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Abstract. Previously, the shear design of web and transverse stiffeners was
based on the initial shear buckling in the web without the tension field action.
The American Institute of Steel Construction (AISC) adopted post-buckling
tension field strength into its specifications for stiffened interior web panels but
exclude the post-buckling tension field action for the end web panel. In this
study, a finite element method (FEM) analysis on an isolated panel confirms the
view that post-buckling strength of steel plate girders is attributed to a non-
uniform shear stress distribution along the boundary of the plates, varying from
the critical stress in one corner up to the shear-yield stress in the tension corner
with no need for any diagonal tension. It was also shown that the presence of
flanges with bending strength does rise the shear capacity in the panel. However;
light flanges give a slight increase in shear resistance without diagonal tension,
but heavy flanges are shown to be capable of developing true diagonal tension,
leading to a significant gain in total shear capacity.
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1 Introduction

When a web is subjected to shear, before it buckles, equal tensile and compressive
principal stresses are developed within the plate. If the applied loading is increased, the
buckling of the plate does not limit the shear resistance [1–4].

The post buckling strength was first attributed by Wagner in 1929 to a complete
uniform tension field reacted by rigid flanges [5]. Basler in 1961 observed that in
welded plate girders, the flanges are too flexible to resist the web tension, and he
proposed a partial tension field anchored against the vertical edges of the panel [6]. The
Wagner and Basler models represent the two extreme cases of the many models that
have been proposed that make use of the idea of diagonal tension. Marsh suggested a
different model in which, after initial buckling, the uniform shear distribution along the
boundary changes, with increasing shear stress toward the tension corner, but with no
stress normal to any boundary [7].

Marsh and Ajam use the finite element approach and obtained a numerical solution
that can be formulated in terms of simple physical concepts [8]. A classical stability
analysis for the critical shear stress in a web is based on a uniform shear-stress dis-
tribution. In practice, for a thin web, a uniform distribution of the stress is not possible
if there are initial imperfections [9–11]. As the buckled plates deflect further, the non-
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uniformity stresses at the edges increase and the resistance to shear force is provided by
pure shear stress along the boundaries, which, in the limit, varies from approximately
the initial buckling stress at the compressive corners, to the yield stress in shear in the
tension corners, where the short compressive strips are sufficiently stable [12–14].

An isolated panel subjected to shear distortion is capable of carrying a shear force
well in excess of that causing initial shear buckling, even when the boundary flanges
have no bending strength.

This study covers two conditions of end panels: 1-Shear capacity for a square panel
with flanges that have area (axial stiffness) but no flexural stiffness. 2-Behavior and
shear capacity of a square panel with flexural stiffness flanges.

2 Square Panels with Flanges That Have No Bending
or Torsional Stiffness

The initial analysis is for a single square panel with stiffeners along all four edges, the
stiffeners having an area, and hence axial stiffness, but no flexural rigidity (b). When
this panel is subjected to a shear force, it is evident that there can be no normal stress at
the boundaries and only shear stress can exist there.

ABAQUS program was used in the analysis. Rather than applying a shear loading,
imposed displacements of the stiffeners are used. In Fig. 1, the distance OA′ is reduced,
and distance OB is increased, by an amount d, causing a shear displacement along the
boundary, leading to a shear stress distribution which will be determined by the
analysis.

For a square panel, of depth d and thickness t, subjected to a uniform shear
distribution the elastic buckling stress, scr is given by:

Fig. 1. A square plate finite element grid, 30 � 30 elements with light flanges.
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scr ¼ 9:34 pE t2=ð12ð1� mÞd2Þ ð1Þ

Where m is the Poisson’s ratio and E is the modulus of elasticity. The total shear
force at initial elastic buckling is equal to:

Vcr ¼ scrdt ð2Þ

After buckling, as the applied displacement increases, the shear stress is no longer
uniform but increases in value towards the tension corner. This process is continued
until the web yields in shear at the corner. The total shear force V, is given by the
integration of the shear flux along the boundary. For more displacement of the flanges
the extent of the yield zone increases, but for the case with flanges having no flexural
stiffness, the actual total shear force along the boundary has been shown to decrease,
due to a change in the stress distribution.

Figure 2 shows the variation of the central deflection w/t with respect to the shear
displacements. Irrespective of the assumed initial central deflection, the central
deflection increases only when the imposed shear displacement reaches a certain
critical value scr. This point is the bifurcation point and it agrees very well the linear
buckling theory.

