
Software and Hardware Co-design
for Low-Power HPC Platforms

Manolis Ploumidis(B), Nikolaos D. Kallimanis, Marios Asiminakis,
Nikos Chrysos, Pantelis Xirouchakis, Michalis Gianoudis, Leandros Tzanakis,

Nikolaos Dimou, Antonis Psistakis, Panagiotis Peristerakis,
Giorgos Kalokairinos, Vassilis Papaefstathiou, and Manolis Katevenis

Foundation for Research and Technology – Hellas (FORTH), Heraklion, Crete, Greece
{ploumid,nkallima,marios4,nchrysos,pxirouch,yanoudis,ndimou,psistakis,

perister,george,papaef,kateveni}@ics.forth.gr

Abstract. In order to keep an HPC cluster viable in terms of econ-
omy, serious cost limitations on the hardware and software deployment
should be considered, prompting researchers to reconsider the design of
modern HPC platforms. In this paper we present a cross-layer commu-
nication architecture suitable for emerging HPC platforms based on het-
erogeneous multiprocessors. We propose simple hardware primitives that
enable protected, reliable and virtualized, user-level communication that
can easily be integrate in the same package with the processing unit.
Using an efficient user-space software stack the proposed architecture
provides efficient, low-latency communication mechanisms to HPC appli-
cations. Our implementation of the MPI standard that exploits the afore-
mentioned capabilities delivers point-to-point and collective primitives
with low overheads, including an eager protocol with end-to-end latency
of 1.4µs. We port and evaluate our communication stack using real HPC
applications in a cluster of 128 ARMv8 processors that are tightly cou-
pled with FPGA logic. The network interface primitives occupy less than
25% of the FPGA logic and only 3 Mbits of SRAM while they can easily
saturate the 16 Gb/s links in our platform.

1 Introduction

With cluster computation power moving towards exascale, cost both in terms of
installation and operation will play a significant role in future data centers and
HPC clusters. This may impose a full system reconsideration from the ground up.
More specifically, the processor, the memory hierarchy, the system interconnects
and the system software may require fundamental changes to meet expectations
for applications’ performance.

With the end of Dennard’s scaling, high-end computing chips turn to archi-
tectures that mix many, simple, RISC-like low-power processors with power-
efficient accelerator units [6,7,17]. These heterogeneous chip multiprocessors are
expected to use 3D-stacked DRAMs in order to improve their bytes-per-flop
ratios. Along this direction, we need efficient interconnects to move data across
system’s distributed memories. These interconnects should be efficient not only
c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 88–100, 2019.
https://doi.org/10.1007/978-3-030-34356-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-34356-9_9


Software and Hardware Co-design for Low-Power HPC Platforms 89

among the chips of a blade, but also among the blades of a rack or across racks.
An efficient interconnect should offer low latency and high throughput, and also
issue multiple outstanding transactions in order to hide the memory latency and
overlap the communication with computation.

However, efficient communication does not come for free. Traditional commu-
nication protocols deplete precious processor and memory cycles. More specifi-
cally, a common rule-of-thumb states that 1 GHz of CPU power is consumed per
Gbit/s of (unidirectional) Ethernet-based traffic [12]. Additionally, by copying
the message payload to intermediate buffers at network injection or reception
time, the memory bandwidth is consumed needlessly and the caching subsystem
is stressed. In order to offload the CPU from the overheads that the network
protocols induce, two options are available. The first one is to deploy smart
network interface cards (NICs), while the second one is to resort interconnects
with memory semantics, e.g., InfiniBand [15] Aries [3]. These solutions rely on
expensive hardware, since they have to support complex and continuously evolv-
ing operations. Moreover, such network interfaces have relatively big physical
dimensions, e.g., a medium-sized PCIe network card. On the other side of the
spectrum, cache-coherent memory interconnects implement intricate protocols
in order to maintain consistency among caches [11]. These protocols are typi-
cally implemented in hardware, because they operate in the critical path of load
and store instructions; nevertheless, typically they are very inefficient on simple
copy operations due to protocol-induced overheads.

