may be necessary in ubiquitous applications, and find
ways to improve our current approach to handle such larger real life practical
problems.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: the Logical Level.
Addison-Wesley, Boston (1995)

2. Alsaig, A.: Book of examples: a prototype environment for reasoning with contexts
(2017). http://www.contelog.com

3. Alsaig, A., Alagar, V., Shiri, N.: Formal context representation and calculus for
context-aware computing. In: Cong Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC
-2018. LNICST, vol. 266, pp. 3–13. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-06152-4_1

4. Bresolin, D., El-Fakih, K., Villa, T., Yevtushenko, N.: Deterministic timed
finite state machines: equivalence checking and expressive power. arXiv preprint
arXiv:1408.5967 (2014)

5. Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(1), 47–80
(1999)

6. Buchanan, B.G., Shortliffe, E.H., et al.: Rule-Based Expert Systems, vol. 3. Addi-
son Wesley, Reading (1984)

http://www.contelog.com
https://doi.org/10.1007/978-3-030-06152-4_1
https://doi.org/10.1007/978-3-030-06152-4_1
http://arxiv.org/abs/1408.5967

10 A. Alsaig et al.

7. Carminati, B., Ferrari, E., Perego, A.: Rule-based access control for social networks.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp.
1734–1744. Springer, Heidelberg (2006). https://doi.org/10.1007/11915072_80

8. Clancey, W.J.: The epistemology of a rule-based expert system–a framework for
explanation. Artif. Intell. 20(3), 215–251 (1983)

9. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Heidelberg (2018)

10. Lamperti, G., Zanella, M.: Rule-Based Diagnosis, pp. 193–233. Springer, Dordrecht
(2003)

11. Le, H.A.: Formal modeling and verification of context-aware systems using event-b.
EAI Endorsed Trans. Context-Aware Syst. Appl. 1, e4 (2014). https://doi.org/10.
4108/casa.1.2.e4

12. Liu, Y., Xu, C., Cheung, S.: Afchecker: effective model checking for context-aware
adaptive applications. J. Syst. Soft. 86(3), 854–867 (2013)

13. Schmidtke, H.R., Woo, W.: Towards ontology-based formal verification methods
for context aware systems. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B.,
Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 309–326. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01516-8_21

14. Skelin, M., Wognsen, E.R., Olesen, M.C., Hansen, R.R., Larsen, K.G.: Model check-
ing of finite-state machine-based scenario-aware dataflow using timed automata.
In: 10th IEEE International Symposium on Industrial Embedded Systems (SIES),
pp. 1–10. IEEE (2015)

15. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop Pro-
ceedings (2004)

16. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines: A Practical Approach. Auerbach Publications (2006)

https://doi.org/10.1007/11915072_80
https://doi.org/10.4108/casa.1.2.e4
https://doi.org/10.4108/casa.1.2.e4
https://doi.org/10.1007/978-3-642-01516-8_21

	Declarative Approach to Model Checking for Context-Aware Applications
	1 Background
	1.1 Outline

	2 Formalization of Context, and Contelog
	3 Contelog System
	4 Reasoning with Contelog : Access Control and Microwave Examples
	5 Conclusion
	References

