
An Architecture for High Performance
Computing and Data Systems

Using Byte-Addressable
Persistent Memory

Adrian Jackson1(B), Michèle Weiland1, Mark Parsons1, and Bernhard Homölle2

1 EPCC, The University of Edinburgh, Edinburgh, UK
a.jackson@epcc.ed.ac.uk

2 SVA System Vertrieb Alexander GmbH, Paderborn, Germany

Abstract. Non-volatile and byte-addressable memory technology with
performance close to main memory has the potential to revolutionise
computing systems in the near future. Such memory technology provides
the potential for extremely large memory regions (i.e. >3 TB per server),
very high performance I/O, and new ways of storing and sharing data for
applications and workflows. This paper proposes hardware and system
software architectures that have been designed to exploit such memory
for High Performance Computing and High Performance Data Analytics
systems, along with descriptions of how applications could benefit from
such hardware, and initial performance results on a system with Intel
Optane DC Persistent Memory.

Keywords: Non-volatile memory · Persistent memory · System
architecture · Systemware · NVRAM · B-APM

1 Introduction

There are a number of new memory technologies that are impacting, or likely
to impact, computing architectures in the near future. One example of such
a technology is so called high bandwidth memory, already featured on Intel’s
latest many-core processor, the Xeon Phi Knights Landing [1], and NVIDIA’s
latest GPU, Volta [2]. These contain MCDRAM [1] and HBM2 [3] respectively,
memory technologies built with traditional DRAM hardware but connected with
a very wide memory bus (or series of buses) directly to the processor to provide
very high memory bandwidth when compared to traditional main memory (DDR
channels).

This has been enabled, in part, by the hardware trend for incorporating mem-
ory controllers and memory controller hubs directly onto processors, enabling
memory to be attached to the processor itself rather than through the moth-
erboard and associated chipset. However, the underlying memory hardware is
the same, or at least very similar, to the traditional volatile DRAM memory
that is still used as main memory for computer architectures, and that remains
attached to the motherboard rather than the processor.
c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 258–274, 2019.
https://doi.org/10.1007/978-3-030-34356-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-34356-9_21


B-APM Architecture for HPC 259

Non-volatile memory, i.e. memory that retains data even after power is turned
off, has been exploited by consumer electronics and computer systems for many
years. The flash memory cards used in cameras and mobile phones are an exam-
ple of such hardware, used for data storage. More recently, flash memory has
been used for high performance data input/output (I/O) in the form of Solid
State Disk (SSD) drives, providing higher bandwidth and lower latency than
traditional Hard Disk Drives (HDD).

Whilst flash memory can provide fast I/O performance for computer systems,
there are some drawbacks. It has limited endurance when compare to HDD tech-
nology, restricted by the number of modifications a memory cell can undertake
and thus the effective lifetime of the flash storage [29]. It is also generally more
expensive than other storage technologies. However, SSD storage, and enter-
prise level SSD drives, are heavily used for I/O intensive functionality in large
scale computer systems because of their random read and write performance
capabilities.

Byte-addressable random access persistent memory (B-APM), also known
as storage class memory (SCM), NVRAM or NVDIMMs, exploits a new gen-
eration of non-volatile memory hardware that is directly accessible via CPU
load/store operations, has much higher durability than standard flash mem-
ory, and much higher read and write performance. B-APM, with its very high
performance access characteristics, and vastly increased capacity (compared to
volatile memory), offers a potential hardware solution to enable the construction
of a compute platform that can support high-performance computing (HPC)
and high-performance data analytics (HPDA) use cases, addressing some of
the performance imbalance systems currently have between memory and I/O
performance.

In this paper, we outline the systemware and hardware required to provide
such a system, and discuss preliminary performance results from just such a sys-
tem. We start by describing persistent memory, and the functionality it provides,
in more detail in Sect. 2. In Sect. 3 we discuss how B-APM could be exploited
for scientific computation or data analytics. Following this we outline our sys-
temware architecture in Sect. 4. We finish by presenting performance results on
a prototype system containing Intel Optane DC Persistent memory, in Sect. 5,
discussing related work in Sect. 6, and summarise the paper in the final section.

2 Persistent Memory

B-APM takes new non-volatile memory technology and packages it in the same
form factor (i.e. using the same connector and dimensions) as main memory
(SDRAM DIMM form factor). This allows B-APM to be installed and used
alongside DRAM based main memory, accessed through the same memory con-
troller. As B-APM is installed in a processor’s memory channels, applications
running on the system can access B-APM directly in the same manner as main
memory, including true random data access at byte or cache line granular-
ity. Such an access mechanism is very different to the traditional block based
approaches used for current HDD or SSD devices, which generally requires I/O to



260 A. Jackson et al.

be done using blocks of data (i.e. 4 KB of data written or read in one operation),
and relies on expensive kernel interrupts and context switches.

The first B-APM technology to make it to market is Intel’s Optane DC
PersistentTM memory [5]. The performance of this B-APM is lower than main
memory (with a latency ∼5–10x that of DDR4 memory when connected to the
same memory channels), but much faster than SSDs or HDDs. It is also much
larger capacity than DRAM, around 2–5x denser (i.e. 2–5x more capacity in the
same form factor, with 128, 256, and 512 GB currently available DIMMs).

