
Swee-Huay Heng
Javier Lopez (Eds.)

LN
CS

 1
18

79

15th International Conference, ISPEC 2019
Kuala Lumpur, Malaysia, November 26–28, 2019
Proceedings

Information Security 
Practice and Experience



Lecture Notes in Computer Science 11879

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Swee-Huay Heng • Javier Lopez (Eds.)

Information Security
Practice and Experience
15th International Conference, ISPEC 2019
Kuala Lumpur, Malaysia, November 26–28, 2019
Proceedings

123



Editors
Swee-Huay Heng
Multimedia University
Malacca, Malaysia

Javier Lopez
University of Malaga
Malaga, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34338-5 ISBN 978-3-030-34339-2 (eBook)
https://doi.org/10.1007/978-3-030-34339-2

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3627-2131
https://orcid.org/0000-0001-8066-9991
https://doi.org/10.1007/978-3-030-34339-2


Preface

The 15th International Conference on Information Security Practice and Experience
(ISPEC 2019) was held in Kuala Lumpur, Malaysia, November 26–28, 2019, and
hosted by Universiti Tunku Abdul Rahman, Malaysia.

The ISPEC conference series is an established forum that brings together researchers
and practitioners to provide a confluence of new information security technologies,
including their applications and their integration with IT systems in various vertical
sectors. In previous years, ISPEC has taken place in Singapore (2005), Hangzhou,
China (2006), Hong Kong, China (2007), Sydney, Australia (2008), Xi’an, China
(2009), Seoul, South Korea (2010), Guangzhou, China (2011), Hangzhou, China
(2012), Lanzhou, China (2013), Fuzhou, China (2014), Beijing, China (2015),
Zhangjiajie, China (2016), Melbourne, Australia (2017), and Tokyo, Japan (2018). All
the ISPEC papers were published by Springer in the LNCS series.

Acceptance into the conference proceedings is very competitive. This year the
conference received 68 anonymous submissions from 24 countries/regions. All the
submissions were reviewed by experts in the relevant areas on the basis of their
significance, novelty, technical quality, and practical impact. After careful reviews and
intensive discussions by at least three reviewers for each submission, 21 full papers and
7 short papers were selected from 19 countries for presentation at the conference and
inclusion in this Springer volume, with an acceptance rate of 31%. The accepted papers
cover multiple topics in information security, from technologies to systems and
applications. This state of affairs reflects the fact that the research areas covered by
ISPEC are important to modern computing, where increased security, trust, safety, and
reliability are required.

ISPEC 2019 was made possible by the joint effort of numerous people and orga-
nizations worldwide. There is a long list of people who volunteered their time and
energy to put together the conference and who deserve special thanks. First and
foremost, we are deeply grateful to all the PC members for their hard task of reading,
commenting, debating, and finally selecting the papers. We are indebted to the PC’s
collective knowledge, wisdom, and effort, and we have learned a lot from the expe-
rience. The committee also used external reviewers to extend the expertise and ease the
burden. We wish to thank all of them for assisting the PC in their particular areas of
expertise. It was a truly nice experience to work with such talented and hard-working
researchers. We also would like to express our appreciation to the keynote speakers:
Prof. Chris Mitchell, Assoc. Prof. Hongjun Wu, and Dr. Tieyan Li.

We are also very grateful to all the people whose work ensured a smooth organi-
zation process: Honored Chair Bok-Min Goi, General Chair Wun-She Yap, Local
Chair Denis C. K. Wong, Finance Chair Yee-Kai Tee, Sponsorship Chair Wai-Kong
Lee, Web Chair Ji-Jian Chin, Publicity Co-Chairs Weizhi Meng, Shifeng Sun, and
Donghong Qin. Also thanks to Anna Kramer for her help in the publication of the
proceedings.



Last but certainly not least, our thanks go to all the authors, the attendees, and the
sponsor Huawei International. The conference was also supported by the Malaysian
Society for Cryptology Research (MSCR) and Guangxi University for Nationalities,
China.

November 2019 Swee-Huay Heng
Javier Lopez

vi Preface



Organization

Honored Chair

Bok-Min Goi Universiti Tunku Abdul Rahman, Malaysia

General Chair

Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia

Organization Committee

Local Chair

Denis C. K. Wong Universiti Tunku Abdul Rahman, Malaysia

Finance Chair

Yee-Kai Tee Universiti Tunku Abdul Rahman, Malaysia

Sponsorship Chair

Wai-Kong Lee Universiti Tunku Abdul Rahman, Malaysia

Web Chair

Ji-Jian Chin Multimedia University, Malaysia

Publicity Co-chairs

Weizhi Meng Technical University of Denmark, Denmark
Shifeng Sun Monash University, Australia
Donghong Qin Guangxi University for Nationalities, China

Program Co-chairs

Swee-Huay Heng Multimedia University, Malaysia
Javier Lopez University of Malaga, Spain

Program Committee

Man Ho Au The Hong Kong Polytechnic University, Hong Kong,
China

Joonsang Baek University of Wollongong, Australia
Aniello Castiglione University of Salerno, Italy
David Chadwick University of Kent, UK
Jiageng Chen Central China Normal University, China



Xiaofeng Chen Xidian University, China
Kim-Kwang Raymond

Choo
The University of Texas at San Antonio, USA

Sherman S. M. Chow The Chinese University of Hong Kong, Hong Kong,
China

Jose Maria de Fuentes Universidad Carlos III de Madrid, Spain
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
José M. Fernandez Ecole Polytechnique de Montreal, Canada
Carmen Fernández-Gago University of Malaga, Spain
Dieter Gollmann Hamburg University of Technology, Germany,

and National University of Singapore, Singapore
Dimitris Gritzalis Athens University of Economics and Business, Greece
Stefanos Gritzalis University of the Aegean, Greece
Gerhard Hancke City University of Hong Kong, Hong Kong, China
Debiao He Wuhan University, China
Swee-Huay Heng Multimedia University, Malaysia
Shoichi Hirose University of Fukui, Japan
Xinyi Huang Fujian Normal University, China
Julian Jang-Jaccard Massey University, New Zealand
Hiroaki Kikuchi Meiji University, Japan
Kwangjo Kim Korea Advanced Institute of Science and Technology,

South Korea
Noboru Kunihiro The University of Tokyo, Japan
Miroslaw Kutylowski Wroclaw University of Science and Technology,

Poland
Costas Lambrinoudakis University of Piraeus, Greece
Albert Levi Sabanci University, Turkey
Shujun Li University of Kent, UK
Tieyan Li Huawei International Pte Ltd, Singapore
Yingjiu Li Singapore Management University, Singapore
Kaitai Liang University of Surrey, UK
Joseph Liu Monash University, Australia
Zhe Liu Nanjing University of Aeronautics and Astronautics,

China
Giovanni Livraga University of Milan, Italy
Javier Lopez University of Malaga, Spain
Jiqiang Lu Beihang University, China
Rongxing Lu University of New Brunswick, Canada
Tzu-Chuen Lu Chaoyang University of Technology, Taiwan
Di Ma University of Michigan, USA
Weizhi Meng Technical University of Denmark, Denmark
Chris Mitchell Royal Holloway, University of London, UK
David Naccache École Normale Supérieure, France
Takeshi Okamoto Tsukuba University of Technology, Japan
Kazumasa Omote University of Tsukuba, Japan
Pedro Peris-Lopez Carlos III University of Madrid, Spain
Günther Pernul Universität Regensburg, Germany

viii Organization



Raphael C.-W. Phan Monash University, Malaysia
Josef Pieprzyk Queensland University of Technology, Australia
Geong Sen Poh Singtel, Singapore
C. Pandu Rangan Indian Institute of Technology, Madras, India
Indrajit Ray Colorado State University, USA
Na Ruan Shanghai Jiaotong University, China
Sushmita Ruj Indian Statistical Institute, India
Pierangela Samarati University of Milan, Italy
Jun Shao Zhejiang Gongshang University, China
Miguel Soriano Universitat Politècnica de Catalunya, Spain
Chunhua Su University of Aizu, Japan
Willy Susilo University of Wollongong, Australia
Syh-Yuan Tan Newcastle University, UK
Qiang Tang New Jersey Institute of Technology, USA
Jaideep Vaidya Rutgers University, USA
Cong Wang City University of Hong Kong, Hong Kong, China
Ding Wang Peking University, China
Guilin Wang Huawei International Pte Ltd, Singapore
Qianhong Wu Beihang University, China
Shouhuai Xu University of Texas at San Antonio, USA
Toshihiro Yamauchi Okayama University, Japan
Wei-Chuen Yau Xiamen University Malaysia, Malaysia
Kuo-Hui Yeh National Dong Hwa University, Taiwan
Xun Yi RMIT University, Australia
Yong Yu Shaanxi Normal University, China
Tsz Hon Yuen The University of Hong Kong, Hong Kong, China
Yuexin Zhang Swinburne University of Technology, Australia
Jianying Zhou Singapore University of Technology and Design,

Singapore
Sencun Zhu The Pennsylvania State University, USA

Additional Reviewers

Anglès-Tafalla, Carles
Bamiloshin, Michael
Banerjee, Prabal
Bytes, Andrei
Chen, Huashan
Chen, Long
Cheng, Yao
Choi, Rakyong
Chu, Cheng-Kang
Dai, Ting
Diamantopoulou, Vasiliki
Du, Minxin

Feng, Hanwen
Georgiopoulou, Zafeiroula
Hassan, Fadi
Iakovakis, George
Kelarev, Andrei
Kern, Sascha
Kuchta, Veronika
Li, Deqiang
Li, Wenjuan
Li, Zengpeng
Li, Zhidan
Lin, Chengjun

Organization ix



Liu, Jianghua
Liu, Ximing
Loh, Jia-Ch’Ng
Lyvas, Christos
Mitropoulos, Dimitris
Ng, Lucien K. L.
Ning, Jianting
Paulet, Russell
Pitropakis, Nikolaos
Salam, Iftekhar
Schlette, Daniel
Shen, Jun
Shirazi, Hossein
Simou, Stavros
Singh, Ram Govind
Sohrabi, Nasrin
Song, Yongcheng
Soupionis, Yannis
Su, Dan
Tanuwidjaja, Harry Chandra
Theocharidou, Marianthi
Tian, Yangguang

Vielberth, Manfred
Virvilis-Kollitiris, Nikolaos
Wang, Jiafan
Wang, Yunling
Wangli, Xiaoyang
Wen, Xuejun
Wu, Lei
Xu, Dongqing
Xu, Shengmin
Yang, Xiao
Yang, Xu
Yang, Yi
Yin, Wei
Zhang, Xiaoyu
Zhang, Yinghui
Zhang, Yudi
Zhang, Yunru
Zhao, Raymond
Zhao, Yongjun
Zhu, Yan
Ziaur, Rahman

x Organization



Contents

Cryptography I

Plaintext-Checkable Encryption with Unlink-CCA Security
in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Sha Ma and Qiong Huang

A Bitwise Logistic Regression Using Binary Approximation and Real
Number Division in Homomorphic Encryption Scheme . . . . . . . . . . . . . . . . 20

Joon Soo Yoo, Jeong Hwan Hwang, Baek Kyung Song, and Ji Won Yoon

Accelerating Number Theoretic Transform in GPU Platform
for qTESLA Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Wai-Kong Lee, Sedat Akleylek, Wun-She Yap, and Bok-Min Goi

Provably Secure Three-Party Password-Based Authenticated Key
Exchange from RLWE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chao Liu, Zhongxiang Zheng, Keting Jia, and Qidi You

System and Network Security

KMO: Kernel Memory Observer to Identify Memory Corruption
by Secret Inspection Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Hiroki Kuzuno and Toshihiro Yamauchi

Peel the Onion: Recognition of Android Apps Behind the Tor Network. . . . . 95
Emanuele Petagna, Giuseppe Laurenza, Claudio Ciccotelli,
and Leonardo Querzoni

JSLess: A Tale of a Fileless Javascript Memory-Resident Malware . . . . . . . . 113
Sherif Saad, Farhan Mahmood, William Briguglio,
and Haytham Elmiligi

Security Protocol and Tool

A Physical ZKP for Slitherlink: How to Perform Physical
Topology-Preserving Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya Sasaki,
and Hideaki Sone

Secure Best Arm Identification in Multi-armed Bandits . . . . . . . . . . . . . . . . 152
Radu Ciucanu, Pascal Lafourcade, Marius Lombard-Platet,
and Marta Soare



CATCHA: When Cats Track Your Movements Online . . . . . . . . . . . . . . . . 172
Prakash Shrestha, Nitesh Saxena, Ajaya Neupane, and Kiavash Satvat

Designing a Code Vulnerability Meta-scanner. . . . . . . . . . . . . . . . . . . . . . . 194
Raounak Benabidallah, Salah Sadou, Brendan Le Trionnaire,
and Isabelle Borne

Access Control and Authentication

Using IFTTT to Express and Enforce UCON Obligations . . . . . . . . . . . . . . 213
Antonio La Marra, Fabio Martinelli, Paolo Mori, Athanasios Rizos,
and Andrea Saracino

Evaluation of Software PUF Based on Gyroscope . . . . . . . . . . . . . . . . . . . . 232
Kazuhide Fukushima, Ayumu Yoshimura, Shinsaku Kiyomoto,
and Norikazu Yamasaki

White-Box Implementation of the KMAC Message Authentication Code . . . . 248
Jiqiang Lu, Zhigang Zhao, and Huaqun Guo

Cryptography II

Improving Signature Schemes with Tight Security Reductions . . . . . . . . . . . 273
Tiong-Sik Ng, Syh-Yuan Tan, and Ji-Jian Chin

Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings . . . 293
Xiu Xu, Chris Leonardi, Anzo Teh, David Jao, Kunpeng Wang, Wei Yu,
and Reza Azarderakhsh

Identity-Based Signature Scheme Secure in Ephemeral Setup
and Leakage Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Łukasz Krzywiecki, Marta Słowik, and Michał Szala

Recovering Internal States of Grain-v1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Deepak Kumar Dalai and Santu Pal

Data and User Privacy

GDPR-Compliant Reputation System Based on Self-certifying
Domain Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Mirosław Kutyłowski, Jakub Lemiesz, Marta Słowik, Marcin Słowik,
Kamil Kluczniak, and Maciej Gebala

Defining a New Composite Cybersecurity Rating Scheme for SMEs
in the U.K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Andrew Rae and Asma Patel

xii Contents



Privacy Preserving Approach in Dynamic Social Network Data Publishing. . . 381
Kamalkumar Macwan and Sankita Patel

Short Paper I

Using Freivalds’ Algorithm to Accelerate Lattice-Based
Signature Verifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Arnaud Sipasseuth, Thomas Plantard, and Willy Susilo

Group-Based Key Exchange Protocol Based on Complete
Decomposition Search Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Chang Seng Sin and Huey Voon Chen

Development Activities, Tools and Techniques of Secure
Microservices Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Peter Nkomo and Marijke Coetzee

Generating Phishing Emails Using Graph Database . . . . . . . . . . . . . . . . . . . 434
Nasim Maleki and Ali A. Ghorbani

Short Paper II

Evaluating Intrusion Sensitivity Allocation with Support Vector
Machine for Collaborative Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . 453

Wenjuan Li, Weizhi Meng, and Lam For Kwok

The (Persistent) Threat of Weak Passwords: Implementation
of a Semi-automatic Password-Cracking Algorithm . . . . . . . . . . . . . . . . . . . 464

Chris Pelchen, David Jaeger, Feng Cheng, and Christoph Meinel

A Novel and Comprehensive Evaluation Methodology for SIEM . . . . . . . . . 476
Mahdieh Safarzadeh, Hossein Gharaee, and Amir Hossein Panahi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Contents xiii



Cryptography I



Plaintext-Checkable Encryption
with Unlink-CCA Security
in the Standard Model

Sha Ma and Qiong Huang(B)

College of Mathematics and Informatics,
South China Agricultural University, Guangzhou, Guangdong, China

martin deng@163.com, qhuang@scau.edu.cn

Abstract. Plaintext-Checkable Encryption (PCE) was first proposed by
Canard et al. to check whether a ciphertext encrypts a given plaintext
under the public key. This primitive is very useful in many applications,
e.g., search on encrypted database and group signature with verifier-local
revocation (GS-VLR). In the literature, existing PCE schemes only sat-
isfies unlink notion that defines the adversary to get information about
whether two challenge ciphertexts share the same plaintext or not, with-
out given the challenge plaintexts. Using the tool of pairing-friendly
smooth projective hash function (PF-SPHF), we propose the first PCE
construction with the most desirable unlink-cca notion, which is stronger
than unlink by additionally providing a decryption oracle. We prove it
in the standard model based on the hard subset membership problem.
Finally, by instantiating SPHF from DDH assumption, we obtain a PCE
instantiation from SXDH assumption and show that it achieves not only
the desired security but also efficient test computation complexity. Hence
it will be very useful in practical applications.

Keywords: Plaintext-checkable encryption · Unlink-CCA ·
Pairing-friendly smooth projective hash function

1 Introduction

In public-key setting, public key encryption with keyword search (PEKS) was
first introduced by Boneh et al. [6] to delegate the right of keyword search on
one’s encrypted database to a proxy by sending a keyword-dependent trapdoor.
This proxy can check whether the encrypted message contains the keyword hid-
den in the trapdoor or not. Later, various forms of searchable encryption have
been studied intensively in different applications. Public key encryption with
equality test (PKEET), first proposed by Yang et al. [21], is a variant of search-
able encryption to check whether two ciphertexts possibly from different users
have the same message. In this paper, we further explore a variant of search-
able encryption, namely plaintext-checkable encryption (PCE), first introduced

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-34339-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_1


4 S. Ma and Q. Huang

by Canard et al. [7], to extend public-key encryption to achieve the follow-
ing functionality: given a plaintext, a ciphertext and a public key, it is univer-
sally possible to check whether the ciphertext encrypts the plaintext under the
public key. PCE is found to provide a direct way in the application of search
on encrypted database using plain keyword (not using encrypted keyword in
PEKS or PKEET). Another interesting PCE application is group signature
with verifier-local revocation (GS-VLR), where the check procedure of revo-
cation takes as input the revocation token (not encrypted revocation token by
PEKS or PKEET). Below we list the differences between PCE and some variants
of searchable encryptions for better understanding.

Difference Between PEKS and PCE. The differences between PEKS and
PCE are shown in the following two aspects:

• Private message-dependent trapdoor vs. public message. In PEKS scheme, the
search tool is a message-dependent trapdoor, which is generated by the secret
key of the receiver and then transmitted privately to the tester. However, in
PCE scheme, the search tool is plaintext without taking any secret informa-
tion as input. Therefore, PCE is more suitable in searching on encrypted data
without protecting the querying itself.

• Without decryption vs. with decryption. A traditional PEKS framework only
provides search functionality without decryption. For adding the property of
message recovery, some PEKS extensions combine PEKS and a conventional
together, additionally being appended with a zero-knowledge protocol for
assuring that the two parts share the same message. This combination pos-
sibly implies inefficiency in practice. However, a typical PCE framework pro-
vides both search functionality and message recovery, which is more expected
in database encryption.

Difference Between PKEET and PCE. Both PKEET and PCE support to
check whether a given ciphertext is an encryption of a guessing message. The
difference between PCE and PKEET is shown as follows.

• Ciphertext search vs. plaintext search. PKEET and PCE have the difference
in search token. Taking database encryption as an example, PKEET can be
used for “join” on two encrypted attributes while PCE can be used for “selec-
tion” on the tuples of encrypted relation, where search condition is a certain
plain message. It is not hard to see that PKEET could be trivially used for
constructing PCE by first encrypting the plaintext and then calling PKEET
test algorithm while PCE does not provide the privacy protection of querying
intention, which might be an interesting property in some applications.

Motivation. As done in the case of deterministic encryption [1] and public
key encryption with equality test [21], we assume that the plaintexts in PCE
are drawn from a space of large min-entropy. (This is inherent in deterministic
or efficiently searchable, not a weakness of our particular construction.) Due



PCE with Unlink-CCA Security in the Standard Model 5

to PCE functionality, it is obvious that the traditional ind-cca security is not
appropriate to define PCE security. Canard et al. [7] proposed unlink notion and
gave the following relation:

ind-cpa � unlink � priv1,

which shows that unlink is weaker than the well-known ind-cpa and stronger than
priv1 (or ind-det in [7]) for deterministic encryption [1].

Another acceptable notion for PCE is s-priv1-cca security, which is originally
proposed by [13] to define a stronger security of PKEET and is recently used by
Ma et al. [16] to define for PCE security. They gave an in-depth discussion on
the following security notions:

ind-cca � unlink-cca �

{
unlink

s-priv1-cca

}
� s-priv1 � priv1,

which shows the key points that (1) s-priv1-cca is independent with unlink. Both
s-priv1-cca and unlink are acceptable for attainable PCE schemes. (2) Being
enhanced from unlink by additionally providing the adversary a decryption ora-
cle, unlink-cca is considered to be the most desirable PCE security notion. How-
ever, to the best of our knowledge, we have not seen unlink-cca secure PCE
scheme in the literature. This is the motivation of our work.

1.1 Our Contribution

Using the tool of pairing-friendly smooth projective hash function (PF-SPHF), we
propose the first PCE construction with unlink-cca security, which is thought to
be the most desirable PCE security notion. We prove its security in the standard
model based on the hard subset membership problem. By instantiating SPHF
from DDH assumption, we obtain a PCE instantiation from SXDH assumption,
which has the advantages of both security and efficiency.

1.2 Related Work

The concept of plaintext-checkable encryption was first introduced by Canard
et al. [7] to check whether a ciphertext contains certain plaintext or not with-
out decrypting it. Later, Das et al. [9] proposed a plaintext checkable encryp-
tion with designated checker, where only the designated checker could execute
the plaintext checkability on ciphertexts. Han et al. [11] presented an identity-
based plaintext-checkable encryption and applied it in to an accountable mobile
E-commerce scheme. Recently, Ma et al. [16] proposed a generic scheme of
plaintext-checkable encryption for database applications, using smooth projec-
tive hash functions as building block. Next we introduce some related compara-
ble encryptions since they have the similar functionality or similar security as
plaintext-checkable encryption.



6 S. Ma and Q. Huang

Public Key Encryption with Equality Test. Public key encryption with equality
test (PKEET) was first introduced by Yang et al. [21] to check whether the
ciphertexts possibly from two different users contain the same message or not.
Its applications include privately join on encrypted database [14] and group sig-
nature with verifiable controllable linkability [5]. Later, many PKEET schemes
[12,15,17–19] were proposed to enhance the original construction by adding var-
ious authorization policies.

Message-Locked Encryption. Message-locked encryption (MLE), first proposed
by Bellare et al. [2], includes a tag-generation algorithm that maps the ciphertext,
which may be randomized, to a tag. Identical plaintexts result in the equal tages.
Naturally, MLE supports an equality-testing algorithm defined on ciphertexts,
which is very useful to achieve secure deduplication on space-efficient secure
outsourced storage [2], a goal currently targeted by numerous cloud-storage pro-
vides. We should note that MLE is constructed in symmetric-key setting while
PCE is constructed in asymmetric-key setting.

Deterministic Encryption. Deterministic encryption (DE) was first proposed by
[1], where the encryption algorithm is determined (not randomized). It is evident
that DE supports checking whether a ciphertext is the encryption of a plaintext
as any message would be only encrypted to an unique and determined ciphertext.
Fast search on remote data storage in the form of outsourced database is its
straightforward application [1]. Generally, DE provides a weaker protect on the
plaintext as the ciphertext itself is a leakage of partial information about the
plaintext.

1.3 Paper Organization

We introduce related preliminary and definitions in Sects. 2 and 3, respectively.
We provide a PCE construction with unlink-cca security in Sect. 4. Then we give
a SXDH-based PCE instantiation in Sect. 5 and draw a conclusion in Sect. 6.

2 Pairing-Friendly Smooth Projective Hash Function

Let PGGen be a probabilistic polynomial time (PPT) algorithm that on input k
returns a description PG = (G1, G2, GT , e, g1, g2, p) of asymmetric pairing group,
where G1, G2 and GT are cyclic groups of order p for a k-bit prime p, g1 and
g2 are generators of G1 and G2, respectively, and e : G1 × G2 is a bilinear map
between them. The map satisfies the following properties:

1. Bilinear: For any U ∈ G1, V ∈ G2 and a, b ∈ Zp, we have e(Ua, V b) =
e(U, V )ab.

2. Non-degenerate: If g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) is a generator of GT .

3. Computable: There exists an efficient algorithm to compute e(U, V ) for any
U ∈ G1 and V ∈ G2.



PCE with Unlink-CCA Security in the Standard Model 7

In the asymmetric setting (G1, G2, GT ), we consider SXDH assumption,
which posits that DDH assumption holds in both G1 and G2(There are no com-
putationally efficient homomorphic from G2 to G1 or G1 to G2).

Notations. We focus here on cyclic group Gs for s ∈ {1, 2, T} of prime order p
and define three operators on the group:

1. Gs � Gs → Gs. For any u ∈ Gs and v ∈ Gs, u � v ∈ Gs. Specifically, for any
element u ∈ Gs, we define u�u−1 = 1Gs

, which is the identity element of Gs.
2. Zp•Gs → Gs (or Gs•Zp → Gs). For any r ∈ Zp and u ∈ Gs, r•u = u•r = ur.
3. G1 � G2 → GT (or G2 � G1 → GT ). For u1 ∈ G1 and u2 ∈ G2, u1 � u2 =

u2 � u1 = e(u1, u2).

For s ∈ {1, 2, T} and a ∈ Zp we let [a] = ga ∈ G be an element in G or [b]s be
an element in Gs.

We recall that a smooth projective hash function (SPHF) based on an NP
language L ⊂ X onto a set Y is defined as follows [8].

– SPHFSetup(k): It takes as input a security parameter k and outputs
(L, param) as the global parameters.

– HashKG(L, param): It generates a hashing key hk.
– ProjKG(hk, (L,param), W ): It derives the projection key hp from the hashing

key hk, possibly depending on the word W.
– Hash(hk,(L, param), W ): It outputs the hash value hv ∈ Y from the hashing

key on any word W ∈ X .
– ProjHash(hp,(L,param),W,w): It outputs the hash value hv′ ∈ Y from the

projection key hp and any word W ∈ X with the witness w. Note that we
will omit (L, param) as input in SPHF system sometimes for brevity.

Note: we will omit (L, param) as input in SPHF system sometimes for brevity.

Correctness. The correctness of SPHF assures that if W ∈ L with a witness w,
for all hashing key hk and associated projection key hp generated using ProjKG
algorithm, we have Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

Smoothness. The smoothness of SPHF assures that if W ∈ X\L, the following
two distributions are statistically indistinguishable:

{((L, param),W, hp, hv)|hv = Hash(hk, (L, param),W )},

{((L, param),W, hp, hv)|hv $← Y},

where (L, param) = SPHFSetup(k), hk = HashKG(L, param) and hp =
ProjKG(hk, (L, param),W ).

2-Smoothness. The 2-smoothness of SPHF assures that if W1,W2 ∈ X\L ∧
W1 �= W2, the following two distributions are statistically indistinguishable:

{((L, param),W1,W2, hp, hv1, hv2)|hv2 = Hash(hk, (L, param),W2)},

{((L, param),W1,W2, hp, hv1, hv2)|hv2 $← Y},



8 S. Ma and Q. Huang

where (L, param) = SPHFSetup(k), hk = HashKG(L, param), hp =
ProjKG(hk, (L, param),W2) and hv1 = Hash(hk, (L, param),W1).

Extended SPHF. We give the syntax of SPHFet [8] as extended SPHF.
It is defined by the five algorithms: (SPHFSetupet, HashKGet,ProjKGet,,
Hashet,ProjHashet), where SPHFSetupet, HashKGet and ProjKGet are defined the
same as SPHFSetup, HashKG and ProjKG, and slightly modified Hashet and Pro-
jHashet are described as follows.

– Hashet(hk, (L, param),W, aux): It outputs the hash value hv ∈ Y from the
hashing key hk on any word W ∈ X and the auxiliary input aux.

– ProjHashet(hp, (L, param),W,w, aux): It outputs the hash value hv′ ∈ Y from
the projection key hp, the witness w for the word W ∈ L and the auxiliary
input aux.

This extended SPHF is usually used for constructing encryption [8] to achieve
chosen ciphertext security by its 2-smoothness property, as seen in this paper.

Language Representation. For a language Laux, there exist two positive inte-
gers k and n, a function Γ : Set 	→ Gk×n and a family of functions Θaux : Set 	→
G1×n, such that for any word C ∈ Set, (C ∈ Laux) ⇐⇒ (∃λ ∈ Z1×k

p ) such that
Θaux(C) = λ�Γ (C). In other words, we say that C ∈ Laux if and only if Θaux(C)
is a linear combination of (the exponents in) the rows of some matrix Γ (C).
It furthermore requires that a user, who knows a witness w of the membership
C ∈ Laux, can efficiently compute the above linear combination λ.

Pairing-friendly SPHF (PF-SPHF) is a special type of the classical SPHF,
which is in the context of pairing-based cryptography as the name suggests.
Assume the existence of a (prime order) bilinear group (G1, G2, GT , e, g1, g2, p).
Compared with SPHF, PF-SPHF has the modified Hash (PF-Hash) algorithm and
ProjHash algorithm (PF-ProjHash) described as follows.

– PF-Hash(hk, (L, param),W, y): It outputs a hash value hv ∈ GT from the hash-
ing key hk on any word W ∈ G1 and an auxiliary element y ∈ G2.

– PF-ProjHash(hp, (L, param),W,w, y): It outputs a hash value hv′ ∈ GT from
the projection key hp, the witness w for the word W ∈ L and an element
y ∈ G2.

Next, we introduce a general way to achieve PF-SPHF from every pairing-
less SPHF. In fact, this way has been used to construct SPHFs with particular
properties, for instance, structure-preserving SPHF [4] and trapdoor SPHF [3].
Using the language representation of SPHF, an approach to transform every
pairing-less SPHF into PF-SPHF [4] in a bilinear setting is shown in the Table 1.

An interesting property is that PF-SPHF provides a new way to compute the
same hash value by PF-ProjHash� algorithm, which is similar to PF-ProjHash
algorithm but with the different intermediate process.

– PF-ProjHash�(hp, (L, param),W,w, y): It outputs a hash value hv� ∈ GT from
the projection key hp, the witness w for the word W ∈ L and an element
y ∈ G2.



PCE with Unlink-CCA Security in the Standard Model 9

Table 1. Transformation from SPHF to PF-SPHF

SPHF PF-SPHF

Word C(Θ(C)) [λ • Γ (C)]1 [λ • Γ (C)]1

Witness w λ λ

hk α α

hp(γ(C)) [Γ (C) • α]1 [Γ (C) • α]1

Hash [Θ(C) • α]1 [(Θ(C) • α) � g2]T

ProjHash [λ • γ(C)]1 [(λ • γ(C)) � g2]T

ProjHash� [λ • γ(C)]1 [γ(C) � (λ • g2)]T

From the Table 1, we see that the difference between ProjHash algorithm and
ProjHash� algorithm lies in that λ first operates on γ(C) and then do pairing
with g2 in the former while λ first operates on g2 and then do pairing with γ(C)
in the latter.

Correctness. It is inherited for word in L as this reduces to computing the
same values but in GT . Especially, thanks to the property of bilinear mapping,
we have

(λ • γ(C)) � g2 = γ(C) � (λ • g2).

Smoothness. For words outside the language, the projection keys, without
being changed, do not reveal new information, so that the smoothness will remain
preserved.

Remark. Under the case that this transformed version does not weaken the
subgroup decision assumption linked to the original language, we can set G1 =
G2. For a counter example, because DDH assumption is not hard in bilinear
group, any PCE scheme based on SPHF from DDH assumption should not be
allowed to defined over symmetric bilinear groups (G1 = G2).

An Instantiation of SPHF from DDH Assumption [8].

1. SPHFSetup(k): param=(G, p, g1, g2).

2. HashKG(LDDH, param) : hk = (s1, s2)
$← Z2

p.
3. ProjKG(hk, (LDDH, param)) : hp = gs1

1 gs2
2 ∈ G.

4. Hash(hk, (LDDH, param),W = (gr
1, g

r
2)) : hv = grs1

1 grs2
2 ∈ G.

5. ProjHash(hp, (LDDH, param),W = (gr
1, g

r
2), w = r) : hv′ = hpr ∈ G.

An Instantiation of PF-SPHF from SXDH Assumption [3,4] (transformed
from DDH-based SPHF)

1. SPHFSetup(k): param=(G1, G2, GT , e, p, g1,1, g1,2, g2), where g1,1, g1,2 ∈ G1

and g2 ∈ G2.



10 S. Ma and Q. Huang

2. HashKG(LSXDH, param) : hk = (s1, s2)
$← Z2

p.
3. ProjKG(hk, (LSXDH, param)) : hp = gs1

1,1g
s2
1,2 ∈ G1.

4. Hash(hk, (LSXDH, param),W = (gr
1,1, g

r
1,2)) : hv = e(grs1

1,1 grs2
1,2 , g2) ∈ GT .

5. ProjHash(hp, (LSXDH, param),W = (gr
1,1, g

r
1,2), w = r) : hv′ = hpr ∈ GT .

An Instantiation of Extended PF-SPHF from SXDH Assumption

1. SPHFSetup(k): param= (G1, G2, GT , e, p, g1,1, g1,2, g2,H), where g1,1, g1,2 ∈
G1, g2 ∈ G2 and H is a collision-resistant hash function defined on: G2

1 ×
{0, 1}l → Zp. Assume that aux is a l-bit string.

2. HashKG(LSXDH, param) : hk = ((s1, s2), (t1, t2))
$← Z4

p.
3. ProjKG(hk, (LSXDH, param)) : hp = (hp1, hp2) = (gs1

1,1g
s2
1,2, g

t1
1,1g

t2
1,2) ∈ G2

1.
4. Hash(hk, (LSXDH, param),W = (gr

1,1, g
r
1,2), aux) : hv = e((grs1

1,1 grs2
1,2 )

(grt1
1,1grt2

1,2 )θ, g2) ∈ GT , where θ = H(W,aux).
5. ProjHash(hp, (LSXDH, param),W = (gr

1,1, g
r
1,2), aux,w = r) : hv′ =

e(hpr
1hp

θr
2 , g2) ∈ GT , where θ = H(W,aux).

3 Definitions

3.1 Plaintext-Checkable Encryption

We recall here the notion of plaintext-checkable encryption (PCE) [7], which is
composed of the following five algorithms.

1. Setup is a probabilistic algorithm which takes as input a security parameter
k and outputs a public system parameter pp.

2. KeyGen is a probabilistic algorithm which takes as input a public system
parameter pp and outputs a key pair of (pk, sk) of public and secret key,
respectively.

3. Enc is a probabilistic algorithm which takes as input pk and a plaintext M
and outputs a ciphertext C.

4. Dec is a deterministic algorithm which takes as input sk and a ciphertext C
and outputs a plaintext M or ⊥.

5. Check is a deterministic algorithm which takes as input a plaintext M and a
ciphertext C, and outputs 1 if C is an encryption of M , and 0 otherwise.

The correctness of PCE must verify the following two conditions:

1. Correctness of decryption. For any k ∈ N and m ∈ {0, 1}∗,

Pr[pp
$← Setup(k), (pk, sk) $← KeyGen(pp), c $← Enc(pk,m) :

Dec(sk, C) = m] = 1.

2. Correctness of plaintext check. For any k ∈ N and m ∈ {0, 1}∗,

Pr[pp
$← Setup(k), (pk, sk) $← KeyGen(pp), c $← Enc(pk,m) :

Check(M,C) = 1] = 1.



PCE with Unlink-CCA Security in the Standard Model 11

We assume that PCE plaintexts are drawn from a space of high min-entropy
[7] since the adversary could win the game definitely when PCE plaintexts come
from a space without enough entropy. This assumption is reasonable and has
existed in many searchable encryptions.

Definition 1 (High min-entropy). An adversary A = (Af ,Ag) is legitimate
if there exists a function �(·) s.t. for all pk and m ∈ [Af (1k, pk)] we have |m| =
�(k). Moreover, we say that an adversary A = (Af ,Ag) has min-entropy μ if

∀k ∈ N ∀pk ∀m : Pr[m′ ← Af (1k, pk) : m′ = m] ≤ 2−μ(k).

A is said to have high min-entropy if it has min-entropy μ with μ(k) ∈ ω(logk).

3.2 Unlink-cca Security

Informally, the unlink-cca security assures that the adversary A = (A1,A2)
(assume that A1 and A2 share neither coins nor state) as a pair of polyno-
mial time algorithms could not get any partial information about whether two
ciphertexts share the same plaintext without given the challenge plaintexts even
provided access to a decryption oracle. Note that A2 does not see M0 and M1 as
the output of A1 and hence cannot trivially guess whether C∗ is the encryption
of M0 or M1. The following experiment Expunlink-cca

PCE,A (k) is formally defined for
the adversary A with high min-entropy against unlink-cca security of PCE.

Expunlink-cca
PCE,A (k):

1. Setup Phase. The challenger runs the Setup(k) algorithm and then the
KeyGen(pp) algorithm to generate (pk, sk). It sends (pp, pk) to the adversary
A = (A1,A2), where A1 and A2 share neither coins nor state.

2. Probing Phase I. The adversary A submits a ciphertext C to the challenger.
The challenger decrypts C using its secret key sk and returns the plaintext
M back to A.

3. Challenge Phase. The adversary A1 randomly selects two messages M0 and
M1, and presents them to the challenger. The challenger selects a random bit
b ∈ {0, 1} and sends (C∗

b , C∗
1 ) = (Enc(pk,Mb),Enc(pk,M1)) to A2.

4. Probing Phase II. For A’s submitted ciphertext C, the challenger responses
the same as in the probing phase I with the only constraint that C is equal
to neither C∗

b nor C∗
1 .

5. Guessing Phase. A2 outputs a bit b′. The adversary A is said to win the
game if b′ = b, inducing the output of experiment is 1, and 0 otherwise.

We say PCE has unlink-cca security if for any polynomial adversary A,

Advunlink-cca
PCE,A (k) =

∣∣∣∣ Pr[b = b′] − 1
2

∣∣∣∣,
which is negligible on the security parameter k.



12 S. Ma and Q. Huang

4 PCE Construction with Unlink-cca security

In this section, we present a PCE construction with unlink-cca security and
formally prove it in the standard model.

4.1 Construction

Let SPHF= (SPHFSetup, HashKG, ProjKG, Hash, ProjHash) and PF-SPHFet =
(PF-SPHFSetupet, PF-HashKGet, PF-ProjKGet, PF-Hashet, PF-ProjHashet) be
SPHF and extended PF-SPHF defined on the same language, respectively. We
present a construction of PCE = (Setup,KeyGen,Enc,Dec,Check) as follows.

1. Setup(k): Let PG = (G1, G2, GT , e, g1, g2, p) be a bilinear group and the lan-
guage L be hard-partitioned subset. Taking the security parameter k as input,
it runs SPHFSetup(k) algorithm of SPHF and PF-SPHFSetupet(k) algorithm
of PF-SPHF to generate the public parameter (L, param) and (L, paramet) on
group G2 of prime order p and group GT of prime order p, respectively. Finally,
it returns the public system parameter pp =<PG,L, param, paramet >.

2. KeyGen(pp): It outputs the public/private key pair (pk, sk) for the PCE
scheme:

pk : (hp, phpet) = (ProjKG(hk, (L, param)),PF-ProjKGet(hket, (L, paramet))),
sk : (hk, phket) = (HashKG(L, param),PF-HashKGet(L, paramet)).

3. Enc(pk,M) : It randomly picks a word W ∈ L with the witness w and com-
putes for M ∈ G2:

X = ProjHash(hp, (L, param),W,w) � M.

and then

Y = PF-ProjHashet(phpet, (L, paramet), (W,X), w, hp) ∈ GT .

Finally, it outputs a PCE ciphertext

C = (W,X, Y )

for the plaintext M under the public key pk.
4. Dec(sk, C): Upon parsing C as (W,X, Y ), it verifies if

Y = PF-Hashet(phket, (L, paramet), (W,X), hp)

holds. Through the validation, it computes

M ← X � Hash(hk, (L, param),W )−1

and returns the plaintext M for the ciphertext C, or ⊥ otherwise.



PCE with Unlink-CCA Security in the Standard Model 13

5. Check(M,C): It checks if

Y = phpet[W,X] � (X � M−1)

holds, where phpet[W,X] is defined as γ(C) with auxiliary input [W,X] using
language representation in Sect. 2. Through this validation, it returns 1 indi-
cating that M is the plaintext of C, or 0 otherwise.

Remark 1. In fact, the above PCE ciphertext consists of an unlink-secure PCE
ciphertext (W,X) combined with an extended SPHF value (a PF-SPHF value)
Y for consistency check. This technology of extended SPHF with 2-smoothness
property is usually used to guarantee the non-malleability of the ciphertext and
hence could achieve CCA security, as seen in [8].

Remark 2. The advantage of using PF-SPHF instead of plain SPHF is to pro-
vide the third way to compute hash value besides through ProjHash and Hash
algorithms. The essence is that the witness generally as an exponentiation can
operate on both G1 and G2 thanks to the property of bilinear pairing.

Correctness. The correctness of decryption is easily to be verified using the prop-
erty of SPHF. Here we only show the correct analysis of test algorithm by the
following derivations.

Y = PF-ProjHash(phpet, (W,X), w, hp)
= ProjHash(phpet, (W,X), w) � hp

= phpet[W,X] � (w • hp)
= phpet[W,X] � (X � M−1)

4.2 Security Proof

Theorem 1. PCE satisfies unlink-cca if it is computationally hard to distinguish
any random element W ∗ ∈ L from any random element from X\L.
Proof We show that the existence of an adversary A against unlink-cca security
with significant advantage implies the existence of an efficient algorithm B that
decides a random element Wch ∈ L or Wch ∈ X\L. We define the following
game between a simulator (as a role of the distinguisher for the hard subset
membership problem) and an adversary A = (A1,A2) that carries out an unlink-
cca attack.

Game0: Game0 is the initial security game.

1. Setup Phase. This simulator emulates the initialization of the system as fol-
lows. It runs the Setup(k) algorithm by itself to generate the public parame-
ter pp =<PG,L, param, paramet >. Then it runs the KeyGen(pp) algorithm to
generate a public/secret key pair (pk, sk) = ((hp, phpet), (hk, phket)). It gives
(pp, pk) to A.



14 S. Ma and Q. Huang

2. Probing Phase I. For A’s submitted ciphertext C, the simulator returns
the plaintext M via the Dec algorithm using its secret key sk.

3. Challenge Phase. A1 presents two random messages M0 and M1 to the
simulator. The simulator computes the ciphertext C∗

b = (W ∗,X∗, Y ∗) of Mb

as follows and honestly computes C∗
1 for M1. Finally, it returns (C∗

b , C∗
1 ) to

A2.
• The simulator chooses a random word W ∗ ∈ L, where W ∗ is the

value input to the simulator, and computes X∗ = Hash(hk,W ∗) � M
using the private evaluation algorithm Hash. Then it computes Y ∗ =
PF-Hashet(phket, (W ∗,X∗), hp) using the private evaluation algorithm
PF-Hashet and outputs C∗

b = (W ∗,X∗, Y ∗).
4. Probing Phase II. For A’s submitted query on the ciphertext C, the sim-

ulator responses the same as in the probing phase I with the only constraint
that C is equal to neither C∗

b nor C∗
1 .

5. Guessing Phase. A2 outputs its guess b′.

Let S0 be the event that the simulator outputs 1 in Game 0. Due to the correct-
ness of SPHF, we have ∣∣∣∣ Pr[S0] − 1

2

∣∣∣∣ = Advunlink-cca
PCE,A (k) (1)

Game1: Game1 is the same as Game0 except that W ∗ is replaced by Wch. We
consider the behaviour of this simulator in two cases:

Case 1: The simulator is given a random element W ∗ ∈ L. Let Yes(1) be the
event that the simulator outputs 1 in this case. Let S

(Yes)
1 be the event that the

simulator outputs 1 in Game1. The simulator is perfect and hence Pr[S(Yes)
1 ] =

Pr[S0]. Therefore, we have∣∣∣∣ Pr[Yes(1)] − 1
2

∣∣∣∣ =
∣∣∣∣ Pr[S(Yes)

1 ] − 1
2

∣∣∣∣
=

∣∣∣∣ Pr[S0] − 1
2

∣∣∣∣ ≥ Advunlink-cca
PCE,A (k). (2)

Case 2: The simulator is given a random element W ∗ ∈ X\L. Let No(1) be the
event that the simulator outputs 1 in this case. We will use the game-hopping
technique for this case. Let Pr[S(No)

1.i ](i = 0, . . . , 4) be the probability that the
simulator outputs 1 in the game G̃ame1,i(i = 0, . . . , 4) given a random element
W ∗ ∈ X\L.

G̃ame1.0: G̃ame1.0 is the same as G̃ame1 in the case of W ∗ ∈ X/L. We
have Pr[S(No)

1.0 ] = Pr[S(No)
1 ].



PCE with Unlink-CCA Security in the Standard Model 15

G̃ame1.1: G̃ame1.1 is the same as G̃ame1.0, so that in addition to rejecting
a ciphertext C = (W,X, Y ) but Y = PF-Hashet(phket, (W,X), hp). Let F be
the event that Y = PF-Hashet(phket, (W,X), hp). We claim that∣∣∣∣ Pr[S(No)

1.1 ] − Pr[S(No)
1.0 ]

∣∣∣∣ ≤ Pr[F ]. (3)

Next, we analyze the probability that the event F happens. For all ciphertxts
C = (W,X, Y ) ∈ X × G2 × GT with W ∈ X\L submitted to a decryption
oracle after the challenge phrase, we divide them into two cases:

1. (W,X) = (W ∗,X∗). Because Y is uniquely determined by (W,X), we have
Y = Y ∗. The simulator returns ⊥ under the constraint that (W,X, Y ) �=
(W ∗,X∗, Y ∗).

2. (W,X) �= (W ∗,X∗). Given (W,X, Y ), phket is still uniformly distributed
with the only constraint that phpet = ProjKGet(phket). Under this condi-
tion, due to the 2-smoothness property, PF-Hashet(phket, (W,X)) is uni-
formly distributed over GT . We claim that the probability that the adver-
sary outputs a valid ciphertext (W,X, ·) submitted to the decryption oracle
is negligible.

Assume that Q(k) denotes the number of decryption queries. From the above
analysis, we have

Pr[F ] ≤ ε2-smooth(k) · Q(k), (4)

where ε2-smooth(k) denotes the distinguishable probability in the definition of the
2-smoothness property of SPHF. We claim that∣∣∣∣ Pr[S(No)

1.1 ] − Pr[SNo
1.0]

∣∣∣∣ ≤ ε2-smooth(k) · Q(k), (5)

by combining the relations (3) and (4).

G̃ame1.2: G̃ame1.2 is the same as G̃ame1.1 except that the simulator sets
X∗ = y � Mb in stead of computing X∗ = Hash(hk,W ∗) � Mb, where y ∈ G2

is chosen at random. We claim that∣∣∣∣ Pr[S(No)
1.2 ] − Pr[S(No)

1.1

∣∣∣∣ ≤ εsmooth(k), (6)

where εsmooth(k) denotes the distinguishable probability in the definition of
the smoothness property of SPHF.
G̃ame1.3: G̃ame1.3 is the same as G̃ame1.2 except that the simulator sets
Y ∗ = yT

$← GT in stead of computing Y ∗ = PF-Hashet(phket, (W ∗,X∗), hp).
We claim that ∣∣∣∣ Pr[S(No)

1.3 ] − Pr[S(No)
1.2 ]

∣∣∣∣ ≤ εsmooth(k). (7)

It is evident that the adversary’s output b′ in G̃ame1.3 is independent of the
hidden bit b. Therefore, we have



16 S. Ma and Q. Huang

Pr[S(No)
1.3 ] =

1
2
. (8)

Due to G̃ame1.0, G̃ame1.1, G̃ame1.2, G̃ame1.3, we have∣∣∣∣ Pr[No] − 1
2

∣∣∣∣ =
∣∣∣∣ Pr[S(No)

1 ] − 1
2

∣∣∣∣ ≤ ε2-smooth(k) · Q(k) + 2 · εsmooth(k), (9)

Combining relations (2) and (9), we have∣∣∣∣ Pr[Yes] − Pr[No]
∣∣∣∣ ≥ Advunlink-cca

PCE,A (k) − (ε2-smooth(k) · Q(k) + 2 · εsmooth(k)), (10)

Thanks to the hard subset membership problem, we have∣∣∣∣ Pr[Yes(1)] − Pr[No(1)]
∣∣∣∣ ≤ εdist(k), (11)

where εdist(k) is the probability of solving hard subset membership problem.
Therefore, combining relations (10) and (11), we have

Advunlink-cca
PCE,A (k) ≤ εdist + ε2-smooth(k) · Q(k) + 2 · εsmooth(k),

from which the theorem immediately follows.

5 PCE Instantiation from SXDH Assumption

In this section, we present a PCE instantiation on a bilinear group from SXDH
assumption based on SPHF and extended PF-SPHF instantiations in Sect. 2.

1. Setup(k): Assume that PG = (G1, G2, GT , e, g1,1, g1,2, g2,1, g2,2, p), where
(g1,1, g1,2) are random generators of G1 and (g2,1, g2,2) are random genera-
tors of G2. It runs SPHFSetup(k) algorithm of SPHF and PF-SPHFSetupet(k)
algorithm of PF-SPHFet to set the public parameter pp = (PG,LSXDH,H),
where the collision-resistant hash function H is defined on (G2)3 → Zp.

2. KeyGen(pp): It outputs the following public/private key pair (pk, sk) for the
PCE scheme: pk = (hp1, hp2) = ((gs1

1,1g
s2
1,2, g

t1
1,1g

t2
1,2), (g

a1
2,1g

a2
2,2)) and sk =

(hk1, hk2) = (((s1, s2), (t1, t2)), (a1, a2).
3. Enc(pk,M): It chooses a random r ∈ Zp and computes W = (gr

2,1, g
r
2,2)

and X = (ga1
2,1g

a2
2,2)

rM and Y = e((gs1
1,1g

s2
1,2)

r(gt1
1,1g

t2
1,2)

θr, ga1
2.1g

a2
2.2), where

θ = H(W,X). Finally, it outputs a PCE ciphertext C = (W,X, Y ) for the
plaintext M .

4. Dec(sk, C): Upon parsing C as (W,X, Y ), it verifies if Y =
e((gs1

1,1g
s2
1,2)(g

t1
1,1g

t2
1,2)

θ, (gr
2,1)

a1(gr
2,2)

a2) holds, where θ = H(W,X). Through
the validation, it computes M ← X · ((gr

2,1)
a1(gr

2,2)
a2)−1 and returns plain-

text M for the ciphertext C, or ⊥ otherwise.
5. Check(M,C): Upon parsing C as (W,X, Y ), it checks if Y =

e((gs1
1,1g

s2
1,2)(g

t1
1,1g

t2
1,2)

θ,X ·M−1), where θ = H(W,X). Through this validation,
it returns 1 indicating that M is the plaintext of C under pk, or 0 otherwise.



PCE with Unlink-CCA Security in the Standard Model 17

Table 2. Comparison

Model Sec Asmp |C| Encryption Decryption Test

[21] ROM OW-CCA CDH 4� 3E 3E 2P+3E

[7] Standard UNLINK DLIN+SXDH 4� 4E 2P+E 4P

[16] Standard S-PRIV1-CCA DDH 6� 7E 6E 4E

Ours Standard UNLINK-CCA SXDH 4� P+4E P+3E P+E

Note:
1 l: The length of group element in Gs(s = 1, 2, T ).
2 E: An exponentiation operation. P: A pairing operation.

5.1 Comparison

We choose existing PCE schemes [7,16] and PKEET scheme [21] (with similar
functionality and security notion described in Sect. 1) for comparison in Table 2
with regards to proof model, security, assumption, ciphertext length and com-
putation complexity of encryption, decryption and test algorithms. We see that
our construction is the first PCE scheme with stronger unlink-cca security in
the standard model. According to the experiment results in [10,20] that an opti-
mized bilinear pairing costs nearly about two times than an exponentiation using
Java-based PBC library, our scheme has the minimum ciphertext size, moderate
encryption and decryption computation complexity, and the minimum computa-
tion complexity of test algorithm. In conclusion, our SXDH-based PCE instan-
tiation achieves not only the desired security but also efficient test computation
complexity, which will be very useful in practical applications.

6 Conclusion

By the tool of Pairing-Friendly Smooth Projective Hash Function (PF-SPHF),
we proposed the first PCE construction that satisfies unlink-cca security in the
standard model. We proved its security based on the hard subset membership
problem. Finally, we instantiate the PCE construction from SXDH assumption
and show its advantages on both security and efficiency by comparison with
related work.

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China (No. 61872409, 61872152), Pearl River Nova Program of Guangzhou (No.
201610010037), Guangdong Natural Science Funds for Distinguished Young Scholar
(No. 2014A030306021) and Guangdong Program for Special Support of Topnotch
Young Professionals (No. 2015TQ01X796).

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

https://doi.org/10.1007/978-3-540-74143-5_30


18 S. Ma and Q. Huang

2. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 18

3. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

4. Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 339–369.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 12

5. Blazy, O., Derler, D., Slamanig, D., Spreitzer, R.: Non-interactive plaintext (in-
)equality proofs and group signatures with verifiable controllable linkability. In:
Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 127–143. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29485-8 8

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

7. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable
encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–
348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 21

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Das, A., Adhikari, A., Sakurai, K.: Plaintext checkable encryption with designated
checker. Adv. Math. Commun. 9(1), 37–53 (2015)

10. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: IEEE Sym-
posium on Computers and Communications (ISCC), vol. 2011, pp. 850–855 (2011)

11. Han, J., Yang, Y., Huang, X., Yuen, T., Li, J., Cao, J.: Accountable mobile E-
commerce scheme via identity-based plaintext-checkable encryption. Inf. Sci. 345,
143–155 (2016)

12. Huang, K., Tso, R., Chen, Y., Rahman, S., Almogren, A., Alamri, A.: PKE-AET:
public key encryption with authorized equality test. Comput. J. 58(10), 2686–2697
(2015)

13. Lu, Y., Zhang, R., Lin, D.: Stronger security model for public-key encryption with
equality test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp.
65–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4 5

14. Ma, S.: Authorized equi-join for multiple data contributors in the PKC-based set-
ting. Comput. J. 60(12), 1822–1838 (2017)

15. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

16. Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database
encryption. Inf. Sci. 429, 88–101 (2018)

17. Tang, Q.: Towards public key encryption scheme supporting equality test with fine-
grained authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 389–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22497-3 25

https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/978-3-319-29485-8_8
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-27954-6_21
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-36334-4_5
https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-642-22497-3_25


PCE with Unlink-CCA Security in the Standard Model 19

18. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

19. Tang, Q.: Public key encryption schemes supporting equality test with authoriza-
tion of different granularity. Int. J. Appl. Crypt. 2(4), 304–321 (2012)

20. Wong, C.S., Tan, S., Ng, H.: An optimized pairing-based cryptography library for
android. Int. J. Cryptol. Res. 6, 16–30 (2016)

21. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

https://doi.org/10.1007/978-3-642-11925-5_9


A Bitwise Logistic Regression Using
Binary Approximation and Real Number
Division in Homomorphic Encryption

Scheme

Joon Soo Yoo, Jeong Hwan Hwang, Baek Kyung Song, and Ji Won Yoon(B)

Korea University, Seoul, Republic of Korea
{sandiegojs,ju.su.splab,baekkyung777,jiwon yoon}@korea.ac.kr

Abstract. Homomorphic Encryption (HE) is considered to be one of the
most promising solutions to maintain secure data outsourcing because
the user’s query is processed under encrypted state. Accordingly, many of
existing literature related to HE utilizes additive and multiplicative prop-
erty of HE to facilitate logistic regression which requires high precision
for prediction. In consequence, they inevitably transform or approximate
nonlinear function of the logistic regression to adjust to their scheme
using simple polynomial approximation algorithms such as Taylor expan-
sion. However, such an approximation can be used only in limited appli-
cations because they cause unwanted error in results if the function is
highly nonlinear. In response, we propose a different approximation app-
roach to constructing the highly accurate logistic regression for HE using
binary approximation. Our novel approach originates from bitwise oper-
ations on encrypted bits to designing (1) real number representation,
(2) division and (3) exponential function. The result of our experiment
shows that our approach can be more generally applied and accuracy-
guaranteed than the current literature.

Keywords: Sigmoid · Homomorphic Encryption · Bitwise operation

1 Introduction

We are now living in a data-driven society where large amount of personal infor-
mation is constantly collected and accumulated with or without knowing our pri-
vacy being compromised. Though not until recently has privacy issue become a
priority demanding secured protocol or cryptosystems against this attack. In this
response, many of the current research concentrates on data mining while pre-
serving individuals’ privacy. Among the famous known mechanisms, the Homo-
morphic Encryption (HE) is one of the solutions of providing secure data out-
sourcing between the users and the server in the aid of profound mathematical
background. The feasibility of highly secured cryptosystem is due to the fact
that HE allows any computation to run over encrypted data thereby preserving

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 20–40, 2019.
https://doi.org/10.1007/978-3-030-34339-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_2


HE Bitwise Logistic Regression 21

user privacy. However, with the rigorous scheme that HE has, it had struggled
with long execution time interfering deployment of HE for public usage. Worse,
most algorithms in data mining and machine learning are designed with several
complicated nonlinear operations such as ‘inverse’, ‘exponential’, ‘log’, and ‘sig-
moid’ which cannot be easily designed with HE. Therefore, several researches
related in HE have been conducted to develop practical data mining and machine
learning algorithms which include various approximation [2,4,14].

Recently, HE based algorithms for logistic regression which is one of popu-
larly used algorithms in data mining have been developed to successfully reduce
their performance time with relatively high accuracy [6,10,11]. These algorithms
followed the cryptosystem developed by Cheon et al. [5] to approximate real
numbers by scaling with a factor of p to all elements zi to support integer-based
computation. This is due to MPC protocol which ensures non-leakage of pri-
vate information of n users who participate in following the protocol to transmit
scaled vector, p · zi to the client. Although their work is advantageous in many
ways, they missed some of the important nature of cloud computing model.

First of all, since they are following integer-based computation method, it
requires for the server to perform rounding operation that is to multiply the
scaling factor p. However, it is difficult to optimally decide p without deploy-
ment of MPC protocol among users and the client. Therefore, the clients are
inevitably obliged to preprocess the data before sending it to the server. How-
ever, our system is effective in directly representing real number thereby trou-
blesome processes such as rounding operation and extracting scaling factor are
unnecessary.

Approximating the sigmoid function in the logistic regression is another issue
from which many of existing literature suffers. They attempt to manipulate the
sigmoid function with low-degree polynomials via the Taylor series polynomial
approximation [3,14]. The Taylor series polynomial of degree 9 for sigmoid func-
tion g(·) can be derived as g(z) = 1

1+e−z ≈ 1
2 + 1

4z − 1
48z3 + 1

480z5 − 17
80640z7 +

31
1451520z9. Thus, the nonlinear logistic function can be feasibly but approximately
calculated with HE addition and multiplication. However, the approach fails to
approximate outside of the interval (−2, 2) (See Fig. 1). The Taylor series polyno-
mial approximation had been modified to broaden bounded domain of (−2, 2) by
adopting least square approximation [6,10,11]. This advanced approach is to find
g(x) that minimize mean squared error(MSE): MSE(x) = 1

|I|
∫

I
(g(x)−f(x))2dx

where |I| is the length of an interval. Although the method succeeded in pro-
viding larger interval than Taylor series, it still struggles to approximate logistic
function outside of interval (−8, 8) which can be explicitly checked in the Fig. 1.

In order to avoid calculating the scaling factor in integer-based HE scheme
and reduce the unwanted error obtained by polynomial approximation, we found
that HE scheme with bitwise operations is more robust scheme than traditional
ones with integer operations in HE computation. In this paper, we propose a new
HE logistic regression algorithm which includes approximated functions with
bitwise operations. In addition, our approach is more ideal and rigorous than
the integer-based HE logistic approaches in a broad sense of cloud computing



22 J. S. Yoo et al.

Fig. 1. Comparison of real sigmoid with Taylor and least square approximation

such that the user only submits his/her query and the computationally powerful
server processes the given task and returns the result without compromisation
of user privacy.

From this point of view, our key contributions of this paper are summarized
below:

– We propose a novel approach of implementing basic Homomorphic operations
with bitwise operation considering accuracy and speed.

– We also extend traditional number system based on lattice model from integer
to real number.

– We provide more general logistic regression model that can be extensively
used, compared to those of current literature.

– Our approach broadens horizon of feasibility in an application to diverse fields
of studies that require secure cloud computing model.

Some Notation. Throughout this paper we denote X(i)
j as ith row and jth

column of the matrix X usually when we want to represent a dataset. In addition,
most of the works constructing basic HE function treat with bits and arrays.
Therefore, we represent a vector a as an array with elements (or bits) indexed
by [n] for n ∈ {0, 1, · · · , l − 1} of length l. Moreover, we refer bitwise to apply
operation element-wisely and sc to denote transformation of a vector to a scalar
value. Lastly, boots is denoted by bootstrapping binary gates [7].

2 Preliminaries

2.1 Logistic Regression

Logistic regression is one of the basic statistical models that use a logistic func-
tion to predict a binary dependent variable from given input [16]. Given a d

dimensional observed data X(i) ∈ R
d and its corresponding label Y(i) ∈ Z2



HE Bitwise Logistic Regression 23

for i = 1, 2, · · · , n, inference on parameters of logistic regression is within
hypotheses, hθ(X(i)) = g(θTX(i)), where the ‘sigmoid’ function is defined as
g(z) = 1

1+e−z where θTX(i) = θ0+ θ1X
(i)
1 + θ2X

(i)
2 + · · · +θdX

(i)
d for X(i) = [1,

X(i)
1 , X(i)

2 , · · · , X(i)
d ]T , θ = [θ0, θ1, θ2, · · · , θd]T and number of features, d + 1.

To make inference on parameter θ, logistic regression uses likelihood function.
Simplifying the likelihood function for the whole data by log yields L(θ) =
∑n

i=1 Y
(i) log hθ(X(i)) + (1 − Y(i)) log(1 − hθ(X(i))). Techniques to maximize

or minimize L(θ) vary, however, in this paper, batch gradient descent algorithm
will be introduced. Thus, defining cost, J(θ) = −L(θ) facilitates gradient descent
algorithm to be performed.

3 Proposed Strategy

Several challenges elaborated in introduction section can be handled by applying
our technique starting from constructing HE functions based on encrypted bit-
wise operation scheme. First of all, we propose our definition of secure cloud com-
puting model of which many current research fails to satisfy. Then, we introduce
definition of our real number system to overcome quantization problem incorpo-
rated in the current literature [6,10,11]. Next, structures of two distinguished HE
functions are discussed as they are utilized to approximate the logistic function.
Finally, the performance of the proposed functions are articulated with respect
to time and accuracy.

3.1 Secure Cloud Computing Model

The proposed model for secure computation on the cloud follows a simple and
more secure protocol compared to the conventional methods. We initially assume
that the server is honest-but-curious implying that it is curious of information
received from the client, however, is honest to follow instruction correctly. We
are excluding servers such that they do not follow instructions, collude, manipu-
late and etc. The Fig. 2(a) shows overall protocol of client-server communication
model. The process initializes with client’s encrypting data X with the gen-
erated secret key sk. Next, the client transmits the encrypted data Encsk(x)
with a query f to the server. The server processes the client’s query in HE
scheme denoted by fHE with its generated cloud key ck. Lastly, the server returns
queried result to the client.

Based on the concept of our model, we claim that the proposed method
is more powerful than the current literature. Most importantly, the proposed
server does not interfere with the client requiring user-client interaction while
the most renowned work among existing model [11] involves participation of
users to encrypt the client’s data. The method requires the intervention of many
users and further creates new vulnerabilities in which colluded users can corrupt
the original data or outsource the data to the third party. On the contrary,
the server in our proposed model entirely holds responsibility to execute every
instructions that are necessary for processing the query.



24 J. S. Yoo et al.

(a) (b)

Fig. 2. Model comparison of (a) proposed model and (b) existing model [11]

3.2 Real Number Representation

The existing literature approximates real number data by a scaling factor from
the user-client protocol phase since their number system only supports integer
computation. However, such an approach entails users and clients to preprocess
data by performing complex computations and protocols. On the contrary, we
defined our real number systems based on number of bits designated for integer
and fractional part.

Fig. 3. Fixed point real number representation

Numbers in computer system are represented in two manners - floating point
and fixed point. Although the prior system has a strength of expressing large
range of numbers that contributes to high precision, we adopted fixed point num-
ber system due to its simplicity of processing fundamental arithmetic algorithm.
The system facilitates complex real number arithmetic operations to simple inte-
ger arithmetic operations. This is crucial in FHE scheme because expensive time
cost of bootstrapping on every encrypted bits are accumulated to delay the whole
procedure. Figure 3 illustrates design of our proposed number system. Initially,
the library adopts a way of representing arrays in an inverse direction, indexing
from left to right. Next, we assign low length

2 − 1 bits to indicate fractional part,
length

2 for integer and lastly 1 bit for msb (most significant bit). Since some of



HE Bitwise Logistic Regression 25

HE function such as HE logarithm and exponential function require more oper-
ations for deriving binary fractions, length of fractional word is less designated
for faster computation.

3.3 Homomorphic Division

Most of the current research systems only allow HE addition and multiplication
to perform a certain operation such as logistic regression. It is indeed feasible to
construct any operation only containing the previous two HE functions, however
manipulation of an equation requires cumbersome detour and often cannot be
easily done. Consider for the case of logistic function g(z) = 1

1+exp(−z) where
the equation holds division and nonlinear exponential function. As mentioned
in the previous section, the current literature unavoidably performs inaccurate
approximation technique into low-degree polynomials since their system cannot
support division and exponential functions. In this light, our view approaches
the problem more fundamentally than the existing ones.

Our encrypted division scheme originates from an approach that we perform
when dividing a dividend q by a divisor m in plaintext. We adopted the process
due to its simplicity which guarantees speed in time-consuming HE scheme. The
procedure deduces quotient and remainder accurately within the boundary of
designated length. Algorithm 1 explains the division process in plaintext to help
understanding before articulating division in an encrypted domain.

Algorithm 1. Plain.Division(q̂, m̂, l) : plaintext division
1: repeat
2: ŵ ← (q̂ || â) � Combine both vectors
3: ŵ ← RightShift(ŵ, 1)
4: â ← (ŵ[l), ŵ[l + 1], · · · , ŵ[2l − 1])
5: if sc(â) < sc(m̂) then
6: ŵ[0] ← 0
7: else
8: ŵ[0] ← 1
9: â ← â − m̂ � Elementwise subtraction

10: end if
11: until l + l

2 − 1 times until all fractional bits of q̂ are extracted

12: return q̂

The process begins with assigning ŵ by combining array q̂ quotient and â
of zeroes with length l. Note that â will be the remainder after an iteration of
l times. The process of comparing â and m̂ and assigning the lowest bit of ŵ
refers to subtraction of remainder â by divisor m̂. By repeating the process for
more than l provides binary fractional part of quotient q̂.

However, there are several limitations that follow in the case of division
under the encrypted domain since the given input values are encrypted. First
of all, it is infeasible to know the sign of input numbers which determine the
sign of outcome. Next, comparison of encrypted values cannot be executed as in



26 J. S. Yoo et al.

Algorithm 2. HE.Division(q̂, m̂) : division in encrypted state
1: ŝ1 ← boots.XOR(q̂[l − 1], m̂[l − 1]))
2: q̂+ ← HE.AbsoluteValue(q̂)
3: m̂ ← HE.AbsoluteValue(m̂)
4: repeat
5: ĉ ← (q̂ || â)
6: ĉ ← HE.RightShift(ĉ, 1)
7: â ← (ĉ[l], ĉ[1 + 1], · · · , ĉ[2l − 1])
8: q̂ ← (ĉ[0], ĉ[1], · · · , ĉ[l − 1])
9: d ← HE.CompareSmall(â, m̂)
10: q̂+[0] ← boots.NOT(d)
11: âM ← HE.Subtract(â, m̂)
12: âL ← Bitwise boots.AND(q̂[0], âM )

13: âR ← Bitwise boots.AND(d̂, â)
14: â ← boots.AND(âL, âR)
15: until l + l

2 − 1 times until all fractional bits of q̂+ are extracted

16: ŝ2 ← boots.NOT(ŝ1)
17: q̂− ← HE.TwosComplement(q̂+)
18: q̂L ← Bitwise boots.AND(ŝ2, q̂+)
19: q̂R ← Bitwise boots.AND(ŝ1, q̂−)
20: q̂ ← HE.Add(q̂L, q̂R)
21: return q̂

plaintext. Therefore, we concentrate on encrypted bits of the input values and
apply gate operations to remove the limitations as stated in Algorithm 2.

To clear out the problem of sign, we initially perform absolute value operation
on q̂ and m̂ to follow positive division algorithm, a loop in the Algorithm2 in
which the result will be denoted by q̂+. In addition, boots.XOR operation is
performed on signs of given two input values where it is located in l − 1th
position. boots.XOR operation is performed because the operation yields Enc(0)
if q̂ and m̂ have the same sign and Enc(1) otherwise. Suppose both q̂ and m̂ have
the same sign, then ŝ1 is Enc(0). Since the result of division must be positive
i.e. q̂+, we execute bitwise boots.AND of ŝ2 and q̂+ to obtain positive result.
Inversely, bitwise boots.AND of ŝ1 and q̂− is carried out in the same manner to
yield negative outcome for different signs of input given. We add both of the
results qL and qR to cover all of the possible cases of input signs.

The next problem of comparing values of ciphertext is solved with
HE.Compare Small(a, b) function where the output is either Enc(1) if a < b and
otherwise Enc(0). If we set the input values of the function to be â and m̂, then
the function clearly determines the value of ŵ[0](or q̂+ in Algorithm 2, equiva-
lently) depending on the magnitude of â and m̂. Therefore, we use the encrypted
bit d as the result of the comparison function to extract the encrypted bits of q̂+
in the same manner of solving the first limitation. Suppose sc(â) ≥ sc(m̂), then d
is Enc(0) and by taking boots.NOT operation, the result of the encrypted bit is set
to Enc(1) which is the intended result of q̂+[0]. In addition, bitwise boots.AND of
d(=Enc(1)) and âm gives the result of subtracted outcome (= â − m̂). Inversely,
we execute the same procedure for sc(â) < sc(m̂) to reach the same level of
encrypted result. Lastly, addition of both results yields the solution to the second
problem. We provide algorithmic detail of the HE.CompareSmall(a, b) function
for verification in AppendixB.



HE Bitwise Logistic Regression 27

3.4 Homomorphic Exponential Function

Exponential function has nonlinearity which an output of the function is either
corresponded with look-up table or follows CORDIC (Coordinate Rotate Digital
Computer) technique [9]. The former technique is based on matching an input
value with huge range of number which on encrypted domain is not realisti-
cally computable. The latter technique has high potential of designing accurate
exponential function, however it is expected to require considerable amount of
time cost. Therefore, in this paper, we propose an alternative way to construct
exponential function that is simple and highly accurate. We refer to our novel
approach, binary approximation to coincide with exponential function with
relatively small error. The approach consists of four steps: preprocessing, binary
positive exponential method, binary negative exponential method and selective
integration. We initially provide the methodology followed by its evaluation with
accuracy; correctness is elaborated in Appendix A .

Preprocessing. The main step of binary approximation is to obtain 2x, how-
ever, if base change process is performed in the first stage, a general exponential
function value can be derived. Generally, base b of bx can be exchanged by the
formula bx = alogabx

= axlogab. Therefore, for base 2, it can be converted by
applying bx = 2xlog2b. Thus, given the input value x, multiplication of log2b and
x should be delivered to the next step.

The problem is that log2b has to be computed prior to multiplication of
log2b and x. However, since the current focus in this paper is to construct ex for
sigmoid function, we can simply multiply the input x by log2e = 1.01110001 · · ·(2)
to derive the new input. The mechanism of logarithm function in encrypted state
is elaborated in [15].

Binary Positive Exponential Method. Algorithms to be performed in the
case of the exponent part x being positive or negative follow different rules. In
addition, since the input value x is encrypted for 2Enc(x), it is mandatory to
execute both of the algorithms (positive or negative) to derive the result. How-
ever, the method entails simple processing rules and basic gate operations which
guarantee effectiveness in time-performance. The whole idea of approximating
y = 2x is basically combining line segments comprising of an initial point (k, 2k)
and a terminal point (k+1, 2k+1) for k ∈ Z. Suppose in the case of unencrypted
domain where x = xint +xfrac for xint and xfrac are integer and fractional part
of x, respectively. Then, the core technique is to add RightShift (x̂frac, xint) from
its initial point, RightShift (1̂, xint). To put it simply in a stepwise manner, the
first step is to identify the integer value of x. Next, 1̂ is shifted to the right by
xint. In the same way, the fractional part of x is right-shifted by xint. Lastly,
addition of both of these results are desired outcome of 2x for x ≥ 0.

In the encrypted domain, the problem is that the value of xint which deter-
mines the number of shift operations to be performed is unknown since x is
given as an encrypted value. Therefore, we utilize HE.CompareEqual function to



28 J. S. Yoo et al.

Algorithm 3. HE.BinExpPositive(x̂) : y = 2x where x ≥ 0
1: x̂int ← (x̂[ l

2 − 1], x̂[ l
2 ], · · · , x̂[l − 2]) � Integer bits of x̂

2: x̂frac ← (x̂[0], x̂[1], · · · , x̂[ l
2 − 2]) � Fractional bits of x̂

3: t̂1, t̂2 ← HE.EncryptNumber(0)

4: k̂ ← HE.EncryptNumber(1)
5: for i = 0 to l

2 − 1 do

6: ê ← HE.EncryptNumber(i)
7: ô[i] ← Bitwise HE.CompareEqual(ê, x̂int)

8: ŝk ← HE.RightShift(k̂, i)
9: ŝ1 ← Bitwise boots.AND(ô[i], ŝk)
10: t̂1 ← HE.Add(t̂1, ŝ1)
11: ŝf ← HE.RightShift(x̂frac, i)
12: ŝ2 ← Bitwise boots.AND(ô[i], ŝf )

13: t̂2 ← HE.Add(t̂2, ŝ2)
14: end for
15: r̂ ← HE.Add(t̂1, t̂2)
16: return r̂

derive integer value of xint. Specifically, the function takes two encrypted val-
ues and outputs Enc(1) if the two given encrypted values are equal and else
Enc(0). For each iteration of i, we temporally create an encryption of i, Enc(i)
and compare its value with xint and at the same time we right-shift Enc(1) and
xfrac by i times. At a certain point when the value of Enc(i) matches xint, the
HE.CompareEqual function will give Enc(1). In our last step, bitwise boots.AND
computation of Enc(1) and right-shifted outcome yields the result of our expo-
nentiation mechanism.

Binary Negative Exponential Method. Binary exponential method for
x < 0 proceeds similar steps as to the positive case in unencrypted state. The
absolute value operation of x is performed initially followed by obtaining integer
value of |x|, |x|int. Next, 1̂ is left-shifted by |x|int while fractional part of |x|
is shifted by |x|int + 1 in the same direction. Finally, subtraction of the former
outcome by the latter is conducted to produce the result. In short, the proce-
dure is summarized as follows: LeftShift(1̂, |x|int) + LeftShift( ˆ|x|frac, |x|int + 1).
The binary negative exponential approach in encrypted frame is analogous to
Algorithm 3. The differences are execution of absolute value operations in the
first phase, direction and amount of shift operation and subtraction at the end.
Since the method of deriving negative binary exponential function in encrypted
state is much similar to the positive case, we state the algorithm in AppendixB
for the sake of flow of the paper.

Selective Integration. In the last stage of exponential function, both
encrypted results from stage 2 and 3 are integrated in the same manner as
the procedure of determining sign in HE division. The main point is to extract
the signed bit of x̂ positioned at l − 1th bit and apply bitwise boots.AND opera-
tion. In short, the result of the whole procedure can can be summarized as the
following equation.

r̂ = bitwise boots.AND(x̂[l − 1], r̂1) +HE bitwise boots.AND(x̂not[l − 1], r̂2)(1)



HE Bitwise Logistic Regression 29

where r̂1, r̂2, x̂not and +HE are the outcomes of stage 2, 3, boots.NOT(x̂) and
HE.Add, respectively.

Algorithm 4. HE.Exponential(x) : y = ex

1: êlog ← HE.EncryptNumber(log2e)
2: x̂ ← HE.Multiply(x̂, elog)
3: r̂1 ← HE.BinExpPositive(x̂)
4: r̂2 ← HE.BinExpNegative(x̂)
5: x̂not ← boots.NOTx̂[l − 1]
6: r̂1 ← Bitwise boots.AND(r̂1, x̂not)
7: r̂2 ← Bitwise boots.AND(r̂2, x̂[l − 1])
8: r̂ ← HE.Add(r̂1, r̂2)
9: return r̂

Suppose, we consider the case of negative x to verify that the output of Eq. 1
is r̂2. Since the signed bit of x is Enc(1), the first term of Eq. 1 becomes Enc(0)
whereas the second term yields r̂2. Therefore, the summation of both results
is r̂2 which is the negative binary exponentiation of x. Likewise, we can easily
verify that r̂1 is the result for positive x.

3.5 Performance of HE Functions

In this section, we provide execution time and the accuracy from basic opera-
tions to main HE functions that were utilized in the paper. The research was
conducted in i7-7700 3.60 GHz, 16.0 GB RAM, Ubuntu 16.04.3 LTS, and the
actual implementation was on TFHE version 1.0.

Time Performance of HE Functions. Major operations in the logistic regres-
sion algorithm are shift, compare, arithmetic and nonlinear functions. Each of
the designed algorithms faced a challenge of maximizing usage of basic gate
functions such as AND, OR, NOT and etc. while trying not to utilize arith-
metic operations. Our experimentation Table 1 provides execution time for each
of the operations in detail for optimizing the HE functions. The Table 1 shows
that most of the HE functions except multiplication, division, logarithm and
exponential functions operate approximately less than a second. It implies that
the strategy for optimizing algorithms are minimization of these time-consuming
functions. The delays for the lagging operations follow time complexity of O(n2)
for the input length of n while other functions increase linearly by O(n). This is
due to the fact that the delaying operations include loops while others do not.

Accuracy of HE Functions. Every HE functions except the exponential func-
tion result accurate answers within the designated length l. Therefore, choos-
ing the range of integer part and fractional bits is very important. Since we’ve
assigned integer and decimal part to l

2 and l
2−1 respectively, our number system,

N is bounded by −∑l−1
i=1 2i− l

2 ≤ N ≤ ∑l−1
i=1 2i− l

2 .



30 J. S. Yoo et al.

Table 1. Performance time for HE functions

No Category Operation 8-bit(s) 16-bit(s) 32-bit(s)

1 − 2’s Comp 0.177 0.353 0.743

2 Shift Left 4 × 10−6 5 × 10−6 8 × 10−6

3 Right 7 × 10−6 9 × 10−6 12 × 10−6

4 Min/Max Min 0.444 0.892 1.797

5 Max 0.462 0.901 1.838

6 Compare Equal 0.177 0.353 0.743

7 Larger 0.251 0.503 1.066

8 Less 0.247 0.507 1.031

9 Basic Addition 0.408 0.866 1.768

10 Subtract 0.430 0.864 1.764

11 Multi. 5 22 99

12 Division 7 27 108

13 Nonlinear Log 26 226 1767

14 Exp 14 56 227

We evaluated error of HE exponential function utilizing Absolute Percentage
Error (APE), | ŷ−y

y |×100, where ŷ and y are denoted by HE exponential function
and the real exponential function, respectively. In addition, the mean of APE
is 4.07 at the interval of (−3, 6) and 4.00 in (6, 10) which shows that our HE
function is stable within the rate of error around 4.

4 Application to Logistic Regression

In this section, we elaborate the blueprint of HE logistic regression in terms of
sigmoid function and batch gradient descent algorithm. First, we briefly propose
our way of constructing HE logistic function. Then, HE batch gradient descent
algorithm is explained slightly different to fit into our scheme to fortify efficiency.
Finally, we articulate a way to scale data in an encrypted domain.

4.1 Sigmoid Function

We aim to deduce highly accurate HE logistic function from the basis of fun-
damental HE operations that we’ve built. This is because the core of logistic
regression lies in the design of sigmoid function which critically affects preci-
sion of the parameters, θ. The sigmoid function is constructed under genuine
HE operations that were presented in the previous sections. We first illustrate
Algorithm 5 of sigmoid function and show graphical results compared with the
original logistic function and traditional approaches, respectively.



HE Bitwise Logistic Regression 31

Algorithm 5. HE.Sigmoid(z) : y = g(z) = 1
1+e−z

1: z ← HE.TwosComplement(z)
2: z ← HE.Exponential(z)
3: e1 ← HE.EncryptNumber(1)
4: z ← HE.Add(z, e1)
5: r ← HE.Divide(e1, z)
6: return r

(a) (b)

Fig. 4. Graphs of comparison between different approaches

The HE Sigmoid function of input 16 and 32 bits approximate the logis-
tic function at the interval of (−6, 6) and (−11, 11), respectively which can be
verified in Fig. 4(a).

Although, our number system supports integer value at the interval of (−2
l
2 +

1, 2
l
2 − 1), exponential function’s designed mechanism reduces the interval to

the narrow depth which results from a few number of iteration loops in its
algorithm. Nevertheless, our HE sigmoid function provides a wider range of
precision interval than Taylor (degree 9) and the least square approximation
(degree 7); Taylor approximation and the least square approach lose precision
at the interval of around (−2, 2) and (−8, 8), respectively (see Fig. 4(b)).

4.2 HE Batch Gradient Descent Algorithm

We performed logistic regression by batch gradient descent algorithm. Recall
from Sect. 2, the update rule for θ is as follows. θj := θj− α

n

∑n
i=1

∂
∂θj

J(θ). Partial

derivatives of J(θ) with respect to θj is 1
n

∑n
i=1(hθ(X(i)) −Y(i))X(i)

j . Thus, the

update rule can be simplified as θj := θj−α
n

∑n
i=1(hθ(X(i))−Y(i))X(i)

j . From this
equation, our pseudocode for logistic regression is demonstrated in Algorithm6.

We initialized parameters θ to 0 and updated our parameters using logistic
function that we’ve implemented. Since logistic function requires HE division and
exponential function that delay performance time, we cut down performance
time not from logistic function but from a modification of the learning rate.
From the analogy of client and server model, if the server performs regression
upon receiving number of data n and if the server appoints α to 0.5, α

n can be



32 J. S. Yoo et al.

Algorithm 6. HE logistic regression by batch gradient descent
– Input: Features X, Target Y
– Output: Parameter θ = [θ0, θ1, · · · , θd]

1: θ0, θ1, · · · , θd ← HE.EncryptNumber(0)
2: iter ← 25
3: α ← Decide learning rate
4: b ← Set b to an integer where α

n ≈ 2b

5: repeat � Compute
∑n

i=1 (hθ(X
(i)) − Y(i))X

(i)
j

6: for j = 0 to d do

7: ˆgradj ← HE.EncryptNumber(0)

8: for i = 1 to n do
9: ŝj ← HE.Sigmoid(θT X(i))

10: ŝj ← HE.Subtract(ŝj , Y
(i))

11: ŝj ← HE.Multiply(ŝj , X
(i)
j )

12: ˆgradj ← HE.Add( ˆgradj , sj)

13: end for
14: ˆgradj ← HE.RightShift( ˆgradj , b)

15: θj ← HE.Subtract(θj , ˆgradj)

16: end for
17: until iter times
18: return θ

calculated in an unencrypted state. Suppose, for example α = 0.5, n = 100, then
α
n = 1

200 ≈ 2−8. The approximation leads to HE left shift operation instead of
multiplication and division. For 32-bit input, left shift operation performs less
than 1 s while multiplication and division show poor performance around 100 s.

4.3 Normalization of Data

Existing literature maintains a framework of scaling data by a client following
complex protocols either in the encrypted or unencrypted domain. Conversely,
we adhere to a strategy of imposing a burden on the cloud server to perform
scaling with its own computational power. There are various ways to scale data,
particularly normalization by standard deviation and min-max value. Among
the two popular approaches, we adopted the latter method due to its less com-

putational cost. Min-Max normalization is Z(i)
j =

X
(i)
j −min(X)

Max(X)−min(X) where X(i)
j , X,

min(X) and Max(X) are denoted by normalized data, dataset, minimum value
and maximum value in the dataset X, respectively. Note that all internal oper-
ations of the normalization process are computed in the encrypted domain.

5 Performance Evaluation

We propose HE cloud computing model where not only a server delivers estima-
tion of parameters, but also provides accuracy of the test data. The procedure
requires the client to send encrypted training and test data. Then, the server
carries out the scaling procedure to perform HE logistic algorithm for parameter
estimation. Lastly, accuracy analysis is performed based on the encrypted test



HE Bitwise Logistic Regression 33

data. In the end, the client can evaluate the performance of the model upon
receiving decrypted results of parameters and test accuracy.

We implemented HE testing step from the estimated parameters provided
initially from Algorithm6. First, the test dataset is min-max normalized for
calculating predicted values using HE logistic function. Since the predicted val-
ues are encrypted, we conduct larger than comparison between the outcomes
and Enc(0.5). If the predicted value is larger, then the function provides Enc(1)
otherwise Enc(0). Next, boots.XNOR gate operation is performed between the
previous bits and real values of the test dataset. The operation yields Enc(1) if
the both bits are same and otherwise Enc(0). In last, we He.Add all the values
of the compared results and divide it by number of data to produce accuracy.

5.1 Used Dataset

We implemented logistic gradient descent algorithm with two datasets. First data
is a synthetic dataset and it is to show that our HE gradient algorithm works
correctly with various HE functions incorporated inside. Also, we measured exe-
cution time of the algorithms to test time performance. Next, we expanded our
scope to the real world dataset from the National Institute of Diabetes and Diges-
tive and Kidney Diseases (NIDDK) [8]. We compared accuracy of our approach
with the real logistic regression and the least square approximation method.

The syntheic dataset consists of a feature vector X and a target variable Y
with 10 data created artificially. X = [1, 1.1, · · · , 1.9], Y = [01×5, 11×5]. The iter-
ation proceeded 25 steps to converge θ = (−1.980, 4.285) with threshold value,
ε = 0.1. We made a test dataset containing three elements to record performance
time of an evaluation step. Thus, the execution times for normalization, batch
gradient descent algorithm and evaluation are 17.6, 30 and 9.21 min with 32-bit
input. We assume that the delay in gradient descent algorithm and evaluation
step results from processing sigmoid function which includes exponential and
division operations.

The Real world dataset from NIDDK is comprised of several medical pre-
dictor variables and a target variable. The purpose of this dataset is to predict
whether or not patients will have diabetic symptom given their medical features.
The features consist of age, BMI, glucose level, insulin level and etc. The num-
ber of data is 768 × 9 from which we sampled 15 data and evaluated values of
estimated parameters with respect to each of the approaches. In our implemen-
tation of logistic regression, we only utilized one feature from the dataset and
compared accuracy among three different approaches. The conditions such as an
iteration number, learning rate, sampled data and gradient descent algorithm
are fixed while only the sigmoid function differs. A measurement for the evalu-
ation is computed on the basis of difference in values with respect to parameter
θ, ER(ErrorRate) (%) =

∑
params | θ̂OLR−θ̂T LR

θ̂OLR
| × 100 where θ̂OLR and θ̂TLR

are estimated parameters from original logistic regression and the two proposed
approaches, respectively. The Table 2 is the result of accuracy based on the two
datasets with learning rate α and iteration number to 0.25 and 25 respectively.



34 J. S. Yoo et al.

The result of the sample shows that the error rate differences between our app-
roach and the least square approach are 4.7(%) and 4.577(%) for synthetic and
NIDDK dataset, respectively. In last, we measured that the time performance
for each step is 27.21, 5151 and 9.25 min. Likewise, we randomly selected three
data from the dataset to measure evaluation time.

Table 2. Error rate comparison of synthetic and NIDDK data

Data set Approach θo θ1 Error (%)

Synthetic Original sig −2.016 4.276 0

HE sig 32-bit −1.980 4.285 2.029

Least square −2.083 4.421 6.729

NIDDK Original Sig −0.645 2.890 0

HE sig 32-bit −0.596 2.892 8.238

Least square −0.653 2.987 12.815

On the basis of the previous experimental results, we concluded that it would
cost much time to execute every data of NIDDK in the encrypted domain. Since
HE guarantees that the result of the ciphertexts match the results in plaintext,
we conducted an experiment using the same dataset (NIDDK) and following
the same procedure in plaintext situation to evaluate performance between the
approaches.

We performed 4-fold cross-validation technique for estimating the validity
of the three approaches: real logistic regression, our approach and least square
method. The models are trained with learning rate α = 2.5 and iteration num-
ber to 25. Next, we measured the performance of average accuracy and the
AUC (Area Under the ROC Curve) for each method. The average accuracies
(threshold = 0.5) for the three models are 69.401, 70.182 and 68.620 (%), respec-
tively. In addition, the AUC scores (real/ours/least) are 0.800, 0.801 and 0.798
with the ROC curves.

6 Discussion

Traditional approaches mainly focus on implementing logistic regression with
two basic HE operations: addition and multiplication. Although, their methods
have high performance in time, they inevitably have to manipulate such function
into the one that only requires computation of the two operations [2,4,6,10,11].
In addition, their approaches experience difficulty to design the logistic function
with the two operations, unavoidably accepting low-degree polynomial approx-
imation which in result causes error estimating parameters. In short, such an
approach might only be suitable for the logistic regression. Using their scheme
will eventually require longer time to design and optimize a new algorithm.



HE Bitwise Logistic Regression 35

On the contrary, our novelty stems from the underlying basis of constructing
fundamental HE operations to design one of the famous machine learning tech-
nique. We built subtraction, division and exponential function on the ground
basis of encrypted bitwise operation with the FHE scheme. Our approach is not
only suitable for implementing the logistic regression but also for developing new
HE algorithms such as machine learning techniques and statistical modeling.

In addition, all of HE algorithms that we have implemented except the expo-
nential function can accurately deliver outcome within designated length of an
input. Although the exponential operation applies binary approximation to draw
outcome, its error rate is stable upper bounded by less than 7 in 32-bit length
input. The effectiveness had also been proven in approximating logistic function
compared with up-to-date literature.

Our logistic regression has shown higher accuracy and AUC score from
NIDDK data set albeit not enough data sets. However, most importantly, the
power of our approach lies in the quantization of big data. If a big dataset, such
as genomic information that contains at least more than a million cannot be
scaled to the current literature’s domain at most (−8, 8) without data being
undistorted. Even if some of less numbered big data is scaled, it would lose
precision eventually due to the update phase in the gradient descent algorithm.
Where the sigmoid function re-updates, its interval value would most probably
fall outside of the boundary of (−8, 8) and the precision will be lost.

On the contrary, it is possible to increase our length of input which con-
tributes to enlargement of significant bits to ensure high precision of data even
after scaling factor is multiplied. Moreover, as our length of input bits increase,
so do accuracy of the logistic function and its compatible range. Data will not
be distorted and the accuracy of prediction will be heightened as well.

Even though our strategy is highly proliferent both in a prospect of provid-
ing milestone to various developments of algorithms and high accuracy, delay in
the execution time is the main critical reason that hinders practical usage of our
scheme. However, it can be overcome through multiple improvements. In essence,
an improvement in the current bootstrapping technique will have the greatest
impact on processing speed since bootstrapping is involved in every bitwise oper-
ation. Suppose for example that an improvement of speed in the bootstrapping
increases by 10 times, then the whole processing time will decrease by 90 handle a
large number of processing bits simultaneously. Likewise, hardware-based accel-
erators such as GPU and FPGA can also boost operation speed in significant
amounts [12].

7 Conclusion

In the world of data-driven society, secure data outsourcing in client-server model
is crucial in protecting user’s privacy from untrusted service provider. One of the
most promising technique to settle the issue is applying Homomorphic Encryp-
tion scheme. However, many of current HE literature is obliged to adopt additive
and/or multiplicative properties to design algorithms or functions that requires



36 J. S. Yoo et al.

other than the two operations. Therefore, in this paper, we layed out a funda-
mental and unprecedented approach to implement HE logistic regression from
the baseline of designing HE basic operations using gate operations.

Furthermore, our method is very proximate to an ideal cloud computing ser-
vice model compared to other existing literature in a broad sense. According to
NIST (National Institute of Standards and Technology) definition of an essen-
tial trait of cloud computing, on-demand self-service should be highlighted [13].
However, current approaches demand complex communication protocols such
as multiparty computation (MPC) requiring user-client interactions [1]. As for
our cloud computing model, the server can entirely process client’s task such as
normalization, parameter estimation and testing under encrypted state.

There still remains a variety of tasks that involve secure data outsourcing of
cloud computing services. With the aid of our fundamental operations and the
model in hold, numerous statistical inferences, machine learning techniques and
etc. can feasibly be implemented under FHE scheme.

Appendix

A Correctness of HE Exponential Function

We show that our method clearly approximates the exponential function with
combination of line segments such that (i, 2i) and (i+1, 2i+1) are the endpoints
of ith line segment for i ∈ Z. Since each mechanism in x ≥ 0 and x < 0 is
different, we provide a proof of the former interval followed by the latter.

A.1 (Case 1 : x ≥ 0)

Suppose x ∈ [k, k +1) for k ∈ Z
+ ∪{0}. From the first step, 1 is right-shifted by

xint = k, that is 2k. Likewise, right-shift operation of xfrac = x − k by k times
is 2k · (x − k). Lastly, addition of both results is the final outcome y i.e.

y = 2k + 2k · (x − k) = 2k · x + 2k(1 − k). (2)

Therefore, Eq. 2 is the line segment of slope 2k with the initial point (k, 2k) and
the terminal point (k + 1, 2k+1).

A.2 (Case 2 : x < 0)

For a negative integer x, we let x ∈ [k, k + 1) for k ∈ Z
−. Then, absolute value

of x is |x| = −x ∈ (k − 1, k]. From the second step, 1 is left-shifted by |x|int

= −k − 1, that is 2k+1. Similarly, xfrac = −x − (−k − 1) = −x + k + 1 is
left-shifted by |x|int + 1, that is (−x + k + 1) · 2k. Therefore, subtraction of the
former outcome by the latter is y such that

y = 2k+1 − 2k · (−x + k + 1) = 2k · x + 2k(1 − k) (3)

which is the line segment of slope 2k with the initial point (k, 2k) and the
terminal point (k + 1, 2k+1).



HE Bitwise Logistic Regression 37

B Additional HE Function

B.1 Addition and Subtraction

It is widely known that addition can be designed in full-adder scheme. Since the
basic gate operations with bootstrapping are provided, HE addition operation
can be easily implemented as in the Algorithm 7. Furthermore, HE subtraction(or
HE.Subtract) is implemented by applying 2’s complement operation. In short,
HE.Subtract(â, b̂) = â +HE b̂not where b̂not and +HE are 2’s complement of b̂
and addition in HE, respectively.

Algorithm 7. HE.Add(â, b̂)
1: ĉ[0] ← Enc(0)
2: for i = 0 to l − 1 do
3: t1 ← boots.XOR(â[i], b̂[i])

4: t2 ← boots.AND(t2, t1, b̂[i])
5: r̂[i] ← boots.XOR(t1, ĉ[i])
6: t1 ← boots.AND(t1, ĉ[i])
7: ĉ[i + 1] ← boots.OR(t1, t2)
8: end for
9: t1 ← boots.XOR(â[l − 1], b̂[l − 1])
10: r̂[l − 1] ← boots.XOR(t1, ĉ[l − 1])
11: return r̂

B.2 2’s Complement and Absolute Value Operation

In unencrypted domain, 2’s complement operation is generally used to change
sign of a number. Basically, the procedure is to take NOT gates for all bits
of â and then add one. We apply this strategy to the encrypted domain
where we replace addition operation by full adder. Therefore, we repeatedly
apply bootstrapping gate operations to the encrypted bits by the following:
t1 = boots.NOT(â[i]), r̂[i] = boots.XOR(t1, ĉ[i]), ĉ[i + 1] = boots.AND(t1, ĉ[i])
where r̂ is the result of HE.TwosComplement(â) and ĉ plays as a carry.

Absolute value operation is an advanced algorithm with respect to 2’s com-
plement operation since it merely involves a change of sign if the value is nega-
tive. In this sense, we execute 2’s complement operation on the given encrypted
value, say Enc(â) judging by the sign bit of Enc(â). In the same manner as in
HE exponential function, we perform the selective integration as the following:
bitwise boots.AND(s+, Enc(â)) +HE bitwise boots.AND(s−, Enc(â)) where s+
and s− are Enc(â[l − 1]) and boots.NOT(â), respectively.

B.3 Shift Operation

Shift operation is basically moving the bits(or elements) of ciphertext to left
or right direction, both of which are referred to HE.LeftShift and HE.RightShift,



38 J. S. Yoo et al.

respectively. Either way, the moving bits simply occupy the new space(or posi-
tion) with the same encrypted values whereas the rest of the bits are left with
a choice of Enc(0) or Enc(1). In case of HE.RightShift(â, k), we fill the empty
position with Enc(0), while Enc(1) is chosen for HE.LeftShift(â, k) where k is the
amount of shift.

HE.EncryptedNumber(a) is used multiple times throughout the text for the
purpose of encrypting real number to a binary vector by Shift and AND opera-
tion. Methodologically, we LeftShift a plaintext vector by one and execute AND
operation of the first bit of â by 1. Also, the extracted bit is encrypted at the
same time. Following the repetitive procedure for l times yields Enc(â).

B.4 Comparison Operation

We implemented different types of comparison function where the output of
the function yields Enc(0) or Enc(1) depending on the relationship between
two encrypted input values. For instance, outcome of HE.CompareSmall(â, b̂)
is Enc(1) if sc(â) < sc(b̂) and otherwise Enc(0). The comparison operation takes
boots.MUX(a, b, c) gate in which outcome of the operation depends on the value
of a. Likewise, HE.CompareLarge is similarly designed as the Algorithm 8 with
replacement of â in place of b̂ in line 4.

Algorithm 8. HE.CompareSmall(â, b̂)
1: t1 ← Enc(0)
2: for i = 0 to l − 1 do
3: t2 ← boots.XNOR(â[i], b̂[i])

4: t1 ← boots.MUX(t2, t1, b̂[i])
5: end for
6: return t1

B.5 Multiplication Operation

There are many ways to perform multiplication between binary arrays in plain-
text. Among the existing multiplication methods, we adopted the simple and
explicit way to process multiplication. If we assume that the multiplication is
between l bits of vectors, then multiplication operation is transformed into l
number of additions using only AND and Shift operations. In other words, sup-
pose that we perform multiplication between â and b̂ of length l. Then, ĉj =
AND(â[i], b̂[j]) for i ∈ {0, 1, · · · , l − 2} is jth vector for addition. We right-shift
cj [i] by j times and summation of all the vectors is the result of our approach.
In short, the formula for multiplication in plaintext is the following:

∑l−2
i=0 Right-

Shift(ĉj , j).
In the encrypted domain, we consider the problem of sign of the input values

as in HE division and exponential function. Similarly, we perform absolute value



HE Bitwise Logistic Regression 39

operation for both of the given encrypted values at first. Next, we perform the
same way of plaintext multiplication only in difference by HE gates and lastly
selective integration is executed to provide the result of HE.Multiply function.
Note that the outcome is double the length of input. Therefore, we restrict the
boundary of the outcome by l to obtain the modified result in which the length
of fractional and integer part to be equal to our setting.

B.6 Binary Negative Exponential Method

We provide binary negative exponential function that is similar to the positive
case except execution of absolute value operation, direction and amount of shift
and lastly subtraction instead of addition.

Algorithm 9. HE.BinExpNegative(x̂) : y = 2x where x < 0
1: x̂ ← HE.AbsoluteValue(x̂)
2: x̂int ← (x̂[ l

2 − 1], x̂[ l
2 ], · · · , x̂[l − 2]) � Integer bits of x̂

3: x̂frac ← (x̂[0], x̂[1], · · · , x̂[ l
2 − 2]) � Fractional bits of x̂

4: t̂1, t̂2 ← HE.EncryptNumber(0)

5: k̂ ← HE.EncryptNumber(1)
6: for i = 0 to l

2 − 1 do

7: ê ← HE.EncryptNumber(i)
8: ô[i] ← Bitwise HE.CompareEqual(ê, x̂int)

9: ŝk ← HE.LeftShift(k̂, i)
10: ŝ1 ← Bitwise boots.AND(ô[i], ŝk)
11: t̂1 ← HE.Add(t̂1, ŝ1)
12: ŝf ← HE.LeftShift(x̂frac, i + 1)
13: ŝ2 ← Bitwise boots.AND(ô[i], ŝf )

14: t̂2 ← HE.Add(t̂2, ŝ2)
15: end for
16: r̂ ← HE.Subtract(t̂1, t̂2)
17: return r̂

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. 51(4), 79 (2018)

2. Aono, Y., Hayashi, T., Trieu Phong, L., Wang, L.: Scalable and secure logistic
regression via homomorphic encryption. In: Proceedings of the 6th ACM Confer-
ence on Data and Application Security and Privacy, pp. 142–144. ACM (2016)

3. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. J. Biomed. Inform. 50, 234–243 (2014)

4. Chen, H., et al.: Logistic regression over encrypted data from fully homomorphic
encryption. BMC Med. Genomics 11(4), 81 (2018)

5. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15


40 J. S. Yoo et al.

6. Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble method for privacy-preserving
logistic regression based on homomorphic encryption. IEEE Access 6, 46938–46948
(2018)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Improving TFHE: faster
packed homomorphic operations and efficient circuit bootstrapping. Technical
report, Cryptology ePrint Archive, Report 2017/430 (2017)

8. Kaggle: Pima indians diabetes database (2016). https://www.kaggle.com/uciml/
pima-indians-diabetes-database/home

9. Kantabutra, V.: On hardware for computing exponential and trigonometric func-
tions. IEEE Trans. Comput. 45(3), 328–339 (1996)

10. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. Technical report, IACR
Cryptology ePrint Archive (254) (2018)

11. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: design and evaluation. JMIR Med. Inform. 6(2), e19
(2018)

12. Lee, M.S., Lee, Y., Cheon, J.H., Paek, Y.: Accelerating bootstrapping in PHEW
using GPUs. In: 2015 IEEE 26th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 128–135. IEEE (2015)

13. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
14. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving

machine learning. In: 2017 38th IEEE Symposium on Security and Privacy (SP),
pp. 19–38. IEEE (2017)

15. Yoo, J.S., Song, B.K., Yoon, J.W.: Logarithm design on encrypted data with bit-
wise operation. In: Kang, B.B.H., Jang, J.S. (eds.) WISA 2018. LNCS, vol. 11402,
pp. 105–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17982-3 9

16. Zaki, M.J., Meira Jr., W., Meira, W.: Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

https://www.kaggle.com/uciml/pima-indians-diabetes-database/home
https://www.kaggle.com/uciml/pima-indians-diabetes-database/home
https://doi.org/10.1007/978-3-030-17982-3_9


Accelerating Number Theoretic
Transform in GPU Platform

for qTESLA Scheme

Wai-Kong Lee1(B) , Sedat Akleylek2 , Wun-She Yap3 ,
and Bok-Min Goi3

1 Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Baru Barat,
31900 Kampar, Malaysia

wklee@utar.edu.my
2 Department of Computer Engineering, Ondokuz Mayıs University, Samsun, Turkey

sedat.akleylek@bil.omu.edu.tr
3 Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long,

43000 Kajang, Malaysia
{yapws,goibm}@utar.edu.my

Abstract. Post-quantum cryptography had attracted a lot of atten-
tions in recent years, due to the potential threat emerged from quan-
tum computer against traditional public key cryptography. Among all
post-quantum candidates, lattice-based cryptography is considered the
most promising and well studied one. The most time consuming opera-
tion in lattice-based cryptography schemes is polynomial multiplication.
Through careful selection of the lattice parameters, the polynomial multi-
plication can be accelerated by Number Theoretic Transform (NTT) and
massively parallel architecture like Graphics Processing Units (GPU).
However, existing NTT implementation in GPU only focuses on paral-
lelizing one of the three for loop, which eventually causes slow perfor-
mance and warp divergence. In this paper, we proposed a strategy to
mitigate this problem and avoid the warp divergence. To verify the effec-
tiveness of the proposed strategy, the NTT was implemented following
the lattice parameters in qTESLA, which is one of the round 2 candi-
dates in NIST Post-Quantum Standardization competition. To the best
of our knowledge, this is the first implementation of NTT in GPU with
parameters from qTESLA. The proposed implementation can be used
to accelerate qTESLA signature generation and verification in batch,
which is very useful under server environment. On top of that, the pro-
posed GPU implementation can also be generalized to other lattice-based
schemes.

Keywords: Number Theoretic Transform · Lattice-based
cryptography · Graphics Processing Units · Post-quantum
cryptography

This work is supported by Fundamental Research Grant Scheme (FRGS), Malaysia
with project number FRGS/1/2018/STG06/UTAR/03/1. Sedat Akleylek is partially
supported by TUBITAK under grant no: EEEAG-117E636.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 41–55, 2019.
https://doi.org/10.1007/978-3-030-34339-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_3&domain=pdf
http://orcid.org/0000-0003-4659-8979
http://orcid.org/0000-0001-7005-6489
http://orcid.org/0000-0002-0007-6174
http://orcid.org/0000-0002-9854-7121
https://doi.org/10.1007/978-3-030-34339-2_3


42 W.-K. Lee et al.

1 Introduction

1.1 Post-quantum Cryptography

Since the introduction of small scale quantum computers [1] in recent years,
the cryptography community has focused a lot of attentions in investigating the
potential threat from such machines. By using Shor’s algorithm [2], conventional
public key cryptography based on integer factorization (e.g. RSA) or discrete log-
arithm (e.g. ECDSA) hard problems can be broken easily by quantum computer.
Since public key cryptography is used to protect many existing communication
channels, the effect of such threat is devastating. In view of this potential threat
that is becoming concrete very soon, National Institute of Standardization and
Technology (NIST) had initiated a standardization process that call upon par-
ticipations from all over the world. Submissions to this competition [3] include
many schemes that build upon mathematically hard problems like lattice, mul-
tivariate polynomials, error correction code, hash function and isogeny, which
are believed to be resistant to attack from quantum computer.

Among all the submissions to NIST [3], hard problems based on lattice are
considered the most popular choice. Out of the 26 selected Round-2 candidates,
11 of them are designed based on lattice (three for digital signature and eight
for public key encryption/key encapsulation mechanism). This motivates us to
evaluate the speed performance of lattice based schemes, which is one of the
criteria for standardization besides security.

Public key cryptography is widely used to establish secret key for encryption
between two parties, or to authenticate the communicating parties through dig-
ital signature. In this regard, cloud servers that are communicating with many
clients protected by security protocol (e.g. SSL/TLS) may need to handle huge
amount of computation, mainly from the execution of public key cryptogra-
phy. To mitigate this potential performance bottleneck, one can utilize hard-
ware accelerator (e.g. FPGA and GPU) to speed up the execution of the most
time consuming operations in public key cryptography. In this paper, we focus
on offloading the polynomial multiplication, which is the most time consuming
operation in lattice-based schemes, to a GPU with parallel architecture. While
this paper only evaluates the lattice parameters from qTESLA, the proposed
implementation techniques can be generalized to support other lattice-based
schemes with a minimal effort.

1.2 Related Work

Accelerating polynomial multiplication on hardware platform is a hot research
topic in the past decade. Du and Bai [4] showed that the FPGA can be utilized
to accelerate polynomial multiplication in Ring-LWE based lattice-based cryp-
tosystems. Dai et al. [5] presented a novel hardware architecture that is able
to compute modular exponentiation for 1024-bit to 4224-bit operands. Their
implementation in FPGA utilized NTT and Montgomery Multiplication [6] to
achieve high speed performance. Although FPGA allows flexible configuration



Accelerating Number Theoretic Transform in GPU Platform 43

and potentially provide good speed performance, it is not widely adopted by
cloud service providers as a hardware accelerator. This is because coding FPGA
requires specialized hardware skills and relatively long design time. Compared to
FPGA, GPU is more widely used as hardware accelerator in server environment,
as it is cheap and easier to code.

The work from Maza et al. [7] is considered one of the earliest efforts in accel-
erating polynomial multiplication in GPU platform, which was implemented by
mixing floating point and integer operations. They commented that Cooley-
Tukey FFT is slower than Stockham FFT on GTX285 GPU. Later on, Emmart
and Weem [8] proposed an implementation of Strassen multiplication algorithm,
which shares many similarity with polynomial multiplication. Their implemen-
tation based on NTT and Cooley-Tukey FFT showed impressive speed perfor-
mance for very large operand size up to 16320K-bit. Wang et al. [9] explored
the feasibility to implement Fully Homomorphic Encryption on GPU, based on
the NTT implementation from Emmart and Weem [8]. These prior work are not
directly applicable to lattice-based cryptosystems due to the difference in NTT
size, prime field and the supported operands.

Akleylek and Tok [10] presented the first polynomial multiplication imple-
mentation in GPU that aims an application for lattice-based cryptosystems.
They concluded that iterative NTT is the fastest technique for polynomial degree
up to 2000. Later on, Akleylek et al. [11] presented a thorough comparison of
serial NTT, parallel NTT and cuFFT (NVIDIA library) based multiplication in
GPU. Through experiments, they concluded that cuFFT based multiplication
performed better when the degree of polynomial is larger than 2048. However,
cuFFT library utilizes floating point arithmetic, which can potentially introduce
small errors throughout the multiplication operations. Moreover, this work [11]
only targets sparse polynomial multiplication, which may not be useful to other
lattice-based cryptosystems.

1.3 Our Contributions

In this paper, we present the implementation of polynomial multiplication in the
latest NVIDA Turing GPU (GTX2080) using NTT. The performance was evalu-
ated based on parameters from qTESLA, a lattice based post-quantum signature
scheme that enter Round 2 of NIST standardization process [3]. To the best of
our knowledge, this is the first work that present the NTT implementation based
on the parameters from qTESLA signature scheme. Our proposed technique can
be easily adapted to other lattice-based cryptosystems with similar parameter
sets.

2 Background

2.1 Overview of qTESLA

In this section we recall the main parts of the efficient and quantum secure
lattice-based signature scheme named qTESLA (Quantum Tightly-secure, Effi-
cient signature scheme from Standard LAttices) [3]. qTESLA is defined over the



44 W.-K. Lee et al.

quotient ring Rq = Z/qZ[x]/(xn + 1) = Zq[x]/(xn + 1), where q is a prime num-
ber and n = 2� with � > 1. Then, using a finite ring with nice properties yields
efficient polynomial multiplication algorithm called Number Theoretic Trans-
form (NTT). The properties of qTESLA can be grouped as simplicity, parameter
flexibility, compactness, quantum resistant and achieves high speed performance.
qTESLA is an updated version of ring-TESLA based on Bai-Galbraith signature
scheme framework. The security of qTESLA uses the benefits of the hardness
of the Ring-Learning with Error (R-LWE) problem. A lattice-based signature
scheme has three main parts: key generation, signature generation and signature
verification. For the sake of simplicity and focusing the importance of polynomial
multiplication over the scheme, we only give the sketch/informal presentation of
those algorithms. We refer the reader [12] for the detailed algorithms.

In Algorithm 1, key generation of qTESLA is described. Step 5 needs an
input from Step 4. In Step 5, the polynomial multiplication operations (ai · s)
are independent. Thus, they can be performed in a parallel way.

Algorithm 1. Sketch of the key generation algorithm
Input: Size and dimension of the ring q, n.
Output: Private key set (s, a1, . . . , ak), error terms (e1, . . . , ek) and public key set

(a1, . . . , ak, t1, . . . , tk)
1: Generate (a1, . . . , ak) ← (Z/qZ)[x]/(xn + 1)
2: Generate s ∈ (Z)[x]/(xn + 1)
3: for j = 1 to k do
4: Generate ei ∈ (Z/qZ)[x]/(xn + 1) with the desired conditions
5: Compute ti ← ai · s + ei ∈ (Z/qZ)[x]/(xn + 1)
6: end for
7: Return private key set (s, a1, . . . , ak), error terms (e1, . . . , ek) and public key set

(a1, . . . , ak)

In Algorithm 2, we roughly define the signature generation process of
qTESLA by considering parallelization of the algorithm. Since the polynomial
multiplications (ak · y) are independent in Step 2, they can be achieved in paral-
lel. The same observation is applicable to the polynomial multiplications (ai · y)
defined in Step 5.

Algorithm 3 shows a simplified description of the signature verification algo-
rithm in qTESLA. Similar to our previous observation, the polynomial mul-
tiplication operations (ai · z) in Step 2 can be executed in a parallel. From
these observations, we conclude that there are many polynomial multiplications
involved in qTESLA signature scheme, which can be accelerated through paral-
lel implementation in suitable hardware platform (e.g. GPU). Besides the par-
allel implementation of polynomial multiplication, one can also process many
signature generation/verification in parallel (batch processing), given sufficient
hardware resources.



Accelerating Number Theoretic Transform in GPU Platform 45

Algorithm 2. Sketch of the signature generation algorithm
Input: Private key set (s, a1, . . . , ak), error terms (e1, . . . , ek) and a message m ∈

{0, 1}∗

Output: Signature of message m z, c.
1: Choose y ∈ (Z/qZ)[x]/(xn + 1) with the desired properties
2: Compute c ← H(a1 · y, . . . , ak · y,m)
3: Compute z ← y + s · c // Note that if z does not satisfy the desired properties,

restart the procedure
4: for j = 1 to k do
5: Compute ai · y − ei · c // Note that if the result does not satisfy the desired

properties, restart the procedure
6: end for
7: Return (z, c)

Algorithm 3. Sketch of the signature verification algorithm
Input: Public key set (a1, . . . , ak, t1, . . . , tk), signature (z, c) and signed message m ∈

{0, 1}∗

Output: valid or invalid
1: for j = 1 to k do
2: Compute wi ← ai · z − ti · c ∈ (Z/qZ)[x]/(xn + 1)
3: end for
4: if c �= H(w1, . . . , wk,m) then
5: Return “invalid”
6: else
7: Return “valid”
8: end if

2.2 Number Theoretic Transform

NTT [13] and Discrete Fourier Transform (DFT) are computational techniques
to transform a set of data between its time and frequency domain. DFT is
widely used in signal processing applications, which is usually operating in com-
plex domain involving floating point arithmetic. On the other hand, it performs
transformation over a finite field GF(p) where p is the modulus. In other words,
NTT is analogous to DFT, but it operates on integers instead of floating point
arithmetic. Computation in complex domain (DFT) involves floating point arith-
metic, which is difficult in error analysis and might introduce round-off errors.
Hence, NTT is more suitable for cryptographic applications because it only
involves integer arithmetic, thus do not suffer from potential round-off errors.

Polynomial multiplication with NTT consists of three steps:

(i) Given polynomial a and b with degree of polynomial n, where their coeffi-
cients are written as ai, . . . , an and bi, . . . , bn respectively. Convert poly-
nomial a and polynomial b to NTT form. Assume p is a prime number
and w is the primitive n-th root of unity (also referred as twiddle factors),
NTT(a) transforms polynomial a into NTT form following the Eq. 1:



46 W.-K. Lee et al.

A = NTT (a) =
n−1∑

j=0; i=0

ajw
ij(mod p) (1)

The same operation is performed on polynomial b to transform it into NTT
form, resulting the polynomial B .

(ii) Perform point-wise multiplication between A and B. Each coefficient in
A(Ai) is multiplied with the corresponding coefficient in B(Bi), as shown
in Eq. 2.

C = Ai × Bi, where i ∈ {0, . . . , n − 1} (2)

(iii) Convert the resulting polynomial C back to ordinary form through Eq. 3.

INTT (C) = c = n−1
n−1∑

j=0; i=0

Cjw
−ij(mod p) (3)

Note that NTT was not efficient as the complexity is O(n2). Cooley-Tukey
Fast Fourier Transform (CT-FFT) [14] is a more efficient way of computing DFT
(as well as NTT). It allows large FFT to be decomposed and computed using
multiple smaller-sized FFT in recursive manner. Consider the degree of poly-
nomial n, applying CT-FFT one time yields smaller polynomials with degree
n1 × n2, where n = n1 × n2. This decomposition process can continue further,
where the level of recursion is determined based on the implementation require-
ment. Radix-2 CT-FFT is a common choice for efficient implementation, wherein
the decomposition continues until the smallest possible FFT size (n = 2). Even-
tually, the complexity of NTT with CT-FFT becomes O(n log n). The same
approach were also adopted by prior work [8,9].

Algorithm 4. In-place forward radix-2 Cooley-Tukey FFT
Input: polynomial a in time domain; pre-computed twiddle factors (w) polynomial A

in frequency (NTT) domain
Output: polynomial A in frequency (NTT) domain
1: for NP=n/2; NP>0 NP=NP/2 do
2: jf =0; j=0; jTwiddle=0;
3: for jf=0; jf<n; jf=j+NP do
4: for j=jf; j<jf+NP; j=j+1 do
5: temp = (w[jTwiddle] × a[j+NP ]) mod p;
6: a[j+NP ] = (a[j ]-temp) mod p;
7: a[j ] = (a[j ]+temp) mod p;
8: end for
9: jTwiddle++;

10: end for
11: end for

Referring to Algorithm 4, the inputs to radix-2 forward CT-FFT are polyno-
mial a and twiddle factors w. Note that the twiddle factors can be computed on



Accelerating Number Theoretic Transform in GPU Platform 47

Algorithm 5. In-place inverse radix-2 Cooley-Tukey FFT
Input: polynomial A in frequency domain; pre-computed inverse twiddle factors

(w−1)
Output: polynomial a in time domain
1: for NP=1; NP<n NP=NP*2 do
2: jf =0; j=0; jTwiddle=0;
3: for jf=0; jf<n; jf=j+NP do
4: for j=jf; j<jf+NP; j=j+1 do
5: temp = a[j ];
6: a[j ] = temp + (a[j+NP ]) mod p;
7: a[j+NP ] = (w−1[jTwiddle] × temp - a[j+NP ]) mod p;
8: end for
9: jTwiddle++;

10: end for
11: end for

the fly or pre-computed to reduce the computational effort. In this paper, we opt
for pre-computing the twiddle factors as our aim is to improve the speed perfor-
mance. The algorithm starts by decomposing the original polynomial of degree
n into smaller degree with half the size (step 4). Then it follows by the butterfly
operations (step 5–7) that computes the new coefficients in place, reusing the
same memory space in polynomial a to conserve memory space. The output
of Algorithm 4 is polynomial A, which is the transformation of a into its fre-
quency domain. The inverse CT-FFT is similar to forward CT-FFT, except that
the inverse twiddle factors w−1 are being used. The detail operations of inverse
CT-FFT are described in Algorithm 5.

Note that in this paper, the NTT operation (through CT-FFT) accepts
inputs in standard ordering and produces results in bit-reversed ordering. On the
other hand, the INTT employs Gentleman-Sande butterfly; it absorbs inputs in
bit-reverse ordering and computes the output in standard ordering. With such
arrangement, we can avoid the use of bit-reversal operations, which can be time
consuming in the implementation. This approach is proposed by the authors of
qTESLA in the submission to NIST standardization [12].

2.3 Overview of Graphics Processing Units and CUDA

GPU is an emerging platform with massively parallel architecture, which is ini-
tially designed for graphics applications. Since the introduction of Compute Uni-
fied Device Architecture (CUDA) in 2007, GPU can be programmed for general
purposed computing, which eventually opens up plethora of interesting applica-
tions. GPU is now widely used in Deep Learning [15], scientific computing [16],
cryptography [17] and many other applications.

GPU comes with hundreds to thousands cores, enabling many tasks to be
carried out parallely. Multiple cores (i.e. 64, 128 or 196 cores, depending on the
generation of GPU) group together to form a Streaming Multiprocessor (SM).
There are two types of memories in GPU: on-chip and off-chip memory. On-chip



48 W.-K. Lee et al.

Block 0 Block 1 Block 2

Block 3 Block 4 Block 5

Thread 0 Thread 1 Thread 2

Thread 3 Thread 4 Thread 5

Block 4

Grid

Fig. 1. Relationship between grid, block and thread.

memory includes register files and shared memory, which is very fast in speed but
small in size (64K to 96K 32-bit word per SM). Shared memory is essentially the
user-managed cache memory. On the other hand, global memory is the DRAM
in GPU, which is also part of the off-chip memory. It is large in size (typically
2 GB–16 GB), but slow in speed (about 300× slower than registers). Constant
memory is also part of DRAM, but it is read-only and being cached to offer
higher access speed. Constant memory is part of DRAM and usually used to
store pre-computed values and accessed as a look-up table.

Under CUDA programming terminology, multiple threads form a block; mul-
tiple blocks then form a grid (see Fig. 1). Each GPU card usually contains only
one grid. It is the programmer’s task to specify the number of blocks and threads
to be used for computing a specific algorithm in parallel. The GPU also groups
32 threads in a unit called warp; all threads within the same warp will execute
the same set of instructions. This is to facilitate the hardware scheduling as well
as optimizing the memory throughput. In view of this, we need to specify the
number of threads per block in multiple of 32 (warp size); otherwise some of the
threads in a warp may be scheduled to perform tasks different with the other
threads, resulting in poor performance (warp divergence).

3 Implementation Details

There are five versions of qTESLA submitted for NIST standardization; we have
selected qTESLA-III for implementation in this paper as this variant can provide
sufficient security level. The implementation details of NTT based on qTESLA-
III parameters are presented in this section. Comparison was made between the



Accelerating Number Theoretic Transform in GPU Platform 49

qTESLA-III reference implementation (non-parallelised) against our proposed
GPU implementation. Refer to Table 1 for the parameters of qTESLA-III and
other versions.

Table 1. Parameters for qTESLA-III

Parameter qTESLA-I qTESLA-II qTESLA-III qTESLA-V qTESLA-V-size

λ 95 128 160 225 256

n 512 768 1024 2048 1536

q 4205569≈ 222 8404993≈ 223 8404993≈ 223 16801793≈ 224 33564673≈ 225

3.1 Optimizing NTT Parallellism

NTT offers rich parallelism which can be exploited by parallel architecture in
GPU. Specifically, referring to Algorithm 4, the for loop jf (step 3) or j (step 4)
can be executed in parallel by multiple threads. For example, one can parallelize
the j loop by computing step 5–7 with multiple threads. The number of threads
executing concurrently is depending on the index i, which varied according to
the decomposition level in CT-FFT. Assuming n = 1024, the number of threads
used to parallelize j loop ranges from 512–1; this implies that the parallelism
is very low when decomposition level in CT-FFT proceeds. Moreover, when the
number of parallel threads in a block is lesser than 32, warp divergence issue
is going to happen, which seriously deteriorate the performance. On the other
hand, parallelism in jf loop ranges from 1–512 following the decomposition level
in CT-FFT, which is also undesirable for implementation in GPU. In view of
that, we proposed a better strategy to improve the parallelism in computing
NTT.

We have designed two kernels for computing NTT:

(a) Kernel 1 parallelizes j loop for decomposition level 0–level log(n)/2 − 1.
(b) Kernel 2 parallelizes jf loop for decomposition level log(n)/2–level n.

The snippets of main function, Kernel 1 and Kernel 2 are illustrated in Figs. 2,
3 and 4 respectively. The main function first initialized the memory required to
store the polynomials for multiplication and other intermediate results, then
it calls NTT Kernel 1 and Kernel 2 based on the decomposition level. Once
the NTT completes, it proceeds to call the GPU codes to perform point-wise
multiplication and INTT. Note that the variable BATCH defines the number of
blocks, which should be large enough in order to fully harness the parallelism
in GPU. In our implementation, each block computes one NTT in parallel. In
other words, BATCH also defines the number of NTT that we want to perform
in batch; it varies from 1K–256K in this paper.

Kernel 1 parallelized the j -loop with multiple threads in GPU, while Kernel
2 parallelized the jf -loop. Again, we assume n = 1024 for subsequent analysis.
Since Kernel 1 is being used to compute decomposition level 0 to log(n)/2−1, the



50 W.-K. Lee et al.

Fig. 2. Relationship between grid, block and thread.

Fig. 3. Kernel 1: parallelizing the j -loop.

number of parallel threads ranges from 512 to 32. On the other hand, Kernel 2 is
being called from level log(n)/2 to level n with parallel threads ranges from 32
to 512. This parallelism strategy ensures that there is always at least 32 threads



Accelerating Number Theoretic Transform in GPU Platform 51

Fig. 4. Kernel 2: parallelizing the jf -loop.

(one warp) being used to compute the NTT in parallel, which effectively avoid
the warp divergence issue.

Due to limitation of space, we do not describe the point-wise multiplication
and INTT in details. Since the pattern of parallelism in INTT (Algorithm5) is
exactly the same as NTT, it can also adopt the parallelism strategy proposed
in this paper in order to achieve good performance. Point-wise multiplication
is straightforward to implement; n threads are launched, where each thread
multiplies a coefficient between two polynomials.

3.2 Placement of Twiddle Factors

Referring to Algorithm 4, the twiddle factors are being accessed (step 5) to com-
pute CT-FFT. These twiddle factors can be pre-computed to reduce the com-
putational time. Since each twiddle factor is only being read once and being
consumed immediately, there is no advantage to cache it at shared memory.
Instead, we proposed to place these twiddle factors in constant memory (cached
at L1-cache), which can enjoy lesser access delay compared to reading it directly
from global memory. The twiddle factors and inverse twiddle factors used by
qTESLA-III only consume 1K of 32-bit words each, which does not exceed the
constant memory limit. They were only copied once into the constant memory
in GPU at the beginning of the polynomial multiplication.

4 Experimental Results

The experiments were carried out in CPU and GPU platform with the specifica-
tions described in Table 2. All experiments carried out in this paper follows the
parameters in qTESLA-III.



52 W.-K. Lee et al.

Table 2. Specifications of implementation platforms

Operating system Windows 10

CPU Intel Xeon(R) E5-2560 v3, 2.30 GHz, 16 GB RAM

GPU GTX2080, 2944 cores, 8GB RAM

Table 3. Timing performance (ms) of qTESLA-III in GPU

Number of batch GPU (j -loop) GPU (proposed) Speed-up

1024 (1K) 2.72 2.61 1.03

2048 (2K) 6.22 5.51 1.13

4096 (4K) 10.92 8.84 1.23

8192 (8K) 24.81 19.93 1.24

16384 (16K) 45.13 32.52 1.39

32768 (32K) 90.54 65.22 1.39

65536 (64K) 171.34 126.61 1.35

131072 (128K) 350.93 245.14 1.43

262144 (256K) 685.41 542.14 1.26

To understand the effectiveness of our proposed parallelism optimization
strategy, we had implemented the polynomial multiplication by parallelizing the
j -loop in Algorithms 4 and 5. The results are compared against our proposed
method, and the timing performance in GPU are presented in Table 3. It is
noted that the proposed optimized parallelism is better than parallelizing only
j -loop, wherein the performance is improved by 4%–43% across various batch
sizes. This is because our proposed method ensures that there is always at least
32 threads (one warp) computing NTT in parallel, whereas parallelizing j -loop
only results in poor parallelism and warp divergence. The implementation that
parallelizes only jf -loop is not presented in this paper because the performance
is similar to parallelizing only j -loop.

Table 4 shows the timing performance for implementation of qTESLA-III in
CPU (serial) and GPU (parallel). The GPU implementation outperforms CPU
version when the batch size is large enough (>16). The speed-up ratio increases
proportionally when the batch size increases, eventually saturated at a fixed level
(16K–128K). This is a common phenomena in GPU computing, which signifies
that the GPU resources are fully utilized; increasing the workload further did
not yield any improvement in performance.



Accelerating Number Theoretic Transform in GPU Platform 53

Table 4. Timing performance (ms) of qTESLA-III in CPU and GPU

Batch size CPU GPU (proposed) Speed-up

2 0.17 0.67 0.25

4 0.18 0.69 0.26

8 0.32 0.70 0.46

16 0.65 0.64 1.02

32 1.21 0.61 1.98

64 2.36 0.94 2.51

128 4.23 0.90 4.70

256 9.17 1.15 7.97

512 17.46 1.61 10.84

1024 (1K) 34.81 2.61 13.44

2048 (2K) 69.02 5.51 12.53

4096 (4K) 140.42 8.84 15.88

8192 (8K) 286.84 19.93 14.39

16384 (16K) 571.33 32.52 17.57

32768 (32K) 1113.41 65.22 17.07

65536 (64K) 2312.42 126.61 18.26

131072 (128K) 4726.41 245.14 19.28

262144 (256K) 8873.80 542.14 16.37

5 Discussions

From the results, we noticed that although our proposed strategy can optimize
the parallelism in GPU, it may not work well for NTT with polynomial degree
n ≤ 512. This is because the minimum parallel threads would be lesser than 32
in such cases, so the warp divergence issue may happen. However, the proposed
strategy is still better than parallelizing only j -loop or jf -loop when the polyno-
mial degree n ≤ 512, due to the higher parallelism. Besides that, all parameter
sets in qTESLA are having n > 512 except qTESLA-I, so our approach is still
considered as an optimized solution for most cases. On top of that, our pro-
posed implementation can also be used to accelerate NTT in other lattice-based
cryptosystems (e.g. CRYSTALS-DILITHIUM [18]).

The proposed technique can be applied to other GPU architecture except
NVIDIA GPU (e.g. AMD). This is due to the fact that AMD GPU have warp
size of 32, which is same as NVIDIA GPU. Even though some AMD GPUs from
older generation are having larger warp size (i.e. 64), our parallelization strategy
still can help in avoiding warp divergence.

In future, we aim to focus on the parallelization of entire qTESLA scheme
into the GPU. Building on top of our efficient NTT implementation, the Gaus-
sian sampler and other relevant operations will be offloaded to GPU as well.



54 W.-K. Lee et al.

With such implementation, the speed performance in signature generation and
verification can be greatly improved, which is beneficial to the cloud servers that
need to handle such computation in massive scale.

6 Conclusions

Post-quantum cryptography have received a lot of attention in the past decade,
due to the emergence of small-scale practical quantum computer. In 2017, NIST
initiated a standardization competition, wherein many submissions in this com-
petition are designed based on lattice-based hard problems. In this paper, we
present experimental results of parallel implementation of NTT, which is useful
in accelerating polynomial multiplication used by qTESLA lattice-based cryp-
tosystem. Our implementation in GPU shows impressive speed-up against CPU,
with best speed-up (17×–19×) achieved when the batch size is large enough
(16K–128K). The proposed implementation can be adopted by other similar
lattice-based cryptosystems to accelerate the expensive NTT operation.

References

1. D-Wave Systems. https://www.dwavesys.com/quantum-computing. Accessed 24
May 2019

2. Shor, P.: Algorithms for quantum computation: discrete logarithm and factoring.
In: IEEE Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134. IEEE, Santa Fe (1994)

3. NIST Post-Quantum Cryptography Standardization: Round 2 Submis-
sionn. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-
Submissions. Accessed 25 May 2019

4. Du, C., Bai, G.: Efficient Polynomial Multiplier Architecture for Ring-LWE Based
Public Key Cryptosystems. In: IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1162–1165. IEEE, Montreal (2016)

5. Dai, W., Chen, D., Cheung, R.C.C., Koc, C.K.: FFT-based McLaughlin’s Mont-
gomery exponentiation without conditional selections. IEEE Trans. Comput.
67(9), 1301–1314 (2018)

6. Montgomery, P.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

7. Maza, M.M., Pan, W.: Fast polynomial multiplication on a GPU. J. Phys. 256(1),
1–14 (2010). Conference Series

8. Emmart, N., Weems, C.C.: High precision integer multiplication witha GPU using
Strassen’s algorithm with multiple FFT sizes. Parallel Process. Lett. 21(3), 359–
375 (2011)

9. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Exploring the feasibility of
fully homomorphic encryption. IEEE Trans. Comput. 64(3), 698–706 (2013)

10. Akleylek S., Tok, Z.Y.: Efficient arithmetic for lattice-based cryptography on GPU
using the CUDA platform. In: 22nd Signal Processing and Communications Appli-
cations Conference (SIU). IEEE, Trabzon (2014)

https://www.dwavesys.com/quantum-computing
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions


Accelerating Number Theoretic Transform in GPU Platform 55

11. Akleylek, S., Dağdelen, Ö., Yüce Tok, Z.: On the efficiency of polynomial multipli-
cation for lattice-based cryptography on GPUs using CUDA. In: Pasalic, E., Knud-
sen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 155–168. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 10

12. Bindel, N., et al.: qTESLA. https://qtesla.org/wp-content/uploads/2019/04/
qTESLA round2 04.26.2019.pdf. Accessed 1 June 2019

13. Pollard, J.M.: The fast Fourier transform in a finite field. Math. Comput. 25(114),
365–374 (1971)

14. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. Comput. 19(90), 297–301 (1965)

15. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A Deep Learning approach to network
intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

16. Lee, W.K., Achar, R., Nakhla, M.S.: Dynamic GPU parallel sparse LU factorization
for fast circuit simulation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
26(11), 2518–2529 (2018)

17. Emmart, N., Zheng, F., Weems, C.: Faster modular exponentiation using double
precision floating point arithmetic on the GPU. In: Proceedings of the IEEE 25th
Symposium on Computer Arithmetic, pp. 130–137. IEEE, Amherst Massachusetts
(2018)

18. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. https://pq-crystals.org/

https://doi.org/10.1007/978-3-319-29172-7_10
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf
https://pq-crystals.org/


Provably Secure Three-Party
Password-Based Authenticated Key

Exchange from RLWE

Chao Liu1, Zhongxiang Zheng2, Keting Jia2(B), and Qidi You3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, People’s Republic of China

liu chao@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, People’s Republic of China
ktjia@mail.tsinghua.edu.cn

3 Space Star Technology Co., Ltd., Beijing, People’s Republic of China

Abstract. Three-party key exchange, where two clients aim to agree a
session key with the help of a trusted server, is prevalent in present-day
systems. In this paper, we present a practical and secure three-party
password-based authenticated key exchange protocol over ideal lattices.
Aside from hash functions our protocol does not rely on external prim-
itives in the construction and the security of our protocol is directly
relied on the Ring Learning with Errors (RLWE) assumption. Our pro-
tocol attains provable security. A proof-of-concept implementation shows
our protocol is indeed practical.

Keywords: Password authentication · Three-party key exchange ·
Provable security · RLWE · Post-quantum

1 Introduction

Key Exchange (KE), which is a fundamental cryptographic primitive, allows
two or more parties to securely share a common secret key over insecure net-
works. KE is one of the most important cryptographic tools and is widely used in
building secure communication protocols. Authenticated Key Exchange (AKE),
which enables each party to authenticate the other party, can prevent the adver-
sary from impersonating the honest party in the conversation. Password-based
Authenticated Key Exchange (PAKE), which allows parties to share a low-
entropy password that is easy for human memory, has become an important
cryptographic primitive because it is easy to use and does not rely on special
hardware to store high-entropy secrets.

