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Abstract. Information security has been in the mainstream of com-
puting for the last few decades and our increasing reliance on the large
scale distributed systems, such as the Cloud, has put greater emphasis
on the security capabilities of these systems. The security concerns are
amongst the important factors affecting adoption of Cloud. This paper
identifies and addresses issues concerning management of hierarchical
authorization policies in the Cloud. These policy models pose the risk
of policy shadowing where the decision taken at higher levels mask the
possibly erroneous or conflicting policies specification at the lower levels.
We introduce the notion of shadowed policies and present a model which
is based on formal Event-Calculus (EC); for the identification of shad-
owed policies. The results show that our proposed approach is scalable
and practical.

1 Introduction

The need to protect valuable information has always been there. During the
early ages, the information about food and shelter was of utmost importance.
We live in a digital world now and our valuable digital information, such as
business plans, images and confidential documents, needs to be protected from
the malicious access. Information security has thus been in the mainstream of
computing for the last few decades and would remain same for the foreseeable
future. As our information security capabilities have matured and increased, so
are the challenges we are being faced with. In this context, the widespread use
of internet and adoption of large scale distributed systems, such as Cloud, we
are faced with more challenging environments to enforce security principles. The
past decade has seen significant increase in the use of Cloud Computing, as many
organizations either have private Cloud deployments or they are using services
from public Cloud providers. All major Cloud providers thus provide advanced
security mechanisms to handle security challenges. One approach to implement
security principles within an organization is by the use of a policy. The authoriza-
tion or access control policy of an organization specifies which users can access
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which resources, under what conditions, and what actions can they perform on
the resources. All major Cloud providers thus provide the support of authoriza-
tion policies and users can be organized into groups and policies can be assigned
to them to specify their access permissions. Even with the advanced security
capabilities provided by major Cloud providers, security breaches still happen
resulting in loss of revenue and trust. In this context, authorization policies spec-
ification and management is a critical task and erroneous specification of even a
single policy can lead to undesired consequences. The scale of the services from
the Cloud providers makes the authorization management process challenging
and complex and this can result in inducing more human errors.

One approach to improve the manageability of authorization process is the
hierarchical access control model. In general, such policy models are evaluated
from top to bottom, with each level providing more fine-grained access policies.
This is the approach taken by major Cloud providers including AWS where
policy specification and evaluation concerns different levels ranging from AWS
organizations Service Control Policies (SCPs) to permission boundaries for a
user or role. Hierarchical policy models pose the risk of policy shadowing where
the decision taken at higher levels mask the erroneous or conflicting policies
specification at the lower levels. Let us consider an example of hierarchical policy
design having three levels, L0, L1 and L2, with the level L0 being the top most. If
a permission is denied at the level L0, then any policy specification at the lower
levels would be masked. The access control policy on the whole may produce
the intended behavior but it poses serious challenges to policy management and
any future change may result in erroneous behavior. As per the IBM sponsored
13th annual cost of a Data Breach study, more than one fourth of all breaches
are triggered by human error. We believe that the shadowed policy’s behavior
is masked and not directly evident and thus a policy designer may tend to
under constrain the rules assuming them to be handled at the higher level. The
problem is amplified for the environments where the hierarchy structure itself
can be dynamic, as we will highlight the case of AWS IAM policies where an
Organization Unit can be moved within the AWS Organization tree.

We have identified the issues in our paper that are concerned to the manage-
ment of authorization policies in the Cloud. We introduce the notion of shadowed
policies and map their existence in the Amazon Web Services (AWS) Identity
and Access Management (IAM) policies. We have highlighted the side-effects of
having shadowed policies and how they induce more human errors. We introduce
the notion of shadowed policies and present a model which is based on formal
Event-Calculus (EC); for the identification of shadowed policies. The results
show that our proposed approach is scalable and practical.

