®

Check for
updates

A Multitenant Container Platform
with OKD, Harbor Registry and ELK

Jarle Bjorgeengen (™)
University of Oslo, USIT, Gaustadalléen 23a, 0373 Oslo, Norway
postmottak@usit.uio.no
https://www.usit.uio.no/english/

Abstract. This paper summarizes the open container [2] journey of
the University of Oslo’s Center of Information technology, (Division
for Infrastructure). It describes the background for adopting contain-
ers in the first place, the pitfalls of early attempts, the learning that
was obtained from stepping into those pitfalls, how they were mended
and some thoughts about future direction for container usage. Chal-
lenges regarding organizational aspects and increased demand for rapid
delivery, combined with the established expectations of security and sta-
bility, is also described in relation to container technology. It distills the
findings and explains the rationale behind the chosen direction of adapt-
ing Openshift community Distribution of Kubernetes (OKD) [1] as our
main container platform for long running core services, and how it was
adapted to best integrate it with existing automation, monitoring and
logging: Elasticsearch, Logstash and Kibana (ELK).

Keywords: Open containers - Kubernetes - Docker - Continuous
delivery - Multi tenancy - Self service

1 Introduction

There is an increasing demand for and utilization of open containers [2] by IT-
professionals today. The majority of cloud native technologies utilize container
technology in some form. Containers make promises of advantages like: faster
software delivery, immutable services, portability and dynamic on-demand scal-
ing. Software developers and users of containers and container platforms are
compelled by containers’ ease of creating and continuously improving power-
ful functions that provide businesses value in highly competitive markets that
change ever more rapidly. But containers also introduce new challenges, espe-
cially regarding increased complexity and/or security. As the number of soft-
ware abstraction layers and interfaces from users down to physical infrastructure
increase, the complexity increases too. The exposure for attacks and cascading

Supported by University of Oslo, Center for Information Technology (USIT).

The original version of this chapter was revised: It has been changed to open access
under a CC BY 4.0 license and the copyright holder is now “The Author(s)”. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-34356-9_50
© The Author(s) 2019, corrected publication 2020

M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 69-79, 2019.
https://doi.org/10.1007/978-3-030-34356-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_7&domain=pdf
http://orcid.org/0000-0002-3111-951X
https://doi.org/10.1007/978-3-030-34356-9_50
https://doi.org/10.1007/978-3-030-34356-9_7

70 J. Bjgrgeengen

failures is increasing accordingly. How to balance the benefits and challenges of
containers ? With this context the paper describes the use cases, history, consid-
erations, current state and future vision for container usage in delivery of core
services at USIT.

2 Past

2.1 Background

We started using Docker [3] containers for some small web based applications
in 2015. Applications like Graphite [4], Grafana [5] and Kibana [6] with our
home made role based access control (RBAC) system which is used for filtering
Elasticsearch [7] documents based on ownership. We found that containers pro-
vided value when making multiple instances of the same application, but with
slightly different parameters. Orchestration of containers was mainly done with
Ansible [8] and templating was done with Jinja2 templates within Ansible. Con-
tainers made it possible to run many applications instances on a few hosts that
would otherwise require one host per application.

However we also found that the immutable nature of containers introduced
some headache when it came to keeping application stacks up to date with secu-
rity fixes. Long running service containers tended to stay up for long periods
of time and their software stack (being immutable) were unchanged. This is of
course wanted behaviour when it comes to predictability of application depen-
dencies, and it is much of the value proposition of containers. But keeping those
software stacks unchanged over time led to exposure against vulnerabilities that
otherwise would have been automatically updated if they just run as ordinary
processes in our standardized Linux server environment. This pattern introduced
a business risk that needed to be mitigated, so we made a container policy in
order to regulate how containers were to be used and managed for production
services running on core server networks. The policy mainly described require-
ments for:

— Image sources: A local registry with a vetted list of replicated images from
external sources.

— Detection and mitigation of vulnerabilities: Automated scanning and actions
to take.

— Run time requirements: Don’t run as root, allowed version of container run
times etc.

— Transparency: All artifact inclusion in version control system (VCS). Tagging
images with VCS version. Always use image from local registry (build and
push before use)

The main purpose of having an on premise registry is to be able to decouple
the dependency from external registries both for confidentiality and availability.
For instance Dockerhub has been regarded as safe location for software distri-
bution, but recent security breach [9] shows that attacks can happen and that
exposure and tampering are real threats.

