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Abstract. Let G be a finite non-abelian group. Let A1, · · · , Ak be non-
empty subsets of G, where k ≥ 2 is an integer such that Ai ∩ Aj = ∅
for integers i, j = 1, · · · , k (i �= j). We say that (A1, · · · , Ak) is a
complete decomposition of G if the product of subsets Ai1 · · ·Aik =
{ai1 ...aik |aij ∈ Aij ; j = 1, · · · , k} coincides with G where the Aij are
all distinct and {Ai1 , · · · , Aik} = {A1, · · · , Ak}. The complete decom-
position search problem in G is defined as recovering B ⊆ G from given
A and G such that AB = G. The aim of this paper is twofold. The
first aim is to propose the complete decomposition search problem in
G. The other objective is to provide a key exchange protocol based on
the complete decomposition search problem using generalized quater-
nion group Q2n as the platform group for integer n ≥ 3. In addition,
we show some constructions of complete decomposition of generalized
quaternion group Q2n . Further, we propose an algorithm that can solve
computational complete decomposition search problem and show that
the algorithm takes exponential time to break the scheme.

Keywords: Group-based key exchange protocol · Complete
decomposition search problem · Nonabelian group

1 Introduction

A lot of study regarding group factorization theory of abelian group written
additively had been conducted over the years. The study of group factorization
was first initiated by Hajos in year 1938 [13]. He successfully solved a geometry
problem that raised by Minkowski by using group theoretical equivalent [14].
This scenario attracted the attention of studying the factorization of a finite
abelian group into not necessary subgroup factors [15]. Many type of algebraic
structures were derived from group factorization. One of the algebraic structure
is exhaustion number as defined in [6]. In [8], they investigated the exhaustion
number of dihedral group of order 2p, where p is an odd prime. Another type
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of analogous of group factorization, namely complete decomposition is defined
as follows: Let G be a finite non-abelian group. Let A1, · · · , Ak be non-empty
subsets of G, where k ≥ 2 is an integer such that Ai ∩ Aj = ∅ for integers i, j =
1, · · · , k (i �= j). We say that (A1, · · · , Ak) is a complete decomposition of G if
the product of subsets Ai1 · · ·Aik = {ai1 ...aik |aij ∈ Aij ; j = 1, · · · , k} coincides
with G where the Aij are all distinct and {Ai1 , · · · , Aik} = {A1, · · · , Ak}. The
investigation of complete decomposition of some finites groups can be found
in [5].

Computational hardness assumptions are essential elements in cryptography.
They are building blocks of a cryptographic primitive. Generally, computer sci-
entist relates the hardness of a new problem to a well-known hardness assump-
tion by reduction. Researchers reviewed the proposed hardness problem continu-
ously over the years [4,11,24,25]. There are many hardness problems proposed in
the past, such as integer factorization problem, Rivest-Shamir-Adleman (RSA)
problem, discrete logarithm problem, knapsack problem etc. In this paper, we
proposed some group-based hardness problem. One of the well known group-
based hardness problem proposed is the Conjugacy Search Problem (CSP) [20].
The similarity of our proposed hardness problem and CSP is the utilization of
non-commutative properties of the underlying group.

Diffie and Hellman [9] first developed the idea of asymmetric key exchange
protocol. The security of Diffie-Hellman key exchange protocol depended on
the hardness of the discrete logarithm problem (DLP). Two years later, Rivest,
Shamir and Aldeman applied the hardness of integer factorization problem (IFP)
to propose an encryption scheme which known as RSA encryption scheme [17].
However, Shor [18] proposed an algorithm that can feasibly solve many con-
ventional number theory based problem. Therefore, the security of public-key
cryptosystems that relied on some well-studied hardness problem such as DLP
and IFP become questionable. Thus, researchers start looking into code-based,
lattice-based, hash-based and group-based cryptographic primitives that sus-
pected to remain secure under post-quantum attack [3].

