®

Check for
updates

Comparing High Performance Computing
Accelerator Programming Models

Swaroop Pophale®™), Swen Boehm, and Verénica G. Vergara Larrea

Oak Ridge National Laboratory, Oak Ridge, USA
{pophaless,boehns,vergaravg}@ornl.gov

Abstract. Accelerator devices are becoming a norm in High Perfor-
mance Computing (HPC). With more systems opting for heteroge-
neous architectures, portable programming models like OpenMP and
OpenACC are becoming increasingly important. The SPEC ACCEL
1.2 benchmark suite consists of comparable benchmarks in OpenCL,
OpenMP 4.5, and OpenACC 2.5 that can be used to evaluate the per-
formance and support for programming models and frameworks on het-
erogeneous platforms. In this paper we go beneath the normative metric
of performance times and look at the individual kernels to study the
usage, strengths, and weaknesses of the two prevalent portable heteroge-
neous programming models, OpenMP and OpenACC. From our analysis
we identify that benchmarks like MRI-Q, SP and BT have better per-
formance using OpenACC, while benchmarks like MiniGhost, LBM and
LBDC do consistently better with the OpenMP programming model
across super-computers like Titan, and Summit. We deep dive into the
kernels of select four benchmarks to answer questions like: Where does
the benchmark spend most of its cycles? What is the parallelization
strategy used? Why is one programming model more performant than
the other? By identifying the similarities and differences we want to con-
trast between the benchmark implementation strategies in the SPEC
ACCEL 1.2 benchmarks and provide more insights into the OpenMP
and OpenACC programming models.

1 Introduction

The SPEC ACCEL benchmarks are written and maintained by members of
Standard Performance Corporation (SPEC) High Performance Group (HPG)
and are written in a performance portable manner. The SPEC ACCEL 1.2 suite

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-
000R22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

© Springer Nature Switzerland AG 2019

M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 155-168, 2019.
https://doi.org/10.1007/978-3-030-34356-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_14&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-34356-9_14

156 S. Pophale et al.

includes a collection of benchmarks that cover a variety of common HPC algo-
rithms. SPEC ACCEL consists of 19 OpenCL benchmarks that are based on
the Parboil Benchmark (University of Illinois at Urbana-Champaign) and the
Rodinia benchmark (University of Virginia) and 15 benchmarks for OpenMP
4.5 and OpenACC 2.5, that are based on the NAS Parallel benchmarks, SPEC
OMP 2012 and benchmarks derived from HPC applications. The benchmarks
in the suite can provide insights about the quality of different implementations
of the OpenMP and OpenACC compilers and runtime environments. We have
tested them to evaluate the extent of support available for new OpenMP 4.5 fea-
tures on leadership computing systems like Titan [7] and Summit [2]. Comparing
performance portability across different architectures and implementations pro-
vides insight to the application programmers/users as to the readiness of the
systems. This is especially true for Summit where the implementations are still
under development. Although programming models like OpenMP are designed
to be platform agnostic, architectural differences can have a profound effect on
performance. Users can then compare functionality and performance across a
range of architectures and implementations of OpenMP and OpenACC.

In this paper, we document results from running the SPEC ACCEL 1.2
benchmark suite on Titan and Summit to see the current status of support and
performance afforded by current OpenMP and OpenACC implementations. We
perform experiments to capture the changing landscape of OpenMP 4.5 sup-
port and look deeper into the specific kernels that are the key performance
bottlenecks. We also take a closer look at that subset of SPEC ACCEL bench-
mark kernels to determine which factors account for the performance difference.
We look at the performance profiles and focus on the kernels/sub-routines that
take the most time. Understanding the different strategies used by OpenMP
and OpenACC is an exercise in finding equivalence, analyzing productivity and
understanding the level of user intervention required to gain most of the benefits
afforded by the programming model.

