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Abstract. Roads are exposed to continuous deterioration because of many
factors such as traffic loads, climate and material characteristics. In Middle East
countries, incredible investments have been made in constructing roads that
necessitate conducting periodic evaluation and timely maintenance and reha-
bilitation (M&R) plan to keep the network operating under acceptable level of
service. The M&R plan necessitates performance prediction models, which
represent a key element in predicting pavement performance. Consequently,
there is always a need to develop and update pavement performance prediction
models specially for fatigue and rutting distresses, which are considered the
most major distresses in asphalt pavement. On the other hand, Artificial Neural
Network (ANN) is considered the best solution to developing such models with
high accuracy due to its brilliant mechanism in training, testing and evaluating
the data. In addition, the ANN approach has the flexibility to change many
parameters such as number of neurons, hidden layers and function type to obtain
more accurate predicted models. The scope of this paper is to develop ANN-
based fatigue and rutting prediction models for asphalt roads. The ANN-based
models were developed using MATLAB 2017b software based on actual field
data obtained from Long-Term Pavement Performance (LTPP) database. The
models were developed for both wet and dry non-freeze climatic zones. Results
indicated that the ANN approach can be used in predicting both fatigue and
rutting distresses with high accuracy as compared with the developed statistical
models’ approach, which were also developed in this study for both fatigue and
rutting distresses.

Keywords: Prediction models - Distress models - LTPP - Neural network -
Modelling - Climatic zone * Maintenance activities + ANN

1 Introduction

The Middle East countries are experiencing tremendous growth in infrastructure
especially in constructing asphalt roads, which require periodic Maintenance and
Rehabilitation (M&R) activities to preserve such investments. To identify M&R
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activities based on yearly basis, future pavement condition should be predicted using
pavement performance prediction models. This task should be implemented through
application of well-designed Pavement Management System (PMS) (Haas and
Zaniewski 1994; Hajek 2011; Zimmerman and Testa 2008). One of the main purposes
of the PMS is to come up with the most cost-effectiveness policies for M&R activities.
Pavement performance is predicted using distress/performance prediction models,
which are considered the heart of the PMS system to quantify pavement deterioration
rate and hence identifying M&R activities in a timely M&R plan supported by budget
requirements (Zimmerman and Testa 2008; Naiel 2010).

Fatigue cracking and rutting or permanent deformation are considered two major
distresses in asphalt pavements that cause structural failure in pavement layers. Hori-
zontal tensile strain at the bottom of the asphalt layer(s) is the main cause for fatigue
cracking; whereas rutting is produced due to vertical compressive strain on the top of
subgrade layer due to weakness of foundation.

Consequently, there is always a need to develop and to update pavement perfor-
mance prediction models embedded in PMS applications. Various performance pre-
diction models had been introduced through the years, some of which are considered
simple, while others are quite complex. There are two streams of pavement perfor-
mance modelling, which are deterministic and stochastic approaches. The major dif-
ferences between deterministic and stochastic performance prediction models are
model development concepts, modelling processor formulation, and output format of
the models. There are different types of deterministic models, such as mechanistic
models, mechanistic-empirical models, and regression or empirical models. The
mechanistic models draw the relationship between response parameters such as stress,
strain, and deflection. The mechanistic-empirical models are oftentimes established in
association with design systems and hence have not been broadly used in PMS but
rather can possibly be applied at a network level. On the other hand, the regression
models represent the link between the performance parameters such as pavement
distresses and the forecasting parameters such as age, traffic loading, pavement material
properties, and thickness (Abo-Hashema 2013; Mubaraki 2010; Radwan et al. 2019).

On the other hand, Artificial Neural Network have been effectively utilized for
some errands including pattern recognition, optimization, function approximation, data
retrieval, and predicting (Mubaraki 2010). ANN utilizes the mathematical emulation of
genetic nervous systems in order to process acquired data and deduce predictive out-
puts after training the network suitably for pattern recognition (Thube 2012). A neural
network comprises of various layers of parallel preparing component, or neurons. At
least one hidden layer exists among an input layer and output one. The hidden layers
neurons are associated with the neurons of a neighbouring layer through weighting
factors which are adjustable via the training procedure of the model. The networks are
structured according to training procedures for particular applications (Thube 2012).