At the bifurcation point the plate deflection is formed by three half-waves in the
compression direction and one half-wave in the tension direction. For non-dimensional
presentation of the results, the value on the abscissa is the ratio D ¼ d = dy, where dy is
the nominal displacement when the shearing strain is sy=G given by:

Fig. 2. Relation between shear displacement and center deflection
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dy ¼ ðd=2
ffiffiffi
2

p
Þðsy=GÞ ð3Þ

Where G is the elastic shear modulus. The ordinate is V=Vy, where V is the total
shear force and Vy ¼ sydt.

Figure 3 shows the behavior of a panel with d=t ¼ 316. t = 1 mm, and a flange
area Af ¼ 5Aw ¼ 5dt.

The variation of the shear stress along the boundary is shown in Fig. 4. The
abscissa is the ratio x/b, and the ordinate is s=sy.

Figure 5 shows the ratio of the central deflection to the thickness plotted along the
compression diagonal, for various displacement values. As shown, the deflection is
formed by three half waves in the compression direction.

The proposed model in square panel resembles two sets of diagonal strips, one in
tension and in compression; limiting to scr at the longest compression diagonal and sy
at the longest tension diagonal. It is assumed that the buckling stress at the boundaries
varies in parabolic form as shown in Fig. 6, the shear stress at a point on the edge is:

ss ¼ scr þðsy � scrÞ ðx=dÞ2 ð4Þ

In which x = distance from the corner; scr = theoretical critical shear stress which
occurs at x = Zero, and sy = yielding shear stress which occurs at x = d.
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Fig. 3. Shear force V displacement
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The principal stress along any line running at 45° remains constant along that line,
with a maximum value of rc ¼ rt ¼ sy. At any point in the web, for values of
ðxþ yÞ\d; x\y; the stresses are given by:

rc ¼ scr þðsy � scrÞ ððx� yÞ=dÞ2 ð5Þ

rt ¼ scr þðsy � scrÞ ððxþ yÞ=dÞ2 ð6Þ

Fig. 4. Shear stress along boundary for varying displacement

Fig. 5. Deflection along compression diagonal
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sxy ¼ scr þð1=2Þ ðsy � scrÞ ððx� yÞ2 þðxþ yÞ2Þ=d2 ð7Þ

The shear force V on a boundary is the area under the shear stress - thickness curve.

V ¼ t
Zd

0

ssdx ð8Þ

The critical shear stress depends upon the boundary conditions of the isolated
panel, but the true boundary conditions for a girder web are difficult to establish
accurately because the degree of restraint imposed by the flanges and by the adjacent
web panels cannot be evaluated. It can be assumed conservatively that all the
boundaries of the web panel are simply supported.

Up to first yield, Eq. 4 represents the variation of the shear stress along the
boundaries. The shear forces in the plate at first yield in the web is obtained by
integrating the shear stress distribution along the edge, giving:

Vw ¼ ð1=3Þð2scr þ syÞdt ð9Þ

For more rigid flanges the ultimate shear force is equal to the shear force up to first
yielding plus the contribution of the flanges in shear.

The failure load can be determined from a consideration of the mechanism
developed in the frame panel. In this model, up to first yielding in shear there is no
normal force at the boundary. As the load increases, rt will increase and rc will reduce
in such way as to conserve the value of shear stress sy at the tension corner, as the
normal force increases. The tension stress in the longer diagonal increases up to the
value of ry, the final condition approaching a series of yielded diagonals strips that
maximum value of the normal force developed at the boundary is t ry/2.

Fig. 6. Square panel under shear force in the proposed model

152 H. Ghanem et al.



3 Square Panels with Flanges That Have Rigidity

A finite element analysis was conducted, for a panel with a high slenderness ratio with
flexural rigidity as shown in Fig. 7. The two tension corners are free to move; one
compression corner is fixed in the X and Y directions. The load is applied at the other
compression corner in X and Y direction. The relative proportions of the flange are
expressed by the ratio of flange area to web area Af =Aw and the ratio b, of plastic
moment strength of the flange ð0:25bf t2f syÞ to that required to resist a tension field

encompassing the whole panel, with an interior hinge at the midpoint ðcyb2t=32Þ, this
b ¼ 8bf t2f =b

2t, which is usually less than 0.1 for practical welded plate girders.

After first yielding in shear at the tension corner, as the load increases the yielded
zone spreads, and normal forces are created on the flanges. Failure occurs when the
hinges have formed in the flanges which together with the yielded zone A A′ A′′, B B′
B′′ form a plastic mechanism as shown in Fig. 8.