A Multitenant Container Platform with OKD, Harbor Registry and ELK 71

At USIT we have standardized on RedHat Enterprise Linux (RHEL) for
Linux servers running core datacenter services. Servers are automatically boot-
strapped with configuration management agents (Cfengine3 [10]) that converge
and maintain the state of server operating systems into a safe baseline. One of
the aspects covered by config management is to enforce that SELinux is turned
on in version 7 of RHEL. Many people wrongly assume that containers provide
stronger isolation than they in fact do [11]. In RHELTY the Docker engine is inte-
grated with SELinux so that containers automatically runs in unique SELinux
contexts, and with reduced privilige to access host resources. It means that for
RHEL7 with SELinux on containers provide a higher level of isolation between
them and against the hosting node, than a vanilla Docker Community Edition
installation. This is why our policy require production containers to run on
RHELY (CentOS7 in IaaS-cloud environments) with SELinux on. SELinux is by
no means the only runtime security measure to take regarding securing contain-
ers and it definitely does not exclude other best practices to secure containers at
runtime, for example seccomp [12] for systemcall filtering, EBPF [14] and user
namespace remapping [13], however SELinux comes as an additional security
layer on RHEL7 and does not require any extra effort to set up.

For on premise registry we required one with open source license, RBAC and
support for external authentication/identity-providers in order to re-use existing
business logic and organizational structure. Harbor registry [15] were as close as
we got to those requirements at the time. Initially Harbor supported LDAP-
authentication but not authorization based on group memberships so we made
scripts for synchronizing local Harbor groups with ldap-groups. Also Harbor had
no built in vulnerability-scanner, so we used a separate instance of CLAIR [16].

2.2 Challenges

The main problem with vulnerability scanning of container images is getting
relevant data. One could scan all contents of the registry, but only a subset of the
images in the registry is actually in use. Thus, scanning the whole registry would
generate alerts for a lot of irrelevant images. Since we have both configuration
management (Cfengine3 [10], and centralized logging (Rsyslog, Logstash and
Elasticsearch)) we can collect information about which container images actually
is in use on server hosts in our networks. This was done by using Cfengine to
inject hourly updates of meta-data to Rsyslog about images used by running
containers on hosts that had Docker installed and running. The metadata sent
to Rsyslog was parsed and sent to Elasticsearch centrally and thus instantly
made available for querying via the Elasticsearch API. Hence, the baseline for
what container layers will be scanned and alerted upon is the set of image-ids
found in the container meta-data store in Elasticsearch.

Meta-data about ownership of images is also collected and it provides email-
addresses for alerting container owners about vulnerabilities in their running
containers. If images lacks contact information the owner of the host is alerted
via the owner’s contact email address, which is collected and provided by another
tool created at USIT: Nivlheim [17]. If containers run from images that is not

72 J. Bjgrgeengen

found in the Harbor registry the container owner is notified about this breach
of container policy as well.

Even with this pre-seeding of data before vulnerability alerting, the owners
got too many alert to handle in an efficient manner. The reasons for this were
twofold: there was no option for image owners to flag vulnerabilities for some
subset of containers as “acknowledged” and filter them out upon subsequent
scanning.

Also the hypothesis were made that many of the alerts may or may not
be relevant because of how images are built. Images are frequently built using
ordinary package install commands (yum, apt, port, pkg and so on) in the Docker
file to add image layers. These tools tend to pull in orders of magnitude more
dependencies than the container process needs, and many of the dependencies
may or may not be posing a threat to the running process albeit present in the
image, and thus can trigger hits by the vulnerability scanner. How to differentiate
relevant from irrelevant? Nontrivial. One way of improving this is to put more
labour into slimming down the images during builds (this is also mentioned as a
desired property of image builds in the container policy). The advantage is that
the images produced actually have a smaller attack surface and it will naturally
have less likelihood of vulnerability alerts too, and the alerts is assumed to be
more relevant. Unfortunately the ability and willingness to make image slimming
happen are not very prominent, due to time constraints, labour requirements due
to lack of tools for automating the process.

