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Abstract. Accelerator devices are becoming a norm in High Perfor-
mance Computing (HPC). With more systems opting for heteroge-
neous architectures, portable programming models like OpenMP and
OpenACC are becoming increasingly important. The SPEC ACCEL
1.2 benchmark suite consists of comparable benchmarks in OpenCL,
OpenMP 4.5, and OpenACC 2.5 that can be used to evaluate the per-
formance and support for programming models and frameworks on het-
erogeneous platforms. In this paper we go beneath the normative metric
of performance times and look at the individual kernels to study the
usage, strengths, and weaknesses of the two prevalent portable heteroge-
neous programming models, OpenMP and OpenACC. From our analysis
we identify that benchmarks like MRI-Q, SP and BT have better per-
formance using OpenACC, while benchmarks like MiniGhost, LBM and
LBDC do consistently better with the OpenMP programming model
across super-computers like Titan, and Summit. We deep dive into the
kernels of select four benchmarks to answer questions like: Where does
the benchmark spend most of its cycles? What is the parallelization
strategy used? Why is one programming model more performant than
the other? By identifying the similarities and differences we want to con-
trast between the benchmark implementation strategies in the SPEC
ACCEL 1.2 benchmarks and provide more insights into the OpenMP
and OpenACC programming models.

1 Introduction

The SPEC ACCEL benchmarks are written and maintained by members of
Standard Performance Corporation (SPEC) High Performance Group (HPG)
and are written in a performance portable manner. The SPEC ACCEL 1.2 suite
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includes a collection of benchmarks that cover a variety of common HPC algo-
rithms. SPEC ACCEL consists of 19 OpenCL benchmarks that are based on
the Parboil Benchmark (University of Illinois at Urbana-Champaign) and the
Rodinia benchmark (University of Virginia) and 15 benchmarks for OpenMP
4.5 and OpenACC 2.5, that are based on the NAS Parallel benchmarks, SPEC
OMP 2012 and benchmarks derived from HPC applications. The benchmarks
in the suite can provide insights about the quality of different implementations
of the OpenMP and OpenACC compilers and runtime environments. We have
tested them to evaluate the extent of support available for new OpenMP 4.5 fea-
tures on leadership computing systems like Titan [7] and Summit [2]. Comparing
performance portability across different architectures and implementations pro-
vides insight to the application programmers/users as to the readiness of the
systems. This is especially true for Summit where the implementations are still
under development. Although programming models like OpenMP are designed
to be platform agnostic, architectural differences can have a profound effect on
performance. Users can then compare functionality and performance across a
range of architectures and implementations of OpenMP and OpenACC.

In this paper, we document results from running the SPEC ACCEL 1.2
benchmark suite on Titan and Summit to see the current status of support and
performance afforded by current OpenMP and OpenACC implementations. We
perform experiments to capture the changing landscape of OpenMP 4.5 sup-
port and look deeper into the specific kernels that are the key performance
bottlenecks. We also take a closer look at that subset of SPEC ACCEL bench-
mark kernels to determine which factors account for the performance difference.
We look at the performance profiles and focus on the kernels/sub-routines that
take the most time. Understanding the different strategies used by OpenMP
and OpenACC is an exercise in finding equivalence, analyzing productivity and
understanding the level of user intervention required to gain most of the benefits
afforded by the programming model.

2 Motivation

In this study, we look into the different benchmark kernels with the objective of
highlighting and investigating the differences and similarities between the two
programming models, OpenMP and OpenACC. Fundamentally, OpenMP has
been identified as prescriptive while OpenACC claims to be descriptive in their
approach. Prescriptive model of programming requires very tight semantics and
implementations must provide the exact behavior promised. While descriptive
models describe the objective and leave more room for the implementations to
work towards this objective. Looking at the benchmark kernels allows us to inves-
tigate real cases and analyze if the differences stemming from the specification
are only in the semantics or the actual implementations. If a lot of implementa-
tion defined features are in play, the behavior of the kernels and the performance
changes accordingly. For example, the maximum number of threads created per
team is implementation defined in OpenMP. The user has the option to specify
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Table 1. Successes and failures of running the SPEC ACCEL 1.2 benchmarks on
different architectures with OpenMP 4.5 and OpenACC. The compiler versions used
are: On Summit: PGI 18.3, XL V16.1.0, Clang/LLVM (ykt branch), GCC 7.2 (gomp
branch), on Titan Cray CCE 8.7.0, PGI 18.4

