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Abstract. The continuous increase in the data produced by simula-
tions, experiments and edge components in the last few years has forced
a shift in the scientific research process, leading to the definition of a
fourth paradigm in Science, concerning data-intensive computing. This
data deluge, in fact, introduces various challenges related to big data vol-
umes, formats heterogeneity and the speed in the data production and
gathering that must be handled to effectively support scientific discov-
ery. To this end, High Performance Computing (HPC) and data analytics
are both considered as fundamental and complementary aspects of the
scientific process and together contribute to a new paradigm encompass-
ing the efforts from the two fields called High Performance Data Ana-
lytics (HPDA). In this context, the Ophidia project provides a HPDA
framework which joins the HPC paradigm with scientific data analytics.
This contribution presents some aspects regarding the Ophidia HPDA
framework, such as the multidimensional storage model, its distributed
and hierarchical implementation along with a benchmark of a parallel
in-memory time series reduction operator.

Keywords: HPDA · Climate change · Scientific data analysis ·
Storage model · Multidimensional data

1 Introduction

Scientific research has been experiencing a shift over the last few years due to
the enormous increase of data produced by simulations, experiments, edge com-
ponents, etc. which has led to the definition of a fourth paradigm in Science
concerning data-intensive computing [7]. The deluge of data, however, poses
several challenges that must be tackled accordingly to cope with bigger data
volumes, heterogeneous formats and different frequency in data generation. To
fully support data-intensive scientific applications, High Performance Comput-
ing (HPC) and data analytics are both deemed as fundamental and complemen-
tary aspects of the scientific process [21], providing together a new paradigm for
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eScience named High Performance Data Analytics (HPDA). Related to that, in
the current scientific landscape, the Ophidia project provides a HPDA frame-
work joining HPC paradigms with scientific data analytics approaches. This
paper describes key aspects of the Ophidia HPDA framework, such as the mul-
tidimensional storage model design and the related distributed and hierarchical
implementation across multiple, heterogeneous physical resources; additionally,
it also presents a benchmark of a key analytical operator for parallel, in-memory
time series reduction.

The rest of this paper is organized as follows. After the review of some key
challenges for scientific data analysis in Sects. 2 and 3 presents some of the main
aspects of the Ophidia project like its internal storage model and partition-
ing/distribution schema design and implementation. Section 4 presents a time
series reduction benchmark, while Sect. 5 presents state of the art projects in
the scientific data analytics area. Finally, Sect. 6 draws the main paper conclu-
sions and describes future work.

2 Main Challenges

By reviewing a previous work presented at BDEC [2], we summarize some key
challenges [1,3,10,18] for addressing scientific data analytics at scale. In par-
ticular, we (i) discuss the need to review the scientific data analysis workflow
(shifting from client to server-side approaches), and (ii) highlight storage, data
management and metadata-related challenges.

The workflow commonly used in production for scientific discovery has tradi-
tionally been based on the search, locate, download and analyze steps, typically
performed on a researcher’s desktop. Such workflow could not scale for several
reasons including (i) ever-larger scientific datasets, (ii) time- and resource- con-
suming data downloads, and (iii) increased problem size and complexity requir-
ing bigger computing facilities. Server-side approaches have helped address chal-
lenges related to the analysis of very large datasets, keeping data produced from
simulations or gathered from observations close to the data center facilities.

As regards the storage, new storage models are essential to support datacube-
oriented analytics. New data organizations are needed to better fit the intrinsic
datacube model of n-dimensional data. Data partitioning and distribution can
enable parallelism, whereas indexing, replication, and caching can improve exe-
cution efficiency and throughput. In a multidimensional space, dimensional data
independence - where the storage model should be independent of the number of
dimensions - should be clearly addressed to provide the right level of separation
of concerns.