2 Motivation

In this study, we look into the different benchmark kernels with the objective of
highlighting and investigating the differences and similarities between the two
programming models, OpenMP and OpenACC. Fundamentally, OpenMP has
been identified as prescriptive while OpenACC claims to be descriptive in their
approach. Prescriptive model of programming requires very tight semantics and
implementations must provide the exact behavior promised. While descriptive
models describe the objective and leave more room for the implementations to
work towards this objective. Looking at the benchmark kernels allows us to inves-
tigate real cases and analyze if the differences stemming from the specification
are only in the semantics or the actual implementations. If a lot of implementa-
tion defined features are in play, the behavior of the kernels and the performance
changes accordingly. For example, the maximum number of threads created per
team is implementation defined in OpenMP. The user has the option to specify

Comparing High Performance Computing Accelerator Programming Models 157

Table 1. Successes and failures of running the SPEC ACCEL 1.2 benchmarks on
different architectures with OpenMP 4.5 and OpenACC. The compiler versions used
are: On Summit: PGI 18.3, XL V16.1.0, Clang/LLVM (ykt branch), GCC 7.2 (gomp
branch), on Titan Cray CCE 8.7.0, PGI 18.4

Summit (NV100 GPU) Titan (K20X GPU)
XL |PGI |GCC Clang | PGI | CCE
OMP | ACC| ACC | OMP | OMP | ACC | OMP
Stencil v v v v v v v
LBM v v o lv v v v oV
MRI-Q v oo lvo xBE Iy ool
MD v v o |v xBE v XBE
PALM XRE Ly |y XRE XCE | xCE
EP v/ v/ v XVE 1y v v/
CLVRLEAF | v v o |v xBE v XVE
CG v v v/ XVE | xRE 1y v/
SEISMIC |v v/ v/ XRE v XRE
SP F v v o |v | XBE /oo XBRE
C v v v XRE v v/
MiniGhost | v |/ XRE XCE | xRE
LBDC v/ v/ v v/ v/ XRE
Swim v v o |v xBE v XBE
BT v v v XRE v v/
Passed 14 |15 |15* |3 6 13 |7

2GCC/OpenACC only offloads 4 out of the 15 benchmarks, the remain-
ing 11 benchmarks utilize the CPU.

VE: Verification error

RE: Runtime error

CE: compile error

a thread_limit clause that gives an upper bound to the implementation defined
value for the number of threads per team. A user can request a given number
of threads for a parallel region via the num_threads clause. Another example of
an implementation dependent behavior can be observed in the LLVM compiler,
which defaults to schedule(static,1) for the parallel loops when executed
inside a target region that is offloaded to a GPU.

On Summit, the world’s fastest supercomputer [8], vendors are still in the pro-
cess of providing full support for the OpenMP 4.5 programming model. Through
this work we want to also provide a temporal snapshot of the programming mod-
els support on Summit. Table 1 shows the number of benchmarks that compile
and execute correctly with different OpenMP and OpenACC implementations.
Figure 1 compares the best performance time for OpenACC vs. OpenMP on Sum-
mit and Titan with latest versions of the OpenMP implementations from IBM.

158 S. Pophale et al.

SPECACCEL 1.2 BENCHMARKS

Fig. 1. OpenMP’s performance improvement over OpenACC.

As it happens, there is not a single vendor or compiler implementation that
provides both OpenMP and OpenACC implementation with the same degree
of success and, as such, the comparisons across different vendors may, at first
sight, seem unfair. But it is our experience that applications will choose the
fastest implementation and in that respect comparing the best of OpenMP and
OpenACC gives a fair assessment, as we expect these implementations on the
same platform to have exploited similar architectural features.

For this work the relative speed up is calculated by dividing the best Ope-
nACC timing by the best OpenMP for individual benchmarks on a particu-
lar platform. The benchmarks scoring above the threshold line (at 1) indicate
better performance with OpenMP programming model, while those scoring in
the negative Y axis direction indicate that they perform better with OpenACC
programming model. For Titan we use PGI’s OpenACC and Cray’s OpenMP
implementations while for Summit (Power9 + NVIDIA V100 GPU) we compare
PGI’s OpenACC 2.5 with XL’s OpenMP 4.5.

We see that the MRI-Q, SP (C version) and BT benchmark have better
performance using OpenACC, while the LBM, MiniGhost, and LBDC bench-
mark do consistently better with the OpenMP programming model across Titan
and Summit. Based on the analysis in Fig.1 we take a more detailed look into
benchmarks BT, SP, LBM, and LBDC as they show distinct and pronounced
performance advantage with one of the programming models.