The limitations of Ansible and Jinja2 as a container management and orches-
tration tool became apparent. There is no rescheduling upon container failure, no
service discovery and/or scale out features. The lack of observability is prominent
and self service features need to be built using tools like Rundeck [18] and/or
Ansible (Tower) and this leads to more infrastructure/platform code to develop,
maintain and operate.

Images are replicated from external container registries (dockerhub etc) and
into the /library project of our on premise instance of Harbor. Replication is
done by script on an hourly basis. The script reads a list of registry/image:tag
instances, pulls them to local container storage, re-tag them with the URL of
the Harbor registry and pushes them there.

The procedure for adding new image references to be synchronized involves
filling out a form with some standard questions about justification and consid-
erations regarding trust. Submission of the form triggers en informational email
to it-security and a new ticket to request tracker. If the request looks reasonable
I (or someone like me) add the new image reference to the replication list, and
it will be included in the hourly synchronization.

3 Present

Armed with experiences with past usage of containers, and conscious of an
increasing demand for application containerization we set out to improve the
state of containers at USIT. Some parts were working well; the image replication
process and the on premise registry storage, so they were kept albeit upgraded,

A Multitenant Container Platform with OKD, Harbor Registry and ELK 73

but there were ample room for improvement regarding orchestration, observ-
abilty, self service, support for continuous delivery and deployment automation.

3.1 Evaluation of Container Orchestration Frameworks

During 2018 we ramped up the effort for finding improved alternatives for con-
tainer orchestration. By this time the whole industry seemed to converge against
Kubernetes [19] based solutions in one form or another. Kubernetes being backed
by large open source founded companies like Google and RedHat, being the core
project of which the Cloud Native Computing Foundation (CNCF) [20] was
ignited from [21] and major cloud service providers like Google, Amazon and
Azure were offering Kubernetes as a service targeted to increase developer effi-
ciency. Hence we focused on use case experiments with frameworks that were
utilizing Kubernetes.

Kubernetes is well defined when it comes to API-functionality for the different
versions and this is also the value proposition for developers and/or Kubernetes
users. It says: “give me a state declaration for scaling, connectivity and resources
of your micro services and I will make it so”. However, assembling, improving
and maintaining a Kubernetes service that will keep that promise reliably and
securely over time is a nontrivial task.

From a platform perspective Kubernetes look more like a set of software
components that can be assembled into a service in many different ways. Core
Kubernetes developers have been comparing it with the GNU/Linux stack and
how that can be assembled into more or less opinionated Linux distributions
[22]. Taking upstream Kubernetes and assembling it into a stable production
service is hard [23].

For this reason we set out looking for “distributions” of Kubernetes that when
installed were assembled automatically in a way that aligned as much as possi-
ble with our existing operational practices, policies and strategies: secure, stan-
dardized, multitenant with RBAC and integration with identity providers, high
degree of developer self service, high degree of deployment and build automation
and with an open source licens.

We tried a few Kubernetes installation frameworks: Kubespray [24] and
NAISible [25] with some local modifications, but found that some core require-
ments regarding RBAC, multitenancy and developer self service were lacking.
Then we tried OKD. OKD claimed to fulfill all the requirements, however it is
also a rather large and complex installation process (although automated) and
it would inevitably take time to understand all its moving parts.

Experiments with earlier versions (Openshift Origin) a couple of years back
exhibited lack of modularity and poor error messages in the installation pro-
cess combined with inaccurate and incomplete documentation, thus setting the
expectations towards a daunting task. However, after installing v3.10 of OKD
it became apparent that much of those earlier problems with installation and
documentation were improved. Also there generally were a lot fewer bugs in
the installation framework than earlier, particularly for the core functionality
(Kubernetes).

74 J. Bjgrgeengen

OKD is multitenant via the consept of projects. Projects are much the same
as Kubernetes name spaces, but with isolation features between them. Kuber-
netes namespaces is just that: separation of names (unless additional steps are
taken). OKD projects have by default isolation on network (OVS multitenant)
and process (SELinux) level between projects. There are also default enforc-
ing policies to prevent breakout from containers/pods towards the hosting node
(SELinux, SecComp, Security Context constraints (SCC)).