Finally, metadata represents a valuable source of information for data descrip-
tion, data search & discovery as well as for properly (from a semantics perspec-
tive) running scientific tasks. In this regard, with the shift towards server-side
approaches, it becomes extremely relevant to support, in close proximity to the
compute and data storage facilities available in a data center: (i) metadata man-
agement capabilities to index datasets and support datasets search & discovery,
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(ii) provenance metadata capture and collection for describing the flow of ana-
lytics operators in scientific data analysis experiments; (iii) integration of infor-
mation linking cross-related digital objects (using PIDs), (iv) the creation of new
community-oriented tools to enrich metadata and provide, at the same time, a
way to move this process towards much more open, multi-level and collaborative
forms, targeting Open Science-oriented approaches.

3 The Ophidia Project

In the eScience landscape, the Ophidia project [11,12] provides a HPDA frame-
work joining HPC paradigms with scientific data analytics approaches. Primar-
ily exploited in the climate domain, it provides a domain-agnostic architectural
design, which makes it suitable for any scientific domain dealing with multidi-
mensional data formats [15]. A complete architectural overview of Ophidia is
reported in [14].

Ophidia provides in-memory, parallel, server-side data analysis & I/O, an
internal storage model and a hierarchical data organization to manage large
amounts of multidimensional scientific data. The multidimensional storage model
and related implementation aspects are presented in Sect. 3.1.

Array-based functionalities (“primitives” ) as well as datacube kernels (“oper-
ators” ) represent two levels through which end-users can operate on scientific
data performing analytics tasks. Such aspects are discussed in detail in Sect. 3.2.

3.1 Multi-dimensional Storage Model

The objective of addressing efficient climate data management inherently leads
to the key challenges of properly dealing with scientific multidimensional data.To
achieve this goal, Ophidia implements a storage model leveraging the datacube
abstraction from the well-known On-Line Analytical Processing (OLAP) systems
in the databases field.

In such a context, a datacube consists of several measures representing
numerical values that can be analyzed over the available dimensions. The multi-
dimensional data model exists in the form of star, snowflake or galaxy schema.
The Ophidia storage model [14] (see Fig. 1) builds on top of the classic star
schema. In such a schema, the data warehouse implementation consists of a large
central table (the fact table) that contains all the data and a set of smaller tables
(dimension tables), one for each dimension. The dimensions can also define hier-
archies, which represent a convenient way to organize the information according
to their level of aggregation; a very common example is the time dimension,
which can represent information at various levels of aggregations (e.g. hours
->days ->months, etc.).

In Fig. 1, the fact table is represented with the Dimensional Fact Model
(DFM) [17], a conceptual model for data warehouse (see Fig. 1a). The example
shows one fact table (FACT) with four dimensions (dim1, dim2, dim3, and dim4),
where the last dimension is modeled through a 4-level concept hierarchy (lev1,
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lev2, lev3, lev4), and a single measure (measure). This schema can be easily used
to map a NetCDF file produced, for example, by a global climate simulation,
where the four dimensions correspond to latitude, longitude, depth, and time,
while the measure can represent the air temperature. The classic Relational-
OLAP (ROLAP) logical model can then be used to implement the star schema
(see Fig. 1b).

In terms of storage model, Ophidia implements a two-step-based evolution
of the star schema. The first step introduces the support for array-based data
types (see Fig. 1c), by merging multiple rows into a single binary array. Rows
are merged according to one or more dimensions. In this way, an array contains
the values of the measure related to all the possible configurations of these
dimensions. The second step performs the mapping of the set of foreign keys
(fks) (see Fig. 1d), related to the remaining subset of dimensions, to a single
new key. Thus, a multidimensional array can be managed using single tuple
(e.g., an entire time series) identified by one key (a numerical ID). It is worth
noting that, thanks to this second step, the Ophidia storage model is independent
of the number of dimensions, unlike the classic ROLAP-based implementation.
Hence, the system implements a key-value schema (i) supporting n-dimensional
data management, (ii) exhibiting data locality, and (iii) reducing disk space
occupancy.

A combination of values of m dimensions (m < n) is mapped through
a numerical function onto the key attribute: ID = f(fk dim1, fk dim2, . . . ,
fk dimm); the corresponding dimensions are defined in Ophidia as explicit
dimensions. The array attribute manages the other n-m dimensions, called
implicit dimensions.

The ID key is defined as a sequential integer positive number computed with
the following function (1).

