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Preface

This volume contains the papers presented at the 17th Asian Symposium on
Programming Languages and Systems (APLAS 2019), held in Bali, Indonesia, between
December 1–4, 2019. APLAS aims to stimulate programming language research by
providing a forum for the presentation of the latest results and the exchange of ideas in
programming languages and systems. APLAS is based in Asia but is an international
forum that serves the worldwide programming languages community.

This year we solicited contributions in the forms of regular research papers and tool
papers. The conference solicts contributions in, but is not limited to, the following
topics: semantics, logics, and foundational theory; design of languages, type systems,
and foundational calculi; domain-specific languages compilers, interpreters, and
abstract machines; program derivation, synthesis, and transformation; program
analysis, verification, and model-checking; logic, constraint, probabilistic, and quantum
programming; software security; concurrency and parallelism; tools and environments
for programming and implementation; and applications of SAT/SMT to programming
and implementation.

APLAS 2019 employed a light weight double-blind reviewing process with an
author-response period. More precisely, we had a two-stage reviewing process, wherein
each paper received at least three reviews before the author-response period, which was
followed by a two-week Program Committee (PC) discussion taking into account initial
impressions of the papers as well as the author responses.

This year APLAS received 50 submissions, out of which 22 papers (21 regular
papers and 1 tool paper) were accepted after thorough reviews and discussions by the
PC. After a rigorous reviewing process and PC discussion, we decided to award a
Distinguished Paper Award to the paper titled “Dissecting Widening: Separating
Termination from Information” by Graeme Gange, Jorge Navas, Peter Schachte,
Harald Sondergaard, and Peter Stuckey. We were also honored to include three invited
talks by distinguished PL researchers:

– Nate Foster (Cornell University, USA): “Network Verification: Past, Present, and
Future”

– Annabelle McIver (Macquarie University, Australia): “Proving that Programs are
Differentially Private”

– Philipp Rümmer (Uppsala University, Sweden): “On Strings in Software Model
Checking”

I am indebted to many people who helped make APLAS 2019 possible. First and
foremost, I sincerely thank the PC, who gave a lot of time and effort throughout the
entire reviewing process. I am also grateful to the sub-reviewers and expert reviewers
for their thorough and constructive reviews. I thank Mirna Adriani (University of
Indonesia, Indonesia) who served as a general chair and worked out every detail of the
conference well in advance. I thank Jens Dietrich (Victoria University of Wellington,



New Zealand) who served as a publicity chair and spent a lot of time (through posters,
social media, mailing list, among others) advertising APLAS 2019. I am also grateful
to the APLAS Steering Committee (especially Wei-Ngan Chin, National University of
Singapore, Singapore, and Atsushi Igarashi, Kyoto University, Japan) who provided a
lot of helpful advice and leadership. I thank recent APLAS PC chairs, especially
Bor-Yuh Evan Chang (University of Colorado Boulder, USA) and Sukyoung Ryu
(KAIST, South Korea) for their helpful advice. Finally, I thank Eelco Visser and Elmer
van Chastelet for their very helpful conf.researchr.org conference management system,
as well as Andrei Voronkov for the very helpful EasyChair conference management
system.

Last but not least, I would like to thank the organizers of associated events that
helped make APLAS 2019 a success: (1) The Poster and Student Research
Competition, organized by Andreea Costea (National University of Singapore,
Singapore) and (2) Workshop on New Ideas and Emerging Results (Wei-Ngan Chin
and Atsushi Igarashi).

September 2019 Anthony W. Lin

vi Preface
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Network Verification: Past, Present,
and Future (Invited Paper)

Nate Foster

Cornell University, Ithaca, NY, USA

Abstract. Networks today achieve robustness not by adhering to precise formal
specifications but by building implementations that tolerate modest deviations
from correct behavior. This philosophy can be seen in the slogan used by the
Internet Engineering Task Force, “we believe in rough consensus and running
code,” and by Jon Postel’s famous dictum to “be conservative in what you do,
be liberal in what you accept from others.” But as networks have grown in scale
and complexity, the frequency of faults has led to new interest in techniques for
formally verifying network behavior.

This talk will discuss recent progress on practical tools for specifying and
verifying formal properties of networks. In the first part of the talk, I will present
p4v, a tool for verifying the low-level code that executes on individual devices
such as routers and firewalls. In the second part of the talk, I will present
NetKAT, a formal system for specifying and verifying network-wide behavior.
In the third part of the talk, I will highlight some challenges and opportunities
for future research in network verification.
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Proving that Programs Are Differentially
Private

Annabelle McIver1(B) and Carroll Morgan2

1 Department Computing, Macquarie University, Sydney, Australia
annabelle.mciver@mq.edu

2 University of New South Wales and Data61, Sydney, Australia

Abstract. We extend recent work in Quantitative Information Flow
(QIF) to provide tools for the analysis of programs that aim to imple-
ment differentially private mechanisms. We demonstrate how differen-
tial privacy can be expressed using loss functions, and how to use this
idea in conjunction with a QIF-enabled program semantics to verify dif-
ferentially private guarantees. Finally we describe how to use this app-
roach experimentally using Kuifje, a recently developed tool for analysing
information-flow properties of programs.

Keywords: Quantitative Information Flow · Probabilistic program
semantics · verification · privacy · Differential privacy

1 Introduction

This paper concerns the verification of privacy properties of programs. Our par-
ticular focus is differential privacy and how to prove that implementations of
privacy-style mechanisms satisfy a differentially private property. Whilst differ-
ential privacy has been much studied as a mathematical theory there is further
work to be done in ensuring that its properties are faithfully implemented in a
programming language. This is particularly important because implementations
are rarely transcriptions of mathematical functions, and program code could
present very differently from the mathematical function it purports to compute.
There are several important approaches for tackling this problem [9,13] from a
programming languages perspective. In this paper we study it as a verification
exercise using a programming semantics based on the Quantitative Information
Flow (QIF) paradigm.

Quantitative information flow is designed to model the severity of risks asso-
ciated with any information leaks in systems that process confidential informa-
tion. QIF consists of three components. The first is a model for confidential
information (or “secrets”) based on probability distributions over possible val-
ues that a secret could take. The second is a model of a mechanism (or program)

This research was supported by the Australian Research Council Grant DP140101119.

c© Springer Nature Switzerland AG 2019
A. W. Lin (Ed.): APLAS 2019, LNCS 11893, pp. 3–18, 2019.
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4 A. McIver and C. Morgan

which describes how the mechanism’s external outputs affect the flow of infor-
mation about the secret. The third is a model of an adversary (as a gain or loss
function) operating within a specific scenario describing how an adversary could
exploit any flow that has occurred. A QIF analysis takes these elements and then
interprets the severity of the information leak relative to the given adversarial
scenario.

Elsewhere [3] it has been shown how to model differential privacy as a QIF
mechanism and here we extend that idea by introducing an adverarial scenario
(or loss function) that can be used to verify whether a mechanism satisfies a
differential privacy guarantee. We also show how it can be applied directly to a
QIF-enabled semantics of a sequential programming language [16,17] to verify
differential privacy. Finally we describe how a QIF-enabled interpreter Kuifje
[15] is able to verify experimentally that sequential programs satisfy differentially
private properties.

In Sect. 2 we review the fundamentals of QIF, and in Sect. 3 we show how to
express a the notion of differential privacy as an adversarial scenario. In Sect. 4
we recall how to use the basic QIF ideas in a QIF-enabled program semantics
and illustrate how to use it to verify a small example based on the familiar
random-response protocol of Warner [21].

2 Review of Quantitative Information Flow

The informal idea of a secret is that it is something about which there is some
uncertainty, and the greater the uncertainty the more difficult it is to discover
exactly what the secret is. For example, the name of one’s first primary school
teacher might not be generally known, but if the gender of the teacher is leaked,
then it might rule out some possible names and make others more likely. Sim-
ilarly, when some information about a secret becomes available to an observer
(often referred to as an adversary) the uncertainty is reduced, and it becomes
easier to guess its value. If that happens, we say that information (about the
secret) has leaked, or equivalently that information flow has occurred.

Quantitative Information Flow (QIF) makes this intuition mathematically
precise. Given a range of possible secret values of (finite) type X , let DX be the
space of probability distributions over X . We model a secret as a probability
distribution of type DX , because it ascribes “probabilistic uncertainty” to the
secret’s exact value. Given π:DX we write πx for the probability that π assigns
to x:X with the idea that the more likely it is that the real value is some specific
x then the closer πx will be to 1. Normally the uniform distribution over X
models a secret which with equal likelihood could take any one of the possible
values drawn from its type and we might say that, beyond the existence of the
secret, nothing else is known. There could, of course, be many reasons for using
some other distribution, for example if the secret was the height of an individual
then a normal distribution might be more realistic. In any case, once we have
a secret, we are interested in analysing whether an algorithm, or protocol, that
uses it might leak some information about it. To do this we define a measure for
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uncertainty, and use it to compare the uncertainty of the secret before and after
executing the algorithm. If we find that the two measurements are different then
we can say that there has been an information leak.

The original QIF analyses of information leaks in computer systems used
Shannon entropy [18] to measure uncertainty because it captures the idea that
more uncertainty implies “more secrecy”, and indeed the uniform distribution
corresponds to maximum Shannon entropy (corresponding to maximum “Shan-
non uncertainty”). More recent treatments have shown however that Shannon
entropy is not the best way to measure uncertainty in security contexts because
it does not necessarily model scenarios relevant to the goals of the adversary. In
particular there are some circumstances where a Shannon analysis gives a more
favourable assessment of security than is actually warranted if the adversary’s
motivation is taken into account [19].

Alvim et al. [5] proposed a more general notion of uncertainty based on
“gain functions”. Here we shall use its dual formulation namely loss functions.
A loss function measures a secret’s uncertainty according to how it affects an
adversary’s actions within a given scenario. We write W for a (usually finite) set
of actions available to an adversary corresponding to an “attack scenario” where
the adversary tries to guess something (e.g. some property) about the secret.
For a given secret x:X an adversary’s choice of w: W results in the adversary
losing something beneficial to his objective1. This loss can vary depending on the
adversary’s choice (w) and the exact value of the secret (x). The more effective
is the adversary’s choice in how to act, the more he is able to overcome any
uncertainty concerning the secret’s value thereby losing less compared to his
losses in the same scenario but without the benefit of the leaked information.

Definition 1. Given a type X of secrets, a loss function �: W×X → R is a
real-valued function such that �(w, x) determines the loss to an adversary if he
chooses w and the secret is x.

A simple example of a loss function is given by br, where W:= X , and

br(x, x′) := 0 if x = x′ else 1. (1)
For this scenario, the cost to the adversary if he correctly guesses the value of

a secret is 0, but 1 if he guesses incorrectly. Elsewhere the utility and expressivity
of loss functions for measuring various attack scenarios relevant to security have
been explored in more detail [4,5]. Given a loss function we define the uncertainty
of a secret in DX relative to the scenario it describes: it is the minimum average
loss to an adversary.

Definition 2. Let �: W×X → R be a loss function, and π:DX be a secret. The
uncertainty U�[π] of the secret wrt. � is:

U�[π] := min
w∈W

∑

x∈X
�(w, x)×πx.

1 Alvim et al. explained this as a gain to benefit the adversary; couching the interpre-
tation as losses is mathematically equivalent but the formulation as losses turns out
to be more convenient for reasoning about programs [17].
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For a secret π:DX , the uncertainty wrt. br in particular is Ubr[π]:=
1− maxx:X πx, i.e. the complement of the maximum probability assigned by π to
possible values of x. The adversary’s best strategy for minimising his loss would
therefore be to choose the value x that corresponds to the maximum probability
under π.

A mechanism is an abstract model of a protocol or algorithm that uses
secrets. As the mechanism executes we assume that there are a number of observ-
ables that can depend on the actual value of the secret. We define Y to be the
type for observables. The model of a mechanism now assigns a probability that
y:Y can be observed given that the secret is x. Such observables could be sample
timings in a timing analysis in cryptography, for example.

Definition 3. A mechanism is a stochastic matrix2 C: X×Y → [0, 1]. The value
Cxy is the probability that y is observed given that the secret is x. Given a (prior)
secret π:DX we write π〉C for the joint distribution over X×Y defined

(π〉C)xy := πx×Cxy.

For each y: Y, the marginal probability that y is observed is py:=
∑

x:X (π〉C)xy.
And for each observable y the corresponding posterior probability of the secret
is the conditional π|y:DX defined (π|y)x:= (π〉C)xy/py.3 (It is undefined if py is
zero.)

Now consider the secret space with only two values, X := {c,¬c} and the
channel inc given below which produces two observations A and B. If the secret
is c then A will be observed with probability 1/4 and B will be observed with
probability 3/4. Alternatively if the secret is ¬c then A will be observed with
probability 3/4 and B will be observed with probability 1/4.

inc:=
(

A B

c 1/4 3/4
¬c 3/4 1/4

)
(2)

Intuitively, given a prior secret π, the entry πx×Cxy of the joint distribution
π〉C is the probability that the actual secret value is x and the observation is
y. This joint distribution contains two pieces of information: the probability py

of observing y and the corresponding posterior π|y which would then represent
the adversary’s updated view about the uncertainty of the secret’s value. In our
example above, if π is the uniform distribution over {c,¬c} then pA = pB = 1/2.
On the other hand the posterior π|A assigns a probability of 1/4 that the secret
is c, an event to which π|B assigns a probability of 3/4. This implies that if A
is observed the adversary is likely to decide that the secret is ¬c, whereas if he
observes B then he will most likely determine that the secret is c. The extent
to which the adversary can use the leaked information can be understood by

2 Stochastic means that the rows sum to 1.
3 We use py and π|y for typographical convenience. Notation suited for calculation

would need to incorporate C and π.
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comparing the uncertainties of the posteriors with the uncertainty of the prior.
For example if U�[π|A] is strictly less than U�[π] then the adversary is indeed
able to use the information leaked by inc to benefit himself within the scenario
defined by the loss function �.

More generally if the risk of the posterior decreases wrt. a scenario defined
by �, then information about the secret has leaked and the adversary can use it
to decrease his loss by changing how he chooses to act. The adversary’s average
overall loss, taking the observations into account, is defined to be the average
posterior uncertainty (i.e. the posterior distribution, weighted according to their
respective marginals):

U�[π〉C] :=
∑

y∈Y
py×U�[π|y] , where py, π|y are defined at Definition 3. (3)

Now that we have Definitions 2 and 3 we can start to investigate whether the
information leaked through observations Y actually have an impact in terms of
whether it is useful to an adversary. It is easy to see that for any loss function �,
prior π and mechanism C we have that U�[π] ≥ U�[π〉C]. In fact the greater the
difference between the prior and posterior vulnerability, the more the adversary
is able to use the leaked information within the scenario defined by �. In a
mechanism that leaks no information at all, its prior and posterior vulnerabilities
are the same under any scenario.

In our example above, can compare the overall losses without the benefit
of inc’s leaks and with them as follows. Since Ubr[π] = 1/2 and Ubr[π〉inc] =
1−3/4 = 1/4, we can see that with the benefit of inc’s leaked information the
adversary is able to halve his losses (in the Bayes’ Risk scenario).

Using the idea of quantifying losses, we can define a robust qualitative com-
parison between mechanisms. We say that one mechanism M ′ is more secure
than another M exactly when the adversary’s losses under M ′ are always at
least those under M in every possible scenario defined by a prior and a loss
function.