3 Related Work

Previous work has compared the performance of the SPEC ACCEL bench-
mark suite codes when using different programming models including OpenCL,
OpenACC, and OpenMP 4.x. In [4], the three different programming models
are used to compare performance of OpenACC on two different GPU devices,
and OpenMP on the Intel Xeon Phi coprocessor. At the time, only the Intel
compiler provided support for the OpenMP 4.0 accelerator model. Since then,

Comparing High Performance Computing Accelerator Programming Models 159

GNU, LLVM, and XL compilers have added support for this model. In addition,
the PGI compiler has added support to self-offload using OpenACC which has
enabled testing of the PGI compiler on Intel Xeon Phi based architectures.

In [5], Juckeland et al., provide a detailed overview of the effort required
to port the SPEC ACCEL benchmark suite from the OpenACC programming
model to the OpenMP 4.5 accelerator programming model. The work highlights
the differences between each programming model. For example, in OpenACC,
the developer can briefly describe the intended parallelism of a region and the
runtime takes care of executing it. In OpenMP, however, the developer explicitly
specifies the type of parallelism and those choices often have a measurable impact
on the performance of the code. Converting a code from one programming model
to another can be a fairly straightforward change [5,9]. However, porting a code
to achieve the best performance can be a challenging task.

This work builds upon the results observed in [3], which includes an evalua-
tion of the SPEC ACCEL benchmark suite across five compilers on three distinct
architectures including Percival [1], Titan [7], and Summit [2].

4 Analysis

Here we take a closer look at the SPEC ACCEL benchmark kernels to determine
what factors account for the performance difference. Since the benchmarks claim
that they were created with performance portability in mind, the created kernels
are functionally equivalent. Here we first present the profiling results as analyzed
and displayed by the NVIDIA Visual Profiler [6]. From these profiles we pick
the kernels that the most time to see how they differ in the two programming
models. There exists a large number of variables in the determination of the exact
cause of the performance difference, hence we follow the standard performance
analysis criteria and analyze the kernels taking the maximum wall-clock time as
they have the most impact on the performance of the benchmark. Figure 2 shows
the timing profile of the GPU for the OpenMP version of the BT benchmark.
We see that the kernels that take the maximum time for BT OpenMP version
are from functions x_solve, y_solve, and z_solve, which account for 24% each
of the total GPU time. Similarly, Fig. 3 shows the timing profile of the GPU for

Fig. 2. BT OpenMP calls profiled. Fig. 3. BT OpenACC calls profiled.

160 S. Pophale et al.

Fig. 4. SP OpenMP calls profiled. Fig.5. SP OpenACC calls profiled.

the OpenACC version of the benchmark. The 51% of the total GPU processing
time is evenly spread across x_solve, y_solve, and z_solve functions. The other
category includes cumulative timings of kernels that take less than 1% of the total
time. Figures4 and 5 show the GPU profiles for SP benchmark’s OpenMP and
OpenACC versions. For OpenMP version of the benchmark we see that 57% of
the GPU time is utilized by one invocation of the kernel from y_solve function
while for the OpenACC version we see a trend of little contributions from all
calls take relatively uniform times except kernels from the function x_solve. The
other category includes cumulative timings of kernels that take less than 2% of
the total time.

For the LBC and LBDC benchmarks we see that all of the GPU time is spent
on a single invocation of a kernel. The details are presented in the Table 2.

Table 2. GPU profile for LBC and LBDC benchmarks.

Benchmark | Kernel No. of OpenMP Avg. | OpenACC Avg.
invocations | duration (us) | duration (us)

LBM StreamCollide | 5000 3.100844 6.120061

LDBC relax_collstream | 5000 1.903010 2.003094

5 Discussion

In the following section we will discuss the kernels identified in Sect.4 for the
different benchmarks. We compare and contrast the differences in OpenMP and
OpenACC constructs used in these kernels and throw some light on the relative
performance based on additional profiles collected for these specific kernels.

5.1 BT Benchmark

For BT benchmark we look at the x_solve kernel and compute_rhs. Since
y_solve and z_solve are very similar to x_solve our analysis on x_solve is
applicable for the other two. Listing 5.1.1 and 5.1.2 lists the kernel for x_solve.