ID =
m∑

j=i

Sjfkj , with Sj =
m∏

i=j+i

size(di) ∀ j = 1, . . . ,m − 1 and Sm = 1 (1)

where m is the number of explicit dimensions, (fk1, fk2, . . . , fkm) is the par-
ticular configuration of dimension indexes and size(dj) is the size of the j-th
dimension.

In our example, latitude, longitude and depth could be the explicit dimen-
sions, whereas time would be the implicit one (in this case 1-D array). The
mapping onto the Ophidia key-array storage model would therefore result in a
single table with two attributes:

– an ID attribute: ID = f(fklatitudeID, fklongitudeID, fkdepthID) as a numerical
data type;

– an array-based attribute, managing the implicit dimension time, as a binary
data type.

In terms of implementation, several traditional RDBMSs allow data to be
stored as a binary data type, by exploiting for instance the string data type
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(as CHAR, BINARY, BLOB, TEXT types), but they do not provide a way to
manage the array as a native data type. The reason is that the available binary
data type does not look at the binary array as a vector, but rather as a single
binary block. Therefore, we have designed and implemented a comprehensive set
of array-based primitives to manage the arrays stored in Ophidia according to
its internal storage model.

Fig. 1. Ophidia storage model and implementation

With regard to the physical mapping onto the storage systems (see Fig. 1e),
Ophidia horizontally partitions this very long table into several fragments to
efficiently handle big datacubes on the physical file system. This fragmentation
is driven by the underlying resources following a hierarchical approach composed
of four different levels, as shown in Fig. 1:

– Level 0: multiple Ophidia I/O & analytics nodes (multi-host);
– Level 1: multiple instances of Ophidia I/O & analytics servers on the same

node (multi-server);
– Level 2: multiple instances of databases on the same IO & analytics server

(multi-DB);
– Level 3: multiple fragments on the same database (multi-table).

The total number of fragments associated with a datacube is the product of
these four parameters, which represents key settings for fragments distributions.
Fine tuning of these parameters is out of the scope of this paper and will be
discussed in more detail in a future work.
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Finally, from an end-user perspective, the logical/virtual file system hosting
the datacube objects is defined as a cube space (see Fig. 2) in Ophidia (as opposed
to the physical file system associated with files) due to the datacube abstraction
delivered to the users. Related to this, there is a set of operators that specifically
allows copying, moving, deleting and listing datacubes and folders in the cube
space. Metadata information (like that stored in the header of scientific data,
e.g. NetCDF) is separately stored into the OphidiaDB, i.e., the Ophidia system
catalog.

Fig. 2. Cube space abstraction and physical storage implementation/mapping

3.2 Array-Based Primitives and Parallel Operators

At the I/O and analytics server level (see Fig. 2), Ophidia provides an array-
based engine and a set of array-based primitives as Structured Query Language
(SQL) extensions relying on the User-Defined Functions (UDF) approach. About
100 primitives have been implemented. Among others, the available array-based
functions allow the performance of data sub-setting, data aggregation (i.e., max,
min, avg), array concatenation, algebraic expressions and predicate evaluation.
We note that multiple plugins can be nested to implement a single and more
complex task (e.g., aggregating by sum a subset of the entire array). Bit-oriented
plugins have also been implemented to manage binary datacubes. The array-
based processing is performed by the I/O and analytics servers engine, which
supports the management of n-dimensional array structures both at the data
type and primitives levels. An in-depth view of the array-based primitives has
been discussed in a previous work [14].
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Additionally,

– through the storage back-end API, the I/O and analytics servers can transpar-
ently interface to different storage back-ends such as POSIX-like file system,
object stores, relational DBMSs and memory. As the main focus of Ophidia is
the support of in-memory analytics, the default ‘storage back-end’ is memory.

– on GPU-equipped nodes, the I/O and analytics servers can run some primi-
tives available as a CUDA-based implementation.