2 Background and Related Work

There are many facets of implementing information security within an organi-
zation and one way is through the use of security policies. After authentication,
the decision of access control to the users is done by the authorization poli-
cies. The decision of authorization process is either to permit or deny the access



Shadowed Authorization Policies - A Disaster Waiting to Happen? 343

and this decision may be evaluated in a certain context or conditions. One of
the major studied area these days is access control and authorization policies
management. One major subdomain has been the authorization models being
used to implement the authorization process. In the Role Based Access Control
(RBAC) model [1,2] authorization policies are based on roles of the users. RBAC
has remained popular since its inception and all the major Cloud providers sup-
port RBAC. It does suffer from some scalability limitations including the role
explosion. In order to ease management, the hierarchical RBAC introduces the
concept of role hierarchy and inheritance and a parent role inherits all the per-
missions of inherited role [3]. For instance, there can be a role named staff and
above in the role hierarchy can be a role named manager which implicitly inher-
its the permissions of the staff member. Hierarchical RBAC does provide ease
of management but it makes difficult to enforce separation of duty (SoD) con-
straints. In Attribute-based access control (ABAC), the subjects, objects and
the environment have attributes and the access decisions are made based on the
boolean function on these attributes. ABAC can subsume RBAC and a detailed
discussion on tradeoffs and characteristics of both models can be found in [4].

A number of approaches have addressed the need for formally modeling the
authorization policies and verifying their consistency. In this context, authors
have proposed a verification framework for conflicts detection in policies modeled
through event-driven RBAC in [5]. In [6] authors have proposed a privacy preserv-
ing policy model and approach for handling policy conflicts. In [7] authors have
proposed an approach to specify and verify authorization policies in the compo-
sition of Web services. A formal approach based on Fusion Logic for the speci-
fication and verification of properties such as consistency and SoD is discussed
in [8]. In [9] authors have proposed an approach based on interval temporal logic
for the specification and verification of temporal access control policies. In [10]
authors have proposed an approach for the specification of policies in first order
logic and then they use Prover9 theorem prover for proving proposed identity
constraints. The verification of access control policies for SGAC is addressed in
[11]. The authors have used Alloy and ProB, two first order logic model check-
ers. In [12] authors have introduced the concept of policy quality in terms of con-
sistency, completeness, and minimality dimensions. There are many approaches
that have addressed modeling and verifying the consistency of existing authoriza-
tion languages. One such language is XACML (eXtensible Access Control Markup
Language). Many approaches have been proposed to model and verify the consis-
tency of XACML based policies [13–15]. In [16] authors have analyzed the spec-
ifications that handles the combination of authorization and management poli-
cies that detects inconsistencies and conflicts in policies. They have also modelled
authorization in the behavior of system including policy specifications which is
based on Event Calculus, but have not addressed shadowed authorization policies
and their conflicts in specific. Authors have also addressed the problem of incon-
sistencies and conflicts in policies. Abnormal behavior is caused in a system due
to these conflicting policies, hence, resolving these policy conflicts is highly sig-
nificant. Chomicki and Lobo in [17] detect and resolve conflicts in ECA policies
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through a formal logic-based framework. Bandara in [18] analyzes and manages
policies through a tool. The tool helps to query policies for validation and review.
In [19] authors present a set of algorithms to check consistency among policies.
None have addressed the policy conflicts and policy management in a hierarchal
structure specifically targeting policy shadowing.

We believe that there is a research gap concerning both the consistency check-
ing of authorization policies for the real world large scale distributed systems,
such as Cloud, and the resolution of conflicts that concern policy management
and thus stem from the implementation of policies at a larger scale. A formal
ABAC based framework modeling policies and identifying inter and intra policy
conflicts that exists between them is presented in [20] and authors have also
proposed a model where policies from different cloud providers (AWS, GCP
and Microsoft Azure) can be combined in a Multi-Cloud project [21]. This work
addresses the conflicts related to policy management in the large scale distributed
systems. One such conflict is policy redundancy and the redundant rules in an
access control policy increase the size of the policy and would affect the perfor-
mance and management of policies [22]. To best of our knowledge, there exists
no approach that considers the case of shadowed authorization policies in large
scale distributed systems. We have motivated the problem by presenting the case
of AWS Identity and Access Management (IAM) and AWS Organizations, where
policies exist at different levels and are evaluated based on a detailed and com-
plex evaluation logic. We have justified the need for a formal approach and have
both modified existing models for performance and correctness and presented
new models needed for identifying shadowed policies. We have highlighted the
side-effects of having shadowed policies and how they induce more human errors.