In this work, we propose simple but generic network interface primitives
that can be integrated in the same chip with the main processor. In order to
achieve low latency and low CPU overhead, the network interface supports vir-
tualized, user-level initiated, protected and reliable bulk and synchronization-
oriented transfers that completely bypass the kernel. Integrating the network
interface in the same chip (or package) with the processors and the memory
interconnect offers the possibility to use the same block both for on-chip and
system level communication, thus saving cost and reducing the silicon area foot-
print. In our scheme, the network interface exploits he IOMMU unit of the pro-
cessor to translate process-level virtual addresses to physical memory pages, thus
avoiding the need for a separate, synchronized TLB inside the network interface
card, as well as the need to pin the pages involved in communication, We handle
the occasional page faults that may occur in RDMA transfers by retransmitting
the failing packets in hardware.

In addition, we implement a library that allows user-level accesses to network
interface primitives, and an MPI runtime that supports real HPC applications.
The main characteristics of our communication stack are the following:

– The required hardware is simple enough to be integrated on the processor chip,
but offers all the features needed for protected low latency communication and
adequately supports complex communication mechanisms (e.g., MPI).

– Our communication protocols completely offload the CPU and bypass the
kernel on the communication path, thus being suitable for low-power (RISC-
like) processors.



90 M. Ploumidis et al.

– The proposed communication architecture is demonstrated through an effi-
cient port of the MPI standard that implements point-to-point and collective
primitives that exploit the hardware capabilities.

We have implemented the network interface primitives and the full network
stack in a large HPC prototype consisting of ARM processors tightly coupled
with the network interface (and other accelerators) implemented in the Zynq
Ultrascale+ FPGAs. We run real HPC applications (e.g., LAMMPS [1]) on a
128-core cluster. Our results show that:

– Our implementation of the network interface blocks in Xilinx Ultrascale+
FPGA utilizes only 25% (70 K LUTS) of the available LUTS and 10% of the
available BRAMS (3 Mbits).

– Our communication architecture is able to provide efficient communication
mechanisms to HPC applications.

– The MPI implementation introduces low overheads, while the exploitation of
the eager protocol gives us an end-to-end latency of just a bit more than 1µs
(see Sect. 5).

– MPI applications show almost linear scaling in a many real-world workloads.

The remainder of this paper is organized as follows. In Sect. 2, we describe
our network interface primitives. In Sect. 3, we present the user-level library
and the MPI port. Next, in Sect. 4 we describe our evaluation platform and our
performance evaluation results. Finally, we conclude in Sect. 5 with discussions
and future work items.

2 Network Interface Primitives

Fig. 1. The global virtual address space assumed in this work as carried on a network
packet.

We consider an environment in which all memory locations belong to a Global
Virtual Address Space (GVAS) and can be addressed by network packets. In our



Software and Hardware Co-design for Low-Power HPC Platforms 91

prototype, a GVAS address is 80 bits. The network interface provides mecha-
nisms that allow to multiple software and hardware processes to initiate multiple
concurrent transfers to mailboxes and processes address space (both uniformly
addressable within our GVAS) without kernel involvment.

Figure 1 depicts an example of the GVAS, as used to specify the destina-
tion address of the first payload byte in an RDMA network packet. In order to
access a location in the GVAS, a packet needs to specify a protection domain
id (PDID), 16 bits in our prototype, which is used by the hardware to safely
check the initiator’s access rights on particular GVAS locations. The PDIDs
allow the administrator to create virtual groups of collaborating processes that
share their virtual memory space, while protecting against unwanted accesses
when we consolidate multiple such groups of processes on the platform. In order
to shield against attacks, the PDID carried in network packets can only be set
by network interface hardware, using registers set by systems software based on
the process that requests a network channel (virtual interface).

The global virtual address of a packet additionally specifies a node ID, i.e.
the physical location of the node in which the virtual location is contained. In
our prototype, we have 22 bits node IDs, allowing 4M nodes, and 42 address
bits for 4 Terabytes within each node. With 16-bits PDID, we can have up to
64K parallel instances of this deployment sharing the cluster. In principle, the
node ID should also be virtual in order to allow process migration [10]. How-
ever, in our current prototype we assume a static mapping of GVAS node IDs to
physical nodes – i.e. endpoints of the interconnect. Within the node, the GVAS
expands further to identify a specific local port (3 bits in our prototype), such as
a peripheral/accelerator or a (CPU) process with private memory space. Finally,
the virtual address field can specify a channel (or virtual interface) of a periph-
eral or a byte in the virtual memory of a CPU or accelerator process (39 bits).
Accesses to virtual locations from the network interface may be cacheable, read-
ing memory locations that have updates present in caches or invalidating cache
entries in case of writes.