Definition 4. Given mechanisms M,M ′ we say that M ′ is more secure than
M , or M � M ′ if for all loss functions � and priors π we have that

U�[π〉M ] ≤ U�[π〉M ′].

Given the observation above that U�[π] ≥ U�[π〉C] we can say (now formally)
that the mechanism that releases no information is the most secure amongst all
mechanisms.

In the next section we will review how to specialise the above ideas to obtain
a QIF formulation of differential privacy which can then be applied directly to
verify programs.

3 Differential Privacy as a Problem in QIF

Dwork’s original definition of differential privacy [12] relates to databases and
protections for individuals whose data might or might not be contained in the
database. We generalise the definition for the context of secrets described above.
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Given a (privacy) mechanism M : X→DY and ε>0, we say that M is ε-
differentially private with respect to secrets x, x′ if:

∫

M.x

ζ ≤ eε ×
∫

M.x′
ζ, (4)

where ζ : Y → R is any (measurable) function, and we write
∫

γ
ζ for the weighted

average of ζ with respect to the distribution γ ∈ DY. More general definitions of
differential privacy [11] include a metric between secrets which are incorporated
in constraints such as (4), so that:

∫

M.x

ζ ≤ eε×d(x,x′) ×
∫

M.x′
ζ (5)

must hold, where d(·, ·) is a metric on values. Here the metric provides a measure
of similarity between alternative values, with a greater divergence between values
implying a possible greater variation in the distributions over outputs. In our
definitions below we use the simpler (4), but note here that they can easily be
extended to include a metric as in (5).4

Alvim et al. [3] show that when a mechanism is modelled as a channel the
above Definition (4) is equivalent to comparing rows of channels relating to x, x′.
In particular (4) applied to a channel M says that M is ε-differentially private
for x, x′ if

Mxy ≤ eεMx′y and Mx′y ≤ eεMxy (6)

for all y ∈ Y. Notice that (6) compares two channel rows corresponding to secret
values x, x′. It turns out that we can do the same thing using loss functions.
Given a pair v:= (v1, v2) ∈ X×X we write

←
v for the left component v1 and

→
v for

the right component v2. We say that a subset of pairs V ⊆ X×X is symmetric
and irreflexive if whenever (x, x′) ∈ V then also (x′, x) ∈ V and (x, x) 	∈ V for
any x.

Definition 5. Given are ε>0, and W:= V ∪{�}, where V ⊆ X×X is symmetric
and irreflexive. We define dpε, the ε-differentially private loss function relative
to W:

dpε(w, x) = −1 , if w 	= � ∧ ←
w = x

dpε(w, x) = eε , if w 	= � ∧ →
w = x

dpε(w, x) = 0 , if w 	= � ∧ ←
w 	= x 	= →

w
dpε(�, x) = 0.

Note that for π ∈ DX we see that Udpε
[π] = minx�=x′(πx×eε − πx′)min 0,

where the minimisation is over the relevant pairs (x, x′) defined by V. This means
that if Udpε

[π] ≥ 0 then for each x 	= x′ we must have that πx×eε − πx′ ≥ 0,

4 The revised definition would change the second line of Definition 5 to be

dpε(w, x) = eε×d(
←
w,

→
w) , if w �= � ∧ →

w= x.
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which is reminiscent of (4). It turns out that this idea can indeed be applied to
privacy, as follows.

Theorem 1. Given are ε > 0, and M a mechanism interpreted as a channel,
and let υ be the uniform distribution in DX . Then M satisfies ε-differential
privacy if and only if

Udpε
[υ〉M ] = 0.

Proof. It is clear that Udpε
[υ〉M ] ≤ 0, since the adversary is always able to choose

action � for a loss of zero to the adversary. If it turns out that Udpε
[υ〉M ] < 0,

it implies by (3) that there is some observation y such that the adversary can
choose some w ∈ V that gives an average negative loss, i.e. that Udpε

[υ|y] < 0
for some observation y. Let (x, x′) = w be the action that produces that negative
minimum loss for this y. We reason as follows:

Udpε [υ|y ] < 0

⇒ ∑
x′′∈X dpε(w, x′′)×Mx′′y/|X| < 0 “Definition 3 for υ|y and choice of w Definition 5”

⇒ eεMx′y/|X| − Mxy/|X| < 0 , “Definition 5, with w = (x, x′)”

implying from (6) that M is not differentially private.
On the other hand if Udpε

[υ〉M ] ≥ 0, it must mean that eεMx′y|/X| −
Mxy/|X | ≥ 0 for all choices of x, x′, y and so M is ε-differentially private.

A simple corollary is that any mechanisms that are more secure than some
ε-differentially private mechanism M , must also be ε-differentially private.

Lemma 1. If M,M ′ are two mechanisms and M � M ′, then if M is ε-
differentially private, so is M ′.

Proof. We reason as follows:

Udpε
[υ〉M ′]

≥ Udpε
[υ〉M ] “M � M ′, Definition 4”

≥ 0 , “Theorem 1 for M”

implying that M ′ is ε-differentially private, also by Theorem 1.

Observe that when M fails to be ε-differentially private it is because the
adversary is able to reason that the secret is more likely to be one value rather
than another by an amount distinguishable by eε.

Recall the mechanism inc from (2). Now from Definition 5 and Theorem 1
we see that inc is log 3 differentially private5 but not log 2 differentially private,
since

Udplog 2 [υ〉inc] < 0 ≤ Udplog 3 [υ〉inc].
Next we prove the familiar additive law for differentially-private mechanisms.

Recall that the additive law determines that if the secret is accessed first by
M and then by M ′ then the combined access represents a mechanism with
5 We use logs base e throughout.
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(differential privacy) parameter the sum of those of M and M ′. From (3) we
can see that U�[υ〉M ] is determined by the posteriors, and Theorem 1 teaches
us that whether or not a mechanism satisfies a differentially private property is
therefore determined by the “unpredictability” of its posteriors, defined next.

Definition 6. Let π be a (prior/posterior) distribution in DX , and let ε > 0.
We say that π is dpε-unpredictable if Udpε

[π] ≥ 0.

The uniform distribution υ of the whole type is dp0-unpredictable, and a
consequence of Theorem 1 is that a mechanism is ε-differentially private if and
only if all posteriors in u〉M are dpε-unpredictable. In cases where the prior π is
known, and it is not uniform, we can see that unpredictability of the posteriors
π〉M are bounded by π’s unpredictability and the ε-privacy of M .

Lemma 2. Let π ∈ DX be dpε-unpredictable, and let M be ε′-differentially pri-
vate. Then Udpε+ε′ [π〉M ] = 0.

Proof. (Sketch.) We observe first that by assumption we have that for (relevant)
x, x′ ∈ X and any y ∈ Y, we know that πx−eεπx′ ≥ 0 and Mxy−eε′

Mx′y ≥ 0.
Rearranging, we have:

πx ≥ eεπx′ ∧ Mxy ≥ eε′
Mx′y

⇒ πx×Mxy ≥ eε+ε′
πx′×Mx′y , “arithmetic”

from which we deduce that πx×Mxy − eε+ε′
πx′×Mx′y ≥ 0. This implies that

Udpε+ε′ [π|y] = 0 for the posterior π|y. Hence by (3) we must have Udpε+ε′ [π〉M ] =
0 as well.

For the composition of two differentially private mechanisms, if the posteri-
ors of the composition written (υ〉(M ;M ′)) are formed from the posteriors of
(υ|y〉M ′), where υ|y is any posterior of (υ〉M), then it follows that the unpre-
dictability of all the posteriors (υ〉(M ;M ′)) are determined by Lemma 2. In
fact we shall see in our semantics for programming language this is case (see
Section 4), thus for such a composition we have the following additive law.

Corollary 1. Let M be ε-differentially private, and M ′ be ε′-differentially pri-
vate. The composition M ;M ′ is ε+ε′-differentially private.

Proof. (Sketch.) This follows if all posteriors of (υ〉(M ;M ′)) are dpε+ε′-
unpredictable. But each such posterior is exactly one of the posteriors of
υ|y〉M ′ for some posterior υ|y of (υ〉M) (see discussion above). Since M is
ε-differentially private we have that υ|y must be dpε-unpredictable; therefore by
Lemma 2 it must be that all posteriors of (υ|y〉M ′) are dpε+ε′-unpredictable since
M ′ is ε′-differentially private.

In the remainder of the paper we show how to apply these ideas to the
verification of programs that implement differential privacy.
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4 QIF in Programming Languages

Elsewhere [16] we introduced a probabilistic semantics applicable to a small
sequential programming language. It embeds QIF ideas within a probabilistic
semantics based on the well known probability monad [14].

4.1 The Probabilistic Monad for Information Flow

Standard models of (sequential) probabilistic programs are normally based on
Markov Processes with type A → DA. In this sense programs can be thought of
as mapping a base type A to a probability distribution (also) over type A. In
QIF however, as has been noted, the mathematical essentials for understanding
information flows are priors, posteriors and marginals. Setting A to DX that
gives the type of a QIF-enabled model for programs as DX → D(DX ), or DX →
D

2X .
We call an object of type D

2X a hyper-distribution over X . It turns out that
hyper-distributions exactly match the structure of posteriors and marginals dis-
cussed above. Recall the mechanism inc described at (2) and that the observa-
tions labelled A and B both occurred with probability 1/2 (in the given scenario
of a uniform prior) with corresponding posteriors π|A and π|B . Formatted as a
hyper-distribution, this scenario can be presented as:

1
2
(π|A) ⊕ 1

2
(π|B), (7)

where we use the operator ⊕ to indicate addition at the level of DX considered as
a “vector space”, so that a hyper-distribution is a weighted ⊕-sum of posteriors
considered as individual (1-summing) vectors.

In (7) the outer distribution corresponds to the marginal and the inner distri-
butions corresponds to posteriors. Moreover for a hyper-distribution Δ ∈ D

2X ,
we write Δδ for the outer probability corresponding to inner δ; we can therefore
define the average uncertainty relative to Δ as:

U�(Δ) :=
∑

δ

U�[δ] × Δδ.

If we let [π〉M ] be formatted as a hyper-distribution as sketched above, we can
see clearly that U�[π〉M ] returns exactly the same value as (3) for π〉M as a joint
distribution, showing that the average posterior uncertainty does not depend
on the names of the observations, but only on how a mechanism determines
marginals and posteriors [5,6]. With this in mind we can define a QIF-enabled
semantic space.

Definition 7 ([16,17]). Let X be a (finite) state space. The space of programs is
defined to be the set of functions from priors to hyper-distributions DX → D

2X .
If P, P ′ : DX → D

2X are programs then we say that P � P ′ if U�(P.π) ≤
U�(P ′.π) for all loss functions � and priors π.
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Once a program is modelled as a function DX → D
2X , it turns out that a

standard Giry Monadic setting provides the basic functionality for sequencing
and assignments. We summarise the semantics for three important operators
here, and refer elsewhere for full details [16]. Recall the Giry Monad defined by
the triple (D, η, avg), where the type constructor D is a functor, η maps an object
of type A to a point distribution in DA and avg : D2A → DA takes the weighted
average of a hyper-distribution, defined

(avg.Δ)a :=
∑

δ∈DX
Δδ×δa.

Here we use + and
∑

to mean the normal summation between numbers.
We can interpret a programming language in terms of Definition 7 as follows,

where we use [[·]] to map a program fragment to a function DX → D
2X .

1. Assignment. Let f : X → DX be a function that maps states in X to
distributions over states in X .6

[[x:= f(x)]].π := (η ◦ avg ◦ Df).π.

2. Sequence. Let P,Q be program fragments.

[[P ;Q]].π := (avg ◦ D[[Q]] ◦ [[P ]]).π.

3. Print statement. Let g be a function from X to Y.

[[Print g]].π :=
⊕

y py(π|y),
where py:= ((Dg).π)y, and π|y is the posterior probability distribution, given
that y is an output of g, and ⊕ is the summation over 1-summing vectors
described above.

The assignment statement is used to assign a value to a variable x according
to a distribution, where informally we assume that the value of the variable x
is value x ∈ X . We use the unit of the Giry Monad to produce a point hyper-
distribution. Sequence is defined in the standard monadic manner, by first apply-
ing [[P ]] to the input and then D[[Q]] is applied to [[P ]]’s output hyper-distribution,
with a final application of avg applied to amalgamate equivalent posteriors. The
action of D[[Q]] is to apply [[Q]] to each of the posteriors in the output of [[P ]],
thus satisfying the condition for Corollary 1. Finally, notice that the Print state-
ment acts like a channel but without creating the joint distribution between the
observables and the prior. Instead it formats the (equivalent) result directly as
a hyper-distribution. A full description of the QIF-aware program semantics is
detailed elsewhere [16].

6 This is essentially a Markov update of the state.
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5 Example: Implementing Plausible Deniability

Consider the small program in Fig. 1 which forms the basis for a random-response
program. A participant in a survey is asked to input a response resp to a yes/no
question. If they are concerned about the security of the method of collection,
in particular whether their answer will be leaked, they might decline to par-
ticipate. In order to encourage participation, Warner [21], devised a random
response protocol which gives participants “plausible deniability” in regards to
their responses, if the results of the survey are published.

In Fig. 1 we see the details of the algorithm SingleRespondent implemented
as a sequential program. The participant’s answer is stored in a variable resp (1
for “yes” and 0 for “no”). The variable count is used to store and then publish
the result of the data collection. First a random result is stored in a variable coin,
where we use “0[1/2]1′′ to mean that the value is randomised between 0 or 1,
using an unbiased “coin toss”. Next the variable count is updated, and again the
update is randomised between either incrementing count with the value stored
previously in coin, or with the participant’s choice resp. The last act is then to
publish the final value of count.

A participant worried about the collection procedure might wonder whether
the data collected is an accurate recording of their real response resp. The answer
is “it depends”, in the sense that the final value of count could be either 1
or 0 whatever the value of resp, with the difference between the initial values
of resp observed through the probabilities ascribed to the possible values of
count observed. However that difference is bounded by a differentially private
guarantee. This fact can be proven by showing that SingleRespondent is log 3
differentially private with respect to the two conditions defined by resp.

A traditional QIF analysis would construct an explicit channel for the random
response protocol to describe how information about the secret (in this case resp)
can leak. The result of this exercise turns out to be the of the channel inc at (2).
From, this we can initialise resp to be either 0 or 1 with probability 1/2 each;
finally we can compute Udplog 3 [υ〉inc] and observe that it is 0.

An alternative approach is to interpret SingleRespondent directly in the
QIF semantics above. First we define a mechanism over the secret resp as follows.
Let δ ∈ D{0, 1}. Define a mechanism M : DX → D

2X 7

M.δ := [[SingleRespondent]].δ.

Now we examine Udplog 3(M.υ) = 0, showing similarly that the difference in resp =
0 and resp = 1, is that for any observation of count, the corresponding posteriors
differ in probability according to the multiplicative contstraint elog 3 = 3.

7 Strictly speaking the state is determined by the values of all the program variables.
However the only secret that we worry about for this example is the value of resp.
These details can all be handled by adjusting the definition of dpε.
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Fig. 1. Randomised response, SingleRespondent

5.1 Random Response Protocol

An implementation of a full random response protocol is set out in Fig. 2. For
N participants, each participant executes the single response protocol defined at
Fig. 1.