By considering a rotation ø to occur at the plastic hinges producing the mechanism
shown in Fig. 9, the work done in the plastic deformation of the flange and web is:

2Vf c/ ¼ 8Mp/þ 4ðry=2Þctc/=2
Vf ¼ 4Mp=cþ ctry=2

ð10Þ

The load is applied at the compression corner in Fig. 9 in the Y direction only, and
is assumed to be reacted by a uniformly distributed load ry t/2 normal to the flange
exerted by the web. Since the plastic hinge will occur at the point of maximum bending

Fig. 7. Finite element test for square panel under compression load at one corner
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moment where the shear is zero, the position of the internal hinge A is obtained by
considering the equilibrium of the beam section A A′. Taking moments about A′, one
obtains:

ðctry=2Þc=2 ¼ 2 Mp ) 4Mp=c ¼ ctry=2
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8 MpðrytÞ

p ð11Þ

The failure load will be equal to the force at first yield plus the contribution of the
flange when the normal forces are developed.

Fig. 8. Hinge formation in the flange of isolated panel

Fig. 9. Formation of two hinges in the flange
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Vu ¼ Vw þVf ð12Þ

In the case of a girder, the internal hinges A′′ and B′′ will not be formed because we
have a continuous web, and the failure load will be determined from a consideration of
the mechanism developed in Fig. 9. Consider a rotation ø at the plastic hinges, the
work is done only on the sections AA′ and B B′. For equal flanges, the distance c for
upper and lower flanges will be equal, and the work done by the axial force in the
flanges will be zero.

The virtual work done in the mechanism is:

Vf c/ ¼ 4Mp/þ ½2ðry=2ÞðctÞ=2�ðc/Þ
Vf ¼ 4Mp=cþðry=2ÞðctÞ ð13Þ

Equation 13 is the same as Eq. 10. The first term of this equation, on the right-hand
side, represents the frame resistance in shear, the second term represents the contri-
bution of the flanges to increasing the web capacity. By using Eq. 11 these two terms
are shown to be equal. Putting Eqs. 9 and 10 into Eq. 12 gives.

Vu ¼ ð1=3Þð2scr þ syÞdtþ ryct ð14Þ

Using the value of c from Eq. 11 in Eq. 14 the ultimate shear force becomes:

Vu ¼ ð1=3Þð2scr þ syÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Mpryt

p ð15Þ

It should be noted that the value of the plastic moment in the flange will be reduced
by the presence of the axial force P′. The value of the effective moment M′ is given by:

M0 ¼ Mpð1� ðP0=PÞ2Þ ð16Þ

Where P is the axial force to yield the flange, equal to Afry.

4 Extreme Cases

From Eq. 14, it can be seen that the shear capacity is composed of two components.
The first component represents the capacity of the web up to first yield without any
contribution from the flange; the second component represents the additional shear
capacity of the flange bending rigidity.

In the case of a girder with very weak flanges, taking account of the reduced
moment resistance due to the axial force in the flange, the value of the flange strength
Mp becomes small and the value of c becomes very small; the second term of Eq. 13
becomes negligible so that.

Vu ¼ ð1=3Þð2scr þ syÞdt ð17Þ
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When the flanges are very strong, the distance of the plastic hinge from the end of
the panel c increases, as shown by Eq. 11. When c because equal to the width b, the
hinges form at the four corners of the panel to form a “picture frame” mechanism, as
shown in Fig. 10.

By substituting the value of c = b = d into Eq. 11 we get:

Mp ¼ d2ryt=8 ð18Þ

When determining the ultimate shear load for any girder, the flange strength should
be evaluated to see whether it exceeds the limiting value given by Eq. 18. If this is so
(it will not often be the case for girders of civil engineering proportions), the expression
for shear capacity is:

Vu ¼ ðð1=3Þð2scr þ syÞþ ryÞdt ð19Þ

5 Comparison of Predicted Shear Strength

Table 1 gives the properties of the plate girder panels. Table 2 gives comparisons of
predicted shear strengths according to the present model with results of tests from a
number of sources. Table 3 summarized the comparison of test results.

Fig. 10. Hinge formation at all corners of the panel
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Table 1. Properties of square panels

