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Abstract. Itemsets with relatively low support values are important
since they usually suggest highly confident association rules, which are
useful in applications such as recommendation systems and medical data
analysis. However, most existing algorithms are mainly designed to mine
frequent patterns and thus are time consuming in generating low support
patterns. There are also a few algorithms focus on low support patterns
but not efficient enough. Therefore, we propose here a low support closed
pattern mining algorithm, utilizing top-down lattice traversing and novel
closeness checking/pruning techniques. Extensive experiments show that
our method is much more efficient to mine low support closed patterns
than available alternatives.

1 Introduction

Itemset mining is an important topic in data mining for decades. Nowadays, it
is still actively applied in many areas such as recommendation systems, finan-
cial data and medical data mining. Recent researches show that, compared
to the advanced deep learning based recommendation systems, pattern based
approaches are still competitive [8].

Most existing pattern mining algorithms are designed to mine frequent item-
sets as they represent mainstream behavior. However, low support patterns or
infrequent itemsets are also important since they usually imply highly confident
association rules with solid support. In a large dataset, a low support pattern
may actually occur hundred times. Their corresponding rules are useful in rec-
ommendation systems for better accuracy. For instance, fewer people in Europe
will buy “rice” and “nori” together. Then the pattern “rice and nori” will not be
included infrequent patterns, i.e., “sushi maker set” would be recommended only
when low support patterns are considered. Low support patterns also play essen-
tial roles in other applications. In medicine area, they are crucial in identifying
rare diseases. For domain expert, untypical responses to medications are more
interesting than frequent and expected ones. In the analysis of traffic accidents,
causes of accidents might hide in less frequent and abnormal behaviors. Low
support patterns are also helpful in finding significant discriminative patterns
[3]. Process mining approaches make use of them as well in identifying deviations
in significant process [13].
c© Springer Nature Switzerland AG 2019
R. Cheng et al. (Eds.): WISE 2019, LNCS 11881, pp. 293–309, 2019.
https://doi.org/10.1007/978-3-030-34223-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34223-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-34223-4_19


294 Y. Lu et al.

Conventionally, low support patterns are achieved by executing frequent
itemset mining algorithms with a small minimum support threshold. Thus, fre-
quent patterns are accessed inevitably. If the huge number of frequent patterns
are not of interest, such as the medication example mentioned above, this solu-
tion is time wasting. Even if in applications where both frequent and less frequent
patterns are needed, the ability to mine low support patterns directly is still nec-
essary. For instance, in dynamic environment, it is expensive for stream pattern
mining approaches to track both frequent and less frequent patterns. When low
support patterns are more stable over time, efficient low support pattern min-
ing makes it possible to maintain them separately, so that we can build a more
adaptive system which only tracks frequent patterns while less frequent ones
are updated by user request. Therefore, a few approaches aimed at low support
patterns are proposed [1,5,9,16,17]. However, they are either inefficient or with
additional constraints.

In this work, we focus on mining low support itemsets. It is well known that
redundancy is always a problem in itemset mining. Varies condensed representa-
tions and corresponding algorithms are proposed for frequent patterns. However,
similar studies are still missing for low support patterns. Closed itemset is one
of the most popular lossless condensed representations [14]. We propose a new
top-down based algorithm which extracts low support closed patterns without
traversing frequent ones. Our approach uses a very efficient tree-based struc-
ture. Novel closeness checking and pruning techniques are employed. We show
that our approach can achieve the same level of complexity per itemset as other
efficient frequent pattern mining algorithms.

2 Preliminaries

2.1 Problem Definition

Let I be the universe of items, a subset of I that contains l items is a l-itemset,
denoted as X = {x1, x2, . . . , xl}. A transaction dataset T contains a set of
transactions where each transaction T ∈ T is an itemset over I. Let T (X) =
{T |T ∈ T ,X ⊆ T} be the set of transactions in T that contains X, the (absolute)
support of X on T is defined as |T (X)|.