Summit (NV100 GPU) Titan (K20X GPU)

XL PGI GCC Clang PGI CCE

OMP ACC ACC OMP OMP ACC OMP

Stencil ✓ ✓ ✓ ✓ ✓ ✓ ✓

LBM ✓ ✓ ✓ ✓ ✓ ✓ ✓

MRI-Q ✓ ✓ ✓ ✗RE ✓ ✓ ✓

MD ✓ ✓ ✓ ✗RE ✓ ✗RE

PALM ✗RE ✓ ✓ ✗RE ✗CE ✗CE

EP ✓ ✓ ✓ ✗VE ✓ ✓ ✓

CLVRLEAF ✓ ✓ ✓ ✗RE ✓ ✗VE

CG ✓ ✓ ✓ ✗VE ✗RE ✓ ✓

SEISMIC ✓ ✓ ✓ ✗RE ✓ ✗RE

SP F ✓ ✓ ✓ ✗RE ✓ ✗RE

C ✓ ✓ ✓ ✗RE ✓ ✓ ✓

MiniGhost ✓ ✓ ✓ ✗RE ✗CE ✗RE

LBDC ✓ ✓ ✓ ✓ ✓ ✗RE

Swim ✓ ✓ ✓ ✗RE ✓ ✗RE

BT ✓ ✓ ✓ ✗RE ✓ ✓ ✓

Passed 14 15 15a 3 6 13 7
aGCC/OpenACC only offloads 4 out of the 15 benchmarks, the remain-
ing 11 benchmarks utilize the CPU.
VE: Verification error
RE: Runtime error
CE: compile error

a thread limit clause that gives an upper bound to the implementation defined
value for the number of threads per team. A user can request a given number
of threads for a parallel region via the num threads clause. Another example of
an implementation dependent behavior can be observed in the LLVM compiler,
which defaults to schedule(static,1) for the parallel loops when executed
inside a target region that is offloaded to a GPU.

On Summit, the world’s fastest supercomputer [8], vendors are still in the pro-
cess of providing full support for the OpenMP 4.5 programming model. Through
this work we want to also provide a temporal snapshot of the programming mod-
els support on Summit. Table 1 shows the number of benchmarks that compile
and execute correctly with different OpenMP and OpenACC implementations.
Figure 1 compares the best performance time for OpenACC vs. OpenMP on Sum-
mit and Titan with latest versions of the OpenMP implementations from IBM.
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Fig. 1. OpenMP’s performance improvement over OpenACC.

As it happens, there is not a single vendor or compiler implementation that
provides both OpenMP and OpenACC implementation with the same degree
of success and, as such, the comparisons across different vendors may, at first
sight, seem unfair. But it is our experience that applications will choose the
fastest implementation and in that respect comparing the best of OpenMP and
OpenACC gives a fair assessment, as we expect these implementations on the
same platform to have exploited similar architectural features.

For this work the relative speed up is calculated by dividing the best Ope-
nACC timing by the best OpenMP for individual benchmarks on a particu-
lar platform. The benchmarks scoring above the threshold line (at 1) indicate
better performance with OpenMP programming model, while those scoring in
the negative Y axis direction indicate that they perform better with OpenACC
programming model. For Titan we use PGI’s OpenACC and Cray’s OpenMP
implementations while for Summit (Power9 + NVIDIA V100 GPU) we compare
PGI’s OpenACC 2.5 with XL’s OpenMP 4.5.

We see that the MRI-Q, SP (C version) and BT benchmark have better
performance using OpenACC, while the LBM, MiniGhost, and LBDC bench-
mark do consistently better with the OpenMP programming model across Titan
and Summit. Based on the analysis in Fig. 1 we take a more detailed look into
benchmarks BT, SP, LBM, and LBDC as they show distinct and pronounced
performance advantage with one of the programming models.

3 Related Work

Previous work has compared the performance of the SPEC ACCEL bench-
mark suite codes when using different programming models including OpenCL,
OpenACC, and OpenMP 4.x. In [4], the three different programming models
are used to compare performance of OpenACC on two different GPU devices,
and OpenMP on the Intel Xeon Phi coprocessor. At the time, only the Intel
compiler provided support for the OpenMP 4.0 accelerator model. Since then,
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GNU, LLVM, and XL compilers have added support for this model. In addition,
the PGI compiler has added support to self-offload using OpenACC which has
enabled testing of the PGI compiler on Intel Xeon Phi based architectures.

