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Abstract. Regular expressions are widely used in various fields. Learn-
ing regular expressions from sequence data is still a popular topic. Since
many XML documents are not accompanied by a schema, or a valid
schema, learning regular expressions from XML documents becomes an
essential work. In this paper, we propose a restricted subclass of single-
occurrence regular expressions with counting (RCsores) and give a learn-
ing algorithm of RCsores. First, we learn a single-occurrence regular
expressions (SORE). Then, we construct an equivalent countable finite
automaton (CFA). Next, the CFA runs on the given finite sample to
obtain an updated CFA, which contains counting operators occurring in
an RCsore. Finally we transform the updated CFA to an RCsore. More-
over, our algorithm can ensure the result is a minimal generalization
(such generalization is called descriptive) of the given finite sample.

Keywords: Schema inference · Regular expressions · Counting ·
Descriptive generalization

1 Introduction

Regular expression are widely used in information extraction, network security,
database management, programming languages, etc. Nowadays, mining poten-
tial knowledge from sequence data has become a common task in many research
areas and application scenarios [9,20,24,27]. The technologies of learning regular
expressions have also obtained more and more attention and development. For
example, many XML documents are not accompanied by a schema, or a valid
schema [1,4,5,23], learning regular expressions from XML documents will facili-
tate the diverse applications of XML Schema, such as data processing, automatic
data integration, and static analysis of transformations [10,21,22]. In this paper,
we focus on learning regular expressions from XML documents.

For any given positive data, Gold specified that the class of regular expres-
sions cannot be learned [15]. Even Bex et al. claimed that the class of
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deterministic regular expressions cannot be learned [3]. Therefore, there are
many works focusing on learning subclasses of deterministic regular expressions
[2,3,6,7,11,12]. Deterministic regular expressions [8] require that each symbol
in the input word can be unambiguously matched to a position in the regular
expression without looking ahead in the word. Single-occurrence regular expres-
sions (SOREs) [6,7] are classic subclass of deterministic regular expressions
(standard). However, SOREs do not support counting, which is an extension
of standard regular expressions used in XML Schema [14,16–19,25,26]. Then,
we propose a restricted subclass of single-occurrence regular expressions with
counting (RCsores). Our experiments (see Table 3) showed that the proportion
of RCsores is 89.45% for 425,275 regular expressions extracted from XSD files,
which were grabbed from Open Geospatial Consortium (OGC) XML Schema
repository1. I.e., the majority of schemas in above real-world XSD files use
RCsores. Therefore, it is necessary to study a learning algorithm for RCsore.
Compared with Gold-style learning [15], the descriptive generalization [12,13]
does not require to learn an exact representation of the target language, but
can lead to a compact and powerful model [13]. Thus, our learning algorithm is
based on the descriptive generalization [12,13].

For learning algorithms of SOREs, Bex et al. [7] proposed RWR and RWR2
�

[7]. Freydenberger et al. [12] presented the learning algorithm Soa2Sore [12].
Additionally, [7] (resp. [12]) mentioned the future work, which is that SOREs
extended with counting can be learnt by an additional post-processing step
following the algorithm RWR (resp. Soa2Sore). However, the additional post-
processing may result in the problem of overgeneralization [25]. For solving this
problem, Wang et al. [25] proposed the class ECsores (see Definition 2), and the
corresponding learning algorithm InfECsore [25]. However, although the ECsore
learnt by InfECsore is descriptive of any given finite sample, the recall of InfEC-
sore is lower2. Additionally, every possibly repeated subexpression of the ECsore
can be extended with counting, then the algorithm InfECsore needs plenty of
accurate counting such that it is not efficient to process larger samples. Wang
et al. [26] also proposed a subclass cSOREs, which are a subclass of ECsore, and
the corresponding learning algorithm InfcSORE [26], but the learnt cSORE is
not descriptive of any given finite sample3. Therefore, we propose a new subclass
RCsore and the corresponding method for learning RCsore. Although RCsores
are also subclass of ECsores, for any given finite sample, our algorithm not only
can ensure the learnt RCsore is descriptive of the given finite sample (w.r.t.
the class of RCsores), but also can ensure that the recall for the expression
derived by our algorithm can be higher than that for the expression learnt by

1 http://schemas.opengis.net/.
2 For instance, the original expression in XSD can be denoted by r0 = (a|b)[1,6], given

sample {ba, aa, abaa, aabaa}, the ECsore learnt by InfECsore is r1 = (b?a[1,2])[1,2].
However, the learnt RCsore can be r2 = (b?a)[1,4]. Let S1 = {s|s ∈ L(r0), s ∈ L(r1)}
and S2={s|s∈L(r0), s∈L(r2)}. Then, |S1|=14 and |S2|=25. Thus, |S1|

|L(r0)| < |S2|
|L(r0)| .