Our network interface provides separate hardware primitives (i) for bulk data
(RDMA) transfers and (ii) for latency-sensitive control messages.

Packetizers and Mailboxes: For fast notification (control) messages, we have
built a virtualized packetizer and a virtualized mailbox. These blocks have been
designed for latency-critical control messages. At the sending node, the virtu-
alized packetizer offers 64 virtual interfaces (pages) that can be allocated to
different threads and processes. Each page provides four (4) channels, where
each channel can be used by the owner process to transfer a packet and monitor
its execution by polling on specific bits of the page (i.e. load command). Each
channel can be in one of the following states: ongoing, acknowledged, negatively
acknowledged, timed out. A process acquires a page of the packetizer from a
kernel driver. The driver writes into a special hardware register for this page
the PDID of the requesting process, and returns to the process a virtual address
which is mapped to the physical address of the packetizer page.



92 M. Ploumidis et al.

A transfer starts with the process filling up the payload of the transfer into
the channel address using (posted) store commands, and is commenced when it
writes the payload size and the destination address on a designated address of
the channel. The hardware is responsible for creating a network packet that car-
ries the user-defined payload and destination address, as well as the appropriate
PDID. All hardware transactions additionally contain a unique transaction id
that is filled up by the hardware and is used to match the end-to-end acknowl-
edgements. A packetizer may target any location of the GVAS, such as the
process virtual address or a virtual mailbox.

The virtualized mailbox is hardware block that consists of 64 virtual inter-
faces. The mailboxes keep their data in DRAM and in the L2 caches, but their
tail pointers are maintained and updated by the hardware while their read point-
ers by the user-level libraries that read the data. Processes can acquire mailboxes
from a kernel driver which associates each virtual interface with the PDID of
the corresponding process group. When a packetizer sends a message to a vir-
tualized mailbox, the receiving hardware checks the packet’s PDID and tries to
match it against that of the virtual mailbox, generating a NACK when these do
not match. The mailbox may also drop a packet when it is full. Otherwise, the
packet is enqueued into the virtual mailbox and an ACK is generated and routed
to the issuing packetizer node. User processes can poll for new arrivals in their
mailboxes by reading from a virtual addresses that has been memory-mapped
to the physical address of their virtualized mailbox.

Simple RDMA: For large data transfers, we have built a simple virtualized
RDMA engine, with coordinated units running at the sending (TX) and receiv-
ing (RX) endpoints. The RDMA engine implements an effective, hardware-level
multi-path transport that provides reliability guarantees, allowing to completely
bypass the kernel stack on I/O operations.

Every (Write or Read) RDMA operation transfers a message between two
GVAS locations: the source, which in our implementation is always local to the
TX engine that will realize the transfer, and the destination, which is local to
the RX engine of the transfer. A detailed description of the hardware RDMA
engine is subject of a future work item.

When running MPI applications, we can think that every process has its
own virtual space, which is a subspace of the system-level GVAS. All memory
accesses issued by the network interface go through a multi-channel I/O-MMU1

to translate the virtual to physical addresses and to verify the access rights of
the initiating processes using the PDID associated with a hardware channel or
carried along a network packet. The I/O-MMU keeps a local translation lookaside
buffer (TLB) and a page walker engine that runs through the page table of the
targeted process to handle TLB misses. Page faults generate NACKs that are
propagated to the source in order to retry the transaction.

1 System MMU in the case of ARM processors.



Software and Hardware Co-design for Low-Power HPC Platforms 93

3 HPC Prototype

This section provides a brief overview of the HPC prototype where the proposed
software-hardware codesign was ported and evaluated. This prototype has been
developed within the ExaNeSt project – for a more detailed description and the
full potential of the project please refer to [9].

Fig. 2. HPC platform prototype used for porting and evaluating the proposed software-
hardware codesign.