In [5], Juckeland et al., provide a detailed overview of the effort required
to port the SPEC ACCEL benchmark suite from the OpenACC programming
model to the OpenMP 4.5 accelerator programming model. The work highlights
the differences between each programming model. For example, in OpenACC,
the developer can briefly describe the intended parallelism of a region and the
runtime takes care of executing it. In OpenMP, however, the developer explicitly
specifies the type of parallelism and those choices often have a measurable impact
on the performance of the code. Converting a code from one programming model
to another can be a fairly straightforward change [5,9]. However, porting a code
to achieve the best performance can be a challenging task.

This work builds upon the results observed in [3], which includes an evalua-
tion of the SPEC ACCEL benchmark suite across five compilers on three distinct
architectures including Percival [1], Titan [7], and Summit [2].

4 Analysis

Here we take a closer look at the SPEC ACCEL benchmark kernels to determine
what factors account for the performance difference. Since the benchmarks claim
that they were created with performance portability in mind, the created kernels
are functionally equivalent. Here we first present the profiling results as analyzed
and displayed by the NVIDIA Visual Profiler [6]. From these profiles we pick
the kernels that the most time to see how they differ in the two programming
models. There exists a large number of variables in the determination of the exact
cause of the performance difference, hence we follow the standard performance
analysis criteria and analyze the kernels taking the maximum wall-clock time as
they have the most impact on the performance of the benchmark. Figure 2 shows
the timing profile of the GPU for the OpenMP version of the BT benchmark.
We see that the kernels that take the maximum time for BT OpenMP version
are from functions x solve, y solve, and z solve, which account for 24% each
of the total GPU time. Similarly, Fig. 3 shows the timing profile of the GPU for

Fig. 2. BT OpenMP calls profiled. Fig. 3. BT OpenACC calls profiled.
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Fig. 4. SP OpenMP calls profiled. Fig. 5. SP OpenACC calls profiled.

the OpenACC version of the benchmark. The 51% of the total GPU processing
time is evenly spread across x solve, y solve, and z solve functions. The other
category includes cumulative timings of kernels that take less than 1% of the total
time. Figures 4 and 5 show the GPU profiles for SP benchmark’s OpenMP and
OpenACC versions. For OpenMP version of the benchmark we see that 57% of
the GPU time is utilized by one invocation of the kernel from y solve function
while for the OpenACC version we see a trend of little contributions from all
calls take relatively uniform times except kernels from the function x solve. The
other category includes cumulative timings of kernels that take less than 2% of
the total time.

For the LBC and LBDC benchmarks we see that all of the GPU time is spent
on a single invocation of a kernel. The details are presented in the Table 2.

Table 2. GPU profile for LBC and LBDC benchmarks.

Benchmark Kernel No. of
invocations

OpenMP Avg.
duration (µs)

OpenACC Avg.
duration (µs)

LBM StreamCollide 5000 3.100844 6.120061

LDBC relax collstream 5000 1.903010 2.003094

5 Discussion

In the following section we will discuss the kernels identified in Sect. 4 for the
different benchmarks. We compare and contrast the differences in OpenMP and
OpenACC constructs used in these kernels and throw some light on the relative
performance based on additional profiles collected for these specific kernels.

5.1 BT Benchmark

For BT benchmark we look at the x solve kernel and compute rhs. Since
y solve and z solve are very similar to x solve our analysis on x solve is
applicable for the other two. Listing 5.1.1 and 5.1.2 lists the kernel for x solve.
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The OpenMP version the directive target teams distribute parallel for
is short for target followed by teams distribute parallel for. The teams
construct creates a league of thread teams and the master thread of each team
executes the region. The distribute parallel loop construct specifies that the
for loop with iterator “j” can be executed in parallel by threads from teams from
different contention groups. The for loop enclosed by omp simd indicates that
the loop can be lowered where multiple iterations of the loop can be executed
by multiple SIMD lanes.

Listing 5.1.1. BT Kernel for x solve
( xl x solve l709 OL 6)

707 ...
708 #pragma omp target teams

distribute parallel for
private(i,k)

709 for (j = 1; j <= gp12; j++) {
710 for (i = 1; i <= isize -1;

i++) {
711 #pragma omp simd

private(pivot ,coeff)
712 for (k = 1; k <= gp22;

k++) {...}
713 }
714 }
715 ...