3 Let S ={b, abd, ad, cddcdd}, the cSORE learnt by InfcSORE is r3 =((a?b?|c)d?)[1,4],
however, there is a cSORE r4 =(a?b?|c?(d[1,2])?)[1,2] such that L(r3)⊃L(r4)⊇S.

http://schemas.opengis.net/
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InfECsore. Moreover, for a smaller sample, the learnt RCsore has better gener-
alization ability (higher precision and recall) than the learnt ECsore. And the
learning algorithm of RCsore is more efficient than that of ECsore for processing
larger samples.

The main contributions of this paper are as follows.

– We infer a SORE and construct an equivalent countable finite automaton
(CFA) [25].

– The CFA runs on the given finite sample to obtain an updated CFA, which
has updated the counting operators that will occur in an RCsore.

– We convert the updated CFA to an RCsore and prove that the generated
RCsore is descriptive of any given finite language.

The paper is structured as follows. Section 2 gives the basic definitions.
Section 3 presents the learning algorithm of the RCsore, and proves the RCsore
generated by our algorithm is descriptive of any given finite language. Section 4
presents experiments. Section 5 concludes the paper.

2 Preliminaries

2.1 Regular Expression with Counting

Let Σ be a finite alphabet of symbols. Rc is a set (non-empty) of regular
expressions with counting over Σ. ε, a ∈ Σ are regular expressions in Rc.
For regular expressions r1, r2 ∈ Rc, the disjunction (r1|r2), the concatenate
(r1 ·r2), the Kleene-star r∗

1 , and counting (numerical occurrence constraints [14])
r
[m,n]
1 are also regular expressions in Rc. m ∈ N, n ∈ N/1, N = {1, 2, 3, · · · },

N/1 = {2, 3, 4, ...} ∪ {+∞}, and m ≤ n. For a regular expression r ∈ Rc,
L(r[m,n]) = {w1 · · · wi|w1, · · · , wi ∈ L(r),m ≤ i ≤ n}. Note that r+, r?, and r∗

are used as abbreviations of r[1,+∞], r|ε, and r[1,+∞]|ε, respectively. Usually, we
omit concatenation operators in examples. |r| denotes the length of r, which is
the number of symbols and operators occurring in r plus the sizes of the binary
representations of the integers [14]. For a finite sample S, |S| denotes the number
of strings in S. ∅ denotes the empty set. For space consideration, all omitted
proofs can be found at http://github.com/GraceFun/InfRCsore.

2.2 SORE, ECsore and RCsore

SORE is defined as follows.

Definition 1 (SORE [6,7]). Let Σ be a finite alphabet. A single-occurrence
regular expression (SORE) is a standard regular expression over Σ in which
every terminal symbol occurs at most once.

Example 1. (ab)+ is a SORE, while (ab)+a is not.

http://github.com/GraceFun/InfRCsore
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Definition 2 (ECsore [25]). Let Σ be a finite alphabet. An ECsore is a regular
expression with counting over Σ in which every terminal symbol occurs at most
once. For a regular expression r, an ECsore forbids immediately nested counters,
expressions of form (r?)? and (r?)[m,n].

ECsore does not use the Kleene-star and the iteration operations. And
ECsores are deterministic by definition.

Definition 3 (RCsore). Let Σ be a finite alphabet. An RCsore is an ECsore
over Σ. For regular expressions r1, r2 and r3, an RCsore forbids expressions of
form (r1r2r3)[m1,n1] where ε∈L(r1), ε∈L(r3) and r2 ∈{e[m2,n2], e?} for regular
expression e (ε �∈ L(e)).

According to the definition, RCsores are a subclass of ECsores. ECsores are
deterministic regular expressions, so are the RCsores.

Example 2. (a|b[1,2])[3,4](c?d)[1,+∞], (a[3,4]b)[1,2], and ((a?b?|c)(d[2,3])?)[1,2] are
RCsores, also ECsores, while a?b+a is not a SORE, therefore neither an RCsore
nor an ECsore. However, the expressions (a?b[1,2]c?)[1,2] and (a?b?c?)[1,2] are
ECsores, not RCsores. (a[1,2])[1,2], ((a[1,2])?)[1,2] and ((a[1,2])?)? are forbidden.

2.3 Descriptivity

We give the notion of descriptive expressions and automata.

Definition 4 (Descriptivity [12]). Let D be a class of regular expressions
or finite automata over some alphabet Σ. A δ ∈ D is called D-descriptive of
a non-empty language S ⊆ Σ∗ if L(δ) ⊇ S, and there is no γ ∈ D such that
L(δ) ⊃ L(γ) ⊇ S.

If a class D is clear from the context, we simply write descriptive instead of
D-descriptive.

Proposition 1. Let Σ be a finite alphabet. There exists an RCsore-descriptive
RCsore r for every language L ⊆ Σ∗.

2.4 Countable Finite Automaton

Definition 5 (Countable Finite Automaton [25]). A Countable Finite
Automaton (CFA) is a tuple (Q,Qc, Σ, C, q0, qf , Φ,U, L). The members of the
tuple are described as follows:

– Σ is a finite and non-empty alphabet.
– q0 and qf : q0 is the initial state, qf is the unique final state.
– Q is a finite set of states. Q = Σ ∪ {q0, qf} ∪ {+i}i∈N.
– Qc ⊂ Q is a finite set of counter states. Counter state is a state q (q ∈ Σ) that

can directly transit to itself, or a state +i. For each subexpression (excluding
single symbol a ∈ Σ) under the iteration operator, we associate a unique
counter state +i to count the minimum and maximum number of repetitions
of the subexpression, respectively.
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– C is finite set of counter variables that are used for counting the number of
repetitions of the subexpressions under the iteration operators. C = {cq|q ∈
Qc}, for each counter state q, we also associate a counter variable cq.

– U={u(q)|q ∈ Qc}, L={l(q)|q ∈ Qc}. For each subexpression under the iter-
ation operator, we associate a unique counter state q such that l(q) and u(q)
are the minimum and maximum number of repetitions of the subexpression,
respectively.

– Φ maps each state q∈Q to a set of tuples consisting of a state p∈Q and two
update instructions. Φ: Q �→ ℘(Q × ((L×U �→ (Min(L× C),Max(U× C))) ∪
{∅}) × ((C �→ {res, inc}) ∪ {∅})). (∅ denotes empty instruction.)

Definition 6 (Transition Function of a CFA [25]). The transition function
δ of a CFA (Q,Qc, Σ, C, q0, qf , Φ,U, L) is defined for any configuration (q, γ, θ)
and the letter y ∈ Σ ∪ {�}
(1) y ∈ Σ : δ((q, γ, θ), y) = {(z, fα(γ, θ), gβ(θ))|(z, α, β) ∈ Φ(q) ∧ (z = y ∨

((y, α, β) �∈ Φ(q) ∧ z∈{+i}i∈N))}.
(2) y =�: δ((q, γ, θ),�) = {(z, fα(γ, θ), gβ(θ))|(z, α, β) ∈ Φ(q) ∧ (z = qf ∨ z ∈

{+i}i∈N)}.

3 Inference of RCsores

Our learning algorithm works in the following steps.

Algorithm 1. InfRCsore
Input: a finite sample S;
Output: an RCsore-descriptive RCsore;
1: A SORE rs =InfSore(SOA(S));
2: CFA A = ConsCFA(rs);
3: CFA A′=Counting(A, S);
4: r = GenRCsore(A′);
5: return r;

(1) We infer a SORE for a given
finite sample. (2) A CFA is equivalently
transformed from the SORE obtained
from (1). (3) The CFA transformed
from step (2) runs on the same finite
sample used in step (1) to obtain an
updated CFA, which has updated the
counting operators that will occur in
an RCsore. (4) We convert the updated
CFA in step (3) to an RCsore.

Algorithm 1 is the framework of our learning algorithm. Algorithm SOA
[12] constructs the single-occurrence automaton (SOA) [7,12] for the given finite
sample S. Algorithm InfSore is described in Sect. 3.1, algorithm ConsCFA is
given in Sect. 3.2, algorithm Counting is showed in [25], algorithm GenRCsore is
presented in Sect. 3.4.

3.1 Inferring Standard Deterministic Regular Expression: SORE

The problem of learning SORE was solved by Bex et al. and Freydenberger
et al. Bex et al. proposed the learning algorithm RWR [7] and its variants.
Freydenberger et al. [12] proved the results of RWR with its variants are not
descriptive of any given finite sample, and then presented the learning algorithm
Soa2Sore [12]. However, the SORE learnt by Soa2Sore is descriptive of the
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language, which is the set of the strings accepted by the SOA that is built for
the given finite sample [12]. Despite of that, we still can infer a SORE such that
an RCsore, which is descriptive of the given finite sample, can be derived from
the obtained SORE.

Algorithm 2 learns a SORE from the given finite sample. First, a SORE is
inferred by Soa2Sore. Then, the SORE is converted to a normal form (SORE).
Theorem 1 demonstrates that the normal form is more approximate to the given
finite sample than the SORE learnt by Soa2Sore.

Algorithm 2. InfSore
Input: a finite sample S;
Output: a SORE rs;
1: A SORE r0 =Soa2Sore(SOA(S));
2: Let rf1 = (r1? · · · rk?)+ (k ≥ 2);//ri (1≤ i≤k) is a regular expression
3: Let rf2 =(r1| · · · |rk)+ where ri ∈{e+i , ei} (k ≥ i ≥ 1);//ei is a regular expression
4: Let rf3 =(r1r

+
2 r3)

+ where ε∈L(r1) and ε∈L(r3);
5: if Case (1): r0 contains the expression of the form rf1 then
6: for all expressions of form rf1 : rf1 is converted to r′

f1 = (r1| · · · |rk)+;

7: if Case (2): r0 contains the expression of the form rf2 , where ri =ei then
8: for all expressions of form rf2 : rf2 is converted to r′

f2 =(e+1 | · · · |e+k )+;

9: if Case (3): r0 contains the expression of the form rf3 then
10: for all expressions of form rf3 : rf3 is converted to r′

f3 = (r1r2r3)
+;

11: Let rs = r0; return rs;

In Algorithm 2, if the SORE r0 does not contain any one expression of the
forms rf1 , rf2 and rf3 (which are specified in lines 4, 2 and 3, respectively), then
InfSore directly outputs r0, i.e., rs = r0. Note that, except for case (1) (in line
5), other cases are equivalent conversions for r0. The conversion in case (2) (in
line 7) is mainly used to easily construct a CFA in the next section and track
as many subexpressions as possible (which can be repeated) in a SORE. For
processing r0 to a normal form rs, it takes O(|r0|) time. Let the built SOA in
line 1 contain ns nodes and ts transitions. Soa2Sore takes O(nsts) time to infer
a SORE. Thus, the time complexity of algorithm InfSore is O(nsts) (nsts > |r0|).

Example 3. For sample S ={a, acc, acbb, bab}, the result of algorithm Soa2Sore
is r0 = ((a(c+)?)|b)+. Let the SORE rs :=InfSore(SOA(S)), then the SORE
rs =((a(c+)?)+|b+)+.
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Theorem 1. For any given finite sample S, let r0 = Soa2Sore(SOA(S)), and
let rs :=InfSore(SOA(S)), then L(r0) ⊇ L(rs) ⊇ S.

According to Theorem 1, L(rs) is more approximate to the given finite sample
than L(r0). Therefore, we can obtain a descriptive RCsore, which is extended
from the expression of form rs.

3.2 Translating SORE to CFA

To avoid plenty of accurate counting in a CFA, the CFA should be constructed
from a specific structure, instead of being learnt from a given finite sample [25].
Therefore, in this section, we present how to translate a SORE to a CFA. First,
we construct the state-transition diagram of a CFA by traversing the syntax tree
of the SORE, which is obtained from Sect. 3.1. Then, the detailed descriptions
of the CFA are similar with that described in [25]. Theorem 2 shows that an
equivalent CFA can be transformed from an RCsore.

Fig. 1. The syntax tree of
expression ((a(c+)?)+|b+)+.

Algorithm 3 first constructs the state-
transition diagram of a CFA by using Algo-
rithm 4, then presents the detailed descriptions
of the CFA. The state-transition diagram of a
CFA is a finite directed graph, denoted by G.
Algorithm 4 constructs a directed graph G by
traversing a syntax tree. The entire process is
similar to the preorder traversal of the binary
tree. For a syntax tree T , T.L and T.R denote the
left subtree and the right subtree of T , respec-
tively. For a graph G, G.≺(v) denotes the set of
all immediate predecessors of v in G, G.� (v) denotes the set of all immediate
successors of v in G. Some subroutines in Algorithm 4 are as follows.

Algorithm 3. ConsCFA
Input: a syntax tree T ;
Output: a CFA A;
1: G = ConsG(T );
2: CFA A=(Q, Qc, Σ, C, G.q0, G.qf , Φ(R),U, L);
3: return A;

ConnG(t,G1, G2). Accord-
ing to label t, a new graph G
is constructed by connecting
graphs G1 and G2. If t = ‘·’,
then add edges {(v1, v2)|v1 ∈
G1. ≺ (qf ), v2 ∈ G2. � (q0)};
remove nodes G1.qf , G2.q0
and their associated edges; let
G.q0 =G1.q0. If t = ‘|’, then add new nodes q0, qf ; add edges {(q0, v1)|v1∈G1.�
(q0)∪G2.�(q0)}, and {(v2, qf )|v2∈G1.≺(qf )∪G2.≺(qf )}; remove nodes G1.q0,
G1.qf , G2.q0, G2.qf and their associated edges; let G.q0=q0.
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Algorithm 4. ConsG

Input: a syntax tree T ;
Output: a directed graph G(V, E);
1: if T = ∅ return ∅;
2: if T.label ∈ Σ then
3: Add new nodes q = T.label, q0, and qf ;
4: return G({q0, q, qf}, {(q0, q), (q, qf )});

5: if T.label =‘·’ then
6: G1 = ConsG(T.L); G2 = ConsG(T.R);
7: return ConnG(T.label, G1, G2);

8: if T.label ∈ {+, ?} then
9: G = ConsG(T.L);

10: if T.label = ‘+’ then
11: if T.L.label ∈ Σ then
12: add edge (G.T.L.label, G.T.L.label);

13: else G = Add+(G, +i); inc i;

14: if T.label =‘?’ then
15: add edge (G.q0, G.qf );

16: return G
17: if T.label =‘|’ then
18: G1=ConsG(T.L); G2 =ConsG(T.R);
19: G = ConnG(T.label, G1, G2);
20: return G;

Add+(G,+i). G is a
graph, and +i (a counter
state in CFA) is a node.
Add+ adds node +i (ini-
tially, i = 1) into the graph
G. Add new node qf ; let
R+i

= {v|v ∈ G. � (q0)};
add edges {(+i, v1)|v1 ∈
G. � (q0)}; add edges
{(v2,+i)|v2 ∈ G. ≺ (qf )};
remove node G.qf and its
associated edges; add edge
(+i, qf ). The set of R+i

is established to specify
the transition entrances for
state +i to count the mini-
mum and maximum number
of repetitions of the subex-
pression under the iteration
operator. Each R+i

is a
global variable. Let R =
{R+i

}i∈N.
In Algorithm 3, after the

state-transition diagram G
of a CFA is constructed, the CFA A is then obtained. In line 2, [25] shows
the detailed descriptions of the CFA A. Note that, Φ(R) denotes that R is a
parameter in Φ.

For any SORE r obtained in Sect. 3.1, the time complexity of constructing
the corresponding syntax tree is O(|r|), and the preorder traversal of the syntax
tree used to construct the state-transition diagram of a CFA also requires O(|r|)
time. Therefore, the time complexity of constructing a CFA is O(|r|).
Example 4. For the expression ((a(c+)?)+|b+)+, the syntax tree can be seen in
Fig. 1. The corresponding state-transition diagram can be seen in Fig. 2(a).

Theorem 2. For any given SORE r, there is a CFA A such that L(A) = L(r).

3.3 Counting with CFA

The constructed CFA in Sect. 3.2 runs on the given finite sample, which is the
same set of strings used to generate the SORE in Sect. 3.1. The CFA counts
the minimum and maximum number of repetitions of the subexpressions under
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Fig. 2. (a) is the CFA A for regular language L(((a(c+)?)+|b+)+). The label of the
transition edge is (y; αi; βj) (i, j ∈ N), y (y ∈Σ ∪ {	}) is a current letter; (b) specifies
that, αi is an update instruction for the lower bound and upper bound variables, and
βj is an update instruction for the counter variable.

the iteration operators. Counting rules are given by transition functions of the
CFA. We use the algorithm Counting proposed in [25] to run the CFA. Let A
denote the constructed CFA and S denote the given finite sample. After the CFA
A recognized the sample S, let A′ denote the CFA A which has updated the
the minimum and maximum number of repetitions of the subexpressions under
the iteration operators. Let A′ = Counting(A, S), and C = {(l(q), u(q))|l(q) =
A′.L.l(q), u(q)=A′.U.u(q), q ∈ A′.Qc}. The elements in C are counting operators,
which will be introduced into an RCsore. The time complexity of Counting is
O(NL) time, where N = |S| and L is the average length of the strings in S [25].

Example 5. For the sample S = {a, acc, acbb, bab}, rs = ((a(c+)?)+|b+)+ is the
SORE obtained from Sect. 3.1, the CFA A showed in Fig. 2 runs on the sample
S. Then, the tuples in C are listed as follows: (l(c), u(c)) = (1, 2), (l(b), u(b)) =
(1, 1)4, (l(+1), u(+1)) = (1, 1), (l(+2), u(+2)) = (1, 3). l(+1) and u(+1) (resp.
l(+2) and u(+2)) are the minimum and maximum number of repetitions of the
subexpression (a(c+)?) (resp. (a(c+)?|b)), respectively. Note that the minimum
numbers of repetitions of symbol c are both 0 in strings a and bab. In Sect. 3.4,
we will convert expression c[1,2] to (c[1,2])?.

3.4 Generating RCsore

In this section, we transform the updated CFA A′ obtained in Sect. 3.3 to an
RCsore. Since the algorithm GenECsore can convert a CFA to an descriptive
ECsore (w.r.t. the class of ECsores). We still can use the algorithm GenECsore

4 Note that, the CFA A runs on S, the direct counting result for b is (l(b), u(b))=(1, 2).
However, (l(b), u(b)) is subsequently updated by Counting that b can be repeated
by using the counting operator [l(+2), u(+2)]=[1, 3].
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to derive an RCsore, the constructed CFA in this paper is equivalent to an
RCsore, not an equivalent representation of an ECsore. Then, for an updated
CFA A′, the algorithm GenECsore can convert the CFA A′ to an descriptive
RCsore (w.r.t. the class of RCsores).

Algorithm 5. GenRCsore

Input: the updated CFA A′

Output: an RCsore r;
1: r =GenECsore(A′);
2: return r;

Algorithm 5 converts the updated CFA
to an RCsore. Theorem 3 demonstrates the
finally obtained RCsore is descriptive of
any given finite sample. Assume that the
updated CFA contains nc nodes and tc tran-
sitions. GenECsore takes O(nctc) time to
infer an ECsore [25]. Then, the time com-
plexity of generating RCsore is O(nctc).

Example 6. The tuples in C obtained from algorithm Counting are as fol-
lows. (l(c), u(c)) = (1, 2), (l(b), u(b)) = (1, 1), (l(+1), u(+1)) = (1, 1) and
(l(+2), u(+2)) = (1, 3). For the updated CFA A′, the generated RCsore is
((a(c[1,2])?)|b)[1,3].

Theorem 3. For any given finite language S, let r :=InfRCsore(S), the time
complexity of algorithm InfRCsore is O(nctc + NL) and r is an RCsore-
descriptive RCsore for S.

Let Ac and Ag denote the CFAs constructed in this paper and in literature
[25], respectively. Assume that the CFA Ag contains ng nodes and tg transitions.
The time complexity of InfECsore is O(ngtg+NL) [25]. Ac and Ag are equivalent
representations of RCsore and ECsore, respectively. The CFA Ag can contain
more nodes labeled +i (i ∈ N) than the CFA Ac. And the transitions in Ag can
be also more than that in Ac. Thus, nctc ≤ ngtg.

4 Experiments

In this section, we validate our algorithm on real-world XML data and generated
XML data. We also provide evaluations of our algorithm in terms of generaliza-
tion ability and time performance.

4.1 Data and Experiments

Table 3 demonstrates the practicability of RCsores, then we evaluate our algo-
rithm on XML data. We obtained XML documents (dblp-2018-04-01.xml)
conforming to DTD from DBLP Computer Science Bibliography corpus5,
from which we extracted the elements: inproc(eedings), article, phdth(esis),
incolle(ction), and procee(dings). We obtained XML documents conforming to

5 http://dblp.org/xml/release/.

http://dblp.org/xml/release/
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XSD form Mondial corpus6, from which the elements count(ry), provin (ce) and
city are extracted. In order to validate on diverse XSDs, a number of real-world
XSDs listed in Table 2 are searched from Google. However, we do not find the
corresponding XML data, so we randomly generated them by using ToXgene7.
The samples employed in the experiments are available at http://github.com/
GraceFun/InfRCsore.

Table 1 lists the results of the learning algorithms Soa2Sore, InfECsore and
InfRCsore on real-world XML data. Note that, based on descriptive general-
ization, Soa2Sore is the first algorithm being used to infer a SORE [12], and
InfECsore is the algorithm being applied to learn a most practical subclass of
deterministic regular expressions with counting: ECsore [25]. For each of the
elements inproc(eedings), article and procee(dings), the corresponding expression
learnt by InfRCsore is not only more precise than the corresponding expres-
sion in original DTD, but also more precise than the corresponding expression
computed by Soa2Sore. Also, the result of InfRCsore is more general than the
result of InfECsore, such that the learnt RCsore covers more XML data satis-
fying the corresponding original DTD than the learnt ECsore. For phdth(esis)
and incolle(ction), the learnt RCsores are identical to the corresponding expres-
sions computed by InfECsore. For each of elements count(ry), provin(ce) and
city, the result of InfRCsore and the result of InfECsore are the same, and the
corresponding RCsore and ECsore both are more precise than the corresponding
expression generated by Soa2Sore and the corresponding expression in original
XSD.

Table 2 lists a number of the expressions extracted from real-world XSDs and
the results of the learning algorithms Soa2Sore, InfECsore and InfRCsore on
generated XML data. For ep1, the learnt RCsore is identical to the learnt ECsore,
they both indicate that more symbols or subexpressions can have numerical
occurrence constraints, but are allowed to occur more times by the nested coun-
ters. For ep2, the learnt RCsore is identical to the learnt ECsore, they both are
identical to the corresponding original XSD. This implies the original XSDs such
as shown by ep2 could be precisely learnt by InfRCsore and InfECsore. For ep3
and ep4, although the learnt RCsores forbid the expressions learnt by InfECsore,
which are more precise than the corresponding original XSD, even are identical
to the corresponding original XSD for ep3, the learnt RCsores are more general
than the learnt ECsores. Especially, for ep4, the learnt RCsore covers more XML
data satisfying the corresponding original XSD than the learnt ECsore. For ep5,
the learnt RCsore has the same higher nesting depth of counting operators with
the learnt ECsore.

6 http://www.dbis.informatik.uni-goettingen.de/Mondial/#XML.
7 http://www.cs.toronto.edu/tox/toxgene/.

http://github.com/GraceFun/InfRCsore
http://github.com/GraceFun/InfRCsore
http://www.dbis.informatik.uni-goettingen.de/Mondial/#XML
http://www.cs.toronto.edu/tox/toxgene/
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Table 1. Results of Soa2Sore, InfECsore and InfRCsore on real-world XML data. The
left column gives element names, sample size for Soa2Sore, InfECsore and InfRCsore,
respectively. The right column lists original DTD/XSD, the results of Soa2Sore, the
results of InfECsore and the results of InfRCsore, respectively.

Element Original segment of DTD/XSD

Sample size Result of Soa2Sore

Result of InfECsore

Result of InfRCsore

inproc. (a|b| · · · |v)∗

2153167 (b∗(ck?)?(r|a|m)?(o|(dj?)|f |n|q|e|l)∗)+

2153167 (b?(ck?)?((r|a[1,45]|m[1,3])[1,3])?((o[1,87]|(dj?)|f |n|q|e|l)[1,6])?)[1,5]
2153167 ((b|(ck?)|r|a[1,34]|m[1,3]|o[1,51]|(dj?)|f |n[1,2]|q|e|l|)[5,11])?
article (a|b| · · · |v)∗

1796920 (b∗(((a∗(c|e)?)|m|n|q)(((j|((f |r)d?)|h|i)k?)|p|l)∗o∗)+)

1796920 ((b[1,5])?((((a[1,69])?(c|e)?)[1,2]|m|n|q)[1,3]((((j|((f |r)d?)|h|i)k?)[1,3]|p|l)[1,3])?
(o[1,116])?)[1,3])

1796920 (((b[1,5])?(a[1,69]|c|e|q|m[1,2]|n|((j|((f |r)d?)|h|i)k?)[1,4]|p|l|o[1,116])[1,9])?
phdth. (a|b| · · · |v)∗

64943 (a∗c((((p|(fk?)|u)t?j?)|e)(i|l|m|s)∗)+q?)

64943 ((a[1,3])?c((e|((u|(fk?)|p)t?j?))((s[1,3]|m[1,5]|l|i)[1,3])?)[1,5]q?)
64943 ((a[1,3])?c((e|((u|(fk?)|p)t?j?))((s[1,3]|m[1,5]|l|i)[1,3])?)[1,5]q?)
procee. (a|b| · · · |v)∗

58959 (((a?(b|c))+h?)?(i|s|d)?(j|q|l|(fr?)|t|e|(pg?)|m)∗)∗

58959 ((((a?(b|c))[1,32]h?)?((i|s[1,2]|d)[1,2])?((j|q|l|(fr?)|t|e|(pg?)|m[1,3])[1,5])?)[1,4])?

58959 (((a?(b|c))[1,32]h?)|i|s[1,2]|d|j|q|l|(fr?)|t|e|(pg?)[1,2]|(m[1,2])[3,9])?

incolle. (a|b| · · · |v)∗

46750 (a∗c((d(j|p)?)|f |r|(ev?)|l|m)∗(o+|n|q)?)
46750 ((a[1,49])?c(((d(j|p)?)|f |r|(ev?)|l|m)[3,6])?(o[2,104]|n|q)?)
46750 ((a[1,49])?c(((d(j|p)?)|f |r|(ev?)|l|m)[3,6])?(o[2,104]|n|q)?)
count. (a+b?c∗d? · · · k?(l?|m?)n?o+p∗ · · · s∗(t∗|u∗))

244 (ab?c+(de?)?(f(g(hi)?)?j?k?)?(m?|l)n?o+p∗ · · · t∗u+)

244 (ab?c[1,25](de?)?(f(g(hi)?)?j?k?)?(l|m?)n?o[1,2](p[1,12])?(q[1,8])?(r[1,8])?(s[1,16])?

(t[1,2])?u[1,306])

244 (ab?c[1,25](de?)?(f(g(hi)?)?j?k?)?(l|m?)n?o[1,2](p[1,12])?(q[1,8])?(r[1,8])?(s[1,16])?

(t[1,2])?u[1,306])

provin. (a+b?c?d∗e∗)

1443 (a+b?c?d∗e∗)

1443 (a[1,4]b?c?(d[1,6])?(e[1,5])?)

1443 (a[1,4]b?c?(d[1,6])?(e[1,5])?)

city (a+b?c?d?e?f∗g∗h∗)

3383 (a+b?(cde?)?f∗g∗h∗)

3383 (a[1,5]b?(cde?)?(f [1,10])?(g[1,4])?(h[1,3])?)

3383 (a[1,5]b?(cde?)?(f [1,10])?(g[1,4])?(h[1,3])?)
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Table 2. Results of Soa2Sore, InfECsore
and InfRCsore on generated XML data.

Element Original segment of XSD
Result of Soa2Sore

Sample Result of InfECsore
size Result of InfRCsore

ep1 ((a|b|c|d|e|f)[1,10])?
941 (a|b|c|d|e|f)+

941 (a[1,3]|b[1,4]|c[1,3]|d[1,4]|
e[1,3]|f [1,4])[2,6]

941 (a[1,3]|b[1,4]|c[1,3]|d[1,4]|
e[1,3]|f [1,4])[2,6]

ep2 (a[10,20]|b[30,40])[3,5]
188 (a|b)+
188 (a[10,20]|b[30,40])[3,5]
188 (a[10,20]|b[30,40])[3,5]
ep3 (((a|b)?c?(d|e)?)[2,48])
988 ((a|b)?(d|e)?c?)+
988 (((a|b)?(d|e)?c?)[2,48])
988 (a|b|c|d|e)[6,45]
ep4 (a?b?c?def?g?h?)[1,1000]

500 (a?b?c?def?g?h?)+

500 (a?b?c?(de)[1,10]f?g?h?)[1,100]

500 (a?b?c?def?g?h?)[1,597]

ep5 None
48 (a|(b(c|d)+))+

48 ((b(d[1,2]|c[1,2])[1,8])[1,2]|a[1,3])[1,9]

48 ((b(d[1,2]|c[1,2])[1,8])[1,2]|a[1,3])[1,9]

Table 3. Proportions of SOREs, ECsores,
and RCsores.

Subclasses % of XSDs

SOREs 80.74

ECsore 93.53

RCsore 89.45

Fig. 3. (a) is average precision as a func-
tion of the sample size for each of InfEC-
sore and InfRCsore. (b) is average recall
as a function of the sample size for each of
InfECsore and InfRCsore.

4.2 Performance

Generalization Abilities. Since the corresponding results of the algorithms
InfECsore and InfRCsore have different generalization abilities for the same
sample (such as ep3 and ep4 showed in Table 2), we evaluate the algorithms
InfECsore and InfRCsore by computing the precision and recall. We specify that,
the learnt expression with higher precision and recall has better generalization
ability. The average precision and average recall, which are as functions of sample
size, respectively, are the average values over 1000 expressions.

We randomly extracted the 1000 expressions from XSDs, which were grabbed
from OGC XML Schema repository8. Each one of the 1000 expressions contains
the counters, where the upper bounds are less than 100. To learn each extracted
expression e0, we randomly generated corresponding XML data by using ToX-
gene, the samples are extracted from the XML data, each sample size is that

8 http://schemas.opengis.net/.

http://schemas.opengis.net/
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listed in Fig. 3. And we define precision (p) and recall (r). Let positive sample
(S+) be the set of the all strings accepted by e0, and let negative sample (S−)
be the set of the all strings not accepted by e0. Let e1 be the expression derived
by InfECsore or InfRCsore. A true positive sample (Stp) is the set of the strings,
which are in S+ and accepted by e1. While a false negative sample (Sfn) is the
set of the strings, which are in S+ and rejected by e1. Similarly, a false posi-
tive sample (Sfp) is the set of the strings, which are in S− and accepted by e1.
While a true negative sample (Stn) is the set of the strings, which are in S− and
rejected by e1. Then, let p = |Stp|

|Stp|+|Sfp| and r = |Stp|
|Stp|+|Sfn| . Note that, for an

RCsore, we can construct an equivalent counter automata [14]. The constructed
counter automata can decide whether the samples S+ and S− can be recognized
or not, then we can obtain |Stp|, |Sfp| and |Sfn|.

As the sample size increases, compared with the results of InfECsore, the
plots in Fig. 3(a) demonstrate that the precision for the expression learnt by
InfRCsore is higher for a smaller sample, but is lower for a larger sample. How-
ever, the plots in Fig. 3(b) illustrate that, for any given sample, the recall for the
expression learnt by InfRCsore is higher than that for the expression derived by
InfECsore. The reason is that, for the same sample, the learnt RCsore can have
more constrains than the learnt ECsore such that some subexpressions without
counting operators. This will reduce that the learnt RCsore is expressive enough
to cover more XML data. In summary, InfRCsore has better generalization abil-
ity for a smaller sample.

Time Performance. Although Theorem 3 implies that, for learning a RCsore,
the algorithm InfRCsore can be faster than the algorithm InfECsore, the quanti-
tative analyses of time performance about the algorithms InfRCsore and InfEC-
sore should be given. Then, we present the evaluation about running time in dif-
ferent size of samples and different size of alphabets. Our experiments were con-
ducted on a ThinkCentre M8600t-D065 with an Intel core i7-6700 CPU (3.4GHz)
and 8G memory. And all codes were written in C++.

Table 4(a) shows the average running times in seconds for InfRCsore and
InfECsore as a function of sample size, respectively. Table 4(b) shows the average
running times in seconds for InfRCsore and InfECsore as a function of alphabet
size, respectively. We still randomly extracted expressions from XSDs according
to the above mentioned method. 1000 expressions of alphabet size 15 are chosen
that, to learn each one of them, we randomly generated corresponding XML
data by using ToXgene, the samples are extracted from the XML data, each
sample size is that listed in Table 4(a). The running times listed in Table 4(b)
are averaged over 1000 expressions of that sample size. Another 1000 expressions
with distinct alphabet size listed in Table 4(b) are chosen that, to learn each
one of them, we also randomly generated corresponding XML data by using
ToXgene, the samples are extracted from the XML data, but the corresponding
sample size is 1000. The running times listed in Table 4(a) are averaged over
1000 expressions of that alphabet size.
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The running times of InfRCsore as compared with that of InfECsore are
reported in Table 4(a). They show that InfRCsore is more efficient than InfEC-
sore on large samples. However, Table 4(b) illustrates that the speed of InfRCsore
varies widely when the alphabet size is over 20. Thus, the time performances of
InfRCsore and InfECsore demonstrate that the algorithm InfRCsore is more
efficient for processing large data sets.

Table 4. (a) and (b) are average running times in seconds for InfRCsore and InfECsore
as the functions of sample size and alphabet size, respectively.

5 Conclusion

This paper proposed a restricted subclass of deterministic regular expressions
with counting: RCsores and the corresponding learning algorithm. The main
steps include learning a SORE, constructing an equivalent CFA, running the
CFA to obtain an updated CFA, and converting the updated CFA to an RCsore.
Compared with previous work, for any given finite language, our algorithm not
only can learn a descriptive RCsore, which has higher recall for any sample, but
also has better generalization ability for smaller sample, and is more efficient for
processing larger sample. A future work is extending the SORE with counting,
interleaving, and unorder concatenation, studying the practical issues and the
learning algorithms.
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