In this work, we tend to find less frequent or low support patterns, i.e.,
|T (X)| � |T |. Formally speaking, given two user-defined threshold: minimum
support α and maximum support β, we are going to mine patterns X such that
α ≤ |T (X)| < β, where α ≥ 1∧β � |T |. In general, our mining task is the same
as infrequent itemset mining since β � |T |. The parameter α is introduced for
more flexibility as users might consider patterns occurred less than α as noise.
Conventional frequent itemset mining algorithms can also extract low support
patterns by setting their minimum support threshold to α and then removing
all frequent patterns with support larger than β.

An itemset X is a closed itemset in dataset T if and only if there is no other
itemset Y in T such that X ⊂ Y ∧|T (X)| = |T (Y )|. The closed itemset concept
was first proposed in [14] to address the redundant problem in frequent itemset
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mining problem. It is a lossless condensed representation: user can determine
the support of any frequent itemsets from closed frequent itemsets. The set of
closed low support patterns is LP.

A frequent border set FB is defined as the set of longest patterns such that
|T (X)| ≥ β, which is also known as the maximal frequent itemset [2]. FB is
necessary to make LP complete. For example, given a pattern {ab}, if ∃X ∈ LP
such that {ab} ⊆ X but �X ′ ∈ LP such that X ′ ⊆ {ab}, then the pattern
{ab} can be either frequent or not frequent. The border FB helps in this case to
identify whether {ab} is frequent or not.

2.2 Lattice Traversing and Related Works

Itemset mining is a process of itemset lattice traversing. Frequent itemset mining
algorithms traverse the lattice bottom-up, i.e., starting from empty itemset.
Thus, they must waste time on accessing frequent patterns before extracting
less frequent itemsets. Similarly, frequent closed itemset mining algorithms also
suffer the same problem when the user only want low support patterns.

Infrequent itemset mining algorithms [5,7,16] are proposed to mine patterns
with support smaller than a given threshold. However, they still utilize the
bottom-up traversing strategy. Rarity [17] algorithm uses the top-down travers-
ing strategy which extracts low support patterns first. It is an apriori-like app-
roach so that an expensive candidate generation step is necessary. These early-
stage algorithms are indeed slower than well optimized frequent itemset mining
approaches.

RPTree [18] suggests that there are three types of patterns: frequent patterns;
infrequent patterns with infrequent items; infrequent patterns without infrequent
items. It is designed only to return the second type of patterns. A negative item
tree is proposed in [11] mine infrequent patterns top-down. We adopt this tree
structure to mine closed patterns.

A bi-directional traversing framework is proposed in [12] to extract closed
low support patterns by separating the dataset into a sparse and a dense part.
Bottom-up and top-down traversing strategies are applied respectively. However,
its top-down traversing part is slow due to duplication problems, which limits
the performance of this framework. In this work, we make use of this framework
to achieve better memory performance.

Some algorithms extracting descriptive patterns based on information theory
[15] or top-k patterns of each item [10]. In theory, they could also return some
low support patterns. However, the majority are left behind.

2.3 Support Counting on Negative Itemset Tree

The ni-tree [11] is initially proposed to mine all infrequent patterns. It stores
support information of negative represented (neg-rep) itemsets. Neg-rep itemsets
are itemsets represented by symbol of items that do not exist in the original
itemsets. For example, given I = {a, b, c, d, e, f}, an itemset X = {a, b, c} can
also be represented using the symbol of items not in X, denoted as X = {d, e, f}.
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Obviously, X and X represent the same information since X ⊆ T ⇔ X ⊇ T .
Let T be the negative dataset formed by neg-rep itemsets, the support of X can
be defined as the number of neg-rep transactions in T that covered by X such
that:

|T (X)| := |{T |T ∈ T , T ⊆ X}| ⇔ |T (X)| = |T (X)| (1)