Listing 5.1.2. BT Kernel for x solve
679 ...
680 #pragma acc kernels loop
681 for (k = 1; k <= gp22; k++) {
682 for (j = 1; j <= gp12; j++)

{
683 for (i = 1; i <=

isize -1; i++) {...}
684 }
685 }
686 ...

Listing 5.1.3 shows the parallelization strategy implemented by the PGI com-
piler. The OpenACC version marked the loop nest with the kernel directive and
leaves it to the compiler to analyze the loop and pick the right schedule for
the loops. We see that OpenACC is more descriptive, there is more freedom for
the compilers to apply parallelization techniques. In this case the PGI compiler
decided to pick a gang and vector schedule of the “k” loop, a gang schedule for
the “j” loop and a sequential schedule for the “i” loop.

Listing 5.1.3. PGI Compiler Parallelization Strategy for x solve
1 681, Loop is parallelizable
2 682, Loop is parallelizable
3 683, Loop carried dependence of rhs ,lhsX prevents parallelization
4 Loop carried backward dependence of rhs ,lhsX prevents

vectorization
5 Inner sequential loop scheduled on accelerator
6 Accelerator kernel generated
7 Generating Tesla code
8 681, #pragma acc loop gang , vector (128) /* blockIdx.x threadIdx.x */
9 682, #pragma acc loop gang /* blockIdx.y */

10 683, #pragma acc loop seq

More insights can be obtained from the profiles in Figs. 6 and 7. The key
parameters to look at there are the Grid Size and the Block Size as they together
indicate the level of parallelism achieved. In addition the number of registers per
thread and shared memory affects the performance, as threads share a finite
number of registers and shared memory. The performance gain from increased
occupancy (block size) may be outweighed by the lack of registers per thread.
Inadequate registers will mean access to local memory more often, which is more
expensive.
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Fig. 6. BT benchmark x solve
OpenMP calls profiled.

Fig. 7. BT benchmark x solve Ope-
nACC calls profiled

For the OpenMP version, the GPU schedule is 1280 for the grid size and
256 for the thread block size. The register usage was 255. Overall this loopnest
achieved a total of 12.5% GPU occupancy. On the other hand, for the OpenACC
version, the GPU schedule for the loop nest was 100 grid size and 128 for the
thread block size. The register usage per thread was 64 with no shared mem-
ory per file. This scheduled achieved a higher GPU occupancy of 50% than the
OpenMP version. This is one of the primary reasons that the OpenACC ver-
sion of the loopnest performed 14.4x faster than the OpenMP version. Another
reason from the programming models point of view is that the OpenMP SIMD
construct is not able to vectorize the loop iterations and serial execution fur-
ther reduces performance. The OpenMP benchmark would benefit from having
architecture specific code paths for further performance gain.

Listing 5.1.4. BT Kernel for com-
pute rhs ( xl compute rhs l261 OL 4)

259 ...
260 #pragma omp target teams

distribute parallel for
private(vijk ,vp1 ,vm1 ,i,j,k)

261 for (k = 1; k <= gp22; k++) {
262 for (j = 1; j <= gp12; j++)

{
263 #pragma omp simd

private(vijk ,vp1 ,vm1)
264 for (i = 1; i <= gp02;

i++) {...}
265 }
266 }
267 ...

Listing 5.1.5. BT Kernel for com-
pute rhs

262 ...
263 #pragma acc kernels loop
264 for (k = 1; k <= gp22; k++) {
265 for (j = 1; j <= gp12; j++)

{
266 for (i = 1; i <= gp02;

i++) {...}
267 }
268 }

Listing 5.1.6. PGI Compiler Parallelization Strategy for compute rhs
1 264, Loop is parallelizable
2 265, Loop is parallelizable
3 266, Loop is parallelizable
4 Accelerator kernel generated
5 Generating Tesla code
6 264, #pragma acc loop gang /* blockIdx.y */
7 265, #pragma acc loop gang , vector (4) /* blockIdx.z threadIdx.y */
8 266, #pragma acc loop gang , vector (32) /* blockIdx.x threadIdx.x */
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Fig. 8. BT benchmark compute rhs
OpenMP calls profiled.