The early solution to this problem was to achieve two-party password-based
authenticated key exchange (2PAKE), in which both parties identified their com-
munication partners with shared passwords. Many 2PAKE protocols have been

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 56–72, 2019.
https://doi.org/10.1007/978-3-030-34339-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_4


Provably Secure Three-Party Password-Based Authenticated Key Exchange 57

proposed [2,6,22]. However, in a communication environment where only 2PAKE
protocols are available, each party must remember many passwords, for each
entity with which he may wish to establish a session key corresponds to a pass-
word. In detail, assuming that a communication network has n users, in which
any two users exchange a key, there will be n(n − 1)/2 passwords to be shared,
and all these passwords must be stored securely. This is unrealistic when the net-
work is relatively large. To solve this problem, three-party PAKE (3PAKE) was
proposed. In 3PAKE, each client shares a password with the trusted server, and
then two clients will establish a common session key with the help of the server.
This solution is very realistic in practical setup, because it provides each client
user with the ability to exchange secure keys with all other client users, and each
user only needs to remember one password. The 3PAKE protocol can be applied
to various electronic applications, such as in the JobSearch International, trusted
third parties can help employers and employees to hire on Jobsearch.

In 1995, Steiner et al. proposed the first 3PAKE protocol [26]. Then many
works about 3PAKE protocols have been proposed [1,7,11,16,27]. For a security
3PAKE protocol, there are two types of attacks it should resist: undetectable on-
line password guessing attacks [10] and off-line password guessing attacks [16]. In
1995, Ding and Horster [10] and Sun et al. [27] pointed out that Steiner et al.’s
protocol [26] was vulnerable to undetectable on-line password guessing attacks.
That is, an adversary can stay un-detected and log into the server during an
on-line transaction. In 2000, Lin et al. [16] further pointed out Steiner et al.’s
protocols [26] also suffer from off-line password guessing attacks. In this attack,
an attacker can guess passwords off-line until getting the correct one. There is
another attack: detectable on-line password guessing attacks, which requires the
participation of the authentication server. In this attack, the server will detect a
failed guess and record it. Since after a few unsuccessful guesses, the server can
stop any further attempts, this attack is less harmful. In practice, password-based
authenticated key exchanges are required to have a property, forward secrecy,
that when the password is compromised, it does not reveal the earlier established
session keys and the updating password.

However, the existed 3PAKE are based on the classic hard problems, such as
factoring, the RSA problem, or the computational/decisional DH problem. It is
well known that those problems are vulnerable to quantum computers [25]. Since
the vigorous development of quantum computers, searching other counterparts
based on problems which are believed to be resistant to quantum attacks is more
and more urgent. Hence the motivation of this paper is that can we propose
a proven security 3PAKE that can resist quantum attacks? Note that lattice-
based cryptographic have many advantages such as quantum attacks resistance,
asymptotic efficiency, conceptual simplicity and worst-case hardness assumption,
and it is a perfect choice to build lattice-based 3PAKE.

Our Contributions. In this paper, we propose a 3PAKE protocol based on the
Ring Learning with Errors (RLWE), which in turn is as hard as some lattice
problems (SIVP) in the worst case on ideal lattices [20]. Our protocol is designed
without extra primitives such as public-key encryption, signature or message



58 C. Liu et al.

authentication code, which usually lead to a high cost for certain applications. By
having the 3PAKE as a self-contained system, we show that our protocol directly
relys on the hardness of RLWE and Pairing with Errors problem (PWE), which
can reduce to the RLWE problem, in the random oracle model. Our protocol
RLWE-3PAK resists undetectable on-line passwords guessing attacks and off-
line passwords guessing attacks, and enjoys forward secrecy and quantum attacks
resistance. Furthermore, our protocol enjoys mutual authentication, which means
that the users and the server can authenticate one another.

In terms of protocol design, benefitting from the growth of lattice-based
key exchange protocols [8,23], we can utilize the key agreement technique to
construct our protocol. We use Peikert’s [23] reconciliation mechanism to achieve
the key agreement in our protocol. At the same time, in order to make our
protocol resist undetectable passwords guessing attacks and off-line passwords
guessing attacks, we also use additional key reconciliation mechanism between
server and clients to realize the mutual authentication. Our security model is
modified from Bellare et al.’s model [2,3]. Since the interactions in three-party
setting are more complex than that of two-party setting, proving the security of
our 3PAKE protocol is a very tricky problem. We use a variant of the Pairing
with errors problem [9] to simplify the proof and the proof strategy followed from
[21]. Finally, we manage to establish a full proof of security for our protocol and
show that our protocol enjoys forward security.

We select concrete choices of parameters and construct a proof-of-concept
implementation. The performance results show that our protocol is efficient and
practical.

Related Works. In the existed literatures, 3PAKE protocols are based on pub-
lic/private key cryptography [10,16,26], which usually incur additional com-
putation and communication overheads. Asymmetric key cryptography based
protocols [11,15,17] usually require “the ideal cipher model”, which is a strong
assumption, to prove the security of the protocols. There are some other types
of protocols [13,18] which are with no formal security proof.

Lattice-Based AKE or PAKE. Zhang et al. [32] proposed an authenticated
RLWE-based key exchange which is similar to HMQV [14]. In 2009, Katz
and Vaikuntanathan [12] proposed a CCA-secure lattice-based PAKE, which
is proven secure in standard model security. In 2017, Ding et al. [9] proposed
RLWE-based PAKE, whose proof is based on random oracle model (ROM), and
its implementation is very efficient. Then in 2017, Zhang and Yu [31] proposed
a two-round CCA-secure PAKE based on the LWE assumption.

Roadmap. In Sect. 2, we introduce our security model, notations and the Ring
Learning with Errors background. Our protocol RLWE-3PAK is in Sect. 3. And
in Sect. 4, we give the proof of the protocol’s security. The parameter choices and
proof-of-concept implementation of our protocol is presented in Sect. 5. Finally,
we conclude and discuss some further works in Sect. 6.



Provably Secure Three-Party Password-Based Authenticated Key Exchange 59

2 Preliminaries

2.1 Security Models

The security model is modified from [2] and [3]. The 3PAKE protocol involves
three parties, two clients A and B who wish to establish a shared secret session
key and a trusted server S who try to help distribute a key to A and B. Let P
be a 3PAKE protocol.

Security Game. Given a security parameter κ, an algorithmic game initialized
is played between CH - a challenger, and a probability polynomial time adversary
A. For simulating network traffic for the adversary, CH will essentially run P .

Users and Passwords. There is a fixed set of users, which is partitioned into
two non-empty sets of clients and servers. We also assume D is some fixed, non-
empty dictionary with size of L. Then before the game starts, a password pwU

is drawn uniformly at random from D and assigned to each clients outside of
the adversary’s view. And for each server S, we set pwS := (f(pwU ))U , where
U runs through all of clients. Usually, f is some efficiently computable one-way
function (in our protocol we let f be a hash function).

User Instances. We denote some instance i of a user U as Πi
U . The adversary

A controls all the communications that exchange between a fixed number of
parties by interacting with a set of Πi

U oracles. At any point of in time, an client
user instance Πi

U may accept. When Πi
U accepts, it holds a partner-id (PID)

pidi
U , a session-id (SID) sidi

U , and a session key (SK) ski
U . The PID is the

identity of the user that the instance believes talking to, and SK is what the
instance aims to compute after the protocol completed. The SID is an identifier
and is used to uniquely name the ensuing session. Note that the SID and PID
are open to the adversary, and the SK certainly is secret for A.

Oracle Queries. The adversary A has an endless supply of oracles and it models
various queries to them with each query models a capability of A. The oracle
queries by the adversary A are described as follows:

– The Send(U, i,M) query allows the adversary to send some message M to
oracle Πi

U of her choice at will. The Πi
U oracle, upon receiving such a query,

will compute what the protocol P says, updates its state, and then returns
to A the response message. If Πi

U has accepted or terminated, this will be
made known to the adversary A. This query is for dealing with controlling
the communications by the adversary.

– The Execute(A, i,B, j, S, t) query causes P to be executed to completion
between two clients instances Πi

A, Πj
B and a server instance Πt

S , and hands
all the execution’s transcripts to A. This query is for dealing with off-line
password guessing attacks.

– The Reveal(U, i) query allows A to expose session key SK that has been
previously accepted. If Πi

U has accepted and holds some SK, then Πi
U , upon

receiving such a query, will sends SK back to A. This query is for dealing
with known-key security, which means that when the session key is lost, it
does not reveal the other session keys.



60 C. Liu et al.

– The Corrupt(U) query allows A to corrupt the user U at will. If U is a
server, returns (f(pwC))C to A, else returns pwU to A. This query is for
dealing with forward secrecy.

– The Test(U, i) is a query that does not correspond to A’s abilities. The oracle
chooses a bit b ∈ {0, 1} randomly. If Πi

U has accepted with some SK and is
being asked by such a query, then A is given the actual session key when
b = 1; A is given a key chosen uniformly at random when b = 0. A is allowed
to query this oracle once and only on a fresh Πi

U (defined in the following).
This query models the semantic security of the session key SK.

Ending the Game. Eventually, the adversary ends the game, and then outputs
a single bit b′.

And next we define what constitutes the breaking of the 3PAKE protocol.
Firstly we introduce the notions of instance partnering and instance freshness
with forward secrecy.

Definition 1 (Partnering). Let Πi
A and Πj

B be two instances. We shall say that
Πi

A and Πj
B are partnered if both instances accept, holding (ski

A, sidi
A, pidi

A) and
(skj

B , sidj
B , pidj

B) respectively, and the followings hold:

– sidi
A = sidj

B = sid is not null and ski
A = skj

B and pidi
A = B and pidj

B = A;
– No instance besides Πi

A and Πj
B accepts with a SID of sid.

Definition 2 (Freshness). Instance Πi
A is fs-fresh or it holds a fresh session key

at the end of the execution if none of the following events occur:

– Reveal(A, i) was queried;
– a Reveal(B, j) was queried where Πj

B is parted with Πi
A, if it has one;

– before the Test query, a Corrupt(U) was queried for some user U and a
Send(A,i,M) query occurs for some string M.

Password Security. We say the adversary breaks the password security of
3PAKE if he learns the password of a user by either on-line or off-line password
guessing attacks.

AKE security. We now define the advantage of the adversary A against pro-
tocol P for the authenticated key exchange (ake). Let Succake

P (A) be the event
that the adversary makes a single Test(A, i) query directed to some terminated
fresh instances Πi

A, and outputs a bit b′ eventually, and b′ = b where b is the bit
selected in the Test(A, i) query. Then A’s advantage is defined as:

Advake
P (A) def= 2Pr

[
Succake

P (A)
]

− 1

It is easy to verify that

Pr(Succake
P (A)) = Pr(Succake

P ′ (A)) + ε ⇐⇒ Advake
P (A) = Advake

P ′ (A) + 2ε.

The protocol 3PAKE is AKE-secured if Advake
P (A) is negligible for all prob-

abilistic polynomial time adversaries.



Provably Secure Three-Party Password-Based Authenticated Key Exchange 61

2.2 Notations

Let n be an integer, which is a power of 2. We define the ring of integer polynomi-
als R := Z[x]/(xn +1). For any positive integer q, we set Rq := Zq[x]/(xn +1) as
the ring of integer polynomials modulo xn +1, where every coefficient is reduced
modulo q. For a polynomial y in R, identify y with its coefficient vector in Z.
Let the norm of a polynomial to be the norm of its coefficient vector. Assume χ

is a probability distribution over R, then x
$←− χ means the coefficients of x are

sampled from χ.
For any positive real β ∈ R, we set ρβ(x) = exp(−π ||x||2

β2 ) as the Gaussian
function, which is scaled by a parameter β. Let ρβ(Zn) =

∑
x∈Zn ρβ(x). Then

for a vector x ∈ Z
n, let DZn,β(x) = ρβ(x)

ρβ(Zn) to indicate the n-dimensional discrete
Gaussian distribution. Usually we denote this distribution as χβ .

2.3 Ring Learning with Errors

The Learning with Errors (LWE) problem was first introduced by Oded Regev
in [24]. He showed that under a quantum reduction, solving LWE problem in the
average cases was as hard as solving the worst cases of the certain lattice prob-
lems. However since with a large key sizes of O(n2), LWE based cryptosystems
are not efficient for practical applications. In 2010, Lyubashevsky, Peikert, and
Regev [20] introduced the version of LWE in the ring setting: the Ring Learning
with Errors problem, which could drastically improve the efficiency.

For uniform random elements a, s
$←− Rq and an error distribution χ, let As,χ

denote the distribution of the RLWE pair (a, as+e) with the error e
$←− χ. Then

given polynomial number of such samples, the search version of RLWE is to find
the secret s, and the decision version of the RLWE problem (DRLWEq,χ) is to
distinguish As,χ from an uniform distribution pair on Rq × Rq. RLWE enjoys a
worst case hardness guarantee, which we state here.

Theorem 1 ([20], Theorem 3.6). Let R = Z[x]/(xn + 1) where n is a power of
2, α = α(n) <

√
logn/n, and q ≡ 1 mod 2n which is a ploy(n)-bounded prime

such that αq ≥ ω(
√

logn). Then there exists a ploy(n)-time quantum reduction
from Õ(

√
n/α)-SIVP (Short Independent Vectors Problem) on ideal lattices in

the ring R to solving DRLWEq,χ with l − 1 samples, where χ = DZn,β is the
discrete Gaussian distribution with parameter β = αq · (nl/log(nl))1/4.

We have the following useful fact.

Lemma 1 ([19], Lemma 4.4). For any k > 0, Prx←χβ
(|x| > kβ) ≤ 2e−πk2

.

Note that taking k = 6 gives tail probability approximating 2−162.

Reconciliation Mechanism. We now recall the reconciliation mechanism
defined in [23]. This technique is one of the foundations of our protocol.

For an integer p (e.g. p = 2) which divides q, define the modular rounding
function 
·�p : Zq → Zp as 
x�p := 
p

q · x� and 
·p : Zq → Zp as 
xp :=



62 C. Liu et al.


p
q · x. Let the modulus q ≥ 2 and be an even, define disjoint intervals I0 :=

{0, 1, . . . , 
 q
4� − 1}, I1 := {−
 q

4�, . . . ,−1} mod q. Note that when v ∈ I0 ∪ I1,

v�2 = 0, and when v ∈ (I0 + q

2 ) ∪ (I1 + q
2 ), 
v�2 = 1. Define the cross-rounding

function 〈·〉2 : Zq → Z2 as 〈v〉2 := 
 4
q · v mod 2. Note that 〈v〉2 = b ∈ {0, 1}

such that v ∈ Ib ∪ ( q
2 + Ib);.

Define the set E := [− q
8 , q

8 ) ∩ Z. Then suppose v, w are sufficiently close,
and given w and 〈v〉2, we can recover 
v�2 using the reconciliation function rec:
Zq × Z2 → Z2:

rec(w, b) =

{
0 if w ∈ Ib + E(modq),
1 otherwise.

When q is odd, to avoid the bias produced by the rounding function, Peikert
introduced a randomized function dbl(): Zq → Z2q. For v ∈ Zq, dbl(v):= 2v−ē ∈
Z2q for some random ē ∈ Z which is independent of v and uniformly random
moduloes two. Usually we denote v with an overline to means that v̄ ← dbl(v).

For ease of presentation, we define function HelpRec(X): (1). X ← dbl(X);
(2). W ← 〈X〉2; K ← 
X�2; (3). return (K,W ).

Note that for w, v ∈ Zq, we need apply the appropriated rounding function
from Z2q to Z2, which means that 
x�p = 
 p

2q ·x�, 〈x〉2 = 
 4
2q ·x, and similar with

rec function. Obviously, if (K,W ) ← HelpRec(X) and Y = X+e with ||e||∞ < q
8 ,

we have rec(2·Y,W ) = K. These definitions also can be extended to Rq by apply-
ing coefficient-wise to the coefficients in Zq of a ring elements. In other words, for
a ring element v = (v0, . . . , vn−1) ∈ Rq, set 
v�2 = (
v0�2, . . . , 
vn−1�2); 〈v〉2 =
(〈v0〉2, . . . , 〈vn−1〉2); HelpRec(v) = (HelpRec(v0), . . . ,HelpRec(vn−1)). And for
a binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, set rec(v, b)=(rec(v0, b0),. . . ,
rec(vn−1, bn−1)).

Lemma 2 ([23]). For q ≥ 2 is even, if v is uniformly random chosen from Zq,
then 
v�2 is uniformly random when given 〈v〉2; if w = v + e mod q for some
v ∈ Zq and e ∈ E, then rec(w, 〈v〉2)= 
v�2. For q > 2 is odd, if v is uniformly
random chosen from Zq and v̄ ← dbl(v) ∈ Z2q, then 
v̄�2 is uniformly random
given 〈v̄〉2.

The PWE Assumption. To prove the security of our protocol, we introduce
the Pairing with Errors (PWE) assumption. This assumption is following the
work in [9], and we replace the reconciliation mechanism of them by Peikert’s
version. For any (a, s) ∈ R2

q , we set τ(a, s) := 
as�2 and if there is (c,W ) ←
HelpRec(as), then τ(a, s) = c = rec(as,W ). Assume that a PPT adversary A
takes inputs of the form (a1, a2, b,W ), where (a1, a2, b) ∈ R3

q and W ∈ {0, 1}n,
and outputs a list of values in {0, 1}n. A’s objective is to obtain the string
τ(a2, s) in its output, where s is randomly chosen from Rq, b is a “small additive
perturbation” of a1s, W is 〈a2s〉2. Define

AdvPWE
Rq

(A) def= Pr
[
a1

$←− Rq;a2
$←− Rq; s, e

$←− χβ ; b ← a1s + e;

W ← 〈a2s〉2 : τ(a2, s) ∈ A(a1, a2, b,W )
]
.



Provably Secure Three-Party Password-Based Authenticated Key Exchange 63

Let AdvPWE
Rq

(t,N) = maxA
{

AdvPWE
Rq

(A)
}

, where the maximum is taken over
all adversaries times complexity which at most t that output a list containing
at most N elements of {0, 1}n. Then for t and N polynomial in κ, the PWE
assumption states that AdvPWE

Rq
(t,N) is negligible.

To states the hardness of PWE assumption, We define the decision version
of PWE problem as follows. If DPWE is hard, so is PWE.

Definition 3 (DPWE). Given (a1, a2, b,W, σ) ∈ Rq ×Rq ×Rq ×{0, 1}n×{0, 1}n

where W = 〈K〉2 for some K ∈ Rq, where K ← dbl(K) and σ = rec(2 · K,W ).
The Decision Pairing with Errors problem (DPWE) is to decide whether K =
a2s+ e1, b = a1s+ e2 for some s, e1, e2 is drawn from χβ, or (K, b) is uniformly
random in Rq × Rq.

In order to show the reduction of the DPWE problem to the RLWE problem, we
would like to introduce a definition to what we called the RLWE-DH problem
[9] which can reduce to RLWE problem.

Definition 4 (RLWE-DH). Let Rq and χβ be defined as above. Given an
input ring element (a1, a2, b,K), where (a,X) is uniformly random in R2

q, The
DRLWE-DH problem is to tell if K is a2s + e1 and b = a1s + e2 for some
s, e1, e2

$←− χβ or (K, b) is uniformly random in Rq × Rq.

Theorem 2 ([9], Theorem 1). Let Rq and χβ be defined as above, then the
RLWE-DH problem is hard to solve if RLWE problem is hard.

Theorem 3. Let Rq and χβ be defined as above. The DPWE problem is hard
if the RLWE-DH problem is hard.

Proof. Suppose there exists an algorithm D which can solve the DPWE problem
on input (a1, a2, b,W, σ) where for some K ∈ Rq, W = 〈K〉2 and σ = rec(2 ·
K,W ) with non-negligible probability ε. By using D as a subroutine, we can
build a distinguisher D′ on input (a′

1, a
′
2, b

′,K ′), solve the RLWE-DH problem :

– Compute W = 〈K ′〉 and σ = rec(2 · K ′,W ).
– Run D using the input (a′

1, a
′
2, b

′,W, σ).
• If D outputs 1 then K ′ is a′

2s + e1 for some e1
$←− χβ and b′ = a1s + e2

for some s, e1
$←− χβ .

• Else (K ′, b′) is uniformly random element from Rq × Rq.

Note that if (a′
1, b

′), (a′
2,K

′) is two RLWE pairs, with input (a′
1, a

′
2, b

′,W, σ)
defined above, D outputs 1 with probability ε, hence RLWE-DH can be solved
with probability ε using distinguisher D′. This means that RLWE-DH can be
solved with non-negligible advantage, which contradicts RLWE-DH’s hardness.

��

3 A New Three-Party Password Authenticated Key
Exchange

In this section we introduce a new 3PAKE based on RLWE: RLWE-3PAK. The
protocol RLWE-3PAK is given in Fig. 1.



64 C. Liu et al.

3.1 Description of RLWE-3PAK

Let q = 2ω(logn) + 1 be an odd prime such that q ≡ 1 mod 2n. Let a ∈ Rq be
a fixed element chosen uniformly at random and given to all users. Let χβ be
a discrete Gaussian distribution with parameter β. Let H1 : {0, 1}∗ �→ Rq be
hash function, Hl : {0, 1}∗ → {0, 1}κ for l ∈ {2, 3, 4} be hash functions which
is used for verification of communications, and H5 : {0, 1}∗ → {0, 1}κ be a Key
Derivation Function (KDF), where κ is the bit-length of the final shared key.
We model the hash functions Hl for l ∈ {1, 2, 3, 4, 5} as random oracles. We will
make use of 〈·〉2, 
·�2, HelpRec() and rec() defined in Sect. 2.3.

The function f used to compute client passwords’ verifiers for the server is
instantiated as: f(·) = −H1(·). Our protocol which is illustrated in Fig. 1 consists
of the following steps:

Client B initiation. Client B sends the identity of A, the one who he wants to
communicate with, and his own to S as an initial request. (Note that, this step
also can be executed by A.)
Server S first response. Server S receivers B’s message, then S chooses
sf , ef , sg, eg

$←− χβ to compute bA = asf + ef and bB = asg + eg, and com-
putes public elements mA = bA + γ′ and mB = bB + η′ where γ′ := −H1(pw1),
η′ := −H1(pw2). Then S sends 〈mA,mB〉 to B.
Client B first response. After receiving S’s message, client B checks if
mA,mB ∈ Rq. If not, aborts; otherwise retrieves b′

B = mB + η where

η = H1(pw2) and chooses sB , eB , e′
B

$←− χβ to compute pB = asB + eB and
v1 = b′

BsB + e′
B . Then B uses v1 to compute (σB , wB) ← HelpRec(v1), and

computes kBS ← H2(〈A,B, S, b′
B , σB〉). B sends 〈mA,mB , pB , kBS , wB〉 to A.

Client A first response. After receiving B’s message, A checks if mA, pB ∈
Rq. If not, aborts; otherwise similarly with B, retrieves b′

A = mA + γ where

γ = H1(pw1) and chooses sA, eA, e′
A

$←− χβ to compute pA = asA + eA and v2 =
b′
AsA + e′

A. Then A uses v2 to compute (σA, wA) ← HelpRec(v2), and computes
kAS ← H2(〈A,B, S, b′

A, σA〉). Finally A sends 〈pA, pB , kAS , kBS , wA, wB〉 to S.
Server S second response. After receiving A’s message, S checks if pA, pB ∈
Rq. If not, aborts; otherwise computes σ′

A ← rec(2pAsf , wA) and checks if kAS =
H2(〈A,B, S, bA, σ′

A〉). If not, aborts; otherwise computes σ′
B ← rec(2pBsg, wB)

and checks if kBS = H2(〈A,B, S, bB , σ′
A〉). If not, aborts; otherwise continues.

Then, S samples sS , e1, e2
$←− χβ , and computes cB = pAsS + e1 and cA =

pBsS + e2 which will be used to retrieve the final messages by A and B. To give
the authentication of S to B and A, S computes kSA ← H2(〈A,B, S, pB , σ′

A〉)
and kSB ← H2(〈A,B, S, pA, σ′

B〉). Finally S sends 〈pA, cA, cB , kSA, kSB〉 to B.
Client B second response. After receiving S’s message, B checks if
pA, cA, cB ∈ Rq. If not, aborts; otherwise checks if kSB = H2(〈A,B, S, pA, σB〉).
If not, aborts; otherwise samples e′′

B
$←− χβ and computes vB = cBsB +

e′′
B , (σ,w) ← HelpRec(vB), k = H3(〈A,B, S,mA,mB , pA, pB , σ〉), k′′ =

H4(〈A,B, S,mA,mB , pA, pB , σ〉) and skB = H5(〈A,B, S,mA,mB , pA, pB , σ〉).
Finally B sends 〈cA, w, k, kSA〉 to A.



Provably Secure Three-Party Password-Based Authenticated Key Exchange 65

Client A Client B Server S
Input pw1,B Input pw2, A γ′ = −γ, η′ = −η

(A,B)−−−−→
bA = asf + ef

bB = asg + eg

mA = bA + γ′

mB = bB + η′

η = H1(pw2)
mA,mB←−−−−−

b′
B = mB + η

pB = asB + eB

v1 = b′
BsB + e′

B

(σB , wB) ←HelpRec(v1)
γ = H1(pw1) kBS ← H2(〈A, B, S,
b′
A = mA + γ b′

B , σB〉)
pA = asA + eA

CB1←−−− CB1 ← 〈mA, mB , pB ,
v2 = b′

AsA + e′
A kBS , wB〉

(σA, wA) ← HelpRec(v2)
kAS ← H2(〈A, B, S, σ′

A ← rec(2pAsf , wA)

b′
A, σA〉) 〈pA,pB ,kAS ,kBS ,wA,wB〉−−−−−−−−−−−−−−→ Abort if kAS �= H2(〈A,

B, S, bA, σ′
A〉)

σ′
B ← rec(2pBsg, wB)

Abort if kBS �= H2(〈A,
B, S, bB , σ′

B〉)

cB = pAsS + e1
cA = pBsS + e2

Abort if kSB �= H2(〈A, kSA = H2(〈A, B, S, pB , σ′
A〉)

B, S, pA, σB〉) CS←−− kSB = H2(〈A, B, S, pA, σ′
B〉)

CS = 〈pA, cA, cB , kSA, kSB〉
vB = cBsB + e′′

B

(σ, w) ← HelpRec(vB)
k = H3(〈A, B, S, mA,
mB , pA, pB , σ〉)

Abort if kSA �= H2(〈A,
CB2←−−− k′′ = H4(〈A, B, S, mA,

B, S, pB , σA〉) mB , pA, pB , σ〉)
CB2 = 〈cA, w, k, kSA〉

σ ← rec(2cAsA, w)
Abort if k �= H3(〈A, B,
S, mA, mB , pA, pB , σ〉)
else
k′ = H4(〈A, B, S, mA,

mB , pA, pB , σ〉) k′−→ Abort if k′ �= k′′

Fig. 1. Three-party password authenticated protocol: RLWE-3PAK, where
sS , eS , sf , ef , sg, eg, sB , eB , e′

B , e′′
B , eA, e′

A, e1, e2 is sampled from χβ . Shared ses-
sion key is sk = H5(〈A, B, S, mA, mB , pA, pB , σ〉).



66 C. Liu et al.

Client A second response. After receiving B’s message, A checks if
cA ∈ Rq. If not, aborts; otherwise checks if kSA = H2(〈A,B, S, pB , σA〉).
If not, aborts; otherwise computes σ′ ← rec(2cAsA, w). Then checks if
k = H3(〈A,B, S,mA,mB , pA, pB , σ′〉). If not, aborts; otherwise computes
k′ = H4(〈A,B, S,mA,mB , pA, pB , σ′〉) and skA = H5(〈A,B, S,mA,mB , pA,
pB , σ′〉). Finally A sends k′ to B.
Client B finish. After receiving k′ from A, B checks if k′ = k′′. If not, aborts;
otherwise terminates.

3.2 Design Rationale

In our protocol, the check for ring elements ensures that all ring operations are
valid. The participants are split into clients and servers and servers are allowed
to store a password file. By having the server store not pw1, pw2, but 〈γ′, η′〉
allows us to improve the efficiency of the server.

Our 3PAKE may seem a bit complicated, but this is because of the need to
provide authentication in the exchange sessions. When we remove all authenti-
cation functions, we will find that the main body of the protocol is very simple.
In the absence of authentication, party A and party B send pA and pB to S,
respectively. S computes cA and cB by using pA, pB and a random value sS ,
and sends cA (resp. cB) to A (resp. B). Finally, A and B can calculate the same
secret key by using the reconciliation mechanism with cA, cB and their own
secret keys.

In the 3PAKE model, A and B can not authenticate each other, so they need
the help of server S to provide the authentication. In our protocol, kAS (kBS)
can be viewed as an authentication of A (resp. B) to S. Note that S and A share
a password, so only A can calculate the corresponding bA which is set by S, and
only B can calculate bB . Meanwhile, only A (resp. B) can calculate the same
key value σA (resp. σB) with S through the reconciliation mechanism.

Note that the adversary can not guess the password in a limited number of
times, so kAS (or kBS) can not be computed by adversary in a few tries, which
makes our protocol resist undetectable on-line password guessing attacks [10].
Finally in order to resist off-line password guessing attacks [16], session values
delivered by the server also need to provide authentication of S to A and B, that
is why we add kSA and kSB in server’s outputs. In the security proof, two types
of password guessing attacks is discussed in detail. Note that the final Client
B finish step may seems redundant, but it is indispensable for the property of
forward security [2].

3.3 Correctness

Note that in protocol RLWE-3PAK, if rec(2pAsf , wA)=
v2�2, the verification
for kAS would be correct. By the definition of the reconciliation mechanism and
Lemma 2, we have ||v2 − pAsf ||∞ < q

8 should be satisfied with overwhelming



Provably Secure Three-Party Password-Based Authenticated Key Exchange 67

probability. We have

v2 = bAsA + e′
A = (asf + ef )sA + e′

A

= asfsA + efsA + e′
A

and

pAsf = asAsf + eAsf .

Hence we need ||v2 − pAsf ||∞ = ||efsA + e′
A − eAsf ||∞ < q

8 . Similarly for
the verification of kBS , we need ||v1 − pBsg||∞ = ||egsB + e′

B − eBsg||∞ <
q
8 with overwhelming probability. And to compute the correct key, it needs
rec(2cAsA, w)=
vB�2, which means that ||vB − cAsA||∞ < q

8 . We have

vB = cBsB + e′′
B = (pAsS + e1)sB + e′′

B

= asAsSsB + eAsSsB + e1sB + e′′
B

and

cAsA = (pBsS + e2)sA

= asAsBsS + eBsAsS + e2sA.

Therefore, it also needs ||vB − cAsA||∞ = ||eAsBsS + e1sB + e′′
B − eBsAsS −

e2sA||∞ < q
8 with overwhelming probability.

4 Security for RLWE-3PAK

Here we prove that the RLWE-3PAK protocol is secure, which means that an
adversary A who attacks the system cannot determine the SK of fresh instances
with greater advantage than that of an detectable on-line dictionary attack.

Theorem 4. Let P:=RLWE-3PAK, described in Fig. 1, using ring Rq, and with
a password dictionary of size L. Fix an adversary A that runs in time t, and
makes nse, nex, nre, nco queries of type Send, Execute, Reveal, Corrupt,
respectively. Then for t′ = O(t + (nro + nse + nex)texp):

Advake-fs
P (A) = C · ns

se + O
(
nseAdvPWE

Rq
(t′, n2

ro) + AdvDRLWE
Rq

(t′, nro)

+
(nse + nex)(nro + nse + nex)

qn
+

nse

2κ

)

where s ∈ [0.15, 0.30] and C ∈ [0.001, 0.1] are constant CDF-Zipf regression
parameters depending on the password space L [29].

The proof of above theorem will proceed by introducing a series of protocols
P0, P1, . . . , P7 related to P , with P0 = P . In P7, the only possible attack for the



68 C. Liu et al.

adversary A is natural detectable on-line password guessing attacks. Eventually,
there are

Advake
P0

≤ Advake
P1

+ ε1 ≤ · · · ≤ Advake
P7

+ ε7

where ε1, . . . , ε7 are negligible values in k. Together with above relations, our
result is given by computing the success probability of detectable on-line attack
in P7 in the end of the proof. Due to the limitation of the space, we give a
informal description of protocols P0, P1, . . . , P7 in Fig. 2, and given the proof
sketches of negligible advantage gain from Pi−1 to Pi in Fig. 3. The full proof of
Theorem 4 is given in the full version of this paper in ePrint.

Let correctpw be the event that the adversary make a correct guess of
password by detectable on-line passwords attacks. In most existing PAKE stud-
ies, passwords are assumed to follow a uniformly random distribution, and
Pr(correctpw)≤ nse

L +negl(κ), where L is the size of the password dictio-
nary, nse is the max number of A’s active on-line password guessing attempts
before a Corrupt query and negl() is a negligible function. Ding Wang and
Ping Wang [29] introduced CDF-Zipf model and in this model Pr(correctpw)≤
C ·ns

se+negl(κ) for the Zipf parameters C and s which is depended on the pass-
word space L. CDF-Zipf model is more consistent with the real world attacks
than traditional formulation. For example, when considering trawling guessing
attacks, the actual advantage will be 6.84% when nse = 102, and 12.45% when
nse = 103 [28], but the traditional formulation greatly underestimate Advantage
to be 0.01% when nse = 102, and 0.10% when nse = 103. When further consid-
ering targeted guessing attacks (in which the adversary makes use of the target
users personal information), advantage will be about 20% when nse = 102, 25%
when nse = 103, and 50% when nse = 106 [30]. So we prefer this model in our
analysis.

5 Concrete Parameters and Implementation
of RLWE-3PAK

In this section, we present our choices of parameters and outline the performance
of our RLWE-3PAK.

Here we use the fact of the product of two Gaussian distributed random values
that are stated in [32]. Let x, y ∈ R be two polynomials with degree of n, and the
coefficients of x and y are distributed according to discrete Gaussian distribution
with parameter βx, βy, respectively. Then the individual coefficients of the poly-
nomial xy are approximately normally distributed around zero with parameter
βxβy

√
n. Hence for ||vB −cAsA||∞ = ||eAsBsS +e1sB +e′′

B −eBsAsS −e2sA||∞ <
q
8 , by applying Lemma 1 we have that ||vB − cAsA||∞ > 6

√
2n2β6 + 2nβ4 + β2

with probability approximating 2−162. Hence we set 6
√

2n2β6 + 2nβ4 + β2 < q
8 ,

then the two clients will end with the same key with overwhelming prob-
ability. And such choices of parameter also make ||v2 − pAsf ||∞ < q

8 and
||v1 − pBsg||∞ < q

8 with overwhelming probability be satisfied.



Provably Secure Three-Party Password-Based Authenticated Key Exchange 69

P0 The original protocol P .
P1 The hash function H1’s outputs are no longer a randomly chosen element γ in Rq,

but a ring element γ = as + e ∈ Rq, where s, e is sampled from χβ .
P2 The honest parties randomly choose mA, mB , pA or pB values which are seen previ-

ously in the execution, the protocol halts and the adversary fails.
P3 The protocol answers Send and Execute queries without using any random oracle

queries. Subsequent random oracle queries made by A are backpatched, as much
as possible, to be consistent with the responses to the Send and Execute queries.
(This is a standard technique for proofs involving random oracles.)

P4 If an Hl(·) query is made, for l ∈ {3, 4, 5}, it is not checked for consistency against
Execute queries. That means instead of backpatching to maintain consistency with
an Execute query, the protocol responds with a random output.

P5 If before a Corrput query, a correct shared secret key guess is made against client
A or B (This can be determined by an Hl(·) query, for l ∈ {3, 4, 5}, using the
correct inputs to compute k, k′ or session key), the protocol halts and the adversary
automatically succeeds.

P6 If the adversary makes a shared secret key guess against two partnered clients, the
protocol halts and the adversary fails.

P7 The protocol uses an internal password oracle, which holds all passwords and be used
to exam the correctness of a given password. Such an oracle aims at the password
security. (It also accepts Corrupt(U) queries, which returns (f(pwC)))C if U is an
server and otherwise returns pwU to A).

Fig. 2. Informal description of protocols P0, P1, . . . , P7

P0 → P1 Unless the decision version of RLWE is solved with non-negligible advantage,
theses two protocols are indistinguishable.

P1 → P2 This is straightforward.
P2 → P3 By inspection, the two protocols are indistinguishable unless the decision ver-

sion of RLWE is solved with non-negligible advantage or the adversary makes an
Client A second response (resp. Client B finish.) query with a k (resp. k′)
value that is not the output of an H3(·) (resp. H4(·)) query that would be a correct
shared secret key guess. However, the probability of these is negligible.

P3 → P4 This can be shown using a standard reduction from PWE. On input (a, X, Y =
asy + ey, W ), where sy, ey are unknown, we plug in Y added by random RLWE
pair for client B’ pB values, and X added by random RLWE pair for server’ cB

values. Then from a correct Hl(·) guess for l ∈ {3, 4, 5}, we can compute τ(X, sy).
P4 → P5 This is obvious.
P5 → P6 This can be shown using a standard reduction from PWE, similar to the one

for Execute queries. On input (a, X, Y = asy+ey, W ), where sy, ey are unknown,
we plug in Y for client A’ pA values, and X added by random RLWE pair for
server’ cA values. Then from a correct Hl(·) guess for l ∈ {3, 4, 5}, we can compute
τ(X, sy).

P6 → P7 By inspection, there two protocols are indistinguishable. Finally, in P7, the
adversary success only if he breaks the password security or makes a correct
shared secret key guess. We show these happens with negligible abilities by using
a standard reduction from PWE.

Fig. 3. Proof sketches of negligible advantage gain from Pi−1 to Pi



70 C. Liu et al.

We take n = 1024, β = 8 and q = 232−1. Our implementations are written in
C without any parallel computations or multi-thread programming techniques.
The program is run on a 3.5 GHz Intel(R) Core(IM) i7-4770K CPU and 4 GB
RAM computer running on Ubuntu 16.04.1 64 bit system. The timings for server
and clients actions of the authentication protocol are presented in Table 1.

Table 1. Timings of proof-of-concept implementations in ms

B initiation S first response B first response A first response

<0.001 ms 0.165 ms 1.960 ms 1.779 ms

S second response B second response A second response B finish

2.030 ms 2.195 ms 2.088 ms <0.001 ms

Sampling and multiplication operations are the mainly time cost. The sam-
pling technique used in our protocol is the same with [5], which use the Discrete
Gaussian to approximate the continuous Gaussian. And to improve performance,
we have used multiplication with FFT. Note that by the proof of concept imple-
mentation, our protocol can be very efficient.

6 Conclusion

In this paper, we propose a 3PAKE protocol based on RLWE: RLWE-3PAK.
We provide a full proof of security of our protocol in the random oracle model.
Finally, we construct a proof-of-concept implementation to examine the efficiency
of our protocol. The performance results indicate that our protocol is very effi-
cient and practical. Since some literature [4] show that it is delicate to prove
quantum resistance with random oracle. It is meaningful to design an efficient
3PAKE protocol without random oracle heuristics in the future.

Acknowledgments. This article is supported by The National Key Research and
Development Program of China (Grant No. 2017YFA0303903), National Cryptog-
raphy Development Fund (No. MMJJ20170121), and Zhejiang Province Key R&D
Project (No. 2017C01062). Authors thank Aijun Ge for discussions and the anony-
mous ISPEC’19 reviewers for helpful comments.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 6

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11


Provably Secure Three-Party Password-Based Authenticated Key Exchange 71

3. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, Las Vegas, Nevada, USA, 29 May–1 June 1995, pp. 57–66 (1995)

4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

5. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015,
pp. 553–570 (2015)

6. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

7. Chang, T.Y., Hwang, M., Yang, W.: A communication-efficient three-party pass-
word authenticated key exchange protocol. Inf. Sci. 181(1), 217–226 (2011)

8. Ding, J.: A simple provably secure key exchange scheme based on the learning with
errors problem. IACR Cryptology ePrint Archive 2012, 688 (2012). http://eprint.
iacr.org/2012/688

9. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 11

10. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. Oper. Syst.
Rev. 29(4), 77–86 (1995)

11. Dongna, E., Cheng, Q., Ma, C.: Password authenticated key exchange based on
RSA in the three-party settings. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009.
LNCS, vol. 5848, pp. 168–182. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04642-1 15

12. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

13. Kim, H.S., Choi, J.: Enhanced password-based simple three-party key exchange
protocol. Comput. Electr. Eng. 35(1), 107–114 (2009)

14. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

15. Lee, T., Hwang, T., Lin, C.: Enhanced three-party encrypted key exchange without
server public keys. Comput. Secur. 23(7), 571–577 (2004)

16. Lin, C., Sun, H., Hwang, T.: Three-party encrypted key exchange: attacks and a
solution. Oper. Syst. Rev. 34(4), 12–20 (2000)

17. Lin, C., Sun, H., Steiner, M., Hwang, T.: Three-party encrypted key exchange
without server public-keys. IEEE Commun. Lett. 5(12), 497–499 (2001)

18. Lu, R., Cao, Z.: Simple three-party key exchange protocol. Comput. Secur. 26(1),
94–97 (2007)

19. Lyubashevsky, V.: Lattice signatures without trapdoors. IACR Cryptology ePrint
Archive 2011, 537 (2011). http://eprint.iacr.org/2011/537

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-642-04642-1_15
https://doi.org/10.1007/978-3-642-04642-1_15
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/11535218_33
http://eprint.iacr.org/2011/537


72 C. Liu et al.

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

21. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange.
In: DIMACS Technical Report 2002–46, p. 7 (2002)

22. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 46

23. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

26. Steiner, M., Tsudik, G., Waidner, M.: Refinement and extension of encrypted key
exchange. Oper. Syst. Rev. 29(3), 22–30 (1995)

27. Sun, H., Chen, B., Hwang, T.: Secure key agreement protocols for three-party
against guessing attacks. J. Syst. Softw. 75(1–2), 63–68 (2005)

28. Wang, D., Jian, G., Wang, P.: Zipf’s law in passwords. IACR Cryptology ePrint
Archive 2014, 631 (2014). http://eprint.iacr.org/2014/631

29. Wang, D., Wang, P.: On the implications of Zipf’s law in passwords. In: Askoxy-
lakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9878, pp. 111–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 6

30. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28
October 2016, pp. 1242–1254 (2016)

31. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantia-
tions from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 2

32. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 24

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/3-540-44448-3_46
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
http://eprint.iacr.org/2014/631
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24


System and Network Security



KMO: Kernel Memory Observer
to Identify Memory Corruption
by Secret Inspection Mechanism

Hiroki Kuzuno1,2(B) and Toshihiro Yamauchi1

1 Graduate School of Natural Science and Technology, Okayama University,
Okayama, Japan

kuzuno@s.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp
2 Intelligent Systems Laboratory, SECOM CO., LTD., Tokyo, Japan

Abstract. Kernel vulnerability attacks may allow attackers to execute
arbitrary program code and achieve privilege escalation through creden-
tial overwriting, thereby avoiding security features. Major Linux pro-
tection methods include Kernel Address Space Layout Randomization,
Control Flow Integrity, and Kernel Page Table Isolation. All of these mit-
igate kernel vulnerability affects and actual attacks. In addition, the No
eXecute bit, Supervisor Mode Access Prevention, and Supervisor Mode
Execution Prevention are CPU features for managing access permission
and data execution in virtual memory. Although combinations of these
methods can reduce the attack availability of kernel vulnerability based
on the interaction between the user and kernel modes, kernel virtual
memory corruption is still possible (e.g., the eBPF vulnerability exe-
cutes the attack code only in the kernel mode).

To monitor kernel virtual memory, we present the Kernel Memory
Observer (KMO), which has a secret inspection mechanism and offers an
alternative design for virtual memory. It allows the detection of illegal
data manipulation/writing in the kernel virtual memory. KMO identifies
the kernel virtual memory corruption, monitors system call arguments,
and enables unmapping from the direct mapping area. An evaluation
of our method indicates that it can detect the actual kernel vulnera-
bilities leading to kernel virtual memory corruption. In addition, the
results show that the overhead is 0.038µs to 2.505µs in terms of system
call latency, and the application benchmark is 371.0µs to 1,990.0µs for
100,000 HTTP accesses.

1 Introduction

Security studies have focused on kernel vulnerability, which is a significant secu-
rity risk [1,2]. Countermeasures against such vulnerabilities must be developed
to prevent adversaries from exploiting it in their attack scenarios.

Many kernel attacks aim to achieve privilege escalation. The adver-
sary switches to the root account from a non-privileged user account by exploit-
ing kernel vulnerabilities to override the credential information in the kernel
virtual memory.
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 75–94, 2019.
https://doi.org/10.1007/978-3-030-34339-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_5


76 H. Kuzuno and T. Yamauchi

The operating system (OS) provides two features that act as countermea-
sures. One is a mandatory access control (MAC) mechanism (e.g., SELinux [3]),
whereas the other is a capability [4]. Both features can prevent full control over
OS features in case an adversary gains access to the root user account. Moni-
toring the return address on the stack is one method to detect kernel memory
corruption [5]. Kernel Address Space Layout Randomization (KASLR) provides
randomized kernel functions and data addresses in the kernel virtual memory to
prevent the identification of the positions of vulnerable functions [6]. In addition,
Control Flow Integrity (CFI) additionally imposes call and return relationships
for kernel function validation to prevent the injection of malicious code [7].

Mechanisms for controlling access to virtual memory are already present in
the CPU. The No eXecute bit (NX bit) manages the execution permission of a
code in virtual memory. Supervisor Mode Access Prevention (SMAP) prevents
access to user mode data, while Supervisor Mode Execution Prevention (SMEP)
prevents the code execution of the user memory region in virtual memory at the
supervisor mode [8]. Meltdown vulnerability exposes kernel functions and data
virtual addresses to side channel attacks. Therefore, Kernel Page Table Isolation
(KPTI) has been proposed as a means of isolating the virtual address space
between the user mode and the kernel modes in Linux [9].

These countermeasures complicate the attack availability of kernel vulnera-
bilities based on the interaction between the user and kernel modes. Moreover,
these methods restrict root privilege features to minimize damage to the OS
environment in the event of a successful attack. However, these methods cannot
prevent attacks that exploit kernel vulnerabilities in the kernel mode alone [10–
13]. By executing a kernel exploit code in the kernel mode, the adversary can
avoid various security countermeasures to override the security feature functions
in the kernel virtual memory (e.g., some kernel exploits disable SELinux via
memory corruption [14,15]).

In the present study, we designed a security mechanism, the Kernel Memory
Observer (KMO) which can detect illegal data manipulation of the kernel vir-
tual memory, and which could result in security features being defeated. KMO
provides a secret inspection mechanism and creates an alternative kernel virtual
memory as a secret virtual memory to protect the original kernel virtual mem-
ory. The kernel has one virtual memory at KPTI implementation. The design of
KMO is such that the kernel virtual memory is completely separated; its secrecy
can be maintained, and it is responsible for kernel monitoring code execution
and valid data storing.

More specifically, KMO includes a switching function that changes the kernel
virtual memory space to the secret virtual memory space at various timings
during monitoring. The goal is to prevent two scenarios: (i) system call arguments
containing invalid parameters that lead to suspicious code injection targeting
kernel vulnerability, and (ii) overwriting of the kernel virtual memory by a kernel
vulnerability attack that involves a modification of KMO monitoring code and
valid data. Therefore, KMO achieves the identification of kernel virtual memory
corruption.



KMO: Kernel Memory Observer to Identify Memory Corruption 77

In addition, the kernel virtual memory management adopts a direct mapping
region that contains physical memory for effective allocation or collection. KMO
forces the unmapping of the secret virtual memory and monitors valid data from
direct mapping on the kernel virtual memory. It prevents the modification of this
information through direct mapping.

The main contributions of this study are as follows:

– We design a novel security architecture, KMO, that provides a secret virtual
memory that is used to monitor the kernel virtual memory. KMO supports
three switching patterns between the secret virtual memory and the kernel
virtual memory, while the unmapping method provides protection from direct
mapping. Despite kernel protection being studied in multiple studies, there
has been no study dealing with the monitoring of a kernel virtual memory
at the kernel level. This approach offers the advantage of enhanced safety for
kernel security features without virtualization. Moreover, we can apply it to
the OS on a bare machine and to a guest OS on a virtual machine, thereby
combining the features of existing security mechanisms.

– We implement KMO on the latest Linux kernel with KPTI. We also evaluate
its detection capability with regard to eBPF kernel vulnerability [13] and the
illegal kernel modules that corrupt the kernel virtual memory to bypass the
security feature. An evaluation of KMO revealed that its overhead is 0.038µs
to 2.505µs in terms of each system call round time, whereas the applica-
tion overhead is 371.0µs 1,990.0µs for each switching pattern for 100,000
HyperText Transfer Protocol (HTTP) accesses.

2 Background

2.1 Separation of Virtual Memory

Kernel and user processes share virtual memory to enable high-speed manage-
ment. Virtual memory access control relies on the protection of the privilege
level in the kernel and the CPU. A meltdown attack overcomes this protection,
and a user process can then easily access the kernel virtual memory through a
combination of out-of-order, exception, and cache latency.

One countermeasure against a meltdown attack involves the separation of
the virtual memory used for the kernel and user modes. The OS automatically
changes the virtual memory at any privilege level transition from user mode to
kernel mode. The user-mode virtual memory only has a small amount of kernel
code that switches to the virtual memory to minimize the access range of any
meltdown attack. The separation method in Linux is KPTI [9]; other OSs are
equipped with similar mechanisms [16].

2.2 Kernel Vulnerability Attack

An adversary can exploit several types of kernel vulnerability [1] and exploitation
techniques [17] to achieve privilege escalation. Malicious programs overwrite the
credential variable in the kernel virtual memory to gain the root privilege.



78 H. Kuzuno and T. Yamauchi

Fig. 1. Overview of monitoring on the secret virtual memory space.

The OS adopts privilege level management to protect the kernel code or data
in the kernel virtual memory from the user mode, while KASLR/CFI reduces
the success of kernel exploitation attacks, and SMAP/SMEP restricts the kernel
mode execution of a malicious code in the user virtual memory. Nevertheless,
some kernel vulnerabilities (e.g., the eBPF vulnerability [13]) are still available,
whereby the directory allocates a malicious code to the kernel virtual memory
through kernel vulnerability.

2.3 Threat Model

We postulate herein that a threat model (i.e., an adversary) exploits kernel
vulnerability in only the kernel mode. It first attempts to avoid the security
features to gain full administrator capability. Moreover, the adversary changes
the Linux Security Modules (LSM) hook function pointer variable to disable
MAC in Linux. After that, the adversary achieves privilege escalation in the OS.
We ensure that overwriting of the kernel virtual memory space occurs only in
the kernel vulnerability target memory region that includes the security feature
functions pointer, kernel module management data, and a direct mapping region.
In addition, we assume that the BIOS, MMU, TLB, and other hardware are safe.

3 KMO Design

We devised KMO (Fig. 1) to establish a secret virtual memory in the kernel
mode. This is used to monitor the kernel virtual memory. It is established at
a different location from the latest kernel (e.g., Linux with KPTI), and KMO’s
kernel has two kernel virtual memories (i.e., original and secret).



KMO: Kernel Memory Observer to Identify Memory Corruption 79

Fig. 2. Virtual memory switching patterns 1, 2, and 3

3.1 Design Goal

The goal of KMO is to monitor the kernel security feature code and data on
the kernel virtual memory, then KMO detects the invalid overwriting of these
memory regions.

The kernel virtual memory allows reading, writing, and execution in the ker-
nel mode, but not in the user mode. The latest kernel (e.g., Linux with KPTI),
that enables the isolation of virtual memories has the user and the kernel vir-
tual memory. The kernel automatically switches both virtual memories during
privilege transitions between the user mode and kernel modes. The kernel still
provides one virtual memory space that is available for the various features at the
kernel layer. Therefore, kernel memory corruption occurs only when the kernel
code is running in kernel mode.

KMO creates a secret virtual memory space isolated from the original ker-
nel virtual memory. The kernel virtual memory separation ensures that access
violation is impossible as KMO places the valid monitoring valid data and the
monitoring code on the secret virtual memory, which is not affected by corrup-
tion on the kernel virtual memory. KMO makes the valid monitoring data from
an original kernel code and data that contain benign information at the ker-
nel boot. KMO executes the monitoring code on the secret virtual memory. It
checks the kernel code and data for modification by comparing them with the
valid monitoring data.

3.2 Switching Patterns and Detection Capability

KMO adopts three virtual memory switching patterns depending on the kernel
process transition between the user and kernel modes (Fig. 2).



80 H. Kuzuno and T. Yamauchi

Pattern 1: Inspection point undertaken before the system call exe-
cution. Pattern 1 involves inspecting suspicious data input at the
system call argument before the adversary can execute a malicious
code using the kernel vulnerability.

Pattern 2: Inspection points during system call function or kernel
code processing. Pattern 2 inspects the kernel code and data in
the kernel virtual memory. There may be inspection points having
multiple functions during a system call having multiple functions.
Pattern 2 involves the direct detection of memory corruption in the
kernel virtual memory for any timing during the kernel function
flow.

Pattern 3: Inspection point undertaken after the system call execu-
tion. Pattern 3 inspects the kernel code and data in the kernel
virtual memory. It reliably detects memory corruption after an
attack completes a system call execution.

Therefore, KMO automatically switches and combines multiple inspection
points from every pattern for system call invocation. Although it is effective
in detecting kernel memory corruption and attacks, the number of inspections
results in a significant overhead. We examined the attacks on our mechanism to
identify suitable inspection points in a running system.

Upon identifying the attack, the kernel handles the interruption of system
calls by returning the error number to the user process. Additionally, we regard
the kernel as being available to fix the modified memory region.

3.3 Design Approach

KMO overcomes three challenges facing the monitoring of kernel virtual memory
in kernel mode.

Challenge 1: Monitoring code has access permission for monitored
data and will be executed in the secret virtual memory.
KMO has three virtual memory switching patterns with differ-
ent inspection points on a running kernel. The timing at which
memory corruption is detected is also different for each switching
pattern. It efficiently monitors the already implemented kernel
security feature and the module space in kernel virtual memory
to detect memory corruption attacks.
For virtual memory switching, KMO writes the physical address
of the multiple-page table of the secret virtual memory into a
specific register (i.e., CR3 register points to the page table for
x86 64). The monitoring code runs in the secret virtual memory
space. After monitoring, the KMO writes the physical address of
the original kernel virtual memory into a specific register (i.e.,
the CR3 register for x86 64), and then resumes the processing of
the kernel code before the switching event occurs.



KMO: Kernel Memory Observer to Identify Memory Corruption 81

Fig. 3. Overview of secret virtual memory space for a Linux kernel

Challenge 2: Kernel code cannot access the secret virtual memory
space.
KMO fully copies the secret memory space from the original one,
such that both memory spaces have the same kernel code, ker-
nel data, monitoring code, and monitoring data. The monitoring
code and valid data that are not accessed through the page table
flag management for the original kernel virtual memory. There-
fore, in kernel mode, the virtual memory is completely isolated in
KMO, ensuring that the kernel code acts on the original kernel
virtual memory space using its virtual addresses. This ensures
that the monitored kernel code cannot access the kernel mode
secret virtual memory.

Challenge 3: Monitoring code and valid data are not affected through
a direct mapping space. The kernel virtual memory manage-
ment provides a direct mapping space containing the physical
memory for effective page-based memory allocation and collec-
tion. KMO shares the physical memory between the kernel and
the secret virtual memory, leading to the possibility of it being
abused by allowing direct access to the monitoring code and valid
data.
To exclude the monitoring code and valid data from the direct
mapping of the kernel virtual memory, KMO forces the unmap-
ping of these in kernel virtual memory.

4 KMO Implementation

We implemented KMO on Linux as the target OS and x86 64 as the CPU archi-
tecture.



82 H. Kuzuno and T. Yamauchi

Fig. 4. Virtual memory space switching on a Linux kernel

4.1 Secret Virtual Memory Space Management

KMO can monitor the kernel virtual memory (Fig. 3). The latest Linux kernel
has the KPTI feature, which already provides two virtual memory spaces for
each process.

For the kernel, the pgd variable of init mm in mm struct points to the phys-
ical memory address of the kernel virtual memory. KMO creates an additional
virtual memory space on the kernel whose physical address is a 4 page (16 KB
on x86 64) logical conjunction from the pgd variable of the init mm. Moreover,
the kernel code and data are duplicated from the pgd variable. KMO uses the
physical address of the created virtual memory to switch from the kernel virtual
memory to the monitoring of each process in the kernel mode.

4.2 Switching of the Virtual Memory Space

We implemented KMO to provide a switching mechanism for the secret virtual
memory space of the kernel mode (Fig. 4).

In user mode, Interrupt (SYSCALL, IRQ) and Exception are triggered for
the transition to kernel mode. It calls the SWITCH KPTI CR3 function on the
virtual memory of the user and then changes to the kernel virtual memory space.

In kernel mode, KMO fulfills challenge 1, that the kernel calls the
SWITCH KMO CR3 function, which calculates a 4-page offset to the physi-
cal address of the secret virtual memory space from the pgd variable of init mm.
The kernel writes its value to the CR3 register, followed by automatically switch-
ing the virtual memory space for monitoring. After the monitoring process, the
SWITCH KMO CR3 function writes the physical address of the pgd variable
in the active mm of the current (task struct) variable to the CR3 register,
which can change the virtual memory space for the currently running process in
kernel mode. The kernel then calls SWITCH KPTI CR3 to change the virtual



KMO: Kernel Memory Observer to Identify Memory Corruption 83

Fig. 5. Position and unmapped region for the virtual memory space on Linux x86 64.

memory space for the user, and the mode changes to user mode via an interrupt
(SYSRET Interrupt return) or exception (Exception exit).

KMO currently uses TLB flush after the CR3 register writing. This clears
the converting of caches between the virtual and physical addresses.

4.3 Monitoring of Virtual Memory Space

KMO has almost the same virtual memory space layout on Linux x86 64 (Fig. 5).
KMO monitors the security hook list variable for LSM on the kernel text
mapping and the module list variable modules in the kernel virtual memory.
Additionally, KMO disables Copy on Write of the monitored data, whereas it
supports targeted kernel space reading after virtual memory switching. KMO
fulfills challenge 2, that both monitoring code and valid data have a designed
flag setting that does not accept reading and writing at the supervisor level on
the Page Table Entry.

KMO keeps the secret virtual memory space in the kernel boot sequence and
then starts the monitoring feature according to the following sequence.

1. The mm init function initializes the kernel virtual memory, whereas the
kaiser init function initializes the virtual memory for the user on the kernel
boot sequence.

2. KMO initializes the secret virtual memory in physical memory.
3. The security init function initializes the MAC mechanism.
4. The load default modules function executes the module reading process on

the kernel.
5. KMO duplicates the valid monitoring data between the secret and kernel

virtual memory spaces.
6. KMO starts the monitoring feature in the secret virtual memory space.



84 H. Kuzuno and T. Yamauchi

Fig. 6. Monitoring attacker process using the secret virtual memory space on Linux.

4.4 Direct Mapping Management

Linux 4.4 (x86 64) has a direct mapping space of 64 TB. Therefore, the machine
physical memory is mapped to a space of less than 64 TB, and the kernel manages
physical page allocation using direct mapping. Thus, it is possible to access the
kernel code and the data virtual and direct mapping virtual addresses.

Linux uses the init mem mapping function to create the virtual memory
direct mapping space. The kernel physical mapping init function then maps
the physical address to virtual memory. KMO covers challenge 3, that KMO
uses the remove pagetable function for unmapping secret pages of the moni-
toring code and data from the direct mapping space in the kernel virtual mem-
ory after establishing a secret virtual memory setup (Fig. 5). Any access to the
unmapped pages occurs through a page fault. Subsequently, the kernel handles
panic processing.

4.5 Kernel Vulnerability Attacking Case

In one of the kernel vulnerability cases, the adversary uses the eBPF vulnerabil-
ity [13] to modify the targeted data on the kernel virtual memory. The attacker
finally takes the shell as the root capability without any LSM limitation after
memory corruption overrides the SELinux function pointer, as well as creden-
tial information. KMO monitors these modifications and detects the following
sequences (Fig. 6):

1. The attacker executes the Proof-of-Concepts (PoC) code of the eBPF vul-
nerability with the user privilege. The PoC code inserts malicious BPF code
into the kernel virtual memory via the sys bpf system call. Although KMO
traps the system calls, this does not lead to suspicious behavior at the time.



KMO: Kernel Memory Observer to Identify Memory Corruption 85

2. The adversary overwrites the LSM function pointer, and takes privilege esca-
lation with memory corruption at the kernel mode. KMO also traps the
issued system calls. The KMO’s Pattern 2 monitoring identifies the LSM
function pointer modification on the kernel control flow. It compares the
security hook list variable with the monitoring data containing valid data
and determines whether the monitored data is invalid.

3. The adversary launches the shell program from the PoC code. In KMO’s Pat-
tern 1, it traps the sys exec system call and then determines whether it con-
stitutes malicious behavior. System call arguments contain the shell program
name, and memory corruption is already identified in security hook list
variable modification.

5 Evaluation

5.1 Evaluation Purpose and Environment

We evaluated KMO effectiveness and overhead on a physical machine with an
Intel(R) Core(TM) i7-7700HQ (2.80 GHz, x86 64) and 16 GB DDR4 memory.
The implementation targeted Linux Kernel 4.4.114 on Debian 9.0. The evalua-
tion items and objectives are described below:

E1: Monitoring system call argument experiment
We evaluated switching Pattern 1 of KMO to inspect whether the target
system call argument is valid before system call execution.

E2: Detection of overwriting of LSM function
We assessed switching patterns 2 and 3 of KMO to check whether or not they
correctly identify an eBPF vulnerability PoC that modifies the LSM func-
tion’s virtual address. We then determined the timing at which the attacks
on the kernel virtual memory are detected.

E3: Measurement of overhead of system call interaction with KMO
We monitor the effect of kernel availability with KMO using switching virtual
memory space. We then measure the overhead using benchmark software to
calculate the system call latency.

E4: Measurement of the overhead of application with KMO
We measure the performance overhead of a user process using benchmark
software on KMO, which adopts several virtual memory switching patterns.

5.2 Monitoring System Call Argument

We assumed a rootkit installation. KMO monitors the module installation mech-
anism that uses the init module and finit module system calls. KMO inspects
the kernel module binary image from the system call argument and then out-
puts whether the module is invalid as the detection result. In the log message,
switching Pattern 1 shows the monitoring system call as “target system call”
and the invalid module as “invalid module name”.



86 H. Kuzuno and T. Yamauchi

Fig. 7. Monitoring result for Linux system call arguments

Fig. 8. Monitoring result for Linux Security Modules (LSM) function

KMO correctly identifies the invalid kernel from the system call argument
(Fig. 7). The monitoring function detects invalid module names via the module
binary for only 0.05 ms before the kernel executes the system call and then
invokes the module initial function.

We confirmed that switching Pattern 1 yields the correct evaluation results
for the monitoring of the system call argument. Although the module executes
its initialization function, the module installation process is not yet completed
at the time of detection in Pattern 1. This indicates that KMO interrupts the
running kernel code to determine if the validation is possible before system call
processing.

5.3 Detection of Linux Security Module Overwrite

Our custom eBPF vulnerability PoC forces the exchange of one LSM hook func-
tion in the selinux hooks variable to the module function on the kernel virtual
memory. KMO stores the valid data at kernel boot. It then automatically iden-
tifies this memory corruption on switching patterns 2 and 3. These patterns



KMO: Kernel Memory Observer to Identify Memory Corruption 87

Table 1. Overhead of switching virtual memory space (µs)

System call Vanilla kernel KMO kernel Overhead

fork+/bin/sh 933.515 946.758 13.243 (101.48%)

fork+execve 270.990 274.589 3.599 (101.32%)

fork+exit 250.266 255.276 5.010 (102.00%)

open/close 7.372 7.598 0.226 (103.06%)

read 0.318 0.358 0.040 (112.57%)

write 0.274 0.312 0.038 (113.86%)

stat 2.324 2.408 0.084 (103.61%)

fstat 0.341 0.384 0.043 (112.60%)

compare the target LSM hook function’s virtual address with the valid data,
and then outputs the result as a log message. An invalid case is “Invalid lsm
function is detected” and “Virtual Address (Invalid)” in the detection.

KMO’s detection result is successful on patterns 2 and 3 (Fig. 8). Patterns
2 and 3 determine whether the illegal memory is overwritten after the LSM
function is modified for detection.

We also confirm that switching patterns 2 and 3 determine the illegal mem-
ory corruption at suitable detection timings. Therefore, KMO has an effective
detection capability for kernel vulnerability against attacks that modify the LSM
function’s virtual address to prevent its existence in the kernel virtual memory.

5.4 Measurement System Call Interaction Overhead

We compare the Linux kernel, including KMO’s mechanism, with a vanilla Linux
kernel to measure the performance overhead. We use the benchmark software,
lmbench. We execute it 10 times and calculate an average score to determine
whether each system call has an overhead effect.

The overhead results are the measurement switching virtual memory features.
The result is the switching of the virtual memory for each system call execu-
tion (Table 1). The lmbench shows different counts of system calls invoked for
each benchmark. fork+/bin/sh has approximately 54; fork+execve has 4 invo-
cations; fork+exit and open/close have two invocations; and the others have one
invocation.

Table 1 shows that the system calls with the highest overhead are write
(0.038µs, 113.86%) and fstat (0.043µs, 112.60%). The system calls with low-
est overheads are fork+execve (3.599µs, 101.32%) and fork+/bin/sh (13.243µs,
101.48%). A kernel with KMO exhibits an overhead of 0.038µs to 2.505µs for
each system call invocation.



88 H. Kuzuno and T. Yamauchi

5.5 Measurement Application Overhead

We compared the application overhead between the vanilla kernel and KMO
kernel by switching patterns 1 and 3. We run an Apache 2.4.25 process. The
benchmark software is ApacheBench 2.4. The environment includes a 100-Mbps
network, one connection, and benchmark file sizes of 1 KB, 10 KB, and 100 KB.
The ApacheBench calculates one download request average of 100,000 accesses
to each file. The client machine is an Intel(R) Core(TM) i5 4200U (1.6 GHz, two
cores), with 8 GB of memory and running Windows 8 as the OS.

The virtual memory switching patterns do not call the monitoring processing
because the evaluation measures the performance effect of the kernel on each
switching pattern. Pattern 1 calls the monitoring function before system call
invocation, then executes the virtual memory switching with every 10 system
call invocations. Pattern 3 calls the monitoring function for each system call and
switches the virtual memory every 1,000 system call invocations (Table 2).

KMO has an overhead of 729.0µs (107.27%) to 1,990.0µs (282.73%) for
Pattern 1 and 406.0µs (137.28%) to 502.9µs (150.16%) for Pattern 3 at 100,000
HTTP accesses.

The overhead of ApacheBench depends on the total count of system call
invocations in the process. The ApacheBench result shows that Pattern 1 reduces
the overhead factor for a large file, whereas Pattern 3 increases the overhead
factor for a large file. When used on the benchmark, the overhead cost becomes
relatively small at the application processing time. We consider that Pattern
1 requires a file transfer cost with a high impact. Pattern 3 incurs the same
overhead cost, indicating that the switching of virtual memory has a constant
load.

Table 2. ApacheBench overhead of virtual memory switching patterns 1 and 3 on the
Linux kernel (µs).

File size (KB) Vanilla
kernel
(T0)

KMO kernel Overhead

Pattern
1 (T1)

Pattern
3 (T3)

(T1-T0) (T3-T0)

1 1,089.0 3,079.0 1,495.0 1,990.0 (282.73%) 406.0 (137.28%)

10 1,895.0 2,266.0 2,413.0 371.0 (119.57%) 518.0 (127.33%)

100 1,002.4 1,075.3 1,505.3 729.0 (107.27%) 502.9 (150.16%)

6 Discussion

6.1 Performance Consideration

We consider the performance overhead, whereby KMO calls the TLB flush for
every CR3 register update. We attempt to reduce the performance overhead for
tag-based TLBs that provides an Address Space Identifier. The Process Con-
text ID (PCID) on x86 is the cache for the virtual address to physical address
conversion.



KMO: Kernel Memory Observer to Identify Memory Corruption 89

Moreover, the application process has no overhead in user mode. Nearly the
entire performance effect involves the switching of the virtual memory, followed
by the monitoring feature in kernel mode. The overhead cost in the system call
latency evaluation is identical for all types of system calls. We estimate that the
actual application performance is in proportional to switching virtual memory
and the monitoring process in the kernel mode after system call invocation in
user mode.

6.2 KMO Detection Capability

We consider that kernel vulnerabilities have two effect types in the kernel layer.
One type indicates a memory corruption on the kernel virtual memory (e.g.,
eBPF vulnerability [13]), whereas the other does not create any kernel memory
side effects (e.g., Dirty COW vulnerability [18]). KMO provides a combination
of switching virtual memory patterns having different timings of inspection. Its
feature detection capabilities compensate for the memory corruption of kernel
vulnerability attacks for the kernel mode. During the evaluation the eBPF vul-
nerability attack overwrites the SELinux functions’ virtual address of the LSM
hook variable that was automatically detected on KMO.

Moreover, KMO identifies an attack code starting point from the user space
and kernel space by using multiple system calls for the prevention of kernel vul-
nerability attacks leading to memory corruption. At an actual attack detection
point, Pattern 1 determines the attack before system call execution on the kernel
and prevents memory corruption. Although Pattern 2 identifies memory corrup-
tion, it interrupts the kernel execution flow of multiple functions having one
system call. The user inserts a suitable detection point that reduces the effect
of the kernel vulnerability attack. Preventing the execution of malicious code on
one system call invocation for Pattern 3 is difficult because its checkpoint is just
before switching back to the user mode. Therefore, Pattern 3 reliably detects
memory corruption during kernel processing for multiple functions.

Additionally, we plan to support other security features that could run in
the secret virtual memory space. This method could prevent attacks on a kernel
vulnerability that could evade a monitoring mechanism of a security feature on
the kernel.

6.3 KMO Limitation

KMO keeps the virtual memory switching functions in the kernel virtual mem-
ory space and then invokes them from the original kernel code. Although the
adversary potentially targets that KMO’s function, KASLR provides a random
layout of the virtual memory space, and thus hinders the estimation of the KMO
functions’ virtual address.

The adversary identifies the valid data’s virtual address of direct mapping to
manually calculate the position from the physical page’s virtual address. KMO
unmaps secret pages of the direct mapping space in the kernel virtual memory
to reduce the attack surface.



90 H. Kuzuno and T. Yamauchi

7 Related Work

Isolation models and mechanisms that control the separation unite in multiple
layers from hardware to software [20,21].

Kernel and CPU Enhancement. Linux also has SELinux [3,22] and a capa-
bility [4] for restricting privileges. KASLR [6] for virtual memory randomization,
CFI [7] for code flow integrity checking, and Code Pointer Integrity for the verifi-
cation of a function’s return address [23] have been presented. The CPU already
has NX-bit [24] for execution management and SMAP/SMEP [8] for access and
the execution of control between a supervisor and a user of the virtual memory
space. These reduce the kernel vulnerability attack effects.

Kernel Attack. Several attack concepts target the kernel virtual memory [9,19,
25] to evade these security mechanisms. KPTI or another method that separates
the virtual memory space between the user and the kernel can mitigate such
attacks [9,26]. The kernel attack method uses both return oriented programming
and anti-CFI [27], while the direct mapping space can execute the attack code
only in the kernel mode [2,28]. The device driver has a directory threat surface
[29]. We believe that kernel virtual memory monitoring is essential to mitigating
these attacks in kernel mode.

Virtualization Protection. Kernel monitoring mechanisms have a hypervi-
sor, and a secure mode is proposed [21,30–32]. Moreover, SecVisor [30] and
TrustVisor [33] ensure that only the verified kernel code is running. GRIM also
has a verified kernel code at the GPU layer [34], while the Trusted Computing
Base [35] verifies the integrity of the kernel code at the boot sequence. These
mechanisms are running under the kernel layer and are unaffected by kernel vul-
nerability. KMO’s monitoring feature is in the kernel and could be embedded
into the hypervisor and kernel of the secure mode as effective countermeasures
against kernel vulnerabilities.

Virtual Memory Protection. Virtual memory protection methods adopt the
separation of memory space using the domain and granularity of memory access
control [36–39]. The CPU feature, MPK, supports virtual memory protection [40,
41], page-based separation instructions [42,43], and physical memory isolation
for each process [44]. Moreover, the monitoring of the same layer as the OS or
hypervisor has a low overhead when hardware assistance is available [45–47].
The separation between the module and the kernel virtual memory space on the
hypervisor increases the system reliability [48].

Running Kernel Protection. The running kernel protection methods focus
on invalid overwriting of kernel code and data, including the control flow or data
flow tracing [7,49,50], and the monitoring of the stack status [5,51]. We regard
these as being an effective reference to reduce or trigger kernel monitoring.

Kernel Protection. The kernel protection methods have randomized page
table positions in physical memory [52], and R∧X restricts the permission of
the kernel memory layout [53]. In addition, the separation of the device driver



KMO: Kernel Memory Observer to Identify Memory Corruption 91

Table 3. Kernel monitoring feature comparison (� is supported; � is partially
supported).

Feature SecVisor [30] SIM [45] ED-Monitor [46] KMO

Memory corruption
detection

� � �

Memory corruption
protection

� �

System call argument
inspection

� �

In-kernel interception � � �
Kernel integrity � � �
Cloud environment
deployment

� � �

code from the kernel provides granularity monitoring points [54,55]. KMO has
difference merits; that is, switching of the virtual memory space has no effect
for attacks via kernel vulnerabilities and no interruption for running the kernel
code.

7.1 Comparison with Related Work

We compared the security features of KMO and three research mechanisms
(Table 3) [30,45,46]. KMO satisfies almost all the identified requirements for
the running kernel and cloud environment.

Although the same privilege layer monitoring approach is similar to the
KMO architectures, we provide finer inspection points for memory protection
and detection through system calls or the insertion of a kernel function flow.
Finally, despite KMO struggling to set a suitable inspection point on a kernel,
users could manage effective kernel monitoring by considering a collaboration of
existing methods. We believe that this would contribute to reducing the attack
surface of the system for device drivers or other potentially vulnerable regions.

8 Conclusion

The OS kernel adopts MAC and capability restrict privileges. Although KASLR,
CFI, KPTI, and SMAP/SMEP mitigate kernel vulnerability attacks for memory
corruption leading to privilege escalation or the avoidance of security features,
only kernel layer attacks can potentially succeed.

We propose a novel security mechanism, the Kernel Memory Observer
(KMO), to provide a secret virtual memory to monitor the original kernel vir-
tual memory. KMO has several inspection points to detect invalid kernel virtual
memory overwriting, and prevents attacks via the direct mapping region. The



92 H. Kuzuno and T. Yamauchi

evaluation of Linux with KMO could identify the memory corruption of security
features. The system call overhead required 1% to 15% the invocation cost on
our kernel, and the application overhead for KMO monitoring was 7% to 185%
during the running process.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant
Number JP19H04109.

References

1. Chen, H., et al.: Linux kernel vulnerabilities - state-of-the-art defenses and open
problems. In: 2nd Asia-Pacific Workshop on Systems (APSys) (2011)

2. Kemerlis, P.V., et al.: Ret2dir - rethinking kernel isolation. In: 23rd USENIX Con-
ference on Security Symposium, pp. 957–972 (2014)

3. Security-enhanced Linux. http://www.nsa.gov/research/selinux/. Accessed 10 Aug
2018

4. Linden, A.T.: Operating system structures to support security and reliable soft-
ware. ACM Comput. Surv. (CSUR) 8(4), 409–445 (1976)

5. Kemerlis, P.V., et al.: kGuard - lightweight kernel protection against return-to-user
attacks. In: 21st USENIX Conference on Security Symposium (2012)

6. Shacham, H., et al.: On the effectiveness of address-space randomization. In: 11th
ACM Conference on Computer and Communications Security (CCS), pp. 298–307
(2004)

7. Abadi, M., et al.: Control-flow integrity principles, implementations. In: 12th ACM
Conference on Computer and Communications Security (CCS), pp. 340–353 (2005)

8. Mulnix, D.: Intel R© Xeon R© Processor D Product Family Technical Overview
(2015). https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-
family-technical-overview. Accessed 10 Aug 2018

9. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0 11

10. CVE-2016-8655. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-
8655

11. CVE-2017-6074. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
6074

12. CVE-2017-7308. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
7308

13. CVE-2017-16995. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
16995

14. Exploit Database, Nexus 5 Android 5.0 - Privilege Escalation. https://www.
exploit-db.com/exploits/35711/

15. Grsecurity: super fun 2.6.30+/RHEL5 2.6.18 local kernel exploit. https://
grsecurity.net/∼spender/exploits/exploit2.txt

16. Lipp, M., et al.: Meltdown - reading kernel memory from user space. In: 27th
USENIX Conference on Security Symposium (2018)

17. Linux Kernel Defence Map. https://github.com/a13xp0p0v/linux-kernel-defence-
map

http://www.nsa.gov/research/selinux/
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6074
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6074
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://www.exploit-db.com/exploits/35711/
https://www.exploit-db.com/exploits/35711/
https://grsecurity.net/~spender/exploits/exploit2.txt
https://grsecurity.net/~spender/exploits/exploit2.txt
https://github.com/a13xp0p0v/linux-kernel-defence-map
https://github.com/a13xp0p0v/linux-kernel-defence-map


KMO: Kernel Memory Observer to Identify Memory Corruption 93

18. CVE-2016-5195. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-
5195

19. Hund, R., et al.: Practical timing side channel attacks against kernel space ASLR.
In: 2013 IEEE Symposium on Security and Privacy, pp. 191–205 (2013)

20. Shu, R., et al.: A study of security isolation techniques. ACM Comput. Surv.
(CSUR) 49(3), 1–37 (2016)

21. Zhang, F., Zhang, H.: SoK a study of using hardware-assisted isolated execution
environments for security. In: Hardware and Architectural Support for Security
and Privacy 2016, pp. 1–8 (2016)

22. Spencer, R., et al.: The flask security architecture: system support for diverse
security policies. In: 8th USENIX Conference on Security Symposium (1999)

23. Volodymyr, K., et al.: Code-pointer integrity. In: 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2014)

24. Ingo Molnar, [announce] [patch] NX (No eXecute) support for x86, 2.6.7-rc2-bk2
(2004). http://lkml.iu.edu/hypermail/linux/kernel/0406.0/0497.html. Accessed 10
Aug 2018

25. Jang, Y., et al.: Breaking kernel address space layout randomization with intel
TSX. In: 2016 ACM Conference on Computer and Communications Security
(CCS), pp. 380–392 (2016)

26. Hua, Z., et al.: EPTI - efficient defence against meltdown attack for unpatched
VMs. In: 2018 USENIX Annual Technical Conference (ATC) (2018)

27. Carlini, N., et al.: Control-flow bending: on the effectiveness of control-flow
integrity. In: 24th USENIX Conference on Security Symposium, pp. 161–176 (2015)

28. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: 14th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 552–561 (2007)

29. Song, D., et al.: PeriScope: an effective probing and fuzzing framework for the
hardware-OS boundary. In: 26th Annual Network and Distributed System Security
Conference (NDSS) (2019)

30. Seshadri, A., et al.: SecVisor - a tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In: 21st ACM Symposium on Operating systems
principles (SOSP), pp. 335–350 (2007)

31. Azab, A., et al.: SKEE: a lightweight secure kernel-level execution environment
for ARM. In: 2011 Network and Distributed System Security Symposium (NDSS)
(2016)

32. Cho, Y., et al.: Dynamic virtual address range adjustment for intra-level privilege
separation on ARM. In: 2017 Network and Distributed System Security Symposium
(NDSS) (2017)

33. McCune, M.J., et al.: TrustVisor - efficient TCB reduction and attestation. In:
2010 IEEE Symposium on Security and Privacy (2010)

34. Koromilas, L., et al.: GRIM - leveraging gpus for kernel integrity monitoring. In:
19th International Symposium on Research in Attacks, Intrusions and Defenses,
pp. 3–23 (2016)

35. Trusted computing group. tpm main specification (2003). http://www.
trustedcomputinggroup.org/resources/tpm main specification. Accessed 10 Aug
2018

36. Witchel, E., et al.: Mondrix: memory isolation for linux using mondriaan memory
protection. In: 20th ACM Symposium on Operating systems principles (SOSP),
pp. 31–44 (2005)

37. Castro, M., et al.: Fast byte-granularity software fault isolation. In: 22nd ACM
Symposium on Operating systems principles (SOSP), pp. 45–58 (2009)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
http://lkml.iu.edu/hypermail/linux/kernel/0406.0/0497.html
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification


94 H. Kuzuno and T. Yamauchi

38. Hsu, C.T., et al.: Enforcing least privilege memory views for multithreaded appli-
cations. In: 2016 ACM Conference on Computer and Communications Security
(CCS), pp. 393–405 (2016)

39. Litton, J., et al.: Light-weight contexts - an OS abstraction for safety and perfor-
mance. In: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (2016)

40. Koning, K., et al.: No need to hide: protecting safe regions on commodity hardware.
In: Twelfth European System Conference (EuroSys), pp. 437–452 (2017)

41. Vahldiek-Oberwagner, A., et al.: ERIM: secure and efficient in-process isolation
with memory protection keys, CoRR abs/1801.06822 (2018)

42. Mogosanu, L., Rane, A., Dautenhahn, N.: MicroStache: a lightweight execution
context for in-process safe region isolation. In: Bailey, M., Holz, T., Stamatogian-
nakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 359–379. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00470-5 17

43. Frassetto, T., et al.: IMIX - in-process memory isolation extension. In: 28th
USENIX Conference on Security Symposium (2018)

44. Kim, H.C., et al.: Securing real-time microcontroller systems through customized
memory view switching. In: 25th Network and Distributed System Security Sym-
posium (NDSS) (2018)

45. Sharif, I.M., et al.: Secure in-VM monitoring using hardware virtualization. In:
16th ACM Conference on Computer and Communications Security (CCS) (2009)

46. Deng, L., et al.: Dancing with wolves: towards practical event-driven VMM moni-
toring. In: 13th ACM SIGPLAN/SIGOPS International Conference (2017)

47. Zhang, Z., et al.: KASR: a reliable and practical approach to attack surface reduc-
tion of commodity OS kernels. In: 21st International Symposium on Research in
Attacks, Intrusions and Defenses (RAID) (2018)

48. Srivastava, A., et al.: Efficient monitoring of untrusted kernel-mode execution. In:
18th Annual Network and Distributed System Security Conference (NDSS) (2011)

49. Song, C., et al.: Enforcing kernel security invariants with data flow integrity. In:
2016 Annual Network and Distributed System Security Symposium (NDSS) (2016)

50. Ge, X., et al.: GRIFFIN: guarding control flows using intel processor trace. In:
22nd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (APLOS), pp. 585–598 (2017)

51. Huang, W., et al.: LMP: light-weighted memory protection with hardware assis-
tance. In: 32nd Annual Conference on Computer Security Applications (ACSAC),
pp. 460–470 (2016)

52. Davi, L., et al.: PT-rand: practical mitigation of data-only attacks against page
tables. In: 23th Network and Distributed System Security Symposium (NDSS)
(2016)

53. Pomonis, M., et al.: kR∧X: comprehensive kernel protection against just-in-time
code reuse. In: Twelfth European Conference on Computer Systems (EuroSys),
pp. 420–436 (2017)

54. Boyd-Wickizer, S., et al.: Tolerating malicious device drivers in linux. In: USENIX
Annual Technical Conference (ATC) (2010)

55. Tian, J.D., et al.: LBM: a security framework for peripherals within the linux
kernel. In: 2019 IEEE Symposium on Security and Privacy (2019)

https://doi.org/10.1007/978-3-030-00470-5_17


Peel the Onion: Recognition of Android
Apps Behind the Tor Network

Emanuele Petagna, Giuseppe Laurenza(B) , Claudio Ciccotelli ,
and Leonardo Querzoni

Department of Computer, Control, and Management Engineering,
“Antonio Ruberti” (DIAG), Rome, Italy
petagna.795137@studenti.uniroma1.it,

{laurenza,ciccotelli,querzoni}@diag.uniroma1.it

Abstract. According to Freedom on the Net 2017 report [15] more than
60% of World’s Internet users are not completely free from censorship.
Solutions like Tor allow users to gain more freedom, bypassing these
restrictions. For this reason they are continuously under deep observation
to detect vulnerabilities that would compromise users anonymity. The
aim of this work is showing that Tor is vulnerable to app deanonymiza-
tion attacks on Android devices through network traffic analysis. While
attacks against Tor anonymity have already gained considerable atten-
tion in the context of website fingerprinting in desktop environments, to
the best of our knowledge this is the first work that addresses a sim-
ilar problem on Android devices. For this purpose, we describe a gen-
eral methodology for performing an attack that allows to deanonymize
the apps running on a target smartphone using Tor. Then, we dis-
cuss a Proof-of-Concept, implementing the methodology, that shows
how the attack can be performed in practice and allows to assess the
deanonymization accuracy that it is possible to achieve. Moreover, we
made the software of the Proof-of-Concept available, as well as the
datasets used to evaluate it. In our extensive experimental evaluation,
we achieved an accuracy of 97%.

Keywords: TOR · De-anonimization · Android · Traffic analysis

1 Introduction

Tor is a very popular anonymization network, currently counting more than
two million daily users [24]. While Tor is mainly associated with preserving
anonymity during Web navigation, its protection capabilities are not limited to
such application. In general, Tor can be used to protect any TCP-based traf-
fic, being it generated by a desktop or mobile application. Nowadays, smart-
phone apps are replacing web browsers for interacting with many online services,
such as social networks, chat services and video/audio streaming. The usage of
anonymization mechanisms, such as Tor, on mobile devices is gaining momen-
tum and is motivated by the increasing interest of several actors in profiling
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 95–112, 2019.
https://doi.org/10.1007/978-3-030-34339-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_6&domain=pdf
http://orcid.org/0000-0002-3763-4598
http://orcid.org/0000-0003-4687-8241
http://orcid.org/0000-0002-8711-4216
https://doi.org/10.1007/978-3-030-34339-2_6


96 E. Petagna et al.

mobile users, e.g., for marketing purposes, government surveillance, detection
and exploitation of vulnerabilities and other activities that may be harmful for
users’ privacy and security, or perceived as such by them. Several works in the
past studied the privacy guarantees offered by Tor, focussing, in particular, on
the Desktop PC scenario where a large fraction of the anonymized traffic is web
data or file sharing services. Conversely, less attention has been devoted to the
usage of Tor on mobile devices, and the level of anonymity it can provide. Given
that mobile and desktop devices generate different traffic patterns, both due
to the way they are used [16,25] and to the fact that the same application may
behave differently in the two environments [14], we cannot assume that what was
proved by past approaches still holds for mobile devices. The aim of this work
is to show that Tor is vulnerable to app deanonymization attacks on Android
devices through network traffic analysis. For this purpose, we describe a general
methodology for performing an attack that allows to deanonymize the apps run-
ning on a target smartphone using Tor, which is the victim of the attack. Then,
we discuss a Proof-of-Concept, implementing the methodology, that shows how
the attack can be performed in practice and allows to assess the deanonymization
accuracy that can be achieved.

Summarizing, this work provides the following contributions:

– a methodology for deanonymizing apps on Android-based smartphones that
use Tor;

– a Proof-of-Concept that implements the deanonymization methodology,
which can be used to verify Tor’s vulnerability to app deanonymization and
assess the level of accuracy that can be achieved;

– a dataset1 of generated Android Tor traffic traces that can be used to check
the validity of our Proof-of-Concept and compare alternative methodologies.

The remainder of the paper is organized as follows. Section 2 reports the
related works. Section 3 presents the fundamental concepts related to Tor and
the machine learning algorithms employed in this work. Section 4 introduces
the threat model that we consider. Section 5 discusses the methodology for
deanonymizing Android apps behind the Tor network. Section 6 describes the
Proof-of-Concept. Section 7 reports the experiment performed to evaluate the
accuracy of the methodology and discusses the obtained results. Finally, in Sect. 8
we draw some conclusions and discuss possible future directions for this work.

2 Related Works

Many works have been published in the broad area of traffic analysis both in the
context of desktop environments and smartphone environments (mostly assum-
ing the Android operating system). While, there are some works in the context

1 Both the software necessary to reproduce the Proof-of-Concept and the dataset
can be downloaded from the following repository: https://github.com/Immanuel84/
peeltheonion.

https://github.com/Immanuel84/peeltheonion
https://github.com/Immanuel84/peeltheonion


Peel the Onion: Recognition of Android Apps Behind the Tor Network 97

of desktop environments that has focused on deanonymizing Tor traffic, to the
best of our knowledge, there is no work assuming both a smartphone environ-
ment and that traffic is anonymized through Tor. Therefore, there is no work we
can directly compare to.

In this section we report the most related works considering a desktop envi-
ronment, with or without Tor anonymized traffic, and an Android environment
without Tor.

Desktop Environment Without Tor: In the context of website fingerprinting,
Hintz [18] proposes an attack against SafeWeb, an encrypting web proxy, that
allows to determine the webpages visited by the users. The attack exploits the
fact that, even if traffic is encrypted, many browser open separate TCP connec-
tion for downloading resources from visited pages, allowing an attacker to mon-
itor their sizes. Such sizes can be used to fingerprinting webpages. The author
proposes some protections based on the addition of noise or on multiplexing data
on a single connection.

Bissias et al. [10] propose a statistical website fingerprinting attack. The
attacker creates a profile of the target website by monitoring the distribution
of packet sizes and inter-arrival times. These data are then compared to user
traffic.

Liberatore et al. [20] describe a website fingerprinting attack against HTTPS
connections. They use unique packet lengths to build profiles of HTTPS connec-
tions and compare them against a dataset of known profiles using a naive Bayes
classifier.

Desktop Environment with Tor: In the context of Website fingerprinting, Wang
et al. [31] propose an attack that uses a k–Nearest Neighbor Classifier to effec-
tively fingerprint web pages behind Tor. They employ several types of features,
including general statistics about total traffic, unique packet lengths, packet
orderings, bursts and inter-packet times. They show that their attack has signif-
icantly higher accuracy than previous attacks in the same field.

AlSabah et al. [9] propose a machine learning based approach for Tor’s traffic
classification. The aim of the work is to recognize different classes of workloads
that, in combination with QoS policies, can significantly improve the experience
of Tor clients. However, since Tor’s traffic is encrypted, it is not possible to rely
on classical QoS to discriminate applications traffic. The proposed technique
achieves an accuracy higher than 95%.

Juarez et al. [19] analyze the known website fingerprinting attacks on Tor.
Known attacks claim to be effective under precise assumptions about threat
model and user settings, which often do not hold in practical scenarios. The
authors conduct a critical evaluation of these attacks and show their weaknesses
when performed in real scenarios.

Chakravarty et al. [11] evaluate the feasibility and effectiveness of practical
traffic analysis attacks on the Tor network using NetFlow data. It is not a passive
attack as authors deliberately alter traffic characteristics at the server side and
observe how this alteration affects client side through a statistical correlation.



98 E. Petagna et al.

They achieve 100% accuracy in laboratory tests, and 81.4% accuracy in real
world tests.

Ling et al. [21] propose TorWard, a system that attempts to recognize mali-
cious traffic over Tor. In their experiments they found that a considerable portion
of the Tor traffic is malicious (around 10%) with 8.99% of the alerts generated
due to malware and 78.03% of the alerts generated due to malicious P2P traffic.

Mittal et al. [22] exploit throughput information to gain information about
the user. The attack can identify the Guard Node (entry point to Tor network)
and identify if two concurrent TCP connections belong to the same user.

Habibi Lashkari et al. [17] focus on recognition of traffic types instead of
websites. They consider 8 application traffic types: browsing, email, chat, audio
streaming, video streaming, file transfer, VoIP and P2P. They perform network
traffic analysis by splitting the traffic traces in flows of a given duration. For
each flow they compute several features based on inter-arrival times, active and
idle periods, packet rates and byte rates. They employ a supervised machine
learning approach to classify the traffic type of each flow. In particular they
explored k–Nearest Neighbor, Random Forest and C4.5 classifiers.

Android Environment Without Tor: A number of authors have proposed various
approaches to identify smartphone apps through network traffic analysis. Some
of these solutions focus on examining IP addresses and packet payloads. However,
relying on IP addresses is less effective because a lot of applications exploit Con-
tent Delivery Networks (CDN) for scalability. AppScanner [30] targets mobile
environments and uses traffic features to fingerprint mobile apps. They rely on
a supervised machine learning approach using only features that do not require
the inspection packet payloads, thus working also on encrypted traffic. They
perform experiments with SVM and Random Forest classifiers achieving 99% of
accuracy in their dataset with 110 of the most popular apps in the Google Play
Store.

Dai et al. [13] propose a technique for app fingerprinting based on building
network traffic profiles of apps. They run each app in an emulator, exercising
different execution paths through a novel UI fuzzing technique, and collect the
corresponding network traces. They compute a fingerprint of the app by identi-
fying invariants in the generated network traces. Using the generated fingerprint
they were able to detect the presence of apps in real-world network traffic logs
from a cellular provider.

Conti et al. [12] describe a machine learning based network traffic analysis
approach to identify user actions on specific apps (facebook, gmail and twitter).
They achieve more than 95% of accuracy and precision for most of the considered
actions.

Stöber et al. [29] focus on identifying smartphones from 3G/UMTS data
capture. Even if 3G/UMTS data is encrypted an attacker could reliably identify
a smartphone using only the information extracted from periodic traffic patterns
leak side-channel information like timing and data volume. They show that they
can identify smartphones with only 15 min of traffic monitoring and fingerprints
computed on 6 h of sniffed background traffic, obtaining an accuracy of 90%.



Peel the Onion: Recognition of Android Apps Behind the Tor Network 99

Saltaformaggio et al. [27] develop a tool called NetScope which is able to
detect user activities on both Android and iOS smartphones. They compute
features by only inspecting the IP headers, and use a SVM multi-class classifier
to detect activities. NetScope achieves a precision of 78.04% and a recall of
76.04% on average on a set of 35 widely used apps.

3 Background on Tor

In this section we briefly summarize the basic concepts about the Tor network.
Tor [26] is a distributed overlay network that anonymizes TCP-based applica-
tions (web browsers, secure shells, mail clients) while trying to keep the latency
low. The network consists of a set of interconnected entities called Onion Routers
(ORs). Tor clients, also known as Onion Proxies (OPs), periodically connect to
directory servers to download the list of available ORs. OPs use this information
to establish circuits in the Tor network, to connect to a destination node (which
is often outside the Tor network). A circuit is a path of ORs in which each OR
knows only its predecessor and its successor ORs. A Tor circuit has three types
of nodes:

– Entry or Guard Node: this represents the entry point to the Tor network for
the Tor client.

– Relay Nodes: these are the intermediate ORs of the circuit.
– Exit Node: this is the last OR in the Tor circuit. That is, the one that connects

to the destination.

Each Tor circuit must have one entry node, at least one relay node (but
there may be multiple) and one exit node. The entry node is the only node in
the circuit that knows the Tor client, while the exit node is the only one that
knows the destination.

Messages exchanged between the Tor client and the destination are split into
cells when they traverse the Tor network. Cells are the basic unit of communi-
cation among Tor nodes. Tor cells used to have a 512 bytes fixed size in earlier
Tor versions. Though this choice provided some resistance against traffic analy-
sis, it was inefficient and made Tor traffic easier to discover due to packet-size
distribution [26]. Therefore, variable length cells have been introduced in newer
Tor versions.

When establishing a circuit, the Tor client shares a symmetric key with each
node of the circuit. When the Tor client sends a packet to the destination it
encrypts the corresponding cells’ payloads with all the shared keys, in reverse
order from the exit node to the entry node. Each node along the path unwraps
its layer using its key. Only the exit node can reconstruct the message to be sent
to the destination in clear. The same happens in the opposite direction, with
each node that instead encrypts with its own key.



100 E. Petagna et al.

Padding
Internet service providers and surveillance infrastructures are known to store
metadata about connections. Collecting and analyzing such data is useful for
characterizing traffic, but may also represent a threat to anonymity.

Per-flow records are emitted by routers on a periodic basis depending on
two configurable timeouts: active flow timeout and the inactive flow timeout.
The expiration of the active flow timeout causes routers to emit a new record
for each active connection. The inactive flow timeout causes the emission of a
new record when a connection is inactive for a certain amount of time. The
value of such timeouts is configurable and the range depends on routers vendors,
but active flow timeout is typically in the order of minutes, while the inactive
flow timeout in the order of tens of seconds. Therefore, the aggregation level of
records data (on a temporal basis) is at least the active flow timeout, but may
be finer when there are inactive periods longer than the inactive flow timeout.

Thus, to reduce the granularity level of records’ data (with the aim of hin-
dering deanonymization techniques based on traffic analysis), long inactive peri-
ods should be avoided. For this reason, the Tor protocol introduced connection
padding. With connection padding, special purpose cells (PADDING cells) are
sent if the connection is inactive for a given amount of time, so as to reduce the
duration of inactive periods.

Connection Padding. Connection padding cells are exchanged only between the
Tor client and entry node. To determine when to send a connection padding cell,
both the Tor client and the entry node maintain a timer. These timers are set
up with a timeout value between 1.5 and 9.5 s. The exact value depends on a
function that samples a distribution described in [23]. After the establishment
of the Tor circuit the timers start on both sides, if any of the two timers expires,
a padding cell is sent to the other endpoint. Exchanging any cell different from
a padding cell resets the timers.

Reduced Connection Padding. Connection padding introduces an overhead in
terms of exchanged data. Especially in mobile environments, this overhead may
become excessive. Therefore, reduced connection padding has been introduced to
lower the overhead due to connection padding. With reduced connection padding
the timeout is sampled from a different range, between 9 s to 14 s.

4 Threat Model

In our threat model an attacker wants to deanonimize the apps on a target
smartphone that uses Tor. That is, he/she wants to recognize which apps are
being used by the target smartphone at any given time. We assume that the
target is connected to the Internet through a wireless access point, either via a
Wi-Fi LAN or via the cellular WAN, and that the attacker is able to passively
capture the traffic between the target and the access point. We assume that the
Tor client (i.e., an Onion Proxy) is installed in the smartphone itself and all
apps’ traffic passes through the Tor client.



Peel the Onion: Recognition of Android Apps Behind the Tor Network 101

5 Deanonymization Methodology

Figure 1 shows an overview of our methodology for deanonymizing Android apps
behind Tor. The assumption at the basis of the methodology is that different
apps produce different network traffic patterns, which are discernible, through
proper network traffic analysis, even when the traffic is anonymized through Tor.

Training
Traffic

Gathering

Android Tor
Traces

P
re

pr
oc

es
si

ng

Flows
Labelled
Feature
Vectors

Machine
Learning 

Model
Training

Trained
Model

Target
Traffic

Sniffing
Target Tor

Traces

Preprocessing and 
Feature Extraction 

Module
Feature
Vectors Classifier

Deanon.
Apps

Tr
ai

n
in

g
 

P
h

as
e

D
ea

n
o

n
ym

iz
at

io
n

P
h

as
e

Labels

Target

F
ea

tu
re

E
xt

ra
ct

io
n

Public
Datasets

Data
Generation

Fig. 1. Overview of the deanonymization methodology.

The methodology relies on a machine learning based network traffic analysis
and consists of two distinct phases:

– Training Phase: during which we build a machine learning model of the dis-
tinctive characteristics of apps’ Tor traffic. This is the preparation phase of
the attack.

– Deanonymization Phase: during which we conduct the actual attack against
the target, by monitoring the target’s traffic and using the model built in the
previous phase to recognize which apps the victim is using.

During the training phase we build a machine learning model of how different
apps produce Tor traffic. We assume that the attacker is interested in recognizing
a predefined set of apps C = {app1, . . . , appn}. If the target is using an app
which is not included in C, our methodology will not be able to recognize that
app. Both the phases of our methodology include a Traffic Gathering and a
Preprocessing and Feature Exctraction modules, followed by the building of the
Machine Learning model for the Training Phase and Classifier module for the
Deanonymization one. In the following sections we describe each logical block in
details.

Traffic Gathering —Since we assume a supervised learning process, for the train-
ing phase, the first step is collecting a training dataset. In particular our method-
ology requires to gather, for each app in C, raw Tor traffic traces. These traces
can be picked from public datasets, if available (such as the one that we made
available with this work), or can be generated synthetically, as described in
Sect. 6.1. For the Deanonymization Phase instead, our methodology requires the
attacker to passively capture the target’s network traffic.



102 E. Petagna et al.

Preprocessing and Feature Extraction Module —This module processes the net-
work traces gathered at the previous step and extracts the features that will be
fed to the machine learning algorithm. For each network trace, we sort all TCP
sessions (note that Tor only supports TCP) and we split sessions into flows. A
flow is a portion of a TCP session of a predefined fixed duration TF , the flow
timeout. We split each TCP session into flows of TF seconds. When, we find
a TCP packet with the FIN flag set, we stop splitting. Thus, the last flow of
each TCP connection may actually last less than TF seconds. The flow time-
out is a configurable parameter of our methodology that has an impact on the
deanonymization accuracy. As detailed later, in Sect. 7, we performed experi-
ments with TF = 10 and TF = 15. The experiments with TF = 10 yielded
slightly better results. For the Training Phase, once we have split all traces into
flows, we label each flow with the app in C that has generated the corresponding
traffic.

For each flow xi we compute a vector of features vi = (f1(xi), . . . , fm(xi)).
Section 6.2 reports the set of features that we considered in our Proof-of-Concept.
The general methodology does not rely on a particular set of features. However,
as always, the choice of such set strongly impacts accuracy. Our set of features
has been derived from an experimental analysis involving various feature sets.
Since many machine learning algorithms (e.g., SVM and k–NN) work best with
standardized features, for each component yi,k = fk(xi) (of each feature vector)
we compute its standard score.

Machine Learning Model Training —During this step we feed the machine learn-
ing training algorithm with the training set built by the other modules. Our
methodology does not rely on a particular machine learning model, but assumes
a generic multi-class classifier whose set of classes is the set of apps C. In our
experiments we tested three different classifiers based on, respectively, Random
Forest, k–Nearest Neighbors and SVM.

Classifier —In this step, each feature vector coming from the previous step is
directly fed to the classifier that has been trained during the training stage.
For each feature vector the classifier outputs a class, namely one of the apps
in C. The output of the classifier is also the output of the methodology, i.e.,
the deanonymized apps. In our Proof-of-Concept we adopt an offline approach.
That is, the two phases are not concurrent, they are performed subsequently.
We first perform monitoring, collecting enough traces, and then we perform the
classification. However, our methodology is general enough to allow for an online
implementation, in which the two stages are actually executed simultaneously,
and a new processing and classification step is performed as soon as the corre-
sponding data is available.

6 Proof-of-Concept

This section presents details about our Proof-of-Concept implementing the
methodology described in the previous section. We use a simple architecture



Peel the Onion: Recognition of Android Apps Behind the Tor Network 103

made by a workstation, a wireless router connected to internet and two target
smartphones connected to the router. On the targets we install Orbot [1], a proxy
app that allows to use Tor on Android. The workstation is in charge of collecting
the raw TCP traces, preprocessing them and extract feature vectors. We also
use it to train the machine learning models and use them to deanonymize the
network traffic.

6.1 Dataset

Since no public datasets collecting Android Tor’s traces were available at the
time of this writing, we generate our own datasets. To build them, we used
AndroidViewClient [3], Culebra GUI and CulebraTester [4]. With these tools
we developed different simulation scripts for each app, in order to reproduce
a typical human user. We reported the details about simulated stimulation of
the various apps in AppendixA. In this way we can create, for each app in
C, a synthetic, yet as realistic as possible, network trace. To sniff the traffic
and perform basic network analysis, we execute Tcpdump [2] on the router and
Wireshark [8] on the workstation. We collected two datasets of network traces:
11.24 GB of traces with default configuration, that we call Reduced Connection
Padding Dataset and 9.84 GB with the (full) connection padding activated, that
we call Full Connection Padding Dataset, see Sect. 3. In both datasets we col-
lected about 4 h of network traffic for each of the following apps: Dailymotion,
Facebook, Instagram, Replaio Radio, Skype, Spotify, TorBrowser Alpha, Twitch,
uTorrent, YouTube.

6.2 Features

In our Proof-of-Concept we employed three types of features.

Time-based Features —Since Tor’s relay cells (those that transport the actual
payload) are fixed sized, initially we concentrated on time-based, rather than
size-based features. In particular, we employed the following features, given that
they led to good results in the context of recognition of traffic classes in desktop
environments [17]:

– FIAT (Forward Inter Arrival Time): time between two outgoing packets;
– BIAT (Backward Inter Arrival Time): time between two incoming packets;
– FLOWIAT (Flow Inter Arrival Time): time between two packets, no matter

the direction;
– Active time: amount of time a flow is active;
– Idle time: amount of time a flow is idle;
– Flow bytes per second : number of bytes per second;
– Flow packets per second : number of packets per second;
– Duration: duration of the flow in seconds.

For all the above features except the last three, we actually compute 4 statistical
values: minimum, maximum, mean and standard deviation. Moreover, the active
and idle time depends on a configurable threshold, the activity timeout TA. We
performed experiments with TA = 2 and TA = 5 s.



104 E. Petagna et al.

Packet Direction and Burst Features —Packet direction and burst features have
also been proven to be effective in the context of website fingerprinting on desk-
top environments [31]. Packet direction indicates whether a packet is going for-
ward, from the source (the Tor client) to the destination, or backward, i.e., in
the opposite direction. A burst instead is an uninterrupted sequence of packets
in the same direction. After a preliminary analysis, we decided to enrich our
feature set with the following features:

– Direction of the first 10 packets (of the flow);
– Incoming Bursts: number of bursts, bursts mean length, length of the longest

burst;
– Outgoing Bursts: number of bursts, bursts mean length, length of the longest

burst;
– Lengths of the first 10 incoming bursts;
– Lengths of the first 10 outgoing bursts.

Size-Based Features —Event though relay cells are fixed sized, Tor uses variable-
length cells for traffic control. As a preliminary analysis, we counted the number
of packets for each packet size and we observed that, while there is a large
variability in packet sizes, there is a relatively small set of possible packet sizes.
Thus, we decided to introduce a feature for each of the ten most frequent packet
sizes. These, were (in order of higher frequency) 1500, 595, 583, 2960, 1097,
1384, 151, 1126, 1109 and 233 bytes. We soon decided to discard size 2960, as
this exceeds the MTU (1500 byes) and thus represents a reassembled packet.
Each feature is a counter of the number of packets of that size observed in the
flow.

7 Experimental Evaluation

We performed several experiments using the prototype implementation of our
methodology described in the Proof-of-Concept section (see Sect. 6). For each
experiment we vary the following settings:

– Tor’s connection padding : Reduced or Full, depending on whether we use
the dataset with reduced connection padding or full connection padding (see
Sect. 6.1);

– Flow Timeout (TF ): either 10 or 15 s (see Sect. 5);
– Activity Timeout (TA): either 2 or 5 s (see Sect. 6.2);
– Presence of the Web Browser app: Yes/No.

In particular, the last setting indicates whether the traces related to the usage
of the web browser app are included in the experiment’s dataset or not. The
choice of performing experiments for both cases is motivated by the fact that,
according to our experiments, the web browser app seems to be the most dif-
ficult to recognize among those due to the fact that each class of webpage can
potentially have its own pattern that can be similar to apps of the same type.



Peel the Onion: Recognition of Android Apps Behind the Tor Network 105

Thus its inclusion significantly reduces the accuracy of the methodology. Due to
space constraints in this paper we discuss only the four most significant exper-
iments (see Table 1). The results of the other experiments are available in the
extended version of this work2 (a brief summary is also reported in this paper in
AppendixB). However, from these we drew the same general conclusions drawn
from the first four experiments.

Table 1. Experiments discussed in this article (Flow Timeout and Activity Timeout
are in seconds).

Experiment Connection
padding

Flow
timeout

Activity
timeout

Web
browser

Experiment 1 Reduced 10 2 Yes

Experiment 2 Reduced 10 2 No

Experiment 3 Full 10 2 Yes

Experiment 4 Full 10 2 No

7.1 Evaluation Methodology

For each experiment we evaluate the performance achieved by our Proof-of-
Concept, namely the performance of the classifier. We asses both the overall
performance of the classifier and the performance achieved on a per-class basis,
so as to highlight whether some apps are more easily recognized than others.
The per-class performance are computed in terms of precision, recall, F1 score
and accuracy computed for each class in C. The overall classifier performance are
computed by averaging the per-class metrics. Note that precision, recall and F1
score are averaged according to two criteria: micro and macro. The two criteria
account differently for imbalances in the dataset (i.e., uneven proportion of sam-
ples per classes). The micro criteria biases the corresponding metrics towards the
most populated classes, while the macro criteria treats all classes equally [28].
Note, that micro precision and micro recall (and thus micro F1 score), are math-
ematically equivalent. Thus, when presenting the results of the experiments we
will only report the micro F1 score.

7.2 Results

In this section we present the results of the experimental evaluation.

Global evaluation —Table 2 shows a comparison of the results obtained in each
experiment through this classifier. In all experiments we achieved the best results
with the Random Forest classifier. In all experiments we obtained comparable
accuracy (∼0.97).

2 https://arxiv.org/abs/1901.04434.

https://arxiv.org/abs/1901.04434


106 E. Petagna et al.

Table 2. Summary of the results of Experiments 1–4.

Experiment Avg. accuracy Micro F1 Macro precision Macro recall Macro F1

Experiment 1 0.968 0.840 0.834 0.830 0.832

Experiment 2 0.969 0.859 0.859 0.852 0.855

Experiment 3 0.972 0.861 0.857 0.849 0.853

Experiment 4 0.973 0.880 0.877 0.872 0.875

Table 3. Per-class performance of each classifier for Experiment 1.

APP Random forest k–NN SVC

PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

Dailymotion 0.83 0.77 0.8 0.96 0.56 0.58 0.57 0.91 0.74 0.72 0.73 0.95

Facebook 0.9 0.84 0.87 0.98 0.62 0.7 0.66 0.94 0.86 0.85 0.86 0.97

Instagram 0.79 0.86 0.82 0.94 0.58 0.67 0.62 0.88 0.77 0.83 0.8 0.94

Replaio radio 0.99 0.98 0.98 1.0 0.98 0.96 0.97 0.99 0.98 0.98 0.98 0.99

Skype 0.99 0.96 0.97 1.0 0.97 0.94 0.95 0.99 0.98 0.95 0.97 0.99

Spotify 0.67 0.65 0.66 0.94 0.56 0.48 0.52 0.92 0.63 0.66 0.65 0.93

Torbrowser 0.68 0.77 0.72 0.97 0.6 0.47 0.53 0.95 0.67 0.71 0.69 0.96

Twitch 0.83 0.87 0.85 0.97 0.68 0.76 0.71 0.93 0.83 0.83 0.83 0.96

Utorrent 0.9 0.91 0.9 0.98 0.82 0.69 0.75 0.96 0.85 0.84 0.85 0.97

Youtube 0.76 0.69 0.72 0.95 0.61 0.57 0.59 0.93 0.72 0.63 0.67 0.95

Per-app evaluation —Tables 3, 4, 5 and 6 show the per-app result of each exper-
iment. For all classifiers, we observe a certain variability in how accurate the
classifier is in recognizing the various apps. Looking at the F1 score, Spotify, Tor
Browser and YouTube appear to be the most difficult apps to recognize. Indeed,
by looking directly at the data, we observed that these three apps are often
confused, one for another. Since both Spotify and YouTube provide streaming
contents, they probably generate strongly similar traffic patterns, that mislead
the classifiers. The same reasoning probably applies to Tor Browser. Indeed,
webpages may embed streaming content, including YouTube videos themselves.
Moreover, in experiments 3 and 4, by looking at the F1 score, we observe that
the apps that mislead the classifiers the most are Facebook, Instagram and Tor
Browser. This is not surprising. Indeed, if we think of the typical usage patterns
of the apps that we considered in our experiments, Facebook, Instagram and Tor
Browser are the ones with the largest idle periods (the user “think time”), as
opposed to the other apps, that mainly provide streaming content (typically, with
less frequent and shorter idle periods). Since the connection padding mechanism
is activated by idle periods, it is normal to observe a performance degradation
when using full connection padding rather than the reduced one.

Result Summary —As expected, all performance metrics slightly improve when
we do not consider the Tor Browser app (see Table 2). Indeed, the type of the vis-



Peel the Onion: Recognition of Android Apps Behind the Tor Network 107

Table 4. Per-class performance of each classifier for Experiment 2.

APP Random forest k–NN SVC

PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

Dailymotion 0.83 0.78 0.8 0.96 0.56 0.58 0.57 0.9 0.74 0.72 0.73 0.94

Facebook 0.9 0.84 0.87 0.98 0.65 0.71 0.68 0.94 0.86 0.85 0.85 0.97

Instagram 0.79 0.87 0.83 0.94 0.6 0.67 0.63 0.88 0.77 0.82 0.79 0.93

Replaio radio 0.99 0.98 0.99 1.0 0.98 0.96 0.97 0.99 0.98 0.98 0.98 0.99

Skype 0.99 0.96 0.98 1.0 0.98 0.95 0.96 0.99 0.98 0.96 0.97 0.99

Spotify 0.72 0.74 0.73 0.95 0.6 0.5 0.55 0.92 0.67 0.72 0.69 0.94

Twitch 0.84 0.87 0.85 0.97 0.68 0.76 0.72 0.93 0.84 0.83 0.83 0.96

Utorrent 0.9 0.93 0.91 0.98 0.83 0.71 0.77 0.96 0.87 0.87 0.87 0.97

Youtube 0.77 0.71 0.74 0.95 0.63 0.56 0.59 0.93 0.73 0.66 0.69 0.95

Table 5. Per-class performance of each classifier for Experiment 3.

APP Random forest k–NN SVC

PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

Dailymotion 0.87 0.81 0.84 0.97 0.66 0.72 0.69 0.95 0.8 0.77 0.78 0.97

Facebook 0.78 0.72 0.75 0.96 0.48 0.52 0.5 0.91 0.71 0.72 0.72 0.95

Instagram 0.72 0.7 0.71 0.94 0.47 0.47 0.47 0.89 0.67 0.7 0.68 0.93

Replaio radio 0.95 0.97 0.96 0.99 0.88 0.94 0.91 0.98 0.96 0.96 0.96 0.99

Skype 0.98 0.95 0.97 0.99 0.93 0.92 0.93 0.98 0.98 0.94 0.96 0.99

Spotify 0.82 0.84 0.83 0.96 0.69 0.68 0.68 0.93 0.76 0.78 0.77 0.95

Torbrowser 0.81 0.69 0.75 0.97 0.64 0.35 0.45 0.94 0.78 0.67 0.72 0.97

Twitch 0.86 0.92 0.89 0.98 0.68 0.77 0.72 0.94 0.86 0.87 0.87 0.97

Utorrent 0.99 0.99 0.99 1.0 0.94 0.98 0.96 0.99 0.98 0.99 0.98 1.0

Youtube 0.79 0.88 0.83 0.96 0.68 0.65 0.66 0.92 0.79 0.82 0.8 0.95

ited website strongly impacts on the characteristics of the generated traffic, which
makes this app sometimes be confused with other apps. For example, when vis-
iting a webpage with streaming content the Tor Browser app might be confused
with a streaming app (such as Spotify or YouTube). A counterintuitive result
that we obtained is that apparently the use of Tor’s (full) connection padding
actually improved the accuracy over the used reduced connection padding. If we
look at the per-class results (Tables 3, 4, 5 and 6) we notice that the performance
on Facebook and Instagram apps actually worsen significantly. Also the recall of
the Tor Browser app worsen significantly, though its precision improves, which
means that the proportion of false negatives increases (the app is more often
confused with others), while the number of false positives decreases (other apps
are less frequently confused with Tor Browser). The fact that these three apps
are more often misclassified when using full padding is what we expected. Indeed,
as already pointed out, their typical use patterns involve more frequent “think
times” and, thus, idle periods, which trigger the connection padding mechanism.
On the other hand, the other apps are mainly characterized by a “streaming”
pattern, thus involving extremely less frequent idle periods, which explains why
for the majority of them the performance does not worsen. However, it does not
explain why they improve. Clearly, the padding mechanism has a strong impact



108 E. Petagna et al.

Table 6. Per-class performance of each classifier for Experiment 4.

APP Random forest k–NN SVC

PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

Dailymotion 0.88 0.82 0.85 0.97 0.67 0.71 0.69 0.94 0.81 0.77 0.79 0.96

Facebook 0.82 0.73 0.77 0.96 0.51 0.52 0.52 0.91 0.73 0.73 0.73 0.95

Instagram 0.75 0.71 0.73 0.94 0.51 0.49 0.5 0.89 0.69 0.7 0.69 0.93

Replaio radio 0.95 0.97 0.96 0.99 0.88 0.94 0.91 0.98 0.96 0.96 0.96 0.99

Skype 0.98 0.96 0.97 0.99 0.96 0.92 0.94 0.98 0.97 0.95 0.96 0.99

Spotify 0.84 0.86 0.85 0.97 0.73 0.69 0.71 0.94 0.8 0.81 0.8 0.95

Twitch 0.87 0.92 0.9 0.98 0.71 0.77 0.74 0.94 0.88 0.87 0.87 0.97

Utorrent 0.99 0.99 0.99 1.0 0.96 0.98 0.97 0.99 0.98 0.99 0.99 1.0

Youtube 0.81 0.88 0.84 0.96 0.71 0.65 0.68 0.92 0.8 0.83 0.81 0.95

on the time-based features (see Sect. 6.2), especially the active/idle time. Our
guess is that the full padding mechanism is actually activated statistically more
often for some of these streaming apps and less often for others, which actually
results in a better separation of the corresponding classes. We plan to better
investigate this aspect as future work.

8 Conclusion

In this work we have shown that Tor when used on Android devices is vulnerable
to app deanonymization. We described a general methodology to perform an
attack against a target smartphone which allows to unveil which apps the victim
is using. The proposed methodology performs network traffic analysis based on
a supervised machine learning approach. It leverages the fact that different apps
produce different recognizable traffic patterns even when protected by Tor. We
also provided a Proof-of-Concept that implements the methodology, that we
employed to assess the accuracy that it can achieve in deanonymizing apps. We
performed several experiments achieving an accuracy of 97.3% and a F1 score
of 87.5%. We made the software of the Proof-of-Concept, as well as the datasets
that we built during the experiments, publicly available, so that it can be used
to assess Tor’s vulnerability to this attack, compare alternative methodologies
and test possible countermeasures.

As future work we plan to experiment with additional machine learning algo-
rithms. Moreover, in this work we adopted a multi-class classifier approach. We
plan to extend our experimental evaluation by testing alternative binary-class
approaches (such as one-vs-all and one-vs-one), in which we employ several
binary classifiers in place of a single multi-class classifier. Another improvement
to this work may be to enlarge the datasets with a richer set of apps and assess
the validity of our Proof-of-Concept in a real-world scenario, targeting real users
generated traces.



Peel the Onion: Recognition of Android Apps Behind the Tor Network 109

A User Simulation

This section describes how we simulated the user interaction in our Proof-of-
Concept.

Tor Browser. The user activity on the Tor Browser app has been simulated
through a python script that visits webpages randomly sampled from a list of
the top 10,000 sites extracted from the Majestic Million dataset [5]. The script
spend a randomly drawn amount of time on each webpage, before navigating to
the next one.

Instagram. To simulate the user interaction with Instagram, we created a
new account and added the Socialblade’s top 500 most followed profiles [6].
The simulation script generates random swipe inputs on the Instagram app to
scroll the main page up and down with random delays. Swipe down inputs are
generated with higher probability than swipe up inputs, as a user browsing
Instagram posts would typically scroll the page from top to bottom. After a
random number of swipes there is a 30% probability that the user decides to
visit another random profile, or otherwise a 30% probability that the user will
push the like button on the current Instagram post.

Facebook. The simulation of the user interaction with the Facebook app is
very similar to that of Instagram. First we create a Facebook account for the
user and we add a list of followed pages derived from Socialblade’s top 500 most
liked Facebook Pages [7]. Similarly to that of Instagram, the simulation script
scrolls the posts in the main page of the Facebook app, by generating random
swipe inputs with random delays. After a random number of swipes there is a
30% probability that the user pushes the like button on the post showing on the
screen.

Skype. Skype calls have been generated by starting calls with an audio source
near the smartphone microphone.

UTorrent. The uTorrent app is a Torrent client and, therefore, it does not
require a complex user interaction. We simply add some torrent file to the app,
and it starts the download.

Dailymotion, Replaio Radio, Spotify, Twitch, YouTube. Also this apps
do not require a very complex interaction with the user. We start each app on
some streaming content and leave the app in execution.

B Experiments Result Summary

Table 7 shows the settings of all the experiments that we performed and a sum-
mary of the results obtained.



110 E. Petagna et al.

Table 7. Complete set of experiments with results (Flow Timeout and Activity Time-
out are in seconds).

Experiment Connection

padding

Flow

timeout

Activity

timeout

Web

browser

Avg.

accuracy

Micro

F1

Macro

precision

Macro

recall

Macro

F1

Experiment 1 Reduced 10 2 Yes 0.968 0.840 0.834 0.830 0.832

Experiment 2 Reduced 10 2 No 0.969 0.859 0.859 0.852 0.855

Experiment 3 Full 10 2 Yes 0.972 0.861 0.857 0.849 0.853

Experiment 4 Full 10 2 No 0.973 0.880 0.877 0.872 0.875

Experiment 5 Reduced 10 5 Yes 0.969 0.844 0.836 0.833 0.835

Experiment 6 Reduced 10 5 No 0.969 0.860 0.860 0.854 0.857

Experiment 7 Full 10 5 Yes 0.972 0.862 0.858 0.849 0.854

Experiment 8 Full 10 5 No 0.973 0.878 0.876 0.871 0.873

Experiment 9 Reduced 15 2 Yes 0.970 0.852 0.851 0.844 0.847

Experiment 10 Reduced 15 2 No 0.970 0.866 0.871 0.861 0.866

Experiment 11 Full 15 2 Yes 0.975 0.876 0.874 0.859 0.867

Experiment 12 Full 15 2 No 0.976 0.890 0.888 0.878 0.883

Experiment 13 Reduced 15 5 Yes 0.971 0.853 0.851 0.844 0.847

Experiment 14 Reduced 15 5 No 0.972 0.873 0.877 0.868 0.873

Experiment 15 Full 15 5 Yes 0.976 0.878 0.875 0.861 0.868

Experiment 16 Full 15 5 No 0.976 0.893 0.891 0.881 0.886

References

1. Orbot: Tor for android (2018). https://guardianproject.info/apps/orbot/
2. Tcpdump (2018). https://www.tcpdump.org/
3. Androidviewclient (2019). https://github.com/dtmilano/AndroidViewClient
4. Culebra (2019). http://culebra.dtmilano.com/
5. The majestic million (2019). https://majestic.com/reports/majestic-million
6. Socialblade.com top 500 most followed profiles (sorted by followers count) (2019).

https://socialblade.com/instagram/top/500/followers
7. Socialblade.com top 500 most liked facebook pages (sorted by count) (2019).

https://socialblade.com/facebook/top/500/likes
8. Wireshark (2019). https://www.wireshark.org/
9. AlSabah, M., Bauer, K., Goldberg, I.: Enhancing tor’s performance using real-time

traffic classification. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS 2012, pp. 73–84. ACM, New York (2012). https://
doi.org/10.1145/2382196.2382208

10. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities in
encrypted HTTP streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol.
3856, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11767831 1

11. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using flow
records. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp.
247–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2 24

12. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Can’t you hear me knocking:
identification of user actions on android apps via traffic analysis. In: Proceed-
ings of the 5th ACM Conference on Data and Application Security and Privacy
CODASPY 2015, pp. 297–304. ACM, New York (2015). https://doi.org/10.1145/
2699026.2699119

https://guardianproject.info/apps/orbot/
https://www.tcpdump.org/
https://github.com/dtmilano/AndroidViewClient
http://culebra.dtmilano.com/
https://majestic.com/reports/majestic-million
https://socialblade.com/instagram/top/500/followers
https://socialblade.com/facebook/top/500/likes
https://www.wireshark.org/
https://doi.org/10.1145/2382196.2382208
https://doi.org/10.1145/2382196.2382208
https://doi.org/10.1007/11767831_1
https://doi.org/10.1007/978-3-319-04918-2_24
https://doi.org/10.1145/2699026.2699119
https://doi.org/10.1145/2699026.2699119


Peel the Onion: Recognition of Android Apps Behind the Tor Network 111

13. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards
automatic fingerprinting of android apps, pp. 809–817, April 2013. https://doi.org/
10.1109/INFCOM.2013.6566868

14. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: Youtube every-
where: impact of device and infrastructure synergies on user experience. In: Pro-
ceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Con-
ference, pp. 345–360. ACM (2011)

15. Freedom on the Net: 2017 report (2017). https://freedomhouse.org/report/
freedom-net/freedom-net-2017

16. Gember, A., Anand, A., Akella, A.: A comparative study of handheld and non-
handheld traffic in campus wi-fi networks. In: Spring, N., Riley, G.F. (eds.) PAM
2011. LNCS, vol. 6579, pp. 173–183. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19260-9 18

17. Habibi Lashkari, A., Draper Gil, G., Mamun, M.S.I., Ghorbani, A.A.: Characteriza-
tion of tor traffic using time based features. In: Proceedings of the 3rd International
Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp.
253–262. INSTICC, SciTePress (2017). https://doi.org/10.5220/0006105602530262

18. Hintz, A.: Fingerprinting websites using traffic analysis. In: Dingle-
dine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 171–178.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 13.
http://dl.acm.org/citation.cfm?id=1765299.1765312

19. Juarez, M., Afroz, S., Acar, G., Diaz, C., Greenstadt, R.: A critical evaluation of
website fingerprinting attacks. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security CCS 2014, pp. 263–274. ACM,
New York (2014). https://doi.org/10.1145/2660267.2660368

20. Liberatore, M., Levine, B.N.: Inferring the source of encrypted http connections.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security CCS 2006, pp. 255–263. ACM, New York (2006). https://doi.org/10.1145/
1180405.1180437

21. Ling, Z., Luo, J., Wu, K., Yu, W., Fu, X.: Torward: discovery of malicious traffic
over tor. In: IEEE INFOCOM 2014 - IEEE Conference on Computer Communica-
tions, pp. 1402–1410 (2014)

22. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analysis
of low-latency anonymous communication using throughput fingerprinting. In: Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security
CCS 2011, pp. 215–226. ACM, New York (2011). https://doi.org/10.1145/2046707.
2046732

23. Perry, M.: Tor padding specification (2019). https://gitweb.torproject.org/torspec.
git/tree/padding-spec.txt

24. Project, T.: Tor metrics. https://metrics.torproject.org/. Accessed Jan 2019
25. Redondi, A.E.C., Sanvito, D., Cesana, M.: Passive classification of wi-fi enabled

devices. In: Proceedings of the 19th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems MSWiM 2016, pp. 51–58.
ACM, New York (2016). https://doi.org/10.1145/2988287.2989161

26. Dinledine, R., Mathewson, N., Murdoch, S., Syverson, P.: Tor: the second-
generation onion router (2014 draft v1) (2014). https://murdoch.is/papers/
tor14design.pdf

27. Saltaformaggio, B., et al.: Eavesdropping on fine-grained user activities within
smartphone apps over encrypted network traffic. In: Proceedings of the 10th
USENIX Conference on Offensive Technologies WOOT 2016, pp. 69–78. USENIX
Association, Berkeley (2016). http://dl.acm.org/citation.cfm?id=3027019.3027026

https://doi.org/10.1109/INFCOM.2013.6566868
https://doi.org/10.1109/INFCOM.2013.6566868
https://freedomhouse.org/report/freedom-net/freedom-net-2017
https://freedomhouse.org/report/freedom-net/freedom-net-2017
https://doi.org/10.1007/978-3-642-19260-9_18
https://doi.org/10.1007/978-3-642-19260-9_18
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1007/3-540-36467-6_13
http://dl.acm.org/citation.cfm?id=1765299.1765312
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/1180405.1180437
https://doi.org/10.1145/1180405.1180437
https://doi.org/10.1145/2046707.2046732
https://doi.org/10.1145/2046707.2046732
https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt
https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt
https://metrics.torproject.org/
https://doi.org/10.1145/2988287.2989161
https://murdoch.is/papers/tor14design.pdf
https://murdoch.is/papers/tor14design.pdf
http://dl.acm.org/citation.cfm?id=3027019.3027026


112 E. Petagna et al.

28. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009). https://doi.org/
10.1016/j.ipm.2009.03.002

29. Stöber, T., Frank, M., Schmitt, J., Martinovic, I.: Who do you sync you are?:
Smartphone fingerprinting via application behaviour. In: Proceedings of the Sixth
ACM Conference on Security and Privacy in Wireless and Mobile Networks WiSec
2013, pp. 7–12. ACM, New York (2013). https://doi.org/10.1145/2462096.2462099

30. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Appscanner: automatic fin-
gerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS P), pp. 439–454, March
2016. https://doi.org/10.1109/EuroSP.2016.40

31. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effective attacks and
provable defenses for website fingerprinting. In: Proceedings of the 23rd USENIX
Conference on Security Symposium SEC 2014, pp. 143–157. USENIX Association,
Berkeley (2014). http://dl.acm.org/citation.cfm?id=2671225.2671235

https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1145/2462096.2462099
https://doi.org/10.1109/EuroSP.2016.40
http://dl.acm.org/citation.cfm?id=2671225.2671235


JSLess: A Tale of a Fileless Javascript
Memory-Resident Malware

Sherif Saad1(B), Farhan Mahmood1, William Briguglio1,
and Haytham Elmiligi2

1 School of Computer Science, University of Windsor, Windsor, Canada
{shsaad,babar111,briguglw}@uwindsor.ca

2 Thompson Rivers University, Kamloops, Canada
helmiligi@tru.ca

Abstract. New computing paradigms, modern feature-rich program-
ming languages and off-the-shelf software libraries enabled the develop-
ment of new sophisticated malware families. Evidence of this phenom-
ena is the recent growth of fileless malware attacks. Fileless malware or
memory resident malware is an example of an Advanced Volatile Threat
(AVT). In a fileless malware attack, the malware writes itself directly
onto the main memory (RAM) of the compromised device without leav-
ing any trace on the compromised device’s file system. For this reason,
fileless malware presents a difficult challenge for traditional malware
detection tools and in particular signature-based detection. Moreover,
fileless malware forensics and reverse engineering are nearly impossible
using traditional methods. The majority of fileless malware attacks in the
wild take advantage of MS PowerShell, however, fileless malware are not
limited to MS PowerShell. In this paper, we designed and implemented
a fileless malware by taking advantage of new features in Javascript and
HTML5. The proposed fileless malware could infect any device that sup-
ports Javascript and HTML5. It serves as a proof-of-concept (PoC) to
demonstrate the threats of fileless malware in web applications. We used
the proposed fileless malware to evaluate existing methods and tech-
niques for malware detection in web applications. We tested the proposed
fileless malware with several free and commercial malware detection tools
that apply both static and dynamic analysis. The proposed fileless mal-
ware bypassed all the anti-malware detection tools included in our study.
In our analysis, we discussed the limitations of existing approaches/tools
and suggested possible detection and mitigation techniques.

Keywords: Fileless malware · Unconventional malware · Web
vulnerabilities · Javascript · HTML5 · Polymorphic malware

1 Introduction

Fileless malware is a new class of the memory-resident malware family that
successfully infects and compromises a target system without leaving a trace on
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 113–131, 2019.
https://doi.org/10.1007/978-3-030-34339-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_7


114 S. Saad et al.

the target filesystem or second memory (e.g., hard drive). Fileless malware infects
the target’s main-memory (RAM) and executes its malicious payload. Fileless
malware is not just another memory-resident malware. To our knowledge, Fred
Cohen developed the first memory-resident malware (Lehigh Virus) in the early
80s. This usually leads some researchers to believe that fileless malware is not a
new malware threat but only a new name for an old threat. However, this is not
true, fileless malware has some distinguishing properties. First, malware attacks
require some file infection or writing to the hard drive, this includes traditional
memory resident malware. Fileless malware infection and propagation does not
require writing any data to the target device filesystem. However, it is possible
that the malicious payload (e.g., the end goal) of the fileless malware writes data
to the hard drive, for example, a fileless ransomware, but again the ransomware
propagation and infection are fileless. The second key property of fileless malware
is that it depends heavily on using benign software utilities and libraries already
installed on the target device to execute the malicious payload. For instance,
a fileless ransomware will use cryptographic library and APIs already installed
on the target to complete its attack rather than installing a new cryptographic
libraries or implement its own.

There are other unique properties of fileless malware, but the most impor-
tant ones are the fileless infection approach and the use of benign utilities and
libraries of the compromised machine to execute the malicious payload. Those
two properties of fileless malware make it an effective threat in evading and
bypassing sophisticated anti-malware detection systems. This is because most
anti-malware relies on scanning the compromised filesystem to detect malware
infections. Also, because fileless malware use legitimate software utilities and
programs to attack computer systems, it is challenging for anti-malware systems
that use dynamic analysis to detect fileless malware. Moreover, being fileless is
an anti-forensics technique, since it does not leave any trace after the attack is
complete, it is tough for forensics investigator to reverse engineer the malware.

Fileless malware attacks and incidents are already observed in the wild com-
promising large enterprises. According to KASPERSKY lab, 140 enterprises were
attacked in 2017 using fileless malwares [9]. Ponemon Institute reported that
77% of the attacks against companies use fileless techniques [4]. Also, CYREN
recently reported that during 2017 there was over 300% increase in the use of
fileless attacks. Moreover, they expected that the new generation of Ransomware
would be fileless [12]. This expectation proved to be correct when TrendMicro
reported the analysis of SOREBRECT Ransomware, the first fileless ransomware
attack in the wild [25]. However, we think that it is inaccurate to describe SORE-
BRECT Ransomware as fileless malware, since it places an executable file on the
compromised machine which injects the malicious payload into a running sys-
tem process. Then, it deletes the file and any trace on the system logs using a
self-destruct routine. Because the infection and the injection of SOREBRECT
Ransomware requires placing files on the compromised host, we do not think it
is a true fileless malware. Moreover, deleting the files is not enough to hide the
trace, file carving techniques could be used to recover the deleted files.



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 115

Another common trend in developing fileless malware is the use of Microsoft
PowerShell. PowerShell is a command-line shell and scripting language that
allows system administrators to manage and automate tasks related to run-
ning process, the operating system, and networks. It is preinstalled by default
on new Windows versions and it can be installed on Linux and MacOS systems.
PowerShell is a good example of a benign and powerful system utility that could
be used by fileless malware. Several reports by anti-malware vendors discussed
how malware authors take advantages of PowerShell to develop sophisticated
fileless malware [15].

In this paper, we summarize our research on fileless malware attacks in mod-
ern web applications. We investigate the possibility of developing a fileless mal-
ware using modern Javascript features that were introduced with HTML5. In
our assessment of the potential threats of fileless malware attacks, we explore the
use of benign Javascript and HTML5 features to develop fileless malware. Based
on our analysis we implemented JSLess as a proof-of-concept fileless Javascript
malware that successfully infects a web browser and executes several malicious
payloads.

The contribution of this paper is threefold. First, identify the malicious poten-
tial of new benign features in web technology and how they could be used to
develop fileless malware. Second, design and implement JSLess as a PoC fileless
JS malware that uses a new dynamic injection method and advanced evasion
techniques to infect modern web apps and execute a variety of attacks. Third,
demonstrate the threats of fileless malware in modern web applications by eval-
uating the proposed fileless malware with several free and commercial malware
detection tools that apply both static and dynamic analysis.

This paper is organized as follows; Sect. 2 is a literature review of fileless
malware and Javascript malware. In Sect. 3, we explain the new benign features
in modern Javascript and HTML5 and there security issues. Then, in Sect. 4
we present our Javascript fileless malware design and implementation. Next,
in Sect. 5 we evaluate the evasion behaviors of the JS fileless malware against
free and commercial anti-malware tools, then we discuss possible detection and
mitigation techniques. Finally, the conclusion and possible future work presented
in Sect. 6.