Fig. 2. Randomised response with N participants

The privacy for each individual is whether their specific response is private.
For that we can use the results above to show that their individual response is
protected through Fig. 1 considered as a log 3 differentially private mechanism.
Moreover within the context of the other responses, we are able to show that
the other respondents do not affect that privacy level. For example, for the final
participant in Fig. 2, the other participants’ responses reveals nothing about
the final participant’s response, thus the protocol is equivalent to R;R′ where
R corresponds to the collection of the first N−1 participants responses and
R to the collection of the final participant’s response. We have that R is 0-
differentially private with respect to the final participant’s response and that R′

is log 3-differentially private. Hence by the additive law Corollary 1 we have that
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the full random response protocol in Fig. 2 is also log 3-differentially private (for
that participant). This argument can be generalised to apply to any participant
taking part in the random response.

6 Experiment and Exploration

The experiments described above were carried out using the tool Kuifje [10,15]
which interprets a small programming language in terms of the QIF semantics
alluded to above. Kuifje supports the usual programming constructs (assign-
ment, sequencing, conditionals and loops) but crucially it takes into account
information flows consistent with QIF. In particular the Print statements used
in our examples correspond exactly to the observations that an adversary could
make during program execution. This allows a direct model for eg. known side
channels that potentially expose partially computation traces during program
execution.

The basic assumption built into the semantics of Kuifje is that no variable
can be observed unless revealed fully or partially through a Print statement. For
example Print x would print the value of variable x and so reveal it completely
at that point of execution, but Print(x>0) would reveal only whether x is strictly
positive or not. As usual, we also assume that the adversary knows the program
code.

Kuifje is implemented in Haskell and makes extensive use of the Giry monad
[14] for managing the prior, posterior and marginal probabilities in the form of
“hyper-distributions”.

In order to use Kuifje to analyse Figs. 1 and 2, we assume a uniform input
for resp (resp[i]). Kuifje then generates the hyper-distribution output, which can
then be evaluated against dpε for a chosen ε > 0. Since we are only interested in
a specific response, we can assume that the secret is determined by resp(resp[i]).
We can then adjust the details of dpε by setting V to be sensitive only to different
values of resp (resp[i]).

Finally, we note that since Kuifje computes the output hyper-distribution,
other properties of Figs. 1 and 2 can also be explored, such as the Bayes Risk of
the resp, and the true average number of “yes” respondents.

7 Related Work

Differential privacy was proposed by Dwork [12] to provide mechanisms that
satisfy strong privacy guarantees for individuals. Alvim et al. [2] were the first
to explain the relationship between information-flow channels and differential
privacy, and to investigate leakage properties of differentially-private mechanisms
modelled as channels [1].

There has been recent interest in verification techniques for provingdifferential-
privacy properties, with the intention of providing programmers with the capa-
bility to certify privacy guarantees, and to support reasoning. Wang et al. have
[20] proposed a technique called “Shadow execution” to enable the verification of
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implementations of differentially private algorithms using traditional program log-
ics. Adaptations of Hoare Logic have been proposed [7] based on reasoning about
product programs. Bathe et al. [8] use a technique based on probabilistic couplings
to enable differential privacy to be treated as a program-verification problem. More
generally Barthe et al. [9] describe three verification and programming-language
techniques for certifying that programs satisfy the more general (ε, γ) differential
privacy guarantees, as in:

∫

M.x

ζ ≤ eε ×
∫

M.x′
ζ + γ. (8)

All of these techniques are supported by automation. Zhang and Kifer [22]
use a relational type system to decompose privacy verification into two parts,
one for relational reasoning and the other to compute the “privacy budget”.
A privacy budget is related to the fact that every query to a database, even
one protected by differential privacy, leaks some information about the data. A
privacy budget denotes an upper limit on information leakage that is insufficient
to identify individuals. Finally, Ebadi and Sands [13] have implemented a system
based similarly on reasoning rules to keep track of the privacy budget related to
datasets.

8 Conclusions

We have shown how to use a loss function combined with a QIF-enabled pro-
gramming semantics to verify privacy properties for programs. We have used the
interpreter Kuifje to enable experimental investigation of differential privacy for
small sequential programs.

We described the simplest and most restrictive version of differential privacy
(4), but note that the weaker (ε, γ) notion of differential privacy can also be
modelled using loss functions. To see this, we note that if M is not ε-differentially
private for some particular x, x′ ∈ X , we must have:

∑

y∈Y
(Mx′yeε − Mxy)min 0 < 0. (9)

In fact each individual summand is non-zero exactly when Mx′y/Mxy can be
distinguished by more than the “allowed” eε multiplier. Observe that the sum
of those summands is equal to some value −γ′, and if it is at least −γ in (8)
then M is (ε, γ) differentially private. We can formalise this observation using
loss functions as follows.

As in Definition 5 we formulate a loss function dp∗
ε , this time letting

V:= {(x, x′), �}. If we let υ be the uniform distribution over x, x′, we see that
Udpε∗ [υ〉M ] is equal to half the sum in (9). Thus we can conclude that M is (ε, γ)
differentially private if Udpε∗ [υ〉M ] ≥ −γ/2 for all such pairs x, x′. More investi-
gation is required to determine whether this provides a useful characterisation.

Finally we observe that a QIF model is rich enough to capture many other
other kinds of risks related to information flow. For example a participant in
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the random response survey might be more interested in whether their response
can be determined with some likelihood, and the response gatherer might be
interested in how the output count is related to the real “yes” count. Both of
these properties can be analysed using loss functions and the QIF interpretation
[15,16].

Acknowledgements. I thank Tom Schrijvers for having the idea of embedding these
ideas in Haskell, based on Carroll Morgan’s talk at IFIP WG2.1 in Vermont, and for
carrying it out to produce the tool Kuifje. Together with Jeremy Gibbons all four of
us wrote the first paper devoted to it [15]. (It was Jeremy who suggested the name
“Kuifje”, the Dutch name for TinTin — and hence his “QIF”.)
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Abstract. Strings represent one of the most common and most intricate
data-types found in software programs, with correct string processing
often being a decisive factor for correctness and security properties. This
has led to a wide range of recent research results on how to analyse pro-
grams operating on strings, using methods like testing, fuzzing, symbolic
execution, abstract interpretation, or model checking, and, increasingly,
support for strings is also added to constraint solvers and SMT solvers. In
this paper, we focus on the verification of software programs with strings
using model checking. We give a survey of the existing approaches to
handle strings in this context, and propose methods based on algebraic
data-types, Craig interpolation, and automata learning.

1 Introduction

The analysis of program operating on strings has received a lot of attention in the
past years, motivated by the observation that correct string handling is crucial to
achieve functional correctness, and that even innocent-looking mistakes related
to strings (for instance, incorrect input validation or sanitisation) can open severe
security vulnerabilities in programs [10]. In this paper, we consider the analysis
of software programs with the help of model checking, and provide a survey of
the methods used in model checkers to handle strings. We observe that several
bounded model checkers and tools for symbolic execution use “native” methods
for solving string constraints, in particular inbuilt string support in SMT solvers,
whereas unbounded model checkers tend to represent strings using data-types
like arrays and stay closer to the runtime implementation of strings. We then
outline ongoing work to handle strings natively in the Horn clause-based software
model checker JayHorn.

1.1 Strings in Programming Languages

Given a finite, non-empty alphabet Σ, strings are elements of the set Σ∗ or
finite sequences of characters over Σ. In practice, alphabets are, e.g., ASCII or
Unicode. Relevant operations on strings include functions to access individual
characters or substrings, to concatenate strings, to split strings, to compute the
length of strings or the number of character occurrences, to check membership in
c© Springer Nature Switzerland AG 2019
A. W. Lin (Ed.): APLAS 2019, LNCS 11893, pp. 19–30, 2019.
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regular or context-free languages, to replace all or some occurrences of substrings,
or more generally transformations like sanitisation or encoding/decoding.

In programming languages, strings are partly given the status of a primitive
data-type with inbuilt notation for literals ("..."), but the full set of string
operations is typically provided through libraries, such as string.h in C, and
java.lang.String and related classes in Java. The internal representation of
strings as a character array is fully exposed in C, but usually hidden in more
high-level languages.

Strings are in programs often used to store data such as addresses, usernames,
or passwords, whose correct processing is critical. Strings can also represent code,
for instance when interfacing databases (SQL commands) or in the context of
the web (JavaScript embedded in HTML), leading to the possibility of injection
attacks when a programs fails to correctly isolate code from data [10].

2 Survey of Existing Methods for String Analysis

In this section, we focus on strings in model checking while only touching upon
some of the methods in other areas. For a more complete survey of string methods
we refer the reader to the recent book [10].

2.1 Bounded Methods

Bounded analysis methods, for instance, bounded model checking or sym-
bolic execution, typically only have to check satisfiability (SAT) of constraints
extracted from a program, usually testing path feasibility. In our case, such
constraints will contain variables ranging over strings. SAT checks on string
constraints are at this point supported relatively well by existing constraint and
SMT solvers (as a result of extensive research over the past years) and string the-
ories have in particular been added to state-of-the-art SMT solvers like Z3 [16]
and CVC4 [7]. There is also a larger number of dedicated string solvers, for
instance ABC [6], Hampi [20], Kaluza [37], Norn [3], Ostrich [11], Sloth [26],
Trau [1], Z3-str [41]. Scalability to handle real-world constraints and support for
more complex string operations (e.g., transduction) are still a concern with the
existing solvers, however.

As a representative set of state-of-the-art software model checkers, we survey
the tools that participated at SV-COMP 2019 [8], the most recent competition of
automatic software verifiers. In the competition, 31 tools participated, of which
27 were verifiers for C and 4 for Java. It is observable that purely bounded
analysis is applied by 7 of the C verifiers1 and 3 of the Java verifiers,2 while the
other tools attempt exhaustive verification without imposing any bound on the
number of execution steps (Sect. 2.2).

1 CBMC, CBMC-Path, Map2Check, Pinaka, VeriFuzz, Yogar-CBMC, Yogar-CBMC-
Parallel.

2 JBMC, JPF, SPF.
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Following the actual C semantics of strings, the predominant approach
applied by the bounded C verifiers is to consider strings as zero-terminated
arrays, and rely on decision procedures for the theory of arrays (for instance,
via encoding to Boolean SAT) to perform feasibility checks. There exists some
initial work in CBMC to target native string solvers, but does not seem to be
used in the competition versions.

The situation is different in the bounded Java verifiers, where the symbolic
tools use native string solvers to analyse path constraints. JBMC [14] comes
with its own string solver that works through an encoding to Boolean SAT,
while SPF [36] can use multiple different string solvers as its back-end.

2.2 Unbounded Methods

In addition to SAT checks, unbounded (infinite-state) program verification meth-
ods also require artefacts like loop invariants or function summaries, which can
be provided manually or be computed automatically. For the latter purpose, a
wider range of techniques has been proposed that could be listed here; to get a
full picture, we refer to the recent handbook on model checking [13]. A general
observation, however, is that strings can be handled only by few of the existing
invariant generation methods; in particular, to the best of our knowledge, no
interpolation procedures are known for any (relevant) theory of strings.

The few invariant generation methods specifically supporting strings include
the randomised search approach in [38], and the SAT-based automata learning
approach in [2], which we employ in Sect. 3.3.

Software Model Checking. We survey again the tools that participated at SV-
COMP 2019 [8]: 20 tools performing unbounded verification for C programs,
and one model checker for unbounded Java verification. Like in the bounded
case, most of the C model checkers see strings as character arrays, and execute
string operations as code; this means that invariant generation relies on existing
methods for the theory of arrays. 2LS encodes data structures (including string)
using invariants describing heap configuration [33], PredatorHP models memory
using Symbolic Memory Graph (SMG) and defines certain manipulations of
zero-terminated strings over SMG [18], and SMACK models the behaviour of
string.h functions. The handling of strings in the Java model checker JayHorn,
an ongoing implementation effort, is discussed in Sect. 3.

Deductive Verification. In deductive verification systems, invariants and method
contracts usually have to be provided manually, but their correctness is ver-
ified automatically. To be able to handle strings, deductive verification sys-
tems include axiomatic models of strings. For instance, in Dafny [31] strings are
encoded as sequences, which are in turn mapped to arrays, together with a set of
operations modelled using quantified axioms that are heuristically instantiated
by the underlying SMT solver. The KeY system [4], a verification tool for Java
programs, includes a formalisation of Java strings and the Java string constant
pool in terms of algebraic data-types [9]. This formalisation partly inspires the
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techniques discussed in Sect. 3.2. Like [9], we propose to represent strings using
ADTs while targeting the fully-automatic setting of a software model checker,
including automatic invariant inference.

Static Analysis and Abstract Interpretation. A number of abstract domains
have been proposed to analyse programs with strings, see for instance [10] for
an overview. A related approach [12] translates Java programs to (data) flow
graphs, extracts context-free grammars characterising the possible strings in the
program, and then over-approximates those sets using regular languages.

Dedicated Analysis Methods. Several approaches exist to specifically analyse
loops that iterate over or manipulate strings; such methods are usually restricted
to loops of a particular syntactic shape, or to loops written in domain-specific
languages. Bek is a language and system to write and analyse string sanitis-
ers that internally uses symbolic transducers [27]. An extended version of Bek,
named Bex, targets the more general case of string decoders [39]. A summarisa-
tion (or acceleration) method for string-manipulating loops is given in [40].

3 Towards String Handling in a Java Model Checker

We now describe ideas and techniques to handle strings natively in an unbounded
model checker for Java. The work is inspired by the implementation of JayHorn
tool [29], a Java verifier that works by translating Java bytecode to sets of
constrained Horn clauses [23].

As observed in the previous section, and as with any other theory in software
model checking, one of the main challenges with strings is the inference of induc-
tive invariants. This aspect is particularly pronounced with strings, for which
already decidability of SAT checks is sometimes open (depending on the precise
set of operations considered [21]), and implementation even of known decision
procedures can be hard. Logical methods used in other domains for invariant
generation, for instance Craig interpolation [34] or abduction [17], have so far
not been carried over for strings, to the best of our knowledge.

We consider two main paradigms to compute invariants in this setting:

– A reduction-based approach, in which string constraints are translated to alge-
braic data-types (ADTs), which can then be handled using known techniques,
and are in particular amenable to Craig interpolation [24]. The reduction also
requires an encoding of the string operations, which is in our setting done by
formulating constrained Horn clauses, i.e., through an operational encoding.
This is possible for all computable operations on strings, but does not always
make it easy for an ADT solver to discover sufficiently general invariants.

– A learning-based approach, which performs an exhaustive search for Craig
interpolants (as building blocks of inductive invariants) through SAT-based
construction of finite-state automata [2].
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Those two approaches have quite complementary properties. Reduction to other
theories can in principle support all string operations, and handle the combi-
nation of strings with other theories (e.g., integers, arrays, or bit-vectors), but
might not lead to useful predicates or invariants. The reduction approach is
also similar in flavour to the representation of strings as arrays in existing soft-
ware model checkers, though considering a different target theory, and using
tailor-made operational encodings also of the string operations. Learning and
systematic search can find concise predicates that pinpoint the reason why a
program behaves correctly, but the approach might be computationally expen-
sive, restricted to invariants of particular syntactic shape, and (depending on the
algorithm used) difficult to combine with other theories. In our case, the learning
procedure attempts to construct Craig interpolants that are regular expression
membership constraints, which means that formulas like equality of two strings
cannot be expressed or found.