2.1 Data Access

This new class of memory offers very large memory capacity for servers, as well as
long term persistent storage within the memory space of the servers, and the abil-
ity to undertake I/O in a new way. B-APM can enable synchronous, byte level,
direct access (DAX) to persistent data, moving away from the asynchronous
block-based file I/O applications currently rely on. In current asynchronous I/O
user applications pass data to the operating system (OS) which then use driver
software to issue an I/O command, putting the I/O request into a queue on a
hardware controller. The hardware controller will process that command when
ready, notifying the OS that the I/O operation has finished through an interrupt
to the device driver.

B-APM, on the other hand, can be accessed simply by using a load or store
instruction, as with any other memory operation from an application or program.
However, because B-APM can provide persistence functionality (allowing data
to be accessible after power loss), some further considerations are required if
persistent is to be guaranteed. Applications must also ensure stored data has
been flush from the volatile CPU caches and has arrived on the non-volatile
medium (using new cache flush commands and fence instructions to ensure stores
are ordered ordered before subsequent instructions) before they can confirm data
has been persisted (although this flush may only be required to the memory
controller, rather than the non-volatile medium, if using enhanced power supply
functionality [6]).

With B-APM providing much lower latencies than external storage devices,
the traditional I/O block access model, using interrupts, becomes inefficient
because of the overhead of context switches between user and kernel mode
(which can take thousands of CPU cycles [30]). Furthermore, in the future it
may become possible to implement remote persistent access to data stored in
the memory using RDMA technology over a suitable interconnect. Using high
performance networks has the potential to enable access to data stored in B-
APM in remote nodes faster than accessing local high performance SSDs via
traditional I/O interfaces and stacks inside a node.

Therefore, it is possible to use B-APM to greatly improve I/O performance
within a server; increase the memory capacity of a server; or provide a remote
data store with high performance access for a group of servers to share. Such
storage hardware can also be scaled up by adding more B-APM memory in a



B-APM Architecture for HPC 261

server, or adding more nodes to the remote data store, allowing the I/O perfor-
mance of a system to scale as required. The use of B-APM in compute nodes also
removes competition for I/O resources between jobs in a system, isolating appli-
cation I/O traffic and removing the performance fluctuations associated with
I/O users often experience on shared HPC systems [25]. However, if B-APM is
provisioned in the servers, there must be software support for managing data
within the B-APM. This includes moving data as required for the jobs running
on the system, and providing the functionality to let applications run on any
server and still utilise the B-APM for fast I/O and storage (i.e. applications
should be able to access B-APM in remote nodes if the system is configured
with B-APM only in a subset of all nodes).

As B-APM is persistent, it also has the potential to be used for resiliency, pro-
viding backup for data from active applications, or providing long term storage
for databases or data stores required by a range of applications. With support
from the systemware, servers can be enabled to handle power loss without expe-
riencing data loss, efficiently and transparently recovering from power failure
and resuming applications from their latest running state, and maintaining data
with little overhead in terms of performance.

2.2 B-APM Modes of Operation

Ongoing developments in memory hierarchies, such as the high bandwidth mem-
ory in Xeon Phi manycore processors or NVIDIA GPUS, have provided new
memory models for programmers and system designers. A common model that
has been proposed includes the ability to configure main memory and B-APM
in two different modes: Single-level and Dual-level memory [8].

Single-level memory, or SLM, has main memory (DRAM) and B-APM as two
separate memory spaces, both accessible by applications, as outlined in Fig. 1.
This is very similar to the Flat Mode [7] configuration of the high bandwidth, on-
package, MCDRAM in Intel Knights Landing processor. The DRAM is allocated
and managed via standard memory API’s such as malloc and represent the OS
visible main memory size. The B-APM is be managed by programming APIs and
presents the non-volatile part of the system memory. In order to take advantage
of B-APM in SLM mode, systemware or applications have to be adapted to use
these two distinct address spaces.

Dual-level memory, or DLM, configures DRAM as a cache in front of the
B-APM, as shown in Fig. 2. Only the memory space of the B-APM is available
to applications, data being used is stored in DRAM, and moved to B-APM when
no longer immediately required by the memory controller (as in standard CPU
caches). This is very similar to the Cache Mode [7] configuration of MCDRAM
on KNL processors.

This mode of operation does not require applications to be altered to exploit
the capacity of B-APM, and aims to give memory access performance at main
memory speeds whilst providing access to the large memory space of B-APM.
However, exactly how well the main memory cache performs will depend on
the specific memory requirements and access pattern of a given application.



262 A. Jackson et al.

Fig. 1. Single-level memory (SLM)
configuration using main memory and
B-APM

Fig. 2. Dual-level memory (DLM) con-
figuration using main memory and B-
APM

Fig. 3. PMDK software architecture Fig. 4. Software stack exploiting B-
APM in compute nodes

Furthermore, persistence of the B-APM contents cannot be longer guaranteed,
due to the volatile DRAM cache in front of the B-APM, so the non-volatile
characteristics of B-APM are not exploited. A hybrid mode is also supported,
where only a part of the B-APM is used to extend the main memory and the
remaining part is used for persistent operations. The sizes of B-APM used for
memory extension and persistent memory can be set flexibly.

2.3 Non-volatile Memory Software Ecosystem

The Storage Networking Industry Association (SNIA) have produced a soft-
ware architecture for B-APM with persistent load/store access, formalised in
the Linux Persistent Memory Development Kit (PMDK) [9] library. This app-
roach re-uses the naming scheme of files as traditional persistent entities and
maps the B-APM regions into the address space of a process (similar to memory
mapped files in Linux). Once the mapping has been done, the file descriptor is
no longer needed and can be closed. Figure 3 outlines the PMDK software archi-
tecture. Figure 4 details the software architecture we are considering for systems
exploiting B-APM for HPC and HPDA work, which will be discussed in more
detail in Sect. 4.