This study focuses on developing ANN-based fatigue and rutting prediction models
for asphalt roads located in both wet and dry non-freeze climatic zones, which represent
most of the Middle East countries such as Egypt using data extracted from the Long-
Term Pavement Performance (LTPP) database. Although, the ANN results were
acceptable and more satisfied to predict Fatigue and Rutting distresses, the present
study seeks for applying a comparison with another approach to show the powerful



ANN-Based Fatigue and Rutting Prediction Models 119

ability of ANN approach and to get the maximum benefit in forecasting fatigue and
rutting distresses. Consequently, concerted efforts were also conducted in this study
during another phase to develop regression prediction models through deterministic
approach to predict fatigue and rutting distresses. Then, an interesting comparison was
performed between results of the developed ANN-based fatigue and rutting models
against similar developed models based on deterministic approach.

Based on the results, it was found that ANN-based models are appropriate to
predict fatigue and rutting distresses with high accuracy due to its brilliant mechanism
in testing and evaluating data. This study is considered as a crucial attempt to not only
develop such models for the Middle East countries due to lack of resources led to
unavailability of such models in most of Middle East countries, but also to compare
between ANN-based and Regression-based fatigue and rutting prediction models.

2 Overview of Pavement Distress Models

Several pavement distress prediction models had been introduced through the years.
The models differ significantly in their generality, their capability to forecast pavement
performance with acceptable accuracy, and requirements of input data. Many of these
models are empirical and were produced for use under specific traffic and climatic
environments. Some of the models are mechanistic-empirical in which the input
parameters are estimated by mechanistic models.

Performance prediction model is defined as a mathematical formula to predict
future pavement deterioration depending on the current pavement condition and other
affecting factors (Mubaraki 2010). Historical database for measures of pavement
condition, age and traffic are extremely important in fitting forecast pavement
deterioration models. These models are the major input to the effective PMS
(Mubaraki 2010).

On the other hand, pavement distress prediction models are exceptionally powerful
for basic leadership process in setting up answers to the inquiries of what, where, when,
concerning support maintenance needs. Additionally, these models are crucial in
identifying a timely M&R plan and when the action plan should start to keep the road
network under acceptable level of service (Vepa et al. 1996).

The factors that could affect fatigue prediction models include age, traffic loading,
pavement condition data, climatic condition, material characteristics, and quality of
construction and maintenance. On the other hand, the factors that could affect rut depth
distress prediction models include internal factors, such as asphalt binder, air voids in
total mix, layers thickness, voids in the mineral aggregate, Marshall stiffness, subgrade
material stiffness, elastic modulus of asphalt layer; and external factors such as traffic
loading and environmental related factors. The availability and accuracy of data defi-
nitely affect the confidence level of the prediction model.
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3 Background of LTPP

The Long-Term Pavement Performance program (LTPP) is the largest pavement per-
formance research program ever undertaken, gathering data from more than 2,000
pavement test sections over a 20-year test period. The single most significant product of
the LTPP program is the pavement database - the largest and most comprehensive
collection of research-quality performance data on in-service highway pavements ever
assembled. LTPP is one of the significant research regions of the Strategic Highway
Research Program (SHRP). Strategic Highway Research Program was the supportive
for LTPP program for the first initial five years. The Federal Highway Administration
(FHWA) had proceeded along with the administration and subsidizing of the program,
since 1991. The LTPP program was overseen via the LTPP Team under the Office of
Infrastructure Research and Development (Radwan et al. 2019; Abo-Hashema and
Sharaf 2009; LTPP 2017; FHWA 2002).

There are two complementary experiments inside LTPP to achieve the objectives.
First, the General Pavement Studies (GPS) utilize the originally constructed current
pavements after the initial overlay and concentrate on the most frequently used
pavement structural design. Specific Pavement Studies (SPS) is considered the second
series of LTPP experiments whose test sections let the factors of critical design to be
performed, controlled, and monitored from the construction date. The results will offer
a preferable understanding of the way to select M&R and design factors which
influence pavement performance. GPS and SPS sets comprise of more than 2,500 test
segments situated on all through North America built in four climate zones: wet-non-
freeze, wet-freeze, dry-non-freeze, and dry-freeze. The LTPP program screens and
gathers asphalt execution information on every single dynamic site. The gathered
information incorporates data to develop seven modules which are: Maintenance,
Inventory, Rehabilitation, Monitoring (Distress, Deflection, and Profile), Traffic,
Materials Testing, and Climatic. The LTPP Information Management System (IMS) is
considered the focal database whereas the information gathered by the program of
LTPP. This database is persistently being produced as more information is gathered
and handled (Abo-Hashema 2013; Radwan et al. 2019).