3.1 Dealing with Implementation Artefacts

As a prerequisite for applying native string solving technology, it is necessary
to bridge the gap between the programming language semantics of strings (in
Java, the view of strings being instances of the class java.lang.String, and
the string constant pool [22]) and the algebraic view on strings (strings consti-
tuting the set Σ∗ of finite sequences over some alphabet Σ). The architecture of
JayHorn offers a natural solution for this: deviating from the standard runtime
implementation, object references in JayHorn are treated as tuples that consist of
the object address (an integer), but also include other (immutable) information
about an object [28]. For instance, a reference can store the precise dynamic
type of the referenced object, the allocation site, constructor parameters, or val-
ues of immutable fields. The additional information contained in a reference has
the purpose of increasing the expressive power of the class invariants used to
represent heap data-structures.

This approach turns out to be particularly useful for boxed data-types like
java.lang.Integer, since those classes are immutable and their contents do
not change after object creation. This means that a reference to an object of
java.lang.Integer can be defined to store the actual value (the boxed integer
number) as well, using the native data-type for integers; since the boxed data
can now be retrieved directly from the reference, without having to access any
fields of the object, verification with boxed data becomes very similar to the
handling of native data-types and local variables.

The same encoding can be used for strings: the reference tuple pointing to a
java.lang.String object can be defined to contain the actual string contents
as one of the components, represented using a native data-type, for instance, an
ADT as in Sect. 3.2. Since the semantics of most of the string operations (for
instance, String.equals and String.concat) can be modelled purely in terms
of the string contents, this means that programs can then be analysed treating
strings as a native data-type, assuming the idealised algebraic semantics of the
string stored in the reference tuple.
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3.2 Strings as an Algebraic Data-Type

Algebraic data-types (with fully-free constructors) is a theory increasingly sup-
ported by Horn solvers, for instance by Eldarica [25], Spacer [30], and a version
of VeriMAP [15]. While ADT support in the mentioned solvers is still somewhat
limited and an active area of research (e.g., in case of Eldarica, only quantifier-
free solutions are computed), ADTs are significantly simpler to handle than a
full theory of strings, since methods like Craig interpolation and quantifier elim-
ination are available.3

We define the theories of recursive algebraic data types (ADTs) as it is done
in [24]. The signature of an ADT is defined by a sequence σ1, . . . , σk of sorts
and a sequence f1, . . . , fm of constructors. The type of an n-ary constructor is of
the form fi : σ1 ×· · ·×σn → σ0. Zero-ary constructors are also called constants.
In addition to constructors, formulas over ADTs can use variables (with some
type from the sorts {σ1, . . . , σk}); selectors f j

i (which extract the jth argument
of an fi-term) and testers isfi (which determine whether a term is an fi-term).

ADTs enable a natural representation of strings as lists of characters. Here,
nil is a constant, cons is a binary constructor, and Character is a sort:

String ::= nil | cons(Character,String)
This representation still leaves a number of choices open; exploration of this
space is ongoing work, so that we only discuss the parameters in the scope of
this paper, without evaluating the implications experimentally.

Encoding Choice 1: The character domain. In our current implementation in
JayHorn, the Character is a synonym for the mathematical integers, which are
handled well by most Horn solvers. This domain does obviously not model ASCII
or Unicode characters accurately, and might lead to spurious verification coun-
terexamples; a more precise encoding could be using bit-vectors or an interval
of the integers.

Encoding Choice 2: The character order. The encoding of lists leaves open
in which order the characters of a string should be stored: starting with the
first character or starting with the last (or choosing an order individually for
each string variable). The current JayHorn implementation uses the more natural
order of storing the first string character as the first element of a list; but given
that it is more common in Java programs to append to strings, it is quite possible
that reverse order would perform better for static analysis.

After choosing the string representation, the Java API string operations have
to be defined. One approach for this would be to execute the bytecode implement-
ing the methods, for instance the methods of java.lang.String. This would
not yield the most efficient definition for the purpose of model checking, how-
ever, since the bytecode would assume the internal representation of strings as

3 In this sense, ADTs also have better properties than the theory of arrays.
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package java.lang;

public class String {

[...]

public String concat(String that) { [...] };

[...]

}

Fig. 1. The Java string concatenation method

Table 1. Different Horn encodings of concatenation of two strings

Recursive encoding Hrec :

Crec(nil, x, x) ← true

Crec(cons(c, x), y, cons(c, z)) ← Crec(x, y, z)

Recursive encoding with pre-condition Hprec :

Cpost
prec (nil, x, x) ← Cpre

prec(nil, x)

Cpre
prec(x, y) ← Cpre

prec(cons(c, x), y)

Cpost
prec (cons(c, x), y, cons(c, z)) ← Cpre

prec(cons(c, x), y) ∧ Cpost
prec (x, y, z)

Iterative encoding Hit :

C1
it(z̄, x, nil, y) ← Centry

it (z̄, x, y)

C1
it(z̄, a, cons(c, b), y) ← C1

it(z̄, cons(c, a), b, y)

C2
it(z̄, b, y) ← C1

it(z̄, nil, b, y)

C2
it(z̄, a, cons(c, b)) ← C2

it(z̄, cons(c, a), b)

Cexit
it (z̄, r) ← C2

it(z̄, nil, r)

character arrays, running counter to the chosen algebraic list representation. In
the context of JayHorn, a more efficient path is to encode each string operation
using a set of Horn clauses tailored to static analysis. As a case study in the
scope of this paper, we consider the method to perform concatenation of two
strings (Fig. 1). Other Java string operations can be handled in a similar way.

Encoding Choice 3: The concatenation function. Table 1 shows some of the
different encodings of the concatenation function as a set of constrained Horn
clauses, operating on the ADT string representation: using a total function
defined recursively, and represented using a summary predicate Crec ; using a
partial function defined recursively by a summary predicate Cpost

prec and a domain
predicate Cpre

prec ; and using a purely iterative encoding with entry predicate Centry
it

and exit predicate Cexit
it .
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A clause with a concatenation constraint on natively represented strings,

H ← z = concat(x, y) ∧ B(ā)

can then be translated using the different encodings, leading to three different
but equisatisfiable sets of clauses:

{H ← Crec(x, y, z) ∧ B(ā)} ∪ Hrec (1)

{H ← Cpost
prec (x, y, z) ∧ B(ā), Cpre

prec(x, y) ← B(ā)} ∪ Hprec (2)

{H ← Cexit
it (ā, z), Centry

it (ā, x, y) ← B(ā)} ∪ Hit (3)

In the last encoding Hit , the arity of the predicates has to be adjusted so that
all variables ā occurring in the clause body B(ā) can be passed through.

Only experiments can tell which of those encodings performs best in a soft-
ware model checker. Initial results indicate that the iterative encoding, although
it requires the largest number of clauses, might be easiest to handle for existing
Horn solvers, probably because only linear clauses are generated.

In cases where the length of the left string x is known to be bounded (and
small), it is, of course, most efficient to unwind the recursive/iterative definition
of the concatenation function sufficiently often.

Encoding Choice 4: Clause sharing. In the iterative version of concatenation,
it is always necessary to introduce fresh predicates and clauses Hit for each
occurrence of concatenation concat in a program. This is not the case for the
recursive versions, however, where the same predicates and clauses could be used
for multiple occurrences of concat. Whether such clauses sharing has advantages
for Horn solving is so far unclear, however.

Encoding Choice 5: Ghost data. In addition to just working with the string
contents represented using an ADT, it can be meaningful to also explicitly pass
around ghost data obtained by applying some homomorphism to string values.
For instance, the length of a string is a feature that is frequently useful for
invariants; the function that maps a string to its length is a homomorphism
of the concatenation function, and the clauses shown in Table 1 can easily be
augmented to keep track of string length as well.

3.3 Learning Invariants over Strings

The encoding of strings using ADTs is quite flexible, and can be expected to
work well when the correctness of a program can be shown using invariants on
the level of ADTs: that means, using quantifier-free formulas that talk about
a finite number of characters of the involved strings. Depending on the applied
Horn solver, and the encoding choices with respect to ghost data, also invari-
ants are feasible that can be expressed using recursive functions like the string
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length function.4 However, ADTs do not suffice for programs that demand more
intricate invariants about strings; for instance, the statement that an unbounded
string only contains characters in the range a-z.

We propose the use of learning-based interpolation, as defined in [2], to find
such more expressive invariants. Interpolation is used by many Horn solvers to
construct building blocks for invariants. A (binary) interpolation problem is a
conjunction of formulas A[xA, x]∧B[x, xB ] over disjoint variables xA, xB local to
A, B and common variables x. An interpolant is a formula I[x] over the common
variables such that A[xA, x] ⇒ I[x] and B[x, xB ] ⇒ ¬I[x] hold.

In [2], it is assumed that x̄ = 〈x1, x2, . . . , xn〉 only contains string variables;
a SAT solver is then used to systematically search for interpolants of the form

I[x] = x1|x2| · · · |xn ∈ R (4)

where | is a fresh separator character, and R a regular expression. R is for the
search represented as a finite-state automaton using a set of Boolean variables.
The search procedure itself uses a refinement loop in which the SAT solver
guesses interpolant candidates, and a string solver checks the correctness of the
candidates. Counterexamples produced by the string solver are used to refine
the Boolean constraints. The procedure, therefore, has a lot of similarities with
methods in syntax-guided synthesis [5], and could be generalised to interpolant
patterns other than (4); it could also be changed to compute inductive invariants
instead of just interpolants directly.

SAT-based learning has in the past also been used for a number of related
applications, for instance to compute finite-state automata describing regions or
strategies of games on infinite graphs [32,35], or to synthesise transition systems
that satisfy given LTL specifications [19]. This illustrates the flexibility of this
form of learning; the challenge, however, is usually scalability, since a SAT solver
essentially carries out a systematic search over all automata up to a certain size.

In practice, it appears most useful to combine the ADT-based method from
Sect. 3.2 with the learning method. This could be done, for instance, by using
the ADT method by default, but switching to the learning method when the
computed ADT interpolants start to contain too complex ADT expressions. As
a further criterion, when analysing programs that combine strings and other
data-types (the most common case), it should be checked prior to starting the
learning process whether the conjunction A[xA, x] ∧ B[x, xB ] is unsatisfiable for
reasons pertaining to strings. This is a necessary (though not sufficient) criterion
for the existence of an interpolant of the form (4). To check whether strings are
responsible for any inconsistency, the common non-string variables in x̄ can be
renamed to local variables x′

i in A and x′′
i in B.

4 For instance, Eldarica has built-in support for the ADT size function, which corre-
sponds to string length.
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4 Conclusions

We have given a survey of string handling in software model checkers, and pro-
posed a combination of methods for model checking of Java programs. The
paper presents work in progress, and at the moment the impact of the dif-
ferent design and encoding choices has not been evaluated experimentally yet;
we do believe, however, that the outlined combination of string methods can
significantly improve the usability of a Java model checker like JayHorn.
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Abstract. We present a manifest contract system PCFvΔH with inter-
section types. A manifest contract system is a typed functional calculus
in which software contracts are integrated into a refinement type sys-
tem and consistency of contracts is checked by combination of compile-
and run-time type checking. Intersection types naturally arise when a
contract is expressed by a conjunction of smaller contracts. Run-time
contract checking for conjunctive higher-order contracts in an untyped
language has been studied but our typed setting poses an additional chal-
lenge due to the fact that an expression of an intersection type τ1 ∧ τ2
may have to perform different run-time checking whether it is used as τ1
or τ2.

We build PCFvΔH on top of the Δ-calculus, a Church-style intersec-
tion type system by Liquori and Stolze. In the Δ-calculus, a canonical
expression of an intersection type is a strong pair, whose elements are the
same expressions except for type annotations. To address the challenge
above, we relax strong pairs so that expressions in a pair are the same
except for type annotations and casts, which are a construct for run-time
checking.

We give a formal definition of PCFvΔH and show its basic properties
as a manifest contract system: preservation, progress, and value inversion.
Furthermore, we show that run-time checking does not affect essential
computation.

1 Introduction

Manifest contract systems [1,10–13,15,19,24–26,31], which are typed functional
calculi, are one discipline handling software contracts [18]. The distinguishing
feature of manifest contract systems is that they integrate contracts into a type
system and guarantee some sort of satisfiability against contracts in a program
as type soundness. Specifically, a contract is embedded into a type by means
of refinement types of the form {x:τ | M}, which represents the subset of the
underlying type τ such that the values in the subset satisfy the predicate M ,
which can be an arbitrary Boolean expression in the programming language.
Using the refinement types, for example, we can express the contract of a division
function, which would say “... the divisor shall not be zero ...”, by the type
int → {x:int | x �= 0} → int. In addition to the refinement types, manifest
c© Springer Nature Switzerland AG 2019
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contract systems are often equipped with dependent function types in order to
express more detailed contracts. A dependent function type, written (x:σ) → τ
in this paper, is a type of a function which takes one argument of the type σ and
returns a value of the type τ ; the distinguished point from ordinary function
types is that τ can refer to the given argument represented by x. Hence, for
example, the type of a division function can be made more specific like (x:int) →
(y:{x′:int | x′ �= 0}) → {z:int | x = z × y}. (Here, for simplicity, we ignore the
case where devision involves a remainder, though it can be taken account into
by writing a more sophisticated predicate).

A manifest contract system checks a contract dynamically to achieve its
goal—as many correct programs as possible can be compiled and run; while
some studies [16,23,27,28,30,33], which also use a refinement type system, check
contract satisfaction statically but with false positives and/or restriction on pred-
icates. The checks are done in the form of explicit casts of the form (M : σ ⇒ τ);
where M is a subject, σ is a source type (namely the type of M), and τ is a
target type.1 A cast checks whether the value of M can have the type τ . If the
check fails, the cast throws an uncatchable exception called blame, which stands
for contract violation. So, the system does not guarantee the absence of contract
violations statically, but it guarantees that the result of successful execution sat-
isfies the predicate of a refinement type in the program’s type. This property
follows subject reduction and a property called value inversion [26]—if a value
V has a type { x :τ | M }, then the expression obtained by substituting V for x
in M is always evaluated into true.

1.1 Motivation

The motivation of the integration of intersection types is to enrich the expressive-
ness of contracts by types. It naturally arises when we consider a contract stated
in a conjunctive form [3,9,14]. Considering parities (even/odd) of integers, for
example, we can state a contract of the addition as a conjunctive form; that is

“An even integer is returned if both given arguments are even integers;
and an odd integer is returned if the first given argument is even integer
and the second given argument is odd integer; and ...”

Using intersection types, we can write the contract as the following type.2

(even → even → even) ∧ (even → odd → odd)
∧(odd → even → odd) ∧ (odd → odd → even)

In fact, a semantically equivalent contract could be expressed by using depen-
dent function types found in existing systems as follows, where evenp :=
λx:nat.x mod 2 = 0 and oddp := λx:nat.x mod 2 = 1.

1 Many manifest contract systems put a unique label on each cast to distinguish which
cast fails, but we omit them for simplicity.

2 even := {x:nat | x mod 2 = 0} odd := {x:nat | x mod 2 = 1}.
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(x:nat) → (y:nat) → {z:nat | if evenpx

then (if evenp y then evenp z else oddp z)
else (if evenp y then oddp z else evenp z)}

Thus, one might think it is just a matter of taste in how contracts are represented.
However, intersection types are more expressive, that is, there are contracts that
are hard to express in existing manifest contract systems. Consider the following
(a bit contrived) contract for a higher-order function.

((int → {x:int | x �= 0}) → {z:int | z = 1})∧ ((int → int) → {z:int | z = 0})

The result type depends on input as the parity contract does. This time, however,
it cannot be written with a dependent function type; there is no obvious way
to write a predicate corresponding to evenp (or oddp). Such a predicate must
check that a given function returns non-zero for all integers, but this is simply
not computable.