A high-level view of the prototype used in this study is depicted in Fig. 2.
This currently consists of two mezzanines each one carrying four (4) Quad FPGA
Daughter Boards (QFDBs) for a total of 32 FPGAs or 128 ARMv8 cores. The
QFDBs, depicted through green boxes, are connected in a 2D Torus topology.
The prototype is still growing in size – at the time of writing, it uses a 3D Torus
topology to connect six (6) mezzanines, and, after the next planned update, it
will reach 12 mezzanines, (48 QFDBs, 192 FPGAs, 512 ARM cores).

Fig. 3. QFDB block diagram and actual board.



94 M. Ploumidis et al.

As shown in Fig. 3, each QFDB provides four (4) interconnected FPGAs,
a large amount of memory, and one SSD, within a small footprint (120 mm x
130 mm). The FPGAs are Xilinx Zynq Ultrascale+ devices (ZCU9EG), featuring
four (4) ARM-A53, 16-GByte DDR4, along with a rich set of hard IPs and
reconfigurable logic. Effectively, having two mezzanines, the prototype used for
evaluation purposes in this study consists of 128 low-power ARMv8 cores.

There are two GTH transceivers (16 Gb/s each) for each FPGA pair, offering
a total bandwidth of up to 32 Gbps. The top right FPGA, referred to as the
Network FPGA, provides connectivity to the external world through ten (10)
GTH links. The bottom right FPGA, named the Storage FPGA, provides con-
nectivity to the NVMe memory through PS-GTR transceivers implementing a
4xPCIe Gen 2.0 channel. Finally, each FPGA can boot from an attached NOR
flash, accessible through QSPI.

Our platform supports two networks, namely, Exanet and 10G Ethernet.
Exanet is a custom packet-based hierarchical interconnect realized over high
speed serial links, developed by FORTH and INFN (Istituto Nazionale di Fisica
Nucleare) within the ExaNeSt project, using as baseline APENet [4]. Within each
QFDB, there is an all-to-all connectivity, both for Exanet and Ethernet traffic,
shown using black arrows among F1, F2, F3, and F4 in Fig. 2. As discussed
above, in ExaNet we use a multi-dimensional Torus topology to connect the
QFDBs, whereas for Ethernet, we employ external commercial switches with
one 10G Ethernet interface per QFDB.

4 User-Level Communication Library

Part of the proposed architecture is a user-space API that allows user-level access
to the hardware blocks described in Sect. 2, that is, a simple RDMA engine,
virtualized packetizer and virtualized mailbox. The simplicity of the hardware
blocks provided by the network interface allows for a minimal but powerfull
user-space API.

The virtualized mailbox/packetizer hardware blocks that are exposed
through the user space API allow the realization of user-level low-latency atomic
message delivery. More precisely, this API gives to application threads the func-
tionality for attaching a virtual interface of the virtualized mailbox and of the
virtualized packetizer that reside on the local compute node. Notice that only
the functionality for attaching/detaching the virtual interfaces involves the ker-
nel of the operating system. Specifically, a kernel driver that is responsible for
the mailbox hardware block exposes a set of hardware registers to threads and
processes. With this set of hardware registers, the users can send and/or receive
small messages to/from remote processes in a user-level manner. The provided
API allows applications to atomically send messages of up to 64-bytes to any
virtual interface (or process address) of any remote node. Furthermore, in case
that a thread has acquired an interface of the virtualized mailbox, it is also able
to receive messages sent by remote nodes in the same protection domain. The
messages generated by the packetizer wait for an end-to-end acknowledgment,
and can be retriggered in case of time-out.



Software and Hardware Co-design for Low-Power HPC Platforms 95

The user-space API also allows applications or runtimes (such as the MPI
implementation) to perform RDMA protected transfers with virtual local and
remote addresses, without involving the kernel of the operating system. The
API is quite minimal, providing calls for contructing a remote virtual address,
inserting a descriptor, and for polling for completion. Both RDMA read and
RDMA write operations are supported.

5 MPI Implementation over the Proposed Architecture

This section presents a partial implementation of the MPI standard, tunned to
take advantage of the hardware design described in Sect. 2. This MPI imple-
mentation is realized on the HPC prototype described in Sect. 3, which has been
developed in the ExaNeSt project [2]. From now on, we will refer to the proposed
MPI implementation as Exanest-MPI. This MPI implementation is characterized
as partial since it provides support for point-to-point and collective primitives
while it does not support one-sided and MPI-IO communications. These primi-
tives are delegated to an MPICH library (going over the Ethernet network) that
is slightly modified to expose a communicators context ID – this is a 16-bit field
needed to distinguish messages on different communicators.

