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Abstract. Recommending appropriate APIs for Mashup creation has become a
challenge as the number of APIs from different sources grows fast. In order to
understand the relationships among multiple ecosystem APIs, most existing API
recommendation methods focus on semantic similarity relationships but
underutilize the composition and cooperation relationships between APIs, which
may lead to low recommendation precision. In view of this problem, a Deep
Interest Network based API Recommendation approach (DINRec) for Mashup
development is proposed in this paper. In this approach, APIs are chosen
incrementally for compositing into a Mashup and in that process the embedding
vector of the Mashup’s existing composition features will be updated adaptively
by using Deep Interest Network. Moreover, a Doc2simu model is used to help
training industrial deep networks with relatively small amounts of dataset.
Finally, some experiments on real-world dataset are implemented to verify the
efficiency of our proposed approach.

Keywords: Deep Interest Network � Doc2simu model � API recommendation �
Mashup

1 Introduction

Mashup technique has got a far-reaching impact in recent years which provides a
flexible way for fulfilling dynamic and customized Web service developer require-
ments and tackles the functional limitations of individual Application programming
interfaces (APIs). However, as the number of APIs grows rapidly, how to recommend
appropriate ones for Mashup creation to satisfy users’ requirements becomes a chal-
lenge. For example, as of May 16, 2019, the dominant website ProgrammableWeb has
published 21,552 web APIs under 484 categories. If a developer wants to build a
Mashup related with messaging, ProgrammableWeb search engine will return a list
containing 1,576 Web APIs. It is a difficult task to go through these lists of results and
select the desired APIs.
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Some existing methods focus on keyword or semantic matching while others are
based on Quality of Service (QoS) prediction [1] for service recommendation. How-
ever, keyword-based matching is usually imprecise while semantic-based matching is
expensive to construct in practice. In addition, QoS is unstable and lagging that may
affect the precision of real-time prediction. In view of these shortcomings, in recent
years, some machine learning techniques such as Latent Dirichlet Allocation (LDA)
[2, 3] or Relational Topic Model (RTM) [4, 5] were used to learn topic from the
services’ descriptions or the users’ requirements. In some other studies, Word2vec and
Doc2vec [6] were used to extract deep semantic features between words and vectorize
descriptions of API and Mashups.

In this paper, we also apply machine learning techniques to recommend APIs to
Mashup, while considering the cooperation and composition relationships between
APIs simultaneously. Generally, the function of a Mashup is implemented by several
APIs, or all APIs realize the complex function of the Mashup. Therefore, the prior
chosen APIs may affect the selection strategy of the subsequent APIs while creating a
Mashup. For example, a Mashup BBC Browser described as “Maps channel program
information to relevant Twitter account” contains three APIs, i.e., BBC Nitro, Twitter
and Facebook. Suppose that BBC Nitro API and Twitter API have been chosen for
creating this Mashup, then the probability of Facebook API being recommended to the
Mashup would increase. The first reason is that an API which is category-similar to the
prior selected APIs would not likely to be recommended to the same Mashup. Second,
it is more reasonable to recommend an API that can complete the function of the
Mashup that have not been completed by the prior selected APIs. For these reasons,
Facebook API will be recommended to BBC Browser Mashup according to the prior
selected BBC Nitro API and Twitter API.

To realize this conception, we proposed a Deep Interest Network (DIN) [7] based
API recommendation approach, called DINRec. By introducing a local activation unit,
DINRec adaptively learn the representation vector of composition and cooperation
relationships between selected APIs and candidate API, moreover, this representation
vector varies over different candidate APIs, which makes it possible to update
embedding vector of the prior selected APIs when gradually add APIs into the
Mashup. Through this mechanism, the prior selected APIs with higher cooperation to
the candidate API will get higher activated weights before they get into the multilayer
perceptron. We conduct some experimental studies to gain insight about this phe-
nomenon. The final results show that DINRec perfectly integrates the functional
semantics and composition relationship of Mashups.

A recent check of ProgrammableWeb.com’s statistics shows that the number of
APIs used by Mashups only covers a quarter of the amounts of total APIs, and most
Mashups only contain less than 3 Web APIs. However, training industrial deep net-
works with few features is prone to over-fitting. To solve this problem, in this paper, we
present a Doc2simu model to train the text vectors of all Web APIs, and choose the
ones with high similarities as the extended dataset help to support effective training in
industrial networks. The process of the method proposed in this paper is illustrated in
Fig. 1. The contributions of this paper are summarized as follows:
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(1) We propose a recommendation method based on Deep interest Network (DIN-
Rec), which can improve the expressive ability of feature model and better capture
the diversity characteristics related to functional semantics and composition
relationships of Mashups.