4 Artificial Neural Networks

ANNs are later computational models characterized in similarity with the natural
attributes to recreate the choice procedure in the cerebrum. They are helpful to inexact
and estimate unknown functions relying upon different and various input esteems. One
of the principle attributes of this methodology is that it speaks to an approach to solve
very complicated and nonlinear issues utilizing only very modest mathematical pro-
cess. Specifically, ANN can be considered as a “black-box” method, since the out-
comes are created without any respects to the causal connections among input and
output. The strategy probability is completely misused when embraced for big data
analysis and it very well may be utilized to create generalized solutions for issues
utilizing big series of data. Like the cerebrum, the ANN is comprised of different
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interconnected neurons, which get input, process the data, and produce output for other
connected neurons (Sollazzo et al. 2017).

In this study, MATLAB software, version 2014b, was used as a tool in developing
a neural network. A multilayer feed-forward backprop ANN model is considered the
most widely used neural network. The system incorporates input layer, at least one
hidden layer and the output layer. Each artificial neuron gets and process data entering
from different neurons and after that hand-off the signs to other neurons. Figure 1
shows Typical structures of ANN (Sollazzo et al. 2017; Abo-Hashema 2013).

Neuron
Hidden Nodes)
Inputs Output
Nodes
Connections
Hidden Layers

Fig. 1. Typical structure of ANN approach

A lot of papers discussed many applications of ANN on pavement Engineering
such as developed an ANN for pavement condition evaluation, predicting present
serviceability index (PSI), forecasting pavement performance using International
Roughness Index (IRI), deducing of cracking progression, and studying of the variables
affecting the compaction stage.

5 ANN-Based Fatigue and Rutting Prediction Models

5.1 Methodology

Figure 2 depicts the methodology adopted in developing the required distress predic-
tion models for fatigue and rutting distresses based on ANN approach using MATLAB
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software version 2014b. The first crucial step is to create a database including all
required data related to the required distresses. The database was created using LTPP
sites located in wet and dry non-freeze climatic zones. Two database sets were created,
one for training procedure and other for testing procedure. Sensitivity analysis using
different numbers of hidden nodes and layers was also conducted on the trained ANN.

Overlaid

Non-freeze LTPP Sites

Period of 25 years
Climatic Zones

Design Cases Fatigue and
Database i)

Distresses

Training

e |ANN Software)|
Training Procedure 3

¥

ot
! Analysis
TeSﬁng Type of Transfer Function
Procedure No. of Hidden Nodes
4 No. of Hidden Layers

Fig. 2. Methodology implemented in this study

5.2 Design Cases Database

LTPP was the main source of data. Therefore, LTPP sites were selected to obtain the
required data according to specific criteria as follows:

Sites located in wet and dry non-Freeze climatic zones

Only overlaid sections were chosen to simulate newly constructed pavement.
Rural sections were selected represented main roads.

Design period or data range was selected for 25 years, starting from 1991

Accordingly, 43 and 57 LTPP sites were selected for wet and dry non-freeze
climatic zones, respectively. Data collection step was then started for the following data
that related to Fatigue and Rutting distresses:

Air temperature (Ta)

Pavement age since overlay (PA)

Traffic loading represented by Equivalent Single Axle Load (ESAL)
Annual Precipitation

Available pavement distresses

Asphalt pavement thickness (T)
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e Material characteristics:
— Resilient modulus of subgrade soil (Mr)
— % Passing the #200 sieve (0.075 mm) of subgrade soil (P»q),
— % Air voids of asphalt mix (V,),
— % asphalt content in the mix (P})
— Moisture content of base/subbase courses (MCy,),
— Moisture content of subgrade soil (MCg), and
— Plasticity index of subgrade soil (PI)

All data were collected on different dates during the 25-year data range. The
collected data have been filtered through a screening process to come up with feasible
data that could be used to develop the required ANN models. The criteria for screening
process are selected as follows:

1. Unavailability and/or insufficient of some distresses data

2. Absence of material characteristics data

3. Illogical data patterns, e.g. distress density should be increased with time not
decreased

Consequently, 42 LTPP sites out of 43 were selected for wet non-freeze climatic
zone; and 34 LTPP sites out of 57 were selected for dry non-freeze climatic zone, as
shown in Table 1. The unit of distress data recorded in the LTPP database is based on
the distress types. The unit of area is accounted for fatigue; on the other hand, the unit
of length or depth is accounted for rutting distress. In addition to the collected distress
data, distress density was calculated by dividing the length or area of distress by the
area of examined section based on the PAVER system (Shahin and Kohn 1981).