B-APM Architecture for HPC 263

3 Opportunities for Exploiting B-APM for
Computational Simulations and Data Analytics

Reading data from and writing it to persistent storage is usually not the most
time consuming part of computational simulation applications. Analysis of com-
mon applications from a range of different scientific areas shows that around
5–20% of runtime for applications is involved in I/O operations [10,11]. It is
evident that B-APM can be used to improve I/O performance for applications
by replacing slower SSDs or HDDs in external filesystems. However, such a use
of B-APM would be only an incremental improvement in I/O performance, and
would neglect some of the significant features of B-APM that can provide per-
formance benefits for applications.

Firstly, deploying B-APM as an external filesystem would require provision-
ing a filesystem on top of the B-APM hardware. Standard storage devices require
a filesystem to enable data to be easily written to or read from the hardware.
However, B-APM does not require such functionality, and data can be manip-
ulated directly on B-APM hardware simply through load/store instructions.
Adding the filesystem and associated interface guarantees (i.e. POSIX interface
[12]) adds performance overheads that will reduce I/O performance on B-APM.

Secondly, an external (to the compute nodes) B-APM based filesystem would
require all I/O operations to be performed over a network connection (see Fig. 5).
This would limit the maximum performance of I/O to that of the network
between compute nodes and the nodes the B-APM is hosted in, and expose
application I/O performance to the variations associated with a shared external
resource, however fast it is.

Fig. 5. Current external storage for HPC
and HPDA systems

Fig. 6. Internal storage using B-APM
in compute nodes for HPC and HPDA
systems

Our vision for exploiting B-APM for HPC and HPDA systems is to incorpo-
rate the B-APM into the compute nodes, as outlined in Fig. 6. This architecture
allows applications to exploit the full performance of B-APM within the com-
pute nodes they are using, by enabling access to B-APM through load/store
operations at byte-level granularity, as opposed to block based, asynchronous
I/O. Incorporating B-APM into compute nodes also has the benefit that I/O
capacity and bandwidth can scale with the number of compute nodes in the
system. Adding more compute nodes will increase the amount of B-APM in the
system and add more aggregate bandwidth to I/O/B-APM operations.



264 A. Jackson et al.

For example, current memory bandwidth of a HPC system scales with the
number of nodes used. If we assume an achievable memory bandwidth per node
of 200 GB/s, then it follows that a system with 10 nodes has the potential to
provide 2TB/s of memory bandwidth for a distributed application, and a system
with 10000 nodes can provide 2PB/s of memory bandwidth. If an application
is memory bandwidth bound and can parallelise across nodes then scaling up
nodes in this fashion clearly has the potential to improve performance. For B-
APM in nodes, and taking Intel R©Optane DC persistent memory (DCPMM) as
an example, we have measured 40 GB/s of memory bandwidth per node (read
and write) or 80 GB/s (read) for the STREAMS benchmark using DCPMM
(two sockets), then scaling up to 10 nodes provides 400 GB/s of (I/O) memory
bandwidth and 10000 nodes provides 400 TB/s of(I/O) memory bandwidth. For
comparison, the Titan system at ORNL has a Lustre file system with 1.4TB/s of
bandwidth [26] and they are aiming for 50 TB/s of burst buffer [28] I/O by 2024
[27]. Furthermore, there is the potential to optimise not only the performance
of a single application, but the performance of a whole scientific workflow, from
data preparation, simulations, data analysis and visualisation. Optimising full
workflows by sharing data between different stages or steps in the workflow has
the scope to completely remove, or greatly reduce, data movement/storage costs
(and associated energy costs) for large parts of the workflow altogether. Leaving
data in-situ on B-APM for other parts of the workflow can significantly improve
the performance of analysis and visualisation steps at the same time as reducing
I/O costs for the application when writing the data out.

Finally, the total runtime of an application can be seen as the sum of its com-
pute time, plus the time spent in I/O. Greatly reduced I/O costs therefore also
has the beneficial side effect of allowing applications to perform more I/O within
the same total cost of the overall application run. This will enable applications
to maintain I/O costs in line with current behaviour whilst being able to process
significantly more data. Furthermore, for those applications for which I/O does
take up a large portion of the run time, including data analytics applications,
B-APM has the potential to significantly reduce runtime.

3.1 Potential Caveats

However, utilising internal storage is not without drawbacks. Firstly, the benefit
of external storage is that there is a single namespace and location for compute
nodes to use for data storage and retrieval. This means that applications can
run on any compute nodes and access the same data as it is stored external to
the compute nodes. With internal storage, this guarantee is not provided, data
written to B-APM is local to specific compute nodes. It is therefore necessary for
applications to be able to manage and move data between compute nodes, as well
as to external data storage, or for some systemware components to undertake
this task, to reduce scheduling restrictions on applications sharing a system with
a finite set of compute nodes.



B-APM Architecture for HPC 265

Secondly, B-APM may be expensive to provision in all compute nodes. It may
not be practical to add the same amount of B-APM to all compute nodes, mean-
ing systems may be constructed with islands of nodes with B-APM, and islands
of nodes without B-APM. Therefore, application or systemware functionality
to enable access to remote B-APM and to exploit/manage asymmetric B-APM
configurations will be required. Both these issues highlight the requirement for
an integrated hardware and software (systemware) architecture to enable effi-
cient and easy use of this new memory technology in large scale computational
platforms.