(2) We present a Doc2simu model to help training industrial deep networks by
extending dataset based on the Doc2vec model and cosine similarity.

(3) We conduct experiments on a real-world dataset crawled from ProgrammableWeb
to evaluate the effectiveness of DINRec.

The rest of this paper is organized as follows. Section 2 presents the process and
structure of DINRec. Section 3 discusses and analyzes the experimental results and
variable parameters. Section 4 describes the related works and Section 5 draws a
conclusion of the paper.

2 Process of DINRec

2.1 Feature Representation

Feature Description. Describing the features of Mashups and their member APIs is
the fundamental task to obtain the functional semantics and composition relationships
of Mashups. Formally, the feature of a Mashup is defined as follow:

Definition 1 (Feature of a Mashup). The feature of a Mashup can be defined as a tuple
F ¼ FM ;FAð Þ. . In this tuple, FM ¼ NM ; TM ;CM ;DMð Þ, where NM is the name of the
Mashup, TM is the tags of the Mashup, CM is the category of the Mashup and DM is the
description text of the Mashup; FA ¼ FA

i j0� i�Ni
� �

NA; TA;CA;DAð Þ, where NA ¼
nA;ij1� i� n

� �
, TA ¼ tA;ij1� i� n

� �
, CA ¼ cA;ij1� i� n

� �
and DA ¼ dA;ij1� i

�
� ng, nA;i, tA;i, cA;i, dA;i represent the i-th API’s name, tag, category and description text
feature, respectively, n is the number of member APIs for each Mashups.

Fig. 1. The framework of DINRec.
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Feature Representation. As the above shows, features in our recommendation tasks
is mostly in a multi-group categorial form, based on this, we use one-hot encoding to
represent features in this paper. One-hot encoding is simple to compute and understand,
and employed frequently when it is necessary to represent a categorical variable in a
neural network, which is normally transformed into high-dimensional sparse binary
features [8, 9]. Mathematically, encoding vector of i-th feature group is formularized as
ti 2 RKi . Ki denotes the dimensionality of feature group i, which means feature group i
contains Ki unique APIs. ti j½ � is the j-th element of ti and ti j½ � 2 0; 1f g, PKi

j¼1 ti j½ � ¼ k.
Vector ti with k ¼ 1 refers to one-hot encoding and k[ 1 refers to multi-hot encoding.
Then one instance can be represent as x ¼ ½tT1 ; tT2 ; . . .tTM �T in a group-wise manner,
where M is number of feature groups,

PM
i¼1 Ki ¼ K, K is dimensionality of the entire

feature space. In this way, the aforementioned instance with one-hot encoding and
multi-hot encoding of features are illustrated as:

0; . . .; 1; . . .; 0½ �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
NM¼PropRover

0; . . .; 1; . . .; 1; . . .; 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NA¼ FeedBurner;GoogleMapsf g

The whole feature set used in our system is described in Table 1. It is composed of four
categories, among which Mashup’s MemberAPIs features are typically multi-hot
encoding vectors and contain rich information of Mashup preferences. Note that in our
setting, there are no combination features. We capture the interaction of features with
deep neural network.

2.2 Deep Interest Network

In this section, we will introduce the framework of Deep Interest Network (DIN). The
architecture of it can be illustrated in the Fig. 2, which consists of several parts:

Embedding Layer. As the inputs are high dimensional binary vectors, embedding
layer is used to transform them into low dimensional dense representations. For the i-th

Table 1. Simple indications of the representation of feature representation.

Category Feature Group GROUP Dimension Type Ids per Instance

Mashup Features Name *104 One-hot 1
Tag *103 One-hot 1

Cate *103 One-hot 1
Mashups’ MemberAPIs features APIs_Names *102 Multi-hot *102

APIs_Tags *10 Multi-hot *10

APIs_Cates *10 Multi-hot *10
Candidate API features API_Name *104 One-hot 1

API_Tag *103 One-hot 1
API_Cate *103 One-hot 1

Content features Map *102 One-hot 1

Game *102 One-hot 1
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feature group of ti, let Wi ¼ wi
1; . . .;w

i
j; . . .;w

i
1Kt

h i
2 RD�Kt represent the i-th embed-

ding dictionary, where wi
j 2 RD is an embedding vector with dimensionality of D.