3 Case Study - AWS Policies Management

The authentication and authorization management service provided by AWS is
called the Identity and Access Management (IAM) service. AWS IAM gives the
opportunity of users management and their permissions and thus handles both
authentication and authorization aspects. It provides a broad set of services rang-
ing from managing users and their permissions to enabling multi-factor authen-
tication (MFA) including auditing services. Policies are created and assigned to
users, groups, roles, and resources, to achieve access management using IAM.
When a request is made to access a resource, AWS evaluates different policies
to reach a decision. The format of policies storage is JSON documents and fol-
low specific syntax and structure. An example AWS policy is shown in Fig. 1.
On a high level, AWS policies contain a set of statements and each statement
represents a specific access control rule. Each statement contains the service
and resources element which specify the AWS service, for instance Amazon S3
and corresponding resource, for instance a S3 bucket, to which this statement
applies. Further, using the action element of a statement one can specify what
service-specific actions one is willing to perform on the resource specified earlier.
The conditions element of the statement allows to further specify the conditions
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Fig. 1. Single statement example from AWS IAM policy

under which the statement applies, for instance specifying the IP addresses from
where the request arrives. Finally, the statement effect element specifies if the
statement outcome is either Allow or Deny access. AWS supports different types
of policies, these include the Identity-based policies which are attached to users,
groups or roles and these policies grant permissions. The resource-based policies
are attached to resources such as Amazon S3 buckets. Permission boundaries are
assigned to users and roles and specify the maximum permissions can be granted
to a user or role. In contrast to identity-based policies, permission boundaries on
their own does not grant access but only limit the maximum access of identity-
based policies. In order to discuss the service control policies (SCPs), we first
provide a brief introduction to AWS organizations.

Fig. 2. An example AWS organization structure

AWS Organizations is an account management services by Amazon to provide
services such as hierarchical grouping of accounts. Some key concepts include
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root, which is the top most container for all the accounts within the organiza-
tion. Within a root, accounts are associated with the Organization Units (OUs).
Organization units can be organized in a tree-like structure (with fixed depth)
and an OU can thus be part of another OU. Figure 2 shows an AWS organiza-
tion with four organization units (OUs) each having associated accounts. The
root is at the top. The type of access control policies applied at the account level
granularity for AWS organizations are called Service Control Policies (SCPs).
As similar to permission boundaries SCPs do not grant permissions but rather
can be considered as a filter applied to the capabilities of an account. SCPs can
be applied to different entities within an organization. If the SCP is applied to
the root, it implicitly applies to all the OUs and associated accounts, as root is
the top of the hierarchy. Similarly, if the SCP is applied to an Organization Unit
(OU ) it applies to that OU and any sub OUs associated with it.

AWS IAM is an example of hierarchical policy management as many such
levels exists and there is a detailed and complicated policy evaluation process to
check policies at each level in a top-down order. As the number of levels increase
so does the risk of shadowed policies and in case of AWS Organizations, the
OUs can themselves be nested and the maximum nesting supported by AWS
is five OUs under the root. The SCPs associated with the higher level OUs are
inherited at the sub OUs and thus any services blacklisted at the root results in
shadowing SCPs at the lower levels. Before presenting the proposed approach,
highlighting the risks of shadowed policies is highly significant. The shadowed
policy’s behavior is masked and not directly evident and thus a policy designer
may tend to under specify the rules assuming them to be handled at the higher
level. One such example can be of a permission boundary applied to a user that
allows read only access to some resources. As the permission boundary is at
the higher level, a policy designer may accidentally allow all actions on these
resources using AWS IAM wildcards. The effective permission would remain
to be read-only but this is a potential risk bound to happen. For an instance,
permissions for a top level OU are changed or an OU is moved around in the
AWS Organization tree.