2 Related Work

Code injection attacks have been studied from different perspectives in the liter-
ature. The research in this area tried to detect malicious behaviors in Javascripts
using various methods, including signature-based analysis, utilizing machine
learning algorithms, using honeynets, and applying several de-obfuscation tech-
niques [14]. This section discusses the main research directions in this area and
highlights some of the most important contributions in the literature.

Yoon et al. proposed a method to generate unique signatures for malicious
Javascripts [29]. The authors used content-based signature generation techniques
and utilized the Term Frequency - Inverse Document Frequency (TF-IDF) and



116 S. Saad et al.

Balanced Iterative Reducing and Clustering using Hierarchies methods to gen-
erate the conjunction signatures for Javascripts [29]. Although signature-based
analysis can help detect several malicious behaviours, the work in [29] is based
on the assumption that the attack type of the input Javascripts is known, which
is not always a practical assumption in real-life environments. Moreover, obfus-
cation remains a challenging problem that reduces the effectiveness of signature-
based techniques.

Blanc et al. tried to address the obfuscation problem by applying abstract
syntax tree (AST) based methods to characterize obfuscating transformations
found in malicious JavaScript [5]. The authors used AST-based methods to
demonstrate significant regularities in obfuscated JavaScript programs. The work
in [5] is based on generating AST fingerprints (ASTFs) for each JS file present
in their learning dataset then manually picking representative subtrees for fur-
ther processing. The manual intervention in this procedure and relying only on
the training datasets without providing a mechanism to update the training set
with new samples raise many questions about the feasibility of this solution.
Moreover, the work in [5] did not consider the different categories of obfusca-
tion techniques in real-world malicious JavaScript, which was analyzed by Xu
et al. in [28]. Similar work was done by AL-Taharwa et al. to detect obfusca-
tion in JavaScript using semantic-based analysis based on the variable length
context-based feature extraction (VCLFE) scheme that takes advantage of AST
representation [2].

One controversial issue in this area of research is the physical location where
the detection mechanism takes place. One approach is to collect and analyze
HTTP traffic via local proxy and implement the detection algorithm on the
proxy side [18]. Another approach is to implement the detection mechanism
on the client side, such as the work done by Sachin et al., who used light-
weight JavaScript instrumentation that enables static and dynamic analysis of
the visited webpage to detect malicious behavior [21]. Kishor et al. took an extra
step and developed an extension that can be installed on the client web browser
to detect malicious web contents [11]. Similar work was done by Wang et al.,
who focused on the browser detection mechanism integrated with HTML5 and
Cross Origin resource sharing (CORS) properties [26].

In recent years, JavaScript became a very popular solution for hybrid mobile
applications. This recent adoption of technology in mobile applications poses a
new risk of malicious code injection attacks on mobile devices. Mao et al. pro-
posed a method to detect anomalous behaviors in hybrid Android apps as anoma-
lies in function call behaviors [14]. The authors instrumented the JavaScript code
dynamically in the JavaScript engine to intercept function calls of JavaScript in
hybrid apps. They also extracted events from the Android WebView component
to enhance the performance of their proposed detection model [14].

Since the feature engineering step is the core of any machine-learning malware
detection solution, many researchers focused on developing a feature engineering
methodology. Adas et al. proposed a method to extract inspection features from
over two million mobile URLs [1]. The authors used a MapReduce/Hadoop based



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 117

cloud computing platform to train and implement their classifier and evaluate
its performance. Although this is a good step towards building a cloud-based
classifier, more experiments need to be conducted to evaluate its efficiency with
respect to real-time detection of malware. Moreover, the classification model
in [1] was trained with features based on the static analysis of the malicious
code, which is not an efficient approach in detecting most fileless malwares.

Ndichu et al. developed a neural network model that can be trained to learn
the context information of texts [16]. The main contribution of the work in [16]
is developing a new feature extraction method and using unsupervised learning
algorithms that produce vectors of fixed lengths. These vectors can be used to
train a neural network that classifies the JavaScript code as normal or mali-
cious [16]. Similar work was done earlier by Wang et al. using deep learning [27].
Wang et al. used deep features extracted by stacked denoising auto-encoders
(SdA) to detect malicious JavaScript codes [27].

Neural networks were not the only machine learning framework used to detect
malicious JavaScript codes. Seshagiri et al. used Support Vector Machine (SVM)
to detect malicious JavaScript codes [23]. Features were extracted using static
analysis of web pages. Although ML is a promising solution, there are many
challenges that faces developers during the implementation of such solutions.
The main challenge is creating a feature vector that can truly characterize the
behaviour of fileless malware. Fileless malwares do not leave clear traces on the
victim’s machine and therefore are very difficult to identify.

Other research directions are considered in the literature. The following
are few examples of different approaches considered by researchers in the last
few years. Sayed et al. proposed a model that uses information flow control
dynamically at run-time to detect malicious JavaScript [22]. Fange et al. used
Long Short-Term Memory (LSTM) to develop a malicious JavaScript detection
model [8]. Shen used a high-level fuzzy Petri net (HLFPN) to detect JavaScript
malware [20]. Cosovan used hidden markov models and linear classifiers to detect
JavaScript-based malware [6]. Last but not least, Maiorca et al. used discrimi-
nant and adversary-aware API analysis to detect malicious scripting code [13].

Although the previous work in this research area presented promising results,
there are many challenges that prevent accurate detection of fileless malwares
in real web applications. To highlight the significance of the threat posed by
fileless malwares, this paper presents a practical design and implementation of a
fileless malware as a proof-of-concept (PoC) to demonstrate the threats of fileless
malware in web applications.

3 Benign Features with Malicious Potentials

With the introduction of HTML5, a new generation of modern web applications
become a reality. This is mainly because HTML5 introduced a rich-set of power-
ful APIs and features that can be used by JavaScript. Some of the new features
and APIs in HTML focus on enabling the development of web apps with high
connectivity and performance. Further, HTML5 provides a set of APIs that allow



118 S. Saad et al.

web applications written in JavaScript to access information about the host run-
ning the web app and also other peripheral devices connected to the host. For
instance, a web app developed with HTML5 and JavaScript could have access
to the user geolocation, device orientation, mic, and camera.

While these new powerful features were proposed to improve web application
development, we found in our analysis of these features that hackers and malware
authors could misuse them. Many of these benign features have serious malicious
potential. In this section, we will mainly focus on HTML5 features that were
proposed to boost web application performance, scalability, and connectivity.

3.1 WebSockets

WebSocket is a new communication protocol that enables a web-client and a
web-server to establish a two-way (full-duplex) interactive communication chan-
nel over a single TCP connection [17]. It provides bi-directional real-time com-
munication which is an urgent requirement for modern interactive web appli-
cations. With WebSocket, the communication method between the web-client
and the web-server is not limited to pull-communication [19]. Instead, push-
communication and even an interactive communication become possible. For
this reason, WebSocket becomes the dominated technology in developing instant
messaging apps, gaming applications, streaming services, or any web app which
requires data exchange between the client and the server in real-time.

WebSocket is currently supported by all major web browsers such as Chrome,
Firefox, Safari, Edge, and IE. Moreover, the WebSocket protocol is supported
by common programming languages such as Java, Python, C#, and others.
This enables the development of desktop, mobile apps, or even microservices
that communicate using WebSocket as a modern and convenient communication
protocol.

It is clear that using WebSocket the connectivity of web apps moves to a new
level of high quality and reliability. However, WebSocket is considered by web
security researchers a security risk [10]. WebSocket enables a new attack vector
for malicious actors. Common web attacks such as cross-site scripting (XSS) and
man in the middle (MitM) are possible over WebSockets. WebSocket by design
does not obey the same-origin policy; this means the web browser will allow a
WebSocket script to connect to different web pages even if they do not share
the same origin (same URI scheme, host and port number). Again WebSocket
by design is not bound by cross-origin resource sharing (CORS). This means a
web app running inside the client web browser could request resources that have
a different origin from the web app. This flexibility could be easily abused by
malicious actors as we will demonstrate in the next section.

3.2 WebWorkers

Originally JavaScript is a single-threaded language which means in any web app
there is only a single line of code or statement that can be executed at any given



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 119

time. As a result, JavaScript cannot perform multiple tasks simultaneously. Web-
Worker is a new JavaScript feature that was introduced with HTML5 to improve
the performance of the JavaScript application [3]. WebWorker enables JavaScript
code to run in a background thread separate from the main execution thread of
a web app. In other words WebWorker allows web applications to execute tasks
in the background without impacting the user interface as it works completely
separate from the UI thread. For this reason, WebWorkers are typically used
to run long and expensive operations without blocking the UI. For instance,
the code in Listing 1.1 initialize a new web worker object and runs the code in
worker.js asynchronously in a new thread.

if (typeof(worker) == "undefined") {

worker = new Worker("worker.js");

}

Listing 1.1. WebWorker Initialization Example

WebWorker should be used to do computationally intensive tasks to avoid
blocking the UI or any other code executed in the main thread. If a computa-
tionally intensive task executes in the main JavaScript thread, the web app will
freeze and become unresponsive to the user. WebWorker is currently supported
by all major web browsers such as Chrome, Firefox, Safari, Edge, and IE.

As we can see WebWorker is an essential feature for developing a modern
and responsive web application. However, the devil is in the details. While Web-
Worker seems like a harmless feature, it opens the door for several malicious sce-
narios and security issues. For example, it allows DOM-based cross-site scripting
(XSS) [24]. CORS does not bind it, and hence a web worker could share and
access resources from different origins. But in our opinion, the most critical secu-
rity issue with WebWorker is its ability to insert silent running JavaScript code.
This could enable a malicious payload to run in a background thread created by
malicious or compromised web apps. One possible example is using WebWorker
with a malicious web app to preform cryptocurrency mining without the users’
consent. The WebWorker will terminate if the worker completed the execution
of the script or if the user closes the web browser or the web app that created
the web worker object.

3.3 Service Workers

ServiceWorker is another new appealing JavaScript feature. We could consider
ServiceWorker as a special type of WebWoker. ServiceWorker allows running
JavaScript code in a separate background thread. This is very similar to Web-
Worker but unlike WebWorker, the lifetime of the ServiceWorker is not tied to
a specific webpage or even the web browser [7]. This means even if the user
navigates away from the web app that created the ServiceWorker or terminated
the web browser, the ServiceWorker will continue to run in the background.
The ServiceWorker will normally terminate when it’s complete (e.g., execute all
the computation tasks) or received a termination signal from the web server, or
terminate abnormally as a result of a crash, system reboot or shutdown.



120 S. Saad et al.

ServiceWorker was introduced to enable rich offline experience to the users
and improve the performance of modern web apps. The code in Listing 1.2 shows
an example that creates a ServiceWorker from the file sw demo.js. Service-
Workers share the same security issues and risks that exist in WebWorkers but
the lifetime of the security risks are persistent.

window.addEventListener (’load’, () => {

navigator.serviceWorker.register(’/sw_demo.js’)

.then(( registration) => {

// ServiceWorker registered successfully

}, (err) => {

// ServiceWorker registration failed

});

});

Listing 1.2. ServiceWorker Registration Example

4 JavaScript Fileless Malware

In this section, we explain how the benign JavaScript features we introduced in
Sect. 3 could be used to implement a fileless JavaScript malware. To demonstrate
this threat, we design and implement JSLess as a PoC fileless malware. We design
JSLess as a fileless polymorphic malware, with a dynamic malicious payload, that
applies both timing and event-based evasion.

4.1 Infection Scenarios

In our investigation, we define two main infection scenarios. The first scenario
is when the victim (web user) visits a malicious web server or application as
illustrated in Fig. 2. In this case, the malicious web server will not show any
malicious behaviors until a specific event triggers the malicious behavior. In our
demo, the attack posts specific text messages on a common chat room. The
message act as an activation command to the malware. When the message is
received the malware is injected dynamically into the victim’s browser and starts
running as part of the script belonging to the public chat room.

The second infection scenario is when the malware compromise a legitimate
web application or server to infect the web browsers of the users who are currently
visiting the compromised website as illustrated in Fig. 3. In this case, both the
website and the website visitors are victims of the malware attack. The malware
will open a connection with the malicious server (e.g., C&C server) that hosts
the malware to download the malicious payload or receive a command from the
malware authors to execute on the victim browser.

Note that in both scenarios the malicious code infection/injection happens
on the client side, not the server side.



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 121

4.2 Operational Scenario

JSLess delivered to the victim web browser through a WebSocket connection.
When the victim visits a malicious web server, the WebSocket connection will
be part of the web app on the malicious server. However, if the malware authors
prefer to deliver JSLess by compromising a legitimate web app/server to increase
in the infection rate, then the WebSocket delivery code could be added into a
third-party JavaScript library (e.g. JQuery). Almost all modern web application
relies on integrating third-party JavaScript files. The WebSocket delivery code is
relatively (see the code in Listing 1.3) and could easily be hidden in a malicious
third-party script library that is disguised as legitimate. Alternatively, the code
could be inserted via an HTML injection attack on a vulnerable site that does
not correctly sanitize the user input.

MalWS = new WebSocket(’{{ WSSurl }}/ KeyCookieLog.js’);

MalWS.onmessage = function(e) {

sc = document.createElement(’script ’);

sc.type = ’text/javascript ’;

sc.id = ’MalSocket ’;

sc.appendChild(document.createTextNode(e.data));

B = document.getElementsByTagName("body");

B[0]. appendChild(sc);

};

Listing 1.3. Malicious payload delivered with websocket

The WebSocket API is used to deliver the malware source code in JavaScript
to the victim browser. Once the connection is opened, it downloads the
JavaScript code and uses it to create a new script element which is appended as
a child to the HTML file’s body element. This causes the downloaded script to
be executed by the client’s web browser.

Delivering the malware payload over WebSocket and dynamically inject it
into the client’s web browser provide several advantages to malware authors. The
fact that the malware code is only observable when the web browser is executing
the code and mainly as a result of a trigger event provides one important fileless
behavior for the malware. The malicious code is never written to the victim’s file
system. Using WebSocket to deliver the malware payload does not raise any red
flags by anti-malware systems since it is a popular and common benign feature.
Using benign APIs is another essential characteristic of fileless malware.

The fact that JSLess can send any malicious payload for many attack vectors
and inject arbitrary JavaScript code with the option to obfuscate the injected
malicious code enables the design of polymorphic malware. All of these attributes
make JSLess a powerful malware threat that can easily evade detection by anti-
malware systems. For instance, a pure JavaScript logger could be quickly injected
in the user’s browser to captures user’s keystroke events and send them to the
malware C&C server over WebSocket. Note that benign and native JavaScript
keystroke capturing APIs are used which again will not raise any red flags.
Figure 1 shows an example of an injected JavaScript key logger that captures
keystroke events and send it to the malware C&C server over WebSockect.



122 S. Saad et al.

Fig. 1. Obfuscated JavaScript code injected in the body of web page which opens a
secure WebSocket connection with Remote C&C Server to send the user’s keystrokes
information to attacker

To utilize the victim system’s computation power or run the malicious scripts
in a separate thread from the main UI thread, JSless takes advantage of Web-
Workers. This allows JSless to run malicious activities that are computationally
intensive, such as cryptocurrency mining. The WebWorker script is downloaded
from the C&C server. The JavaScript code in Listing 1.4 shows how the mali-
cious WebWorker code could be obtained as a blob object and initiated on the
victim’s browser. In conjunction with the importScripts and createObjectURL
functions, we were able to load a script from a different domain hosted on the
different server and executed it in the background of the benign web app.

blob = new Blob(["self.importScripts (’{{ HTTPSurl }}/ foo.js ’);"

],

{type: ’application/Javascript ’});

w = new Worker(URL.createObjectURL(blob));

Listing 1.4. Breaking Same-origin Policy with ImportScripts()

Until this point one limitation of JSless malware-framework is that fact that
the malware will terminate as soon as the user closes his web browser or navigates
away from the compromised/malicious web server. This limitation is not specific
to JSless, it is the common behaviors of any fileless malware. In fact, many
malware authors sacrifice the persistence of their malware infection by using
fileless malware to avoid detection and bypass anti-malware systems. However,
that does not mean fileless malware authors are not trying to come up with new
methods and techniques to make their fileless malware persistent. In our investi-
gation to provide persistence for JSless even if the user navigates away from the
compromised/malicious web page or closes the web browser, we took advantage
of the ServiceWorker API to implement a malware persistence technique with
minimal footprint.



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 123

To achieve malware persistence, we used the WebSocket API to download a
script from the malicious server. After downloading the ServiceWorker registra-
tion code from the malicious server as shown in Listing 1.1, it registers a sync
event as shown in Listing 1.5, cause the downloaded code to execute and stay
alive even if the user has navigated away from the original page or closed the
web browser. The malicious code will continue to run and terminate normally
when it is completed or abnormally as result of exception, crash or if the user
restarts his machine. Note that when we use ServiceWorker, a file is created and
temporarily stored on the client machine while the ServiceWorker is running.
This is the only case where JSless will place a file on the victim machine, and it
is only needed for malware persistence.

self.addEventListener (’sync’, function (event) {

if (event.tag === ’mal -service -worker ’) {

event.waitUntil(malServiceWorker ()

.then(( response) => {

// Service Worker task is done

}));

}

});

function malServiceWorker () {

// Malicious activity can be performed here

}

Listing 1.5. ServiceWorker Implementation for malicious purpose

In our proof-of-concept implementation for the malware persistence with Ser-
viceWorker, we implemented a MapReduce system. In this malicious MapRe-
duce system, all the current infected web browsers receive the map function and
a chunk of the data via WebSocket. The map function executes as a Service-
Worker and operates over the data chunks sent by the malicious server. When
the ServiceWorker finishes executing the map function, it returns the result
to the malicious server via WebSocket. When the malicious server receives the
results from the ServiceWorker, it performs the reduce phase and returns the
final result to the malware author.

4.3 Attack Vectors

The ability to inject and execute arbitrary JavaScript code allows JSless to
support a wide variety of malicious attacks. Here are the most common attacks
that JSless could execute:

Data Stealing. On infection JSless can easily collect keystrokes, cookie and
web storage data, as demonstrated in our PoC. Also, it could control multimedia
devices and capture data from a connected mic or webcam using native browser
WebRTC APIs.



124 S. Saad et al.

DDoS. JSless malicious C&C server could orchestrate all the currently infected
web browsers to connect to a specific URL or web server to perform a DDoS
attack. In this case, JSless constructs a botnet of infected browsers to execute
the DDoS attack.

Resource Consumption Attack. In this case, JSless could use the infected
users’ browser to run computationally intensive tasks such as cryptocurrency
mining, password cracking, etc. The MapReduce system we implement as part
of JSless is an example of managing and running computationally intensive tasks.
Also, beside the above attacks which we have implemented in our JSless it is
possible to perform other attacks like Click Fraud, RAT-in-the-Browser (RitB)
Attacks, and many other web-based attacks.

5 Experiment and Evaluation

In order to assess the identified JavaScript/HTML5 vulnerabilities and threats,
we developed JSless as a proof-of-concept fileless malware that is completely
written in JavaScript. We used the second injection scenario to test our fileless
malware implementation. For this purpose, we also implemented a web app that
JSless will compromise to infect the web browser of any user using the web app.
The web app is a shared chat board that allows users to register, post and receive
messages to/from a shared chat board. The web app and the JSless C&C server
are implemented in JavaScript using MEAN stack (MongoDB, ExpressJS, Angu-
larJS, and Node.js). The source code for the fileless malware and the target web
app is available on our GitHub/bitbucket repository for interested researchers
and security analysts.

For the actual test, we deployed the target web app and the JSless C&C
server on Amazon Web Services (AWS). We used two AWS instances with two
different domains, one to host the target web app and the second to host JSLess
C&C server. We mainly tested two attack vectors, the data stealing attack and
the resource consumption attack.

5.1 JS Malware Detection Tools

To our surprise, few anti-malware systems try to detect JavaScript malware. We
identified seven tools that we considered promising based on the techniques and
the technology they use for detection. Most of the tools apply both static and
dynamic analysis. Some of those tools are commercial, but they provide a free
trial period that includes all the commercial feature for a limited time. Table 1
shows the list of tools we used in our study.

None of the tools were able to detect JSless malicious behaviors.



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 125

Table 1. JavaScript and web app malware detection tools

Tool name Detection technique License Website Detect JSLess

ReScan.pro Static & dynamic Commercial https://rescan.pro/ NO

VirusTotal Static & dynamic Free & commerical https://www.virustotal.com/ NO

SUCURI Static Commercial https://sucuri.net/ NO

SiteGuarding Static Commercial https://www.siteguarding.com/ NO

Web Inspector Static & dynamic Free https://app.webinspector.com/ NO

Quttera Static & dynamic Free & commercial https://quttera.com/ NO

AI-Bolit Static & dynamic Free & commercial https://revisium.com/aibo/ NO

5.2 Detection and Mitigation

By reviewing the results from the detection tools and how those tools work, it is
obvious that detecting JSLess is not possible. The use of WebSocket to inject and
run obfuscated malicious code, make it almost impossible to any static analysis
tool to detect JSLess, since the malicious payload does not exist at the time
of static analysis. The use of benign JavaScript/HTML5 APIs and features, in
addition to the dynamic injection behaviors also make it very difficult for the
current dynamic analysis tools to detect JSLess. Blocking or preventing new
JavaScript/HTML5 APIs is not the solution and it is not an option. In our
opinion, a dynamic analysis technique that implements continuous monitoring
and context-aware is the only approach that we think could detect or mitigate
fileless malware similar to JSLess.

5.3 Tools Analysis Results

ReScan.Pro. It is a cloud-based web application scanner which takes URL
of the website and generates a scan report after filtering the website for web-
based malware and other web security issues. It explores the website URLs and
checks for infections, suspicious contents, obfuscated malware injections, hidden
redirects and other web security threats present. In-depth and comprehensive
analysis of ReScan.Pro based on three main features.

1. Static Page Scanning: combination generic signature detection technique and
heuristic detection. It uses signature and pattern-based analysis to identify
malicious code snippets and malware injections. It also looks for malicious
and blacklisted URLs in a proprietary database.

2. Behavioral Analysis: imitates the website user’s behavior to evaluate the
intended action of implemented functionality.

3. Dynamic Page Analysis: performs dynamic web page loading analysis which
includes deobfuscation techniques to decode the encoded JavaScript in order
to identify the runtime code injects and it also checks for malware in external
JavaScript files.

We ran the experiment with the ReScan.Pro to test if it will detect the
malicious activities of JSless malware. It generated a well defined report after

https://rescan.pro/
https://www.virustotal.com/
https://sucuri.net/
https://www.siteguarding.com/
https://app.webinspector.com/
https://quttera.com/
https://revisium.com/aibo/


126 S. Saad et al.

analyzing the website with its static and dynamic features. The produced result
shows that the website is clean and no malicious activity has been found. ReS-
can.Pro could not detect our JavaScript fileless malware.

Web Inspector. This tool runs a website security scan and provides a malware
report which has more information than most other tools. Its security scanner
is bit different from others because it performs both malware and vulnerabil-
ities scans together. For scanning a website, it just requires a user to provide
the website URL and click on the ‘Start the Scan’ button. It starts scanning the
website and generates the report within minutes. This tool provides five different
detection technologies such as (1) Honeypot Engine, (2) Antivirus Detection, (3)
BlackList Checking, (4) SSL Checking, and (5) Analyst Research. The Honey-
pot Engine has special algorithms for Exploit Packs and multi-redirect malware
detection and it gives full web content scan using a real browser clone with
popular plugins. Web inspector shows a threat report which includes Blacklists,
Phishing, Malware Downloads, Suspicious code, Heuristic Viruses, Suspicious
connections, and worms.

As described above, Web Inspector provides a report on full web content
scanning by applying various techniques to detect malware. However, we noticed
that our JavaScript fileless malware was able to successfully deceive this malware
detection tool as well.

Sucuri. Sucuri is yet another tool that offers a website monitoring solution to
evaluate any website’s security with a free online scanner. This scanning tool
searches for various indicators of compromise, which includes malware, drive-by
downloads, defacement, hidden redirects, conditional malware, etc. To match
more signatures and generate fewer false positives, it uses static techniques with
intelligent signatures which are based on code anomalies and heuristic detection.
Server side monitoring is another service provided by them which can be hosted
on the compromised server to look for backdoors, phishing attack vulnerabilities,
and other security issues by scanning the files present on the server. Moreover,
Sucuri provides a scanning API as a paid feature to scan any site and get a result
similar to what is provided on its internal malware scanners.

Testing with Sucuri online scanner, we see it displays that there is “No Mal-
ware Found” as well as a seek bar indicating a medium security risk. However,
this is due to Insecure SSL certificates, not from the detection of our fileless
malware.

Quttera. Quttera is a popular website scanner that attempts to identify mal-
ware and suspicious activities in web application. Its malware detector contains
non-signature based technology which attempts to uncover traffic re-directs,
generic malware, and security weakness exploits. It can be accessed from any
computer or mobile device through a web browser. It also provides real-time
detection of shell-codes, obfuscated JavaScript, malicious iframes, traffic re-
direct and other online threats.



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 127

Fig. 2. JavaScript fileless malware first infection scenario

VirusTotal. VirusTotal is a free malware inspection tool which offers a number
of services to scan websites and files leveraging a large set of antivirus engines
and website scanners. This aggregation of different tools covers wide variety
of techniques, such as heuristic, signature based analysis, domain blacklisting



128 S. Saad et al.

Fig. 3. JavaScript fileless malware second infection scenario

services, etc. A detailed report is provided after completing the scan which not
only indicates the malicious content present in a file or website but also exhibits
the detection label by each engine.

We scan our compromised web app with VirusTools using 66 different mal-
ware detection engine, and none of those 66 engines was able to detect that the
web app is compromised.

AI-BOLIT is an antivirus malware scanner for websites and hosting. It uses
heuristic analysis and other patented AI algorithms to find malware from any



JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 129

kind of scripts and templates. We used it to scan our JSLess malware scripts.
However, it failed to detect JSLess and it generated false positive when it consider
some of the core modules of NodeJS as malicious JavaScripts.

6 Conclusion and Future Work

In this paper, we confirmed several threat-vectors that exist in new JavaScript
and HTML5. We demonstrate how an attacker could abuse benign features
and APIs in JavaScript and HTML5 to implement fileless malware with
advanced evasion capabilities. We showed a practical implementation of a file-
less JavaScript malware that to our knowledge the first of its kind. The proof-of-
concept implementation of the proposed JS fileless malware successfully bypasses
several well-known anti-malware systems that are designed to detect JavaScript
and web malware. In addition, third-party malware analysts team confirmed our
finding and prove that the proposed malware bypasses automated malware detec-
tion systems. From this particular study, we conclude that the current static and
dynamic analysis techniques are limited if not useless against fileless malware
attacks. Moreover, fileless malware attacks are not limited to PowerShell and
Windows environment. In our opinion, any computing environment that enables
running and executing arbitrary code could are vulnerable to fileless attacks.

Our future work could be summarized in three different directions. First, we
will continue extending the malicious behaviors of JSLess and investigate the
possibility of more advanced attacks using other new benign features and APIs
from JavaScript and HTML5. Second, we will design a new detection technique
to detect advanced JS malware and mainly fileless JS malware like the proposed
JSLess. We plan to implement behaviors and dynamic analysis approach that
continually monitor and analysis Javascript and Browser activities. Finally, our
third research direction will focus on investigating fileless malware threat in
unconventional computing environments, such as the Internet of Things, in-
memory computing environments (e.g., Redis, Hazelcast, Spark, etc.). We hope
our research will help to raise awareness of the emerging unconventional malware
threats.

References

1. Adas, H., Shetty, S., Tayib, W.: Scalable detection of web malware on smartphones.
In: 2015 International Conference on Information and Communication Technology
Research (ICTRC), pp. 198–201, May 2015

2. AL-Taharwa, I.A., et al.: RedJsod: a readable JavaScript obfuscation detector using
semantic-based analysis. In: 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, pp. 1370–1375, June
2012

3. Arias, D.: Speedy introduction to web workers, August 2018. https://auth0.com/
blog/speedy-introduction-to-web-workers/

4. Barkly. The 2017 state of endpoint security risk (2017). https://www.barkly.com/
ponemon-2018-endpoint-security-risk

https://auth0.com/blog/speedy-introduction-to-web-workers/
https://auth0.com/blog/speedy-introduction-to-web-workers/
https://www.barkly.com/ponemon-2018-endpoint-security-risk
https://www.barkly.com/ponemon-2018-endpoint-security-risk


130 S. Saad et al.

5. Blanc, G., Miyamoto, D., Akiyama, M., Kadobayashi, Y.: Characterizing obfus-
cated JavaScript using abstract syntax trees: experimenting with malicious scripts.
In: 2012 26th International Conference on Advanced Information Networking and
Applications Workshops, pp. 344–351, March 2012

6. Cosovan, D., Benchea, R., Gavrilut, D.: A practical guide for detecting the Java
script-based malware using hidden Markov models and linear classifiers. In: 2014
16th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 236–243, September 2014

7. Google Developers. Introduction to service worker—web, May 2019. https://
developers.google.com/web/ilt/pwa/introduction-to-service-worker

8. Fang, Y., Huang, C., Liu, L., Xue, M.: Research on malicious JavaScript detection
technology based on LSTM. IEEE Access 6, 59118–59125 (2018)

9. Global Research and Analysis Team: KASPERSKY Lab. Fileless attack against
enterprise network, White Paper (2017)

10. INFOSEC. Websocket security issues, December 2014. https://resources.
infosecinstitute.com/websocket-security-issues/

11. Kishore, K.R., Mallesh, M., Jyostna, G., Eswari, P.R.L., Sarma, S.S.: Browser JS
guard: detects and defends against malicious JavaScript injection based drive by
download attacks. In: The Fifth International Conference on the Applications of
Digital Information and Web Technologies (ICADIWT 2014), pp. 92–100, February
2014

12. Magnusardottir, A.: Fileless ransomware: how it works & how to stop
it?, June 2018. https://www.infosecurityeurope.com/en/Sessions/58302/Fileless-
Ransomware-How-It-Works-How-To-Stop-It

13. Maiorca, D., Russu, P., Corona, I., Biggio, B., Giacinto, G.: Detection of mali-
cious scripting code through discriminant and adversary-aware API analysis. In:
Armando, A., Baldoni, R., Focardi, R. (eds.) Proceedings of the First Italian Con-
ference on Cybersecurity (ITASEC17), Venice, Italy, 17–20 January 2017. CEUR
Workshop Proceedings, vol. 1816, pp. 96–105. CEUR-WS.org (2017)

14. Mao, J., Bian, J., Bai, G., Wang, R., Chen, Y., Xiao, Y., Liang, Z.: Detecting
malicious behaviors in JavaScript applications. IEEE Access 6, 12284–12294 (2018)

15. McAfee. Fileless malware execution with powershell is easier than you may realize,
March 2017. https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-
fileless-malware-execution.pdf

16. Ndichu, S., Ozawa, S., Misu, T., Okada, K.: A machine learning approach to mali-
cious JavaScript detection using fixed length vector representation. In: 2018 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2018

17. Mozilla Developer Network. Glossary: websockets (2015). https://developer.
mozilla.org/en-US/docs/Glossary/WebSockets

18. Oh, S., Bae, H., Yoon, S., Kim, H., Cha, Y.: Malicious script blocking detection
technology using a local proxy. In: 2016 10th International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 495–498,
July 2016

19. Kaazing Corporation Peter Lubbers & Frank Greco. HTML5 websocket: a quantum
leap in scalability for the web. www.websocket.org/quantum.html

20. Shen, V.R.L., Wei, C.-S., Juang, T.T.-Y.: JavaScript malware detection using a
high-level fuzzy Petri net, pp. 511–514, July 2018

21. Sachin, V., Chiplunkar, N.N.: SurfGuard JavaScript instrumentation-based defense
against drive-by downloads. In: 2012 International Conference on Recent Advances
in Computing and Software Systems, pp. 267–272, April 2012

https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://resources.infosecinstitute.com/websocket-security-issues/
https://resources.infosecinstitute.com/websocket-security-issues/
https://www.infosecurityeurope.com/en/Sessions/58302/Fileless-Ransomware-How-It-Works-How-To-Stop-It
https://www.infosecurityeurope.com/en/Sessions/58302/Fileless-Ransomware-How-It-Works-How-To-Stop-It
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
www.websocket.org/quantum.html


JSLess: A Tale of a Fileless Javascript Memory-Resident Malware 131

22. Sayed, B., Traoré, I., Abdelhalim. A.: Detection and mitigation of malicious
JavaScript using information flow control. In: 2014 Twelfth Annual International
Conference on Privacy, Security and Trust, pp. 264–273, July 2014

23. Seshagiri, P., Vazhayil, A., Sriram, P.: AMA: static code analysis of web page
for the detection of malicious scripts. Procedia Comput. Sci. 93, 768–773 (2016).
Proceedings of the 6th International Conference on Advances in Computing and
Communications

24. Netsparker Security Team. DOM based cross-site scripting vulnerability,
May 2019. https://www.netsparker.com/blog/web-security/dom-based-cross-site-
scripting-vulnerability/

25. TrendMicro. Analyzing the fileless, code-injecting sorebrect ransomware, June
2017. https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-
fileless-code-injecting-sorebrect-ransomware/

26. Wang, C., Zhou, Y.: A new cross-site scripting detection mechanism integrated with
HTML5 and CORS properties by using browser extensions. In: 2016 International
Computer Symposium (ICS), pp. 264–269, December 2016

27. Wang, Y., Cai, W.-D., Wei, P.: A deep learning approach for detecting malicious
JavaScript code. Secur. Commun. Netw. 9, 1520–1534 (2016)

28. Xu, W., Zhang, F., Zhu, S.: The power of obfuscation techniques in malicious
JavaScript code: a measurement study. In: 2012 7th International Conference on
Malicious and Unwanted Software, pp. 9–16, October 2012

29. Yoon, S., Jung, J., Noh, M., Chung, K., Im, C.: Automatic attack signature gen-
eration technology for malicious JavaScript. In: Proceedings of 2014 International
Conference on Modelling, Identification Control, pp. 351–354, December 2014

https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-fileless-code-injecting-sorebrect-ransomware/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-fileless-code-injecting-sorebrect-ransomware/


Security Protocol and Tool



A Physical ZKP for Slitherlink: How
to Perform Physical Topology-Preserving

Computation

Pascal Lafourcade1 , Daiki Miyahara2,4(B), Takaaki Mizuki3 ,
Tatsuya Sasaki2, and Hideaki Sone3

1 LIMOS, University Clermont Auvergne, CNRS UMR 6158,
Clermont-Ferrand, France

2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
daiki.miyahara.q4@dc.tohoku.ac.jp

3 Cyberscience Center, Tohoku University, Sendai, Japan
4 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. We propose a new technique to construct physical Zero-
Knowledge Proof (ZKP) protocols for games that require a single loop
draw feature. This feature appears in Slitherlink, a puzzle by Nikoli. Our
approach is based on the observation that a loop has only one hole and
this property remains stable by some simple transformations. Using this
trick, we can transform a simple big loop, visible to anyone, into the
solution loop by using transformations that do not disclose any informa-
tion about the solution. As a proof of concept, we apply this technique
to construct the first physical ZKP protocol for Slitherlink.

Keywords: Physical Zero-Knowledge Proof · Slitherlink · Physical
Topology Preserving Computation

1 Introduction

Zero-Knowledge Proof (ZKP) systems are powerful cryptographic tools that were
introduced by Goldwasser, Micali, and Rackoff in [10]. It was then shown that for
any NP-complete problem, there exists an interactive ZKP protocol [9]. Later,
one of the first physical ZKP protocols was introduced by Naor et al. in [11] for
a popular puzzle, Sudoku. In the mentioned article, a prover wants to prove to
a verifier that he/she knows the solution of a Sudoku puzzle instance using only
physical objects; to this end, in that paper the authors used only cards. Recently
in [21], better ZKP protocols have been proposed in terms of numbers of cards
used and complexity. They used envelopes and physical tricks to improve the
original protocol.

Nikoli1 is a Japanese company famous for designing puzzles. The list of puz-
zles created by Nikoli contains more than 40 different kinds of puzzles including
1 http://www.nikoli.com/.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 135–151, 2019.
https://doi.org/10.1007/978-3-030-34339-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_8&domain=pdf
http://orcid.org/0000-0002-4459-511X
http://orcid.org/0000-0002-8698-1043
http://www.nikoli.com/
https://doi.org/10.1007/978-3-030-34339-2_8


136 P. Lafourcade et al.

Sudoku. In this paper, we focus on Slitherlink that was introduced in 1989 in
issue the 26th of Nikoli’s Puzzle Times. It is also known as Loop-the-Loop. It
is explained on Nikoli’s web site as follows: “Getting the loop right is absorbing
and addictive. Watch out not to get lost in Slitherlink. It’s amazing to see how
endless patterns can be made using only four numbers (0, 1, 2 and 3)”. Slither-
link was proven to be NP-complete in [23] and other variants in [16]. It means
that applying the technique of [9] to construct a ZKP is possible.

Our aim is to propose a physical ZKP protocol for this game. Slitherlink is
not like other Nikoli’s games since it requires to draw a single loop to solve
the puzzle. This feature of the game is a challenge that was not present in the
previous physical ZKPs for Nikoli’s puzzles [4–6,8,11,21].

Contributions: We introduce a new technique to construct a ZKP protocol
for a puzzle where constructing a single loop is one of the requirements of the
solution. The difficulty is to avoid leaking any information regarding the solution
to the verifier. For this, we use a topological point of view; more precisely, we use
the notion of homology that defines and categorizes holes in a manifold. The main
idea is that after any continuous transformations, the number of holes always
remains the same. Using this simple idea, we construct transformations that
preserve the number of loops in the solution. First, the verifier checks that the
initial configuration has only a single big loop. Then, by transforming in several
steps this trivial big loop into the solution, the prover convinces step after step
that the solution has only one loop at the end by proving that the transformation
does not break the loop or introduce an extra hole. This construction is applied
to Slitherlink in this article but it can be used for any other puzzles that require
such type of features in their rules.

Related Works: Since Naor et al. [11] introduced the first physical ZKP proto-
col for the Sudoku, physical ZKPs for other puzzles (proven to be NP-complete)
have been proposed, e.g., Nonogram [6], Akari, Takuzu, Kakuro, Kenken [4],
Makaro [5], and Norinori [8]. All these ZKPs deal with numbers. For example,
in Sudoku, a prover has to show the verifier that each column, row, and subgrid
contain all the numbers from one to nine.

Physical objects enable us to perform secure computation without relying
on computers: such examples are a PEZ dispenser [2], tamper-evident seals [18],
and a deck of cards [3]. Among them, secure computation with a deck of cards,
called card-based cryptography, has been widely studied. Especially, for secure
computation of logical AND function, the number of required cards have been
reduced in [7,15,17,19,22], and necessary and sufficient numbers of cards have
been provided in [13,15].

However, these works do not deal with proving the topological feature of
having a single loop in the solution.



A Physical ZKP for Slitherlink 137

Outline: In Sect. 2, we define the rules of Slitherlink, the formal definition
of ZKP, and the notation used in this paper. In Sect. 3, we describe our ZKP
protocol for Slitherlink. In Sect. 4, we show the security proofs of ZKP.

2 Preliminaries

Rules of Slitherlink

Slitherlink is one of the most famous pencil puzzles published in the puzzle
magazine Nikoli. The puzzle instance consists of lattice-like dots where some
squares contain numbers between 0 and 3. The goal of the puzzle is to draw
lines that satisfy the following rules [1]:
1. Connect vertical/horizontal adjacent dots with lines to make a single loop.
2. Each number indicates the number of lines that should surround its square,

while empty squares may be surrounded with any number of lines.
3. The loop never crosses itself and never branches off.

Figure 1 shows an example of a Slitherlink puzzle and its solution; one can easily
verify that all conditions are satisfied.

Fig. 1. Example of a standard Slitherlink challenge, and its solution.

Zero-Knowledge Proof

A Zero-Knowledge Proof (ZKP) is a secure two-party protocol between a prover
P and a verifier V . Formally, they both have an instance of I of a problem and
only P knows the solution w. The prover P wants to convince V that he/she
knows w without revealing any information about w. Such a proof is called a
zero-knowledge proof, if it satisfies the following three properties.
Completeness. If P knows w, then P can convince V .
Extractability. If P does not know w, then P cannot convince V .
Zero-Knowledge. V cannot obtain any information about w. Assuming a prob-
abilistic polynomial time algorithm M(I) not containing w if outputs of the
protocol and M(I) follow the same probability distribution, the zero-knowledge
property is satisfied.



138 P. Lafourcade et al.

Notations

We use the following physical cards: ♣ ♣ · · · ♥ ♥ ; the black ♣ and red ♥
cards are called binary cards. The backs of all cards are identical and denoted
by ? . In our construction, binary cards are used to encode the existence of a
line while number cards are used for rearranging the positions of cards, as shown
later.

Encoding: We encode Boolean values with two binary cards as follows: ♣ ♥ = 0
and ♥ ♣ = 1. Two face-down cards encoding 0 and 1 are called a 0-commitment
and a 1-commitment, which are denoted by 0 and 1 , respectively.

In our protocol, a 0-commitment placed on a gap between two adjacent dots
means that there is no line on the gap, and a 1-commitment means that there is
a line on the gap. With this encoding, we can represent a loop that is made of
several lines. Note that given an x-commitment for x ∈ {0, 1}, swapping the two
cards consisting the commitment results in an x-commitment; thus, negation
can be easily done.

Shuffle: Given a sequence of m face-down cards (c1, c2, . . . , cm), a shuffle results
in a sequence

(
cr−1(1), cr−1(2), . . . , cr−1(m)

)
, where r ∈ Sm is a uniformly dis-

tributed random permutation and Sm denotes the symmetric group of degree m.

Pile-Shifting Shuffle: The goal of this operation, which is also called Pile-
Shifting Scramble [20], is to cyclically shuffle piles of cards. That is, given
m piles, each of which consists of the same number of face-down cards,
denoted by (pile1, pile2, . . . , pilem), applying a Pile-Shifting Shuffle results in
(piles+1, piless+2, . . . , piles+m):

?
︸︷︷︸
pile1

?
︸︷︷︸
pile2

· · · ?
︸︷︷︸
pilem

→ ?
︸︷︷︸

piles+1

?
︸︷︷︸

piles+2

· · · ?
︸︷︷︸

piles+m

,

where s is uniformly and randomly chosen from Z/mZ. To implement Pile-
Shifting Shuffle, we use physical cases that can store a pile of cards, such as
boxes and envelopes; a player (or players) cyclically shuffle them by hand until
nobody traces the offset. It can be done by physical object as the one created
for the physical ZKP for Sudoku in [21].

Pile-Scramble Shuffle: Pile-Scramble Shuffle is a well-known shuffle operation
which was first used in [12]. As mentioned above, let us denote m piles by
(pile1, pile2, . . . , pilem). For such a sequence of piles, applying a Pile-Scramble
Shuffle results in (piler−1(1), piler−1(2), . . . , piler−1(m)), where r ∈ Sm is a uni-
formly distributed random permutation. A Pile-Scramble Shuffle uses similar
material as Pile-Shifting Shuffle but its operation is similar to Shuffle.



A Physical ZKP for Slitherlink 139

Chosen Pile Cut: It was proposed in [14]. Chosen Pile Cut enables a prover to
choose a pile pilei from m piles (pile1, pile2, . . . , pilem) without revealing i to a
verifier. The Chosen Pile Cut proceeds as follows, given m piles along with m
additional cards:

1. The prover P holds m−1 ♣ s and one ♥ . Then, P places m cards with their
faces down below the piles such that only the i-th card is ♥ :

?
︸︷︷︸
pile1

?
︸︷︷︸
pile2

. . . ?
︸︷︷︸

pilei−1

?
︸︷︷︸
pilei

?
︸︷︷︸

pilei+1

. . . ?
︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

2. Regarding the cards in the same row as a pile, apply Pile-Shifting Shuffle to
the piles (denoted by 〈 · | . . . |· 〉):

〈 ?
︸︷︷︸
pile1

?

∣
∣
∣
∣
∣
∣
∣
∣

?
︸︷︷︸
pile2

?

∣
∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
∣

?
︸︷︷︸
pilem

?

〉

→
?

︸︷︷︸
piles+1

?
︸︷︷︸

piles+2

. . . ?
︸︷︷︸

piles+m

? ? . . . ? ,

where s is generated uniformly at random from Z/mZ by this shuffle action.
3. Reveal all the cards in the second row. Then, one ♥ appears, and the pile

above the revealed ♥ is pilei, and hence, we can obtain the desired pilei.

Owing to the Pile-Shifting Shuffle in Step 2, revealing cards leaks no information
about i and thus, Chosen Pile Cut leaks no information about i, the index of
the chosen pile.

3 Zero-Knowledge Proof for Slitherlink

In this section, we construct our physical zero-knowledge proof protocol for Slith-
erlink. The outline of our protocol is as follows.

Input Phase: The verifier V puts a 1-commitment (i.e., two face-down
cards encoding 1) on every gap on the boundary of the puzzle board and 0-
commitments on all the remaining gaps. In other words, V creates a single big
loop whose size is the same as the board.
Topology-Preserving Computation Phase: The prover P transforms the
shape of the loop according to the solution. After this phase, V is convinced that
the placement of 1-commitments satisfies Rules 1 and 3 of Slitherlink without
the disclosure of any information about the shape.
Verification Phase: V verifies that the placement of 1-commitments satisfies
Rule 2 of Slitherlink.

We introduce some subprotocols in Sect. 3.1 before presenting our protocol in
Sect. 3.2.



140 P. Lafourcade et al.

3.1 Subprotocols

Chosen Pile Protocol: This is an extended version of the Chosen Pile Cut [14]
explained in Sect. 2. Given m piles with 2m additional cards, this protocol
enables P to choose the i-th pile and regenerate the original sequence of m
piles.

1. Using m − 1 ♣ s and one ♥ , the prover P places m cards with their faces
down below the given piles such that only the i-th card is ♥ :

?
︸︷︷︸
pile1

?
︸︷︷︸
pile2

. . . ?
︸︷︷︸

pilei−1

?
︸︷︷︸
pilei

?
︸︷︷︸

pilei+1

. . . ?
︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

We further put m cards below the cards such that only the first card is ♥ :

?
︸︷︷︸
pile1

?
︸︷︷︸
pile2

. . . ?
︸︷︷︸

pilei−1

?
︸︷︷︸
pilei

?
︸︷︷︸

pilei+1

. . . ?
︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

2. Considering the cards in the same row as a pile, apply a Pile-Shifting Shuffle
to the sequence of piles:

〈
?

︸︷︷︸
pile1

?

?

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

?
︸︷︷︸
pile2

?

?

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

?
︸︷︷︸
pilem

?

?

〉

→

?
︸︷︷︸

piles+1

?
︸︷︷︸

piles+2

. . . ?
︸︷︷︸

piles+m

? ? . . . ?

? ? . . . ? ,

where s is generated uniformly at random from Z/mZ.
3. Reveal all the cards in the second row. Then, one ♥ appears, and the pile

above the revealed ♥ is the i-th pile (and hence, P can obtain pilei). When
this protocol is invoked, certain operations are applied to the chosen pile.
Then, the chosen pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in the second row. Then, apply a
Pile-Shifting Shuffle:

〈 ?︸︷︷︸
piles+1

?

∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+2

?

∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+m

?

〉
→

?︸︷︷︸
piles′+s+1

?︸︷︷︸
piles′+s+2

. . . ?︸︷︷︸
piles′+s+m

? ? . . . ? ,

where s′ is generated uniformly at random from Z/mZ.



A Physical ZKP for Slitherlink 141

Fig. 2. Three transformations.

5. Reveal all the cards in the second row. Then, one ♥ appears, and the pile
above the revealed ♥ is pile1. Therefore, by shifting the sequence of piles,
we can obtain a sequence of piles whose order is the same as the original one
without revealing any information about the order of input sequence.

Verifying-Degree Protocol: This protocol can verify that the “degree” of a
target vertex (dot) is not four. Here, degree means the number of 1-commitments
placed around a target vertex. Thus, the prover P wants to prove that there is
at least one 0-commitment around the target vertex (when only P knows what
the four commitments around the target are).

The Verifying-Degree Protocol proceeds as follows.

1. Given four commitments that are placed around the target vertex, these can
be regarded as a sequence of 4 commitments:

·
? ?

· ? ? · ? ? ·
? ?

·

→ ? ? ? ?

2. By using Chosen Pile Protocol, P chooses one of the 0-commitments. Open
the chosen pile to show that it is 0. Now, V is convinced that the degree
of the target vertex is not four. Then, V turns over all the opened cards.
Because only a 0-commitment is always opened, no information about the
four commitments is disclosed.

3. V performs the remaining steps in the Chosen Pile Protocol. Then, all the
cards are placed back to their original positions.

Topology-Preserving Computation: This protocol changes a given loop into
another loop by one of the three transformations given in Fig. 2. Each transfor-
mation changes the lines surrounding a square, represented by dash line in Fig. 2.

Remember that a line is expressed by a commitment (i.e., two face-down
binary cards) in our protocol. Therefore, for example, a (2, 2)-transformation
means.



142 P. Lafourcade et al.

· 1 ·
1 0
· 0 ·

→
· 0 ·
0 1
· 1 ·

This can be implemented by swapping two cards of each commitment.
(Remember that swapping the two cards performs negation of a commitment.)
A (3, 1)-transformation and a (1, 3)-transformation can also be implemented by
swapping two cards of each commitment:

· 1 ·
0 1
· 1 ·

→
· 0 ·
1 0
· 0 ·

· 0 ·
0 0
· 1 ·

→
· 1 ·
1 1
· 0 ·

Now, P wants to apply one of the three transformations while the applied
transformation is hidden from V . Furthermore, P needs to show that the com-
mitments around a target square are “transformable.” Note that the three trans-
formations are applicable to four commitments around a square if and only if
there exists a 0-commitment facing a 1-commitment.

Topology-Preserving Computation proceeds as follows.

1. Pick four commitments around a target square:

? ? ? ?

2. P chooses a 0-commitment facing a 1-commitment using Chosen Pile
Protocol.

3. V reveals the chosen commitment and the commitment that is two piles away
from it:

↓ ↓
? ? ? ?

♥ ♣ ♣ ♣
? ? ? ?

Then, V checks that the two commitments are a 0-commitment and a 1-
commitment to be convinced that any transformation can be applied.

4. After turning over all the opened cards, V performs the remaining steps in
the Chosen Pile Protocol to place all the cards back to their original positions.

5. Swap the two cards of each of the four commitments. (Remember that this
results in negating all the four commitments, and hence, a transformation is
applied.)

6. V applies a Verifying-Degree Protocol to each of the four dots of the target
square. Then, V is convinced that no dots of degree four have been obtained
as the result of transformation. This guarantees that the loop was not split
and thus, it remains a single loop.



A Physical ZKP for Slitherlink 143

Fig. 3. Small example of Slitherlink challenge, and its solution.

Fig. 4. Transformation process.

3.2 Our Construction

As mentioned at the beginning of this section, the main idea behind our protocol
is that the verifier V first creates a big loop and then the prover P transforms
the loop into the solution loop one by one. Let us consider a puzzle instance
shown in Fig. 3 as an example. Our protocol transforms the loop as illustrated
in Fig. 4.

We are now ready to present the full description of our zero-knowledge proof
protocol for Slitherlink.

Input Phase: The verifier V puts a 1-commitment on every gap on the bound-
ary of the puzzle board and 0-commitments on all the other gaps. This placement
corresponds to the single loop with the same size as the board. The following is
an example of the placement of (2 × 2)-square puzzle board:

· 1 · 1 ·
1 0 1
· 0 · 0 ·
1 0 1
· 1 · 1 ·

P will apply Topology-Preserving Computation to these commitments to trans-
form the shape of the loop into the solution. Here, P needs to hide the target
square. Therefore, we make a sequence of piles from the placed cards, pick the
four target commitments using the Chosen Pile Protocol, and apply Topology-
Preserving Computation. To properly pick the four commitments, a sequence of
piles is formed, as follows.



144 P. Lafourcade et al.

We first expand the puzzle board by adding dots around the original board.
(For explanation, the expanded dots are denoted by 	.)

	 	 	 	 	

	 · 1 · 1 · 	
1 0 1

	 · 0 · 0 · 	
1 0 1

	 · 1 · 1 · 	

	 	 	 	 	
Note that the expanded area is unrelated to the actual puzzle board. V puts

dummy commitments on the gaps at the expanded area other than the right and
the bottom ends. Each dummy commitment consists of two black cards ♣ ♣ to
prevent the loop from spreading over the expanded area. We denote the dummy
commitment by ♣ .

	 ♣ 	 ♣ 	 ♣ 	 ♣ 	
♣ ♣ ♣ ♣
	 ♣ · 1 · 1 · ♣ 	
♣ 1 0 1
	 ♣ · 0 · 0 · ♣ 	
♣ 1 0 1
	 ♣ · 1 · 1 · ♣ 	
♣ ♣ ♣ ♣
	 	 	 	 	

Next, V makes a sequence of 4-card piles as follows. For each square, V
first makes a pile from the commitments placed on the left and the top (the
commitment on the gap between each vertically consecutive dots is placed on
the commitment on its upper right).

	 ♣ ♣ 	 ♣ ♣ 	 ♣ ♣ 	 ♣ ♣ 	

	 ♣ ♣ · 1 1 · 0 1 · 1 ♣ 	

	 ♣ ♣ · 1 0 · 0 0 · 1 ♣ 	

	 ♣ ♣ · ♣ 1 · ♣ 1 · ♣ ♣ 	

	 	 	 	 	
Then, pick 4-card piles from top to bottom:

♣ ♣ ♣ ♣ ♣ ♣ . . . ♣ 1 ♣ 1 ♣ ♣



A Physical ZKP for Slitherlink 145

to make a sequence of piles:

? ? ? . . . ? ? ?

Topology-Preserving Computation Phase: In this phase, P applies trans-
formations (explained in Sect. 3.1) to stepwise change the big loop to the solution
loop. Let n be the size of the puzzle instance, namely the number of squares on
the puzzle board. Then, note that P can make the solution loop by at most n
transformations.

1. P applies the following exactly n−1 times such that either the resulting loop
is already the solution, or one more transformation will end up the solution.
(This is possible because successive two transformations (of the same) to the
same square keep the loop unchanged.)
(a) P applies the Chosen Pile Protocol to the sequence of 4-card piles: P picks

a 4-card pile composed of left and top edges of the square that P wants to
transform. The other edges can be picked by counting the distance from
the chosen pile2.

(b) P applies the Topology-Preserving Computation to the four picked com-
mitments.

(c) V performs the remaining steps in the Chosen Pile Protocol to place the
cards back to their original positions.

2. P applies one more transformation or does not change the solution loop so
that V does not learn which action occurs, as follows.
(a) Similarly to Step 1 (a) above, P picks four commitments around the target

square.
(b) By using the method explained in Topology-Preserving Computation, V

confirms that any transformation is applicable.
(c) V arranges the four commitments vertically and makes a pile from each

column:

? ?
? ?
? ?
? ?

→ ? ?

Note that swapping two piles results in inverted value of each commit-
ment. Thus, it is equivalent to applying a transformation.

(d) Using the Chosen Pile Cut, if P wants to transform the target square,
then P chooses the right pile; otherwise, the left pile is chosen.

(e) Rearrange the cards vertically such that the chosen pile is placed at left:

?
︸︷︷︸

Chosen pile

? →
? ?
? ?
? ?
? ?

2 In the above example, the bottom edge corresponds to the pile which is 4 piles away
from the chosen pile. Note that the distance between any two piles never changes
because only Pile-Shifting Shuffle is applied.



146 P. Lafourcade et al.

(f) V makes four commitments from each row, performs the remaining steps
in the Chosen Pile Protocol, and places each commitment back to their
original position.

3. Finally, all cards are placed on the puzzle board and the cards at the dummy
area are removed.

Verification Phase: V is now convinced that the placement of 1-commitments
is a single loop (Rule 1) and it never branches off (Rule 3). Therefore, V only
needs to verify that the placement satisfies Rule 2 of Slitherlink.

Now, V verifies that the number on each square is equal to the number of
lines surrounding it. The verification proceeds as follows, where we virtually
assume that the board is colored like a checkered pattern so that all squares
in the first row are alternation of blue and yellow, those in the second row are
alternation of yellow and blue, and so on.

1. V picks all left cards (if the square is virtually blue) or all right cards (if the
square is yellow) of four commitments around a square on which a number is
written:

? ? ? ? .

2. P shuffles the four cards.
3. V reveals the four cards.

– If V picked all the left cards of four commitments in Step 1, V checks
that the number of red cards ♥ is equal to the number on the square.

– If V picked all the right cards of four commitments in Step 1, V checks
that the number of black cards ♣ is equal to the number on the square.

4. Apply Steps 1 to 3 to all other numbered squares. (Note that a commitment
is related to at most one blue numbered square and one yellow numbered
square.)

Our protocol uses 6(p + 2)(q + 2) + 8 cards in total, where we have a p × q
board.

4 Security Proofs for Our Construction

In this section, we show that our construction satisfies the completeness,
extractability, and zero-knowledge properties.

Completeness: In the input phase, V is convinced that 1-commitments are
placed in a single loop because V does the operations by himself/herself, and
hence, V is convinced that the placement satisfies Rules 1 and 3 of Slitherlink. As
explained in Sect. 3.1, the transformations are applied to only applicable squares.
Thus, every transformation is performed while preserving Rules 1 and 3. By
verifying that the placement satisfies Rule 2 in verification phase, V is convinced



A Physical ZKP for Slitherlink 147

that P knows the solution. Therefore, if P has a solution for the puzzle then P
can always convince V .

Remember that P uses only (3, 1), (1, 3), and (2, 2)-transformations in the
Topology-Preserving Computation to transform a single loop into the shape of
the solution. We now prove that this is possible in Theorem1.

Theorem 1. Let n be the number of squares in the puzzle instance (namely, the
big loop), and let k be the number of squares inside its solution loop. By applying
a transformation to the loop exactly n−k times, the big loop can be transformed
into the solution loop.

To prove Theorem 1, we first show Lemmas 1 and 2.

Lemma 1. The resulting placement of 1-commitments after the Topology-
Preserving Computation always represents a single loop.

Proof. Remember Steps 2 and 6 in the Topology-Preserving Computation: Due
to Step 2, the target square is guaranteed to be none of the following two ones
(up to rotations).

That is, one of (2, 2), (3, 1), and (1, 3)-transformations is always applied to the
target square.

Due to the execution of the Verifying-Degree Protocol in Step 6, the following
two transformations that make a loop split cannot occur.

Therefore, it remains a single loop. 
�
Lemma 2. For any single loop, there is always a (3, 1), (1, 3), or (2, 2)-
transformation that increases the number of squares inside the loop by exactly
one.

Proof. Consider a single loop; let � be the number of squares inside the loop. To
prove this lemma, we show that there always exists a square on the board such
that a (3, 1), (1, 3), or (2, 2)-transformation can be applied to the square such
that � increases. Note that the loop remains single after the application of the
transformation by Lemma 1.

If � ≤ 2, a (1, 3)-transformation increases the number of squares by one.
Thus, one may assume that � ≥ 3. Then, any square outside the loop can be
classified in one of the following five types (up to rotations):



148 P. Lafourcade et al.

If none of (a), (b), and (c) exists, all squares outside the loop are either (d) or
(e), and hence, it would not be a single loop. Therefore, at least one square of
type (a), (b), or (c) must exist outside the loop.

Applying a (3, 1), (1, 3), or (2, 2)-transformation to such an external square
results in increasing � by one. 
�
By these lemmas, Theorem 1 can be proved.

Proof of Theorem 1. By Lemmas 1 and 2, we can always increase the number of
squares inside the solution loop by a transformation. Therefore, we can repeat the
transformation so that the solution loop becomes the big loop. This means that,
conversely, the big loop can be transformed into the solution loop by applying
(3, 1), (1, 3), or (2, 2)-transformation exactly n − k times. 
�

Extractability: Only the person who knows the solution can transform the loop
so that the shape satisfies Rule 2. Therefore, V can detect any illegal prover in
Verification Phase. Thus, if the prover does not know the solution for a puzzle,
then V will be never convinced, irrespective of P ’s behavior.

More formally, to prove the extractability, we are required to show that any
shape that does not satisfy Rule 1, 2, or 3 is always rejected during the protocol.

Theorem 2. If the prover does not know the solution for the Slitherlink puzzle,
then the verifier always rejects regardless of the prover’s behavior.

To prove Theorem 2, we show that the resulting loop after the Topology-
Preserving Computation always satisfies Rules 1 and 3 (as in Lemma 1) and
any single loop that does not satisfy Rule 2 is always rejected in Verification
Phase (as in Lemma 3). Therefore, any single loop except for the solution is
always rejected.

Lemma 3. Any (single) loop that does not satisfy Rule 2 is always rejected in
Verification Phase.

Proof. Consider any (single) loop that does not satisfy Rule 2, i.e., there are
four commitments surrounding a numbered square such that the number of
1-commitments among them is not equal to the number. Due to Step 3 in Veri-
fication Phase, all the left (or right) cards of four commitments are turned over
(after shuffling them), and hence, the number of 1-commitments is revealed. This
means that the verifier can always reject any (single) loop that does not satisfy
Rule 2. 
�
Proof of Theorem 2. By Lemma 1, the resulting loop after the Topology-
Preserving Computation is always single, i.e., it satisfies Rules 1 and 3. By
Lemma 3, if it does not satisfy Rule 2, the verifier always rejects it in Verification
Phase. That is, any loop except for the solution cannot go through Verification
Phase. 
�



A Physical ZKP for Slitherlink 149

Zero-Knowledge: In our construction, all the opened cards have been shuf-
fled before being opened. Therefore, all distributions of opened cards can be
simulated by a simulator M(I) who does not know the solution. For example,
at Step 3 in Verification Phase, the Pile-Scramble Shuffle have been applied to
opened commitments; thus, this is indistinguishable from a simulation putting
randomly 1-commitments such that the number of them is equal to the number
of the square.

5 Conclusion

In this study, we introduced a new technique that can transform a single loop
encoded with physical objects into a new geometrical figure while preserving the
single loop. Furthermore, by using this secure computation, we constructed the
first physical zero-knowledge proof protocol for Slitherlink.

As we mentioned in Sect. 1, our construction can be used for other puzzles
that require a feature of drawing a single loop. For example, Masyu published
by Nikoli has the same rule as Slitherlink, i.e., we should draw a single loop that
never crosses itself and never branches off. Therefore, we can easily construct a
physical ZKP protocol for Masyu by executing Topology-Preserving Computa-
tion (and then verifying the other rules).

Because physical ZKP protocols should be executed by humans’ hands, we
usually consider the size of puzzle instance to be bounded by a constant. This
differs from conventional ZKP protocols (relying on computers). Note that people
enjoying a pencil puzzle will not use a computer to solve it, and hence, physical
ZKP protocols are useful and effective for ordinally people.

Acknowledgement. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported by JSPS KAK-
ENHI Grant Number JP17K00001 and JP19J21153.

References

1. Nikoli, Slitherlink. http://www.nikoli.co.jp/en/puzzles/slitherlink.html
2. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a

PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)
3. Boer, B.: More efficient match-making and satisfiability the five card trick. In:

Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

4. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.)
FUN 2016. LIPIcs, vol. 49, pp. 8:1–8:20 (2016)

5. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

http://www.nikoli.co.jp/en/puzzles/slitherlink.html
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8


150 P. Lafourcade et al.

6. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol.
6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13122-6 12

7. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

8. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

9. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–189 (1991)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985, pp. 291–304. ACM (1985)

11. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of sudoku puzzles. In: Crescenzi, P.,
Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3 16

12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

13. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

14. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography.
IACR Cryptology ePrint Archive 2017, 423 (2017)

15. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

16. Kölker, J.: Selected slither link variants are NP-complete. J. Inf. Process. 20(3),
709–712 (2012)

17. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

18. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 24

19. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1–2), 173–183 (1998)

20. Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Pile-shifting scramble for card-
based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9),
1494–1502 (2018)

21. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku.
In: Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) Fun with Algorithms 2018.
LIPIcs, vol. 100, pp. 29:1–29:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2018)

https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/11523468_24
https://doi.org/10.1007/11523468_24


A Physical ZKP for Slitherlink 151

22. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001)

23. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its
application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
(Inst. Electron. Inf. Commun. Eng.) E86–A(5), 1052–1060 (2003)



Secure Best Arm Identification
in Multi-armed Bandits

Radu Ciucanu1(B), Pascal Lafourcade2, Marius Lombard-Platet3,4,
and Marta Soare1

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Orléans, France
radu.ciucanu@insa-cvl.fr, marta.soare@univ-orleans.fr

2 Université Clermont Auvergne, LIMOS CNRS UMR 6158, Aubière, France
pascal.lafourcade@uca.fr

3 Département d’informatique de l’ENS, École normale supérieure, CNRS,
PSL Research University, Paris, France

marius.lombard-platet@ens.fr
4 Be-Studys, Geneva, Switzerland

Abstract. The stochastic multi-armed bandit is a classical decision
making model, where an agent repeatedly chooses an action (pull a
bandit arm) and the environment responds with a stochastic outcome
(reward) coming from an unknown distribution associated with the cho-
sen action. A popular objective for the agent is that of identifying the
arm with the maximum expected reward, also known as the best-arm
identification problem. We address the inherent privacy concerns that
occur in a best-arm identification problem when outsourcing the data
and computations to a honest-but-curious cloud.

Our main contribution is a distributed protocol that computes the
best arm while guaranteeing that (i) no cloud node can learn at the
same time information about the rewards and about the arms ranking,
and (ii) by analyzing the messages communicated between the differ-
ent cloud nodes, no information can be learned about the rewards or
about the ranking. In other words, the two properties ensure that the
protocol has no security single point of failure. We rely on the partially
homomorphic property of the well-known Paillier’s cryptosystem as a
building block in our protocol. We prove the correctness of our proto-
col and we present proof-of-concept experiments suggesting its practical
feasibility.

Keywords: Multi-armed bandits · Best arm identification · Privacy ·
Distributed computation · Paillier cryptosystem

1 Introduction

In a stochastic multi-armed bandit model, a learning agent sequentially needs to
decide which arm (option/action) to pull from K arms with unknown associated

This project is partially funded by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 826404.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 152–171, 2019.
https://doi.org/10.1007/978-3-030-34339-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_9


Secure Best Arm Identification in Multi-armed Bandits 153

User

Data Owner

Budget N

Best arm learned
for budget N

K arms

Fig. 1. System architecture.

values available in the learning environment. After each pull, the environment
responds with a feedback, in the form of a stochastic reward from an unknown
distribution associated with the arm chosen by the agent. This is a dynamic
research topic with a wide range of applications, including clinical trials for
deciding on the best treatment to give to a patient [17], on-line advertisements
and recommender systems [12], or game playing [4,11,14].

In this paper, we focus on a popular objective in multi-armed bandits, that
of best arm identification: given a set of K arms and a limited budget of N pulls,
the goal of the agent is to design a budget-allocation strategy that maximizes
the probability of identifying the arm with the maximum expected reward. This
problem has been extensively studied in the machine learning community [1,
3,7,8,10,16], but to the best of our knowledge, there is no previous work that
considers this problem from a privacy-preserving viewpoint. Next, we illustrate
the problem via a motivating example.

Use Case Example. A classical real-world application of the best-arm identi-
fication problem is as follows. Before launching a new product on the market,
companies can create several versions of the product that are put into a test-
ing phase. By product, we refer here to any type of object/service that might
be offered by a company and that may contain (or be obtained as a result of
analyzing) private data. Each version of the product has distinguishing charac-
teristics and the company surveys potential customers about the version they
prefer. The company’s objective is that once the testing phase is over, it can
put on the market the version that is likely to yield the best sales. The goal of
the best-arm identification problem is to define algorithms that maximize the
probability of identifying the best arm (here, the best version among the K
alternative versions), given a limited budget of N observations (here, customer
surveys). Therefore, best-arm identification algorithms are a good fit for the
product testing phase.

Now, imagine the scenario where a company collected over the years a large
quantity of customer surveys that it no longer needs for its purposes. This data
may actually be useful for other smaller companies that cannot afford doing their
own customer surveys, but nonetheless want to simulate the test of different
versions of their product. This brings us to the system architecture depicted in
Fig. 1. The data owner is the company that owns a large quantity of customer
surveys that it wants to monetize. The user is the small company that wants
to simulate the testing of different versions of its product, without conducting
its own customer survey. It may actually be cheaper to pay a limited budget to
reuse pieces of existing data, rather than doing a new survey with real customers.



154 R. Ciucanu et al.

The interaction between the data owner and the user is done using some
public cloud, where initially the data owner outsources its data, then the users
interact directly with the cloud. More precisely, each user allocates some budget
to the cloud and reuses the available surveys for deciding which version of its
own product should be put on the market. The budget would refer here to the
number of survey answers the user wants the cloud to use before outputting the
best option. As a simplified example, assume that the available data consists of
user preferences about the characteristics of security devices they would buy for
protecting their homes. There are 1M surveys available and consulting a survey
costs 0.1$. If a small company wants to know which type of device people from
their market are more likely to buy, the precision of the answer it receives from
the cloud depends on the paid budget. If it pays 100$, it is more likely to get a
clearer image about the type of device that is the most likely to be purchased,
than if it pays 5$. But in both cases the obtained information is not 100% sure
because only a sample of the available data is consulted.

The aforementioned use case can be easily reformulated to other real-world
scenarios, such as health or medical data, cosmetics (e.g., trials for finding the
best anti-wrinkle cream), data concerning political preferences, education and
employment records, to name a few.

As already mentioned, we consider a scenario where the multi-armed ban-
dits (i.e., the data) as well as the best arm identification algorithm (i.e., the
computation) are outsourced to some public cloud. We assume that the cloud
is honest-but-curious: it executes tasks dutifully, and try to gain information on
the ranking of the arms and their associated values from the data they receive.
We address the privacy concerns that occur when outsourcing the data and
computations.

Indeed, the externalized data can be communicated over an untrustworthy
network and processed on some untrustworthy machines, where malicious public
cloud users may learn private data that belongs only to the data owner. This is
why we require the data owner to encrypt all information about the arms before
outsourcing the data to the public cloud.

Moreover, each cloud user observes a result of the best arm identification
algorithm that is proportional to the budget that the user pays. It should be
impossible for a malicious cloud user to compose observations of several runs
of the best arm identification algorithm in order to learn the best arm with a
higher confidence, and then sell this information to some other user.

Summary of Contributions and Paper Organization. In Sect. 2, we give
background information on the problem of best-arm identification in multi-
armed bandits.

In Sect. 3, we first present the considered security model, then the needed
security tools, and finally the distributed security protocol, that is the main
contribution of the paper. We rely on the partial homomorphic property of Pail-
lier’s cryptosystem [15] as a building block in our protocol. The difficulty of
our setting comes from the fact that we need additions, multiplications, and
comparisons to solve the best arm identification problem, whereas a partially



Secure Best Arm Identification in Multi-armed Bandits 155

homomorphic cryptosystem such as Paillier’s provides only homomorphic addi-
tions. Therefore, in our protocol we distribute the computation among several
participants and insure that each of them can only learn the specific information
needed for performing their task, and no any other information. Thus, we show
that our distributed protocol has no single point of failure, in the honest-but-
curious cloud model. The overhead due to the security primitives of our protocol
depends only on the number of arms K and not on the budget N . This is a desir-
able property because in practice the budget N (i.e., the number of arm pulls
that we are allowed to do) is often much larger than the number of arms K
among which we can choose.

We prove the security of our protocol in AppendixA, and we present proof-
of-concept experiments suggesting its feasibility in Sect. 4. We discuss related
work in Sect. 5, and conclusions and future work in Sect. 6.

2 Primer on Multi-armed Bandits

The problem of best arm identification in multi-armed bandits [1] has been ini-
tially formulated in the domain of real numbers. We slightly revisit the initial
formulation of the problem in order to manipulate integers. The reason behind
this adaptation is that later on in our protocol, we rely on public key cryptogra-
phy tools to add security guarantees to a state-of-the-art best arm identification
algorithm.

Input. The input is twofold:

• Number of arms K. Each arm i ∈ {1, . . . , K} is associated to a reward value
x(i) and a reward function r that returns a random integer in an interval
[x(i) − ε, x(i) + ε] according to a uniform probability distribution. Whereas
each arm i is associated to its specific value x(i), the value of ε is common
to all arms. The intervals associated to different arms may be overlapping,
which makes the setting non-trivial. The best arm i∗ is arg maxi∈{1,...,K}x(i).

• Budget N that means how many arm pulls (and implicit reward observations)
the user is allowed to do.

Note that for designing a budget-allocation strategy between the arms, only
the number of arms K and the budget N are known. There is no initial infor-
mation about the reward associated to each arm.

Output. The estimated best arm ̂i∗α that can be learned after making N arm
pulls (and subsequent reward observations) according to some allocation strategy
α, which defines how the budget is divided between the K arms. The challenge
is to design a budget-allocation strategy α that makes the best possible use of
the budget. In other words, when selecting the arms to be pulled according to
α, the observed rewards allow to acquire as much useful information as possible
for identifying i∗.

Performance Measure. We call simple regret RN the difference between the
value of the (true) best arm i∗ and the arm ̂i∗α estimated as being the best arm



156 R. Ciucanu et al.

by an allocation strategy α after N arm pulls. Thus, we compare the gap between
the value of the identification made by strategy α and that of an oracle strategy
that knows the values of the arms beforehand. Formally, the performance of
strategy α after using a budget N is RN (α) = x(i∗) − x( ̂i∗α).

Example. We have 3 arms with associated reward values in intervals [3, 23],
[25, 45], and [40, 60]. This means that x(1) = 13, x(2) = 35, x(3) = 50, and
ε = 10. Assuming a budget of 3, the user may choose to spend one pull for each
arm and observe rewards of (for instance) 23, 44, and 41, respectively. Hence,
the user could wrongly think that arm 2 is the best, thus getting a regret of
50 − 35 = 15.

Obviously, increasing the budget would increase the number of pulls that
can be done, hence it would increase the chances of correctly identifying the
best arm. This can be easily done in the presence of an infinite budget, but the
challenge is to identify the best arm using as few pulls as possible, or in other
words, to maximize the probability of correctly identifying the best arm while
having a limited budget.

Successive Rejects (SR) [1]. The algorithm takes as input the number of arms
K and the budget N . Initially, all K arms are candidates. SR divides the budget
in K−1 phases. At the end of each phase, a decision is made. The phases’ lengths
are fixed such that the available budget is not exceeded and the probability of
wrongly identifying the best arm is minimized.

More precisely, at each phase j ∈ {1, . . . , K − 1}, each still candidate arm in
Aj is pulled nj times according to the fixed allocation (cf. Algorithm1). At the
end of each phase, the algorithm rejects the arm with the lowest sum of observed
rewards, that is the arm estimated to be the worst. If there is a tie, SR randomly
selects the arm to reject among the worst arms. Then, at the next phase, the
remaining arms are again uniformly pulled according to the fixed allocation.
Thus, the worst arm is pulled n1 times, the second worst is pulled n2 +n1 times,
and so on, with the best and the second-best arm being pulled nK−1 + . . . + n1

times. The estimated best arm is the unique arm remaining after phase K − 1.
We consider the sums of observed rewards per arm when deciding which arm

to reject instead of empirical means as in the original version [1] as a simplifi-
cation. Indeed, each candidate arm is pulled the same number of times in each
phase, hence the ranking of the arms is identical regardless of whether we look
at sums or means.

Example. Let a multi-armed bandit with 4 arms and x(1) > x(2) > x(3) >

x(4), with budget N = 500 pulls. We have log(4) = 1
2 +

∑4
i=2

1
i = 19

12 and:

Phase 1: each arm 1, 2, 3, 4 is pulled n1 =
⌈

12
19

500−4
4+1−1

⌉

= 79 times
Phase 2: each arm 1, 2, 3 is pulled n2 =

⌈

12
19

500−4
4+1−2

⌉ − n1 = 26 times
Phase 3: each arm 1, 2 is pulled n3 =

⌈

12
19

500−4
4+1−3

⌉ − (n1 + n2) = 52 times.

In other words, arm 4 is pulled 79 times, arm 3 is pulled 79 + 26 = 105 times, each
arm 1, 2 is pulled 79 + 26 + 52 = 157 times, totalling 79 + 105 + 2 × 157 = 498
pulls.



Secure Best Arm Identification in Multi-armed Bandits 157

Algorithm 1. SR algorithm (adapted from [1])
1: A1 ← {1, . . . , K} � Initialization
2: for all i ∈ A1 do
3: sum[i] ← 0

4: log(K) ← 1
2

+
∑K

i=2
1
i

5: n0 ← 0

6: for j from 1 to K − 1 do � Successive rejects

7: nj ←
⌈

1

log(K)

N−K
K+1−j

⌉
− ∑j−1

l=0 nl

8: for all i ∈ Aj do
9: loop nj times

10: r ← random integer from [x(i) − ε, x(i) + ε]
11: sum[i] ← sum[i] + r

12: Aj+1 ← Ai\arg mini∈Aj
sum[i]

13: return AK

3 Secure Protocol

3.1 Security Model

We assume that the reward functions associated to the arms as well as the best
arm identification algorithm are outsourced to some cloud. We assume that the
cloud is honest-but-curious i.e., it executes tasks dutifully, but tries to extract
as much information as possible from the data that it sees. The user indicates
to the cloud her budget and receives the best arm that the cloud can compute
using the user’s budget. The user does not have to do any computation, except
for eventually decrypting ̂i∗ if she receives this information encrypted from the
cloud. We expect the following security properties:

1. No cloud node can learn at the same time information about the rewards and
about the ranking of the arms.

2. By analyzing the messages communicated between the different cloud nodes,
no information can be learned about the rewards or about the ranking.

The two aforementioned properties essentially ensure that the desired proto-
col has no security single point of failure. In particular, the first property says
that (i) there may be some cloud node that knows the ranking of the arms (hence
also the best arm), but it is not allowed to know which rewards are associated to
these arms, and (ii) there may also be some cloud node that knows some rewards,
but it is not allowed to know which arms are associated to these rewards. If all
cloud nodes collude, the cloud can learn the rewards associated to the arms1.
We do not consider collusions in our model.
1 In case of collusions, if several users spent successive budgets to learn the best arm

among the same set of arms, the cloud could compose the observed rewards. Hence
the cloud could compute the best arm using as budget the total budget of the users
and leak this information to some malicious user.



158 R. Ciucanu et al.

3.2 Security Background

We use Pailler’s public key encryption scheme [15]. We first recall the definition
of public-key encryption. Pailler’s encryption scheme is IND-CPA secure. We
recall the definition of IND-CPA before presenting the scheme itself that has an
additive homomorphic property that we use in our protocol.

Definition 1 (PKE). Let η be a security parameter. A public-key encryption
(PKE) scheme is defined by (G, E ,D):

G(η): returns a public/private key pair (pk, sk).
Epk(m): returns the ciphertext c.
Dsk(c): returns the plaintext m.

We also recall the notion of negligible function in order to define the IND-
CPA security notion.

Definition 2. A function γ : N → N is negligible in η, and is noted negl(η), if
for every positive polynomial p(·) and sufficiently large η, γ(η) < 1/p(η).

Let Π = (G, E ,D) be a PKE scheme, A be a probabilistic polynomial-time
adversary. For b ∈ {0, 1}, we define the IND-CPA-b experiment where A has
access to the oracle Epk(LRb(·, ·)) taking (m0,m1) as input and returns Epk(m0) if
b = 0, Epk(m1) otherwise. A tries to guess the bit b chosen in the experiment. We
define the advantage of A against the IND-CPA experiment by: Advind-cpaΠ,A (η) =
∣

∣ Pr[1 ← ExpIND-CPA-1
Π,A (η)] − Pr[1 ← ExpIND-CPA-0

Π,A (η)]
∣

∣. We said that Π is IND-
CPA if this advantage is negligible for any probabilistic polynomial-time A.
Paillier’s cryptosystem is an IND-CPA scheme. We give the key generation, the
encryption and decryption algorithms.

Key Generation. We denote by Zn, the ring of integers modulo n and by Z
×
n the

set of invertible elements of Zn. The public key pk of Paillier’s cryptosystem is
(n, g), where g ∈ Z

×
n2 and n = pq is the product of two prime numbers such that

gcd(p, q) = 1. The corresponding private key sk is (λ, μ), where λ is the least
common multiple of p − 1 and q − 1 and μ = (L(gλ mod n2))−1 mod n, where
L(x) = (x − 1)/n.

Encryption Algorithm. Let m be a message such that m ∈ Zn. Let g be an
element of Z

×
n2 and r be a random element of Z

×
n . We denote by Epk(·) the

encryption function that produces the ciphertext c from a given plaintext m
with the public key pk = (n, g) as follows: c = gm · rn mod n2.

Decryption Algorithm. Let c be a ciphertext such that c ∈ Z
×
n2 . We denote by

Dsk(·) the decryption function of c with the secret key sk = (λ, μ) defined as
follows: m = L

(

cλ mod n2
) × μ mod n.

Paillier’s cryptosystem is a partial homomorphic encryption scheme. Let m1

and m2 be two plaintexts in Zn. The product of the two associated ciphertexts



Secure Best Arm Identification in Multi-armed Bandits 159

U BAI RPj

Comp

Data Owner
(1) N

(5) EpkU(î∗)

(2*)
nj , EpkRPj

(σj), σj list of EpkComp
(sum(i))

)

σj(list EpkComp
(sum ′(i)))

(3*) (3*) σj(list of EpkComp
(sum ′(i)))(4*) argmin(sum ′(i))

(0)
list of EpkComp

(x(i)), EpkRPj
(ε)

Fig. 2. Workflow of the secure algorithm. We use numbers to indicate the order of the
steps. The steps annotated with * are repeated for each phase j ∈ {1, K − 1}. For the
communications BAI → RPj , RPj → BAI, and RPj → Comp, the list concerns all the
arms that are still candidates i.e., the set Aj .

with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1 · rn
1 mod n2 and

c2 = Epk(m2) = gm2 · rn
2 mod n2, is the encryption of the sum of m1 and m2,

i.e., Epk(m1) · Epk(m2) = Epk(m1 + m2 mod n).
We also remark that: Epk(m1) · Epk(m2)−1 = Epk(m1 − m2).

3.3 Secure Algorithm

We revisit the successive rejects (SR) algorithm in order to satisfy the properties
outlined in Sect. 3.1. We consider K arms. We note �n� the set of the n first
integers: �n� = {1, . . . , n}. Recall that SR has K − 1 phases and at each phase j,
it uses a budget of nj to pull each of the still candidate arms. At the end of each
phase, SR rejects the worst arm, based on all pulls observed since the beginning.

In the sequel, each time we refer to some (pk, sk), and associated encryp-
tion/decryption functions, we assume they are done using Paillier’s cryptosystem
[15]. In particular, we rely on the homomorphic addition property of Paillier’s
cryptosystem i.e., Epk(x + y) = Epk(x) · Epk(y).

In our security protocol, we assume K + 3 participants:

– DO is the Data Owner, who is not in the cloud. DO sends the encrypted arm
values EpkComp

(xi) and EpkRPj
(ε) for i ∈ �K� and j ∈ �K − 1�.

– U is the User, a participant that is not in the cloud. The user generates
(pkU, skU) and shares pkU and the budget N with the cloud. The cloud nodes
compute ̂i∗ and at the end BAI sends EpkU(̂i∗) to the user, who is able to
decrypt it using her secret key skU.

– BAI (Best-Arm Identification) is the node responsible for executing the K −1
phases of the SR algorithm. BAI generates K − 1 uniformly selected permu-
tations σj of �K + 1 − j� (as there are K + 1 − j candidate arms at round j).
Each σj is shared with the node RPj , but not with Comp. At each phase, BAI
knows which arm is the worst and should be rejected, and after the last phase



160 R. Ciucanu et al.

Table 1. What each cloud node knows and does not know.

Node BAI Comp RPj

Does know • ranking of arms
(including best
arm)

• sums of rewards • arms still candidate
at phase j
• arms already rejected
before phase j
• sums of rewards
added at phase j

Does not know • sums of
rewards of any
arm (Theorem 1)

• mapping between
sums of rewards and
the arms that produced
them (Theorem 3)
• ranking of arms
(including best arm)
(Theorem 2)

• ranking of arms
(including best arm)
(Theorems 4 and 5)
• sums of rewards
from phases 1, . . . , j −
1, j + 1, . . . , K − 1
(Theorem 6)

it knows which arm is the best. However, BAI does not know which rewards
are associated to the arms because the rewards are encrypted with pkComp.

– Comp is the node responsible of choosing the worst one among the sums of
rewards associated to the candidate arms. Comp generates (pkComp, skComp)
and shares pkComp with all other cloud nodes and DO.

– RP1, . . . ,RPK−1 are K − 1 nodes, each of them knowing the value ε that
is needed to generate a reward for each arm. Each node RPj generates
(pkRPj

, skRPj
) and shares pkRPj

with BAI and DO.

The algorithm, which is summarized in Algorithm2, consists of:

– Initialization done by BAI is:
• Based on the total budget N , compute n1, . . . , nK−1 that is the number of

times each of the candidate arms should be pulled at phase 1, . . . ,K − 1,
respectively.

• Uniformly select a permutation σ1 of �K� and send EpkRP1
(σ1) to RP1. A

new permutation σj on �K + 1 − j� is randomly selected at each round,
and sent to RPj .

• For each arm i, compute sum[σ1(i)] = EpkComp
(0).

During the K − 1 phases of the algorithm, these encrypted sums are updated
by the nodes RPj .

– K − 1 phases where nodes BAI, RPj , and Comp interact as shown in Fig. 2.
We add the following specifications:

• Each RPj updates the encrypted sums using the homomorphic addition
property of the Paillier’s cryptosystem: for a round j and a candidate
arm i with sum sum[σj(i)], we get the updated sum sum ′[σj(i)] by homo-

morphically adding
(

EpkComp
(x(σj(i)))

)nj ×∏nj

l=1 EpkComp
(kl) to sum[σj(i)],

where kl is uniformly selected in [−ε, ε] by RPj .



Secure Best Arm Identification in Multi-armed Bandits 161

• When Comp computes the index of the worst arm, if two or more arms
have the same worst sum of rewards, then Comp selects uniformly at
random one of these arms as the worst one. This ensures that the index
of the worst arm has a uniform distribution.

Algorithm 2. Secure SR algorithms
1: function Setup BAI(N) � Step 1 � j tracks the round number, sum contains the

sum of rewards of each competing arm. Both are stored in BAI state.
2: for j from 1 to K-1 do

3: nj ←
⌈

1

log(K)

N−K
K+1−j

⌉
− ∑j−1

l=0 nl

4: for all i ∈ �K� do
5: sum[i] ← EpkComp

(0)

6: j ← 1

7: function Start Round BAI � Step 2∗

8: σj ← random permutation of �K − j + 1�
9: save σj in BAI state

10: return σj(sum), EpkRPj
(σj), nj

11: function Round RPj(σj(sum), EpkRPj
(σj), nj) � Step 3∗

12: Decrypt EpkRPj
(σj), retrieve σj and un-permute σj(sum) to get sum

13: for each arm in sum do
14: Homomorphically add to sum[arm] the rewards from nj pulls of the arm

15: return σj(sum)

16: function Round Comp(σj(sum)) � Step 4∗

17: Decrypt each element of σj(sum)
18: xmin ← the index of a lowest element of the decrypted list, randomly chosen

amongst all lowest elements
19: return xmin

20: function End Round BAI(σj(sum), xmin) � After Step 4∗, before next round
21: umin ← σ−1

j (xmin)
22: Remove arm umin from the list of participants, and from sum to reflect so
23: j + +

24: function Result � Step 5
25: Get the only remaining competing arm î∗ from sum in BAI state
26: return EpkU(î∗)

We summarize in Table 1 what each cloud node knows and does not know, in
order to satisfy the desired security properties. We formally prove the security
properties in AppendixA. Next, we briefly outline why we need so many nodes:



162 R. Ciucanu et al.

– Assuming that all RPj nodes are a single one, this node would know all
rewards since the beginning of the algorithm hence it would learn the ranking
of the arms.

– Assuming that Comp and RPj are the same, then it would leak which arm is
associated to which sum, hence the best arm could be leaked.

– Assuming that Comp and BAI are the same, then BAI would learn the plain
rewards in addition to the ranking that it already knows.

– Assuming that BAI and RPj are the same, then it would leak to BAI the sum
of rewards associated to each arm.

3.4 Complexity

We give here a brief description of the complexity, in terms of the number of
calls to E and D (the costliest operations).

– At Step 0, DO computes ∀i ∈ �K�, EpkComp
(x(i)). It also encrypts ε for each

RPj , thus having O(K) complexity.
– At Step 2, BAI computes a new encrypted permutation, that can be encoded

as [EpkRPj
(σj(1)), . . . , EpkRPj

(σj(K + 1 − j)], thus having O(K − j) = O(K)
complexity.

– At Step 3, RPj computes the added rewards. Given the algorithm in Sect. 3.3,
this step has O(K) complexity.

– At Step 4, Comp decrypts all partial sums, with a complexity of O(K), before
sending the argmin to BAI.

Steps 2, 3, 4 are repeated K −1 times. The total complexity of these three steps
is then O(K2), and the total complexity of the algorithm is O(K2).

Note that the complexity of the algorithm is independent from the total
budget N , which is a great advantage as typical budgets for these kinds of
problems are often elevated and usually much larger than the number of arms.
More precisely, the complexity related to N is hidden by the complexity of the
encryptions.

4 Experiments

We report on a proof-of-concept experimental study of our proposed protocol.
We implemented and compared:

– SR: the successive rejects algorithm, adapted from [1]. We give the pseudocode
of SR in Fig. 1.

– SR-secured: our proposed protocol, which adds security guarantees to SR. We
describe SR-secured in Sect. 3.3 and we outline its workflow in Fig. 2.

We implemented the algorithms in Python 3. Our code is available on a public
git repository2. For SR-secured, we used phe3, an open-source Python 3 library
for partially homomorphic encryption using the Paillier’s cryptosystem.
2 https://gitlab-sds.insa-cvl.fr/vciucanu/secure-bai-in-mab-public-code.
3 https://python-paillier.readthedocs.io/en/develop/.

https://gitlab-sds.insa-cvl.fr/vciucanu/secure-bai-in-mab-public-code
https://python-paillier.readthedocs.io/en/develop/


Secure Best Arm Identification in Multi-armed Bandits 163

We summarize the results in Fig. 3 and we discuss them next. We carried out
these experiments on a laptop with Intel Core i5 3.10 GHz and 8 GB of RAM.
We used 2048 bits keys. The results are averaged over 100 runs.

(a) Run time (in seconds) for SR (full lines), and
for SR-secured (dashed).

(b) Time share during
SR-secured execution, for
N=400000 and K=5.

Fig. 3. Experimental results.

Run Time Comparison SR vs SR-Secured. In each half of Fig. 3(a), we
have 12 points, corresponding to the pairwise combinations between 4 budget
values N (100000, 200000, 300000, 400000) and 3 values for the number of arms
K (5, 10, 15). We split the figure in two plots with different Y axis because
the observed times are in the order of tens of milliseconds for SR and tens
of seconds for SR-secured. For SR, we observe that the time varies more on
N and less on K, which makes sense because the operations depending on N
(i.e., picking random numbers in the rewards generation) are more expensive
than the operations depending on K (i.e., additions and multiplications). On
the other hand, for SR-secured, the slight run time increase depending on N is
barely visible (hence the curves look rather constant) because of the three-orders-
of-magnitude overhead that is a natural consequence of the high number of
encryptions and decryptions performed by SR-secured. As explained in Sect. 3.3,
each participant and encryption/decryption from SR-secured is useful for the
protocol in order to guarantee the desired security properties. We stress that the
time of SR-secured barely grows when increasing the budget N , which confirms
the essential property that we outlined in the complexity discussion: the number
of cryptographic primitives does not depend on N . Hence, we were easily able
to run SR-secured for large budgets as we show in the figure. We conclude
from this experiment that SR-secured retains the scalability of SR while adding
an overhead (depending on K and not on N) due to the security primitives.
Obviously, both algorithms compute exactly the same result i.e., the best arm.



164 R. Ciucanu et al.

Moreover, before running this time comparison study, we carefully checked that
all intermediate sums and arm rankings are identical for SR and SR-secured,
despite the encryptions and decryptions that the latter algorithm performs.

Zoom on SR-Secured. In Fig. 3(b) we highlight how the total time taken
by SR-secured is split among the participants. We obtained this figure for
N = 400000 and K = 5, hence there are 4 phases, thus 4 participants
RP1,RP2,RP3,RP4 in addition to Comp,BAI, the data owner DO, and the user
U. First, notice that the shares of U and DO of the total time are relatively small,
which is a desired property. Indeed, we require the DO only to encrypt her knowl-
edge of the arms before outsourcing such encrypted data to the cloud (step 0 in
Fig. 2). This could be actually done only once at the beginning and then all runs
of the best-arm identification algorithm can be done using the same encrypted
data, regardless of the user that pays for such a run. Moreover, we require U to
not do any computation effort other than decrypting the result of the best-arm
identification algorithm that the cloud returns to her (step 5 in Fig. 2). Among
the cloud participants, we observe that BAI takes the lion’s share of the total
running time. This is expected because the role of BAI is similar to a controller
that interacts with all other cloud participants. In what concerns Comp and the
RPj , their shares are quite similar. We observed the same behavior regardless of
the chosen N and K on which we zoom.

5 Related Work

To the best of our knowledge, our work is the first that relies on public-key
encryption in order to add privacy guarantees to best-arm identification algo-
rithms for multi-armed bandits.

There is a recent line of research on multi-armed bandits using differential
privacy techniques [5,6], which are based on adding an amount of noise to the
data to ensure that the removal or addition of a single data item does not affect
the outcome of any data analysis. These works have either focused on strate-
gies to obtain: (i) privacy-preserving input guarantees i.e., make the observed
rewards unintelligible to an outside user [9], or (ii) privacy-preserving output
guarantees i.e., protect the chosen actions and their associated rewards from
revealing private information [13,18].

There are some fundamental differences between this line of work based on
differential privacy and our work based on public-key encryption. First, the con-
sidered multi-armed bandit problems are different. Indeed, we focus on identify-
ing the best arm, which is equivalent to minimizing the simple regret, that is the
difference between the values associated to the arm that is actually the best and
the best arm identified by the algorithm. On the other hand, the aforementioned
works consider the cumulative regret minimization that roughly consists of min-
imizing the difference between the rewards observed after pulling N times the
best arm and the rewards observed during the N pulls done by the algorithm.

A second difference is as follows. On the one hand, our secured algorithm
based on public-key encryption is guaranteed to return exactly the same result



Secure Best Arm Identification in Multi-armed Bandits 165

as the (non-secured) SR algorithm [1] on which we rely as a building block in
our protocol. On the other hand, the result of a differentially-private algorithm
contains by definition some noise, hence it is different from the result of the
algorithm without privacy guarantees.

Third, by construction, the performance measure (the regret) of our secure
algorithm remains the same as for the non-secured version, since both ver-
sions use the same arm-pulling strategies (that is, the performed encryp-
tions/decryptions have no influence on the choice of arms to be pulled). The
price we pay for making the algorithm secure comes only in the form of addi-
tional time needed for the encryptions and decryptions. In contrast, in the dif-
ferential privacy approach, noise is introduced in the inputs/outputs in order
to guarantee that the algorithms are differentially private and this has a direct
impact on the arm-selection strategies. Therefore, the performance of the differ-
ential private versions of the algorithms suffers an increased regret with respect
to their non-secured versions by an additive [18] or a multiplicative factor [9,13].

6 Conclusions and Future Work

We studied the problem of best-arm identification in multi-armed bandits and
we addressed the inherent privacy concerns that occur when outsourcing the
data and computations to a public cloud. Our main contribution is a distributed
protocol that computes the best arm while guaranteeing that (i) no cloud node
can learn at the same time information about the rewards and about the rank-
ing of the arms and (ii) by analyzing the messages communicated between the
different cloud nodes, no information can be learned about the rewards or about
the ranking. To do so, we relied on the partially homomorphic property of Pail-
lier’s cryptosystem. The overhead due to the security primitives of our protocol
depends only on the number of arms K and not on the budget N . Our experi-
ments confirmed this property.

Looking ahead to the future work, there are many directions for further
investigation. For example, we plan to investigate whether we can leverage an
addition-homomorphic cryptosystem other than Paillier’s, which may be more
efficient in practice and could help us reduce the run time gap between the
secured and the non-secured algorithms that we observed in our proof-of-concept
experimental study. Additionally, we plan to add privacy guarantees to other
multi-armed bandit settings e.g., cumulative regret minimization [2] or best-
arm identification in linear bandits [16], where the rewards of the arms depend
linearly on some unknown parameter.

A Security Proofs

In this section, we prove that our secure algorithm presented in Sect. 3.3 satisfies
the two desirable security properties outlined in Sect. 3.1: we prove the first
property from Sects. A.2 to A.4, and the second property in Sect.A.5.



166 R. Ciucanu et al.

A.1 Notations and Security Hypothesis

For a node A, we note dataA the data to which A has access and Apb(d) the answer
of a Probabilistic Polynomial-Time (PPT) adversary A having knowledge of d,
trying to solve the problem pb. We recall that, in our notation conventions, �K�
denotes the set of positive integers lower than or equal to K: �K� = {1, . . . , K}.

Lemma 1. For a list l = [l1, . . . , ln], a permutation σ and the per-
muted list σ(l) = [lσ(1), . . . , lσ(n)], a PPT adversary A(lσ) cannot
invert one element with probability better than random. More specifically,
P

[

Aσ−1
(σ(l)) ∈ {i, σ−1(i)}i∈�K�

]

= 1
K where A returns a tuple (i, g(i)) and

g(i) is A’s guess for the preimage of i.

Proof. This is immediate, as all preimages are equally likely if σ is uniformly
selected. ��
Lemma 2. Let A be a PPT adversary. Consider the adversarial game in which
A choses three messages m0,m1, z and sends them to the challenger C. C choses
a random bit b, and returns a tuple (c0, c1, s) where c0 = Epk(m0), c1 = Epk(m1),
and s = Epk(mb + z) = cb · Epk(z). A must then guess the value of b.

If Epk(·) is IND-CPA secure, then A does not have any advantage in this
adversarial game: 2

∣

∣P [A(c0, c1, s) = b] − 1
2

∣

∣ < negl(η).

Proof. Assume there is a PPT adversary O able to win the game with significant
advantage x + negl(η): then O can guess b with probability 1

2 + x
2 + negl(η).

We then prove that an PPT adversary A can break the IND-CPA property of
Paillier. We can assume that when O is given c0, c

′
0, s as input (where c′

0 is
another encryption of m0), then the advantage of O is negligible: this gives us a
lower bound of the advantage of O in a more general adversarial game.

Let us consider an IND-CPA game and an adversary A, in which A choses
m0,m1 and sends them to the challenger. The challenger randomly selects the
bit b and sends back cb = Epk(mb). Then, A selects a message z and computes
Epk(z), before computing s = Epk(mb) · Epk(z). A also computes c′

0 = Epk(m0).
Then, A calls O(c′

0, cb, s), retrieves (in polynomial time) from O the guessed
value b∗, and returns b∗.

If b = 0, then A has actually called O(c′
0, c0, s), which guesses the correct b∗

with probability 1
2 + negl(η). On the other hand, if b = 1, then A has actually

called O(c′
0, c1, s), which gives the correct b∗ with probability 1

2 + x
2 + negl(η).

b being randomly chosen, A correctly guesses b with probability 1
2 · 1

2 + 1
2 ·

(

1
2 + x

2

)

+negl(η) = 1
2+ x

4+negl(η), thus yielding to A an advantage of x
2+negl(η)

in the IND-CPA game, in polynomial time. This is a contradiction with the fact
that Paillier is IND-CPA secure. ��

A.2 Security Proofs for BAI

Lemma 3. From the data obtained at round j, a honest-but-curious BAI does
not know the sum of the rewards of any arm. More precisely, for R the set of pos-
sible rewards, |R|

|R|−1

∣

∣

∣P
[Areward(dataBAIj ) ∈ {i, reward(i)}i∈�K+1−j�

] − 1
|R|

∣

∣

∣ <



Secure Best Arm Identification in Multi-armed Bandits 167

negl(η) where Areward(dataBAIj ) returns a tuple (i, greward(i))), with greward(i)
being A’s guess of the sum of rewards of i.

Proof. At round j, BAI has access to the permuted list of the encrypted partial
sums, as well as to the permutation σj and the index iminj

of the lowest-ranking
element from round j. From the first two arguments, BAI can access to the
(unpermuted) list of the encrypted partial sums of the arms rewards sej =
[

EpkComp
(sumα1), . . . , EpkComp

(sumαK+1−j
)
]

, where the αi are the arms still present

in the algorithm at step j. So we can equivalently say that dataj
BAI = [sej , iminj

].
Assume that there exists a PPT adversary O able to break the above inequal-

ity, with advantage x + negl(η): given [se, iminj
] as input, O returns some tuple

(i, greward) where greward is the guessed reward of the arm αi. The guess is cor-
rect with probability 1

|R| + |R|−1
|R| x + negl(η). Also note that, on average, i = 1

with probability 1
K+1−j .

Let us consider a classical IND-CPA game as previously defined. When
A receives Epk(mb), they randomly chose K − j cleartexts r1, . . . , rK−j and
compute their ciphertexts Epk(r1), . . . , Epk(rK−j). Then, A calls the oracle
O(Epk(mb), Epk(r1), . . . , Epk(rK−j) which returns (i, greward). If i = 1 and
greward ∈ {m0,m1} then A returns 0 or 1, respectively. Otherwise A returns
a random guess.

Finally, A returns the good answer with probability 1
K+1−j

(

1
|R| + |R|−1

|R| x + negl(η)
)

+
(

1 − 1
K+1−j

(

1
|R| + |R|−1

|R| x + negl(η)
))

1
2 , i.e. with

probability 1
2 + 1

2
1

K+1−j

(

1
|R| + |R|−1

|R| x
)

+ negl(η), which yields an advantage of
1

K+1−j

(

1
|R| + |R|−1

|R| x
)

+ negl(η) to A. Hence, A has a non-negligible advantage
in the IND-CPA game, which is a contradiction with the fact that Paillier’s
cryptosystem is IND-CPA secure. ��
Theorem 1. From the data obtained up to round j, a honest-but-curious BAI
does not know the sum of the rewards of any arm. More precisely, for R the set of
possible rewards, |R|

|R|−1 ×
∣

∣

∣P
[

Areward(dataBAI≤j ) ∈ {i, reward(i)}i∈�K�

] − 1
|R|

∣

∣

∣ <

negl(η) where the data dataBAI≤j is the data obtained by BAI during the first j
rounds and reward(i) is the reward of the i-th arm.

Proof. We notice that dataBAI≤j is equal to [dataBAI1 , . . . , dataBAIj ] = [[se1, imin1 ],
. . . , [sej , iminj

]]. We know that each ciphertext from sej+1 results from the homo-
morphic addition of one ciphertext from sej and one other unknown ciphertext4.
Given Lemma 2, the set [sej , sej+1] is indistinguishable from the set [sej , se

′
j+1]

where se′
j+1 is a list of ciphertexts, unrelated to the ones in sej . Hence, dataBAI≤j

is indistinguishable from the list [se1, se′
2, . . . , se

′
j , imin1 , . . . , iminj

], where se′
i is

a list of ciphertexts unrelated to se′
j or se1.

Assume that there exists a PPT adversary O able to break the above inequal-
ity, with an advantage of x + negl(η). The data available to A basically consists
of j iterations, of various sizes, of the problem addressed in Lemma3. Then, if
4 Namely, the ciphertext of the rewards of the arm i at round j.



168 R. Ciucanu et al.

A can solve our current adversarial game with non negligible advantage, A can
immediately solve the problem in Lemma 3 with non negligible advantage (from
one set of ciphertexts, A will generate other sets, and immediately places itself in
the current problem). Because a non negligible advantage to the above problem
breaks IND-CPA security, we conclude to a contradiction. ��

A.3 Security Proofs for Comp

Lemma 4. Let j ∈ �K − 1�. From the data received at the round j, a
honest-but-curious Comp cannot infer the ranking of any arm. More specifically,
P

[Arank(dataCompj ) ∈ {i, ranking(i)}i∈�K+1−j�

]

= 1
K+1−j .

Proof. We have dataComp = seσj
= [EpkComp

(sumσj(α1)), . . . , EpkComp

(sumσj(αK+1−j))], which can be decrypted by Comp to sσj
= [sumσj(α1), . . . ,

sumσj(αK+1−j)] where the αi are the arms still present at round j. From this list
of scores, Comp can infer the ranking of the permuted arms, i.e., compute the
ranking any Aσj(i) in polynomial time.

Assume there exists a PPT adversary Arank capable of breaking the above
equality. If A is able to predict the ranking of the arm i with advantage better
than random, then A knows the ranking of Ai, namely ranking(Ai). Knowing
the ranking of all Aσj(i), with probability better than random, A is then able to
compute σ−1

j (i) with advantage better than random by identifying which Aσj(i)

matches Ai. Hence a contradiction with Lemma1. ��
Theorem 2. Let j ∈ �K − 1�. From the data received until the round j, A
honest-but-curious Comp cannot infer the ranking of any arm. More specifically,
P

[Arank(dataComp≤j ) ∈ {i, ranking(i)}i∈�K�

]

= 1
K+1−j .

Proof. The proof is based on the proof of Lemma4, with additional arguments
similar to the ones of the proof of Theorem1: because of Lemma 2, we can assume
that we have j independent sets of unrelated permuted data. If an adversary A
can break the above equality with non-negligible advantage in PPT, then we can
construct an adversary who breaks the equality of Lemma4 with non-negligible
advantage, in PPT, which breaks Lemma1, so we get a contradiction. ��
Lemma 5. Let j ∈ �K − 1�. From the data received at round j, a honest-
but-curious Comp does not know the correspondence between sums of rewards
and arms. More specifically, P

[Arwd(dataCompj ) ∈ {i, reward(i)}i∈�K+1−j�

]

=
1

K+1−j .

Proof. Assume that Comp is able, from sσj
, to infer the sum of rewards of the

arm Ak with probability better than 1
K+1−j . Because Comp knows the sum of

rewards of the permuted arms Aσj(αi) for all i ∈ �K + 1 − j�, then by matching
these rewards with the sum of the rewards of Ai, Comp is able to compute σj(i)
with a probability better than random. Hence, Comp breaks Lemma 1. ��
Theorem 3. Let j ∈ �K − 1�. From the data received until round j, a honest-
but-curious Comp does not know the correspondence between sums of rewards
and arms. More specifically, P

[Arwd(dataComp≤j ) ∈ {i, reward(i)}i∈�K�

]

= 1
K .

Proof. Similar to the proof of Theorem2. ��



Secure Best Arm Identification in Multi-armed Bandits 169

A.4 Security Proofs for the RPj

Theorem 4. A honest-but-curious RPj does not know the ranking of the K −
j + 1 best ranking arms, for j ∈ �K − 1�. More specifically, ∀j ∈ �K − 1�,∀i ∈
�K + 1 − j�, and rankingj(i) is the ranking of the i-th arm at round j,
K+1−j

K−j

∣

∣

∣P
[Arank(dataRPj

) ∈ {i, rankingj(i)}i∈�K+1−j�

] − 1
K+1−j

∣

∣

∣ < negl(η).

Proof. We have dataRPj
= [seσj

, EpkRPj
(σj), nj ], where seσj

= σj([EpkComp

(sumα1), . . . , EpkComp
(sumαK−j

)]), the permuted list of encrypted sums of
rewards. RPj can further ‘un-permute’ seσj

to se = [EpkComp
(sumα1), . . . ,

EpkComp
(sumαK−j

)], the list of encrypted sums of rewards. Note that nj does not
carry any information about the partial sum, as one can simulate any se with
the same nj , so does not carry significant information to our problem.

Assume that RPj can guess the ranking of one element with advantage
x+negl(η): there exist a PPT oracle O taking as input se, and outputs (i, v(i)),
with i ∈ �K + 1 − j�. Furthermore, we have v̂(i) = rankingj(i) with probability

1
K+1−j + K−j

K+1−j x+negl(η). Note that, on average, i = 1 with probability 1
K+1−j .

Let us consider an IND-CPA game, in which the strategy of A is the same as
the one in the proof of Lemma 3 (i.e., generate enough ciphertexts so they can
call O). Then, following the same reasoning we get that A has an advantage of

1
K+1−j

(

1
K+1−j + K−j

K+1−j x
)

+ negl(η) in the IND-CPA game, which is a contra-
diction with the IND-CPA property of Paillier’s. ��
Theorem 5. A honest-but-curious RPj does not know the ranking of
the j − 1 lowest ranking arms. More specifically, ∀j ∈ {3, . . . , K −
1},∀i ∈ �j − 1�, and ranking(i) the ranking of the i-th arm,
j−1
j−2

∣

∣

∣P
[Arank(dataRPj ) ∈ {i, ranking(i)}i∈�K+1−j�

] − 1
j−1

∣

∣

∣ < negl(η).

Proof. This is straightforward as RPj does not receive any information about the
sums of the j lowest ranking arms. Furthermore, we must impose j ≥ 3 because
it is clear that RP1 and RP2 know the ranking of the lowest ranking arm. ��
Theorem 6. Except for RP1, a honest-but-curious RPj does not know the sums
of rewards at step j. More precisely, for R the set of possible rewards, ∀i ∈ �K +
1 − j�, |R|

|R|−1

∣

∣

∣P
[Areward(dataRPj

) ∈ {i, rewardj(i)}i∈�K+1−j�

] − 1
|R|

∣

∣

∣ < negl(η).

Proof. Assume that a PPT adversary A breaks the above inequality: there
exists a PPT oracle O(c1, . . . , cK), that returns the tuple (i,mi) where mi is
the cleartext of ci with advantage x+negl(η). Then we prove that the adversary
breaks the IND-CPA property of Paillier’s cryptosystem. Note that, on aver-
age, i = 1 with probability 1

n , and that a decryption is correct with probability
1

|R| + |R|−1
|R| x + negl(η).

If we consider an IND-CPA game where the strategy of A is the same as in
the proof of Lemma 3 (i.e., generate enough ciphertexts so they can call O), we
get that A has an advantage of 1

n|R| + |R|−1
n|R| x in the IND-CPA game, which is a

contradiction with Paillier being IND-CPA secure. ��



170 R. Ciucanu et al.

A.5 Security Proof for an External Observer

Theorem 7. An external observer, having access to the set M of all the mes-
sages exchanged during the protocol, cannot infer anything about the sum of
rewards of any arm. More specifically, any such observer is bound by the inequal-
ity mentioned in Theorem1, with dataBAI≤j being replaced by M .

Proof. Assume that there exists an adversary O able to break the above inequal-
ity, given M , in PPT. We then prove that an adversary A is able to break
IND-CPA security of Pailier’s scheme in PPT.

Let us consider a classical IND-CPA challenge, in which A choses two rewards
r0, r1 and sends them to the challenge. The challenger returns EpkComp

(rb), where
b is a uniformly random bit. Then, A simulates a secure multi-armed bandit
protocol, with 2 arms, so that at the end of round 1, one of the arms has for
encrypted sum of rewards the value EpkComp

(rb), the other being random. This
is possible because in this simulation, A can set herself the rewards xi of each
arm, as well as the budget for round 1. Furthermore, knowing the cleartext of
every encrypted value at any time, A can simulate the full protocol by herself
(especially, she can simulate Comp execution). This simulation yields a set of
messages M .

Now, calling O(M),A will retrieve in PPT, with some non-negligible advan-
tage, some information about the sums of rewards of one of the arms. With
probability 1

2 , this information will be about the arms of rb, thus giving, in
PPT, a non-negligible advantage in the IND-CPA game, as A is able to find
the value of b with some advantage. This is a contradiction with the fact that
Paillier is IND-CPA secure. ��
Theorem 8. An external observer, having access to the set M of all the mes-
sages exchanged during the protocol, cannot infer anything about the ranking of
any arm: K

K−1

∣

∣P
[Arwd(M) ∈ {i, ranking(i)}i∈�K�

] − 1
K

∣

∣ < negl(η).

Proof. It is obvious that such an observer can deduce the permuted list of rank-
ings by listening to data exchanged at step 4. However, from the data of one
round, it is impossible to know more: the data from one round is an encrypted
permuted sum of rewards S, the lowest permuted index i, and the same sum,
with the lowest element removed S′ (steps 3, 4, 2). This is equivalent of having
knowledge of S and i only. If an adversary O breaks the inequality with S and
i, then we can break IND-CPA.

Let A be the adversary, picking K + 1 messages such that m0 < m′
i < m1,

and a permutation σ. Sending m0 and m1, they receive cb = Epk(mb), and also
compute c′

i = Epk(m′
i). Then, if O(σ([cb, c

′
2, . . . , c

′
k]), σ(0)) = 0, A returns 0, else

1. If O has a non-negligible advantage x, we prove similarly to the other proofs
that A has a advantage of x

2 in the IND-CPA game, which is a contradiction.
Now, because of Lemma 2, having access to all messages does not change

anything. This is because each new round is indistinguishable from a simulation
run by A, so an advantage in the “all-rounds” game would yield an advantage
in the “one-round” game. ��



Secure Best Arm Identification in Multi-armed Bandits 171

References

1. Audibert, J., Bubeck, S., Munos, R.: Best arm identification in multi-armed ban-
dits. In: Conference on Learning Theory (COLT) (2010)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47, 235–256 (2002)

3. Chen, S., Lin, T., King, I., Lyu, M.R., Chen, W.: Combinatorial pure exploration
of multi-armed bandits. In: Conference on Neural Information Processing Systems
(NIPS) (2014)

4. Coquelin, P., Munos, R.: Bandit algorithms for tree search. In: Conference on
Uncertainty in Artificial Intelligence (UAI) (2007)

5. Dwork, C.: Differential privacy. In: International Colloquium on Automata, Lan-
guages and Programming (ICALP) (2006)

6. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9, 211–407 (2014)

7. Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn.
Res. 7, 1079–1105 (2006)

8. Gabillon, V., Ghavamzadeh, M., Lazaric, A.: Best arm identification: a unified app-
roach to fixed budget and fixed confidence. In: Conference on Neural Information
Processing Systems (NIPS) (2012)

9. Gajane, P., Urvoy, T., Kaufmann, E.: Corrupt bandits for preserving local privacy.
In: Algorithmic Learning Theory (ALT) (2018)

10. Kaufmann, E., Cappé, O., Garivier, A.: On the complexity of best-arm identifica-
tion in multi-armed bandit models. J. Mach. Learn. Res. 17, 1–42 (2016)

11. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: International Conference on World
Wide Web (WWW) (2010)

13. Mishra, N., Thakurta, A.: (Nearly) optimal differentially private stochastic multi-
arm bandits. In: Conference on Uncertainty in Artificial Intelligence (UAI) (2015)

14. Munos, R.: From bandits to Monte-Carlo tree search: the optimistic principle
applied to optimization and planning. Found. Trends Mach. Learn. 7, 1–129 (2014)

15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

16. Soare, M., Lazaric, A., Munos, R.: Best-arm identification in linear bandits. In:
Conference on Neural Information Processing Systems (NIPS) (2014)

17. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25, 285–294 (1933)

18. Tossou, A.C.Y., Dimitrakakis, C.: Algorithms for differentially private multi-armed
bandits. In: AAAI Conference on Artificial Intelligence (2016)

https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/3-540-48910-X_16


CATCHA: When Cats Track Your
Movements Online

Prakash Shrestha1(B), Nitesh Saxena1, Ajaya Neupane2, and Kiavash Satvat3

1 University of Alabama at Birmingham, Birmingham, AL 35294, USA
{prakashs,saxena}@uab.edu

2 University of California, Riverside, CA 92521, USA
ajaya@ucr.edu

3 University of Illinois at Chicago, Chicago, IL 60607, USA
ksatva2@uic.edu

Abstract. Any website can record its users’ mouse interactions within
that site, an emerging practice used to learn about users’ regions of
interests usually for personalization purposes. However, the dark side of
such recording is that it is oblivious to the users as no permissions are
solicited from the users prior to recording (unlike other resources like
webcam or microphone). Since mouse dynamics may be correlated with
users’ behavioral patterns, any website with nefarious intentions (“cat”)
could thus try to surreptitiously infer such patterns, thereby compro-
mising users’ privacy and making them prone to targeted attacks. In
this paper, we show how users’ personal information, specifically their
demographic characteristics, could leak in the face of such mouse move-
ment eavesdropping. As a concrete case study along this line, we present
CATCHA, a mouse analytic attack system that gleans potentially sen-
sitive demographic attributes—age group, gender, and educational back-
ground—based on mouse interactions with a game CAPTCHA system (a
simple drag-and-drop animated object game to tell humans and machines
apart).

CATCHA’s algorithmic design follows the machine learning approach
that predicts unknown demographic attributes based on a total of 64
mouse dynamics features extracted from within the CAPTCHA game,
capturing users’ innate cognitive abilities and behavioral patterns. Based
on a comprehensive data set of mouse movements with respect to a sim-
ple game CAPTCHA collected in an online environment, we show that
CATCHA can identify the users’ demographics attributes with a high
probability (almost all attributes with more than 85% ), significantly bet-
ter than random guessing (50%) and in a very short span of interac-
tion time (about 14 s). We also provide a thorough statistical analysis
and interpretation of differentiating features across the demographics
attributes that make users susceptible to the CATCHA attack. Finally,
we discuss potential extensions to our attack using other user interac-
tion paradigms (e.g., other types of CAPTCHAs or typical web browsing
interactions, and under longitudinal settings), and provide potential mit-
igation strategies to curb the impact of mouse movement eavesdropping.

A. Neupane and K. Satvat—Work done at UAB.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 172–193, 2019.
https://doi.org/10.1007/978-3-030-34339-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_10


CATCHA: When Cats Track Your Movements Online 173

1 Introduction

Behavioral modeling of users is important for web services providers [43]. On
one end, it facilitates the web services to personalize their offerings for an indi-
vidual user, likely benefiting both the services and their users since the infor-
mation fetched and delivered to the users can be tailored according to their
personal needs. The websites can also learn users’ interests which may help
them with their monetization activities by pushing targeted advertisements and
other dynamic content to the users. On the other end, however, such behavioral
tracking raises a serious privacy concern as the websites would learn users’ per-
sonal, potentially sensitive, information which users may not want to disclose, or
be fully aware of its exposure [48]. Besides the breach of privacy, if potentially
malicious websites can infer users’ private behavioral information in this fashion,
they could use it to launch targeted attacks against the users which can hamper
their security, safety and well-being.

As a case in point, this paper investigates the notion of behavioral modeling,
specifically privacy leakage, based on one of the most rudimentary and appar-
ently inconspicuous modes of user-to-web interactions, the mouse. Any website
can record its users’ mouse interactions (clicks, movements, scrolls, etc.) within
that site, specifically using the JavaScript functionality. On the benign front,
such a monitoring of users’ mouse dynamics seems to be an emerging practice
used to learn about users’ regions of interests on the site usually for personal-
ization purposes and to improve user experience. For example, mouse movement
information can be used to detect where exactly on the web UI the user might
be gazing at, which may capture the information the user is interested in [9].
Similarly, mouse dynamics has also been demonstrated as a viable behavioral
biometrics modality, using which users may be transparently authenticated to
the web services [55]. Third party companies (e.g., Mouse Flow [38]) already
record mouse movements for marketing purposes. And, even big companies (e.g.,
Facebook) seem to be considering plans to monitor mouse movements remotely
in order to offer improved services to their users [52].

However, a detrimental side of such mouse interaction recording is that it
is invisible to the users as no permission models exist in the currently deployed
web browsers to solicit users’ consent prior to such recording can take place. This
practice lies in stark contrast to access control models adopted for other sensitive
resources such as webcam, microphone or location (GPS), where user approval
is necessary before the website can gain access to the data collected by these
sensors. The choice of such permission models is perhaps explainable—mouse
interactions do not appear to be explicitly sensitive in contrast to the other
sensors cited above. However, since mouse dynamics are implicitly correlated
with users’ behavioral traits [22], any website with nefarious intentions (“cat”)
could therefore still surreptitiously infer such traits, in turn compromising users’
privacy and making them susceptible to targeted attacks exploiting the learned
behavioral information.

Given the differences in the way the users from different demographic groups
(e.g., gender, age group) move the mouse cursors due to the intrinsic differences



174 P. Shrestha et al.

in the users’ cognitive level, experience, risk-taking behavior, and motor abil-
ity [6,7,22,42,49,53,54], we set out to analyze mouse movements of users when
they are solving game CAPTCHAs and intend to build user models based on
their gender, age, and education. Specifically, we intend to demonstrate how
users’ personal information, namely, their demographic characteristics, could
implicitly leak in the face of such mouse movement eavesdropping. As a concrete
case study in this research line, we present CATCHA, a mouse analytic privacy
attack system that surreptitiously extracts potentially sensitive demographic
attributes—gender, age group, and education level—based on mouse interac-
tions with a game CAPTCHA system, a mouse-based animated object game to
tell humans and machines apart. In particular, we focus on a simple game-based
CAPTCHA that requires the user to identify the answer object(s) from a set
of moving objects, and drag-drop them to the corresponding target object(s). A
start-up company, named “are you a human”, had released and deployed a series
of such game CAPTCHAs [51]. These CAPTCHAs have also been extensively
studied by researchers [19,34,35].

Although the studied demographic attributes may seem minor (or non-
sensitive) at first hand, an involuntary disclosure of such demographic attributes
through our attack is a major concern since it not only breaches people’s privacy
but also opens up room for targeted scams against users. For example, specific
targeted attacks can be launched against people of one given gender (e.g., sexual
harassment against females, gender discrimination in job search) and age group
(phishing scams against elderly or cyber-bullying of children) [8,10,21,32]. The
attack possibilities are endless and already deployed by cyber-criminals in the
wild.

Game CAPTCHAs seem like a representative platform to study mouse
dynamics privacy leakage. They involve well-defined, although short, mouse
interactions such as dragging and dropping which, as we will show, would surpris-
ingly leak demographic cues about users. These CAPTCHAs may offer improved
usability and security over text CAPTCHAs (especially against CAPTCHA
farming attacks) as shown in the literature [19,34,35]. Due to these proper-
ties, they have already been deployed in the past [25,51] and may get deployed
at large scale in the future, enabling mouse dynamics privacy leakage. Arbitrary,
potentially malicious, websites can also deploy such CAPTCHAs in the name of
improved web security but with a hidden goal of inferring private demographic
characteristics of users visiting such websites.

Our Contributions: Our contributions are two-fold:

1. Design and Implementation of CATCHA, a Mouse Analytic Attack System:
The CATCHA algorithmic design follows the machine learning methodology
that predicts demographic attributes based on several (64 in total) mouse
dynamics features extracted from within the CAPTCHA game, capturing
users’ innate cognitive abilities and behavioral patterns.

2. Comprehensive Evaluation of CATCHA: Based on a comprehensive data set
of mouse movements with respect to a simple game CAPTCHA collected in
an online environment [36], we show that CATCHA can identify the users’



CATCHA: When Cats Track Your Movements Online 175

Fig. 1. High level overview of CATCHA.

demographic attributes with a high probability (with the accuracy of >85%),
significantly better than random guessing (50%), in a short interval of time.
We also provide a thorough statistical analysis and interpretation of features
that make users susceptible to the CATCHA attack.

Broader Significance of Our Work: While we focus on game CAPTCHAs as
our mouse dynamics privacy leakage platform, we also discuss potential exten-
sions to our attack using other user interaction objects (e.g., other types of
CAPTCHAs or web browsing interactions). We also provide potential mitigation
strategies and future directions involved in curbing the impact of mouse move-
ment eavesdropping. Overall, our work serves to demonstrate a practical attack
vector that could be exploited by third-party online companies and malicious
actors to breach people’s privacy using one of the most fundamental and appar-
ently inconspicuous modes of human-computer interaction (“mouse”), to raise
people’s awareness and to bootstrap work on mitigation against such threats.
Although we use game CAPTCHA as a representative example to demonstrate
the threat in question, our work should not be viewed as an attack against
the CAPTCHA scheme itself, but rather as a form of a side channel privacy
vulnerability based on mouse dynamics. Further, a benign application of our
demographic prediction model could be towards validating the user information
in a given domain. For example, an adult website can utilize the prediction model
to see whether the user is indeed above age of 18. In fact, many websites can
utilize the prediction models to validate the demographic information provided
by the user.

2 Attack Premise and Overview

JavaScript, one of the core web technologies, comes with a wide variety of
functionality that enables web developers or website owners to access various
resources such as webcam and microphone at user’s end through the browser.



176 P. Shrestha et al.

Since these resources are sensitive in nature, browsers have integrated a permis-
sion model that secures access to these sensitive resources [20,46]. The permis-
sion model mandates the website to ask permission of the user before accessing
any such resources through the browser that it considers sensitive to the user.
Moreover, recently some browsers (Chrome, Firefox) started adding a new func-
tionality, named privacy UI, that allows a user to be always aware of the use
of any sensitive resources such as microphone or webcam [5,17]. The permission
model and privacy UI consider certain set of resources as sensitive explicitly
while it considers some other set of resources as non-sensitive to the users. Most
important to our work, mouse movements (and key presses) at user’s end are
not protected by this permission model. Any web-developer can design a website
in such a way that it can capture and store mouse movement (and key press)
events without the consent of the user.

The website can utilize these mouse events to extract various personal infor-
mation about the user that it can later use for their own purposes, thereby
compromising the privacy of the users. For instance, mouse movements can be
related to the focus of the eyes and the direction in which the user is looking at
[44]. This may reveal the information about the content on the website that he is
interested in and any e-commerce website may know which products the user is
focusing on. It is also possible to recognize a particular user based on his mouse
movements traits [55]. So, it may also be possible to estimate other demographic
properties such as age, gender, and education from such mouse movements data
(our primary study goal). These attributes, although look generic, can be uti-
lized by the attackers for various nefarious purposes – targeted attacks against
people of one gender (e.g., sexual harassment against females, gender discrimi-
nation in job), and age group (phishing scams against elderly or cyber-bullying
of children) [8,10,21,32].

As a case study on demographic information leakage through mouse move-
ments tracking, we design the CATCHA attack (high level overview is shown
in Fig. 1) following the machine learning approach. The demographic predictor
(classification model) of CATCHA can be built offline utilizing the mouse inter-
actions with respect to game CAPTCHA from one set of the users, perhaps
recruited by the attacker himself, and using this predictor, another set of users
(victims) can be attacked. We evaluate the performance of CATCHA using the
dataset collected in the study of Gametrics [36] (details presented in Sect. 3).

Specifically, as a real-world case, we study the scenario where a user willingly
provides his demographic information to a widely used website W1 (say Google
or Facebook). During his interaction with W1, the mouse movement data is col-
lected and used to build the demographic prediction model. The widely adopted
web-service typically complies with the privacy policy that none of the personally
identifiable information would be shared with any third party services, such as
publishers, advertisers, developers, researchers, or law enforcement, without the
consent from the user. They can only share aggregated statistics including demo-
graphic prediction model with third-party services that help them improve their
services [26,28]. However, the demographic prediction model can be shared with



CATCHA: When Cats Track Your Movements Online 177

and used by any secondary website W2 (say Macys, Forever-21 and others) to
enhance their market through personalize marketing. The shopping stores such
as Macys, Forever-21, generally compel the users to register at their stores with
emails (or phone numbers) by providing several offers/discounts on their pur-
chase. Later, they target those users for marketing by sending emails/texts with
ads of their products [12,29]. At such stores, specifically with W2, the user does
not wish to explicitly/voluntarily share his personal information. However, W2
can utilize our demographic prediction model to predict the demographics of the
users and craft the emails/texts so that they can connect with their customers
in the best possible way by advertising related products. The secondary websites
can also use our prediction model as a lie detector. The users may intentionally
provide false information, potentially because they do not wish to share their
actual personal information with such websites. They can use our demographic
prediction model for detecting false information, correct the user’s information,
and use it for personalized marketing. Further, such websites may also turn into
malicious entities and utilize those predicted demographic attributes for various
nefarious purposes.

3 Game CAPTCHA Review and Dataset

Game CAPTCHA: Gametrics(game-based biometric) is a behavioral biomet-
ric based authentication system that authenticates a user based on the unique
way of solving a game challenge. The design of Gametrics is based on the notion
of a game CAPTCHA scheme called Dynamic Cognitive Game (DCG) intro-
duced in [35]. The purpose of DCG was to build a CAPTCHA scheme, not
an authentication scheme. DCG games consist of floating and static objects as
shown in Appendix Fig. 4. And, the task of the user is to find some relation of
moving object(s) with one of the static objects, which is considered as target
location, and drag-drop the moving object to their target location. The authors
of Gametrics utilized such simple interactive game to extract unique biometric
features that capture cognitive abilities and mouse dynamics of the users and
used these features to successfully authenticate the users. Contrary to the work
of Gametrics, although we utilize a similar set of features on their dataset, our
goal is to extract the demographic attributes of the user based on the cognitive
abilities and mouse dynamics of the user, not user authentication.

Game CAPTCHA Dataset: The Gametrics dataset contains data samples,
particularly mouse interactions while its users were solving game CAPTCHA,
from the users in both online and lab settings. Their study required participants
to go through a tutorial on a game CAPTCHA and fill up a demographic form.
The participants were then asked to solve several instances of game challenges.

For the online study, Gametrics’ work utilized the Amazon Mechanical Turk
(AMT) service to recruit participants. They created three Human Intelligence
Tasks (HITs) distributed over three days. From the first HIT, they collected 98
valid submissions that constitute 5839 game challenges. The participants had
to solve 60 instances of challenges. For each participant, the order of presenting



178 P. Shrestha et al.

Table 1. Summary of CAPTCHA dataset and demographics of its participants [36].

the challenges was random. For the next two days, authors of Gametrics sent
out an email to the participants asking them to participate in the follow-up
study. On the second day, 62 participants performed the study completing 2209
game challenges and on the third day, only 29 performed the study with the
submission of 1028 challenges. The follow-up study asked participants to solve
36 challenges. There were 98 participants in online study and they completed
9076 game challenges with an average(std) completion time of 7.38(3.22) s. For
the lab study, Gametrics’ work collected data from volunteers at the University
following a similar protocol as the online study. Total 20 volunteers participated
in the lab study and completed 1200 game challenges. Each of the participant
solved 60 game challenges using the same mouse/computer. Table 1a summarized
the dataset collected in the Gametrics’ study.

Crucial to our work, Table 1b shows the demographics information of the
participants in the study of Gametrics. The second and third column show the
demographics of online and lab participants, respectively. Participants were from
various age groups and educational level. We categorize them to the classes of
our interest relevant to our work. Since all the participants of Gametrics’ online
study use their own computer, browser, and mouse, different mouse or hardware
were involved in creating the mouse movements data as in a real world scenario.
The use of variety of mice/hardware may have impacted the performance of
the prediction models. To verify that the performance of prediction models are
resulted from the participants’ interaction, specifically the common traits in
demographics, rather than the diverse nature of mice/hardware, we performed
analysis on the dataset collected in the lab study where all the samples were
collected using the same mice/hardware.

4 CATCHA Design and Implementation

4.1 Demographic Attributes of Interest

We are interested in extracting information about the users’ gender, age group,
and education level based on their mouse interactions. We categorize each



CATCHA: When Cats Track Your Movements Online 179

attribute into two to three classes (i.e., possible values for an attribute) as shown
in Table 2. For example, there are two classes in our classification for gender –
male and female. For age, we consider two sets of classes. The first set consists
of two classes: (a) age <35 that covers teenagers to adult, and (b) age ≥35 that
covers the users over middle age. The second set consists of three classes: (a)
age <25 that covers the users from teenagers to young adults, (b) age between
25–34 that covers the adult users, and (c) age ≥35 that covers users above the
middle age. The purpose of these groupings of age is to see whether age can be
classified within finer grained age groups through mouse interactions.

Table 2. Various attributes considered in our analysis with brief description of their
corresponding classes. First column “Attribute Code” shows the unique code for a
demographic attribute to indicate various values (column “Class Description”) it can
hold.

Attribute code Attribute (# of classes) Class description

Gender Gender (2) Male and Female

Age-2 Age (2) <35 and ≥35

Age-3 Age (3) <25, (25 − 34), and ≥35

Edu-Highschool Education (2) Highschool and Other

Edu-Bachelor Education (2) Bachelor and Other

Edu-All Education (3) Highschool, Bachelor, and
Graduate (Master and PhD)

With respect to education, we consider three education levels – highschool,
bachelor, and graduate (masters and PhD), and create three sets of classes com-
bination for classification. In the first set, education is grouped into two classes:
highschool and rest of the education levels (bachelor and graduate) belonging
to other. Also, in the second set, education is grouped into two classes: bach-
elor and rest of the educational levels (highshool and graduate) classified to
other. Whereas, in the third set, all three levels of education are grouped sep-
arately into individual classes: highschool, bachelor, and graduate. The purpose
of these three different groupings is to see whether one level of education can be
recognized from the rest of the education levels, and also whether these educa-
tion levels are distinguishable between each other based on mouse interactions.
Table 2 summarizes these attributes under consideration for classification.

4.2 Feature Extraction

Due to the intrinsic differences in the users’ cognitive level, experience, risk-
taking behavior, and motor ability across demographic groups, the mouse usage
behavior differs across demographic groups [6,7,22,42,49,53,54]. To capture this
demographic-level differences on the mouse usage behavior (the premise behind



180 P. Shrestha et al.

our CATCHA attack), we extracted 64 features that capture cognitive and mouse
interaction characteristics of the users while playing the game CAPTCHA similar
to Gametrics (listed in Table 1 of [36]). All these features may not contribute
to distinguishing a particular demographic attribute. So, we perform statistical
analysis on these features extracted from the game CAPTCHA dataset to see
the features that are statistically significant across the demographic attributes
and later use these statistically significant features for our design and analysis
of CATCHA.

4.3 Classification Models

We tested various machine learning algorithms including Random Forest, Naive
Baiyes, Logistic Regression, Support Vector Machine, and K-Nearest Neighbor
with our datasets. Since Random Forest outperformed all other models, we uti-
lize Random Forest classifier to build our demographic prediction model under-
lying CATCHA system. Random Forest can estimate the importance of features,
and is robust against noise [33]. We design and implement several classification
models evaluating and improving the performance of CATCHA system in pre-
dicting various demographic attributes. As a preliminary study, we first design
a classification model utilizing all the samples collected from the users in all
three days and apply 10-fold cross validation. Specifically, we build two classi-
fication models. In the first model, features from each individual CAPTCHA
challenge (“single-game”) are used. In the second model, we paired two consec-
utive CAPTCHA challenges from a user and used features from each of such
paired challenges (“two-games”). The two-game setting is equivalent to solving
two challenges simultaneously or a longer challenge that combines two challenges
into one single challenge. In the two-game setting, features from individual game
CAPTCHA are extracted and then averaged to compute the combined features.
For each of these models, two different sets of features are used; first, all 64-
features (“all-features”), and second, only the features that are statistically sig-
nificant (“stat-features”) across the demographic attribute. The purpose of these
cross-fold validation models is to see if it is possible to predict demographic
attributes of the users based on their mouse interaction while playing a game
CAPTCHA challenge, and also to see the impact of using only stat-features on
the classification performance. In the rest of the classification models, we utilize
only the stat-features, features that are statistically significant across the demo-
graphic attribute. The reason behind using only the stat-features is explained
later in Sect. 5.3.