Comparing High Performance Computing Accelerator Programming Models 161

The OpenMP version the directive target teams distribute parallel for
is short for target followed by teams distribute parallel for. The teams
construct creates a league of thread teams and the master thread of each team
executes the region. The distribute parallel loop construct specifies that the
for loop with iterator “j” can be executed in parallel by threads from teams from
different contention groups. The for loop enclosed by omp simd indicates that
the loop can be lowered where multiple iterations of the loop can be executed

by multiple SIMD lanes.

Listing 5.1.1. BT Kernel for x_solve Listing 5.1.2. BT Kernel for x_solve
(,J(l)(,SOlVQJ'?Og,OL,G) 679

680 #pragma acc kernels loop

707 .

708 #pragma omp target teams ost for (k = ?; k <=_gP22? k++)'{
distribute parallel for 082 for (j = 1; j <= gpl2; j++)
private (i, k) { . .

700 for (§ = 1; j <= gpl2; j++) 1 683 for §1'= 1; i f:

710 for (i = 1; i <= isize-1; isize-1; i++) {...}

i++) { 684 ¥
711 #pragma omp simd :“3 b
586 e

private (pivot,coeff)
712 for (k = 1; k <= gp22;
k++) {...}
713 X
714}
715 .
Listing 5.1.3 shows the parallelization strategy implemented by the PGI com-
piler. The OpenACC version marked the loop nest with the kernel directive and
leaves it to the compiler to analyze the loop and pick the right schedule for
the loops. We see that OpenACC is more descriptive, there is more freedom for
the compilers to apply parallelization techniques. In this case the PGI compiler

decided to pick a gang and vector schedule of the “k” loop, a gang schedule for

(1354

the “j” loop and a sequential schedule for the “i” loop.

Listing 5.1.3. PGI Compiler Parallelization Strategy for x_solve

681, Loop is parallelizable

682, Loop is parallelizable

683, Loop carried dependence of rhs,lhsX prevents parallelization
Loop carried backward dependence of rhs,lhsX prevents

vectorization

Inner sequential loop scheduled on accelerator

6 Accelerator kernel generated

7 Generating Tesla code

8 681, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */

9 682, #pragma acc loop gang /* blockIdx.y */

10 683, #pragma acc loop seq

oW N =

More insights can be obtained from the profiles in Figs.6 and 7. The key
parameters to look at there are the Grid Size and the Block Size as they together
indicate the level of parallelism achieved. In addition the number of registers per
thread and shared memory affects the performance, as threads share a finite
number of registers and shared memory. The performance gain from increased
occupancy (block size) may be outweighed by the lack of registers per thread.
Inadequate registers will mean access to local memory more often, which is more
expensive.

162 S. Pophale et al.

_xl_x_solve_I709_OL_6

x_solve_683_gpu

Queued nfa Queued nja
Submitted nfa Submitted n/a
Start 1.176 5 (1,176,282,928 ns) Start 1.0735(1,072,826,178 ns)
End 1.3335(1,333,471,139 ns) End 1.084 s (1,083,724,217 ns)
Duration 167.188 ms (167,188,211 ns) Duration 10.898 ms (10,898,039 ns)
Stream Stream 40 Stream Default
Grid Size [1280,1,11 Grid Size [1,100,11
Block Size [256,1,11] Block Size [128,1,1]
Registers/Thread 255 Registers/Thread 64
Shared Memory/Block 952B Shared Memory/Block 0B
Launch Type Normal Launch Type Normal
¥ Occupancy ¥ Occupancy
Theoretical 12.5% Theoretical 50%
¥ Shared Memory Configuration ¥ Shared Memory Configuration
Shared Memory Requested 96 KiB Shared Memory Requested 96 KiB
Shared Memory Executed 96 KiB Shared Memory Executed 96 KiB
Shared Memory Bank Size 4B Shared Memory Bank Size 4B

Fig.
OpenMP calls profiled.

256

6. BT benchmark x_solve Fig.7. BT benchmark x_solve Ope-

nACC calls profiled

For the OpenMP version, the GPU schedule is 1280 for the grid size and
for the thread block size. The register usage was 255. Overall this loopnest
achieved a total of 12.5% GPU occupancy. On the other hand, for the OpenACC
version, the GPU schedule for the loop nest was 100 grid size and 128 for the
thread block size. The register usage per thread was 64 with no shared mem-
ory per file. This scheduled achieved a higher GPU occupancy of 50% than the
OpenMP version. This is one of the primary reasons that the OpenACC ver-
sion of the loopnest performed 14.4x faster than the OpenMP version. Another
reason from the programming models point of view is that the OpenMP SIMD
construct is not able to vectorize the loop iterations and serial execution fur-
ther reduces performance. The OpenMP benchmark would benefit from having

architecture specific code paths for further performance gain.