4 Proposed Approach

The approach we present uses the formal logic based representation of policies to
identify shadowed policies. There exist multiple authorization rules (statements
in the context of AWS) at multiple levels. Rules at each level are evaluated
and combined into a level policy and all the level policies are merged to identify
shadowed policies. There can be more than one policy at a level, as supported by
AWS. All the rules need to be modeled in Event-Calculus (is done automatically
as the proposed models are generic) and we use a reasoner for Event-Calculus
to evaluate rules and level policies. The algorithm below presents an abstract
view of our proposed work. The algorithm is not optimized for performance but
rather resembles the approach used in our EC models and the one taken by the
EC reasoner. For simplicity, we assume that there exists a single policy at a
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level, however, the proposed approach handles multiple policies at same level,
as shown later in Sect. 4. This can be the case when multiple sibling OUs have
associate SCPs.

Algorithm 1. Identification of shadowed policies
Require: rContext is the context to identify applicable policies.

1: procedure detectShadowing(rSet, rContext)
2: for each level ∈ levelSet do � levelSet is a set of all levels
3: for each rule ∈ rSetlevel do � rSetlevel is a set of rules at some level
4: rdecSetlevel ← evaluateRule(rule, rContext)
5: end for
6: policyDecision ← NotApplicable
7: for each rdecision ∈ rdecSetlevel do
8: if rdecision = deny then
9: policyDecision ← Deny

10: break
11: end if
12: pdecSetlevel ← policyDecision
13: end for
14: end for
15: for each level ∈ levelSet do
16: for each nextLevel ∈ levelSet do
17: if pdecSetlevel = Deny & pdecSetnextLevel = Permit then
18: pShadow = pShadow ∪ (pdecSetnextLevel, pdecSetlevel)
19: end if
20: end for
21: end for
22: end procedure

We iterate through every set of levels (named levelSet) and then for each
level we iterate through all the rules associated with that level (rSetlevel), lines
2–3. Then, at line 4, we evaluate each rule within the rSetlevel to identify if it
permits or denies the access, or if it is not applicable. The decisions are based
on the context and all the decisions are added to the decisions set for a level,
rdecSetlevel. Once we have a set of decisions for all rules within a level, we
can combine them in a level policy and use a rule combining algorithm to con-
clude a policy decision. The rule combining algorithms include permit-overrides,
deny-overrides and others. In practice, the approach taken by AWS is always
deny-overrides, that is a single deny rule can cause the complete policy to be
considered denied and we have thus used the same case in our algorithm, lines
7–12. We discuss other combining algorithms at the end of this section. We store
the decisions of all level policies in pdecSet and the decision of policy at a level is
represented by pdecSetlevel, line 13. We can then identify the shadowed policies
by iterating through level policy decisions, lines 15–20. We term a level policy to
be shadowing if its level decision is ‘deny’ and there is a permit decision at the
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lower level, line 17, and we add the tuples of shadowing and shadowed policies
to the set pShadow. Once we have identified tuples of shadowing and shad-
owed policies, it is further possible to identify the rules within the shadowing
policy which are causing shadowing. This is needed as the rule combining algo-
rithm being used is deny-overrides and it is possible that a single rule within the
level policy is responsible. It can be accomplished by iterating through the rules
within the shadowing policy and identifying the rules having deny decision. Let
us conclude this section by highlighting the effect of rule combining algorithms
and the shadowed policies. The rule combining algorithms specify how the com-
bined individual decisions from multiple rules (and policies) reach a decision.
The Deny-overrides combining algorithm considers a policy to be Denied even if
it contains a single rule denying the access. Similarly, the Permit-overrides algo-
rithm permits the access if a permit rule is there in the policy. Other algorithms
include First-applicable and Only-one-applicable, but we limit our discussion to
Permit and Deny-overrides. Let us consider the case of two level policies, pL0
and pL1 and each containing some rules permitting and denying the access.
If we consider the deny-overrides to be the combining algorithm, both policies
would evaluate to deny decision and even though they have the same decision,
there are some permitting rules in pL1 that are being shadowed by pL0. The
permit-overrides case is somewhat similar. We address this issue by considering
a policy containing rules with multiple decisions to have intra-policy conflict [20]
and resolving the conflicts before identifying the shadowed policies.