In a real world scenario, the classification model (train-test model) is first
trained with one set of data samples (training set) and later used against another
set of data samples (testing set). In order to see whether demographic informa-
tion leakage through mouse interactions is feasible in the real world, we build
several train-test models. In the first model, we use features from single-game
while the features from two-games is used in the second model. Each of these
models is trained with two different training sets. The first training set, “One-
day”, is created from the game challenges collected in first day, and the second



CATCHA: When Cats Track Your Movements Online 181

training set, “Two-days”, is created by combining game challenges from the first
and second (or third) days. Then the classifiers are tested against the game
challenges from the remaining day. Hence, second training set has a larger pool
of samples than the first training set. The purpose of second training set is to
see whether increasing the training set size when building an attribute classifier
improves its performance.

In all these models, the training samples corresponding to each attribute
were balanced while building the classification models, i.e., the same number of
instances were present in each class considered in the classification. Although our
data samples are skewed as shown in Table 1b, since the prediction model is built
with balanced data, each class has an equal probability for a random guess. The
employed approach may look relatively simplistic, however, it involves a crucial
challenge of finding the cognitive and the mouse-related behavioral character-
istics that correlate with the users’ demographic attributes. We address this
challenge by employing an extensive set of statistical hypotheses testing across
different demographic groups (see Sect. 5.2). Further, we believe that employing
a relatively simple approach is a strength of our work, as it can be easily, yet
effectively, exploited by a real-world, low-capability attacker.

5 Analysis and Results

5.1 Performance Metrics

In order to measure the performance of CATCHA classification models in pre-
dicting a demographic attribute of a user, we use false positive rate (FPR), false
negative rate (FNR), precision, recall and F-measure (F1 score). False Positive
(FP) indicates the number of times a user is incorrectly classified to a particu-
lar attribute, and False Negative (FN) indicates the number of times a user is
incorrectly classified to a different attribute. Precision measures the amount of
extracted demographic attribute that are relevant to the user. Recall measures
the amount of relevant demographic attribute that are correctly extracted. F1-
score (or F-Measure) is the harmonic mean of precision and recall. To make our
classification more accurate, we would like to have low FPR and low FNR with
high F1-score/F-Measure.

5.2 Statistical Analysis of Dataset

We perform statistical analysis to measure the contrast in mouse movements
when users belong to different demographic groups. For the same, we first com-
puted several features representing these groups and measured the differences
in mean values of the features between these groups. The presence of statisti-
cally significant differences on certain features between these groups will depict
the features’ strength in creating machine-learning based classification models.
Also, removing the features without statistically significant differences in build-
ing classification models may improve their computation time, and performance.



182 P. Shrestha et al.

Table 3. The statistical tests performed on feature sets of various demographic
attributes, and the list of features which show statistically significant differences in
the distribution of data representing different classes. The numeric values indicate
the number of statistic measures (out of mean, standard deviation, minimum, and
maximum) on the features that are statistically significant. Symbol ‘∗’ represents the
statistical significant single-valued feature (p-value< 0.0007). Time, Time first action,
Time first drag, and Total distance are single-valued features. Empty cells show the
features that are not statistically significant.

For statistical analysis, first, we performed Kolmogorov-Smirnov (K-S) test to
determine the normality of data distribution. The null hypothesis in K-S is that
the observed distribution fits the normal distribution. However, the K-S tests
of our dataset for all groups were statistically significant (p< 0.05), and hence
rejected the null hypothesis showing the distribution did not fit the normal distri-
bution. So, we used Kruskal-Wallis H test (K-W), a rank-based non-parametric
test, to determine if there are statistically significant differences between three
or more groups (independent variables) on the feature vectors (dependent vari-
ables) representing them. Similarly, we used Mann-Whitney U test (M-W) to
compare differences between two groups on their feature vectors. We performed
the analysis on all the features extracted for all the demographic attributes (see
Table 2). Since we were making 64 feature-vector comparisons in each attribute,
we applied Bonferroni correction on p-value to prevent Type I error, and con-
sidered only the comparisons with p-value< 0.0007 as statistically significant.
Table 3 lists the results obtained after the statistical analysis. The features with
statistically significant differences between two classes were used for building
automated demographic predictor (see Sect. 4.3).



CATCHA: When Cats Track Your Movements Online 183

5.3 CATCHA Performance

Cross-Validation Model: The performance of CATCHA when using features
from single-game and two-games with cross-fold validation approach is presented
below.

Single Game Challenge: When all-features are used, we achieved the classifi-
cation accuracies (F1-Scores) reasonably higher when compared to the random
guessing accuracies for each demographic attribute (as shown in first part, “All-
features”, of Appendix Table 6a). For gender, we achieved classification accuracy
of 73.34% while random guessing accuracy is 50%. We achieved accuracies of
71.23% and 63.20% for Age-2 and Age-3 while their random guessing accura-
cies are 50% and 33.33%, respectively. For Edu-Highschool, Edu-Bachelor and
Edu-All, we achieved accuracies (random guessing accuracies) of 71.65% (50%),
70.46% (50%), and 76.88% (33.33%), respectively. This shows that the accu-
racies of demographic attributes extraction are reasonably higher than that of
the random guessing models when all-features from a single game challenge are
used. When stat-features are used, across all demographic attributes, we found
the accuracy of classification model (as shown in second part, “Stat-features”,
of the Appendix Table 6a) consistently similar to the accuracy of corresponding
classifier that uses all-features (can be visualized in Fig. 2). This indicates the
features that are found to be statistically non-significant across a demographic
attribute do not add any information to the classification models at the time of
training and hence, can be discarded.

Table 4. Two Game Challenges. Performance (all presented in %) of two classification
models - (a) cross-validation, and (b) train-test, corresponding to various demographic
attributes when using two CAPTCHA game(s). The last column “Random” shows
the random guessing accuracy of the classifier. Highlighted cells show the attribute
predictions with FPRs/FNRs of less than 15%, and F1-Scores of at least 85%.

Two Game Challenges: Table 4a shows the results of cross-fold validation app-
roach when combining two game challenges to extract the features for both all-
features and stat-features. When using all-features from two game challenges,



184 P. Shrestha et al.

classification accuracies increase by 14–16% across most of the demographic
attributes comparing to the accuracies of the models using all-features from
single game challenge. Also, when stat-features from the merging of two game
challenges are used, classification accuracies increase by 14–19% comparing to
the accuracies when using stat-features from the single game challenge. With
these improvements on the accuracies when using features from the merge of
two game challenges, it has made the classification models of each demographic
attributes further better than its corresponding random guessing models. This
can be visualized through Fig. 2. As can be seen from the figure that stat-features
provide nearly similar performance result as that by all-features. Since statis-
tically non-significant features do not seem to provide any fruitful information
at the time of training the classifiers in both single game challenge setting and
merge of two game challenges setting, we consider only stat-features in rest of
our analysis and by using features, we are referring to stat-features.

0
20
40
60
80

100

F1
-S

co
re

 (%
)

Demographic A ributes

Random Accuracy All-features (single-game)
Stat-features (single-game) All-features (two-games)
Stat-features (two-games)

Fig. 2. Performance (F1-Score) of classification models (cross-validation) correspond-
ing to various demographic attributes (along X-axis) when using all-features and stat-
features from a single game challenge (single-game) and the combination of two game
challenges (two-games).

Train-Test Model. Here, we present the performance of the CATCHA system
when using features from single-game and two-games using the train-test model.

Single Game Challenge: As mentioned earlier, two different classification mod-
els were built within this model. The first classification model is trained with
One-day training set and tested against game challenges from second and third
days. All the results are average of results when tested against game challenges
from second day and third day. With this model, for gender, we achieved the
average accuracy of 64.40%, fairly better than the random guessing accuracy
of 50%. For Age-2 and Age-3, we achieved average accuracies of 66.31% and
47.47%, respectively, which are higher than the random guessing accuracies of
50% and 33.33%, respectively. Similarly, for other demographic attributes, we



CATCHA: When Cats Track Your Movements Online 185

achieved the accuracies reasonably better than random guessing accuracies. For
Edu-Highschool, Edu-Bachelor, and Edu-All, we achieved accuracies of 70.41%,
65.23%, and 66.91%, respectively while their random guessing accuracies are
respectively 50%, 50%, and 33.33%. These results are also presented in first
part, “One-day”, of Appendix Table 6b.

The second classification model is trained using Two-days training set. Two
days can be either first and second days or first and third days. The model is then
tested against the game instances from remaining day. Like “One-day” approach,
results are also average of results for game instances from second and third days.
Using this approach, we achieved an average accuracy of 66.02% for gender while
it was 64.40% when model was trained with game challenges from first day. The
accuracies of 70.34% and 59.23% were achieved for Age-2 and Age-3, while they
were 66.25% and 47.47%, respectively when using samples from only first-day.
In a similar way, accuracies of classification models corresponding to rest of the
demographic attributes (Edu-Highschool, Edu-Bachelor, and Edu-All) increase
by (2–12)% as compared to the corresponding classification accuracies when
game instances from only first day were used as training set. These results are
also shown in second part, “Two-days”, of Appendix Table 6b.

0

20

40

60

80

100

F1
-S

co
re

 (%
)

Demographic A ributes

Random Accuracy One-day (single-game)
Two-days (single-game) One-day (two-games)
Two-days (two-games)

Fig. 3. Performance (F1-Score) of classification models (train-test) corresponding to
various demographic attributes (along X-axis) when using a single game challenge
(single-game) and combination of two game challenges (two-games) and when game
instances from one-day and two-days are used as training set.

Two Game Challenges: Table 4b shows the results of applying the train-test
model when using features from two game challenges. First row “One-day” shows
the performance of classification models when samples from first day are used
as training set and samples from second and third days are used as testing set.
Using this approach, we achieved accuracy of 81.31% for gender while it was
64.40% when using features from single game challenge. For Age-2 and Age-
3, classification accuracies increase from the accuracies when using single game
challenge, specifically from 66.25% to 80.68% and 47.47% to 68.19%, respectively.
Similarly, accuracies increase from 70.41% to 83.80%, 65.23% to 83.25%, and



186 P. Shrestha et al.

66.91% to 67.95% for Edu-Highschool, Edu-Bachelor, and Edu-All, respectively.
Overall, classification accuracies increase by (2–22)% when features from two
game challenges are used comparing to the accuracies when single game challenge
was used. Now, looking at the results in second part “Two-day”, classification
accuracies further improve by (4–13)%. For an instance, for gender accuracy
improves from 81.32% to 90.94% while for Age-2 and Age-3 they improve from
80.68% to 88.92%, and 68.19% to 80.76%, respectively. We also achieved similar
results for other demographic attributes as shown in Table 4b. We can see from
this table that CATCHA achieves significantly high accuracies of at least 85%
(shown in highlighted cells) compared to those of the random guessing model
across all the attributes with two classes.

Thus, merging two game challenges enhances the performance of classifiers
implemented in our CATCHA attack, since it provides more informative features
to the classifiers at the time of training. Increasing the training samples also
improves the results of classification as it provide a larger data that in turn
enable the classifier to learn more distinguishable features. This can be visualized
in Fig. 3 which shows the performance (F1-Score) of classifiers corresponding
to various demographic attributes when single game challenge and two-game
challenges were used. It also presents the results for the models when trained
with one-day dataset and two-day dataset.

Train-Test Model on Lab Dataset. Table 5 shows the classification accu-
racies of prediction model when using the lab dataset (same mice hardware for
all users). When using single game challenge, classification accuracies were –
Gender: 69.52%, Age-2: 79.15%, Age-3: 60.81%, Edu-Highschool: 70.25%, Edu-
Bachelor: 67.01%, and Edu-All: 59.77%. These accuracies are reasonably higher
than random guessing accuracies (shown in last column “Random”). When two
game challenges were used, the accuracies increased by (0–5)% from the accura-
cies when single game challenge was used.

This result shows that the classification accuracy of the prediction model
still remains intact when the same mouse/hardware is used to generate the

Table 5. Accuracies (all presented in %) of prediction models corresponding to var-
ious demographic attributes using the lab-study dataset when using single and two
CAPTCHA game(s). In lab-study, same mouse (desktop machine) was used by all the
participants to solve the game challenges.

Attribute code Single-game Two-games Random

Gender 69.52 71.73 50.00

Age-2 79.15 79.68 50.00

Age-3 60.81 65.70 33.33

Edu-Highschool 70.25 73.90 50.00

Edu-Bachelor 67.01 68.07 50.00

Edu-All 59.77 62.58 33.00



CATCHA: When Cats Track Your Movements Online 187

mouse movement data. This indicates that the reasonably high classification
accuracy of prediction model compared to the random guessing accuracy is
obtained because of the participants’ behavioral differences while solving the
game challenges rather than the diverse nature of mice/hardware.

6 Discussion and Future Work

Extension to the Threat: The threat of personal attribute leakage based on
mouse interactions may further be extended in two different ways: first, based on
the mechanism using which the leakage happens, i.e., type of interactions, and
second, based on the type of leakage. Several browser interactions such as solving
CAPTCHA games (other than the game CAPTCHA considered in our study), or
even normal browsing behavior may be utilized to derive several user character-
istics. For instance, it may be possible to learn users’ personal traits utilizing the
mouse behavior while solving Google No CAPTCHA reCAPTCHA [27], a popu-
lar free service offered by Google to recognize a machine and a human [45]. The
underlying technique, advanced risk analysis, of Google reCAPTCHA, considers
the user’s mouse interactions at the website along with various browser charac-
teristics to differentiate the machine from the human [45]. Google or potentially
a malicious website hosting Google reCAPTCHA may then utilize such personal
traits for their own benefits. Similar to Google reCAPTCHA, the threat may also
apply to FunCaptcha [18], a simple interactive game CAPTCHA that requires
the user to orient the image in correct position through a few mouse interactions.
Other than the demographic attributes considered in our work, it may be possi-
ble to deduce various other personal attributes, such as race, marital status, or
religion, of the user utilizing mouse dynamics. Moreover, emotional status of the
user at the time of browsing may also be learned through his mouse activities.
However, further research is needed towards the extension of CATCHA threat
by utilizing different types of mouse interactions or by extracting several other
personal attributes of the user.

Potential Defenses and Challenges: One approach to securing mouse move-
ment tracking may be to block JavaScript (JS ) mouse API on the browser that
disables the mouse movements tracking and in turn fixes the problem of informa-
tion leakage. However, this may not be a viable solution since there are several
legitimate use cases of mouse API other than mouse tracking such as in present-
ing dynamic web contents. Therefore, blocking JS mouse API would prevent
these use cases, reducing the web functionality. Further, websites may use other
techniques (e.g., plugins) to track mouse movements, although they may have
poorer performance in tracking mouse movements compared to the performance
of JS API. Another approach may be to integrate mouse movement recording
with already available permission model that requires users’ consent prior to
allowing access to sensitive resources, such as webcam, microphone or location.
These models will prompt the user for granting permission for mouse movement
tracking and make user aware of mouse activities being potentially tracked. Fur-
ther, whenever such mouse movement tracking is taking place, clearly informing



188 P. Shrestha et al.

and alerting the user about ongoing tracking could be a viable defense [41]. One
fundamental challenge with this approach is that, although users may become
aware of such tracking, they may not be aware of the actual privacy risks and may
be fooled to grant permissions. Further research must be conducted to validate
the feasibility of such models in protecting the mouse data privacy leakage.

7 Related Work

An extensive amount of research has been performed to profile users and create
their fingerprints [13,31,39,40]. Some researchers used the Javascript engine to
obtain client information [40]. The others tracked the user based on JavaScript
execution characteristics in the client’s browser [39]. Eckersley [13] placed the
effectiveness of browser fingerprinting under scrutiny by collecting 470,161 fin-
gerprints from the visitors of a given website [14]. Hu et al. [24] tried to exploit
users’ web browsing behavior to infer their demographic information including
age and gender. Laperdrix et al. [31] explored and reported on effectiveness of
the browser fingerprinting in context of HTML5 and browser’s Canvas. However,
one drawback of browser-based fingerprinting or demographic prediction is that
they remain changeable over the course of time due to the variety of issues such
as browser/plugin upgrades and other changes in the environmental variables.
Moreover, the system may be defeated easily by a privacy-conscious user by the
use of NoScript or Torbutton plugins [1,47].

Many studies have been conducted on keystroke rhythm and their dynam-
ics to either authenticate users or draw personal and demographic information
[4,11,16,30]. Epp et al. [15] tried to identify users’ emotional states (e.g., relax-
ation, sadness, anger, excitement) using keystroke dynamics and proposed an
emotional-aware system. Fairhurst and Costa-Abreu [16] tried to infer users’
characteristics on social networks based on keystroke dynamics and reported
preliminary results.

Although, an extensive number of researches have been conducted in the
area of mouse movement dynamics and user authentication [2,3,23], no study to
our knowledge has been done on the attack side, like CATCHA, to draw users’
demographic map. Olejnik and Castelluccia [41] studied the presence of mouse
movement scripts for the purpose of user profiling and users tracking. The paper
offered the MouseIndicator extension for the mitigation, which can serve as a
potential defense against the CATCHA attack also. As a benign use case of
mouse tracking, Wang et al. [50] and Monaro et al. [37] investigate the clicking
habits of the users, and demonstrate that mouse behavior can be used to detect
the fake profiles.

To the best of our knowledge, the most relevant study to ours is performed
by Hertzum and Hornbaek [22] where they tried to analyze the effects of aging
on the use of mouse and touchpad between three different age groups. However,
our study significantly differs from the study in [22], since their study has only
been conducted to differentiate the age group, but our study offers a practical
attack scenario using a simple game CAPTCHA task and addresses a wide range
of demographic features.



CATCHA: When Cats Track Your Movements Online 189

8 Conclusion

In this paper, we presented CATCHA, an attack system that can retrieve the
users’ personal information, specifically various demographic attributes such as
gender, age group, and education level based on the innocuous-looking mouse
movements while solving a simple game CAPTCHA. CATCHA leverages several
mouse dynamic features that capture users’ inherent cognitive and behavioral
abilities, and builds a machine learning model to predict demographic attributes.
We built and evaluated the CATCHA demographic predictor utilizing a compre-
hensive dataset of mouse interactions with a simple game CAPTCHA collected
in an online setting, and achieved sufficiently high accuracies, significantly better
than that corresponding to a random guessing classifier model. This underscored
the threat of leaking various personal attributes through users’ mouse movement
characteristics when performing a commonly-occurring security task over the
web (solving a CAPTCHA), unbeknownst to the users. Further, the CATCHA
threat may become even more devastating if it can be extended to the next
level, e.g., by using different modes of interactions (solving other CAPTCHA
challenges or normal browsing behavior, and over longitudinal settings) to infer
the user’s attributes or by inferring attributes other than demographics consid-
ered in this work. Overall, our work highlighted the fact that mouse tracking
through websites is detrimental to users’ privacy, and motivated the design of
a robust, yet usable security mechanism that protects the web users’ privacy
against CATCHA like mouse-based attacks without affecting the user-to-browser
experience.

Appendix

Moving ObjectsTargets

Fig. 4. An instance of game CAPTCHA. Targets (left) are static and moving objects
(right) are mobile. The task of the user is to drag-drop a subset of moving objects to
their corresponding target locations.



190 P. Shrestha et al.

Table 6. Single game challenge. Performance (all presented in %) of two classification
models - (a) cross-validation, and (b) train-test, corresponding to various demographic
attributes when using single CAPTCHA game. The figures within the parenthesis
(“Random”) in the last column show the random guessing accuracy of the classifier.

References

1. InformAction: Noscript - JavaScript/Java/Flash blocker for a safer Firefox expe-
rience! - what is it? (2017). https://noscript.net/. Accessed 28 Oct 2017

2. Ahmed, A.A.E., Traore, I.: Anomaly intrusion detection based on biometrics. In:
IEEE SMC Information Assurance Workshop (2005)

3. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics.
IEEE Trans. Dependable Secur. Comput. 4, 165–179 (2007)

https://noscript.net/


CATCHA: When Cats Track Your Movements Online 191

4. Bergadano, F., Gunetti, D., Picardi, C.: Identity verification through dynamic
keystroke analysis. Intell. Data Anal. 7, 469–496 (2003)

5. Chrome Blog: Everyone can now track down noisy tabs (2017). https://goo.gl/
mojwB2. Accessed 19 May 2017

6. Brodic, D., Petrovska, S., Jankovic, R., Amelio, A., Draganov, I.: User-centric anal-
ysis of the CAPTCHA response time: a new perspective in artificial intelligence.
ERCIM News 109, 49–50 (2017)

7. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? A large scale evaluation. In: IEEE Security and
Privacy (S&P) (2010)

8. Carlson, E.L.: Phishing for elderly victims: as the elderly migrate to the internet
fraudulent schemes targeting them follow. Elder LJ (2006)

9. Chen, M.C., Anderson, J.R., Sohn, M.H.: What can a mouse cursor tell us more?:
correlation of eye/mouse movements on web browsing. In: Extended Abstracts on
Human Factors in Computing Systems (2001)

10. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy set-
tings. Priv. Enhancing Technol. 2015, 92–112 (2015)

11. Dowland, P.S., Furnell, S.M.: A long-term trial of keystroke profiling using digraph,
trigraph and keyword latencies. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang,
L. (eds.) SEC 2004. ITIFIP, vol. 147, pp. 275–289. Springer, Boston, MA (2004).
https://doi.org/10.1007/1-4020-8143-X 18

12. Eccles, L.: Money mail reveals why shops want your email address (2016). https://
goo.gl/9jFtfr. Accessed 24 Sept 2018

13. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8 1

14. Eckersley, P.: Panopticlick (2010). https://panopticlick.eff.org. Accessed 28 Oct
2017

15. Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke
dynamics. In: SIGCHI Conference on Human Factors in Computing Systems. ACM
(2011)

16. Fairhurst, M., Da Costa-Abreu, M.: Using keystroke dynamics for gender iden-
tification in social network environment. In: Imaging for Crime Detection and
Prevention 2011 (ICDP 2011). IET (2011)

17. Firefox: Mute sound in Firefox tabs (2017). https://goo.gl/KeA80E. Accessed 19
May 2017

18. FunCaptcha: reCAPTCHA: easy on humans, hard on bots (2017). https://www.
funcaptcha.com/. Accessed 13 May 2017

19. Gao, S., Mohamed, M., Saxena, N., Zhang, C.: Emerging image game CAPTCHAs
for resisting automated and human-solver relay attacks. In: Annual Computer
Security Applications Conference (2015)

20. Google Chrome: Change website permissions - google chrome (2017). https://goo.
gl/OhoO5H. Accessed 19 May 2017

21. Henry, N., Powell, A.: Embodied harms gender, shame, and technology-facilitated
sexual violence. Violence Against Women 21, 758–779 (2015)

22. Hertzum, M., Hornbæk, K.: How age affects pointing with mouse and touchpad: a
comparison of young, adult, and elderly users. Int. J. Hum.-Comput. Interact. 26,
703–734 (2010)

23. Hocquet, S., Ramel, J., Cardot, H.: Users authentication by a study of human
computer interactions. In: Proceedings of the Eighth Annual (Doctoral) Meeting
on Health, Science and Technology (2004)

https://goo.gl/mojwB2
https://goo.gl/mojwB2
https://doi.org/10.1007/1-4020-8143-X_18
https://goo.gl/9jFtfr
https://goo.gl/9jFtfr
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://panopticlick.eff.org
https://goo.gl/KeA80E
https://www.funcaptcha.com/
https://www.funcaptcha.com/
https://goo.gl/OhoO5H
https://goo.gl/OhoO5H


192 P. Shrestha et al.

24. Hu, J., Zeng, H.J., Li, H., Niu, C., Chen, Z.: Demographic prediction based on
user’s browsing behavior. In: International Conference on World Wide Web (2007)

25. HuffingtonPost: ‘are you a human’ CAPTCHA game brings fun to web security
(2018). https://goo.gl/aEWa4e. Accessed 27 March 2018

26. Facebook Inc.: Data policy (2018). https://www.facebook.com/policy.php.
Accessed 19 Sept 2018

27. Google Inc.: reCAPTCHA: Easy on humans, hard on bots (2017). https://goo.gl/
oL49TZ. Accessed 17 May 2017

28. Google Inc.: Privacy policy - Google (2018). https://goo.gl/fwnohr. Accessed 19
Sept 2018

29. James, M.S.: Why do they want my phone number? (2016). https://goo.gl/
EWoyqT. Accessed 24 Sept 2018

30. Joyce, R., Gupta, G.: Identity authentication based on keystroke latencies. Com-
mun. ACM 33, 168–176 (1990)

31. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: IEEE Symposium on
Security and Privacy (SP) (2016)

32. Li, Q.: Cyberbullying in schools: a research of gender differences. Sch. Psychol. Int.
27, 157–170 (2006)

33. Maxion, R.A., Killourhy, K.S.: Keystroke biometrics with number-pad input. In:
Dependable Systems and Networks (DSN) (2010)

34. Mohamed, M., Gao, S., Saxena, N., Zhang, C.: Dynamic cognitive game captcha
usability and detection of streaming-based farming. In: Workshop on Usable Secu-
rity (USEC), co-located with NDSS (2014)

35. Mohamed, M., et al.: A three-way investigation of a game-CAPTCHA: automated
attacks, relay attacks and usability. In: ACM Symposium on Information, Com-
puter and Communications Security (2014)

36. Mohamed, M., Saxena, N.: Gametrics: towards attack-resilient behavioral authen-
tication with simple cognitive games. In: Annual Conference on Computer Security
Applications (2016)

37. Monaro, M., Gamberini, L., Sartori, G.: The detection of faked identity using
unexpected questions and mouse dynamics. PloS One (2017)

38. Mouseflow (2017). https://mouseflow.com/. Accessed 13 May 2017
39. Mowery, K., Bogenreif, D., Yilek, S., Shacham, H.: Fingerprinting information in

JavaScript implementations. In: Proceedings of W2SP (2011)
40. Mulazzani, M., et al.: Fast and reliable browser identification with JavaScript

engine fingerprinting. In: Web 2.0 Workshop on Security and Privacy (W2SP)
(2013)

41. Olejnik, L., Castelluccia, C.: Of mice and men: mouse movements tracking and
browser UI protections

42. Pentel, A.: Predicting age and gender by keystroke dynamics and mouse patterns.
In: Conference on User Modeling, Adaptation and Personalization (2017)

43. Radinsky, K., Svore, K.M., Dumais, S., Teevan, J., Bocharov, A., Horvitz, E.:
Modeling and predicting behavioral dynamics on the web (2012)

44. Rodden, K., Fu, X.: Exploring how mouse movements relate to eye movements on
web search results pages. In: Web Information Seeking and Interaction (2007)

45. Sivakorn, S., Polakis, I., Keromytis, A.D.: I am robot: (deep) learning to break
semantic image CAPTCHAs. In: IEEE European Symposium on Security and
Privacy (EuroS&P) (2016)

46. The WindowsClub: how to setup Firefox permission manager for websites (2017).
https://goo.gl/PNOozZ. Accessed 19 May 2017

https://goo.gl/aEWa4e
https://www.facebook.com/policy.php
https://goo.gl/oL49TZ
https://goo.gl/oL49TZ
https://goo.gl/fwnohr
https://goo.gl/EWoyqT
https://goo.gl/EWoyqT
https://mouseflow.com/
https://goo.gl/PNOozZ


CATCHA: When Cats Track Your Movements Online 193

47. Tor: Tor project: Torbutton (2017). https://www.torproject.org/docs/torbutton.
Accessed 13 May 2017

48. Ur, B., Leon, P.G., Cranor, L.F., Shay, R., Wang, Y.: Smart, useful, scary, creepy:
perceptions of online behavioral advertising. In: Symposium on Usable Privacy and
Security (2012)

49. Walker, N., Millians, J., Worden, A.: Mouse accelerations and performance of
older computer users. In: Human Factors and Ergonomics Society Annual Meeting.
SAGE Publications (1996)

50. Wang, G., Konolige, T., Wilson, C., Wang, X., Zheng, H., Zhao, B.Y.: You are how
you click: clickstream analysis for sybil detection. In: USENIX Security Symposium
(2013)

51. Wordpress: Are you a human - the fun spam blocker (2017). https://goo.gl/
pszcYQ. Accessed 13 May 2017

52. WSJ: Facebook tests software to track your cursor on screen (2013). https://goo.
gl/tM3zxu

53. Yamauchi, T.: Mouse trajectories and state anxiety: feature selection with random
forest. In: IEEE Affective Computing and Intelligent Interaction (ACII) (2013)

54. Yamauchi, T., Seo, J.H., Jett, N., Parks, G., Bowman, C.: Gender differences in
mouse and cursor movements. Int. J. Hum.-Comput. Interact. 31, 911–921 (2015)

55. Zheng, N., Paloski, A., Wang, H.: An efficient user verification system via mouse
movements. In: Conference on Computer and Communications Security (2011)

https://www.torproject.org/docs/torbutton
https://goo.gl/pszcYQ
https://goo.gl/pszcYQ
https://goo.gl/tM3zxu
https://goo.gl/tM3zxu


Designing a Code Vulnerability
Meta-scanner

Raounak Benabidallah(B), Salah Sadou, Brendan Le Trionnaire,
and Isabelle Borne

Université Bretagne Sud, IRISA, Vannes, France
{Raounak.Benabidallah,Salah.Sadou,Brendan.LeTrionnaire,

Isabelle.Borne}@univ-ubs.fr

Abstract. The concept of “secure by design” is based on preventive
software security and aims at avoiding vulnerabilities as soon as possi-
ble. However, finding vulnerabilities manually is a time-consuming and
error-prone process. Thus, the use of code scanner tools becomes a good
practice for developers. Unfortunately, existing code scanner tools pro-
duce too many false positives, which complicates the cycle development
task.

In this paper, we present an approach to construct a code vulnera-
bility scanner upon existing scanner tools. The aim of such a scanner,
called code vulnerability meta-scanner (CVMS), is to be more efficient
and reduce the number of false positives. Our experimental results show
that none of the scanners strictly subsumes another, and none of them
is better than all the others for all the vulnerabilities. So, we propose a
method that combines their results with respect to their performances.
We experimented our approach using three existing scanner tools (For-
tify, Yag Suite and SpotBug). Then, we used the resulted CVMS to
annotate a well-known Java application corpus, namely Qualitas Cor-
pus. These experiment results demonstrated that the CVMS performs
better than the scanners on which it is constructed.

1 Introduction

Most attacks on software systems are possible due to the existence of vulnera-
bilities in their source code. Vulnerabilities may be defects in design or imple-
mentation, or simply a code erosion due to a poor maintenance activity [22].
Good software engineering methods, the use of a secure design environment, the
choice of appropriate languages and programming rules can reduce the number
of vulnerabilities in the code. However, these good practices are still relatively
uncommon and do not guarantee to avoid vulnerabilities. Thus, more research
works are needed to help developers in vulnerability identification.

Identifying vulnerabilities in a source code is a complex and costly activity.
Several techniques were already proposed to identify code vulnerabilities. The
most intuitive one is the source code review. This kind of analysis is recognized
as one of the most effective defense strategies [13] and is therefore essential in the
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 194–210, 2019.
https://doi.org/10.1007/978-3-030-34339-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_11


Designing a Code Vulnerability Meta-scanner 195

software development life cycle. However, finding vulnerabilities manually is a
time-consuming and error-prone process. Furthermore, it requires security exper-
tise that remains rare among developers. To address this problem, researchers
and industrialists have put a lot of effort into finding new methods. One of the
most widespread techniques consists in mining program patches in order to col-
lect vulnerabilities [10]. The idea here is to consider the piece of code targeted
by the patch as the prototype of a vulnerability, and once the patch is applied,
the resulting code can be considered as cleared of this vulnerability [1]. However,
there are several ways to fix a vulnerability and a patch represents only one pos-
sible solution. Furthermore, considering the code as vulnerable before the patch
and as not vulnerable after is an incorrect assumption. Indeed, after applying
the patch we have no guarantee that the vulnerability has been correctly fixed
nor that the code does not contain other types of vulnerabilities.

Another method widely used by industrialists and researchers is to use
code scanners to identify vulnerabilities. Several works proposed code scanner
tools [15]. However, existing scanner tools find too many false positives, which
makes the maintenance activity hard and thus error-prone.

Through this paper, we propose an approach to build code vulnerability scan-
ners to identify vulnerabilities with better accuracy than existing tools and with
fewer false positives. This approach jointly use several existing code vulnerability
scanner tools in order to construct a better one. Our approach is based on the
emergence theory: the whole is more than the sum of its parts.

This paper introduces the following contributions:

– A new method that merges existing scanners to benefit from the effectiveness
of each scanner tool and provides a more efficient one.

– A new vulnerability categorization to compare performances and results of
different scanner tools for a best joint use.

– Tagging a well-known software corpus with its held vulnerabilities. This will
be very useful for experiments on software vulnerabilities.

The remainder of the paper is organized as follows: in the next section, we
describe the proposed approach to design a code vulnerability meta-scanner.
In Sects. 3 to 7, we detail all the steps that allow the accomplishment of the
design methodology. In Sect. 8, we give the results of the different experiments
we conducted and discuss the results obtained. In Sect. 9, we discuss some related
works. We conclude the paper in Sect. 10 and give the link to the generated data.

2 General Approach

The scanners built with our approach are based on the following idea: listen
to advice from different code vulnerability scanner tools to build a consistent
decision. The process describing this approach is defined by Fig. 1.

The existence of a vulnerability is suspected as soon as one of the scanners
reports it. However, before making a decision, we must consult the result of
the other scanners concerning this vulnerability in the same portion of code.



196 R. Benabidallah et al.

Fig. 1. General approach for Code Vulnerability Meta-Scanner construction

Somehow, it is as if we are organizing a vote for scanners with the following
question: is there vulnerability x in the y portion of code? The answer can only
be yes or no. However, the organization of such a vote, in an automatic manner,
raises several problems:

1. The same vulnerability is not identified in the same way by the different
scanners.

2. The accuracy level of the different scanners differs from one vulnerability to
another.

3. How to aggregate the above information to produce the vote result?

Vulnerability Categorization step shown in Fig. 1 aims at providing a com-
mon vulnerability referencing for different scanners. It is based on CWE cate-
gorization in order to provide a pragmatic mapping between information given
by each scanner and the corresponding vulnerabilities in a common categoriza-
tion. This step answers the problem (1) by providing the scanners with a same
categorization of vulnerabilities.

The second step of our approach consists in estimating the scanners con-
fidence rate. For that aim, we benchmark each scanner using the Juliet test
suite [7] in order to determine its performance for each vulnerability. We con-
sider the accuracy as a confidence rate (solution to problem 2).

The last step of our approach consists in using the elements built in the
previous steps when analyzing the same code with different scanners in order
to determine the existence of some vulnerabilities. For each part of the code (in
our case a method), we collect the results of each scanner to aggregate them as
a vote weighted by the confidence rate of the scanners (solution to problem 3).

In the following, we describe all the elements necessary for the accomplish-
ment of our approach.

3 Vulnerability Benchmark Corpus

The proposed approach is essentially based on a pragmatic use of existing scan-
ner tools. We need to evaluate their performances in order to combine them



Designing a Code Vulnerability Meta-scanner 197

effectively. One of the most effective ways to evaluate static analysis tools is by
using them in the analysis of a portion of code, then comparing their results with
the actual vulnerabilities. Therefore, we need to choose the appropriate code to
be analyzed. In our work, we mainly need a benchmark with vulnerable and non-
vulnerable code. The objective is not only to evaluate the scanner’s performance
in identifying vulnerabilities but also to estimate its effectiveness in avoiding
false alerts (false positives). We have selected the Juliet Test Suite because it
satisfies the identified needs. Juliet Test Suite was created by the National Secu-
rity Agency’s (NSA) Center for Assured Software (CAS) and developed specif-
ically for assessing the effectiveness of static analysis tools [20]. It consists of a
collection of C/C++ and Java programs with known flaws. The test cases use
MITRE’s [18] Common Weakness Enumeration (CWE [17])1 as a basis for nam-
ing and organizing. The most specific CWE entry is used for the target flaw.
The test cases cover 113 CWE entries, but only 11 of the 2011 CWE/SANS Top
25 Most Dangerous Software Errors which are the only ones detectable by static
code analysis.

Once the choice of the test suite made, we need to define the level of gran-
ularity to use when reporting security alerts. Granularity represents the entity
that will be presented to developers for analysis [14]. Different levels of granular-
ity offer different advantages [19]. For instance, the line of code granularity can
be considered as a precise alert but this granularity is too fine for developers to
identify an issue [14]. Most of the studies adopt the component file granularity
level following the findings of Morrison et al. [19]. However, we suspect that this
level may not be accurate in case of vulnerability studies, especially if the files
are very large. Indeed, in the latter case, the analysis becomes expensive in exe-
cution time or error-prone if human analysis is used. For this reason, we propose
to use the method of a class as the smallest granularity. This should be a good
compromise between the number of lines of code to analyze and the information
we may deduce from them.

In the reminder of the paper, we will use the term individual to represent a
method of a class.

4 Code Vulnerability Scanner Tools

The static analysis tools need to be selected based on the two following criteria:

– The first selection criterion concerns the vulnerability coverage quality of the
scanners. The idea is to choose scanners that do not cover exactly the same
vulnerabilities.

– The second corresponds to the vulnerability detection method used by the
scanner tools. Even if we are restricted to methods based on source code static
analysis, we found several techniques in this area (vulnerability modeling, AI,

1 CWE: CWE is a community-developed list of common software security weaknesses.
It serves as a common language, a measuring stick for software security tools, and
as a baseline for weakness identification, mitigation, and prevention efforts.



198 R. Benabidallah et al.

etc.). It is therefore interesting to vary the used techniques in order to mitigate
the individual weaknesses of the selected scanners.

For our experiments, we have eliminated some tools for their unavailabil-
ity (in terms of price, documentation, etc.) and others for the lack of additional
information they provide. We selected the following three scanners: Find Secu-
rity Bugs (also named SpotBugs) [5], Fortify Static Code Analyzer [8] and Yag
suite [23]. Table 1 summarizes the vulnerabilities from the Juliet test suite that
are covered by at least one of the three selected scanners. The vulnerabilities are
sorted by their CWE identity number.

Table 1. Vulnerabilities from Juliet covered by the selected scanner tools

Vulnerabilities
scanners

23 36 78 80 81 83 88 89 90 113 134 256 259 315 319 321 325

Fortify X X X X X X X X - - - X X - X X X

Yag Suite X X X X X X - X X X - - - X - - -

SpotBugs - - X - X X - X X X X - X - - X -

Vulnerabilities
scanners

327 328 329 330 338 470 506 510 534 535 539 566 601 606 614 643 1004

Fortify X - - - - - X X - - - X X - - - -

Yag Suite X - - X X X - - X X X - X X X - -

SpotBugs X X X X X - X - - X X - X - - X X

Here is a small description of each selected scanner:

– Find Security Bugs or SpotBugs is an open source tool for static source code
analysis. SpotBugs relies on vulnerability modeling and manages a knowledge
base containing 128 vulnerability patterns [4].

– Fortify Static Code Analyzer (SCA) uses multiple algorithms and an expan-
sive knowledge base of secure coding rules to analyze source code. To pro-
cess a code, Fortify SCA converts source code into an intermediate enhanced
structure for security analysis. The analysis engine, which consists of multi-
ple specialized analyzers, uses secure coding rules to analyze the source code
in order to find coding practice violations. Fortify SCA also provides a rule
builder to extend and expand static analysis capabilities with some specific
rules [9].

– Yag Suite is a software suite based on machine learning techniques for vul-
nerability prediction. One of the strengths of this tool is that it assesses the
relevance of each identified vulnerability and estimates its criticality. In addi-
tion, the knowledge base is refined according to the application domain by
integrating some user’s answers [23].



Designing a Code Vulnerability Meta-scanner 199

5 Vulnerability Categorization

Vulnerability scanners are widely used for automatic code review but they do not
completely cover the same set of vulnerabilities. In order to increase their cov-
erage rate, we propose to combine their results. However, we have first to tackle
a challenging problem: each scanner represents, identifies and classifies vulner-
abilities using its own denomination [26]. For instance, the Cross-Site Scripting
vulnerability (XSS) is called “Insecure Interaction - CWE ID 079” by Fortify,
“XSS-Servlet” by Spotbugs, and “xss.stored” by Yag Suite. Due to this diversity
of responses for the same vulnerability, it is very difficult to use together different
scanner tools for a common purpose.

Moreover, to compare the effectiveness of different scanner tools, we can rely
on the Common Weakness Enumeration (CWE) [17] classification to categorize
the vulnerabilities and on Juliet as a test suite corpus. Unfortunately, while it is
obvious but tedious to find the most abstract CWE identifier that corresponds to
the definitions given by the scanner tools, it is not easy to find its corresponding
identifier in Juliet. Indeed, Juliet test cases are created for all appropriate flaw
types and each one is named using the most relevant CWE entry. For instance,
the XSS vulnerability (CWE-79) may correspond to at least one of the following
identifiers in Juliet:

– CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web
Page (Basic XSS);

– CWE-81: Improper Neutralization of Script in an Error Message Web Page;
– CWE-83: Improper Neutralization of Script in Attributes in a Web Page;

Having such details to distinguish two vulnerabilities is not always helpful.
Indeed, the evaluation of a scanner is usually done by comparing its results
with the actual vulnerabilities. However, evaluating the scanners by confronting
them to Juliet and comparing the CWE identifiers is not always adequate. As
previously shown, a security alert returned by a scanner could cover several
vulnerabilities of Juliet when: (i) Juliet’s test cases correspond to less abstract
vulnerabilities than those returned by the scanner; (ii) The vulnerabilities are
strongly related to each other.

To ensure efficient evaluation and compare the performance of scanners, we
proceed to the categorization of the vulnerabilities covered by the scanner tools
with respect to Juliet suite corpus definitions and CWE categorization. This
process consists in creating a unique and common reference for the scanners,
gathering all the correct correspondences between the results of the scanners
and the Juliet test cases. Our process involves three steps:

1. Juliet analysis: the aim is to collect all the vulnerabilities defined in Juliet
and covered by the used scanner tools.

2. CWE identifier mapping: for each vulnerability definition given by each scan-
ner tool, found its corresponding CWE identifier.

3. Propose a common categorization: group definitions from Juliet which are
related to the same vulnerability in a common and meaningful definition.



200 R. Benabidallah et al.

Concretely, in the last step of our process, we start from each label returned
by each scanner tool then analyze all the individuals where the corresponding
vulnerability was detected. To facilitate this task, we rely on the CWE cat-
egorization to verify the mapping between scanner results and vulnerability
identifiers on Juliet. The categorization CWE was set up by the MITRE [17]
and consists of hierarchical organization between the vulnerabilities. The roles
assigned to the identifiers represent several levels of abstraction, presented in
the following from the more abstract to the more concrete:

– Category: a CWE entry that contains a set of other entries that share a
common characteristic;

– Class: a weakness that is described in a very abstract fashion, typically inde-
pendent from any specific language or technology. Moreover, this relationship
is confirmed by the categorization proposed by CWE.

– Base: a weakness that is described in an abstract fashion, but with sufficient
details to infer specific methods for detection and prevention.

– Variant: a weakness that is described at a very low level of detail, typically
limited to a specif language or technology.

Moreover, the links between the different levels are represented by multiple rela-
tionships such as “MemberOf”, “ParentOf”, “ChildOf”, “CanAlsoBe”, etc. We
have used all this information to draw the possible paths between vulnerability
identifiers. Nevertheless, by closely analyzing the invalid matches, we noticed
that there were several scanner responses that were correct according to the
CWE definitions but no link was created in the CWE categorization. This is
mainly due to the fact that the categorization was done in a subjective way [29].
As a result, this categorization could not be considered as a standard. Thus, the
mapping we propose in this paper serves as a complement to CWE categorisa-
tion.

Table 2 summarizes the categorisation we propose for some Juliet’s vulner-
ability definitions. We only consider vulnerabilities that have been detected by
at least one of the scanner tools we selected for our experiment, namely For-
tify, SpotBugs or Yag Suite. According to our knowledge of other vulnerability
scanner tools (mostly free access), the vulnerabilities covered by the three used
scanners almost encompass the vulnerabilities that existing code scanner tools
can detect. Thus, the mapping table that we propose remains sufficiently reusable
in the case of another group of code scanner tools. If in the future, a new code
scanner tool arrives with some vulnerabilities not covered yet, this mapping table
will need to be completed.

To facilitate the addition of a vulnerability to our mapping table, we give
more details on how we proceed on an example of a vulnerability, namely Path
Traversal (Category 1). By analyzing the results of the scanner tools on Juliet
test cases implementing CWE-23 and CWE-36 flaws, we noticed that Fortify
returned the message “Risk Management Resource - CWE ID 022”, Yag suite
returned the message “Injection.path” while Spotbugs did not detect any vul-
nerability that can match with this category. When looking for these defini-
tions in CWE, we found that the CWE-22 is the one that matches the best.



Designing a Code Vulnerability Meta-scanner 201

Table 2. Proposed vulnerability categorization

Category

number

Category description Associated to in Juliet Test Suite

1 Path traversal CWE-23: Relative path traversal

CWE-22 CWE-36: Absolute path traversal

2 Os command injection CWE-78

CWE-78 CWE-506: Embedded malicious code

CWE-88: Argument injection or modification

3 XSS: Improper neutralization Of

input during Web Page Generation

CWE-80: XSS

CWE-79 CWE-81: XSS Error Message Servlet File

CWE-83: XSS Attribute Servlet connect tcp

CWE-535: Info exposure shell error servlet

4 SQL injection CWE-89

CWE-89

5 Injection LDAP CWE-90

CWE-90

6 Uncontrolled format string CWE-134

CWE-134

7 Use of broken or risky

Cryptographic Algorithm

CWE-256: Plaintext storage pwd

CWE-327 CWE-319: Cleatext Tx sensitive info

CWE-321: Hard coded cryptographic key

CWE-325: Missing required cryptographic step

CWE-327

CWE-328: Reversible One-Way Hash

CWE-329: Not Using a Random IV with CBC Mode

8 Use of insufficiante random values CWE-330

CWE-330 CWE-338: Use of Cryptographically Weak Pseudo-Random

Number Generator (PRNG)

9 Use if externally controlled CWE-470

Input to select classes or code

(unsafe reflection)

CWE-470

10 Open redirect to untrusted site CWE-601

CWE-601

11 Unchecked loop CWE-606

CWE-606

12 XPATh injection CWE-643

CWE-643

13 Use of hard coded credentials CWE-256: Plaintext storage pwd

CWE-798 CWE-259: Hard codded password

CWE-319: Cleatext Tx sensitive info

CWE-321: Hard coded cryptographic key

14 Reliance on untrusted CWE-510: Trapdoor

Inputs in a security decision

CWE-807

15 Incorrect authorization CWE-566: Authorization Bypass Through

CWE-863 User-Controlled SQL Primary Key

16 Sensitive cookies in HTTPs session CWE-614: Sensitive cookies in HTTPs session without

‘secure’ attribute

CWE-539: Information exposure through persistent cookies

CWE-315: Cleatext storage of sensitive information in a

cookie

CWE-113: HTTP response splitting

CWE-1004: Sensitive Cookie Without ‘HttpOnly’ Flag



202 R. Benabidallah et al.

However, CWE-22 covers two other sub-categories CWF-23 and CWE-36 which
correspond, respectively, to the relative and absolute paths. Moreover, this rela-
tionship is confirmed by the categorization proposed by CWE. Indeed, the links
between the vulnerability CWE-22 and the vulnerabilities CWE-36 and CWE-23
are represented in the CWE categorization by the “parentOf” relationship.

6 Scanners Confidence Rates Estimation

In order to detect the vulnerabilities of an individual, we must confront it with
each scanner tool. However, during our first experiments, we noticed that the
performance of each of them depends on the targeted vulnerability. Thus, none of
the scanner tools is better than all the others for all the vulnerabilities. So when
the confrontation of an individual with the scanner tools gives divergent results,
we need complementary information to conclude. We believe that the accuracy
of detecting a given vulnerability by a given scanner tool can be very useful
for decision making. This accuracy will be treated as a confidence rate assigned
to the scanner result regarding the intended vulnerability. To determine the
confidence rate associated to each vulnerability according ti each scanner tool,
we used the Juliet Test Cases. So, for each scanner tool and for each vulnerability
category it detect we calculated its accuracy as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where:

– TP (True Positives) represents the number of well detected individuals with
the vulnerability in question.

– TN (True Negatives) represents the number of individuals considered not
containing the vulnerability in question, and this is really the case.

– FP (False Positives) is the number of individuals that the scanner tool con-
sidered containing the vulnerability whereas they do not.

– FN (False Negatives) is the number of individuals that the scanner tool con-
sidered not containing the vulnerability whereas they do.

Table 3 summarizes the confidence rates obtained with the three scanner
tools for the proposed vulnerability categories. In this table, we notice that the
classification accuracy varies between 0.26 to 0.82 for Fortify, and between 0.47
to 1 for Yag Suite and SpotBugs. These ranges of variation confirm the need to
assign weights by category of vulnerabilities.

Furthermore, scanner tools that do not detect a category may have a positive
weight (>= 0). This is due to the number of individuals that do not contain
the targeted vulnerability and where the scanner detects nothing (TN). Indeed,
among the test cases, some have been generated for the target flaw but without
the vulnerability. This is to assess the ability of the scanner tool to discriminate
between vulnerable and non-vulnerable cases. In this case, a scanner tool that
does not detect the vulnerability will pass the test and this will increase its
number of true negatives. To solve this problem, we simply ignore the result of
such a scanner tool for this vulnerability by setting its confidence rate to 0.



Designing a Code Vulnerability Meta-scanner 203

Table 3. Scanner tools confidence rates per vulnerability category

Category number Fortify Yag Suite SpotBugs Our Approach

1 0.82 0.64 0.55 0.82

2 0.42 0.61 0.56 0.63

3 0.76 0.74 0.67 0.75

4 0.8 0.75 0.69 0.77

5 – 0.64 0.76 0.76

6 – – 0.83 0.83

7 0.33 0.57 0.71 0.57

8 – 1.0 1.0 1.0

9 – 0.64 – 0.64

10 0.82 – 0.8 0.82

11 – 0.70 – 0.7

12 – – 0.84 0.84

13 0.54 – 0.66 0.66

14 0.26 – – 0.26

15 0.82 – – 0.82

16 – 0.71 0.71 0.71

7 Code Vulnerability Identification

The purpose of code vulnerability identification is not only to classify a code as
vulnerable or not, but rather to find the vulnerabilities it contains. Indeed, the
same method may contain different categories of vulnerabilities. Therefore, it is
important to lead the developer to the vulnerability categories that should be
analyzed and/or corrected. We do not care if the same vulnerability appears more
than once. The aim is to indicate the presence of some vulnerability categories
but not their number of occurrences.

The presence or absence of a given vulnerability category in a given individual
(a method of a class) is calculated using the confidence rate (noted C bellow)
previously attributed to the scanner tools. For each individual, the presence or
absence of a given vulnerability is calculated as follows:

V (v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if
K∑

i=0

C(v)
i+

>
M∑

j=0

C(v)
j−

i, j ∈ {Scanners}

0 if
K∑

i=0

C(v)
i+

<
M∑

j=0

C(v)
j−

where:

– v represents the category of vulnerabilities;



204 R. Benabidallah et al.

– Ci+(v) is the weight of the ith scanner which has detected the vulnerability
v in the individual;

– Cj−(v) is the weight of the jth scanner which has not detected the vulnera-
bility v in the individual;

– K and M represent the number of scanners that have/have not detected the
vulnerability v respectively.

In other words, for each individual and for each vulnerability, we assign a
value “1” when the weights of the scanner tools that have detected this vul-
nerability are greater than the weights of the scanner tools that did not detect
it.

8 Experimentation

The main objective of this experiment is to validate the approach of constructing
a meta-scanner. This is done by comparing the results of our CVMS with those
of scanner tools. The goal is to check whether our approach gives better results
than the scanner tools applied each one apart. The second objective is to apply
the meta-scanner on a real Java source code to show that the approach gives
accurate results.

8.1 CVMS VS Individual Scanner Tools

First, we apply our approach on Juliet Test Suite in order to evaluate its effec-
tiveness and compare its results with those from the selected scanner tools. The
comparison is made on vulnerability categories. For this, we compute the app-
roach accuracy for each vulnerability category (see column 5 of Table 3). As
shown in the Table 3, we can notice that our approach results often converge
towards the results of the scanners having the best accuracy for the considered
vulnerability categories.

Nevertheless, some exceptions need to be highlighted, especially for category
7 where our approach has an accuracy of 0.57. This is due to the fact that the
sum of the weights of the two weakest scanner tools is stronger than the third.
For the rest of categories, we record a similar performance as the most efficient
scanner tools.

In a second step, we compare the macro-average performances of the scanner
tools independently of the vulnerability category. Table 4 presents the overall
benchmarking results (precision, recall and F-Measure). The precision focuses
on the balance between True Positives (TP) and False Positives (FP) and the
recall focuses on the True Positives rate. The F-Measure is an average between
precision and recall. As we can see from this table, our approach presents the
higher F-Measure.

We also note that Yag Suite has the best accuracy rate. Recall that this
scanner tool has the advantage of evaluating the relevance of vulnerabilities.
Indeed, this tool is not aimed at the simple detection of vulnerability but rather



Designing a Code Vulnerability Meta-scanner 205

the reduction of the number of FPs. To reduce this rate, we have set the relevance
threshold at 30%, which leads to ignore any security alerts with a percentage of
relevance below this limit. As a result, the precision value is very high but the
value of the recall is very low.

Thus, based on the Juliet test suite, we can conclude that our approach
globally gives better results than the scanner tools taken individually in terms
of number of vulnerabilities and performances.

Table 4. Evaluation results

Scanner tools Precision Recall F-Measure Accuracy

Fortify 0.67 0.31 0.43 0.71

Yag Suite 0.91 0.14 0.25 0.7

Spotbugs 0.74 0.18 0.29 0.7

Our approach 0.87 0.31 0.46 0.75

8.2 CVMS on Real Java Source Code

The second step of our experiments aims to use the CVMS for the detection of
vulnerabilities in Java real code. In order to evaluate our approach performances,
we need a large number of applications, covering different domains, having dif-
ferent sizes and designed by developers with different expertise. These criteria
have led us to use a validated corpus in software engineering, widely used by
researchers, namely the Qualitas Corpus [24]. The Qualitas Corpus is a curated
collection of open-source Java systems. The corpus was developed by Tampero
et al. [24] in order to reduce the cost of large empirical studies of code. The
Qualitas corpus provides a huge contribution for experimentation in software
engineering. However, there are several studies, such as experiments that rely on
Abstract Syntax Tree (AST) or bytecode, where a compiled corpus is needed.
Thus, Ricardo et al. [25] provides a compiled version of Qualitas called Quali-
tas.class Corpus. The corpus contains a collection of systems, each one of them
includes one or more projects. Qualitas has a total of 111 systems and 802 inter-
nal projects and is considered as the largest curated corpus for code analysis
studies.

For compatibility issues between scanners and some applications from Qual-
itas, we started our experiments on a subset of the Qualitas applications that
represents 41 Java systems containing more than 170k methods. The results
show that our approach detected 957 vulnerabilities divided into 12 categories.
Table 5 presents all the categories with the corresponding occurrence number.

In order to validate Qualitas results, we performed a manual checking on a
part of the corpus. For this aim, we randomly selected 10% of the individuals
(methods) based on a stratified sampling that focuses on the following factors:
(i) non-vulnerable code/vulnerable code, and (ii) vulnerable code with category



206 R. Benabidallah et al.

Table 5. Vulnerability categories discovered

Category number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Occurrences 671 5 0 2 2 0 0 64 59 1 0 3 15 108 25 2

1/.../vulnerable code with category 16. This phase ensures the distributional bal-
ance of these factors within the selected population. The results of this operation
are given in the Table 6.

Table 6. Performance measures on the annotation of Qualitas Corpus with vulnera-
bilities

Accuracy 0.99

Precision 0.85

Recall 0.89

F-measure 0.87

The results obtained give very encouraging performances. For research work
aiming at constructing prediction models, these performances are generally
acceptable. Thus, we can say that our approach guarantees accurate results
on real Java source code.

8.3 Discussion

The approach we proposed is based on the use of existing scanner tools. As the
performance of our approach strongly depends on the efficiency of the scanners,
it is very important to take performing scanner tools. The other parameter that
could increase the quality of the results is the variety of approaches used by the
selected scanners (static analysis, dynamic analysis, penetration test, etc.). With
a larger number of scanner tools covering a wider variety of analysis approaches,
we hope to increase the quality of the obtained results.

Comparing the sum of positive weights (scanners that responded positively)
and negative ones (scanners that answered negatively) allows us to use the vot-
ing technique to decide whether or not an individual is vulnerable. However,
other solutions can be used to take this decision such as fuzzy logic or Bayesian
networks.

8.4 Threat to Validity

We present threats to validity of our experimentation from two points of view:
internal threats and external threats.



Designing a Code Vulnerability Meta-scanner 207

– Internal threats: the use of accuracy as a measure of scanner tools performance
could alter the results. Indeed, when the number of individuals without a
vulnerability is important, this increases considerably the number of true
negatives. As explained before, if this result is taken into consideration for
scanner tools that do not even detect the vulnerability, the result is biased.
To overcome this problem, we ignore the responses of the scanner tools that
are not supposed to detect the vulnerability.

– External threats: the corpus we chose concerns applications written in Java.
As a consequence, the results we obtained may be different in the case of
applications written with another programming language. In addition, the
choice of scanner tools has imposed a subset of vulnerabilities covered by
Juliet test suite. The choice of other scanner tools will give another subset, so
it will be difficult to compare the obtained results with ours. As mentioned
before, this paper describes a bootstrap process designed to build a meta-
scanner from many independent scanners, we choosed the Juliet Test Suite
as a reference for performance measurements. Thus, the use of another test
corpus may give other performance results.

9 Related Work

Our work is related to work on the assessment of vulnerability analysis tools and
to work on combining several tools to build a better one. Below, we will present
some of these works.

9.1 Scanner Tool Evaluation

Several works have been focused on comparing existing scanners in order to
identify the most effective for each type of analysis.

For instance, Autunes et al [3] proposed an approach to benchmark the effec-
tiveness of static analysis tools and automatic penetration testing. The study
focused mainly on SQL injections in web services. The authors showed that
static analysis approaches are more efficient than automated penetration test-
ing. They also found that both methods returned a lot of false positives. Part of
our work concerned tools evaluation and also has led us to the same conclusion.
However we did not focus only on one type of vulnerability in particular. Our
goal was to cover as many vulnerabilities as possible.

There are several other works on the evaluation of tools targeting vulnera-
bility detection [2,6,11,27]. Each of them showed which tool or technique gave
better results than the others, but none of them really showed how the compar-
ison is made. Indeed, from one scanner tool to another, the results are returned
differently even for the same vulnerability. Hence it is important to have a com-
mon reference allowing to compare the scanner tools effectively. In this work,
we give all the details of this process in order to make it replicable by other
researchers. In addition, the study we made on the selected scanner tools aims
at a better joint use for a given goal rather than really comparing them.



208 R. Benabidallah et al.

9.2 Combining Multiple Scanner Tools

Rutar, et al. [12] conducted a case study using five bug-finding tools to analyse
a variety of Java programs. Their experiments showed that the tools discovered
non-overlapping bugs. To exploit the number of warnings returned for each indi-
vidual, they proposed a meta-tool that combines the results of the tools based
on the alert frequency for the same individual. Alerts are not reviewed manually.
We therefore have no information on the relevance of the results returned by the
tools.

Meng et al. [16] also proposed an approach to merge results from different
static analysis tools. The authors apply two policies to rank the results so that
critical alerts come before unnecessary and false reports. Wang et al. [28] pro-
posed a web service based approach that encapsulates multiple static analysis
tools. The user has the possibility to analyse a source code without download-
ing any analyzing tools. The results are merged and refined by removing defect
redundancies. This approach was validated in term of running time. This aspect
may be important in some cases, but not really in our case.

Each of the above works focus on a given property of the proposed tool, but
no one considered the accuracy of the combination. Indeed, they do not classify
the returned results in term of false and true positive. In our work, we mainly
focused on the accuracy of the results returned by our CVMS.

Nunes et al. [21] focused on the problem of how to combine several static
analysis tools for a given goal. In this work, the authors considered four criticality
levels of software development scenarios. For each scenario, they used the most
adequate metric to rank all possible tool combinations. Thus, the best solution
can be a single tool or a combination of certain tools. Unlike previous works,
Nunes et al. do make a distinction between true positives (TP) and false positives
(FP). For a given combination, the union of FPs returned by the concerned
scanners is considered as positive instances and the union of all FPs becomes
part of the negative instances. However, as pointed out by the authors, combining
the results in this way considerably increases the number of false alerts. In this
work, the variability lies in the selected subset of tools. The aggregation of the
results returned by all the tools remains the same. In our case, we start from
the same set of tools to propose the best way to aggregate them.

10 Conclusion

In this paper, we presented an approach to build a code vulnerability meta-
scanner using several existing scanner tools. We mainly focused on how to aggre-
gate the scanner tools in order to improve their effectiveness. Thus, we proposed
an heuristic that combines the scanners based on their accuracy in identifying
each category of vulnerabilities. For this aim, we proposed a categorization which
helps to compare results from different scanner tools.

We experimented our approach using three scanner tools, namely Fortify,
SpotBugs and Yag Suite. Then, we compared the efficiency of the constructed
CVMS with the performance of the scanners separately. The results show that



Designing a Code Vulnerability Meta-scanner 209

the combination of several scanners allows, on the one hand, to cover a larger
set of vulnerabilities than individual scanner tools. On the other hand, the per-
formance of our CVMS converges towards the best scanner for each type of
vulnerability.

Moreover, we used the resulting CVMS to identify the vulnerabilities of a
widely used corpus in software engineering, namely Qualitas Corpus. The meta-
scanner has shown its usefulness and effectiveness on real Java code. This experi-
ence allowed us to build a corpus of Java code (extracted from Qualitas) tagged
with the vulnerabilities it contains. This result is very useful for researchers in the
field of software vulnerabilities. So, we made it available through the following
link: “https://github.com/Brendan-LT/qualitas-vulnerabilities”

The first results obtained with our approach prove its efficiency but many
improvements can be implemented. We mention many of them in this paper,
including the use of a larger number of scanners for better accuracy. It should
be noted that the approach we present can be applied to different types of
analysis such as dynamic analysis using scanners based on dynamic methods or
a hybrid analysis by integrating static and dynamic scanners.

A CVMS constructed with our approach can be used as a code scanner tool
but this requires to have at least three different scanner tools and the process is
maybe expensive for a maintenance phase. The next step we planed for work is
to use the data obtained with our CVMS (tagged corpus) to propose prediction
models that allow automatic identification of vulnerabilities.

References

1. Alves, H., Fonseca, B., Antunes, N.: Software metrics and security vulnerabilities:
dataset and exploratory study. In: 2016 12th European Dependable Computing
Conference (EDCC), pp. 37–44, September 2016

2. Antunes, N., Vieira, M.: Comparing the effectiveness of penetration testing and
static code analysis on the detection of SQL injection vulnerabilities in web ser-
vices. In: 2009 15th IEEE Pacific Rim International Symposium on Dependable
Computing, pp. 301–306, November 2009

3. Antunes, N., Vieira, M.: Benchmarking vulnerability detection tools for web ser-
vices. In: 2010 IEEE International Conference on Web Services, pp. 203–210, July
2010

4. Arteau, P.: Bugs Patterns. https://find-sec-bugs.github.io/bugs.htm
5. Arteau, P.: Find Security Bugs. https://find-sec-bugs.github.io
6. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerabil-

ity discovery techniques. In 2011 International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 97–106 (2011)

7. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java test suite. Computer 45(10),
88–90 (2012)

8. Micro Focus. Fortify static code analyzer. https://www.microfocus.com/fr-fr/
products/static-code-analysis-sast/overview

9. Micro Focus. Fortify Static Code Analyzer (SCA) Static Application Security Test-
ing. https://www.microfocus.com/media/data-sheet/fortify static code analyzer
static application security testing ds.pdf

https://github.com/Brendan-LT/qualitas-vulnerabilities
https://find-sec-bugs.github.io/bugs.htm
https://find-sec-bugs.github.io
https://www.microfocus.com/fr-fr/products/static-code-analysis-sast/overview
https://www.microfocus.com/fr-fr/products/static-code-analysis-sast/overview
https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static_application_security_testing_ds.pdf
https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static_application_security_testing_ds.pdf


210 R. Benabidallah et al.

10. Fonseca, J., Vieira, M.: Mapping software faults with web security vulnerabilities.
In: 2008 IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC (DSN), pp. 257–266, June 2008

11. Fonseca, J., Vieira, M., Madeira, H.: Testing and comparing web vulnerability scan-
ning tools for SQL injection and XSS attacks. In: 13th Pacific Rim International
Symposium on Dependable Computing (PRDC 2007), pp. 365–372, December 2007

12. Foster, J.S., Almazan, C.B., Rutar, N.: A comparison of bug finding tools for Java.
In: 15th International Symposium on Software Reliability Engineering(ISSRE), pp.
245–256 (2004)

13. Howard, M., David, L.B.: Writing Secure Code for Windows VistaTM , 1st edn.
Microsoft Press, Redmond (2007)

14. Jimenez,, M.: Evaluating vulnerability prediction models. Ph.D. thesis, Université
du Luxembourg (2018)

15. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications
with static analysis. In: Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM 2005, p. 18. USENIX Association, Berkeley (2005)

16. Meng, N., Wang, Q., Wu, Q., Mei, H.: An approach to merge results of multiple
static analysis tools (short paper). In: 2008 The Eighth International Conference
on Quality Software, pp. 169–174, August 2008

17. Mitre. Common Weakness Enumeration (2019). https://cwe.mitre.org/
18. Mitre (2019). https://www.mitre.org/
19. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vul-

nerability prediction models. In: Proceedings of the 2015 Symposium and Boot-
camp on the Science of Security, HotSoS 2015, pp. 4:1–4:9. ACM, New York (2015)

20. NSA. Juliet Test Suite v1.2 for Java (2012). https://samate.nist.gov
21. Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M., Vieira, M.: On combin-

ing diverse static analysis tools for web security: an empirical study. In: 2017 13th
European Dependable Computing Conference (EDCC), pp. 121–128, September
2017

22. OWASP. Vulnerability (2016). https://www.owasp.org/index.php/Category:
Vulnerability

23. YAGAAN Software Security. Yag Suite (2017). https://www.yagaan.com/
products.html#yag-approche

24. Tempero, E., et al.: Qualitas corpus: a curated collection of Java code for empirical
studies. In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010), pp.
336–345, December 2010

25. Terra, R., Miranda, L.F., Valente, M.T., Bigonha, R.S.: Qualitas.class corpus: a
compiled version of the Qualitas Corpus. Softw. Eng. Notes 38(5), 1–4 (2013)

26. Venter, H.S., Eloff, J.H.P., Li, Y.L.: Standardising vulnerability categories. Com-
put. Secur. 27(3), 71–83 (2008)

27. Vieira, M., Antunes, N., Madeira, H.: Using web security scanners to detect vulner-
abilities in web services. In: 2009 IEEE/IFIP International Conference on Depend-
able Systems Networks, pp. 566–571, June 2009

28. Wang, Q., Meng, N., Zhou, Z., Li, J., Mei, H.: Towards SOA-based code defect anal-
ysis. In: 2008 IEEE International Symposium on Service-Oriented System Engi-
neering, pp. 269–274, December 2008

29. Zhang, Y., Wu, Q., Yang, G., Wen, T.: ASVC: an automatic security vulnerability
categorization framework based on novel features of vulnerability data. J. Commun.
10(2), 107–116 (2015)

https://cwe.mitre.org/
https://www.mitre.org/
https://samate.nist.gov
https://www.owasp.org/index.php/Category:Vulnerability
https://www.owasp.org/index.php/Category:Vulnerability
https://www.yagaan.com/products.html#yag-approche
https://www.yagaan.com/products.html#yag-approche


Access Control and Authentication



Using IFTTT to Express and Enforce
UCON Obligations

Antonio La Marra1, Fabio Martinelli1, Paolo Mori1, Athanasios Rizos1,2(B),
and Andrea Saracino1

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
{antonio.lamarra,fabio.martinelli,paolo.mori,athanasios.rizos,

andrea.saracino}@iit.cnr.it
2 Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. If This Then That (IFTTT) is a free and widely used web-
based platform where it is possible to create applet chains (Applets)
of simple conditional statements that combine different web and smart
services. In this paper we propose a methodology to express Usage Con-
trol (UCON) obligations in such a way that they can contain valid data
in order to trigger such applet chains. The obligations that follow the
response of access requests coming from UCON, become a trigger to the
IFTTT platform and this enables a more abstract and non application
specific mixture of them without each one losing their abstract struc-
ture. We will present the architecture and workflow of our approach,
also together with a couple of use cases and the evaluation of an imple-
mentation of UCON together with a real IFTTT Applet.

Keywords: Access Control · IFTTT · Internet of Things ·
Obligations · Usage Control · XACML

1 Introduction

Over the last years, Internet of Things (IoT) devices have started to play a
significant role to our daily life. According to Ericsson [3], in 2020 we should
expect the total number of IoT devices to reach 50 billions. This number becomes
even more dramatic if we consider the Internet of Everything (IoE) paradigm,
which also includes user devices such as smartphones, smartwatches, tablets and
thus the interaction of the user itself. Managing complex IoT systems is further
complicated by the presence of different communication protocols, application
standards, architectures and interaction models, which make the management
of security in this environment an extremely challenging task. Still, such a task
is mandatory, considering both issues for captured and processed data, and the
effect of IoT devices actions in the physical world.

This work has been partially funded by EU Funded projects H2020 NeCS, GA #675320,
H2020 C3ISP, GA #700294 and EIT Digital HC&IoT.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 213–231, 2019.
https://doi.org/10.1007/978-3-030-34339-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_12


214 A. La Marra et al.

To manage security and privacy in IoT environments, Usage Control (UCON)
has been successful used as a control tool able to handle seamless access man-
agement and data protection [8]. UCON is an extension of traditional eXtensi-
ble Access Control Markup Language (XACML)-based Attribute-Based Access
Control (ABAC) which enforces continuity of access decision, by evaluating
and enforcing policies based on mutable attributes [9]. XACML is an Exten-
sible Markup Language (XML)-based language standardized by OASIS1 with a
very high expressiveness potential, hence fitting the flexibility requirements of
complex environments, such as IoE ones. To further increase its expressiveness,
XACML pairs standard ABAC constructs such as authorizations and prohi-
bitions with Obligations, i.e. mandatory actions that have to be performed in
conjunction with the policy enforcement [4].

Currently, XACML does not provide a standard for the description of obli-
gation semantic. While the intention is the one of non imposing constraints
on format of the represented information, the direct consequence is that every
obligation management engine has to be developed ad-hoc. Having a standard
semantic for representation which is meaningful at least in an application macro-
environment, such as IoE, can push developers and policy editors to use common
expressions to represent and enforce obligations. In particular, it is possible to
express obligations as commands for an inter-operable service or platform used
by a multitude of IoT/IoE devices, such as If This Then That (IFTTT)2. IFTTT
is a free web-based platform used to create applet chains of conditional state-
ments in IoT settings. Each applet chain, also called Recipe or Applet, is triggered
by changes that happen within various web-services and as a result does specific
actions on other web-services. Expressing triggers through UCON obligations
will allow the device receiving the policy evaluation decision to easily execute the
obligations, without hard-coding the actual obligation interpretation, demanded
to the specific UCON applet.

In this paper we present the application of IFTTT triggers to express and
enforce UCON obligations. The paper will describe a novel architecture where
the standard UCON framework is combined with the IFTTT platform services.
Our framework, is providing a standardized format of obligations so that they
can trigger valid IFTTT Applets. The proposed framework is designed to be
independent from the specific device implementation, specific application and
transport level communication protocols. Thus, the proposed framework does
not alter the XACML model and workflow, whereas we enhance its capabilities
by proposing a standardized way of expressing obligations, reusing pre-existing
components, being thus non intrusive. The paper will discuss the full operative
workflow, detailing both UCON and IFTTT operation parts, proposing two rele-
vant use cases and a set of performance experiments to demonstrate the viability.
Moreover, our framework does not interfere with the execution of the IFTTT
Applets and does not require any modification in the model of UCON.

1 https://www.oasis-open.org/committees/xacml/.
2 https://www.ifttt.com/.

https://www.oasis-open.org/committees/xacml/
https://www.ifttt.com/


Using IFTTT to Express and Enforce UCON Obligations 215

The rest of the paper is organized as follows: In Sect. 2 we report background
information about IFTTT and UCON. Section 3 details the architecture and the
operative workflow. Section 4 provides some relevant use cases and also details
the results of the performance analysis. In Sect. 5 we report and compare with
related work in access control management in IoT/IoE. Finally, Sect. 6 concludes
by proposing future directions.

2 Background

In this section we provide some background knowledge about IFTTT and UCON.

2.1 IFTTT

IFTTT creates chains of simple conditional statements that are called Applets
and are triggered by changes that happen within web-services. An example is,
when a user likes a video on Youtube, to add it to his/her Spotify account. After
an Applet is triggered, there is an action that happens on another web-service.
In fact, given a certain set of criteria, IFTTT gathers web-services in one place
so that they can easily interact between each other [15]. IFTTT consists of the
following structure:

Services: The basic building block of IFTTT. They describe data and
actions controlled by an Application Programming Interface (API), and each
service has a specific set of Triggers and Actions.

Triggers: The “This” part of the Applet, causing thus the triggering of the
Action.

Actions: The “That” part of the Applet which is the result of a Trigger.
Applets/Recipes: The complete part of an example when a successful Trig-

ger that leads to the execution of an Action.
Ingredients: The data that are available after the triggering to guide the

Action.
An advantage of IFTTT is that it can work with various platforms and

devices in IoT. In order to create an Applet, the only necessary step is to mix
Ingredients in such a way that they make sense so that the Trigger can interact
correctly with the Applet. Then, there must be a definition of the pieces of
information utilized by each Trigger and Action. A drawback of IFTTT is that
it allows only a single Trigger and a single Action. The same Trigger can be
used for other Actions but not inside the same Applet.

There are various competitors of IFTTT and in Table 1 we see a summary of
the pros and cons of them. More in detail, the biggest competitor of IFTTT
is Microsoft Flow. It is free for up to 750 runs/month, it can allow multi
step connection and works with many apps including Gmail, Facebook etc. and
can be accessed either via apps or browsers. The cons are that, up to now,
the apps are around 226 and it does not work with physical devices. But, it
also supports Do/While and For/Each loops whereas IFTTT supports only If
conditionals. Hence, it is more difficult and complicated to operate. Another



216 A. La Marra et al.

Table 1. Comparison of IFTTT and its alternatives

Name Cost Connections Apps/devices Number of services Access

IFTTT Free One-to-One Yes/Yes >600 App/Browser

Microsoft Flow Free/Paid Multiple Yes/No 226 App/Browser

Zapier Free/Paid Multiple Yes/No >1500 Browser

Yonomi Free Multiple No/Yes 200 App

Stringify Free Multiple Yes/Yes 70 App/Browser

Workflow Free Multiple Yes(iOS)/No N/A App

example is Zapier that works only with apps and not physical devices. It allows
multi step connection between devices and has a simple free usage up to 100
runs/month and also paid plans of use. On the contrary, Yonomi works only with
physical devices and not with apps, but allows multi-step connection between the
about 100 compatible devices, it is free and focuses more on home applications.
Furthermore, Stringify is also free and can host multiple connections but has
only about 70 services and cannot be accessed via a browser like IFTTT but only
via an app. Finally, there is also Workflow that works only with iOS apps and
allows multiple step systems. It is again free but there is not a list of compatible
services but only the most famous iOS apps are used like Safari, Photo Gallery,
Facebook etc.

2.2 Usage Control

The UCON model [16] extends traditional access control models [17]. It intro-
duces mutable attributes and new decision factors besides authorizations which
are obligations and conditions. Mutable attributes represent features of subjects,
objects, and environment that can change their values as a consequence of the
operation of the system [6]. Since mutable attributes change their values during
the usage of an object, UCON model allows to define and evaluate policies before
and continuously during the access.

The main block of UCON framework is the Usage Control System (UCS)
surrounded by the Controlled Systems and the Attribute Environment as shown
in Fig. 1. UCS has its own components which are the following [12]:

Policy Decision Point (PDP): This component takes as an input an
access (usage) request and an access (usage) policy returning one of the fol-
lowing decisions: Permit, Deny, Indeterminate.

Policy Information Point (PIP): This component retrieves attributes
related to subject, object and environment of received access requests. Each
PIP acts as the interface between the UCS and a specific Attribute Manager
(AM) which is a non controlled component that has the values of the attributes
that have to be acquired by each PIP [1]. Each PIP has custom implementa-
tion for each specific application, AM and the kind of attribute that should be
retrieved.



Using IFTTT to Express and Enforce UCON Obligations 217

Fig. 1. Usage Control framework diagram.

Session Manager (SM): This component is a database which stores all the
active sessions, with the necessary information to perform policy reevaluations.

Context Handler (CH): This component is the main core of the UCS, where
it is responsible of routing messages among the various components. Firstly, it
has to forward the access request to the various PIPs for attribute retrieval,
then the complete access to the PDP and as a result to return the decision to
the Policy Enforcement Point (PEP). Finally, it receives notification from PIPs
when the value of an attribute changes, forwarding to the PDP the new value
for policy reevaluation.

Communication between Policy Enforcement Point (PEP) and UCS is per-
formed via the following actions [10]:

TryAccess: Action invoked by the PEP to send to the UCS the request to
perform an action or access a resource, to be evaluated against a policy. The UCS
will respond with a Permit or Deny decision, eventually collecting the needed
attributes from the PIPs. If the answer is Permit, this response is also containing
the Session ID for the session that is about to start.

StartAccess: Action invoked by the PEP having the SessionID as a param-
eter. This is the actual start of using the service requested. There is again eval-
uation from the PDP and after an affirmative response the CH confirms the
session to the SM as active.

EndAccess: Action invoked when the usage of the resource terminates. When
received by the UCS, it deletes the session details from the SM and communicates
to the PIPs that the attributes related to that policies are not needed anymore,
unless other sessions are using it.

RevokeAccess: Occurs when a change of a mutable attribute causes a policy
reevaluation, which ends in a deny. The PEP is thus notified and the correspond-
ing usage session is terminated.



218 A. La Marra et al.

1<Policy xmlns=”urn:oasis:names:tc:xacml:3.0:core:schema:wd−17”

2PolicyId=”policyIfttt” RuleCombiningAlgId=”...” Version=”3.0”>

3<Description>Description</Description>

4

5<Rule Effect=”Permit” RuleId=”rule−permit”>

6<Target>Target</Target>

7

8<Condition DecisionTime=”pre”>Condition

9<ObligationExpressions>

10<ObligationExpression

11ObligationId=”urn:oasis:names:tc:xacml:1.0:example:obligation:oblig”

12FulfillOn=”Permit”>

13<AttributeAssignment

14AttributeId=”urn:oasis:names:tc:xacml:1.0:example:attribute:text”

15DataType=”http://www.w3.org/2001/XMLSchema#string”> PAYLOAD

16</AttributeAssignment>

17</ObligationExpression>

18</ObligationExpressions>

19</Condition>

20<Condition DecisionTime=”ongoing”>Condition</Condition>

21<Condition DecisionTime=”post”>Condition</Condition>

22</Rule>

23<Rule Effect=”Deny” RuleId=”rule−deny”>

24<Description>Description</Description>

25<ObligationExpressions>

26<ObligationExpression FulfillOn=”Deny” ObligationId=”PAYLOAD”/>

27</ObligationExpressions>

28</Rule>

29

30</Policy>

Listing 1.1. Examples of the two types of obligations.

Obligations are predicates which define requirements that must be ful-
filled before the access Pre-Obligations, while a session is in progress Ongoing-
Obligations or after the session has ended Post-Obligations. In real world imple-
mentations, obligations are agreed before obtaining the rights and at that time
obligation-related authorization rules are checked. For example, a subject may
have to accept terms and conditions before obtaining the rights for accessing
certain resources. Summarizing, on both XACML and XACML with Continu-
ous Usage Control Features (U-XACML), obligations are part of the policy and
they are written in the same way as a tag of the policy. The obligations have two
different targets. The first target is to force the update of the values of specific
attributes according to the value included in the obligation. This part has to be
in a specific format like the other attribute values in the policy file. The second
target is to force the PEP to perform specific actions. This part is not standard-
ized meaning that the obligation contains plain text and the PEP must extract
and enforce the obligation. Thus, the PEP has to be specifically programmed for
extracting and enforcing each obligation. The obligation must be executed by
the subject before accessing or during the access. Although one obligation can



Using IFTTT to Express and Enforce UCON Obligations 219

be used in many scenarios, e.g. sending an email, every time that the obligation
is different it means that it is application specific and the requirements must
be defined specifically for each use-case. In XACML, the obligation is included
in a separate tag called ObligationExpressions. The obligation can be executed
when a rule or a condition is executed. The difference between U-XACML and
XACML is the existence of the pre, ongoing and post conditions. This indi-
cates that, in UCON, an obligation can be performer after any of the actions
described above (e.g. TryAccess, StartAccess etc.). An example of UCON policy
with obligations is reported on Listing 1.1. This policy presents two different
obligations, inside the two different rules of “Permit” and “Deny” respectively.
The first obligation is of type AttributeAssignment and it is used to issue a
specific attribute value to the PIP. The second one is plain text and each PEP
has to be specifically programmed to successfully extract and enforce it.

3 Enforcing UCON Obligations via IFTTT

In this section we report the description of the proposed framework for evaluat-
ing UCON policies and enforcing obligations via IFTTT. We will describe the
workflow, the implementation and the process of including IFTTT Triggers in
the standard XACML.

Fig. 2. Logical architecture

3.1 Architecture

Our goal is to create such an obligation format that the PEP can execute IFTTT
Applets without the need of specific PEP per Applet. To this aim, we propose
a framework that is implementing the PEP on a smart-device so as to perform



220 A. La Marra et al.

access requests and receive the responses to and from the UCS respectively. If
in the response of the UCS there is an obligation, the PEP has to extract and
enforce it by performing the corresponding Trigger to an IFTTT Applet. The
components of the proposed framework are shown in Fig. 2. Firstly, the UCS
has to be installed on a smart-device which can be any appliance, computer,
smartphone that is able to run an operating system capable of installing and
running third party applications. Such a device can be a RaspberryPi or a smart-
TV. Then, UCS has to communicate with the device that hosts the PEP. Other
smart but not very powerful IoT devices, such as a smart temperature or light
sensors, can be used from the various PIPs in order to acquire information about
attribute values by the AMs and provide it to the UCS. The PEP can either
reside in the same device as the UCS or in a separate device. The interpretation
of the obligation coming from the UCS, is to the values that are necessary for the
IFTTT Trigger and the enforcement is to perform the triggering of the Applet.
The triggering happens via a web request from the PEP with the IFTTT by
making a web request that enforces the obligation. This means that the PEP
must have access to the Internet so as to communicate with the IFTTT servers.
Then, the IFTTT server is responsible to execute the Applet when receiving the
Trigger of the obligation. After that, the necessary information will be extracted
from the IFTTT server and the Action service will be executed.

3.2 Workflow

The complete workflow of our framework is presented in Fig. 3. This figure
describes the communication between the PEP and UCS from sending the
request until the obligation enforcement and the triggering of the Applet. For
better understanding we will describe the workflow in two parts. These parts are
(i) the communication between the PEP and the UCS (tasks 1–3, 7–9, 13–16)
and (ii) obligation enforcement for by the PEP to IFTTT (tasks 4–6, 10–12,
17–19).

Communication Between PEP and UCS: As shown in Fig. 3, the PEP
primarily initiates communication with the UCS by performing the TryAccess
action for evaluation of the request (task 1). Then, the CH component of the
UCS receives the request and the values of the attributes from the various PIPs.
All the previous, are sent to the PDP for evaluation where the answer is Permit
or Deny according to their compliance with the policy that arrives together with
the request (task 2). If the answer is Deny, the PEP is informed about it (task
3). But, if the answer is Permit, the SM starts keeping a record of the session
by assigning a unique ID to it and the PEP is informed that the access was
initially granted and retrieves the session ID (task 3). In both cases, if there is
an obligation in the response, the PEP has to extract and enforce it. The PEP,
then, starts the actual usage of the resources by performing the StartAccess
action to the UCS for the session with the specific ID (task 7). After another
evaluation from the PDP (task 8), if the answer is Permit or Deny there may
be an obligation in the response to the PEP, whereas the PEP is responsible for



Using IFTTT to Express and Enforce UCON Obligations 221

Fig. 3. Sequence diagram of the proposed framework

interpreting and enforcing it (task 9). For more information about the procedure
inside UCS component, readers can refer to [9]. Moreover, while a session is in
progress, there is a continuous re-evaluation of the session (task 13). In the
case of policy violation, the UCS performs the RevokeAccess and the sends the
appropriate message to the PEP (task 14). On the contrary, if the subject wants
to terminate the session while it is on progress, the PEP has to inform the UCS
about it by performing the EndAccess action (task 15) and receive the answer
(task 16). Both in RevokeAccess or an EndAccess the message from UCS to the
PEP may include, as previously, an obligation so after Task 14 or Tasks 15, 16
the Tasks 17–19 of the obligation happen. We can see that obligations can be
performed after every action of UCON, and they must include all the necessary
information so that the PEP can trigger the Applet.

Communication Between PEP and IFTTT: The PEP must not only com-
municate with the UCS, but also to extract the obligations and enforce them by
triggering the IFTTT Applet. About obligation enforcement, firstly the IFTTT
Applet has to be created in the IFTTT platform and the Trigger has to be a
web request service. The Applet is executed by making the web request from the
PEP to the IFTTT platform and, if the data received are correct, the platform
performs the Action. The type of the Action depends on what the creator of
the Applet selected and is not controlled by the UCS. The role of the PEP is to
extract the information related to the obligation. For the tasks that may include
obligations, the PEP must firstly extract the information included in the obliga-
tion (tasks 4, 10, 17). The next step is to enforce the obligation by performing
the corresponding Trigger of the IFTTT Applet that has to run. To do so, the
PEP has to create and send the appropriate web request to the IFTTT server
(tasks 5, 11, 18). The correctness of the web request is verified by the IFTTT
server and it is not controlled by the PEP (tasks 6, 12, 19).



222 A. La Marra et al.

3.3 Obligation Standardization

According to the OASIS standard [14], obligation, as part of a policy for access
control, is a XACML tag that describes when the obligation will be triggered. If
it is triggered on a Permit or on a Deny it must be included in the appropriate
policy rule. Furthermore, in U-XACML, the format of the obligation does not
change compared to XACML [4]. But, in U-XACML, according to the time
of execution, the corresponding obligation Pre, OnGoing must be included in
the appropriate condition (Pre, Ongoing) respectively. In our case, we consider
the enforcement of obligations that have not attribute updates targeting the
PIPs, but obligations that target the PEP and include the necessary data of
an IFTTT Trigger. When an obligation targets the PEP, the payload that the
PEP has to extract and enforce is included in the “ObligationId” as a string
variable that has no specific type. In our framework, this string has the form
of a JavaScript Object Notation (JSON) structure that includes the names and
the values of the variables that are necessary to perform the IFTTT Trigger.
As an example, we consider a couple of obligations that happen (a) after a
successful set of TryAccess action followed by a successful StartAccess (Oblig1)
and (b) after a RevokeAcess (Oblig2). In Listing 1.2, we can see a simplified
version of a policy written in U-XACML focusing on the obligation part. The
first obligation example is an expression of (Oblig1) and the second obligation
part is an expression of (Oblig2). Both are included inside the corresponding
policy rules. We can see the ObligationId string, expressed in such a format of
JSON structure so that it can be included in the U-XACML file without issues
including the IFTTT payload.

The string of the obligation which JSON formatted includes the specific
values for the Trigger of the IFTTT to happen. The Trigger is a web-request.
For this action we selected the Webhooks3 service when we created the Applet in
the IFTTT platform. Webhooks service provides the ability for a web request to
be the Trigger of the Applet but generalizing, any other IFTTT service could be
used supposing that the PEP of UCON is changed accordingly. The Webhooks
services gives to each IFTTT acccount a unique Key that should be included in
every request for identification purposes. Since the Key remains the same for all
the different Applets of each user of the same Webhooks service account, the only
way to distinguish each application between each other, is done via the unique
EventName that every instance of the Webhooks service must have. Webhooks
gives also the opportunity to include some payload variables in the web-request.
The Payload can include values of attributes, plain text, or everything other
information acquired by the UCS or the PEP. In total, in order for the obligations
to include the IFTTT data for the Trigger as shown in Listing 1.2, they must
include the (Key, EventName, Payload) values. Summarizing, for the two types
of obligations mentioned above, the requirements and decision that has to be
issued by the UCS to the PEP, are the following:

3 https://www.ifttt.com/maker webhooks.

https://www.ifttt.com/maker_webhooks


Using IFTTT to Express and Enforce UCON Obligations 223

1<Policy xmlns=”urn:oasis:names:tc:xacml:3.0:core:schema:wd−17”
2PolicyId=”policyIfttt” RuleCombiningAlgId=”...” Version=”3.0”>
3<Description>Description</Description>
4

5<Rule Effect=”Permit” RuleId=”rule−permit”>
6<Target>Target</Target>
7<Condition DecisionTime=”pre”>Condition</Condition>
8<Condition DecisionTime=”ongoing”>Condition
9<ObligationExpressions>
10<ObligationExpression FulfillOn=”Permit”
11ObligationId=”{\”EventName\”:\”ucon oblig enforc\”,
12\”Key\”:\”bhOEWZ5qcbgMoa w4−Nny \”,
13\”Value1\”:\”UCON request for access happened\”,
14\”Value2\”:\”with result\”,
15\”Value3\”:\”PERMIT\”}”/>
16</ObligationExpressions>
17</Condition>
18<Condition DecisionTime=”post”>Condition</Condition>
19</Rule>
20

21<Rule Effect=”Deny” RuleId=”rule−deny”>
22<Description>Description</Description>
23<ObligationExpressions>
24<ObligationExpression FulfillOn=”Deny”
25ObligationId=”{\”EventName\”:\”ucon oblig enforc\”,
26\”Key\”:\”bhOEWZ5qcbgMoa w4−Nny \”,
27\”Value1\”:\”UCON REVOKE happened\”,
28\”Value2\”:\”because the result was\”,
29\”Value3\”:\”DENY\”}”/>
30</ObligationExpressions>
31</Rule>
32</Policy>

Listing 1.2. Simplified example of policy including obligation in XACML.

-TryAccess∧StartAccess→Permit→Oblig1
-RevokeAccess→Deny→Oblig2

Oblig1 = (Key1,EventName1,Payload1), Oblig2 =(Key2,EventName2,Payload2)

Every time that the PEP executes correctly the web request, the Applet
should run and users should see this in the IFTTT panel and also monitor that
the Action happened. The execution can also be monitored the control panel of
the IFTTT platform account related to the Applet that was executed.



224 A. La Marra et al.

Fig. 4. Example of Applet structure

3.4 Implementation

The UCS comes as a JAR or WAR file, to be deployed on the device(s) intended
to evaluate the access decisions. The Trigger was the Webhooks service, whereas
the Action service was the “Send me an email” service of IFTTT platform that
sends an email to the owner of the account of the Applet. In Fig. 4 there are
shown the two services of the Applet. On the left, there is the Trigger part which
provides a box for specifying the unique EventName of the Webhooks service.
On the right part there is the Action service that includes the subject and the
body of the email structure. On both the subject and the body of the email
plain text can be combined with data coming from variables. These data may be
included in the obligation (e.g. EventName, Value1-3) as they are described in
Listing 1.2. The data may be also variables that the IFTTT platform provides,
such as the “OccuredAt” in Fig. 4 that gives the timestamp of the execution of
the Applet.

For this Applet we consider two obligations that must be filled with details
according the standardization of the previous section. The first one happens
after a succesful StartAccess action (Oblig1) and the second one happens after a
RevokeAccess action (Oblig2). The Key is obtained by the Webhooks service and
the unique EventName is set up in the Trigger service as shown on the left part
of Fig. 4. There is the possibility of either executing the same instance of the
Webhooks service with a different Payload, or creating two difference instances
for each obligation (Oblig1, Oblig2). In the first case, which is the one used in
this paper, the EventName is the same and the Payload only changes, and in
the second case both the EventName and the Payload change. In Listing 1.2 we
present the examples of the obligations. It is worth noticing that the Payload
includes three values. Whenever the UCS sends an obligation to the PEP, this



Using IFTTT to Express and Enforce UCON Obligations 225

obligation must include the Key, the EventName and the values. The link that
the web-request has to be sent to has the following format in order for the Trigger
to be successful.

https://maker.ifttt.com/trigger/A/with/key/B , A ← EventName , B ← Key

This is necessary because in the case of creating multiple Applets, both the
IFTTT and the PEP must distinguish them. The three values that are included
in the obligation, explain in plain text what happened in UCON part and show
the difference between Oblig1 and Oblig2. Hence, every time that the Applet is
executed, the recipient of the email can distinguish which obligation has been
enforced.

4 Experimental Evaluation

In this section, we present two relevant use cases for application of the proposed
framework. Furthermore, a set of experiments to evaluate the performance over-
head introduced and demonstrate the viability of our approach is reported.

4.1 Examples of Use-Cases

The first example is advanced management through policy enforcement for
remote urban farming in smart greenhouses. One of the motivations to con-
sider this use case is that there are several pre-existing examples of IFTTT
Applets designed4 to manage watering and other smart devices in a greenhouse,
which can be exploited to enforce UCON obligations. The representation of the
scenario is shown in Fig. 5. The policy here for UCON is to monitor via smart-
sensors various attributes of a greenhouse, e.g. humidity, temperature through
the proposed framework and provide access to a smart-heating device to perform
a scheduled heating of the plants. The obligations are targeting to the water-
ing schedule of the smart-watering device that is responsible for watering the
plants. The goal in this example is to maintain the temperature and humidity
levels of the greenhouse to the desired values via controlling the smart-heating
with UCS and change the schedule of the smart-watering device with IFTTT
via the obligations coming from UCS. More in detail, the PEP is in the smart-
heating device and asks for permission to operate on the smart-greenhouse. The
PEP communicates with the UCS in order to request access to operate. The
UCS monitors the values of the humidity, temperature and provides the answer.
There are also other smart-sensors that can be used such as the availability of
electricity/batteries etc. After a successful request, in the response sent by the
UCS after the StartAccess action, there is an obligation including a schedule for
the smart-watering device to operate less frequently. When the PEP receives this
obligation, it has to enforce it by performing the web-request to the IFTTT plat-
form containing the schedule for the smart-watering device. When the IFTTT
4 https://ifttt.com/greeniq.

https://maker.ifttt.com/trigger/A/with/key/B
https://ifttt.com/greeniq


226 A. La Marra et al.

Fig. 5. Example of UCON obligation via IFTTT in a smart-greenhouse installation.

executes the Applet the smart-watering device is operating on the defined sched-
ule. In the meantime, if the weather is too hot or the smart-heating device is
operating for too long, the UCS, during the continuous re-evaluation procedure,
receives this information from the smart-temperature sensor. Thus, understands
that there is a policy violation that may affect the plants inside the smart-
greenhouse. So, the UCS performs the RevokeAccess to the PEP (smart-heating
device) to stop operating. An obligation is also included that provides a sched-
ule targeting the smart-watering device which has to operate more intensively so
that the temperature decreases and the humidity level increases. This obligation
is extracted and enforced by the PEP and is sent to the IFTTT platform. Sum-
marizing, in the case of the obligation after the StartAccess the smart-heating
device operates and the watering schedule is less intensive. In the case of the
obligation after the RevokeAccess the smart-heating device stops operating and
the watering schedule is more dense so as to lower the temperature and provide
better conditions in the greenhouse.

Another example is smart management through policy enforcement for con-
trolling a smart-office. The goal of this scenario is to continuously monitor the
presence of the people inside an office and the air quality of the room while they
are inside. The motivation in this example is the optimized use of the appliances
that control the convenience of the people inside an office (such as air quality,
temperature etc.). Frequently we face the situation that when there are several
people in an office during meetings, the air quality is not optimal disturbing,
thus, the meeting and make the people feel annoyed. The policy in this example
is the control by the UCS of the access of the smart-heating device operation
inside the room as scheduled and the operation of the ventilation system by the
IFTTT platform through obligations. The control of the access is based on the



Using IFTTT to Express and Enforce UCON Obligations 227

Fig. 6. Example of UCON obligation via IFTTT in a smart-office installation for mon-
itoring air quality.

continuous monitoring of attributes such as temperature and air quality pro-
vided by smart-devices installed inside the office. The UCS can be in this case
installed in a RaspberryPi that also provides sensors about air-quality5. The rep-
resentation of this scenario is shown in Fig. 6 where there are shown two cases
of this scenario. On the left there is the case with a few people inside the office.
The PEP is installed in the smart-heating device and request for access from the
UCS to operate as scheduled. The UCS monitors the attributes of the tempera-
ture and air-quality and provides the answer. In the response of the UCS after
the StartAccess there is an obligation for the IFTTT to force the stop of the
ventilation system. On the right there is the case with too many people inside
the office. In this case, there is a policy violation because the attributes indi-
cate that the condition inside the office is not comfortable. Then, independently
from the schedule of the smart-heating, UCS issues the RevokeAccess action to
force the smart-heating device to stop. The obligation that comes together with
the RevokeAccess and must be enforced, forces, through the execution of the
IFTTT Applet, the smart-ventilation system to start operating. In this exam-
ple, the first obligation comes with the response after a successful StartAccess
and forces through the IFTTT the smart-ventilation system to stop. The sec-
ond obligation comes with the RevokeAccess and forces through the IFTTT the
smart-ventilation system to operate.

4.2 Testbed and Timing Evaluation

For evaluating the viability of our framework, we selected to create the following
testbed. We used a virtual machine with Ubuntu 18.04 installed on a PC with
constrained settings in terms of the enabled CPU cores and the amount of RAM
used. In particular we used 2 cores of an i7-6700HQ CPU and 1 GB of RAM.
In this virtual machine we ran both the UCS and the PEP applications. When
receiving an obligation, the PEP was forced to trigger an IFTTT Applet that
was created for this scope. We have selected to study the performance of our
5 http://bit.ly/2MlxI4i.

http://bit.ly/2MlxI4i


228 A. La Marra et al.

framework by monitoring both the timings that UCON actions happen and the
timings that our system needs to extract, create and send the web request of
the obligation. However, since we cannot interfere with the time that actually
the Applet is executed in the IFTTT platform or the synchronizing settings of
the email recipient, we do not consider them in our timing evaluation. Although
the execution of the Applet is related to the traffic of the IFTTT servers, we did
not face in any experiment times larger than 1–2 min. Our evaluation is based
on the number of the attributes that our system has starting from a simple case
with one attribute until a case with 40 attributes. We executed every experiment
five times and took the average out of them, while increasing the number of the
attributes to multiples of 5. The results of the execution are shown in Table 2.
In this table we can see that the number of attributes increases the time that
the UCS need to evaluate the TryAccess and StartAccess request. Both these
timings if added together lead to the summary that from the time that the PEP
sends the request via the TryAccess until the time it has back the response of the
StartAccess by the UCS, the time varies from 400 ms in the case of one attribute
until 650 ms seconds in the case of 40 attributes whereas it increases in a linear
way. Nevertheless, we observe that the average time that the PEP needs to
extract and enforce the obligation is independent from the number of attributes
and equal to 450–700 ms in every case. This is something that was expected
since the attribute values are used only by the UCS for the re-evaluation but
to summarize we can identify that in any case the overall time from the time
that the PEP starts a request until the time that the obligation Trigger has
happened is a bit more than one second.

Table 2. Timings in milliseconds (ms) over the number of attributes

Time (ms)/attribute no. 1 5 10 15 20 25 30 35 40

UCON Tryaccess 312.6 387.8 380.6 358 380 393.6 433.4 476.2 477.8

UCON Startaccess 79 94.2 76.8 98.2 90.6 127 106.2 131.4 169.8

Permit Oblig. Enforcement 739.8 728.8 688.2 675.4 666.8 590.8 523.6 512.2 559.6

UCON RevokeAccess 52 70.2 72.8 92.6 103.8 121.4 115.6 170.4 146.4

Revoke Oblig. Enforcement 685.6 714.2 715.4 701.6 729.8 719 713.6 734.2 727

In addition to the previous, we can see that the time for UCS to execute the
RevokeAccess varies from 50 ms to 150 ms from 1 to 40 attributes respectively.
The time that the PEP needs to extract end enforce the obligation in this case,
remains similar to the one of the previous case and between 600–700 ms.

In Fig. 7, we show the total timings for firstly handling a request and secondly
handling a revoke. In the first case, which is marked with a dashed line, we
report the time that from sending the TryAccess from the PEP to the UCS,
until the time that the obligation is executed by the PEP to the IFTTT. We can
identify that the total time does not change much when the attribute number



Using IFTTT to Express and Enforce UCON Obligations 229

Fig. 7. Timings for handling a request and a revoke of access

is increasing which reveals a stability in the timings aroun 1100–1200 ms. In the
second case, which is marked with a continuous line, we report the time that the
RevokeAccess is triggered until the time that the obligation is executed by the
PEP. Again, we can see that the increased number of the attributes does not
change significantly the timings.

5 Related Work

An application of UCON in IoT environments has been presented in [11]. The
authors propose a distributed model of the standard UCON framework, dis-
cussing a smart home use case. An implementation specific for IoT communi-
cation protocols is presented in [7], where the authors present an integration
of the UCON paradigm in the Message Queue Telemetry Transport (MQTT)
workflow. The focus of these works, however, is not centered on obligations, they
only exploit in an appropriate way the authorization constructs. On the side of
IFTTT an effort to create simple policy algorithms for IoT is presented in [13].
This work focuses more on the policy specification and how it could be predicted
according to the user features and the specific IoT domain. This work, does not
study the way the policies are written, or the obligation format and context but
focuses more on the part of how to create a policy according to what is hap-
pening in a specific IoT domain. Furthermore, enforcement mechanisms are not
considered in their analysis. In [19], the author describes the development of a
specific framework that can modify the concepts of the IFTTT platform so as
to provide services that can be used in order to make home automation systems
more secure. This work, though, creates specific services in the IFTTT plat-
form and also depends only on the security mechanisms of IFTTT without any
control on the installed environment and, also, no continuous way of evaluation
or policy enforcement. In [18], the authors describe also some possible security
and privacy risks in the Applets of IFTTT. Concerning the XACML model for
policies, in [5], the authors present a description of obligation expression based



230 A. La Marra et al.

on examples in Grid and networking security. The work is very specific to this
limited environments and does not provide a way to formalize the obligations
semantic. Finally, in [2], the authors present a variation of XACML specific for
obligation extraction. Firstly, they propose a method of creating a new file for
obligations in XACML which is produced by the initial file but they do not
give a clear description of how the obligation part should be constructed so
as to be easily readable by both the PDP and the PEP. Though interesting,
their approach is not based on standard XACML, differently from our solution
that integrates in XACML 3.0 policies without requiring any modification to the
standard architecture and workflow.

6 Conclusion

Obligations is a powerful access and usage control tool which enables a capil-
lary control which goes beyond evaluating the right to perform or not an action.
However, in the XACML 3.0 specific semantic for standardized obligation rep-
resentation and enforcement is not considered. In this work we have proposed a
way to define an obligation semantic that is specific to IoT environments, using
IFTTT triggers to be enforced by PEPs that are directly connected to IFTTT
Applets. We have reported two specific use cases which motivate our work and
reported performance results to demonstrate the viability of the proposed app-
roach, detailing how the proposed solution is not disruptive for the standard
UCON workflow, enabling seamless integration.

As future directions we plan to perform an implementation on a larger testbed
with several coexistent IFTTT Applets and a wider number of attributes. Fur-
thermore, we plan to extend the standardization effort, giving a formal definition
of the grammar to be used for defining IFTTT obligations.

References

1. Carniani, E., D’Arenzo, D., Lazouski, A., Martinelli, F., Mori, P.: Usage control
on cloud systems. Future Gen. Comput. Syst. 63(C), 37–55 (2016). https://doi.
org/10.1016/j.future.2016.04.010

2. Chadwick, D., Lischka, M.: Obligation standardization. In: W3C Workshop on
Access Control Application Scenarios, pp. 1–5 (2009). https://www.w3.org/2009/
policy-ws/papers/Chadwick.pdf

3. Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the QEST broker: scal-
ing the IoT by bridging MQTT and REST. In: 2012 IEEE 23rd International Sym-
posium on Personal, Indoor and Mobile Radio Communications - (PIMRC), pp.
36–41, September 2012. https://doi.org/10.1109/PIMRC.2012.6362813

4. Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhanc-
ing XACML with continuous usage control features. In: Desprez, F., Getov, V.,
Priol, T., Yahyapour, R. (eds.) Grids. P2P and Services Computing, pp. 133–146.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-6794-7 11

https://doi.org/10.1016/j.future.2016.04.010
https://doi.org/10.1016/j.future.2016.04.010
https://www.w3.org/2009/policy-ws/papers/Chadwick.pdf
https://www.w3.org/2009/policy-ws/papers/Chadwick.pdf
https://doi.org/10.1109/PIMRC.2012.6362813
https://doi.org/10.1007/978-1-4419-6794-7_11


Using IFTTT to Express and Enforce UCON Obligations 231

5. Demchenko, Y., Koeroo, O., de Laat, C., Sagehaug, H.: Extending XACML autho-
risation model to support policy obligations handling in distributed application.
In: Proceedings of the 6th International Workshop on Middleware for Grid Com-
puting, MGC 2008, pp. 5:1–5:6. ACM, New York (2008). https://doi.org/10.1145/
1462704.1462709

6. Faiella, M., Martinelli, F., Mori, P., Saracino, A., Sheikhalishahi, M.: Collaborative
attribute retrieval in environment with faulty attribute managers. In: 2016 11th
International Conference on Availability, Reliability and Security (ARES), pp. 296–
303, August 2016. https://doi.org/10.1109/ARES.2016.51

7. La Marra, A., Martinelli, F., Mori, P., Rizos, A., Saracino, A.: Improving MQTT
by inclusion of usage control. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo,
K.K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 545–560. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72389-1 43

8. La Marra, A., Martinelli, F., Mori, P., Rizos, A., Saracino, A.: Introducing usage
control in MQTT. In: Katsikas, S.K., et al. (eds.) SECPRE 2017, CyberICPS 2017.
LNCS, vol. 10683, pp. 35–43. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72817-9 3

9. Lazouski, A., Martinelli, F., Mori, P.: Survey: usage control in computer security:
a survey. Comput. Sci. Rev. 4(2), 81–99 (2010). https://doi.org/10.1016/j.cosrev.
2010.02.002

10. Lazouski, A., Martinelli, F., Mori, P., Saracino, A.: Stateful data usage control for
Android mobile devices. Int. J. Inf. Secur. 1–25 (2016). https://doi.org/10.1007/
s10207-016-0336-y

11. Marra, A.L., Martinelli, F., Mori, P., Saracino, A.: Implementing usage control
in internet of things: a smart home use case. In: 2017 IEEE Trustcom/Big-
DataSE/ICESS, pp. 1056–1063, August 2017. https://doi.org/10.1109/Trustcom/
BigDataSE/ICESS.2017.352

12. Martinelli, F., Mori, P.: On usage control for GRID systems. Future Gen. Comput.
Syst. 26(7), 1032–1042 (2010). https://doi.org/10.1016/j.future.2009.12.005

13. Nadkarni, A., Enck, W., Jha, S., Staddon, J.: Policy by Example: An Approach
for Security Policy Specification. arXiv preprint arXiv:1707.03967 (2017)

14. OASIS Standard: eXtensible Access Control Markup Language (XACML) Version
3.0, January 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html

15. Ovadia, S.: Automate the Internet with “If This Then That” (IFTTT). Behav. Soc.
Sci. Libr. 33(4), 208–211 (2014). https://doi.org/10.1080/01639269.2014.964593

16. Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: Proceedings of the Seventh ACM Symposium on Access Control Models
and Technologies, SACMAT 2002, pp. 57–64. ACM, New York (2002). https://doi.
org/10.1145/507711.507722

17. Samarati, P., de Vimercati, S.C.: Access control: policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2 3

18. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes. In: Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, pp. 1501–1510. International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/
10.1145/3038912.3052709

19. Vorapojpisut, S.: A lightweight framework of home automation systems based on
the IFTTT model. JSW 10(12), 1343–1350 (2015)

https://doi.org/10.1145/1462704.1462709
https://doi.org/10.1145/1462704.1462709
https://doi.org/10.1109/ARES.2016.51
https://doi.org/10.1007/978-3-319-72389-1_43
https://doi.org/10.1007/978-3-319-72817-9_3
https://doi.org/10.1007/978-3-319-72817-9_3
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1007/s10207-016-0336-y
https://doi.org/10.1007/s10207-016-0336-y
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.352
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.352
https://doi.org/10.1016/j.future.2009.12.005
http://arxiv.org/abs/1707.03967
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1080/01639269.2014.964593
https://doi.org/10.1145/507711.507722
https://doi.org/10.1145/507711.507722
https://doi.org/10.1007/3-540-45608-2_3
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/3038912.3052709


Evaluation of Software PUF
Based on Gyroscope

Kazuhide Fukushima1(B), Ayumu Yoshimura2, Shinsaku Kiyomoto1,
and Norikazu Yamasaki2

1 KDDI Research, Inc., 2–1–15 Ohara, Fujimino, Saitama 356–8502, Japan
ka-fukushima@kddi-research.jp

2 Tamagawa University, 6–1–1 Tamagawagakuen, Machida, Tokyo 194–8610, Japan

Abstract. The Physically Unclonable Function (PUF), which extracts
a unique device identification based on variations in manufacturing pro-
cesses, has recently attracted attention. IoT devices, including sensor
monitors and wearables, have come into widespread use, and various
kinds of devices have access to a range of services. Device authentication
and management of key to encryption communication data are essential
for a secure service. We can realize secure authentication based on device
identification extracted by a PUF. For example, PUF is used as a key gen-
erator to avoid storing the encryption key in a device. However, existing
PUFs require dedicated hardware or software (driver) to extract device
identification. Thus, it may not be possible to apply existing PUFs to
IoT devices in a situation where there are a variety of devices and many
device manufacturers. We can use characteristic values of existing sen-
sors in an IoT device as an alternative to PUF. In this paper, we expand
an existing software PUF based to support characteristic values extract
from a gyroscope, and evaluate the entropy and robustness. We found
that the same device identifier can be reliably extracted from a gyroscope
even under conditions of high and low temperature, and low-pressure. No
changes in the characteristic values of the gyroscope due to degradation
with age were found over a wearing period exceeding than three years.
The device identifier has up to 81.2 bits entropy with no error-correcting
mechanism. It has up to 57.7 bits entropy when error-correction of one
bit is applied to each characteristic value by a Fuzzy extractor.

Keywords: IoT devices · Sensor monitors · Wearables · Gyroscope ·
Physically Unclonable Function · Software PUF

1 Introduction

IoT devices, including sensor monitors and wearables, have come into widespread
use. Rapid growth of the IoT market is expected in the areas of automobiles and
transportation, where the use of connected-vehicles is expanding, the medical

A. Yoshimura—He currently belongs to TDC SOFT Inc.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 232–247, 2019.
https://doi.org/10.1007/978-3-030-34339-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_13


Evaluation of Software PUF Based on Gyroscope 233

field, where we see growth in the use of digital devices for healthcare, and in
industry (including factories, infrastructure, and logistics), where we are witness-
ing the expansion of smart factories and smart cities. IHS Markit [18] predicts
that the number of connected IoT devices worldwide will increase by 12% on
average annually. There were nearly 27 billion devices in 2017, and this number
will surge to 125 billion by 2030. Google has released Wear OS [14] for wearables
and announced the release of Android Things [15], which is an Android-based
platform for smart speakers and smart displays. Users can add new features
to their smartphones and IoT devices by installing applications. However, an
attacker may be able to analyze applications and find a secret key to decrypt
protected content or obtain authentication information illegally.

One approach is to generate a unique key dynamically based on the
device information of a smartphone or IoT device. For example, the MAC
address of a Wi-Fi adapter and Bluetooth adapter has been used as the
input to a key generation function. However, the MAC address can be eas-
ily modified in a device where the administrator privilege is compromised.
Furthermore, the current version of Android and iOS prohibit general appli-
cations from getting the MAC address. Android 6.0 (API level 23) or later
returns a fixed value 02:00:00:00:00:00 for WifiInfo.getMacAddress() and
BluetoothAdapter.getAddress(), which are ways of getting the MAC address
of the Wi-Fi and Bluetooth adapter respectively [13]. iOS7 or later returns the
same value for similar APIs [2]. Protection of the key generation algorithm is
another critical issue. The Android SDK contains an obfuscation too called Pro-
Guard [24] to protect against unauthorized analysis and modification. Nonethe-
less, this mechanism offers only limited protection since it relies solely on a
software mechanism.

Another approach is hardware-based protection, and one idea is to use
tamper-proof hardware. Mobile phones have a tamper-proof module, such as a
user identity module (UIM) [1] or subscriber identity module (SIM) [37]. These
modules provide secure storage for service-subscriber keys and ensure secure
computational capability. The serial number of the SIM card can be used as
a valid identifier. Android provides the getSimSerialNumber() method to get
the identifier. The Trusted Computing Group (TCG) has established technol-
ogy specifications for the Trusted Platform Module (TPM) that is available in
smartphones and PCs [38]. The TPM provides the cryptographic functions to
enhance the security of the platform, and it is used as a root of trust. How-
ever, most IoT devices, including sensor monitors and wearables, do not have
dedicated hardware.

The Physically Unclonable Function (PUF), which generates unique device
identifiers based on variations in the manufacturing process, is a promising alter-
native. We can use the device identifier as a key. The device identifier generated
by the PUF is hard to analyze since it does not appear in digital format on
the device. The existing PUFs depend on additional and dedicated hardware.
Thus, they are impractical for use in IoT devices due to the strict limitations
on production cost and power consumption. The Static Random-Access Mem-



234 K. Fukushima et al.

ory (SRAM) PUF and Dynamic Random-Access Memory (DRAM) PUF utilize
existing hardware. Still, they are not feasible since they require low-level soft-
ware, i.e., a driver.

Smartphones and IoT devices have various sensors and hardware such as an
accelerometer, gyroscope, proximity sensor, microphone, speaker, and camera.
Most wearables have an accelerometer and gyroscope to act according to users’
behavior. In this paper, we evaluate the robustness and identification capability
of a software PUF that utilizes the characteristic values extracted from a gyro-
scope. The software PUF based on sensors is widely available on IoT devices,
including sensor monitors and wearables.

2 Related Work

The Physically Unclonable Function (PUF) [32] is a function that extracts
unique identifiers based on variations in the manufacturing process. It uses slight
differences in electronic, optical, or magnetic characteristics. The Arbiter PUF
utilizes different signal propagation delays over identical paths [11,25], and the
Glitch PUF is based on glitches that are caused by variation in the delay between
the input and output signals of each gate [35]. Butterfly PUF, proposed by
Kumar et al. [23], uses the initial state of flip-flops. The ClockPUF proposed
by Yao et al. [40] extracts the variation in pairwise skews between sinks of a
clock network. Gassend et al. proposed the Ring Oscillator PUF based on the
variation in the oscillating frequency of the ring oscillator [10]. Finally, Tuyls et
al. proposed the Coating PUF based on the capacitance of the coating materi-
als containing dielectric particles [39]. PUFs are categorized into strong PUFs,
which include the arbiter PUF, and weak PUFs, which include the butterfly
PUF. Strong PUFs takes a challenge as an input and outputs a response cal-
culated with their characteristics. Weak PUFs takes no or one fixed challenge
and outputs a fixed characteristic value. These PUFs depend on additional and
dedicated hardware; thus, they are not practical for use in smartphones or IoT
devices.

Some PUFs based on existing hardware have been proposed. An SRAM PUF
utilizes the initial data in memory when the power is turned on [7,27,28]. Krishna
et al. proposed a memory-cell-based PUF that uses intrinsic process variations in
the read and write reliability of cells in static memory [22]. Liu et al. proposed
a DRAM PUF that uses decay time and output stability [26]. Keller et al.
proposed a PUF based on the influence of temperature and time on the charge
decay [19]. A DRAM PUF proposed by Tehranipoor [36] uses initial data similar
to an SRAM PUF. However, the SRAM and DRAM PUFs are still impractical
in smartphones or IoT devices. They require dedicated drivers to extract the
characteristic features of devices, which imposes an additional cost.

Another approach is to establish features of PUF using existing hardware
that can be manipulated with a standard application program interface (API).
We call this sort of PUF a software PUF. The software PUF is flexible in terms of
its introduction into a system since it can be installed as software. Cao et al. [3]



Evaluation of Software PUF Based on Gyroscope 235

proposed a software PUF based on a CMOS image sensor for coherent sensor-
level authentication. Kim and Lee [20] proposed a software PUF based on the
fixed pattern noise of a CMOS image sensor. Fukushima et al. [9] proposed a
software PUF based on sensors in smartphones and IoT devices. The software
PUF can extract the characteristic values of sensors through the standard API
of the OS.

Some application studies are using PUFs. Che et al. [6] shows the require-
ments for PUF-based authentication and proposed a PUF-based authentication
protocol designed for resource-constrained devices. Rahim et al. [33] combined a
blockchain and software PUF authentication mechanism to establish a real-time
and non-repudiable access to IoT devices in a smart home. Chatterjee et al. pro-
posed certificate-less authentication and key exchange schemes based on PUF
and identity-based encryption (IBE) [4], and applied the scheme to the hand-
shake protocol in the SSL/TLS layer [5].

3 Software PUF Based on Sensors

Fukushima et al. [9] proposed a sensor-based software PUF for IoT devices,
including sensor monitors and wearables. The software PUF acquires the max-
imum and minimum values of sensors as the characteristic values of the sen-
sors and generates device identifiers based on these characteristic values. They
demonstrated that the software PUF based on an accelerometer is practical by
showing it has enough identification capability and robustness. We expand their
software PUF to support characteristic values extract from a gyroscope, and
evaluate the entropy and robustness.

We describe the software PUF [9] to generate a device identifier based on the
characteristic values of the sensors in Sect. 3.1. Section 3.2 describes the features
of a gyroscope.

3.1 Device Identifier Generation

The identifier generation process consists of the acquisition of the characteristic
values of the sensors (step 1) and identifier generation using a one-way function
(step 2).

Step 1 Acquisition of the Characteristic Values of the Sensors. The software
PUF requires the maximum values and minimum values of the accelerometer and
gyroscope. A user needs to sharply shake and twist his/her arm while wearing
or holding the device. This process stores the tentative maximum and minimum
values of sensors. These tentative values are updated when the current sensor
value is larger or smaller than the tentative maximum or minimum value, respec-
tively. We consider the tentative values to be the actual maximum and minimum
values after a user shakes the device for a specified time (a few seconds), and
the tentative values are stable. We show a sample implementation of this step
in the appendix.



236 K. Fukushima et al.

Fig. 1. Gyroscope in wearable device

Step 2 Generation of Device Identifier. The software PUF uses a one-way func-
tion to generate a device identifier from the concatenated characteristic values
extracted from sensors. A device identifier has to vary with each application or
service when the identifier is used as a key. In this case, applications or services
can use a seed s as an auxiliary input to the one-way function to fulfill the
requirement.

We can use a fuzzy extractor [8] to deal with minor deviations in the char-
acteristic values of the sensors. The fuzzy extractor generates and registers a
secure sketch SS for future identifier extractions in the registration phase. It
generates the random number r, encoded with an error-correcting code C. The
secure sketch SS is the exclusive-or of the characteristic value of sensor w, and
C(r) or SS = w⊕C(r). The random number r is disposed of one the registration
process is complete. In the device identifier generation phase, the fuzzy extractor
recovers the original characteristic value w from the secure sketch SS calculated
from the current characteristic value w′ in the device. It calculates C(r) as

C(r) = ErrCx(SS ⊕ w′) = ErrCx[C(r) ⊕ (w ⊕ w′)],

where ErrCx is the error-correcting function and w ⊕ w′ denotes the minor devi-
ation of the characteristic values of the sensor. Finally, the fuzzy extractor gen-
erates the device identifier as

DeviceID(w′, s) = h(w ⊕ s) = h(SS ⊕ C(r) ⊕ s)

using the one-way function h.
The sensor values for each axis can be considered as independent. Thus, the

software PUF separately applies the fuzzy extractor to each characteristic value
(maximum and minimum values for each of the axes, x, y, and z).

3.2 Gyroscope

A three-axis gyroscope measures the angular velocities around the x, y, and z-
axes. Figure 1 shows the rotation direction around these axes. Many wearables
have a gyroscope that can measure up to 2,000 degree/s (34.9 rad/s).



Evaluation of Software PUF Based on Gyroscope 237

Table 1. Maximum and minimum values of angular velocity

(a) Gyroscope of a smartwatch

Maximum Minimum
x-axis 34.999954 rad/s -34.998978 rad/s
y-axis 34.994186 rad/s -35.004745 rad/s
z-axis 34.967545 rad/s -35.031387 rad/s

(b) Gyroscope of another smartwatch

Maximum Minimum
x-axis 35.018036 rad/s -34.980896 rad/s
y-axis 35.009125 rad/s -34.989807 rad/s
z-axis 34.989014 rad/s -35.009920 rad/s

The maximum and minimum values of the gyroscope around each axis differ
from one device to another. Thus, these values can be used to generate device
identification data. We construct a six-dimensional data set that consists of the
maximum and minimum values around the x, y, and z-axes and extracts digits
that have enough variety. The characteristic values of the gyroscope can be
obtained by concatenating these digits.

4 Experiment

We implemented the software PUF based on a gyroscope as a Wear OS applica-
tion. The software PUF application is executed on an LG Watch Urbane smart-
watch to evaluate the entropy and robustness of the device identifier.

The LG Watch Urbane runs on the Wear OS 2.24.0.248902549 that is com-
patible with Android OS 7.1.1 and it has a gyroscope that can measure from
−2,000 degree/s (−34.9 rad/s) to 2,000 degree/s (34.9 rad/s). Table 1 shows an
example. The number in the fourth decimal place and the following digits have
enough variety. Thus, the PUF application extracts the numbers in the fourth
to sixth decimal place as a character string with three figures from each of the
maximum and minimum values of angular velocities around the x, y, and z-axes.
The application can acquire a characteristic value of the accelerometer with 18
characters by concatenating these six character strings.

The software PUF application generates a device identifier with 128-bit
length from the characteristic value of a gyroscope by using SHA-256 and trun-
cating the last 128 bits. We do not use the fuzzy extractor in the application since
it can reliably extract the identical characteristic values from the gyroscope.

Figure 2 shows a photo of the PUF application on the LG Watch Urbane. The
application regenerates and displays the generated device identifier whenever the
tentative maximum and minimum values of sensors are updated. The tentative
maximum and minimum values are reset to zero when the user presses the reset
button (RST). The application stores the device identifier when the register
button (REG) is pressed and deletes the identifier when the unregister button
(URG) is pressed. We can use this function to evaluate the robustness of the
device identifier. The application compares the generated identifier and stored
identifier and displays “OK” if they are identical or “NG” otherwise.



238 K. Fukushima et al.

Fig. 2. Screenshot of gyroscope-based software PUF

5 Evaluation

We evaluate the compatibility of the software PUF based on a gyroscope with
the requirements for PUFs. Then, we evaluate the robustness and entropy of the
device identifier generated by the accelerometer-based PUF.

5.1 Compatibility with Requirements

Maes and Verbauwhede [29] showed the requirements for PUFs: evaluable,
unique, reproducible, unpredictable, one-way, unclonable and tamper evident.
We show the compatibility of the software PUF based on a gyroscope in relation
to these requirements.

Evaluable. The software PUF based on a gyroscope uses the characteristic val-
ues of the existing sensors, and these values can be acquired through the exist-
ing APIs. The software PUF can be implemented as a general application at a
minimal cost. Furthermore, the software PUF uses only the extraction and con-
catenation of character strings, one-way function, and optional exclusive-or and
operations for the error-correcting code. Thus, the PUF is feasible in resource-
restricted devices.

Unique. The device identifier generated by the software PUF based on a gyro-
scope is unique since it has high entropy. We evaluate the entropy of the software
PUF in Sect. 5.2.

Reproducible. The device identifier generated by the software PUF based on a
gyroscope is reproducible since it has high robustness. We evaluate the robust-
ness of the software PUF in Sect. 5.3.

Unpredictable. The software PUF based on a gyroscope is a weak PUF and
does not apply to the challenge-response model. Thus, we cannot evaluate the
unpredictability of the sensor-based software PUF. However, we can construct
a strong PUF that protects against side-channel analysis and machine learning
attacks [34].



Evaluation of Software PUF Based on Gyroscope 239

One-way. The software PUF based on a gyroscope uses a one-way function
to generate the device identifier from the characteristic values. The one-way
function guarantees this requirement for the sensor-based software PUF.

Unclonable and Tamper Evident. The software PUF based on a gyroscope
acquires the characteristic values of sensors using software (application) and
generates the device identifier. Thus, we need to protect against the acquisition
and modification of the characteristic values and generated device identification.
For example, attackers can make a clone of the software PUF by acquiring the
characteristic values of the sensor. They can also modify the values of the sensors
or the generated device identifier in the memory. Thus, we obviously have to pro-
tect against these attacks by applying memory protection techniques [12,30,31].
Attackers may modify the identifier generation algorithm so that it outputs an
arbitrary identifier. We also have to protect against these attacks by applying
software tamper-proof techniques to prevent modification of the application.

5.2 Identification Capability

We have evaluated the quadratic Renyi entropy of the device identifier extracted
from a gyroscope. The quadratic Renyi entropy is defined as:

H2(C) = − log2

(∑
w∈C

pC(w)2
)

.

H2(C) is a particular case (α = 2) of the Renyi entropy Hα(C), which is defined
as:

Hα(C) =
1

1 − α
log2

(∑
w∈C

pC(w)α

)
.

The Shannon entropy is defined as

H(C) = −
∑
w∈C

pC(w) log2 pC(w).

The Renyi entropy and Shannon entropy have the relationship: limα→1 Hα(C) =
H(C) and is non-increasing with respect to α. The quadratic Renyi entropy is
smaller than or equal to the Shannon entropy, or H2(C) ≤ H(C). The equal-
ity holds when C is chosen according to the uniform distribution. Thus, the
quadratic Renyi entropy gives an upper-bound of the Shannon entropy.

The
∑

w∈C pC(c)2 is the probability that the two characteristic values are
identical, and the quadratic Renyi entropy is referred to as the collision entropy.
The quadratic Renyi entropy can be written as

H2(C) = − log2 pD(0)

with the probabilistic mass function of the distance D between two characteristic
values pD(d). The quadratic Renyi entropy has been used to evaluate the entropy



240 K. Fukushima et al.

Fig. 3. Flowchart to select approach to estimate probability pD(0)

of biometric information [16,17]. However, it is difficult to predict the probability
pD(d) directly with a limited number of samples. Thus, we need to estimate
pD(d).

Figure 3 shows a flowchart to select an approach to estimate the probabil-
ity pD(0). Fukushima et al. [9] the evaluate the entropy of a device identifier
extracted by the software PUF based on an accelerometer-based on a non-
parametric approach [21]. The experimental distribution of the Hamming dis-
tance between characteristic values matches the theoretical binomial distribution
well in our evaluation (Figs. 4 and 5). We derive a parameter p of a binomial
distribution p̃ based on a maximum likelihood estimation technique. Then, the
chi-squared test is used to determine whether the experimental distribution is
in conformance with a binomial distribution with parameters n and p̃. We can
calculate the quadratic Renyi entropy using the probabilistic mass function of
the binomial distribution (Eq. (1)) if the null hypothesis is not rejected. We
need to use a non-parametric approach [21] if the probabilistic distribution of
the Hamming weight is unknown or the null hypothesis is rejected.

The probability pD(d) can be calculated as:

pD(d) =
(

n

d

)
p̃d(1 − p̃)n−d



Evaluation of Software PUF Based on Gyroscope 241

in the situation where the Hamming weight between characteristic value D fol-
lows a binomial distribution with parameters n and p̃, where n is the bit-length
of a characteristic value. We have

pD(0) = (1 − p̃)n

and the quadratic Renyi entropy can be calculated as:

H2(C) = −n log2(1 − p̃). (1)

We exhaustively compared the 36 characteristic values extracted from six
wearable devices. A total of 630 (= 36(36−1)/2) samples are used to estimate the
distribution of the Hamming distance. Our experiment evaluates the quadratic
Renyi entropy of characteristic values extracted from (1) three decimal digits in
the fourth to sixth decimal place and (2) four decimal digits in the third to the
sixth decimal place, from the maximum and minimum values of the gyroscope.

Characteristic Value Based on Three Decimal Digits. We can extract a 10-bit
characteristic value from three decimal digits from 000 to 999. The blue bar graph
in Fig. 4 shows the distribution measured Hamming distance between extracted
characteristic values, and the light blue bar graph shows the ideal binomial dis-
tribution with parameters n = 10 and p̃ = 0.4978 that is derived from the actual
distribution. The chi-square with 10 degrees of freedom is 9.40, and the corre-
sponding p-value is 0.498; thus, the null hypothesis is not rejected. We conclude
that the distribution of the Hamming distance follows the binomial distribution.
Each characteristic value has 9.94 bits of the quadratic Renyi entropy, and we
can extract a device identifier with 59.6 bits of entropy from a gyroscope with a
six-dimensional characteristic value.

Four Decimal Digits Based on Four Decimal Digits. We can extract a 14-bit
characteristic value from four decimal digits from 0000 to 9999. The blue bar
graph in Fig. 5 shows the distribution measured Hamming distance between
extracted characteristic values, and the light blue bar graph shows the ideal
binomial distribution with parameters n = 14 and p̃ = 0.4882 that is derived
from the actual distribution. The chi-square value with 14 degrees of freedom
is 9.34, and the corresponding p-value is 0.809; thus, the null hypothesis is not
rejected. We conclude that the distribution of the Hamming distance follows the
binomial distribution. Each characteristic value has 13.5 bits of the quadratic
Renyi entropy, and we can extract a device identifier with 81.2 bits of entropy
from a gyroscope with a six-dimensional characteristic value.

We can consider the distribution of the Hamming distance of characteristic
values as a binomial distribution in both cases. Equation (1) can be used to
evaluate the quadratic Renyi entropy of the characteristic values extracted from
a gyroscope. A device identifier extracted from a gyroscope has 81.2 bits of
entropy when we utilize four decimal digits of the characteristic values extracted
from a gyroscope.



242 K. Fukushima et al.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Fr
eq
ue
nc
y

Hamming distance

Empirical
Theoretical

Fig. 4. Distribution of Hamming distance between characteristic values extracted from
four decimal digits (Color figure online)

We discuss the trade-off between identification capability and robustness in
the case where the sensor-based software PUF uses the fuzzy extractor. The
entropy loss of each characteristic value of the sensors is at least log2

(∑t
k=0

(
n
k

))
bits according to the Hamming bound. n is the bit length of the encoded charac-
teristic value, and t is the correction capability of the error-correcting code. The
total entropy loss is at least 6 log2

(∑t
k=0

(
n
k

))
bits. Table 2 shows the relation-

ship between the correction capability of the error-correcting code and the upper
bound of the total entropy of the device identifier generated by the sensor-based
software PUF. It also compares the entropy of identifiers extracted by the exist-
ing scheme [9] and our proposed scheme. The device identifier generated by the
gyroscope-based PUF can achieve more than 60 bits of entropy when the fuzzy

Table 2. Entropy loss due to error-correction

Capability Entropy [9] Entropy (Our)

0 91.7 81.2

1 66.6 57.7

2 48.1 40.8

3 33.4 27.9

4 21.8 18.0

5 12.5 10.6



Evaluation of Software PUF Based on Gyroscope 243

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fr
eq
ue
nc
y

Hamming distance

Empirical
Theoretical

Fig. 5. Distribution of Hamming distance between characteristic values extracted from
four decimal digits (Color figure online)

extractor is not used, or when the fuzzy extractor uses the error-correcting code
with one-bit correction capability.

5.3 Robustness

The software PUF based on a gyroscope can generate an identical device identi-
fier within the same device without the fuzzy extractor. We were able to confirm
that the device identifier generated by the accelerometer-based PUF is consistent
from the fact that the same user could generate the same identifier more than
1,000 times. Furthermore, more than ten users can generate the same device
identifier within the same device. The accelerometer-based PUF generates the
same device identifier regardless of the surrounding temperature. Finally, it gen-
erates the same identifier after placing the device in −15 ◦C and 90 ◦C, and at
2,000 m above sea level on a mountain. No changes in the characteristic values
of the gyroscope due to degradation with age were found when the device was
worn for a period exceeding three years.

6 Conclusion

We expanded an existing software PUF [9] to support characteristic values
extracted from a gyroscope. The software PUF based on a gyroscope is widely
applicable to smartphones and IoT devices. Our experimental results show that
the software PUF based on a gyroscope is practical due to enough identification



244 K. Fukushima et al.

capability (entropy of 81.2 bit) and robustness. The software PUF [9] extracts
a device identifier with an entropy of up to 91.7 bits from an accelerometer.
The combination of device identifiers from an accelerometer and gyroscope can
achieve higher identification capability as a key for a secret key cryptosystem.
However, the software PUF based on gyroscope has a limitation that a user
has to sharply twist the arm wearing or holding a device to extract the device
identifier. In future research, we will endeavor to make extraction of device iden-
tifier from sensors easier for users and study security measures against physical
attacks.

A Implementation on Wear OS Device

Figure 6 shows a sample implementation designed to acquire the maximum and
minimum values of the gyroscope in a wearable device with Wear OS. The
fields maxX, minX, maxY, minY, maxZ, and minZ are fields that store the ten-
tative maximum and minimum values of the angular velocities around the x,
y and z-axes. The method onSensorChanged is called when the sensor val-
ues have changed. We retrieve the event from the gyroscope by using the if
statement. The angular velocities around the x, y, and z-axes are stored in the
values array. The same code where Sensor.TYPE GYROSCOPE is replaced with
Sensor.TYPE ACCELEROMETER can acquire the maximum and minimum values of
accelerations along each axis.

@Override

public void onSensorChanged(SensorEvent event) {

if (event.sensor.getType() == Sensor.TYPE_GYROSCOPE) {

boolean upd = false;

float x = event.values[0];

float y = event.values[1];

float z = event.values[2];

if (x > maxX) { maxX = x; upd = true; }

if (x < minX) { minX = x; upd = true; }

if (y > maxY) { maxY = y; upd = true; }

if (y < minY) { minY = y; upd = true; }

if (z > maxZ) { maxZ = z; upd = true; }

if (z < minZ) { minZ = z; upd = true; }

if (upd) {

// Regenerate device identifier using updated values

deviceId = generateDeviceId();

}

}

}

Fig. 6. Acquisition of maximum and minimum values of the gyroscope [9]



Evaluation of Software PUF Based on Gyroscope 245

The software PUF based on a gyroscope needs to set the highest sampling
frequency on the sensors so that we can efficiently acquire the maximum and min-
imum values. We can set the sampling frequency through the registerListener
method in Android. The method registers SensorEventListener that is used
to receive notifications from the SensorManager when the sensor values have
changed. The notification frequency is highest, and the period is a few millisec-
onds if SENSOR DELAY FASTEST is passed to the method.