From a datacube abstraction perspective, the Ophidia HPDA platform pro-
vides several MPI-based parallel operators to manipulate (as a whole) the entire
set of fragments associated with a datacube. Some relevant examples include:
(i) data sub-setting (slicing and dicing), (ii) data aggregation, (iii) array-based
primitives (the same operator can run all the implemented UDF extensions), (iv)
datacube duplication, (v) datacube pivoting, (vi) NetCDF-import and export.
Still, some metadata-oriented operators are also available to manage the cube
space objects and provide the scientific metadata of a data cube or its partition-
ing/distribution parameters. Table 1 summarizes the main types of operators,
by classifying them based on their primary feature and type of processing; as it
can be noted, metadata operators are sequential, as opposed to data operators,
which are all available in a parallel implementation (multi-process/multi-thread
based) to take advantage of the storage-level partitioning and data distribution.

It is worth mentioning that despite the difference in terms of functionalities,
the parallel operators are all executed in a similar fashion, exploiting the same
runtime execution model (more information about this can be found in [12]).

4 Benchmark and Experimental Results

This section describes a benchmark defined for the performance evaluation and
scalability of the Ophidia framework when running a typical data reduction
analysis operator (OPH REDUCE2 ). Although Ophidia provides several classes
of operators, as shown in Table 1, the OPH REDUCE2 is one of the most used
and interesting in terms of parallel data processing; it addresses array-based data
reduction to compute statistical indicators such as, among others, maximum,
minimum, average and standard deviation.

In this respect, the computation of the average value of the time series for each
point in a 3-dimensional spatial domain (e.g. latitude, longitude and pressure
level) is considered, under different data partitioning and distribution settings.
While previous works have addressed coarse-grain, application-level and end-user
perspective scenarios by primarily focusing on scientific use cases (i.e., workflows)
for climate indicators [9] and multi-model analysis [13], the goal of the benchmark
proposed in this paper is to provide key insights into largely used core Ophidia
operators. In this respect, the OPH REDUCE2 is one of the best candidates
because it relates to statistical analysis, which is very common in any scientific
data analysis.
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Table 1. Main Ophidia operator classes

Class Processing type Operator(s)

I/O Parallel -Data import (OPH IMPORTNC, OPH IMPORTFITS)

-Data export (OPH EXPORTNC)
-Append data from files to datacubes (OPH CONCATNC)

-Generate random data (OPH RANDUCUBE)

Time series

processing

Parallel -Apply generic time series transformation (OPH APPLY)

Datacube

reduction

Parallel -Reduction over the implicit dimensions (OPH REDUCE)

-Reduce time series based on concept hierarchies
(OPH REDUCE2)
-Reduction over the explicit dimensions
(OPH AGGREGATE)

Datacube
subsetting

Parallel -Subset data based on dimension coordinates or indexes
(OPH SUBSET)

Datacube
combination

Parallel -Compare different cubes (OPH INTERCUBE)

-Merge multiple cubes (OPH MERGECUBES)

Datacube
structure
manipulation

Parallel -Split the fragments (OPH SPLIT)
-Merge fragments together (OPH MERGE)
-Change dimension order/type (OPH ROLLUP,
OPH DRILLDOWN, OPH PERMUTE)

Datacube/file
system
management

Sequential -Delete a datacube (OPH DELETE)

-Manage virtual file system (OPH FOLDER)
-Browse real file system (OPH FS)

Metadata
management

Sequential -Metadata management (OPH METADATA)

-Provenance exploration (OPH CUBEIO)
-Datacube info (OPH CUBESCHEMA)

Datacube
exploration

Sequential -Datacube exploration (OPH EXPLORECUBE)

-File exploration (OPH EXPLORENC)

It should be noted that the benchmark is not intended to be large-scale
per se, but rather to provide some key insights into the scalability of the
OPH REDUCE2 operator from a performance standpoint on a Terabyte-scale.
The large-scale scientific data analysis scenario that can be targeted with
Ophidia is not about running a single operator on a Petabyte-scale datacube,
but rather several operators in the same analysis (i.e., workflows) on hundred-
s/thousands of Terabyte-scale datacubes. In this respect, the Terabyte-scale per-
formance metrics addressed in the paper turn out to be very good indicators of
the scalability of a core Ophidia data reduction operator.