For ANN-based fatigue and rutting prediction models, different inputs parameters
are selected, and one output is required, which is fatigue distress density or rut depth.
Sample of collected data is shown in Tables 2 and 3 for wet- and dry-non-freeze
climatic zones, respectively (Radwan et al. 2019).

Two database sets were created, which are training and testing database. Other
training database set was also created and could be used in case of low accuracy rate
based on testing procedure.

All sets of training data were utilized to estimate error gradient and update weights
and biases of the network. Moreover, the validation set error was monitored through
the training procedure. In case of increasing the validation error, training had to be
stopped.

5.3 Training Procedure

To develop performance prediction models for Fatigue and Rutting distresses based on
ANN approach, the ANN network should be trained well using training database. The
training database consists of 206 design cases for both fatigue and rutting distresses.
The process was conducted using MATLAB software. It is noteworthy that MATLAB
software divided the training dataset into two sets for training and validation.
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Table 1. Selected non-freeze LTPP sites.

Site ID | State

'Site ID | State

Wet-Non-Freeze Climatic Zone

12-3997 | Florida (FL) 28-2807 | Mississippi (MS)
12-3996 | Florida (FL) 28-3081 | Mississippi (MS)
12-4106 | Florida (FL) 37-1024 | North Carolina (NC)
12-4107 | Florida (FL) 37-1030 | North Carolina (NC)
12-4108 | Florida (FL) 37-1802 | North Carolina (NC)
12-4097 | Florida (FL) 40-1017 | Oklahoma (OK)
12-9054 | Florida (FL) 40-4163 | Oklahoma (OK)
13-4096 | Georgia (GA) 40-4087 | Oklahoma (OK)
13-4112 | Georgia (GA) 40-4161 | Oklahoma (OK)
13-4113 | Georgia (GA) 40-4165 | Oklahoma (OK)
13-4111 | Georgia (GA) 45-1025 | South Carolina (SC)
13-4420 | Georgia (GA) 5-3048 | Arkansas

1-1021 | Alabama (AL) 48-3729 | Texas (TX)

1-4126 | Alabama (AL) 48-1113 | Texas (TX)

1-4129 | Alabama (AL) 48-1116 | Texas (TX)

1-1001 | Alabama (AL) 48-1093 | Texas (TX)

1-1019 | Alabama (AL) 48-1068 | Texas (TX)

24-1632 | Maryland (MD) | 48-1060 | Texas (TX)

28-1001 | Mississippi (MS) | 48-3609 | Texas (TX)
28-3028 | Mississippi (MS) | 51-1023 | Virginia (VA)
28-3091 | Mississippi (MS) | 51-2021 | Virginia (VA)

Dry-Non-Freeze Climatic Zon

e

4-1002 | Arizona (AZ) 35-0108 | New Mexico (NM)
4-1003 | Arizona (AZ) 35-0103 | New Mexico (NM)
4-1006 | Arizona (AZ) 35-0104 | New Mexico (NM)
4-1007 | Arizona (AZ) 35-0106 | New Mexico (NM)
4-1015 | Arizona (AZ) 35-0105 | New Mexico (NM)
4-1017 | Arizona (AZ) 35-1112 | New Mexico (NM)
4-1021 | Arizona (AZ) 35-0107 | New Mexico (NM)
4-1024 | Arizona (AZ) 35-0109 | New Mexico (NM)
4-1025 | Arizona (AZ) 35-0110 | New Mexico (NM)
4-0113 | Arizona (AZ) 35-0112 | New Mexico (NM)
4-1062 | Arizona (AZ) 35-0101 | New Mexico (NM)
4-0160 | Arizona (AZ) 48-1111 | Texas (TX)
4-1065 | Arizona (AZ) 48-1061 | Texas (TX)
4-6055 | Arizona (AZ) 48-1076 | Texas (TX)
6-8151 | California (CA) 48-3769 | Texas (TX)
6-2004 | California (CA) 48-6060 | Texas (TX)
35-0101 | New Mexico (NM) | 48-1048 | Texas (TX)

Sites to be selected for validation process
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Table 2. Sample of collected data for wet-non-freeze LTPP site.
%Density | Ta, °C | PA, Years | Mr, MPa | Poy | %Va | %MC, | %MCs | PI

Fatigue cracking model

0 24.30 |4 114 - - 4 7 -
6.67 19.40 |14 73 3.50 |- 4 7 2
16.67 21.90 |16.16 65 9.40 | - 3 15 -

Rut depth mm ‘ Ta, °C | PA, Years | ESAL ‘ Annual precipitation | %Va
Rutting model