References

1. 3GPP2: Removable User Identity Module (R-UIM) for cdma2000 Spread Spectrum
Systems (2000). https://www.3gpp2.org/Public html/Specs/CS0023-0.pdf

2. Apple: What’s New in iOS 7.0 - Apple Developer (2013). https://developer.apple.
com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS7.html

3. Cao, Y., Zhang, L., Zalivaka, S.S., Chang, C., Chen, S.: CMOS image sensor based
physical unclonable function for coherent sensor-level authentication. IEEE Trans.
Circ. Syst. I: Regular Pap. 62(11), 2629–2640 (2015). https://doi.org/10.1109/
TCSI.2015.2476318

4. Chatterjee, U., et al.: Building PUF based authentication and key exchange pro-
tocol for IoT without explicit CRPs in verifier database. IEEE Trans. Depend-
able Secur. Comput. 16(3), 424–437 (2019). https://doi.org/10.1109/TDSC.2018.
2832201

5. Chatterjee, U., et al.: PUFSSL: an OpenSSL extension for PUF based authenti-
cation. In: 2018 IEEE 23rd International Conference on Digital Signal Processing
(DSP), pp. 1–5, November 2018. https://doi.org/10.1109/ICDSP.2018.8631814

6. Che, W., Saqib, F., Plusquellic, J.: PUF-based authentication. In: 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 337–344,
November 2015. https://doi.org/10.1109/ICCAD.2015.7372589

7. Chopra, J., Colopy, R.: SRAM Characteristics as Physical Unclonable Func-
tions (2009). http://www.wpi.edu/Pubs/E-project/Available/E-project-031709-
141338/

8. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). https://doi.org/10.1137/060651380

9. Fukushima, K., Hidano, S., Kiyomoto, S.: Sensor-based wearable PUF. In: Pro-
ceedings of the 13th International Joint Conference on e-Business and Telecom-
munications - Volume 4: SECRYPT, (ICETE 2016), pp. 207–214. INSTICC,
SciTePress (2016). http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.
5220/0005946702070214

10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, CCS 2002, p. 148 (2002). https://doi.org/10.1145/586110.586132

11. Gassend, B., Clarke, D., Lim, D., van Dijk, M., Devada, S.: Identification and
authentication of integrated circuits. Concurrency Comput.: Practice Exp. 16(11),
1077–1098 (2004)

12. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553

https://www.3gpp2.org/Public_html/Specs/CS0023-0.pdf
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS7.html
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS7.html
https://doi.org/10.1109/TCSI.2015.2476318
https://doi.org/10.1109/TCSI.2015.2476318
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1109/ICDSP.2018.8631814
https://doi.org/10.1109/ICCAD.2015.7372589
http://www.wpi.edu/Pubs/E-project/Available/E-project-031709-141338/
http://www.wpi.edu/Pubs/E-project/Available/E-project-031709-141338/
https://doi.org/10.1137/060651380
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005946702070214
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005946702070214
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/233551.233553


246 K. Fukushima et al.

13. Google: Android 6.0 changes, access to hardware identifier (2015). http://
developer.android.com/intl/ja/about/versions/marshmallow/android-6.0-
changes.html#behavior-hardware-id

14. Google: Wear OS (2018). https://wearos.google.com/
15. Google: Android Things (2019). https://developer.android.com/things/
16. Hidano, S., Ohki, T., Takahashi, K.: Evaluation of security for biometric guessing

attacks in biometric cryptosystem using fuzzy commitment scheme. In: Proceedings
of 2012 International Conference of the Biometrics Special Interest Group, BIOSIG,
pp. 1–6 (2012)

17. Hidano, S., Ohki, T., Komatsu, N., Takahashi, K.: A metric of identification per-
formance of biometrics based on information content. In: Proceedings of 11th Inter-
national Conference on Control, Automation, Robotics and Vision, ICARCV 2010,
pp. 1274–1279 (2010). https://doi.org/10.1109/ICARCV.2010.5707961

18. IHS Markit: Number of Connected IoT Devices Will Surge to 125 Billion by 2030,
IHS Markit Says (2015). http://www.statista.com/statistics/266210/

19. Keller, C., Gurkaynak, F., Kaeslin, H., Felber, N.: Dynamic memory-based physi-
cally unclonable function for the generation of unique identifiers and true random
numbers. In: Proceedings of IEEE International Symposium on Circuits and Sys-
tems, vol. 3, pp. 2740–2743 (2014). https://doi.org/10.1109/ISCAS.2014.6865740

20. Kim, Y., Lee, Y.: CamPUF: physically unclonable function based on CMOS image
sensor fixed pattern noise. In: Proceedings of the 55th Annual Design Automation
Conference, DAC 2018, pp. 66:1–66:6. ACM, New York (2018). https://doi.org/
10.1145/3195970.3196005

21. Kokonendji, C.C., Kiesse, T.S., Zocchi, S.S.: Discrete triangular distributions and
non-parametric estimation for probability mass function. J. Nonparametric Stat.
19(6–8), 241–254 (2007). https://doi.org/10.1080/10485250701733747

22. Krishna, A.R., Narasimhan, S., Wang, X., Bhunia, S.: MECCA: a robust low-
overhead PUF using embedded memory array. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 407–420. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23951-9 27

23. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF
protecting IP on every FPGA. In: Proceedings of 2008 IEEE International Work-
shop on Hardware-Oriented Security and Trust, HOST 2008, pp. 67–70 (2008).
https://doi.org/10.1109/HST.2008.4559053

24. Lafortune, E.: ProGuard (2002). https://www.guardsquare.com/en/products/
proguard

25. Lee, J., Lim, D.L.D., Gassend, B., Suh, G., Dijk, M.V., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: Proceedings of 2004 Symposium on VLSI Circuits, pp. 176–179
(2004). https://doi.org/10.1109/VLSIC.2004.1346548

26. Liu, W., Zhang, Z., Li, M., Liu, Z.: A trustworthy key generation prototype based
on DDR3 PUF for wireless sensor networks. In: Proceedings of 2014 International
Symposium on Computer, Consumer and Control, IS3C 2014, pp. 706–709 (2014).
https://doi.org/10.1109/IS3C.2014.188

27. Maes, R., Tuyls, P., Verbauwhede, I.: A soft decision helper data algorithm for
SRAM PUFs. In: Proceedings of IEEE International Symposium on Informa-
tion Theory, ISIT 2009, pp. 2101–2105 (2009). https://doi.org/10.1109/ISIT.2009.
5205263

28. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES

http://developer.android.com/intl/ja/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
http://developer.android.com/intl/ja/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
http://developer.android.com/intl/ja/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://wearos.google.com/
https://developer.android.com/things/
https://doi.org/10.1109/ICARCV.2010.5707961
http://www.statista.com/statistics/266210/
https://doi.org/10.1109/ISCAS.2014.6865740
https://doi.org/10.1145/3195970.3196005
https://doi.org/10.1145/3195970.3196005
https://doi.org/10.1080/10485250701733747
https://doi.org/10.1007/978-3-642-23951-9_27
https://doi.org/10.1007/978-3-642-23951-9_27
https://doi.org/10.1109/HST.2008.4559053
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://doi.org/10.1109/VLSIC.2004.1346548
https://doi.org/10.1109/IS3C.2014.188
https://doi.org/10.1109/ISIT.2009.5205263
https://doi.org/10.1109/ISIT.2009.5205263


Evaluation of Software PUF Based on Gyroscope 247

2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04138-9 24

29. Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state
of the art and future research directions. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. ISC, pp. 3–37. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14452-3 1

30. Nakano, Y., Cid, C., Kiyomoto, S., Miyake, Y.: Memory access pattern protection
for resource-constrained devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol.
7771, pp. 188–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37288-9 13

31. Ostrovsky, R.: Efficient computation on oblibious RAMs. In: Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 514–523
(1990). https://doi.org/10.1145/233551.233553

32. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297, 2026–2030 (2002). https://doi.org/10.1126/science.1074376

33. Rahim, K., Tahir, H., Ikram, N.: Sensor based PUF IoT authentication model for a
smart home with private blockchain. In: 2018 International Conference on Applied
and Engineering Mathematics (ICAEM), pp. 102–108, September 2018. https://
doi.org/10.1109/ICAEM.2018.8536295

34. Santiago, L., et al.: Realizing strong PUF from weak PUF via neural computing.
In: 2017 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 1–6, October 2017. https://doi.org/10.
1109/DFT.2017.8244433

35. Suzuki, D., Shimizu, K.: The glitch PUF: a new delay-PUF architecture exploiting
glitch shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 366–382. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 25

36. Tehranipoor, F., Karimina, N., Xiao, K., Chandy, J.: DRAM based intrinsic phys-
ical unclonable functions for system level security. In: Proceedings of the 25th
edition on Great Lakes Symposium on VLSI, GLSVLSI 2015, pp. 15–20 (2015).
https://doi.org/10.1145/2742060.2742069

37. The 3rd Generation Partnership Project (3GPP): Specification of the Subscriber
Identity Module - Mobile Equipment (SIM-ME) Interface (1990). http://www.
3gpp.org/ftp/Specs/html-info/1111.htm

38. Trust Computing Group: Trusted Platform Module (2016). http://www.
trustedcomputinggroup.org/developers/trusted platform module

39. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006). https://
doi.org/10.1007/11894063 29

40. Yao, Y., Kim, M., Li, J., Markov, I.L., Koushanfar, F.: ClockPUF: physical unclon-
able functions based on clock networks. In: 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 422–427, March 2013. https://doi.
org/10.7873/DATE.2013.095

https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-14452-3_1
https://doi.org/10.1007/978-3-642-37288-9_13
https://doi.org/10.1007/978-3-642-37288-9_13
https://doi.org/10.1145/233551.233553
https://doi.org/10.1126/science.1074376
https://doi.org/10.1109/ICAEM.2018.8536295
https://doi.org/10.1109/ICAEM.2018.8536295
https://doi.org/10.1109/DFT.2017.8244433
https://doi.org/10.1109/DFT.2017.8244433
https://doi.org/10.1007/978-3-642-15031-9_25
https://doi.org/10.1007/978-3-642-15031-9_25
https://doi.org/10.1145/2742060.2742069
http://www.3gpp.org/ftp/Specs/html-info/1111.htm
http://www.3gpp.org/ftp/Specs/html-info/1111.htm
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
https://doi.org/10.1007/11894063_29
https://doi.org/10.1007/11894063_29
https://doi.org/10.7873/DATE.2013.095
https://doi.org/10.7873/DATE.2013.095


White-Box Implementation of the KMAC
Message Authentication Code

Jiqiang Lu1(B), Zhigang Zhao2, and Huaqun Guo2

1 School of Cyber Science and Technology, Beihang University,
37 Xueyuan Road, Beijing 100083, China

lvjiqiang@hotmail.com, lvjiqiang@buaa.edu.cn
2 Institute for Infocomm Research, Agency for Science, Technology and Research,

1 Fusionopolis Way, Singapore 138632, Singapore
{zzhao,guohq}@i2r.a-star.edu.sg

Abstract. In 2016, US NIST released the KMAC message authentica-
tion code, which is actually a keyed variant of the new-generation hash
function standard SHA-3. Following the increasing use of SHA-3, it is
highly anticipated that KMAC will also be increasingly widely used in
various security applications. Due to the distinctions between sponge
hash functions and Merkle-Damg̊ard hash functions, white-box imple-
mentations of KMAC and HMAC are rather different. In this paper,
we present an efficient white-box implementation of KMAC with strong
resistance against both key extraction and code lifting attacks, which
can still work with an updated user key. It has a storage complexity of
about 107.7 MB, and has a running time of about 1.5 ms on a DELL
Precision T5610 workstation, about 375 times slower than the original
KMAC implementation without white-box protection. There are imple-
mentation variants with different trade-offs between security and perfor-
mance. This is the first published white-box implementation of KMAC
to the best of our knowledge, and our implementation methods can be
applied to similar sponge constructions.

Keywords: White-box cryptography · Message authentication code
(MAC) · Hash function · Sponge construction · SHA-3 · KMAC

1 Introduction

In 2005, serious collision attacks [29,30] were published on then hash function
standards MD5 [28] and SHA-1 [24]. As a consequence, US NIST announced the

J. Lu—The author was with Institute for Infocomm Research (Singapore) when the
work was partially completed.
This work was supported by the National Research Foundation (NRF), Prime Min-
ister’s Office, Singapore, under its National Cybersecurity R&D Programme (Award
No. NRF2014NCR-NCR001-31) and administered by the National Cybersecurity R&D
Directorate, and was supported also by a grant (No. ZG216S1992) of Beihang Univer-
sity.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 248–270, 2019.
https://doi.org/10.1007/978-3-030-34339-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_14


White-Box Implementation of the KMAC Message Authentication Code 249

public SHA-3 competition to develop an alternative but dissimilar cryptographic
hash standard in 2007, selected the candidate Keccak [4] in 2012, and finally
approved it as the new-generation SHA-3 hash standard [26] in 2015. SHA-3
is based on the sponge construction method [3], which is quite different from
the Merkle-Damg̊ard construction method [13,20] that earlier hash functions
like MD5 and SHA-1/2 [25] are based on. SHA-3 has been adopted by real-life
applications like Ethereum [31], owing to its technical advantages.

The HMAC [2] message authentication code (MAC) was proposed in 1996
mainly for use with a Merkle-Damg̊ard hash function like SHA-1/2, because
a Merkle-Damg̊ard hash function cannot be readily transformed into a secure
MAC for authenticity by prepending a key to message, due to length extension
attack, that is, an attacker can append one or more message blocks and is able
to compute the resulting MAC. HMAC uses a nested structure to prevent length
extension attacks, however, a sponge hash function can prevent length extension
attacks itself, mainly because the internal states are not fully released as output;
and thus HMAC would be not efficient with a sponge hash function. In 2016,
NIST released the KMAC algorithm for use with SHA-3 to provide authenticity,
which is actually a keyed variant of SHA-3, simply by prepending a padded key
to message.

White-box cryptography [11,12] was introduced in 2002, with its applications
to the AES [23] and DES [22] block ciphers. It works under the so-called white-
box model, which assumes an attacker to have access to the execution details and
execution environment of a software implementation, giving the attacker more
power than the black-box and grey-box models. For white-box cryptography, the
primary security threat is key extraction attack, which aims to extract the key
used in white-box implementation; and another serious security threat is what
we call code lifting attack, which aims to use white-box implementation to gen-
erate the output for an unauthorised input. Nowadays, white-box cryptography
has many real-life application scenarios like TV boxes, mobile phones and game
consoles, where the owner/user of a client service device may compromise the
underlying security mechanism for illegal use of the service, and many IT compa-
nies like Apple and Microsoft already use or plan to use white-box cryptography
solutions. At present, there are mainly two research directions on white-box cryp-
tography: One is the design and analysis [1,6,10–12,16,18,19,32,33] of white-
box implementations of existing cryptographic algorithms, and it has been well
understood that this line of white-box implementation designs is hardly impos-
sible to achieve a full security but can still provide some level of protection more
or less; the other research direction is the design and analysis [7–9,14] of com-
pletely new white-box primitives that aim to achieve a full security efficiently.
Both the directions have their respective application scenarios in reality.

Our work in this paper falls in the first research direction of white-box cryp-
tography. We observe that the following two particular distinctions between
Merkle-Damg̊ard and sponge hash functions make a huge difference to white-box
implementations of the corresponding MACs: (1) The compression function of a
Merkle-Damg̊ard hash function like SHA-1/2 is one-way (i.e. irreversible), while



250 J. Lu et al.

the state transformation function of a sponge hash function like SHA-3 is usu-
ally a permutation, which is bijective and reversible; and (2) A Merkle-Damg̊ard
hash function like SHA-1/2 usually involves a message expansion function, while
a sponge hash function does not involve a message expansion function. The first
distinction makes it rather simple to design an efficient white-box implementa-
tion against only key extraction attacks for HMAC-SHA-1/2 [15,17,19], while it
is complex for KMAC; and the second distinction requires much less additional
cost to design a white-box implementation against both key extraction and code
lifting attacks for KMAC than for HMAC-SHA-1/2, on the basis of their respec-
tive white-box implementation against only key extraction attacks. Finally, we
present an efficient white-box implementation of KMAC with strong resistance
against both key extraction and code lifting attacks, by protecting every 64-
bit state word with a 64-bit mixing bijection [11,12] and a layer of sixteen
4-bit encodings [11,12], merging several adjacent operations of the round func-
tion, building white-box implementations of basic operations with great security,
and using an iterative process at different phases of KMAC. The implementa-
tion has a storage complexity of about 107.7 MB, and has a running time of
about 1.5 ms on a DELL Precision T5610 workstation, about 375 times slower
than the original KMAC implementation without white-box protection; and the
same implementation can be reused when the key is updated. Besides, there are
security–performance trade-offs.

The remainder of the paper is organised as follows. In the next section, we
describe the notation, the sponge construction method, SHA-3 and KMAC. In
Sect. 3, we discuss white-box KMAC and HMAC. We describe our white-box
implementation schema of KMAC in Sect. 4, present white-box implementations
of its basic operations in Sect. 5, give the white-box KMAC implementation in
Sect. 6, and evaluate its security and performance in Sects. 7 and 8, respectively.
Section 9 discusses possible implementation variants. Section 10 concludes this
paper.

2 Preliminaries

In this section, we give the notation used throughout this paper, and briefly
describe the sponge construction method, SHA-3 and KMAC.

2.1 Notation

In all descriptions we assume that the bits of a value are numbered from left to
right, starting with 0. We use the following notation throughout this paper.

⊕ bitwise exclusive OR (XOR)
& bitwise AND
¬ the complement (NOT)
≪ left rotation of a bit string
|| bit string concatenation
◦ functional composition. When composing functions X and Y, X ◦ Y denotes

the function obtained by first applying X and then applying Y



White-Box Implementation of the KMAC Message Authentication Code 251

F
0r ⊕

M0

F
⊕
M1

F
⊕
Mm

· · ·

· · ·

F

Z0

F

Z1

F
· · ·

· · ·

Zz

0c

pad truncateM

absorbing squeezing

· · · · · · digest

Fig. 1. The sponge construction

2.2 The Sponge Hash Function Construction Method

The sponge construction was proposed by Bertoni et al. [3]. As illustrated in
Fig. 1, for some positive integers r and c, a sponge construction maps binary
strings with bit length of a multiple of r into binary strings of any requested
length (i.e. Zr,∗

2 to Z
∞
2 ), by calling a transformation F : Zr+c

2 → Z
r+c
2 , where r

is called the bitrate (of the sponge construction), c is called the capacity (of the
sponge construction) which should be twice the length of the requested digest,
and F is often referred to as the state transformation function (of the sponge
construction). Note that a message M should be padded first to reach a bit
length of a minimum multiple of r, and then divided into a number of r-bit blocks
M0,M1, · · · ,Mm; and the digest Z is made up of r-bit blocks Z0, Z1, · · · , Zz with
the last block being truncated to meet the requested digest length if necessary.

A sponge construction consists of two phases at a high level: absorbing phase
and squeezing phase. The absorbing phase processes a message, and the squeez-
ing phase outputs a (message) digest (or hash value).

2.3 The SHA-3 Hash Function Family

SHA-3 [26] is a family of four cryptographic hash functions and two extendable-
output functions. Below we focus on the SHA-3 hash function member with a
256-bit digest, that is SHA3-256, and we refer the reader to [26] for a detailed
specification.

For SHA3-256, the capacity c = 512, the bitrate r = 1088, the digest length
is 256, and a message is padded by appending first three bits ‘011’, then as
many zeros as minimally required and finally one-bit ‘1’ to reach a bit length of
a multiple of r, where the first two the SHA-3 hash functions from the SHA-3
extendable-output functions.

For all SHA3 members, the state transformation function F is a permutation
operating on binary strings of 1600 bits (that is r + c) long. A 1600-bit state
is represented as a 5 × 5 × 64 bit array of three dimensions, denoted by A =
{A[x, y, z]|0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63}. The state transformation function
F consists of the following five elementary operations, where ̂A = {̂A[x, y, z]|0 ≤
x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63} is a 5 × 5 × 64 bit array variable:



252 J. Lu et al.

– θ : θ(A) = ̂A is defined as the following three steps:
1. For 0 ≤ x ≤ 4 and 0 ≤ z ≤ 63:

C[x, z] =
4

⊕

y=0

A[x, y, z]. (1)

2. For 0 ≤ x ≤ 4 and 0 ≤ z ≤ 63:

D[x, z] = C[(x − 1) mod 5, z] ⊕ C[(x + 1) mod 5, (z − 1) mod 64]. (2)

3. For 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63: ̂A[x, y, z] = A[x, y, z] ⊕ D[x, z].
– ρ : ρ(A) = ̂A is defined as the following three steps:

1. For 0 ≤ z ≤ 63: ̂A[0, 0, z] = A[0, 0, z].
2. (x, y) = (1, 0).
3. For t = 0 to 23:

(a) For 0 ≤ z ≤ 63:

̂A[x, y, z] = A[x, y, (z − (t + 1) × (t + 2)
2

) mod 64]. (3)

(b) (x, y) = (y, (2x + 3y) mod 5).
– π : π(A) = ̂A is defined as follows:

• For 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63:

̂A[x, y, z] = A[(x + 3y) mod 5, x, z]. (4)

– χ : χ(A) = ̂A is defined as follows:
• For 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63:

̂A[x, y, z] = A[x, y, z]⊕((A[(x+1) mod 5, y, z]⊕1)×A[(x+2) mod 5, y, z]).
(5)

– ι : ι(A, i) = ̂A is defined as the following four steps, where i is the round
index (0 ≤ i ≤ 23), and RCi = RCi[0]||RCi[1]|| · · · ||RCi[63] are 64-bit round
constants generated by a function rc(·):
1. For 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63: ̂A[x, y, z] = A[x, y, z].
2. RC = 064.
3. For j = 0 to 6: RCi[2j − 1] = rc(j + 7i).
4. For 0 ≤ z ≤ 63:

̂A[0, 0, z] = ̂A[0, 0, z] ⊕ RCi[z]. (6)

The round function of SHA-3 is defined to be ι(χ(π(ρ(θ(A)))), i), where i is
the round index (0 ≤ i ≤ 23). The state transformation function F of SHA-3 is
an iteration of the round function 24 times with the round index i from 0 to 23
sequentially, defined as A = ι(χ(π(ρ(θ(A)))), i) for i = 0 to 23.



White-Box Implementation of the KMAC Message Authentication Code 253

F
0r ⊕
pad(K)

F
⊕
M0

F
⊕
Mm

· · ·

· · ·

F F F
· · ·

· · ·

0c

pad truncatepad(K)||M

M0 Mm

· · ·

pad(K ⊕ ipad)||M

IV f f f

F
ina
l
is
ton

b) KMAC, where F is state transformation function

a) HMAC with a Merkle-Damg̊ard hash function, where f is compression function

message
M0

· · ·

· · · · · ·

· · ·expansion
function sub-blocks sub-blocks

step
update
func.

step
update
func.

step
update
func.

· · ·

round
func. · · ·round

func.
round
func.

K ⊕ opad

IV f f MAC

K ⊕ ipad

MAC

F
ina
l
is
ton

Fig. 2. General structures of KMAC and HMAC

2.4 The KMAC Message Authentication Code

The KMAC [27] message authentication code was released in 2016, which is
actually a keyed SHA-3. KMAC is defined as KMAC(K,M) = H(pad(K)||M),
where H is a member of the Keccak hash family, and K is a 128- or 256-bit user
key. That is, the padded key together with the original message is treated as the
input message in Keccak, with the first r-bit message block being the padded
key.

3 Distinctions Between White-Box Implementations of
KMAC and HMAC

In this section, we discuss two main distinctions between white-box implementa-
tions of KMAC and HMAC. Figure 2 illustrates general structures of KMAC and
HMAC (instantiated with a Merkle-Damg̊ard hash function). Although function-
ing differently, structurally speaking at a high level, the compression function in
the Merkle-Damg̊ard construction method is similar to the state transformation
function in the sponge construction method, and the step update function in a
Merkle-Damg̊ard hash function like SHA-1/2 is similar to the round function in
a sponge hash function like SHA-3, but they make a huge difference to white-box
implementations of KAMC and HMAC:

1. The core of the Merkle-Damg̊ard construction method is a one-way compres-
sion function which maps from a domain to a range that is smaller than the



254 J. Lu et al.

domain. The core of the sponge construction method is a state transformation
function which maps from a domain to a range that is equal to the domain,
which is usually a permutation like that used in SHA-3. In other words, the
compression function of a Merkle-Damg̊ard hash function is irreversible, while
the state transformation function of a sponge hash function is usually bijec-
tive and thus reversible.
As a consequence, if only key extraction attack is concerned, there is a
very simple and efficient white-box implementation for HMAC-SHA-1/2, as
described or mentioned in [15,17,19], that is, computing the two internal
states immediately after the processes of the two key blocks and then releas-
ing them as starting values for white-box HMAC implementation. It is feasi-
ble because the two key blocks are the first blocks of the two different hash
computations. This simple white-box implementation reaches the full secu-
rity against key extraction attack as long as the underlying hash function is
one-way, since none can reverse the two released initial values to extract the
keys under a one-way function.
However, the simple white-box implementation of HMAC-SHA-1/2 does not
apply to KMAC at all, since the release of an internal state of KMAC would
enable one to extract the key easily, by reversing the state transformation
function F, as F is a permutation. That indicates that a white-box KMAC
implementation should protect the internal states even it aims to resist only
key extraction attack, which makes it very close to a white-box KMAC pro-
tection against both key extraction and code lifting attacks, with slight extra
cost to protect against code lifting.

2. A Merkle-Damg̊ard hash function usually involves a message expansion func-
tion, which first divides a message block into a number of smaller sub-blocks,
then extends the sub-blocks into a larger number of sub-blocks of the same
length as the original sub-blocks preferably in a non-linear manner like SHA-2,
and finally processes the original and extended sub-blocks with a compression
function that usually consists of an iteration of a step update function, with
each step processing a sub-block. However, a sponge hash function like SHA-3
does not involve a message expansion function, and a message block is input
once as a whole at the beginning of a state update function.
As a consequence, to design a general white-box implementation against both
key extraction and code lifting attacks under one message block, we cannot
iteratively use a white-box implementation of the step update function to
process the message sub-blocks for a Merkle-Damg̊ard hash function, due to
the generally different protection effects on the message sub-blocks, unless
forcing them to be protected with the same white-box protections at the
sacrifice of generality. However, the round function of KMAC takes only an
earlier internal state and some fixed constants as input, without message or
key, and as a result we may be able to somehow use iteratively a white-box
implementation of the round function for KMAC within the 24-round process
of a message block.



White-Box Implementation of the KMAC Message Authentication Code 255

Code lifting attacks require us to protect the correspondence between mes-
sage and digest (i.e. hash value), so that an attacker cannot produce a correct
(original message, original digest) pair which the white-box implementation does
not produce before, but the problem that an attacker can produce a correct (pro-
tected message, protected digest) pair from a white-box implementation does not
belong to this area.

4 White-Box Implementation Schema of KMAC

In this section, we describe our white-box implementation method of KMAC to
prevent key extraction and code lifting attacks to some extent. We use 64×64-bit
mixing bijections and 4-bit encodings generally. A mixing bijection is generally
a linear or affine bijective transformation to provide diffusion property, with the
linear form being usually a matrix multiplication [11] and the affine form being
usually a matrix multiplication followed by an XOR with a constant [12]; and an
(external) encoding [11,12] is generally a non-linear bijective transformation to
provide confusion property, with the most being used form being an substitution
table.

4.1 Implementation Method

Our white-box KMAC implementation merges a few adjacent operations of the
round function and uses an iterative process at a few phases of KMAC to effi-
ciently generate a variable-length digest on a message with an arbitrary length,
as follows.

1. To deal with the variable length of an arbitrary message, we use an iterative
manner to process the 1088-bit message block(s) of a message; specifically,
the white-box implementation output of the F function of a message block
should be of the same format as the white-box implementation output of the
F function of the previous message block (if any), so that it can be iterated
for different 1088-bit message blocks.

2. Within the process of a 1088-bit message block, the round function of F only
takes the previous internal state as input, plus a round constant. We use
another iterative process to process the 24 rounds of the F function, and
most of the five operations of the round function can be iteratively reused
in different rounds, except that the operations with the round constants are
dedicated respectively to the rounds.

3. We deal with a variable-length digest of more than one blocks long, and iterate
the while-box implementation for a message block in the squeezing phase.
The white-box implementation of the F function for producing a digest is an
iteration of the white-box implementation of the F function for processing a
message block, with message input operation being removed, using the same
set of white-box protections for both the input and output of the F function
of a message block. Thus, there is no message input in the squeezing phase,
and we can reuse the white-box implementation in the absorbing phase.



256 J. Lu et al.

4. The white-box KMAC implementation treats a 64-bit lane (that is, A[x, y] =
(A[x, y, 0]|| A[x, y, 1]|| · · · ||A[x, y, 63])) as the basic unit, and treats all the
five elementary operations of the round function as some operations on 64-
bit lanes. More specifically:

– C[(x+1) mod 5, (z − 1) mod 64] of Eq. (2) is equivalent to C[(x+1) mod
5] ≪ 1, where C[(x + 1) mod 5] = (C[(x + 1) mod 5, 0]||C[(x + 1) mod
5, 1]|| · · · ||C[(x + 1) mod 5, 63]).

– A[x, y, (z − (t+1)×(t+2)
2 ) mod 64] of Eq. (3) is equivalent to A[x, y] ≪

( (t+1)×(t+2)
2 mod 64).

– ̂A[x, y, z] = A[(x+3y) mod 5, x, z] of Eq. (4) is equivalent to a reordering
of the positions of the 64-bit lanes A[x, y]. Thus, the operation π can be
combined together with the previous operation ρ.

– The operation (A[(x+1) mod 5, y, z]⊕1)×A[(x+2) mod 5, y, z] of Eq. (5)
is equivalent to (¬A[(x+1) mod 5, y, z])&A[(x+2) mod 5, y, z]; or simply
(¬A[(x + 1) mod 5, y])&A[(x + 2) mod 5, y] on two 64-bit lanes.

– All other operations like the ⊕ operation in Eq. (1) are relatively simple
when implemented on 64-bit lanes.

Thus, white-box KMAC involves only bitwise operations on 64-bit words.
5. We merge a few adjacent operations of the round function in the white-box

KMAC implementation, as follows.
– White-box implementation of the equivalent C[(x + 1) mod 5] ≪ 1 of

C[(x + 1) mod 5, (z − 1) mod 64] in Eq. (2) is merged into the white-box
XOR operation in Eq. (2), where C[(x + 1) mod 5] = (C[(x + 1) mod
5, 0]||C[(x + 1) mod 5, 1]|| · · · ||C[(x + 1) mod 5, 63]). That is, our white-
box implementation of D[x] = C[(x−1) mod 5]⊕ (C[(x+1) mod 5] ≪ 1)
is implemented by incorporating the ≪ 1 operation inside the white-box
XOR operation.

– The ρ and π operations are merged with Step 3 of θ. Specifically, let
(A[x, y], D[x]) and ̂A[x, y] denote respectively the input and output for the
merged operation (θ : Step 3)◦ρ◦π, since A[x, y, (z− (t+1)×(t+2)

2 ) mod 64]
of Eq. (3) is equivalent to A[x, y] ≪ ( (t+1)×(t+2)

2 mod 64), then
the output ̂A[x, y] is ̂A[0, 0] = A[0, 0] ⊕ D[0] if (x, y) = (0, 0), and
is ̂A[x, y] = (A((x+3y) mod 5,x) ≪ ( (t+1)×(t+2)

2 mod 64)) ⊕ (D[(x +
3y) mod 5] ≪ ( (t+1)×(t+2)

2 mod 64)) if (x, y) �= (0, 0), where both the
≪ ( (t+1)×(t+2)

2 mod 64) operations are incorporated inside the white-
box XOR operation, and t is determined under ((x + 3y) mod 5, x) in
Eq. (3).

– The ι operation is merged with the χ operation. Specifically, let (A(x,y),

A(x+1 mod 5,y), A(x+2 mod 5,y)) and ̂A[x, y] denote respectively the input
and output for the merged operation χ ◦ ι, then the output ̂A[x, y] is
̂A[x, y] = A(x,y) ⊕ (A(x+1 mod 5,y) ⊕A(x+2 mod 5,y)) if (x, y) �= (0, 0), and is
̂A[0, 0] = (A(0,0) ⊕ (A(1,0) ⊕ A(2,0))) ⊕ RCi if (x, y) = (0, 0), where RCi is
the 64-bit constant used in the i-th round and is incorporated inside the
white-box implementation of the outer XOR operation.



White-Box Implementation of the KMAC Message Authentication Code 257

As a result, our white-box KMAC implementation involves the following five
operations: X ⊕ Y , X ⊕ (Y ≪ α), (X ≪ α) ⊕ (Y ≪ α), X ⊕ Y ⊕ RCi

and (¬X)&Y , which can be summarised as the following three basic operations:
(X ≪ α) ⊕ (Y ≪ β), X ⊕ Y ⊕ RCi and (¬X)&Y , where X and Y are 64-bit
variables and 0 ≤ α, β < 64.

4.2 Protecting Message Against Code Lifting

To protect a 1088-bit message block Ml against code lifting to some extent
(l � 0), the server generates its white-box form in the following way.

1. Generate a group of 17 64 × 64-bit mixing bijections MB0 = {MB(x,y)
0 |0 ≤

x ≤ 4, 0 ≤ y < 4}. (Note that here 0 ≤ y < 4, since a message block Ml is
only 1088 bits long.)

2. Generate a group of 272 4-bit (external) encodings e0,0−15 = {e(x,y)0,j |0 ≤ x ≤
4, 0 ≤ y < 4, 0 ≤ j ≤ 15}.

3. The white-box form of Ml is e0,0−15(MB0(Ml)).

4.3 Protecting Key Against Key Extraction

To protect against key extraction to some extent, the server computes
F(pad(K)||0c) and then generates its white-box form in the following way.

1. Generate a group of 25 64 × 64-bit mixing bijections MB1 = {MB(x,y)
1 |0 ≤

x ≤ 4, 0 ≤ y ≤ 4}.
2. Generate a group of 400 4-bit encodings e1,0−15 = {e(x,y)1,j |0 ≤ x ≤ 4, 0 ≤ y ≤

4, 0 ≤ j ≤ 15}.
3. Compute e1,0−15(MB1(F(pad(K)||0c))), and release it to the client.

5 White-Box Implementations of Basic Operations of
KMAC

In this section, we describe our white-box implementations of the three basic
operations (X ≪ α) ⊕ (Y ≪ β), X ⊕ Y ⊕ RCi and (¬X)&Y , where X and
Y are respectively protected in their white-box forms eX0−15(MBX(X)) and
eY0−15(MBY (Y )), with MBX and MBY being 64 × 64-bit mixing bijections,
and eX0−15 and eY0−15 being two groups of sixteen 4-bit encodings. In particular,
we do not need to make a white-box implementation of the ≪ operation.

5.1 White-Box Implementation of (X ≪ α) ⊕ (Y ≪ β)

The outputs of the XOR and rotation operations are uniformly distributed
(under all possible inputs), and thus we use a general mixing bijection to pro-
tect them. Besides, matrix multiplication operation is distributive over XOR, and
the rotation operation is right-distributive over XOR, more specifically, suppose



258 J. Lu et al.

eX,−1
6−7

MBX,−1
3

eX,−1
4−5

MBX,−1
2

nX
1,0−15

eX,−1
2−3

MBX,−1
1

eX,−1
0−1

MBX,−1
0

XORX
0,0−15

nX
0,0−15

mX
3,0−15

· · ·
mX

2,0−15

· · ·
mX

1,0−15

· · ·
mX

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORX
4,0−15

hX
0,0−15

· · ·

XORX
1,0−15

hX,−1
1,0−15

hX,−1
0,0−15

· · · · · ·

XORX
6,0−15

uY,−1
0−15

uX,−1
0−15

mX,−1
3,0−15

mX,−1
2,0−15

mX,−1
1,0−15

mX,−1
0,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

uX
0−15

· · ·

eX,−1
14−15

MBX,−1
7

eX,−1
12−13

MBX,−1
6

nX
3,0−15

eX,−1
10−11

MBX,−1
5

eX,−1
8−9

MBX,−1
4

XORX
2,0−15

nX
2,0−15

mX
7,0−15

· · ·
mX

6,0−15

· · ·
mX

5,0−15

· · ·
mX

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORX
5,0−15

hX
1,0−15

· · ·

XORX
3,0−15

mX,−1
7,0−15

mX,−1
6,0−15

mX,−1
5,0−15

mX,−1
4,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

X

MBX

eX0−15

eY,−1
6−7

MBY,−1
3

eY,−1
4−5

MBY,−1
2

nY
1,0−15

eY,−1
2−3

MBY,−1
1

eY,−1
0−1

MBY,−1
0

XORY
0,0−15

nY
0,0−15

mY
3,0−15

· · ·
mY

2,0−15

· · ·
mY

1,0−15

· · ·
mY

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORY
4,0−15

hY
0,0−15

· · ·

XORY
1,0−15

hY,−1
1,0−15

hY,−1
0,0−15

· · · · · ·

XORY
6,0−15

mY,−1
3,0−15

mY,−1
2,0−15

mY,−1
1,0−15

mY,−1
0,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

uY
0−15

· · ·

eY,−1
14−15

MBY,−1
7

eY,−1
12−13

MBY,−1
6

nY
3,0−15

eY,−1
10−11

MBY,−1
5

eY,−1
8−9

MBY,−1
4

XORY
2,0−15

nY
2,0−15

mY
7,0−15

· · ·
mY

6,0−15

· · ·
mY

5,0−15

· · ·
mY

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORY
5,0−15

hY
1,0−15

· · ·

XORY
3,0−15

mY,−1
7,0−15

mY,−1
6,0−15

mY,−1
5,0−15

mY,−1
4,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

Y

MBY

eY0−15

e(X,Y )
0−15

XOR(X,Y )
0−15· · ·

· · ·· · ·

(X <<< α) ⊕ (Y <<< β)

MB(X,Y )

e(X,Y )
0−15

<<< β <<< β<<< β<<< β <<< β <<< β<<< β<<< β<<< α <<< α<<< α<<< α <<< α <<< α<<< α<<< α

Fig. 3. White-box implementation of (X ≪ α) ⊕ (Y ≪ β) in 8-bit tables

X = X0 ⊕ X1 ⊕ · · · ⊕ X7 (with X0,X1, · · · ,X7 being 32-bit variables), then
X ≪ α = (X0 ≪ α) ⊕ (X1 ≪ α) ⊕ · · · ⊕ (X7 ≪ α).

Illustrated in Fig. 3, our white-box implementation of (X ≪ α) ⊕ (Y ≪ β)
consists of the following three layers at a high level:

– The first layer is made up of sixteen 8 × 64-bit tables. For the part process-
ing eX0−15(MBX(X)), each 8 × 64-bit table is generated by applying sequen-
tially the inverses eX,−1

2j−(2j+1) of the two 4-bit encodings eX2j−(2j+1), the cor-

responding 64×8-bit part MBX,−1
j of the inverse MBX,−1 of the mixing

bijection MBX , the ≪ α operation, a general 64 × 64-bit mixing bijection
MB(X,Y ) used to protect the result X ⊕ Y , and a layer of sixteen 4-bit



White-Box Implementation of the KMAC Message Authentication Code 259

eX,−1
6−7

MBX,−1
3

eX,−1
4−5

MBX,−1
2

nX
1,0−15

eX,−1
2−3

MBX,−1
1

eX,−1
0−1

MBX,−1
0

XORX
0,0−15

nX
0,0−15

mX
3,0−15

· · ·
mX

2,0−15

· · ·
mX

1,0−15

· · ·
mX

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORX
4,0−15

hX
0,0−15

· · ·

XORX
1,0−15

hX,−1
1,0−15

hX,−1
0,0−15

· · · · · ·

XORX
6,0−15

uY,−1
0−15

uX,−1
0−15

mX,−1
3,0−15

mX,−1
2,0−15

mX,−1
1,0−15

mX,−1
0,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

uX
0−15

· · ·

eX,−1
14−15

MBX,−1
7

eX,−1
12−13

MBX,−1
6

nX
3,0−15

eX,−1
10−11

MBX,−1
5

eX,−1
8−9

MBX,−1
4

XORX
2,0−15

nX
2,0−15

mX
7,0−15

· · ·
mX

6,0−15

· · ·
mX

5,0−15

· · ·
mX

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORX
5,0−15

hX
1,0−15

· · ·

XORX
3,0−15

mX,−1
7,0−15

mX,−1
6,0−15

mX,−1
5,0−15

mX,−1
4,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

X

MBX

eX0−15

eY,−1
6−7

MBY,−1
3

eY,−1
4−5

MBY,−1
2

nY
1,0−15

eY,−1
2−3

MBY,−1
1

eY,−1
0−1

MBY,−1
0

XORY
0,0−15

nY
0,0−15

mY
3,0−15

· · ·
mY

2,0−15

· · ·
mY

1,0−15

· · ·
mY

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORY
4,0−15

hY
0,0−15

· · ·

XORY
1,0−15

hY,−1
1,0−15

hY,−1
0,0−15

· · · · · ·

XORY
6,0−15

mY,−1
3,0−15

mY,−1
2,0−15

mY,−1
1,0−15

mY,−1
0,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

uY
0−15

· · ·

eY,−1
14−15

MBY,−1
7

eY,−1
12−13

MBY,−1
6

nY
3,0−15

eY,−1
10−11

MBY,−1
5

eY,−1
8−9

MBY,−1
4

XORY
2,0−15

nY
2,0−15

mY
7,0−15

· · ·
mY

6,0−15

· · ·
mY

5,0−15

· · ·
mY

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORY
5,0−15

hY
1,0−15

· · ·

XORY
3,0−15

mY,−1
7,0−15

mY,−1
6,0−15

mY,−1
5,0−15

mY,−1
4,0−15

MB(X,Y) MB(X,Y)MB(X,Y)MB(X,Y)

Y

MBY

eY0−15

e(X,Y )
0−15

XOR(X,Y,i)
0−15

· · ·

· · ·· · ·

X ⊕ Y ⊕ RCi

MB(X,Y )

e(X,Y )
0−15

MB(X,Y )(RCi)
⊕

Fig. 4. White-box implementation of X ⊕ Y ⊕ RCi in 8-bit tables

encodings mX
j,0−15, where MBX,−1 = (MBX,−1

0 , MBX,−1
1 , · · · ,MBX,−1

7 ),
and j = 0, 1, · · · , 7. Similarly for the part processing eY0−15(MBY (Y )), where
we apply the ≪ β operation instead of the ≪ α operation.

– The second layer is made up of 224 8×4-bit tables XORX
j,l and XORY

j,l. The
final output of the XORX

j,l tables is X protected by the mixing bijection
MB(X,Y ) and a layer of sixteen 4-bit encodings uX

0−15; and the final output
of the XORY

j,l tables is Y protected by the mixing bijection MB(X,Y ) and a
layer of sixteen 4-bit encodings uY

0−15, where j = 0, 1, · · · , 6, l = 0, 1, · · · , 15.
(To generate each XORX

j,l or XORY
j,l, we apply the inverse of the corresponding



260 J. Lu et al.

4-bit encoding from the previous operation for either 4-bit input, and apply
a 4-bit encoding to protect the 4-bit output of the XOR operation.)

– The last (i.e. third) layer is made up of sixteen 8×4-bit tables XOR(X,Y )
l , with

the result X ⊕ Y being protected finally by the mixing bijection MB(X,Y )

and a layer of sixteen 4-bit encodings e(X,Y )
0−15 , where l = 0, 1, · · · , 15.

The ≪ α (or β) operation is null when α (respectively, β) is 0. The white-box
(X ≪ α)⊕(Y ≪ β) implementation becomes white-box X⊕Y implementation
when α = β = 0, and becomes white-box X ⊕ (Y ≪ β) implementation when
α = 0. Note that as mentioned in Sect. 4.1 there exist only the cases X⊕(Y ≪ 1)
and (X ⊕ Y ) ≪ ( (t+1)·(t+2)

2 mod 64) in KMAC, which correspond to Eq. (2)
and the combinations of Eq. (3) with Step 3 of θ.

5.2 White-Box Implementation of X ⊕ Y ⊕ RCi

Illustrated in Fig. 4, our white-box implementation of X⊕Y ⊕RCi is obtained by
slightly modifying the above white-box (X ≪ α) ⊕ (Y ≪ β) implementation:

– Remove the ≪ α and ≪ β operations in the first layer.
– For each of the sixteen 8×4-bit XOR(X,Y )

l tables in the last (i.e., third) layer
of the white-box X ⊕ Y implementation, we apply the XOR operation with
the corresponding 4-bit part of MB(X,Y )(RCi) immediately before applying
the layer of sixteen 4-bit encodings e(X,Y )

0−15 .

Note that each of the 24 rounds has a different set of the sixteen 16 × 8-bit
tables XOR(X,Y )

0−15 tables, which cannot be reused in the iterative process of the
white-box KMAC implementation.

5.3 White-Box Implementation of (¬X)&Y

The outputs of the AND operation are not uniformly distributed, with the
most frequent being zero, which remains zero if multiplying with a linear mix-
ing bijection, and thus we use an affine mixing bijection to protect them with
additional security. The NOT operation is not distributive over XOR, that
is, ¬X �= (¬X0) ⊕ (¬X1) ⊕ · · · ⊕ (¬X7), where X = X0 ⊕ X1 ⊕ · · · ⊕ X7.
Matrix multiplication operation is not distributive over AND. Thus, white-
box implementation of (¬X)&Y cannot similarly adopt the above white-box
(X ≪ α) ⊕ (Y ≪ β) implementation.

Illustrated in Fig. 5, our white-box implementation of (¬X)&Y consists of
the following four layers at a high level:

– The first layer is made up of sixteen 8×64-bit tables. For the part processing
eX0−15(MBX(X)), each 8 × 64-bit table is generated by applying sequentially
the inverses eX,−1

2j−(2j+1) of the two 4-bit encodings eX2j−(2j+1), the correspond-

ing 64×8-bit part MBX,−1
j of the inverse MBX,−1 of the mixing bijection



White-Box Implementation of the KMAC Message Authentication Code 261

MBX , a 64×64-bit mixing bijection DBX and a layer of sixteen 4-bit encod-
ings mX

j,0−15, where DBX is of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

DBX
0 0 0 0 0 0 0 0

0 DBX
1 0 0 0 0 0 0

0 0 DBX
2 0 0 0 0 0

0 0 0 DBX
3 0 0 0 0

0 0 0 0 DBX
4 0 0 0

0 0 0 0 0 DBX
5 0 0

0 0 0 0 0 0 DBX
6 0

0 0 0 0 0 0 0 DBX
7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with DBX
j being an invertible (general) 8×8-bit matrix, MBX,−1 =

(MBX,−1
0 , MBX,−1

1 , · · · ,MBX,−1
7 ), and j = 0, 1, · · · , 7. Similarly for the

part processing eY0−15(MBY (Y )).
– The second layer is made up of 224 8×4-bit tables XORX

j,l and XORY
j,l. The

final output of the XORX
j,l tables is X protected by the mixing bijection

DBX and a layer of sixteen 4-bit encodings uX
0−15; and the final output of

the XORY
j,l tables is Y protected by the mixing bijection DBY and a layer of

sixteen 4-bit encodings uY
0−15, where j = 0, 1, · · · , 6, l = 0, 1, · · · , 15.

– The third layer is made up of eight 16 × 64-bit tables AND(X,Y )
l , each of

which is generated by applying sequentially the inverses of the two corre-
sponding 4-bit encodings from the second layer, the inverse DBX,−1

l (or
DBY,−1

l , respectively) of the corresponding 8×8-bit part DBX
l (or DBY

l ,
respectively) of the mixing bijection DBX (or DBY , respectively) for either
8-bit input, the bitwise complement (¬) operation only for the 8-bit input
from X, the AND value of the two resulting 8-bit values, the corresponding
64×8-bit part AB(X,Y )

l out of an affine mixing bijection AB(X,Y ) used to pro-
tect the result (¬X)&Y , and a layer of sixteen 4-bit encodings v(X,Y )

l,0−15, where

AB(X,Y )(·) = (AB(X,Y )
0 ,AB(X,Y )

1 , · · · ,AB(X,Y )
7 )(·) = MB(X,Y )(·) ⊕ b =

(MB(X,Y )
0 ,MB(X,Y )

1 , · · · ,MB(X,Y )
7 )(·)⊕b, and AB(X,Y )

l (·) = MB(X,Y )
l (·)⊕

bl, with MB(X,Y ) being an invertible (general) 64×64-bit matrix and bl and
b =

∑7
l=0 bl being 64-bit constants (l = 0, 1, · · · , 7).

– The last (i.e. fourth) layer is made up of 112 8×4-bit tables XOR(X,Y )
j,l ,

with the result (¬X)&Y being protected finally by the affine mixing bijec-
tion AB(X,Y ) and a layer of sixteen 4-bit encodings e(X,Y )

0−15 , where j =
0, 1, · · · , 6, l = 0, 1, · · · , 15.



262 J. Lu et al.

nX
1,0−15

XORX
0,0−15

nX
0,0−15

mX
3,0−15

· · ·
mX

2,0−15

· · ·
mX

1,0−15

· · ·
mX

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORX
4,0−15

hX
0,0−15

· · ·

XORX
1,0−15

hX,−1
1,0−15

hX,−1
0,0−15

· · · · · ·

XORX
6,0−15

DBY,−1
0−7

DBX,−1
0−7

· · ·

· · ·

AND(X,Y )
0−7

uY,−1
0−15

uX,−1
0−15

· · ·

· · ·

mX,−1
3,0−15

mX,−1
2,0−15

mX,−1
1,0−15

mX,−1
0,0−15

uX
0−15

· · ·

nX
3,0−15

XORX
2,0−15

nX
2,0−15

mX
7,0−15

· · ·
mX

6,0−15

· · ·
mX

5,0−15

· · ·
mX

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORX
5,0−15

hX
1,0−15

· · ·

XORX
3,0−15

mX,−1
7,0−15

mX,−1
6,0−15

mX,−1
5,0−15

mX,−1
4,0−15

AB(X,Y)
0

v(X,Y )
0,0−15

AB(X,Y)
1

v(X,Y )
1,0−15

AB(X,Y)
2

v(X,Y )
2,0−15

AB(X,Y)
3

v(X,Y )
3,0−15

AB(X,Y)
4

v(X,Y )
4,0−15

AB(X,Y)
5

v(X,Y )
5,0−15

AB(X,Y)
6

v(X,Y )
6,0−15

AB(X,Y)
7

v(X,Y )
7,0−15

v(X,Y),−1
0,0−15 v(X,Y),−1

1,0−15
v(X,Y),−1
7,0−15

v(X,Y),−1
6,0−15

v(X,Y),−1
5,0−15

v(X,Y),−1
4,0−15v(X,Y),−1

3,0−15
v(X,Y),−1
2,0−15

XOR(X,Y )
0,0−15

r(X,Y )
0,0−15 r(X,Y )

1,0−15
r(X,Y )
2,0−15

r(X,Y )
3,0−15

r(X,Y),−1
0,0−15 r(X,Y),−1

1,0−15

s(X,Y )
0,0−15

r(X,Y),−1
2,0−15 r(X,Y),−1

3,0−15

s(X,Y )
1,0−15

XOR(X,Y )
1,0−15 XOR(X,Y )

2,0−15 XOR(X,Y )
3,0−15

XOR(X,Y )
4,0−15 XOR(X,Y )

5,0−15

byte
0

byte
7

byte
6

byte
5

byte
4

byte
3

byte
2

byte
1

nY
1,0−15

XORY
0,0−15

nY
0,0−15

mY
3,0−15

· · ·
mY

2,0−15

· · ·
mY

1,0−15

· · ·
mY

0,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
1,1−15

nX,−1
0,0−15

· · · · · ·

XORY
4,0−15

hY
0,0−15

· · ·

XORY
1,0−15

hY,−1
1,0−15

hY,−1
0,0−15

· · · · · ·

XORY
6,0−15

mY,−1
3,0−15

mY,−1
2,0−15

mY,−1
1,0−15

mY,−1
0,0−15

uY
0−15

· · ·

nY
3,0−15

XORY
2,0−15

nY
2,0−15

mY
7,0−15

· · ·
mY

6,0−15

· · ·
mY

5,0−15

· · ·
mY

4,0−15

· · ·

· · ·· · ·· · ·· · ·

· · · · · ·

nX,−1
3,0−15

nX,−1
2,0−15

· · · · · ·

XORY
5,0−15

hY
1,0−15

· · ·

XORY
3,0−15

mY,−1
7,0−15

mY,−1
6,0−15

mY,−1
5,0−15

mY,−1
4,0−15

s(X,Y),−1
0,0−15 s(X,Y),−1

1,0−15

e(X,Y )
0−15

XOR(X,Y )
6,0−15

· · ·

· · ·· · ·

· · · · · ·· · ·· · ·

· · ·· · ·

· · · · · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · · · · · · · · · · ·

· · · · · ·· · ·· · ·· · ·· · ·· · ·· · ·

¬ · · · ¬

eX,−1
6−7

MBX,−1
3

eX,−1
4−5

MBX,−1
2

eX,−1
2−3

MBX,−1
1

eX,−1
0−1

MBX,−1
0

DBX DBXDBXDBX

eX,−1
14−15

MBX,−1
7

eX,−1
12−13

MBX,−1
6

eX,−1
10−11

MBX,−1
5

eX,−1
8−9

MBX,−1
4

DBX DBXDBXDBX

X

MBX

eX0−15

eY,−1
6−7

MBY,−1
3

eY,−1
4−5

MBY,−1
2

eY,−1
2−3

MBY,−1
1

eY,−1
0−1

MBY,−1
0

DBY DBYDBYDBY

eY,−1
14−15

MBY,−1
7

eY,−1
12−13

MBY,−1
6

eY,−1
10−11

MBY,−1
5

eY,−1
8−9

MBY,−1
4

DBY DBYDBYDBY

Y

MBY

eY0−15

(¬X)&Y

AB(X,Y )

e(X,Y )
0−15

Fig. 5. White-box implementation of (¬X)&Y in 8-bit and 16-bit tables



White-Box Implementation of the KMAC Message Authentication Code 263

6 An Efficient White-Box KMAC Implementation

In this section, we first build white-box implementations of the components of the
KMAC round function with the basic white-box operations of Sect. 5, and finally
present an efficient white-box implementation of KMAC. Figure 6 illustrates a
high-level overview of the white-box KMAC implementation.

6.1 White-Box Implementation of Steps 1 and 2 of θ

Illustrated in Fig. 6, white-box implementation of Step 1 of θ can be composed
with 5×4 = 20 applications of the white-box X ⊕Y implementation, and white-
box implementation of Step 2 of θ can be composed with 5 applications of the
white-box X ⊕ (Y ≪ 1) implementation.

6.2 White-Box Implementation of (θ : Step 3) ◦ ρ ◦ π

Illustrated in Fig. 6, white-box implementation of (θ : Step 3) ◦ ρ ◦ π can be
composed with 1 application of the white-box X ⊕ Y implementation and
24 applications of the white-box (X ≪ ( (t+1)×(t+2)

2 mod 64)) ⊕ (Y ≪
( (t+1)×(t+2)

2 mod 64)) implementation.

6.3 White-Box Implementation of χ ◦ ι

Illustrated in Fig. 6, white-box implementation of χ ◦ ι can be composed with
25 applications of the white-box (¬X)&Y implementation, 24 applications of
the white-box X ⊕ Y implementation and 1 application of the white-box X ⊕
Y ⊕ RCi implementation. As mentioned earlier, the set of the sixteen 8×4-bit
tables XOR(X,Y )

0−15 tables in the white-box X ⊕ Y ⊕ RCi implementation of Fig. 4
is different from round to round.

6.4 White-Box KMAC

As a result, a white-box implementation of the state transformation function
F of KMAC can be readily built from the above white-box implementation of
the round function, as shown in Fig. 6. All the white-box operations except the
8×4-bit tables XORX,Y,i

0−15 tables of the white-box X ⊕ Y ⊕ RCi implementation
of Fig. 4 can be reused in the iterative process of the 24 rounds.

The starting A(x,y) for the white-box KMAC lies in the input mes-
sage XOR part of Fig. 6, whose inputs are e1,0−15(MB1(F(pad(K)||0c))) and
e0,0−15(MB0(Ml)). Since r = 1088, there are 17 applications of the white-box
X ⊕Y implementation in the XOR with a message block in the absorbing phase.
At last, after receiving e1,0−15(MB1(F(pad(K)||0c))) and e0,0−15(MB0(Ml))
from the server (l = 0, 1, · · · ), the client can run the white-box KMAC implemen-
tation to produce a protected digest, while there is no input message operation
in the squeezing phase.



264 J. Lu et al.

Fig. 6. An overview of the white-box KMAC implementation



White-Box Implementation of the KMAC Message Authentication Code 265

Note that this white-box KMAC implementation also works when the user
key is updated, that is, the same set of white-box tables can be reused for
different user keys, as long as the server releases the corresponding protected
form of the new key to the client. Thus, the server does not need to generate
another set of white-box tables every time a user key is updated, which reduces
computational and communication complexity. Of course, it is better to limit
the maximum number of keys used under a set of white-box tables, to avoid a
security loss in this situation.

7 Security Analysis

By [21,33], the number of invertible 64×64-bit matrices is
∏63

i=0(2
64−2i) ≈ 24095.

The number of 4-bit encodings is 16! ≈ 244.25. Thus, the white-box tables have
a sufficiently large white-box diversity [11] and white-box ambiguity [11] against
exhaustive search attacks over the used mixing bijections and encodings.

Our white-box KMAC implementation only involves bitwise XOR, rotation,
NOT and AND operations. The outputs of the XOR, rotation and NOT oper-
ations are uniformly distributed. Thus, it is impossible to attack the white-box
X ⊕ Y and (X ≪ α) ⊕ Y implementations.

However, the outputs of the AND operation are not uniformly distributed.
In the basic case of 8-bit AND operation as in our white-box (¬X)&Y imple-
mentation of Sect. 5.3, the outputs can be divided into nine groups by frequency,
which consist of outputs with a Hamming weight from 0 to 8, respectively; the
nine groups contain respectively

(

8
0

)

= 1,
(

8
1

)

= 8,
(

8
2

)

= 28,
(

8
3

)

= 56,
(

8
4

)

= 70,
(

8
5

)

= 56,
(

8
6

)

= 28,
(

8
7

)

= 8 and
(

8
8

)

= 1 values, and a simple analysis shows that
each value in the nine groups takes place 6561, 2187, 729, 243, 81, 27, 9, 3 and
1 times, respectively. Thus, the nine groups have respectively a total frequency
of 1 × 6561

216 ≈ 2−3.32, 8 × 2187
216 ≈ 2−1.91, 28 × 729

216 ≈ 2−3.68, 56 × 243
216 ≈ 2−2.27,

70 × 81
216 ≈ 2−3.53, 56 × 27

216 ≈ 2−5.44, 28 × 9
216 ≈ 2−10.02, 8 × 3

216 ≈ 2−11.42 and
1× 1

216 = 2−16. For each white-box AND(X,Y )
l table, since 0 is the most frequent

output with 6561 times and 255 is the least frequent output with only 1 time,
the two cases can be easily distinguished; and the other seven groups can also
be easily distinguished, but there is no way to further distinguish the specific
values in each of the seven groups. The (1600-bit) F state immediately after
the AND operations is made up of the outputs of 5 × 5 × 8 = 200 AND(X,Y )

l

tables, so it is expected that there is a probability of (2−3.32)200 = 2−664 to
have an original full state of 1600 zeros, and it is dramatically smaller for any
other specific output; at a group level, the second group produces the largest
probability of (2−1.91)200 = 2−382 to have an original full state, but it produces
8200 = 2600 indistinguishable possible values in this case. Therefore, it is not pos-
sible to recover the full 1600-bit F state, not to mention recovering the previous
1600-bit state and the initial state of the protected key described in Sect. 4.3.
(This is somewhat similar to that the preimage security of the sponge construc-
tion is still secure while r bits are output in each round in black-box domain.)
On the other hand, we next consider the security of recovering the white-box



266 J. Lu et al.

protection operations for either input in each AND(X,Y )
l table. Since the two

output cases of 0 and 255 can be easily distinguished, one can deduce the cases
of 0 and 255 for either input operand by the fact that the AND output of 0
with any value is always zero and the AND outputs of 255 with all 256 values
are different one another, and one may divide the inputs into several groups by
the output groups, however, it is not possible to further distinguish the specific
values in each input group. The white-box protection is only a layer of two 4-bit
encodings for the input 0 and is a layer of 8-bit mixing bijection and a layer of
two 4-bit encodings for every other nonzero input; considering that the white-
box protected outputs for the two cases of 0 and 255 are known from above, the
layers of mixing bijection and two 4-bit encodings produce at least a diversity
of

∏7
i=0(2

8 − 2i) × (14!)2 ≈ 2144.89 for either input operand, still large enough.
KMAC does not involve algebraic operations like the MixColumns opera-

tion of the AES block cipher. Thus, such algebraic white-box attacks like BGE
attacks [6,18] do not apply in the white-box KMAC implementation.

In summary, although the AND operation is not friendly in white-box
domain, our white-box KMAC implementation should be sufficiently practically
secure against key extraction and code lifting attacks.

8 Performance Evaluation

There are various lengths of messages, and here we evaluate the basic case with
only one 1088-bit message block.

8.1 Storage and Time Complexity

The white-box X ⊕Y implementation from Fig. 3 has 16+15×16 = 256 look-up
tables, and requires 16 · 28 · 64 + 15 · 16 · 28 · 4 = 31 · 214 bits of storage. Same for
the X⊕(Y ≪ 1) implementation from Fig. 3, the (X ≪ ( (t+1)·(t+2)

2 mod 64))⊕
(Y ≪ ( (t+1)·(t+2)

2 mod 64)) implementation from Fig. 3 and the X ⊕ Y ⊕ RCi

implementation of Fig. 4.
The white-box (¬X)&Y implementation of Fig. 5 has 16+224+8+112 = 360

look-up tables, and 16 · 28 · 64 + 224 · 28 · 4 + 8 · 216 · 64 + 112 · 28 · 4 = 2085 · 214
bits of storage.

In total, the white-box implementation of one round has 20 + 1 + 24 = 45
applications of the white-box X ⊕ Y implementation, 5 applications of the
white-box X ⊕ (Y ≪ 1) implementation, 24 applications of the white-box
(X ≪ ( (t+1)·(t+2)

2 mod 64)) ⊕ (Y ≪ ( (t+1)·(t+2)
2 mod 64)) implementation, 1

application of the white-box X ⊕ Y ⊕ RCi implementation and 25 applications
of the white-box (¬X)&Y implementation.

The white-box X⊕Y ⊕RCi implementation in each of the 23 rounds after the
first round has 16 8×4-bit XOR tables different from the white-box X ⊕Y ⊕RC0

implementation of the first round.
The input message part has a total of 17 applications of the white-box X ⊕Y

implementation. The complexity for the remaining parts are negligible.



White-Box Implementation of the KMAC Message Authentication Code 267

Therefore, the white-box KMAC implementation has a total of about (45 +
5 + 24 + 1) × 256 + 25 × 360 + 23 × 16 + 17 × 256 = 32920 look-up tables with
a storage complexity of about (45 + 5 + 24 + 1) · 31 · 214 + 25 · 2085 · 214 + 23 ×
16 · 28 · 4 + 17 · 31 · 214 ≈ 107.7 MB. That is, a time complexity of 32920 table
look-up operations, (without considering the table sizes).

Note that the storage complexity is independent with message and has noth-
ing to do with message length, as long as message blocks are processed one by
one when there are more than one blocks. The storage complexity is dominated
by the white-box (¬X)&Y tables, particularly the 16 × 64-bit tables AND(X,Y )

l

tables, and it can be reduced greatly by using 8×64-bit tables AND(X,Y )
∗ tables

at the expense of a possibly reduced security and a slightly larger number of
table look-ups.

8.2 Performance Test

We have implemented the above white-box KMAC implementation, and have
tested its performance on a DELL Precision T5610 workstation with Intel Xeon
E5-2650 v2 Processor (2.6 GHz, 16 GB memory) and 64-bit Ubuntu 16.04 LTS
operation system. We used the F function KeccakF1600−StatePermute() of the
Keccak-readable-and-compact.c file from Keccak Code Package (released by Kec-
cak Team) as a benchmark for testing. Performing 100 key-message pairs as a
unit, the (plain) F function of Keccak Team has a running time of about 0.004
ms (per key-message pair) on average, and the white-box KMAC implementa-
tion has a running time of about 1.5 ms, about 375 times slower than the plain
F function, which is acceptable.

9 Implementation Variants

There are variants with different trade-offs between security and performance.
For example, we can use different dimension sizes of mixing bijections, encodings
and white-box tables. We can only protect part of a (1600-bit) internal state,
leaving the remaining part unprotected.

We can use an unrolled manner to process the 24 rounds of the state trans-
formation function and use an iterative manner to process the squeezing phase
that reuses the white-box operations of the 24-th round of the state transfor-
mation function, which has a total of about [(45 + 5 + 24 + 1) × 256 + 25 ×
360]×24+17×256 = 681152 look-up tables with a storage complexity of about
[(45 + 5 + 24 + 1) × 31 · 214 + 25 × 2085 · 214] × 24 + 17 × 31 · 214 ≈ 2.5 GB.

10 Concluding Remarks

We have described efficient white-box KMAC implementations with strong resis-
tance against both key extraction and code lifting attacks, which can still work
with an updated user key. Our implementation methods can be similarly used



268 J. Lu et al.

to develop white-box implementations for other cryptographic algorithms like
variants and extensions (e.g., the duplex construction [5]) of the sponge con-
struction.

Generally speaking, white-box cryptography is more friendly to KMAC than
to block ciphers in the sense that it is not compulsory to regenerate a new set of
white-box tables when updating a key and it may reach the desired full security
against key extraction attacks by releasing the protected form of the hash result
on the key as a starting point.

References

1. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop 2007 (2007)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. SHA-3 Submission (2011)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

6. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

7. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg
(2014)

8. Bogdanov, A., Isobe, T.: White-box cryptography revised: space-hard ciphers. In:
ACM CCS 2015, pp. 1058–1069. ACM (2015)

9. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimzing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 5

10. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

11. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17


White-Box Implementation of the KMAC Message Authentication Code 269

12. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

13. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

14. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 6

15. GitHub Website: HMAC-SHA256 Whitebox. Posted online on 12 April 2017.
https://github.com/aguinet/hmac sha256 whitebox

16. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

17. Kolegov, D., Oleksov, N., Broslavsky, O.: White-box HMAC: make your cryptog-
raphy secure to white-box attacks, Moscow, Russia, 17–18 May 2016. Video posted
online on 20 May 2016. https://www.youtube.com/watch?v=FAiz0 bWaac

18. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

19. Marián Čečunda: Whitebox cryptography implementation proposals of RSA and
HMAC algorithms. Master thesis, Masaryk University, Czech Republic (2014)

20. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stan-
ford University, USA (1979)

21. Muir, J.A.: A tutorial on white-box AES. In: Kranakis, E. (ed.) Advances in Net-
work Analysis and its Applications. Mathematics in Industry, vol. 18, pp. 209–229.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30904-5 9

22. National Bureau of Standards (NBS): Data Encryption Standard (DES), FIPS-46
(1977)

23. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (AES), FIPS-197 (2001)

24. National Institute of Standards and Technology (NIST): Secure Hash Standard,
FIPS-180-1 (1995)

25. National Institute of Standards and Technology (NIST): Specifications for the
SECURE HASH STANDARD, FIPS-180-2 (2001)

26. National Institute of Standards and Technology (NIST): SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, FIPS-202 (2015)

27. National Institute of Standards and Technology (NIST): SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash, NIST Special Publication 800–185
(2016)

28. The Internet Engineering Task Force (IETF): The MD5 message-digest algorithm.
Request for Comments 1321 (1992)

29. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://github.com/aguinet/hmac_sha256_whitebox
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18
https://www.youtube.com/watch?v=FAiz0_bWaac
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-642-30904-5_9
https://doi.org/10.1007/11426639_2


270 J. Lu et al.

30. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

31. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger. EIP-
150 Revision (2017). https://ethereum.github.io/yellowpaper/paper.pdf

32. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

33. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: Proceedings of
Second International Conference on Computer Science and its Applications, pp.
1–6. IEEE (2009)

https://doi.org/10.1007/11535218_2
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1007/978-3-540-77360-3_17


Cryptography II



Improving Signature Schemes with Tight
Security Reductions

Tiong-Sik Ng1(B) , Syh-Yuan Tan2 , and Ji-Jian Chin3

1 Multimedia University, Melaka, Malaysia
ng.tiong.sik@gmail.com

2 Newcastle University, Newcastle upon Tyne, UK
syh-yuan.tan@newcastle.ac.uk

3 Multimedia University, Cyberjaya, Malaysia
jjchin@mmu.edu.my

Abstract. In 2003, Katz and Wang proposed the claw-free trapdoor full
domain hash (CFT-FDH) which achieves a tight security for FDH signa-
ture schemes using the bit selector technique. However, it is noted that
the CFT-FDH is not backward compatible with its original FDH coun-
terpart, since the selected bit is hashed with the message, modifying the
structure of the original signature. In this paper, we take a step further
to propose a general framework that is able to achieve backward com-
patibility while maintaining the tight reduction of FDH signatures using
the properties of trapdoor samplable relations and also Katz-Wang’s bit
selector technique.

Keywords: Digital signatures · Tight security · Full domain hash ·
General framework

1 Introduction

After the formalization of provable security by Goldwasser and Micali in 1984
[25], it is said that a cryptographic scheme is secure if mathematical arguments
can be used to prove its security. Though a scheme may be proven to be secure,
the scheme may not achieve a tight security reduction. As a result, a longer key
length is required to compensate for the security loss. Therefore, if the probability
of breaking a cryptographic scheme is equivalent to the probability of breaking
a mathematical hard problem the scheme is based on, it can be said that the
scheme has achieved a tight security reduction.

As an example, the security of the RSA-FDH [14] is expressed as εFDH =
(qs + qh + 1)εRSA, where εFDH is the probability of breaking the RSA-FDH,
while qs and qh represent the sign queries and hash queries a forger can make
respectively, and εRSA is the probability of breaking the RSA [40] problem. By
allowing qs = 230 and qh = 260 for a 128-bit security, the actual security of
the RSA FDH is only 68-bit: (260)2−128 = 2−68. Since the security reduction is
not tight, a longer public key length (|N| + |e|) of 15360 bits is needed for the
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 273–292, 2019.
https://doi.org/10.1007/978-3-030-34339-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_15&domain=pdf
http://orcid.org/0000-0001-7248-3935
http://orcid.org/0000-0003-1182-1210
http://orcid.org/0000-0001-9809-6976
https://doi.org/10.1007/978-3-030-34339-2_15


274 T.-S. Ng et al.

RSA-FDH instead of the originally intended 6144 bits, to achieve the security
level of 128 bits.

With that, many new schemes and security reduction techniques have been
proposed or improved on to achieve a tight security confidence in security proofs.
Techniques particularly revolved around the practical usage of a scheme, since
a longer key length would result in extra memory and power consumption.

One particularly significant work is Katz-Wang’s [31] framework that tightens
the security of FDH signature schemes using the bit selector technique, also
known as the Claw-Free Trapdoor FDH (CFT-FDH). In this paper, we improve
Katz-Wang’s CFT-FDH, which will be further elaborated in the contributions
section later on.

1.1 FDH Signatures

Full Domain Hash (FDH) signature schemes are defined with doubly enhanced
trapdoor permutations [28]. An example FDH signature scheme would be the
RSA-FDH signature scheme that was formalized by Bellare and Rogaway [14].
The signature scheme was designed such that the message is first hashed before
being signed with the secret key. However, the scheme was not tightly secure, i.e.,
the probability of breaking the scheme is not closely related to the probability
of breaking the underlying hard problem. Therefore, Coron [17] revisited the
security of the RSA-FDH, and managed to tighten the security of the RSA-
FDH by removing the factor of qh.

In the very same work where the RSA-FDH was proposed, Bellare and Rog-
away [14] then designed the RSA-PSS scheme. With the generation of a random
salt, the tightness of the RSA-PSS is said to be closely related to the RSA prob-
lem, where εPSS = εRSA. Some time later, Coron [18] proposed a variant of
RSA-PSS, namely, the Probabilistic Full Domain Hash (RSA-PFDH) signature
and proved its security with tight reduction by combining the techniques of the
RSA-PSS and RSA-FDH. Besides that, Coron stated that 30 bits is the optimal
length for the generated random salt in both RSA-PFDH and RSA-PSS, and
increasing the number of bits would not increase the security tightness of the
scheme.

In 2003, Katz and Wang proposed a framework that tightens the security of
FDH type signatures by applying some modifications. By hashing the message
with a randomly generated salt, it is said that the FDH signature schemes are
tightly secure with the loss of just one bit in the security reduction. Besides
that, the randomly generated salt need not be as long as 30 bits as in the RSA-
PFDH, as just one bit is necessary to achieve the tightness. The bit selector
method by Katz and Wang was applied on the BLS signature [10], an FDH
signature which is said to be short in length since it uses properties of Elliptic
Curve Cryptography (ECC) which features pairing, by Bellare et al. in [11].
It is shown that Bellare et al.’s BLS variant is able to achieve a tight security
reduction similar to Katz-Wang’s framework. The instantiations of Katz-Wang’s
methods on FDH type signatures are roughly described by Katz in [28]. However,



Improving Signature Schemes with Tight Security Reductions 275

since the way of hashing in the CFT-FDH scheme is not the same as that of its
original counterpart, the former is not backward compatible to the latter.

In a recent work by Guo et al. [23], a scheme that is similar to a framework
to tighten the security of schemes was proposed. The security reduction was
particularly focused on but not limited to just the BLS. In their proposed scheme,
Guo et al. used the technique of hashing the message with a signed message.
In addition to that, the hash-and-sign process was done for a total of three
blocks, similar to the structure of a block-chain. Guo et al. came up with a
security reduction that results in a loss of at most 2q

1
2
h for the applicable schemes.

However, it is admitted that the scheme is lacking in efficiency in comparison to
the original BLS signature considering the number of blocks for the signature.
It is noted that the scheme is not backward compatible as well as each block of
the signature has a rather similar structure to Katz-Wang’s CFT-FDH.

1.2 Our Contributions

In this paper, we propose a general framework to tighten the security of FDH sig-
nature schemes. We would like to highlight that the tightened signature schemes
are backward compatible to their original scheme, solving the issue of Katz
and Wang’s Claw-Free Trapdoor FDH (CFT-FDH) [31] signature scheme. By
backward compatibility, it means that the signature from the original non-tight
schemes can be verified using the verification algorithm of our proposed frame-
work. We will further elaborate the backward compatibility of our framework in
a later section.

In 2009, Coron [19] proposed a tightly secure IBE scheme which is backward
compatible to the original Boneh-Franklin IBE scheme, thanks to the extra pub-
lic key element as well as an extra salt in the user secret key. Our proposed
technique also ties the selector bit to an additional public key element instead
of hashing it together with the message, similar to Coron’s method. We then
generalize the whole process with the help of Bellare et al.’s samplable trap-
door relations [12]. Although our improvement increases the public key size and
slightly slow down the signing process, it does not need to modify the structure
of existing signatures to enjoy the tight security benefits provided as in Katz and
Wang’s CFT-FDH. In fact, it is an acceptable sacrifice to be made to achieve
backward compatibility.

In a nutshell, our framework can be viewed as the combination of the tight
reduction techniques from Katz and Wang’s CFT-FDH and Coron’s IBE scheme
[19] plus the generalization of Bellare et al.’s samplable trapdoor relations. Inte-
grating these two techniques, we propose a framework for FDH signatures with
backward compatibility property. Besides that, we also generalize the hard prob-
lems for the captured schemes using the trapdoor samplable relations. As a proof
of concept for our framework, we apply our framework on the RSA-FDH.



276 T.-S. Ng et al.

1.3 Organization

We structure our paper according to the following the organization. We begin
by stating the formal definitions of a digital signature and then review its secu-
rity model in Sect. 2. Then, we proceed to describe our framework for tightly
secure FDH signature schemes and the corresponding security proof in Sect. 3.
Subsequently, we give two instantiations of the framework in Sect. 4. In Sect. 5,
we discuss the potential application to other cryptosystems and the advantage
against Katz-Wang’s CFT-FDH. The conclusion is provided in Sect. 6.

2 Definitions

Here, we present the basic definitions of a digital signature and its security
model. We also present the definitions of related mathematical assumptions that
are used throughout this paper.

We denote {0, 1}∗ as the set of bit strings. Let a
R← S denote a uniformly

and randomly element a chosen from a finite set of S. Finally, Zp denotes a set
consisting of positive integers modulo with a large prime number p.

Definition 1. A digital signature can be viewed as a scheme composed of three
polynomial-time algorithms: Key Generation (KG), Sign (SN ), and Verify
(VR). The algorithms are described as follows:

1. Key Generation (KG) (1k): In this algorithm, given a security parameter
input of 1k, a public and secret key pair (pk, sk) is generated. It is noted that
pk is safe to be distributed openly, whilst the user keeps sk as a secret.

2. Sign (SN ) (m, sk): Given sk and a message m as input, a signature denoted
as σ is generated by the user.

3. Verify (VR) (m,σ, pk): Given pk and σ, a verifier ensures that σ is truly
generated by the user, where the algorithm returns “1” if the signature is
authentic; and “0” otherwise.

2.1 Security Notions

We base our security model on the strong existential unforgeability under chosen
message attacks (seuf-cma) security notion. Therefore, we define the security
model of a digital signature as game between an Adversary A and a Simulator S:

1. Setup. During the Setup phase, a Simulator S who wants to compute a
solution for the hard problem generates and then sends the public parameters
to Adversary A, who wants to forge the signature.

2. Hash Query. In this phase, A is given the power to make multiple hash
queries for message m. It receives obtain H(m) as a response.

3. Sign Query. In this phase, A is given the power to make multiple signature
queries for message m to acquire σ. S then computes and responds with σ
to A.



Improving Signature Schemes with Tight Security Reductions 277

4. Forgery. Once A has completed the training phase, A would forge a message-
signature pair, (m∗, σ∗). If (m∗, σ∗) is a valid message-signature pair and
the pair is not a product of the sign query, then the forgery is considered
successful.

Definition 2. Based on the definition by Huang et al. [27], a digital signature
scheme is (tsig, qh, qs, εsig)-secure against strong existential forgery under adap-
tive chosen message attacks (seuf-cma) for a given adversary A running with
time of t, successfully forges a signature for a given message that was not the
signature returned during qs, i.e.

∣
∣Pr[Ver(pk,m, σ∗) = 1 : (m∗, σ∗) ← AOsk(·)(pk); (m∗, σ∗) /∈ Q]

∣
∣ ≤ εsig.

for Q = (mi, σi) where mi represents the i-th query for the signature which
corresponds to signature σi, where A is allowed to make sign queries to the
signing oracle Osk(·) for n times and can make hash queries and signing queries
of not more than qh and qs respectively.

2.2 Computational Problems

In this work, we follow the definition of the CDH problem from Bao et al.’s work
[4] as follows:

Definition 3. Computational Diffie-Hellman (CDH) Problem. It is said that
a polynomial-time algorithm S (tCDH , εCDH)-solves the CDH problem for S
running for a time of at most tCDH and furthermore:

∣
∣Pr[a, b ← Z

∗
q : S(g, ga, gb) = gab]

∣
∣ ≥ εCDH

We assume the CDH problem to be (tCDH , εCDH)-hard in G if

Pr[S solves CDH] ≤ εCDH

for any S that runs in time tCDH .

In this work, we follow the definition of the co-CDH problem1 from Bellare
et al.’s work [11] as follows:

Definition 4. Computational co-Diffie-Hellman (co-CDH) Problem. It is said
that a polynomial-time algorithm S (tco−CDH , εco−CDH)-solves the co-CDH
problem for S running for a time of at most tco−CDH and furthermore:

∣
∣Pr[a, b ← Z

∗
q : S(g1, g1a, g1

b, g2
a) = g1

ab]
∣
∣ ≥ εco−CDH

We assume the co-CDH problem to be (tco−CDH , εco−CDH)-hard in G1 and G2

if

Pr[S solves co − CDH] ≤ εco−CDH

for any S that runs in time tco−CDH .
1 It is worth mentioning that the co-CDH problem is a Type-3 Pairing counterpart to

the CDH problem which is based on the Type-1 Pairing [11].



278 T.-S. Ng et al.

In this work, we follow the definition of the DBDH problem from Coron’s work
[19] as follows:

Definition 5. Decisional Bilinear Diffie-Hellman (DBDH) Problem. Let β be
a binary coin and let z = e(g, g)abc if β = 1; else let z be a random element
if otherwise. Given (g, ga, gb, gc, z), output a guess β′ of β. It is said that a
polynomial-time algorithm S (tDBDH , εDBDH)-solves the DBDH problem for S
running for a time of at most tDBDH and furthermore:

∣
∣
∣
∣
Pr[β′ = β] − 1

2

∣
∣
∣
∣
≥ εDBDH

We assume the DBDH problem to be (tDBDH , εDBDH)-hard in G1 and G2 if

Pr[S solves DBDH] ≤ εDBDH

for any S that runs in time tDBDH .

In this work, we adopt the definition of the co-DBDH problem2 as a Type-3
Pairing counterpart to the DBDH problem by combining the co-CDH and the
DBDH problems as follows:

Definition 6. Decisional Bilinear co-Diffie-Hellman (co-DBDH) Problem. Let
β be a binary coin and let z = e(g1, g2)abc if β = 1; else let z be a random element
if otherwise. Given (g1, g2, g1a, g1

b, g2
a, g2

c, z), output a guess β′ of β. It is said
that a polynomial-time algorithm S (tco−DBDH , εco−DBDH)-solves the co-DBDH
problem for S running for a time of at most tco−DBDH and furthermore:

∣
∣
∣
∣
Pr[β′ = β] − 1

2

∣
∣
∣
∣
≥ εco−DBDH

We assume the co-DBDH problem to be (tco−DBDH , εco−DBDH)-hard in G1 and
G2 if

Pr[S solves co − DBDH] ≤ εco−DBDH

for any S that runs in time tco−DBDH .

In this work, we follow the definition of the RSA problem from Cramer and
Shoup’s work [20] as follows:

Definition 7. RSA Problem. It is said that a polynomial-time algorithm S
(tRSA, εRSA)-solves the RSA problem for S running for a time of at most tRSA

and furthermore:

|Pr[d ← ZN : S(N, e) = d]| ≥ εRSA

2 We denote this hard problem as the co-DBDH problem as the Type-3 Pairing version
of the DBDH problem, to distinguish between the DBDH problem which is based
on the Type-1 Pairing. It is noted that in a work by Vercauteren [41], the co-DBDH
problem itself is denoted as the DBDH problem, which covers the specification of
both Type-1 and Type-3 pairings.



Improving Signature Schemes with Tight Security Reductions 279

We assume the RSA problem to be (t, ε)-hard in φ(N) if

Pr[S solves RSA] ≤ εRSA

for any S that runs in time tRSA.

In this work, we follow the definition of the strong-RSA problem from Cramer
and Shoup’s work [20] as follows:

Definition 8. Strong-RSA Problem. It is said that a polynomial-time algorithm
S (tSRSA, εSRSA)-solves the strong-RSA problem for S running for a time of at
most tSRSA and furthermore:

|Pr[w, d ← ZN : S(N, e,we) = w]| ≥ εSRSA

We assume the strong-RSA problem to be (tSRSA, εSRSA)-hard in φ(N) if

Pr[S solves strong − RSA] ≤ εSRSA

for any S that runs in time tSRSA.

2.3 Pseudorandom Bit Generator

We adopt the definition of the pseudorandom bit generator from Katz et al.’s
work [34] as follows:

Definition 9. A pseudorandom bit generator is defined as a computable func-
tion that is efficient. When F 1 and F 2, an output of a generated and a truly
random sequence of a similar length respectively are presented to a distinguish-
ing algorithm S, S is unable to correctly differentiate the function used with a
probability of more than 1/2, i.e.

∣
∣
∣
∣
∣
| Pr
g

R←F 2

[Sg = 1] − Pr
g

R←F 1

[Sg = 1] | − 1
2

∣
∣
∣
∣
∣
≤ ε

where the probabilities are defined over the choices g and also the coin tosses C
for a non-negligible ε.

2.4 Trapdoor Samplable Relations

We adopt the definition of the Trapdoor Samplable Relations from Bellare et al.’s
work [12] as follows.

Definition 10. A relation is defined as a finite set of ordered pairs. The range
of a relation R, the set of images of x, and the set of inverses of y, are defined
as:

Rng(R) = {y : ∃x such that(x, y) ∈ R}
R(x) = {y : (x, y) ∈ R}

R−1(y) = {x : (x, y) ∈ R}
A family of trapdoor samplable relation (TDG,Smp, Inv) possesses the following
properties:



280 T.-S. Ng et al.

1. Efficient Generation : Given an input 1k where k ∈ N is the security parameter,
TDG would output the description 〈R〉 of a relation R alongside the trapdoor
information td.

2. Samplability : Given an input 〈R〉, the output of the algorithm Smp would be
uniformly distributed over R.

3. Inversion : Given the inputs of a relation description 〈R〉, the corresponding
trapdoor td, and an element y ∈ Rng(R), a randomized algorithm Inv would
output a random element R−1(y).

4. Regularity : For every relation R in the family, there exists an integer d such
that |R−1(y)| = d for all y ∈ Rng(R).

The family of relations is defined as:

{R : ∃k, td such that (〈R〉, td) ∈ [TDG(1k)]}

A family of trapdoor samplable relations is a result of a family of one-way per-
mutations. For every member f of the family of one-way permutations, there
corresponds the relation R consisting of the set of pairs (x, f(x)) for x in the
domain of the function f .

3 The Tight Security Framework

In this section, we propose a framework which can capture the FDH signature
schemes alongside a full security proof. Similar to Katz-Wang’s CFT-FDH [31],
we use the bit selector technique as well, though we follow Coron’s technique
[19] instead of modifying the hash value. We also make use of the trapdoor
samplable relations proposed by Bellare et al. [12] to generalize our framework
and the security proof.

3.1 Generic Form of Captured FDH Signatures

Before proposing our framework, we first demonstrate the generic form of FDH
signatures using the trapdoor samplable relations defined in Sect. 2.4 as follows:

1. Key Generation (KG): Run TDG(1k) to obtain the relation description 〈R〉
and the trapdoor information td. Then, select a full domain hash function
H : {0, 1}∗ → Rng(R). Return the public keys {〈R〉,H} and the secret
key td.

2. Sign (SN ): Given a message m ∈ {0, 1}∗ and trapdoor td as input, run
Inv(〈R〉, td,H(m)) to return the signature σ = R−1(H(m)).

3. Verify (VR): The verification for the signature σ of a message m can be done
by evaluating the correctness of R(σ) = H(m).



Improving Signature Schemes with Tight Security Reductions 281

3.2 The Proposed Framework

We now propose the general framework that tightens the security of FDH sig-
natures using properties of the trapdoor samplable relations. The security tight-
ening process is done with the help of an extra Smp algorithm and an extra
bit r.

1. Key Generation (KG): Run TDG(1k) to obtain relation description 〈R〉
and trapdoor information td. Then, run Smp(〈R〉) to obtain (x, y) ∈ 〈R〉 as
well as select a full domain hash function H : {0, 1}∗ → Rng(R). Return the
public keys {(〈R〉, y),H} and the secret keys (td, x).

2. Sign (SN ): Given a message m ∈ {0, 1}∗ and trapdoor td as input, choose a
random bit3 r

R← PRBG(m, td) and run Inv((〈R〉, y), td,H(m), r) to return
the signature σ = (δ, r) = (R−1(H(m) · yr), r) = (R−1(H(m)) · xr, r).

3. Verify (VR): The verification for the signature σ of a message m can be done
by evaluating the correctness of R(δ) = H(m) · yr.

The proposed framework is different from the original signature schemes in the
sense that a “randomisation” of a one bit r is added to the signature. However,
since r is chosen whenever a signature is generated, the signature is deterministic
for a given message.

3.3 Backward Compatibility

Based on the framework defined in Sect. 3.2, the non-tight signatures that were
previously generated can be verified using the verification algorithm of our frame-
work without having to modify the structure of current signatures. It can be
noticed that by setting the value of r = 0, the signature would be returned
as σ = (δ, 0) = (R−1(H(m)), 0), which is actually the value from the original
scheme. Therefore, in order to perform an upgrade from previously generated
signatures, the user would just have to set the value of r into 0.

On the other hand, new signatures has to perform the Smp algorithm first
in order to generate the new parameters. Moreover, the new signatures has to
be generated based on our framework to achieve a tight security reduction. The
parameters that were previously generated may be kept and used for the new
signatures, depending on the user, though the key distribution for the PKG has
to follow the framework.

3.4 Security Proof

In this section, we proceed to describe the full security proof to the framework
described in Sect. 3.2.

3 The signer may enclose the bit r alongside σ to avoid confusion during verification
where two different signatures for a message (i.e. r ∈ {0, 1}) may exist at once, as
stated in [31].



282 T.-S. Ng et al.

Theorem 1. The signature scheme above is (tsig, qh, qs, εsig)-seuf-cma secure if
the one-wayness of the trapdoor permutations is (towtd, εowtd)-secure, where:

εsig = 2εowtd

tsig = O(towtd)

Proof. Assuming that there exists a (tsig, qh, qs, εsig)-adversary A running in
time of at most tsig making at most qh hash queries and at most qs signing
queries against the signature scheme. We construct a Simulator S that wants
to break the one-wayness of the trapdoor permutations with an advantage of at
least εowtd while interacting with A that wants to forge the signature.

Setup. S runs TDG(1k) and receives the challenge (〈R〉, y). It is noted that S
does not know the value of td.

Hash Query. When A submits a fresh query4 H(m) for a message m, S runs
Smp(〈R〉) to obtain (x̃, ỹ). S first generates a random value y1

R← Rng(R). S
then generates a random bit r̃

R← PRBG(m, y1) and then proceeds to store
{m, x̃, ỹ, r̃} in a hash list Hlist. S returns H(m) = ỹ · y−r̃ to A as a reply to the
hash query. If m was queried before, S searches from Hlist and returns the same
value H(m) = ỹ · y−r̃.

Sign Query. When A submits a signing query for a message m, we assume that
the hash query has already been made. If not, S goes ahead and makes the hash
query. In either case, S can recover {x̃, ỹ, r̃} from Hlist and return σ = (δ = x̃, r̃).
This signature for the message m is valid as:

δ = R−1(H(m) · yr̃) = R−1(ỹ · y−r̃ · yr̃) = R−1(ỹ) = x̃

Forgery. Without a loss of generality, we assume that the message m∗ in the
forgery (m∗, σ∗ = (δ∗, r∗)) produced by A has already been queried to the hash
oracle; else, S then proceeds to issue a hash query for m∗. We differentiate the
forgery produced by A into 2 cases:

Case 1 : Suppose A produces a valid signature and message (m∗, σ∗ = (δ∗, r∗))
pair where the signature of m∗ was never queried before, S aborts if r∗ = r̃; else
if r∗ 
= r̃, S solves the one-wayness problem of the trapdoor permutations with
the help of (m∗, σ∗).

Case 2 : Suppose A produces a valid signature and message (m∗, σ∗ = (δ∗, r∗))
pair where σ∗ is not the response returned by S during the signing query, S
solves the one-wayness problem of the trapdoor permutations with the help of
(m∗, σ∗).

We recall that A is an adversary in the seuf-cma security notion. Therefore,
we take both Case 1 and Case 2 into consideration. In both cases, we define the

4 Different from Katz-Wang’s work in [31], A is not able to query for the value of r
considering it is not a portion of the hash input.



Improving Signature Schemes with Tight Security Reductions 283

one-wayness problem of the trapdoor permutations that S wants to solve as the
following:

Given (〈R〉, y), find (x = R−1(y)).

S solves the one-wayness problem of trapdoor permutations by finding x as
follows:
(

δ∗

x̃

)

=
(
R−1(H(m) · yr∗

)
x̃

)

=
(
R−1(H(m)) · xr∗

x̃

)

=
(
R−1(ỹ · y−r̃) · xr∗

x̃

)

=
(

(x̃ · x−r̃) · xr∗

x̃

)

=
(

x−r̃+r∗)

In the case where r̃ = 0 and r∗ = 1, x =
(

δ∗
x̃

)

.

In the case where r̃ = 1 and r∗ = 0, x =
(

δ∗
x̃

)−1

.
It is noted that if the values of r̃ = r∗, S is unable to solve the one-way

trapdoor permutations, and S has to abort the simulation. To proceed with the
probability calculation, we note the summary of both Case 1 and Case 2 in the
Table 1.

Table 1. Possible forgeries for σ∗.

Case σ∗

m∗ r∗

1 0 0

0 1

2 1 0

1 1

In Table 1, we denote 0 for the value of m∗ to signify Case 1, where m∗ is
never queried before, while we denote 1 for the value of m∗ to signify Case 2,
where m∗ has been queried during the sign query, but the forgery σ∗ is different
from the signature produced during the sign query. For both cases, the values
of 0 and 1 under the column r∗ represents r̃ 
= r∗ and r̃ = r∗ respectively.
Since r ∈ {0, 1}, it is obvious that the probability of r̃ = r∗ is 1

2 for each case.
By combining both Case 1 and Case 2 together, the probability of r̃ = r∗ is
resulted as 1

2 . The probability of computing a solution for the one-wayness of
the trapdoor permutations is then calculated as the following:



284 T.-S. Ng et al.

Pr[S solves one-way trapdoor] = Pr[A outputs valid σ∗ ∧ S does not abort]
εowtd = Pr[A outputs valid σ∗] ∧ Pr[S does not abort]

= Pr[A outputs valid σ∗] ∧ Pr[r̃ 
= r∗]

= εsig × 1
2

=
1
2
εsig

Given the seuf-cma security notion, S is able to carry out the simulation all the
way from the setup stage up to the sign queries without aborting. However, there
is a 1

2 probability of aborting if the values of r̃ = r∗ during the computation of
a solution for the one-way trapdoor permutations. The time tA taken by the
adversary A to break the scheme is represented by the overall computation time
of S such that tA = O(tsig). This results in a tight security reduction of only
1-bit loss where εsig = 2εowtd. �

4 Applying the Framework

We now provide the instantiations to show the application of our proposed frame-
work, as well as the backwards compatibility property of the new schemes. We
first present the original schemes using the trapdoor samplable relations, while
showing the application of our framework to tighten the security of the signature
schemes. We then define the tight version of each respective schemes, and show
a brief security proof as well.

Referring to Sect. 3.2, the algorithms TDG and Smp define the setup, KG of
a digital signature, while Inv defines the signing, SN of a digital signature. We
will describe the verification algorithm, VR for each of the instantiated scheme
as well.

In the schemes that we will instantiate later on, we show that the Smp algo-
rithm is derived from the scheme itself, although the parameters generated from
the algorithm are not presented in the original scheme. Therefore, the Smp can
be viewed as a method to tighten the security of a scheme, while having the
properties of backward compatibility.

We would like to point out a notation that we will use later on, the maps
to (�→) symbol. To begin, the values on the right hand side of the �→ character
are mapped to the values of the left hand side. As an example, 〈R〉 �→ (N, e, z)
shows that the values (N, e, z) are mapped to the value of 〈R〉 of the trapdoor
samplable relation.

4.1 Instantiation Using RSA-FDH

The RSA-FDH was proposed in [14], where it was introduced as a “signature”
version of the RSA encryption. The RSA-FDH is originally based on the RSA
problem [20]. However, by applying the framework, our variant of the RSA-
FDH is based on the strong-RSA problem. The trapdoor samplable relation for
RSA-FDH [14] is as follows:



Improving Signature Schemes with Tight Security Reductions 285

Algorithm 1. Trapdoor Samplable Relation for RSA-FDH
TDG(1k):

(N, e), H, d
R← Kgrsa(1

k), where ed = 1 mod ϕ(N) and H : {0, 1}∗ → ZN

Return (PK = ((N, e), H), SK = d)

Smp(1k, N, e): (w ∈ ZN , z = we)
Return (w, z)

Inv((1k, N, e), d, H(m)):
σ ← (δ) = (H(m)d),
Return σ

Note: The relation described by (1k, N, e) is R = {(σ,H(m)) ∈ Z
∗
N × Z

∗
N |σe =

H(m)}. Based on the relation described above, the TDG and the Smp algo-
rithms define the KG of the RSA-FDH. As the Smp algorithm is not pre-
sented in the original scheme, the original signature is generated in terms
of Inv((1k, N, e), d,H(m)). With the new key pair (PK,SK) generated from
the Smp algorithm alongside a random bit r ∈ {0, 1}, we sign a message
m ∈ {0, 1}∗ with the Inv algorithm such that Inv(((1k, N, e), z), d,H(m), r) where
σ = (δ, r) = ((H(m) · zr)d, r), to tighten the security of RSA-FDH whilst retain-
ing the backward compatibility of the scheme.

Following the trapdoor samplable relation, we are ready to define the tight
RSA-FDH as follows:

1. Key Generation (KG): Generate two primes p, q and compute N = pq.
Select a prime e

R← Zφ(N) such that gcd(e, φ(N)) = 1 and compute d where

e·d = 1 mod φ(N). Next, choose w
R← ZN and calculate z = we. Lastly, select

a hash function H : {0, 1}∗ → ZN . Set PK = ((N, e, z),H) and SK = (d,w).
2. Sign (SN ): Given a message m ∈ {0, 1}∗ and SK as input, generate a random

bit r
R← PRBG(m, d) and generate the signature σ = (δ, r) = ((H(m) ·

zr)d, r).
3. Verify (VR): The verification for the signature σ of a message m can be done

by evaluating δe ?= H(m) · zr. The check equation for the correctness is as
follows:

δe = ((H(m) · zr)d)e

= H(m) · zr

Notice that the original RSA-FDH signature H(m)d only needs to be multiplied
with zrd, where the hash value is not modified at all, thus retaining the properties
of the original RSA-FDH signature. As the verification of the original RSA-FDH
is done by computing σe = H(m), the new verification algorithm then can be
done by multiplying zr to the right hand side. Therefore, the non-tight RSA-
FDH verification can be done with our new verification by initializing the value
of zr to be 1.



286 T.-S. Ng et al.

Theorem 2. The proposed RSA-FDH signature scheme above is (tsig, qh,
qs, εsig)-seuf-cma secure if Strong-RSA is (tSRSA, εSRSA)-secure, where:

εsig = 2εSRSA

tsig = O(tSRSA)

Proof. Theorem 1 implies that the proposed RSA-FDH signature scheme has a
tight reduction to the trapdoor one-wayness in the Smp property, which is the
strong-RSA problem: given (〈R〉, y) �→ ((N, e), z), find x �→ w.

Concisely, let H(m) = x̃e · z−r̃ where x̃, x̃1
R← ZN and r̃

R← PRBG(m, x̃1),
the forgery produced is σ∗ = (δ∗, r∗) = ((x̃e · z−r̃ · zr∗

)d, r∗). In the case where
r∗ = r̃, S aborts the simulation; else S computes the solution w for the strong-
RSA problem as follows:
(

δ∗

x̃

)

=

(

(H(m) · zr∗
)
d

x̃

)

=

(

((x̃e · z−r̃) · zr∗
)
d

x̃

)

=

(

((x̃e · w−er̃) · wer∗
)
d

x̃

)

=
(

(x̃)(w(−r̃+r∗))
x̃

)

=
(

w−r̃+r∗)

In the case where r̃ = 0 and r∗ = 1, w =
(

δ∗
x̃

)

.

In the case where r̃ = 1 and r∗ = 0, w =
(

δ∗
x̃

)−1

. �

4.2 Instantiation Using BLS

The BLS signature scheme [10] was introduced by Boneh et al. as a short signa-
ture based on the Computational Diffie-Hellman (CDH) problem. Lacharité [32]
proposed the BLS signature using the Type-3 Pairing [39] based on the co-CDH
problem. The trapdoor samplable relation for BLS [10] is as follows:

Algorithm 2. Trapdoor Samplable Relation for BLS
TDG(1k):

((G1,G2, q, g1, g2, x1 = g1
a, y = g2

a), H, a)
R← Kg(1k), where H : {0, 1}∗ → G1

Return (PK = ((G1,G2, q, g1, g2, x1, y), H), SK = a)

Smp(G1,G2, g1, g2, x1, y): ((b ∈ Zq, g1
ab), x2 = g1

b)
Return ((b, g1

ab), x2)

Inv((g2, y), a, H(m)):
σ ← δ = H(m)a

Return σ

Note: The relation described by (1k,G1,G2, q, g1, g2) is R = {(σ,H(m)) ∈ G1 ×
G1|e(H(m), y) = e(σ, g2)}. Based on the relation described above, the TDG and



Improving Signature Schemes with Tight Security Reductions 287

the Smp algorithms define the KG of the BLS. As the Smp algorithm is not
presented in the original scheme, the original signature is generated in terms of
Inv((g2, y), a,H(m)). With the new key pair (PK,SK) generated from the Smp
algorithm alongside a random bit r ∈ {0, 1}, we sign a message m ∈ {0, 1}∗

with the Inv algorithm such that Inv(((g2, y), x2), a,H(m), r) where σ = (δ, r) =
((H(m) · x2

r)a, r), to tighten the security of BLS whilst retaining the backward
compatibility of the scheme.

Following the trapdoor samplable relation, our tight BLS signature scheme
turns out to be the same as Ng et al.’s signature scheme [37], thereby providing
an additional theoretical explanation for its tight reduction proof.

5 Discussions

5.1 Upgrade to Existing Schemes

Since FDH signature scheme is a popular tool in constructing more complex
cryptsystems, the technique from our framework can be applied on these cryp-
tosystems to improve their security and performance. For instance, we briefly
explain how to apply our technique in enhancing Coron’s BF-IBE [19] scheme
whose user secret key is a BLS signature on the user public identity ID. Fol-
lowing the trapdoor samplable relation for BLS in Sect. 4.2, we describe Coron’s
IND-ID-CPA-secure BF-IBE [19] as follows:

1. Setup: Generate two random integers a, b
R← Zq and generators g1 ∈ G1, g2 ∈

G2. Compute the values x1 = g1
a, x2 = g1

b, y = g2
a. Next, establish

the pairing function e : G1 × G2 → GT . Lastly, select a hash function
H : {0, 1}∗ → G1. Set PK = ((G1,G2, g1, g2, x1, x2, y, e),H) and SK = (a, b).

2. Keygen: Given an identity ID ∈ {0, 1}∗ and SK as input, generate a random
bit r

R← PRBG(ID, a) and generate the secret key dv = (δ, r) = ((H(ID) ·
x2

r)a, r).
3. Encryption: Generate a random integer w

R← Zq. The encryption of a mes-
sage m is given as: C = (g2w, e(x2, y)w,m ⊕ H2(e(H1(ID), y)w)).

4. Decryption: Given the ciphertext C = (c1, c2, c3) and the secret key dv =
(δ, r), the message is decrypted as m = c3 ⊕ H2(e(δ, c1) · c2

−r) because:

e(H1(ID), y)w = e(H1(ID), g2a)w = e(H1(ID)a, g2
w) = e(δ · x2

−ar, g2
w)

= e(δ, g2w) · e(x2
−ar, g2

w) = e(δ, c1) · e(x2, g2
a)−wr

= e(δ, c1) · e(x2, y)−wr = e(δ, c1) · c2
−r

It can be noticed that there is hardly any difference for the scheme described
above in comparison with Coron’s BF-IBE, with the exception of the scheme
being defined using Type-3 pairing, and we use a single bit r instead of an
integer in the group Zq, as the exponent for the public key x2.



288 T.-S. Ng et al.

Theorem 3. The IBE above is (tibe, qh, qe, εibe)-IND-ID-CPA secure if co-
DBDH is (tco−DBDH , εco−DBDH)-secure, where:

εibe = 4εco−DBDH

tibe = O(tco−DBDH)

Proof. (Sketch.) The trapdoor samplable relations for the BLS covers the Setup
and Keygen stages of the IBE in the security proof, where the TDG and the
Smp algorithms define the Setup stage, while the Inv define the Keygen stage.
Concisely, let H(ID) = g1

p ·x2
−r̃, where p, p1

R← Zq and r̃
R← PRBG(m, p1), the

simulator can answer hash queries for every ID, including the challenge ID. The
rest of the proof can be followed in accordance with Coron’s BF-IBE security
proof except that the challenge ID must have r̃ = 1 or the simulator aborts. �

Besides Coron’s BF-IBE scheme, our technique is applicable on Agrawal et
al.’s lattice IBE scheme [2] that uses Katz and Wang’s bit selector technique.
Subsequently, our technique is also useful for Boyen and Li’s lattice signature [9]
scheme which was based on Agrawal et al.’s lattice IBE scheme. Moreover, FDH
-based undeniable signature schemes, such as Ogata et al.’s undeniable signature
[38] can benefit from our technique as well.

5.2 Comparison with Katz and Wang’s Work

In 2003, Katz and Wang [31] managed to tighten the security of FDH signature
schemes by hashing a bit with the message. By basing their scheme off the claw-
free trapdoor, they proposed a general framework for FDH signature schemes,
which was also instantiated in Katz’s work [28]. The proposed CFT-FDH scheme
was tightly secure with just a loss of 1-bit.

Similar to their work, we proposed a general framework for FDH signature
schemes with the help of an extra bit and an extra public key. However, the fam-
ilies of FDH signatures are captured using the trapdoor samplable relations pro-
posed by Bellare et al., different from the claw-free trapdoor used by Katz-Wang.
By applying the proposed framework, the captured FDH signature schemes are
tightly secure.

Apart from that, different from Katz-Wang’s work, the proposed framework
can be considered as an upgrade as the original signature is altered with an
additional multiplication operation instead of modifying the hash. Therefore, it
can be said that the proposed framework covers different ranges of FDH signature
schemes, which also solves the backward compatibility problem of Katz-Wang’s
scheme. We summarize a self-explanatory comparison for the RSA-FDH variants
with ours in Table 2.



Improving Signature Schemes with Tight Security Reductions 289

Table 2. Comparison between the RSA-FDH variants at 128-bit security level

Property RSA-FDH
(Ideal)

RSA-FDH [14] CFT-FDH [28] This Work

Hard problem RSA RSA CFT strong-RSA

Security notion euf-cma euf-cma seuf-cma seuf-cma

Public key length
(bits)

2|N| = 2×
3072 = 6144

2|N| = 2×
7680 = 15360

2|N| = 2×
3072 = 6144

3|N| = 3×
3072 = 9216

Signature length
(bits)

|N| = 3072 |N| = 7680 |N|+ |r| = 3073 |N|+ |r| = 3073

Security tightness εRSA−FDH =
εRSA

εRSA−FDH =
(qs + qh +
1)εRSA

εRSA−FDH =
2εCFT

εRSA−FDH =
2εSRSA

Backward
compatibility

Original Original No Yes

6 Conclusion

In this paper, we proposed a generalized framework using the trapdoor samplable
relations that covers FDH signature schemes which enjoys the benefit of tight
security. Furthermore, we have extended the usage of the trapdoor samplable
relations to propose a more general security proof as well. Besides that, different
from Katz and Wang’s CFT-FDH, our framework enjoys backward compatibility
as we do not change the way of hashing as in the bit selector technique.

Acknowledgement. The authors would like to thank Thomas Groß for the helpful
comments on an earlier version of this paper. The authors would also like to acknowl-
edge the Fundamental Research Grant Scheme (FRGS/1/2019/ICT04/MMU/02/5) by
the Ministry of Education of Malaysia in providing financial support for this work.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

4. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-540-39927-8_28


290 T.-S. Ng et al.

5. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with
applications to protocol analysis and computational soundness. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 27

6. Beth, T.: Efficient zero-knowledge identification scheme for smart cards. In:
Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–84. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8 7

7. Boneh, D., Franklin, M.B.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-
6 30

9. Boyen, X., Li, Q.: Towards Tightly Secure Short Signature and IBE. IACR Cryp-
tology ePrint Archive – Report 2016/498, pp. 514–532 (2001)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

11. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

12. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. J. Cryptol. 22(1), 1–61 (2009)

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security – ACM CCS 1993, pp. 62–73. ACM (1993)

14. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

15. Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6 2

16. Chaum, D.: Zero-knowledge undeniable signatures (extended abstract). In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3 41

17. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

18. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

19. Coron, J.S.: A variant of Boneh-Franklin IBE with a tight reduction in the random
oracle model. Des. Codes Crypt. 50(1), 115–133 (2009)

20. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur. (TISSEC) 3(3), 161–185 (2000)

21. Kerry, C.F., Director, C.R.: FIPS PUB 186–4 federal information processing stan-
dards publication digital signature standard (DSS). FIPS Publication (2013)

https://doi.org/10.1007/978-3-540-74143-5_27
https://doi.org/10.1007/3-540-45961-8_7
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44987-6_30
https://doi.org/10.1007/3-540-44987-6_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-36288-6_2
https://doi.org/10.1007/3-540-46877-3_41
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18


Improving Signature Schemes with Tight Security Reductions 291

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

23. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reduc-
tions for unique signatures: bypassing impossibilities with a counterexample. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 517–547.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 18

24. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 25

25. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

26. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

27. Huang, J., Huang, Q., Pan, C.: A black-box construction of strongly unforgeable
signature schemes in the bounded leakage model. In: Chen, L., Han, J. (eds.)
ProvSec 2016. LNCS, vol. 10005, pp. 320–339. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47422-9 19

28. Katz, J.: Full-domain hash (and related) signature schemes. In: Katz, J. (ed.)
Digital Signatures, pp. 143–153. Springer, Boston (2010). https://doi.org/10.1007/
978-0-387-27712-7 7

29. Koblitz, N., Menezes, A.J.: The random oracle model: a twenty-year retrospective.
Des. Codes Crypt. 77(2–3), 587–610 (2015)

30. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

31. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM CCS 2003, pp. 155–164 (2003)

32. Lacharité, M.S.: Security of BLS and BGLS signatures in a multi-user setting. In:
Advances in Cryptology 2016, vol. 2 – ARCTICCRYPT 2016, pp. 244–261 (2016)

33. Lynn, B.: On the implementation of pairing-based cryptosystems. Doctoral disser-
tation, Stanford University (2007)

34. Katz, J., Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

35. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1 2

36. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management-part 1: general (revised). NIST Special Publication (2006)

37. Ng, T.-S., Tan, S.-Y., Chin, J.-J.: A variant of BLS signature scheme with tight
security reduction. In: Hu, J., Khalil, I., Tari, Z., Wen, S. (eds.) MONAMI 2017.
LNICST, vol. 235, pp. 150–163. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-90775-8 13

38. Ogata, W., Kurosawa, K., Heng, S.-H.: The security of the FDH variant of
chaum’s undeniable signature scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 328–345. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30580-4 23

https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-319-63715-0_18
https://doi.org/10.1007/3-540-39200-9_25
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-319-47422-9_19
https://doi.org/10.1007/978-3-319-47422-9_19
https://doi.org/10.1007/978-0-387-27712-7_7
https://doi.org/10.1007/978-0-387-27712-7_7
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/978-3-319-90775-8_13
https://doi.org/10.1007/978-3-319-90775-8_13
https://doi.org/10.1007/978-3-540-30580-4_23
https://doi.org/10.1007/978-3-540-30580-4_23


292 T.-S. Ng et al.

39. Pereira, G.C., Simpĺıcio, M.A., Naehrig, M., Barreto, P.S.: A family of
implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–1326 (2011)

40. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

41. Vercauteren, F.: Final report on main computational assumptions in cryptography.
European Network of Excellence in Cryptography II (2013)



Improved Digital Signatures Based
on Elliptic Curve Endomorphism Rings

Xiu Xu3,4,5(B), Chris Leonardi1, Anzo Teh1, David Jao1,2, Kunpeng Wang3,4,5,
Wei Yu3,4,5, and Reza Azarderakhsh6

1 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada
2 evolutionQ, Inc., Waterloo, ON, Canada

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

xuxiu2017@gmail.com
4 Data Assurance and Communications Security Research Center, Beijing, China

5 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

6 Florida Atlantic University, Boca Raton, USA

Abstract. In AsiaCrypt 2017, Galbraith-Petit-Silva proposed a digital
signature scheme based on the problem of computing the endomorphism
ring of a supersingular elliptic curve. This problem is more standard
than that of the De Feo-Jao-Plût SIDH scheme, since it lacks the auxil-
iary points which lead to the adaptive active attack of Galbraith-Petit-
Shani-Ti. The GPS signature scheme applies the Fiat-Shamir or Unruh
transformation to the raw identification protocol obtained from the endo-
morphism ring problem, and makes use of the Kohel-Lauter-Petit-Tignol
quaternion isogeny path algorithm to find a new ideal. However, the
GPS signature scheme is not very practical. In this paper, we take a first
step towards quantifying the efficiency of the GPS signature scheme. We
propose some improvements in the underlying algorithms for the GPS
scheme, along with a new method which trades off key size for signa-
ture size to decrease the signature size from around 11 kB to 1 kB at the
128-bit security level by using multi-bit challenges. We also provide a
concrete implementation of the GPS signature scheme using Sage and
CoCalc.

Keywords: Post-quantum · Digital signature · Supersingular
isogeny · Endomorphism ring

1 Introduction

Supersingular isogeny cryptosystems have emerged as a promising post-quantum
system with the introduction of the Supersingular Isogeny Diffie-Hellman scheme
of Jao and De Feo [12]. Although SIDH is believed to resist attacks from quantum
computers, it relies on a variation of the standard isogeny-finding hard problem
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 293–309, 2019.
https://doi.org/10.1007/978-3-030-34339-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_16


294 X. Xu et al.

of Charles et al. [3] which involves sending auxiliary point information that
enables an adaptive active attack [9], which can recover a static secret key bit
by bit over many protocol runs. By contrast, the problem of computing the
endomorphism ring of a supersingular curve is known to be equivalent to the
standard isogeny-finding problem on supersingular isogeny graphs [7].

In the realm of digital signatures, a signature scheme based on the SIDH
problem can be obtained by applying the either Fiat-Shamir or Unruh transfor-
mation to the zero-knowledge proof of identity proposed in [8]. Such a scheme was
proposed by Galbraith et al. [10] and Yoo et al. [20] independently. In addition,
[10] also proposes a second signature scheme which requires only the hardness
of computing endomorphism rings of a supersingular elliptic curve, which we
call the GPS scheme after the authors of [10]. Although [10] provides concrete
parameter sizes and key lengths for the 128-bit security level, as well as asymp-
totic runtime estimates, no concrete implementation results are reported, and
we are not aware of any available published implementation of the GPS scheme
for real parameter sets of cryptographic size.

Our Contributions

1. We provide the first published description of a concrete implementation of
the GPS scheme in Sage, albeit for parameter sizes which fall short of cryp-
tographic size. Our efforts indicate that the main bottleneck in GPS is likely
to be the process of translation from the new ideal generated by the Kohel et
al. algorithm [14] to a new isogeny, which involves constructing torsion points
over large extension fields at a relatively great cost.

2. We propose a new strategy for computing the aforementioned new isogeny
by taking advantage of the fact that all supersingular curves can be defined
over Fp2 , in order to renormalize the codomain of each component isogeny in
the chain, which helps control the growth of the extension field degree. Our
new isogeny chain is structured as follows:

E0/Fp2
φ1−−−→

〈P1〉
E′

1/Fpd1

f1−→ E1/Fp2
φ2−−−−−−−→

〈f1·φ1(P2)〉
E′

2/Fpd2

f2−→ E2/Fp2 → . . .

3. We propose an optimization of GPS using multi-bit challenges at the expense
of large public keys, based on a new assumption involving the forking lemma.
This answers an open problem that was posed in [6] concerning how to obtain
a similar tradeoff between public key size and signature size as in SeaSign
for the SIDH setting. Our variant is secure under the random oracle model,
and reduces GPS signature sizes to 1 kB, close to that of SeaSign. The time
cost is reduced as well, since we run λ/ log s parallel computations instead of
λ, where log s is the challenge size in bits and λ is the security parameter.
Our construction uses a modified quaternion isogeny path algorithm whose
starting point can be any maximal order (not only the special order O0),
which is of independent interest.

4. We also consider some improvements in the algorithms for translating
between isogeny and ideal, including point halving, fast discrete logarithm
and Minkowski basis computation.



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 295

Related Work. Stolbunov [17] and Couveignes [5] presented initial versions of
identification protocols and sketches of a signature scheme based on isogenies.
They did not give a secure solution for how to represent the ideal bka

−1 in
the case where the value of the challenge bit is bk = 1, without leaking the
private key. SeaSign [6] utilizes the idea of rejection sampling in exactly the way
proposed by Lyubashevsky [15] to solve this problem. In addition, [6] sketches
an approach to use multi-bit challenges, trading off challenge size for public key
size. Large public keys can be easily stored in some settings, such as software
signing and license checks, so this tradeoff is worthwhile in some cases.

Outline. The rest of this paper is organised as follows. Section 2 gives basic
notation for isogenies and endomorphism rings, related assumptions, and the
description of the identification scheme. Section 3 describes the new signature
scheme we propose, with multiple challenge bits, and explains its efficiency and
security. Section 4 describes our implementation of the original algorithms in the
GPS signature scheme. Finally Sect. 5 presents our conclusions.

2 Preliminaries

2.1 Isogeny and Endomorphism Ring

An isogeny is a rational map from one curve E0 to another curve E1, mapping
the infinite point of E0 to the infinite point of E1. An isogeny is group homomor-
phism, and (if separable) uniquely determined up to isomorphism by its kernel.
An endomorphism is an isogeny from an elliptic curve to itself. The endomor-
phisms of an elliptic curve form a ring under pointwise addition and composition.
For a non-constant separable isogeny, its degree is exactly the order of its ker-
nel subgroup. Every isogeny φ : E0 → E1 has a dual isogeny φ̂ : E1 → E0 such
that φ̂φ = [deg φ]. From a computational point of view, the general method to
compute an isogeny is to use Vélu’s formulas [19].

Over a finite field, an ordinary elliptic curve E0 is one whose endomorphism
ring End(E0) is isomorphic to an order in an imaginary quadratic field Q(π),
and a supersingular elliptic curve is one whose endomorphism ring is isomorphic
to a maximal order in the quaternion algebra Bp,∞ ramified at p and ∞. Such
an algebra can be represented as Bp,∞ = Q〈i, j〉 with i2 = −1, j2 = −p, k =
ij = −ji. Every supersingular elliptic curve is isomorphic to a curve defined over
Fp2 for some p. Conjugation, reduced trace, reduced norm, and the bilinear form
associated to the reduced norm are defined as follows:

1. α = a + bi + cj + dk → ᾱ = a − bi − cj − dk, where a, b, c, d ∈ Q.
2. Trd(α) = α + ᾱ = 2a.
3. Nrd(α) = αᾱ = a2 + b2 + pc2 + pd2.
4. 〈x, y〉 = Nrd(x + y) − Nrd(x) − Nrd(y).

An ideal I in Bp,∞ is a Z-lattice of rank 4 and an order O is not only an ideal
but also a ring. The left order of an ideal I is defined as O(I) = {h ∈ Bp,∞ |
hI ⊂ I}, and I is called a left O-ideal. If I is a left O-ideal, then IĪ = NO and



296 X. Xu et al.

I = ON + Oα where N is the norm of the ideal and N | Nrd(α). We say two
left O-ideals I1 and I2 are in the same equivalence class if I1 = I2q for some
q ∈ B∗

p,∞. Two orders O1 and O2 are of the same order type if αO1α
−1 = O2

for α ∈ B∗
p,∞.

The Deuring correspondence states that there is a bijection from j-invariants
of supersingular curves to maximal orders in the quaternion algebra Bp,∞. For
the supersingular curve E0 : y2 = x3+x over Fp2 where p ≡ 3 (mod 4), the endo-
morphism ring of E0 is isomorphic to the maximal order O0 = 〈1, i, 1+k

2 , i+j
2 〉,

and there is an isomorphism of quaternion algebras θ : Bp,∞ → End(E0) ⊗ Q

sending (1, i, j, k) to (1, φ, π, πφ) where π is the Frobenius endomorphism map-
ping (x, y) to (xp, yp) and φ : (x, y) → (−x, iy).

If we have an isogeny φ : E → E′ over Fp2 of degree n, then we can construct a
left End(E)-ideal I = Hom(E′, E)φ of norm n. Conversely, in order to construct
an isogeny from a left End(E)-ideal I, we define E[I] =

⋂
α∈I ker(α). Then

there is an associated isogeny φI : E → E/E[I]. If (n, p) = 1, then E[I] = {P ∈
E(Fp2) : α(P ) = ∞ for all α ∈ I}.

2.2 Hard Problems

For more information on hard problems related to isogenies, see [7,10,11].

Problem 1. Given two supersingular curves E,E′ defined over Fp2 , find an
isogeny φ : E → E′.

This problem is the most general problem related to finding isogenies. The
fastest known algorithm for finding isogenies between supersingular curves in
general takes O(

√
p log2 p) [3]. It can be viewed as a graph navigation problem

on a Ramanujan graph.
In SIDH, we choose a prime of the form p = �eA

A �eB

B · f ± 1 where �A and
�B are small primes and f is a cofactor. We fix a supersingular elliptic curve E
defined over Fp2 . Furthermore, E[�eA

A ] = Z/�eA

A Z⊕Z/�eA

A Z = 〈PA, QA〉, E[�eB

B ] =
Z/�eB

B Z ⊕ Z/�eB

B Z = 〈PB , QB〉.
Problem 2. Let φA : E → EA be an isogeny with its kernel 〈RA〉 where RA is
a point of order �eA

A . Given EA, φA(PB), φA(QB), find a generator of 〈RA〉.
This is the computational supersingular isogeny (CSSI) problem upon which

SIDH relies [8]. It can be reduced to a claw finding problem. Its classical and
quantum complexities are O(p1/4) and O(p1/6), respectively. Recently, the van
Oorschot-Wiener (vOW) golden collision finding algorithm [1,4] was argued to
be the most efficient quantum algorithm for CSSI.

Problem 3. Given a supersingular curve E defined over Fp2 , determine the
endomorphism ring of E.

For some special curves, the endomorphism rings are easy to compute, but
for an arbitrary supersingular curve, finding its endomorphism ring is hard. The
best quantum algorithm still runs in exponential complexity [13]. Problems 1
and 3 are known to be equivalent [7,10].



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 297

2.3 Identification Protocol Based on Endomorphism Ring

We briefly describe the Galbraith-Petit-Silva [10] identification protocol.

1. The public key is (E0, E1), and the private key is an isogeny φ : E0 → E1.
2. The prover chooses a random walk of degree L from E1 in the graph, arriving

at a curve E2 with ψ : E1 → E2. The prover sends E2 to the verifier.
3. The verifier randomly chooses a challenge bit b and sends b to the prover.
4. If b = 0, the prover answers ψ. If b = 1, the prover publishes a new isogeny

η : E0 → E2, where η �= ψφ .
5. The verifier accepts the proof if the answer is indeed an isogeny between E1

and E2 or between E0 and E2.

The GPS signature scheme uses four key algorithms in the process of com-
puting a new path η: loading the isogeny chains, translating from an isogeny to
an quaternion ideal, finding a new path (using the quaternion isogeny path algo-
rithm) and translating from the new ideal back to an isogeny. The reason that a
new path η is published instead of the original isogeny ψφ is that publishing ψφ
might reveal information about the secret φ. In order to produce a new path to
avoid the leakage of the secret key, the quaternion isogeny path algorithm [14]
is used.

Definition 1. A signature Π=(KeyGen, Sign, Verify) is said to be existentially
unforgeable under adaptive chosen-message attacks if for all probabilistic poly-
nomial time adversaries A with access to the oracle O,

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣
(PK,SK) ← KeyGen(1λ);σi ← O(mi) for 1 ≤ i ≤ k;

(m,σ) ← A(PK,mi, σi) :
Verify(m,σ) = 1 and m �= mi

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ negl(λ).

Theorem 1 ([10]). If the identification is non-trival and recoverable, then the
signature derived from this identification using the Fiat-Shamir transform is
secure against chosen-message attacks in the random oracle model.

2.4 Quaternion Isogeny Path Algorithm

The quaternion isogeny path algorithm from Kohel et al. [14] plays an important
role in finding a new ideal that corresponds to another isogeny path between two
curves. [10] used the power-smooth version of the quaternion �-isogeny algorithm
to compute another path from E0 to E2 in the quaternion algebra. The new path
is independent of E1 and corresponds to an ideal J .

We recall the quaternion isogeny path algorithm briefly, adopting the nota-
tions in [10]. The inputs are a special maximal order O0 in the quaternion algebra
Bp,∞ and a corresponding left O0 ideal I given by a Z-basis of elements in O0.
This is equivalent to inputting two maximal orders O0 and O1, as the right order
O1 of I is the set {h ∈ Bp,∞ | Ih ⊂ I}. The algorithm aims to find a new ideal
J such that J = Iq for some q ∈ B∗

p,∞. Here are the main steps of the process:



298 X. Xu et al.

1. Find I ′ such that I ′ has a prime norm N and I ′ = Iq.
2. Choose α ∈ I ′ such that gcd(Nrd(α), N2) = N , so that I ′ = O0N + O0α.
3. Set a bound s = 7

2 log p, and odd integers S1 > p log p and S2 > p3 log p.
4. Find a, b, c, d ∈ Z such that NS1 = a2 + b2 + p(c2 + d2). Then set β1 =

a + bi + cj + dk of norm NS1.
5. Find β2 ∈ Zj + Zk such that β1β2 = α mod NO1, and set β2 = Cj + Dk.
6. Find β′

2 of norm S2 such that β′
2 − λβ ∈ NO0 for some λ ∈ Z.

7. Return J = I ′β1β′
2/N .

We see that the norm of the new ideal J is S = Nrd(I′)Nrd(β1β′
2)

N2 = S1S2 with
log S ≈ 7

2 log p, and an improvement in [16] reduces its norm to 5
2 log p. The

large norm of the new ideal is the root of the difficulty in implementing GPS
signatures. We remark that implementing the quaternion isogeny path algorithm
is of independent interest separating from the GPS signature scheme—it breaks
the quaternion order analog of the CGL hash function [3], and also can be used
to compute the j-invariant corresponding to a quaternion order. We also note
here that the quaternion isogeny path algorithm in [10] is just suitable for the
case that the input quaternion order is O0. However, we believe that it will also
work for any other input quaternion after a little modification to the step 4 of
the above algorithm which is also of independent interest. So in the following,
we still call it the quaternion isogeny path algorithm even the input is not the
special order O0.

3 Digital Signature Based on Endomorphism Ring

3.1 Modified Identification Protocol

We propose a modified identification protocol based on that of Sect. 2.3, using
multi-bit challenges.

Fig. 1. The multiple bit version of the identification protocol.

We give a brief analysis of the properties of the above protocol. It is obvious
that this identification is non-trivial and recoverable.



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 299

Completeness. Just follow the procedure in Fig. 1 and the verifier accepts the
proof.

Soundness. Suppose we are given transcripts (CMT, c,d,RSP1,RSP2), where
CMT = EB . For two different challenges c and d, we can compute two iso-
genies w′

c : EA,c → EB and w′
d : EA,d → EB . Then we can obtain an isogeny

ŵ′
dw

′
c from EA,c to EA,d, which is a solution to Problem4 that we propose in

the following section.
Zero-knowledge. This simulator is almost identical as the one for the classi-

cal graph isomorphism. If the verifier is dishonest, we can remove these
rounds from the simulator transcript. The distributions of the transcript
(CMT, c,RSP) are indistinguishable from the real one. The data revealed
in step 3 is an isogeny produced by the quaternion isogeny path algorithm
and this algorithm leaks no information about the input isogeny.

3.2 Proposed Digital Signature Scheme

In [10] it is proved that that any 2-special sound identification scheme can be
transformed into a non-trivial scheme by running t sessions in parallel, where
t ≥ λ/c with security parameter λ and challenge bit length c. Hence, one of
the main reasons that this kind of signature scheme is of low efficiency is that
the signature has to run t times. Using the multi-bit challenge approach, the
resulting signatures gain higher efficiency and a smaller size. Algorithms 1, 2,
and 3 present the resulting signature scheme using the Fiat-Shamir transform
in the classical case.

Public Parameters. A security parameter λ and a prime p of the form 4 ·
�1 · · · �n − 1 where �i is a small prime. The prime p satisfies p ≡ 3 mod 4.
Small fixed parameters B,S1, S2, where B = 2(1 + ε) log p, ε > 0, Sk =

∏
i �

ek,i

k,i ,

�
ek,i

k,i < B, gcd(S1, S2) = 1 and
∏

i

(
2
√

�k,i

�k,i+1

)ek,i

< (p1+ε)−1. A supersingular

curve E0/Fp2 : y2 = x3 +x, and a cryptographic hash function H with at least λ
bits of output. Suppose that the length of the challenge is log s, i.e. t = λ/ log s.

Algorithm 1. KeyGen(λ)
1: Perform s random isogeny walks φm of degree S1 from E0 to curves EA,m with

j-invariant jA,m, where m ∈ {0, 1, ..., s − 1}.
2: Compute the ideal IA,m corresponding to each isogeny.
3: Compute OA,m = End(EA,m).
4: pk ← (jA,0, jA,1, .., jA,s−1).
5: sk ← (IA,0, IA,1, ..., IA,s−1) or (OA,0, OA,1, ..., OA,s−1).
6: return (pk, sk).

Since we set the challenge bit to be log s, we compute s isogenies during the
generation of the public and secret keys. This key generation procedure can be
performed in advance. Although the public and secret keys can be generated



300 X. Xu et al.

Algorithm 2. Sign(sk,m)
1: for i = 1 to t do
2: Perform a random isogeny walk wi of degree S2 from E0 to EB,i with j-invariant

jB,i, and compute the corresponding ideal IB,i.
3: Compute the hash value h = H(m, jB,1, jB,2, .., jB,t) and set h ← b1||b2||...||bt,

where bi ∈ {0, 1, ..., s − 1}.
4: end for
5: for i = 1 to t do
6: Compute the dual isogeny φ̂bi and the corresponding ideal I−1

A,bi
.

7: On input I−1
A,bi

IB,i and OA,bi , perform the modified quaternion isogeny path
algorithm to produce a new ideal Ji between OA,bi and OB,i. Then translate Ji

to an isogeny w′
i between jA,bi and jB,i.

8: Set zi ← w′
i.

9: end for
10: The signature is σ = (h, z1, z2, ..., zt).

Algorithm 3. Verify(pk,m, σ)
for i = 1 to t do

Use zi to compute the image curve jB,i from jA,bi .
end for
Then compute h′ ← H(m, jB,1, jB,2, ..., jB,t).
if h′ = h then

return 1.
end if

offline, the number s cannot be too large, or else large storage will be needed.
An illustration of how to generate the key pairs is presented in Fig. 2. The path
can be represented by the isogeny between two j-invariants of curves or the
ideal connecting two endomorphism rings. By taking B = 2(1 + ε) log p, we can
guarantee that the output of random walks is uniformly distributed as proved
in [10].

During the Sign step, the commitments of our scheme are different from those
in [10]. We perform the isogeny from j0 to jB but not from jA to jB . As the
number of jA’s is s, there would be s · t isogenies to be computed which costs
too much. So we use instead the path from j0 to jB. In this case additional dual
isogenies and the inverse of ideals have to be computed, but it is not hard to do
that. As for the zi’s, since an isogeny can be determined by its kernel point and
the Montgomery curve has a special structure in P1, each zi can be set as the
x-coordinate of Ri where ker w′

i = 〈Ri〉. For the i-th round, we clarify in Fig. 3
how to find a new path Ji.

Efficiency. We provide a rough estimate for the parameters and efficiency for
our version of the signature scheme. For classical security, we choose log p = 2λ.
For λ bits of security, we set t = λ/ log s. The uniform distribution of random
walk output requires that the output walk has length 2(1+ ε) log p ≈ 4λ in GPS
signatures, and the public keys are 6λ bits. Hence, in our multi-bit signature, if



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 301

Fig. 2. Illustration of KeyGen. Fig. 3. Find one new path for the i-th
parallel round.

s isogeny walks are computed, then the size of the private key and public key
increases by a factor of s. The average size of our signature is λ + λ

log s (2(1 +
ε) log p) ≈ 4

log sλ2. We mention that the verification of GPS signature and ours
both have a cost about O(λ4) bit operations, but not O(λ6) bit operations as
stated in [10]. We only require λ/ log s calls to the four key algorithms in the
GPS scheme, which reduces the overall cost by a factor of log s. An asymptotic
comparison between GPS signatures and ours is listed in Table 1, and a concrete
comparison in Table 2 using log s = 8. By contrast, the shorter signature version
of Seasign [6] uses log s = 16. If we also take log s = 16, the signature size will
be halved, but the size of private and public key will be quite large.

Table 1. Comparison about Galbraith-Petit-Silva endomorphism ring signature [10]
with ours in key size and cost. “log s” is the challenge bit and it is a positive integer.

Scheme Private key Public key Signature size Sign cost Verify cost

GPS17 [10] 4λ 6λ 11
2

λ2 O(λ6) O(λ4)

Ours 4sλ 4sλ 4
log s

λ2 O(λ6) O(λ4)

Security. Recall that the signature is accepted if and only if for every step, the
prover can find a path that leads to a curve with the correct j-invariant. To
ensure that the scheme is secure, the probability of each potential j must be
nearly uniformly likely to be the j-invariant of the resulting curve. The random
walk theorem proven in [10] states that for every j-invariant j̃ we have

|Pr[j = j̃] − 1
Np

| ≤
r∏

i=1

(
2
√

�i

�i + 1

)ei

,



302 X. Xu et al.

Table 2. A concrete efficiency comparison at the security level of 128 bits and we
choose our challenge bit log s = 8. These sizes are all counted in bytes. We list the
performance of the shorter signature version of SeaSign [6].

Scheme Private key Public key Signature size

GPS17 [10] 64 96 11264

SeaSign [6] 16 4032 · 103 944

Ours 16384 16384 1024

where Np is the number of all supersingular j-invariants over Fp2 . In order to
make the isogeny path random, the right-hand term of the above formula should
be smaller than (p1+ε)−1 for any positive ε. We guarantee this in our parameters
by using B = 2(1 + ε) log p.

The single-bit version of the GPS signature scheme has been proved to be
secure in the random oracle model under a chosen message attack in Theorem 10
of [10], if Problem1 is computationally hard. For the multi-bit version, the signa-
ture derived from the non-trivial canonical recoverable identification still works.
But we can also consider the security reduction from another perspective. We
treat this signature with multi-bit challenges as a kind of multi-signature, but in
the case that the only one signer has multiple public keys signing one message.
This idea is inspired by the smaller signature version of SeaSign.

We recall the forking lemma from Bellare and Neven [2].

Lemma 1. Fix an integer q ≥ 1. Let A be a randomized algorithm that takes
input h1, . . . , hq ∈ {0, 1}t and outputs (J, σ) where J is an integer 1 ≤ J ≤ q with
probability γ. The forking algorithm proceeds as follows: h1, . . . , hq are chosen
randomly in {0, 1}t. A(h1, . . . , hq) outputs (J, σ) with J ≥ 1. Then randomly
choose h′

J , . . . , h′
q ∈ {0, 1}t. A(h1, . . . , hJ−1, h

′
J , . . . , h′

q) outputs (J ′, σ′). Then
the probability that J = J ′ and h′

J �= hJ is larger than γ(γ
q − 1

2t ).

Note that by the forking lemma, there are two signatures for some bk �= b′
k. Hence

we can get two paths J ′
k and Jk to jBk

from jA,b′
k

and jA,bk , respectively. So
(J ′

k)−1Jk is the path from jA,bk to jA,b′
k
. Therefore, we propose a new assumption

for our multi-bit signature scheme.