4.1 Benchmark Definition

As stated above, the main focus of this benchmark is to evaluate the scalability of
data reduction operations. In particular, the OPH REDUCE2 parallel operator
has been tested to compute the average value of each time series stored in the
input datacube.
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An example of the Ophidia command used to run the OPH REDUCE2 oper-
ator is described as follows (more details about the OPH REDUCE2 operator
available options can be found on the online Ophidia documentation1):

oph reduce2 operat ion=avg ; dim=time ; ncores =10; nthreads =10;
cube=<input cube >;

The declarative statement presented above shows: (i) the type of reduction oper-
ation (avg); (ii) the reduction dimension (time); (iii) the number of MPI pro-
cesses (set to 10 ncores); (iv) the number of threads for each process (set to 10
nthreads); and (v) the input datacube (input cube).

In this benchmark, three tests have been identified and set up to evaluate the
behaviour of Ophidia under different settings, with the aim of providing multiple
insights from different perspectives.

1. Strong scalability. This test case aims to evaluate the platform scalability by
measuring the OPH REDUCE2 execution time on a fixed problem size while
increasing the number of executed parallel tasks, from 1 to 100.

2. Weak scalability. In this test, the OPH REDUCE2 operator is executed by
scaling up the data size along with the number of used parallel tasks, from 1
to 100; only the data size for a unit of computation is fixed.

3. Array-oriented. This test aims to evaluate the performance of the framework
while increasing the length of the binary array, with fixed data partitioning
and number of parallel tasks.

It is worth mentioning that, in order to better adapt the data size used for
the experiments, while trying to maximize the amount of memory used from
the environment, the input datacubes have been derived from random data. The
OPH RANDCUBE2 operator has been used to manually tune the datacube
structure and populate it with random values (generated through a first order
autoregressive model). The maximum problem size used is actually slightly dif-
ferent in the various tests due to datacube structure and fragmentation require-
ments. An example of the OPH RANDCUBE2 statement used during the tests
to generate a random-data datacube is:

oph randcube2 exp dim=l a t | lon | plev ; exp d im s i z e
=1200 |800 |24 ; imp dim s ize =11680; imp dim=time ; measure=
tas ; n f rag =240; ntuple =19200; nhost=5; a lgor i thm=
a u t o r e g f i r s t o r d e r ;

Such command is very flexible, providing the end users with multiple options
to model and create a datacube. In this case, a 4d (lat, lon, plev, time) datacube
is created with a total number of 1200 × 800 × 24 × 11680 tas elements (float
type), stored in 240 (nfrag) fragments, each one storing 1.92 × 104 (ntuples)
tuples and distributed across 5 (nhost) nodes running the native in-memory I/O
& analytics servers. The first three dimensions (lat, lon, plev) are the explicit
1 OPH REDUCE2 documentation http://ophidia.cmcc.it/documentation/users/oper

ators/OPH REDUCE2.html.

http://ophidia.cmcc.it/documentation/users/operators/OPH_REDUCE2.html
http://ophidia.cmcc.it/documentation/users/operators/OPH_REDUCE2.html
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ones (exp dim) in the datacube, whereas time is the implicit or array-based one
(imp dim); tas is the name used to refer to the climate air temperature variable.

The main metrics measured during the tests include the execution time and
the data size; other metrics derived from these include:

– efficiency is the percentage rate of the sequential execution time over the
parallel execution time divided by the computation units (in the strong scala-
bility test) or the rate of sequential execution time with respect to the parallel
time (in the weak scalability test);

– processing throughput is the rate of input data processed with respect to the
execution time and it is measured as GB/s.

4.2 Test Environment

The benchmark has been performed in a real data center setting, on a dedicated
cluster designed for in-memory analytics, hosted at the CMCC SuperComputing
Centre in Lecce (Italy).

The cluster is composed of five fat nodes, individually equipped with 256 GB
of main memory, 1TB of local disk and 2 Intel Xeon processors (2 × 10 cores),
for a total of 100 physical cores. These nodes are used for the execution of the
native Ophidia in-memory I/O & analytics servers.

The storage is shared across the five nodes, which are connected together
through a high-speed network (10Gb/s). The shared storage exploits a Glus-
terFS file system2 distributed over five disks with about 60TB of total raw disk
capacity. The official 1.4.0 release of Ophidia has been deployed on the cluster.