259

260

265
266

267

w oo

Listing 5.1.4. BT Kernel for com-
pute_rhs (_xl_compute_rhs_1261_OL_4)

Listing 5.1.5. BT Kernel for com-
pute_rhs

#pragma omp target teams #pragma acc kernels loop

263

distribute parallel for 264 for (k = 1; k <= gp22; k++) {
private(vijk,vpl,vml,i,j,k) 265 for (j = 1; j <= gpl2; j++)
for (k = 1; k <= gp22; k++) { {
for (j = 1; j <= gpl2; j++) 266 for (i = 1; i <= gp02;
i++) {...}
#pragma omp simd 267 }
private(vijk,vpl,vml)268 }
for (i = 1; i <= gp02;
i++) {...}
}
}

Listing 5.1.6. PGI Compiler Parallelization Strategy for compute_rhs

264, Loop is parallelizable
265, Loop is parallelizable
266, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code

264, #pragma acc loop gang /* blockIdx.y */
265, #pragma acc loop gang, vector(4) /* blockIdx.z threadldx.y */
266, #pragma acc loop gang, vector (32) /* blockIdx.x threadIdx.x */

Comparing High Performance Computing Accelerator Programming Models

__xI_compute_rhs_I261_0L_4
Queued
Submitted
Start
End

n/a
nj/a
1.109s (1,108,877,216 ns)
1.1425(1,142,043,597 ns)

compute_rhs_266_gpu
Queued
Submitted
Start
End

n/a

nfa
1.059's(1,059,472,930 ns)
1.06 s (1,059,993,085 ns)

163

Duration 33.166 ms (33,166,381 ns) Duration 520.155 us
Stream Stream 26 Stream Default
Grid Size [1280,1,11 Grid Size [4,100,25]
Block Size [640,1,11 Block Size [32,41]
Registers/Thread 96 Registers/Thread 56
Shared Memory/Block 952 B Shared Memory/Block 0B
Launch Type Normal Launch Type Normal
¥ Occupancy ¥ Occupancy
Theoretical 31.2% Theoretical 56.2%
¥ Shared Memory Configuration ¥ Shared Memory Configuration
Shared Memory Requested 96 KiB Shared Memory Requested 96 KiB
Shared Memory Executed 96 KiB Shared Memory Executed 96 KiB
Shared Memory Bank Size 4B Shared Memory Bank Size 4B

Fig. 8. BT benchmark compute_rhs
OpenMP calls profiled.

Fig.9. BT benchmark compute_rhs
OpenACC calls profiled

Listing 5.1.4 and 5.1.5 shows the OpenMP and OpenACC version of another
loopnest in the rhs kernel of BT. We look at this kernel specifically because
it takes 6% of the total time in the OpenMP version but about 1% in the
OpenACC benchmark. Here both versions have the same code structure. No
loop interchanged was done by the programmer. All the loops are parallel. The
benchmark employs the OpenMP SIMD directive to the innermost loop. The
OpenACC version of the loop uses the kernels directive and lets the compiler
apply the loop schedules (Figs. 8 and 9).

Listing 5.1.6 is the output from the PGI compiler for the OpenACC loop
nest. We can see that OpenACC applies gang and vector schedules for the three
loops in the loopnest. As a result it gets a 4 x 100 x 25 schedule for the grid
and 32 x 4 schedule for the threadblock size. The occupancy is of 56.2%. The
OpenMP version, on the other hand, has a schedule of 1280 x 1 for the grid
and 640 x 1 for the same threadblock. The occupancy for OpenMP version
is 31.2%. Low occupancy results in poor instruction issue efficiency and since
there are not enough eligible warps, the latency between dependent instructions
is more obvious. As a result, using default settings for both the versions of the
benchmark, more threads were spawned in the OpenACC version leading to 63x
better performance. This is the direct result of OpenACC compiler picking a
better schedule for the loops.