Numerous studies regarding group-based cryptography had been conducted
over the years [10]. The idea of constructing some cryptographic primitives based
on the non-commutative group has been discussed in [19]. There are some con-
structions of cryptographic primitives based on the braid group by applying
the conjugacy search problem (CSP) [1,7,16]. Baba et al. [2] constructed a rele-
vant analogy from the integer factorization problem to the factorization problem
over non-abelian groups. Gu and Zheng proposed several conjugated problems
related to the factorization problem over non-abelian groups and showed three
constructions of cryptographic primitives based on these conjugacy systems [12].
The idea that using the complexity of infinite non-abelian groups in cryptogra-
phy was first proposed by Wagner and Magyarik [23]. They devised a public-key
protocol based on unsolvability of the word problem in 1985. Search problems
are the most suggested protocols and they are variants of decision problems of
group theory. They are suitable for the general paradigm of a public key pro-
tocol. Some of the key exchange protocols related to non-commutative groups
were proposed in [21,22].
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Our Contribution. The main contribution of this paper is to propose a new
hardness problem called Complete Decomposition Search Problem (CDSP). We
construct a key exchange protocol based on CDSP. We choose generalized quater-
nion group Q2n as our platform group. We also provide some constructions
of complete decomposition of Q2n to show that the CDSP can be practically
applied. Besides, we compare the performance of our scheme with the Diffie-
Hellman key exchange protocol. Finally, we present some simple security analysis
of the proposed scheme.

2 Some Constructions of Complete Decomposition of Q2n

The generalized quaternion group Q2n is a finite non-abelian group with group
presentation 〈x, y|x2n−1

= 1, y2 = x2n−2
, yx = x2n−1−1y〉 for integer n ≥ 3. In

this section, we first introduce some of the multiplication rules for the elements
in the generalized quaternion group Q2n . Then, we provide a construction of
complete decomposition of Q2n .

Lemma 1. Let i, n be some integers such that 1 ≤ i ≤ 2n−1 − 1 and n ≥ 3.
Then the following properties holds:

(i) xiy = yx2n−1−i;
(ii) 〈x〉yxi = 〈x〉y.

Proof. Note that 〈x〉 = {1, x, x2, . . . , x2n−1−1} and 〈x〉y = {y, xy, . . . , x2n−1−1y}.
By employing induction on i, the basic step xy = yx2n−1−1 for i = 1 holds.
Assume that it is true when i = k for some positive integers k, then xky =
yx2n−1−k. Now, we show that the case i = k + 1 is true. For i = k + 1, we have
xk+1y = xkxy = xkyx2n−1−1 = yx2n−1−kx2n−1−1 = yx2n−1

x2n−1−(k+1). Since
x2n−1

= 1, it follows that yx2n−1
x2n−1−(k+1) = yx2n−1−(k+1) as required. For

part (ii), we see that 〈x〉yxi = {1, x, . . . , x2n−1−1}x2n−1−iy = {x2n−1−iy, x2n−1
y,

. . . , x2n−i−1y}. Since |{x2n−1−iy, x2n−1
y, . . . , x2n−i−1y}| = 2n−1, it follows that

{x2n−1−iy, x2n−1
y, . . . , x2n−i−1y} = 〈x〉y.

2.1 Construction of Complete Decomposition of Q2n

Let A,B be the subsets of Q2n . To show that the complete decomposition of
generalized quaternion group Q2n is not trivial, we first show an example where
(A,B) is not a complete decomposition of Q2n .

Example 1. Let A = {1, x, . . . , x2n−1−1} and B = {y, xy, . . . , x2n−1−1y} be the
subsets of Q2n . Clearly, A = 〈x〉 ⊆ Q2n and B = 〈x〉y ⊆ Q2n . Since AB ⊆ 〈x〉y,
it follows that (A,B) is not a complete decomposition of Q2n .

Next, we provide a construction of complete decomposition of generalized
quaternion group Q2n for integer n ≥ 4. For practical reason, the selection of
subsets A and B are restricted to the condition where A ∪ B � Q2n .
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Proposition 1. Let A = {1, x, x2, . . . , x2n−1−3} ∪ {x2n−1−2y, x2n−1−1y} and
Bi = ({y, xy, . . . , x2n−1−3y}∪{x2n−1−2, x2n−1−1})\{xy, x3y, . . . , xiy} be the sub-
sets of Q2n , where i ∈ {1, 3, . . . , 2n−1 − 5}, |A| = 2n−1 and 2n−2 + 2 ≤ |Bi| ≤
2n−1 − 1. Then (A,Bi) is a complete decomposition of Q2n for integer n ≥ 4.