4.3 Experimental Results and Discussion

Multiple runs of the OPH REDUCE2 operator have been executed for each
configuration of the three tests and the average time has been considered in the
results hereafter. It is important to mention that all average values feature a
95% confidence interval whose maximum relative error is at most 7%.

Strong Scalability. In this first test case, the datacube size has been fixed
to about 1TB, consisting of approximately 2.7 × 1011 floating point values
organized into 2.3×107 time series (1.17×104 elements each one). At the storage
level, the data has been partitioned into 1200 fragments evenly distributed over
the five I/O & analytics servers, each one running on a single node and managing
around 200 GB of data/node. The partitioning parameters have been defined
to ensure that the number of fragments processed by each task is always well
balanced while scaling up the number of parallel tasks from 1 to 100.

2 GlusterFS documentation https://docs.gluster.org/en/latest/.

https://docs.gluster.org/en/latest/
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The size of the resulting output datacube is approximately 90 MB
(18 MB/node, 4 order of magnitude smaller than the input datacube, but with
the same degree of fragmentation). Table 2 shows a summary of the results
obtained from this test, which include speedup, efficiency and data reduction
throughput.

Table 2. Summary of results for the strong scalability test. In this case, the data size
is constant (1TB) as well as the partitioning parameters (1200 fragments, 5 nodes, 1
I/O & analytics server/node).

Number of tasks Execution time [s] Efficiency [%] Throughput [GB/s]

1 1290.8 100 0.8

10 144.3 89.4 6.9

20 73 88.5 13.7

40 35.5 90.8 28.2

60 23.4 91.8 42.9

80 19.5 82.7 51.4

100 17.6 73.2 56.8

The first row of the table provides the results of a sequential computation,
while the others show the results for parallel processing. The number of tasks
has been increased up to 100 to show the behaviour of the operator up to the full
utilization of the cluster resources. Figure 3a provides a graphical representation
of the efficiency and data reduction throughput (GB/s).

As it can be clearly seen, the efficiency is stable around 90% up to 60 tasks,
going down to 73% only when the cluster resources are fully utilized. The best
case exhibits an execution time of 17.6 s, which corresponds to 56.8 GB/s of pro-
cessed data. Finally, besides the analytics performance evaluation, the bench-
mark shows how the distributed storage model implementation efficiently scales
up with the problem size over multiple nodes, allowing to tackle larger-scale sce-
narios. This is actually something that would not be feasible (from a scalability
standpoint) on a single host.

Weak Scalability. In this second test, the data size has been increased along
with the number of tasks used to run the data reduction (average) operation.
With respect to the previous test, since the data size and partitioning change
over the different runs, the number of fragments per task has been fixed to 1
to make the results evaluation easier. Each fragment contains about 2.8 × 109

floating point values organized into 2.4 × 105 elements time series (1.17 × 104

elements each) for a total of 10.4 GB of data.



Towards High Performance Data Analytics for Climate Change 251

Fig. 3. Results of the strong (a) and weak (b) scalability tests. Efficiency is plotted
with the full line, while data reduction throughput is plotted with the dashed line. The
straight dashed line represents the ideal efficiency.

The OPH REDUCE2 operator has been executed by scaling up the number
of fragments together with the parallel tasks up to 100 (i.e., 1.04 TB). In this
test, the number of servers has been increased together with the data size. In
particular, a single I/O & analytics server has been used for the first three
configurations (i.e., 1, 10, 20), while 2, 3, 4 and 5 servers have been used for the
other configurations. Through this setup, it has been possible to exploit the full
resources provided by the cluster.

Table 3 provides an overview of the results of this test. The execution time
and the total problem size have been measured for each run; based on them, we
also inferred efficiency and processing throughput metrics.

In this case, as also highlighted in the plot in Fig. 3b the efficiency remains
over 80% when the executed task remains bounded to one node, whereas it
slightly decreases down to 70% when the computation runs over multiple nodes.
This is related to the additional overhead required to manage a larger set of tasks
running on multiple nodes. This experiment shows how the processing exhibits
a good level of scalability over multiple nodes thanks also to the underlying
distributed storage model and partitioning schema (the drop in performance
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Table 3. Summary of results for the weak scalability test. In this case, the data size
per task is constant (10.4 GB) while the number of tasks and fragments is scaled up
from 1 to 100.