5 Event-Calculus Formalism

The proposed approach uses Event Calculus. It is a formal language used to rep-
resent events and their effects with reasoning. The choice of a formal approach
is motivated by a number of factors. First, the authorization rules are evaluated
not only based on syntactically matching subjects, objects, actions and decisions
but rather on the environment or context as well, which may contain temporal
(for example, the timing set for an access policy can be from 9am - 5pm) and
other aspects. The subjects and other attributes may themselves have relations
(for instance, Alice is member of group Users and some AWS resources is indeed
part of S3 bucket). Then, the rules may be combined based on some rule com-
bining algorithms into a policy. The policy shadowing itself can be based on a
number of related aspects, such as the rule combining algorithms we discussed
earlier or it may be the case that shadowing occurs only for specified time inter-
vals or in some delegated scenario. The use of a formal expressive approach helps
in collectively addressing these related aspects. In addition, EC has open-source
tool support, DECReasoner1. The basic elements in EC are events (or actions),
fluents (whose value can change on different time-points based on occurrence
of events), and a set of predicates. Some predicates used in our models include
the Initiates(e, f, t) predicate which specifies that if event e happens at time-
point t then the fluent f holds after t. Similarly the Terminates(e, f, t) predicate
1 http://decreasoner.sourceforge.net.

http://decreasoner.sourceforge.net
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specifies that if event e happens at t then the fluent f does not hold after t.
The Happens(e, t) predicate specifies that event e happens at timepoint t and
the HoldsAt(f, t) is true iff fluent f holds at timepoint t. We use Event-Calculus
[23] and we will only deal with the models that are simple and shows important
aspects, without including the supporting axioms2.

5.1 Rules Specification

The rules construct specifies one access rule. Each rule includes Target, an Effect
and the Conditions associated with it. The EC meta-model for rules specifica-
tion is shown below. The basic idea is to first decide if the rule is applicable
in some context (achieved using RuleTargetHolds fluents and Match/Mismatch
events) and then decide if the rule has any of the following conditions: permit,
deny or not applicable, using fluents RuleIsPermitted/Denied/NotApplicable and
Approve/DenyRule/RuleDsntApply events. The fluents are initialized in a way
that when time=0, they do not hold and the reasoner should try to find a solution
leading from initial state to reach the goal.

;Sorts for rules and their elements
sort rule, subject, object, action

;Fluents for Rules evaluation
fluent RuleTargetHolds(rule), RuleConditionHolds(rule)
fluent RuleEffectIsPermit(rule), RuleIsPermitted/Denied/NotApplicable(rule)
;Events for Rules evaluation
event (Mis)Match(rule), Approve/DenyRule(rule), RuleDsntApply(rule)

;These axioms link fluents with events
Initiates/Terminates (Match/Mismatch(rule), RuleTargetHolds(rule), time).
Initiates(Approve/DenyRule(rule), RuleIsPermitted/Denied(rule), time).
Initiates(RuleDsntApply(rule), RuleIsNotApplicable(rule), time).

;Conditions on events occurrence
Happens(ApproveRule(rule), time) → HoldsAt(RuleTargetHolds(rule), time) &
& HoldsAt(RuleEffectIsPermit(rule), time).
Happens(RuleDsntApply(rule), time) → !HoldsAt(RuleTargetHolds(rule), time).

;Initial state of the Fluents
!HoldsAt(RuleIsPermitted/Denied/NotApplicable(rule),0).
;The goal for the reasoner
HoldsAt(RuleTargetHolds(rule),1) / !HoldsAt(RuleTargetHolds(rule),1).
HoldsAt(RuleIsPermitted/Denied/NotApplicable(rule),2).

Model 1 (Meta-model for IAM Rules)

The model given above shows some EC sorts which can be considered as
types for instantiating individual elements. For instance, rule SomeRule in an
EC model would declare SomeRule to have type rule. We have used Initiates
along with the definition of fluents, events and Terminates axioms to link them
together. For instance, the Initiates axiom for RuleTargetHolds axiom specify
that if the event Match happens at time point t, the fluent RuleTargetHolds

2 Complete models along with setup and execution instructions are available at
https://www.icloud.com/iclouddrive/0E4u-NuXGiGkpoql5BMamWhGQ#wise19.

https://www.icloud.com/iclouddrive/0E4u-NuXGiGkpoql5BMamWhGQ#wise19
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would hold at t+1 and afterwards. The Terminates axiom for Mismatch event
has opposite effect. The model above (and all other core models) are organized
into files to be included in an EC model for any specific rule. This helps us in
both manageability and have allowed us to develop automated tools to directly
convert policies fetched from the Cloud (in JSON) to EC models. For instance,
we modelled a specific rule, L0Rule1, to show the usage of generic model, given
below:

load includes/rules/... ;generic model files

load includes/input.e ;Contextual attributes would be specified in input.e

rule L0Rule1

;Specifying when the rule target holds

Happens(Match(L0Rule1),time) →
{subject, object, action} subject = Alice & object = SomeRsrc & action = SomeActn.

Happens(Mismatch(L0Rule1),time)→subject!=Alice /object!=SomeRsrc /action!=SomeActn.

!HoldsAt(RuleEffectIsPermit(L0Rule1),0).

Model 2 (Level0 rule specification)

At first, the meta-model files are included, as shown earlier. The contents of
file input.e will provide the context under which this rule needs to be evaluated
such as the value of subject, object and action attributes. The rule is named
as L0Rule1 and we then a conditional axiom is stated that the event Match
only holds true if there exists any match in the attribute name value pairs. We
define the fluent RuleEffectIsPermit not to hold true at time=0, that is the rule
denies the access and not permits. The rule model itself is very simple thanks
to separating the core meta-model.

0
RuleEffectIsPermit(L0Rule1).
Happens(Match(L0Rule1), 0).
1
+RuleTargetHolds(L0Rule1).
Happens(DenyRule(L0Rule1), 1).
2
+RuleIsDenied(L0Rule1).

Solution 1 (Rule evaluation using DECReasoner)

If EC reasoner, DECReasoner are invoked, the solution shown above is
returned. The reasoner first encodes the EC model in a SAT problem invok-
ing an off the shelf SAT-solver (relsat in this case). The models found are then
formatted to show events occurrence and fluents state at specific time-points.
In this case, the event match happens at time-point 0 (as the value species in
the input.e match the ones specify in the rule) and thus the RuleTargetHolds
fluent holds at time-point 1 (shown with a + sign). Further, as the rule effect
is not specified to be permit, the event DenyRule happens and the rule is con-
sidered denied. We can similarly model multiple rules in a level. We consider
following additional rules, L0Rule2 concerns the user Bob and thus it does not
apply. Similarly, the rule L0Rule3 concerns SomeOtherActn instead of SomeActn
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as specified in the input.e, so it does not apply as well. As per our shadowing
identification logic, the rules at every level are grouped in a level policy. Instead
of detailing policy meta-model and instantiation, we present the solution of level
L0 policy that groups the three rules at level L0.

model 1:

0

Happens(Match(L0Rule1)/Mismatch(L0Rule2)/Mismatch(L0Rule3), 0).

1

+RuleTargetHolds(L0Rule1). Happens(DenyRule(L0Rule1), 1).