Proof. To show that (A,Bi) is a complete decomposition, we first consider the
case when i = 2n−1 − 5. We have B2n−1−5 = {y, x2y, . . . , x2n−1−6y, x2n−1−4y} ∪
{x2n−1−3y} ∪ {x2n−1−2, x2n−1−1} with size 2n−2 + 2. We compute the product
of sets {1, x, x2, . . . , x2n−1−3} ⊆ A and {y, x2y, . . . , x2n−1−4y} ⊆ B2n−1−5 as
follows:

{1, x, x2, . . . , x2n−1−3}{y, x2y, x2n−1−4y}
= 〈x〉y.

Then, we compute the product of sets {x2n−1−2y, x2n−1−1y} ⊆ A and {y, x2y,
. . . , x2n−1−4y} ⊆ B2n−1−5 as follows:

L1 ={x2n−1−2y, x2n−1−1y}{y, x2y, . . . , x2n−1−4y}
={x2n−1+2n−2+2, x2n−1+2n−2+3, . . . , x2n−1+2n−2+2n−1−1}

where |L1| = 2n−1 − 2. Then, we compute the product of sets {x2n−1−2y,

x2n−1−1y} ⊆ A and {x2n−1−3y} ⊆ B2n−1−5 as follows:

L2 = {x2n−1−2y, x2n−1−1y}{x2n−1−3y} = {x2n−1+2n−2+1, x2n−1+2n−2+2}.

Observe that L1 ∪ L2 = {x2n−1+2n−2+1, x2n−1+2n−2+2, . . . , x2n−1+2n−2+2n−1−1}
with the size |L1 ∪ L2| = 2n−1 − 1. We notice that 〈x〉 \ (L1 ∪ L2) =
{x2n−1+2n−2+2n−1}. Next, we compute the product of sets {1, x, . . . , x2n−1−3} ⊆
A and {x2n−1−2, x2n−1−1} ⊆ B2n−1−5 as follows:

L3 ={1, x, . . . , x2n−1−3}{x2n−1−2, x2n−1−1}
={x2n−1−2, x2n−1−1, . . . , x2n−1+2n−1−4}

where |L3| = 2n−1 − 1. From here, we see that 〈x〉 \ L3 = {x2n−1+2n−1−3}.
To show that (L1 ∪ L2 ∪ L3) = 〈x〉y, we need to show that x2n−1+2n−2+2n−1 �=
x2n−1+2n−1−3. Clearly 2n−1+2n−2+2n−1 �= 2n−1+2n−1−3 for any integer n ≥ 4
which implies x2n−1+2n−2+2n−1 �= x2n−1+2n−1−3. Thus, (L1 ∪ L2 ∪ L3) = 〈x〉y.
Therefore, we say that (A,B2n−1−5) is a complete decomposition of Q2n . Since
B2n−1−5 ⊆ B2n−1−7 ⊆ · · · ⊆ B1 and (A,B2n−1−5) is a complete decomposition
of Q2n , it follows that (A,Bi) is a complete decomposition of Q2n for n ≥ 4 and
i ∈ {1, 3, . . . , 2n−1 − 5}.



Group-Based Key Exchange Protocol Based on CDSP 417

3 Application on Cryptography

In this section, we first propose two problems, namely Decisional Complete
Decomposition Search Problem and Computational Complete Decomposition
Search Problem for arbitrary finite nonabelian group G. We provide a key
exchange protocol based on the hardness problem proposed. Finally, we ana-
lyze the performance and security of the proposed scheme.

3.1 Complete Decomposition Search Problem (CDSP)

We define two problems as follows:

Decisional Complete Decomposition Search Problem (DCDSP): Let G
be a finite non-abelian group. Given A, B and G. Determine whether B satisfies
AB = G, where A,B ⊆ G and A ∩ B = ∅.

Computational Complete Decomposition Search Problem (CCDSP):
Let G be a finite non-abelian group. Given A and G. Find B such that AB = G,
where A,B ⊆ G and A ∩ B = ∅.