4 Systemware Architecture

Systemware implements the software functionality necessary to enable users to
easily and efficiently utilise the system. We have designed a systemware architec-
ture that provides a number of different types of functionality, related to different
methods for exploiting B-APM for large scale computational simulation or data
analytics.

From the hardware features B-APM provides, our analysis of current HPC
and HPDA applications and functionality they utilise, and our investigation
of future functionality that may benefit such applications, we have identified
a number of different kinds of functionality that the systemware architecture
should support:

1. Enable users to be able to request systemware components to load/store data
in B-APM prior to a job starting, or after a job has completed. This can be
thought of as similar to current burst buffer technology. This will allow users
to be able to exploit B-APM without changing their applications.

2. Enable users to directly exploit B-APM by modifying their applications to
implement direct memory access and management. This offers users the abil-
ity to access the best performance B-APM can provide, but requires applica-
tion developers to undertake the task of programming for B-APM themselves,
and ensure they are using it in an efficient manner.

3. Provide a filesystem built on the B-APM in compute nodes. This allows users
to exploit B-APM for I/O operations without having to fundamentally change
how I/O is implemented in their applications. However, it does not enable
the benefit of moving away from file based I/O that B-APM can provide.

4. Provide an object, or key value, store that exploits the B-APM to enable
users to explore different mechanisms for storing and accessing data from
their applications.

5. Enable the sharing of data between applications through B-APM. For exam-
ple, this may be sharing data between different components of the same com-
putational workflow, or the sharing of a common dataset between a group of
users.

6. Ensure data access is restricted to those authorised to access that data and
enable deletion or encryption of data to make sure those access restrictions
are maintained



266 A. Jackson et al.

7. Provide different memory modes if they are supported by the B-APM hard-
ware.

8. Enable job scheduling on the system that can optimise performance or energy
usage by utilising B-APM functionality

The systemware architecture we have defined appear to have a large number
of components and significant complexity, however the number of systemware
components that are specific to a system that contains B-APM is relatively
small. The new or modified components we have identified are required to sup-
port B-APM in a large scale, multi-user, multi-application, compute platforms
are as follows; Job Scheduler, Data Scheduler, Object Store, and Filesystems.
There are a number of object stores under development, of which some are
focussed on efficiently exploiting B-APM hardware, such as DAOS [21] and dat-
aClay [22]. As such we will not focus on object stores in this paper. Likewise,
there are a plethora of filesystems that could be deployed on the hardware, both
as local filesystems on each node (i.e. ext4) or as distributed filesystems span-
ning compute nodes (i.e. GekkoFS [33]). We will utilise some filesystems to test
performance but not focus on the specifics of filesystems in this paper.

4.1 Job Scheduler

As the innovation in our proposed system is the inclusion of B-APM within
nodes, one of the key components that must support the new hardware resource
is the job scheduler. Job schedulers, or batch systems, are used to manage,
schedule, and run user jobs on the shared resource that are the compute nodes.
Standard job schedulers are configured with the number of nodes in a system,
the number of cores per node, and possibly the amount of memory or whether
there are accelerators (like GPUs) in compute nodes in a system. They then use
this information, along with a scheduling algorithm and scheduling policies, to
allocate user job request to a set of compute nodes. Users submit job requests
specifying the compute resources required (i.e. number of nodes or number of
compute cores a job will require) along with a maximum runtime for the job.
This information is used by the job scheduler to accurately, efficiently, and fairly
assign applications to resources.

Adding B-APM to compute nodes provides another layer of hardware
resource that needs to managed by the job scheduler. As data can persist in
B-APM, and one of our target use cases is the sharing of data between applica-
tions using B-APM, the job scheduler needs to be extended to both be aware of
this new hardware resource, and to allow data to be retained in B-APM after an
individual job has finished. This functionality is achieved through adding work-
flow awareness to the job scheduler, providing functionality to allow data to be
retained and shared through jobs participating in the workflow, although not
indefinitely [24]. The job scheduler also needs to be able to clean up the B-APM
after a job has finished, ensuring no data is left behind or B-APM resources
consumed, unless specifically as part of a workflow. Job schedulers already do
support assigning resources to jobs, in the form of burst buffer allocations.



B-APM Architecture for HPC 267

They also can support workflows, with users able to specify dependencies
between jobs submitted or running on a system. However, currently no sched-
ulers support workflow locality, the association of specific nodes with workflow
jobs, as is required when sharing data residing in compute nodes. The allocation
of burst buffer resources through scheduler functionality also does not provide
support for the local nature of data in B-APM, relying on the external nature
of burst buffer placements in the storage hierarchy.

Furthermore, as the memory system can have different modes of operation,
a supporting job scheduler will need to be able to query the current configu-
ration of the memory hardware, and be able to change configuration modes if
required by the next job that will be using a particular set of compute nodes.
There are job schedulers that do have support for querying and modify hardware
configurations, such as Slurm functionality to support different KNL processor
configurations. However, the configuration of B-APM is significantly more com-
plex that KNL MCDRAM, and requires the use of multiple system tools or
interfaces to ensure valid memory configurations can be achieved. This requires
significant extra on-node scheduler functionality for a job scheduler.

Finally, efficiently allowing users to exploit this new hardware resource will
require data aware and energy aware scheduling algorithms. These will utilise
the job scheduler’s awareness of B-APM functionality and compute job data
requirements, and enable scheduling compute tasks to data rather than moving
data to compute tasks (as is currently done with external filesystems), or moving
data between compute nodes or external filesystems as required to maximise the
utilisation or efficiency of the overall system.