Fig. 4. Proposed co-design components.

In Fig. 4 we provide an overview of how Exanest-MPI exploits the proposed
software-hardware co-design to provide an efficient MPI library. The hardware
blocks that it relies on are the virtualized mailbox/packetizer and the RDMA
engine. Access to these blocks is provided through the user-space library which
gives user-level access to hardware blocks avoiding the kernel intervention. In
short, the packetizers and mailboxes are exploited to relay control traffic, such
as, message envelopes and MPI acknowledgments, in a low latency manner. For
data transfers, we exploit the high throughput offered by the RDMA engine.



96 M. Ploumidis et al.

Fig. 5. Rendezvous protocol demonstrated through a pair of matching MPI Send and
MPI Recv.

As far as point-to-point primitives are concerned, we have implemented both
a rendezvous and an eager protocol. Figure 5 depicts the steps along with the
hardware blocks involved in realizing the rendezvous protocol. Recall that multi-
ple prototype nodes are arranged in a torus topology through a custom packet-
based interconnect, where each node consists of four (4) Zynq FPGAs or 16
Armv8 cores. Inter-node traffic passes through the routers contributed by INFN
within the ExaNeSt project [2]. The scenario depicted is as follows: a process
running on node A issues an MPI Send while a second process belonging to node
B posts the matching receive. For control messages the low latency mechanism
provided by the virtualized mailbox hardware block is used. In the above figure,
process on node A uses the virtualized packetizer to send a message envelope
to its peer process (arrows annotated with Msg env label in the above figure).
Message envelopes for MPI messages typically contain the following information:
source, destination, tag, and communicator. In our case, the message envelope
also carries the buffer advertised by the process issuing the send operation. The
message envelope is sent from a packetizer of node A to a mailbox in node B.
As soon as the process on node B receives the message envelope in the virtu-
alized mailbox used by the MPI library, it initializes an RDMA read from the
remote virtual address extracted from the message envelope to the local virtual
address described in the MPI Recv call. The RDMA read requests is routed to
node A, and is executed as an RDMA write operation by the RDMA TX engine.
Note that reading (writing) data from (to) memory goes through the SMMU
to translate virtual to physical addresses. When the RDMA read completes on
node B, the process running on it will use a virtualized packetizer to send an
MPI acknowledgment back to the peer process on node A2.

2 Note that, at the hardware level, the transfer has been separately acknowledged from
the RX engine on node B to the TX engine on node A.



Software and Hardware Co-design for Low-Power HPC Platforms 97

The low latency communication mechanism provided the packetizer and mail-
box is also leveraged to implement an eager protocol. Messages of up to 32 bytes
are sent through the packetizer without initializing an RDMA transfer.

In the current version of the MPI library discussed, almost all collective
operations except for less frequently used ones are supported. The algorithms
used to implement collective operations are the ones also used in MPICH and
summarized in [16]. In the current MPI library version, for the case MPI Bcast,
MPI Reduce, and MPI Allreduce, the same algorithm is employed for small and
large messages. Part of ongoing work is the validation of more efficient algorithms
for the aforementioned primitives and large message sizes.

Evaluation

In this section we present the evaluation of the proposed communication archi-
tecture. Results are derived through both micro-benchmarks and a scientific MPI
application triggering all components from all layers of the proposed co-design.
Recall that Fig. 4 shows that point-to-point and collective MPI primitives are
handled by Exanest-MPI using the proposed user-space communication library
to exercise the implemented hardware blocks of the Exanet network.