6 115.89 |5.92 711 17785 17.091
8 16.89 | 15.3 59 11679.30 5.823
10 15.60 ‘12 ‘ 40 129030 7.09
15 119.79 |9.66 1106 | 1418.59 13.993

Table 3. Sample of collected data for dry-non-freeze LTPP sites.
%Density | Ta, °C | PA, Years| Mr, MPa | Py | %Va T, mm | %MC, | %MCs | PI

Fatigue cracking model

11.8 176 [155 87 - |- 221 s 1 (30
3667 [19.1 | 1558 37 - |- [s33 3 7 0
377 185 1741  |[114 |- |- 1635 2 |9 |9

Rut depth mm ‘ Ta, °C ‘ PA, Years | ESAL ‘ Annual precipitation ‘ %Va
Rutting model

11 2270 1825 1925 1219 1163
7 23.10 16.58 768 41 16.3
5 17.70 15.5 ‘ 4 343.4 6.12
4 1610 8416 12 294.6 6.12

5.4 Sensitivity Analysis

The aim of this step is to evaluate the fitness of the developed neural networks as an
efficient way in predicting fatigue and rutting distresses with the most achievable
accuracy that can be obtained. The neural networks are impressed by numerous
parameters that can ensure the greatest possible accuracy such as transfer functions,
number of nodes or neurons, and number of hidden layers.

A multilayer feed-forward backprop ANN model and TANSIG transfer function
are developed to predict pavement fatigue and rutting distresses. The mean square error
(MSE) and the coefficient of determination (R*) were utilized to set the goodness or
performance of models. The R? is defined as the proportion of the variance in the
dependent variable that is predictable from the independent variable(s). A higher
estimation of R? and lower MSE esteem guarantee a superior execution of the model
and are increasingly valuable for forecast (Shafabakhsh et al. 2015).
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The model precision of ANN relies upon the network architecture. Choosing
quantity of the neurons in hidden layer doesn’t have any broad guideline (Shafabakhsh
et al. 2015). Distinctive ANN structures had attempted as far as cycles and hidden layer
numbers. Rutting-Dry Neural Network model was considered as an example for
showing graphs due to massive number of graphs in the study.

Figure 3 depicts the MSE estimations of networks against different neurons in
hidden layer for Rutting-Dry Neural Network model. As shown in Fig. 3, the ANN
with 8, 8, 18 and 20 neurons of hidden layer provided an impression of being the most
ideal structure for predicting fatigue and rutting (Wet and Dry) distresses, respectively.

3.50E-11
3.00E-11
2.50E-11

2.00E-11

MSE

1.50E-11
1.00E-11
5.00E-12

0.00E+00
0 g 10 15 20 25 30 35 40

No. of hidden neurens

Fig. 3. Performance of rutting-dry ANN model under different No. of neurons

As shown in Fig. 3, Dry ANN model with 20 neurons has the lower MSE.
Therefore, it is considered the most appropriate model for forecasting Rutting-Dry
ANN model.

5.5 Testing Procedure

After the network was trained, testing procedure should begin using testing database
extracted from the main developed database. The testing dataset have to be different
from the data used in the training procedure.

The fitting graph between predicted and measured values utilizing the created
Rutting-Dry Neural Network is shown in Fig. 4. As shown, the predicted values are
close to measured values. This shows a solid relationship among the input parameters
of the ANN model and the outputs.

As shown in Fig. 4, R? of data training, validation and testing values are 0.8183,
0.9199, and 0.8026, individually. Consequently, R* values achieved through ANN
modelling method in the study are more than 0.8223 for all sets. The results revealed
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Fig. 4. Comparison between measured and predicted values for dry non-freeze rut depth by
ANN for training data, validation data, testing data, and all data

that the established model has the capability to achieve at least 82% of the measured
data for this model.

Figures 5 and 6 show Error in predicting rut depth for Dry Non-Freeze for training
and testing Dataset, respectively. It can be seen from the figures that the predicted rut
depth for Dry Non-Freeze accompanied with low errors, which are considered positive
for forecasting rut depth values.

According to this, it tends to be reasoned that the suggested neural network can take
in the connection among the distinctive input parameters and outputs. It creates the
impression that established values from the ANN model considered genuinely near the
actual values; also, they are equipped for propagating the input factors and outputs with
high exactness of forecast.
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Fig. 5. Relationship between calculated and predicted rut depth in dry non-freeze zone for
training set.