In addition to the core Kubernetes API compability, OKD has self service
features for automating deployments and builds via image streams and build
configs. Build configs can incorporate Jenkinsfiles and run them on demand by
spinning up Jenkins instances on the fly or by having Jenkins running in projects
(for shortening pipeline traverse times). Another nice feature of image streams
is that running applications can be configured to automatically redeploy with
updated base images via event triggers in image streams.

Efforts were increased to verify if OKD was a suitable to become our new
container runtime platform. The next step was to adapt the installation to our
existing environment and hypothesis testing against application development use
cases. This effort was mainly organized as weekly “sprints” with members from
departments from opposite sides (dev and ops) of the line organization and ini-
tiated only by peers communicating and silent approval by relevant managers.
Unsurprisingly this method turned out to be efficient for progress and organiza-
tional learning, and we have increased the frequency of sprint weeks in order to
reach production ready state by the summer of 2019.

3.2 Observability: Logging and OKD

OKD comes with an optional Elasticsearch, Fluentd and Kibana (EFK) [26]
stack which is tightly aligned with the multitenancy in OKD. Project owners
automatically get access to logs of their own pods, but not to other projects.
However, Elasticsearch is by nature a difficult application to containerize and
maintain in a stable manner. Also it has high demand on CPU, memory and
storage IOPS resources on each deployed cluster.

Since we already have a rather large ELK installation with Elasticsearch
running on 21 bare metal servers, it seemed like a more attractive option to
scratch the built in EFK stack of OKD and integrate with USITs ELK instance.
Another benefit with this is of course the ability to correlate and aggregate logs
between OKD cluster and other log-sources. But how to automate this as a part
of the installation, and how to create self service for tenants? Our ELK instance
is already multitenant but how to make the connection between OKD tenants
and ELK tenants?

The standard configuration management baseline for all our servers include
a filebeat agent shipping system logs off to Logstash centrally. It turns out that
filebeat in recent versions introduced integration with Kubernetes [27], mak-
ing it possible to discover pods/containers-ids from the Kubernetes/OKD API
and automatically ship log events based on matching conditions like namespace
name, labels, annotations etc.

A Multitenant Container Platform with OKD, Harbor Registry and ELK 75

We decided to have logs from cluster components tagged and sent to a sep-
arate index prefix in ELK (kube-ops). This is done by matching pod events
against list of projects/namespaces known to host system pods.

So now we have cluster system logs sent to ELK and accessible by cluster
operators (admins with high level of privilege), but what about application logs?
Ideally we would like to have tenants decide by themselves which deployments
to enable logging for, to mark them as their own and sub-classify using an
application field. It turns out that this is possible by using the same filebeat
autodiscovery feature for Kubernetes by matching on labels. We introduced a
label log2elk: true for tenants to signal that they want to ship logs to ELK.

In ELK it is good practice to log events as JSON-data in order to get maxi-
mum value of aggregation and grouping features later. So we decided that appli-
cations that apply the “log2elk: true” must log output as JSON. Furthermore
the JSON must have a “logowner” field matching a known logowner in ELK
(logownertenant), and an “application” field that makes grouping of applica-
tions within a logowner possible. So filebeat will send log events from pods with
the label log2elk: true to Logstash centrally, Logstash input processors will
check required fields and if they comply restructure events such that they get
ingested and become available through Elasticsearch filter aliases for logowners
to access from their dedicated Kibana instance. In USIT-ELK each logowner
has their own Kibana instance which is tied to a user group in LDAP and is
restricted to that logowners data set.

OKD has an advanced audit logging system [28] that can be configured by a
separate audit policy file on the master node(s). It can potentially generate a lot
of log-data and needs some iterations of policy modifications to balance value
with spuriousness. It can be configured to log JSON, so it is straight forward to
drop a filebeat config fragment into the directory /etc/filebeat/filbeat.d/
on master nodes. Filebeat will then tag and ship the audit log to ELK.

Just like in Kubernetes cluster events are temporarily stored in etcd, and we
need a way of exporting them as JSON events. Kubernetes has an events end-
point that can be watched/followed and where events will be published as they
happen. We will write a small script or program that captures events from the
OKD/Kubernetes API and spool them to file, and drop another filebeat con-
figuration fragment into /etc/filebeat/filbeat.d/ for tailing and shipping
events.