5.2 SP Benchmark

In Listings 5.2.1 and 5.2.2 we compare OpenMP and OpenACC versions of the
SP benchmark. We see that the outer loop is parallelized using OpenMP target
teams distribute parallel for combined directive and using kernels, respec-
tively. The OpenACC version parallelizes the “k” and “i” loop with gang vector
schedules.

164 S. Pophale et al.

The loop schedule selected by OpenACC was 5 x40 x 1 grid size and 32x4x 1
thread block. OpenMP selected a 2 x 1 x 1 grid size and 128 x 1 x 1 thread
block. The GPU occupancy for OpenACC was 50% and for OpenMP 31.2%.
The 135x faster performance using OpenACC can be contributed to (1) better
occupancy and (2) optimum registers per thread. In spite of OpenMP benchmark
having shared memory between CPU and GPU and more registers per thread,
the default block size was not the optimum size. This is an important aspect and
leads to degraded performance due to inadequate resources per thread (Figs. 10
and 11).

Listing 5.2.1. SP Kernel for y_solve Listing 5.2.2. SP Kernel for y_solve

using OpenMP using OpenACC
763 ... 643
764 #pragma omp target teams 644 #pragma acc kermnels loop
distribute parallel for 645 for (k = 1; k <= gp2-2; k++) {
private(i,j,k,m,facl,j1,j2) 646 for (j = 0; j <= gpl-3;
765 for (k = 1; k <= gp2-2; k++) { j++) o
766 for (j = 0; j <= gp1-3; 647 jl1 =3 + 1;
j++) { 648 j2 = j + 2
767 j1 =3 + 1; 649 for (i = 1; i <= gp0-2;
768 j2 = j + 2; i++) {
769 for (i = 1; i <= gp0-2; 650 -
i++) { 651 for (m = 0; m < 3;
770 ce. m++) { }
771 for (m = 0; m < 3; 652 .
m++) {...} 653 for (m = 0; m < 3;
772 e m++) o ¥
773 for (m = 0; m < 3; 654 .
m++) {...} 655 for (m = 0; m < 3;
774 AN m++) { }
775 for (m = 0; m < 3; 656 }
m++) {...} 657 }
6 X 658 3

} 659

Listing 5.2.3. PGI’s Parallelization Stratergy for y_solve

643 645, Loop is parallelizable

644 646, Loop carried dependence of 1lhsY prevents parallelization

645 Loop carried backward dependence of lhsY prevents vectorization
646 Loop carried dependence of rhs prevents parallelization

647 Loop carried backward dependence of rhs prevents vectorization
648 649, Loop is parallelizable

649 Accelerator kernel generated

650 Generating Tesla code

651 645, #pragma acc loop gang, vector(4) /* blockIdx.y threadldx.y */
652 646, #pragma acc loop seq

653 649, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
654 653, #pragma acc loop seq

655 658, #pragma acc loop seq

656 663, #pragma acc loop seq

Comparing High Performance Computing Accelerator Programming Models 165

__xl_y_solve_1765_0L_24
Queued
Submitted
Start
End
Duration
Stream
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
Launch Type
¥ Occupancy
Theoretical
¥ Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed
Shared Memory Bank Size

Fig.10. SP benchmark compute_rhs

nfa

nja

2.183 s (2,183,209,865 ns)
2.334 5 (2,333,694,638 ns)
150.485 ms (150,484,773 ns)
Stream 35

2,111

128,111

86

9168

Normal

31.2%
96 KiB

96 KiB
4B

OpenMP calls profiled.

5.3 LBM Benchmark

y_solve_649_gpu
Queued
Submitted
Start
End
Duration
Stream
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
Launch Type
¥ Occupancy
Theoretical
v Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed
Shared Memory Bank Size

nfa

n/a

2.441 5 (2,441,456,011 ns)
2.443 5 (2,442,565,604 ns)
1.11 ms (1,109,593 ns)
Default

[5,40,1]

[32,4,1]

64

0B

Normal

50%
96 KiB

96 KiB
4B

Fig.11. SP benchmark compute_rhs
OpenACC calls profiled

The OpenACC and OpenMP version of LBM are almost identical. Since the
entire subroutine is called, we do not include the code listing. The OpenMP ver-
sion uses the target combined directive and the OpenACC version uses parallel
loop. In this case both versions use the same schedule 10157 x 1 for grid block
and 128 x 1 for threadblocks. However, we observe that the OpenMP version
is 2X faster than the OpenACC version. Contributing factors include (1) GPU
shared memory, and (2) the number of registers per thread (3x as those in the
OpenACC versions) (Figs. 12 and 13).