Embedding operation follows the table lookup mechanism, as illustrated in Fig. 2.

• If ti is one-hot vector with j-th element ti j½ � ¼ 1, the embedded representation of ti is
a single embedding vector ti ¼ wi

j.
• If ti is multi-hot vector with ti j½ � ¼ 1 for j 2 i1; i2; . . .; ikf g, the embedded repre-

sentation of ti is a list of embedding vectors: ei1 ; ei2 ; . . .eikf g ¼ wi
i1 ;w

i
i2 ; . . .w

i
ik

n o
.

Pooling Layer and Concat Layer. Notice that different Mashups have different
numbers of APIs. So that the number of non-zero values for multi-hot behavioral
feature vector ti varies across instances, causing the lengths of the corresponding list of
embedding vectors to be variable. As fully connected networks can only handle fixed-
length inputs, it is a common practice [8, 10] to transform the list of embedding vectors
via a pooling layer to get a fixed-length vector:

ei ¼ pooling ei1 ; ei2 ; . . .eikð Þ ð1Þ

average pooling, which apply element-wise sum/average operations to the list of
embedding vectors. Both embedding and pooling layers operate in a group-wise
manner, mapping the original sparse features into multiple fixed length representation
vectors. Then all the vectors are concatenated together to obtain the overall repre-
sentation vector for the instance.

Activation Unit. From the above steps, we obtain a fixed-length representation vector
of Mashup composition by pooling all the embedding vectors over the Mashup com-
position feature group, as Eq. (1). This representation vector stays the same for a given
Mashup, in regardless of what candidate APIs are. In order to solve this problem, DIN
pay attention to the representation of locally activated intentions to recommend APIs
for Mashup. Instead of expressing all Mashup’s diverse composition with the same
vector, DIN adaptively calculate the representation vector of Mashup’s composition by
taking into consideration the relevance of existing composition to recommend candi-
date APIs for Mashup. And this representation vector varies over different candidate
APIs, so that we can select novel APIs for Mashup incrementally based on the com-
position relationship information.

From the Fig. 2, we can observe that DIN introduces a novel designed local acti-
vation unit. Specifically, activation units are applied on the Mashup composition fea-
tures, which performs as a weighted sum pooling to adaptively calculate Mashup
representation vU given a candidate API A, as shown in Eq. (2):

vU Að Þ ¼ f vA; e1; e2; . . .; eHð Þ ¼
XH

j¼1
aðej; vAÞej ¼

XH

j¼1
wjej ð2Þ

where e1; e2; . . .; eHf g is the list of embedding vectors of composition of Mashup U
with length of H, vA is the embedding vector of API A. In this way, vU Að Þ varies over
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different APIs. a �ð Þ is a feed-forward network with output as the activation weight, as
illustrated in Fig. 2. Apart from the two input embedding vectors, a �ð Þ adds the out
product of them to feed into the subsequent network, which is an explicit knowledge to
help relevance modeling. Local activation unit of Eq. (2) shares similar ideas with
attention methods which are developed in NMT task [11]. However different from
traditional method, the constraint of

P
i wi ¼ 1 is relaxed in Eq. (2), aiming to reserve

the intensity of Mashup composition. That is, normalization with softmax on the output
of a �ð Þ is abandoned. Instead, value of

P
i wi is treated as an approximation of the

intensity of activated Mashup composition to some degree. For example, if a Google
Maps API has been chosen for creating a Mashup of travel class. Given two candidate
APIs of Bing Maps and World Weather Online, World Weather Online may get larger
value of vU (higher intensity of preference) than Bing Maps, because it complements
the function of this Mashup and avoids choosing category-similar APIs for the
Mashup. Traditional attention methods lose the resolution on the numerical scale of vU
by normalizing of the output of a �ð Þ. We have tried LSTM to model Mashup’s invoked
APIs dataset in the sequential manner. But it shows no improvement, we leave it for
future research.

MLP. Given the concatenated dense representation vector, fully connected layers are
used to learn the combination of features automatically. Recently developed methods
[8, 12, 13] focus on designing structures of MLP for better information extraction.

Loss. The objective function used in base model is the negative log-likelihood func-
tion defined as:

L ¼ � 1
N

X
x;yð Þ2S y log p xð Þþ 1� yð Þ log 1� p xð Þð Þð Þ ð3Þ

Fig. 2. DIN model structure.
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where S is the training set of size N, with x as the input of the network and y 2 {0, 1} as
the real label, p xð Þ is the output of the network after the softmax layer, representing the
predicted probability of sample x being recommended.