3.3 Observability: Monitoring and OKD

We use Zabbix [29] as the central monitoring framework. Configuration of mon-
itoring templates and access to modify configuration (self service) is completely
automated through scripts that ask Nivlheim and LDAP to automatically decide
what to monitor and whom to give access at which level. A subset of the moni-
toring automation is to automatically configure health monitoring for java based
web-application. This is also done by asking Nivlheim about what to monitor
and how. Nivlheim knows this by means of collected files from hosts running
java-applications.

76 J. Bjgrgeengen

These java-applications are the first candidates for moving into OKD, but
when containerized the applications can no longer rely on file access to the host
and thus Nivlheim has no knowledge about them (being a file based collection
tool for hosts) and installing a Nivlheim agent (or any management agent) inside
each container is considered an anti-pattern. Finding an alternative method for
monitoring applications running in OKD was the topic of the first sprint week,
and a minimum viable product (MVP) was created during that week by appli-
cation developers and operations cooperating. Two main changes were made:
Applications made health information available through a http endpoint in its
own service and the route/ingress of the application in OKD were marked with
annotations (uio.no/monitor.with.Zabbix:"true") which were picked up by
a Zabbix auto discovery script that regularly asks OKD clusters about their
routes/ingresses and pick out url-endpoints (stored in another annotation) to be
configured for monitoring.

4 Future

4.1 Monitoring

Cluster events in ELK can form the basis for alerting rules by querying ELK for
events of a certain severity and with other properties that we find we need to
know about. Also v3.11 of OKD comes with an integrated Prometheus opera-
tor [30] that can monitor cluster health and resource consumption (both cluster
wide and applications). The built in Grafana instance provide tenants the ability
to monitor metrics of their own liking and resource consumption of their own
applications. Also we already have an LDAP-integrated instance of Grafana
running centrally with access to all other infrastructure and application metrics.
Adding prometheus instances of OKD-clusters as Grafana datasources is trivial
and make it possible to cross correlate and combine OKD metrics with other
infrastructure metrics. Since v 4.2 of Zabbix there is a built in integration with
Prometheus [31] that makes it easier to monitor cluster health directly with
Zabbix.

4.2 Container Policy and OKD

Our container policy requires that all container images are being pulled from
a local Harbor registry. The installation playbooks of OKD fetches most of the
cluster components from images located in dockerhub by default. Fortunately
this can be changed by a parameter named “oreg_url” that specify an alternative
registry url-prefix to fetch cluster components from.

In order to have a baseline for all running containers that is not too much
out of alignment with our general Linux server update policy it was recently
decided to require all container images to be rebuilt and redeployed at least
every 30 days. Automating container rebuild and push to registry is quite trivial,
but automatically redeploying with rebuilt image and verifying that the service
works as expected afterwards is not that trivial. Our hypothesis is that OKD can
help with this utilizing image streams combined with deployment configs that

A Multitenant Container Platform with OKD, Harbor Registry and ELK 7

trigger automatic rolling redeployment upon new images being pushed into the
image stream. Also if the deployment is properly configured with Kubernetes
liveness and readiness probes it will decrease or eliminate downtime for updates
and make sure that new pods are healthy before service pointers are switched
to updated pods.

4.3 Gitops [32] and OKD

We keep all our infrastructure and application code in VCS (git), and we strive
for as little human intervention as possible when installing, running, modify-
ing and maintaining infrastructure and platforms. At the moment we have no
automatic triggering of configuration changes in OKD clusters after installation.
Ideally it would be possible to make a change in the inventory of a running
cluster, and it would automatically converge to new desired state when a pull
request is merged.

Although Ansible itself have some level of convergence and idempotence,
there is too much dependence on order of events in OKD installation playbooks
and roles to make such behavior reliable. However, the new major release of OKD
(v4) seems promising. It is much more based on self management by means of
cluster operators, and will rely less on Ansible. The introduction of operators
for managing all cluster life cycle aspects could make OKD more gitops friendly.
We plan to try OKD v4 in the future, but meanwhile we will make project
configuration (ownerhip, resource quotas, privileges and metadata injection) in
OKD completely automated via git, pull requests and application of new state
via the oc apply command.

4.4 Continuous Delivery in OKD

OKD has features that makes it possible to host complete continuous delivery
pipelines inside projects. Today most of our developer groups uses build automa-
tion and automatic testing with Jenkins or other tools. There is some operational
overhead of running standalone Jenkins instances. Based on our knowledge of
OKD features we have a hypothesis that developer efficiency can be boosted and
operational overhead reduced by moving the pipelines into OKD.