1.2 Our Work

We develop a formal calculus PCFvΔH, a manifest contract system with intersec-
tion types. The goal of this paper is to prove its desirable properties: preservation,
progress, value inversion; and one that guarantees that the existence of dynamic
checking does not change the “essence” of computation.

There are several tasks in constructing a manifest contract system, but a
specific challenge for PCFvΔH arises from the fact—manifest contract systems
are intended as an intermediate language for hybrid type checking [10]. Firstly,
consider the following definition with a parity contract in a surface language.

let succ′:odd → even = λx.succ(x).

Supposing the primitive operator succ(x) has the type nat → nat, we need to
check subtyping relation odd <: nat and nat <: even to check well-typedness of
the definition. As we have mentioned, however, this kind of subtyping checking
is undecidable in general. So, (when the checking is impossible) we insert casts
to check the contract at run-time and obtain the following compiled definition.

let succ′:odd → even = λx:odd.(succ((x : odd ⇒ nat)) : nat ⇒ even).

A problem arises when we consider the following definition equipped with a more
complicated parity contract.

let succ′:(odd → even) ∧ (even → odd) = λx.succ(x).

The problem is that we need to insert different casts into code according to how
the code is typed; and one piece of code might be typed in several essentially
different ways in an intersection type system since it is a polymorphic type
system. For instance, in the example above, λx:odd.(succ((x : odd ⇒ nat)) :
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nat ⇒ even) is obtained by cast insertion if the function is typed as odd → even;
while λx:even.(succ((x : even ⇒ nat)) : nat ⇒ odd) is obtained when the
body is typed as even → odd. However, the function must have both types to
have the intersection type. It may seem sufficient to just cast the body itself,
that is, ((λx:nat.succ(x)) : nat → nat ⇒ (odd → even) ∧ (even → odd)).
However, this just shelves the problem: Intuitively, to check if the subject has
the target intersection type, we need to check if the subject has both types in
the conjunction. This brings us back to the same original question.

Contributions. Our contributions are summarized as follows:

– we design a manifest contracts calculus with refinement intersection types [27,
33], a restricted form of intersection types.

– we formalize the calculus PCFvΔH; and
– we state and prove type soundness, value inversion, and dynamic soundness.

The whole system including proofs is mechanized with Coq.3 We use locally
nameless representation and cofinite quantification [5] for the mechanization.

Disclaimer. To concentrate on the PCFvΔH-specific problems, we put the
following restrictions for PCFvΔH in this paper compared to a system one would
imagine from the phrase “a manifest contract system with intersection types”.

– PCFvΔH does not support dependent function types. As we will see, PCFvΔH

uses nondeterminism for dynamic checking. The combination of dependent
function types and nondeterminism poses a considerable challenge [19].

– We use refinement intersection types rather than general ones. Roughly speak-
ing, σ ∧ τ is a refinement intersection type if both σ and τ refine the same
type. So, for example, (even → even) ∧ (odd → odd) is a refinement intersec-
tion types since types of both sides refine the same type nat → nat, while
(nat → nat) ∧ (float → float) is not.

2 Overview of Our Language: PCFvΔH

Our language PCFvΔH is a call-by-value dialect of PCF [20], extended with inter-
section types (derived from the Δ-calculus [17]) and manifest contracts (derived
from λH [10,12]). So, the baseline is that any valid PCF program is also a valid
PCFvΔH program; and a PCFvΔH program should behave as the same way
as (call-by-value) PCF. In other words, PCFvΔH is a conservative extension of
call-by-value PCF.

3 The Coq scripts are available through the following URL: https://www.fos.kuis.
kyoto-u.ac.jp/∼igarashi/papers/manifest-intersection.html.

https://www.fos.kuis.kyoto-u.ac.jp/~igarashi/papers/manifest-intersection.html
https://www.fos.kuis.kyoto-u.ac.jp/~igarashi/papers/manifest-intersection.html
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2.1 The Δ-Calculus

To address the challenge discussed in Sect. 1, PCFvΔH is strongly influenced
by the Δ-calculus by Liquori and Stolze [17], an intersection type system à la
Church. Their novel idea is a new form called strong pair, written 〈M,N〉. It
is a kind of pair and used as a constructor for expressions of intersection types.
So, using the strong pair, for example, we can write an identity function having
type (even → even) ∧ (odd → odd) as follows.

〈λx:even.x, λx:odd.x〉

Unlike product types, however, M and N in a strong pair cannot be arbitrarily
chosen. A strong pair requires that the essence of both expressions in a pair be
the same. An essence �M � of a typed expression M is the untyped skeleton of M .
For instance, �λx:τ.x� = λx.x. So, the requirement justifies strong pairs as the
introduction of intersection types: that is, computation represented by the two
expressions is the same and so the system still follows a Curry-style intersection
type system. Strong pairs just give a way to annotate expressions with a different
type in a different context.

We adapt their idea into PCFvΔH by letting an essence represent the
contract-irrelevant part of an expression, rather than an untyped skeleton. For
instance, the essence of λx:odd.(succ((x : odd ⇒ nat)) : nat ⇒ even) is
λx:nat.succ(x) (the erased contract-relevant parts are casts and predicates of
refinement types). Now, we can (ideally automatically) compile the succ′ defini-
tion in Sect. 1 into the following PCFvΔH expression.

let succ′:(odd → even) ∧ (even → odd) =
〈λx:odd.(succ((x : odd ⇒ nat)) : nat ⇒ even),

λx:even.(succ((x : even ⇒ nat)) : nat ⇒ odd)〉

This strong pair satisfies the condition, that is, both expressions have the
same essence.

2.2 Cast Semantics for Intersection Types

Having introduced intersection types, we have to extend the semantics of casts
so that they handle contracts written with intersection types. Following Keil and
Thiemann [14], who studied intersection (and union) contract checking in the
“latent” style [12] for an untyped language, we give the semantics of a cast to an
intersection type by the following rule:

(V : σ ⇒ τ1 ∧ τ2) −→ 〈(V : σ ⇒ τ1), (V : σ ⇒ τ2)〉

The reduction rule should not be surprising: V has to have both τ1 and τ2 and
a strong pair introduces an intersection type τ1 ∧ τ2 from τ1 and τ2. For the
original cast to succeed, both of the split casts have to succeed.
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A basic strategy of a cast from an intersection type is expressed by the
following two rules.

(V : σ1 ∧ σ2 ⇒ τ) −→ (π1(V ) : σ1 ⇒ τ)
(V : σ1 ∧ σ2 ⇒ τ) −→ (π2(V ) : σ2 ⇒ τ)

The cast tests whether a nondeterministically chosen element in a (possibly
nested) strong pair can be cast to τ .

One problem, however, arises when a function type is involved. Consider the
following expression.

(λf :nat → nat.f 0 + f 1)Mcast

where
Mcast := (V : (even → nat) ∧ (odd → nat) ⇒ nat → nat).

V can be used as both even → nat and odd → nat. This means V can handle
arbitrary natural numbers. Thus, this cast should be valid and evaluation of the
expression above should not fail. However, with the reduction rules presented
above, evaluation results in blame in both branches: the choice is made before
calling λf : nat → nat. · · · , the function being assigned into f only can handle
either even or odd, leading to failure at either f 1 or f 0, respectively.

To solve the problem, we delay a cast into a function type even when the
source type is an intersection type. In fact, Mcast reduces to a wrapped value
Vcast below

Vcast := 〈〈V : (even → nat) ∧ (odd → nat) ⇒ nat → nat〉〉,

similarly to higher-order casts [8]. Then, the delayed cast fires when an actual
argument is given:

(λf :nat → nat.f 0 + f 1)Mcast

−→ (λf :nat → nat.f 0 + f 1)Vcast

−→ Vcast 0 + Vcast 1
−→∗ (V : even → nat ⇒ nat → nat) 0 + (V : odd → nat ⇒ nat → nat) 1
−→∗ 1

Fig. 1. Syntax of PCFv.
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3 Formal Systems

In this section, we formally define two languages PCFv and PCFvΔH, an exten-
sion of PCFv as sketched in the last section. PCFv is a call-by-value PCF. We
only give operational semantics and omit its type system and a type soundness
proof, because we are only interested in how its behavior is related to PCFvΔH,
the main language of this paper.

3.1 PCFv

The syntax of PCFv is shown in Fig. 1. Metavariables x, y, z, f , and g range
over term variables (f and g are intended for ones bound to functions); σ and
τ range over types; L, M , and N range over expressions; V ranges over values;
and E ranges over evaluation frames. The definition is fairly standard, except for
one point: instead of introducing a constant for the general fix-point operator,
we introduce a form μf :σ1 → σ2.λx:τ.M for recursive functions.

Definition 1 (Bound and free variables). An occurrence of x in M of
λx:τ.M and f in M of μf :σ1 → σ2.λx:τ.M is called bound. The set of free
variables in M is the variables of which there are free occurrence in M . We
denote the free variables by fv(M).

Convention. We define α-equivalence in a standard manner and identify α-
equivalent expressions.

Definition 2 (Substitution). Substitution of N for a free variable x in M ,
written M [x 	→ N ], is defined in a standard capture-avoiding manner.

Definition 3 (Context application). Given an evaluation frame E and an
expression M , E [M ] denotes the expression obtained by just replacing the hole
� in E with M .

A small-step operational semantics of PCFv is inductively defined by the
rules in Fig. 2. Those rules consist of standard (call-by-value) PCF axiom schemes
and one rule scheme (PCF-Ctx), which expresses the call-by-value evaluation
strategy using the evaluation frames.

3.2 PCFvΔH

PCFvΔH is an extension of PCFv. Through abuse of syntax, we use the metavari-
ables of PCFv for PCFvΔH, though we are dealing with the two different lan-
guages.

The syntax of PCFvΔH is shown in Fig. 3. We introduce some more metavari-
ables: I ranges over interface types, a subset of types; B ranges over recursion
bodies, a subset of expressions; C ranges over commands; and Γ ranges over
typing contexts. Shaded parts show differences (extensions and modifications)
from PCFv. Types are extended with intersection types and refinement types;



40 Y. Nishida and A. Igarashi

pred(O) −→PCF O (PCF-Pred-Z)

pred(succ(n)) −→PCF n (PCF-Pred)

iszero(O) −→PCF true (PCF-IsZero-T)

iszero(succ(n)) −→PCF false (PCF-IsZero-F)

if true thenM elseN −→PCF M (PCF-If-T)

if false thenM elseN −→PCF N (PCF-If-F)

(λx:τ.M) V −→PCF M [x �→ V ] (PCF-Beta)

μf :σ1 → σ2.λx:τ.M −→PCF (λx:τ.M)[f �→ μf :σ1 → σ2.λx:τ.M ] (PCF-Fix)

M −→PCF M ′

E [M ] −→PCF E [M ′]
(PCF-Ctx)

Fig. 2. Operational semantics of PCFv.

Fig. 3. Syntax of PCFvΔH.

the restriction that a well-formed intersection type is a refinement intersection
type is enforced by the type system. The variable x in N of {x:τ | N} is bound.
An interface type, which is a single function type or (possibly nested) intersec-
tion over function types, is used for the type annotation for a recursive function.
Expressions are extended with ones for: strong pairs (namely, pair construction,
left projection, and right projection); casts; and run-time expressions of the form
〈〈. . .〉〉 that can occur at run time for dynamic checking and not in source code.
Recursion bodies are (possibly nested strong pairs) of λ-abstractions.

Run-time expressions deserve detailed explanation. A delayed check 〈〈V :
σ ⇒ τ1 → τ2〉〉 denotes a delayed cast into a function type, which is used in cases
such as those discussed in Sect. 1 for instance. A waiting check 〈〈M ? {x:τ | N}〉〉
denotes a state waiting for the check M against N until M is evaluated into a
value. An active check 〈〈M =⇒ V : {x:τ | N}〉〉 is a state running test M to see
if V satisfies N . The variable x in N of 〈〈M ? {x:τ | N}〉〉 and 〈〈M =⇒ V : {x:τ |
N}〉〉 is bound.
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We do not include blame in expressions, although existing manifest contract
systems usually include it among expressions. As a consequence, the evaluation
relation for PCFvΔH is defined between commands. This distinction will turn out
to be convenient in stating correspondence between the semantics of PCFvΔH

and that of PCFv, which does not have blame.

Convention. We assume the index variable i ranges over {1, 2} to save space.

Definition 4 (Terms). We call the union of the sets of types and expressions
as terms.

Notation. M 
 N denotes that M is a sub-expression of N .

Convention. We define α-equivalence in a standard manner and identify α-
equivalent terms.

Fig. 4. Essence of a PCFvΔH term.

Convention. We often omit the empty environment. We abuse a comma for the
concatenation of environments like Γ1, Γ2. We denote a singleton environment,
an environment that contains only one variable binding, by x:τ .

Definition 5 (Free variables and substitution). Free variables and substi-
tution are defined similarly to PCFv; and we use the same notations. Note that
since the types and expressions of PCFvΔH are mutually recursively defined, the
metaoperations are inductively defined for terms.

Definition 6 (Domain of typing context). The domain of Γ , written
dom(Γ ), is defined by: dom(∅) = ∅ and dom(Γ, x:τ) = dom(Γ )∪{x}. We abbreviate
x �∈ dom(Γ ) to x # Γ .

The essence of a PCFvΔH term is defined in Fig. 4, which is mostly straight-
forward. The choice of which part we take as the essence of a strong pair is
arbitrary because for a well-typed expression both parts have the same essence.
Note that the essence of an active check 〈〈M =⇒ V : {x:τ | N}〉〉 is V rather
than M . This is because V is the subject of the expression.
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3.3 Operational Semantics of PCFvΔH

The operational semantics of PCFvΔH consists of four relations M ⇀p N ,
M ⇀c C, M −→p N , and M −→c C. Bearing in mind the inclusion relation
among syntactic categories, these relations can be regarded as binary relations
between commands. The first two are basic reduction relations, and the other
two are contextual evaluation relations (relations for whole programs). Further-
more, the relations subscripted by p correspond to PCFv evaluation, that is,
essential evaluation; and ones subscripted by c correspond to dynamic contract
checking. Dynamic checking is nondeterministic because of (RC-WedgeL/R),
(EC-PairL), and (EC-PairR).

pred(succ(n)) ⇀p n (RP-Pred)

iszero(O) ⇀p true (RP-IsZero-T)

iszero(succ(n)) ⇀p false (RP-IsZero-F)

if true thenM elseN ⇀p M (RP-If-T)

if false thenM elseN ⇀p N (RP-If-F)

(λx:τ.M) V ⇀p M [x �→ V ] (RP-Beta)

μf :I.B ⇀p B[f �→ μf :I.B] (RP-Fix)

M ⇀p N
(EP-Red)

M −→p N

M −→p N
(EP-Ctx)E [M ] −→p E [N ]

M −→p M ′ N −→p N ′
(EP-PairS)〈M, N〉 −→p 〈M ′, N ′〉

Fig. 5. Operational semantics of PCFvΔH (1): essential evaluation.

Essential Evaluation −→p. The essential evaluation, defined in Fig. 5, defines
the evaluation of the essential part of a program; and thus, it is similar to
−→PCF. There are just three differences, that is: there are two relations; there is
no reduction rule for pred(O); and there is a distinguished contextual evaluation
rule (EP-PairS), which synchronizes essential reductions of the elements in a
strong pair. The synchronization in (EP-PairS) is important since a strong pair
requires the essences of both elements to be the same. The lack of predecessor
evaluation for O is intentional: Our type system and run-time checking guarantee
that O cannot occur as an argument to pred.