In order to assess the performance of the proposed hardware and software
blocks, the well known osu latency and osu allreduce micro-benchmark were used
[14]. Two different sets of runs were performed for each of them. The first one
uses the standard rendezvous protocol (Table 1) and the second one exploits the
eager protocol available in Exanest-MPI (Table 1). For each set of runs, message
size was set to 8 bytes and each run involved nodes at different distances starting
from nodes in the same QFDB up to nodes that are 3 hops away. Note also that
distance in terms of hop is only meaningful for the case of the ExaNet network
(2D torus described in Sect. 3. Nodes that are 2 hops away in terms of ExaNet
are connected through the saem Ethernet switch). Table 1 shows that the latency
between nodes that are 1 hop away is almost higher than 6µs when no eager
protocol is employed. However, eager protocol cuts down this latency to 1.5µs.
This is so because the eager protocol eliminates the overhead of the initialization
of a DMA transaction whenever a packet of small size is transmitted. For pro-
cesses that are placed in the same QFDB board, osu latency value becomes as
low as 1.21µs. As Table 1 also shows, ExaNest MPI outerperfors MPICH utiliz-
ing TCP/IP over Ethernet (referred to as standard MPICH hereafter). Even for
the case of 3 hops travelled for the case of ExaNest MPI, osu latency achieved
by ExaNeSt MPI with eager protocol enabled is almost 20 times lower than the
one achieved by standard MPICH. As this table also shows, for the case of the
osu allreduce microbenchmark, ExaNest MPICH achives alomst 10 times lower
latency than standard MPICH. The first reason for this performance benefit is
that ExaNest MPI relies on the user-space API described in Sect. 4 which offers
user-level access to the hardware blocks. In contrast with TCP/IP over Eth-
ernet, the overhead of a system call is avoided. Secondly, the hardware blocks
exploited by ExaNeSt MPI are part of the reconfigurable logic of each node (also
discussed in Sect. 2) which means that communication does not share the CPU
with computation as in the case of standard MPICH. There is ongoing work in
order to lower the latency under the barrier of 1µs.



98 M. Ploumidis et al.

Table 1. Osu latency and osu allreduce (usecs) with Exanest-MPI

ExaNet distance Osu latency (8bytes) Osu all reduce (8bytes)

No eager
ExaNeSt
MPI

Eager
ExaNeSt
MPI

TCP
MPI

No
Eager
ExaNeSt
MPI

Eager
ExaNeSt
MPI

TCP
MPI

Intra-qfdb 4.97 1.21 37.2 19.13 6.69 70.5

Inter-qfdb (1 hop) 6.06 1.50 39.7 20.28 7.21 70.8

Inter-qfdb (2 hop) 7.47 1.75 39.4 21.41 7.71 69.8

Inter-qfdb (3 hop) 8.43 1.99 40.1 22.34 8.12 70.6

The proposed software-hardware co-design approach along with Exanest-MPI
was also evaluated using the LAMMPS [1] scientific benchmark. LAMMPS is a
state-of-the- art molecular dynamics code [13]. From the LAMMPS benchmark
suite, the rhodopsin problem was selected. Different runs are obtained by varying
the number of nodes (N) and the number of timesteps which are expresses as
N ∗ 100. For every rhodopsin run, 3 OpenMP threads were used. As in the case
of the osu latency micro-benchmark, two different set of runs were performed,
one using the standard rendezvous protocol and another exploiting the eager
protocol available in Exanest-MPI. For each run Table 2(a) reports the number
of timesteps per second that were achieved with higher values indicating better
performance. This table also shows that the throughput achieved by the osu bibw
microbenchmark increases with message size.

Table 2. (a) LAMMPS performance (Timesteps/s) with Exanest-MPI (no eager pro-
tocol), (b) Osu bibw intra QFDB (Bandwidth (MB/s))

Num of FPGAs no eager eager
1 1.041 1.041
2 2.024 2.023
4 3.811 3.815
8 7.228 7.242
16 13.302 13.349
32 23.319 23.364

(a)

Msg size (bytes) Bandwidth (MB/s)
8 7.29
64 24.90
256 88.88
1K 341.8
4K 863.8
16K 1100.3
1M 2221.0

(b)

6 Conclusions and Future Work

In this work, we described a hardware-software co-design for future low power
processors. We have designed and implemented in hardware simple network inter-
face primitives that are integrated close to the CPU, occupy less than 25% of a



Software and Hardware Co-design for Low-Power HPC Platforms 99

Xilinx Ultrascale+ FPGA, and are suitable for bulk memory-to-memory trans-
fers and for fast control messages. The hardware blocks are virtualized, and
exploit the IO MMU to allow zero-copy, user-level initiated, reliable transfers,
thus minimizing latency and the CPU overhead. On top of the NI primitives
we derived an efficient MPI implementation that achieves a nearly 1µs OSU
microbenchmark latency in a cluster of 128 ARM cores. Ongoing work includes
deriving performance results on a liquid cooled version of the HPC platform
described populated with 512 ARM cores.