4.5 OKD in the Cloud

Portability is major benefit of running applications in containers. There pressure
for utilizing public cloud services is increasing. The main reasons are bursting
resource availability, quick cost scaling and reduction of operational expenses
and investments. Just like many other organizations we foresee that public cloud
consumption will increase, but it will take time to migrate to a “cloud only” sit-
uation, and based on regulation and/or policy some data, and hence the services
processing those data, may never be allowed to run in public cloud. For applica-
tions with extreme resource consumption over long time it is probably not cost
efficient (yet?) to run everything in public cloud. The bottom line is that we will

78 J. Bjgrgeengen

need both on premise and public cloud in the foreseeable future. The ability to
quickly move applications between on premise and public cloud in an automated
or even autonomous way is often termed “Hybrid cloud”, and we think that con-
tainer platforms like OKD will play an important role in achieving hybrid cloud
functionality.

At the moment we are working on automated provision and install of OKD
in our community Openstack (RDO) [33] cloud UHIaaS [34] with terraform [35]
and OKDs Ansible installer (plus som adaptations). Furthermore the plan is to
extend this to work on major public cloud platforms from Google, Microsoft
and Amazon, thus enabling maximum applications portability by offering the
same run time platform (OKD) both on premise and in different public cloud
contexts.

5 Conclusion

So far we have enough evidence that OKD and our approach to integrate with
our existing operational systems, and spin up new clusters in different contexts,
that we will continue the work along the lines suggested in Sect.4. The aim
has been and continue to be to help application developers and/or container
users become more agile and efficient in delivering business value with balanced
security, scalability and availability in mind. More automation, probably in the
form of GitOps, will help us to improve further.

References

Openshift Community Distribution of Kubernetes. https://www.okd.io/

Open Container Initiative. https://www.opencontainers.org/

Docker Wikipedia Page. https://en.wikipedia.org/wiki/Docker_(software)

Graphite Home Page. https://graphite.readthedocs.io/en/latest/

Grafana Home Page. https://grafana.com/grafana

Kibana Homepage. https://www.elastic.co/products/kibana/

Elasticsearch Homepage. https://www.elastic.co/products/elasticsearch

Ansible Github Page. https://github.com/ansible

Hacker New, Dockerhub Security Breach April 2019. https://thehackernews.com/

2019/04/docker-hub-data-breach.html

10. Cfengine Github Page. https://github.com/cfengine/core

11. Walsh, D.: Docker security features in RHEL7. https://opensource.com/business/
14/7/docker-security-selinux

12. Seccomp Documentation Page. https://www.kernel.org/doc/Documentation/
prctl/seccomp_filter.txt

13. Docker User Namespace Remap Configuration Documentation. https://docs.
docker.com/engine/security /userns-remap/

14. Using eBPF to Bring Kubernetes-Aware Security to the Linux Kernel by
Dan Wendlandt, Isovalent. https://docker.guru/2019/07/10/using-ebpf-to-bring-
kubernetes-aware-security-to-the-linux-kernel-dan-wendlandt-isovalent /

15. Harbor Homepage. https://goharbor.io/

© XN O W

https://www.okd.io/
https://www.opencontainers.org/
https://en.wikipedia.org/wiki/Docker_(software)
https://graphite.readthedocs.io/en/latest/
https://grafana.com/grafana
https://www.elastic.co/products/kibana/
https://www.elastic.co/products/elasticsearch
https://github.com/ansible
https://thehackernews.com/2019/04/docker-hub-data-breach.html
https://thehackernews.com/2019/04/docker-hub-data-breach.html
https://github.com/cfengine/core
https://opensource.com/business/14/7/docker-security-selinux
https://opensource.com/business/14/7/docker-security-selinux
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docker.guru/2019/07/10/using-ebpf-to-bring-kubernetes-aware-security-to-the-linux-kernel-dan-wendlandt-isovalent/
https://docker.guru/2019/07/10/using-ebpf-to-bring-kubernetes-aware-security-to-the-linux-kernel-dan-wendlandt-isovalent/
https://goharbor.io/

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.