_xI_LBM_performStreamCollide_|159_0L_1 LBM_performStreamCollide_195_gpu

Queued
Submitted
Start
End
Duration
Stream
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
Launch Type
¥ Occupancy
Theoretical
¥ Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed
Shared Memory Bank Size

Fig.12. LBM benchmark OpenMP

kernel details.

n/a

n/a

997.516 ms (997,516,434 ns)
1.001 s (1,000,590,913 ns)
3.074 ms (3,074,479 ns)
Stream 20

[10157,1,1]

(128,111

122

896 B

Normal

25%
96 KiB

96 KiB
4B

5.4 LBDC Benchmark

Queued
Submitted
Start
End
Duration
Stream
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
Launch Type
¥ Occupancy
Theoretical
¥ Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed
Shared Memory Bank Size

n/a

n/a

755.546 ms (755,546,152 ns)
761.619 ms (761,619,310 ns)
6.073 ms (6,073,158 ns)
Stream 19

[10157,1,1]

[128,1,1]

56

0B

Normal

56.2%
96 KiB

96 KiB
4B

Fig.13. LBM benchmark OpenACC
kernel details.

Table 2 shows that relax_collstream subroutine is invoked 5000 times by both
OpenMP and OpenACC versions of the LBDC benchmarks. The OpenMP
benchmark uses the combined construct target teams distribute parallel
do simd to offload the computation loop to the GPU. This allows for a team of
threads to, in parallel, execute simd instructions when possible.

166 S. Pophale et al.

The corresponding code for the OpenACC version depicted in Listing 5.4.2
uses a simple OpenACC parallel loop. Since the OpenMP code has been better
optimized to use vectorization through SIMD construct we see up to 2.5X perfor-
mance improvement on Summit. The sub-routine details highlighted in Figs. 14
and 15 show that though most other parameters are identical OpenMP uses 900
B of GPU shared memory. This leads to better data access patterns leading to
better execution times for the OpenMP version.

Listing 5.4.1. LBDC OpenMP Offloading of relax_collstream

1 !'$omp target ! present(f_now,f_nxt,send)
2 !$omp teams distribute parallel do simd
private (f _tmp_NE,f_tmp_N,...,feq_common) &
3 ! $omp shared (omega_h ,asym_omega_h ,f_now,f_nxt,n_cells,omega,send)
4 do i_ct = 1, n_cells
5 f_tmp_NE = f_now(F_IDX(i_ct,Q19_NE))
6
7 f_tmp_S = f_now(F_IDX(i_ct,Q19_S))

9 !$omp end target

Listing 5.4.2. LBDC OpenACC Offloading of relax_collstream

1 !$acc parallel loop present (f_now,f_nxt,send)
2 do i_ct = 1, n_cells

5 end do

__xI__mod_relax_NMOD_relax_collstream_l47_OL_1 relax_collstream_48_gpu

Queued

nja

Queued

nja

Submitted nja Submitted nja
Start 1.457 s (1,456,545,867 ns) Start 747.049 ms (747,048,905 ns)
End 1.458 s (1,458,423,488 ns) End 749.05 ms (749,049,783 ns)
Duration 1.878 ms (1,877,621 ns) Duration 2.001 ms (2,000,878 ns)
Stream Stream 20 Stream Stream 19
Grid Size [25669,1,1] Grid Size [25669,1,11
Block Size [128,1,11 Block Size [128,1,1]
Registers/Thread 64 Registers/Thread 64
Shared Memory/Block 900B Shared Memory/Block 0B
Launch Type Normal Launch Type Normal
¥ Occupancy ¥ Occupancy
Theoretical 50% Theoretical 50%
¥ Shared Memory Configuration ¥ Shared Memory Configuration
Shared Memory Requested 96 KiB Shared Memory Requested 96 KiB
Shared Memory Executed 96 KiB Shared Memory Executed 96 KiB
Shared Memory Bank Size 4B Shared Memory Bank Size 4B

Fig. 14. LBDC benchmark OpenMP
kernel details.

Fig.15. LBDC benchmark OpenACC
kernel details.