Acknowledgments. This work is supported by the European Commission under the
Horizon 2020 Framework Programme [8] for Research and Innovation through the
EuroEXA project [5] (g.a. 754337), the EU H2020 FETHPC project Exanode (g.a.
671578) and the ExaNeSt project (g.a. 671553) [2].

References

1. LAMMPS Molecular Dynamics Simulator. Sandia National Laboratories. https://
lammps.sandia.gov

2. The ExaNest project. European Exascale System Interconnect and Storage. GA-
671553. www.exanest.eu

3. Alverson, B., Froese, E., Kaplan, L., Roweth, D.: Cray xc series network. Cray
Inc., White Paper WP-Aries01-1112 (2012)

4. Ammendola, R., et al.: Apenet: a high speed, low latency 3d interconnect network.
In: cluster, p. 481. Citeseer (2004)

5. EuroEXA: European Exascale System Interconnect and Storage. https://euroexa.
eu/

6. Feldman, M.: Fujitsu switches horses for post-k supercomputer, will ride
arm into exascale. Recuperado de (2016). https://www.top500.org/news/fujitsu-
switcheshorses-for-post-k-supercomputer-will-ride-arm-intoexascale

7. Fu, H., et al.: The sunway taihulight supercomputer: system and applications. Sci.
China Inf. Sci. 59(7), 072001 (2016)

8. HORIZON 2020: The EU Framework Programme for Research and Innovation.
https://ec.europa.eu/programmes/horizon2020/

9. Katevenis, M., et al., N.C.: The exanest project: Interconnects, storage, and packag-
ing for exascale systems. In: 2016 Euromicro Conference on Digital System Design
(DSD), pp. 60–67, August 2016. https://doi.org/10.1109/DSD.2016.106

10. Katevenis, M.G.: Interprocessor communication seen as load-store instruction gen-
eralization. In: The Future of Computing, essays in memory of Stamatis Vassiliadis.
In: Bertels, K., et al. (eds.) Delft, The Netherlands. Citeseer (2007)

11. Katz, R.H., Eggers, S.J., Wood, D.A., Perkins, C., Sheldon, R.G.: Implementing a
cache consistency protocol, vol. 13. IEEE Computer Society Press (1985)

12. Leitao, B.H.: Tuning 10gb network cards on linux. In: Proceedings of the 2009
Linux Symposium, pp. 169–185. Citeseer (2009)

13. LAMMPS Benchmark suite. http://lammps.sandia.gov/bench.html
14. OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/
15. Pfister, G.F.: An introduction to the infiniband architecture. High Perform. Mass

Storage Parallel I/O 42, 617–632 (2001)

https://lammps.sandia.gov
https://lammps.sandia.gov
www.exanest.eu
https://euroexa.eu/
https://euroexa.eu/
https://www.top500.org/news/fujitsu-switcheshorses-for-post-k-supercomputer-will-ride-arm-intoexascale
https://www.top500.org/news/fujitsu-switcheshorses-for-post-k-supercomputer-will-ride-arm-intoexascale
https://ec.europa.eu/programmes/horizon2020/
https://doi.org/10.1109/DSD.2016.106
http://lammps.sandia.gov/bench.html
http://mvapich.cse.ohio-state.edu/benchmarks/


100 M. Ploumidis et al.

16. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective
communication operations in MPICH. Int. J. High Perform. Comput.
Appl. 19(1), 49–66 (2005). https://doi.org/10.1177/1094342005051521.
http://dx.doi.org/10.1177/1094342005051521

17. Yokokawa, M., Shoji, F., Uno, A., Kurokawa, M., Watanabe, T.: The k computer:
Japanese next-generation supercomputer development project. In: IEEE/ACM
International Symposium on Low Power Electronics and Design, pp. 371–372. IEEE
(2011)

https://doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1177/1094342005051521

	Software and Hardware Co-design for Low-Power HPC Platforms
	1 Introduction
	2 Network Interface Primitives
	3 HPC Prototype
	4 User-Level Communication Library
	5 MPI Implementation over the Proposed Architecture
	6 Conclusions and Future Work
	References