4.2 Data Scheduler

The data scheduler is an entirely new component, designed to run on each
compute node and provide data movement and shepherding functionality. This
include functionality to allow users to move data to and from B-APM asyn-
chronously (i.e. pre-loading data before a job starts, or moving data from B-
APM after a job finishes), or between different nodes (i.e. in the case that a job
runs on a node without B-APM and requires B-APM functionality, or a job runs
and needs to access data left on B-APM in a different node by another job). To
provide such support without requiring users to modify their applications we
implement functionality in the data scheduler component. This component has
interfaces for applications to interact with, and is also for job scheduler compo-
nent on each compute node. Through these interfaces the data scheduler can be
instructed to move data as required by a given application or workflow.

5 Performance Evaluation

To evaluate the performance and usability of our architectures we benchmarked
on a prototype HPC system with B-APM installed in the compute nodes.
We used a range of different benchmarks, from synthetic workflows, through
large scale applications, and I/O benchmarks such as IOR [38].



268 A. Jackson et al.

Table 1. Synthetic workflow benchmark
using Lustre or B-APM in a
compute node

Component Target Runtime (seconds)

Producer Lustre 197

Consumer Lustre 112

Producer B-APM 133

Consumer B-APM 60

Table 2. OpenFOAM workflow bench-
mark using Lustre or B-APM with data
staging

Workflow phase Lustre B-APM

Decomposition 1352 1323

Data-staging – 51

Solver 747 95

Test System and Setup: All experiments were conducted using a prototype
system composed of 34 compute nodes. Each node has two Intel R© Xeon R©
Platinum 8260M CPU running at 2.40 GHz (i.e. 48 physical cores per node),
192 GiB of DDR4 RAM (12 × 16 GB DIMMs) and 3 TBytes of DCPMM mem-
ory (12 × 256GB DCPMM DIMMs). A single rail Intel R© Omni Path network
connects the compute nodes through a 100 Gbps switch, as well as to a 270 TB
external Lustre filesystem with 6 OSTs. The compute nodes are running Linux
CentOS 7.5 and we use Slurm for job scheduling. To manage and configure the
DCPMM we use Intel’s ipmctl and Linux’s ndctl [37] tools. Version 1.05 of the
PMDK toolkit is installed, along with the Intel 19 compiler suite, and Intel’s
MPI and MKL libraries.

Synthetic Workflow: We created a synthetic workflow benchmark that contains
two components, a producer and a consumer of data. These components can
be configured to produce and consume a number of files of different sizes, but
then do no work other than reading or writing and verifying data. We ran this
benchmark either targeting the Lustre filesystem or the B-APM in the com-
pute node, and also using the job scheduler integration and data scheduler
component to maintain data in B-APM between workflow component execu-
tion. Table 1 outlines the performance achieved when producing and consum-
ing 200 GB (10 × 20 GB files) of data for each configuration. Each benchmark
workflow ran 5 times and we report the mean time to complete the benchmark.
Performance varied by <15% across runs when using Lustre and <2% when
using B-APM. When using B-APM we ran a job that reads and writes 200 GB
of data between workflow components on the same node to ensure caching does
not affect performance. Benchmarks were compiled using the Intel 19 compiler
with the -O3 flag.

Benchmarking using Lustre was configured with the producer and consumer
processes on two separate compute nodes to ensure that I/O caching locally did
not affect measured runtimes. For the benchmark using B-APM we ran using
the same node for producer and consumer, communicating data through the
B-APM in the node. We can see from the Table 1 using B-APM storage gives
≈45% faster overall runtime (172 vs 309 s) for the workflow compared to using
Lustre.



B-APM Architecture for HPC 269

Application Workflow: OpenFOAM [35] is a C++ library that provides compu-
tational fluid dynamics functionality that can easily be extended and modify by
users. It is parallelised with MPI and is heavily used in academia and indus-
try for large scale computational simulations. It often requires multiple stages
to complete a simulation, from preparing meshes and decomposing them for
the required number of parallel processes, to running the solver and processing
results. It also, often, undertakes large amounts of I/O, reading in input data
and producing data for analysis. It is common that the different stages require
differing amounts of compute resources, with some stages only able to utilise
one node, and others (such as the solver) requiring a large number of nodes
to complete in a reasonable amount of time. OpenFOAM generally creates a
directory per process that will be used for the solver calculations, necessitating
significant amounts of I/O operations for a large simulation. It is also often use-
ful to save data about the state of the simulation every timestep or every few
timesteps. Given these features, OpenFOAM is a good target for both workflow
functionality and improved I/O performance through node-local I/O hardware.

To evaluate the performance of our architectures using OpenFOAM we ran
a low-Reynolds number laminar-turbulent transition modeling simulation of the
flow over the surface of an aircraft [34], using a mesh with ≈43 million mesh
points. We decomposed the mesh over 20 nodes enabling 960 MPI processes to
be used for the solver step (picoFOAM). The decomposition step is serial, takes
1105 s, and requires 30 GB of memory.

We ran the solver for 20 timesteps, and compared running the full work-
flow (decomposing the mesh and then running the solver) entirely using the
Lustre filesystem or using node-local B-APM with data staging between the
mesh decomposition step and the solver. The solver produces 160 GB of output
data when run in this configuration, with a directory per process. Running the
solver using Lustre required 747 s, whereas running the solver using node-local
B-APM storage required 95 s, more than seven times faster (see Table 2). Using
node-local storage needs a redistribution of data from the storage on the single
compute node used for decomposing the mesh to the 20 nodes needed for the
solver. This data copy took 51 s, so even if not overlapped with other running
tasks this approach would provide improved performance compared to directly
using Lustre, more so when run for a full simulation, which would require many
thousands of timesteps meaning the initial cost of copying the data would be
negligible.