Tid Itemset

1 b c
2 d e
3 a e
4 c d e
5 b d e
6 a d e

(a)

Tid Negative Itemset

1 a d e
2 a b c
3 b c d
4 a b
5 a c
6 b c

(b)

Fig. 1. Transaction dataset and its nega-
tive dataset.
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Fig. 2. The initial ni-tree of dataset in
Fig. 1. Red nodes are t-nodes. (Color
figure online)

The ni-tree is a prefix tree, as shown in Fig. 2. Items are sorted in ascending
order concerning their frequency T . Each node n is a triplet 〈i, c, l〉, where i and
c are the item label and its count, l is the list of child nodes. c is initialized to
0. The root node r = 〈P, c, l〉 stores the current pattern P .

Each transaction T ∈ T is converted to T and inserted to the ni-tree. The
last node, known as the termination node or t-node for short, will increase its
count by 1. Thus, the count of a node n is the number of its corresponding
transactions, i.e. n.c = |{T ∈ T , T = n.L}|, where n.L is the set of items on the
path from root to n. According to Eq. 1, |T (X)| can be computed by aggregating
all nodes whose path from the root is fully covered by X:

|T (X)| = |T (X)| =
∑

n.L⊆X

n.c (2)

For example, to identify the support of itemset X = {de}, the count of nodes
on paths that covered by X = I \ X = {abc} are aggregated, which equals to 4.
Therefore, the ni-tree can be used to compute the support of a given pattern.

Moreover, given patterns X and X ′, X ⊂ X ′ ⇐ X ⊃ X ′, the set of nodes
for computing |T (X)| can be decomposed as: {n|n.L ⊆ X} = {n|n.L ⊆ X ′} ∪
{n|n.L ⊆ X,n.L � X ′}. Thus, the aggregating process can be decomposed and
computed recursively. For example, let X = {de},X ′ = {bcde}, the support of
X can be obtained by removing nodes on the path covered by X ′ = {a}, which
leads to a new ni-tree that represents the pattern {bcde}, as shown in Fig. 3.
Then, removing nodes covered by X from the second ni-tree will generate the
pattern {de}. Such process is in top-down style. In practice, we only need to
create a new root node rather than a brand new ni-tree.
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Fig. 3. Counting support on ni-tree.

3 Closed Itemset on Negative Itemset Tree

Though the ni-tree is not initially designed for closed pattern mining, we found
that the closeness can be determined readily by using t-nodes.

3.1 Closed Itemset Determination

According to the definition, an essential property of a closed pattern X is that
its support must be different from its supersets. In ni-tree, the count value of
any node, except t-nodes, is 0. Thus, if the count of all removed nodes is 0, the
generated pattern is not closed. A closed pattern can only be achieved if at least
one t-node is involved in the aggregating process. Formally speaking:

Theorem 1. Given I and the initial ni-tree, let NX be the set of nodes been
removed from the initial ni-tree to achieve the pattern X. Let N t

X ⊆ NX be the
set of t-nodes been removed. Then pattern X is closed if and only if the set of
items been removed (X) equals to the set of items on paths to t-nodes:

I \ X = X =
⋃

n∈Nt
X

n.L (3)

Proof. Obviously, NX = {n|n.L ⊆ X}, NX ⊇ N t
X . Thus,

X =
⋃

n∈NX

n.L ⊇
⋃

n∈Nt
X

n.L (4)

As non-terminated nodes are counted at 0 in the ni-tree, the support of pattern
X is the sum of all t-nodes:

|T (X)| = |T (X)| =
∑

n.L⊆X

n.c =
∑

n∈Nt
X

n.c (5)

Let M = X \ (
⋃

n∈Nt
X

n.L). Thus, any node n′ ∈ NX with item n′.i ∈ M is not
on the path to a t-node in N t

X . Removing such nodes or not won’t affect the
support value, i.e. |T (X)| = |T (X ∪ M)|. By closeness definition, M = ∅ ⇔ X
is closed. ��
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In short, a pattern X is closed if all removed items can be found on paths
towards removed t-nodes. For example, in the ni-tree of Fig. 2, pattern X = {be}
is not closed since item d is removed but its corresponding nodes are not on a path
towards t-nodes covered by X = {acd}. On the other hand, itemset X = {de}
is closed.