Problem 4. Given {jA,0, . . . , jA,s−1}, produced by performing s random
isogeny walks of degree �e from E0 with j-invariant j0, compute an ideal I cor-
responding to an isogeny EA,m → EA,m′ with j-invariants jA,m and jA,m′ for
m �= m′.

This problem can be easily reduced to Problem3. If Problem 3 is solved, then we
can compute the endomorphism rings OA,m and OA,m′ corresponding to jA,m

and jA,m′ , respectively. Then we compute an ideal I which is a left OA,m-ideal
and its right order is isomorphic to OA,m′ for m �= m′. The quaternion isogeny
path algorithm will now work to find an isogeny path between curves EA,m and
EA,m′ . The main reduction is given in Algorithm 9 in [7].



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 303

Theorem 2. If Problem4 is computationally hard, then our multi-bit challenge
signatures are existentially unforgeable under chosen-message attacks in the ran-
dom oracle model.

Proof (sketch). Suppose there is a probabilistic polynomial time adversary A
against the signature. Then the public key is known to A, and A can query the
hash function H and the signing oracle Osign. Suppose the adversary A can make
at most q hash oracle queries and n signing oracle queries. In order to simulate
the random oracles, A should maintain the hash list LH and the signature list
Lsign corresponding to the queries and answers of the H-oracle and Osign.

Querying H-oracle with (m, j1, . . . , jt): If there exists (m, j1, . . . , jt, h) ∈ LH

then return h. Otherwise, A randomly chooses h, returns h and records
(m, j1, . . . , jt, h) in LH .

Querying Osign with message m: The simulator chooses random bit-string
b1, . . . , bt ∈ {0, 1, . . . , s − 1}. For i = 1, . . . , t, the simulator computes a
random isogeny walk zi from E0 to EB,i. We update the hash list that
H(m, jB,1, . . . , jB,t) = b1 . . . bt, unless the random oralce has already been
defined on this input in which case the simulation fails. Then return and
record (b1 . . . bt, z1, . . . , zt) in the list Lsign. This simulation fails at a negli-
gible probability according to the above random walk theorem. Hence, the
output is a valid signature and is indistinguishable from the real signature.

We consider the case that when the adversary replays the same tape, one of
the hash queries is answered with a different binary string. With non-negligible
probability A outputs a forgery (b′

1 . . . b′
t, z

′
1, . . . , z

′
t) for the same message m

and the same (m, jB,1, . . . , jB,t) to H with a output b′
1 . . . b′

t. Without loss of
generality, we assume that bk �= b′

k. Then the isogeny paths zk from OA,k to
OB,k and z′

k from OA,k′ to OB,k′ with OB,k = OB,k′ are such that (z′
k)−1zk is a

solution to Problem4. ��

4 Analysis and Implementation of Galbraith-Petit-Silva
Signature

Parameters. We first choose an odd and power-smooth number n =
∏r

i=1 �i

such that p = 4n − 1 is a prime. These �i are selected as distinct odd primes;
a straightforward way is to choose n as the product of the first few primes. For
example, we take n = 3 × 5 × 7 and then p = 419 is prime. Table 3 shows the
primes that we adopt, where the notion [a, b] means all primes in the range [a, b]
and [a, b]+ [c] means all primes [a, b] along with c. The global curve E0 is chosen
as y2 = x3 + x over Fp2 with the initial j-invariant 1728 and the endomorphism
ring O0 = 〈1, i, i+j

2 , 1+k
2 〉.

There are four main algorithms involved in the signature scheme, including
loading isogenies, translating the isogeny to the ideal, finding a new ideal, and
translating the new ideal to the isogeny. The loading isogenies algorithm inherits
the strategy of SIDH to run in a sequential manner. To be precise, suppose that
the degree of an isogeny is

∏r
i=1 �ei

i ; then we split it into ei successive �i-isogenies
for every i.



304 X. Xu et al.

Table 3. The choice of the global parameters.

n Notation log2 p

3 × 5 × 7 [3, 10] 8.711

3 × 5 × · · · × 19 [3,20] 24.210

3 × 5 × · · · × 43 × 97 [3, 43] + [97] 61.138

3 × 5 × · · · × 113 [3, 113] 155.469

3 × 5 × · · · × 373 × 587 [3, 373] + [587] 510.668

Minkowski Basis Computation. Up to dimension four basis, Minkowski is
arguably optimal compared to all other known reductions, since it can reach
all the so-called successive minima. Given a basis {v1, v2, . . . , vn}, vi must have
a norm smaller or equal to vi +

∑n
j=1,j 	=i ajvj for any combinations of integers

aj in the Minkowski-reduced basis. In the quaternion algebra setting, we focus
on the n = 4 case. We set i = 1 for illustration purposes here. Denote by vij the
j-th coordinate of the vector vi. We have

||v1 + a2v2 + a3v3 + a4v4|| =
4∑

j=1

sj(v1j + a2v2j + a3v3j + a4v4j)2

where s1 = s2 = 1 and s3 = s4 = p. In the quaternion algebra, the inner
product of two elements v1 + v2i + v3j + v4k and w1 + w2i + w3j + w4k is
v1w1 + v2w2 + pv3w3 + pv4w4. Then for each k = 2, 3, 4 we have

d

dak
||v1 + a2v2 + a3v3 + a4v4|| =

4∑

j=1

2vkjsj(v1j + a2v2j + a3v3j + a4v4j)

= 2(vk · v1 + a2vk · v2 + a3vk · v3 + a4vk · v4).

When a2, a3, a4 are the numbers that give the minimal possible norm, we have
⎛

⎝
v2 · v1

v3 · v1

v4 · v1

⎞

⎠ + a2

⎛

⎝
v2 · v2

v3 · v2

v4 · v2

⎞

⎠ + a3

⎛

⎝
v2 · v3

v3 · v3

v4 · v3

⎞

⎠ + a4

⎛

⎝
v2 · v4

v3 · v4

v4 · v4

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

This can be solved as
⎛

⎝
a2

a3

a4

⎞

⎠ = −
⎛

⎝
v2 · v2 v2 · v3 v2 · v4

v3 · v2 v3 · v3 v3 · v4

v4 · v2 v4 · v3 v4 · v4

⎞

⎠

−1 ⎛

⎝
v2 · v1

v3 · v1

v4 · v1

⎞

⎠ .

The resulting a2, a3, a4 might not be integers and we can replace them by the
nearest integers. After finding the optimal v1 + a2v2 + a3v3 + a4v4, we replace
v1 with this expression and repeat this procedure for all i = 1, 2, 3, 4. This
Minkowski method manages to bring N down to p0.5+o(1) in the finding new
path algorithm.



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 305

Improvements for Isogeny-to-Ideal. First we recall the runtime analysis of this
algorithm given by Galbraith-Petit-Silva. This algorithm finds a point Qi of order
�ei
i that generates the kernel of φi by considering the kernel polynomial ψi of the

�ei
i -isogeny which takes a total of �ei

i steps. The next step is to find αi ∈ I satisfying
αiQi = ∞, where I is the ideal generated in the previous step. The algorithm
identifies the basis β1, β2, β3, β4 of I and tries a random solution to α = ωβ1 +
xβ2 + yβ3 + zβ4 by setting ω, x, y randomly to see if there is a z satisfying this
condition. The new ideal is the set as Ii−1�

ei
i + O0αi. This involves an average of

�ei
i tries to find the suitable α and computing αQi takes O(log2 p) bit operations.

Next, the algorithm needs to perform point halving due to the fact that the
coefficient of elements in the associated ideal can be non-integer, with denom-
inator at most 2. Nevertheless, the original algorithm chooses points that have
odd order N . For each a we have a

2 ≡ a(N+1
2 ) mod N and so for each point P

of order N we have a
2P ≡ a(N+1

2 )P . Thus we save the cost of point halving.
The main improvement comes from the step of finding ω, x, y, z satisfying

(ωβ1 + xβ2 + yβ3 + zβ4)Qi = ∞. We can break down the �ei
i tries into solving a

modular �i equivalence for ei times. When at step j, we want α(�ei
i )Qi = ∞, or

in other words ω(�ei−j
i )P1 + x(�ei−j

i )P2 + y(�ei−j
i )P3 + z(�ei−j

i )P4 = ∞, where
Pi = βiQi for i = {1, 2, 3, 4}. The procedure goes as follows at each step j:

1. Set S = ω(�ei−j
i )P1 + x(�ei−j

i )P2 + y(�ei−j
i )P3 + z(�ei−j

i )P4. Notice that S
has order either 1 or �i. This is true if j = 1, and for j > 1 it follows from
the loop invariant that we had ω(�ei−j+1

i )P1 +x(�ei−j+1
i )P2 +y(�ei−j+1

i )P3 +
z(�ei−j+1

i )P4 = ∞ from the previous step.
2. Choose ω′, x′, y′ randomly from {0, 1, . . . , �i}. In the case of j = 1, care must

be taken so that not all ω′, x′, y′ are divisible by �i.
3. Consider the point T = S + ω′(�ei−1

i )P1 + x′(�ei−1
i )P2 + y′(�ei−1

i )P3, and see
whether T and (�ei−1

i P4) are linearly dependent in the �i torsion space. If so,
solve for T + z′(�ei−1

i )P4 = ∞. Otherwise, repeat the loop.
4. Now that S + ω′(�ei−1

i )P1 + x′(�ei−1
i )P2 + y′(�ei−1

i )P3 + z′(�ei−1
i )P4 = ∞, we

update ω = ω + ω′(�j−1
i ), x = x + x′(�j−1

i ), y = y + y′(�j−1
i ), z = z + z′(�j−1

i ).
This update gives ω(�ei−j

i )P1 + x(�ei−j
i )P2 + y(�ei−j

i )P3 + z(�ei−j
i )P4 = ∞.

Improvements for Ideal-to-Isogeny. If we just translate the original ideal with
a small norm, but not the newly-generated ideal from the quaternion isogeny
path algorithm, Algorithm 2 in [10] can work out the correct isogeny path. But
if we want to translate the new ideal with a large norm, we have to modify some
steps. For example, if we take the prime p = 4 ·3 ·5 ·7−1, we can produce a new
ideal with norm 32 · 52 · 72 · 112 · 132 · 17 · 19 · 23. If we then want to translate this
new ideal back to an isogeny, we first have to compute bases for the 32, . . . , 23
torsion. However, all of these torsion points are no longer defined on Fp2 , but
over large extension fields.

We discuss the details and complexities of the ideal-to-isogeny algorithm
that involves constructing torsion subgroups and their associated finite field
extensions. Recall that the ideal J returned by the quaternion isogeny path
algorithm has a norm of S which may be divisible by prime powers. Write the



306 X. Xu et al.

norm of ideal J as n =
r∏

i=1

�ei
i . In order to construct the isogeny φ corresponding

to J , we must construct a point Pi for each prime power dividing n. Then a
generator of the kernel of φ is the point

∑r
i=1 Pi ∈ E0(F). The required torsion

subgroups fall into two main types:

1. �ei
i | p + 1,

2. �ei
i � p + 1.

For the type 1, torsion subgroups will exist in E0(Fp2). For the other type
of prime powers we will need to work over some extension field Fpd for d ∈ N.
We now examine how to determine d explicitly in this type. Fix �e = �ei

i for
simplicity. The x-coordinates of the �e-torsion points are the roots of the division
polynomial ψ�e(x). While this polynomial has degree �2e−1

2 for odd � and is
guaranteed to split over an extension of that degree, the minimal extension we
are required to work over may be smaller. We determine the extension degree d
as follows: factor ψ�e(x) over Fp and set d0 to be the lowest common multiple
(LCM) of the degrees of each factor.

For the type 2, we still have two cases to discuss. One case can be d = 2d0 if
�2e | #E0(Fp2d0 ). This is due to the fact that the y-coordinates are required to
solve y2 = x3 + x and therefore should be defined over a quadratic extension of
the field containing x. For the other case, we set d = 4d0through experimental
observation.

Once the extension d is determined for E0[�e], we turn to solving for the
kernel point P ∈ E0[�e]. The procedure is to find a basis for E0[�e], and then
solve for P (see [10, §4.4]).

The final step is to determine the isogeny with kernel 〈∑r
i=1 Pi〉 ⊂ E0(Fp).

Suppose each point Pi is defined over an extension of degree di, 1 ≤ i ≤ r. If
we naively add all the points Pi together then we would end up in an extension
of degree LCM{di : 1 ≤ i ≤ r}. Instead we propose a new method which only
requires arithmetic in an extension of degree max{di : 1 ≤ i ≤ r}, using the fact
that all supersingular elliptic curves have j-invariants in Fp2 .

For each 1 ≤ i ≤ r:

1. construct the isogeny φi : Ei−1 → E′
i with kernel 〈Pi〉,

2. compute the j-invariant ji = j(E′
i),

3. construct the elliptic curve Ei with j-invariant ji and coefficients in Fp2 ,
4. construct the isomorphism fi : E′

i → Ei,
5. set Pi+1 ← fi(φi(P(i+1))).

Performance. We implemented the main algorithms from the GPS signature
scheme using Sage [18] and ran it on the cloud platform CoCalc for demonstrative
purposes. We choose five values of n that make p prime. The results are listed
in Table 4. It should be pointed out that translation from the new ideal to an
isogeny is not included in this table, as we were not able to run it to completion.

When we attempt to implement translation from the new ideal to an isogeny,
we have to generate these new large torsion points. First, we find the smallest



Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 307

extension fields containing these points. For example, when p = 4 · 3 · 5 · 7 − 1,
the new ideal produced by the quaternion isogeny path algorithm has a norm of
32 · 52 · 72 · 112 · 132 · 17 · 19 · 23. All these torsion points are not so large, except
for the 132-torsion point. The smallest extension field containing the 132-torsion
points is Fp156 , too big for Sage to manage in this computation, despite the fact
that these torsion points can be precomputed in advance. We emphasize that
the security level of this p is only 8.711 bits, which is obviously well short of
cryptographic size. When we set p = 4 · 3 · 5 · 7 · 11 · 13 · 17 − 1, the new ideal
norm will be 32 · 52 · 72 · 112 · 132 · 172 · 192 · 232 · 29 · 31 · 37 · 41 · 43 · 53 · 59. The
largest extension in this case is determined by the 232-torsion points. We tested
it using Magma and found that the smallest extension degree needs to be Fp1012

in this case, which will be very expensive (Table 5).

Table 4. The performance of these main algorithms in Galbraith-Petit-Silva signature
[10]. “LI” represents loading the isogeny chains. “Is-to-Id” means translation from an
isogeny to an ideal. “Id-to-Is” means translation from an ideal to an isogeny and this
ideal is not the newly-generated one by the quaternion isogeny path algorithm, but just
the ideal after “Is-to-Id”. “New-Path” means the quaternion isogeny path algorithm.
These times are listed in seconds.

n log2 p LI Is-to-Id Id-to-Is New-path

[3, 10] 8.711 0.100 0.0734 0.064 0.109

[3, 20] 24.210 0.217 0.2146 0.366 0.190

[3, 43] + [97] 61.138 1.000 1.356 0.883 0.492

[3, 113] 155.469 6.356 9.442 6.989 2.297

[3, 373] + [587] 510.668 174.917 126.520 173.020 45.270

Table 5. Torsion generation in translation from the new ideal to an isogeny. This is
the case of p = 4 · 3 · 5 · 7 − 1. “i-th torsion” means the order of the torsion point we
compute. “Extension field” means the smallest field that the torsion point is defined
over. “Time” is counted by seconds.

i-th torsion Extension field Time

32
Fp12 0.1452

52
Fp20 0.2517

72
Fp28 0.4287

112
Fp88 1.5817

132
Fp156 125.6406

17 Fp32 0.4609

19 Fp4 0.0584

23 Fp44 1.5015

29 Fp28 0.3422



308 X. Xu et al.

5 Conclusion

Our efforts to implement GPS signatures indicate that the scheme is impractical
for parameters of cryptographic size. Translation from the new ideal to a new
isogeny is not as easy as indicated in the Ideal-to-Isogeny algorithm in [10].
Particular care needs to be taken to control the explosion of extension field
degree in the computation of the torsion points. In addition, we also propose
a variant signature scheme with multi-bit challenges that has smaller signature
sizes and lower computational cost, at the expense of a large public key, but even
ignoring the extra costs of our modified quaternion isogeny path algorithm, the
scheme is still impractical even with these improvements unless all the necessary
torsion points are precomputed in advance. Further efforts are still needed to
make signatures based on endomorphism ring more viable at useful parameter
sizes.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their detailed reviews and helpful comments. This work is supported by the National
Natural Science Foundation of China (No. 61872442, No. 61502487) and the National
Cryptography Development Fund (No. MMJJ20180216), as well as NSERC, Cryp-
toWorks21, Public Works and Government Services Canada, Canada First Research
Excellence Fund, and the Royal Bank of Canada. Furthermore, Xiu Xu acknowledges
the scholarship provided by the China Scholarship Council.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 15

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, New York, NY, USA, pp. 390–399. ACM
(2006)

3. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptology 22(1), 93–113 (2009)

4. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of the computational supersingular isogeny problem. Cryptology ePrint
Archive, Report 2019/298 (2019). https://eprint.iacr.org/2019/298

5. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

6. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

7. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

https://doi.org/10.1007/978-3-030-10970-7_15
https://eprint.iacr.org/2019/298
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-319-78372-7_11


Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings 309

8. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptology 8(3), 209–247 (2014)

9. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

10. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

11. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

13. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California, Berkeley, (1996)

14. Kohel, D., Lauter, K.E., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

15. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

16. Petit, C., Smith, S.: An improvement to the quaternion analogue of the l-isogeny
path problem. In: Proceedings of MATHCRYPT 2018 (2018)

17. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian
University of Science and Technology (2012)

18. The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.5) (2019). https://www.sagemath.org

19. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273,
A238–A241 (1971)

20. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7 9

https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://www.sagemath.org
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9


Identity-Based Signature Scheme
Secure in Ephemeral Setup

and Leakage Scenarios

�Lukasz Krzywiecki(B), Marta S�lowik, and Micha�l Szala

Department of Computer Science,
Faculty of Fundamental Problems of Technology,

Wroc�law University of Science and Technology, Wroc�law, Poland
{lukasz.krzywiecki,marta.slowik}@pwr.edu.pl

Abstract. We propose the identity-based signature (IBS) scheme
resilient to ephemerals leakage and setup. The scheme is applicable to sce-
narios, where signers can not trust thoroughly the signing devices, and
doubts about the fairness of randomness the hardware and the oper-
ating system generate are justified. Our construction is based on the
lightweight IBS by Galindo and Garcia. We present a formal security
model for IBS in which all values coming from randomness source in
signing procedure are leaked or set by adversary. We argue that the orig-
inal scheme is vulnerable to universal forgery in our security model. We
give details on our modified construction and provide a formal security
proof in Random Oracle Model, claiming that even such a strong adver-
sary cannot forge a signature in our scheme.

Keywords: Identity-based signature · Ephemeral secret setting ·
Ephemeral secret leakage · Untrusted device

1 Introduction

Regular digital signature schemes, as well as many other authentication meth-
ods, are often based on public key infrastructure (PKI) that may be cumbersome
to implement in real life. In everyday scenarios, a person that interacts with IT
system, uses a unique information, linked to its identity, such as e-mail address
or domain nickname, that is usually publicly available and verifiable by others. A
first identity-based signature scheme (IBS), that gets rid of the need for expen-
sive PKI, and uses such values instead, was proposed by Shamir [24]. The only
requirement is that there exists a trusted third party, that extracts private keys
from verified public data, and distributes them for users in a secure manner.
Then, verifying parties may check signature genuineness using public identifiers,

This research was partially supported by Wroclaw University of Science and Technology
grant 049U/0044/19.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 310–324, 2019.
https://doi.org/10.1007/978-3-030-34339-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_17


IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 311

without communicating with public key databases and other third party ser-
vices, or sharing some information with signing party beforehand. With all that
mentioned, IBS schemes may be used in many areas of modern technology. There
are many IBS solution for different scenarios, e.g.: for Wireless Sensor Networks
by Wei, Zhang, Huang, Zhang [27], for Vehicular Communication by Zhang,
Yang, Wang [30], or as IEEE P1363 standard for public key cryptography [1],
analyzed in white-box model in [31]. IBS schemes are also considered for bio-
metric systems, e.g.: by Yang, Hu, Zhang in [29] or by Burnet, Byrne, Dowling,
Duffy in [5].

Untrusted Signing Device. The signers, as the end users of the deployed
scheme, usually do not have the thorough control over the signing devices. Espe-
cially the hardware production phase, and the implementation of the installed
OS are beyond the users control. On the other hand the secret keys of users, put
inside the device during profiling, and later used in the scheme, are only condi-
tionally secure assuming the underlying hardware and software implementation
is fair, and the randomness used to mask the secret keys does not leak, nor is
set maliciously via a hidden side channel. The problem for potential ephemeral
leakage from untrusted devices is important, and analyzed already for other
cryptographic schemes, including e.g. Authenticated Key Exchange (AKE) pro-
tocols [12,14,17,19,20,26], Identification Schemes (IS), [13,15,16], or credential
systems [18].

Motivation and Problem Statement. In signing algorithm, run on the user’s
device, random numbers called ephemerals are generated. The ephemeral values
are used in computation together with secret key material, and a digital sig-
nature over specified message is produced as a result. However, we consider
potential threats that may emerge when the secrecy of ephemerals and fairness
of randomness source appear.

1. What would happen if mentioned ephemeral values leaked?
2. Would the scheme be secure after the leakage?
3. If not, how to modify the scheme to achieve resistance against such threat?

Such a leakage may happen in many scenarios. The reasons may be design
or implementation flaws such as imprecise specification, usage of non-secure
(pseudo) random number generator or coding errors. Another possible cause
is a fault at hardware level that affects values produced or obtained from ran-
domness source. The examples provided above are accidental but a leakage may
occur on purpose, for instance, when a malicious agent is capable of tampering
with a signing device or a piece of hardware which is used as randomness source
at some production stage. In our model, we assume leakage or setting of the
entire ephemeral, i.e. all bits of random number are known or chosen by the
adversary.



312 �L. Krzywiecki et al.

Contribution. Our contribution is following:

1. We introduce a new, stronger security model for IBS in which ephemeral
values may be either leaked in all bits or set by the adversary.

2. We show that the Galindo-Garcia scheme [9] is not secure in our model.
3. We propose a modification of Galindo-Garcia scheme that makes it secure in

our security model.
4. We formally prove the security of our modified scheme in our proposed model.
5. We provide comparisons (in number of operations) of the base scheme and

our modifications. We also present execution time of signing and verifying
procedures for both schemes.

Previous Work. Given paper is based on publication by Galindo and Garcia
[9]. The modification is based according to the paper of Krzywiecki [13]. The
concept of identity-based signature was proposed by Shamir [24]. The descrip-
tion of Schnorr Signatures can be found in one of Schnorr’s papers [23]. Their
construction varies for example they can be based on quadratic residues like
in the paper by Chai, Cao, Dong [7]. Based on elliptic curves there are papers
by Han, Wang, Liu [10], or by Lin, Wu, Zhang, Hwang [21]. Others are used
together with the ring structure like the paper by Ki, Hwang, Lee [11], or the
paper by Deng, Zeng [8].

The ephemeral leakage problem was raised and analyzed by Canetti et al. [6]
and also by Alwen, Dodis, Wichs [3]. A similar concept of subversion resilience
for digital signatures was introduced [4], and later extended in [22].

A problem of leakage resilience for IBS schemes has been previously con-
sidered by Wu, Tseng, Huang in [28] and by Tseng, Tsai, Huang in [25]. In
case of the former, the leakage model does not allow adversary to obtain all bits
originating from random number generator. However the scheme is vulnerable to
universal forgery, when analyzed in our stronger proposed model, cf. AppendixA
for more details. The model from [25] allows adversary to learn entire value of
random number. However, it seems to be weaker than our model, as adversarial
randomness injection is not considered. The scheme presented there appears to
be secure in our model, but it requires more operations for both signature and
verification. Thus, our scheme is more efficient. For comparison, we briefly list
the number of operations of [25] in Table 3.

Paper Organization. Presented paper is divided into 7 sections. In Sect. 2
we present the notation used in the paper and provide necessary definitions.
In Sect. 3 we recall the definition of IBS scheme and related security game. We
also recall Galindo-Garcia scheme details. In Sect. 4 we present the new security
model and show the vulnerability of the Galindo-Garcia scheme in this model.
In Sect. 5 we propose a modification of the scheme and the proof of security. In
Sect. 6 we provide an analysis of efficiency of our modification. Section 7 con-
cludes the paper.



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 313

2 Preliminaries

In this paper we use notation similar to the one that can be found in [3] and
[13]. Let X be a finite set. We use notation x1, . . . , xn ←$ X to specify that
each xi is selected uniformly at random from X. Let λ be a security parameter.
We denote negligible values as ε. A function H : {0, 1}∗ → A is a secure hashing
function that transforms any binary string into an element of A.

Bilinear Map: Let G1, G2, GT be groups with generators g1, g2, gT respec-
tively. Let q = |〈g1〉| = |〈g2〉| = |〈gT 〉|. Let ê : G1 × G2 → GT be a pairing
function with the following properties:

1. Bilinearity : ∀(a, b ∈ Zq, g1 ∈ G1, g2 ∈ G2): ê(ga
1 , gb

2) = ê(g1, g2)ab

2. Computability : Computing ê is efficient
3. Non-degeneracy : ∃(g1 ∈ G1, g2 ∈ G2) : ê(g1, g2) 	= 1

If G1 = G2, pairing is symmetric. In such a case, we drop lower indices for both
group and generator in notation.
Function Gen(1λ) returns a tuple (G, g, q) such that G is a group of prime
order q and g is its generator. Function GenBP (1λ) returns a symmetric bilinear
mapping tuple: (G,GT , g, gT , q, ê : G × G → GT ).

Gap Computational Diffie-Hellman: Let Odh denote an oracle for decisional
Diffie-Hellman problem, i.e. given a tuple (g, gx, gy, gz), where g is a generator
of cyclic group G of order q and gx, gy, gz ∈ G are random, it outputs 1 if z = xy
and 0 otherwise. Having access to Odh, given a tuple (g, gx, gy), compute gxy.

Gap Computational Diffie-Hellman is denoted as GDH. We assume that it is
hard in groups that we use throughout this paper, i.e. the probability that any
PPT algorithm solves the problem is negligible.

3 Identity Based Signature Scheme

Let us recall the model and the security game for IBS from the original paper.

Definition 1 (Identity Based Signature Scheme). Identity Based Signa-
ture scheme consists of four algorithms (ParGen, KeyExtract, Sign, Verify), where:

– ParGen: is a parameter generation algorithm that takes the security parameter
λ as input and outputs master public key mpk containing parameters available
for all system users and master secret key msk.

– KeyExtract: is a key extraction algorithm that given msk, mpk and user’s iden-
tifier id as input, returns a user’s secret key skid.

– Sign: is a signing algorithm that given mpk, skid and a message m as input,
outputs a signature σ over the message m on behalf of user with identity id.

– Verify: is a verification algorithm that given σ, mpk, id and m, outputs



314 �L. Krzywiecki et al.

– accept or 1 if σ is a valid signature over m for given user id,
– reject or 0 otherwise.

Definition 2 (Correctness). The IBS scheme is correct iff for any id, skid:

Pr[Verify(Sign(mpk, skid,m), mpk, id,m) = 1 |
skid ← KeyExtract(mpk, msk, id)] = 1

Definition 3 (Security). The security game is defined as follows:

– System parameters are obtained from generation algorithm (mpk, msk) ←
ParGen(λ).

– A forger F is initiated with mpk. It is also given an access to two oracles: a
key extraction oracle OE that given some id returns a corresponding secret
key (F can query it only once per id), and a signing oracle OS that given id
and m, produces a valid signature σ such that Verify(σ, mpk, id,m) = 1.

– After performing polynomially bounded number of oracle queries, F outputs
a tuple (id∗,m∗, σ∗) such that OE has not been queried for id∗ and OS has
not been queried for (m∗, id∗).

The IBS scheme is secure if

Pr[FOE ,OS (mpk) → (id∗,m∗, σ∗) ∧ Verify(σ∗, mpk, id∗,m∗) = 1] < ε

3.1 Lightweight IBS Scheme

Let us briefly recall the scheme from [9] in Fig. 1.

ParGen(λ)
(G, g, q) ← Gen(1λ)
H1 : {0, 1}∗ → Zq

H2 : {0, 1}∗ → Zq

z ←$ Zq, Z = gz

(mpk, msk) = ((G, g, q, H1, H2, Z), z)

KeyExtract(mpk, msk, id)
r ←$ Zq

y = r + z · H2(gr, id)
skid = (y, gr)

IDSign(mpk, skid, m)
a ←$ Zq

b = a + y · H1(id, ga, m)
σ = (ga, b, gr)

Verify(σ, mpk, id, m)
gb ?= ga(grZH2(g

r,id))H1(id,g
a,m)

Fig. 1. Galindo-Garcia scheme overview



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 315

4 New Stronger Security Model for IBS

To address the scenario with ephemeral leakage/injection we propose a new,
stronger security model for IBS schemes, based on models introduced in [13,15].
In this model a malicious forger F has the ability to inject ephemeral secrets to
the Sign procedure.

Definition 4. Let IBS = (ParGen, KeyExtract, Sign, Verify) be an IBS scheme.
We define security experiment ExpCEF,λ,�

IBS :

Init : (mpk, msk) ← ParGen(λ).
IDGen Oracle : The oracle OIDGen accepts identifiers id. It registers id, and the

vector of values Data bound to this id. For the i-th component of Data, a
notation Data(id, i) is used.1

IDRev Oracle : The oracle OIDRev accepts identifier id, and index i. It outputs
only Data(id, i).

IDSign Oracle : The oracle Oā
IDSign accepts an identifier id, a messages mi,

ephemerals āi, and outputs corresponding valid signatures σi generated with
the āi, i.e. Oāi

IDSign(id,mi) → σi, s.t. Verify(σi, mpk, id,mi) = 1. The oracle
models the device in which the signatures are generated via the algorithm
Sign, with injected ephemerals controlled externally by the adversary: σ ←
Signā(m).

Adversary : Let the adversary AOIDGen,OIDRev,Oā
IDSign(mpk), be a malicious algorithm

initialized with the public key mpk, having access to the oracles OIDGen, OIDRev,
and the signing oracle Or̄

IDSign. It issues a number � of queries to oracles. Let
I = {idi, g

ri}�
1 A = {āi}�

1, M = {mi}�
1, and L = {σi}�

1 denote respectively
the set of identifiers, the set of the ephemerals, the set of the messages, and
the corresponding signatures the oracles process.

Forgery Type I : The adversary generates a tuple:

(m∗, σ∗, id) ← AOIDGen,OIDRev,Oā
IDSign

I (mpk) for an id previously queried to OIDRev

or Oā
IDSign oracles. The case in which the adversary queries OIDRev for all Data

entries for a particular user is excluded because it means that it obtained
skid. If a signature contains elements of Data, also the case in which the
adversary obtains these data from OIDSign and the remaining data from OIDRev

is excluded.
Forgery Type II : The adversary generates a tuple:

(m∗, σ∗, id) ← AOIDGen,OIDRev,Oā
IDSign

II (mpk) for a new id that has been never
queried to OIDRev or Oā

IDSign oracles.

We say that the signature scheme is secure if for each forgery type the prob-
ability that the adversary produces a valid signature is negligible.

Theorem 1. Galindo-Garcia IBS Scheme (presented in Fig. 1) is not secure in
Ephemeral Leakage Model.
1 In case of Galindo-Garcia scheme, Data consists of two elements: Data(id, 1) = y,
Data(id, 2) = gr.



316 �L. Krzywiecki et al.

Proof. After system is initialized, forger F selects ā ←$ Zq and queries Oā
IDSign

for an arbitrary message m and attacked id. Then, it receives a valid signature
tuple σ = (gā, b, gr). Having this knowledge, it is capable of calculating y of skid.
F transforms the equation in Sign: b = ā+y ·H1(id, gā,m) into y = b−ā

H1(id,gā,m) .
Since it knows all the values in the right side of equation, it can compute y.
Thus, at the end forger ends up with a complete skid(y, gr), and from now on
can create signatures of arbitrary messages on behalf of unaware signer, simply
running Sign procedure with calculated secret key. ��

5 Proposed Modification of IBS Scheme

Our scheme addresses the issues with malicious ephemerals setting. To achieve
this goal, we utilize bilinear pairings in verification procedure.

Fig. 2. Galindo-Garcia scheme is on the left. Our modified scheme is on the right.

The modified scheme is presented in the right-hand side of Fig. 2. The original
scheme [9], recalled already in Sect. 3.1, is repeated in the left-hand side for
comparison.



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 317

5.1 Correctness of the Scheme

Theorem 2. Our modified scheme as presented on the right-hand side of Fig. 2
is correct.

Proof. Let w = H2(gr, id), u = H1(id, ĝa,m).
Thus b = a + y · u,
and y = r + zw,
Therefore:

ê(ĝb/ĝa, g) = ê(ĝb−a, g) = ê(ĝ, gb−a) = ê(ĝ, (grgzw)u)

= ê(ĝ, (grgzH2(g
r,id))H1(id,ĝ

a,m))

��

5.2 Security Analysis

Theorem 3. Let IBS denote the modified Identity-Based Signature Scheme (as
in the right-hand side of Fig. 2). IBS is secure against Forgery Type I (in the
sense of Definition 4).

Proof (Sketch of the Proof)

Case 1: A forgery has been made for an id s.t. OIDRev(id, 0) has been queried.
Suppose there is an adversary F that creates a valid signature in this case.
Then, it can be used to create a forgery of Schnorr signature. Let Z = gz be a
public key in Schnorr signature scheme. Initialize F with mpk = Z. When an
adversary queries to OIDRev(id, 0), the oracle selects y ←$ Zq and returns y to
an adversary. If F manages to produce a valid forgery (id,m, σ = (ĝa, ĝb, gr)),
output (id, (y, gr)) as a Schnorr signature forgery σ∗ = (y, gr) over a message
m∗ = id for the public key Z.

Case 2: In the second scenario, a forgery has been made for an id s.t. either
OIDRev(id, 1) or OIDSign(id, ·) has been queried.
Let (g, gα, gβ) be an instance of GDH problem. We setup the system s.t.
mpk = Z = gα. We provide the adversary the access to OIDGen, and OIDSign

oracles.
Serving IDGen Oracle : We allow �1 fresh inputs to the OIDGen oracle. We
choose the random index j ←$ {1, . . . , �1}, which denotes the j-th invocation
of OIDGen, for which we assume the forgery will happen.

– On i-th (i 	= j) invocation of OIDGen with a fresh id, we choose y, h ←$ Zq.
We compute R = gr = gy/Zh. We register in the ROM table for H2 the
value h as an answer from H2(gr, id), as well as values (y, gr) as Data
bound to id.

– On j-th invocation of OIDGen with a fresh id we choose r, h ←$ Zq. We
compute R = gr. We register in the ROM table for H2 the value h as
answer from H2(gr, id), as well as values (⊥, gr) as Data bound to id.
We record the value r for those tuples.



318 �L. Krzywiecki et al.

Serving IDRev Oracle OIDRev(id, idx) : On inputting a fresh id, we first use
OIDGen(id) oracle to register the new id. We locate the id in ROM table for
H2, and return the values y = Data(id, 1), gr = Data(id, 2) bound to id,
respectively for idx = 1 and idx = 2 as the output.
Serving IDSign OracleOā

IDSign(id,m): On inputting a fresh id, we first use
OIDGen(id) oracle to register the new id.

– On id related to i-th (i 	= j) fresh invocation of OIDGen we locate (y, gr),
and use the values to produce a positively verifiable signature σ. We
return the σ as the output.

– On id related to j-th fresh invocation of OIDGen we locate (⊥, gr). We
use injected ā, generate k ←$ Zq. We set h = H2(gr, id). We register
the value ĝ = Hg(m, gr, id) = gk in the ROM table for Hg. We set
c = H1(id, ĝā,m). We compute

ĝb = ĝā · ĝyc = gkā · g(r+zh)kc = gkā · grkc · Zkch

At the end we return σ = (ĝā, ĝb, gr).
Serving OHg

Oracle : We allow �2 fresh inputs to the OHg
oracle. We choose

the random index j ←$ {1, . . . , �2}, which denotes the j invocation of OHg
,

for which we assume the forgery will happen.
– On i-th, (i 	= j), fresh input m, gr, id, we compute k ←$ Zq, register the

value ĝ = Hg(m, gr, id) = gk in the ROM table for Hg. We return the ĝ
as the output.

– On j-th, fresh input m, gr, id, we set ĝ = (gβ) and register that value in
the ROM table for Hg. We return the ĝ as the output.

Processing the Forgery : Suppose there exists FOIDGen,OIDRev,Oā
IDSign

I forging
successfully (m,σ, id) with non-negligible probability, s.t. the outputted id
was queried in jth issue to the OIDGen, or OIDSign oracles, and registered with
gr, for known and recorded r, in ROM for H2, i.e. h = H2(gr, id). Therefore
we have:

ĝb = ĝa · ĝyc

Thus we have:

ĝb/ĝa = ĝyc

(ĝb/ĝa)1/c = ĝy = ĝ(r+zh) = ĝr · (ĝz)h = (gβ)
r · ((gβ)

z
)h

(
((ĝb/ĝa)1/c)

(gβ)r

)1/h

= ĝz = Zβ = gαβ

��
Theorem 4. Let IBS denote the modified Identity-Based Signature Scheme (as
in the right-hand side of Fig. 2). IBS is secure against Forgery Type II (in the
sense of Definition 4).



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 319

Proof (Sketch of the Proof). Let (g, gα, gβ) be an instance of GDH problem. We
setup the system s.t. mpk = Z = gα. We provide the adversary the access to
OIDGen, and OIDSign oracles.
Serving IDGen Oracle : On inputting a fresh id we choose y, h ←$ Zq. We
compute R = gr = gy/Zh2 . We register in the ROM table for H2 the value h2

as answer from H2(gr, id), as well as values (y, gr) bound to id.
Serving IDRev Oracle : On inputting a fresh id, we first use OIDGen(id) oracle
to register the new id. We locate the id in ROM table for H2 and return the
values (y, gr) bound to id as the output.
Serving IDSign OracleOā

IDSign(id,m) : On input a fresh id we first use
OIDGen(id) oracle to register the new id. We locate the id in ROM table for
H2 and use the values (y, gr) bound to that id to produce the positively verifi-
able signature σ. We return the σ as the output.
Serving OHg

Oracle : On a fresh input we generate a mask d ←$ Zq, compute
ĝ = (gβ)d, register that value in the ROM table for ĝ = Hg(m, gr, id) = (gβ)d.
We return the ĝ as the output.
Processing the Forgery :

Suppose there exists FOIDGen,OIDRev,Oā
IDSign

II forging successfully (m,σ, id) with non-
negligible probability, s.t. the outputted id was not queried to the OIDGen,
OIDSign oracles. Thus by the Forking Lemma on H2, we get two tuples, namely:
(m, ĝa1 , ĝb1 , gr, id, c1, h1), (m, ĝa2 , ĝb2 , gr, id, c2, h2), with two different hash val-
ues h1 = H2(gr, id) and h2 = H2(gr, id) respectively for the first and the second
run. Let us denote c1 = H1(id, ĝa1 ,m), and c2 = H1(id, ĝa2 ,m), for whatever
a1, a2 was used in those runs. Therefore we have:

ĝb1/ĝa1 = (gβ)dc1(r+zh1)

ĝb2/ĝa2 = (gβ)dc2(r+zh2)

Thus we have (ĝb1/ĝa1)(1/dc1)/(ĝb2/ĝa2)(1/dc2) = (gβ)z(h1−h2). Therefore

(
(ĝb1/ĝa1)(1/dc1)/(ĝb2/ĝa2)(1/dc2)

)(1/(h1−h2))

= (gβ)z = Zβ = gαβ .

��

6 Implementation and Performance

In this section we approach the complexity for both base and modified scheme.
We measure execution times on SS512 curve. Our proof of concept implementa-
tions was prepared in Python with CryptoCharm library [2].



320 �L. Krzywiecki et al.

Table 1. Number of oper-
ations in base scheme

Operation Amount

Sign

G: Add −
G: Mul 1

Verify

G: Add 2

G: Mul 3

Table 2. Number of oper-
ations in modified scheme

Operation Amount

Sign

G: Add −
G: Mul 2

G: H1 1

Verify

G: Add 2

G: Mul 2

G: H1 1

pairing 2

Table 3. Number of oper-
ations in [25]

Operation Amount

Sign

G1: Add 1

G1: Mul 2

G2: Mul 1

G2: H2 1

Verify

G1: Add 1

G2: Add 1

G1: Mul 2

G2: Mul −
G2: H2 2

pairing 3

6.1 Number of Operations

We present the amount of time expensive operations for both base and modified
scheme: addition in G, scalar multiplication in G, hash into group G, and pairing
operation. We denote the operations as Add, Mul, H1 respectively. We present
number of operations for base scheme in Table 1 and for modified scheme in
Table 2. For the sake of comparison, we also provide operations metrics for [25]
in Table 3, proving that our scheme is more efficient.

6.2 Execution Time Measurements

We present the execution time measurements for base and modified scheme
implemented on SS512 curve. We measured the execution time of Sign and
Verify procedures as well as the execution time of operations mentioned in
the previous section. The measurement was conducted on Ubuntu 18.04 run-
ning on Intel i5 2.50 GHz. We performed 100 attempts for each operation. The
results of measurements for base and modified schemes are presented in Tables 4
and 5 respectively. As it can be seen from both tables, the modified scheme is
approximately five times slower than the base scheme. However, the increase of
computation cost is expected and is a price to pay when resilience to stronger
adversary is required.



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 321

Table 4. Execution times for base scheme implemented on SS512 curve

Operation Time [ms]

Sign

G: Mul 1.5060

G: Add −
Verify

G: Add 0.00822

G: Mul 4.51431

Sign & Verify ≈ 6.02853 ms

Table 5. Execution times for modified scheme implemented on SS512 curve

Operation Time [ms]

Sign

G: Mul 3.107

G: Add −
G: H1 7.066

Verify

G: Add 0.008852

G: Mul 2.9626

G: H1 7.1953

G: Pairing 5.537

Sign & Verify ≈ 25.876752 ms

7 Conclusion

In this paper we presented a modification of a signature scheme from [9]. We
proposed an IBS model in which an adversary can inject ephemeral values used
in the signing procedure. We showed that Galindo-Garcia scheme is not secure
in said model and we have formally proven that our modification is.

A Vulnerability of Leakage-Resilient IBS by Wu et al. in
Our Model

We briefly present the protocols from [28]. The scheme is based on the idea that
the secret keys are replaced with new values after each usage to prevent adversary
from using leaked data accumulated in multiple protocol runs to recreate the
secret. However, we show that the scheme is vulnerable to universal forgery in
our security model where random values in signing procedure are leaked in full.
Only one genuine signature is needed for forgery in our model.



322 �L. Krzywiecki et al.

– ParGen: Given a security parameter λ, generate type-1 bilinear pairing
parameters: (G,GT , g ∈ G, p = |〈g〉|, ê : G × G → GT ). Then:
1. Select x, α at random from Z

∗
p and g2 at random from G. Compute system

original key X = gx
2 and XT = ê(gx, g2).

2. The system current private key is (S0,1, S0,2) = (gα
2 ,X · g−α

2 ).
3. Select ui0, ui1,mi0,mi1 at random from Z

∗
p, compute U0 = gui0 , U1 =

gui1 ,M0 = gmi0 ,M1 = gmi1 .
4. Public parameters are PP = (G,GT , g, g2, p, ê,XT , U0, U1,M0,M1).

– KeyExtract(ID), where ID is user’s identifier:
1. Pick a, γ at random from Z

∗
p.

2. Si,1 = Si−1,1 · ga
2 .

3. TIE = Si,1 · (U0 · U ID
1 )γ .

4. QIDID = gγ .
5. Si,2 = Si−1,2 · g−a

2 .
6. SIDID = Si,2 · TIE .
7. Output DID′ = (SIDID, QIDID).
8. Upon receiving secret keys, a user selects random β and computes DID =

(DID0,1 = gβ
2 ,DID0,2 = SIDID ·g−β

2 , QIDID). DID is from now on the
user’s key.

– Sign(mj)
1. Select b, η at random from Z

∗
p.

2. DIDj,1 = DIDj−1,1 · gb
2.

3. TIS = DIDj,1 · (M0 · M
mj

1 )η.
4. σ2 = gη.
5. DIDj,2 = DIDj−1,2 · g−b

2 .
6. σ1 = DIDj,2 · TIS .
7. Output signature: (σ1, σ2, QIDID).

– Verify: Accept signature iff

ê(g, σ1) = XT · ê(σ2,M0 · Mm
1 ) · ê(QIDID, U0 · U ID

1 ).

In the description above, we can notice that DIDj,1 · DIDj,2 is constant in
terms of j because gb

2 ·g−b
2 = 1. Also note that σ1 = DIDj,2 ·DIDj,1 ·(M0 ·Mmj

1 )η.
We can launch the following attack on the scheme:

1. Query for one signature on arbitrary message m and obtain (σ1, σ2, QIDID).
From ephemeral values leakage, also obtain random values used in Sign, i.e.
b, η.

2. Knowing random value η, public values M0,M1 and signed message m, com-
pute E = (M0 · Mm

1 )η.
3. Compute F (= DIDj,2 · DIDj,1) = σ1 · E−1.
4. From now on, you can select any message m′ and any random value η′, and

forge the signature of m′:

(σ1 = F · (M0 · Mm′
1 )η′

, σ2 = gη′
, QIDID).



IBS Scheme Secure in Ephemeral Setup and Leakage Scenarios 323

References

1. IEEE P1363.3/D9, May 2013: IEEE Standard for Identity-Based Cryptographic
Techniques Using Pairings. IEEE (2013)

2. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng. 3(2), 111–128 (2013)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, 12–16 October 2015, pp. 364–375 (2015)

5. Burnett, A., Byrne, F., Dowling, T., Duffy, A.: A biometric identity based signature
scheme. Int. J. Netw. Secur. 5(3), 317–326 (2007)

6. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Yao, F.F., Luks, E.M. (eds.) Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA,
21–23 May 2000, pp. 235–244. ACM (2000)

7. Chai, Z., Cao, Z., Dong, X.: Identity-based signature scheme based on quadratic
residues. Sci. China Ser. F: Inf. Sci. 50(3), 373–380 (2007)

8. Deng, L., Zeng, J.: Two new identity-based threshold ring signature schemes.
Theor. Comput. Sci. 535, 38–45 (2014)

9. Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature
scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–
148. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2 9

10. Han, S., Wang, J., Liu, W.: An efficient identity-based group signature scheme
over elliptic curves. In: Freire, M.M., Chemouil, P., Lorenz, P., Gravey, A. (eds.)
ECUMN 2004. LNCS, vol. 3262, pp. 417–429. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30197-4 42

11. Ki, J.H., Hwang, J.Y., Lee, D.H.: Identity-based ring signature schemes for multiple
domains. TIIS 6(10), 2692–2707 (2012)

12. Kim, M., Fujioka, A., Ustaoglu, B.: Strongly secure authenticated key exchange
without NAXOS’ approach under computational Diffie-Hellman assumption.
IEICE Trans. 95-A(1), 29–39 (2012)

13. Krzywiecki, �L.: Schnorr-like identification scheme resistant to malicious subliminal
setting of ephemeral secret. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016.
LNCS, vol. 10006, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47238-6 10

14. Krzywiecki, �L., Kluczniak, K., Kozie�l, P., Panwar, N.: Privacy-oriented dependency
via deniable SIGMA protocol. Comput. Secur. 79, 53–67 (2018)

15. Krzywiecki, �L., Kuty�lowski, M.: Security of Okamoto identification scheme: a
defense against ephemeral key leakage and setup. In: Proceedings of the Fifth
ACM International Workshop on Security in Cloud Computing, SCC@AsiaCCS
2017, Abu Dhabi, United Arab Emirates, 2 April 2017, pp. 43–50 (2017)

16. Krzywiecki, �L., S�lowik, M.: Strongly deniable identification schemes immune to
prover’s and verifier’s ephemeral leakage. In: Farshim, P., Simion, E. (eds.) SecITC
2017. LNCS, vol. 10543, pp. 115–128. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69284-5 9

17. Krzywiecki, �L., Wlis�locki, T.: Deniable key establishment resistance against eKCI
attacks. Secur. Commun. Netw. 2017, 7810352:1–7810352:13 (2017)

https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-642-02384-2_9
https://doi.org/10.1007/978-3-540-30197-4_42
https://doi.org/10.1007/978-3-540-30197-4_42
https://doi.org/10.1007/978-3-319-47238-6_10
https://doi.org/10.1007/978-3-319-47238-6_10
https://doi.org/10.1007/978-3-319-69284-5_9
https://doi.org/10.1007/978-3-319-69284-5_9


324 �L. Krzywiecki et al.

18. Krzywiecki, �L., Wszo�la, M., Kuty�lowski, M.: Brief announcement: anonymous cre-
dentials secure to ephemeral leakage. In: Dolev, S., Lodha, S. (eds.) CSCML 2017.
LNCS, vol. 10332, pp. 96–98. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-60080-2 7

19. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

20. Lee, J., Park, J.H.: Authenticated key exchange secure under the computational
Diffie-Hellman assumption. Cryptology ePrint Archive, Report 2008/344 (2008)

21. Lin, C.-Y., Wu, T.-C., Zhang, F., Hwang, J.-J.: New identity-based society oriented
signature schemes from pairings on elliptic curves. Appl. Math. Comput. 160(1),
245–260 (2005)

22. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. IACR Cryptology ePrint Archive, 2015/695 (2015)

23. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

24. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

25. Tseng, Y.-M., Tsai, T.-T., Huang, S.-S.: Leakage-free ID-based signature. Comput.
J. 58(4), 750–757 (2015)

26. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Cryptology ePrint Archive, Report 2007/123 (2007)

27. Wei, L., Zhang, L., Huang, D., Zhang, K.: Efficient and provably secure identity-
based multi-signature schemes for data aggregation in marine wireless sensor net-
works. In: Fortino, G., et al. (eds.) 14th IEEE International Conference on Net-
working, Sensing and Control, ICNSC 2017, Calabria, Italy, 16–18 May 2017, pp.
593–598. IEEE (2017)

28. Wu, J.-D., Tseng, Y.-M., Huang, S.-S.: Leakage-resilient ID-based signature scheme
in the generic bilinear group model. Secur. Commun. Netw. 9(17), 3987–4001
(2016)

29. Yang, Y., Hu, Y., Zhang, L.: An efficient biometric identity based signature scheme.
TIIS 7(8), 2010–2026 (2013)

30. Zhang, Y., Yang, L., Wang, S.: An efficient identity-based signature scheme for
vehicular communications. In: 11th International Conference on Computational
Intelligence and Security, CIS 2015, Shenzhen, China, 19–20 December 2015, pp.
326–330. IEEE Computer Society (2015)

31. Zhang, Y., He, D., Huang, X., Wang, D., Choo, K.-K.R.: White-box implementa-
tion of the identity-based signature scheme in the IEEE P1363 standard for public
key cryptography. IACR Cryptology ePrint Archive, 2018/814 (2018)

https://doi.org/10.1007/978-3-319-60080-2_7
https://doi.org/10.1007/978-3-319-60080-2_7
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/3-540-39568-7_5


Recovering Internal States of Grain-v1

Deepak Kumar Dalai and Santu Pal(B)

National Institute of Science Education and Research, HBNI,
Bhubaneswar 752050, India

{deeepak,santu.pal}@niser.ac.in

Abstract. In this paper, we analyze the non-linear part of the out-
put function h of Grain-v1 and use a guess and determine strategy to
recover 33 state bits from 33 consecutive keystream bits of Grain-v1 by
fixing 45 bits and guessing 82 bits. This reduces the conditional sam-
pling resistance of Grain-v1, which is best till now. We apply the Time-
Memory-Data Trade-Off (TMDTO) attack on Grain-v1 with this condi-
tional sampling resistance to get a trade-off curve which improves the pre-
processing time complexity and online time complexity with improved
memory.

Keywords: Cryptanalysis · Grain-v1 · Guess and determine attack ·
Time-Memory-Data Trade-Off (TMDTO) Attack

1 Introduction

Grain-v1 is one of three selected stream ciphers for hardware category in
eSTREAM [1,11]. It is a bit-oriented NFSR based stream cipher with an 80
bit nonlinear feedback shift register(NFSR), an 80 bit linear feedback shift reg-
ister (LFSR) and a nonlinear filter function of 5 variables. For the simplicity
in structure and efficiency in hardware implementation, it is a popular stream
cipher among cryptanalysts. Since its inception, the cryptanalysts are analyzing
the cipher by exploiting different kinds of techniques. The Time-Memory-Data
Trade-Off (TMDTO) attack [2,3,10] is one of the highly used techniques to
analyze Grain-v1. In this work, we analyze Grain-v1 using guess and deter-
mine attack and the TMDTO attack. In both the attacks, the attacker finds a
state value of the cipher at a particular clock/round and hence can generate the
keystream by clocking forward and possibly, the key by backward clockings if
the state is invertible.

The main idea of guess and determine attack is to determine a portion of state
bits by using some known keystream bits and guessing the remaining portion
of state bits. Using the idea of BSW-sampling [3,4], a special cipher states can
be generated and enumerated efficiently from which some subsequent keystream
bits with fixed string are generated. If a state of n bits can be recovered by
guessing n − l bits with knowledge of some initial keystream bits, the sampling
resistance of the cipher is defined to be R = 2−l. The sampling resistance of
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 325–337, 2019.
https://doi.org/10.1007/978-3-030-34339-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_18


326 D. K. Dalai and S. Pal

Grain-v1 is at most 2−18 [5]. The sampling resistant can be extended by using
guess and determine strategy with some restriction on state bits. Such type of
sampling resistance is considered as conditional sampling resistance. So by fixing
some state bits, one can extend sampling resistance of Grain-v1 by 2−l, l > 18.
So one can recover the state bits by guessing some state bits and fixed values of
some initial keystream bits by using guess and determine strategy. In the case of
BSW sampling, one should take the first few fixed keystream bits, since it is very
difficult to force a large number of keystream bits to have a specific value. So one
can use TMDTO attack with BSW sampling to recover the state bits of Grain-v1.
Although the TMDTO attack incepted during the second half of 90’s [2–4,10],
the relatively new stream cipher Grain-v1 is being analysed extensively by the
attack in recent days [5,7,8,14–16,18]. Several other popular works on TMDTO
attack on stream ciphers [9,13,17] are available in the literature of cryptanalysis.

The TMDTO attack is implemented in two phases: preprocessing (or, offline)
phase and real time (or, online) phase. During the preprocessing phase, the
attacker generates one or more large tables of states of the cipher in a particular
order from the structure of the cryptosystem. During the real time phase, having
some keystream data, the attackers aim is to find the actual state generating the
known keystream. As the preprocessing phase is performed offline, the attacker
is allowed for a longer time than the real time phase. As the name of the attack
suggests that the amount of computation time (T ), Memory (M) and Data (D)
are balanced by satisfying a set of equalities and inequalities. As a result, the
attacker performs better than the exhaustive search attack by trading off the
available resources. A brief idea of TMDTO attack is presented in Sect. 2.1. The
interested readers can read the papers [3,6,7] for a detailed study about the
attack.

1.1 Previous Contributions

For the first time, in 2008, Bjørstad [5] mounted a TMDTO attack on Grain-
v1, using BSW sampling to recover the state. Showing that Grain-v1 has low
sampling resistance, he could reduce the time T and memory M by increasing
data D. In 2012, Mihaljević et al. [15] used the normality of order two of the
non-linear functions of Grain-v1 for BSW sampling to recover 18 state bits where
18 consecutive key-stream bits are set as zero. It needed to fix 54 state bits and
to guess 88 state bits and then BS TMDTO [3] with single table look-up in
pre-processing phase is used to recover the state bits. In 2015, Jiao et al. [14]
recovered 28 state bits from 28 consecutive key-stream bits by using normality
order of the nonlinear function of Grain-v1. They fixed 51 state bits and guessed
81 state bits to reduce the sampling resistant from 2−18 to 2−28. Then they used
TMDTO attack to recover state bits. The TMDTO curve was TMD = 2rN ,
where r is the number of fixed bits. In 2017, Mihaljević et al. [16] used the same
strategy to recover 24 and 31 state bits from the same number of consecutive
key-stream bits in two different instants respectively. It is needed to fix 6 and
31 state bits and guess 130 and 97 state bits respectively. Then BS TMDTO is
implemented over the reduced space to recover state bits. The latest, this year,



Recovering Internal States of Grain-v1 327

Siddhanti et al. [18] proposed TMDTO attack by recovering 32 state bits, fixing
none state bits and guessing 96 state bits with 36 known consecutive keystream
bits. The comparison of T,M and D of the mentioned attacks is presented in
Table 7.

1.2 Our Contribution

We reduced the sampling resistant of Grain-v1 by careful analysis of the struc-
ture of its non-linear function with some condition on state bits. Four different
observations on the non-linear function in Grain-v1 are used for our purpose.
We have followed the strategy implemented by Jiao et al. [14] and Mihalijevic
et al. [16]. Implementing guess and determine attack we could recover the whole
state by guessing 82 state bits, fixing 45 state bits and recovering rest 33 state
bits from first 33 keystream bits. Further, we apply different TMDTO techniques
to find the best suiting one.

1.3 Organization of Paper

We have already outlined our research objectives. Rest of the paper is organized
as follows. Section 2 introduces the TMDTO attack and the structure of the
stream cipher Grain-v1. Section 3 contains our contribution, which is divided
into three subsections. Subsect. 3.1 presents some conditions on the inputs of
the non-linear function h of Grain-v1 to get simpler functions. In Subsect. 3.2,
guess and determine strategy is discussed to recover the state bits of Grain-v1 by
fixing and guessing some state bits. Further in Subsect. 3.3, the TMDTO attack
is implemented to recover the state bits. In the last section, we conclude the
paper with future work.

2 Preliminary

In this section, we describe the TMDTO attack on stream ciphers and the design
structure of the stream cipher Grain-v1.

2.1 TMDTO Attacks on Stream Ciphers

As described in [3], the following five parameters are related in any TMDTO
attack.

– N : the size of the search space of the state.
– P : the time required for the preprocessing phase.
– M : the amount of memory requirement for the attack.
– T : the time required for the real time phase of the attack.
– D: the amount of real time data required for the attack.



328 D. K. Dalai and S. Pal

The Time-Memory Trade-Off (TMTO) attack was introduced by Hellman
on block cipher [12] to invert the vectorial Boolean function used in the cipher.
This attack combines the exhaustive state value search and table lookup method
for trading off the time T and memory M and provides a general technique to
invert one-way function. Its trade-off equations are obtained as TM2 = N2 and
P = N where N is the number of possible states. Since the keystream bits
are independent of the plain text in the case of stream ciphers, Babbage [2]
and Golić [10] took advantage of keystream bits (i.e., data D) to involve in the
trade-off to further reduce the time and memory costs. The attack is known as
BG-TMDTO and the trade-off equations are TM = N,P = M and T = D. In
this technique, a single m × t table was proposed to cover the whole space of
states, which actually will not cover as there will be a large amount repetition of
states due to the collisions. To avoid the large collisions, t tables of size m×t (each
one is generated from different functions) which satisfies mt2 = N to cover all
state space except a few. Later Biryukov and Shamir [3] extended BG-TMDTO
attack to stream cipher by utilizing multiple data points which is known as
BS-TMDTO. The number of tables reduced to t

D , if D data is available. As a
result, the obtained trade-off equations are TM2D2 = N2 and P = N/D with
a restriction 1 ≤ D2 ≤ T .

To exploit BSW sampling with the BS-TMDTO attack, it is needed to fix
first k bits of keystream. Hence, the available data is reduced to D

2k
for the

TMDTO. This generic technique is proposed in [4] and the attack was deployed
on the stream cipher A5/1. In case of BSW sampling, if the sampling resistance
of a stream cipher is R (0 < R < 1), then both ultimate state space size N and
data D are reduced by NR and DR(> 1) respectively for the attack. Hence, the
trade-off curve is the same as TM2D2 = N2, but the range of T > D2 is wider
by T > (RD)2 and the number of disk operations is reduced from t to tR.

2.2 Description of Grain-v1

Grain-v1 [11] is a hardware based stream cipher consisting of an 80-bit NFSR,
an 80-bit LFSR and a nonlinear filter function h of 5 variables, where bi, si, 0 ≤
i ≤ 79 are the state bits of the NFSR and LFSR respectively. The state update
functions of LFSR and NFSR are presented in Eqs. 1 and 2 respectively.

st+80 = st+62 + st+51 + st+38 + st+23 + st+13 + st, for t ≥ 0. (1)

bt+80 = st + bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33

+ bt+28 + bt+21 + bt+14 + bt+9 + bt + bt+63bt+60 +
bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45 + bt+33bt+28bt+21 +
bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33 + bt+63bt+60bt+21

bt+15 + bt+63bt+60bt+52bt+45bt+37 + bt+33bt+28bt+21bt+15bt+9

+ bt+52bt+45bt+37bt+33bt+28bt+21, for t ≥ 0. (2)



Recovering Internal States of Grain-v1 329

The algebraic normal form of the nonlinear filter function h is given by

h(st+3, st+25, st+46, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+46st+64 +
st+64bt+63 + st+3st+25st+46 + st+3st+46st+64 + st+3st+46bt+63 +
st+25st+46bt+63 + st+46st+64bt+63. (3)

The keystream bit zt of the cipher is calculated by combining the output
of the nonlinear filter function and some state bits of the NFSR. The algebraic
expression of the keystream bit at t-th round is

zt = bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 + bt+56

+h(st+3, st+25, st+46, st+64, bt+63), for t ≥ 0. (4)

There are two phases, key scheduling and pseudorandom bit generation, in
Grain-v1 algorithm which follows the Key Scheduling Algorithm (KSA) and
Pseudorandom Generation Algorithm (PRGA) respectively. After running 160
rounds of KSA the cipher starts the pseudorandom bit generation phase, where
the cipher produces keystream bits as output.

3 State Recovery of Grain-v1

This section contains the main contribution of the paper to recover the internal
state of Grain-v1 at a particular clock. A study on the subfunctions (i.e., fixing
some variables of the function) of the nonlinear function h is presented in the
following subsection. The study is useful for the state recovery of Grain-v1.

3.1 Analysis of the Non-linear Filter Function

The nonlinear function h (Eq. 3) is a 3 degree polynomial on 5 variables. The alge-
braic normal form (ANF) of h contains only 8 nonlinear terms. The sparseness
of nonlinear terms in the ANF helps to find the affine or constant subfunctions
by fixing a few variables. It is observed that all 3-degree monomials and one
2-degree monomial contain the variable bit st+46. Therefore, fixing st+46 = 0,
h can be made a quadratic function with 2 nonlinear terms. In addition to this
fixing, if we fix st+64 = 0 or 1, we will have a linear function independent of the
variable st+3 or, bt+63 respectively. Moreover, exploiting the normality order of
h (i.e., 2), we can have a constant function by fixing 3 variables. We listed the
observations on the ANF of h as follows.

Observations:

1. h(st+3, st+25, 0, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+64bt+63;
1.1. h(st+3, st+25, 0, 1, bt+63) = st+3 + st+25;

1.1.1. h(st+3, 1, 0, 1, bt+63) = 1 + st+3;
1.2. h(st+3, st+25, 0, 0, bt+63) = st+25 + bt+63;

2. h(1, 0, st+46, 1, bt+63) = 1;



330 D. K. Dalai and S. Pal

3. h(st+3, 0, st+46, 0, 0) = 0;
4. h(st+3, 0, 1, st+64, bt+63) = st+64 + bt+63 + st+3bt+63.

4.1. h(1, 0, 1, st+64, bt+63) = st+64.

By fixing some state bits, we use these observations to extract relations
(mostly linear) among the state bits. These relations help to recover some state
bits by guessing rest of state bits. We use the relations in observation in Item 1
for 17−20 rounds, in Item 1.1. for 3, 4, 11 rounds, in Item 1.1.1. for 5−10 rounds,
in Item 1.2. for 0−2, 16 rounds, in Item 2 for 12−14 rounds, in Item 3 for 15
round, in Item 4 for 21−26 rounds and in Item 4.1. for 27−32 rounds of Grain-
v1. Table 1 lists the observations of the relations of state bits in terms of the
subfunctions of h in the order of round. The state bits in brackets are previously
fixed with the same value and the bits in bold letters are having position greater
than 79, which can be expressed in terms of recurrence as defined in Eqs. 1 and
2.

Table 1. Relations of state bits in Grain-v1 as the subfunctions of h

Round (t) Observation Fixed bit h function

0−2 1.2 st+46 = 0, st+64 = 0 st+25 + bt+63

3−4 1.1 st+46 = 0, st+64 = 1 st+3 + st+25

5−10 1.1.1 st+25 = 1, st+46 = 0, st+64 = 1 1 + st+3

11 1.1 st+46 = 0, st+64 = 1 st+3 + st+25

12−14 2 st+3 = 1, st+25 = 0, st+64 = 1 1

15 3 st+25 = 0, st+64 = 0, bt+63 = 0 0

16 1.2 st+46 = 0, st+64 = 0 st+25 + bt+63

17 1 st+46 = 0 st+25 + bt+63 +
st+3st+64 + st+64bt+63

18−20 1 (st+46 = 0) st+25 + bt+63 +
st+3st+64 + st+64bt+63

21−26 4 (st+25 = 0, st+46 = 1) st+64 + bt+63 + st+3bt+63

27−32 4.1 (st+3 = 1, st+25 = 0, st+46 = 1) st+64

3.2 Guess and Determine Strategy

Exploiting the relations among the state bits presented in Table 1, the guess and
determine strategy is used to recover 33 state bits from the first 33 keystream
bits of Grain-v1. Having 33 known keystream bits (zt, 0 ≤ t ≤ 32), appropriately
replacing the h function in Eq. 4 by the equation presented in the Table 1, we
will have a system of 33 equations. For this process, 45 state bits (presented in
3rd column in Table 1) need to be fixed. If the system of equations is linearly



Recovering Internal States of Grain-v1 331

independent, it is possible to recover 33 state bits by guessing the rest (i.e.,
160 − (45 + 33) = 82) of the state bits.

Since some equations are nonlinear and some state bits are represented by
nonlinear recurrence relations, it is not obvious to choose appropriate recovery
bits and guessing bits. As the gap between the terms bt+10 and bt+31 in Eq. 4 is
maximum and the terms are involved linearly, we consider those bits as recovery
bits. The recovery process of the state bits is presented below. The detailed order
of evaluation and evaluation process is presented in Tables 4 and 5.

R1. For 0 ≤ t ≤ 2, (i.e., for first 3 rounds), we use the observation (Item 1.2.)
for h to get a linear equation on state bits for zt by fixing two state bits
as mentioned in Table 1. Here, each linear equation contains 9 terms as
bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 + bt+56 + st+25 + bt+63 = zt for
0 ≤ t ≤ 2. Now, we can recover three state bits bt+10, 0 ≤ t ≤ 2 by guessing
remaining state bits in the equations.

R2. For t = 3, 4, 11, the observation (Item 1.1.) for h is used to get a linear
equation on state bits for zt by fixing two state bits as mentioned in Table 1.
Here, each linear equation contains 9 terms as bt+1 + bt+2 + bt+4 + bt+10 +
bt+31+bt+43+bt+56+st+3+st+25 = zt for t = 3, 4, 11. Similarly, three state
bits bt+10, t = 3, 4, 11 are recovered by guessing remaining state bits in the
equations.

R3. For 5 ≤ t ≤ 10, the observation (Item 1.1.1.) for h is used to get a linear
equation on state bits for zt by fixing three state bits as mentioned in
Table 1. Here, each linear equation contains 8 terms as bt+1 + bt+2 + bt+4 +
bt+10 + bt+31 + bt+43 + bt+56 + st+3 + 1 = zt for 5 ≤ t ≤ 10. Here, Six state
bits bt+10, 5 ≤ t ≤ 10 are recovered by guessing remaining state bits in the
equations.

R4. For 12 ≤ t ≤ 14, the observation (Item 2) for h is used to get a linear
equation on state bits for zt by fixing three state bits as mentioned in
Table 1. Here, each linear equation contains 7 terms as bt+1 + bt+2 + bt+4 +
bt+10 + bt+31 + bt+43 + bt+56 + 1 = zt for 12 ≤ t ≤ 14. Here, three state
bits bt+10, 12 ≤ t ≤ 14 are recovered by guessing remaining state bits in the
equations.

R5. For t = 15, the observation (Item 3) for h is used to get a linear equation on
state bits for zt by fixing three state bits as mentioned in Table 1. The linear
equation contains 7 terms as bt+1+bt+2+bt+4+bt+10+bt+31+bt+43+bt+56 =
zt for t = 15. Here, the state bit bt+10, t = 15 is recovered by guessing
remaining state bits in the equation.

It can be observed that for t ≥ 16, at least one term in fixed bits or in h
function (written in the bold letter in Table 1) which is expressed as a linear or
nonlinear combination of other state bits. For example, at t = 16, we need to
fix st+16 = s80 = s0 + s13 + s23 + s38 + s51 + s62 = 0 (see Eq. 1). Therefore, the
involved bits need to be considered for fixing or guessing bits. Tables 2 and 3
contain the involved bits in the linear update state relations and the nonlinear
update state relations respectively.



332 D. K. Dalai and S. Pal

Table 2. The state bits involved to calculate the linear feedback bits

Feedback bits State bits used Feedback bits State bits used

s80 s0, s13, s23, s38, s51, s62 s81 s1, s14, s24, s39, s52, s63

s82 s2, s15, s25, s40, s53, s64 s83 s3, s16, s26, s41, s54, s65

s84 s4, s17, s27, s42, s55, s66 s85 s5, s18, s28, s43, s56, s67

s86 s6, s19, s29, s44, s57, s68 s87 s7, s20, s30, s45, s58, s69

s88 s8, s21, s31, s46, s59, s70 s89 s9, s22, s32, s47, s60, s71

s90 s10, s23, s33, s48, s61, s72 s91 s11, s24, s34, s49, s62, s73

s92 s12, s25, s35, s50, s63, s74 s93 s13, s26, s36, s51, s64, s75

s94 s14, s27, s37, s52, s65, s76 s95 s15, s28, s38, s53, s66, s77

s96 s16, s29, s39, s54, s67, s78 s97 s17, s30, s40, s55, s68, s79

R6. For t = 16, the observation (Item 1.2.) for h is used to get a linear equation
on state bits for zt by fixing two state bits s62 = 0 and s0 = s13+s23+s38+
s51 + s62 as mentioned in Table 1. The linear equation contains 9 terms as
bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 + bt+56 + st+25 + bt+63 = zt for
t = 16. Here, the state bit bt+63, t = 16 is recovered by guessing remaining
state bits in the equation.

From this step onward, the non-linear state update relations are involved for
some terms available in the h function.

Table 3. The state bits involved to calculate the non-linear feedback bits

Feedback bits State bits used Feedback bits State bits used

b80 b0, b9, b14, b15, b21, b28, b33,

b37, b45, b52, b60, b62, b63, s0

b81 b1, b10, b15, b16, b22, b29, b34,

b38, b46, b53, b61, b63, b64, s1

b82 b2, b11, b16, b17, b23, b30, b35,

b39, b47, b54, b62, b64, b65, s2

b83 b3, b12, b17, b18, b24, b31, b36,

b40, b48, b55, b63, b65, b66, s3

b84 b4, b13, b18, b19, b25, b32, b38,

b41, b49, b56, b64, b66, b67, s4

b85 b5, b14, b19, b20, b26, b33, b39,

b42, b50, b57, b65, b67, b68, s5

b86 b6, b15, b20, b21, b27, b34, b40
, b43, b51, b58, b66, b68, b69, s6

b87 b7, b16, b21, b22, b28, b35, b41,

b44, b52, b59, b67, b69, b70, s7

b88 b8, b17, b22, b23, b29, b36, b42,

b45, b53, b60, b68, b70, b71, s8

b89 b9, b18, b23, b24, b30, b37, b43,

b46, b54, b61, b69, b71, b72, s9

R7. For 27 ≤ t ≤ 32, the observation (Item 4.1.) for h is used to get equations
on state bits for zt by fixing three state bits as mentioned in Table 1 which
are already fixed in previous steps. Most of the state bits involved in the
equations are already guessed or fixed in earlier steps. In this step, six state
bits b28, b29, b30, b73, b74, b75 can be recovered by guessing two bits s24 for
t = 27 and b27 for t = 30. We brought these rounds before some previous



Recovering Internal States of Grain-v1 333

rounds (for 17 ≤ t ≤ 26), because the recovered bits b73, b74, b75 are used
for the equations in the rounds t = 17, 18, 19 respectively.
Further, in this step, we recover bits from the equations of the rounds in
the order of t = 29, 28, 27, 30, 31, 32 (see Tables 4 and 5). b30, b29, b28 are
recovered in this order, because b30 and b29 are required for the recovery of
b29 and b28 respectively and b28 is required for the recovery of b74.

R8. For 17 ≤ t ≤ 20, the observation (Item 1) for h is used to get non-linear
equations on state bits for zt by fixing a state bit st+46 = 0 as mentioned
in Table 1. However, st+46 = 0 for 18 ≤ t ≤ 20 is already fixed in step R1.
From the equation and update relations, the state bit st+25, 17 ≤ t ≤ 20
can be recovered by guessing the remaining state bits in the equation.

R9. For 21 ≤ t ≤ 26, from the non-linear equation of h observations (Item 1),
six state bits s18 − s19 and s58 − s61 are recovered as the linear bits in the
respective equations. In this step the b77, b78 bits are guessed for t = 21, 22
respectively.

From the above process, we recover 33 state bits from known 33 consecutive
keystream bits. To recover the whole internal state, we need to fix 45 state bits
(out of which 44 bits as a constant value and one bit as a linear equation of state
bits) and guessing rest 82 bits. For this purpose, we exploited 33 equations. The
detailed process of recovery of bits with the fixed, recovered and guessed bits
are presented in Tables 4 and 5. The rows of the Table is presented in order of
recovery. The terms in brackets are previously assigned (i.e., fixed or, guessed
or, recovered).

In comparison with the previous works, we can recover 33 state bits by fixing
45 state bits and guessing rest 82 bits. In earlier results, it is possible to recover
18, 28, 31, 32 bits fixing 54, 51, 32, 0 state bits and guessing rest of state bits
respectively. Hence, our result improves the conditional sampling resistance to
2−33. The comparison is presented in Table 6.

3.3 TMDTO Attack

In this section, we have exploited the TMDTO attack technique to recover the
state bits by using the above results to recover state bits. Here we consider
two TMDTO attacks, by Jiao et al. [14] and by Mihalijevic et al. [16] as the
later TMDTO curve is the modified version of the TMDTO curve followed by
Bjørstad [5] and Mihaljević et al. [15].

The TMDTO parameters by the attack by Jiao et al. [14] are as following.

– Data requirement (D): 2s+s∗
;

– Pre-processing time complexity (P ): 2n−s−s∗
;

– Online time complexity (T ): t2s;
– Memory requirement: (M): m = 2n−s−s∗

t ;

where n is the number of state bits, s is the number of fixed bits, s∗ is the
number of recovered bits, m is the number of rows in the state storing matrix
and t is the number of columns of the matrix such that m × t = 2n−s−s∗

.



334 D. K. Dalai and S. Pal

Table 4. Recovery of state bits

Round

(t)

Constrains Key bits

(zt)

Recovery equation Guessed bits Recovered

bit

0 s46 = 0, s64 = 0 z0 b10 = z0 + b1 + b2 + b4 + b31 +

b43 + b56 + s25 + b63

b1, b2, b4, b31, b43,

b56, s25, b63

b10

1 s47 = 0, s65 = 0 z1 b11 = z1 + b2 + b3 + b5 + b32 +

b44 + b57 + s26 + b64

(b2), b3, b5, b32, b44,

b57, s26, b64

b11

2 s48 = 0, s66 = 0 z2 b12 = z2 + b3 + b4 + b6 + b33 +

b45 + b58 + s27 + b65

(b3, b4), b6, b33, b45,

b58, s27, b65

b12

3 s49 = 0, s67 = 1 z3 b13 = z3 + b4 + b5 + b7 + b34 +

b46 + b59 + s6 + s28

(b4, b5), b7, b34,

b46, b59, s6, s28

b13

4 s50 = 0, s68 = 1 z4 b14 = z4 + b5 + b6 + b8 + b35 +

b47 + b60 + s7 + s29

(b5, b6), b8, b35,

b47, b60, s7, s29

b14

5 s51 = 0, s69 = 1,

s30 = 1

z5 b15 = z5 + b6 + b7 + b9 + b36 +

b48 + b61 + s8 + 1

(b6, b7), b9,

b36, b48, b61, s8

b15

6 s52 = 0, s70 = 1,

s31 = 1

z6 b16 = z6 + b7 + b8 + b10 + b37 +

b49 + b62 + s9 + 1

(b7, b8, b10), b37,

b49, b62, s9

b16

7 s53 = 0, s71 = 1,

s32 = 1

z7 b17 = z7 + b8 + b9 + b11 + b38 +

b50 + b63 + s10 + 1

(b8, b9, b11), b38,

b50, (b63), s10

b17

8 s54 = 0, s72 = 1,

s33 = 1

z8 b18 = z8 + b9 + b10 + b12+ (b9, b10, b12), b39,

b51, (b64), s11

b18

9 s55 = 0, s73 = 1,

s34 = 1

z9 b19 = z9 + b10 + b11 + b13 +

b40 + b52 + b65 + s12 + 1

(b10, b11, b13), b40,

b52, (b65), s12

b19

10 s56 = 0, s74 = 1,

s35 = 1

z10 b20 = z10 + b11 + b12 + b14 +

b41 + b53 + b66 + s13 + 1

(b11, b12, b14), b41,

b53, b66, s13

b20

11 s57 = 0, s75 = 1 z11 b21 = z11 + b12 + b13 + b15 +

b42 + b54 + b67 + s14 + s36

(b12, b13, b15), b42,

b54, b67, s14, s36

b21

12 s15 = 1, s76 = 1,

s37 = 0

z12 b22 = z12 + b13 + b14 + b16 +

b43 + b55 + b68 + 1

(b13, b14, b16,

b43), b55, b68

b22

13 s16 = 1, s77 = 1,

s38 = 0

z13 b23 = z13 + b14 + b15 + b17 +

b44 + b56 + b69 + 1

(b14, b15, b17,

b44, b56), b69

b23

14 s17 = 1, s78 = 1,

s39 = 0

z14 b24 = z14 + b15 + b16 + b18 +

b45 + b57 + b70 + 1

(b15, b16, b18,

b45, b57), b70

b24

15 b78 = 0, s79 = 0,

s40 = 0

z15 b25 = z15 + b16 + b17 + b19 +

b46 + b58 + b71

(b16, b17, b19,

b46, b58), b71

b25

16 s62 = 0, s0 = s13 +

s38 + s23 + s51

z16 b79 = z16 + b17 + b18 + b20 +

b26 + b47 + b59 + b72 + s41

(b17, b18, b20, b47,

b59, s13, s38, s51),

b26, b72, s23, s41

b79

29 (s75 = 1, s54 = 0,

s32 = 1)

z29 b30 = z29 + b31 + b33 + b39 +

b60 + b72 + b85 + s93

(b31, b33, b60,

b72, b39)

b30

Now we will fit our case s = 45, s∗ = 33 and n = 160 with this curve as
following.

– Data requirement (D): 245+33 = 278;
– Pre-processing time complexity (P ): 2160−45−33∗

= 282;
– Online time complexity (T ): t245;
– Memory requirement: (M): m = 282

t ;

If we take the number of columns in the stored matrix t = 216, then the required
memory is M = 282−16 = 266 and the online time complexity is T = 245+16 =
261. The TMDTO curve is TMD = 261.266.278 = 245.2160 = 2sN . So, we have
seen that the required data is reduced by half and the memory requirement is
reduced by 2−5, compared to their attack [8].



Recovering Internal States of Grain-v1 335

Table 5. Recovery of state bits continued

Round

(t)

Constrains Key

bits

(zt)

Recovery equation Guessed bits Recovered

bit

28 (s74 = 1, s53 = 0,

s31 = 1), s63 = 0

z28 b29 = z28 + b30 + b32 + b38 +

b59 + b71 + b84 + s92

(b30, b32, b59,

b71, b38)

b29

27 (s73 = 1, s52 = 0,

s30 = 1)

z27 b28 = z27 + b29 + b31 + b37 +

b58 + b70 + b83 + s91

(b29, b31, b58,

b70, b37), s24

b28

30 (s76 = 1, s55 = 0,

s33 = 1)

z30 b73 = z30 + b31 + b32 + b34 +

b40 + b61 + b86 + s94

(b31, b32, b34, b61,

b40), b27

b73

17 (s63 = 0) z17 s42 = z17+b18+b19+b21+b48+

b60+b27+b73+h(s20, s81, b80)

(b18, b19, b21, b48,

b60, b73), s1, s20, (b28)

s42

31 (s77 = 1, s56 = 0,

s34 = 1)

z31 b74 = z31 + b32 + b33 + b35 +

b41 + b62 + b87 + s95

(b32, b33, b35, b62,

b41, b28)

b74

18 (s64 = 0) z18 s43 = z18+b19+b20+b22+b28+

b49+b61+b74+h(s21, s82, b81)

(b19, b20, b22, b49,

b61, b74), s2, s21, (b29)

s43

32 (s78 = 1, s57 = 0,

s35 = 1)

z32 b75 = z32 + b33 + b34 + b36 +

b42 + b63 + b88 + s96

(b33, b34, b36, b63,

b42, b29)

b75

19 (s65 = 0) z19 s44 = z19+b20+b21+b23+b29+

b50+b62+b75+h(s22, s83, b82)

(b20, b21, b23, b50,

b62, b75), s3, s22, (b30)

s44

20 (s66 = 0) z20 s45 = z20+b21+b22+b24+b30+

b51+b63+b76+h(s23, s84, b83)

(b21, b22, b24, b51,

b63), b76, s4, (s42)

s45

21 (s67 = 1, s46 = 0) z21 s56 = z21 + b22 + b23 + b25 +

b31+b52+b64+b77+h(s85, b84)

(b22, b23, b25, b52, b64,

b31), b77, s5, (s43)

s18

22 (s68 = 1, s47 = 0) z22 s57 = z22 + b23 + b24 + b26 +

b32+b53+b65+b78+h(s86, b85)

(b23, b24, b26, b53, b65,

b32, s44), b78

s19

23 (s69 = 1, s48 = 0) z23 s58 = z23 + b24 + b25 + b27 +

b33+b54+b66+b79+h(s87, b86)

(b24, b25, b27, b54, b66,

b33, b79, s45)

s58

24 (s70 = 1, s49 = 0) z24 s59 = z24 + b25 + b26 + b28 +

b34+b55+b67+b80+h(s88, b87)

(b25, b26, b28, b55,

b67, b34, b28)

s59

25 (s71 = 1, s50 = 0) z25 s60 = z25 + b26 + b27 + b29 +

b35+b56+b68+b81+h(s89, b88)

(b26, b27, b29,

b56, b68, b35, b29)

s60

26 (s72 = 1, s51 = 0) z26 s61 = z26 + b27 + b28 + b30 +

b36+b57+b69+b82+h(s90, b89)

(b27, b28, b30, b57,

b69, b36, b30)

s61

Table 6. Comparison of our result with previous results

References Fixed bits Recovered bits Required keystream bits Guessed bits

Bjørstad [5] 0 21 21 139

Mihaljević et al. [15] 54 18 18 88

Jiao et al. [14] 51 28 28 81

Mihaljević et al. [16] 32 31 31 97

Siddhanti et al. [18] 0 32 36 96

Our work 45 33 33 82

Then Mihaljević et al. [16] used the BS-TMDTO attack as follows. In this
method, the number of fixed bits s and the number of recovered bits s∗ reduce
the total space N = 2n to N

′
= 2n−s−s∗

. The number of stored m × t table is t

such that mt2 = N
′
. The used BS trade-off curve is T

′
M

′2
D

′2
= N

′2
such that

T
′ ≥ D

′2
, where T

′
= t2 and M

′
= mt. The probability of n bits having s fixed

bits and s∗ recovered bits is p = 2−(s+s∗) and the probability of occurring the
given keystream with first s bits are fixed is p

′
= 2−s. The total time complexity

is T = p
′ −1

T
′
and required total data is D = p−1D

′
.



336 D. K. Dalai and S. Pal

In our case, we have s = 45, s∗ = 33 and then N
′
= 282. If we take t = 212,

then T
′

= 224. Now by considering D
′

= 20, we need memory M
′

= 270 by
TMDTO curve. The pre-processing complexity P

′
= N

′

D′ = 282. The probabilities
p = 2−78 and p

′
= 2−45. Then total data is D = p−1D

′
= 278 and the total time

is T = p
′−1

T
′
= 269.

For our case, the TMDTO curve followed by Jiao et al. [14] gives the best
result. Now we compare our result with the previous results in the following
Table 7.

Table 7. Comparison of our result with previous results

References Time (T) Memory (M) Keystream (D) Pre-processing (P)

Bjørstad [5] 270 269 256 2104

Mihaljević et al. [15] 254 288 261 288

Jiao et al. [14] 261 271 279 281

Mihaljević et al. [16] 258 271 276 284

270 271 270 290

Siddhanti et al. [18] 268.06 264 264 296

Our work 261 266 278 282

4 Conclusion and Future Work

We have shown that the conditional sampling resistant of Grain-v1 can be
reduced to 2−33 by fixing 45 bits and guessing 82 bits. Then we get the best
TMDTO curve using this result as a sampling resistance, especially in the cases
of the parameters pre-processing time P , online time T and memory M . Our
future work will focus to reduce the sampling resistant of Grain-v1 which can
further give a better result for TMDTO attack.

References

1. eSTREAM: Stream cipher project for ECRYPT (2005). http://www.ecrypt.eu.
org/stream/

2. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection, no. 408. IEE Conference
Publication (1995)

3. Biryukov, A., Shamir, A.: Cryptanalytic Time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

4. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44706-7 1

5. Bjørstad, T.E.: Cryptanalysis of grain using time/memory/data tradeoffs (2008).
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44706-7_1
http://www.ecrypt.eu.org/stream


Recovering Internal States of Grain-v1 337

6. van den Broek, F., Poll, E.: A comparison of time-memory trade-off attacks on
stream ciphers. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 406–423. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38553-7 24

7. Ding, L., Jin, C., Guan, J., Qi, C.: New treatment of the BSW sampling
and its applications to stream ciphers. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 136–146. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6 9

8. Ding, L., Jin, C., Guan, J., Zhang, S., Li, J., Wang, H., Zhao, W.: New state
recovery attacks on the Grain-v1 stream cipher. China Commun. 13(11), 180–188
(2016)

9. Dunkelman, O., Nathan, K.: Treatment of the initial value in time-memory-data
tradeoff attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)

10. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

11. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. 2(1), 86–93 (2007)

12. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

13. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 19

14. Jiao, L., Zhang, B., Wang, M.: Two generic methods of analyzing stream ciphers.
In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 379–396.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 21

15. Mihaljević, M., Gangopadhyay, S., Paul, G., Imai, H.: Internal state recovery of
Grain-v1 employing normality order of the filter function. IET Inf. Secur. 6(2),
55–64 (2012)

16. Mihaljević, M., Sinha, N., Gangopadhyay, S., Maitra, S., Paul, G., Matsuura, K.:
An improved cryptanalysis of lightweight stream cipher Grain-v1. In: Cryptacus:
Workshop and MC Meeting (2017)

17. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

18. Siddhanti, A.A., Maitra, S., Sinha, N.: Certain observations on ACORN v3 and
Grain-v1-implications towards TMDTO attacks. J. Hardw. Syst. Secur. 3(1), 64–77
(2019)

https://doi.org/10.1007/978-3-642-38553-7_24
https://doi.org/10.1007/978-3-642-38553-7_24
https://doi.org/10.1007/978-3-319-06734-6_9
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/11593447_19
https://doi.org/10.1007/978-3-319-23318-5_21
https://doi.org/10.1007/978-3-540-45146-4_36


Data and User Privacy



GDPR-Compliant Reputation System
Based on Self-certifying Domain

Signatures

Miros�law Kuty�lowski1(B), Jakub Lemiesz1(B), Marta S�lowik1, Marcin S�lowik1,
Kamil Kluczniak2, and Maciej Gebala1

1 Department of Computer Science, Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroc�law, Poland

{miroslaw.kutylowski,jakub.lemiesz}@pwr.edu.pl
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. Creating a distributed reputation system compliant with the
GDPR Regulation faces a number of problems. Each record should be
protected regarding its integrity and origin, while the record’s author
should remain anonymous, as long as there is no justified legal reason to
reveal his real identity. Thereby, the standard digital signatures cannot
be applied to secure the records.

In this paper we propose a Privacy Aware Distributed Reputation
Evaluation system, where each subject of evaluation holds its recom-
mendation record. By application of a novel technique of domain signa-
tures we are able to guarantee that (a) integrity of each entry is strongly
protected; in particular, the evaluation subject cannot modify it, (b)
the author of each entry is anonymous, however all entries of the same
author on the same subject appear under the same pseudonym (so the
Sybil attacks are repelled), (c) the entries corresponding to the same
author but for different evaluation subjects are unlinkable, (d) only reg-
istered users can create valid entries, (e) the real identity of the author
of an entry can be revealed by relevant authorities by running a multi-
party protocol, (f) for each entry one can create a pseudorandom key in
a deterministic way.

The first five features correspond directly to the requirements of the
GDPR Regulation. In particular, they guard against profiling the users
based on the entries created by them.

In order to facilitate practical applications we propose to maintain a
pseudorandom sample of all entries concerning a given evaluation sub-
ject. We show how to guarantee that the sample is fairly chosen despite
the fact that the sample is kept by the evaluation subject. We present
a few strategies enabling to mimic some important probability distribu-
tions for choosing the sample.

This research has been supported by Polish National Science Centre grant OPUS, num-
ber 2014/15/B/ST6/02837 and later by grant 049U/0044/19 at Wroc�law University of
Science and Technology.

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 341–361, 2019.
https://doi.org/10.1007/978-3-030-34339-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_19


342 M. Kuty�lowski et al.

Keywords: Reputation system · Privacy · Anonymity · Pseudonym ·
Domain signature · LRSW · Certificate · GDPR · Probabilistic
counter · Random sample

1 Introduction

1.1 Importance of Reputation Systems

Reputation systems play a fundamental role in the business and social life. This
concerns formal systems offered as services and backed by data processing IT
systems as well as informal systems existing as a social phenomenon. The prac-
tical impact of reputation systems is comparable with the role of the existing
legal and law enforcement systems – in many cases the threat of losing face is
enough to prevent a dishonest behavior. An efficient and fair reputation system
may prevent misconduct as effectively as implementing the rules of the civil and
criminal law. In some areas it is the only source of trust – the criminal law is
concentrated on the most extreme cases and cannot deal with, say, poor quality
of services of a craftsman.

Today many commercial systems offer opinions of the former customers about
the services and goods offered. On the other hand, there are forums created inde-
pendently and enabling to post comments on the services and goods and ranking
them. In all these traditional solutions (see e.g. [16]) the opinions and scores cre-
ated by evaluators are passed to a central server where they are moderated,
stored and aggregated. The aggregation method is almost always computing the
average score in the scale defined by the system. Such methods are somewhat
biased: evaluators with extreme opinions (including the evaluators working for
the competitors or hired by the party being evaluated) may significantly change
the score and the overall picture. A common technique is also a Sybil attack –
inserting many biased opinions under different names by a single person.

The problem becomes even more acute in the democratic societies, where
informal reputation systems are frequently under attack of specialized agencies
hired to disseminate fake news, unfair opinions, etc. for the benefit of malicious
parties attempting to influence democratic elections.

The importance of reputation systems rapidly increases with the number
of purely digital interactions. The amount of uncertainty increases due to the
fact that the partnerships are created in the virtual world, frequently without
any data verification in the real world. Moreover, the cyber sphere becomes a
dominant source of information, while in most cases the data themselves are not
subject to independent verification.

1.2 Basic Principles of Reputation Systems

Any reputation framework is based on the records on the past behavior of the
evaluated party. Taking into account these records we make a prediction on
the future behavior assuming that the past data provides a good basis for such
conclusions. There are two important points here:



GDPR-Compliant Reputation System 343

1. We commonly believe that even if the behavior of the evaluated party may
change, there should be some observable trend that shows what might be the
likely behavior in the future.

2. In social interactions we do not take into account a complete history of our
potential partners, but we concern some fairly small sample from the past.
This also concerns human generated opinions available online: a reader is not
likely to read more than, say, 10 different opinions and scroll more than a
few screens. Consequently, presenting a list of all opinions may distort the
evaluation outcome: the users are likely to take into consideration only a few
most recent reports.

1.3 Basic Threats of Reputation Systems

Trustworthiness of a reputation system depends very much on its resilience to
manipulation aimed to either increase or decrease the score in an unfair way. Let
us name a few situations:

deleting entries: An attacker removes the opinions that do not match his
expectations (this does not concern the situation when deletions follow explic-
itly from the scheme – e.g. removing obsolete entries),

modifying entries: An attacker manipulates opinions entered by other partic-
ipants,

flooding and Sybil attacks: In order to conceal the opinions entered by other
participants, the attacker floods the system with a large number of biased
opinions preferably under many different names (Sybil attack),

aggregation: The amount of data stored or viewed by the participants might
be limited so an aggregation process might be inevitable. However, an aggre-
gation process without reliable monitoring may easily lead to distortion of
the outcome.

Note that flooding and Sybil attacks become now a standard practice for instance
in the social media before political elections.

An effective way to prevent unauthorized modifications and Sybil attacks
would be to require to authenticate each entry posted in the system with a dig-
ital signature of its author. In this case the final recipient of a reputation record
would be able verify the entries himself, without relaying on the parties run-
ning the system. However, this approach creates fundamental privacy protection
problems. Each signed record reveals some small but non-negligible information
about its author. If the opinions are created systematically, then these chunks of
information aggregate resulting in a strongly authenticated profile of the author.
On the other hand, today most of the evaluators prefer to remain anonymous, so
it is unlikely that they would contribute to reputation systems under their own
name. Consequently, the reputation systems would be biased – the only opinions
available would be the ones originating from extroverted participants that are
not particularly concerned about their privacy.



344 M. Kuty�lowski et al.

1.4 GDPR, Legal Risks and Obligations

From the legal point of view a reputation system falls into the scope of the
European General Data Protection Regulation (GDPR) [21] as a profiling sys-
tem, if any target of evaluation is an identifiable physical person. In this case,
strict rules concerning personal data protection must be respected by the party
running the profiling system. The GDPR applies regardless of the location of
the profiling system, as long as it concerns activities occurring in the European
Union.

Moreover, even if the targets of evaluation are not physical persons but, say,
some material products, the rules of the GDPR may apply. This happens, if any
data concerning an identifiable person appear in the system. This concerns in
particular the data of the authors of the opinions. As long as one can identify
their real identity – and this is the case when digital signatures are used for
authenticating opinions’ origin and integrity – the rules of GDPR do apply.

The GDPR regulation formulates many principles for processing personal
data. Many of them lead to substantial technical and organizational problems
for the party deploying the reputation system. Failure to comply with these rules
may result in very high administrative fines imposed on the GDPR violators.
Moreover, the recent trends indicate that the European authorities may not
hesitate to impose such fines even on the most powerful global corporations.

Let us mention a few important issues resulting from the GDPR in the con-
text of a reputation system:

the right-to-be-forgotten: The right to request erasure of own personal data
has been recognized as one of the fundamental human rights. This concerns
in particular the right to destroy own recommendations or at least their link
to the author. With authentication via digital signatures invalidation of the
cryptographic proof is impossible (even through revoking a certificate), unless
special cryptographic techniques are used [13]). The real problem is dissem-
ination of these opinions: it is hard to enforce erasure of all copies once a
system is a global one and the access to it is not strictly limited.
Even more problematic is the case when the evaluation subject is concerned.
There is a long discussion, also within the European Union, on what is the
demarcation line between the private sphere (for which the data protection
rules apply) and the professional or public sphere (where the rights of the
data subject are overridden by other rights). A good example is the case of
opinions on a physician’s practice: to what extent a physician has the right
to request for removal of negative opinions about his medical services?

accountability and privacy-by-design: The major difference between the
situation in the past and the current situation is that a system processing
personal data must by-design apply sufficient safeguards preventing unlawful
data processing. The safeguards might be both organizational and technical,
as well as proportional to the existing risks. At first glance, it seems that the
situation is advantageous for a party running a reputation system. However,
in fact it means that this party is obliged to create a risk assessment and
is responsible for any failure to address realistic threats. Last not least, the



GDPR-Compliant Reputation System 345

party running the reputation system must be able to demonstrate that the
system is compliant with the data protection rules. This goes beyond purely
technical provable security, as we have to deal with the system in a social,
economic and political context. This context might be hard to guess in the
case of global systems due to profound cultural differences.

information for the data subject: The GDPR regulation imposes strict rules
concerning an obligation to provide certain informations to the data subjects
as well as collect their consents. This might be annoying to the users of the
reputation systems and risky to the party running the system due to possible
mistakes in fulfilling these obligations.

In the situation described, it seems that the most pragmatic strategy is to
avoid any unnecessary processing of personal data. Consequently, it would be
desirable to replace data authentication with standard digital signatures by some
equivalent mechanism not involving personal data.

1.5 Architecture of Reputation Systems

The reputation systems can be classified in the following way:

single dataset, centralized database: The system is run by a single party
responsible for data correctness and privacy protection,

single dataset, P2P database: While there is a single dataset, physically it is
stored in a distributed way by a number of independent protocol participants
exchanging data in a kind of a P2P protocol,

fully distributed: Each evaluation subject holds itself a record of opinions
obtained from other users.

The first approach seems to be the most popular in the current commercial
systems. The last one is dominant in the traditional business and professional
relationships for providing credentials to potential partners.

A fully centralized system might be believed as the simplest solution from the
technical point of view. However, authenticating the entries is a serious problem.
If the records are not authenticated by their authors, then the party running the
system can arbitrarily manipulate the evaluation result. On the other hand,
strong authentication creates substantial privacy protection issues.

In a distributed trust system (including such prominent cases as the Bitcoin
mechanism for validating transactions) there is no central server and information
is appended to the common dataset. Similar systems have been proposed e.g.
in [20,23]. In those systems each peer has to maintain its own opinion about all
other peers. The opinion is based on peer’s own experience as well as on opinions
collected over the time from other peers. This approach allows to avoid many
of the problems of the centralized system, however, in a dynamic environment
it may lead to problems with the information flow. Namely, the survey paper
[16] by Jøsang et al. states that: “In a distributed environment, each partici-
pant is responsible for collecting and combining ratings from other participants.
Because of the distributed environment, it is often impossible or too costly to



346 M. Kuty�lowski et al.

obtain ratings resulting from all interactions with a given agent”. In particular,
such an architecture seems to be unsuited for the case when a decision has to be
made on-the-spot, e.g. in opportunistic networks. Other problematic aspects of
distributed reputation systems are connected with the flooding of the network
with a large number of event notifications and storing all gathered information
in each node. Last not least, implementing procedures of data erasure based on
the right-to-be-forgotten rule might be a technical nightmare.

In this paper we follow the fully distributed approach presented in [18], where
each peer stores and carries only its own scores (received from other partici-
pants) and presents them upon request. The protocol should guarantee that if a
peer modifies or hides its scores, then in all likelihood their misbehavior will be
detected.

1.6 Paper Contribution

We propose a generic approach based on pseudonymous signatures for authenti-
cation and protection of the entries in the reputation system. A specially tailored
signature scheme enables to achieve the following properties:

– each record is authenticated with a pseudonymous signature, so any manip-
ulation of the signed data will be detected unless a new signature is created,

– each pseudonymous signature includes a pseudonym of the signer, the
pseudonym is unique for a pair (the signer, the evaluation subject) and the
signer cannot create a different valid pseudonym for a given evaluation sub-
ject,

– it is infeasible to determine whether two different pseudonyms and signatures
concerning different evaluation subjects correspond to the same signer,

– in special circumstances (e.g. law enforcement) it is possible to link a
pseudonym with the real identity of the signer, thereby fulfilling a GDPR
requirement [21].

Moreover, the signature scheme yields pseudorandom values that are unique in
a given situation and verifiable. This enables to design a distributed reputation
system where

– the records with the opinions are stored directly by the evaluation subject,
– the number of stored records is fixed, the records to be stored are chosen

based on pseudorandom deterministic process which is verifiable,
– in a fairly flexible way the protocol parameters enable to determine the prob-

ability distribution of the above pseudorandom choice. E.g., one can choose
a record to be stored “uniformly at random” from the set of all records; or to
concentrate on the recent records. The construction is based on probabilistic
counters.

In our opinion, the combination of pseudonymous signatures and probabilis-
tic counters is a pragmatic design strategy that may have many other practical
applications. What is more, this approach might turn out to be very conve-
nient for the designers facing conflicting technical requirements of the GDPR
regulation.



GDPR-Compliant Reputation System 347

2 Pseudonymous Signature

Below we recall the concept of a pseudonymous signatures (in the literature also
known as domain signatures). Some details – the way in which the domains are
created – are adjusted to our particular needs:

– The actors of a pseudonymous signature scheme are: the Issuer and the sign-
ers. Additionally, any party may verify a signature.

– There are domains. In this paper we focused on the case where for each
evaluated entity there is a domain corresponding to this entity.

– Each signer obtains (or registers) a single secret key from the Issuer to be
used as a signing key for all domains.

– Using its secret, a signer can derive its pseudonym for a given domain. The
pseudonym is unique – the signer cannot derive two valid pseudonyms for the
same domain.

– With its secret key, a signer can derive a signature corresponding to any
of its domain specific pseudonyms. Verification of the signature requires the
signature, the domain name, the signer’s pseudonym in this domain and the
signed data. Neither the real identity of the signer nor any other implicit
identifier (such as a single public key) is required.

– Seclusiveness: a pseudonymous signature yields a proof that it has been cre-
ated by a party enrolled to the system by the Issuer.

– Unlinkability: despite the fact that a user holds a single signing key, its sig-
natures and pseudonyms in different domains are not linkable. A strict cryp-
tographic formulation of this property is that it is infeasible for an external
observer to distinguish between the following cases:
1. the pseudonyms and the signing keys are created according to the scheme,
2. for each domain a participant gets a different key chosen at random from

the pool of valid keys; this key is used to create the domain specific
pseudonym and signatures.

Apart from the above properties, a pseudonymous signature scheme should sat-
isfy the standard properties like unforgeability.

Examples of Pseudonymous Signature Schemes. Prominent examples of
signature schemes involving privacy protection are Direct Anonymous Attes-
tation (DAA) [3], Enhanced Privacy ID (EPID) [2,4] and Domain-Specific
Pseudonymous Signatures (DSPS) [1]. DAA and EPID schemes are designed for
attesting that computation has been done inside a trusted execution environ-
ment, Trusted Platform Module [12] and Intel Software Guard [14], respectively.
The attestation does not reveal the signer, but proves that the signer belongs
to the group managed by the Issuer. There is a high level of privacy protec-
tion: no identity information except for the group membership is proved. The
domain concept is not explicitly supported by DAA and EPID. On the other
hand, DSPS schemes are designed mainly for authentication using the German
personal identity documents. Here, the domain is a leading concept. In the mean-
time, the above schemes already became industrial standards [5,12,15].



348 M. Kuty�lowski et al.

Domain Certificate System (DCS) [19] follows a slightly different philosophy
than the regular pseudonymous signature schemes. Essentially, the user obtains
a pre-certificate in a form of an LRSW signature under his blinded secret key
and on-the-fly may generate domain-specific certificates for standard signature
and identification schemes (such as Schnorr, DSA or ElGamal).

The main conceptual difference, which distinguishes DSPS signature scheme
from DAA and EPID, is that a domain is represented by a domain public key
D ∈ G where G is a cyclic group of a prime order p. Additionally, D has to
be authenticated by a trusted party. Then, the basic approach for deriving a
pseudonym corresponding to a domain public key D is to compute nym = Dx,
where x ∈ Zp is a users’ secret key. Therefore, two pseudonyms Dx

1 and Dx
2 for

D1,D2 ∈ G and D1 �= D2 are indistinguishable from random elements under
the DDH assumption. (The actual construction of a pseudonym in the DSPS
scheme [5] is a bit more complex).

DCS does not impose any direct requirement on the form of domain public
keys D and even allow scenarios, where there is more than one component, as
long as the pseudonym is a tuple (possibly one element) of products of domain
public keys raised to private keys. This includes the simplest case of nym = Dx,
but also more complex ones such as nym = (Dx1

1 Dx2
2 ,Dx3

3 ).
In the case of DSPS it is easy to deanonymize a pseudonym, if y = logg(D)

for a group generator g ∈ G is known. Namely, for a pseudonym nym = Dx one
can compute nym1/y and the result (Dx)1/y = gyx/y = gx is independent of the
domain. The value gx is the main public key of the user holding the private key
x and it can be retained by the Issuer for deanonymization purposes. If needed,
the domain public key D may be computed as gy1·y2·...·yk in a distributed manner
such that the ith authority determines yi at random. In this case all authorities
have to cooperate in order to deanonymize a user. For the DAA and EPID
schemes instead of deanonymization procedure the signer has to prove that it
does not appear on a blacklist.

The main problem for a DSPS scheme is that if secret keys leak from two
or more different devices, then it is easy to compute the Issuer’s secret key
and create new identities. For the case of the proposed reputation system this
would mean necessity of tamper-proof devices, where tamper reseliance must be
unconditional including the most powerful parties. For DAA and EPID schemes
this problem does not occur, however their functionalities do not correspond to
our needs.

The deanonymization technique from DSPS may be applied when selecting
D for DCS as well. Additionally, if D is to be selected as for DAA or EPID,
another deanonymization technique may be applied, such as the one designed for
revocation of the group signatures by Camenisch and Lysyanskaya [6]. Another
simple solution would be to encrypt a generic deanonymization token gx for the
deanonymization authority using ElGamal encryption, prove its correctness and
include this proof in a certificate.

Domain Certificate System [19]. Although DSPS scheme is the most lightweight
one of the presented schemes, it suffers from the fact that it must be implemented



GDPR-Compliant Reputation System 349

on tamper-proof devices. For real-life reputation systems this is an unlikely sce-
nario. We rather have to assume that the users are holding standard devices
where the secret keys are only software protected. For these reasons we recom-
mend using DCS instantiated with Schnorr signatures for maximum flexibility.
Below we describe more design details.

Setup: The Issuer chooses a bilinear pairing friendly setup, including groups
G1,G2 and GT of a prime order p and a pairing function e. The setup should
be of type 2 or 3, so that there is no efficiently computable homomorphism
from G1 to G2. Additionally, two group generators are designated: g1 ∈ G1

and g2 ∈ G2.
Subsequently, the Issuer chooses private keys x, y, z ∈ Zp and computes the
public keys for the User Registration procedure: X1 = gx

1 , Y1 = gy
1 , Z1 = gz

1

and the public keys for the Verification procedure: X2 = gx
2 , Y2 = gy

2 , Z2 = gz
2 .

User Registration: This procedure allows an authenticated user to obtain a
master certificate for his private key. A user i generates his secret key ski

and computes the corresponding main public key pki = gski
1 . Subsequently,

he generates a randomizing factor f and computes a commitment F = Zf
1 .

Then the user i approaches the Issuer and after authenticating himself
presents his public key pki and the commitment F . Then he proves the knowl-
edge of the secret values as follows: First the user commits to random values
r1, r2 by sending T = gr1

1 Zr2
1 to the Issuer. Then the Issuer responds with a

randomly chosen challenge c. The user replies with s1 = r1−c ·ski mod p and
s2 = r2 − c · f mod p. The Issuer verifies the responses by checking whether
(pki · F )c · gs1

1 · Zs2
1 = T .

Finally, the Issuer generates the master certificate in the form of an LRSW
signature. Namely, he selects a random value α ∈ Zp and computes the tuple

σ = (gα
1 , gzα

1 , gyα
1 , gzyα

1 , gxα
1 (pki · F )xyα).

The Issuer registers the public key pki for possible future deanonymization
and sends the User the master certificate σ.
The user must remember the secret key ski, the randomizing factor f and
the master certificate σ.

CreateDomain: This procedure creates the domain public key of a domain j.
The procedure takes as input the public parameters and outputs Dj = gdj ,
for a random dj . This procedure may be executed by multiple parties, so
that D = g

∏
k dk and the kth party knows only dk. This would allow to

deanonymize a user only when all parties cooperate. Additionally, we may
require that Dj is certified by the Issuer, or another trusted party and a
user will be able to verify the certificate before computing and presenting a
pseudonymous signature for this domain.

Domain Certificate generation: This procedure creates a pseudonym and
a domain certificate for the User i and a domain public key Dj ∈ G1.
When approaching domain j for the first time, the User must determine



350 M. Kuty�lowski et al.

his pseudonym and prepare a proof of its correctness in a form of a domain
specific certificate.
Recall the User holds the secret key ski, the randomizing factor f and the
master certificate σ = (A0, A1, B0, B1, C). The pseudonym is extraced simply
as nym = Dski

j .
The certificate σ must be re-randomized to ensure unlinkability. For this pur-
pose the User selects at random the factors r, r′ ∈ Zp. The new certificate is
created by computing

(˜A0, ˜A1, ˜B0, ˜B1, ˜C) = (Ar
0, A

r
1, B

r
0 , B

r
1 , C

rr′
)

and a non-interactive proof that the original signature would verify correctly.
To create such a proof, the User creates a commitment using three more

random values, k0, k1, k2 ∈ Zp, by computing TC = ˜A0

k0 ·˜B0

k1 ·˜B1

k2
. The user

also commits to the pseudonym by computing TD = Dski·k0−k1
j . A challenge

is obtained by computing a hash over the commitments, the randomized
certificate and the pseudonym

c = H(TC , TD, ˜A0, ˜A1, ˜B0, ˜B1, ˜C, nym) (1)

The proof is finalized by computing

s0 = k0 − c · r′ mod p, s1 = k1 − c · r′ · ski mod p, s2 = k2 − c · r′ · f mod p.

Finally, the domain certificate equals

(TC , TD, ˜A0, ˜A1, ˜B0, ˜B1, ˜C, nym, s0, s1, s2).

Domain Certificate verification: This procedure should be executed once by
a Verifier aiming to entrust a pseudonym nym.
To verify correctness of the certificate (TC , TD, ˜A0, ˜A1, ˜B0, ˜B1, ˜C, nym,
s0, s1, s2), the Verifier first recomputes the challenge value c according to
Eq. (1). Next, he verifies if the blinded LRSW signature is valid, by checking
whether

e( ˜Cc, g2) = e(TC/(˜A0

s0 · ˜B0

s1 · ˜B1

s2
),X2), e(˜A0, Z2) = e(˜A1, g2),

e(˜A0, Y2) = e(˜B0, g2), and e(˜A1, Y2) = e(˜B1, g2).

Finally, the Verifier checks that the commited pseudonym matches the signa-
ture by checking whether nym = (TDDs1

j )1/s0 .

Signature creation: Since the system is instantiated with Schnorr signatures,
an obvious choice it to use the standard Schnorr signature scheme. For a
message m and a domain public key Dj ∈ G1, the signature is computed by
selecting a random k ∈ Zp, committing to it by T = Dk

j , computing challenge
c = H(T,m) and response s = k − c · ski mod p. The signature itself is a pair
of (s, c).



GDPR-Compliant Reputation System 351

Signature verification: To verify correctness of a signature, if the pseudonym
nym is trusted, a simple verification of the Schnorr signature is sufficient.
The Verifier simply computes T = nymc · Ds

j and verifies if the hash value
matches c = H(T,m).

For the sake of our reputation system we need also a pseudorandom num-
ber related to a tuple (evaluation author, evaluation subject, additional parame-
ters). This can be computed as a hash value H(nymD,D, additional parameters),
where D is the public key of the evaluation subject, nymD is the pseudonym of
the evaluation author for the domain D.

3 Reputation Systems Based on Probabilistic Counters

In this section we present three different systems for distributed reputation sys-
tems based on probabilistic counters. We use for them the name Privacy Aware
Distributed Reputation Evaluation, or PADRE for short.

3.1 PADRE-1

In PADRE-1, each evaluated party holds two one-dimensional tables: N for the
negative scores and P for the positive scores. Each table has size k, where k is
a system parameter. It is a constant, however k has direct influence on quality
of the approximation of the number of positive and negative scores.

Entering a Score. When a participant A provides a service to another partici-
pant B, then a new entry for either N or P of A is prepared by B. The following
data are created:

– a pseudonym nymA,B of B with respect to the domain of A,
– a pseudonymous signature s of participant B concerning:

• nymA,B ,
• the score b ∈ {0, 1},
• the time t of signature creation,

– an index i = H(nymA,B), where cryptographic hash function H takes values
in the set {0, 1, . . . , k − 1}.

Then the entry (nymA,B , t, b, s) is written on position i into N (if the score is
negative), or into P (if the score is positive).

The parameter b can be skipped as it follows from the context, while for
verification of s the right value can be guessed. Optionally, the entry may also
contain a text T , which is either a detailed opinion (of a fixed length) written
by B or a hash (serving also as a link) to the opinion written by B.



352 M. Kuty�lowski et al.

Enforcing to Store a Score. Presumably, there is a subprocedure that ensures
that A will actually store the entry obtained from B in one of their tables. It
may be realized by the following additional steps:

starting interaction: A sends to B a commitment to store an entry received
from B,

finalizing interaction: A returns to B the tables N and P with the entry from
B and signed by A with the (regular) digital signature of A.

In this case, if say the table N emerges where the entry from B is missing, then
the following situations may occur:

1. the relevant position contains an entry with a later date – in this situation
there is no irregularity, as newer entries overwrite the old ones,

2. the relevant position is empty or contains an entry older than created by B
– in this case the signed table presented at the step finalizing the interaction
between A and B as well as the current state of the tables of A is a strong
cryptographic proof of misconduct of A.

Verification of integrity of N and P. A user obtaining the tables N and P
may check their integrity by verifying that

– for each entry of the table verification of pseudonymous signature yields the
positive result (the standard verification process of pseudonymous signature),

– each entry is written into the appropriate position i = H(nymA,B) of the
table.

Interpretation of the tables N and P. Finally, a user of a reputation system
has to determine the reputation score based on the entries from N and P.
The score can be based on an estimate for the number of positive and negative
opinions and derived from the contents of the tables N and P. In fact, both N
and P can be treated as probabilistic counters. In one round we do the following:

– choose time difference Δ,
– create copies NΔ and PΔ of tables N and P, by removing from them all

entries older than Δ,
– apply the estimator described below in Sect. 3.2 for the number of negative

and positive votes in the time interval [T0 − Δ,T0], where T0 is the current
time.

The whole procedure can be repeated for different values Δ. For instance, Δ
might be 1 week, 1 month, 1 year, etc.

Note that this is quite important not only to see the average opinions, but
also their evolution in time. Indeed, many cases of fraud start with a phase of
building a good reputation followed by a short phase of cheating the business
partners. In our system, even if the scores are aggregated in two tables of a fixed
size, the recent scores get some preference and we get almost a complete list of
scores from the recent transactions. Nevertheless, some old entries persist to exist
(unlike in the case of FIFO queues) due to the Coupon Collector phenomenon.



GDPR-Compliant Reputation System 353

3.2 Estimator for PADRE-1

To estimate the number of scores in a given time period we can use a classic
probabilistic counter (see e.g. [22]) based on the balls and bins model. Namely,
assume that we put at random n balls in k bins, and let Xn be the random
variable denoting the number of bins that are left empty. It is has been proved
in [22] that

n̂ = −k ln (Xn/k) (2)

is almost unbiased and well concentrated estimator of the parameter n. Namely,
for the ratio r := n/k we have

E [n̂]
n

∼ 1 +
er − r + 1

2n
,

and

SE [n̂] ∼ λ(r)√
k

, where λ(r) := (er − r − 1)1/2 r−1,

where E [X] stands for the expected value and SE [X] stands for the standard
error of the random variable X. From the above it can be deduced that the
smaller the ratio r, the higher concentration of the estimator.

Based on the above facts we can derive, for example, an estimator of the
number of positive scores YΔ in time period [T0 −Δ,T0], where T0 is the current
time. Namely, we can calculate the number VΔ of positions that have a time-
stamp t ∈ [T0 − Δ,T0], and if VΔ < k we can use estimator of the form:

ŶΔ = −k ln
k − VΔ

k
.

PADRE-1 Versus FIFO Policy. At this point one would like to compare
PADRE-1 with a simple FIFO policy for storing the records. FIFO has the
advantage over PADRE-1 that the numbers concerning the number of most
recent entries are exact, while for PADRE-1 we are talking about estimates
only. Of course, once in the considered period the number of entries is higher
than the size of the table where they go to, then the FIFO policy fails to provide
valuable data. In case of PADRE-1 we trade sharpness of numbers for a longer
time horizon. This is motivated by two reasons. The first is that the number of
interactions of the evaluated party is itself a random variable and as well as the
opinions depend on some random decisions. So it does not make sense to put too
much effort to keep precision of the numbers. Second, for small values of Δ the
estimator given in (2) is quite precise. On the other hand, it provides a valuable
information long after the number of records inserted exceeds the table size k.
Indeed, note that when we enter k records at random into a table of size k, then
due overwriting the same positions the expected number of unaffected positions
is about k/e. So still there is plenty room for the older records.



354 M. Kuty�lowski et al.

3.3 PADRE-2

The strategy to insert scores into all positions of a table with the same proba-
bility presented in PADRE-1 is just one of many available options. For instance,
one can create a counter where probability to write into a position i strongly
decreases with i. In this way we get a few most recent entries at the beginning.
As on each trial we have a small chance to write into a position with a high i,
these places in the table are normally occupied by older entries. Such a counter
has better potential for counting a large number of entries, however the recent
history is not that visible.

Below we present a construction that is focused on choosing a sample of k
opinions uniformly at random over the whole past history. At the same time we
keep track on the overall number of generated records.

3.4 Construction of PADRE-2

As for PADRE-1, N and P are tables of a fixed size k. The entries in the table are
similar as in Sect. 3.1, however there are substantially different rules concerning
inserting them.

Entering a Score. Assume that a reputation record written by a participant
B about a participant A has to be entered. The following data are prepared:

– a pseudonym nymA,B of B with respect to domain A,
– a pseudonymous signature s of participant B concerning:

• nymA,B ,
• score b ∈ {0, 1},

– a hash value h = H(nymA,B , s), where H is a cryptographic hash function
and h ∈ [0, 1).

Then the following entry is prepared for storing in N (if the score is negative),
or in P (if the score is positive):

E = (nymA,B , h, b, s).

As for PADRE-1 there is an option of inserting a field T with an evaluation text.
The rules for storing an entry E are the following.

1. If there are less than k entries in the table, then store E in an empty place.
2. If there already k entries in the table:

(a) if value of h in entry E is higher than the second component of each
stored entry, then E is dropped,

(b) otherwise, E replaces an entry with the highest second component.

Note that according to this strategy the reputation record of a user A contains
k entries (or less at the beginning of the process) with the smallest hash values h.

Note that the value h depends on the signature s that is not known for
A beforehand. It is necessary, since for h = H(nymA,B) the party A knowing
already nymA,B would also know in advance if the new record obtained from
B is going to be retained in its reputation tables. In such a case the reputation
system would fail to serve its purpose.



GDPR-Compliant Reputation System 355

Time Uniformness. Using the value h = H(nymA,B , s) for the decision to
store or drop a record leads to the following properties:

– The final contents of the tables do not depend on the order of incoming
records – we always store the records with the lowest k values of the second
component of E. Of course, the intermediate contents depends on the order
of incoming records.

– For a good hash function we may assume that the values are evenly distributed
over the interval [0, 1).

3.5 Estimator for PADRE-2

Order Statistics of the Uniform Distribution. Let U1, U2, . . . , Un be a
sequence of random variables. If the realization of those random variables is
arranged in increasing order and written as

U1:n, U2:n, . . . , Un:n,

then the random variable Uk:n is called the kth order statistic.
Further, we assume that variables U1, U2, . . . , Un are independent and uni-

formly distributed on the interval (0, 1). Then it can be shown that the random
variable Uk:n has a distribution belonging to the well known Beta distribution
family (cf. [10])

Uk:n ∼ Beta(k, n + 1 − k). (3)

Cardinality Estimation. Order statistics are quite useful for cardinality esti-
mation, see e.g. [7,8,11]. In distributed environments we can use for example
Partial Counting [8].

Let M stand for the table P or N . For the cardinality estimation the only
component of an entry considered is the hash value h ∈ [0, 1). So for the sake of
readability let us assume that M will store only these hash values and that M
is initialized with ones. The estimator is presented below as Algorithm 1.

Algorithm 1. Estimator for PADRE-2
1: if ∃1≤i≤kM[i] = 1 then
2: return n̂ ← |{i : M[i] �= 1}|
3: else
4: Uk:n ← max

{M[1], . . . ,M[k]
}

5: return n̂ ← (k − 1)/Uk:n

6: end if

Note that if an unknown cardinality n is smaller than the value of k, then
Algorithm 1 will return the exact value of n with a very high probability (only



356 M. Kuty�lowski et al.

hash collisions result in an inaccurate result). In other cases we estimate the
number of elements n by

n̂ =
k − 1
Uk:n

. (4)

The above formula is intuitively clear, as we consider observations from the
uniform distribution over [0, 1) and we might expect that Uk:n ≈ k

n . Fortunately,
apart from this argumentation there is the following strict mathematical result:

Theorem 1. ([9]). Let 3 ≤ k < n. Then the random variable n̂ defined by
Eq. (4) is a strictly unbiased estimator of the number n (i.e. E [n̂] = n) with the
variance

Var [n̂] =
n(n − k + 1)

k − 2
. (5)

Reputation Score. Let us assume that there was n positive and m negative
scores in total, we hash them and sample k and l scores respectively, according
to the above procedure. Note that we need not to have k = l, the proportion
between them may depend on cultural and social issues. Then we can estimate
the number of positive (Ŷ ) and negative (N̂) scores as

Ŷ = k−1
Yk:n

and N̂ = l−1
Nl:m

.

To obtain an easily interpretable single-number summary we could define a rep-
utation score R̂ for example as

R̂ = Ŷ
Ŷ +N̂

.

Note that (by the delta method) we can show that

Var
[

R̂
]

≈ (mn)2

(m+n)4

(

1
k−2 + 1

l−2

)

,

which indicates that the variance of such estimator decreases as sample sizes k
and l increase but it is finite as long as those sizes are at least 3.

3.6 PADRE-3

The last scheme is based on the sequential reservoir sampling [17]. We assume
that each protocol participant needs to keep a sample of k records stored in k
bins (one record per bin). The following properties are fulfilled:

1. for each bin the choice of the record to be stored is independent from the
choices for other bins,

2. given a bin i, there is a dedicated family of probability distributions Pi,n over
all n so far received records. Namely, after receiving n records the record
stored in the bin i is chosen according to the probability distribution Pi,n.



GDPR-Compliant Reputation System 357

The distributions need not to be the same for each bin, we can choose them
independently. Remarkably, the second property holds after each step n of the
process, even if the only operation allowed is to replace the record in the bin
by a new record (the past records are not stored apart from the records in the
bins).

There is a very wide range of distributions that may be used, they are spec-
ified in the way described below, however the most important feature is that
there are possibilities to specify them so that, say, recent records or old records
are preferred in a way that is under our control.

From now on we focus on a single bin. Let w(si) be the weight assigned to
the ith obtained record and Wj =

∑j
i=1 w(si) be the sum of weights for the first

j records. Upon arrival of the nth record the owner of the bin makes a decision
whether to store it in the bin “with probability” w(n)

Wn
. Of course, the choice has

to be deterministic, so the record has to be stored in the bin if

hn <
w(n)
Wn

,

where hn is the parameter h from the nth record. The records are constructed
analogously as for Sect. 3.4, and the parameters h may be treated as a number
in the interval [0, 1). Due to the properties of the hash function, we may treat
the numbers h as chosen uniformly at random from [0, 1). Namely, for a record
issued for A by B, which is the ith record created for A, with the signature s,
and aimed for bin l, we set

h = H(nymA,B , s, l, i)

where, as before, H is a cryptographic hash function.
The most important and remarkable property of sequential reservoir sam-

pling is the following. Assume that n records were obtained in total. Then the
probability that the considered bin contains the ith record is

w(i)
Wn

. (6)

This is obvious for the nth record, however this is true also for any earlier record
(see [17]).

Choice of the Weight Functions. It is straightforward to express many
distribution preferences by the weight function w(si). For example by setting
w(si) = 1 we get a uniform distribution, as according to (6), w(i)

Wn
= 1

n .
By setting w(i) = 2i we get a geometric distribution with the preference to

the most recent scores. Namely, the probability that the record i is stored when
n records have been presented in total is approximately 2i−n−1.



358 M. Kuty�lowski et al.

4 Experimental Results

Now we present the experimental comparison of three proposed aggregation
schemes: PADRE-1, PADRE-2 and PADRE-3. For PADRE-3 we test two
selected weight functions.

Fig. 1. Experimental comparison of different PADRE schemes. Charts present the
content of different schemes in time as new scores are encountered. The total number
of scores received to a given time is placed on the horizontal axis. Indexes of stored
scores are placed on the vertical axis. In each scheme a maximal number of scores to
keep at any given time is 100.

In Fig. 1 we present experimental comparison of three proposed aggregation
schemes. For each scheme we set the maximal number of scores to keep as m =
100 and we show how the content of schemes changes in time as we collect
n = 1000 scores. For the readability of charts we plot only the content after
every 50 steps.

For PADRE-1, which is based on balls and bins model, we can see that
the content reflects rather recent history. There are also some isolated cases of
slightly older scores related to Coupon Collector phenomenon.



GDPR-Compliant Reputation System 359

For PADRE-2, which is based on order statistics, we can confirm that at each
step the content reflects a uniform sample from the whole history.

In plot titled PADRE-3a we show the results for scheme PADRE-3 with the
weight function w(i) = ci, where c = 1.05. As the weight function grows rapidly
the content of the scheme at each step reflects very recent history. If we would
increase the value of c the concentration on the latest history would be even
higher.

In plot titled PADRE-3b we show the results for scheme PADRE-3 with the
weight function w(i) = 1/(i + 1). As the weight function decreases the content
of the scheme is more concentrated on older scores.

In each plots we see a strong relationship between neighboring columns. Such
an effect occurs for any system where only a one new record may be inserted at
a time and where a record once forgotten cannot be recovered anymore.

Conclusions and Future Work

As we have shown, application of pseudonymous signature scheme enables to
create strongly authenticated reputation records. Thereby we create a framework
in which one can process reputation data without the fear of violating personal
data protection rules.

An important point for improving the scheme for practical deployments
would be designing signature schemes that would be based on standard groups.

For practical reasons (e.g. scalability), it is rather impractical to keep all
reputation records. Therefore, we have to adopt some fair method of deleting
data, however without enabling manipulations aiming to influence the resulting
overall reputation score. Three schemes are presented explicitly in the paper.
However, definitely there are many other possibilities. An important point is
that pseudorandomness resulting from domain pseudonyms enables to mimic
any probabilistic sampling scheme in a verifiable way.

References

1. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous
signatures for the German identity card. In: Gollmann, D., Freiling, F.C. (eds.)
ISC 2012. LNCS, vol. 7483, pp. 104–119. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33383-5 7

2. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. In: 2010 IEEE 2nd International Conference on Social
Computing, pp. 768–775, August 2010

3. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, pp.
132–145. ACM (2004)

4. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation
scheme with enhanced revocation capabilities. Cryptology ePrint Archive, Report
2007/194 (2007)

https://doi.org/10.1007/978-3-642-33383-5_7
https://doi.org/10.1007/978-3-642-33383-5_7


360 M. Kuty�lowski et al.

5. BSI: Technical guideline TR-03110 v2.21 - advanced security mechanisms for
machine readable travel documents and eIDAS token (2016). https://www.bsi.
bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html

6. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

7. Chassaing, P., Gerin, L.: Efficient estimation of the cardinality of large data sets.
In: 4th Colloquium on Mathematics and Computer Science, DMTCS Proceedings,
pp. 419–422 (2006)

8. Cichoń, J., Lemiesz, J., Szpankowski, W., Zawada, M.: Two-phase cardinality esti-
mation protocols for sensor networks with provable precision. In: Proceedings of
IEEE Wireless Communications and Networking Conference, WCNC 2012, Paris,
France. IEEE, April 2012

9. Cichoń, J., Lemiesz, J., Zawada, M.: On cardinality estimation protocols for wire-
less sensor networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011.
LNCS, vol. 6811, pp. 322–331. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22450-8 25

10. David, H., Nagaraja, H.: Order Statistics. Wiley Series in Probability and Mathe-
matical Statistics. Wiley, Hoboken (2003)

11. Giroire, F.: Order statistics and estimating cardinalities of massive data sets. Dis-
crete Appl. Math. 157(2), 406–427 (2009)

12. Group, T.C.: Main Specification version 2.0 (2016). https://trustedcomputing
group.org/tpm-main-specification/

13. Hanzlik, L., Kuty�lowski, M., Yung, M.: Hard invalidation of electronic signatures.
In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 421–436. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17533-1 29

14. Intel: Intel Software Guard Extensions (Intel SGX). https://software.intel.com/
en-us/sgx

15. ISO/EIC: 20008–1:2013, anonymous digital signatures - part 1: General (2013).
https://www.iso.org/standard/57018.html

16. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

17. Kolonko, M., Wäsch, D.: Sequential reservoir sampling with a nonuniform distri-
bution. ACM Trans. Math. Softw. 32(2), 257–273 (2006)

18. Liau, C.Y., Zhou, X., Bressan, S., Tan, K.-L.: Efficient distributed reputation
scheme for peer-to-peer systems. In: Chung, C.-W., Kim, C.-K., Kim, W., Ling, T.-
W., Song, K.-H. (eds.) HSI 2003. LNCS, vol. 2713, pp. 54–63. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45036-X 6

19. Slowik, M., Wszola, M.: An efficient verification of CL-LRSW signatures and a
pseudonym certificate system. In: Proceedings of the 4th ACM International Work-
shop on ASIA Public-Key Cryptography, APKC 2017, New York, NY, USA, pp.
13–23. ACM (2017)

20. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M., Systems, M.: Coping with
inaccurate reputation sources: experimental analysis of a probabilistic trust model.
In: Proceedings of the 4th International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2005, pp. 997–1004. ACM Press (2005)

21. The European Parliament and the Council of the European Union: Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/ec (General
Data Protection Regulation). Official Journal of the European Union 119(1) (2016)

https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-22450-8_25
https://doi.org/10.1007/978-3-642-22450-8_25
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
https://doi.org/10.1007/978-3-319-17533-1_29
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.iso.org/standard/57018.html
https://doi.org/10.1007/3-540-45036-X_6


GDPR-Compliant Reputation System 361

22. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic
counting algorithm for database applications. ACM Trans. Database Syst. 15(2),
208–229 (1990)

23. Zhou, R., Hwang, K.: PowerTrust: a robust and scalable reputation system for
trusted peer-to-peer computing. IEEE Trans. Parallel Distrib. Syst. 18(4), 460–
473 (2007)



Defining a New Composite Cybersecurity
Rating Scheme for SMEs in the U.K.

Andrew Rae and Asma Patel(B)

School of Computing and Digital Technologies, Staffordshire University,
Stoke-on-Trent, UK

r021335f@student.staffs.ac.uk, asma.patel@staffs.ac.uk

Abstract. The 5.7 million small to medium enterprises (SMEs) in the
U.K. play a vital role in the national economy, contributing 51% of
the private sector. However, the cyber threats for SMEs are increas-
ing with four in ten of businesses experiencing a cyber attack in the last
twelve months. One significant treatment of this growing concern is in the
implementation of long-established information security standards and
best-practices. Yet, most SMEs are not undergoing the certification pro-
cess, even though the current threats are now widely published by the
government. In this paper, we look at the disconnect of cyber threats
faced by SMEs considering their current security postures and percep-
tions. We also identify the influencing factors needed to improve security
behaviours and engagements with information security best-practices.
We then propose a new foundational composite cybersecurity rating
scheme, which is aimed at SMEs in the U.K., but it also has the potential
to be scaled internationally. The focus of our scheme is to ascertain and
measure the security behaviours, perceptions and risk propensity of each
SME, as well as their technical systems. To that end, we define our 5×5
matrices based scheme by combining the measurements ascertained from
the behavioural as well as technical audits. The preliminary evaluation
results demonstrate that this approach provides a higher level of insight,
engagement and accuracy as to an SME’s individual security posture.

Keywords: Cybersecurity · Data security · Information security ·
Cyber Essentials · ISO 27001 · SMEs · Security behaviours ·
Risk propensity

1 Introduction

In 2018, a survey done by the U.K. government revealed that four in ten U.K.
businesses suffered a cyber-attack within the last twelve months, with the average
cost for an SME of £1,570 per attack [13]. However, another survey [9] on the
security of small businesses showed that less than a quarter of small businesses
cited cybersecurity as one of their top concerns. There appears to be a disconnect
in what SMEs, particularly smaller businesses, perceive as top risks when asked.
This contradictory situation is in a time when, in May 2018, the U.K. put into
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 362–380, 2019.
https://doi.org/10.1007/978-3-030-34339-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_20&domain=pdf
http://orcid.org/0000-0003-1636-5955
https://doi.org/10.1007/978-3-030-34339-2_20


Defining a New Composite Cybersecurity Rating Scheme for SMEs 363

force the new data protection regulation [20]. This regulation now places the
onus and legal requirements on businesses to not only protect their data, but to
also proactively notify the Information Commissioner’s Office of any breaches or
face serious financial consequences such as fines of up to 4% global turnover or
e20 million.

Running in parallel with this concern is the increasing requirement within
the public sector to engage SMEs and push businesses into achieving a recog-
nised cyber or information standard before being allowed into the procurement
process. The U.K. government has gone further and set a 2022 target of achiev-
ing 33% procurement of all their contracts undertaken by SMEs [8]. As this aim
of the government moves forward, it produces opportunities, but it also presents
significant challenges. The perception and current security postures of SMEs,
especially around data and information security risks, are critical challenges.
Consequently, these challenges contribute to the lack of SMEs’ engagement to
existing standards. Cyber Essentials [26] and ISO 27001 [21] are the two prime
examples that provide the key criterion for working with the government; how-
ever, the take up of these standards is still very low since the release of Cyber
Essentials in June 2014 and [21] last major update in 2015. As the U.K. gov-
ernment’s own Minister for Digital and Culture admitted [17], just over 0.1% of
the 5.7 million SMEs in the U.K. have undertaken Cyber Essentials even though
that was particularly designed to help facilitate and encourage smaller businesses
to achieve a recognised standard.

This paper proposes a new robust and consumer-friendly cyber rating scheme.
This scheme provides better-personalised security insights of the persons rea-
sonable for a business and how their behaviours, awareness and risk propensity
impact on these insights. Following are the core principles which defines the new
composite cybersecurity rating scheme:

– To provide a preliminary outline of a robust consumer-friendly cyber rating
scheme which considers the technical requirements, as well as the behavioural
insights of SMEs, through a new composite rating threshold-based model.

– To devise a scheme which has the capability of promoting and incentivising
secure behaviours as well as helping encourage progression into recognised
information security standards.

– Enable higher levels of protection and increase informed decision-making
opportunities for consumers and organisations within a supply chain.