Tasks
(fragments)

I/O &
Analytics
nodes

Execution
time [s]

Efficiency
[%]

Throughput
[GB/s]

Data size
[GB]

1 1 13.1 100 0.8 10.4

10 1 15.7 83.6 6.7 104.4

20 1 16.1 81.6 13.0 208.9

40 2 16.6 78.8 25.1 417.7

60 3 18.3 71.8 34.4 626.6

80 4 18.5 70.7 45.1 835.4

100 5 18.4 71.2 56.7 1044.3

is about 10% from 1 to 5 nodes, which corresponds to 2.3 s in our test). The
execution time remains between 13 and 18.5 s, while the processing throughput
peaks to almost 57 GB/s. The scalability of the storage model implementation is
further demonstrated in the plot (see Fig. 3b), which highlights that the efficiency
does not degrade as more resources are added; after the initial slowdown, it
actually remains stable to around 70%.

Array-Oriented. In this test, the data partitioning parameters, as well as
the number of tasks, have been kept constant while increasing the number of
elements stored in the binary arrays (together with the total problem data size).
Similarly to the previous test, the number of fragments per task has been set
to one, hence the data has been split into 100 fragments, consisting of 2.3 × 105

time series each. Again, five nodes individually running an Ophidia in-memory
I/O and analytics server have been exploited for this test. The execution time of
the OPH REDUCE2 operator has been computed with a fixed number of tasks
(i.e., 100), while increasing the array length by one order of magnitude each
time, from 12 to 1.2 × 104 values (i.e., 1.03TB). The data reduction throughput
has also been computed for each array configuration. Table 4 reports a summary
of the results for this test.

The results confirm the benefits of the array-based organization in the
Ophidia storage model implementation (which inherently takes full advantage of
the data locality) from a processing performance standpoint. As it can be seen
from Table 4, the throughput can be greatly improved, with the same amount
of resources, just by increasing the array length.

To sum up, the results show that data partitioning and distribution jointly
with the parallel processing approach implemented in Ophidia provide good
performance under both strong and weak scalability conditions. Moreover, the
array-oriented physical data organization proves to be extremely efficient (super
linear) in the management of (very) long time series.
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Table 4. Summary of results for the array-oriented test.

Array length Execution time [s] Throughput [GB/s] Data size [GB]

12 1.8 0.6 1

120 2.1 4.9 10.3

1200 3.9 26.4 103

12000 18.9 54.5 1030

5 Related Work

Data analytics in eScience requires solutions able to manage and process large-
scale data, taking into account several aspects, such as (i) the multi-dimensional
nature of the datasets, (ii) the relevance of metadata for analysis purposes and
(iii) the peculiarities of domain-specific algorithms.

The tools typically used for scientific data processing/analysis are client-
side and operate mostly sequentially. Their inherent design does not make them
particularly suited to target huge amounts of data. Indeed, such tools do not
rely on distributed data storage and parallel processing, often failing for the lack
of hardware resources (primarily RAM) on the execution node. To give some
examples in the climate change domain, tools like CDO [22], NCO [26], ICCLIM3,
NCL4 are successfully and largely adopted, very well-known, but unfortunately
they are not designed to straightforwardly meet large data volume requirements
and scenarios.

SciDB [8,24] and Rasdaman [4–6] are eScience-oriented projects aimed at
addressing the above issues. SciDB is actually a distributed non-relational DBMS
supporting full ACID properties and based on a multi-dimensional array oriented
data model. Its set of statistical and linear algebra operations can be easily
extended with user-defined types and user-defined functions. SciDB has been
effectively used for data analysis in various scientific domains [23]. Rasdaman
(“raster data manager”) is an array database designed to store and query mas-
sive multi-dimensional arrays-based data, like images, simulation and sensors
from various scientific domains. Similarly to Ophidia, they rely on n-dimensional
arrays and offer a server side and declarative approach, although Ophidia
is rather a framework centered around the datacube abstraction, providing
an HPC-based environment for parallel data processing, metadata/provenance
management and OLAP. Furthermore, Ophidia relies on a custom imperative-
declarative approach to specify operations and implements interfaces for the cre-
ation and execution of high-level Python-based applications (through Ophidia
python bindings, PyOphidia5) and scientific workflows.