Happens(RuleDoesntApply(L0Rule2), 1). Happens(RuleDoesntApply(L0Rule3), 1).

2

+RuleIsDenied(L0Rule1). +RuleIsNotApplicable(L0Rule2).

+RuleIsNotApplicable(L0Rule3).Happens(DenyPolicy(L0Policy), 2).

3

+PolicyIsDenied(L0Policy).

Solution 2 (Level policy evaluation using DECReasoner)

The policy at level L1 is thus denied as it contains at least one rule as
denying access. The policy evaluation algorithms in our case is chosen to be
deny-overrides, permit-overrides and not applicable otherwise. As discussed ear-
lier a policy cannot contain both permit and deny rules and is considered a
conflict. In order to present policy shadowing identification models, let us con-
sider another level L1, having two policies L11Policy and L12Policy (as per our
naming convention, L11 means first policy of level 1). Both policies have three
separate rules but intentionally tailored to have L11Policy resulting in permit-
ting the access, while the L12Policy is not applicable. For the identification of
shadowed policies, we can group multiple level policies and use EC axioms to
identify shadowed policies.

predicate ParentOf(policy, policy) fluent PolicyShadowed(policy, policy)

event Shadowing(policy, policy) event NoShadowing(policy, policy)

Initiates(Shadowing(policy1,policy2), PolicyShadowed(policy1,policy2), time).
Terminates(NoShadowing(policy1,policy2), PolicyShadowed(policy1,policy2), time).

!HoldsAt(PolicyShadowed(policy1,policy2),0).
Happens(Shadowing(policy1,policy2),time) & ParentOf(policy1,policy2) →
HoldsAt(PolicyIsDenied(policy1), time) & HoldsAt(PolicyIsPermitted(policy2), time).

Happens(NoShadowing(policy1,policy2),time) & ParentOf(policy1,policy2) →
(!HoldsAt(PolicyIsDenied(policy1), time) /
(HoldsAt(PolicyIsDenied(policy1),time) & HoldsAt(PolicyIsDenied(policy2),time)) / (Holds
At(PolicyIsNotApplicable(policy1),time) / HoldsAt(PolicyIsNotApplicable(policy2),time))).

Model 3 (Meta-model for the identification of shadowed policies)

In the model above, we first define a predicate ParentOf, which defines the
relationship amongst policies. Then, we define a fluent named PolicyShadowed,
whose state would eventually represent if a policy is shadowing another policy.
We then define some events and Initiates and Terminates axioms to link these
events with the fluent. We further define some axioms to define that the event
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Shadowing can only happen amongst policies if there exists a ParentOf predicate
amongst them and if the parent policy is denying the access and the child policy
is permitting the access. Similarly, we define that the event NoShadowing can
only happen if there exists a ParentOf predicate amongst policies and there is
no deny or permit relation amongst policies.

load includes/rules/... ;generic model files
load includes/policy/defined/L0Policy/L11Policy/L12Policy.e
load includes/input.e
;Contextual attributes would be specified in input.e

[policy1, policy2] (policy1 = L0Policy & policy2 = L11Policy) /
(policy1 = L0Policy & policy2 = L12Policy) <-> ParentOf(policy1, policy2).

Model 4 (Model for aggregating level policies)

The meta-model can be instantiated to specify a specific model for identi-
fying shadowed policies and in the model above, we first include policy files for
different policies and then define the ParentOf relations amongst them. More
specifically, we define that L0Policy is parent of both L11Policy and L12Policy.
The complete solution showing the evaluation results for policies and associated
rules (if they are permitted, denied or not applicable) is returned, when the
DECReasoner is invoked for the instantiated model above. The solution shows
that the L0Policy does not shadow L12Policy, as one is denying access and the
other is not applicable. The solution also shows that the L0Policy does shadow
L11Policy, as one is denying the access and other is permitting the access. We
have thoroughly tested our models on a number of complex configurations.