Dynamic Checking −→c. Dynamic checking is more complicated. Firstly, we
focus on reduction rules in Fig. 6. The side-conditions on some rules are set so
that an evaluation is less nondeterministic (for example, without the side condi-
tions, both (RC-Forget) and (RC-Delay) could be applied to one expression).

The rules irrelevant to intersection types ((RC-Nat), (RC-Bool),
(RC-Forget), (RC-Delay), (RC-Arrow), (RC-Waiting), (RC-Activate),
(RC-Succeed), and (RC-Fail)) are adopted from Sekiyama et al. [26], but
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πi(〈V1, V2〉) ⇀c Vi (RC-Proj)

(V : nat ⇒ nat) ⇀c V (RC-Nat)

(V : bool ⇒ bool) ⇀c V (RC-Bool)

(V : {x:σ | M} ⇒ τ) ⇀c (V : σ ⇒ τ) (RC-Forget)

(∀xτM.σ 	= {x:τ | M})

(V : σ ⇒ τ1 → τ2) ⇀c 〈〈V : σ ⇒ τ1 → τ2〉〉 (RC-Delay)

〈〈V1 : σ1 → σ2 ⇒ τ1 → τ2〉〉 V2 ⇀c (V1 (V2 : τ1 ⇒ σ1) : σ2 ⇒ τ2) (RC-Arrow)

〈〈V1 : σ1 ∧ σ2 ⇒ τ1 → τ2〉〉 V2 ⇀c (πi(V1) : σi ⇒ τ1 → τ2) V2 (RC-WedgeL/R)

(V : σ1 ∧ σ2 ⇒ nat) ⇀c (π1(V ) : σ1 ⇒ nat) (RC-WedgeN)

(V : σ1 ∧ σ2 ⇒ bool) ⇀c (π1(V ) : σ1 ⇒ bool) (RC-WedgeB)

(∀xτM.σ 	= {x:τ | M})

(V : σ ⇒ τ1 ∧ τ2) ⇀c 〈(V : σ ⇒ τ1), (V : σ ⇒ τ2)〉 (RC-WedgeI)

(∀xτM.σ 	= {x:τ | M})

(V : σ ⇒ {x:τ | M}) ⇀c 〈〈(V : σ ⇒ τ) ? {x:τ | M}〉〉 (RC-Waiting)

〈〈V ? {x:τ | M}〉〉 ⇀c 〈〈M [x �→ V ] =⇒ V : {x:τ | M}〉〉 (RC-Activate)

〈〈true =⇒ V : {x:τ | M}〉〉 ⇀c V (RC-Succeed)

〈〈false =⇒ V : {x:τ | M}〉〉 ⇀c blame (RC-Fail)

Fig. 6. Operational semantics of PCFvΔH (2): reduction rules for dynamic checking.

there is one difference about (RC-Delay) and (RC-Arrow). In the original
definition delayed checking is done by using lambda abstractions, that is,

(V : σ1 → σ2 ⇒ τ1 → τ2) −→ λx:τ1.(V (x : τ1 ⇒ σ1) : σ2 ⇒ τ2).

The reason we adopt a different way is just it makes technical development easier.
Additionally, the way we adopt is not new—It is used in the original work [8] on
higher-order contract calculi.

The other rules are new ones we propose for dynamic checking of intersection
types. As we have discussed in Sect. 2, a cast into an intersection type is reduced
into a pair of casts by (RC-WedgeI). A cast from an intersection type is done by
(RC-Delay), (RC-WedgeL/R) if the target type is a function type. Otherwise,
if the target type is a first order type, (RC-WedgeN) and (RC-WedgeB) are
used, where we arbitrarily choose the left side of the intersection type and the
corresponding part of the value since the source type is not used for dynamic
checking of first-order values.

The contextual evaluation rules, defined in Fig. 7, are rather straightforward.
Be aware of the use of metavariables, for instance, the use of N in (EC-Ctx);
it implicitly means that M has not been evaluated into blame (so the rule does
not overlap with (EB-Ctx)). The first rule lifts the reduction relation to the
evaluation relation. The next six rules express the case where a sub-expression is
successfully evaluated. The rules (EC-ActiveP) and (EC-ActiveC) mean that
evaluation inside an active check is always considered dynamic checking, even
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M ⇀c C
(EC-Red)

M −→c C

M −→c N
(EC-Ctx)E [M ] −→c E [N ]

M −→p M ′
(EC-ActiveP)〈〈M =⇒ V : {x:τ | N}〉〉 −→c 〈〈M ′ =⇒ V : {x:τ | N}〉〉

M −→c M ′
(EC-ActiveC)〈〈M =⇒ V : {x:τ | N}〉〉 −→c 〈〈M ′ =⇒ V : {x:τ | N}〉〉

M −→c M ′
(EC-PairL)〈M, N〉 −→c 〈M ′, N〉

N −→c N ′
(EC-PairR)〈M, N〉 −→c 〈M, N ′〉

M −→c blame
(EB-Ctx)E [M ] −→c blame

M −→c blame
(EB-Active)〈〈M =⇒ V : {x:τ | N}〉〉 −→c blame

Mi −→c blame
(EB-PairL/R)〈M1, M2〉 −→c blame

Fig. 7. Operational semantics of PCFvΔH (3): contextual rules for dynamic checking.

when it involves essential evaluation. The rules (EC-PairL) and (EC-PairR)
mean that dynamic checking does not synchronize because the elements in a
strong pair may have different casts. The other rules express the case where
dynamic checking has failed. An expression evaluates to blame immediately—
in one step—when a sub-expression evaluates to blame. Here is an example of
execution of failing dynamic checking.

(0 : nat ⇒ {x:nat | x > 0}) + 1 −→ 〈〈0 ? {x:nat | x > 0}〉〉 + 1
−→ 〈〈0 > 0 =⇒ 0 : {x:nat | x > 0}〉〉 + 1
−→ 〈〈false =⇒ 0 : {x:nat | x > 0}〉〉 + 1
−→ blame

Definition 7 (Evaluation). The one-step evaluation relation of PCFvΔH,
denoted by −→, is defined as −→p ∪ −→c. The multi-step evaluation relation of
PCFvΔH, denoted by −→∗, is the reflexive and transitive closure of −→.

∅ ok (V-Empty)

Γ ok � τ (x # Γ )
(V-Push)

Γ, x:τ ok

� nat (W-Nat) � bool (W-Bool)
� σ � τ

(W-Arrow)� σ → τ
� σ � τ (�σ� = �τ �)

(W-Wedge)� σ ∧ τ

x:τ � M : bool
(W-Refine)

� {x:τ | M}

Fig. 8. Type system of PCFvΔH (1): well-formedness rules.
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3.4 Type System of PCFvΔH

The type system consists of three judgments: Γ ok, � τ , and Γ � M : τ , read “Γ
is well-formed”, “τ is well-formed”, and “M has τ under Γ ,” respectively. They
are defined inductively by the rules in Figs. 8, 9 and 10.

The rules for well-formed types check that an intersection type is restricted to
a refinement intersection type by the side condition �σ� = �τ � in (W-Wedge) and
that the predicate in a refinement type is a Boolean expression by (W-Refine).
Note that, since PCFvΔH has no dependent function type, all types are closed
and the predicate of a refinement type only depends on the parameter itself.

The typing rules, the rules for the third judgment, consist of two more sub-
categories: compile-time rules and run-time rules. Compile-time rules are for
checking a program a programmer writes. Run-time rules are for run-time expres-
sions and used to prove type soundness. This distinction, which follows, Belo
et al. [1], is to make compile-time type checking decidable.

Γ ok
(T-Zero)

Γ � O : nat
Γ � M : nat

(T-Succ)

Γ � succ(M) : nat

Γ � M : {x:nat | if iszero(x) then false else true}
(T-Pred)

Γ � pred(M) : nat

Γ � M : nat
(T-IsZero)

Γ � iszero(M) : bool
Γ ok

(T-True)

Γ � true : bool

Γ ok
(T-False)

Γ � false : bool
Γ � L : bool Γ � M : τ Γ � N : τ

(T-If)

Γ � ifL thenM elseN : τ
Γ ok (x:τ ∈ Γ )

(T-Var)

Γ � x : τ

Γ, x:σ � M : τ
(T-Abs)

Γ � λx:σ.M : σ → τ
Γ � M : σ → τ Γ � N : σ

(T-App)

Γ � M N : τ

Γ � M : σ Γ � N : τ (�M � = �N �) (�σ� = �τ �)
Γ � 〈M, N〉 : σ ∧ τ

(T-Pair)

Γ � M : σ ∧ τ
(T-Fst)

Γ � π1(M) : σ
Γ � M : σ ∧ τ

(T-Snd)

Γ � π2(M) : τ

Γ, f :I � B : I
(T-Fix)

Γ � μf :I.B : I

Γ � M : σ � τ (�σ� = �τ �)
(T-Cast)

Γ � (M : σ ⇒ τ) : τ

Fig. 9. Type system of PCFvΔH (2): compile-time typing rules.

A large part of the compile-time rules are adapted from PCF, Sekiyama
et al. [26], and Liquori and Stolze [17]. Here we explain some notable rules.
As an intersection type system, (T-Pair), (T-Fst), and (T-Snd) stands for
introduction and elimination rules of intersection types (or we can explicitly
introduce and/or eliminate an intersection type by a cast). The rule (T-Pair)
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checks a strong pair is composed by essentially the same expressions by �M � =
�N �. The rule (T-Pred) demands that the argument of predecessor shall not be
zero. The premise �σ� = �τ � of the rule (T-Cast) for casts requires the essences
of the source and target types to agree. It amounts to checking the two types σ
and τ are compatible [26].

The run-time rules are from Sekiyama et al. [26] with one extra rule
(T-Delayed). The rule (T-Delayed) is for a delayed checking for function
types, which restrict the source type so that it respects the evaluation rela-
tion (there is no evaluation rule for a delayed checking in which source type is
a refinement type), and inherits the condition on the source and target types
from (T-Cast). The side condition N [x 	→ V ] −→∗ M on (T-Active) is an
invariant during evaluation, that is, M is an intermediate state of the predicate
checking. This invariant lasts until the final (successful) run-time checking state
〈〈true =⇒ V : {x:τ | N}〉〉 and guarantees the checking result V (obtained by
(RC-Succeed)) satisfies the predicate N by (T-Exact).

Γ ok � V : σ � τ1 → τ2 (∀xτM.σ 	= {x:τ | M}) (�σ� = �τ1 → τ2�)
Γ � 〈〈V : σ ⇒ τ1 → τ2〉〉 : τ1 → τ2

(T-Delayed)

Γ ok � M : τ � {x:τ | N}
Γ � 〈〈M ? {x:τ | N}〉〉 : {x:τ | N} (T-Waiting)

Γ ok � M : bool � V : τ � {x:τ | N} N [x �→ V ] −→∗ M

Γ � 〈〈M =⇒ V : {x:τ | N}〉〉 : {x:τ | N} (T-Active)

Γ ok � V : {x:τ | N}
Γ � V : τ

(T-Forget)

Γ ok � V : τ � {x:τ | N} N [x �→ V ] −→∗ true

Γ � V : {x:τ | N} (T-Exact)

Fig. 10. Type system of PCFvΔH (3): run-time typing rules.

4 Properties

We start from properties of evaluation relations. As we have mentioned, −→p is
essential evaluation, and thus, it should simulate −→PCF; and −→c is dynamic
checking, and therefore, it should not change the essence of the expression. We
formally state and show these properties here. Note that most properties require
that the expression before evaluation is well typed. This is because the condition
of strong pairs is imposed by the type system.

Lemma 1. If M −→PCF N and M −→PCF L, then N = L.

Proof. The proof is routine by induction on one of the given derivations. ��
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Lemma 2. If � M : τ and M −→p N , then �M � −→PCF �N �.
Proof. The proof is by induction on the given evaluation derivation. ��
The following corollary is required to prove the preservation property.

Corollary 1. If � M : σ, � N : τ , M −→p M ′, N −→p N ′, and �M � = �N �;
then �M ′� = �N ′�.
Lemma 3. If � M : τ and M −→c N , then �M � = �N �.
Proof. The proof is by induction on the given evaluation derivation. ��

Now we can have the following theorem as a corollary of Lemma 2 and
Lemma 3. It guarantees the essential computation in PCFvΔH is the same as the
PCFv computation as far as the computation does not fail. In other words, run-
time checking may introduce blame but otherwise does not affect the essential
computation.

Theorem 1. If � M : τ and M −→ N , then �M � −→∗
PCF �N �.

4.1 Type Soundness

We conclude this section with type soundness. Firstly, we show a substitution
property; and using it, we show the preservation property.

Lemma 4. If Γ1, x:σ, Γ2 � M : τ and Γ1 � N : σ, then Γ1, Γ2 � M [x 	→ N ] : τ .

Proof. The proof is by induction on the derivation for M . ��
Theorem 2 (Preservation). If � M : τ and M −→ N , then � N : τ .

Proof. We prove preservation properties for each −→p and −→c and combine
them. Both proofs are done by induction on the given typing derivation. For the
case in which substitution happens, we use Lemma 4 as usual. For the context
evaluation for strong pairs, we use Corollary 1 and Lemma 3 to guarantee the
side-condition of strong pairs. ��

Next we show the value inversion property, which guarantees a value of a
refinement type satisfies its predicate. For PCFvΔH, this property can be quite
easily shown since PCFvΔH does not have dependent function types, while previ-
ous manifest contract systems need quite complicated reasoning [19,24,26]. The
property itself is proven by using the following two, which are for strengthening
an induction hypothesis.

Definition 8. We define a relation between values and types, written V |= τ ,
by the following rules.

V |= τ M [x 	→ V ] −→∗ true

V |= {x:τ | M}
(τ �= {x:σ | M})

V |= τ
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Lemma 5. If � V : τ , then V |= τ .

Proof. The proof is by induction on the given derivation. ��
Theorem 3 (Value inversion). If � V : {x:τ | M}, then M [x 	→ V ] −→∗

true.

Proof. Immediate from Lemma 5. ��
Remark 1. As a corollary of value inversion, it follows that a value of an intersec-
tion type must be a strong pair and its elements satisfy the corresponding pred-
icate in the intersection type: For example, if � 〈V1, V2〉 : {x:σ | M} ∧ {x:τ | N},
then M [x 	→ V1] −→∗ true and N [x 	→ V2] −→∗ true. In particular, for first-
order values, every element of the pair is same. That means the value satisfies
all contracts concatenated by ∧. For example, � V : {x:nat | M1}∧· · ·∧{x:nat |
Mn}, then Mk[x 	→ �V �] −→∗ true for any k = 1..n. This is what we have
desired for a contract written by using intersection types.

Lastly, the progress property also holds. In our setting, where pred(M) is
partial, this theorem can be proved only after Theorem 3.

Theorem 4 (Progress). If � M : τ , then M is a value or M −→ C for some
C.