In this paper, we choose our platform group G as generalized quaternion
group Q2n . We construct an algorithm to solve CCDSP in Q2n below for integer
n ≥ 4. Since A ∩ B = ∅ and |Q2n | = 2n, it follows that the total combi-
nation of subsets B given |A| is

(
2n−|A|

|B|
)
. Let {Bj |j = 1, 2, . . . ,

(
2n−|A|

|B|
)} rep-

resents all the possible subsets of B. The algorithm computes the products
AB1, AB2, . . . , AB(2n−|A|

|B| ) and return Bj if ABj = G for integer 1 ≤ j ≤
(
2n−|A|

|B|
)
.

Algorithm 1. Solve CCDSP in Q2n

– Input: A, |B|, n.
– Output: All possible subsets of Bj for j = 1, 2, . . . ,

(
2n−|A|

|B|
)
.

– For each possible subset Bj ⊆ Q2n , where 1 ≤ j ≤ (
2n−|A|

|B|
)
, compute ABj =

D.
– If D = G, then return a solution Bj .
– Return (no solution exists).

3.2 Our Proposed Scheme

Let A,B ⊆ Q2n . In this section, we propose a key exchange protocol based
on the computational complete decomposition search problem (CCDSP) in Q2n

between Alice and Bob. Suppose Alice holds a shared key B and wants to share
with Bob. They can proceed as follows:
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1. Preparation Step A and Q2n are selected and published, where AB = Q2n .
Two subsets A1, A2 ⊆ 〈x〉 are selected and kept secretly. Alice chooses a ∈ A
and two distinct elements b1, b2 ∈ A1 secretly. Bob chooses c ∈ Q2n and two
distinct elements d1, d2 ∈ A2 secretly.

2. Sharing private key a
(a) Alice computes b1ab2.
(b) Bob computes d1b1ab2d2.
(c) Alice computes b−1

1 b1d1ad2b2b
−1
2 .

(d) Bob computes d−1
1 d1ad2d

−1
2 = a.

3. Sharing private key c
(a) Bob computes d1cd2.
(b) Alice computes b1d1cd2b2.
(c) Bob computes d−1

1 d1b1cb2d2d
−1
2 = b1cb2.

(d) Alices computes b−1
1 b1cb2b

−1
2 = c.

4. Exchange shared key B
(a) Alice and Bob compute ac = b.
(b) Alice computes E = Bb.
(c) Bob computes x = (ac)−1 = c−1a−1.
(d) Bob computes Ex = Bbx = Bacc−1a−1 = B.

Fig. 1. Proposed key exchange protocol

3.3 Performance Analysis

For our proposed scheme which constructed using finite non-abelian general-
ized quaternion group, the steps involved are expected to be longer compare to
other group-based key exchange protocol which constructed based on the abelian
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group. From Fig. 1, we see that sharing private key a and c between Alice and
Bob involved 8 mathematical computation in total. For the step involving calcu-
lating the shared key B, there is a total of 4 mathematical computations required.
The computations involved in our proposed scheme are mainly on multiplication
between the group elements, which can be done easily due to the well-studied
structure of the generalized quaternion group Q2n .

Comparing with Diffie-Hellman Key Exchange Protocol in Term of
Performance. Now, we compare the performance of our proposed scheme with
the pioneer of the key exchange protocol, which is Diffie-Hellman key exchange
protocol. The parameters used in Diffie-Hellman key exchange protocol are a
prime numbers p and q (generator of p). For computation wise, Diffie-Hellman
key exchange protocol involved of 4 steps. Besides, only one communication
required between Alice and Bob to obtain the shared key. Clearly our proposed
scheme takes more steps in term of computation and communication compare to
Diffie-Hellman key exchange protocol, however Diffie-Hellman Problem (DHP)
might become vulnerable under the post-quantum attack.

3.4 Security of the Scheme

In Sect. 2.1, we show a construction of (A,B) is a complete decomposition of
generalized quaternion group Q2n , where |A| = 2n−1 and 2n−1 − 2 ≤ |B| ≤
2n−1 − 1 for integer n ≥ 4. We first discuss the security of the scheme by using
Algorithm 1 proposed in Sect. 3.1 and consider the case where |A| = 2n−1 and
|B| = 2n−1 − 2.

Theorem 1. Let A,B be the subsets of Q2n , where |A| = 2n−1 and |B| = 2n−1−
2 for n ≥ 4. Adversary takes at least exponential time E to solve Computational
Complete Decomposition Search Problem using subsets A,B in Algorithm1.