model 1:
0
RuleEffectIsPermit(L11Rule... L12Rule3).Happens(Match(L0Rule1/L11Rule1), 0).
Happens(Mismatch(L0Rule2/...L12Rule3), 0).
1
+RuleTargetHolds(L0Rule1/L11Rule1). Happens(ApproveRule(L11Rule1), 1).
Happens(DenyRule(L0Rule1), 1).
Happens(RuleDoesntApply(L0Rule2...L12Rule3), 1).
2
+RuleIsPermitted(L11Rule1). +RuleIsDenied(L0Rule1).
+RuleIsNotApplicable(L0Rule2...L12Rule3).
Happens(ApprovePolicy(L11Policy), 2). Happens(DenyPolicy(L0Policy), 2).
Happens(PolicyDoesntApply(L12Policy), 2).
3
+PolicyIsDenied(L0Policy). +PolicyIsNotApplicable(L12Policy).
+PolicyIsPermitted(L11Policy).
Happens(NoShadowing(L0Policy, L12Policy), 3).
Happens(Shadowing(L0Policy, L11Policy), 3).
4
+PolicyShadowed(L0Policy, L11Policy).

Solution 3 (Shadow policies identification using DECReasoner)

6 Performance Evaluation

For testing the correctness and scalability of our approach, we have created
different test cases and evaluated them on Amazon EC2 c5.xlarge instance having
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4 vCPUs and 8 GiB memory running Ubuntu Server 16.04 LTS. We have setup
DECreasoner on the EC2 instance and have used the modified and improved
version as proposed in [24]. Three test cases were evaluated; first we increase
the number of levels with each level having maximum of two children each.
As per our shadowed policies identification algorithm, multiple rules at a level
are organized in a level policy. However, there can be multiple policies directly
assigned to a level (as is the case with AWS Organizations) and these policies are
at the same level. So, in the first test case, we assume the maximum policies at a
level to be two. For the second test case we increase the number of policies at a
level to a maximum of five and finally as an extreme case, we create a full binary
tree having 2h − 1 policies, where h is the tree height (or implicitly the number
of levels + 1). All the policies contain three rules and they are intentionally
tailored to make the policies deny, permit and non applicable. Thus, if we have
three policies, one is denied, the second one is permitted and the last one is not
applicable.

Fig. 3. Performance evaluation results

The performance evaluation results are shown in Fig. 3. In order to manage
space limitations, we have merged the results of two different cases in a single
figure. For both the cases, the Y-axis shows the time-taken in seconds while the
X-axis shows the increase in the number of levels. The performance results are
encouraging even though the EC to SAT encoding process does not scale well,
a well known limitation of DECReasoner. The shadowing identification process
does not require strict response time guarantees and is a occasional process used
by policy designers to better manage the security policies of an organization.
For simpler models, having two policies at a level and probably more common
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occurring use case, even at ten levels time taken by both encoding process and
the SAT solver is around 2 s. For complex models, having five policies at a level
and with 10 levels, the performance results are acceptable. We have evaluated
further complex scenarios, which are rare to experience in practice, where we
have a full binary tree and thus at a height of 6 the total number of policies is
63, each having three distinct rules. In this extreme scenario, not shown in the
Fig. 3 due to space limitations, the time taken for EC to SAT encoding process
is 3.5 min and the solution takes 2.9 s.

7 Conclusion

The proposed approach in the paper identifies and addresses issues concern-
ing the management of hierarchical authorization policies in the Cloud based
systems. These policy models pose the risk of policy shadowing where the deci-
sion taken at higher levels mask the possibly erroneous or conflicting policies
specification at the lower levels. We introduce the notion of shadowed policies
and to the best of our knowledge, there isn’t any approach so far that deals
with shadowed authorization policies in distributed systems. We have motivated
the problem by presenting the case of AWS IAM. We have justified the need
for a formal approach and have both modified existing models for performance
and correctness and presented new event-calculus models needed for identifying
shadowed policies. The results that we have presented show that our approach
is scalable and practical.
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