6 Conclusion

In this paper we highlight the differences in the much used HPC accelerator pro-
gramming models - OpenMP and OpenACC through the in depth analysis of the
SPEC ACCEL 1.2 benchmarks suite. Both OpenACC and OpenMP versions of
each benchmark followed similar parallelization strategies at the directive level,
save some vectorization hints through OpenMP’s SIMD directives. However,
OpenACC gives more freedom to the compiler to accelerate their loopnests.
OpenMP leaves all the choices to the user because of its more prescriptive

Comparing High Performance Computing Accelerator Programming Models 167

nature. As a result, in many cases, OpenACC picks better schedules than what
a programmer or OpenMP implementation allows because OpenACC relies on
compiler optimization technology to generate their directives. This shows that
OpenACC needs good compiler implementations as most of the choices are left
to the implementation.

Another factor is the number of active blocks on the GPU device. This con-
tributes to the occupancy of the device. We have seen that low occupancy results
in poor instruction issue efficiency (BT and SP). In such cases there are not
enough eligible warps to hide latency between dependent instructions. When
occupancy is at a sufficient level to hide latency, increasing it further may degrade
performance due to the reduction in resources per thread (as seen for LBM). For
better performance as well as optimal use of resources an early step of kernel
performance analysis must check occupancy and observe the effects on kernel
execution time when running at different occupancy levels.

OpenMP can mimic OpenACC behavior by tuning to the parameters selected
by the OpenACC compilers. However, the OpenMP implementations are becom-
ing more sophisticated and sometimes support optimizations that are not sup-
ported by OpenACC compilers, such as GPU shared memory. We saw this case
where the loop schedules were identical for OpenMP and OpenACC implemen-
tations of LBDC but OpenMP version took advantaged of GPU shared memory
and thus performed better.

Acknowledgement. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
under contract number DE-AC05-000R22725. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-000R22725. We would like to thank Dr. Oscar Hernandez from ORNL
for his guidance and support during the writing of this manuscript.

References

1. Percival quickstart guide. https://www.olcf.ornl.gov/percival-quickstart-guide/

2. Summit: Scale new heights. Discover new solutions. https://www.olcf.ornl.gov/
summit/

3. Boehm, S., Pophale, S., Vergara Larrea, V.G., Hernandez, O.: Evaluating perfor-
mance portability of accelerator programming models using SPEC ACCEL 1.2
benchmarks. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) ISC High Per-
formance 2018. LNCS, vol. 11203, pp. 711-723. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02465-9_51

4. Juckeland, G., Grund, A., Nagel, W.E.: Performance portable applications for hard-
ware accelerators: lessons learned from SPEC ACCEL. In: 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, pp. 689-698, May 2015.
https://doi.org/10.1109/IPDPSW.2015.26

5. Juckeland, G., et al.: From describing to prescribing parallelism: translating the
SPEC ACCEL OpenACC suite to OpenMP target directives. In: Taufer, M., Mohr,
B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 470-488.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6_33

https://www.olcf.ornl.gov/percival-quickstart-guide/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1007/978-3-030-02465-9_51
https://doi.org/10.1007/978-3-030-02465-9_51
https://doi.org/10.1109/IPDPSW.2015.26
https://doi.org/10.1007/978-3-319-46079-6_33

168 S. Pophale et al.

6. NVIDIA: NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-visual-
profiler

7. Oak Ridge National Lab: Titan supercomputer. https://www.olcf.ornl.gov/titan/

8. Top 500: Top 500: June 2018. https://www.top500.org/lists/2018/06/

9. Wienke, S., Terboven, C., Beyer, J.C., Miiller, M.S.: A pattern-based comparison of
OpenACC and OpenMP for accelerator computing. In: Silva, F., Dutra, 1., Santos
Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 812-823. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09873-9_68

https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://www.olcf.ornl.gov/titan/
https://www.top500.org/lists/2018/06/
https://doi.org/10.1007/978-3-319-09873-9_68

	Comparing High Performance Computing Accelerator Programming Models
	1 Introduction
	2 Motivation
	3 Related Work
	4 Analysis
	5 Discussion
	5.1 BT Benchmark
	5.2 SP Benchmark
	5.3 LBM Benchmark
	5.4 LBDC Benchmark

	6 Conclusion
	References