Ref Girder t mm d mm Aw tf mm bf mm Af =Aw b

15 TG1 2.72 609.8 1658.0 4.70 101.6 0.29 0.018
15 TG2 2.72 609.8 1658.0 6.55 101.6 0.40 0.034
15 TG14 .965 304.8 294.0 3.12 76.2 0.81 0.093
15 TG15 .965 304.8 294.0 5.00 76.2 1.30 0.224
15 TG16 .965 304.8 294.0 6.45 76.2 1.67 0.451
15 TG17 .965 304.8 294.0 9.32 76.2 2.41 0.850
15 TG18 .965 304.8 294.0 12.95 76.2 3.36 1.593
15 TG19 .965 304.8 294.0 15.52 76.2 4.02 2.004
15 TG20 2.03 304.8 619.0. 3.25 76.2 0.40 0.046
15 TG21 2.03 304.8 619.0. 4.88 76.2 0.60 0.097
15 TG22 2.03 304.8 619.0. 6.48 76.2 0.80 0.207
15 TG23 2.03 304.8 619.0. 9.22 76.2 1.14 0.419
15 TG24 2.03 304.8 619.0. 12.95 76.2 1.59 0.724
15 TG25 2.03 304.8 619.0. 15.54 76.2 1.91 0.914
15 G7T1 4.98 1270.0 6325.0 19.50 310.0 0.96 0.120
16 TG1′ 2.50 1000.0 2500.0 5.06 160.0 0.32 0.019
16 TG2′ 2.50 1000.0 2500.0 10.00 200.0 0.80 0.090
16 TG3′ 2.50 1000.0 2500.0 16.43 200.0 1.31 0.241
16 TG4′ 2.50 1000.0 2500.0 20.16 200.0 1.61 0.366
16 TG5′ 2.50 1000.0 2500.0 29.73 200.0 3.00 0.790
17 PC3 1.0 800.0 800.0 10.0 250.0 3.12 0.431

Table 2. Comparison between test results, P.D.P, Hoglund [18] and Rockey [15]

Girder d/t ry
MPa

ryf
MPa

V P.D.
P. KN

V Hoglund
KN

V Rockey
KN

V Exp
KN

TG1 224 253 253 120.0 140.0 143.0 120.0
TG2 224 253 253 130.0 138.0 142.0 126.0
TG14 361 219 309 24.0 21.0 23.0 25.0
TG15 .361 219 289 29.0 24.0 26.0 29.0
TG16 361 219 249 35.0 29.0 30.0 31.0
TG17 .361 219 315 43.0 37.0 36.0 39.0
TG18 361 219 306 54.0 46.0 44.0 51.0
TG19 .361 219 268 59.0 50.0 48.0 55.0
TG20 150 229 .309 65.0 64.0 68.0 51.0
TG21 150 229 289 73.0 67.0 71.0 71.0
TG22 150 229 .349 84.0 74.0 76.0 79.0
TG23 150 229 .315 96.0 83.0 81.0 81.0
TG24 150 229 .306 114.0 99.0 90.0 96.0
TG25 150 229 .268 121.0 106.0 94.0 104.0

(continued)
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6 Conclusion

The finite element method has been used for the large deflection elastic-plastic analysis
of plates under shear loading, in the post-buckled regime. This study is focused on the
distribution of the stress along the boundaries after buckling in shear, the prediction of
the ultimate shear force and the influence of flange strength on the ultimate shear
resistance. The following points can be made:

• Prior to buckling, the shear stress is uniformly distributed along the boundary. After
buckling, the shear stress distribution becomes non-uniform with a maximum value
at the tension corner. Up to the shear force which causes first yielding at the
junction between the web and the flange at the tension corner, there is no normal
force at the boundaries.

• In most girders used in civil engineering the flanges are light and no useful diagonal
tension is developed before the maximum capacity is reached.

• When the d/t ratio of the panel is small enough that the shear force to cause yielding
exceeds that to cause elastic bucking, no bending is developed in the flanges. The
first yield may take place in the middle of the panel area, due to a combination of
membrane stress and bending stresses.

• The proposed model to predict the ultimate load capacity shear webs in a plate
girder treats the shear strength of the web and the bending strength of the flanges
independently.

• The proposed equation is simple, applies to square panels, give satisfactory results
compared with many tests, and avoids the need for iteration used in other methods.

Table 2. (continued)

Girder d/t ry
MPa

ryf
MPa

V P.D.
P. KN

V Hoglund
KN

V Rockey
KN

V Exp
KN

G7T1 255 253 259 645.0 575.0 605.0 623.0
TG1′ 400 200 280 131.0 119.0 142.0 152.0
TG2′ 400 200 280 174.0 136.0 166.0 160.0
TG3′ 400 200 280 223.0 168.0 196.0 190.0
TG4′ 400 200 280 251.0 191.0 214.0 219.0
TG5′ 400 200 280 323.0 256.0 265.0 309.0
PC3 800 216 362 82.0 49.0 73.0 79.0

Table 3. Ratio of predicted to experimental capacity

Investigator Mean of Vu=Vex Standard deviation Range of Vu=Vex

Hoglund 0.91 0.17 0.62–1.17
Rockey 0.97 0.11 0.82–1.22
P.D.P 1.08 0.11 0.86–1.25
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