IOR: Finally, we ran the IOR benchmark on the prototype system using the
GekkoFS distributed filesystem. We ran the filesystem on 10 compute nodes,
and ran 10 IOR clients per compute node, give a total of 100 IOR processes. We
tested both IOR with a single file per process (FPP), and IOR with a shared
file (SF) for all processes. For the FFP benchmark each process is writing or
reading 8.2GB per file. For the SF benchmark each process is writing 222000
blocks containing 47008 bytes each.

Table 3 presents the performance achieved using 10 nodes using the GekkoFS
distributed filesystem exploiting B-APM. We can see that using a single file



270 A. Jackson et al.

Table 3. 10 node IOR performance using B-APM and GekkoFS

Benchmark Bandwidth (GB/s)

FPP write 24

SF write 3

FPP read 27

SF read 7

per process, read and write bandwidth as around 24–27 GB/s. The bandwidth
achieved using a shared file for all processes is low, at 3 GB/s for write and
7 GB/s for read (the B-APM is slower for writing than it is for reading). However,
these tests are run with a prototype version GekkoFS using only TCP/IP for
communication between the nodes, and only the B-APM on a single socket per
node meaning communication performance and NUMA effects have reduced the
achieved performance.

6 Related Work

There are existing technological solutions that are offering similar functionality
to B-APM and that can be exploited for high performance I/O. E.g. Mem-
ory mapped files, which allows copy files into main memory and therefore byte
level CPU instructions to modify data. In fact, the use of B-APM by the PMDK
library is based on the memory mapped file concept and therefore allows an easy
transition from this well-known I/O handling into the B-APM future. The major
difference with B-APM usage is that it does not perform any I/O operations, only
memory operation, removing the requirement for context switches, buffers man-
agement, programming scatter/gather lists, I/O interrupt handling and wait for
external I/O devices to complete and ensure persistence (e.g. msync). A pointer
to the requested B-APM address space is all that is required for CPU instruc-
tions to operate on persistence memory, and the use of the cflush instruction to
ensure persistence of data.

In comparison the NVMe protocol requires thousands of CPU instructions to
read data from the device or to make data persistent. In addition, even the fastest
NVMe devices such as Intel’s NVMe Optane SSD or Samsung Z-NAND require
tens of microseconds to respond while B-APM based on DCPMM will respond
in 100 s of nanoseconds. This is especially true for access to small amounts of
data located at random data locations in memory. With larger amounts of data,
the overall performance effect is smaller (the proportion of I/O operation on the
total amount of data is smaller), but traditional I/O still necessitates copying
to buffers and I/O page caches instead of working directly on the data. B-APM
is a natural fit for CPU operations to manage persistent data compared to the
device driven block I/O traditional storage media requires.

We are proposing hardware and systemware architectures in this work that
will integrate B-APM into large scale compute clusters, providing significant I/O



B-APM Architecture for HPC 271

performance benefits and introducing new I/O and data storage/manipulation
features to applications. Our key goal is to create systems that can both exploit
the performance of the hardware and support applications whilst they port to
these new I/O or data storage paradigms.

Indeed, we recognise that there is a very large body of existing applications
and data analysis workflows that cannot immediately be ported to new storage
hardware (for time and resource constraint reasons). Therefore, our aims in this
work are to provide a system that enables applications to obtain best perfor-
mance if porting work is undertaken to exploit B-APM hardware features, but
still allow applications to exploit B-APM and significantly improve performance
without major software changes.

7 Summary

This paper outlines a hardware and systemware architecture designed to enable
the exploitation of B-APM hardware directly by applications, or indirectly by
applications using systemware functionality that can exploit B-APM for appli-
cations. This dual nature of the system provides support for existing application
to exploit this emerging memory new hardware whilst enabling developers to
modify applications to best exploit the hardware over time.

The system outlined provides a range of different functionality. Not all func-
tionality will be utilised by all applications, but providing a wide range of func-
tionality, from filesystems to object stores to data schedulers will enable the
widest possible use of such systems. We are aiming for hardware and systemware
that enables HPC and HPDA applications to co-exist on the same platform.

Whilst the hardware is novel and interesting in its own right, we predict
that the biggest benefit in such technology will be realised through changes
in application structure and data storage approaches facilitated by the byte-
addressable persistent memory that will become routinely available in computing
systems.

In time it could possible to completely remove the external filesystem from
HPC and HPDA systems, removing hardware complexity and the energy/cost
associated with such functionality. There is also the potential for volatile memory
to disappear from the memory stack everywhere except on the processor itself,
removing further energy costs from compute nodes. However, further work is
required to evaluate the impact of the costs of the active systemware environment
we have outlined in this paper, and the memory usage patterns of applications.

Moving data asynchronously to support applications can potentially bring
big performance benefits but the impact such functionality has on applications
running on those compute node needs to be investigated. This is especially impor-
tant as with distributed filesystems or object stores hosted on node distributed
B-APM such in-node asynchronous data movements will be ubiquitous, even
with intelligent scheduling algorithms. We have demonstrated significant perfor-
mance improvements using B-APM for applications and synthetic benchmarks,
showing 7–8x performance improvements for a I/O intensive CFD solver, even
using the slower file-based, rather than byte-access, I/O functionality.