Proof. The proof is by induction on the given derivation. Since the evaluation
relation is defined as combination of −→p and −→c, the proof is a bit tricky, but
most cases can be proven as usual. An interesting case is (T-Pair). We need to
guarantee that if one side of a strong pair is a value, another side must not be
evaluated by −→p since a value is in normal form. This follows from Lemma 2
and proof by contradiction because the essence of a PCFvΔH value is a PCFv
value and it is normal form. ��

5 Related Work

Intersection types were introduced in Curry-style type assignment systems by
Coppo et al. [6] and Pottinger [21] independently. In the early days, intersection
types are motivated by improving a type system to make more lambda terms
typeable; one important result towards this direction is that: a lambda term
has a type iff it can be strongly normalized [21,29]. Then, intersection types
are introduced to programming languages to enrich the descriptive power of
types [2,7,22].

Intersection Contracts for Untyped Languages. One of the first attempts
at implementing intersection-like contracts is found in DrRacket [9]. It is, how-
ever, a naive implementation, which just enforces all contracts even for functional
values, and thus the semantics of higher-order intersection contracts is rather dif-
ferent from ours.
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Keil and Thiemann [14] have proposed an untyped calculus of blame assign-
ment for a higher-order contract system with intersection and union. As we have
mentioned, our run-time checking semantics is strongly influenced by their work,
but there are two essential differences. On the one hand, they do not have the
problem of varying run-time checking according to a typing context; they can
freely put contract monitors4 where they want since it is an untyped language.
On the other hand, their operational semantics is made rather complicated due
to blame assignment.

More recently, Williams et al. [32] have proposed more sorted out seman-
tics for a higher-order contract system with intersection and union. They have
mainly reformed contract checking for intersection and union “in a uniform way”;
that is, each is handled by only one similar and simpler rule. As a result, their
presentation becomes closer to our semantics, though complication due to blame
assignment still remains. A similar level of complication will be expected if we
extend our calculus with blame assignment.

It would be interesting to investigate the relationship between their calculi
and PCFvΔH extended with blame labels, following Greenberg et al. [12].

Gradual Typing with Intersection Types. Castagna and Lanvin [3] have
proposed gradual typing for set-theoretic types, which contain intersection types,
as well as union and negation. A framework of gradual typing is so close to man-
ifest contract systems that there is even a study unifying them [31]. A gradual
typing system translates a program into an intermediate language that is stat-
ically typed and uses casts. Hence, they have the same problem—how casts
should be inserted when intersection types are used. They solve the problem by
type-case expressions, which dynamically dispatch behavior according to the
type of a value. However, it is not clear how type-case expressions scale to
a larger language. In fact, the following work [4], an extension to parametric
polymorphism and type inference, removes (necessity of) type-case expressions
but imposes instead a restriction on functions not to have an intersection type.
Furthermore, the solution using type-case expressions relies on strong properties
of set-theoretic types. So, it is an open problem if their solution can be adopted
to manifest contract systems because there is not set-theoretic type theory for
refinement types and, even worse, dependent function types.

Nondeterminism for Dependently Typed Languages. As we have noted
in Sect. 1, PCFvΔH has no dependent function types. In fact, no other work
discussed in this section supports both dependent function contracts and inter-
section contracts. To extend PCFvΔH to dependent function types, we have
to take care of their interaction with nondeterminism, which we studied else-
where [19] for a manifest calculus λH‖Φ with a general nondeterministic choice
operator.

4 A kind of casts in their language.
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A technical challenge in combining dependent function types and nondeter-
minstic choice comes from the following standard typing rule for (dependent)
function applications:

Γ � M : (x:σ) → τ Γ � N : σ

Γ � M N : τ [x 	→ N ]

The problem is that the argument N , which may contain nondeterministic choice,
may be duplicated in τ [x 	→ N ] and, to keep consistency of type equivalence,
choices made in each occurrence of N have to be “synchronized.” To control syn-
chronization, λH‖Φ introduces a named choice operator so that choice operators
with the same name make synchronized choice. However, λH‖Φ puts burden on
programmers to avoid unintended synchronization caused by accidentally shared
names.

If we incoporate the idea above to PCFvΔH, it will be natural to put names
on casts so that necessary synchronization takes place for choices made by
(RC-WedgeL) and (RC-WedgeR). It is not clear, however, how unintended
synchronization can be avoided systematically, without programmers’ ingenuity.

6 Conclusion

We have designed and formalized a manifest contract system PCFvΔH with
refinement intersection types. As a result of our formal development, PCFvΔH

guarantees not only ordinary preservation and progress but also the property
that a value of an intersection type, which can be seen as an enumeration of
small contracts, satisfies all the contracts.

The characteristic point of our formalization is that we regard a manifest con-
tract system as an extension of a more basic calculus, which has no software con-
tract system, and investigate the relationship between the basic calculus and the
manifest contract system. More specifically, essential computation and dynamic
checking are separated. We believe this investigation is important for modern
manifest contract systems because those become more and more complicated
and the separation is no longer admissible at a glance.

Future Work. Obvious future work is to lift the restriction we have mentioned
in Sect. 1. That aside, the subsumption-free approach is very naive and has an
obvious disadvantage, that is, it requires run-time checking even for a cast like
(M : σ ∧ τ ⇒ σ), which should be able to checked and removed at compile time.
To address the disadvantage, some manifest contract systems provide the prop-
erty known as up-cast elimination [1]—a cast from subtype into supertype can be
safely removed at compile-time. An interesting fact is that a well-known up-cast
(subtyping) relation for a traditional intersection type system is defined syntac-
tically; while a usual up-cast relation for a manifest contract system depends on
semantics. So, focusing on only the traditional subtyping relation, the property
might be proven more easily.
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Towards a practice language, our cast semantics using strong pairs and non-
determinism needs more investigation. For the strong pairs, it will be quite ineffi-
cient to evaluate both sides of a strong pair independently since its essence part
just computes the same thing. The inefficiency might be reduced by a kind of
sharing structures. For the nondeterminism, our theoretical result gives us useful
information only for successful evaluation paths; but we have not given a way to
pick up a successful one. One obvious way is computing every evaluation path,
but of course, it is quite inefficient.
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5. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3),
363–408 (2012)

6. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Math. Log. Q. 27(2–6), 45–58 (1981)

7. Dunfield, J.: Refined typechecking with stardust. In: Proceedings of PLPV, pp.
21–32 (2007)

8. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of ICFP, pp. 48–59 (2002)

9. Findler, R.B., PLT: DrRacket: programming environment. Technical report, PLT-
TR-2010-2, PLT Design Inc. (2010). https://racket-lang.org/tr2/

10. Flanagan, C.: Hybrid type checking. In: Proceedings of POPL, pp. 245–256 (2006)
11. Greenberg, M.: Space-efficient manifest contracts. In: Proceedings of POPL, pp.

181–194 (2015)
12. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: Proceedings

of POPL, pp. 353–364 (2010)
13. Gronski, J., Knowles, K., Tomb, A., Freund, S.N., Flanagan, C.: Sage: hybrid check-

ing for flexible specifications. In: Scheme and Functional Programming Workshop,
pp. 93–104 (2006)

14. Keil, M., Thiemann, P.: Blame assignment for higher-order contracts with inter-
section and union. In: Proceedings of ICFP, pp. 375–386 (2015)

15. Knowles, K., Flanagan, C.: Hybrid type checking. ACM Trans. Program. Lang.
Syst. 32(2), 6:1–6:34 (2010)

16. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of PLDI, pp. 222–233 (2011)

https://doi.org/10.1007/978-3-642-19718-5_2
https://racket-lang.org/tr2/


52 Y. Nishida and A. Igarashi

17. Liquori, L., Stolze, C.: The Δ-calculus: syntax and types. In: Proceedings of FSCD,
pp. 28:1–28:20 (2018)

18. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Upper
Saddle River (1997)

19. Nishida, Y., Igarashi, A.: Nondeterministic manifest contracts. In: Proceedings of
PPDP, pp. 16:1–16:13 (2018)

20. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

21. Pottinger, G.: A type assignment for the strongly normalizabile λ-terms. In: To
H. B. Curry, Essays in Combinatory Logic, Lambda-Calculus and Formalism, pp.
561–577 (1980)

22. Reynolds, J.C.: Preliminary design of the programming language Forsythe. Tech-
nical report, CMU-CS-88-159, Carnegie Mellon University (1988)

23. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of PLDI,
pp. 159–169 (2008)

24. Sekiyama, T., Igarashi, A.: Stateful manifest contracts. In: Proceedings of POPL,
pp. 530–544 (2017)

25. Sekiyama, T., Igarashi, A., Greenberg, M.: Polymorphic manifest contracts, revised
and resolved. ACM Trans. Program. Lang. Syst. 39(1), 3:1–3:36 (2017)

26. Sekiyama, T., Nishida, Y., Igarashi, A.: Manifest contracts for datatypes. In: Pro-
ceedings of POPL, pp. 195–207 (2015)

27. Terauchi, T.: Dependent types from counterexamples. In: Proceedings of POPL,
pp. 119–130 (2010)

28. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Proceed-
ings of PPDP, pp. 277–288 (2009)

29. Valentini, S.: An elementary proof of strong normalization for intersection types.
Arch. Math. Log. 40(7), 475–488 (2001)

30. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for Haskell. In: Proceedings of ICFP, pp. 269–282 (2014)

31. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Proceedings
of ESOP, pp. 1–16 (2009)

32. Williams, J., Morris, J.G., Wadler, P.: The root cause of blame: contracts for
intersection and union types. Proc. ACM Program. Lang. 2(OOPSLA), 134:1–
134:29 (2018)

33. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference
for ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 295–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 19

https://doi.org/10.1007/978-3-642-35873-9_19
https://doi.org/10.1007/978-3-642-35873-9_19


A Dependently Typed Multi-stage
Calculus

Akira Kawata(B) and Atsushi Igarashi

Graduate School of Informatics, Kyoto University, Kyoto, Japan
akira@fos.kuis.kyoto-u.ac.jp, igarashi@kuis.kyoto-u.ac.jp

Abstract. We study a dependently typed extension of a multi-stage
programming language à la MetaOCaml, which supports quasi-quotation
and cross-stage persistence for manipulation of code fragments as first-
class values and an evaluation construct for execution of programs
dynamically generated by this code manipulation. Dependent types are
expected to bring to multi-stage programming enforcement of strong
invariant—beyond simple type safety—on the behavior of dynamically
generated code. An extension is, however, not trivial because such a type
system would have to take stages of types—roughly speaking, the num-
ber of surrounding quotations—into account.

To rigorously study properties of such an extension, we develop λMD,
which is an extension of Hanada and Igarashi’s typed calculus λ�% with
dependent types, and prove its properties including preservation, con-
fluence, strong normalization for full reduction, and progress for staged
reduction. Motivated by code generators that generate code whose type
depends on a value from outside of the quotations, we argue the signif-
icance of cross-stage persistence in dependently typed multi-stage pro-
gramming and certain type equivalences that are not directly derived
from reduction rules.

Keywords: Multi-stage programming · Cross-stage persistence ·
Dependent types

1 Introduction

1.1 Multi-stage Programming and MetaOCaml

Multi-stage programming makes it easier for programmers to implement genera-
tion and execution of code at run time by providing language constructs for com-
posing and running pieces of code as first-class values. A promising application
of multi-stage programming is (run-time) code specialization, which generates
program code specialized to partial inputs to the program and such applications
are studied in the literature [17,20,29].

MetaOCaml [6,18] is an extension of OCaml1 with special constructs for
multi-stage programming, including brackets and escape, which are (hygienic)
1 http://ocaml.org.
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quasi-quotation, and run, which is similar to eval in Lisp, and cross-stage per-
sistence (CSP) [31]. Programmers can easily write code generators by using these
features. Moreover, MetaOCaml is equipped with a powerful type system for safe
code generation and execution. The notion of code types is introduced to pre-
vent code values that represent ill-typed expressions from being generated. For
example, a quotation of expression 1 + 1 is given type int code and a code-
generating function, which takes a code value c as an argument and returns
c + c, is given type int code -> int code so that it cannot be applied to,
say, a quotation of "Hello", which is given type string code. Ensuring safety
for run is more challenging because code types by themselves do not guarantee
that the execution of code values never results in unbound variable errors. Taha
and Nielsen [30] introduced the notion of environment classifiers to address the
problem, developed a type system to ensure not only type-safe composition but
also type-safe execution of code values, and proved a type soundness theorem
(for a formal calculus λα modeling a pure subset of MetaOCaml).

However, the type system, which is based on the Hindley–Milner polymor-
phism [23], is not strong enough to guarantee invariant beyond simple types.
For example, Kiselyov [17] demonstrates specialization of vector/matrix com-
putation with respect to the sizes of vectors and matrices in MetaOCaml but
the type system of MetaOCaml cannot prevent such specialized functions from
being applied to vectors and matrices of different sizes.

1.2 Multi-stage Programming with Dependent Types

One natural idea to address this problem is the introduction of dependent types
to express the size of data structures in static types [34]. For example, we could
declare vector types indexed by the size of vectors as follows.

Vector :: Int -> *

Vector is a type constructor that takes an integer (which represents the length
of vectors): for example, Vector 3 is the type for vectors whose lengths are 3.
Then, our hope is to specialize vector/matrix functions with respect to their size
and get a piece of function code, whose type respects the given size, provided
at specialization time. For example, we would like to specialize a function to
add two vectors with respect to the size of vectors, that is, to implement a code
generator that takes a (nonnegative) integer n as an input and generates a piece
of function code of type (Vector n -> Vector n -> Vector n) code.

1.3 Our Work

In this paper, we develop a new multi-stage calculus λMD by extending the exist-
ing multi-stage calculus λ�% [14] with dependent types and study its properties.
We base our work on λ�%, in which the four multi-stage constructs are handled
slightly differently from MetaOCaml, because its type system and semantics are
arguably simpler than λα [30], which formalizes the design of MetaOCaml more
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faithfully. Dependent types are based on λLF [1], which has one of the sim-
plest forms of dependent types. Our technical contributions are summarized as
follows:

– We give a formal definition of λMD with its syntax, type system and two
kinds of reduction: full reduction, allowing reduction of any redex, including
one under λ-abstraction and quotation, and staged reduction, a small-step
call-by-value operational semantics that is closer to the intended multi-stage
implementation.

– We show preservation, strong normalization, and confluence for full reduction;
and show unique decomposition (and progress as its corollary) for staged
reduction.

The combination of multi-stage programming and dependent types has been
discussed by Pasalic, Taha, and Sheard [26] and Brady and Hammond [5] but,
to our knowledge, our work is a first formal calculus of full-spectrum dependently
typed multi-stage programming with all the key constructs mentioned above.

Organization of the Paper. The organization of this paper is as follows.
Section 2 gives an informal overview of λMD. Section 3 defines λMD and Sect. 4
shows properties of λMD. Section 5 discusses related work and Sect. 6 concludes
the paper with discussion of future work. We omit proofs and (details of) some
definitions for brevity; interested readers are referred to a full version of the
paper, which is available at https://arxiv.org/abs/1908.02035.

2 Informal Overview of λMD

We describe our calculus λMD informally. λMD is based on λ�% [14] by Hanada
and Igarashi and so we start with a review of λ�%.

2.1 λ�%

In λ�%, brackets (quasi-quotation) and escape (unquote) are written �αM and
�αM , respectively. For example, �α(1 + 1) represents code of expression 1 + 1
and thus evaluates to itself. Escape �αM may appear under �α; it evaluates M
to a code value and splices it into the surrounding code fragment. Such splicing
is expressed by the following reduction rule:

�α(�αM) −→ M.