Fig. 9. BT benchmark compute rhs
OpenACC calls profiled

Listing 5.1.4 and 5.1.5 shows the OpenMP and OpenACC version of another
loopnest in the rhs kernel of BT. We look at this kernel specifically because
it takes 6% of the total time in the OpenMP version but about 1% in the
OpenACC benchmark. Here both versions have the same code structure. No
loop interchanged was done by the programmer. All the loops are parallel. The
benchmark employs the OpenMP SIMD directive to the innermost loop. The
OpenACC version of the loop uses the kernels directive and lets the compiler
apply the loop schedules (Figs. 8 and 9).

Listing 5.1.6 is the output from the PGI compiler for the OpenACC loop
nest. We can see that OpenACC applies gang and vector schedules for the three
loops in the loopnest. As a result it gets a 4 × 100 × 25 schedule for the grid
and 32 × 4 schedule for the threadblock size. The occupancy is of 56.2%. The
OpenMP version, on the other hand, has a schedule of 1280 × 1 for the grid
and 640 × 1 for the same threadblock. The occupancy for OpenMP version
is 31.2%. Low occupancy results in poor instruction issue efficiency and since
there are not enough eligible warps, the latency between dependent instructions
is more obvious. As a result, using default settings for both the versions of the
benchmark, more threads were spawned in the OpenACC version leading to 63x
better performance. This is the direct result of OpenACC compiler picking a
better schedule for the loops.

5.2 SP Benchmark

In Listings 5.2.1 and 5.2.2 we compare OpenMP and OpenACC versions of the
SP benchmark. We see that the outer loop is parallelized using OpenMP target
teams distribute parallel for combined directive and using kernels, respec-
tively. The OpenACC version parallelizes the “k” and “i” loop with gang vector
schedules.
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The loop schedule selected by OpenACC was 5×40×1 grid size and 32×4×1
thread block. OpenMP selected a 2 × 1 × 1 grid size and 128 × 1 × 1 thread
block. The GPU occupancy for OpenACC was 50% and for OpenMP 31.2%.
The 135x faster performance using OpenACC can be contributed to (1) better
occupancy and (2) optimum registers per thread. In spite of OpenMP benchmark
having shared memory between CPU and GPU and more registers per thread,
the default block size was not the optimum size. This is an important aspect and
leads to degraded performance due to inadequate resources per thread (Figs. 10
and 11).

Listing 5.2.1. SP Kernel for y solve
using OpenMP

763 ...
764 #pragma omp target teams

distribute parallel for
private(i,j,k,m,fac1 ,j1,j2)

765 for (k = 1; k <= gp2 -2; k++) {
766 for (j = 0; j <= gp1 -3;

j++) {
767 j1 = j + 1;
768 j2 = j + 2;
769 for (i = 1; i <= gp0 -2;

i++) {
770 ...
771 for (m = 0; m < 3;

m++) {...}
772 ...
773 for (m = 0; m < 3;

m++) {...}
774 ...
775 for (m = 0; m < 3;

m++) {...}
776 }
777 }
778 }
779 ...

Listing 5.2.2. SP Kernel for y solve
using OpenACC

643 ...
644 #pragma acc kernels loop
645 for (k = 1; k <= gp2 -2; k++) {
646 for (j = 0; j <= gp1 -3;

j++) {
647 j1 = j + 1;
648 j2 = j + 2;
649 for (i = 1; i <= gp0 -2;

i++) {
650 ...
651 for (m = 0; m < 3;

m++) {...}
652 ...
653 for (m = 0; m < 3;

m++) {...}
654 ...
655 for (m = 0; m < 3;

m++) {...}
656 }
657 }
658 }
659 ...

Listing 5.2.3. PGI’s Parallelization Stratergy for y solve
643 645, Loop is parallelizable
644 646, Loop carried dependence of lhsY prevents parallelization
645 Loop carried backward dependence of lhsY prevents vectorization
646 Loop carried dependence of rhs prevents parallelization
647 Loop carried backward dependence of rhs prevents vectorization
648 649, Loop is parallelizable
649 Accelerator kernel generated
650 Generating Tesla code
651 645, #pragma acc loop gang , vector (4) /* blockIdx.y threadIdx.y */
652 646, #pragma acc loop seq
653 649, #pragma acc loop gang , vector (32) /* blockIdx.x threadIdx.x */
654 653, #pragma acc loop seq
655 658, #pragma acc loop seq
656 663, #pragma acc loop seq
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Fig. 10. SP benchmark compute rhs
OpenMP calls profiled.