3 Experiment

3.1 Dataset Description and Doc2simu Preprocess

Dataset Description. To evaluate the performance of different APIs recommendation
methods, we crawled 6415 real Mashups which invoke 1595 APIs from the Pro-
grammableWeb site and the overall statistics of our datasets is show in Table 2. For
each Mashups or APIs, we firstly obtained their descriptive text and then performed a
preprocessing process to get their standard description information. Figure 3 presents
the statistics of APIs distribution in Mashups on the crawled dataset. From the Fig. 3,
we can see that, 53.1%/25.1%/10.4% Mashups respectively invoke 1/2/3 APIs. Totally,
more than 99% Mashups invoke 1–10 APIs. Therefore, we report experiment results
obtained by recommending 1 to 10 APIs for target Mashup in this section.

Doc2simu Preprocess. As the Fig. 3 shows, the dataset mentioned above is relatively
small and most Mashups invoked only a small amount APIs which to a great extent
will cause over-fitting in industrial depth network, and it may not be tolerated for our
recommendation system. To remit this problem, we set up a Doc2simu model to
expand our dataset. We followed several steps to clean and preprocess them.

Table 2. Statistic of our ProgrammableWeb dataset.

Projects Mashup API

Number of entities 6415 1595
Number of categories 375 127
Number of tags 996 964

Fig. 3. Web APIs distribution of Mashups in the crawled dataset.
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First, we retrieved the three sections for each invoked APIs, including the name,
primary category, primary tag and description. Then we processed the description
document of all APIs by using tokenizer and stemming, meanwhile we removed those
illegal characters including digits and special characters (e.g., &, % and $, etc.), and
removed general or stop words in the end. The rest of the words were validated using
dictionary.

Next, we put the ultima corresponding description document of each API into the
Doc2vec [14] model for training and get the corresponding word vector, then the cosine
similarity between each API and all other APIs word vectors is calculated, and the
semantic similarity matrix is obtained. Finally, we select APIs, whose cosine similarity
is more than 0.88 with the member APIs of each Mashups, as the extended simulation
dataset of the corresponding Mashup. Cosine similarity is calculated as follows:

cos x; yð Þ ¼
Pn

i¼1 xi � yið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xið Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yið Þ2

q ð4Þ

where xi and yi represent the elements in the word vector between two different APIs x
and y. Figure 4 gives a detailed introduction to the Doc2simu Preprocess. In addition,
in order to ensure that the composition relationship of Mashups can be taken into
account when training our model, we must filter out Mashups which contain three or
more APIs.

After the above treatment, our dataset has become rich, and with more than 3
MemberAPIs for each Mashups. Features include API_id, cate_id, Mashup’s invoked
APIs_id_list and cate_id_list. Let all MemberAPIs of a Mashup be b1; b2; . . .;ð
bk; . . .; bnÞ, the task is to predict the kþ 1ð Þ-th MemberAPIs by making use of the first
k MemberAPIs. Training dataset is generated with k = 1, 2, …, n-2 for each Mashups.
In the test dataset, we predict the last one given the first n-1 MemberAPIs. For all
models, we use SGD as the optimizer with exponential decay, in which learning rate
starts at 1 and decay rate is set to 0.1. The activation function is set to be sigmoid
function.

Fig. 4. Doc2simu preprocess.
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3.2 Metrics

In recommendation field, Area Under Receiver Operator Characteristic Curve (AUC) is
a widely used metric [15]. It measures the goodness of order by ranking all the APIs
with recommendation, including intra-Mashups and inter-Mashups orders. A variation
of Mashups weighted AUC is introduced in [16, 17] which measures the goodness of
intra- Mashups order by averaging AUC over Mashups. We adapt this metric in our
experiments. For simplicity, we still refer it as AUC. It is calculated as follows:

AUC ¼
Pn

i¼1 #impressioni � AUCiPn
i¼1 #impressioni

ð5Þ

where n is the number of Mashups, #impressioni and AUCi are the number of
impressions and AUC corresponding to the i-th Mashup.

Besides, we introduce Average Precision (AP) to evaluate the performance of all
methods. AP is calculated as the area under the precision-recall curve. AP considers
two measurements (i.e., precision and recall) simultaneously. It has been widely used in
Information Retrieval [18] and Computer Vision [19]. Hence AP is defined as:

AP ¼ 1
2

X
i
Pre ið ÞþPre i� 1ð Þð Þ � Re ið Þ � Re i� 1ð Þð Þ ð6Þ

where Pre ið Þ and Re ið Þ are the precision and recall at the i-th threshold, respectively.
Larger AUC and AP values indicate better performance.