The subscript α in �α and �α is a stage variable2 and a sequence of
stage variables is called a stage. Intuitively, a stage represents the depth of
nested brackets. Stage variables can be abstracted by Λα.M and instantiated

2 In Hanada and Igarashi [14], it was called a transition variable, which is derived from
correspondence to modal logic, studied by Tsukada and Igarashi [32].

https://arxiv.org/abs/1908.02035
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by an application M A to stages. For example, Λα.�α((λx : Int.x + 10) 5)
is a code value, where α is abstracted. If it is applied to A = α1 · · · αn, �α

becomes �α1 · · · �αn
; in particular, if n = 0, �α disappears. So, an application

of Λα.�α((λx : Int.x + 10) 5) to the empty sequence ε reduces to (unquoted)
(λx : Int.x + 10) 5 and to 15. In other words, application of a Λ-abstraction to
ε corresponds to run. This is expressed by the following reduction rule:

(Λα.M) A −→ M [α �→ A]

where stage substitution [α �→ A] manipulates the nesting of �α and �α (and
also %α as we see later).

Cross-stage persistence (CSP), which is an important feature of λ�%, is a
primitive to embed values (not necessarily code values) into a code value. For
example, a λ�%-term

M1 = λx : Int.Λα.(�α((%αx) ∗ 2))

takes an integer x as an input and returns a code value, into which x is embedded.
If M1 is applied to 38 + 4 as in

M2 = (λx : Int.Λα.(�α((%αx) ∗ 2))) (38 + 4),

then it evaluates to M3 = Λα.(�α((%α42) ∗ 2)). According to the semantics
of λ�%, the subterm %α42 means that it waits for the surrounding code to be
run (by an application to ε) and so it does not reduce further. If M3 is run by
application to ε, substitution of ε for α eliminates �α and %α and so 42 ∗ 2,
which reduces to 84, is obtained. CSP is practically important because one can
call library functions from inside quotations.

The type system of λ�% uses code types—the type of code of type τ is
written �ατ—for typing �α, �α and %α. It takes stages into account: a vari-
able declaration (written x : τ@A) in a type environment is associated with its
declared stage A as well as its type τ and the type judgement of λ�% is of the
form Γ � M : τ@A, in which A stands for the stage of term M .3 For example,
y : Int@α � (λx : Int.y) : Int → Int@α holds, but y : Int@α � (λx : Int.y) :
Int → Int@ε does not because the latter uses y at stage ε but y is declared at
α. Quotation �αM is given type �ατ at stage A if M is given type τ at stage
Aα; unquote �αM is given type τ at stage Aα if M is given type �ατ at stage
Aα; and CSP %αM is give type τ at stage Aα if M is given type τ at A. These
are expressed by the following typing rules.

Γ � M : τ@Aα

Γ � �αM : �ατ@A

Γ � M : �ατ@A

Γ � �αM : τ@Aα

Γ � M : τ@A

Γ � %αM : τ@Aα

2.2 Extending λ�% with Dependent Types

In this paper, we add a simple form of dependent types—à la Edinburgh LF [15]
and λLF [1]—to λ�%. Types can be indexed by terms as in Vector in Sect. 1
3 In Hanada and Igarashi [14], it is written Γ �A M : τ .
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and λ-abstractions can be given dependent function types of the form Πx : τ.σ
but we do not consider type operators (such as list τ) or abstraction over type
variables. We introduce kinds to classify well-formed types and equivalences for
kinds, types, and terms—as in other dependent type systems—but we have to
address a question how the notion of stage (should) interact with kinds and
types.

On the one hand, base types such as Int should be able to be used at every
stage as in λ�% so that λx : Int.Λα.�αλy : Int.M is a valid term (here, Int is
used at ε and α). Similarly for indexed types such as Vector 4. On the other
hand, it is not immediately clear how a type indexed by a variable, which can
be used only at a declared stage, can be used. For example, consider

�α(λx : Int.(�α(λy : Vector x.M)N)) and λx : Int.�α(λy : Vector x.M).

Is Vector x a legitimate type at ε (and α, resp.) even if x : Int is declared at
stage α (and ε, resp.)? We will give our answer to this question in two steps.

First, type-level constants such as Int and Vector can be used at every stage
in λMD. Technically, we introduce a signature that declares kinds of type-level
constants and types of constants. For example, a signature for the Boolean type
and constants is given as follows Bool : :∗, true : Bool, false : Bool (where ∗ is the
kind of proper types). Declarations in a signature are not associated to particular
stages; so they can be used at every stage.

Second, an indexed type such as Vector 3 or Vector x is well formed only at
the stage(s) where the index term is well-typed. Since constant 3 is well-typed
at every stage (if it is declared in the signature), Vector 3 is a well-formed type
at every stage, too. However, Vector M is well-formed only at the stage where
index term M is typed. Thus, the kinding judgment of λMD takes the form
Γ �Σ τ :: K@A, where stage A stands for where τ is well-formed. For example,
given Vector :: Int → ∗ in the signature Σ, x : Int@ε �Σ Vector x :: ∗@ε can be
derived but neither x : Int@α �Σ Vector x :: ∗@ε nor x : Int@ε �Σ Vector x ::
∗@α can be.

Apparently, the restriction above sounds too severe, because a term like λx :
Int.�α(λy : Vector x.M), which models a typical code generator which takes the
size x and returns code for vector manipulation specialized to the given size, will
be rejected. It seems crucial for y to be given a type indexed by x. We can address
this problem by CSP—In fact, Vector x is not well formed at α under x : Int@ε
but Vector (%αx) is! Thus, we can still write λx : Int.�α(λy : Vector (%αx).M)
for the typical sort of code generators.

Our decision that well-formedness of types takes stages of index terms into
account will lead to the introduction of CSP at the type level and special equiv-
alence rules, as we will see later.

3 Formal Definition of λMD

In this section, we give a formal definition of λMD, including the syntax, full
reduction, and type system. In addition to the full reduction, in which any redex



58 A. Kawata and A. Igarashi

at any stage can be reduced, we also give staged reduction, which models program
execution (at ε-stage).

3.1 Syntax

We assume the denumerable set of type-level constants, ranged over by metavari-
ables X,Y,Z, the denumerable set of variables, ranged over by x, y, z, the denu-
merable set of constants, ranged over by c, and the denumerable set of stage
variables, ranged over by α, β, γ. The metavariables A,B,C range over sequences
of stage variables; we write ε for the empty sequence. λMD is defined by the fol-
lowing grammar:

kinds K,J, I,H,G ::= ∗ | Πx : τ.K

types τ, σ, ρ, π, ξ ::= X | Πx : τ.σ | τ M | �ατ | ∀α.τ

terms M,N,L,O, P ::= c | x | λx : τ.M | M N | �αM

| �αM | Λα.M | M A | %αM

signatures Σ ::= ∅ | Σ,X :: K | Σ, c : τ

type env. Γ :: = ∅ | Γ, x : τ@A

A kind, which is used to classify types, is either ∗, the kind of proper types
(types that terms inhabit), or Πx : τ.K, the kind of type operators that takes
x as an argument of type τ and returns a type of kind K. A type is a type-
level constant X, which is declared in the signature with its kind, a dependent
function type Πx : τ.σ, an application τ M of a type (operator of Π-kind) to a
term, a code type �ατ , or an α-closed type ∀α.τ . An example of an application
of a type (operator) of Π-kind to a term is Vector 10; it is well kinded if, say,
the type-level constant Vector has kind Πx : Int.∗. A code type �ατ is for a code
fragment of a term of type τ . An α-closed type, when used with �α, represents
runnable code.

Terms include ordinary (explicitly typed) λ-terms, constants, whose types
are declared in signature Σ, and the following five forms related to multi-stage
programming: �αM represents a code fragment; �αM represents escape; Λα.M
is a stage variable abstraction; M A is an application of a stage abstraction M
to stage A; and %αM is an operator for cross-stage persistence.

We adopt the tradition of λLF-like systems, where types of constants and
kinds of type-level constants are globally declared in a signature Σ, which is
a sequence of declarations of the form c : τ and X :: K. For example, when
we use Boolean in λMD, Σ includes Bool :: ∗, true : Bool, false : Bool. Type
environments are sequences of triples of a variable, its type, and its stage. We
write dom(Σ) and dom(Γ ) for the set of (type-level) constants and variables
declared in Σ and Γ , respectively. As in other multi-stage calculi [14,30,32], a
variable declaration is associated with a stage so that a variable can be referenced
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only at the declared stage. On the contrary, constants and type-level constants
are not associated with stages; so, they can appear at any stage. We define
well-formed signatures and well-formed type environments later.

The variable x is bound in M by λx : τ.M and in σ by Πx : τ.σ, as usual; the
stage variable α is bound in M by Λα.M and τ by ∀α.τ . The notion of free vari-
ables is defined in a standard manner. We write FV(M) and FSV(M) for the set
of free variables and the set of free stage variables in M , respectively. Similarly,
FV(τ), FSV(τ), FV(K), and FSV(K) are defined. We sometimes abbreviate
Πx : τ1.τ2 to τ1 → τ2 if x is not a free variable of τ2. We identify α-convertible
terms and assume the names of bound variables are pairwise distinct.

The prefix operators �α,�α,�α, and %α are given higher precedence over
the three forms τ M , M N , M A of applications, which are left-associative.
The binders Π, ∀, and λ extend as far to the right as possible. Thus,
∀α.�α(Πx : Int.Vector 5) is interpreted as ∀α.(�α(Πx : Int.(Vector 5))); and
Λα.λx : Int.�αx y means Λα.(λx : Int.(�αx) y).

Remark: Basically, we define λMD to be an extension of λ�% with dependent
types. One notable difference is that λMD has only one kind of α-closed types,
whereas λ�% has two kinds of α-closed types ∀α.τ and ∀εα.τ . We have omitted
the first kind, for simplicity, and dropped the superscript ε from the second. It
would not be difficult to recover the distinction to show properties related to
program residualization [14], although they are left as conjectures.

3.2 Reduction

Next, we define full reduction for λMD. Before giving the definition of reduction,
we define two kinds of substitutions. Substitution M [x �→ N ], τ [x �→ N ] and
K[x �→ N ] are ordinary capture-avoiding substitution of term N for x in term M ,
type τ , and kind K, respectively, and we omit their definitions here. Substitution
M [α �→ A], τ [α �→ A],K[α �→ A] and B[α �→ A] are substitutions of stage A for
stage variable α in term M , type τ , kind K, and stage B, respectively. We show
representative cases below.

(λx : τ.M)[α �→ A] = λx : (τ [α �→ A]).(M [α �→ A])
(M B)[α �→ A] = (M [α �→ A]) B[α �→ A]
(�βM)[α �→ A] = �β[α�→A]M [α �→ A]
(�βM)[α �→ A] = �β[α�→A]M [α �→ A]
(%βM)[α �→ A] = %β[α�→A]M [α �→ A]

(βB)[α �→ A] = β(B[α �→ A]) (if α �= β)
(βB)[α �→ A] = A(B[α �→ A]) (if α = β)

Here, �α1···αn
M , �α1···αn

M , and %α1···αn
M (n ≥ 0) stand for �α1 · · · �αn

M ,
�αn

· · · �α1M , and %αn
· · · %α1M , respectively. In particular, �εM = �εM =

%εM = M . Also, it is important that the order of stage variables is reversed for
� and %. We also define substitutions of a stage or a term for variables in type
environment Γ .
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Definition 1 (Reduction). The relations M −→β N , M −→� N , and
M −→Λ N are the least compatible relations closed under the rules below.

(λx : τ.M)N −→β M [x �→ N ]
�α�αM −→� M

(Λα.M) A −→Λ M [α �→ A]

We write M −→ M ′ iff M −→β M ′, M −→� M ′, or M −→Λ M ′ and we call
−→β , −→�, and −→Λ β-reduction, �-reduction, and Λ-reduction, respectively.
M −→∗ N means that there is a sequence of reduction −→ whose length is
greater than or equal to 0.

The relation −→β represents ordinary β-reduction in the λ-calculus; the rela-
tion −→� represents that quotation �αM is canceled by escape and M is spliced
into the code fragment surrounding the escape; the relation −→Λ means that
a stage abstraction applied to stage A reduces to the body of the abstraction
where A is substituted for the stage variable. There is no reduction rule for CSP
as with Hanada and Igarashi [14]. The CSP operator %α disappears when ε is
substituted for α. We show an example of a reduction sequence below. Underlines
show the redexes.

(λf : Int → Int.(Λα.�α(%αf 1 + (�α�α3)) ε)) (λx : Int.x)

−→β (Λα.�α(%α(λx : Int.x) 1 + (�α�α3))) ε

−→� (Λα.�α(%α(λx : Int.x) 1 + 3)) ε

−→Λ (λx : Int.x) 1 + 3

−→β 1 + 3
−→∗ 4

3.3 Type System

In this section, we define the type system of λMD. It consists of eight judg-
ment forms for signature well-formedness, type environment well-formedness,
kind well-formedness, kinding, typing, kind equivalence, type equivalence, and
term equivalence. We list the judgment forms in Fig. 1. They are all defined in
a mutual recursive manner. We will discuss each judgment below.

Signature and Type Environment Well-Formedness. The rules for Well-
formed signatures and type environments are shown below:

� ∅

� Σ �Σ K kind@ε
X /∈ dom(Σ)

� Σ, X :: K

� Σ �Σ τ :: ∗@ε
c /∈ dom(Σ)

� Σ, c : τ

�Σ ∅
�Σ Γ Γ �Σ τ :: ∗@A x /∈ dom(Σ)

�Σ Γ, x : τ@A
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Fig. 1. Eight judgment forms of the type system of λMD.

To add declarations to a signature, the kind/type of a (type-level) constant
has to be well-formed at stage ε so that it is used at any stage. In what follows,
well-formedness is not explicitly mentioned but we assume that all signatures
and type environments are well-formed.

Kind Well-Formedness and Kinding. The rules for kind well-formedness
and kinding are a straightforward adaptation from λLF and λ�%, except for the
following rule for type-level CSP.

Γ �Σ τ :: ∗@A

Γ �Σ τ :: ∗@Aα
(K-Csp)

Unlike the term level, type-level CSP is implicit because there is no staged
semantics for types.

Typing. The typing rules of λMD are shown in Fig. 2. The rule T-Const means
that a constant can appear at any stage. The rules T-Var, T-Abs, and T-App
are almost the same as those in the simply typed lambda calculus or λLF.
Additional conditions are that subterms must be typed at the same stage (T-
Abs and T-App); the type annotation/declaration on a variable has to be a
proper type of kind ∗ (T-Abs) at the stage where it is declared (T-Var and
T-Abs).

As in standard dependent type systems, T-Conv allows us to replace the
type of a term with an equivalent one. For example, assuming integers and
arithmetic, a value of type Vector (4 + 1) can also have type Vector 5 because of
T-Conv.

The rules T-�, T-�, T-Gen, T-Ins, and T-Csp are constructs for multi-
stage programming. T-� and T-� are the same as in λ�%, as we explained in
Sect. 2. The rule T-Gen for stage abstraction is straightforward. The condition
α /∈ FTV(Γ) ∪ FTV(A) ensures that the scope of α is in M , and avoids cap-
turing variables elsewhere. The rule T-Ins is for applications of stages to stage
abstractions. The rule T-Csp is for CSP, which means that, if term M is of type
τ at stage A, then %αM is of type τ at stage Aα. Note that CSP is also applied
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Fig. 2. Typing Rules.

to the type τ (although it is implicit) in the conclusion. Thanks to implicit CSP,
the typing rule is the same as in λ�%.

Kind, