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Abstract. As a popular consortium blockchain platform, Hyperledger
Fabric has received increasing attention recently. When conducting quer-
ies that meet some specific conditions on such platform, we need to search
ledger data which usually has multiple attributes. Although efficiently
handling conditional queries can be leveraged to support various use-
cases, it presents significant challenges as data on Hyperledger Fabric is
organized on file-system and exposed via limited API. To tackle the prob-
lem, we propose the following novel methods in this paper. In the first
one, we use all conditions of the query to create composite keys before
executing it. To further improve the performance of conditional queries
on Fabric, we build an index called AUP in the second method, where
we also study the update of AUP during transactions. The extensive
experiments conducted on the real-world dataset demonstrate that the
proposed methods can achieve high performance in terms of efficiency
and memory cost.
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1 Introduction

In recent years, blockchain technologies have attracted wide attention and been
used in many real applications. This is because they get rid of the central-
ized storage and can guarantee the data security. A blockchain is a shared,
distributed ledger that records transactions between different nodes in a verifi-
able and permanent way where nodes do not trust each other [18]. Each node
in the blockchain network holds the same ledger which contains multiple blocks.
A block usually has a list of transactions and encloses the hash of its immediate
previous block, where transaction data can be saved in a ledger only after it has
passed a series of validations. Note that, blockchain network can be divided into
three categories, namely private network, public network and consortium net-
work. In a public network, anyone can join the network to perform transactions.
In a private network, there are only a limited range of participating nodes; the
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access of data has strict rights management, and only participants have the write
permission. The consortium chain is available for participants of a specific group.
It internally specifies multiple pre-selected nodes as billers, and the generation
of each block is determined by all pre-selected nodes. The consortium network
is suitable for enterprise applications, each node in the network can be owned
by different organizations, and enterprises can integrate the values of multiple
systems without having to bring in a trusted third-party.

Hyperledger Fabric [4] is an enterprise-grade and open-source consortium
blockchain platform. Like many other blockchain systems (e.g., Ethereum [3],
Parity [6]), it divides data into two states: current and historical states. Data is
ingested on this system in form of key-value pairs. For a given key, the latest
pair is called current state and others are called historical states. Two typical
databases in the system are StateDB and HistoryDB. StateDB includes the
collection of current states for all keys. HistoryDB includes the collection of
historical states for all keys and can be used to quickly locate the position of data
in ledger. The historical data is distributed across a large number of blocks on
file-system, which leads to the low efficiency of a query with multiple conditions
(We refer to it as conditional query in this work). This is because, given a key,
the Hyperledger Fabric will return all the historical data of it, based on which
we can get the results meeting the given conditions, during an API call.

Obviously, an efficient method is necessary to conduct the conditional query
in aforementioned case. Note that, although existing studies have made great
contributions in blockchain query [12,13,20,21], the two main techniques, gran-
ular access control and indexes constructed based on StateDB, proposed by them
can not be directly used to efficiently handle conditional queries on blockchain.
This is because, on one hand, nodes are authorized to join in the Hyperledger
Fabric network, then there is no need to create additional granular access control
for it; on the other hand, it is time consuming to query the whole ledger data
before updating the index. Assuming that a user executes a conditional query
containing multiple conditions, the conventional query methods need to return
all data meeting the first condition and then filter the data according to other
conditions, which leads to large time cost. Additionally, conventional methods
usually bring a lot of data redundancy, which is demonstrated in Sect. 6. Having
observed these weaknesses, we propose the following novel methods, i.e., CCK
and AIM. In the first one, we create a composite key for the given query based on
the associated conditions of it. Then, we use the composite key to create a new
key-value pair before executing data insertion, which can avoid the filtration of
historical data. In the second one, to solve the data redundancy problem of the
first method, we build an index called AUP for HistoryDB based on LevelDB
[5], and the value of each key in AUP consists of corresponding keys of current
states.

Considering a use-case, an author α publishes a publication p in a venue v,
a key-value pair <α, (v, o)> is inserted into Hyperledger Fabric ledger, and o
denotes the other information of the publication, such as title, time and URL.
We are interested in querying all publications that are published in the venue
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v and belong to the author α. In the first method CCK, we use α and v to
create composite key (α, v). By this way, we convert the above key-value pair
to <(α, v), o>. Based on this method, the processing of filtering publications
that belong to α but are not published in v can be avoided. However, we need
to create multiple key-value pairs for the publication with multiple authors in
this method, which leads to the problem of data redundancy. To solve it, in the
second method AIM, we build AUP to record all authors having relationships
with the publication to be stored. The key-value pairs in AUP are in the form
of <(α, v), ε(Sα)>, where Sα represents all authors of the publication p, and
ε(Sα) denotes all authors that have co-authored with α in history. While insert-
ing a new key-value pair <(Sα, v), o> into blockchain, it inserts <Sα, ””> into
HistoryDB firstly, and then create <(α, v), ε(Sα)> in AUP for each author in
Sα.

In this study, we have designed novel methods to conduct conditional queries
on Hyperledger Fabric with high performance. To sum up, we make the following
contributions.

– We are the first to study the problem of efficiently handling conditional queries
on Hyperledger Fabric.

– To avoid the process of filtering candidates, we propose the method CCK.
To tackle the data redundancy problem brought by CCK, we build an index
AUP in the second method AIM.

– We conduct extensive experiments on DBLP, and the results demonstrate that
the proposed approaches can achieve high performance in terms of efficiency
and memory cost.

The rest of this paper is organized as follows. In Sect. 2, we brefily view
existing work related to the research of blockchain. Section 3 presents the back-
ground of Hyperledger Fabric. In Sect. 4, we formulate the problem and present
notations used in this work. We introduce the proposed methods in Sect. 5 and
report the experimental results in Sect. 6. This paper is concluded in Sect. 7.

2 Related Work

Though blockchain analysis is an emerging area, it has received significant atten-
tion and a lot of studies have been made on it. These studies are mainly divided
into two categories: security and performance. In terms of security, [14] makes a
survey of blockchain security issues and challenges, [15] discusses the applicabil-
ity of blockchain to intrusion detection, and identifies open challenges. There is
also a lot of work focused on the performance of blockchain, including [11,17,18].
They mainly concentrate on realizing higher throughputs and lower latencies by
using different consensus algorithms, encryption methods. In [8], authors analyze
how fundamental and circumstantial bottlenecks in Bitcoin [1] limit the ability of
its current peer-to-peer overlay network to support substantially higher through-
puts and lower latencies.
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2.1 Performance Modeling of Blockchain Networks

The authors of [19] contrast PoW-based blockchains to those BFT-based state
machine replication and discuss proposals to overcome scalability limits and out-
line key outstanding open problems in the quest for the “ultimate” blockchain
fabric(s). In [10], they first describe BLOCKBENCH, which is the first evalu-
ation framework for analyzing private blockchains and serves as a fair means
of comparison for different platforms and enables deeper understanding of dif-
ferent system design choices, and then they use BLOCKBENCH to conduct
comprehensive evaluation of three major private blockchains: Ethereum, Parity
and Hyperledger Fabric. They measure the overall performance of the platforms
and draw conclusions across the three platforms. [9] is similar to [10], they dis-
cuss several research directions for bringing blockchain performance closer to the
realm of databases. Zheng et al. [22] provide an overview of blockchain archi-
tecture firstly and compare some typical consensus algorithms used in different
blockchains.

2.2 Performance Evaluation of Hyperledger Fabric

In existing work, [7] introduces the design and the architecture of Hyperledger
Fabric, and presents the performance of a single Bitcoin like crypto currency
application on Fabric, called Fabcoin, which uses CLI command to emulate client
instead of using a SDK. [12,13,20,21] pay more attention to how to efficiently
handle queries in the blockchain platform. [20,21] handle the problem of flexible
queries by using granular access control, both of them improve performance by
changing encryption methods. [12,13] are the most similar work to our queries,
they both propose two method to processe temporal queries on Fabric.

In spite of the great contributions made by the aforementioned studies, none
of them consider conditional queries on Fabric. To tackle the problem, we propose
two methods in this paper, i.e., composite key based method CCK and AUP
index based method AIM, and details are presented in Sect. 5.

3 Background

A Hyperledger Fabric network contains peer nodes, ordering service nodes and
clients. A peer node in the network of Fabric is divided into an endorsing node
or a committing node. The endorsing node executes the chaincode (a.k.a. smart
contract [16]) logic to endorse a transaction, but the committing node does not
has the chaincode logic. Although they are different in this point, both of them
maintain the ledger in a file system. An ordering service node participates in the
consensus protocol and the process of block generation. The client can initiate
a transaction proposal to invoke a chaincode function, which can perform read
and write operations on shared ledger data by defined ledger APIs. Further, the
transaction flow in Hyperledger Fabric consists of 4 phases, (1) Endorsement
Phase - simulating the transaction on endorser nodes and collecting the state
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changes; (2) Orderering Phase - ordering transactions through a consesus proto-
col; (3) Validation Phase - verifying the block signature and all transactions in
a block; and (4) Commitment Phase - committing valid transaction data to the
ledger.

3.1 Data Storage Structure
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Fig. 1. The structure of data storage in a single-chain.

In Fabric, all valid transactions are stored in blocks, and all blocks are stored
in the file system. A simple structure of single-chain data storage is presented
in Fig. 1. It contains StateDB, HistroyDB and block index. The StateDB stores
the current state of each key and supports LevelDB and CouchDB [2]. The
HistoryDB stores the historical state of each key. It records the change of each
key in StateDB and is implemented by LevelDB. In fact, it does not store the real
value of each key and can be used to quickly locate the position of transaction
in the block. Hyperledger Fabric provides a variety of block indexing methods.
The content of the block index is the file location pointer, which consists of
three parts: the file number, the offset within the file, and the number of bytes
occupied by the block. The block index can be used to quickly find the position
of blocks.

If we want to add a new state or change the current state of a key, we need
to initiate a transaction proposal, executing which successfully, a new key-value
pair will be added to a block. The value of the key in StateDB is changed, but
the previous key-value pair is still stored in the ledger if it had the value of
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the key before. Additionally, a new key-value pair will also be inserted into the
HistoryDB.

3.2 Accessing Historical States

Hyperledger Fabric provides specific APIs, such as GHFK and CK, which are
used in our proposed methods CCK and AIM.

GetHistoryForKey(k) (GHFK [13]): This is an API provided by Hyperledger
Fabric to access the historical states. For a given key k, this call returns all the
past states of key k in the history.

CreateCompositeKey(ob, ks) (CK): This is an API provided by Fabric to
combine the given attributes ks and object type ob to form a composite key,
which can be used as a key to access historical states.

Specifically, when initiating a transaction proposal to get historical states of a
given key k, we need to execute a GHFK call. During the execution of the GHFK
call, it retrieves all keys in HistoryDB and each key is start with k firstly. Then it
analyses all these keys to get the list of block numbers and transaction numbers.
Next, it queries the block index to get the location of blocks and then deserializes
all blocks to access transaction data according to transaction numbers. Finally,
it extracts out all the values. That is to say, the GHFK call needs to retrieve
the historical data from multiple blocks and returns an iterator in the end. The
more values accessed through this iterator, the larger the number of blocks that
need to be deserialized.

4 Problem Statement

In this section, we present all the notations used throughout the paper in Table 1,
and then we formulate the problem.

In Fabric, handling conditional queries requires to deserialize blocks that
satisfy all query conditions. For example, in DBLP, given an author α and a
venue v, when we want to get all publications that belong to the author α
and published in venue v, we need to deserialize blocks that satisfy these two
conditions: (1) the block contains a transaction which ingests a key-value pair
with key equals to α; (2) this pair describes a publication which is published in
the given venue v.

Currently, abovementioned conditional query is time-consuming on Fabric,
as such operation is not directly supported by Fabric. If intending to query all
publications that meet those conditions, we firstly need to query all publications
belong to the given author. During this process, we need to deserialize multiple
blocks. Then we still need to filter publications according to the venue. Therefore,
some deserialized blocks are useless. Larger the number we need to filter, more
time the operation will spend. Besides, if we create a key-value pair for each
author of a publication, it will lead to a large number of redundancy, since
a publication usually has multiple authors and Fabric does not provide any
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Table 1. Definitions of notations.

Notation Definition

α An author of a publication in DBLP

o The other information of a publication in DBLP

Sα All authors of one publication of α, Sα = {α1, α2, ..., αn}
ε(Sα) All authors of all publications of α

v The venue of a publication in DBLP

K The result of creating composite key by calling CK

V The value of a key in AUP

SK The collection of the results of executing CK

ε(α) The set of publications belonging to author α

ε(α, v) The set of publications belonging to α and published in v

ε(Sα, v) The set of publications belonging to Sα and published in v

indexing capability on the data in HistoryDB. Due to the redundancy, it takes
a lot of time to ingest the publication on the ledger. However, if we don’t create
the key-value for each author, we can not get all information of the publication
with multiple authors, when we only know an author.

Problem Formulation. Given a query, which contains multiple conditions, our
goal is to obtain values that satisfy all conditions by conducting the query with
the proposed methods on Fabric.

5 Proposed Methods

In this section, we present three methods to execute conditional queries and
describe problems encountered during execution. The second method CCK is
designed based on composite keys to avoid filtration process and the third
method AIM can reduce redundancy by creating index. In order to better explain
the proposed methods, we discuss the details of them based on DBLP.

5.1 Baseline Method

In this subsection, we present our baseline method for executing conditional
queries on Fabric.

For each publication in ε(Sα, v), when we want to insert it into ledger,
firstly, we need to obtain all authors in Sα = {α1, α2, ..., αn}, and then the
client initiates n transaction proposals to save this publication. Given a query
associated with an author α and a venue v, to search all publications belonging
to α and published in venue v, we firstly executes a GHFK call, then obtain the
set ε(α). Next, we still need to remove all publications that are not published in
venue v from ε(α). Finally, the remained publications in ε(α) are the results of
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the query. Note that, with the increase of the number of publications that are
not published in the venue v, more publications should be removed, which leads
to a lot of time cost.

5.2 Composite Key Based Method CCK

To address the problem of the baseline method, we design a novel method CCK,
the details of which are discussed as follows, based on composite key.

For each publication in ε(Sα, v), we use each author in Sα = {α1, α2, ..., αn}
and a venue v to create a composite key K by calling CK firstly. Then, we create
n composite keys for this publication and invoke n transactions to save it. Based
on these composite keys, we can conduct the following query. For example, given
a query q associated with an author α and a venue v, with the goal of obtaining
all publications belonging to α and published in venue v. We firstly use the
author α and venue v to create a composite key K, then execute a GHFK call,
during which the key K will be compared with all composite keys generated in
CCK. Note that, each GHFK call precisely accesses those blocks that contain
corresponding publications belonging to α and published in venue v, on ledger.
Finally, we can directly get all publications ε(α, v).

Compared with the baseline method, CCK is more efficient to query all pub-
lications that satisfy all conditions, since the filtration process has been avoided.
However, in CCK, the number of transactions to be invoked should equal to the
number of authors in a publication. That is to say, we have to save the same
publication multiple times, which results in massive redundancy.

5.3 AUP Index Based Method AIM

In this part, we build an index AUP to solve the problem of redundancy. For
each publication in ε(Sα, v), we use each author α in Sα = {α1, α2, ..., αn} and
venue v to create composite key K by calling CK. As an author may publish
multiple publications in a same venue, the value V of each K is also a com-
posite key, we create it with the Algorithm 1. The composite key consists of
corresponding keys of current states. We create a key-value pair for each author
α in Sα = {α1, α2, ..., αn} and insert it into AUP. Although a publication may
belong to multiple authors, we only need to save the same publication one times,
and then we invoke a transaction to save the publication. We do not use the CK
as the first parameter is meaningless in this method. In Algorithm 1, we use a
separator ‘#’ to split each key. For example, we add ‘#’ between key1 and key2,
and the final result is in the form of key1 ‘#’key2. The reason for choosing ‘#’
as a separator is: there is no ‘#’ in the names of author and venue. By this way,
we can separate keys accurately.

Considering a example, when a new publication data need to be saved to
ledger, we first use each author in Sα and v to create composite key K by
calling CK, then initiate a transaction proposal to commit data to ledger. Next,
we query the AUP to get the value V of key K. If V is empty, we use all authors
of the publication as a key to create composite key by Algorithm 1, which used as



56 T. Yan et al.

Algorithm 1. Creating a Composite Key
Input: keys of current states(key1,key2,...,keyi)(0 � i � n)
Output: composite key: V

1 Receive keys;
2 namespace ← ’#’;
3 for i=0 to n do
4 if keyi does not contain ’#’ then
5 V ← V+namespace+keyi;
6 end

7 end
8 Return V ;

Algorithm 2. Splitting Multiple Values
Input: V (a value in AUP) and L(the length of the value)
Output: SK : a collection of the splited keys

1 Receive value;
2 namespace ← ’#’;
3 index ← 0;
4 for i=0 to L do
5 if Value[i]==namsepace then
6 components ← append(components,Value[index:i]);
7 index ← i+1;

8 end
9 append the components into SK ;

10 end
11 Return SK ;

the value of K. Otherwise, we split the value V with the Algorithm 2, where we
still use ‘#’ as separator and get the collection SK . If the new key is different
from any key in SK , we append the new key to SK , and then we use SK to
create new composite key NV by Algorithm 1 and put this new key-value pair
<K,NV > into AUP. Otherwise, we don’t need to do anything. Finally, When
the transaction is completed sucessfully, the publication data is saved to ledger.

The process of a conditional query is shown in Algorithm 3 explicitly. Firstly,
we use the author α and venue v to create composite key K by calling CK. Then
we use K to query AUP and get the value V. Next, we need to separate V and
get the collection of keys SK . Finally, we execute a group of GHFK calls based
on the keys in SK and get the collection ε(α, v), which is the result that we
want to get.

During the design of AUP, we use Mutex in the Go language. Mutex is a
commonly used method to control shared resource access, which ensures that
only one goroutine can access shared resources at the same time. For example, if
we use 4000 goroutines to execute transactions, after one goroutine queries the
AUP to get the value of a the given key, another goroutine updates the value of
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the key, which will make the value obtained by the previous goroutine incorrect.
Then, the incorrect value will lead to the loss of data. To solve the problem, we
use Mutex to create the index AUP. When a goroutine writes to the AUP, other
goroutines need to wait until the previous goroutine has finished writing.

Algorithm 3. Process of a Conditional Query
Input: an author(α)and the venue(v)
Output: ε(α,v):All publications belong to α and published in v

1 Receive α and v;
2 K← use α and v to create composite key by calling CK;
3 V← query AUP with K ;
4 SK ← split V with Algorithm 2;
5 L ← get the length of keys;
6 for i=0 to L do
7 call GHFK with the i-th key in SK ;
8 append the result of GHFK to ε(α,v);

9 end
10 Return ε(α,v);

6 Experiment

6.1 Fabric Instance

We use Hyperledger Fabric v1.3 and the implemented network consists of a single
organization. The organization contains three nodes, a CA node, an endorsing
node and an ordering service node with one public channel avaliable for commu-
nication. The endorsing node is configured to use CouchDB as the StateDB. We
use Fabric SDK to emulate clients and run the entire system by using docker
containers on a server. The server is equipped with 24 Intel(R) Xeon(R) CPU
E5-2630 v2 processors at 2.60 GHz, for a total 256 GB of RAM. We keep all nodes
turned on and use all default configuration settings to run our experiments.

6.2 System Workload

We carry out our experiment evaluation using DBLP. The total number of pub-
lications in DBLP is 4146645. As each publication in DBLP usually has multiple
authors, we create a record with the same publication for those authors respec-
tively. Finally, the total number of records is 12508891, in which 8362245 records
are redundant. The total number of different authors publishing publications in
different venues is 7843756. We divide all these data into 7 groups according
to the ratio r(r = j/i, i represents the number of publications belong to α, j
represents the number of publications belong to α and published in v). Groups
are shown in Table 2. In this paper, we measure the performance of methods
using the following metrics - (1) Query execution times - time taken to execute
the conditional query. (2) Insertion times - time taken to insert data into Fabric
ledger. (3) Memory cost - memory size occupied by all data.
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Table 2. All groups and the number of members of each group.

Group 1 2 3 4 5 6 7

r(%) 100 - 18 18 - 15 15 - 12 12 - 9 9 - 6 6 - 3 3 - 0

Total number 3218585 274878 421421 512382 612054 1034199 1770226

6.3 Experimental Evaluation

Table 3 shows the performance of three methods: baseline, CCK and AIM. We
randomly select 1000 records from each group to execute 1000 queries at a time,
which we execute 1000 times and take the average query time as the result. The
query time is calculated from the time when the query transaction proposal is
initiated until the response information is received.

Table 3. Query time of each method.

Group Query time of baseline Query time of CCK Query time of AIM

1 29.03(s) 12.77(s) 9.57(s)

2 50.14(s) 12.31(s) 9.52(s)

3 55.44(s) 11.73(s) 8.51(s)

4 70.84(s) 11.70(s) 8.27(s)

5 80.92(s) 11.46(s) 7.93(s)

6 109.20(s) 10.85(s) 7.29(s)

7 174.74(s) 9.87(s) 6.07(s)

6.4 Time Cost of Baseline

As we can see from the Table 3, with the ratio r decreases, the baseline method
takes more time. This is because as the ratio r decreases, the author we used
to query has more publications. When we want to get all the publications that
meet the conditions, we need to call the GHFK. The Fabric firstly queries the
HistoryDB to get all keys that satisfy the conditions. The key in HistoryDB
consists of the key of a current data, block number and transaction number.
Then it uses block numbers to query block index to get all blocks and deserializes
the content of these blocks. Next, it uses transaction numbers to get transactions
and extracts out the values inserted. Finally, the GHFK call returns an iterator
and we get values from the iterator. The more values are accessed through this
iterator, the more blocks are deserialized. Therefore, given an author, the more
publications belong to the authors, the more blocks need to be deserialized, the
more time we will take to execute query transaction.
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Consider the query in baseline method, it needs to get all blocks that contain
publications belong to author α. It hence deserializes all these blocks and need
to remove publications that are not published in venue v. As the number of
publications that are not published in venue v increases, it needs to deserialize
more and more blocks and removes more and more publications that do not
satisfy the conditions. The bottleneck of the first method is that to retrieve
publications belong to author α and published in venue v, we need to deserialize
all blocks containing publications belongs to author α. Larger the number of
publications that are not published in venue v, worse is hence the performance
of baseline method.

6.5 Time Cost of CCK

The third column of Tabel 3 presents the performance of CCK. When we execute
queries in group 1, CCK takes 12.77s which takes 16.26s less time than the
baseline method. When we execute queries in group 3, CCK takes 11.73s which
takes 43.71s less time than baseline. As the ratio decreases, the performance
of CCK method becomes better. This is because with the decrease of ratio, the
number of publications belong to the author α and published in venue v becomes
smaller, and the number of blocks that we need to deserialize also becomes
smaller. We are able to achieve this improvement by using CCK because we
exactly know which block contains publications belong to author α and published
in venue v. That is to say, we just need to get blocks that contain publications
belong to author α and published in venue v. This effect becomes more severe,
when we execute queries in group 7. Considering the case when an author has
total x publications, in which y publications published in venue v and the data
of each publication is stored in different blocks. When we execute queries with
the baseline method, we need to deserialize x blocks and remove x − y(x ≥ y)
publications from the result. However, if we use CCK, we only need to deserialize
y blocks. The larger x − y, the higher the performance of CCK. This is equivalent
to the smaller ratio, the higher the performance of CCK. The time-cost by using
CCK is much smaller than that by using the baseline method.

6.6 Time Cost of AIM

We next analyze the time-cost of using AIM to execute conditional queries, it
is not much different from CCK. This is because in the AIM, we also create
composite key and we exactly know which block contains the data that meets
our conditions. So the number of block we need to deserialize is same. However,
CCK has a big problem, it brings a lot of redundancy. We need to use each
author in a publication and the venue of the publication to create composite
key (α, v), and we need to take (α, v) and the other information o as a key-
value pair to insert into the ledger. So if a publication has n (n ≥ 1) authors,
it will generate n key-value pairs and wherein n − 1 are duplicates, which lead
to the size of ledger created by using CCK is bigger than the ledger created
by using AIM and the cardinality of the ledger data that performs conditional
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queries becomes larger. That is the reason why AIM is a little better than CCK
in query performance. Besides, the redundancy causes us to spend a lot of time
inserting these key-value pairs into ledger. In our experiment, we ingest a pub-
lication in one transaction. So the total number of transaction is 12508891 by
using CCK and baseline methods, and we execute these transactions with 4000
goroutines. Both baseline method and CCK method cost more than 13 h to fin-
ish these transactions. However, when we use AIM method, the total number
of transaction is 4146646 and it costs 5 h 29 m to finish these transaction. By
using AIM method, we save more than 2 times time, which we can see from
Table 4. We build the index during the process of a transaction. In fact, the data
is continuously streaming in. If we do not build the index during the process
of a transaction, when we execute queries, we may can not get the new data
immediately because it has not yet been saved to the index. Beside, if we do
not use this method, when we want to construct index, we will need to querying
ledger before, which will cost a lot of time.

6.7 Memory Cost of the Three Methos

In addition, by constructing the index AUP, we also save data storage space.
Specifically, let us use |P| and |I| to denote the average size of a transaction
data in block and the key-value pair in AUP (|P| > |I|) respectively. In baseline
method and CCK, the total size of all data is 12508891|P|. In AIM, the total size
of all data is 4146646|P| + 2234392|I|. The difference between these two values
is 8362245|P| − 2234392|I|, and 8362245|P| − 2234392|I| > 0. Therefore, AIM
saves more data storage space than baseline method and CCK.

Table 4. The data insertion time of different methods.

Methods Baseline CCK AIM

Transaction number 12508891 12508891 4146646

Data insertion time 13 h 8m 13 h 12 m 5 h 29 m

6.8 Analysis

From the above three methods, we can see that the AIM has the best perfor-
mance. It solves the problem of redundancy, improves the efficiency of queries
and data insertion. Then, we get two conclusions. Firstly, when we execute condi-
tional queries, and the key which we want to use has a large number of unrelated
values need to be removed, the best method is to use all conditions to create a
composite key. Then we can use this composite key to execute queries, which
can help deserialize a small number of blocks and directly find blocks contain-
ing values that we want to get without the process of filtration. Secondly, when
multiple keys have a same value, we can create index to reduce the time of
data insertion and reduce redundancy. Just like the use-case in our experiment,



Handling Conditional Queries on Hyperledger Fabric Efficiently 61

multiple authors have a same publication, we reduce the time of inserting the
publication into the ledger by creating an index AUP. By combining the method
of creating composite key and building index, the performance of both queries
and inserting data have a significant improvement.

In addition, methods presented in this paper can also be generalized to other
conditional queries. For example, we can use the proposed methods to get a
medical history of a patient in a certain department in the medical field.

7 Conclusion and Future Work

In this paper, we present three methods to handle conditional queries on Hyper-
ledger Fabric. We use the first method as our baseline, both CCK and AIM easily
outperform the baseline. We benchmark these three methods and we also con-
duct a comprehensive study to understand and analyse the conditional queries
performance on Hyperledger Fabric by creating composite keys and building an
index. Besides, the process of building index is included in an transaction. Not
only does it saves more time during the process of insertion data, but also we
can get data in a timely manner.

In our future work, we can further improve the performance of conditional
queries in Hyperledger Fabric by using different methods of creating composite
key and building index. As the static structure of LevelDB consists of six main
parts and keys with the same prefix are adjacent in the file.
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