3.3 Performance Comparison

We compare DINRec with the following strong baselines that are designed for Service
Recommendation:

• LR [20]. Logistic regression (LR) is a widely used shallow model before deep
networks for recommendation task. We implement it as a weak baseline.

• NMF (nonnegative matrix factorization) [21]. This approach employs matrix fac-
torization to user-item matrix with a constraint that the factorized matrix is positive.

• FM [19]. This approach is the traditional factorization machine. It concatenates user
id and item id as sparsity feature, and learns the interactions between users and
items to complete the user-item matrix.

• Wide&Deep [8]. In real industrial applications, Wide&Deep model has been widely
accepted. It consists of two parts: (i) wide model, which handles the manually
designed cross product features, (ii) deep model, which automatically extracts
nonlinear relations among features. Wide&Deep needs expertise feature engineer-
ing on the input of the “wide” module. We follow the practice in [13] to take cross-
product of Mashups composition and candidates as wide inputs. For example, in our
dataset, it refers to the cross-product of Mashup rated APIs and candidate APIs.

• DeepFM [13]. This approach combines the power of factorization machines for
recommendation and deep learning for feature learning in a new neural network
architecture.
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In this part, we conduct experiments by randomly removing a part of Mashup-API
pairs from the Mashup-API interaction matrix to make the matrix with different den-
sities (i.e., 10% to 90%) in diverse models. For example, 10% denotes that we remove
90% entries on the Mashup-API matrix. And then we set the 10% entries as training
set, the remaining 90% entries as testing set [22]. The results of performance com-
parison on our dataset is shown in Table 3. Obviously, all the deep networks beat LR
model significantly, which indeed demonstrates the power of deep learning. DeepFM
with specially designed structures preforms better than Wide&Deep. The performance
of FM is better than NMF due to learning the interactions between Mashups and APIs.
In addition, the performance of DeepFM is better than FM due to applying deep neural
network to learn the high-dimensional interactions between Mashups and APIs.
DINRec performs best among all the competitors. We owe this to the design of local
activation unit structure in DIN. DIN pays attentions to the locally related Mashup
composition relationship by soft-searching for parts of Mashup invoked APIs that are
relevant to candidate API. With this mechanism, DIN obtains an adaptively varying
representation of Mashup composition relationship, greatly improving the expressive
ability of model compared with other deep networks. The table only presents the results
of training data sparsity that is 10%, 20%, 80% and 90%, all results and impact of
training data sparsity will be described and discussed in the next subsection.

3.4 Impact of Training Dataset Sparsity

The training dataset sparsity is an important factor to impact recommendation per-
formance. It represents how much information considered by Mashup on APIs we can
utilize. To study impact of training data density, we set it from 10% to 90% with a step
value of 10%. From Fig. 5, it can be found that our DINRec model achieves the best
performance under all training data density. The performance of FM based approaches
(e.g., FM and DeepFM) is better than LR and NMF. The performance of Wide&Deep
is only worse than DINRec and DeepFM. Moreover, the AUC and AP values grow up
with the increasing of training dataset sparsity. It is reasonable because when there is
more training dataset, there is more information between Mashups and APIs will be
collected, which is benefit for improving the recommendation accuracy.

3.5 Impact of Cosine Similarity Setting

In this subsection, we performed an empirical study on the effect of different cosine
similarity setting of DINRec on the results. As mentioned in Section 1, it is necessary
to find a suitable cosine similarity threshold when we extend our datasets by using
Doc2simu model. To investigate the effect of this threshold, we performed an exper-
iment under different setting of the threshold including 0.80, 0.82, 0.84, 0.86, 0.88,
0.90, 0.92, 0.94, 0.96. The results are listed in Fig. 6. It can be observed that when
increasing similarity setting value from 0.80 to 0.96, the AUC and AP value show an
upward trend at first, and then a downward trend. Obviously, the best performance of
AUC and AP value is achieved when the value is set as 0.88. This phenomenon
demonstrates that larger similarity setting values bring better recommendation results.
But why the AUC and AP values drop when the cosine similarity value is greater than
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0.88 is a question that worth thinking about. Indeed, in theory, the higher the similarity
the higher the final result should be better, but it can’ be ignored that the corresponding
amount of training dataset will be less. In the depth learning model, the amount of
training dataset is proportional to the good results. For example, when the similarity is
set to 0.86, there are 199314 training datasets, but when the similarity is set to 0.96, the
training dataset is only 43832.