A Multitenant Container Platform with OKD, Harbor Registry and ELK 79

CLAIR Github Page. https://github.com/coreos/clair

Nivlheim Github Page. https://github.com/usit-gd/nivlheim

Rundeck Homepage. https://www.rundeck.com/open-source

Kubernetes Homepage. https://kubernetes.io/

Cloud Native Computing Foundation Home Page. https://www.cncf.io/
Kubernetes =~ Wikipedia Page (Histroy). https://en.wikipedia.org/wiki/
Kubernetes#History

Kubernetes Distributions and ‘Kernels’ - Tim Hockin & Michael Rubin, Google.
https://www.youtube.com/watch?v=fXBjA2hH-CQ

Isenberg, K.: Hard Problems Regarding Kubernetes in Production. https://twitter.
com/KarlKFI/status/1020518198817406976

Kubespray Github Page. https://github.com/kubespray

NAISible Github Page. https://github.com/nais/naisible

Documentation of OKDs EFK Stack. https://docs.okd.io/latest/install_config/
aggregate_logging.html

Documentation of Filebeat Advanced Autodiscovery. https://www.elastic.co/
guide/en/beats/filebeat /6.7 /configuration-autodiscover-advanced.html
Documentation of OKDs Advanced Audit Logging. https://docs.okd.io/latest/
install_config/master_node_configuration.html#master-node-config-advanced-
audit

Zabbix Home Page. https://www.Zabbix.com/

OKD Prometheus Operator and Cluster Monitoring. https://docs.okd.io/3.11/
install_config/prometheus_cluster_monitoring.html

Zabbix’ Prometheus Integration. https://Zabbix.com/documentation/current/
manual/config/items/itemtypes/prometheus

GitOps, Coined by WeaveWorks. https://www.weave.works/blog/gitops-
operations-by-pull-request

Openstack RDO Project Homepage. https://www.rdoproject.org/

Norwegian Cloud Infrastructure for Research and Education (UHIaaS) Homepage.
http://www.uh-iaas.no/

Terraform Homepage. https://www.terraform.io/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/coreos/clair
https://github.com/usit-gd/nivlheim
https://www.rundeck.com/open-source
https://kubernetes.io/
https://www.cncf.io/
https://en.wikipedia.org/wiki/Kubernetes#History
https://en.wikipedia.org/wiki/Kubernetes#History
https://www.youtube.com/watch?v=fXBjA2hH-CQ
https://twitter.com/KarlKFI/status/1020518198817406976
https://twitter.com/KarlKFI/status/1020518198817406976
https://github.com/kubespray
https://github.com/nais/naisible
https://docs.okd.io/latest/install_config/aggregate_logging.html
https://docs.okd.io/latest/install_config/aggregate_logging.html
https://www.elastic.co/guide/en/beats/filebeat/6.7/configuration-autodiscover-advanced.html
https://www.elastic.co/guide/en/beats/filebeat/6.7/configuration-autodiscover-advanced.html
https://docs.okd.io/latest/install_config/master_node_configuration.html#master-node-config-advanced-audit
https://docs.okd.io/latest/install_config/master_node_configuration.html#master-node-config-advanced-audit
https://docs.okd.io/latest/install_config/master_node_configuration.html#master-node-config-advanced-audit
https://www.Zabbix.com/
https://docs.okd.io/3.11/install_config/prometheus_cluster_monitoring.html
https://docs.okd.io/3.11/install_config/prometheus_cluster_monitoring.html
https://Zabbix.com/documentation/current/manual/config/items/itemtypes/prometheus
https://Zabbix.com/documentation/current/manual/config/items/itemtypes/prometheus
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.rdoproject.org/
http://www.uh-iaas.no/
https://www.terraform.io/
http://creativecommons.org/licenses/by/4.0/

	A Multitenant Container Platform with OKD, Harbor Registry and ELK
	1 Introduction
	2 Past
	2.1 Background
	2.2 Challenges

	3 Present
	3.1 Evaluation of Container Orchestration Frameworks
	3.2 Observability: Logging and OKD
	3.3 Observability: Monitoring and OKD

	4 Future
	4.1 Monitoring
	4.2 Container Policy and OKD
	4.3 Gitops gitops and OKD
	4.4 Continuous Delivery in OKD
	4.5 OKD in the Cloud

	5 Conclusion
	References