3.2 Näıve Method

According to Theorem 1, top-down closed pattern mining can be realized by
simply enumerating and removing all combinations of paths towards t-nodes.
The ni-tree is slightly adapted. The root node and each t-node stores a list
of pointers (lt) linked to their child t-nodes, as shown in Fig. 4. In each step,
nodes on the path from one t-node (excluding) to its child t-node (including)
are removed together, which guarantees that only closed patterns are generated.
Figure 4 illustrates an example. By removing all nodes on the path to t-node 1, a
new ni-tree is generated, and the corresponding closed pattern {de} is returned.
Then removing t-node 2 in the new ni-tree lead to another closed pattern {e}.
Enumerating all removing combinations generate all closed patterns.
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Fig. 4. The adapted initial ni-tree with t-node links (blue) and corresponding ni-tree
by removing t-node 1, 2 or 1, 2 together. Each link is marked with the t-node id. In
each step, only child t-nodes of root are considered (e.g. node 6 can only be removed
after node 4). (Color figure online)

The main disadvantage of this naive approach is the duplicate accessing prob-
lem. For example, given I = {abcde}, the pattern X = {ab} can be achieved
by either removing {cd} and {ce} or removing {cd} and {de}. A pattern X
might be accessed repeatedly up to O(2|T (X)|) times. Extra duplicate checking
and pruning step are necessary. By examining patterns discovered so far, we can
avoid the majority of duplicates. However, the overhead of the pruning step plus
remaining duplicates are still time-consuming. Indeed, this näıve method is the
top-down part used in the bi-directional traversing framework [12].

4 Algorithm: LSCMiner

4.1 Divide-and-Conquer Paradigm

The naive approach described above is a top-down based algorithm. However,
it is not efficient due to the expensive duplicate accessing problem. To take
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advantage of top-down traversing, we propose our Low Support Closed Miner
(LSCMiner), which employs the depth-first traversing strategy with novel close-
ness checking and pruning steps. The general mining process employed a divide-
and-conquer paradigm, which is commonly used in bottom-up based algorithms.
The main difference is that we remove items recursively, rather than grow pat-
terns.

First of all, let operators ≺ and � denote the concept of “before (smaller)”
and “after (larger)” with respect to the ascending frequency order used by the
ni-tree. Given I = {a ≺ b ≺ c ≺ . . . }, the top-down mining process removes
items recursively, which can be represented as a tree as shown in Fig. 5. We call
the tree above as the deletion tree. Each node in the tree is the set of items to
be removed, known as the deletion set. Given a node in the deletion tree, we say
that deletion sets in its sub-tree and right to it are under or after the deletion
set in the node, as shown in Fig. 5.

The first challenge is to combine the closeness checking process with the
divide-and-conquer paradigm. According to Theorem 1, we need to check if every
removed item can be found on paths to removed t-nodes. To solve the problem,
we let each t-node nt contains a list nt.L, which stores items on the path from
itself (including) to its proceeding t-node (excluding), as shown in Fig. 6. During
the removing process, a set U is maintained to track items that are not covered
by paths towards removed t-nodes yet. In one recursive step, we first add the
current item to U . If a t-node nt is removed, all items exist in nt.L are removed
from U . When U = ∅, we knew that the current pattern is closed.

Remove:

Removing sets
under 

Removing sets
after 

Fig. 5. We solve the mining task by
removing items in a recursive way. Such
process can be represented as a tree.

count=1

a b

c

d

d

e

b

c

ccount=1

count=1
count=1

count=1

count=1

Fig. 6. The adapted ni-tree used in
LSCMiner. R is the set of items been
removed so far.