6 Development of Regression-Based Fatigue and Rutting
Predictions Models

The main objective of the study is to develop pavement performance prediction
models. The objective was achieved in many study phases. The first and second phases
of this study were to develop regression-based pavement deterioration models for
fatigue, rutting, bleeding, ravelling, longitudinal, and transverse distresses. The third
phase of this study was to develop ANN-based fatigue and rutting prediction models
and to compare with regression-based models, which is the subject of this paper. Other
phases are related to comparison between developed models and available published
models; in addition to implementation of the developed models in Egypt roads net-
work, which necessitates performance data in a yearly basis.

A comparison between the ANN-based fatigue and rutting prediction models with
similar ones developed by regression models to examine the suitability of using such
models. Therefore, regression-based fatigue and rutting prediction models, which were
developed during the first and second phases of this study, were used in this com-
parison (Radwan et al. 2019).

Stepwise regression test was performed within 95% confidence interval to come up
with the most effective factors that could affect fatigue cracking and rutting distresses.
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Fig. 6. Relationship between calculated and predicted for rut depth in dry non-freeze for testing
set.

Hence, multiple regression analysis technique was applied to develop fatigue cracking
and rut depth prediction models for wet and dry non-freeze climatic zones using SPSS
software. Several trials were made to develop the required models that best represents
the relation between the distresses with related factors. Therefore, the proposed distress
models of fatigue cracking and rut Depth could be written as follows (Radwan et al.
2019):

Wet-non-freeze zone:

%Fatigue Cracking = (10356 + 1.936xv/PA + 1.422x,/MCs) (1)
Rut Depth = 10.097 — 0.987 x Ln(ESAL) + 0.478xV,, (2)
Dry-non-freeze Zone:
%Fatigue Cracking = (4328 4926VPAL2IVPT) 4 6 14 cos Ta (3)
Rut depth = 21.39 + 0.009xESAL — 1.05 * Ta+0.255xV, (4)

The study of statistical analysis approach showed that goodness of developed models
was found to have bad fit with the same data trends with insufficient accuracy, which
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strengthen applying ANN approach in forecasting fatigue and rutting prediction models
(Radwan et al. 2019).

7 Comparison Between ANN-Based and Regression-Based
Prediction Models

Table 4 presents a comparison between developed ANN-based and Regression-based
models for prediction of fatigue and rutting distresses. The comparison is made to show
the fitness of each approach in the light of goodness of models which include R, MSE
values and percent of error.

Table 4. Comparison between ANN and Regression Approaches for both R? and MSE values

Distress model Climate Statistical regression ANN approach
approach
R? MSE R? MSE
Fatigue cracking Wet 0.544 488.633 0.999 1.23¢7 "2
Dry 0.465 482.729 0.937 8.23¢7 13
Rut depth Wet 0.233 693.294 0.977 2.8¢7!!
Dry 0.479 411.999 0.822 1.42¢7 "2

It was shown from Table 4 that R* value of most developed models for ANN
approach is approximately twice of that R? value of the same developed models by
statistical regression approach. Also, MSE of all developed models by ANN approach
reached approximately to zero. Generally, R? value for all developed models by ANN
approach is not less than 0.822, which confirms that ANN approach is the intelligent
solution to predict fatigue and rutting models in both wet and dry non-freeze zones.

Figures 7, 8, 9 and 10 depict comparison between ANN-based and Regression-
based prediction models through the difference in %error for predicted pavement
distress fatigue and rutting (Wet and Dry), respectively. It was clear from graphs that
the average of %error value for fatigue and rutting (Wet and Dry) by statistical
approach is 4 times the value of the average %error for the same models by ANN
approach, which strongly confirms that ANN approach is the magic technique for
predicting fatigue and rutting (Wet and Dry) models.
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Fig. 9. Measured vs. predicted values for ANN-based and regression-based rut wet models
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Fig. 10. Measured vs. predicted values for ANN-based and regression-based rut dry models

8 Conclusions

Two models were developed to forecast pavement fatigue and rutting distresses for
both wet and dry non-freeze climatic zones using ANN approach. Furthermore,
Regression-based models were also developed using the same data to predict fatigue
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and rutting prediction models. Moreover, a comparison between the two approaches
was conducted. Based on the comparison and evidences of mean square error (MSE),
the coefficient of determination (Rz), and %error values, results showed that the
develoepd prediction models using ANN approach can be utilized in forecasting both
fatigue and rutting distresses with high accuracy as compared to developed statistical
models due to its brilliant mechanism in testing and evaluating a lot of data.
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