Rest of the paper is organised as follows. Section 2 illustrates the related
work. Section 3 outlines the proposed model design and Sect. 4 demonstrates the
initial evaluations using expert interviews and two quantitative surveys. Section 5
concludes and presents future research workstreams.

2 Related Work

This section discusses the related work in the key research areas that also high-
light the need of defining a new scheme.



364 A. Rae and A. Patel

2.1 SME Security Behaviours and Perceptions

When looking at the literature concerning U.K. SME security behaviours and
perceptions, the options are quite limited. In [18], authors identified some atti-
tudinal changes needed within SMEs to increase the uptake in existing security
standards. The big hypothesis put forward is that SMEs choose not to spend
on information security as they believe the risks are acceptable and, therefore,
do not see the benefits of investing in this area. This suggests that SMEs need
clear, short-term and measurable benefits or incentives to better embrace cyber
and data security. Another study [16] identified that perception is a major factor
which has become engrained in the small business culture to prevent a firm fully
understanding the risks and costly mistakes made by uninformed employees. It
also highlights the perception of information assurance as a field of concern and
concedes that some form of financial assistance and cyber insurance products
do have some impact. However, it can be argued that this study do not cover
national and more widespread impacts to facilitate the culture change needed.

Another factor outlined to try drive more secure behaviours is with the use
of industry products. This leads to another assertion around current behaviours
within SMEs relating to market failure. It is argued that the market did help
drive the development of products such as cyber insurance, but as discussed
in [34], less than 2% of all businesses in the U.K. in 2016 had taken up that
insurance option due to the complexity of the offerings of insurance companies.

Although SMEs are aware of the law, they disconnect to the reality of the
threats, how relevant they are for their business and, also, cannot justify the
effort to reward ratio in implementing a more secure posture. Therefore, it is
logical to suggest that without the basics such as enforceable legislative or finan-
cial drivers in place, there is an apathy shown towards standards and investments
into cybersecurity by smaller businesses when cost control is such a major chal-
lenge. There are several factors that need to be analysed to understand the
behaviours of SMEs around cyber or information security. In [5], authors sug-
gest the focus of research has been too centred around a single behavioural trait;
namely policy compliance. This is further narrowed as the outcome variable is set
to the ‘intention to comply with the information security policy’. This approach
lacks several other factors such as organisational security maturity and legisla-
tive obligations and the questionable perception that SMEs fully understand the
legal implications or requirements.

2.2 Attitudes and Awareness to Cyber or Information Security
standards

In [18], authors suggest that smaller companies would not undertake the larger
established standards such as ISO 27001. And it indicated attitudes and aware-
ness related challenges including lack of internal expertise or understanding the
risks of not having such a system in place; the cost to implement and manage
the standard; the complexity of implementing the standard; SMEs perceived
ISO27001 suitable for only larger organisations. Similarly, authors in [1] specify



Defining a New Composite Cybersecurity Rating Scheme for SMEs 365

that, “...cost and lack of awareness of the standard contents act as a main barrier
for adopting the standard ISO 27001”. A study [18] was published only a year
after the scheme had been officially released. However, the follow-up study [19]
was two years after Cyber Essentials had been released, but this still showed a
low take up of the scheme. It showed that out of a total of 1688 Cyber Essen-
tials and CE Plus certifications, 540, 777, 352 and 19 certificates were issued by
CREST, IASME, QMGS and APMG certification bodies, respectively.

A recent survey [33] highlights that, overall, only 9% of UK businesses were
aware of the Cyber Essentials scheme. This percentage increased in another sur-
vey [32] which showed 21% of UK businesses were aware of Information Security
Management 27001. It disclosed that around 70% of U.K. SMEs are not aware
of the recognised certifications in cyber or information security.

2.3 Comparable Behaviours and Approaches from Other Industries

This section looks at other industries that have implemented assurance schemes
and how they have successfully influenced behaviours within SMEs. A compa-
rable area that has come from reviewing related work shows the areas of health
and environmental activities as one to further investigate [3]. One example is [6]
who argues that health psychology has connected relevance to cybersecurity
psychology as health behaviours are similarly sensitive to that of information
security.

In the U.K., the Food Standards Agency has successfully implemented a local
authority mandated scheme called the Food Hygiene Rating Scheme (FHRS)
[14]. The FHRS rating system is measured on the standards of food hygiene
found at a business following an inspection. This then allows consumers to make
an informed decision on whether to eat at that business based on the assessed
hygiene standards, measured from 1 – worst to 5 – the best. This mandated
scheme has proved to be a driver to encourage businesses not performing well to
do better and those that are achieving high scores, to use that as a marketing
tool to attract customers. Consumers are used to seeing number ratings or star-
based scores for areas like hotel ratings, business reviews, and food hygiene
as they provide an instant and understandable reference point to help enable
a consumer’s buying decision. When looking at how to drive-up standards in
SMEs, FHRS provides additional insight as reported by BBC News [4], who
showed a significant rise in Welsh businesses aiming and achieving the top 5
rating, which was up from 45% to just under 61% in 2015. It also reported that
the “ratio of firms rated satisfactory or better (scores 3 to 5) rose from 86.9%
to 94.4%, while the number of outlets with a zero-rating halved from 134 to 61,
around one in 500”.

Treating cybersecurity like the government treats infectious diseases is a
must, and it is widely accepted that individuals are responsible to make life
choices to improve their own well-being, though we also often engage in some
degree of risky behaviour [28]. FHRS aims to reduce the incidence of food borne
illness and the associated costs to the economy. A similar objective can be argued
for cybersecurity, where the aim is to reduce the incidences of data breaches and



366 A. Rae and A. Patel

cybercrimes and the associated costs and disruption to the economy, business,
and the public. Hence, the need of aligning the merits of cybersecurity with an
established scheme such as FHRS.

2.4 Information Availability and Its Dispersion to SMEs

A key challenge identified was around how SMEs find security-related informa-
tion and the impact the dispersion of information has had on the SMEs security
posture [2,34,35]. These studies highlight the confusing landscape that the vast
array of online channels offer when searching for information. The key question
is how to deliver consistency as the content is not regulated? It is not clear how
an SME would judge whether the source is trustworthy, or that the guidance
given is relevant for them. SMEs are confused about what information to go
with due to the sheer volume of available data and, often, do not know where to
begin. The study [34] showed that only 7% of businesses consulted government
websites and the UK government’s survey showed only 2%. It argues that for the
sake of publicity, concerned news or media reports tend to focus on high-profile
data breach cases even if similar attacks happen against SMEs. That may lead
to the misguided assumption that SMEs are not at risk. Hence, the UK govern-
ment’s attempts at priming or a warning SMEs do not influence the degree of
information disclosure [22].

The European Union Agency for Network and Information Security (ENISA)
organisation did provide a contribution to this topic around an effective way to
share information through the utilisation of the U.K.’s Cybersecurity Informa-
tion Sharing Partnership (CISP) [12]. This would position CISP as a trusted
exchange partner for business to seek guidance on cyber threats and data secu-
rity issues. ENISA [12] does state, “...such an initiative requires high levels of
trust that maybe difficult to achieve amongst large groups of participants”. That
seems to be a fair assessment of SMEs sharing their information, which raises
the question as to whether using anything associated to the government would
be deemed suspicious by SMEs as trust in the U.K. government has broadly
remained unchanged since 2017 at 36% [11].

2.5 Drivers to Help Deliver Increases in Positive Security
Behaviours

Authors in [30] suggest that management can increase compliance in the domain
of information security, by using the social bond theory and the involvement
theory as encourages sharing of knowledge and collaboration. Several useful
areas were rationalised around how to engage and develop behavioural changes
more effectively [5]. One area put forward was the use of vignettes to highlight
behaviours as it helps remove the need to admit to personal information but
still gain insight into the person’s behavioural traits. In addition, individuals are
influenced by subconscious cues and this ‘priming’ through visualisation is an
important element needed for behavioural change. A further driver raised for
consideration is around incentivisation the U.K. government introduced a now



Defining a New Composite Cybersecurity Rating Scheme for SMEs 367

defunct scheme of £5,000 innovation vouchers for SMEs back in 2013 [15]. These
vouchers could be used to improve information security aspects but even though
the actual number of vouchers taken up is unclear, the take up was at a level
the government saw as not being effective. Therefore, three years later from its
introduction they were ceased. This outcome partly supports that market failure
is a major factor in the low adoption of standards. The five drivers were com-
pliance with laws and regulations, protection of brand and reputation, physical
cost of a breach, market pressure for a recognised standard, and stock market
price [18,25].

Several barriers can be extrapolated from the literature that the U.K. SMEs
need to face when trying to achieve positive cybersecurity postures [2,7,23,27].
These barriers include: lack of time or financial resource; lack of understand-
ing the risks or threats; lack of incentives to undertake standards or change
behaviours; lack of pressure for cyber security within their supply chain or via
consumers; lack of compliance drivers; lack of trust in experts or quality of
information (including a single source); lack of expertise within the business;
and unclear or confusing legislation requirements. These studies also highlight
potential opportunities to overcome these barriers that include: protecting cash-
flow; focusing IT expenditure to deliver the most impact and best ROI; cleansing
customer databases for higher engagement and response rates; reducing applica-
ble costs such as cyber insurance or IT financing; better understanding the risks
and potential threats for the business; opening new market or business oppor-
tunities to support business growth; and developing a competitive advantage.
Although any SME will have different weighting ratios of importance against
their identified risk factors, the following key research gaps were identified in
achieving positive cybersecurity postures for the UK SMEs:

– The perceived benefits for implementing security standards are outlined. But
these benefits did not appear to be a compelling solution to help encourage
and facilitate U.K. SMEs to take up those standards outside of it being a
requirement for a public sector contract.

– Behavioural models are discussed, but a clearly defined incentive-based model
that understands the motivational influences for U.K. SMEs to engage in more
secure behaviours was missing.

– Several points are raised around needing a nationally mandated model but
seemed to just use existing standards even though the market had shown a
relatively low take up to date. Therefore, a foundational solution is required
that could be mandated, but it must also demonstrate a relevant value propo-
sition to an SME to be deemed as highly advantageous.

– Further work is needed to ascertain how cybersecurity information is obtained
and the perceived complexity of it, including the potential impact. The liter-
ature also suggest a gap of a single-source trusted information point that is
not government controlled.

– There was a lack of a solution that could address informed decision making by
consumers around cyber or data security that also could be used by industry
as a benchmark.



368 A. Rae and A. Patel

– Comparable behaviours in other industries are discussed, but no actual solu-
tion is suggested to make effective use of that behavioural approach.

These identified gaps also facilitate the identification of the external and
internal influencing factors and their likely collective outcomes when looking at
safer behaviours and developing a more secure organisational culture. Since the
current standards do not capture and help form the behavioural basis, it has
provided the necessary insights to develop a new model.

3 Proposed Rating System

This section presents the proposed cyber rating scheme.

3.1 System Evaluation Method

The literature highlights limitations of the current cybersecurity standards such
as theory choices to influence positive security behaviours, encouraging factors
for standards adoption, the ineffectiveness of standards, approach aligned with a
comparable industry and standards, perceptions and awareness of SMEs. After
analysing these limitations, we defined six hypotheses (H) to influence and refine
the development of the new cybersecurity-based rating scheme for SMEs:

H1. Incentive theories will influence security behaviours more effectively com-
pared to rational choice theories.
H2. Widespread adoption of a cybersecurity standard requires mandated local
authority compliance.
H3. Cybersecurity needs to be more aligned with environmental health in its
appreciation and delivery process.
H4. Businesses lack awareness and perception of relevance or value with current
cybersecurity standards.
H5. Perceived complexity in cybersecurity perpetuates inactivity and a higher
risk acceptance due to the scale of the issue and the diversity of information
available.
H6. Giving people rational security information does not guarantee positive
behaviour change.

Below are the evaluation methods defined to test the validity of the six noted
hypotheses (Sect. 3.1) and the feasibility of a new scheme:

(a) Quantitative and qualitative surveys - To provide a data collection method
from a question set around technical and behavioural concerns associated
with cyber and data security. Also, to gather feedback and positions from
areas SMEs experienced or perceived.

(b) Expert interviews - Through unstructured interviews with industry and aca-
demic experts generate qualitative data and gain a deeper understanding of
their views and their expert feedback against the submitted hypotheses.



Defining a New Composite Cybersecurity Rating Scheme for SMEs 369

Table 1. Mapping the new scheme sections to the five sections in Cyber Essentials.

Sr. no New scheme technical sections Cyber Essential control sections

1 Protecting your network Firewalls and internet gateways

2 Ensuring your systems are securely
configured

Secure configuration

3 Controlling who accesses your
systems

Access control

4 Protecting against malware Malware protection

5 Keeping your systems up-to-date Patch management

3.2 Proposed Rating Method

The relatively low take up of existing standards, primarily focus on technical
and management systems when undertaking audits. It is also true to high-
light the growing threats to SMEs [24], yet there is a lack of awareness or
even the implementation of security measures. As only 49% of businesses not
having implemented the government’s five basic technical controls from Cyber
Essentials; hence, this approach is not working [13]. H6 states providing infor-
mation, regardless of how rational the arguments, is not enough to positively
change behaviours. It also supports the view that rational choice theories are
not enough to bring the change; there may be an opportunity for a better incen-
tivised approach to deliver success (H1).

A key part of the proposed approach is in the measuring of an SMEs security
posture and being able to generate a single-digit (1 to 5) rating to illustrate the
cyber competence and data security effectiveness of that business. To achieve
this rating, the paper proposes utilising two distinct audit areas to generate a
composite rating. The two proposed areas are the SME’s security behaviours
and their technical systems. The aim being to understand both the technical
systems in place to provide mitigation against the various cyber threats as well
as understand and, where needed, influence the SMEs behaviours in how those
systems are utilised, managed and improved.

One half of the rating function will focus on the technical aspects and for
ease of progression will be aligned with Cyber Essentials. The technical audit
will cover five sections similar to Cyber Essentials, with Table 1 illustrating how
the new scheme’s technical audit sections would map across to Cyber Essential’s
current five sections. The other half of the rating function focuses on behaviours
and risk propensity of an SME. From the literature review and industry analysis
(i.e., expert reviews as described in Sect. 4.2), the first iteration of a new quadrant
behavioural model has been developed to illustrate what influences may affect
an SME’s security posture and then allow for levels of weighting to be applied
depending on the ratings scored during the audit process.

Figure 1 shows the assembled new model, named the ‘Fan of Influence’,
derived from the combined analysis of peer research, internal testing, and expert
interviews. The four distinct segments deriving from Fig. 1 include:



370 A. Rae and A. Patel

Fig. 1. Proposed behavioural influencing model for an SME’s security posture.

(a) Perception and Understanding [P&U] segment relates to decision influencing
coming from how the respondent views and perceives the relevance, threat,
risk, and trust of information available. It also covers awareness and how
the respondent views the effort to reward ratio.

(b) External (Personal) [EXT (P)] segment relates to external decision influenc-
ing coming from within the respondent(s) peer (social or work) network and
from past experiences.

(c) External (Inform and Service) [EXT (I&S)] segment relates to external deci-
sion influencing coming from entities or organisations that the respondent
may interface with during normal business operations. This could be areas
which have a greater influence on the respondent(s) business operations such
as the supply chain or the vendors they use.

(d) Regulation and Requirements [R&R] segment relates to fixed decision mak-
ing which are typically a requirement (be it legally or as a standard) that the
respondent must follow. There is usually little to no influence the business
themselves could have on these factors.

This behavioural influencing model concept allows each of the four segments
(and/or segment piece) to be weighted depending on the business and the threat
requirements generated through dynamic means, such as intelligence-based deci-
sion making [10]. The ability for this model to incorporate individualistic influ-
encing factors and recognise the context of an SME’s security decision mak-
ing, helps improve the opportunity of better SME engagement. It also develops
positive security behavioural change through SME owners understanding the
relevant value proposition to their business and the potential benefits of imple-
menting such measures aligned to the current and changing threat landscape.
This level of granularity and behavioural analysis provides a distinctly differ-
ent approach to existing security standards. It is envisaged that the proposed



Defining a New Composite Cybersecurity Rating Scheme for SMEs 371

behavioural model would utilise a top-to-bottom approach when dealing with
cybersecurity improvements and issues as SMEs are typically owner-led that is
the vital source for delivering an organisation-wide culture of security. The chal-
lenges to information security best practices and corporate culture come from
at least three factors: level of threat perceived; location; and lack of cooperation
and communication between management and staff. Recent research has shown
that positive information security culture encourages security-vigilant behaviour
of employees and therefore can help to avoid human-related security breaches [7].

3.3 Defining the Rating Matrices

The proposed scheme would use a composite rating based upon two layers of
assessments, namely, the behavioural and technical audit scores. The result will
deliver a single-digit score aiming to be easily understood by consumers and
businesses alike.

In terms of the scoring matrices themselves, we propose the use of a recog-
nised 5×5 approach [29,31]. Typically, the size of a matrix tends to be a personal
choice and aligned to many aspects, such as what is used by the industry? or
what customers require to use? The 5×5 size of the chosen matrices will provide
enough granularity when defining priorities for secure behaviours and identifying
consequences of threats and maps well for the proposed composite rating and
its associated thresholds needed to define a single-digit visible rating. This size
of matrix is also compatible with the recognised standards of Cyber Essentials,
ISO 27001/05, and IEC 31010.

The first layer required to generate the composite rating is based on results
from the audit around an SME’s behaviours and risk propensity. This scoring
focusses on aspects of insecure behaviours which would impact on the busi-
ness and its customers. It is envisaged that the first layer of scoring (see Fig. 2)
measures the likelihood of insecure behaviours against the consequences to the
business, with the highest score demonstrating the most insecure behaviour pos-
ture. This rating will be used with the technical audit score to produce the nal
composite score.

To deliver an actionable plan from the first layer findings, an additional phase
within the behaviour layer is required. This phase will utilise the behavioural
models outlined in Sect. 3.2 to identify priorities which have the maximum oppor-
tunity to influence secure behavioural change in that SME. This phase scoring is
based on the premise that just identifying insecure behaviours is not enough and
identification of actions is also required. Regular undertaking of this approach
will ensure continual improvement as it will assist with the definition of priori-
ties through the individually identified influencing factors for each business and
ensure costs and outcomes are aligned to that business’ objectives. Any identified
action implemented or not could then influence the scoring following a review of
the first phase. Both Figs. 2 and 3 use the proposed scoring matrix dimension,
and each provides a key as to how the numbers are interpreted in terms of pri-
orities for action or in measuring the impact of insecure behaviours. The score



372 A. Rae and A. Patel

Fig. 2. Phase 1 of behavioural scoring matrix around an SME’s security posture.

Fig. 3. Phase 2 of behavioural scoring matrix around an SME’s security posture.

from Fig. 3 is not currently used in the composite score as it is designed to be
remedial only.

The second layer to be scored is around the technical and systems side of
a business. For this, the information is gathered using a modified audit from
the Cyber Essentials standard. That then enables the promotion of the five
baseline controls needed for business and streamlines the progression to achieve
Cyber Essentials certification. The proposed 5 × 5 matrix is based on two mea-
sures: threat likelihood and business consequences. Much like a traditional risk
assessment of impact and likelihood, this structure allows for any easier way to
understand the risks for a business and therefore, its customers. That is a vital
piece of knowledge when looking to design a rational and comprehensive cyber
rating. Figure 4 shows the proposed scoring matrix and provides a key as to how
the numbers are interpreted in terms of business consequences. The score gener-
ated from this matrix and the summation from the results from Fig. 2 provides
the final composite rating (see Sect. 3.4).

3.4 Composite Scoring

A key foundation to the need of this composite rating is that the current stan-
dards are lacking understanding of SME’s behaviour and risk propensity. Part of
the implementation of this scheme is to develop fresh approaches which achieve
perception change around cybersecurity and deliver safer behaviours by under-
standing and influencing behaviours through personalised motivating factors.

This is achieved through a rating mechanism utilised successfully in other
compliance-led industries, like food hygiene, which enables informed decision



Defining a New Composite Cybersecurity Rating Scheme for SMEs 373

Fig. 4. Proposed 5 × 5 scoring matrix around an SME’s technical risk and threat
vulnerability.

Fig. 5. Proposed composite table to derive the new scheme’s final security rating.

making and addresses current market failures in encouraging a greater standard
take-up and more secure behaviours. Therefore, to achieve this, the process is to
take the results from both matrices shown in Fig. 2 and 4 and generate the final
score from a summation of those two matrices. Figure 5 shows the thresholds and
its associated rating. The threshold can be refined based on further research, but
with the use of a 5×5 for the two scoring models it allows for most of the results
to fit within ‘Satisfactory’ ratings and below and provide a higher threshold for
‘Good’ and ‘Excellent’ ratings. This is seen as desirable as businesses should be
at a high level in both of the audited layers to demonstrate secure behaviours as
well as secure systems as a business must have at least one ‘5’ rating to achieve
a ‘Good’ or above. It also means businesses have to score at least 50% in total
to be deemed ‘Satisfactory’. The min and max percentage ranges in Fig. 5 show
the range of scores that would be achieved in that rating’s banding.

The threshold for the scoring follows the model of the previously discussed
FHRS rating in Sect. 2.3 as that has been proven both successfully implemented
and managed regionally.

Once a composite rating is calculated from Fig. 5, it then leads to the visi-
ble rating seen by consumers and businesses. To further align it with successful
models, such as FHRS, the proposed scheme will use a simplified and recog-
nised scoring approach of 1 to 5 stars with a simple rating explanation included
(columns three and four of Fig. 5). A rating of zero is not included as that would



374 A. Rae and A. Patel

Table 2. Profiles of experts.

Expert reference Background Expertise and experience

Expert 1 Academia
and
research

Noted and published professor in cybersecurity
with vast research experience in human-centred
security and behaviours towards business
(especially SME sizes) and cyber and data
security

Expert 2 Financial
and legal
industry

Head of innovation within a large, blue-chip
service organisation specialising in offering
financial and legal products for business.
Oversees innovation projects such as one with
machine learning based on behaviours

Expert 3 Local
government

Information Governance Manager for a large
district council. Oversees multi-agency
information sharing to ensure processing is
compliant with data protection legislation.
Remit also includes awareness of governance
and training through the boroughs and local
enterprises around many cyber and data
centric subjects

Expert 4 Local
government

Information Governance Manager for a city
council. Many years of experience in all areas
of governance and information assurance,
including working with local authority business
development teams to help local businesses
grow. Also, has long experience with data
security regulations and supply chain
procurement processes within the local
authority

Expert 5 Banking
industry

Lead manager in digital engagement for a
major international bank. Their role focuses on
businesses with turnovers up to £6 million and
is tasked to help provide guidance and raise
awareness in cyber and information security.
Proven experience in training and event
presenting with an expertise in cyber fraud

mean the business is unrated and failed the audit. This approach is to imme-
diately provide consumers and other businesses the ability to make informed
decisions as these ratings would be visually displayed at the entrance, near the
payment area and online.



Defining a New Composite Cybersecurity Rating Scheme for SMEs 375

4 Evaluation

This section presents the initial scheme testing and evaluation strategy. Following
the defined system evaluation methods (described in Sect. 3.1), the testing will
be done over two distinct methods: (a) quantitative surveys with at least one
qualitative question and (b) expert non-structured interviews. These evaluation
methods are designed for preliminary evaluation of the scheme, but the results
do provide evidence around its feasibility and applicability and help form a
foundation for further extensive testing and research.

4.1 Surveys

There were two surveys completed: a technical and a behavioural survey with
the same 15 respondents and with 10 questions in each questionnaire to collect
both quantitative and qualitative data. The sample size is too small to be rep-
resentative of the SME population. However, the conducted surveys do provide
indicative conclusions and useful insights to support the initial evaluation of the
new scheme.
The results from the technical controls and systems survey are given below:

– Nearly 9 in 10 businesses (87%) stated they had one or more firewalls pro-
tecting their network. However, 54% of those businesses stated that they do
not regularly review their firewall rules.

– A third of all surveyed businesses admitted that they do use the same pass-
word across multiple accounts, with 80% of all surveyed micro businesses
stating that they did this.

– 8 out 10 surveyed businesses stated that they change their passwords every
quarter or twice a year, with only around 1 in 10 (13%) stating their change
passwords monthly or less.

– 6 out of 10 surveyed businesses stated that they did have a user account
creating process, but 80% of micro and 33% of small-sized businesses said
they did not.

– The majority (53%) of surveyed businesses indicated that they did not have
anti-virus or malware protection for every Internet-enabled device, which
included 83% of all small-sized businesses. From those that did have malware
protection, businesses regularly scanned for viruses daily/weekly or monthly.

– 60% of all surveyed businesses did state that they ensured at ‘most times’
they had the latest updates on installed software.

– Over 7 in 10 businesses (73%) stated that they did not perform regular vul-
nerability scans on their owned networks, with only medium-sized businesses
stating that they did.

The results from the behavioural and risk propensity survey are given below:

– A third of surveyed businesses did not consider cyber threats or data loss a
significant risk to them.



376 A. Rae and A. Patel

– Most businesses felt that GDPR was relevant to their business (60% stated
fairly or very relevant responses). However, most businesses (80%) found the
new data protection regulations fairly or very difficult to understand.

– Almost equal amount of businesses was aware of Cyber Essentials and ISO
27001 (53% to 47% were not aware of them) with 100% of Accommodation
and food services businesses and 66% of Professional, scientific, and technical
businesses not being aware of Cyber Essentials.

– The majority of businesses (66%), especially the Education businesses sur-
veyed, would speak to friends or colleagues when wanting help on a cyberse-
curity issue.

– Most businesses (73%) found understanding information on cybersecurity to
be either fairly or very difficult to understand, especially from the small-sized
businesses surveyed.

– A third of businesses felt like there was not enough information about cyber-
security available to them, but 40% of businesses stated that there was either
slightly too much or overall, too much information available.

– Trust in the information available was reasonable with 47% trusting most of
the information with 53% trusting some of it.

– The most stated theme when looking at what cybersecurity areas the surveyed
businesses needed help with was around compliance and auditing. The two
main technical responses were around network security & threat analysis and
incident handling. The other key theme raised was around better training,
guidance and awareness.

Table 3. Summary of experts supportive of the hypotheses from Sect. 3.1

Hypotheses Supported by

H1 Incentive theories will influence security behaviours
more effectively compared to rational choice theories

Experts 1, 2

H2 Widespread adoption of a cyber security standard
requires mandated local authority compliance

Experts 3, 4

H3 Cybersecurity needs to be more aligned with
environmental health in its appreciation and delivery to
business

Experts 2

H4 Businesses lack awareness and perception of relevance or
value with current cyber security standards

Experts 1, 2, 3, 4, 5

H5 Perceived complexity in cyber security perpetuates
inactivity and a higher risk acceptance due to the scale
of the issue and the diversity of information available

Experts 2, 3, 4, 5

H6 Giving people rational security information does not
guarantee positive behaviour change

Experts 1, 2, 5



Defining a New Composite Cybersecurity Rating Scheme for SMEs 377

4.2 Expert Interviews

The experts selected for unstructured interviews fitted across the following three
profiles: commercial or industry, academia, and local government. These profiles
helped to give a broad understanding of the various aspects associated with the
proposed scheme. Table 2 lists the profiles of the five experts engaged with for
this paper.

During expert interviews, the initial discussions were on the expert’s experi-
ence and thoughts around a new foundational scheme in cybersecurity for SMEs.
In addition, the six hypotheses from Sect. 3.2 were discussed. Table 3 lists the
six hypotheses and, the experts who supported each of these statements.

5 Conclusion and Future Work

To sum up, there is a perception of complexity around cyber and data security,
especially with the new data protection regulations, and a big area that is needed
is behavioural change. The U.K. government wants more SMEs involved in their
supply chain but there is little evidence to suggest that there will be enough
secure and well managed SMEs in terms of cybersecurity that could help achieve
that aim. To that extent, the movement away from purely rational choice-based
theories and information dispersion needs to be looked in-depth as this paper
has suggested. The proposed system helps gain a personalised understanding of
the risk propensity and influences on secure behaviours for each business, rather
than just what secure technical systems and policies are in place. Further work is
needed to generate larger levels of evidence, but it demonstrated there are core
reasons around why SMEs are not embracing the merits of robust cybersecurity
standards and best-practices more widely, such as Cyber Essentials which was
specifically developed to engage U.K. SMEs. Awareness of such standards and
the perceived relevance and risk propensity are major factors for the current
market failures. To make this scheme a success, these factors would need to be
addressed. This could be achieved by following the FHRS model of enforcing such
a programme at regional level through local government authorities mandating
any businesses handling personal data as an example. Then, the composite app-
roach involving understanding and measuring behaviours and influencing factors
to ensure that SMEs are engaged through relevant, personalised measurements
and actionable plans which generate value-based outcomes and develop positive
security behavioural change. The immediate future work includes:

– Undertake larger survey base to test and refine the two-layer audit model for
robust testing of the ‘Fan of Influence’ model and the six hypotheses. Develop
the required audits against the two-layered scoring models and then map the
answers to suitable scoring within the matrices.

– Develop a new model for the weighting ratio required for the proposed scheme
as a 50/50 ratio would not be reflective of industry needs. The new weighting
model could utilise intelligence-based decision making from data generated by
accredited national security surveys and other such industry accepted sources.



378 A. Rae and A. Patel

Attack types could then be sub-divided into behavioural-based (or the ‘human
error’ factor) and technically-based to facilitate a dynamic annual weighting
to be applied to the composite rating process which would focus the weighting
ratio on the current threat landscape each year and not rely on the knowledge
of the persons undertaking their risk assessments within the current security
frameworks.

– Further develop the incentivised benefits and drivers, including investigating
a mandated supply chain process which could be mirrored within the public
sector at a regional level.

– Extend the mapping exercises of the new scheme against ISO 27001 and Cyber
Essentials to see what percentage of each standard have been undertaken and,
therefore, provide a visual guidance to a business in how much more work is
required to meet other standards to further encourage take-up.

– Include analysis on other non-U.K. standards, such as NIST-800 and the
Cybersecurity Framework to identify if anything of value could be learned
which helps facilitate this model being utilised in other countries.

– Carry out a detailed quantitative pilot study within chosen regional locations
and with approximately 20–30 active business. Using sectors, such as retail,
would provide responses from both consumers and businesses on their per-
ceptions of the new scheme. Also, having a visible cybersecurity rating may
allow for measurements in areas like commercial advantage and consumer
confidence which help develop the value proposition of the scheme.

References

1. Alqatawna, J.: The challenge of implementing information security standards in
small and medium e-business enterprises. J. Softw. Eng. Appl. 7(10), 883–890
(2014)

2. Bada, M., Sasse, A.M., Nurse, J.R.: Cyber security awareness campaigns: why do
they fail to change behaviour? arXiv preprint arXiv:1901.02672 (2019)

3. Barton, K.A., et al.: Information system security commitment: a study of external
influences on senior management. Comput. Secur. 59, 9–25 (2016)

4. BBC News: Food hygiene ratings scheme in wales ‘a big success’ (2015). https://
www.bbc.co.uk/news/uk-wales-politics-34943449

5. Blythe, J.: Cyber security in the workplace: understanding and promoting
behaviour change. Proc. CHItaly Dr. Consort. 1065, 92–101 (2013)

6. Blythe, J.M., Coventry, L., Little, L.: Unpacking security policy compliance: the
motivators and barriers of employees’ security behaviors. In: Eleventh Symposium
On Usable Privacy and Security, pp. 103–122 (2015)

7. Connolly, L., Lang, M.: Information systems security: the role of cultural aspects
in organizational settings (2013)

8. Crown Commercial Service - GOV.UK: The SME spend target must go on (2018).
https://www.gov.uk/government/news/the-sme-spend-target-must-go-on

9. Cyberaware.gov.uk: Small business reputation and the cyber risk- cyber streetwise
and KPMG. Technical report, Cyber Streetwise and KPMG (2015)

10. Dilek, S., Çakır, H., Aydın, M.: Applications of artificial intelligence techniques to
combating cyber crimes: a review. arXiv preprint arXiv:1502.03552 (2015)

http://arxiv.org/abs/1901.02672
https://www.bbc.co.uk/news/uk-wales-politics-34943449
https://www.bbc.co.uk/news/uk-wales-politics-34943449
https://www.gov.uk/government/news/the-sme-spend-target-must-go-on
http://arxiv.org/abs/1502.03552


Defining a New Composite Cybersecurity Rating Scheme for SMEs 379

11. Edelman: Trust barometer 2018 - UK findings (2018). https://www.edelman.co.
uk/magazine/posts/edelman-trust-barometer-2018/

12. ENISA: Cyber security information sharing: an overview of regulatory and non-
regulatory approaches (2015). https://www.enisa.europa.eu/

13. Finnerty, K., et al.: Cyber security breaches survey 2018 (2018). https://www.gov.
uk/government/statistics/cyber-security-breaches-survey-2018

14. Food Standards Agency - FHRS: Food hygiene rating scheme (2019). https://www.
food.gov.uk/safety-hygiene/food-hygiene-rating-scheme

15. Gov.uk: Innovate UK widens the appeal of £5,000 vouchers for small firms
to seek expert advice (2014). https://www.gov.uk/government/news/innovation-
vouchers-for-all

16. Gundu, T., Flowerday, S.: Ignorance to awareness: towards an information security
awareness process. SAIEE Afr. Res. J. 104(2), 69–79 (2013)

17. Matt Hancock’s cyber security speech at the institute of directors con-
ference, March 2017. https://www.gov.uk/government/speeches/matt-hancocks-
cyber-security-speech-at-the-institute-of-directors-conference

18. Henson, R., Garfield, J.: What attitude changes are needed to cause smes to take
a strategic approach to information security? Athens J. Bus. Econ. 2(3), 303–318
(2016)

19. Henson, R., Garfield, J.: SMEs attitudes to “information assurance” and conse-
quences for the digital single market. In: Athens: ATINER’S Conference Paper
Series, No: SME2016-2278, pp. 1–19. Athens Institute for Education and Research
(2017)

20. ICO: Guide to the general data protection regulation (GDPR), April
2019. https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-
general-data-protection-regulation-gdpr/

21. ISO: ISO/IEC 27000 family, April 2019. https://www.iso.org/isoiec-27001-
information-security.html

22. Junger, M., Montoya, L., Overink, F.J.: Priming and warnings are not effective to
prevent social engineering attacks. Comput. Hum. Behav. 66, 75–87 (2017)

23. Kabanda, S., Tanner, M., Kent, C.: Exploring sme cybersecurity practices in devel-
oping countries. J. Organ. Comput. Electron. Commer. 28(3), 269–282 (2018)

24. Kurpjuhn, T.: The SME security challenge. Comput. Fraud Secur. 2015(3), 5–7
(2015)

25. McIlwraith, A.: Information Security and Employee Behaviour: How to Reduce
Risk Through Employee Education, Training and Awareness. Routledge, New York
(2016)

26. NCSC (National Cyber Security Centre): Cyber essentials: the SME spend target
must go on, April 2019. https://www.cyberessentials.ncsc.gov.uk/

27. Osborn, E., Simpson, A.: On small-scale IT users’ system architectures and cyber
security: a UK case study. Comput. Secur. 70, 27–50 (2017)

28. Renaud, K., et al.: Is the responsibilization of the cyber security risk reasonable
and judicious? Comput. Secur. 78, 198–211 (2018)

29. Ristić, D.: A tool for risk assessment. Saf. Eng. 3(7), 2017 (2013)
30. Safa, N.S., Von Solms, R., Furnell, S.: Information security policy compliance model

in organizations. Comput. Secur. 56, 70–82 (2016)
31. Shuttle, M.: Project risk manager: risk matrix sizing: does size really matter?

(2017). https://www.project-risk-manager.com/blog/risk-matrix-sizing/
32. Statista: U.K. businesses’ awareness of ISO 27001 in 2017 (2017). https://

www.statista.com/statistics/586556/iso-27001-awareness-by-united-kingdom-uk-
businesses/

https://www.edelman.co.uk/magazine/posts/edelman-trust-barometer-2018/
https://www.edelman.co.uk/magazine/posts/edelman-trust-barometer-2018/
https://www.enisa.europa.eu/
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2018
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2018
https://www.food.gov.uk/safety-hygiene/food-hygiene-rating-scheme
https://www.food.gov.uk/safety-hygiene/food-hygiene-rating-scheme
https://www.gov.uk/government/news/innovation-vouchers-for-all
https://www.gov.uk/government/news/innovation-vouchers-for-all
https://www.gov.uk/government/speeches/matt-hancocks-cyber-security-speech-at-the-institute-of-directors-conference
https://www.gov.uk/government/speeches/matt-hancocks-cyber-security-speech-at-the-institute-of-directors-conference
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.cyberessentials.ncsc.gov.uk/
https://www.project-risk-manager.com/blog/risk-matrix-sizing/
https://www.statista.com/statistics/586556/iso-27001-awareness-by-united-kingdom-uk-businesses/
https://www.statista.com/statistics/586556/iso-27001-awareness-by-united-kingdom-uk-businesses/
https://www.statista.com/statistics/586556/iso-27001-awareness-by-united-kingdom-uk-businesses/


380 A. Rae and A. Patel

33. Statista: U.K. businesses’ that are aware of the cyber essentials scheme
in 2018 (2018). https://www.statista.com/statistics/586565/cyber-essentials-
scheme-awareness-by-united-kingdom-uk-businesses/

34. Topping, C.: The role of awareness in adoption of government cyber security ini-
tiatives: a study of SMEs in the UK (2017)

35. Tsohou, A., Karyda, M., Kokolakis, S., Kiountouzis, E.: Managing the introduction
of information security awareness programmes in organisations. Eur. J. Inf. Syst.
24(1), 38–58 (2015)

https://www.statista.com/statistics/586565/cyber-essentials-scheme-awareness-by-united-kingdom-uk-businesses/
https://www.statista.com/statistics/586565/cyber-essentials-scheme-awareness-by-united-kingdom-uk-businesses/


Privacy Preserving Approach in Dynamic
Social Network Data Publishing

Kamalkumar Macwan(B) and Sankita Patel

Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
kamal.macwan@yahoo.com, sankitapatel@gmail.com

Abstract. In recent years, social networks have gained special attention
to share information and to maintain a relationship with other people. As
the data produced from such platforms are being analyzed, the privacy
preservation methods must be applied before making the data publicly
available. The anonymization techniques consider one-time releases and
do not re-publish the dynamic social network data. The relationship
between individuals changes with time so it may breach user privacy in
dynamic social networks. In this paper, we propose an anonymization
approach to preserve the user identity from all the published time-series
dataset of a social network.

Multiple instances of the social network may allow the adversary
to identify the user by joining the information together. The existing
anonymization methods for a single instance of a social network are not
enough to preserve user privacy across multiple instances. Moreover, it
requires all instances together for the social graph anonymization pro-
cess. We proposed a method that anonymizes the current instance of the
social graph and publishes it as soon as the instance is available. The
proposed anonymization technique modifies the current social graph irre-
spective of further instances. The average relative error calculates the
deviation in query results for different privacy levels. The experimen-
tal results highlight that the proposed approach generates fewer dummy
nodes.

Keywords: Social network data publishing · Privacy · k-anonymity ·
Time-series social dataset

1 Introduction

Recently, the social network platforms have gained the attention of people world-
wide. People post, share and update their views freely on such platforms. The
huge data generated on social networks are utilized in various fields. This use-
ful information can be helpful for research, market analysis, product popularity,
prediction, etc. Although it provides so much useful information, it raises the
issue regarding user’s privacy whose data is present in that dataset. Stronger
anonymization techniques [1,2] alter the original graph structure in fine ways to

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 381–398, 2019.
https://doi.org/10.1007/978-3-030-34339-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_21


382 K. Macwan and S. Patel

provide privacy. The updated social graph structure has a deviation from the
original one. So, it leads to a decrease in the utility of social dataset.

A single instance of social network dataset represented as a graph fails to
reveal the dynamic nature of social network data. So, instead of publishing a
static network, releasing multiple instances of the same social network make the
datasets richer for analysis. Ensuring user privacy while maintaining the useful-
ness of the released dataset is more challenging in the dynamic social network
dataset. It is observed that anonymizing each version of the network indepen-
dently can leak information by comparing all the published instances [3].

The anonymization concept can also apply to dynamic social networks. The
attacker having background knowledge can identify the hidden information of
users having unique attributes. It is not easy to breach the privacy of those users
who possess the same kind of attributes. So, if there are multiple users or user-
pairs having the same kind of changes in their attributes in successive instances
of the published social dataset then an attacker is unable to reveal the hidden
information with full confidence.

1.1 Single Graph Anonymization

A simple solution to protect user privacy in published social network dataset is
to replace the identities of users by anonymous character. As the attacker may
reveal the private hidden information from the published dataset, this solution is
not enough [1,4]. The existing anonymization techniques provide privacy against
various background knowledge attacks [5,6]. These techniques are categorized
into two types: nodes with attributes [4,7] and without attributes [2,3,8].

Fig. 1. Published social network graph G

We consider social network graph G = (V,E,L), where nodes V represents
users, edges E represents interaction among the users and labels L is used to
describe a specific user. Figure 1 shows the published social network graph G.
The node is associated with a label and each label has <age, gender, location>
attributes to describe the user.



Privacy Preserving Approach in Dynamic Social Network Data Publishing 383

To achieve k-anonymity in the published dataset [7], a class-label represented
as l(v) is replaced with the original label of a node v, satisfying that the original
label of v must be contained in l(v). So, the class-label is generated by including
actual labels of different k nodes. The nodes presented in one class carry the
same class label. So, the attacker has a probability of 1

k to guess the correct
label of a node. For the given social graph G in Fig. 1, the nodes are divided
into different classes. The produced 2-anonymized graph G′ is shown in Fig. 2.
Here, the nodes are classified into four different classes including A= {1, 8},
B = {2, 5}, C = {3, 6} and D = {4, 7}. Different algorithms highlight constraints
for node classification to achieve a better-anonymized result. A simple greedy
approach to partition the nodes into classes is considered in [7]. The utility of
the anonymized graph is improved by considering the attributes of the nodes
for sorting operations. So, similar nodes can be merged into one class to achieve
more utility.

Fig. 2. Anonymized social network graph G’ at k = 2

1.2 Privacy Breach Across Multiple Releases

For the given two instances of the social network graph, the anonymization
approach can be applied to the individual graph. The classification process for
nodes produces different class-labels for the same node in different instances.

For example, two instances of a social graph, G and G1 is shown in Figs. 1
and 3(a) respectively. G1 is the incremental version of G, where edges <4, 9>,
<7, 10> are added. The 2-anonymized graph for the same is represented in Figs. 2
and 3(b) respectively. As these two graphs are published at two different times-
tamps, more information can be extracted for analysis. An attacker can use these
two graphs for comparative analysis and reveal sensitive information from it. If
we focus on the node v = {4} in G and G1, the attached class-labels are {4, 7}
and {4, 10} respectively. Since it is assumed that the evolution of the graph is
incremental, the true identity of that node is revealed.



384 K. Macwan and S. Patel

(a) Original Social Graph G1 (b) Node Neighbouring Graph G’1

Fig. 3. Published social network graph

1.3 Problem Definition

We consider a privacy problem on different instances (time-series) of social
network graph. The time-series of a social network graph is represented as
g = <G0, G1, ...., Gt>. A social network graph at time t is denoted as Gt =
<Vt, Et, Lt> where Vt is a set of nodes representing users at time t, Et is the set
of edges representing interaction among the users and Lt, set of labels, describe
a specific user with different attributes. Here, we assume that g is incremental,
i.e. Vt−1 ⊆ Vt, Et−1 ⊆ Et and Lt−1 ⊆ Lt.

We want to publish the anonymized graphs where each of its released version
should satisfy the below condition:

– An attacker who does not have any background knowledge about the original
graph can figure out the participation of user u in edge e with a probability
at most equal to 1

k .
– An attacker who does not have any background knowledge about the orig-

inal graph can guess the interaction among any two users u and v with a
probability at most equal to 1

k .

1.4 Motivation

Previous work on graph anonymization focused on publishing a single graph
instance. As analysis from the dynamic social network has gained a high demand
in the market, there should be an efficient anonymization approach to maintain
privacy while providing more information in the published dataset. The previous
study focuses on anonymizing a social network graph at different timestamps. In
order to achieve k-anonymity, a common class-label is assigned to at least k nodes
at timestamp t. Now, the same anonymization operation generates different class-
labels at timestamp t+1. As per the class-label generation method, the original
label of the node appears in every class-label assigned to that node. Thus, by
comparing different class-labels assigned at different instances, the actual label
of a node may be revealed. The previous work [9] applies anonymization on
different instances of a time-series social graph in reverse order. It needs all



Privacy Preserving Approach in Dynamic Social Network Data Publishing 385

instances together for the anonymization process. So, the immediate publishing
of the current instance is not possible. It fails to incorporate the change in the
successive release of the social graph to achieve anonymization.

1.5 Challenges

The main challenge is to design a constraint for node selection to make a group
of them, by considering the effect of modification in further graph instances to
maintain the privacy with multiple releases. The label attached to the node may
be different at the different timestamp. So, it violates user privacy. Without
knowing how the network will grow, it is difficult to do proper anonymization
early on. Moreover, the anonymized graph should be useful to obtain accurate
answers to queries.

1.6 Contribution

In this proposed work, we investigate the problem of maintaining user identity
while publishing multiple instances of the same social network dataset. Our
focus is to maintain the privacy of newly added nodes in successive instances of
the graph. The two anonymization approaches are mentioned: firstly, the basic
anonymization algorithm applicable to the initial release of the social graph.
Secondly, the anonymization methods to incorporate the newly added nodes in
a new instance of the graph. So, our proposed approach anonymizes sequential
graphs to satisfy the privacy objective.

1.7 Organization

In this paper, it is focused on preserving user privacy in dynamic social net-
work data publishing. First, Sect. 2 presents an overview of the existing work on
user identity preservation approaches in dynamic social network data publish-
ing. Section 3 contains the preliminaries and different safety constraints to avoid
attacks. The graph clustering approach and proposed anonymization approach
are also discussed in this section. Section 4 contains an experimental analysis of
the proposed approach. Finally, this paper concludes the contributions of this
work and highlights several possible directions for future research in Sect. 5.

2 Related Work

The anonymization approach is extended to the social network dataset after
it was introduced to the tabular data [10]. The anonymization approaches are
divided into two parts [5]: (1) Graph modification approach (2) Clustering-based
approach. The graph modification approach adds/removes nodes and edges so
that the same structure or properties of nodes and edges appear multiple times.
This helps to defeat attacks that try to link to the known structure in the pub-
lished graph [4,11]. The anonymization operations may be performed on degree



386 K. Macwan and S. Patel

of the nodes [2] or neighborhood [8] or edge weights [12]. It requires to make
a lot of modification before publishing the graph. Clustering-based approaches
convert the nodes and edges into super-node which reflects the graph proper-
ties of the sub-graph. The privacy of the social network dataset is categorized
as node-privacy and edge-privacy. The anonymization methods for node-privacy
focuses on node re-identification [8] and disclosure of node attributes [13]. Some
of the existing privacy preservation work in the field of a dynamic social network
are listed here.

2.1 Preserving User Identity in Multiple Release

The privacy issues in sequential data publishing are first considered for relational
databases. Wang and Fung [14] proposed a method to sequentially release the
dataset. They consider quasi-identifier attributes to anonymize the data based
on the previous release of dataset, so the confidence to infer attribute can be
restricted. Xiao and Tao [15] proposed m-variance approach to infer the confi-
dence by adding fake tuples. Then, the privacy preservation approach for mul-
tiple instances of the same social network dataset is also investigated. Zou [3]
suggested that their proposed graph modification method can be extended for
dynamic social datasets too. It is suggested to add more dummy edges to mirror
the newly arriving edges in k places around the graph. But, that brings high devi-
ations in graph topological properties. Tai [16] suggested a new privacy model
named dynamic kw-SDA, to provide the privacy of node and multi-community
identities in sequential publications. But, they only considered the label of com-
munities.

Wang [17] proposed an approach for preventing attacks in a static network
by considering one-hop neighbors as background knowledge. However, it is not
applicable for publishing a dynamic social network dataset. Bhagat [18] proposed
an anonymization method to protect the association of labels between directly
connected nodes. But, it fails to provide the identity protection of those nodes.
Wang [19] covered the degree attack model to a dynamic dataset with the possi-
bility of privacy leakage in sequential releases but did not build models for privacy
protection. The perturbation method is also being used to achieve anonymiza-
tion in social graphs. Liu [20] uses the randomization method to protect the
edge weights of the social network. Liu [21] also proposes the GA algorithm to
achieve k-possible anonymity. As the different labels for the same node or edge
may reveal the actual identity of it, the perturbation method for a dynamic
dataset is not effective. Anonymizing each instance of the dynamic social graph
separately fails to preserve the privacy of the published dataset. So, the node v
should contain identical label in all the published instances of the graph. The
anonymization steps should incorporate with the time-series class safety con-
dition to meet the privacy requirement. The existing approaches for dynamic
social datasets fail to meet the privacy requirement for multiple instances of the
social dataset. To divide the nodes into different classes for labeling is considered
as an important task for further instances also.



Privacy Preserving Approach in Dynamic Social Network Data Publishing 387

3 The Proposed Work

A node with a unique label in a social graph can be easily mapped to a victim
with the help of background knowledge. Our work aims to achieve k-anonymity
for a labeled graph such that there should be at least k nodes having the same
label. The label is generally the set of quasi-identifiers (i.e. age, current city, the
former company, etc.) that could identify a user.

We consider a social network Gt = (Vt, Et, Lt, τ) as a simple, undirected
graph which contains no multiple edges, where the nodes set Vt represent
individual users at time t, the edge set Et represent the connection between
nodes(individuals) at time t, label set Lt contains attributes attached to nodes
and a function τ : Vt ⇒ Lt assigns each node a label. A label contains unique
attribute to describe user and a set of properties(such as birthdate, gender,
location). Let G = <G0, G1, . . . , Gt> be the sequence of graphs representing the
same social network for timestamps t = 0, 1,. . . , t respectively.

3.1 Class Safety Condition (CSC)

The existing approach for single graph anonymization described in Sect. 2 has
some limitations. The different labels attached to the same node across multiple
instances of the graph may reveal its identity. So, dividing the nodes randomly
into different classes cannot provide privacy. It is also observed that the connect-
ing edges between two classes should be very few. As shown in Fig. 4, the dense
link between these two classes reveals that users 2 and 3 have the same friends
including users 1 and 4. Such information leads to identity disclosure risk. The
existing work for privacy preservation in dynamic social datasets considers the
time-series class safety constraint to preserve the sensitive attributes [7].

Fig. 4. Dense links between two classes for k = 2



388 K. Macwan and S. Patel

Definition 1. (Time-Series Class Safety Conditions). The distribution of nodes
from set V into different classes satisfy the Time-series class safety condition if
any node v ε Vt and any class C ⊂ Vt follow:

1. ∀ v ε Vt and w εVt′ : if v εC ∧ w εC ⇒ t = t′.
2. ∀ (v, w) εEt; if v εCv ∧ w εCw ⇒ Cv �= Cw.
3. ∀Ca and Cb ⊂ Vt, ne is the number of edges between Ca and Cb ⇒ ne ≤ k.

The first constraint states that the nodes included in one class should appear
in the same instance of the graph. The second indicates that the connected nodes
should not be part of the same class. The third condition limits the number of
interactions between any pairs of classes in each instance of the published graph.

3.2 Graph Clustering

The graph clustering step divides the nodes into different groups based on node
connectivity. The node connectivity helps to group closer nodes(few intermediate
nodes) to form one cluster. It is useful to find out densely connected groups in
a large graph. The existing graph clustering approaches [22–24] target on graph
structure to have strong connection in each partition. Graph clustering measures
node closeness based on connectivity and structure similarity. It reflects locally
homogenous edge distribution among nodes of the network, with a high density
of edges within a cluster and low density of edges between nodes from different
clusters.

In our work [25], rather than using an already existing clustering algorithm,
we build a separate algorithm. The proposed clustering approach helps to assign
newly inserted nodes to an existing cluster based on their connectivity. Our goal
for graph clustering is to partition the entire graph into different clusters. Then,
we can choose one node from each cluster to assign a class and then assign
a label accordingly. In node connectivity based graph clustering approach, a
node having a higher degree can be useful for cluster formation. Based on this
assumption, Algorithm 1 summarizes the clustering approach proposed in [25].

Fig. 5. Clustering of original social network G



Privacy Preserving Approach in Dynamic Social Network Data Publishing 389

In our approach, we want each class to have at least k different nodes. These
k nodes should be far away (more intermediate nodes) from each other to satisfy
the class safety conditions. The entire social graph should be divided into k
different clusters. So, one node can be selected from each cluster to have a class
of size k nodes. The cluster formation starts by assigning first k number of nodes
having a higher degree as cluster-agent and inserted in respective cluster set. The
nodes having 1 or 2◦ will be directly assigned to the cluster. The other nodes
will be assigned to cluster based on their highest connectivity to that cluster.
Figure 5 shows the cluster formation after applying Algorithm1 to social network
G.

Algorithm 1. Clustering Algorithm
calculate degree[node];
initialize C1, C2, C3,....,Cn clusters
for each 1-neighborhood of cluster Ci do

if degree[v] == 1 or 2 then
add node v to cluster Ci

end if
end for
for each 1-neighborhood of cluster Ci do

if (edges between Ci and v) > (degree(v)/2)) then
add node v to Ci;

end if
end for
for each unvisited node v do

add v to maximum connectivity cluster Ci

end for

Here, the number of clusters can also be extended beyond the anonymization
parameter k. It gives more options to choose nodes for creating a class. So,
depending on the dataset size, one can vary the number of clusters based on the
requirement.

3.3 The Anonymizing Method

Our approach to anonymize a time-series of social network graphs is described
in this section. It is divided into two parts: the anonymization for the initial
instance and further instances. We consider a sequence of time-series social net-
work graphs g = <G0, G1, . . . , Gt>, an anonymization parameter k, and an
attribute priority list listattr. Algorithm 2 states the steps to anonymize the first
instance of the time-series social graph.

The anonymization algorithm contains the clustering approach (Algorithm1)
as a pre-processing step. It divides all nodes into different clusters. It helps to
create different classes of nodes to assign a class-label. Sorting of nodes according
to listattr arrange the nodes with similar attributes nearby. For each unassigned



390 K. Macwan and S. Patel

Algorithm 2. Anonymization for Initial Graph
Apply clustering algorithm to divide all the nodes
Vlist = Sorted nodes of G0 according to listattr
Group C[] = φ
for each v ∈ Vlist do

flag= false
for each c ∈ C[] do

if cluster(v) ∩ cluster[C[c]]=φ and size(C[c]) < k and C[c]
⋃

v does not violate
CSC then

C[c] = C[c]
⋃

v
flag = true

end if
end for
if flag = false then

create a new group in C[]
C[size(c)+1] = v

end if
end for
for each group c of C do

if size(C[c]) < k then
add k - size[C[c]] nodes to C[c]
assign label similar to the group nodes

end if
end for

node v ε Vlist, we sequentially find other k − 1 nearest nodes from each cluster
other than its own cluster. Moreover, the selected nodes must satisfy class safety
conditions. At last, we insert dummy nodes to the classes having less than k
nodes. Set Vdummy contains a list of all inserted dummy nodes. We assign the
attributes for each v ∈ Vdummy as attributes of any node of the class which it
belongs. For example, suppose class C = {4, 6} and k= 3, user 4 and 6 are with
attribute {16, M, PR} and {17, F, KS}. Then, we add a dummy node user 15
with attributes either {16, M, PR} or {17, F, KS}.

These dummy nodes are included in a social network by connecting them
to original nodes. The edge set Eg that includes all such new inserted edges is
defined as, Eg = <Vg, Vo>, where Vg ∈ Vdummy and Vo ∈ V . The nodes Vg and
Vo should be in different classes and should have a minimum connection between
their classes. Thus, it satisfies the CSC too.

The Anonymizing Method for Time-Series Social Network Graphs.
After the initial anonymization step, the social graph is divided into different
clusters. Moreover, the nodes also contain class-label. The new nodes inserted
into successive sequential graph will be assigned to one cluster based on their
connectivity. So, in each instance of the released graph, our main goal is to
identify the newly inserted nodes and to anonymize it. The anonymization steps
listed here should be performed for graph instance G1, G2, . . . , Gt.



Privacy Preserving Approach in Dynamic Social Network Data Publishing 391

Step 1: Identify the new inserted nodes and edges. This can be done by just
simply comparing the new graph with the old one.
Step 2: If the number of inserted nodes is greater than k, make a separate
class for them and assign a label.
Step 3: The classes having a number of inserted nodes smaller than k, can
be merged under the class safety condition or add dummy nodes and assign
a label.

3.4 Example of the Proposed Approach

In this section, we illustrate the working of the proposed method on social graph.
The initial graph is shown in Fig. 6(a). The attributes <age, gender, location> of
the users are shown in Table 1. The initial step is to divide the nodes into different
clusters (�k). The given social graph in Fig. 6(a) is divided into two clusters
C1 = {1, 2, 3, 4} and C2 = {5, 6, 7, 8} by considering k = 2. Let’s assume that
priority list for attribute is <age, location, gender>. Table 2 represents all sorted
nodes of G0 according to listattr = <age, location, gender>. Now, following the
further steps, the nodes are divided into four different classes A= {1, 5}, B = {2,
6}, C = {4, 7} and D = {3, 8}. So, we accordingly assign label to each node as
shown in Fig. 6(b).

(a) The original graph G0 (b) The anonymized graphG0 at k = 2

Fig. 6. Original and published social network graph at t = 0

Let’s assume that the second instance of graph G, released at t = 1, G1 is
shown in Fig. 7(a). Users 9, 10 and 11 are added with attributes <24, M, AS>,
<25, F, US> and <29, M, PR> respectively. From the Figs. 6(a) and 7(a), it is
clear that edges <1, 9>, <5, 11> and <7, 10> are inserted into the new graph
G1. As the number of inserted nodes is more than the value of k, we can create
a new separate class for them. The class has three nodes (three labels) can also
be assigned. Here, we add one dummy node 12 to keep the class size 2. So, the
anonymized graph G′

1 contains two more classes E = {9, 10} and F = {11, 12}.
The attributes of node 11 can be assigned to dummy node 12 too. Figure 7(b)
represents the anonymized graph G′

1 for the instance G1.



392 K. Macwan and S. Patel

Table 1. Attributes of the users <age, gender, location>

1 <23, M, PR>

2 <24, F, US>

3 <26, F, US>

4 <26, M, JK>

5 <21, M, JK>

6 <22, F, US>

7 <26, F, PR>

8 <28, M, PR>

Table 2. Sorted attributes of the users, listattr = <age, location, gender>

5 <21, M, JK>

6 <22, F, US>

1 <23, M, PR>

2 <24, F, US>

4 <26, M, JK>

7 <26, F, PR>

3 <26, F, US>

8 <28, M, PR>

(a) The original graph G1 (b) The anonymized graphG1 at k = 2

Fig. 7. Original and published social network graph at t = 1

3.5 Analysis

The conditions for ensuring the privacy objectives of our method on dynamic
social network data publishing are mentioned in Sect. 3.1. Our proposed app-
roach ensures those conditions to be fulfilled:

– The first condition (∀ v ε Vt and w εVt′ : if v εC ∧ w εC ⇒ t = t′) ensures
that nodes in same class arrives at the same time in each anonymized graph.
In our proposed approach, the node selection procedure for class formation



Privacy Preserving Approach in Dynamic Social Network Data Publishing 393

considers the newly added nodes only. So, there is no combination of nodes
which are from different instances of the graph.

– The second condition (∀ (v, w) εEt; if v εCv ∧ w εCw ⇒ Cv �= Cw) con-
straints that two end nodes should not exist in a class. Our node selection
step selects nodes from different clusters only. So, nodes within class are far
apart from each other in social graph. The anonymized graph contains two
different labels for the connected nodes.

– As the node selection step considers the nodes from k different clusters, the
third condition (∀Ca and Cb ⊂ Vt, ne is the number of edges between Ca and
Cb ⇒ ne ≤ k) also satisfies.

The data utility is also an important issue as far as publishing social network
dataset for analysis is concerned. The proposed approach inserts dummy nodes
to the classes with a size smaller than k. The analysis part on the published
dataset contains aggregation queries. The utility of the published social dataset
is measured by calculating average relative error [7,8,26] as given in Eq. 1, where
d and d′ are the results of querying on the original graphs and the anonymized
graph respectively.

Average relative error =
|d − d′|

|d| (1)

We have considered an incremental scenario of the social graph. As the third
party can access all the previously published datasets, removing the deleted
nodes from the currently published dataset violate user privacy. Moreover, our
proposed anonymization approach considers the newly added nodes and it does
not change the labels of the old nodes. Keeping the same label for the nodes in
all the published instances preserves the privacy of nodes.

In our approach, we focus on anonymizing node labels. So, the node structure
remains the same in an anonymized social graph. To overcome the user identity
disclosure attack based on node degree information, k-degree anonymization [25]
could be performed as a pre-processing step. Likewise, based on the privacy
model, the corresponding anonymization method should be performed first and
then applying our proposed approach can preserve the user identity against
structural and label based attacks.

4 Experimental Evaluation

The utility of the anonymized social network dataset is an important measure-
ment to check the effectiveness of the anonymization approach. The algorithm
is implemented in python and performed on a PC with the Intel Core 2 Qusad
CPU, 3.20 GHz machine with 4 GB main memory running Windows 10 OS. The
utility is measured using average relative error, defined in Sect. 3.5.



394 K. Macwan and S. Patel

4.1 Dataset

We conduct our experiments on Facebook-like Social Network [27] dataset. This
network is originated from an online community for students at the University
of California, Irvine. The dataset includes the users that sent or received at
least one message. Based on the messages, the edges are set among the users. It
contains 1899 nodes and 15,684 edges. This dataset was collected between April
2004 and October 2004.

As the dataset includes a timestamp of the respective connection, we have
divided it into different graphs according to month wise. Table 3 represents the
distribution of the nodes in different groups. Since the datasets have no label, we
have assigned a label to each node with the use of the Adult dataset [28]. We gen-
erated the labels containing three attributes: age (17–65), gender (male/female)
and education (15 qualifications) for each node.

Table 3. The social network dataset

t Timestamp Nodes Edges Inserted nodes Inserted edges

0 April”04 668 1749 668 1749

1 May”04 1596 11275 928 9526

2 June”04 1767 13287 171 2012

3 July”04 1801 13999 34 712

4 August”04 1838 14516 37 517

5 September”04 1888 14879 50 363

6 October”04 1899 15069 11 190

4.2 Experiment Results

To evaluate the utility of the time-series anonymized social dataset, we have
conducted aggregation queries on it. Here, we have used two kinds of queries:
single-hop queries and two-hops queries. The single-hop queries are like: “How
many Bachelors are connected to Masters?” It shows the interaction between one
user with a specific attribute and another one with another attribute. Two-hop
queries observe the attributes of three users. For example, “How many Some-
College users connected to Bachelors, who are also connected to Masters?”

We performed different queries on unsorted data and two sorted data, AEG
: listattr = <Age, Education, Gender> and EAG : listattr =<Education, Age,
Gender>. The experimental results for the 1-hop query and 2-hop query are
shown in Figs. 8 and 9. As the k indicates the number of nodes combined in one
class, it leads to assign more labels to each node. So, the average relative rate
increases as the value of k is increased. The 2-hop queries involved interaction
among 3 nodes whereas 1-hop queries need only 2 nodes. Figures 8 and 9 show



Privacy Preserving Approach in Dynamic Social Network Data Publishing 395

(a) Unsorted (b) Sorted (AEG)

(c) Sorted (EAG)

Fig. 8. The average relative errors (1-hop query)

(a) Unsorted (b) Sorted (AEG)

(c) Sorted (EAG)

Fig. 9. The average relative errors (2-hop query)

that the results obtain for 1-hop queries is better than 2-hop queries in terms of
average relative error.

Figures 8(a) and 9(a) represent that unsorted data have the higher error rate
compared to the sorted dataset. For our experiment, we considered the attribute
‘education’ for the queries and applied the queries on both sorted datasets. As



396 K. Macwan and S. Patel

Fig. 10. Comparison with existing algorithm

can be seen, the sorted dataset based on EAG (Figs. 8(c) and 9(c)) achieves
lower average relative error rate compared to AEG (Figs. 8(b) and 9(b)).

Our graph clustering approach provides a platform to select k nodes to make
a new class for labeling. So, there will be few classes of size less than k nodes. It
requires to add fewer dummy nodes compared to that in the existing approach.
We have compared our experimental results with the existing DMRA algorithm.
Figure 10 shows that our proposed approach generates fewer dummy nodes com-
pared to the DMRA algorithm [9], which results in a comparatively less average
relative error. Moreover, as our proposed approach consider the class safety con-
ditions and select nodes from k different clusters, the attached label to each node
will be valid for further instances also.

5 Conclusion

In this paper, we tackled the problem of preserving privacy for time-series social
graph publishing. The existing anonymization approach for each instance of
the published graph does not guarantee user privacy. To achieve privacy in all
instances of the graph, the time series class safety condition should be retained.
The anonymization approach works separately for the initial instance of the
graph and further instances of the graph. Our analysis of the proposed app-
roach with example justifies that it fulfills the conditions for preserving user
privacy. The experimental results show that the proposed approach generates
fewer dummy nodes and thus ensure more utility in the published dataset. Our
proposed anonymization approach can be extended for node/edge deletion sce-
narios for a dynamic graph.

References

1. Hay, M., Miklau, G., Jensen, D., Towsley, D., Li, C.: Resisting structural re-
identification in anonymized social networks. VLDB J. Int. J. Very Large Data
Bases 19(6), 797–823 (2010)



Privacy Preserving Approach in Dynamic Social Network Data Publishing 397

2. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, pp.
93–106. ACM (2008)

3. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy
preserving network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)

4. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th International Conference on World Wide Web, pp. 181–190. ACM (2007)

5. Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy
preserving publishing of social network data. ACM SIGKDD Explor. Newsl. 10(2),
12–22 (2008)

6. Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and
social networks. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph
Data. ADBS, vol. 40, pp. 421–453. Springer, Boston (2010). https://doi.org/10.
1007/978-1-4419-6045-0 14

7. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph
anonymization for social network data. Proc. VLDB Endow. 2(1), 766–777 (2009)

8. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood
attacks. In: 2008 IEEE 24th International Conference on Data Engineering, ICDE
2008, pp. 506–515. IEEE (2008)

9. Wang, C.-J.L., Wang, E.T., Chen, A.L.P.: Anonymization for multiple released
social network graphs. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.)
PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 99–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37456-2 9

10. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

11. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th
IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)

12. Macwan, K.R., Patel, S.J.: Mutual friend attack prevention in social network data
publishing. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.) SPACE 2017. LNCS,
vol. 10662, pp. 210–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-71501-8 12

13. Song, Y., Karras, P., Xiao, Q., Bressan, S.: Sensitive label privacy protection on
social network data. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS,
vol. 7338, pp. 562–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31235-9 37

14. Wang, K., Fung, B.: Anonymizing sequential releases. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 414–423. ACM (2006)

15. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of
dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data, pp. 689–700. ACM (2007)

16. Tai, C.-H., Tseng, P.-J., Philip, S.Y., Chen, M.-S.: Identity protection in sequen-
tial releases of dynamic networks. IEEE Trans. Knowl. Data Eng. 26(3), 635–651
(2014)

17. Wang, Y., Qiu, F., Wu, F., Chen, G.: Resisting label-neighborhood attacks in
outsourced social networks. In: 2014 IEEE International Performance Computing
and Communications Conference (IPCCC), pp. 1–8. IEEE (2014)

18. Bhagat, S., Cormode, G., Srivastava, D., Krishnamurthy, B.: Prediction promotes
privacy in dynamic social networks. In: WOSN (2010)

https://doi.org/10.1007/978-1-4419-6045-0_14
https://doi.org/10.1007/978-1-4419-6045-0_14
https://doi.org/10.1007/978-3-642-37456-2_9
https://doi.org/10.1007/978-3-319-71501-8_12
https://doi.org/10.1007/978-3-319-71501-8_12
https://doi.org/10.1007/978-3-642-31235-9_37
https://doi.org/10.1007/978-3-642-31235-9_37


398 K. Macwan and S. Patel

19. Medforth, N., Wang, K.: Privacy risk in graph stream publishing for social network
data. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp.
437–446. IEEE (2011)

20. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preserving in social networks against
sensitive edge disclosure. Technical Report CMIDA-HiPSCCS 006–08, Department
of Computer Science, University of Kentucky, KY (2008)

21. Liu, X., Yang, X.: A generalization based approach for anonymizing weighted social
network graphs. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM
2011. LNCS, vol. 6897, pp. 118–130. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23535-1 12

22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

23. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

24. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, pp. 567–580. ACM (2008)

25. Macwan, K.R., Patel, S.J.: k-degree anonymity model for social network data pub-
lishing. Adv. Electr. Comput. Eng. 17(4), 117–124 (2017)

26. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks.
Proc. VLDB Endow. 4(2), 141–150 (2010)

27. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2),
155–163 (2009)

28. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

https://doi.org/10.1007/978-3-642-23535-1_12
https://doi.org/10.1007/978-3-642-23535-1_12
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Short Paper I



Using Freivalds’ Algorithm to Accelerate
Lattice-Based Signature Verifications

Arnaud Sipasseuth(B), Thomas Plantard, and Willy Susilo

Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

{as447,thomaspl,wsusilo}@uow.edu.au

Abstract. We present a novel computational technique to check
whether a matrix-vector product is correct with a relatively high proba-
bility. While the idea could be related to verifiable delegated computa-
tions, most of the literature in this line of work focuses on provably secure
functional aspects and do not provide clear computational techniques to
verify whether a product xA = y is correct where x, A and y are not given
nor computed by the party which requires validity checking: this is typ-
ically the case for some cryptographic lattice-based signature schemes.
This paper focuses on the computational aspects and the improvement
on both speed and memory when implementing such a verifier, and use
a practical example: the Diagonal Reduction Signature (DRS) scheme as
it was one of the candidates in the recent National Institute of Standards
and Technology Post-Quantum Cryptography Standardization Calls for
Proposals competition. We show that in the case of DRS, we can gain a
factor of 20 in verification speed.

Keywords: Diagonal Reduction Signature · Post-Quantum
Cryptography · Lattice-based signatures · NIST · Delegated
computation verification · Lattice-based cryptography

1 Introduction

Post-Quantum cryptography is currently being widely researched. Quantum
computing is improving and it is not clear how long it would take for most
currently used cryptographic primitives to be finally broken by quantum algo-
rithms such as Shor’s algorithm [25] or Grover’s algorithm [13]. This has forced
the National Institute of Standards and Technology (NIST) to call for a stan-
dardization of post-quantum primitives in the hope of having the readiness of
the standarized algorithm when quantum computers arrive [19]. Nevertheless,
research in cryptology still continues outside of the NIST standardization pro-
cess. One such important result is the work of Gama, Izabachene, Nguyen and
Xie [11] which proves that the reduction from average cases to worst cases prob-
lems on q-ary lattices, demonstrated by Ajtai [1] and Regev [23], can be extended
to most random lattices. Therefore one is not required to rely exclusively on q-
ary lattices when building a cryptosystem, unlike all lattice-based candidates
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 401–412, 2019.
https://doi.org/10.1007/978-3-030-34339-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_22


402 A. Sipasseuth et al.

in the second round of the NIST process. However, q-ary lattices can obtain a
Hermite Normal Form (HNF) as a basis for almost free, which allows very fast
verification whether a random vector belongs to the lattice generated by the said
basis, on top of significantly reducing key sizes [17]. Most lattice-based schemes
rely on finding a vector of a lattice with specific properties, mostly being short.
For non q-ary lattice schemes, obtaining a HNF is often costly. While computing
a HNF can be done in polynomial time [20], the actual time used in practice to
compute cryptographically secure HNF basis is too long for most applications.
We propose in this paper a method to alleviate this issue, using a variant of
Freivalds’ algorithm [10] to verify the validity of matrix product. While the core
ideas are also applicable to q-ary lattices and other HNF basis to some extent,
we deem its impact not significant enough to expand on it, and rather we present
an application to one of the schemes submitted to the NIST which did not rely
on q-ary lattices, the Diagonal Reduction Signature scheme (DRS) [21]. DRS did
not use a HNF as a public key: the authors of DRS used an alternative to gener-
ate public keys and used another way to verify if a vector belonged to a lattice.
Our work provides an alternative to verify lattice signatures if the need arises,
showing an interesting trade-off between pre-computation time for signature ver-
ification time and memory storage. In this work, we show that by adopting our
approach to the proposed DRS parameters [27], we gain a factor of 20 on the
verification speed. We also provide another approach on an attack specifically
to our modification as the security of our public key remains unchanged. The
rest of this paper is organized as follows. We will first recall some basic lattice
definitions, Freivalds’ algorithm and then briefly reintroduce DRS mostly focus-
ing on its verification part. We will proceed with the presentation of our new
technique and its results using simple non-optimized implementations, followed
by comments on its security and concluding this work by raising open questions.

2 Background

2.1 Lattice Basics

We call an integer lattice when a finitely generated subgroup of Zn. A basis of
the lattice is a basis as a Z − module. In our work we only consider full-rank
integer lattices, i.e such that any basis B of a lattice L (we note L = L(B)) is
full rank.

We call the max norm l∞ norm: ∀x ∈ Z
n, ‖x‖∞ = maxi∈[1,n] |xi|.

A valid signature in the DRS scheme solve an instance of GDDγ (γ-
Guaranteed Distance Decoding): given a lattice L, x ∈ Z

n and a bound γ ∈ Z,
find v ∈ L such that ‖x − v‖ ≤ γ.

2.2 Freivalds’ Algorithm

Freivalds’ algorithm (Algorithm1) for verifying matrix products [10] is one of
the first probabilistic algorithms to be introduced to show the efficiency and



Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 403

practicality of non-deterministic programs to solve decision problems over deter-
ministic ones. Freivalds’ technique had a major impact on several research fields
and is still an active research topic to this date [8,9]. The decision problem
solved by Freivalds is the following: given A,B,C, three n × n matrices over
an arbitrary ring R, can we verify that A × B = C with a faster method than
recomputing A × B? Freivalds brought a probabilistic solution, which rely on a
simple statement: to check A × B = C, we check instead A × (B × v) = C × v
where v is a randomly sampled vector, and then it follows that the more we run
this test, the more we decrease the probability of obtaining a false-positive. This
leads to Freivalds’ Algorithm 1 which is perfectly complete: it will always output
TRUE whenever A × B = C is correct. It is also sound : the probability of
outputting TRUE for A × B �= C is negligible (as much as we want). The gain
in efficiency compared to a deterministic method is quite impactful as this shifts
the arithmetical computations from a matrix-matrix product to a matrix-vector
multiplication. We are not recalling the proof on the original error probability
bound in [10] but we will later give a much tighter upper bound which will be
more adapted to our case.

Algorithm 1. Freivalds’ algorithm
Require: A, B, C ∈ Rn×n, f ∈ N a failure probability
Ensure: Check the validity of A × B = C with a chance of false-positive under 2−f

1: i ← 0
2: while i < f do
3: v ← Randomly taken in {−1, 1}n

4: x ← Cv, y ← Bv, y ← Ay
5: if x �= y then return FALSE � check validity

6: i ← i + 1

7: return TRUE

2.3 DRS and Its Verification Algorithm

DRS is one of the five lattice-based signature schemes that have been proposed
to the NIST PQC competition [19]. The original idea behind DRS stemmed from
when Plantard, Susilo and Win [22] suggested to use a diagonal dominant matrix
to reduce large message vectors to short signatures within a known hypercube
as a countermeasure against parallelogram detection attacks [18]. The security
of the scheme has been shown to be reduced by a machine learning method
[28] and since then it has been modified to resist against this attack at the cost
of a slower secret key generation [27]. We will briefly describe both keys, the
signature and the verification, the latter being the only part affected by this
work. The secret diagonal dominant matrix (as defined in [7]) Skey is generated
using the work in [27]). The public key Pkey is generated by the multiplication of
Pkey = Skey × U with U unimodular and randomly taken such that ‖Pkey‖∞ <
263. The signature algorithm makes use of the structure of Skey to output (h, s)



404 A. Sipasseuth et al.

to solve the GDDD problem on m with hPkey = m − s and ‖m − s‖∞ < D.
The verification algorithm, Algorithm2, checks two points: the first ensuring
that the vector s is indeed short enough, and the second ensuring that m − s is
indeed a vector of the lattice. This is where DRS differs from other lattice-based
cryptographic schemes even from the original concept from [22]: DRS does not
use a HNF. Our understanding is that the computation time of a HNF was
deemed too large to be suggested for practical uses, and thus the authors of
DRS opted for another solution which impacted the verification algorithm as
they could no longer use HNF to check m − s ∈ L. Another important point
about DRS is their choice to fit every computation within 64-bits to ensure that
computation of h × Pkey does not overflow without the use of multiprecision
integers. The principle of this algorithm can be compared to a verification per
block: we successively deal with parts of the input, where each part taken h′ of
h is chosen such that t = ‖h′Pkey‖∞ < 263 and remove t from m − s until t and
h′ reach 0 exactly at the same time. While this algorithm could be interesting
to improve on its own, we suggest an alternative instance of the scheme where
this verification method can be completely discarded.

Algorithm 2. DRS Verify
Require:

The message m ∈ Z
n, the public key Pkey both stored by Alice

The signature (s, h) given by Bob
Ensure:

The boolean value ( (hPkey = m − s) AND (‖w‖∞ < D) )
1: if ‖w‖∞ > D then return FALSE � Test for max norm first

2: q ← h, t ← v − w � Loop Initialization
3: while q �= 0 ∧ t �= 0 do
4: r ← q mod ‖Pkey‖∞, t ← rPkey − t
5: if t �= 0 mod ‖Pkey‖∞ then return FALSE � Check correctness

6: t ← t/‖Pkey‖∞, q ← (q − r)/‖Pkey‖∞
7: if (t = 0) � (q = 0) then return FALSE � Check correctness

8: return TRUE

3 Modifying Freivalds’ Technique for Lattice-Based
Signature Verification

3.1 The First Core Idea: Modification of Freivalds’ Algorithm

In this work, we modify Frivalds’ technique to obtain a faster probabilistic veri-
fication algorithm. The vector pairs (k,m) to check are not given by the person
who needs the verification but by the signatory, and so is Pkey. In the case where
one public key is re-used over multiple message-signature exchanges, the equal-
ity hPkey = m − s = v must stand true for all vector triplets (h, s,m) provided.
In that case, we can introduce a random vector x� and X = Pkey × x� such



Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 405

that (h × X = v × x�) which reduce a matrix-vector multiplication check to
the comparison of two scalar products (vector-vector multiplications). A differ-
ence with the original Frivalds’ algorithm is that we don’t use x ∈ {−1, 1}n

but rather, we will choose a prime p such that x ∈ F
n
p is taken randomly, and

project the whole equation over the field Fp. For sufficiently many vectors x,X
and primes p, let’s say k primes and k vectors x, our new validity condition is
then (h×Xi = v ×x�

i mod pi)i∈[1,k]. Note that projecting Freivalds’ algorithm
over a finite field was proposed in [15] for a non-cryptographic purpose, however
to the best of our knowledge there is no work that modify the algorithm in the
manner we just described. The choice to use multiple different moduli will be
expanded in Sect. 4. Let us compute the probability of failure of our verification
algorithm. First of all, the algorithm is perfectly complete, i.e it will never out-
put a false negative. The last thing to check is then the probability of a false
positive. In that regard, rather than thinking of probability of a false positive,
let us first compute the proportion of positive results over all possibilities given
a prime p. Let us enumerate all possibilities. If v is fixed, then v ∗ x� = ap

mod p is also fixed. So the proportion of couples (h,m) giving a positive result
is the probability of

∑n
i=1 h[i]X[i] = ap mod p. Without losing generality, if

we choose and index j such that X[j] is non-zero (X being obviously chosen
non-zero) and fix every other coefficient hi such that bp = ap(

∑
i�=j h[i]X[i])−1

mod p, we obtain the result of a positive output with the same proportion as
verifying h[i] = cp mod p which is 1/p for a given prime p. As this reasoning is
sound for any v = m−s and in any triplet (h,m, s), we determine the quantity of
false positives being the difference between the amount of positive outcomes and
the amount of valid positive outcomes, which set a proportion of false positives
of being strictly under 1/p (and by extension its probability over all possible
samples). If we repeat this process over k different vectors, the false positive
probability lowers to below p−k. Generally speaking, if we try the test once per
couple prime/vectors over k primes {pi, xi}i∈[1,k], then the probability of obtain-
ing a false positive becomes lower than

∏k
i=1 p−1

i . This is a tighter upper bound
over Freivalds’ initial upper bound, although our work only concerns our very
specific case and does not apply to the general scope of Freivalds’ technique.

3.2 The Second Core Idea: Changing the Verifier

With our previous idea in mind, we need to explain what we aim to modify in
the previous DRS scheme. First let us briefly recall how the sender/verifier Alice
and the signatory Bob acts in 5 steps:

1. Bob generates a pair of keys {Pkey, Skey}.
2. Bob keeps the secret key Skey, and sends the public key Pkey to Alice.
3. Alice sends a random vector m with “large” norm ‖m‖∞ to Bob.
4. Bob uses Skey to send the signature {h, s} to Alice.
5. Alice verifies that ‖s‖∞ is “low” and hPkey = v = m − s.

While we can consider the verification process to be entrusted to a third-party
like a certification authority, here we restrict ourselves on exclusively modifying



406 A. Sipasseuth et al.

the computation of the verification which is step 5, and inserting a precompu-
tation which can be placed after or during step 2. One important point to stress
on is that Alice does not need to communicate to Bob she is using a precompu-
tation. The whole process is oblivious to Bob and his role does not change at
all compared with the existing DRS process. Hence, it seems natural for us to
assume Alice will keep her computations secret as there is no apparent benefit
in revealing them.

Precomputation. The precomputation construct the samples required to
apply our modified Freivalds’ test and can be described in two halves as fol-
lows:
– Generate a family of tuples (pi, xi)i∈[1,k]

– Compute T = (pi, xi,Xi)i∈[1,k] where Xi = Pkeyxi mod pi given Pkey

The first half of the precomputation do not requires input from Bob as the dimen-
sion is supposed to be public, therefore those can even be precomputed before
Bob generating his keys in step 1. The choice of random generators for primes
and vectors are important for security and efficiency considerations, however
those are not the main point of the paper. As far as our experimental results
are concerned, we just used the basic random function “rand()” of the library
“stdlib.h” in C with the classical modulo operator % to generate our vectors,
and our primes are randomly taken in a set we will discuss in the security section
of this paper, using the MAGMA software [6] to pick primes and write them into
a header file used by our code before the compilation. Its computation time is
negligeable compared to the second part of the precomputation which involves
matrix-vectors modular multiplications.

In the second half of the precomputation, Alice does not need to store Pkey

at the end, and furthermore she does not even need to store the whole public
key while computing Xi. Since for each row j of Pkey Alice can independently
compute Pkey[j] ∗xi = Xi[j] mod pi, Alice can discard every row of Pkey where
the corresponding computation is finished and choose to only receive a certain
amount of rows at a time, which would reduce the amount of internal memory
required for the whole precomputation (and allow for further parallelism). The
cost of the second half of the precomputation is the main cost of the whole
precomputation process.

New Verification Method. The new verification method will apply our mod-
ification on Freivalds’ algorithm using our precomputation step. Alice, at step
5, previously discarded the public key Pkey and kept some small footprint in the
form of a secret list T of triplets and sent a random message m. As she received
in step 4 the signature (k, s) from Bob, her verification process is now described
by Algorithm 3. This new verification algorithm is more compact than the orig-
inal one and also simpler to understand. The only remaining point to deal with
is to choose how large h and the primes pi need to be. We will discuss that in
the next section when discussing security.



Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 407

Algorithm 3. New Verification
Require:

a list of triplets T = (pi, xi, Xi)i∈[1,k] and a message m from Alice
a signature (h, s) from Bob
a public bound D on the signature norm

Ensure:
a boolean R stating whether (h, s) is a valid signature for m and Pkey

R is a false-positive with probability strictly less than
∏k

i=1 p−1

1: R ← {‖s‖∞ < D} � Verifies the max norm of the signature
2: for i ∈ [1, k] do
3: R ← R ∧ {hxi = (m − s)xi mod pi} � Verifies modular equalities

4: return R

4 Security Considerations

While the previous attacks on the old DRS are well-understood heuristics rely-
ing either on machine learning [28] or pure lattice reduction as with most other
lattice-based schemes (being signature-based or decryption-based), our modifica-
tion does not thwart previous attacks nor does it reinforce them and thus rely on
the same security assumptions. However, this is only when considering the only
secret was the diagonal dominant matrix Skey. Here, we introduce a new secret,
which is the list of triplets T generated by Alice. Thus, new attacks venues can
be considered which, to the best of our knowledge, were also not considered in
others lattice schemes submitted to the NIST. We will consider them in this
section. We briefly present the two avenues we found and explain our reasoning
on why only the second can be considered, and tackle this issue. Note that our
reasoning discard all attack venues that can affect the old DRS independently
of our new method, as this would be out of this paper’ scope, and we stress it is
hard to construct a security proof when an attack aside from exhaustive search
cannot be constructed.

4.1 Attack Models

A Malicious Bob. One attack is to try to guess the triplets generated by Alice,
as malicious Bob, by sending carefully crafted keys and signatures. While it is
definitively an interesting idea, as long as Alice generates a different triplet for
each public key (using a hash of Pkey as a seed for example) and only answers
True or False in the verification, we do not see any gain malicious Bob could
have over a honest Bob.

A Honest Bob, and a “Fake Bob” Eve. To the best of our knowledge, the
only other attack venue is having a honest Bob, who is giving good signatures,
and Eve, who has no knowledge of the secret key Skey, wanting to sign as well as
Bob but could not in the existing DRS scheme. Let us suppose Eve knows that



408 A. Sipasseuth et al.

Alice is using our technique for signature verification, although assuming she
has no knowledge of the triplets T and knows as much as Alice concerning Bob.
Can Eve make Alice believe Eve is Bob? To this purpose, we assume Eve has to
generate a false-positive from Alice’s verification algorithm. As Alice can make
the primes pi and their quantity k as large as she wants, it seems unreasonable
to assume Eve can randomly fall into the

∏k
i=1 p−1

i false-positive probability.
Eve cannot resort either to a lattice-reduction technique on an easier lattice
stemming from T if she has no knowledge of T . Furthermore, building a false-
positive for the modified Freivalds’ test is not enough: one has to guarantee the
vector-signature s is short enough. It is then possible that the number of false-
positives drastically decreases, which reinforces the security of our modification
however counting the number of false-positives within a bound seems non-trivial.
Therefore, we believe that for Eve to be successful she must at least recover T
fully. It is unclear if the knowledge of the primes pi is enough for Eve to recover
the associated vectors xi. While this is a very obvious overexaggeration on Eve’s
attack capabilities, we will assume for a simpler analysis that guessing exactly
all pi is sufficient to trigger a false-positive on Alice’s side. We will now explain
how to alleviate this (potential) issue.

4.2 How to Choose the Primes

In order to dissuade Eve from trying to guess the correct set of primes Tp =
(pi)i∈[1,k], we have to make sure the number of possibilities is large enough. In
that regard, we are considering two objectives: one is to reduce the complexity
of arithmetical operations used during the verification algorithm, and the other
is to match a chosen level of security. Which naturally brings us to a natural
question: is it easier to trigger a random false-positive, i.e to try our luck with an
attacker’s success of

∏k
i=1 p−1

i , or to guess Tp? As we will observe later, the set
of combinations Tp is picked from is actually far below

∏k
i=1 pi. We also choose

primes to obtain efficient arithmetic. To deal with the second objective, we will
just fix the level of security to match the same level of security the original DRS
algorithm was aiming to achieve with lattices of dimension {1108, 1372, 1779}:
the NIST security levels {3, 4, 5} which is basically requiring {128, 192, 256} bits
of security. To reach that number, let us present how we determine the number
of combinations available when choosing primes of a certain amount of bits.
Suppose we have a set S of primes, and pick k primes from it which gives

(
S
k

)

combinations to choose from. We now have to determine both S and k. To give
an idea of the numbers required, we give Table 1 and refer to a table available
online [26] referencing the number of primes. While taking low-bits primes to
minimize the amount of modular reductions allows for more efficient arithmetic
(see “lazy reductions” in Seiler’s work for NewHope [24]), we will very soon
show that we have to combine multiple sets of large sizes of primes to achieve a
reasonable amount of security. DRS fitted every computation within 64-bits for
both speed and convenience, and ideally we should follow that philosophy. Our
final choices are:



Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 409

3 : 128-bits security: k = 6 with S the set of 28-bits primes
4 : 192-bits security: k = 9 with S the set of 27 and 28-bits primes
5 : 256-bits security: k = 12 with S the set of 24 to 28-bits primes

Table 1. Size of set S necessary to achieve
(
S
k

)
> 2b

�
��b
k

5 6 7 8 9 10

128 132,496,421 7,910,346 1,080,111 - - -
192 - - 610,573,333 63,155,327 10,957,838 2,727,426

�
��b
k

11 12 13

256 49,751,158 13,974,454 4,801,557

5 Implementation Results

5.1 Time Results on a Basic Implementation

To make a fair comparison, we first give the time given by the original algo-
rithm (setup, sign and verify). Time is given as an average in milliseconds and
computations were done using a Intel(R) Xeon(R) Gold 6128 CPU @ 3.40 GHz
processor using a non-optimized C implementation and re-using the code pro-
vided by the DRS submitters on their website (see Table 2). We then showcase
the base case where we do not take account of the number of combinations and
use just enough 32-bit integers to reach the product size needed, and compare
them with our choices with smaller primes (28-bits or less) in a larger amount
to reach the combination size needed (see Table 3). Note that the generation
of primes is not included, as we used MAGMA [6] to pick primes and write
them into a header file used by our code before the compilation. Picking primes,
however did not take any significant amount of time (almost always lower than
10 ms), and we used an external software to select them. Following this, we do
not think reporting the time taken for the prime generation is very relevant, as
the literature also points out it is on a much lower scale than a matrix-vector
multiplication (for our sizes, see [16] and subsequent work on either heuristic or
deterministic algorithms). We observe that the precomputation is heavier than
the generation of the keys. Which is expected as we are dealing with multiple
modular matrix-vectors multiplications, whereas the original DRS setup only
had to deal with randomized vectors additions. The number of signatures gen-
erated per key to break even in time (including precomputation) compared with
the old DRS is reached for 256-bits of security with 319 signatures (28-bits case)
and 211 (32-bits case).



410 A. Sipasseuth et al.

Table 2. Average time (in ms) for the existing DRS scheme

�������Security
Phase

Setup Signature Verification

128 67.5 1.495 0.89
192 102 2.46 1.68
256 162.9 3.82 3.50

Table 3. Average time (in ms) for the precomputation/verification algorithms

�������
Security

Phase
128 192 256

Precompute (32-bits) 100.16 223.9 646.69
Verify (32-bits) 0.1328 0.2515 0.4297

Precompute (28-bits) 153.21 363.1 1005.1
Verify (28-bits) 0.1048 0.2006 0.3429

5.2 Memory Storage

As we mentioned previously, Alice does not need to store Pk in our alterna-
tive scheme. Memory-wise, this showcases an obvious advantage for the verifier
to require only a quasi-linear amount of memory in function of the dimension
rather than a quadratic amount (i.e full public key). Here in all 3 cases we store k
prime integers of 28-bits, plus 2∗k vectors of dimension n containing 28-bits inte-
gers, thus the memory taken in bytes is �28(k + 2kn)/8	 (see Table 4). Another
potential worry in term of memory in our modified scheme is that the prime
number generation might be taking a lot of memory for the verifier. However,
after decades of research on prime number generation we do not believe this is
the case [14].

Table 4. Memory storage in bytes for Pkey and its footprint T

Security 128 192 256

Pk the public key 7,672,900 11,764,900 19,780,257

pi, xi, Xi 46,557 86,468 149,478

6 Conclusion

In this paper we introduced a modification of Freivalds’ algorithm to introduce a
faster verification method to DRS. By introducing a precomputation step that is
in the same order of magnitude as the setup in time, we gain a factor of almost 20
for the verification part while also heavily reducing its memory cost. This process



Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 411

is done while not modifying any information given by the signatory. Furthermore,
more research should greatly improve this new work. First, we assumed almost
“paranoiac” security requirements, thus a deeper analysis should improve effi-
ciency. Second, we can make use of Residue Number Systems: stemming from
[12] with several applications [2–5], finding large arithmetically efficient random
groups is exactly what we need. Third, generalizing to all lattices and HNF
keys. It needs the extra vector h, but any party can compute h in polynomial
time with no security loss.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC 1997, pp. 284–293. ACM (1997)

2. Bajard, J.C., Eynard, J., Merkiche, N.: Multi-fault attack detection for RNS cryp-
tographic architecture. IEEE 23rd Symposium on Computer Arithmetic, July 2016

3. Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Trans. Comput.
53(6), 769–774 (2004)

4. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

5. Bajard, J.C., Plantard, T.: RNS bases and conversions. In: Optical Science and
Technology, the SPIE 49th Annual Meeting, pp. 60–69 (2004)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

7. Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory, vol. 39. Cambridge Uni-
versity Press, Cambridge (1991)

8. Dumas, J.-G.: Proof-of-work certificates that can be efficiently computed in the
cloud (Invited Talk). In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2018. LNCS, vol. 11077, pp. 1–17. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99639-4 1

9. Dumas, J.-G., Zucca, V.: Prover efficient public verification of dense or
sparse/structured matrix-vector multiplication. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10343, pp. 115–134. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59870-3 7

10. Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) MFCS 1979. LNCS,
vol. 74, pp. 57–69. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-
09526-8 5

11. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions and homomorphic cryptosystems.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 528–
558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 19

12. Garner, H.L.: The residue number system. In: Papers Presented at the March 3-5,
1959, Western Joint Computer Conference, pp. 146–153. ACM (1959)

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv
preprint: quant-ph/9605043 (1996)

14. Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices: an
update. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 160–
173. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 13

https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-99639-4_1
https://doi.org/10.1007/978-3-319-99639-4_1
https://doi.org/10.1007/978-3-319-59870-3_7
https://doi.org/10.1007/978-3-319-59870-3_7
https://doi.org/10.1007/3-540-09526-8_5
https://doi.org/10.1007/3-540-09526-8_5
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/11894063_13


412 A. Sipasseuth et al.

15. Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products
using o(n2) time and log2(n) + o(1) random bits. Inf. Process. Lett. 45(2), 107–110
(1993)

16. Maurer, U.M.: Fast generation of prime numbers and secure public-key crypto-
graphic parameters. J. Cryptology 8(3), 123–155 (1995)

17. Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 11

18. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. J. Cryptology 22(2), 139–160 (2009)

19. NIST: Post-quantum cryptography standardization (2018). https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

20. Pernet, C., Stein, W.: Fast computation of Hermite normal forms of random integer
matrices. J. Number Theory 130(7), 1675–1683 (2010)

21. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS: diagonal domi-
nant reduction for lattice-based signature. In: PQC Standardization Conference,
Round 1 Submissions (2018). https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/DRS.zip

22. Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on CVP∞.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 288–307. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 17

23. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6),
899–942 (2004)

24. Seiler, G.: Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

26. e Silva, T.O.: Tables of values of pi(x) and of pi2(x) (2018). http://sweet.ua.pt/
tos/primes.html

27. Sipasseuth, A., Plantard, T., Susilo, W.: Improving the security of the DRS scheme
with uniformly chosen random noise. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP
2019. LNCS, vol. 11547, pp. 119–137. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21548-4 7

28. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 525–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 18

https://doi.org/10.1007/3-540-44670-2_11
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://doi.org/10.1007/978-3-540-78440-1_17
http://sweet.ua.pt/tos/primes.html
http://sweet.ua.pt/tos/primes.html
https://doi.org/10.1007/978-3-030-21548-4_7
https://doi.org/10.1007/978-3-030-21548-4_7
https://doi.org/10.1007/978-3-030-03329-3_18


Group-Based Key Exchange Protocol
Based on Complete Decomposition

Search Problem

Chang Seng Sin(B) and Huey Voon Chen

Department of Mathematical and Actuarial Sciences,
Lee Kong Chian Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,
Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia

Jaybao@1utar.my

Abstract. Let G be a finite non-abelian group. Let A1, · · · , Ak be non-
empty subsets of G, where k ≥ 2 is an integer such that Ai ∩ Aj = ∅
for integers i, j = 1, · · · , k (i �= j). We say that (A1, · · · , Ak) is a
complete decomposition of G if the product of subsets Ai1 · · ·Aik =
{ai1 ...aik |aij ∈ Aij ; j = 1, · · · , k} coincides with G where the Aij are
all distinct and {Ai1 , · · · , Aik} = {A1, · · · , Ak}. The complete decom-
position search problem in G is defined as recovering B ⊆ G from given
A and G such that AB = G. The aim of this paper is twofold. The
first aim is to propose the complete decomposition search problem in
G. The other objective is to provide a key exchange protocol based on
the complete decomposition search problem using generalized quater-
nion group Q2n as the platform group for integer n ≥ 3. In addition,
we show some constructions of complete decomposition of generalized
quaternion group Q2n . Further, we propose an algorithm that can solve
computational complete decomposition search problem and show that
the algorithm takes exponential time to break the scheme.

Keywords: Group-based key exchange protocol · Complete
decomposition search problem · Nonabelian group

1 Introduction

A lot of study regarding group factorization theory of abelian group written
additively had been conducted over the years. The study of group factorization
was first initiated by Hajos in year 1938 [13]. He successfully solved a geometry
problem that raised by Minkowski by using group theoretical equivalent [14].
This scenario attracted the attention of studying the factorization of a finite
abelian group into not necessary subgroup factors [15]. Many type of algebraic
structures were derived from group factorization. One of the algebraic structure
is exhaustion number as defined in [6]. In [8], they investigated the exhaustion
number of dihedral group of order 2p, where p is an odd prime. Another type
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 413–422, 2019.
https://doi.org/10.1007/978-3-030-34339-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_23


414 C. S. Sin and H. V. Chen

of analogous of group factorization, namely complete decomposition is defined
as follows: Let G be a finite non-abelian group. Let A1, · · · , Ak be non-empty
subsets of G, where k ≥ 2 is an integer such that Ai ∩ Aj = ∅ for integers i, j =
1, · · · , k (i �= j). We say that (A1, · · · , Ak) is a complete decomposition of G if
the product of subsets Ai1 · · ·Aik = {ai1 ...aik |aij ∈ Aij ; j = 1, · · · , k} coincides
with G where the Aij are all distinct and {Ai1 , · · · , Aik} = {A1, · · · , Ak}. The
investigation of complete decomposition of some finites groups can be found
in [5].

Computational hardness assumptions are essential elements in cryptography.
They are building blocks of a cryptographic primitive. Generally, computer sci-
entist relates the hardness of a new problem to a well-known hardness assump-
tion by reduction. Researchers reviewed the proposed hardness problem continu-
ously over the years [4,11,24,25]. There are many hardness problems proposed in
the past, such as integer factorization problem, Rivest-Shamir-Adleman (RSA)
problem, discrete logarithm problem, knapsack problem etc. In this paper, we
proposed some group-based hardness problem. One of the well known group-
based hardness problem proposed is the Conjugacy Search Problem (CSP) [20].
The similarity of our proposed hardness problem and CSP is the utilization of
non-commutative properties of the underlying group.

Diffie and Hellman [9] first developed the idea of asymmetric key exchange
protocol. The security of Diffie-Hellman key exchange protocol depended on
the hardness of the discrete logarithm problem (DLP). Two years later, Rivest,
Shamir and Aldeman applied the hardness of integer factorization problem (IFP)
to propose an encryption scheme which known as RSA encryption scheme [17].
However, Shor [18] proposed an algorithm that can feasibly solve many con-
ventional number theory based problem. Therefore, the security of public-key
cryptosystems that relied on some well-studied hardness problem such as DLP
and IFP become questionable. Thus, researchers start looking into code-based,
lattice-based, hash-based and group-based cryptographic primitives that sus-
pected to remain secure under post-quantum attack [3].

Numerous studies regarding group-based cryptography had been conducted
over the years [10]. The idea of constructing some cryptographic primitives based
on the non-commutative group has been discussed in [19]. There are some con-
structions of cryptographic primitives based on the braid group by applying
the conjugacy search problem (CSP) [1,7,16]. Baba et al. [2] constructed a rele-
vant analogy from the integer factorization problem to the factorization problem
over non-abelian groups. Gu and Zheng proposed several conjugated problems
related to the factorization problem over non-abelian groups and showed three
constructions of cryptographic primitives based on these conjugacy systems [12].
The idea that using the complexity of infinite non-abelian groups in cryptogra-
phy was first proposed by Wagner and Magyarik [23]. They devised a public-key
protocol based on unsolvability of the word problem in 1985. Search problems
are the most suggested protocols and they are variants of decision problems of
group theory. They are suitable for the general paradigm of a public key pro-
tocol. Some of the key exchange protocols related to non-commutative groups
were proposed in [21,22].



Group-Based Key Exchange Protocol Based on CDSP 415

Our Contribution. The main contribution of this paper is to propose a new
hardness problem called Complete Decomposition Search Problem (CDSP). We
construct a key exchange protocol based on CDSP. We choose generalized quater-
nion group Q2n as our platform group. We also provide some constructions
of complete decomposition of Q2n to show that the CDSP can be practically
applied. Besides, we compare the performance of our scheme with the Diffie-
Hellman key exchange protocol. Finally, we present some simple security analysis
of the proposed scheme.

2 Some Constructions of Complete Decomposition of Q2n

The generalized quaternion group Q2n is a finite non-abelian group with group
presentation 〈x, y|x2n−1

= 1, y2 = x2n−2
, yx = x2n−1−1y〉 for integer n ≥ 3. In

this section, we first introduce some of the multiplication rules for the elements
in the generalized quaternion group Q2n . Then, we provide a construction of
complete decomposition of Q2n .

Lemma 1. Let i, n be some integers such that 1 ≤ i ≤ 2n−1 − 1 and n ≥ 3.
Then the following properties holds:

(i) xiy = yx2n−1−i;
(ii) 〈x〉yxi = 〈x〉y.

Proof. Note that 〈x〉 = {1, x, x2, . . . , x2n−1−1} and 〈x〉y = {y, xy, . . . , x2n−1−1y}.
By employing induction on i, the basic step xy = yx2n−1−1 for i = 1 holds.
Assume that it is true when i = k for some positive integers k, then xky =
yx2n−1−k. Now, we show that the case i = k + 1 is true. For i = k + 1, we have
xk+1y = xkxy = xkyx2n−1−1 = yx2n−1−kx2n−1−1 = yx2n−1

x2n−1−(k+1). Since
x2n−1

= 1, it follows that yx2n−1
x2n−1−(k+1) = yx2n−1−(k+1) as required. For

part (ii), we see that 〈x〉yxi = {1, x, . . . , x2n−1−1}x2n−1−iy = {x2n−1−iy, x2n−1
y,

. . . , x2n−i−1y}. Since |{x2n−1−iy, x2n−1
y, . . . , x2n−i−1y}| = 2n−1, it follows that

{x2n−1−iy, x2n−1
y, . . . , x2n−i−1y} = 〈x〉y.

2.1 Construction of Complete Decomposition of Q2n

Let A,B be the subsets of Q2n . To show that the complete decomposition of
generalized quaternion group Q2n is not trivial, we first show an example where
(A,B) is not a complete decomposition of Q2n .

Example 1. Let A = {1, x, . . . , x2n−1−1} and B = {y, xy, . . . , x2n−1−1y} be the
subsets of Q2n . Clearly, A = 〈x〉 ⊆ Q2n and B = 〈x〉y ⊆ Q2n . Since AB ⊆ 〈x〉y,
it follows that (A,B) is not a complete decomposition of Q2n .

Next, we provide a construction of complete decomposition of generalized
quaternion group Q2n for integer n ≥ 4. For practical reason, the selection of
subsets A and B are restricted to the condition where A ∪ B � Q2n .



416 C. S. Sin and H. V. Chen

Proposition 1. Let A = {1, x, x2, . . . , x2n−1−3} ∪ {x2n−1−2y, x2n−1−1y} and
Bi = ({y, xy, . . . , x2n−1−3y}∪{x2n−1−2, x2n−1−1})\{xy, x3y, . . . , xiy} be the sub-
sets of Q2n , where i ∈ {1, 3, . . . , 2n−1 − 5}, |A| = 2n−1 and 2n−2 + 2 ≤ |Bi| ≤
2n−1 − 1. Then (A,Bi) is a complete decomposition of Q2n for integer n ≥ 4.

Proof. To show that (A,Bi) is a complete decomposition, we first consider the
case when i = 2n−1 − 5. We have B2n−1−5 = {y, x2y, . . . , x2n−1−6y, x2n−1−4y} ∪
{x2n−1−3y} ∪ {x2n−1−2, x2n−1−1} with size 2n−2 + 2. We compute the product
of sets {1, x, x2, . . . , x2n−1−3} ⊆ A and {y, x2y, . . . , x2n−1−4y} ⊆ B2n−1−5 as
follows:

{1, x, x2, . . . , x2n−1−3}{y, x2y, x2n−1−4y}
= 〈x〉y.

Then, we compute the product of sets {x2n−1−2y, x2n−1−1y} ⊆ A and {y, x2y,
. . . , x2n−1−4y} ⊆ B2n−1−5 as follows:

L1 ={x2n−1−2y, x2n−1−1y}{y, x2y, . . . , x2n−1−4y}
={x2n−1+2n−2+2, x2n−1+2n−2+3, . . . , x2n−1+2n−2+2n−1−1}

where |L1| = 2n−1 − 2. Then, we compute the product of sets {x2n−1−2y,

x2n−1−1y} ⊆ A and {x2n−1−3y} ⊆ B2n−1−5 as follows:

L2 = {x2n−1−2y, x2n−1−1y}{x2n−1−3y} = {x2n−1+2n−2+1, x2n−1+2n−2+2}.

Observe that L1 ∪ L2 = {x2n−1+2n−2+1, x2n−1+2n−2+2, . . . , x2n−1+2n−2+2n−1−1}
with the size |L1 ∪ L2| = 2n−1 − 1. We notice that 〈x〉 \ (L1 ∪ L2) =
{x2n−1+2n−2+2n−1}. Next, we compute the product of sets {1, x, . . . , x2n−1−3} ⊆
A and {x2n−1−2, x2n−1−1} ⊆ B2n−1−5 as follows:

L3 ={1, x, . . . , x2n−1−3}{x2n−1−2, x2n−1−1}
={x2n−1−2, x2n−1−1, . . . , x2n−1+2n−1−4}

where |L3| = 2n−1 − 1. From here, we see that 〈x〉 \ L3 = {x2n−1+2n−1−3}.
To show that (L1 ∪ L2 ∪ L3) = 〈x〉y, we need to show that x2n−1+2n−2+2n−1 �=
x2n−1+2n−1−3. Clearly 2n−1+2n−2+2n−1 �= 2n−1+2n−1−3 for any integer n ≥ 4
which implies x2n−1+2n−2+2n−1 �= x2n−1+2n−1−3. Thus, (L1 ∪ L2 ∪ L3) = 〈x〉y.
Therefore, we say that (A,B2n−1−5) is a complete decomposition of Q2n . Since
B2n−1−5 ⊆ B2n−1−7 ⊆ · · · ⊆ B1 and (A,B2n−1−5) is a complete decomposition
of Q2n , it follows that (A,Bi) is a complete decomposition of Q2n for n ≥ 4 and
i ∈ {1, 3, . . . , 2n−1 − 5}.



Group-Based Key Exchange Protocol Based on CDSP 417

3 Application on Cryptography

In this section, we first propose two problems, namely Decisional Complete
Decomposition Search Problem and Computational Complete Decomposition
Search Problem for arbitrary finite nonabelian group G. We provide a key
exchange protocol based on the hardness problem proposed. Finally, we ana-
lyze the performance and security of the proposed scheme.

3.1 Complete Decomposition Search Problem (CDSP)

We define two problems as follows:

Decisional Complete Decomposition Search Problem (DCDSP): Let G
be a finite non-abelian group. Given A, B and G. Determine whether B satisfies
AB = G, where A,B ⊆ G and A ∩ B = ∅.

Computational Complete Decomposition Search Problem (CCDSP):
Let G be a finite non-abelian group. Given A and G. Find B such that AB = G,
where A,B ⊆ G and A ∩ B = ∅.

In this paper, we choose our platform group G as generalized quaternion
group Q2n . We construct an algorithm to solve CCDSP in Q2n below for integer
n ≥ 4. Since A ∩ B = ∅ and |Q2n | = 2n, it follows that the total combi-
nation of subsets B given |A| is

(
2n−|A|

|B|
)
. Let {Bj |j = 1, 2, . . . ,

(
2n−|A|

|B|
)} rep-

resents all the possible subsets of B. The algorithm computes the products
AB1, AB2, . . . , AB(2n−|A|

|B| ) and return Bj if ABj = G for integer 1 ≤ j ≤
(
2n−|A|

|B|
)
.

Algorithm 1. Solve CCDSP in Q2n

– Input: A, |B|, n.
– Output: All possible subsets of Bj for j = 1, 2, . . . ,

(
2n−|A|

|B|
)
.

– For each possible subset Bj ⊆ Q2n , where 1 ≤ j ≤ (
2n−|A|

|B|
)
, compute ABj =

D.
– If D = G, then return a solution Bj .
– Return (no solution exists).

3.2 Our Proposed Scheme

Let A,B ⊆ Q2n . In this section, we propose a key exchange protocol based
on the computational complete decomposition search problem (CCDSP) in Q2n

between Alice and Bob. Suppose Alice holds a shared key B and wants to share
with Bob. They can proceed as follows:



418 C. S. Sin and H. V. Chen

1. Preparation Step A and Q2n are selected and published, where AB = Q2n .
Two subsets A1, A2 ⊆ 〈x〉 are selected and kept secretly. Alice chooses a ∈ A
and two distinct elements b1, b2 ∈ A1 secretly. Bob chooses c ∈ Q2n and two
distinct elements d1, d2 ∈ A2 secretly.

2. Sharing private key a
(a) Alice computes b1ab2.
(b) Bob computes d1b1ab2d2.
(c) Alice computes b−1

1 b1d1ad2b2b
−1
2 .

(d) Bob computes d−1
1 d1ad2d

−1
2 = a.

3. Sharing private key c
(a) Bob computes d1cd2.
(b) Alice computes b1d1cd2b2.
(c) Bob computes d−1

1 d1b1cb2d2d
−1
2 = b1cb2.

(d) Alices computes b−1
1 b1cb2b

−1
2 = c.

4. Exchange shared key B
(a) Alice and Bob compute ac = b.
(b) Alice computes E = Bb.
(c) Bob computes x = (ac)−1 = c−1a−1.
(d) Bob computes Ex = Bbx = Bacc−1a−1 = B.

Fig. 1. Proposed key exchange protocol

3.3 Performance Analysis

For our proposed scheme which constructed using finite non-abelian general-
ized quaternion group, the steps involved are expected to be longer compare to
other group-based key exchange protocol which constructed based on the abelian



Group-Based Key Exchange Protocol Based on CDSP 419

group. From Fig. 1, we see that sharing private key a and c between Alice and
Bob involved 8 mathematical computation in total. For the step involving calcu-
lating the shared key B, there is a total of 4 mathematical computations required.
The computations involved in our proposed scheme are mainly on multiplication
between the group elements, which can be done easily due to the well-studied
structure of the generalized quaternion group Q2n .

Comparing with Diffie-Hellman Key Exchange Protocol in Term of
Performance. Now, we compare the performance of our proposed scheme with
the pioneer of the key exchange protocol, which is Diffie-Hellman key exchange
protocol. The parameters used in Diffie-Hellman key exchange protocol are a
prime numbers p and q (generator of p). For computation wise, Diffie-Hellman
key exchange protocol involved of 4 steps. Besides, only one communication
required between Alice and Bob to obtain the shared key. Clearly our proposed
scheme takes more steps in term of computation and communication compare to
Diffie-Hellman key exchange protocol, however Diffie-Hellman Problem (DHP)
might become vulnerable under the post-quantum attack.

3.4 Security of the Scheme

In Sect. 2.1, we show a construction of (A,B) is a complete decomposition of
generalized quaternion group Q2n , where |A| = 2n−1 and 2n−1 − 2 ≤ |B| ≤
2n−1 − 1 for integer n ≥ 4. We first discuss the security of the scheme by using
Algorithm 1 proposed in Sect. 3.1 and consider the case where |A| = 2n−1 and
|B| = 2n−1 − 2.

Theorem 1. Let A,B be the subsets of Q2n , where |A| = 2n−1 and |B| = 2n−1−
2 for n ≥ 4. Adversary takes at least exponential time E to solve Computational
Complete Decomposition Search Problem using subsets A,B in Algorithm1.

Proof. Note that |B| = |Q2n |
|A| , A ∩ B = ∅ and |Q2n | = 2n. Since A ∩ B = ∅, we

can exclude the elements in subset A and hence left with the remaining 2n −|A|
elements. To search for subset B, one will try for different subset Bi, where the
choice of elements for Bi comes from 2n − |A| remaining elements. Thus, the
worst case for one to obtain such subset B require

(
2n−|A|

|B|
)

attempts. Next, we
show that Algorithm 1 need at least exponential time E to break our scheme.
We compare the value between

(
2n−|A|

|B|
)

and 2n as follows:

(
2n − |A|

|B|
)

=
(

2n−1

2n−1 − 2

)

=
2n−1!

2!(2n−1 − 2)!

=
1 · 2 · · · 2n−1

2(1 · 2 · · · (2n−1 − 2))



420 C. S. Sin and H. V. Chen

=
(2n−1 − 1)2n−1

2
=(2n−1 − 1)2n−2

=22n−3 − 2n−2 ≥ 2n

Clearly, (2n−1 − 1)2n−2 ≥ 2n for n ≥ 4. Since
(
2n−|A|

|B|
) ≥ 2n for n ≥ 4, it follows

that Adversary takes at least exponential time E to break our scheme using
Algorithm 1.

Next, we discuss the security of the scheme by assuming that adversary knows
some of the private information related to the scheme. Firstly, suppose adversary
knows A1 ⊆ 〈x〉, where |A1| = t. Then, adversary can guess two distinct ele-
ments b1, b2 ∈ A1 correctly with the probability Pr(Adv guess b1, b2) = 1

t (
1

t−1 ).
From here, adversary is able to compute a from b1ab2 by using b1, b2. How-
ever, adversary has no information about c ∈ Q2n . Secondly, suppose adversary
knows A2 ⊆ 〈x〉, where |A2| = u. Then, the probability of adversary guesses
two distinct elements d1, d2 ∈ A2 correctly is Pr(Adv guess d1, d2) = 1

u ( 1
u−1 ).

By using d1 and d2, adversary can compute c from d1cd2. However, the infor-
mation about a remains unknown to adversary. Finally, suppose that adversary
knows A1, A2 ⊆ 〈x〉, then adversary is able to compute a, c with the probability
Pr(Adv guess b1, b2, d1, d2) = 1

t (
1

t−1 ) + 1
u ( 1

u−1 ). Adversary can use a, c to com-
pute c−1a−1 then followed by shared key B. To summarize this, adversary is not
able to compute the shared key B if he knows either A1 or A2 but not both.
If adversary knows A1, A2, where |A1| = t, |A2| = u, then the probability of
adversary computes shared key B correctly is 1

t (
1

t−1 )+ 1
u ( 1

u−1 ). Thus, if t and u

are large integers, then lim
t→∞

1
t

= lim
t→∞

1
t − 1

= lim
u→∞

1
u

= lim
u→∞

1
u − 1

= 0. Hence,

the probability of adversary to compute shared key B correctly is negligible and
the scheme is secured. We summarize the results in the following Table 1.

Table 1. Security of the scheme with the assumption that the adversary knows some
information

Information
that adversary
knows

Can adversary
computes a correctly
from the given
information?

Can adversary
computes c correctly
from the given
information?

Can adversary
computes shared
key B correctly
from the given
information?

A1 with size t Yes, with the
probability of 1

t
( 1
t−1

)
No No

A2 with size u No Yes, with the
probability of
1
u
( 1
u−1

)

No

A1 and A2 Yes, with the
probability of 1

t
( 1
t−1

)
Yes, with the
probability of
1
u
( 1
u−1

)

Yes, with the
probability of
1
t
( 1
t−1

) + 1
u
( 1
u−1

)



Group-Based Key Exchange Protocol Based on CDSP 421

3.5 Open Questions

For future research direction, researchers should analyze which assumptions can
be reduced from Complete Decomposition Search Problem as proposed in this
paper. We believe that there exists a relation between CDSP and Subset Sum
Problem which known to be NP-hard. However, we are not able to provide any
formal proof for this statement here. For the implementation of the proposed
scheme in a real work scenario, one can investigate on the value of security
parameter, for instance the size of subsets A and B to be used so that it provides
the same security level like 2048 bit or 4098 bit Diffie Hellman key exchange.
Besides, formal security proof or generic model of the proposed scheme should
be considered.

Acknowledgments. The project was funded by the Fundamental Research Grant
Scheme (FRGS), project number FRGS/1/2017/STG06/UTAR/02/3.

References

1. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptog-
raphy. Math. Res. Lett. 6, 287–291 (2001)

2. Baba, S., Kotyada, S., Teja, R.: A non-abelian factorization problem and an asso-
ciated cryptosystem. Cryptology Eprint Archive Report 2011/048 (2011)

3. Bernstein, D.J., Lange, T.: Post-quantum cryptography dealing with the fallout of
physics success. IACR Cryptology Eprint Archive/2017/314 (2017)

4. Boudot, F.: On improving integer factorization and discrete logarithm computation
using partial triangulation. Cryptology Eprint Archive Report 2017/758 (2017)

5. Chin, A.Y.M., Chen, H.V.: Complete decompositions of finite abelian groups.
AAECC 30, 263–274 (2018)

6. Chin, A.Y.M.: Exhaustion numbers of maximal sum-free sets of certain cyclic
groups. Matematika 15(1), 57–63 (2009)

7. Dehornoy, P.: Braid-based cryptography. Contemp. Math. 360, 5–33 (2004)
8. Wong, C.K.D., Wong, K.W., Yap, W.S.: Exhaustion 2-subsets in dihedral groups

of order 2p. Asian Eur. J. Math. World Sci. Publ. Co. 11(3), 1–13 (2018)
9. Diffie, W., Hellman, M.E.: New direction in cryptography. IEEE Trans. Inf. Theory

22(6), 644–654 (1976)
10. Fine, B., Habeeb, M., Kahrobaei, D., Rosenberger, G.: Aspects of nonabelian group

based cryptography: a survey and open problems. JP J. Algebra Number Theorie
Appl. 21, 1–40 (2011)

11. Goldwasser, S., Kalai, Y.T.: Cryptographic Assumptions: A Position Paper. TCC,
pp. 505–522 (2015)

12. Gu, L., Zheng, S.: Conjugacy systems based on nonabelian factorization problems
and their applications in cryptography. J. Appl. Math. 52(2), 1–9 (2014)

13. Hajos, G.: Covering multidimensional spaces by cube lattices. Mat. Fiz. Lapok 45,
171–190 (1938)

14. Hajos, G.: Uber Einfache und Mehrfache Bedeckung des n-dimensionalen Raumes
Mit Einem Urfelgitter. Math. Zeit. 47, 427–467 (1942)

15. Hajos, G.: Sur la Factorisation des Groupes Abeliens. Casopis Pes. Mat. Fys. 74,
157–162 (1949)



422 C. S. Sin and H. V. Chen

16. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key
cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 10

17. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

18. Shor, P.W.: Polynomial-time algorithm for prime factorization and discrete loga-
rithms on quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

19. Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: 3rd
International Conference on Applied Cryptography and Network Security, ACNS
2005, pp. 151–163 (2005)

20. Shpilrain, V., Ushakov, A.: The conjugacy search problem in public key cryptog-
raphy: unnecessary and insufficient. Appl. Algebra Eng. Commun. Comput. 17,
285–289 (2006)

21. Ustimenko, V., Klisowski, M.: On noncommutative cryptography and homomor-
phism of stable cubical multivariate transformation groups of infinite dimensional
affine spaces. Cryptology Eprint Archive Report 2019/593 (2019)

22. Ustimenko, V.: On inverse protocol of post quantum cryptography based on pairs
of noncommutative multivariate platforms used in tandem. Cryptology Eprint
Archive Report 2019/897 (2019)

23. Blakley, G.R., Chaum, D. (eds.): CRYPTO 1984. LNCS, vol. 196. Springer, Hei-
delberg (1985). https://doi.org/10.1007/3-540-39568-7

24. Yana, K., Yulia, K.: Merkle-Hellman knapsack cryptosystem in undergraduate
computer science curriculum. FECS, pp. 123–128 (2010)

25. Zhu, H.: Survey of computational assumptions used in cryptography broken or not
by shor’s algorithm. Master in Science, Mc Gill University Montreal (2001)

https://doi.org/10.1007/3-540-44598-6_10
https://doi.org/10.1007/3-540-44598-6_10
https://doi.org/10.1007/3-540-39568-7


Development Activities, Tools and Techniques
of Secure Microservices Compositions

Peter Nkomo and Marijke Coetzee(&)

University of Johannesburg, Johannesburg, South Africa
ptnkomo@gmail.com, marijkec@uj.ac.za

Abstract. The decomposition of an application into independent microservices
increases the attack surface, and makes it difficult to monitor each microservice
in order to secure and control their network traffic. The adoption of microser-
vices, together with new trends in software development that aim to quickly
deliver software in short software development iterations often leaves software
engineers with little time to give attention to the security of such applications.
Consequently, it is not uncommon for many software development teams to
release software without performing full-scale security testing. Although various
tools and techniques are available to assist software engineers with the devel-
opment of secure microservices throughout their life cycle, there is limited
guidance on how these tools and techniques can be integrated into the software
engineer’s daily software development tasks. The aim of this paper is to identify
and review tools and techniques that software engineers can use as part of
security-focused activities incorporated into the software development process,
so that security is given early attention during the development of microservices.

Keywords: Security � Microservices � Secure development activities

1 Introduction

A new architectural style called the microservices architecture has gained considerable
attention to simplify and quicken the development of software applications [1, 2].
Microservices communicate using point-to-point exchanges of message by means of
lightweight mechanisms over the hypertext transfer protocol or by listening to events
within their operating environment [3] and are ideally developed within fast software
release cycles [4, 5]. The microservices architectural style leans towards Agile practices
[6] that aims to shorten software development cycles and is a natural fit to DevOps that
aims to integrate software development and the maintenance of software releases
through the use automation [7, 8]. Many Agile teams tend to release software without
performing full-scale security testing [9, 10] as limited guidance is available on how
current security tools and techniques can be integrated into daily software development
tasks. The main research question addressed by this paper is - what security-focused
tools and techniques can software engineers integrate in the software development
process so that security becomes part of the daily software development tasks? This
research question is addressed by identifying secure development activities and per-
forming a systematic review of relevant techniques and security-focused tools.

© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 423–433, 2019.
https://doi.org/10.1007/978-3-030-34339-2_24

http://orcid.org/0000-0002-9157-3079
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_24&amp;domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_24


Knowledge gained from this systematic review can assist software engineers to adopt
appropriate real-world security-focused tools and techniques to create a coordinated
security strategy to cultivate a security-conscious culture in a software development
team. Such a security-conscious culture can ensure the development of secure and
resilient microservices [11].

This paper is organised as follows; Sect. 2 identifies a set of security-focused
development activities that support the development of a secure microservices com-
position. Section 3 describes how to effectively incorporate tools and techniques into
the five secure development activities to improve security of microservices composi-
tions. A conclusion follows in Sect. 4.

2 Secure Development Activities of a Microservices
Composition

A set of secure microservices software development activities are now identified by
understanding the security challenges of microservices compositions from the per-
spective of a potential attacker. Possible threats are identified here by reviewing the
microservices architecture using an imaginary on-demand PickMeUp taxi application
shown in Fig. 1, similar to Uber and supporting the most common features of such
applications [1]. Several potential entry points that can pose potential security threats
exist as listed next.

• The application programming interface (API) gateway and the microservices API.
The attacker may perform various types of injection attacks on the APIs.

• The service registry. The attacker may control the service registry to ensure disrupt
the process on microservices discoverying each other.

• Message broker. The attacker may gain access to messages exchanged by
microservices or to bring the message broker down so that the composition cease to
function.

• Container or virtual machine. The attacker may gain control of the runtime envi-
ronment and shut down the microservices composition.

A threat exists typically when an entry point into the system provides access to an
asset [14]. The security threats derived from the four entry points listed previously are
(1) insecure application programming interfaces; (2) unauthorized access; (3) insecure
microservice discovery; (4) insecure runtime infrastructure; and (5) insecure message
broker.

These five security threats provide a basis to elicit security-focused software
development activities, that software engineers can adopt to develop secure microser-
vices. Five security-focused activities were elicited by previous research, referred to as
the secure development activities of a microservices composition [15]:

1. Document security requirements of microservices compositions.
2. Adopt secure programming best practices.

424 P. Nkomo and M. Coetzee



3. Validate security requirements and secure programming best practices.
4. Secure configuration of runtime infrastructure.
5. Coninously monitor the behaviour of components of the microservices composition.

The next section aims to understand how to effectively incorporate tools and
techniques into five secure development activities.

3 Tools and Techniques of Secure Development Activities

As the microservices architecture can be considered a relatively new area of research
[16] this paper adopts a systematic mapping research approach [17] used for research in
software engineering [18]. In each case, research questions are formulated to direct the
research.

3.1 Document Security Requirements of Microservices Compositions

• Q1 - What types of security policies are required to document protection measures
for a microservices composition comprehensively?

• Q2 - What should be considered when designing security policies for a microser-
vices composition?

Types of Security Policies (Q1). Six types of security policies are identified namely a
data protection policy [20], an access control policy, a microservice technology-

Fig. 1. PickMeUp application

Development Activities, Tools and Techniques 425



specific policy that focuses on mitigating weaknesses in libraries as they may contain
vulnerabilities [10], a network security policy to control access to components and to
specify how logical addresses managed for containers or virtual machines. Microser-
vices composition security policies combines the policy that protects message
exchanges and an access control policy, and finally the virtual machine and container
security policies that mitigate security weakness on the runtime environments, as
containers can also be a source of vulnerabilities [21].

Designing Security Policies in a Microservices Composition (Q2). Components in a
microservices composition may delegate access control decisions to other components
because not every component can directly ask the end-user for authentication details
[22]. The security policy should determine protection mechanisms to enable a trust
relationship between collaborating components and should support hierarchical
security policy domains [23].

3.2 Adopt Secure Programming Best Practices

Microservices compositions are not immune to known security attacks such as SQL
injections and Cross Site Scripting (XSS) [24]. To assist in understanding how best
practices can be adopted in developing safe microservices the following research
questions are formulated.

• Q3 - Which secure programming practices can assist engineers to avoid known
security flaws when developing microservices?

• Q4 - How can engineers adopt secure programming practices without affecting the
rate of microservices releases?

Taxonomy of Secure Programming Best Practices (Q3). The Microsoft Secure
Development Lifecycle [25] defines four security principles that this research uses as
basis to reason about secure microservices composition.

Secure-by-design. Various best practices should be incorporated into the initial
architectural design of microservices compositions [25]. The following best practices
can ensure microservices composition that is secure-by-design:

• Keeping design of microservices simple. Complex designs increase the likelihood of
errors being made in implementation, configuration [27].

• Ensuring input validation on microservices API. All input data from untrusted data
sources must be validated to eliminates injection attacks.

• Giving attention to source code compiler warnings. The highest source code
compiler warning level should be used. Compiler warnings should be eliminated by
modifying the source code [28].

• Sanitizing data sent between components in a microservices composition. Saniti-
zation involves cleaning or filtering microservices input data by checking for invalid
UTF-8 encoding, removing line breaks, tabs and extra white space and stripping
octets in the input. Sanitizing data helps prevents cross-site scripting attacks.

426 P. Nkomo and M. Coetzee



Secure-by-default. Microservices compositions can be developed in a manner that
makes them inherently safe when engineers adopt the following best practices:

• Adhering to the principle of least privilege. Code should have the least set of
permission required to perform a task [29]. Access to directories, databases tables,
and any other resources that are not required by a component to complete a task at
hand should be prohibited.

• Practicing defense-in-depth. Software engineers can manage security risks in a
microservices composition by using multiple defense strategies [30].

• Denying access by default. A protection scheme should be in place defining con-
ditions when access is only permitted [31].

Secure-by-deployment. The deployment process of a microservices composition can
provide a path that an attacker can exploit to make harmful changes and deploy the
changes into production environments or even perform a denial of service attack and
should be protected [32].

Secure-by-communication. Secure-by-communication requires that software devel-
opment teams respond promptly to reports of security weaknesses and communicate
information about security updates. To this end, engineers need to keep abreast with
new security weaknesses and have access to the latest security information.

Enforcing Secure Programming Practices (Q4). Proposed methods to enforce
secure programming practices provide a practice-oriented effort to incorporate secure
programming practices in the development of secure microservices compositions. In
addition, software engineers may be required to change their perception about security.
The benefits of adopting secure programming best practices may be realized when
security testing is treated as an essential step in the microservices development process.
To this end, the next section discusses how security testing can be incorporated into the
development process as an essential activity.

3.3 Validate Security Requirements and Secure Programming Best
Practices

Security testing generally validates the correct implementation of specified security
requirements and identifies unintended vulnerabilities [33, 34]. In a fast-paced devel-
opment environment, it makes sense to automate the validation process. The following
two questions are formulated to assist understand security testing for microservices.

• Q5 - What attributes should a security-focused tool possess to seamlessly integrate
into a fast-paced microservices development environment?

• Q6 - Can existing security testing tools be used to automate security testing in
microservices?

Required Attributes of Security Testing Tools (Q5). The effective use of a tool for
automated security testing in microservices depends on how seamlessly the tools
integrate into the microservices development process. In fast-paced development

Development Activities, Tools and Techniques 427



environments a tool with the following attributes is likely to seamlessly integrate into
the development process:

• Easy to integrate [35]. A security testing tools should be easy to integrate into a
software engineers’s IDE.

• Easy to use [36]. An ideal testing tool should not require software engineers to have
advanced security knowledge.

• Natural results interpretation [37]. Software engineers should be able to understand
reported security flaws without much effort, and if possible, the tool should provide
guidance on how to address identified weaknesses.

• Extensive language support and portability. Tools should not limit software engi-
neers to a particular programming language or development platforms.

• Extensibility. The tool should allow engineers to add new capability when new
security weaknesses are reported.

Various security testing tools are readily available that can be used for security
testing in microservices composition [38]. The challenge for software engineers is to
identify which tools to integrate into software development process. The next section
gives available tools and briefly describes their suitability for automation.

Security Testing Tools (Q6). Software engineers do not fully exploited the capabil-
ities provided by tools [39]. A general ignorance of security testing in many devel-
opment teams is reported [40]. Two types of security testing are static security testing
that checks the source code, design documents to find errors, code flaws, and poten-
tially malicious code when the code is not being executed. Dynamic security testing
validates the runtime behavior of security mechanisms in an application when source
code is being executed or the application is running.

Popular, readily available, and non-proprietary tools are GauntIt [38], SonarQube
[41], and FindSecurityBugs [38]. Tools such as SonarQube, GauntIt, and FindSecu-
rityBugs can easily be integrated into software engineers’ IDEs and other build tools.
These tools are easy to use and extensible. SonarQube seems is more suitable because it
supports many languages and frameworks, provides both static and dynamic testing,
and is easy to use and allow other tools such as FindSecurityBugs to be integrated to it.
The next section reviews the activity of securing the runtime infrastructure.

3.4 Secure Configuration of Runtime Infrastructure

Most types of attacks on microservices ultimately target the runtime environments
where data is stored, and the microservices run. The first step towards ensuring a secure
runtime environment is to formalize a secure configuration baseline of both hardware
and software components, and then later validate the configuration when microservices
are deployed [42]. The following questions are formulated to assist in reviewing the
suitability of available tools.

• Q7 - What capabilities makes a tool suitable for creating secure runtime envi-
ronments as part of the microservices development process?

• Q8 - Can the widely used configuration management tools be easily used to create
secure microservices runtime environment?

428 P. Nkomo and M. Coetzee



Tool Capabilities for Secure Configurations (Q7). Essential capabilities that a tool
should poss are support for different security requirements where each component has
its own security configuration that defines the security concerns of the component.
Security configuration files should be treated similar to software source code so that
any changes on the configuration files are tracked. Any changes to configurations
should be tested first to ensure configurations are not a source of vulnerabilities.
Dependency between security configuration files may become unavoidable. These
dependencies should preferably be expressed the same way as software source code
dependencies for easier maintenance. Security configuration files should be written in
languages that are close to natural language to make it easy for the engineers with less
security knowledge to be able to maintain.

Review of Tools for Secure Configurations (Q8). Tools that are common in the
industry for configuration management are Chef [43], Puppet [44], Ansible [45]. The
available configuration management tools are primarily similar in functionality, and
software engineers of microservices should be able to use any tool of their choice. In a
development team that has no previous experience with any tool, choosing an ideal tool
may be hard.

The next section identifies mechanisms to ensure that engineers are always aware of
the behavior of the components of a microservices composition at all times.

3.5 Continuously Monitor Components of the Microservices Composition

Distributed tracing of communication between components and access to each com-
ponent’s log files are vital to understanding attacks. It is essential to identify the
features of each component at design time that are necessary and sufficient to describe
and understand the component’s runtime security behavior. These features can then be
used to determine how any changes affect the overall status and health of the
microservices composition.

• Q9 - What is required to monitor distributed microservices effectively?
• Q10 - Can available tools assist gain better visibility of microservices and the

runtime environment to ensure continuous security?

Requirements for Security Monitoring (Q9). It is essential for tools that are can-
didates for monitoring tool to be customizable as different components require different
security monitoring metrics; complete to provide a comprehensive view of the all
components of the microservices composition and the runtime infrastructure; scalable
as the number of components in a microservices composition increase as new business
functionality is automated; and portable as components in a microservices composition
are portable artefacts deployable on different platforms.

The next section identifies and review existing tools that can assist gain better
visibility of microservices composition at runtime.

Review of Existing Monitoring Tools (Q10). The general observation is that
existing monitoring tools can be classified as proprietary tools that belong to

Development Activities, Tools and Techniques 429



Infrastructure provider or third-party organizations and free or open-source tools that
are freely available.

The most common monitoring tools are CloudWatch [46], CloudMonix [47],
Dynatrace[48], Zabbix [49], Prometheus[50], and AppDynamics [51]. A review of
currently available monitoring tools, both open source and proprietary, shows that these
tools can adequately monitor microservices, containers and virtual machines and are
production-ready. The monitoring tools provide proper logging of all relevant and
essential information required by engineers to understand the state of the microservice
at any time.

4 Conclusion

The goal of creating secure microservices compositions can be achieved when a set of
secure development activities that focus on the security aspects of a composition is
integrated both early and throughout the development process. Microservices compo-
sitions can be developed in a manner that makes them inherently secure when engineers
exploit new opportunities that security testing tools bring into the microservices
development environment. Conducting security testing early in the development process
allow security weaknesses to be identified. Identified security weaknesses can be
addressed early in the software development process. Code-driven, configuration
management tools, should also be adapted to provide standardized, secure configura-
tions of the runtime environments using commonly tested templates. Microservices
compositions can be made more secure by using mechanisms to detect any anomalies at
runtime which can compromise security.