Table 3. Performance comparison.

Methods Sparsity of training dataset

Training
dataset = 10%

Training
dataset = 20%

Training
dataset = 80%

Training
dataset = 90%

AUC AP AUC AP AUC AP AUC AP

LR 0.6302 0.5353 0.6383 0.5364 0.6331 0.5293 0.6354 0.5345
NMF 0.6552 0.5291 0.6953 0.5358 0.7724 0.5814 0.7921 0.5867
FM 0.7814 0.6742 0.7987 0.6811 0.8184 0.6994 0.8219 0.7067
Wide&Deep 0.8166 0.7198 0.8251 0.7282 0.8479 0.7473 0.8581 0.7526
DeepFM 0.8403 0.7317 0.8488 0.7402 0.8773 0.7677 0.8831 0.7754
DINRec 0.8573 0.7686 0.8652 0.7714 0.8934 0.7934 0.9052 0.8016

(a) AUC (b) AP

Fig. 5. Impact of training dataset sparsity.

(a) AUC (b) AP

Fig. 6. Impact of cosine similarity setting.
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4 Related Works

Web API recommendation technique plays an important role in service-oriented
computing and effectively improves the quality of service discovery [23]. A number of
research works have been done on Web API recommendation. They are mainly clas-
sified into three types: Collaborative filtering-based methods, Semantic based methods,
and network based methods.

Collaborative filtering-based methods make use of user activities and past inter-
actions to learn preferences and generate recommendations. [24] incorporated func-
tional interest, QoS preference and diversity feature to recommend top-N diversified
Web services to users. [25] proposed a collaborative filtering approach to predict
missing QoS based on the information of similar Web users and services. [26] incor-
porate user, topic, and service-related latent factors into service discovery and
recommendation.

The semantic based approaches aimed at finding the highest matching degree
services via semantic similarity computation. [1] proposed a semantic content-based
recommendation approach by analyzing the context of intended service. [26] consid-
ered simultaneously both rating dataset and semantic content dataset of Web services
using a probabilistic generative model. [25] proposed a semantic-based service dis-
covery framework, consisting of user model, context model, service model and a
service discovery process. The similarity usually calculates from services’ functionality
description with some topic model, such as LDA topic model. [27] presented a rec-
ommendation system to design Mashup applications, relying on the multi-dimensional
information, such as similar Mashups, similar Web APIs, cooccurrence and popularity
of Web APIs. [28] advanced the current state of the art for Web API search and ranking
from mashups developers’ point of view, by addressing two key issues: multi-
dimensional modeling and multi-dimensional framework for selection.

The network based approaches consist of two parts: social network and information
network. The social network based approaches tend to apply user interest, social
relationship and link prediction. [29] proposed a combined approach that improves
description-based techniques with these social ranking measures. [30] proposed to
combine current discovery techniques (exploration) with social information (ex-
ploitation). [31] proposed a social-aware service recommendation model by exploring
multi-dimensional social relationships among potential users, topics, Mashups, and
services. [27] presented an approach based on user interest from their Mashup usage
history and social relationships information. [32] proposed a social network-based
service recommendation method with trust enhancement by employing matrix factor-
ization and random walk algorithm. The information network based approaches mainly
employ different kinds of information and multiple semantic meanings of meta paths to
recommend service. [33] proposed an efficient consistent regularization framework to
enhance Mashup discovery by leveraging HIN between Mashups and their compo-
nents. [34] proposed to recommend services for Mashup creation by exploiting dif-
ferent types of relationships in service related HIN. Inspired by the above approaches
and in view of their shortcomings, we propose a novel recommendation approach that
integrates Mashup functional semantics to composition structure approach.
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5 Conclusion and Future Work

This paper introduces an effective service recommendation approach for Mashup
creation based on DIN. Excessive reliance on functional semantic information in
previous research work is a bottleneck for capturing the diversity of Mashups com-
position relationship. To improve the expressive ability of the traditional models, a
novel approach named DINRec is proposed to activate related Mashup composition
relationships and obtain an adaptive representation vector for prior selected APIs which
varies over different candidate APIs. Besides, a novel technique is introduced to help
training industrial deep networks with small-scale dataset and further improve the
performance of DINRec. Our method was examined on extended ProgrammableWeb
dataset. The results demonstrate that our method outperforms several state-of-the art
methods. In future work, neoteric activation unit and textual features of APIs under our
framework deserves further investigation.
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