Proof. Note that |B| = |Q2n |
|A| , A ∩ B = ∅ and |Q2n | = 2n. Since A ∩ B = ∅, we

can exclude the elements in subset A and hence left with the remaining 2n −|A|
elements. To search for subset B, one will try for different subset Bi, where the
choice of elements for Bi comes from 2n − |A| remaining elements. Thus, the
worst case for one to obtain such subset B require

(
2n−|A|

|B|
)

attempts. Next, we
show that Algorithm 1 need at least exponential time E to break our scheme.
We compare the value between

(
2n−|A|

|B|
)

and 2n as follows:

(
2n − |A|

|B|
)

=
(

2n−1

2n−1 − 2

)

=
2n−1!

2!(2n−1 − 2)!

=
1 · 2 · · · 2n−1

2(1 · 2 · · · (2n−1 − 2))
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=
(2n−1 − 1)2n−1

2
=(2n−1 − 1)2n−2

=22n−3 − 2n−2 ≥ 2n

Clearly, (2n−1 − 1)2n−2 ≥ 2n for n ≥ 4. Since
(
2n−|A|

|B|
) ≥ 2n for n ≥ 4, it follows

that Adversary takes at least exponential time E to break our scheme using
Algorithm 1.

Next, we discuss the security of the scheme by assuming that adversary knows
some of the private information related to the scheme. Firstly, suppose adversary
knows A1 ⊆ 〈x〉, where |A1| = t. Then, adversary can guess two distinct ele-
ments b1, b2 ∈ A1 correctly with the probability Pr(Adv guess b1, b2) = 1

t (
1

t−1 ).
From here, adversary is able to compute a from b1ab2 by using b1, b2. How-
ever, adversary has no information about c ∈ Q2n . Secondly, suppose adversary
knows A2 ⊆ 〈x〉, where |A2| = u. Then, the probability of adversary guesses
two distinct elements d1, d2 ∈ A2 correctly is Pr(Adv guess d1, d2) = 1

u ( 1
u−1 ).

By using d1 and d2, adversary can compute c from d1cd2. However, the infor-
mation about a remains unknown to adversary. Finally, suppose that adversary
knows A1, A2 ⊆ 〈x〉, then adversary is able to compute a, c with the probability
Pr(Adv guess b1, b2, d1, d2) = 1

t (
1

t−1 ) + 1
u ( 1

u−1 ). Adversary can use a, c to com-
pute c−1a−1 then followed by shared key B. To summarize this, adversary is not
able to compute the shared key B if he knows either A1 or A2 but not both.
If adversary knows A1, A2, where |A1| = t, |A2| = u, then the probability of
adversary computes shared key B correctly is 1

t (
1

t−1 )+ 1
u ( 1

u−1 ). Thus, if t and u

are large integers, then lim
t→∞

1
t

= lim
t→∞

1
t − 1

= lim
u→∞

1
u

= lim
u→∞

1
u − 1

= 0. Hence,

the probability of adversary to compute shared key B correctly is negligible and
the scheme is secured. We summarize the results in the following Table 1.

Table 1. Security of the scheme with the assumption that the adversary knows some
information

Information
that adversary
knows

Can adversary
computes a correctly
from the given
information?

Can adversary
computes c correctly
from the given
information?

Can adversary
computes shared
key B correctly
from the given
information?

A1 with size t Yes, with the
probability of 1

t
( 1
t−1

)
No No

A2 with size u No Yes, with the
probability of
1
u
( 1
u−1

)

No

A1 and A2 Yes, with the
probability of 1

t
( 1
t−1

)
Yes, with the
probability of
1
u
( 1
u−1

)

Yes, with the
probability of
1
t
( 1
t−1

) + 1
u
( 1
u−1

)
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3.5 Open Questions

For future research direction, researchers should analyze which assumptions can
be reduced from Complete Decomposition Search Problem as proposed in this
paper. We believe that there exists a relation between CDSP and Subset Sum
Problem which known to be NP-hard. However, we are not able to provide any
formal proof for this statement here. For the implementation of the proposed
scheme in a real work scenario, one can investigate on the value of security
parameter, for instance the size of subsets A and B to be used so that it provides
the same security level like 2048 bit or 4098 bit Diffie Hellman key exchange.
Besides, formal security proof or generic model of the proposed scheme should
be considered.
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