272 A. Jackson et al.

Acknowledgements. The NEXTGenIO project1 and the work presented in this
paper were funded by the European Union’s Horizon 2020 Research and Innovation
programme under Grant Agreement no. 671951. All the NEXTGenIO Consortium
members (EPCC, Allinea, Arm, ECMWF, Barcelona Supercomputing Centre, Fujitsu
Technology Solutions, Intel Deutschland, Arctur and Technische Universität Dresden)
contributed to the design of the architectures.

References

1. Sodani, A.: Knights landing (KNL): 2nd Generation Intel Xeon Phi Processor. In:
IEEE Hot Chips 27 Symposium (HCS). IEEE, January 2015

2. NVIDIA Volta. https://www.nvidia.com/en-us/data-center/volta-gpu-
architecture

3. Jun, H., et al.: HBM (high bandwidth memory) DRAM technology and architec-
ture. In: 2017 IEEE International Memory Workshop (IMW), pp. 1–4 (2017)

4. Turner, A., Simon, M.-S.: A survey of application memory usage on a national
supercomputer: an analysis of memory requirements on ARCHER. In: Stephen, J.,
Steven, W., Simon, H. (eds.) PMBS 2017. LNCS, vol. 10724, pp. 250–260. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 13, http://www.archer.
ac.uk/documentation/white-papers/memory-use/ARCHER mem use.pdf

5. Hady, F.T., Foong, A., Veal, B., Williams, D.: Platform storage performance with
3D XPoint technology. Proc. IEEE 105(9), 1–12 (2017). https://doi.org/10.1109/
JPROC.2017.2731776

6. NVDIMM Messaging and FAQ: SNIA website. Accessed Nov 2017. https://www.
snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan
%2020143.pdf

7. Report on MCDRAM technology from Colfax Research. https://colfaxresearch.
com/knl-mcdram/

8. Intel Patent on multi-level memory configuration for nonvolatile memory technol-
ogy. https://www.google.com/patents/US20150178204

9. pmem.io. http://pmem.io/
10. Layton, J.: IO pattern characterization of HPC applications. In: Mewhort, D.J.K.,

Cann, N.M., Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp.
292–303. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12659-
8 22

11. Luu, H., et al.: A multiplatform study of I/O behavior on petascale supercomput-
ers. In: Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC 2015), pp. 33–44. ACM, New York
(2015). https://doi.org/10.1145/2749246.2749269

12. IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) - IEEE Standard for
Information Technology - Portable Operating System Interface (POSIX(R))

13. Schwan, P.: Lustre: building a file system for 1000-node clusters. In: Proceedings
of the 2003 Linux Symposium, vol. 2003 (2003)

14. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing
clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies (FAST 2002), Article 19. USENIX Association, Berkeley (2002)

15. Introduction to BeeGFS. http://www.beegfs.io/docs/whitepapers/Introduction
to BeeGFS by ThinkParQ.pdf

1 www.nextgenio.eu.

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture
https://doi.org/10.1007/978-3-319-72971-8_13
http://www.archer.ac.uk/documentation/white-papers/memory-use/ARCHER_mem_use.pdf
http://www.archer.ac.uk/documentation/white-papers/memory-use/ARCHER_mem_use.pdf
https://doi.org/10.1109/JPROC.2017.2731776
https://doi.org/10.1109/JPROC.2017.2731776
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://colfaxresearch.com/knl-mcdram/
https://colfaxresearch.com/knl-mcdram/
https://www.google.com/patents/US20150178204
http://pmem.io/
https://doi.org/10.1007/978-3-642-12659-8_22
https://doi.org/10.1007/978-3-642-12659-8_22
https://doi.org/10.1145/2749246.2749269
http://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
www.nextgenio.eu


B-APM Architecture for HPC 273

16. Sun, J., Li, Z., Zhang, X.: The performance optimization of Lustre file sys-
tem. In: 2012 7th International Conference on Computer Science and Education
(ICCSE), Melbourne, VIC, pp. 214–217 (2012). https://doi.org/10.1109/ICCSE.
2012.6295060

17. Choi, W., Jung, M., Kandemir, M., Das, C.: A scale-out enterprise storage archi-
tecture. In: IEEE International Conference on Computer Design (ICCD) (2017).
https://doi.org/10.1109/ICCD.2017.96

18. Lin, K.-W., Byna, S., Chou, J., Wu, K.: Optimizing fastquery performance on lus-
tre file system. In: Szalay, A., Budavari, T., Balazinska, M., Meliou, A., Sacan, A.
(eds.) Proceedings of the 25th International Conference on Scientific and Statis-
tical Database Management (SSDBM), Article 29, 12 p. ACM, New York (2013).
https://doi.org/10.1145/2484838.2484853

19. Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. In: Proceedings of the 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies (MSST 2011), pp. 1–14.
IEEE Computer Society, Washington (2011). https://doi.org/10.1109/MSST.2011.
5937212

20. Kim, J., Lee, S., Vetter, J.S.: PapyrusKV: a high-performance parallel key-value
store for distributed NVM architectures, SC, vol. 57, no. 14, pp. 1–57 (2017)

21. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS and
friends: a proposal for an exascale storage system. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 585–596,
Salt Lake City (2016). https://doi.org/10.1109/SC.2016.49

22. Mart́ı, J., Queralt, A., Gasull, D., Barceló, A., Costa, J.J., Cortes, T.: Dataclay: a
distributed data store for effective inter-player data sharing. J. Syst. Softw. 131,
129–145 (2017). ISSN 0164–1212, https://doi.org/10.1016/j.jss.2017.05.080