Figure 7 gives an example of the closed pattern mining process. We first
remove item a, no t-node is removed right now. Thus, U = {a} and the pattern
{bcde} is not closed. Then, we recursively remove b from the current ni-tree.
There is a t-node of b is removed and U = {ab} \ {ab} = ∅. Pattern {cde} is
closed and should be added to the result set.

Algorithm 1 illustrates the pseudo code of the LSCMiner. Each iteration step
removes one item (Line 5). If there are t-nodes in removed nodes list li, we remove
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Fig. 7. Recursive steps of the removing process a → ab → abd → abde.

items from U and aggregate counts (Line 10–13). If the current candidate pattern
is not frequent, we attach nodes with larger item to the new ni-tree root for the
next recursive call (Line 18). The recursive mining process is continued until the
aggregated count is larger than the given maximum threshold β. Variables iM1

and iM2 are pruning thresholds as described later.

4.2 Pruning

An efficient algorithm should be able to prune unclosed itemsets as early as
possible, known as the “look ahead” ability [14,19]. In our LSCMiner, we fully
utilized the closeness property of the ni-tree. Two types of pruning methods are
utilized.

Trial-and-Error Pruning. Our first pruning method (Line 27, Algorithm 1)
is based on the following observation:

Theorem 2. Given the current ni-tree root r and the current unclosed items
set U �= ∅. Let R be the set of items been removed so far. If ∃i ∈ r.l such that no
closed pattern in deletion sets under {R∪ i}, then there is also no closed pattern
in deletion sets after {R ∪ i}.

Proof. The sub-ni-tree under item i must contain at least one t-node. Let l be
the set of items from i (including) to a t-node nt (including) in its sub-ni-tree.
Obviously, we have nt.L ⊇ l and i ∈ nt.L.

Let deletion sets after i be R�i. Assuming the deletion set of i and deletion
sets under i are not closed. If ∃p ∈ R�i which will lead to a closed pattern,
then removing all items in {p ∪ l} will also lead to a closed pattern (by further
removing the node nt mentioned above). Obviously, {p ∪ l} is a deletion set of i
or under i, which is contradict to our assumption (Fig. 8). ��

In short, if removing i does not generate a closed pattern, the recursion
call will be executed (Line 21, Algorithm 1). This recursive call will try all
possible combinations of items with respect to i. If no closed pattern is generated,
iterations on items (Line 5, Algorithm 1) after i can be canceled.
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Input: Ni-tree root r, Minimum support α, Maximum support β
Output: Infrequent Itemset List LP, Frequent Border List FB

1 LP ← ∅, FB ← ∅;
2 LSCMiner(r,∅,+∞, −∞) ;
3 return LP, FB ;
4 Function LSCMiner(r, U , iM1, iM2)

5 foreach Item i ∈ r.l ∧ i � iM1 do
6 li ←List of nodes in r.l with label i ;
7 U ′ ← U ∪ {i}, P ′ ← r.P \ {i}, c′ ← r.c;

/* Closeness checking */

8 foreach Termination node n ∈ li do
9 U ′ ← U ′ \ n.is, c′ ← c′ + n.c ;

10 end
11 if c′ < β then
12 if c′ ≥ α ∧ U ′ = ∅ then
13 Add P ′ to LP
14 end
15 l′ ← {n′ ∈ r.l|n′.i � i} ∪ {⋃

n∈li
n.l}, r′ ← {P ′, c′, l′};

/* Initial new end index */

16 if P ′ is closed then
17 iM ′

1, iM
′
2 ← +∞, −∞;

18 else
19 iM ′

1, iM
′
2 ←UpperBound(l, iM2);

20 end
21 LCSMiner(r′, U ′, iM ′

1, iM ′
2) ;

22 if No closed pattern generated in the recursive call above then
23 Break; // Trial-and-Error Pruning

24 end

25 else
26 if U ′ = ∅ then
27 Add P ′ to FB;
28 end

29 end

30 end

31 end
Algorithm 1: LSCMiner

Upper-Bound Pruning. The second pruning technique computes the largest
possible item as an upper bound for the next recursion step. Given the current
removed item i and the list of nodes to be removed li, assuming all nodes in li
are not terminated, then the largest possible item iM ′

1 that can be removed in
the next recursion step is the largest item among all children of nodes in li.

The reason is straightforward: the item i will be covered by a t-node if and
only if at least one of its child is removed. If we remove an item i′ � iM ′

1 in the
next recursion step, all items to be removed in the future are also larger than
iM ′

1. Thus, it is impossible to reach a t-node that covers i. For example, given
the left ni-tree in Fig. 9, assuming now we are removing item a, which results
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in the right ni-tree in Fig. 9. However, t-nodes that cover a only exist in the
sub-ni-tree of a. Thus, the upper bound for item removing on the second ni-tree
is b. Further removing process on items after b is pruned since the item a will
never be covered.
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Fig. 9. The maximum item under nodes
of a is iM ′

1 = b. Later removing process
on the right ni-tree must removing b first
since otherwise, t-nodes that cover a will
not be removed.
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covers count=1
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Fig. 10. There is a t-node that covers b.
Then the maximum upper bound up to
now (iM ′

2), which equals to the upper
bound when removing a, is used as the
upper bound for further removing pro-
cess on the right ni-tree.

The above upper bound assumes that �n ∈ li, i.e., item i can only be covered
by children of nodes in li. However, if one node of item i is terminated, then i
is covered by a node of itself. Removing items larger than the upper bound iM ′

1

can still lead to closed patterns. Another weaker upper bound iM ′
2 is introduced

for this case, which is defined as the largest upper bound, except for infinity,
among all previous recursion steps. For example, assuming the left ni-tree in
Fig. 10 is achieved by removing item a, and the right ni-tree is achieved by
further removing item b. Since node b is terminated, removing items larger than
its children is valid. However, the previously removed item a needs to be covered
so that the upper bound iM ′

2 is the upper bound when removing a. Algorithm
2 computes both upper bounds described here.

4.3 Complexity

Pattern mining is an NP-hard problem. The overall runtime is highly dependent
on the number of desired patterns. For instance, one of the most efficient frequent



LSCMiner: Efficient Low Support Closed Itemsets Mining 303

1 Function UpperBound(li, iM2)

2 iM ′
1 ← −∞

3 foreach n ∈ li ∧ n is not t-node do
4 xlast ←Last item in n.l
5 if iM ′

1 ≺ xlast then
6 iM ′

1 ← xlast

7 end

8 end
9 if iM ′

1 
= −∞ then
10 iM ′

2 ← max(iM ′
1, iM2)

11 end
12 if ∃n ∈ li, n is terminated then
13 iM ′

1 ← iM ′
2

14 end
15 return iM ′

1, iM ′
2

16 end
Algorithm 2: Compute the new upper bound.

closed pattern mining algorithms, LCM [19], declares that it extracts each closed
pattern in polynomial time: O(P (|T |)). Let U and UC be the set of desired and
undesired patterns, the time complexity per itemset of the LCM algorithm can
be written as: O( |U|+|UC|

|U| P (|T |)), where UC contains frequent patterns in the
low support closed pattern mining scenario.

Our approach can also achieve the same level of complexity. Given the current
ni-tree root r and the current unclosed items set U , removing item i from the
child list r.l involves the following steps:

1. aggregate counts in removed nodes, which requires O(|li|) time, where li is
the list of nodes in r.l labeled with i.

2. closeness checking if t-nodes exist, which requires O(|U | log(|nt.L|)) time,
where nt.L is the set of items in a t-node and binary search is employed

3. add children of nodes in li to the new root node r′, which takes O(
∑

n∈li
|n.l|)

time.
4. add all nodes in r.l with label larger than i to the new root node r′, which

requires O(|l�i|) time, where l�i is the list of nodes.

The total complexity is O(|li|+ |U | log |nt.L|+
∑

n∈li
|n.l|+ |l�i|). |U | and |nt.L|

are limited to the size of a single transaction so that the second term can be
seen as a constant. The length of li, l�i and n.l are limited to the size of the
dataset. Thus, the complexity of removing item i is polynomial. A closed item-
set X is achieved by removing items in X. The complexity to extract X is
O(

∑
i∈X P (|T |)) ∈ O(P (|T |)) since |X| is small compared to |T |. Consider-

ing that our approach also accesses some unclosed patterns, its complexity per
itemset is also O( |U|+|UC|

|U| P (|T |)), where UC are those unclosed patterns.
In terms of memory complexity, it is obvious that our approach is lim-

ited by the size of the dataset, similar to algorithms such as FPGrowth [6].
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However, LSCMiner has to store the negative dataset such that a scale factor
s = |I|

avg. transaction length exists, known as the sparsity of the dataset. s can be
huge on sparse dataset. In this case, the bi-directional traversing framework pro-
posed in [12] can be used so that our LSCMiner only need to handle the densest
part of a dataset.

5 Experiments

We first conduct the runtime performance of our LSCMiner. In experiments,
the naive approach described in Sect. 3.2 represents the performance of a simple
top-down based algorithm. The LCM [19] algorithm represents the most efficient
bottom-up based algorithm in solving low support pattern mining problem. We
also conduct the bi-directional traversing framework [12] by combining the LCM
algorithm with our LSCMiner. Other infrequent pattern mining algorithms are
not included since they are either represented by LCM (bottom-up based) or
too memory expensive to finish (apriori alike).

Database Size (N) Items (I) Avg. length (L)

mushrooms 8k 119 23
chess 3k 75 37

connect 67k 129 43

accident 340k 468 33.8
kddcup99 1000k 135 16

BMS1 59k 497 2.5

Fig. 11. Real-life datasets in our experiments.

Algorithms are implemented using Java. The LCM implementation comes
from [4]. 6 real-world datasets obtained from the fimi repository (http://fimi.
ua.ac.be/data/) are used as our test datasets. Necessary information of those
datasets are listed in Fig. 11. There are three small dense datasets, two large
dense datasets, and one sparse dataset. First N transactions and first L items
in each transaction are used in our experiments. We are interested in the time
difference in accessing patterns on a certain level of support from different direc-
tions. Thus, we set α = β − 10. The default value of N , L and β are provided in
each experiment. The splitting threshold for the bi-directional framework is set
to δ = 1%.

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
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LSCMiner

(a) chess dataset (default: N = 3200, L = 26, β = 20)

(b) connect dataset (default: N = 10k, L = 25, β = 20)

(c) mushrooms dataset (default: N = 8k, L = 23, β = 20)

Naive

LSCMiner
+LCM

LCM

Fig. 12. Runtime on small dense dataset.

Dense Data. Figure 12 illustrates the performance on small dense dataset. On
these datasets, the bottom-up algorithm, LCM, is up to two order of magnitude
slower than our top-down LSCMiner on the first two datasets. It is even slower
than the naive approach under some settings. This is mainly because the bottom-
up LCM algorithm has to traverse all frequent patterns. When β increased, i.e.,
we become more interested in frequent patterns, the runtime of LCM is reduced
and may surpass top-down approaches since it needs to traverse less frequent
patterns. On the mushrooms dataset, top-down approach is slower with β > 150.
This is mainly because that the mushrooms dataset has less number of patterns.
Our LSCMiner is very efficient. Its runtime grows similar to the LCM approach
with increasing dataset size, which indicates that the time complexity of both
approaches is on the same level. The combined approach is also efficient under
most settings. Our LSCMiner under the bi-directional framework only need to
handle the densest part of the dataset, which reduces the memory consumption,
as discussed in Sect. 4.3. However, the slowness of the bottom-up part under
some settings drag down its performance. The performance gap between top-
down and bottom-up approaches is further enlarged on large dense datasets, as
shown in Fig. 13. Both accidents and kddcup99 datasets have larger size and
longer transactions. The LCM algorithm is up to 3 order of magnitude slower
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than our LSCMiner. Even the naive approach is better under most cases. Though
increasing β slows down our LSCMiner, it is still hard for LCM algorithm to
overtake in the low support pattern mining scenario.

(a) accidens dataset (default: N = 300k, L = 15, β = 50)

(b) kddcup99 dataset (default: N = 1000k, L = 16, β = 20)

LSCMiner

Naive

LSCMiner
+LCM

LCM

Fig. 13. Runtime on large dense datasets.

Sparse Data. In theory, bottom-up algorithms should perform better than our
top-down approach on a sparse dataset. According to our analysis above, both
LCM and our LSCMiner have a complexity of O( |C|+|UC|

|C| P (|T |)). In the case
of sparse datasets, |UC| in LCM is much smaller since the number of frequent
patterns is tiny. On the other hand, a sparse dataset leads to a huge ni-tree,
which is a substantial overhead for LSCMiner. Figure 14 illustrates the run-
time performance on a sparse dataset BMS2. The results fulfill our expectations.
The combined approach performs the best since we can take advantage of both
bottom-up and top-down algorithms.

LSCMiner

Naive

LSCMiner
+LCM

LCM

Fig. 14. Runtime on BMS1 dataset (default: N = 60k, L = 30, β = 20)
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Memory-Performance Trade-Off. As discussed above, the performance of
our LSCMiner is limited by the dataset size. An extra constant scale factor
s exists since the ni-tree stores the negative dataset. Sparsity is a crucial fac-
tor that affects the memory consumption of LSCMiner. By applying the bi-
directional traversing framework and adjusting the value of splitting threshold
δ, the LSCMiner only need to traverse the densest part of the dataset, which costs
much fewer memories. We can still benefit from the efficient top-down traversing
since top-down traversing is powerful on dense dataset while bottom-up travers-
ing is good at the sparse dataset, as shown in experiments above. In this section,
we study the relation between memory consumption and runtime performance
by investigating how the trade-off behaviors with respect to different (relative)
dividing threshold δ.

Two dense datasets, chess and connect, are selected as representatives since
they have both sparse and dense parts. We measure the memory consumption
using the first 1k transactions in each dataset. The runtime value for connect
dataset is measured with the first 10k transactions instead. When the value of
δ is close to 0, all patterns are extracted by the LSCMiner. When the value of
δ is close to the relative support of the most frequent item, the bottom-up app-
roach extracts all patterns. Thus, by increasing δ, the bi-directional traversing
is moving from purely LSCMiner to purely LCM algorithm (Fig. 15).

(a) chess dataset (b) connect dataset

Fig. 15. Memory consumption and runtime under different δ values. δ is set up to 0.4
on connect dataset since almost all items occurred less than 40%.

On the chess dataset, the runtime of the bi-directional framework increased
about 20 times while the memory consumption decreased about 2.5 times when
moving from LSCMiner to LCM approach. On the connect dataset, the runtime
increased about 7 times while the memory consumption decreased about 30%.
LSCMiner is beneficial on both datasets: we spend some memory but get much
better performance.

6 Conclusion

We present a very efficient low support closed pattern mining algorithm,
LSCMiner, which avoids traversing undesired frequent patterns. It is particu-
larly effective on datasets with huge amounts of frequent patterns. Though it
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is memory expensive to store the ni-tree, much better runtime performance is
achieved in return. Furthermore, we can balance the memory consumption and
runtime performance by using the bi-directional traversing framework. If only
those dense datasets are considered, our LSCMiner guarantees to provide the
best performance in time complexity.
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