3 ICCLIM (Indice Calculation CLIMate) https://icclim.readthedocs.io/en/latest/
intro.html.

4 NCAR command language https://www.ncl.ucar.edu/.
5 PyOphidia - Conda Forge https://anaconda.org/conda-forge/pyophidia.

https://icclim.readthedocs.io/en/latest/ intro.html
https://icclim.readthedocs.io/en/latest/ intro.html
https://www.ncl.ucar.edu/
https://anaconda.org/conda-forge/pyophidia
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Some efforts focusing on the extension of general purpose systems to support
more scientific-oriented data analytics and formats have also recently emerged
in literature. In particular, the well-known Spark parallel computing framework
has been extended in various projects. SciSpark [20,25], for example, extends
the Spark framework with the Scientific Resilient Distributed Dataset (sRDD),
a distributed in-memory array structure for multi-dimensional data designed to
support scientific data structures and algorithms. In particular, it targets the
weather and climate change domains providing features to read data in parallel
directly from HDF [16] and NetCDF file formats and a common interface to
multiple linear algebra libraries. Another similar example is ClimateSpark [19],
which also extends Spark to support climate change data analysis by defining an
extension of RDD, called ClimateRDD, i.e., an immutable in-memory distributed
collection of climate data chunks capable of managing multi-dimensional arrays.
The system also provides some domain-specific transformations performed in
parallel. These tools provide better support for scientific analysis, with respect
to general purpose frameworks, while exploiting the power of the Spark pro-
gramming and computing framework. However, differently from Ophidia, these
solutions have not been originally designed for HPDA, using a parallel shared
I/O and HPC-based computation model, or do not yet provide full support for
domain-specific metadata management.

Another effort that is currently in the spotlight in the scientific community
is Dask6, a flexible library for parallel computing in Python. Eco-systems like
Pangeo7 are exploiting Dask for parallel climate data analysis. With respect to
Dask, Ophidia includes (i) a very flexible and robust I/O layer (thus providing
both compute- and storage-level capabilities), (ii) a more integrated approach
with HPC-based parallel paradigms (i.e. MPI, OpenMP).

6 Conclusions

In the eScience landscape, the Ophidia project provides a High Performance
Data Analytics framework joining HPC paradigms with scientific data analy-
sis approaches to tackle large-scale parallel climate change data analysis. The
core aspects of Ophidia, such as its storage model design and related distributed
and hierarchical implementation across multiple physical storage resources are
presented. Additionally, the experimental results (e.g., parallel efficiency and
throughput) about a key analytical operator for data reduction, executed under
different experimental setups (i.e., data partitioning and distribution conditions),
are also discussed. Still, a specific benchmark of time series data reduction pro-
vides some insights in terms of scalability, efficiency and throughput of Ophidia.
In particular, the results show how the Ophidia data distribution and partition-
ing enable the parallel data reduction operator to scale up to the full capacity
of our cluster (more than 70% in all the cases analyzed). As a future work,
a large-scale benchmark running on Marenostrum (PRACE Tier0 machine at
6 Dask, library for dynamic task scheduling https://dask.org.
7 Pangeo. A community platform for big data geoscience. https://pangeo.io/.

https://dask.org
https://pangeo.io/
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Barcelona Supercomputing Center) to evaluate the performance results of other
classes of Ophidia operators (e.g., I/O), as well as a set of selected end-users
applications, will be performed in the context of the ESiWACE Center of Excel-
lence on Weather and Climate Simulations in Europe project8. Additionally,
Ophidia will be further extended to support the Earth System Data Middle-
ware9 interface, developed in the ESiWACE project, to enable advanced sce-
narios at extreme-scale, like scalable in-situ visualization on HPC machines of
global, high-resolution climate change simulation datasets.
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