The next step as future research work is to develop a practice-oriented framework
to assist software engineers in fast-paced teams in developing secure microservices
compositions. The framework will provide guidance to software engineers on how to
incorporate the five secure development activities discussed in this paper and the
various tools and techniques into their daily software development tasks.

References

1. Pahl, C., Jamshidi, P.: Microservices: A Systematic Mapping Study. In: CLOSER (1),
pp. 137–146 (2016)

2. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly Media
Inc., Newton (2015)

3. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and Ulterior
Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67425-4_12

4. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architecture:
Aligning Principles, Practices, and Culture. O’Reilly Media Inc, Newton (2016)

5. Bossert, O.: A two-speed architecture for the digital enterprise. In: El-Sheikh, E.,
Zimmermann, A., Jain, Lakhmi C. (eds.) Emerging Trends in the Evolution of Service-
Oriented and Enterprise Architectures. ISRL, vol. 111, pp. 139–150. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40564-3_8

430 P. Nkomo and M. Coetzee

http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-40564-3_8


6. Schmidt, C.: Agile Software Development. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-26057-0

7. Ravichandran, A., Taylor, K., Waterhouse, P.: DevOps foundations. In: DevOps for Digital
Leaders, pp. 27–47. Apress (2016)

8. Oyetoyan, T.D., Cruzes, D.S., Jaatun, M.G.: An empirical study on the relationship between
software security skills, usage and training needs in agile settings. In: 2016 11th International
Conference on Availability, Reliability and Security (ARES), pp. 548–555. IEEE (2016)

9. Heinrich, R., et al.: Performance engineering for microservices: research challenges and
directions. In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion, pp. 223–226. ACM (2017)

10. Veracode (2017)
11. AlHogail, A.: Design and validation of information security culture framework. Comput.

Human Behav. 49, 567–575 (2015)
12. Cramer, J., Krueger, A.B.: Disruptive change in the taxi business: The case of Uber. Am.

Econ. Rev. 106(5), 177–182 (2016)
13. Merkel, D.: Docker: lightweight linux containers for consistent development and deploy-

ment. Linux J. 2014(239), 2 (2014)
14. Kissel, R.: Glossary of key information security terms. NIST Interagency Reports NIST IR,

7298(3) (2013)
15. Nkomo, P., Coetzee, M.: Software development activities for secure microservices. In:

Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 573–585. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24308-1_46

16. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices: trends,
focus, and potential for industrial adoption. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 21–30. IEEE (2017)

17. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: EASE, vol. 8, pp. 68–77 (2008)

18. Kitchenham, B., Charters, S.: guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE 2007- 001, Keele University and Durham
University Joint Report (2007)

19. ISO I.: 7498-2. information processing systems open systems interconnection basic reference
model-part 2: Security architecture. ISO Geneva, Switzerland (1989)

20. Satoh, F., Tokuda, T.: Security policy composition for composite web services. IEEE Trans.
Serv. Comput. 4(4), 314–327 (2011)

21. Gummaraju, J., Desikan, T., Turner, Y.: Over 30% of official images in docker hub contain
high priority security vulnerabilities, pp. 1–6 (2015). https://banyanops.com

22. Nacer, H., Djebari, N., Slimani, H., Aissani, D.: A distributed authentication model for
composite Web services. Comput. Secur. 70, 144–178 (2017)

23. Dell’Amico, M., Serme, G., Idrees, M.S., De Oliveira, A.S., Roudier, Y.: Hipolds: a
hierarchical security policy language for distributed systems. Inf. Secur. Tech. Rep. 17(3),
81–92 (2013)

24. Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de) composition. In: IEEE International on Requirements Engineering
Conference Workshops (REW), pp. 68–73. IEEE (2016)

25. Howard, M., Lipner, S.: The Security Development Lifecycle (SDL): A Process for
Developing Demonstrably More Secure Software. Microsoft Press (2006)

26. Kadam, S.P., Joshi, S.: Secure by design approach to improve the security of object-oriented
software. In: 2015 2nd International Conference on Computing for Sustainable Global
Development (INDIACom), pp. 24–30. IEEE (2015)

Development Activities, Tools and Techniques 431

http://dx.doi.org/10.1007/978-3-319-26057-0
http://dx.doi.org/10.1007/978-3-319-26057-0
http://dx.doi.org/10.1007/978-3-030-24308-1_46
https://banyanops.com


27. Sahu, D.R., Tomar, D.S.: Analysis of web application code vulnerabilities using secure
coding standards. Arab. J. Sci. Eng. 42(2), 885–895 (2017)

28. White, G.K.: Secure coding practices, tools, and processes (No. LLNL-CONF-671591).
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2015)

29. Neumann, P.G.: Fundamental trustworthiness principles. New Solutions for Cybersecurity
(2018)

30. Gkioulos, V., Wolthusen, S.D.: Security requirements for the deployment of services across
tactical SOA. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K.
(eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 115–127. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65127-9_10

31. Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F., Marchetti, E.: A toolchain for designing
and testing access control policies. In: Heisel, M., Joosen, W., Lopez, J., Martinelli, F. (eds.)
Engineering Secure Future Internet Services and Systems. LNCS, vol. 8431, pp. 266–286.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07452-8_11

32. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley
Professional, Boston (2015)

33. Paul, M.: Official (ISC) 2 Guide to the CSSLP. CRC Press, Boca Raton (2016)
34. Tian-yang, G., Yin-Sheng, S., You-yuan, F.: Research on software security testing. World

Acad. Sci. Eng. Technol. 21(70), 647–651 (2010)
35. Kaur, H.: Automating Static Code Analysis for Risk Assessment and Quality Assurance of

Medical Record Software (2017)
36. Le Ru, Y., Aron, M., Gerval, J.-P., Napoleon, T.: Tests generation oriented web-based

automatic assessment of programming assignments. In: Uskov, Vladimir L., Howlett,
Robert J., Jain, Lakhmi C. (eds.) Smart Education and Smart e-Learning. SIST, vol. 41,
pp. 117–127. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19875-0_11

37. de Andrade Gomes, P.H., Garcia, R.E., Spadon, G., Eler, D.M., Olivete, C., Correia, R.C.M.:
Teaching software quality via source code inspection tool. In: 2017 IEEE Frontiers in
Education Conference (FIE), pp. 1–8. IEEE (2017)

38. Kuusela, J.: Security testing in continuous integration processes (2017)
39. Peischl, B., Felderer, M., Beer, A.: Testing security requirements with non-experts:

approaches and empirical investigations. In: 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp. 254–261. IEEE (2016)

40. Cruzes, D.S., Felderer, M., Oyetoyan, T.D., Gander, M., Pekaric, I.: How is security testing
done in agile teams? A cross-case analysis of four software teams. In: Baumeister, H.,
Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp. 201–216. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57633-6_13

41. Campbell, G., Papapetrou, P.P.: SonarQube in Action. Manning Publications Co., New York
(2013)

42. Hochstein, L., Moser, R.: Ansible: Up and Running: Automating Configuration Manage-
ment and Deployment the Easy Way. O’Reilly Media Inc., Newton (2017)

43. Taylor, M., Vargo, S.: Learning Chef: A Guide to Configuration Management and
Automation. O’Reilly Media Inc., Newton (2014)

44. Loope, J.: Managing Infrastructure with Puppet: Configuration Management at Scale.
O’Reilly Media Inc., Newton (2011)

45. Hall, D.: Ansible configuration management. Packt Publishing Ltd., Birmingham (2013)
46. CloudWatch: Amazon cloudwatch (2014)
47. Cloudmonix: CloudMonix (2018). http://www.cloudmonix.com/. Accessed 9 May 2018

432 P. Nkomo and M. Coetzee

http://dx.doi.org/10.1007/978-3-319-65127-9_10
http://dx.doi.org/10.1007/978-3-319-65127-9_10
http://dx.doi.org/10.1007/978-3-319-07452-8_11
http://dx.doi.org/10.1007/978-3-319-19875-0_11
http://dx.doi.org/10.1007/978-3-319-57633-6_13
http://www.cloudmonix.com/


48. Willnecker, F., Brunnert, A., Gottesheim, W., Krcmar, H.: Using dynatrace monitoring data
for generating performance models of java ee applications. In: Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, pp. 103–104. ACM
(2015)

49. Zabbix, S.I.A.: Zabbix. The Enterprise-class Monitoring Solution for Everyone (2014)
50. AppDynamics, A.I.P.: AppDynamics Pro Documentation

Development Activities, Tools and Techniques 433



Generating Phishing Emails
Using Graph Database

Nasim Maleki(B) and Ali A. Ghorbani

Canadian Institute for Cybersecurity, Faculty of Computer Science,
University of New Brunswick, 46 Dineen Drive, Fredericton, NB, Canada

{nmaleki,aghorbani}@unb.ca

Abstract. We need Phishing Awareness Tools to train employees
because existing anti-phishing filters are not 100% capable of detecting
phishing attacks, especially zero-day attacks. Current awareness tools
can make phishing campaigns targeting the employees, but they contain
an only limited number of predefined email templates. In this work, we
designed a framework and built a tool generating new phishing emails
automatically from a graph database perspective. Then, we conducted
a three-round experiment. We sent the automatically-generated emails
to some uninformed members of our community. On average, 72.85% of
victims opened the emails, the click-through rate was 54.05% among who
opened the emails, and all recipients who completed the survey stated
that the content of emails was meaningful. In this experiment, we also
showed which parts of the email are more luring and what the result
might be if emails are carefully-crafted or from a person of authority.

Keywords: Phishing email · Phishing Awareness Tool · Generating
phishing email

1 Introduction

Downs et al. [5] has divided computer security attacks into three categories:
physical attacks, syntactic attacks, and semantic attacks. Semantic attacks target
people’s vulnerability, not the machines’. Hence, Phishing Attack belongs to the
semantic attack type and mostly happens in the form of email fraud.

Researchers and industry have proposed many detection methods to filter
incoming phishing emails although they are not 100% accurate. As a result, if
an anti-phishing tool cannot filter a phishing email and it arrives right at the
recipient’s inbox, the recipient should verify that the email is real or fake. We
require a Security Awareness Tool to train employees of companies to be aware
of phishing characteristics. Phishing awareness tools send simulated phishing
attacks toward employees to assess their awareness level. However, current tools
only contain a limited number of email templates to make the campaigns. We
have designed and developed a framework to generate contents of phishing email
attacks automatically.
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 434–449, 2019.
https://doi.org/10.1007/978-3-030-34339-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_25


Generating Phishing Emails Using Graph Database 435

To this end, we analyze phishing emails, their topics, and the types of com-
panies that phishing emails are impersonating such as payment, shipping, etc.
After analyzing hundreds of phishing emails from the APWG dataset and also
getting inspiration from Palka et al. [11], we dissect phishing emails into the
meaningful fragments such as Problem, Solution, Link Indicator, etc. So each
phishing email’s body is semantically broken apart to a number of meaningful
parts then tagged and finally stored in a Neo4j graph database as a knowledge
base. Based on algorithms in Sect. 4 data fragments or nodes with a higher weight
would be selected to generate a new email.

We sent the automatically-generated emails to some members of our commu-
nity in three unannounced tests with different topics and severity. On average,
72.85% of victims opened the emails, the click-through rate was 54.05% among
who opened the emails, and all recipients who read the generated emails and
completed the survey stated that the contents were meaningful.

Our contributions in this study are:

– We created a knowledge base including the data segments of 300 phishing
attacks from the APWG Dataset [1]. They have semantic tags and weights
based on the number of incoming/outgoing edges. See Sects. 4.1 and 4.1 for
details.

– Built a web application tool to generate new meaningful phishing contents
automatically. See Sect. 4.

– Our tool can return the generated email to the knowledge base for increasing
the weight of its data segments. High-weighted nodes are probable to be
chosen again, but data segments with the lowest weight are gradually removed
from the knowledge base. See Sect. 4.1.

– Conducted three practical experiments on uninformed members of our com-
munity to show generated emails are meaningful.

– We also have shown that spear phishing attacks have different severities. For
example, the spear phishing impersonating a person of authority made more
people fall into the trap. The tests show which parts of the email are more
luring and what the result will be if emails are carefully-crafted. Refer to
Sects. 5 and 6 for details.

In the rest of the paper, Sect. 2 is dedicated to the related works and comparison
with existing tools. We analyzed phishing emails in Sects. 3 and 7 has been
devoted to the conclusion.

2 Related Works

2.1 Phishing Email Generation

Generating phishing attacks is a novel idea to test anti-phishing tools for rec-
ognizing their flaws and weak points. This framework [11] works as a Fuzzer to
find the weak points of anti-phishing tools. This method creates phishing emails
dynamically and semantically consistent throughout the email using generative



436 N. Maleki and A. A. Ghorbani

grammars. At first, the language had 30 rules with assigned weights. The weights
are dynamically changing. For instance, if a rule can bypass the filters, its weight
would increase and vice versa. Based on the experiment, the click-through rate
is 9% in their framework, and in the manual model, the success rate is 8.5%
showing the power of their method compared to the manual one. Palka et al.
[12] have improved [11] by adding N-Gram Analysis to the previous framework.
Their original idea was avoiding repetition in e-mails for exercises using n-grams,
and the same approach works for intelligent fuzzing. Also, it recognizes which
parts of the rules (emails have different elements in their content like greeting,
signature, resolve, problem, etc.) can cause filtering. After four rounds of testing
over the production environment and trained environment, their generator was
able to bypass all detection filters and get all 100 e-mails into the inbox. [12]
made an effort to generate phishing email, however, they only considered 30 rules
in Context-free grammar. Each rule is a sentence, so making different types of
phishing email using only 30 rules is not possible. Hence, we still face the issue
of generating meaningful phishing emails with various topics automatically on a
larger scale and in our proposed framework, we tried to overcome this issue.

2.2 Phishing Awareness Training and Tools

There is plenty of research that has been done in phishing awareness training.
[4] conducted some phishing tests to assess the failure/success level regarding
different criteria such as phishing attack type, class of students(victims), and
exercise version. In [6], the authors analyzed previous phishing emails from 2008
to 2017 to show different principles of persuasion in luring victims. Through
content analysis, together with the sample characterization in terms of visual
elements and targeted content they revealed that principles of persuasion in
phishing emails were ‘Authority’, ‘Strong Effect’, ‘Integrity’ and ‘Reciprocation’.

Six available open source or free products exist in the market to simulate
phishing attacks based on some fixed and predesigned email templates. These
tools Gophish [7], Phishing Frenzy [13], King Phisher [8], SpeedPhish Frame-
work [18], Social-Engineer Toolkit (SET)[17], SpearPhisherBETA [3] and two
commercial tools such as Phishsim [16] and Lucy [9] mostly help in technical
parts such as sending over SMTP server, campaign management, scheduling,
giving statistical reports, etc. For instance, Social Engineering Toolkit [17] helps
to conduct spear phishing attacks by email spoofing or name spoofing. These
tools have a lack of phishing email scenarios, and they only have a limited num-
ber of email samples. In our framework, we try to fill this gap by generating new
phishing emails for various phishing scenarios automatically (Table 1).



Generating Phishing Emails Using Graph Database 437

3 Generating Phishing Email

Phishing emails basically impersonate a company with an expected topic from
that company, for instance, a phishing email from the Paypal company with
the To update the account information in a limited amount of time topic. Our
main purpose is to generate new phishing email content automatically if the user
specifies a topic, a victim company, and an attack type.

The idea is to generate variable parts of the email and inject them into the
fixed segments of the email. First and foremost, we analyze email structure to
know what parts of an email are variable and should be generated automatically.
Variable parts will change if the attack type, the company type, and the topic
change.

3.1 Phishing Email Structure

We inspect header, body, and attachments of emails with phishing perspective
in the following parts.

Email Body

Content. We analyzed many phishing emails. They generally derive from the fol-
lowing meaningful fragments: Subject, Greeting, Problem, Solution, Signature,
Apology, and Note. In a phishing attack after greeting, the usual behavior is
that first phishers start describing a problem such as “Someone is trying to get

Table 1. Comparison table

Phishing awareness tools Automatically

generating

phishing email

contents

Reporting Campaign

management

and scheduling

Email sender

module

Cross platform

Gophish [7] No Yes Yes Yes Yes (Web

App)

Phishing Frenzy [13] No Yes Yes Yes No

(Linux-based)

King Phisher [8] No Yes Yes Yes No

(Linux-based)

SpeedPhish Framework

[18]

No No No Yes No (Console

Application-

Linux)

Social Engineer Toolkit

(SET) [17]

No No No Yes No (Console

Application-

Linux)

SpearPhisher BETA [3] No No No Yes No (Windows-

based)

SecurityIQ PhishSim [16] No Yes Yes Yes Yes

LUCY [9] No Yes Yes Yes No (Debian-

based)

Our Tool Yes Yes Yes Yes (Integrated

with existing

tools)

Yes (Web

App)



438 N. Maleki and A. A. Ghorbani

access to your account, so we suspended it.”. Then they provide a solution to
resolve the problem, e.g., “To get access your account, click the link and confirm
your information.”. Finally, there is a link indicator, e.g., “Click Here!”. There
are also other data fragments such as Greeting, Signature, Apology, and
Note (The note contains extra information about the companies at the bottom
of the email.).

Fig. 1. Information Fragments in a phishing email

Links. Phishing emails typically contain a URL which is directing users to a fake
website, or the URL is a drive-by-download link compel people to download a
file.

Logo and Email Template. Each company has a specific email template or email
appearance. This template can be an HTML page which is also containing the
logo of the company. These are the fixed graphical parts that we already make
them for any existing company in the framework (Fig. 1).

Attachment. The attachment itself is not a variable object in our process of
generating the email. However, if an email has an attachment, the tool should
create sentences indicating there is an attachment.

Header. We analyze the header to conduct phishing experiments. To bypass
the phishing filters, we have to manipulate some fields in the header such as
From, Return-path, and Sender. These headers are standard headers based on
RFC822 [15], RFC1036 [14]. Besides that, for impersonation, we may do name
spoofing or email spoofing to pretend that the email is coming from a genuine
person or company.

3.2 Analysis of Attack Type, Company Type, and Topic

Each phishing email impersonates a company and has a specific topic and attack
type. These three features play the input roles to generate new phishing email in
the framework. For instance, if an attack type is through a link, it is necessary
to have statements such as “clicking on the links.” Otherwise, it requires other
indicators regarding the attack type. Requiring company type, company name,
and the topic has similar reasons which we describe in the following subsections.



Generating Phishing Emails Using Graph Database 439

Company Type. Phishing attacks with the same or similar industry type
mostly have similar ideas to fool people. Hence, considering “Company Type”
as an entity in our framework helps to generate related content. According to
the APWG report in [2], there are about eight organization types affected by
the phishing attack. The most targeted organizations are Payment, Webmail,
and Financial Institutions.

Topics/Battery. Phishing emails have different topics, but they follow similar
scenarios that targeted companies mostly use in their emails. For example, peo-
ple receive lots of phishing attacks impersonating PayPal company every day.
Phishers use the subjects which are common in the emails sent from PayPal
company to its customers. During the data gathering phase, few topics have
been gathered and assigned to each company. For instance, Facebook has some
general topics such as Notification Email, Security Problem, Changing Password,
Account Updating, etc. General topics are like a semantic tag helping to find
the best match for other fragments of the email such as subject, problem, and
solution.

Attack Type. Phishing attacks may contain a hyperlink pointing to a fake
website. The other ways to give credentials away are through Reply to the email
or Data entry via an embedded form in the body of the email. Moreover, Drive-
by Download is a method forcing victims to download a malicious file. The last
type is through an email attachment which is mostly occurring in spear phishing
emails with an infectious file such as invoices in PDF formats.

1-Link 2-Data entry 3-Reply 4-Drive-by download 5-File attachment

4 Algorithms, Design and Implementation

4.1 System Overview

As shown in Fig. 2, the proposed tool has five main modules forming a cycle. The
first step is Email-Fragmentation. After analyzing the phishing email dataset,
all data fragments of 300 emails from 20 companies are stored in the knowledge
base. The second step is to generate phishing emails, based on the constructed
knowledge base. With specifying company name, attack type, and selected topic,
the framework calculates the nodes’ weights regarding the score function. After
selecting the nodes with the highest weight, they are combined and put into the
fixed parts of the email which are already defined.

Any generated email can be added to the knowledge base again as a new
phishing email. However, it can be revised by the administrator if it has any
semantic or syntactic errors in the content. Besides, for generating new emails
based on newer data, the old and depreciated data are deleted from the database.
As a result, self-adaptation is an essential feature of this tool helping knowledge
base keep data fresh through removing old data and maintaining important
fragments at the top of the list.



440 N. Maleki and A. A. Ghorbani

Fig. 2. System overview

Email Fragmentation. “Anti-phishing Working Group (APWG) is the inter-
national coalition unifying the global response to cybercrime across industry,
government and law-enforcement sectors and NGO communities.” [2]. It pro-
vides a real and organized data resource for occurring phishing emails. For our
purpose, we analyzed more than one thousand phishing emails which occurred
during 2017–2018 and extracted the unique phishing email samples manually.
Finally, we obtained 300 phishing emails of 20 companies from 10 different com-
pany types with various unique topics and contents. Data fragments of each
email are inserted as a node into the knowledge base with a tag name, i.e., if
it is a problem fragment, it is stored as a problem node. For instance, in Fig. 3,
the value of the problem node is “we have sent you this email because we have
strong reason your account has been compromised.” After inserting the node
itself, the relations with other nodes such as topic, organization, and attack type
nodes are made. Here this phishing attack belongs to the Amazon company, the
attack type is through a link, and the general topic is “Limiting account access”.

Knowledge Base Design. All extracted fragments of data are inserted into
a knowledge base. The knowledge base is a NoSQL graph database which is a
Directed Acyclic Graph to store data. NoSQL databases provide many-to-many
relations, tree-like structure, many nullable fields, etc. If we meet such conditions,
it is better to use NoSQL Database Models [19].

In this framework, the relationships between data fragments or nodes matter
more than the individual nodes themselves. Hence, we need a database model
in which data relationships are stored as a first-class entity. Also in comparison
to relational databases, for highly-connected data, we require graph traversal
or multiple expensive joins and search string queries. Vicknair et al. [19] has
proved that graph databases do perform much better in these cases. As a result,
we come up with a graph database perspective.

One of the most popular frameworks for implementing graph database is
NEO4J [10], and its query language is Cypher. In Fig. 3, each email with its data



Generating Phishing Emails Using Graph Database 441

Fig. 3. Data fragments of a sample email in a graph database schema

fragments is inserted into the knowledge base. It also includes the relationships
between attack type node which is “link” here, company and topic nodes. Also,
each company connects to all its potential topic nodes and its company type
node. An important point here is that there are no two nodes with the same value,
i.e., while adding a new data fragment, no node is created if the data fragment
exists. Instead, we make a relationship with the existing node containing the
data fragment.

Generation Algorithms. First, we need to know which company this email
belongs to, what the topic and the type of attack are. These are the inputs of
our framework. Then, the framework should query the knowledge base and find
the most related data fragments (signature, greeting, problem, solution, etc.) to
the inputs. After that, we put all the selected fragments together to generate a
new email.

The basic idea to select data fragments is based on a score function. The
higher the computed score for a node, the more probable it is to be selected. For
instance, there may be 1000 signatures in the knowledge base, but only one of
which is suitable to be a signature of the new phishing email.

Generating Signature and Greeting Data Fragments. Each company usually
has its specific signature and greeting style. So for selecting the best signa-
ture/greeting data fragment among all existing ones, we use “Company Name”
and “Company Type” for computing the score of all signatures/greetings. Sig-
nature statements are selected based on the Algorithm 1. We have provided the
pseudo code for finding Signature here which can be used for finding Greeting



442 N. Maleki and A. A. Ghorbani

as well. The naive idea is that the most frequent data fragment in emails is the
winner.

In Algorithm 1, lines 3 and 4 are used to find the nodes with the company’s
name and type. The lines 5 to 15 traverse all signatures nodes. In each iteration,
it has a current signature. Then, line 7 counts the number of emails connected
to the current signature node, and the company node. For instance, to find a
suitable signature for the Amazon company, we count the emails connected to
both Amazon company and the current signature node in each iteration. After
that, line 8 counts the number of emails connected to the current signature and
only connected to the company type node, i.e., in Amazon example, we count
the emails used the current signature and belong to E-commerce company type,
but do not belong to the Amazon company. For computing the score, each of C1

and C2 has a weight. These weights are not static and can be changed during
evolving of the knowledge base. Finally from lines 13 to 16, if the score is higher
than the maximum score, we will keep the signature. Otherwise, we discard it.

Algorithm 1. Algorithm to find the best Signature
Require: Knowledge base(KB), CompanyName, CompanyType
Ensure: Returns Signature
1: nodehighestScore ← Null
2: Maxscore ← 0
3: CN ← Node(CompanyName)
4: CT ← Node(CompanyType)
5: while Traverse all signature nodes in KB do
6: SN ← SignatureNode
7: C1 ← Count(Email Nodes connected to SN and CN)
8: C2 ← Count(Email Nodes connected to SN and CT (indirectly) and not connected to CN)

9: ScoreSN ← weight1 × C1+weight2 × C2 +
1

usageScoreSN
10: if ScoreSN ≥ Maxscore then
11: Maxscore ← ScoreSN

12: nodehighestScore ← SN
13: end if
14: end while
15: return nodehighestScore

Generating Subject, Problem, and Solution Data Fragments. For finding the best
choice for the problem, solution, and the subject, the basic idea is similar to the
previous part. Besides “Company” and “Company Type” the other parameter
is “Topic” which helps to select a more related problem, solution, and subject.
So in Algorithm 2, line 6 only traverses the nodes connected to the intended
topic. In addition to line 8 and 9 existed in Algorithm 1, we add line 10 to
Algorithm 2 to consider the count of emails only has the intended topic with a
different company name and company type. We have provided the pseudo code
for finding the best subject here. However, it works for finding the best solution
and problem data fragments as well. After the fragments generated, because
proper names like company names or people’s name had been replaced by a
general tag like <name> during the insertion step, system administrators are
supposed to manipulate these parts based on their preferences.



Generating Phishing Emails Using Graph Database 443

Algorithm 2. Algorithm to find the best Subject
Require: KB, Topic, CompanyName, CompanyType
Ensure: Returns the best choice Subject
1: nodehighestScore ← Null
2: Maxscore ← 0
3: CN ← Node(CompanyName)
4: CT ← Node(CompanyType)
5: T ← Node(Topic)
6: while Traverse all subject nodes connected to T node in KB do
7: SN ← SubjectNode
8: C1 ← Count(Email Nodes connected to SN and CN)
9: C2 ← Count(Email Nodes connected to SN and CT (indirectly) and not connected to CN)

10: C3 ← Count(Email Nodes connected to a different CT , and a different CN)

11: ScoreSN ← weight1 × c1+weight2 × c2 + weight3 × c3 +
1

usageScoreSN
12: if ScoreSN ≥ Maxscore then
13: Maxscore ← ScoreSN

14: nodehighestScore ← SN
15: end if
16: end while
17: return nodehighestScore

Self-adaptation and Back to Knowledge Base. The administrator can
edit or refine the newly generated email. The system is like a cycle into which
all generated email can be entered again. We can add all fragments of the new
email into the knowledge base, especially once it is successful in bypassing the
filters and trapping the victims.

Because the data fragment already exists in the database, only an edge goes
to the existing node containing that fragment. As a result, the degree of the
node is getting higher, and it becomes more critical and more likely to be chosen
in the future again. However, we assign a usage score to each node that every
time a data fragment is generated, it will increase. Usage score helps to avoid
starving, and it allows the other suitable and newer fragments to be selected.
After a while, we can remove the data with the lowest weights. Hence, the usage
score not only keeps the knowledge base fresh, but it also keeps its size small
and efficient.

Fig. 4. Dashboard pages

Phishing Web Application. We have implemented a web application tool
for our framework. It has an insertion page for entering phishing attacks to



444 N. Maleki and A. A. Ghorbani

the knowledge base. The generation page as shown in Fig. 4a gets the attack
type, company, company type, and the topic as inputs. Then it can generate
the phishing email shown in Fig. 4b. The generated email has been put in a text
area which is editable by the admin. The email can be revised and returned to
the system again.

5 Experiment Setup

The purpose of our idea in this work is to generate contents of phishing emails
in awareness tools automatically. We have designed a three-round experiment
to evaluate the effect of the contents on our targets. There are three factors we
assessed in these experiments:

1. Meaningful Content: Generated contents should be meaningful and con-
crete. Being concrete means all generated fragments have to make sense when
combined in creating a new email.

2. Opening Rate: By opening an email, the probability of clicking on the link
or downloading the attachment increases. Previously by opening an email,
some scripts could have executed. Now email software (webmail or desktop)
prevents any Javascript codes from executing. Some email clients no longer
load the images by default or can be configured to do so.

3. Click Through Rate: It shows the rate of clicking on the link/attachment
in phishing emails. Once people click on the link in an email, they will be
directed to a survey page shown in Fig. 5a. They are asked to answer some
questions such as whether email contents were meaningful or not.

These experiments were part of the awareness program in the institute which
allowed us to send emails to our members to identify the readiness to deal with
the phishing contents. In all rounds, the targets were not aware of the experi-
ments. The duration between the experiments was roughly a month, so people
were less potential to be biased. And results show that they still have got manip-
ulated by the emails in each round. The number of targets increased after round
1 to achieve a more reliable result.

To deal with the stress level of the targets, first, the phishing topics were cho-
sen such that to be less stressful, e.g., Sharing a file. Second, the victims imme-
diately got informed of the experiment on the landing page. Also, all retrieved
information was kept anonymously.

5.1 Experiment Design - First Round

We carried out an experiment with ten members of our research team. The
generated email in Fig. 5b had the following characteristics:

1. Email Spoofing: The email was coming from a Google drive of a person of
authority sharing a file, and the domain of the sender’s email address was
google.com.



Generating Phishing Emails Using Graph Database 445

Fig. 5. Experiment pages

2. Spear phishing: In spear phishing, attackers mostly apply social engineering
to be more successful in attacking. So we added the recipient’s name and the
file name into the email to be more convincing.

3. Script: A hidden image was added to track the sent emails. However, this is
not promising if the users configure their email client not to open the image
automatically. So all statistics about opening the emails is probably more
than what has been reported. Moreover, also once a link was clicked, it sent
a request to our server, so we were able to gather who clicked on the link.
– Email is opened or not?

<img src=“http://domain.com/image?email=...” style=“visibility:hidden”>

– Link is clicked or not?
<a href=“http://domain.com/index?email=...”>

To spoof the email addresses on Google domain, we used a third party service1

that could relay emails successfully toward the account holders’ inboxes without
being spammed.

5.2 Experiment Design - Second and Third Round

In the second and third rounds, our first goal is to assess previous criteria with
more victims and new phishing attack scenarios. So we targeted 35 people who
are all experts or familiar with security.

Spear phishing inherently targets specific groups of people. However, it can
possess a different severity level. As a second goal, we conducted a two-round
experiment with different severities. Unlike the previous experiment, using third-
party services for email spoofing failed. Spoofing email address of the specific
owners was very challenging. We had to find a vulnerability and exploit it to
pass the filters and arrive in the inbox without being spammed.
The severe spear phishing specifications (round 2):

1 https://emkei.cz/.

http://domain.com/image?email=...
http://domain.com/index?email=...
https://emkei.cz/


446 N. Maleki and A. A. Ghorbani

1. We applied email address spoofing attack and impersonated a person of
authority (Director).

2. The content was an invitation email to an event.
3. Used the attachment attack type. It can be an infectious file in a real attack.
4. Inserted a hidden image into the email to track whether it was opened or not.

Less severe spear phishing specifications (round 3):

1. We applied email address spoofing attack and impersonated a less impor-
tant sender which was the university gym.

2. The content was a general announcement to all.
3. Embedded a fake obfuscated link into the email.
4. Inserted a hidden image into the email to track whether it was opened or not.

6 Results

6.1 First Round

The result of the first experiment has been shown in the following Fig. 6 and
Table 2 showing the answers of the victims. 9 out of 10 people have opened
the email. All people confirmed the content was meaningful to them. 6 out of
9 people who opened the email clicked on the link. 2 out of 3 people detected
the phishing email stated that they could detect by noticing to the URL. From
those people who could not detect the phishing email, 2 of them claimed that
the header was fooling. One person stated the content was deceptive. The others
did not mention any reasons. The 10th person had got the email but ignored it
with no reason. In this round after the experiment, we asked all targeted people
to complete the survey, so people who could detect the phishing email and did
not click on the link also stated the reason for detection in the survey.

6.2 Second Round

For sending the emails, we used SMTP2Go2 as a reputable service to avoid
spamming. It also can report that all sent emails were delivered successfully. In
the second experiment which was more severe, as shown in the Fig. 6, 3 out of
35 people ignored the email, and 13 victims out of 32 people who opened the
email also opened the attachment (40.62%). Because we cannot track opening of
attachments, what we have reported in this paper is based on those people who
completed our survey. 13 people completed the survey and indicated that they
opened the attachment. It is plausible that the number of people who opened
the attachment might have been more than 13. These 13 people stated in the
survey Table 3 that the content of the email was meaningful to them. In the
survey Table 3, five people chose “sender name” as a deceptive part, 3 of them
mentioned “sender email address”, 3 of them chose the content/subject, and 2
of them did not mention any reasons. So totally, 8 out of 13 people have fallen
2 https://www.smtp2go.com/.

https://www.smtp2go.com/


Generating Phishing Emails Using Graph Database 447

Table 2. First experiment survey

Did you

detect it?

Meaningful

content

Deceptive

part

Reason of

detecion

Yes Yes – Content

Yes Yes – URL

Yes Yes – URL

No Yes Unknown –

No Yes Header –

No Yes Unknown –

No Yes Content –

No Yes Header –

No Yes Unknown –

Table 3. Second experiment survey

Meaningful
content

Deceptive part

Yes Sender name

Yes Content/subject

Yes Sender email address

Yes Content/subject

Yes Sender name

Yes Sender email address

Yes Sender email address

Yes Sender name

Yes Sender name

Yes Unknwon

Yes Sender name

Yes Unknown

Yes Content/subject

into the trap because of the sender’s name and email address. In this and the
next round, we did not ask all targeted people to complete the survey after the
experiment. What is reported is based on the responses of who fell into the trap
and completed the survey. So the third column which is the reason for detection
has been remained empty and deleted from Table 3.

6.3 Third Round

In comparison with the second round, the third round was less intense. It
included the content with a more general topic, and also emails came from a
person of less authority. As shown in Fig. 6, 13 out of 35 people opened the
email, and 8 victims out of 13 people who opened the email also clicked on the
link (61.53%). Only 2 people completed the survey and stated that the content
of the email was meaningful. One of them explained that the reason for being
fooled was his curiosity about the content, and the other person did not mention
any reason.

6.4 Discussion

Around 40% to 60% of people fell into the attack when they received the spear
phishing. In the second experiment, because the spear phishing was more severe
and coming from a person of authority, only three people ignored it. While in
the third experiment with less intensity 23 people had ignored the email. Hence
we can conclude that once more people open the email, the probability of click-
through rate would increase.



448 N. Maleki and A. A. Ghorbani

Fig. 6. Comparison of three experiments

In the second experiment, 8 out of 13 people who completed the survey have
stated that the reason for not detecting was the spoofed sender name and the
spoofed email address. In the third experiment, from 8 people who completed
the survey, only one person stated that the reason for opening the link was his
curiosity about the email’s subject. The others did not mention any reason for
opening the email/clicking on the link. In the first round with fewer people, 90%
opened the email, and 60% of people were fooled by the email. Again in the
second experiment with more victims but the same severity, 91.42% opened the
email, and around 37% could not recognize the email is coming from an untrusted
source. The results of both experiments which were severe spear phishing are
similar, especially in attracting people to open the emails. About 90% of people
in both experiments opened the email.

In these three rounds on average, 72.85% of victims had opened the emails,
the click-through rate was 54.05% among who opened the emails, and all people
who completed the survey stated that the content was meaningful.

7 Conclusion

In this paper, to empower the Phishing Awareness Tools, we built a system to
generate automatically meaningful phishing emails based on the different topics,
company types and the attack types using a graph database. We analyzed hun-
dreds of the latest phishing emails in APWG dataset. Finally, we inserted 300
emails’ data fragments (from 20 different companies with different topics) into
the knowledge base. In this tool, we can return the generated email to the knowl-
edge base for increasing the weight of its data fragments. High-weighted nodes
are probable to be chosen again, but data segments with the lowest weights are
gradually removed from the knowledge base. After generating phishing emails,
we conducted three rounds of phishing campaigns to uninformed members of
the institute. We assessed these factors: being meaningful content, click-through
rate, and the opened by recipient percentage. On average, 72.85% of victims had



Generating Phishing Emails Using Graph Database 449

opened the emails, the click-through rate was 54.05% among who opened the
emails, and all people who completed the survey stated that the content was
meaningful. For future work, we can expand our email generation to be more
intelligent by applying dynamic approaches such as machine learning algorithms.

Acknowledgement. The authors generously acknowledge the funding from the
Atlantic Canada Opportunity Agency (ACOA) through the Atlantic Innovation Fund
(AIF) and through grant from the National Science and Engineering Research Council
of Canada (NSERC) to Dr. Ghorbani.

References

1. apwg: Apwg report. https://www.antiphishing.org/resources/apwg-reports/.
Accessed 01 April 2019

2. APWG: Apwg report q4 (2017). https://docs.apwg.org//reports/apwg trends
report q4 2017.pdf. Accessed 01 April 2019

3. Beta, S.: Spearphisher beta. https://www.trustedsec.com/2013/09/introducing-
spearphisher-simple-phishing-email-generation-tool/. Accessed 01 April 2019

4. Dodge Jr., R.C., Carver, C., Ferguson, A.J.: Phishing for user security awareness.
Comput. Secur. 26(1), 73–80 (2007)

5. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility
to phishing. In: Proceedings of the Second Symposium on Usable Privacy and
Security, pp. 79–90. ACM (2006)

6. Ferreira, A., Teles, S.: Persuasion: how phishing emails can influence users and
bypass security measures. Int. J. Hum Comput Stud. 125, 19–31 (2019)

7. Gophish: Gophish. https://getgophish.com/. Accessed 01 April 2019
8. kingphisher: Knuth: computers and typesetting. https://king-phisher.readthdocs.

io/en/latest/. Accessed 01 April 2019
9. LUCY: Lucy. https://www.lucysecurity.com/en/. Accessed 01 April 2019

10. neo4j: Why graph databases? https://neo4j.com/why-graph-databases/. Accessed
01 April 2019

11. Palka, S., McCoy, D.: Dynamic phishing content using generative grammars. In:
2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 1–8. IEEE (2015)

12. Palka, S., McCoy, D.: Fuzzing e-mail filters with generative grammars and n-gram
analysis. In: WOOT (2015)

13. phishingfrenzy: phishingfrenzy. https://www.phishingfrenzy.com/. Accessed 01
April 2019

14. RFC: Rfc1036. https://tools.ietf.org/html/rfc1036. Accessed 01 April 2019
15. RFC: Rfc822. https://tools.ietf.org/html/rfc822. Accessed 01 April 2019
16. SecurityIQ: Securityiq phishsim. https://www.infosecinstitute.com/securityiq/

phishing/. Accessed 01 April 2019
17. (SET), S.E.T.: Social-engineer toolkit (set). https://www.trustedsec.com/2013/

09/introducing-spearphisher-simple-phishing-email-generation-tool/. Accessed 01
April 2019

18. SPF: Speedphish framework (spf). https://github.com/tatanus/SPF. Accessed 01
April 2019

19. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
Proceedings of the 48th Annual Southeast Regional Conference, p. 42. ACM (2010)

https://www.antiphishing.org/resources/apwg-reports/
https://docs.apwg.org//reports/apwg_trends_report_q4_2017.pdf
https://docs.apwg.org//reports/apwg_trends_report_q4_2017.pdf
https://www.trustedsec.com/2013/09/introducing-spearphisher-simple-phishing-email-generation-tool/
https://www.trustedsec.com/2013/09/introducing-spearphisher-simple-phishing-email-generation-tool/
https://getgophish.com/
https://king-phisher.readthdocs.io/en/latest/
https://king-phisher.readthdocs.io/en/latest/
https://www.lucysecurity.com/en/
https://neo4j.com/why-graph-databases/
https://www.phishingfrenzy.com/
https://tools.ietf.org/html/rfc1036
https://tools.ietf.org/html/rfc822
https://www.infosecinstitute.com/securityiq/phishing/
https://www.infosecinstitute.com/securityiq/phishing/
https://www.trustedsec.com/2013/09/introducing-spearphisher-simple-phishing-email-generation-tool/
https://www.trustedsec.com/2013/09/introducing-spearphisher-simple-phishing-email-generation-tool/
https://github.com/tatanus/SPF


Short Paper II



Evaluating Intrusion Sensitivity
Allocation with Support Vector Machine
for Collaborative Intrusion Detection

Wenjuan Li1, Weizhi Meng2(B), and Lam For Kwok1

1 Department of Computer Science,
City University of Hong Kong, Hong Kong, China

2 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

weme@dtu.dk

Abstract. The aim of collaborative intrusion detection networks
(CIDNs) is to provide better detection performance over a single IDS,
through allowing IDS nodes to exchange data or information with
each other. Nevertheless, CIDNs may be vulnerable to insider attacks,
and there is a great need for deploying appropriate trust management
schemes to protect CIDNs in practice. In this work, we advocate the
effectiveness of intrusion sensitivity-based trust management model and
describe an engineering way to automatically allocate the sensitivity val-
ues by using a support vector machine (SVM) classifier. To explore the
allocation performance, we compare our classifier with several traditional
supervised algorithms in the evaluation. We further investigate the per-
formance of our enhanced trust management scheme in a real network
environment under adversarial scenarios, and the experimental results
indicate that our approach can be more effective in detecting insider
attacks as compared with similar approaches.

Keywords: Collaborative intrusion detection · Intrusion sensitivity ·
Supervised learning · Trust management · Insider threat

1 Introduction

To protect various computer or network assets, intrusion detection systems
(IDSs) are one of the most commonly adopted solutions in practice [19]. As
intrusions are becoming more complicated, collaborative intrusion detection net-
works (CIDNs) are proposed to enhance the detection performance of a single
IDS [22,23]. A CIDN allows various IDS nodes to exchange data and learn with
each other.

However, CIDNs may be vulnerable to insider attacks due to the distributed
architecture, in which an intruder can control an internal node within the net-
work. For instance, if an attack successfully hijack one internal node, then more
attacks can be launched via this compromised node. Insider threat can greatly
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 453–463, 2019.
https://doi.org/10.1007/978-3-030-34339-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_26


454 W. Li et al.

degrade the security of collaborative systems and networks. Therefore, it is very
important to design appropriate trust management schemes to help safeguard
CIDNs.

Motivations. In real scenarios, it is found that IDS nodes may have different
detection capability regarding one particular attack. This may be caused by dif-
ferent configuration and settings, i.e., one node has more detection rules than
the other. In the previous work [8], the authors defined a term called intrusion
sensitivity to describe the capability of identifying specific attacks. The use of
intrusion sensitivity is expected to enhance the detection performance by high-
lighting the impact of expert nodes. To the best of our knowledge, there are few
studies focusing on exploring the influence of intrusion sensitivity in practice.
In [10], their results indicated that the application of intrusion sensitivity can
provide more efficient detection of pollution attacks. However, how to assign the
sensitivity values in an automatic way still remains a challenging issue.

Contributions. Previous work [11] showed that using supervised learning algo-
rithms is a good way to help intelligently allocate the sensitivity values, while it
requires at least 60 labeled alarms to achieve good accuracy. Motivated by this
observation, in this article, we target on this challenge and enhance the intru-
sion sensitivity-based trust management scheme by leveraging a support vector
machine (SVM) classifier to reduce the required labeled alarms for allocating
sensitivity values. Further, we provide an engineering way of allocating the sen-
sitivity based on SVM in a real scenario. The contributions can be summarized
as follows.

– We improve the intrusion sensitivity-based trust management scheme in [11]
by using a support vector machine (SVM) classifier to allocate sensitivity
values. Our experimental results indicate that our approach can reduce the
required number of labeled alarms, as compared with several traditional algo-
rithms like decision tree and KNN.

– We introduce an engineering way of implementing both the allocation of sensi-
tivity values and the derivation of satisfaction level for the received feedback
for CIDNs. In practice, expert knowledge is very helpful and important to
ensure the quality of allocation.

– We collaborate with an IT organization and evaluate the performance of our
enhanced trust management scheme in a real network environment under
adversarial scenarios, like newcomer and betrayal attack. Our experimental
results indicate that our approach can achieve better performance in identi-
fying untruthful insider nodes as compared with similar approaches.

The reminder of this article is structured as follows. We review related studies
on distributed and collaborative intrusion detection in Sect. 2. Section 3 intro-
duces the basic architecture of intrusion sensitivity-based trust management
scheme for CIDNs, and presents an engineering way of allocating sensitivity
values using the SVM classifier. In Sect. 4, we present and analyze evaluation
results. Section 5 concludes our work.



Evaluating Intrusion Sensitivity Allocation with SVM 455

2 Related Work

Distributed or collaborative intrusion detection schemes are usually vulnerable
to insider attacks (or internal attacks). To construct an effective trust manage-
ment scheme is a necessary and important solution. For this purpose, some trust
management models have been designed in the literature. An Overlay IDS was
proposed by Duma et al. [3], aiming to defend distributed intrusion detection
against insider attacks. The major limitation is that it could not be effective
in detecting malicious nodes that have good reputation before in a fast man-
ner. This is because all nodes have the same impact regardless of the behavior
changes.

Fung et al. [4] then introduced a kind of challenge-based CIDN, which the rep-
utation was measured by identifying the satisfaction levels between the received
feedback and the expected answers. They also enhanced the detection using a
forgetting factor, which highlights the recent behavior of a node. Then, Dirichlet-
based trust model [5] was proposed to help improve the trust evaluation and the
balance between detection and false rates. Several other related studies on col-
laborative intrusion detection can be referred to [2,6,7,14,16,20,22].

Discussion. CIDNs have been gradually adopted by many organizations, but
it is very important to protect the security of these mechanisms against insider
threat. Most existing research provided many approaches to improve the detec-
tion like [6], whereas they did not consider different detection capability of IDS
nodes in practice.

In the previous work [8], the authors firstly defined a notion of intrusion sen-
sitivity by noticing the different levels of detection sensitivity among IDS nodes.
This term aims to help enhance the trust computation and alarm aggregation
by highlighting the influence of expert nodes, those who have stronger detec-
tion accuracy regarding certain attacks. However, allocating the value manually
is time-consuming and error-prone with the increasing size of nodes. How to
automatically allocate the values remains a challenging issue.

For this issue, relevant work [11] had shown that supervised learning can help
allocate sensitivity values in an automatic way. Motivated by this observation,
in this work, we target on this issue and enhance the intrusion sensitivity-based
trust management model by using an SVM classifier. This classifier can achieve
the same accuracy by reducing the required labeled alarms. We also provide an
engineering way of implementing the value allocation and investigate the per-
formance in a real network environment. Our experimental results demonstrate
that our approach can help defend CIDNs against insider attacks more effectively
than similar approaches.

3 Intrusion Sensitivity-Based Trust Management Model
for CIDNs

This section introduces the basic architecture of CIDNs like components and
interaction, and then describe how to use the SVM classifier to allocate sensi-
tivity values for IDS nodes.



456 W. Li et al.

Fig. 1. The CIDN architecture including exchanged messages and major components.

3.1 CIDN Architecture

Figure 1 depicts the architecture of CIDNs like exchanged messages and major
components, i.e., trust management component, query component, collaboration
component and communication component.

Node Registration. Such kind of CIDN allows each node selecting its partner
nodes based on its own rules or policies, and recording them in a list. If a node
wants to join, the first step is to obtain an identity from a certificate authority
(CA). As shown in Fig. 1, a new node D should deliver a joining request to CIDN
nodes, say node A. Based on the predefined policies, node A can make a decision
whether to accept node D or not.

Trust Management Component. The main task of this component is to
manage trust computation. In this work, we adopted the feedback-based trust
(or challenge-based trust) [4], in which the reputation is measured by identifying
the satisfaction level regarding the received feedback.

Collaboration Component. This component handles the communication
among different nodes. There are three types of messages can be used in a
challenge-based CIDN, such as normal requests, challenges and feedback. More
details can refer to previous work [11].

Query Component. This component is used to measure the intrusion sensitiv-
ity of other nodes. A query containing a set of alarms can be sent to the target
node. Based on the feedback, it can decide the sensitivity level accordingly.

Communication Component. This component mainly handles the connection
with other nodes, i.e., building and maintaining a P2P connection among IDS
nodes.

3.2 Trust Computation and Evaluation

To measure the reputation of an IDS node, a challenge can be sent to the target
node periodically via a random generation process (i.e., the time of sending is



Evaluating Intrusion Sensitivity Allocation with SVM 457

random). To facilitate the comparison with similar approaches, in this work, we
adopt and update the trust computation based on relevant studies [4,11], as
below.

T i,j
value = ws

∑n
k=0 F j

kλtk

∑n
k=0 λtk

(1)

where F j
k ∈ [0, 1] represents the satisfaction level for the received feedback k, n

means the total amount of received feedback, λ represents a forgetting factor that
highlights more weight to the recent response and behavior, ws is a significant
value, which can be varied based on the total amount of received feedback.
That is, if the number of received feedback is smaller than a value m, then
ws =

∑n
k=0 λtk

m ; otherwise we set ws to 1.
Then, we adopt the following weighted majority approach to derive the rep-

utation of a node j.

Tj =

∑
T≥r T i,j

valueD
j
i I

i
s

∑
T≥r T i,j

valueD
j
i

(2)

where T i,j
value(∈ [0, 1]) means the reputation level of node i according to node

j, Dj
i (∈ [0, 1]) indicates the relationship between these two nodes and the in-

between hops, r represents a threshold to filter those nodes whose reputation is
smaller than the threshold, Ii

s(∈ [0, 1]) indicates the value of intrusion sensitivity
of node i.

3.3 Intrusion Sensitivity Allocation in an Engineering Way

Traditionally, research studies often measure the detection capability among
various nodes using a normal distribution, but it cannot reflect the real-world
applications [4,5]. We advocate that intrusion sensitivity provides a metric to
evaluate the detection capability of an IDS node in practice.

In the above CIDN architecture, sensitivity values can be derived by sending
queries to other nodes. However, as human efforts are error-prone and expensive,
it is still a big challenge on how to allocate the values in an intelligent and
automatic way [8].

Focused on this challenge, in this work, we advocate the use of supervised
learning to help allocate the values based on expert knowledge in [11], while
we propose to use a multi-class support vector machine (SVM) classifier [12]
to enhance the allocation performance. The merits of using such classifier are
shown below [1]:

– SVM provides flexibility in selecting the form of the threshold, which does not
need to be linear and even not require the same functional form for each data
item. This is because its function can operate locally and be non-parametric.

– SVM is robust especially for a small amount of data items. There is no
assumption needed about the functional form of the transformation, i.e.,
human expertise judgement beforehand is not needed.



458 W. Li et al.

Knowledge 
Database

SVM Classifier

Label

Classfier Model

Training

Generate

New Alarm 
Data

Input

Result

Output

Fig. 2. The allocation of sensitivity values using SVM classifier in an engineering way.

– SVM can provide a unique and robust solution, i.e., a good out-of-sample
generalization. In other words, SVM can be still robust even under biased
training samples as long as selecting an appropriate generalization grade.

Similar to the previous studies [11], in this work, we also invited three security
experts (with more than six years’ experience) from the participating organiza-
tions (in our evaluation) to help label some alarm items. Figure 2 shows how to
allocate the sensitivity values using the SVM classifier and expert knowledge in
an engineering way.

4 Evaluation

4.1 Classifier Performance

In this part, we compare the performance of SVM with three commonly used
supervised classifiers in allocating the values of intrusion sensitivity, including k-
nearest neighbors (KNN), back-propagation neural networks (BPNN) and deci-
sion tree (DT).

– KNN. This is a kind of instance-based learning, which can classify new
instances based on the similarity to the known items. The detailed steps
can refer to the previous work [11].

– BPNN. This classifier is a kind of supervised classifier that can minimize the
error by adjusting the weight values via the process of back propagation. We
use the typical BPNN developed in [15], which has three layers like input,
output and hidden layer.

– DT. This is a popular classifier that can generate a model to predict the label
of an item by using a tree-like structure. In the comparison, we employ the
algorithm developed in [24].

In this comparison, similar to [11], we investigate different alarm numbers in
training like 30, 40, 50 and 60 alarms. We define intrusion sensitivity (Ii

s) to be



Evaluating Intrusion Sensitivity Allocation with SVM 459

SVM KNN BPNN DT
0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

A

30 Alarms
40 Alarms
50 Alarms
60 Alarms

Fig. 3. The classification accuracy
among different classifiers.

SVM KNN BPNN DT
0

2

4

6

8

10

12

14

Ti
m

e 
(s

)

30 Alarms
40 Alarms
50 Alarms
60 Alarms

Fig. 4. The time consumption among
different classifiers.

ten levels such as expert (1.0), excellent (0.9), very high (0.8), high (0.7), good
(0.6), neural (0.5), not good (0.4), low (0.3), very low (0.2), and bad (0.1). In the
evaluation, we mainly considered Snort, which is an open-source signature-based
IDS [18,21]. Its alarm has three priority levels: high, medium and low.

In particular, we collected 300 labeled alarms that were labeled by security
experts. In the phase of training, each classifier was trained with a set of labeled
alarms. The process is similar to [11], we trained the classifier with 60 alarms
(randomly selected from the database) for labeling 30 new alarms, while we
trained the classifier with 120 alarms (randomly selected from the database) for
labeling 60 new alarms. We repeated this experiment for ten times (via cross-
validation) to avoid some bias. Figures 3 and 4 shows the classification accuracy
and time consumption, respectively. The main observations are discussed below:

– Classification accuracy. It is found that SVM could reach better classification
accuracy than other three classifiers, i.e., it can achieve an accuracy rate
of 0.941, 0.961, and 0.966 for 40, 50, and 60 alarms, respectively. In the
comparison, our SVM classifier can achieve the same accuracy by reducing
the required labeled alarms in the training phase, i.e., SVM can achieve the
accuracy of above 0.96 for 50 alarms, while KNN [11] requires 60 alarms for
reaching the same accuracy.

– Time consumption. Intuitively, inputting more alarms would require more
time consumption in both training and classification. It is visible that KNN
could normally reach the smallest time consumption among all classifiers,
whereas the time consumption of SVM is very close to KNN. There is no
significant difference between KNN and SVM.

Our results demonstrate that SVM can achieve the best detection accuracy
among all classifiers, and can make a good balance between accuracy and time
consumption. It is worth noting that SVM can help reduce the required number
of labeled alarms as compared with the results in previous work [11].



460 W. Li et al.

Table 1. Some parameter settings in the evaluation.

Parameters Value Description

μ1 15/day Arrival rate for challenges

μ2 5/day Arrival rate for queries

λ 0.9 Forgetting factor

r 0.8 Trust threshold

Tdir,initial 0.5 Trust value for newcomers

m 10 Lower limit of received feedback

k1 5 Satisfaction levels

k2 10 Intrusion sensitivity levels

4.2 Evaluation in a Practical Environment

It is found that most existing trust management models have not been studied
in a real network. In this part, we therefore aim to evaluate our enhanced trust
management scheme in a practical CIDN environment by collaborating with an
IT organization.

There are up to 71 nodes in this CIDN environment, and our trust manage-
ment model was implemented with the help of security administrators from the
participating organization due to privacy concerns. In this evaluation, we mainly
consider two typical insider attacks like newcomer attack and betrayal attacks,
as compared with the performance of DSOM trust model [3] and challenge-based
trust model [4]. These two are the most relevant approaches to our work. We
adopted the same satisfaction mapping method in [11].

To facilitate the comparison, similar to [11], we adopt that each challenge is
comprised of 5 alarms (c = 5) and each query contains 50 alarms (q = 50). Some
parameters are summarized in Table 1.

Defending Against Newcomer Attack and Betrayal Attack. The type
of attack (also called re-entry attack) indicates a situation where a malicious
node tries to register as a new user to erase its bad record. By contrast, betrayal
attack is a major type of insider attacks, in which a trusted node (with high
reputation) turns into a malicious node, i.e., behaving harmfully to the network.
In this part, we investigate the performance of our trust management model
against both newcomer and betrayal attack.

In practice, cyber-criminals often launch a newcomer attack to leverage the
reputation, and then conduct a betrayal attack when the node obtains high repu-
tation. After the trust values become stable in the network, we randomly selected
5 nodes in collaboration with security administrators, to conduct a betrayal
attack from the 51st day, by sending malicious packets and false alarm rankings.
The results of nodes’ reputation under different trust models are shown in Fig. 5
and Fig. 6, respectively. We discuss the main observations as below.



Evaluating Intrusion Sensitivity Allocation with SVM 461

10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1.0
Tr

us
t V

al
ue

Day

Trust Model of DSOM
Trust Model of challenge-based
Our Approach

Fig. 5. The trust value of newcomers
under different trust models.

50 55 60 65 70 75 80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
us

t V
al

ue

Day

Trust Model of DSOM
Trust Model of challenge-based
Our Approach

Fig. 6. The trust value of malicious
nodes under betrayal attack.

– In our network settings, new nodes can become trusted only by increasing
its trust values above the threshold of 0.8 (see Table 1); otherwise, it cannot
affect the trust evaluation and alarm aggregation process. According to Fig. 5,
it is found that the nodes under DSOM and challenge-based trust model could
increase their reputation faster than our approach, i.e., our approach requires
4 days and 8 days more in comparison with challenge-based and DSOM model,
respectively. This indicates that our approach is relatively less vulnerable to
newcomer attack.

– Under betrayal attack, when a node becomes malicious, Fig. 6 shows the trust
values under different trust models. It is visible that challenge-based trust
model could outperform DSOM model by decreasing the trust value of mali-
cious nodes faster. This is because challenge-based approach employed a for-
getting factor. In comparison, our approach could reduce malicious nodes’
reputation faster than the other two approaches. This is mainly because
our approach applies intrusion sensitivity to emphasize the impact of expert
nodes.

Overall, the results demonstrate that our trust management scheme can out-
perform the other two similar approaches by decreasing the trust values of mali-
cious nodes faster. The main reason is that our approach applies intrusion sen-
sitivity to highlight the impact of expert nodes. In this case, our approach is
more sensitive to malicious behavior and more robust against insider attacks
like betrayal attack. Our observation is also confirmed by the security adminis-
trators from the participating organization after repeating the experiments five
times.

5 Conclusion

In this work, we advocate the effectiveness of sensitivity-based trust management
model and develop an engineering way to automatically allocate the sensitivity



462 W. Li et al.

values by using a support vector machine (SVM) classifier. In the evaluation,
we compare the SVM classifier with three typical supervised classifiers in value
allocation, and found that SVM can provide better accuracy and make a bet-
ter balance between accuracy and time consumption than other classifiers. We
further investigate our trust management model in a real network environment
by collaborating with an IT organization. Our results demonstrate that our
model can reach better detection performance than similar approaches under
both newcomer and betrayal attack, by reducing the trust values of malicious
nodes faster.

Acknowledgments. This work was partially supported by National Natural Science
Foundation of China (No. 61802077).

References

1. Auria, L., Moro, R.A.: Support vector machines (SVM) as a technique for solvency
analysis. DIW Berlin Discussion Paper no. 811 (2008)

2. Bao, F., Chen, I.R., Chang, M., Cho, J.H.: Hierarchical trust management for
wireless sensor networks and its applications to trust-based routing and intrusion
detection. IEEE Trans. Netw. Serv. Manage. 9(2), 169–183 (2012)

3. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based
overlay for intrusion detection. In: Proceedings of DEXA Workshop, pp. 692–697
(2006)

4. Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust management for host-
based collaborative intrusion detection. In: De Turck, F., Kellerer, W., Kormentzas,
G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 109–122. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87353-2 9

5. Fung, C.J., Zhang, J., Aib, I., Boutaba, R.: Robust and scalable trust management
for collaborative intrusion detection. In: Proceedings of IM, pp. 33–40 (2009)

6. Li, J., Li, R., Kato, J.: Future trust management framework for mobile ad hoc
networks. IEEE Commun. Mag. 46(2), 108–114 (2008)

7. Liu, X., Zhu, P., Zhang, Y., Chen, K.: A collaborative intrusion detection mecha-
nism against false data injection attack in advanced metering infrastructure. IEEE
Trans. Smart Grid 6(5), 2435–2443 (2015)

8. Li, W., Meng, W., Kwok, L.F.: Enhancing trust evaluation using intrusion sensi-
tivity in collaborative intrusion detection networks: feasibility and challenges. In:
Proceedings of the 9th International Conference on Computational Intelligence and
Security (CIS), pp. 518–522 (2013)

9. Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: PMFA: toward passive message fin-
gerprint attacks on challenge-based collaborative intrusion detection networks. In:
Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 433–
449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46298-1 28

10. Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using
intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–
276 (2016)

11. Li, W., Meng, W., Kwok, L.F., Ip, H.H.S.: Enhancing collaborative intrusion detec-
tion networks against insider attacks using supervised intrusion sensitivity-based
trust management model. J. Netw. Comput. Appl. 77, 135–145 (2017)

https://doi.org/10.1007/978-3-540-87353-2_9
https://doi.org/10.1007/978-3-319-46298-1_28


Evaluating Intrusion Sensitivity Allocation with SVM 463

12. LIBSVM Tools: Multi-label classification. https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/multilabel/

13. Meng, Y., Kwok, L.F.: Adaptive false alarm filter using machine learning in intru-
sion detection. In: Wang, Y., Li, T. (eds.) Practical Applications of Intelligent
Systems. AINSC, vol. 124. Springer, Berlin (2011). https://doi.org/10.1007/978-
3-642-25658-5 68

14. Meng, Y., Li, W., Kwok, L.: Evaluation of detecting malicious nodes using bayesian
model in wireless intrusion detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.)
NSS 2013. LNCS, vol. 7873, pp. 40–53. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38631-2 4

15. Paola, J.D., Schowengerdt, R.A.: A detailed comparison of backpropagation neural
network and maximum-likelihood classifiers for urban land use classification. IEEE
Trans. Geosci. Remote Sens. 33(4), 981–996 (1995)

16. Qin, Z., Jia, Z., Chen, X.: Fuzzy dynamic programming based trusted routing
decision in mobile ad hoc networks. In: Proceedings of the 5th IEEE International
Symposium on Embedded Computing (SEC), pp. 180–185 (2008)

17. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
Commun. ACM 43(12), 45–48 (2000)

18. Roesch, M.: Snort: lightweight intrusion detection for networks. In: Proceedings of
Usenix Lisa Conference, pp. 229–238 (1999)

19. Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (IDPS).
NIST Special Publication 800–94, Feburary 2007

20. Shamshirband, S., Anuar, N.B., Kiah, M.L.M., Patel, A.: An appraisal and design
of a multi-agent system based cooperative wireless intrusion detection computa-
tional intelligence technique. Eng. Appl. Artif. Intell. 26(9), 2105–2127 (2013)

21. Snort, Homepage. http://www.snort.org/
22. Vasilomanolakis, E., Karuppayah, S., Muhlhauser, M., Fischer, M.: Taxonomy and

survey of collaborative intrusion detection. ACM Comput. Surv. 47(4), 55 (2015)
23. Wu, Y.S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system

(CIDS): a framework for accurate and efficient IDS. In: Proceedings of ACSAC,
pp. 234–244 (2003)

24. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2),
125–139 (1995)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/
https://doi.org/10.1007/978-3-642-25658-5_68
https://doi.org/10.1007/978-3-642-25658-5_68
https://doi.org/10.1007/978-3-642-38631-2_4
https://doi.org/10.1007/978-3-642-38631-2_4
http://www.snort.org/


The (Persistent) Threat of Weak
Passwords: Implementation

of a Semi-automatic Password-Cracking
Algorithm

Chris Pelchen(B), David Jaeger, Feng Cheng, and Christoph Meinel

Hasso Plattner Institute for Digital Engineering gGmbH, Potsdam, Germany
{chris.pelchen,david.jaeger,feng.cheng,christoph.meinel}@hpi.de

Abstract. Password-based authentication remains the main method of
user authentication in computer systems. In case of a leak of the user
database, the obfuscated storage of passwords is the last remaining pro-
tection of credentials. The strength of a password determines how hard
it is to crack a password hash for uncovering the plain text password.
Internet users often ignore recommended password guidelines and choose
weak passwords that are easy to guess. In addition, service providers do
not warn users that their chosen passwords are not secure enough. In
this work we present a semi-automatic password cracking algorithm that
orders and executes user-chosen password cracking attacks based on their
efficiency. With our new approach, we are able to accelerate the cracking
of password hashes and to demonstrate that weak passwords are still a
serious security risk. The intention of this work is to point out that the
usage of weak passwords holds great dangers for both the user and the
service provider.

1 Introduction

Cybercriminals take a special interest in obtaining user’s credentials, since those
credentials gives them access to digital identities. User passwords are usually
stored in a hashed form, although the majority of (breached) online services uses
weak and fast hash methods. To reveal the password that is obfuscated behind
the stored hash, so-called hash cracking attacks are performed. The efficiency
of those attacks demonstrate, how predictable passwords chosen by users are.
A high crack rate can disclose that people still choose weak and easy to guess
passwords for protecting their accounts.

This paper describes a semi-automatic password cracking algorithm which
automatically orders and executes user-defined cracking attacks by their effi-
ciency. Section 2 takes a deeper look into password storage, different kinds of
hash functions and additional methods for improving the security against crack-
ing attacks. Furthermore, we analyze leaked plain text passwords to investigate
how users choose their passwords. In Sect. 3 we explain the implementation and

c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 464–475, 2019.
https://doi.org/10.1007/978-3-030-34339-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_27


The (Persistent) Threat of Weak Passwords 465

working principle of our semi-automatic password cracking algorithm and we
describe how to define efficient attack lists. Section 4 compares the efficiency of
semi-automatic password cracking against traditional password cracking. Finally,
we conclude our work in Sect. 5.

2 Background and Previous Work

2.1 Password Storing

In the course of creating an account for any kind of online service, users are usu-
ally asked to specify a password. This password is later used to authenticate the
user during the login process. Therefore, passwords have to be stored persistently
in a database. According to the National Institute of Standards and Technol-
ogy, service providers which have to verify memorized secrets should store those
secrets in a form that is resistant to offline attacks [2]. To fulfill this requirement,
service providers usually use cryptographic hash functions to obfuscate the plain
text passwords.

Additionally, so-called salts can be used to increase the security of stored
passwords. A general requirement for any cryptographic hash function is that
the same input value constantly results in the same output value. This leads to
the problem that for users with the same password, the same hash value is stored.
This means, if a hacker is able to crack the hash for one user, all other users with
the same password are also exposed. Salts are used to solve this problem. Those
are random strings which are concatenated with the entered password of a user
before a hash method is applied. A salt is generated dynamically for every new
password. Therefore, a salt value is always stored in the database together with
the password hash.

Based on 3093 data breaches we collected, we were able to analyze which
types of cryptographic hash functions are most commonly used by service
providers. 21% of all platforms that were affected by a data breach stored the
passwords in plain text. This means that the attacker had direct access to all
credentials immediately after the data was stolen. About 40% of all websites
used weak hash methods for password storing. 32% of all affected services used
hash methods in combination with salts and only 7% used strong hash methods.

2.2 Password Cracking

The terms “password cracking” and “hash cracking” are synonyms for “pass-
word recovery”. Since all cryptographic hash functions are by definition one-way
functions, the only way to recover a password from its hashed form is to guess
a possible password, use then the same hash algorithm that generated the tar-
geted hash value, and compare the hashes to each other. If they are identical,
the plain text password was found and the hash was “cracked”. Therefore, the
efficiency of password cracking is influenced by the choice of possible passwords
candidates for that guessing.



466 C. Pelchen et al.

The tool called “hashcat” is a popular open-source password recovery tool
initially developed by Jens “atom” Steube. This program supports nearly 250
different hashing algorithms and allows to perform 5 different attack types. The
current version is 5.1.0. and is released under MIT license. Hashcat is available
for Windows, MacOS and Linux systems.

2.3 Password Analysis

For getting a basic understanding of how users choose and generate their pass-
words, a reasonable first step is to analyze already leaked plain text passwords.
Therefore, we created a word list of all plain text passwords from all publicly
accessible leaks we collected. This word list contains about 604 million distinct
passwords. For a general analysis of these passwords, we have used the “Password
Analysis And Cracking Kit”.1

Distribution of Password Lengths. 78% of all passwords include between 6 and
11 characters. Passwords with 8 characters are most frequently selected (29%).
This is also consistent with NIST’s password selection guidelines, which state
that memorized secrets should contain at least 8 characters [2]. Knowledge about
most commonly used password lengths helps to perform efficient length-based
password cracking attacks, like brute-force attacks or hashcat’s PRINCE attacks.

Distribution of Character Classes. Almost 50% of all passwords represent a com-
bination of lowercase letters and numbers. 20% of all passwords consist solely of
lowercase letters and 11% are a simple combination of numbers. 6% of all pass-
words are made up of a combination of uppercase letters, lowercase letters and
numbers. Knowledge about the most frequently used character classes leads to
more efficient brute-force attacks and mask attacks. Especially in combination
with knowledge about most commonly used password lengths.

Frequently Used Password Masks. Besides frequently used password lengths and
character classes, it is also reasonable to take a look at commonly used password
masks. A password mask defines the concrete structure of a password. 12%
of all passwords can be categorized as a sequence of 8 lowercase letters. 7%
of all passwords consist only of numbers and have a length between 8 and 11
characters. This information can be used to perform efficient mask attacks.

3 Semi-automatic Password Cracking

A major problem of hash cracking is that at some point every hash cracking
attack will be inefficient and the crack rate decreases. The reason for this is that
shorter and less complex passwords are tested first. At this point, the user has
to stop the current attack to start a different attack on the targeted hashes in

1 Password analysis and cracking kit (Version 0.0.4) - https://github.com/iphelix/
pack (accessed 1 April 2019).

https://github.com/iphelix/pack
https://github.com/iphelix/pack


The (Persistent) Threat of Weak Passwords 467

order to keep the crack rate consistently high. Therefore, we developed a semi-
automatic password cracking algorithm. The basic idea is to specify a work list
of multiple cracking attacks, which should be applied on a targeted hash list.
Our algorithm then executes the attacks in order of their efficiency and only as
long as they are efficient enough. When the crack rate of an attack drops down,
the attack will be stopped or paused and a more efficient attack will be started or
restarted. In that way, our algorithm dynamically switches between the attacks
to ensure the best possible crack rate of all attacks.

In the following section, we will explain the implementation and the working
principle of our algorithm. We also explain how and why the working principle
differs for slow hash function and fast hash functions.

3.1 Implementation

Basically, our system include a Java application and an extended version of
hashcat. The Java application is used to process the user defined work lists, to
start, stop, pause and restore attacks with hashcat and to monitor the cracking
processes. Furthermore, the application generates log files for subsequent attack
evaluation. To enable communication between our Java application and hashcat,
we extended hashcat with a network thread by modifying hashcat’s source code.
This thread allows us to send control commands to hashcat and to receive status
messages from hashcat. All messages are sent as UDP packets.

Since our algorithm starts all attacks with hashcat automatically, all prop-
erties and attack settings need to be defined in advance. The properties file
contains information about paths to executable files, global hashcat parameters,
the port number for network communication, user-defined character sets, the
chunk size for hash lists and whether it is an attack on slow or fast hashes. It is
also possible to set a maximum runtime to stop the entire process after a cer-
tain time. Additionally, you can set a maximum idling runtime for all attacks.
This value determines how long an attack may run unsuccessfully before it is
stopped and marked as completed. It is also possible to set a certain threshold
for this idling runtime, e.g. less than 20 cracked hashes per minute is defined
as idling. Another important parameter defines the monitor interval. This value
determines how long every stage has to be processed before the crack rate is
compared with the threshold.

A work list includes a work list name and a set of stages. Each stage repre-
sents a concrete hash cracking attack. Depending on the attack mode, further
parameters can or need to be set. For dictionary attacks and PRINCE attacks, a
rule set can be added. For dictionary attacks, combinator attacks, hybrid attacks
and mask attacks, a work size or a work fraction can be set. This values influence
the workload that hashcat loads into the memory and that needs to be processed
before the next checkpoint is reached.

Hashcat provides a functionality for stopping and restoring cracking attacks,
called “Checkpoint”. By sending a specific command, hashcat creates a restore
file after processing the current workload. This restore file can be used to con-
tinue the process on the same or a different machine at a later date. The crucial



468 C. Pelchen et al.

factor for the efficiency of this method is the time required to process the current
workload. The more modifiers used for the attack, such as rules, salts and mul-
tiple hash rounds, the longer the processing will take. The size of the workload
depends on the used hardware and is usually automatically defined by hashcat.
To be able to modify this workload size to reduce processing time, we extended
the source code of hashcat. A too small workload can lead to the problem that
the full capacity of the available hardware is not fully utilized. Therefore, it is
necessary to have knowledge about the hardware capacities for defining reason-
able workload sizes.

Our Java application monitors the cracking processes and observes thresholds
and other values. In order to allow subsequent analyses, a log file is written for
every processed work list.

3.2 Working Principle

In this section we will describe how our semi-automatic algorithm works and
how we handle slow and fast hash methods differently.

The general working principle differs for slow hash functions and fast hash
functions. The reason for this is the usability of the checkpoint function provided
by hashcat. The main problem is the time needed to process this workload. For
fast hash functions like MD5 or SHA-1, every password candidate just needs
to be hashed once for the comparison against all targeted hashes, since those
algorithms do not use salts or pepper in order to improve the security of the
passwords. The workload is then processed quite fast and the next checkpoint
is reached soon. With slow hash functions using salts or pepper, each password
candidate needs to be concatenated with each salt or pepper, before the hash
function is applied. Therefore, it takes much more time to process the current
workload and to reach the next checkpoint. Therefore, it makes no sense to
switch frequently between attacks when using slow functions.

Semi-automatic Password Cracking on Fast Hashes. During the first crack round,
each stage of the work list is evaluated with regard to its efficiency. Therefore,
all stages are executed sequentially in the order in which they are defined in the
work list. The execution time for each stage is equal to the predefined monitor
time. All cracked hashes are removed from the hash list and the next attacks are
applied on the remaining hashes. After the monitor time runs out, the checkpoint
command is sent and the execution stops when the current workload is processed.
It is also possible that the stage already finishes during this monitor interval. In
this case, the stage is marked as finished. The Java application stores the last
measured crack rate for each unfinished stage.

When the first round is completed, the finished stages are removed from the
work list. The last measured crack rates of the remaining unfinished stages are
used to calculate a threshold. This threshold is calculated by dividing the second
best crack rate from crack round 1 by 4. The calculated threshold represents the
minimal crack rate for the next round. If an attack’s crack rate drops below this
value during the next round, the attack is paused using the checkpoint function.



The (Persistent) Threat of Weak Passwords 469

It is very important to calculate reasonable threshold values, since too high
thresholds lead to frequent changes of stages while too small thresholds lead to
idling attacks. The calculation method mentioned provided the best results in
our tests.

The achieved crack rates of all unfinished stages are compared to the calcu-
lated threshold. All stages with a smaller crack rate are put on a waiting list and
will not be further processed in the next crack round. Stages with a crack rate
larger than the calculated threshold are included in the work list for the second
crack round. When all attacks have been assigned to a list, the attacks in the
work list for the next round are sorted in descending order according to their
crack rates.

The second crack round starts with restoring the first and so far most efficient
stage. The defined monitor interval is the minimal runtime for each stage, as long
as the attack does not finished during that time frame. After the monitor time
runs out, the crack rate is continuously compared with the threshold. While the
crack rate is higher than the threshold, the attack is further processed. When the
crack rate goes down and drops below the threshold, the checkpoint command
is sent and the attack pauses after processing the current workload. The crack
rate is further monitored until the attack pauses. When the first stage pauses
successfully, the second stage is restored and processed, until the crack rate drops
below the threshold. Then the third stage is processed, then the fourth, and so
on. When all stages are processed, the second crack round finishes. Then, all
unfinished stages from the last round and all stages from the waiting list are put
together. Afterwards, a new threshold is calculated and all stages with a higher
crack rate are put on the work list for the third crack round and ordered by their
cracking rates. According to this scheme, all attacks are processed until they are
either completely terminated, until they are inefficient for too long, until the
maximum runtime is reached, or until all hashes are cracked.

Semi-automatic Password Cracking on Slow Hashes. Also for slow hash algo-
rithms, the first round is used to evaluate the efficiency of each stage in the
work list. Therefore, all stages are executed sequentially in the specified order.
The execution time corresponds to the predefined monitor interval. When this
time period runs out, the attacks are completely stopped, because waiting for
the next checkpoint could take too long. This means that in the second crack
round all attacks are started from the beginning.

In contrast to the procedure for fast hash functions, the cracked hashes are
not removed from the targeted hash list during the first crack round. This has
the disadvantage that there is no cracking progress during the first round. On
the other hand, all attacks are then applied against the full hash list and as
a result we get the actual number of cracked passwords, that can be achieved
by each stage during the monitor time. This provides a better overview of the
efficiency of the individual attacks. Since the guess rate for slow hash functions is
much lower, it is very important to know which attacks are the most promising.

After the first round finishes, all stages are reordered according to their effi-
ciency. Another difference to the procedure for fast hashes is that the absolute



470 C. Pelchen et al.

number of cracked hashes is used to reorder the attacks, not the relative crack
rate. Since slow hash methods usually do not reach high crack rates like fast
hash methods, it is reasonable to compare the stages using the absolute number
of cracked hashes achieved. Attacks with the highest number of cracked hashes
will be executed first in the next round and attacks with smaller number will be
processed afterwards.

In contrast to the procedure for fast hash functions, no threshold is calculated
for the second crack round. The main threshold is the value defined for idling
runtime in the properties file. This threshold determines the minimal crack rate
up to which the attacks are executed. Therefore, the user can influence the
runtime for each stage by modifying the threshold for idling runtime. With a
lower threshold, the attacks are processed longer, even at low crack rates, so
that in the end more hashes should be cracked. Therefore, a threshold value of
0 means, that all stages are processed to the end. A higher threshold results in
a consistently high crack rate and an earlier termination of attacks. This means
that less hashes are cracked overall, since the attacks are not executed to the
end, but more hashes can be cracked in a shorter time compared to a lower
threshold.

The second crack round starts with the processing of the first stage in the
reordered work list. The attack is processed until the crack rate drops below the
threshold and stays below it for the defined maximum idling time, or until the
attack finishes. Then the next attack is executed.

The entire process ends when the last stage of round 2 is completed or
stopped.

3.3 Defining Efficient Work Lists for Password Cracking

The efficiency of our semi-automatic algorithm mainly relies on the work list
used and the attacks it includes. The right choice of attacks is very important. In
traditional password cracking, also the order of attacks plays an important role.
Since the order in which the attacks are processed is automatically determined
by our algorithm, we do not need to take care of this. For our approach, we need
to ensure that the selected attacks cover all possible password structures. The
results of the analysis of existing user passwords can be used to find out, which
password structures and lengths are commonly used.

Attack Complexity. In general, it is important to consider the complexity of the
individual attacks when creating a work list. Each attack can be characterized by
it’s key space. The larger the key space, the more possible passwords are covered,
but the longer it takes to finish the attack. Typically attacks with a larger key
space have a lower crack rate than attacks with a smaller key space. In order
to achieve a high crack rate as well as a high number of cracked hashes, the
work list should include both attacks with a smaller key space and attacks with
a larger key space. Based on the speed of the hash function and used hardware,
the estimated runtime for each attack can be calculated. As an example, the
professional hash cracker Jeremi Gosney build a cluster of 8 Nvidia GTX 1080



The (Persistent) Threat of Weak Passwords 471

GPUs and he was able to calculate 307 billion MD5 hashes per second. With
such a high performance setup, it is even possible to finish a Combinator Attack
with a key space of more than 143 trillion password candidates in less than
7 min. Using the same setup, but the slow hash function bcrypt, it is possible
to calculate 105,000 hashes per second. Therefore, it would take more than 43
years to finish this attack.

Defining Efficient Work Lists for Attacks on Fast Hashes. The main characteris-
tic of our semi-automatic algorithm for fast hash methods is switching between
attacks to ensure the highest possible crack rate. To achieve this, a compro-
mise between frequent switching and letting attacks proceed is necessary. Every
change costs time in which no progress is made. There are two main reasons for
frequent changes. On the one hand, there is the threshold calculated for every
crack round. If this value decreases only slightly between two rounds, the attacks
are processed only for a short time before their crack rates fall below the new
threshold again and the attacks are paused. On the other hand, attacks with a
too small key space finish too fast and lead to frequent changes. This can be
handled by choosing attacks with an appropriate key space. A good example of
this problem is attacking passwords with a shorter length. Testing all passwords
with a length of 6 can be done by defining multiple mask attacks for different
password formats, e.g. only lowercase, only digits or uppercase letters with two
digits at the end. Since the guess rate for fast hash functions is quite high and
the key space is quite small, all of these attacks will finish after a very short
runtime. A better option to test all passwords with a length of 6 is to define
a mask attack that allows any character class for any position in the password
string. The resulting key space can be processed in an acceptable time frame and
frequent switching is avoided. Our work list for attacks on fast hashes contains
17 different attacks selected based on the results of our password analysis. Some
of the included attacks have a short runtime and some attacks take a while to
finish. The order in which the attacks are executed is dynamically determined
by our semi-automated algorithm. For shorter passwords, we have chosen mask
attacks with all character classes. For passwords with a length between 7 and
11, we have chosen mask attacks with numbers only and with combinations of
lowercase letters and numbers. Furthermore, we have added a dictionary attack
with a list of the 50 million most used passwords in combination with a rule set
of 52,000 rules. For handling longer, but still insecure passwords, we have added
2 PRINCE attacks with a list of the 10,000 most used passwords. A PRINCE
attack builds chains of combined words taken from the word list. For our work
list, we have chosen PRINCE attacks for chains of 9 and 10 characters.

Defining Efficient Work Lists for Attacks on Slow Hashes. As already mentioned
in Sect. 3.2, hashcat’s Checkpoint function is not efficient enough using slow hash
functions, since reaching checkpoints can take too much time. Therefore, two
crack rounds are performed. The first round determines the attack order and in
the second round all attacks are executed sequentially. Using slow hash methods,
it is very important to consider the key space of chosen attacks. If the key space
is too large, the crack rate will be to low. Therefore, it is reasonable to choose



472 C. Pelchen et al.

attacks with both smaller and larger key spaces. Attacks with a smaller key
space can reduce the number of targeted hashes before more complex attacks
are applied. A good example of this is attacking longer passwords. This can
be done in two ways. One possibility is a mask attack to try out all different
character combinations for a given password length. With shorter passwords,
such an attack ends in a manageable time frame because the resulting key space
is comparatively small. With longer passwords, the key space of a mask attack
can be so large that it would take several months to test all possible passwords.
Therefore, it makes sense to use other attack forms first. Users often use a
combination of multiple words in order to create long and memorable passwords
- so-called passphrases. Efficient techniques to reproduce such passwords are
Combinator Attacks and PRINCE attacks. Those attacks concatenate multiple
words in order to generate password candidates. Dictionaries or lists of popular
passwords can be used as an input for those attacks. The key space of these
attack types is not as high as the key space of mask attacks, but they help to
reduce the amount of hashes in the target list to speed up subsequent, more
complex attacks. Our work list for attacks on slow hash functions includes 21
attacks selected based on the analysis of leaked plain text passwords. Compared
to our work list for fast hash functions, most attacks have a smaller key space.
Additionally, we selected more attacks using lists of frequently used passwords.
For shorter passwords with a length upto 4 characters, we have chosen mask
attacks with all character classes. For passwords with a length between 5 and
10, we have added mask attacks with numbers only and lowercase letters only.
Since password with a length of 7 and 8 consisting of lowercase letters and
numbers are quite common, we added 2 respective mask attacks to the list.
Furthermore, we added 1 dictionary attack with a list of the 10 million most
used passwords in combination with set of 64 rules. The remaining 4 attacks are
PRINCE attacks. We have added 2 PRINCE attacks with a list of the 10.000
most used passwords for generating chains with a length of 7 and 8 characters,
and 2 PRINCE attacks with a list of the 5.000 most used passwords for building
word chains with a length of 10 and 11 characters.

Preparation of Data Sets for Testing Semi-automatic Password Cracking. After
implementing our semi-automatic password cracking algorithm and defining indi-
vidual work lists for fast and slow hashes, we tested our approach with different
types of hashes. Therefore, we built hash lists of distinct password hashes from
verified data breaches. We build lists of MD5 hashes, SHA-1 hashes and vBul-
letin hashes. For each hash method, we selected 5 different data breaches from
services using that hash method and exported all password hashes and if nec-
essary salts. The MD5 hash list includes 304.2 million hashes from badoo.com,
youku.com, last.fm, 17.media and gamigo.com. The SHA-1 hash list consists of
122.2 million hashes from linkedin.com, xsplit.com, elance.com, thefaveapp.com
and forum.avast.com. The vBulletin hash lists comprises 111.9 million hashes
from imesh.com, gfan.com, hiapk.com, tgbus.com and r2games.com (2017).

As a next step, we created subsets from these hash lists, since our hardware
setup is not able to handle the complete lists. We randomly selected 10 million



The (Persistent) Threat of Weak Passwords 473

hashes from the MD5 list and the SHA-1 list as well as 5 million hashes and
corresponding salts from the vBulletin list.

4 Evaluation

To compare our semi-automatic approach with normal password cracking, we
implemented an option for deactivating the semi-automatic functionality, called
“normal mode”. When attacking fast hashes in normal mode, all attacks are
executed sequentially based on the order in the work list. When attacking slow
hashes in normal mode, the first crack round, in which no cracking progress
is made, is used to order the attacks according to their efficiency, as in semi-
automatic mode. But in the second crack round, all attacks are executed until
they terminate.

Our hardware setup includes an Intel R©CoreTMi5-4430 processor with 3,0
GHz and 2 AMD RadeonTMR9 290X graphic cards.

Semi-Automatic Password Cracking on Fast Hashes. For each cracking mode,
semi-automatic and normal, we set a maximum runtime of 50 min or 3,000 s.
The monitoring interval was set to 90 s for semi-automatic cracking. First, we
applied both crack modes to the list of 10 million MD5 hashes. Figure 1 (a)
show the progression of the number of cracked hashes in relation to the required
time. The first crack round, which is used to evaluate the efficiency of each stage,
ended after 1,036 s. At this point, our semi-automatic approach was able to crack
6,612,616 hashes. The threshold for the second round was automatically set to
52,605 cracked hashes per minute. Round two finished after a total runtime
of 1,565 s. Round 3 got a threshold of 9,854 cracked hashes per minute and
finished after a total runtime of 2,786 s. At this point, 7,496,567 hashes were
cracked. Round 4 started with a threshold of 793 cracked hashes per minute.
After 3,000 s, the process stopped, because the maximum runtime was reached.
With our semi-automatic approach, we were able to crack 7,652,288 hashes.

Due to switching between attacks to keep the crack rate constantly high, the
number of cracked hashes increases much faster using our semi-automatic mode
than the normal mode. Using the normal mode, 6,044,623 hashes were cracked
after 3000 s. At this point, stage 10 was reached.

After testing our approach with MD5 hashes, we did the same experiments
with the list of SHA-1 hashes. Figure 1 (b) illustrates the curves for the num-
ber of cracked hashes in relation to the required time for our semi-automatic
approach and normal password cracking. Just as in the first test, the semi-
automatic approach keeps the crack rate constantly high and the number of
cracked hashes increases significantly faster than in normal mode. When the
maximum runtime of 3,000 expired, a total of 6,549,225 hashes were cracked
with our semi-automatic approach and 3,735,448 hashes in normal mode.

After finishing the first tests with a maximum runtime of 3,000 s, we tried
both experiments with unlimited runtime. For both hash lists the result was the
same: With increasing runtime the number of cracked hashes for the normal and
semi-automatic cracking mode gradually adjusts.



474 C. Pelchen et al.

(a) MD5 (b) SHA-1

Fig. 1. Semi-automatic and normal password cracking on MD5 and SHA-1 hashes

Semi-automatic Password Cracking on Slow Hashes. Due to the slower calcula-
tion speed of slow hash functions, we increased the maximum runtime to 36,000 s
or 10 h. The first crack round, which is used to order the attacks by their effi-
ciency and in which no cracking progress is made, is included in this maximum
runtime.

Fig. 2. Semi-automatic and normal
password cracking on vBulletin hashes

While testing the semi-automatic
mode, we noticed that the settings for the
idle threshold and the maximum idle time
have a huge influence on the cracking pro-
cess. A lower idle threshold leads to long-
running attacks, even if the crack rate is
low. A longer maximum idle runtime also
leads to long-running attacks, since the
crack rates increases from time to time,
exceeding the idle threshold for a short
time and thus resetting the maximum idle
runtime.

For our hardware setup and a maxi-
mum runtime of 10 h, we achieved the best
results by setting the idle threshold to 80
cracked hashes per minute and a maxi-
mum idle runtime of 2 min. With those settings, our semi-automatic approach
was able to crack 521,193 hashes within the maximum runtime. The normal
cracking mode was able to crack 442,992 hashes within the same time frame.
Figure 2 shows the curves for the number of cracked hashes for both modes.



The (Persistent) Threat of Weak Passwords 475

5 Conclusion

With our semi-automatic password cracking approach, we are able to speed up
password cracking, especially in the early stages. A lack of knowledge about
password regulations is compensated by automatically determining the most
efficient cracking attacks with our algorithm. With the help of multiple setting
options, the algorithm can be significantly influenced. A higher idle threshold and
a shorter idle runtime result in a consistently high cracking rate and enable fast
cracking success. But since the attacks are not fully executed, not all password
candidates are tested. Using a lower idle threshold and a longer idle runtime,
the attacks are executed over a longer period of time, even with a lower crack
rate. Furthermore, it is possible to generate various work lists with different sets
of password cracking attacks. For our test work lists we chose attacks based on
the analysis of leaked plain text passwords.

The results show that hashes of weak and too short passwords can be cracked
very quickly. Service providers should therefore use proper password policies and
reject passwords that are considered weak. Passwords should be highly complex
and contain both lowercase and uppercase letters, as well as numbers and special
characters. Furthermore, passwords should be sufficiently long. The National
Institute of Standards and Technology states that memorized secrets require
a minimum length of 8 characters [2]. Especially when fast and insecure hash
methods are used to store passwords, this length is not sufficient. From our point
of view, the password should be at least 12 characters long. Service providers
should also check whether the selected user password already occurs in a public
leak. Attackers can use lists of such leaked passwords for a dictionary attack.
The leak notification service “Have I Been Pwned?” provides a functionality to
check a password against more than 550 million leaked passwords2. In order to
help users choosing secure passwords, service providers should use techniques
like Password Strength Meters. Researchers have investigated what properties a
strength meter needs to fulfill and how good existing solutions are [1].

References

[1] Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS 2018, pp. 1567–1582. ACM, New York (2018). https://doi.org/10.
1145/3243734.3243769

[2] National Institue of Standards and Techonology: Digital Identity Guidelines -
Authentication and Lifecycle Management (NIST Special Publication 800–63B)
(5 2018)

2 https://haveibeenpwned.com/Passwords, (accessed 1 April 2019).

https://doi.org/10.1145/3243734.3243769
https://doi.org/10.1145/3243734.3243769
https://haveibeenpwned.com/Passwords


A Novel and Comprehensive Evaluation
Methodology for SIEM

Mahdieh Safarzadeh(B), Hossein Gharaee, and Amir Hossein Panahi

Iran Telecommunication Research Center, Tehran, Iran
{m.safarzadeh,gharaee,panahi}@itrc.ac.ir

Abstract. Many SIEM products have been produced. However, there is
no comprehensive methodology to evaluate them. We present a novel and
comprehensive three-dimensional methodology to evaluate SIEM prod-
ucts. We consider a SIEM product as a set of dimensions, namely capabil-
ity, architectural component, and common feature, then subdivide each
dimension-according to its definition-into sub-dimensions. Afterward, we
develop multiple criteria for evaluating each sub-dimension. The dimen-
sions can have a different impact and importance on SIEM product, to
determine the magnitude of the impact and importance of each dimen-
sion we use a factor called the impact factor. We also consider some
impact factors for the impact and importance of each sub-dimension
and each criterion. Since there are different methods, algorithms, and
standards for developing the criteria, so we provide maturity levels for
each criterion. The results of the evaluations show that this methodol-
ogy can evaluate the criteria coverage, completeness and correctness of
criteria, and determine the superiority of criteria in the SIEM products
as well.

Keywords: Security information and event management · SIEM
evaluation methodology · SIEM evaluation · SIEM maturity · SIEM
capabilities

1 Introduction

Cybersecurity threats regardless of size and type of organizations, have signifi-
cantly increased [1,2]. To protect and defend against such threats, each organi-
zation must have the ability to detect and respond to threats. For this purpose,
organizations use a variety of security and monitoring tools at various levels,
such as application-level, operating system-level, network-level, and host-level,
and get benefits from contextual data that is obtained through penetration test-
ing, or by referring to news bulletins and standards that provide best practices.
These tools include Network Intrusion Detection System (NIDS), Host Intrusion
Detection System (HIDS), and vulnerability scanner. Each of these tools stores
security alerts and logs locally. In this way, a large number of security alerts and
logs store separately in different tools locally. Because of the large volume and
c© Springer Nature Switzerland AG 2019
S.-H. Heng and J. Lopez (Eds.): ISPEC 2019, LNCS 11879, pp. 476–488, 2019.
https://doi.org/10.1007/978-3-030-34339-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34339-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-34339-2_28


A Novel and Comprehensive Evaluation Methodology for SIEM 477

dispersion of the security alerts and logs, it is impossible to verify, reduce, and
correlate them with each other and with the contextual data by security experts.
In this way, security experts cannot achieve a comprehensive view of the network
security state. For this reason, using these security systems and checking secu-
rity alerts and logs locally, is not enough solely. As mentioned in [3], one of the
reasons that lead to weakness in defense is the lack of proper security systems.
One of the good tools recommended in [3] for use in the security event manage-
ment process is security information and event management (SIEM) product.
The SIEM product collects security alerts, logs, and contextual data centrally,
and helps to resolve or reduce the challenges that have already been mentioned.

Security experts in selecting a SIEM product in accordance with the require-
ments of their organization, manufacturers to develop, and manufacture the
SIEM products and evaluators to evaluate SIEM products, confront with some
challenges. Some examples of these challenges are mentioned in the following:

– What are the capabilities of the SIEM product? And each of these capabilities
is at which level of maturity?

– What is the security state of the SIEM product?
– If the manufacturers want to produce a SIEM product, which capabilities

should they consider?

In this paper, we address these challenges by proposing a novel and comprehen-
sive methodology that evaluates the SIEM product from three complementary
perspectives. We consider a SIEM product as a set of dimensions, namely capa-
bility, architectural component, and common feature, then subdivide each dimen-
sion into sub-dimensions, and for evaluating each sub-dimension, we develop mul-
tiple criteria. We present a formula for calculating the SIEM product maturity.
Because the dimensions can have a different impact and importance on SIEM
product evaluation to consider the magnitude of the impact and importance
of each dimension, we use a factor called the impact factor. We also consider
some impact factors for the impact and importance of each sub-dimension and
each criterion. Since there are different methods, algorithms, and standards for
designing and developing the criteria, and these methods, algorithms, and stan-
dards are superior to each other, so we provide maturity levels for each criterion
proportional to the scope of the criterion and based on methods, algorithms, and
standards that are provided for designing and developing it.

The rest of the paper is organized as follows. In Sect. 2, we review exist-
ing security evaluation methodologies, especially SIEM security evaluation. It
is necessary to define SIEM and its capabilities to introduce the SIEM evalua-
tion methodology, which is described in Sect. 3. Our novel and comprehensive
methodology is presented in Sect. 4. The tests carried out to evaluate the method-
ology and results are presented in Sect. 5. Section 6 presents the conclusion.

2 Related Work

In this section, we review researches that perform in security evaluation. Insti-
tutions and laboratories such as Gartner and NSS Labs carry out security eval-



478 M. Safarzadeh et al.

uation, and security standards such as Common Criteria are provided. How-
ever, Gartner is the only one who has provided a method to evaluate the SIEM
product. Gartner considers a set of common core capabilities for SIEM technol-
ogy [4]. It has determined the impact of each of these common core capabilities
on different use cases of SIEM. Then it evaluates SIEM based on these core
capabilities and their impacts. Gartner has considered functional capabilities to
evaluate SIEM products. These are useful capabilities, but it does not evaluate
the SIEM security-relevant capabilities like cryptography and auditing. In [4]
calculation formula is not specified exactly, but based on what is published,
it does not consider the maturity level of each capability in its calculation. If
two SIEM products offer a capability, but one of them implemented it more
safely or efficiently, Gartner does not consider it. The NSS Labs laboratory
and Common Criteria standard has not provided a SIEM-specific evaluation
methodology. However, we examined the methodologies presented by them for
similar products to present our methodology. NSS Labs evaluates security effec-
tiveness, performance stability and reliability, and total cost of ownership and
value for each product [5]. Each of these four categories is divided into smaller
sub-categories. In terms of performance, stability, and reliability, it evaluates the
product well. Like Gartner, this laboratory does not check the security-relevant
capabilities like cryptography and auditing and does not consider the maturity
of each criterion in its assessment. Common Criteria specify individual security
functions [6], which may be provided by a product in eleven classes. These secu-
rity functions are common in software or appliances. security functions in the
classes are well organized. Common Criteria does not consider class or classes
for the product’s core capabilities. Like Gartner and NSS Labs, it does not con-
sider the maturity of the criteria involved in each class in its evaluation. Igor
and Elena [7] present a technique for countermeasure selection in SIEM systems.
The developed technique is based on the suggested complex of security metrics.
Key features of the suggested technique are the application of the attack and
service dependencies graphs, the introduced model of the countermeasure and
the suggested metrics of the countermeasure effectiveness, cost, and collateral
damage. Kavita and Hemant [8] discuss some of the important critical capabil-
ities for any product and vendors for the SIEM product. Rafal and Michal [9]
propose an approach to the evaluation of open source SIEM for situation aware-
ness platform in the smart grid environment. They present two criteria groups:
primary and secondary, primary evaluation criteria were identified based on the
analysis of desirable features of SIEM systems and secondary were derived from
well-known software engineering non-functional requirements. The first group
contains essential requirements and facilities, whereas all nonessential attributes
are included in the secondary drivers group. They do not evaluate the SIEM
security-relevant capabilities like cryptography and auditing and does not con-
sider class or classes for the product’s core capabilities. Its evaluation criteria
are limited.



A Novel and Comprehensive Evaluation Methodology for SIEM 479

3 Security Information and Event Management (SIEM)
System

Different approaches can be taken to address or reduce the challenges mentioned
earlier. (see Sect. 1 for more information). One of these approaches is using SIEM.

Definition 1 (SIEM). Security information and event management system to
manage security information and events, collects a wide variety of real-time and
non-real time security alerts, event logs and contextual data, stores them for
short-term and long-term storage. It performs several functions through the real-
time and historical analysis that assist in the aggregation of similar events, anal-
ysis and correlate multiple event logs belong to the same attack scenario. SIEM
can support security incident investigation and regulatory compliance using his-
torical analysis of collected data.

SIEM is a set of components that can communicate with each other, as shown
in Fig. 1, a SIEM collects a wide variety of security alerts, logs and contextual
data using various protocols from various security systems and tools which are
used in the cybersecurity defense layers. The SIEM stores them in a live reposi-
tory after normalizing collected data, then using the rich and diverse knowledge
repositories, performs analysis on the collected data. Some of these analyses
include categorization, verification, filtering, data mining, prioritization, data

Fig. 1. SIEM architectural components.



480 M. Safarzadeh et al.

enrichment, and correlation. During the analysis, the attack scenarios extract
from the original raw security alerts, logs, and contextual data. Also, a copy of
collected raw data is stored in a historical repository for digital investigation and
historical analysis. In this way, advanced persistent attacks may also be detected.
In response to discovered attack scenarios, SIEM may create a meta-alert. It can
even send SMS or email or run a script or program to neutralize the attack effect
or stop it. Eventually, it can generate a variety of reports and visualize network
security status on the dashboards. SIEM definition and architecture have been
extracted from the study of several SIEM products [10–12].

4 Methodology for SIEM

We examined a SIEM system from different and complementary perspectives to
develop a comprehensive methodology for evaluating a SIEM product. SIEM,
as a product is developed to provide a multitude of capabilities that are needed
for security monitoring and analysis, as a system may comprise of some archi-
tectural components connected [13–15], as shown in Fig. 1, and as software or
appliance it has common features with other software or appliances. However,
as a whole, we can evaluate a SIEM from three perspectives, capability, archi-
tectural component, and common feature.

So our evaluation methodology is a three-dimensional methodology. We con-
sider a SIEM system as a set of dimensions, namely capability, architectural
component, and common feature. We subdivide each dimension according to
its definition into sub-dimensions. Table 1 shows these dimensions and lists all
types of sub-dimensions that each dimension contains. Afterward, we developed
multiple criteria for evaluating each sub-dimension. For lack of space, we cannot
list all of the criteria. Here we give an example. For example, correlation and
analysis is a sub-dimension for capability dimension we developed multiple cri-
teria for it, such as cross-correlation, single-stage attack correlation, multi-stage
attack correlation, distributed attack correlation, zero-day attack detection, and
anomaly detection.

Because each dimension, sub-dimension, and criterion can have a different
impact and importance on SIEM product evaluation, to determine the mag-
nitude of the impact and importance of each dimension, each sub-dimension,
and each criterion, we use a factor called the impact factor. In this evalua-
tion, we determined the impact factors based on the main mission of the SIEM
product, as stated in the SIEM definition and our studies in SIEM products.
These values can be customized as needed. Since there are different methods,
algorithms, and standards for designing and developing the criteria, and these
methods, algorithms, and standards are superior to each other, so we provide
maturity levels for each criterion proportional to the scope of the criterion and
based on methods, algorithms, and standards that are provided for designing
and developing it. For example, cross-correlation is a criterion of correlation and
analysis sub-dimension. We built maturity levels for it based on different meth-
ods that extracted from our studies of several SIEM product. These maturity



A Novel and Comprehensive Evaluation Methodology for SIEM 481

Table 1. SIEM capabilities, architectural components, and common features.

DI1 : Capability βDI1 DI2 : Architectural
component

βDI2 DI3 : Common
feature

βDI3

Security alerts, logs,
and context data
collection and
normalization

10 Sensor 8 Identification and
authentication

7

Collected data
retention

5 Collector 14 Cryptography 8

Efficient indexing
and searching

5 Database
(Short-term
repository)

11 Auditing 12

Threat intelligence 9 Analysis 25 Compression 3

Correlation and
analysis

30 Logger (long-term
repository)

15 User data protection 7

Incident
investigation and
forensic

13 Incident response 11 Security
management

6

Incident response 8 Console, dashboard 16 Protection of the
product

7

Representation and
visualization

11 – – Trusted path/
channels

7

Regulatory
compliance

9 – – Resource utilization 5

– – – – Product access 5

– – – – Deployment and
support simplicity

6

– – – – Scalable architecture
and flexible
deployment

6

– – – – Installation,
configuration and
maintenance

5

– – – – Information Flow
control and access
control

7

– – – – Support and
training

6

– – – – Product and
manufacturer

3



482 M. Safarzadeh et al.

levels are shown in Table 2. At the lowest level, there is no correlation, and at
the highest level (level 4), the SIEM system cross-correlate heterogeneous and
diverse security alerts and logs for single-stage attack with the unknown pattern.
The maturity levels for data collection and normalization criteria are shown in
Table 2, too. For other criteria, these levels of maturity have also been developed,
but for brevity, we do not provide them here. Each maturity level has a score
called maturity score; the fourth column of Table 2 shows this score. We design a
set of test cases to evaluate each criterion and determine its maturity level. After
running test cases that each criterion includes, corresponds to the maturity level
of each criterion, the numerical value as the maturity score is assigned to it. We
set the maturity score equal to the maturity level number. Table 3 shows the
number of sub-dimension, criteria, and test cases for each dimension.

Formally, we model each SIEM system S by a finite set of dimensions S =
{DI1, DI2, ... , DIm} that hereon we have three dimensions, namely capa-
bility, architectural component, and common feature. More formally, for any
given SIEM system S,we write DIi(s) to denote its associated dimension. More-
over, each DIi(s) is a finite set of sub-dimensions DI = {SubDI1, SubDI2, ... ,
SubDIn}. For any given dimension DIi we write SubDIj(DIi) , to denote its
associated sub-dimensions. Finally, we model each sub-dimension by a finite set
of criteria SubDIk = {Crit1, Crit2, ... , Crito} for any given SubDIk, we write
Critk(SubDIj) to denote its associated criterion. We calculate the maturity of
the SIEM system using the Eq. 1 as the final score (FS):

FS =
m∑

i=1

n∑

j=1

o∑

k=1

αiβjγk
Critk
Idealk

(1)

Let α, β, and γ be the impact factors of dimension, sub-dimension, and crite-
rion, respectively. We assign criterion K maturity score and maximum maturity
score to Critk and Idealk respectively. We consider dimensions impact factors
(αi) between 0 and 1. These are 0.5, 0.3, and 0.2 for capability, architectural
component, and common feature respectively. We consider the sub-dimensions
impact factors (βj) that are provided in Table 1, and criteria impact factors (γk)
between 0% and 100%. Critk is a number between 0 and maximum maturity
score.

5 Experiments and Discussion

In this section, we first demonstrate how the methodology is used to evaluate
the SIEM product. Then, we compare it with other techniques available in the
literature. We chose three products to evaluate the proposed methodology. The
first product is the ArcSight ESM because it is one of the best SIEM products,
the second one is AlienVault OSSIM, because it is free and available, and the
third one is E-SIEM that is developed in our country.



A Novel and Comprehensive Evaluation Methodology for SIEM 483

Table 2. Cross-correlation and data collection and normalization maturity levels.

Maturity levels Criterion name

Criti :
Cross-correlation

Critj : Data collection
and normalization

Maturity score

Level 0 No cross-correlation No logs, security alerts,
and contextual data
are collected

0

Level 1 Cross-correlation of
heterogeneous and
diverse security alerts
for single-stage attacks
with a well-known
pattern

Collect and display logs
and security alerts from
specific tools and
protocols

1

Level 2 Cross-correlation of
heterogeneous and
diverse security alerts
from specific tools for
single-stage attacks
with a well-known
pattern

Collect, display, and
use of logs and security
alerts from specific
tools and protocols

2

Level 3 Cross-correlation of
heterogeneous and
diverse security alerts
from specific tools for
single-stage attacks
with unknown pattern

Collect, display, and
use of logs and security
alerts from specific
tools and protocols
with the option of
adding plugins to
receive data from
new tools and
protocols

3

Level 4 Cross-correlation of
heterogeneous and
diverse security alerts
for single-stage attack
with unknown pattern

Collect, display, and
use of logs and security
alerts of more tools and
protocols with the
option of adding
plugins to receive data
from new tools and
protocols

4

Level 5 – Collect, display, and
use of logs and security
alerts of more tools and
protocols with the
option of adding
plugins to receive data
from new tools and
protocols receive
contextual data

5



484 M. Safarzadeh et al.

Table 2. (continued)

Maturity levels Criterion name

Criti :
Cross-correlation

Critj : Data collection
and normalization

Maturity score

Level 6 – Collect, display, and
use of logs security
alerts, and contextual
data of more tools and
protocols, with the
option of automatically
add plugins for receive
data from new tools
and protocols

6

Level 7 – Collect, display, and
use of logs security
alerts, and contextual
data from All types of
known tools and
protocols, with the
option of automatically
add plugins for receive
data from new tools
and protocols

7

5.1 Evaluation Lab

We deployed all SIEM architectural components in network infrastructure to
evaluate the SIEM product’s criteria. We added four assets in network infras-
tructure; each of them had several services and some number of vulnerabilities
and weaknesses. We used DARPA [16] and KDD Cup [17] datasets to generate
security alerts. Since these datasets did not generate the logs and some security
alerts, we launched several attacks on the assets. We also generated contextual
data using Nessus vulnerability scanner and Nmap network and host discovery
tool. Two NIDSes and one firewall monitor the network traffic to detect attacks
against the assets. Four HIDSes monitors the activities and events occurring on
four assets.

Table 3. Number of criteria and test cases for each dimension.

Dimension name Number of
sub-dimension

Number of
criteria

Number of
test cases

Capability 9 125 259

Architectural component 7 94 202

Common feature 16 172 286



A Novel and Comprehensive Evaluation Methodology for SIEM 485

Table 4. Selected criteria for methodology evaluation.

# Criteria α β γ ArcSight OSSIM E-SIEM Ideal

1 Event Per
Second Rate

0.5 10% 14% 3 4 4 6

2 Cross-
Correlation

0.5 30% 9% 3 2 2 4

3 Historical
Analysis

0.5 30% 12% 3 0 2 6

4 Integration
with other
systems

0.5 8% 7% 1 0 3 4

5 User Authen-
tication

0.2 7% 18% 4 2 2 6

6 Encryption
Operation

0.2 8% 15% 4 3 3 7

5.2 Evaluation Results

To evaluate our methodology, we selected 20 criteria from a set of developed
criteria and run test cases related to the criteria. For brevity, some of these
criteria are presented in Table 4. They are chosen from all dimensions and various
sub-dimensions. Table 5 shows the obtained results. The results are multiplied by
100 for normalization. The first column shows SIEM evaluated products and an
ideal hypothetical SIEM product. The second, third, and fourth columns show
obtained values for capability, architectural component, and common feature
dimensions for each product and the fifth column shows the final score for each
product. From the table, we observe ArcSight totally is better than the other
two products. But in terms of dimension, ArcSight is better than the other two
products in capability and common feature criteria, and OSSIM is better than
the other two products in architectural component criteria. Figure 2 shows the
assessed criteria based on their maturity. Also, in addition to the final score and
score obtained for each dimension, as shown in Table 5, using this methodology,
it is also possible to compare the products based on the maturity levels of their
criteria.

Table 5. Obtained results in experiments.

Tool Capability Architectural component Common feature FS

ArcSight 3.92 1.36 0.91 6.19

OSSIM 2.76 1.61 0.72 5.09

E-SIEM 3.46 1.6 0.83 5.89

Ideal 7.78 2.88 1.64 12.3



486 M. Safarzadeh et al.

Fig. 2. Compare SIEMs based on maturity levels of their criteria.

5.3 Comparison

Because of the similarity of our methodology and [4–6] we decide to compare our
methodology with them. These studies did not present their evaluation results;
then, we make a qualitative comparison between our methodology and them.
Gartner has considered functional capabilities to evaluate SIEM products; then
it does not evaluate the second and third dimensions criteria of our methodology.
NSS Labs does not evaluate second and third dimensions criteria; it evaluates
some criteria from the first dimension. Common Criteria has considered common
features only and does not evaluate the first and second dimensions criteria of
our methodology. By executing test cases when evaluating the criteria, we found
that while the three SIEM products provided a criterion, the provided criterion
have different maturities. By using the impact factors and the maturity levels
determined for the criteria and using them in calculating the score of a SIEM
product, this methodology can correctly rank the SIEM products based on cri-
teria maturity levels as shown in Fig. 2. We score the maturity of criteria based
on methods, algorithms, and standards is developed for designing and imple-
menting them. ArcSight ESM for cross-correlation criteria had the most mature
level than the other two SIEM products. Therefore, the proposed methodology
can test the SIEM product well and compare it with other SIEM products to
select the required SIEM product. These methodologies did not consider any
impact factors for dimension and sub-dimension or maturity level for criteria in
their evaluations. Thus, they cannot determine the superiority of the products
towards each other by expressing the details of superiority such as superiority
in a specific dimension, some specific sub-dimensions, or some criteria.



A Novel and Comprehensive Evaluation Methodology for SIEM 487

6 Conclusions

In this paper, we proposed a novel and comprehensive methodology that evalu-
ates the SIEM product from three complementary perspectives. In this method-
ology, we divided the SIEM product into a set of dimensions, namely capability,
architectural component, and common feature. We subdivided each dimension
according to its definition into sub-dimensions, then developed multiple criteria
for evaluating each sub-dimension and designed a set of test cases to evaluate
each criterion and determine its maturity level. We presented a formula for cal-
culating the maturity of the SIEM product. Because the dimensions can have a
different impact and importance on SIEM product evaluation, to consider the
magnitude of the impact and importance of each dimension, we used a factor
called the impact factor. We also considered some impact factors for the impact
and importance of each sub-dimension and each criterion. Since there are differ-
ent methods, algorithms, and standards for designing and developing the criteria,
and these methods, algorithms, and standards are superior to each other, so we
provided maturity levels for each criterion proportional to the scope of the cri-
terion and based on methods, algorithms, and standards that are provided for
designing and developing it.

The methodology has been able to show the superiority of products totally
and for any dimension and their sub-dimensions. Also, the methodology was
able to determine the excellence of products in terms of their criteria maturity.
It provides the ability for security experts in selecting a SIEM product in accor-
dance with the requirements of their organization, for manufacturers to develop
and manufacture a SIEM product and for evaluators to assess a SIEM product.

References

1. Verizon. https://enterprise.verizon.com/resources/reports/2019-data-breach-inves
tigations-report.pdf. Accessed 7 June 2019

2. Symantec. https://www.symantec.com/content/dam/symantec/docs/reports/ist
r-24-2019-en.pdf. Accessed 7 June 2019

3. Sans. https://www.sans.org/reading-room/whitepapers/ICS/paper/35502
4. Mark, N., Kelly, M.K.: Critical Capabilities for Security Information and Event,

May 2013. Accessed 7 June 2019
5. NSS Labs: NGIPS Test Methodology V4.0. https://research.nsslabs.com/library/

network-security/next-generation-intrusion-prevention-system/
6. Common Criteria. https://www.commoncriteriaportal.org/files/ccfiles/CCPART

2V3.1R3%20-%20marked%20changes.pdf
7. Igor, k., Elena, D.: Countermeasure selection in SIEM systems based on the

integrated complex of security metrics. In: 23rd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing, pp. 567–574. IEEE,
Turku(2015)

8. Kavita, A., Hemant, M.: A study on critical capabilities for security information
and event management. Int. J. Sci. Res. (IJSR) 4(7), 1893–1896 (2015)

9. Leszczyna, R., Wróbel, M.R.: Evaluation of open source SIEM for situation aware-
ness platform in the smart grid environment. In: World Conference on Factory
Communication Systems (WFCS), pp. 1–4. IEEE, Palma de Mallorca (2015)

https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.sans.org/reading-room/whitepapers/ICS/paper/35502
https://research.nsslabs.com/library/network-security/next-generation-intrusion-prevention-system/
https://research.nsslabs.com/library/network-security/next-generation-intrusion-prevention-system/
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3%20-%20marked%20changes.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3%20-%20marked%20changes.pdf


488 M. Safarzadeh et al.

10. Sandeep, B., Pratyusa, K.M., Loai, Z.: The operational role of security information
and event management systems. IEEE Secur. Priv. 12(5), 35–41 (2014)

11. Cesario, D.S., Alessia, G., Ilaria, M., Marco, V.: A novel security information and
event management system for enhancing cyber security in a hydroelectric dam.
Int. J. Crit. Infrastruct. Protect. 13(5), 39–51 (2016)

12. Filip, H., Josef, H., Sona, N., Stanislav, Z., Ondrej, M.: The deployment of security
information and event management in cloud infrastructure. In: 25th International
Conference Radioelektronika (RADIOELEKTRONIKA), pp. 399–404. IEEE, Par-
dubice (2015)

13. David, R.M., Shon, H., Allen, H., Stephen, V., Chris, B.: Security Information
and Event Management (SIEM) Implementation, 1st edn. McGraw-Hill Education,
New York (2011)

14. David, N.: Designing and Building A Security Operations Center, 1st edn. Syngress,
Massachusetts (2015)

15. Joseph, M., Gary, M., Nadhem, A.: Security Operations Center: Building, Oper-
ating, and Maintaining your SOC. Cisco Press, Indiana (2016)

16. MIT Lincoln Lab. http://www.ll.mit.edu/IST/ideval/data/2000/2000 data index.
html. Accessed 7 June 2019

17. KDDCup. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Author Index

Akleylek, Sedat 41
Azarderakhsh, Reza 293

Benabidallah, Raounak 194
Borne, Isabelle 194
Briguglio, William 113

Chen, Huey Voon 413
Cheng, Feng 464
Chin, Ji-Jian 273
Ciccotelli, Claudio 95
Ciucanu, Radu 152
Coetzee, Marijke 423

Dalai, Deepak Kumar 325

Elmiligi, Haytham 113

Fukushima, Kazuhide 232

Gebala, Maciej 341
Gharaee, Hossein 476
Ghorbani, Ali A. 434
Goi, Bok-Min 41
Guo, Huaqun 248

Huang, Qiong 3
Hwang, Jeong Hwan 20

Jaeger, David 464
Jao, David 293
Jia, Keting 56

Kiyomoto, Shinsaku 232
Kluczniak, Kamil 341
Krzywiecki, Łukasz 310
Kutyłowski, Mirosław 341
Kuzuno, Hiroki 75
Kwok, Lam For 453

La Marra, Antonio 213
Lafourcade, Pascal 135, 152
Laurenza, Giuseppe 95

Le Trionnaire, Brendan 194
Lee, Wai-Kong 41
Lemiesz, Jakub 341
Leonardi, Chris 293
Li, Wenjuan 453
Liu, Chao 56
Lombard-Platet, Marius 152
Lu, Jiqiang 248

Ma, Sha 3
Macwan, Kamalkumar 381
Mahmood, Farhan 113
Maleki, Nasim 434
Martinelli, Fabio 213
Meinel, Christoph 464
Meng, Weizhi 453
Miyahara, Daiki 135
Mizuki, Takaaki 135
Mori, Paolo 213

Neupane, Ajaya 172
Ng, Tiong-Sik 273
Nkomo, Peter 423

Pal, Santu 325
Panahi, Amir Hossein 476
Patel, Asma 362
Patel, Sankita 381
Pelchen, Chris 464
Petagna, Emanuele 95
Plantard, Thomas 401

Querzoni, Leonardo 95

Rae, Andrew 362
Rizos, Athanasios 213

Saad, Sherif 113
Sadou, Salah 194
Safarzadeh, Mahdieh 476
Saracino, Andrea 213
Sasaki, Tatsuya 135
Satvat, Kiavash 172



Saxena, Nitesh 172
Shrestha, Prakash 172
Sin, Chang Seng 413
Sipasseuth, Arnaud 401
Słowik, Marcin 341
Słowik, Marta 310, 341
Soare, Marta 152
Sone, Hideaki 135
Song, Baek Kyung 20
Susilo, Willy 401
Szala, Michał 310

Tan, Syh-Yuan 273
Teh, Anzo 293

Wang, Kunpeng 293

Xu, Xiu 293

Yamasaki, Norikazu 232
Yamauchi, Toshihiro 75
Yap, Wun-She 41
Yoo, Joon Soo 20
Yoon, Ji Won 20
Yoshimura, Ayumu 232
You, Qidi 56
Yu, Wei 293

Zhao, Zhigang 248
Zheng, Zhongxiang 56

490 Author Index


	Preface
	Organization
	Contents
	Cryptography I
	Plaintext-Checkable Encryption with Unlink-CCA Security in the Standard Model
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Paper Organization

	2 Pairing-Friendly Smooth Projective Hash Function
	3 Definitions
	3.1 Plaintext-Checkable Encryption
	3.2 Unlink-cca Security

	4 PCE Construction with Unlink-cca security
	4.1 Construction
	4.2 Security Proof

	5 PCE Instantiation from SXDH Assumption
	5.1 Comparison

	6 Conclusion
	References

	A Bitwise Logistic Regression Using Binary Approximation and Real Number Division in Homomorphic Encryption Scheme
	1 Introduction
	2 Preliminaries
	2.1 Logistic Regression

	3 Proposed Strategy
	3.1 Secure Cloud Computing Model
	3.2 Real Number Representation
	3.3 Homomorphic Division
	3.4 Homomorphic Exponential Function
	3.5 Performance of HE Functions

	4 Application to Logistic Regression
	4.1 Sigmoid Function
	4.2 HE Batch Gradient Descent Algorithm
	4.3 Normalization of Data

	5 Performance Evaluation
	5.1 Used Dataset

	6 Discussion
	7 Conclusion
	A  Correctness of HE Exponential Function
	A.1  (Case 1 : x0)
	A.2  (Case 2 : x<0)

	B  Additional HE Function
	B.1  Addition and Subtraction
	B.2  2's Complement and Absolute Value Operation
	B.3  Shift Operation
	B.4  Comparison Operation
	B.5  Multiplication Operation
	B.6  Binary Negative Exponential Method

	References

	Accelerating Number Theoretic Transform in GPU Platform for qTESLA Scheme
	1 Introduction
	1.1 Post-quantum Cryptography
	1.2 Related Work
	1.3 Our Contributions

	2 Background
	2.1 Overview of qTESLA
	2.2 Number Theoretic Transform
	2.3 Overview of Graphics Processing Units and CUDA

	3 Implementation Details
	3.1 Optimizing NTT Parallellism
	3.2 Placement of Twiddle Factors

	4 Experimental Results
	5 Discussions
	6 Conclusions
	References

	Provably Secure Three-Party Password-Based Authenticated Key Exchange from RLWE
	1 Introduction
	2 Preliminaries
	2.1 Security Models
	2.2 Notations
	2.3 Ring Learning with Errors

	3 A New Three-Party Password Authenticated Key Exchange
	3.1 Description of RLWE-3PAK
	3.2 Design Rationale
	3.3 Correctness

	4 Security for RLWE-3PAK
	5 Concrete Parameters and Implementation of RLWE-3PAK
	6 Conclusion
	References

	System and Network Security
	KMO: Kernel Memory Observer to Identify Memory Corruption by Secret Inspection Mechanism
	1 Introduction
	2 Background
	2.1 Separation of Virtual Memory
	2.2 Kernel Vulnerability Attack
	2.3 Threat Model

	3 KMO Design
	3.1 Design Goal
	3.2 Switching Patterns and Detection Capability
	3.3 Design Approach

	4 KMO Implementation
	4.1 Secret Virtual Memory Space Management
	4.2 Switching of the Virtual Memory Space
	4.3 Monitoring of Virtual Memory Space
	4.4 Direct Mapping Management
	4.5 Kernel Vulnerability Attacking Case

	5 Evaluation
	5.1 Evaluation Purpose and Environment
	5.2 Monitoring System Call Argument
	5.3 Detection of Linux Security Module Overwrite
	5.4 Measurement System Call Interaction Overhead
	5.5 Measurement Application Overhead

	6 Discussion
	6.1 Performance Consideration
	6.2 KMO Detection Capability
	6.3 KMO Limitation

	7 Related Work
	7.1 Comparison with Related Work

	8 Conclusion
	References

	Peel the Onion: Recognition of Android Apps Behind the Tor Network
	1 Introduction
	2 Related Works
	3 Background on Tor
	4 Threat Model
	5 Deanonymization Methodology
	6 Proof-of-Concept
	6.1 Dataset
	6.2 Features

	7 Experimental Evaluation
	7.1 Evaluation Methodology
	7.2 Results

	8 Conclusion
	A  User Simulation
	B  Experiments Result Summary
	References

	JSLess: A Tale of a Fileless Javascript Memory-Resident Malware
	1 Introduction
	2 Related Work
	3 Benign Features with Malicious Potentials
	3.1 WebSockets
	3.2 WebWorkers
	3.3 Service Workers

	4 JavaScript Fileless Malware
	4.1 Infection Scenarios
	4.2 Operational Scenario
	4.3 Attack Vectors

	5 Experiment and Evaluation
	5.1 JS Malware Detection Tools
	5.2 Detection and Mitigation
	5.3 Tools Analysis Results

	6 Conclusion and Future Work
	References

	Security Protocol and Tool
	A Physical ZKP for Slitherlink: How to Perform Physical Topology-Preserving Computation
	1 Introduction
	2 Preliminaries
	3 Zero-Knowledge Proof for Slitherlink
	3.1 Subprotocols
	3.2 Our Construction

	4 Security Proofs for Our Construction
	5 Conclusion
	References

	Secure Best Arm Identification in Multi-armed Bandits
	1 Introduction
	2 Primer on Multi-armed Bandits
	3 Secure Protocol
	3.1 Security Model
	3.2 Security Background
	3.3 Secure Algorithm
	3.4 Complexity

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	A  Security Proofs
	A.1  Notations and Security Hypothesis
	A.2  Security Proofs for BAI
	A.3  Security Proofs for Comp
	A.4  Security Proofs for the RP j
	A.5  Security Proof for an External Observer

	References

	CATCHA: When Cats Track Your Movements Online
	1 Introduction
	2 Attack Premise and Overview
	3 Game CAPTCHA Review and Dataset
	4 CATCHA Design and Implementation
	4.1 Demographic Attributes of Interest
	4.2 Feature Extraction
	4.3 Classification Models

	5 Analysis and Results
	5.1 Performance Metrics
	5.2 Statistical Analysis of Dataset
	5.3 CATCHA Performance

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

	Designing a Code Vulnerability Meta-scanner
	1 Introduction
	2 General Approach
	3 Vulnerability Benchmark Corpus
	4 Code Vulnerability Scanner Tools
	5 Vulnerability Categorization
	6 Scanners Confidence Rates Estimation
	7 Code Vulnerability Identification
	8 Experimentation
	8.1 CVMS VS Individual Scanner Tools
	8.2 CVMS on Real Java Source Code
	8.3 Discussion
	8.4 Threat to Validity

	9 Related Work
	9.1 Scanner Tool Evaluation
	9.2 Combining Multiple Scanner Tools

	10 Conclusion
	References

	Access Control and Authentication
	Using IFTTT to Express and Enforce UCON Obligations
	1 Introduction
	2 Background
	2.1 IFTTT
	2.2 Usage Control

	3 Enforcing UCON Obligations via IFTTT
	3.1 Architecture
	3.2 Workflow
	3.3 Obligation Standardization
	3.4 Implementation

	4 Experimental Evaluation
	4.1 Examples of Use-Cases
	4.2 Testbed and Timing Evaluation

	5 Related Work
	6 Conclusion
	References

	Evaluation of Software PUF Based on Gyroscope
	1 Introduction
	2 Related Work
	3 Software PUF Based on Sensors
	3.1 Device Identifier Generation
	3.2 Gyroscope

	4 Experiment
	5 Evaluation
	5.1 Compatibility with Requirements
	5.2 Identification Capability
	5.3 Robustness

	6 Conclusion
	References

	White-Box Implementation of the KMAC Message Authentication Code
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Sponge Hash Function Construction Method
	2.3 The SHA-3 Hash Function Family
	2.4 The KMAC Message Authentication Code

	3 Distinctions Between White-Box Implementations of KMAC and HMAC
	4 White-Box Implementation Schema of KMAC
	4.1 Implementation Method
	4.2 Protecting Message Against Code Lifting
	4.3 Protecting Key Against Key Extraction

	5 White-Box Implementations of Basic Operations of KMAC
	5.1 White-Box Implementation of (X ) (Y )
	5.2 White-Box Implementation of X Y RCi
	5.3 White-Box Implementation of (X) & Y

	6 An Efficient White-Box KMAC Implementation
	6.1 White-Box Implementation of Steps 1 and 2 of 
	6.2 White-Box Implementation of (:Step 3)
	6.3 White-Box Implementation of 
	6.4 White-Box KMAC

	7 Security Analysis
	8 Performance Evaluation
	8.1 Storage and Time Complexity
	8.2 Performance Test

	9 Implementation Variants
	10 Concluding Remarks
	References

	Cryptography II
	Improving Signature Schemes with Tight Security Reductions
	1 Introduction
	1.1 FDH Signatures
	1.2 Our Contributions
	1.3 Organization

	2 Definitions
	2.1 Security Notions
	2.2 Computational Problems
	2.3 Pseudorandom Bit Generator
	2.4 Trapdoor Samplable Relations

	3 The Tight Security Framework
	3.1 Generic Form of Captured FDH Signatures
	3.2 The Proposed Framework
	3.3 Backward Compatibility
	3.4 Security Proof

	4 Applying the Framework
	4.1 Instantiation Using RSA-FDH
	4.2 Instantiation Using BLS

	5 Discussions
	5.1 Upgrade to Existing Schemes
	5.2 Comparison with Katz and Wang's Work

	6 Conclusion
	References

	Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings
	1 Introduction
	2 Preliminaries
	2.1 Isogeny and Endomorphism Ring
	2.2 Hard Problems
	2.3 Identification Protocol Based on Endomorphism Ring
	2.4 Quaternion Isogeny Path Algorithm

	3 Digital Signature Based on Endomorphism Ring
	3.1 Modified Identification Protocol
	3.2 Proposed Digital Signature Scheme

	4 Analysis and Implementation of Galbraith-Petit-Silva Signature
	5 Conclusion
	References

	Identity-Based Signature Scheme Secure in Ephemeral Setup and Leakage Scenarios
	1 Introduction
	2 Preliminaries
	3 Identity Based Signature Scheme
	3.1 Lightweight IBS Scheme

	4 New Stronger Security Model for IBS
	5 Proposed Modification of IBS Scheme
	5.1 Correctness of the Scheme
	5.2 Security Analysis

	6 Implementation and Performance
	6.1 Number of Operations
	6.2 Execution Time Measurements

	7 Conclusion
	A  Vulnerability of Leakage-Resilient IBS by Wu et al. in Our Model
	References

	Recovering Internal States of Grain-v1
	1 Introduction
	1.1 Previous Contributions
	1.2 Our Contribution
	1.3 Organization of Paper

	2 Preliminary
	2.1 TMDTO Attacks on Stream Ciphers
	2.2 Description of Grain-v1

	3 State Recovery of Grain-v1
	3.1 Analysis of the Non-linear Filter Function
	3.2 Guess and Determine Strategy
	3.3 TMDTO Attack

	4 Conclusion and Future Work
	References

	Data and User Privacy
	GDPR-Compliant Reputation System Based on Self-certifying Domain Signatures
	1 Introduction
	1.1 Importance of Reputation Systems
	1.2 Basic Principles of Reputation Systems
	1.3 Basic Threats of Reputation Systems
	1.4 GDPR, Legal Risks and Obligations
	1.5 Architecture of Reputation Systems
	1.6 Paper Contribution

	2 Pseudonymous Signature
	3 Reputation Systems Based on Probabilistic Counters
	3.1 PADRE-1
	3.2 Estimator for PADRE-1
	3.3 PADRE-2
	3.4 Construction of PADRE-2
	3.5 Estimator for PADRE-2
	3.6 PADRE-3

	4 Experimental Results
	References

	Defining a New Composite Cybersecurity Rating Scheme for SMEs in the U.K.
	1 Introduction
	2 Related Work
	2.1 SME Security Behaviours and Perceptions
	2.2 Attitudes and Awareness to Cyber or Information Security standards
	2.3 Comparable Behaviours and Approaches from Other Industries
	2.4 Information Availability and Its Dispersion to SMEs
	2.5 Drivers to Help Deliver Increases in Positive Security Behaviours

	3 Proposed Rating System
	3.1 System Evaluation Method
	3.2 Proposed Rating Method
	3.3 Defining the Rating Matrices
	3.4 Composite Scoring

	4 Evaluation
	4.1 Surveys
	4.2 Expert Interviews

	5 Conclusion and Future Work
	References

	Privacy Preserving Approach in Dynamic Social Network Data Publishing
	1 Introduction
	1.1 Single Graph Anonymization
	1.2 Privacy Breach Across Multiple Releases
	1.3 Problem Definition
	1.4 Motivation
	1.5 Challenges
	1.6 Contribution
	1.7 Organization

	2 Related Work
	2.1 Preserving User Identity in Multiple Release

	3 The Proposed Work
	3.1 Class Safety Condition (CSC)
	3.2 Graph Clustering
	3.3 The Anonymizing Method
	3.4 Example of the Proposed Approach
	3.5 Analysis

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Experiment Results

	5 Conclusion
	References

	Short Paper I
	Using Freivalds' Algorithm to Accelerate Lattice-Based Signature Verifications
	1 Introduction
	2 Background
	2.1 Lattice Basics
	2.2 Freivalds' Algorithm
	2.3 DRS and Its Verification Algorithm

	3 Modifying Freivalds' Technique for Lattice-Based Signature Verification
	3.1 The First Core Idea: Modification of Freivalds' Algorithm
	3.2 The Second Core Idea: Changing the Verifier

	4 Security Considerations
	4.1 Attack Models
	4.2 How to Choose the Primes

	5 Implementation Results
	5.1 Time Results on a Basic Implementation
	5.2 Memory Storage

	6 Conclusion
	References

	Group-Based Key Exchange Protocol Based on Complete Decomposition Search Problem
	1 Introduction
	2 Some Constructions of Complete Decomposition of Q2n
	2.1 Construction of Complete Decomposition of Q2n

	3 Application on Cryptography
	3.1 Complete Decomposition Search Problem (CDSP)
	3.2 Our Proposed Scheme
	3.3 Performance Analysis
	3.4 Security of the Scheme
	3.5 Open Questions

	References

	Development Activities, Tools and Techniques of Secure Microservices Compositions
	Abstract
	1 Introduction
	2 Secure Development Activities of a Microservices Composition
	3 Tools and Techniques of Secure Development Activities
	3.1 Document Security Requirements of Microservices Compositions
	3.2 Adopt Secure Programming Best Practices
	3.3 Validate Security Requirements and Secure Programming Best Practices
	3.4 Secure Configuration of Runtime Infrastructure
	3.5 Continuously Monitor Components of the Microservices Composition

	4 Conclusion
	References

	Generating Phishing Emails Using Graph Database
	1 Introduction
	2 Related Works
	2.1 Phishing Email Generation
	2.2 Phishing Awareness Training and Tools

	3 Generating Phishing Email
	3.1 Phishing Email Structure
	3.2 Analysis of Attack Type, Company Type, and Topic

	4 Algorithms, Design and Implementation
	4.1 System Overview

	5 Experiment Setup
	5.1 Experiment Design - First Round
	5.2 Experiment Design - Second and Third Round

	6 Results
	6.1 First Round
	6.2 Second Round
	6.3 Third Round
	6.4 Discussion

	7 Conclusion
	References

	Short Paper II
	Evaluating Intrusion Sensitivity Allocation with Support Vector Machine for Collaborative Intrusion Detection
	1 Introduction
	2 Related Work
	3 Intrusion Sensitivity-Based Trust Management Model for CIDNs
	3.1 CIDN Architecture
	3.2 Trust Computation and Evaluation
	3.3 Intrusion Sensitivity Allocation in an Engineering Way

	4 Evaluation
	4.1 Classifier Performance
	4.2 Evaluation in a Practical Environment

	5 Conclusion
	References

	The (Persistent) Threat of Weak Passwords: Implementation of a Semi-automatic Password-Cracking Algorithm
	1 Introduction
	2 Background and Previous Work
	2.1 Password Storing
	2.2 Password Cracking
	2.3 Password Analysis

	3 Semi-automatic Password Cracking
	3.1 Implementation
	3.2 Working Principle
	3.3 Defining Efficient Work Lists for Password Cracking

	4 Evaluation
	5 Conclusion
	References

	A Novel and Comprehensive Evaluation Methodology for SIEM
	1 Introduction
	2 Related Work
	3 Security Information and Event Management (SIEM) System
	4 Methodology for SIEM
	5 Experiments and Discussion
	5.1 Evaluation Lab
	5.2 Evaluation Results
	5.3 Comparison

	6 Conclusions
	References

	Author Index