Fig. 11. SP benchmark compute rhs
OpenACC calls profiled

5.3 LBM Benchmark

The OpenACC and OpenMP version of LBM are almost identical. Since the
entire subroutine is called, we do not include the code listing. The OpenMP ver-
sion uses the target combined directive and the OpenACC version uses parallel
loop. In this case both versions use the same schedule 10157 × 1 for grid block
and 128 × 1 for threadblocks. However, we observe that the OpenMP version
is 2X faster than the OpenACC version. Contributing factors include (1) GPU
shared memory, and (2) the number of registers per thread (3x as those in the
OpenACC versions) (Figs. 12 and 13).

Fig. 12. LBM benchmark OpenMP
kernel details.

Fig. 13. LBM benchmark OpenACC
kernel details.

5.4 LBDC Benchmark

Table 2 shows that relax collstream subroutine is invoked 5000 times by both
OpenMP and OpenACC versions of the LBDC benchmarks. The OpenMP
benchmark uses the combined construct target teams distribute parallel
do simd to offload the computation loop to the GPU. This allows for a team of
threads to, in parallel, execute simd instructions when possible.
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The corresponding code for the OpenACC version depicted in Listing 5.4.2
uses a simple OpenACC parallel loop. Since the OpenMP code has been better
optimized to use vectorization through SIMD construct we see up to 2.5X perfor-
mance improvement on Summit. The sub-routine details highlighted in Figs. 14
and 15 show that though most other parameters are identical OpenMP uses 900
B of GPU shared memory. This leads to better data access patterns leading to
better execution times for the OpenMP version.

Listing 5.4.1. LBDC OpenMP Offloading of relax collstream
1 !$omp target ! present(f_now ,f_nxt ,send)
2 !$omp teams distribute parallel do simd

private(f_tmp_NE ,f_tmp_N ,..., feq_common) &
3 !$omp shared(omega_h ,asym_omega_h ,f_now ,f_nxt ,n_cells ,omega ,send)
4 do i_ct = 1, n_cells
5 f_tmp_NE = f_now( F_IDX(i_ct ,Q19_NE) )
6 ...
7 f_tmp_S = f_now( F_IDX(i_ct ,Q19_S ) )
8 ...
9 !$omp end target

Listing 5.4.2. LBDC OpenACC Offloading of relax collstream
1 !$acc parallel loop present(f_now ,f_nxt ,send)
2 do i_ct = 1, n_cells
3 ...
4 ...
5 end do

Fig. 14. LBDC benchmark OpenMP
kernel details.

Fig. 15. LBDC benchmark OpenACC
kernel details.

6 Conclusion

In this paper we highlight the differences in the much used HPC accelerator pro-
gramming models - OpenMP and OpenACC through the in depth analysis of the
SPEC ACCEL 1.2 benchmarks suite. Both OpenACC and OpenMP versions of
each benchmark followed similar parallelization strategies at the directive level,
save some vectorization hints through OpenMP’s SIMD directives. However,
OpenACC gives more freedom to the compiler to accelerate their loopnests.
OpenMP leaves all the choices to the user because of its more prescriptive
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nature. As a result, in many cases, OpenACC picks better schedules than what
a programmer or OpenMP implementation allows because OpenACC relies on
compiler optimization technology to generate their directives. This shows that
OpenACC needs good compiler implementations as most of the choices are left
to the implementation.

Another factor is the number of active blocks on the GPU device. This con-
tributes to the occupancy of the device. We have seen that low occupancy results
in poor instruction issue efficiency (BT and SP). In such cases there are not
enough eligible warps to hide latency between dependent instructions. When
occupancy is at a sufficient level to hide latency, increasing it further may degrade
performance due to the reduction in resources per thread (as seen for LBM). For
better performance as well as optimal use of resources an early step of kernel
performance analysis must check occupancy and observe the effects on kernel
execution time when running at different occupancy levels.

OpenMP can mimic OpenACC behavior by tuning to the parameters selected
by the OpenACC compilers. However, the OpenMP implementations are becom-
ing more sophisticated and sometimes support optimizations that are not sup-
ported by OpenACC compilers, such as GPU shared memory. We saw this case
where the loop schedules were identical for OpenMP and OpenACC implemen-
tations of LBDC but OpenMP version took advantaged of GPU shared memory
and thus performed better.
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