23. Tejedor, E., et al.: PyCOMPSs: parallel computational workflows in Python. Int.
J. High Perform. Comput. Appl. 31(1), 66–82 (2017). First Published August 19,
201, https://doi.org/10.1177/1094342015594678

24. Farsarakis, E., Panourgias, I., Jackson, A., Herrera, J.F.R., Weiland, M., Par-
sons, M.: Resource Requirement Specification for Novel Data-aware and Workflow-
enabled HPC Job Schedulers, PDSW-DISCS17 (2017). http://www.pdsw.org/
pdsw-discs17/wips/farsarakis-wip-pdsw-discs17.pdf

25. Weiland, M., Jackson, A., Johnson, N., Parsons, M.: Exploiting the performance
benefits of storage class memory for HPC and HPDA Workflows. Supercomput.
Front. Innov. 5(1), 79–94 (2018). https://doi.org/10.14529/jsfi180105

26. ORNL Titan specification. http://phys.org/pdf285408062.pdf
27. Anantharaj, V., Foertter, F., Joubert, W., Wells, J.: Approaching exascale: appli-

cation requirements for OLCF leadership computing, July 2013. https://www.olcf.
ornl.gov/wp-content/uploads/2013/01/OLCF Requirements TM 2013 Final1.pdf

28. Daley, C., Ghoshal, D., Lockwood, G., Dosanjh, S., Ramakrishnan, L., Wright, N.:
Performance characterization of scientific workflows for the optimal use of burst
buffers. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.
2017.12.022

29. Mielke, N.R., Frickey, R.E., Kalastirsky, I., Quan, M., Ustinov, D., Vasudevan,
V.J.: Reliability of solid-state drives based on NAND flash memory. Proc. IEEE
105(9), 1725–1750 (2017). https://doi.org/10.1109/JPROC.2017.2725738

30. Li, C., Ding, C., Shen, K.: Quantifying the cost of context switch. In: Proceedings
of the 2007 Workshop on Experimental Computer Science (ExpCS 2007), Article
2. ACM, New York (2007). https://doi.org/10.1145/1281700.1281702

https://doi.org/10.1109/ICCSE.2012.6295060
https://doi.org/10.1109/ICCSE.2012.6295060
https://doi.org/10.1109/ICCD.2017.96
https://doi.org/10.1145/2484838.2484853
https://doi.org/10.1109/MSST.2011.5937212
https://doi.org/10.1109/MSST.2011.5937212
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.1016/j.jss.2017.05.080
https://doi.org/10.1177/1094342015594678
http://www.pdsw.org/pdsw-discs17/wips/farsarakis-wip-pdsw-discs17.pdf
http://www.pdsw.org/pdsw-discs17/wips/farsarakis-wip-pdsw-discs17.pdf
https://doi.org/10.14529/jsfi180105
http://phys.org/pdf285408062.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/01/OLCF_Requirements_TM_2013_Final1.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/01/OLCF_Requirements_TM_2013_Final1.pdf
https://doi.org/10.1016/j.future.2017.12.022
https://doi.org/10.1016/j.future.2017.12.022
https://doi.org/10.1109/JPROC.2017.2725738
https://doi.org/10.1145/1281700.1281702


274 A. Jackson et al.

31. Liu, N., et al.: On the role of burst buffers in leadership-class storage systems. In:
2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST),
pp. 1–11, San Diego (2012). https://doi.org/10.1109/MSST.2012.6232369

32. Petersen, T.K., Bent, J.: Hybrid flash arrays for HPC storage systems: an alter-
native to burst buffers. In: High Performance Extreme Computing Conference
(HPEC) 2017. IEEE, pp. 1–7 (2017)

33. Vef, M.-A., et al.: GekkoFS - a temporary distributed file system for HPC appli-
cations. In: Proceedings of the 2018 IEEE International Conference on Cluster
Computing (CLUSTER), Belfast, 10–13 September 2018

34. Matej, A., Gregor, V., Nejc, B.: Cloud-based simulation of aerodynam-
ics of light aircraft. https://hpc-forge.cineca.it/files/CoursesDev/public/2015/
Workshop HPC Methods for Engineering/cloud based aircraft.pdf

35. Jasak, H.: OpenFOAM: open source CFD in research and industry. Int. J. Naval
Architect. Ocean Eng. 1(2), 89–94 (2009). issn 2092-6782

36. IPMCTL. https://github.com/intel/ipmctl
37. NDCTL - Utility library for managing the libnvdimm (non-volatile memory device)

sub-system in the Linux kernel. https://github.com/pmem/ndctl
38. IOR. https://github.com/LLNL/ior

https://doi.org/10.1109/MSST.2012.6232369
https://hpc-forge.cineca.it/files/CoursesDev/public/2015/Workshop_HPC_Methods_for_Engineering/cloud_based_aircraft.pdf
https://hpc-forge.cineca.it/files/CoursesDev/public/2015/Workshop_HPC_Methods_for_Engineering/cloud_based_aircraft.pdf
https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
https://github.com/LLNL/ior

	An Architecture for High Performance Computing and Data Systems Using Byte-Addressable Persistent Memory
	1 Introduction
	2 Persistent Memory
	2.1 Data Access
	2.2 B-APM Modes of Operation
	2.3 Non-volatile Memory Software Ecosystem

	3 Opportunities for Exploiting B-APM for Computational Simulations and Data Analytics
	3.1 Potential Caveats

	4 Systemware Architecture
	4.1 Job Scheduler
	4.2 Data Scheduler

	5 Performance Evaluation
	6 Related Work
	7 Summary
	References




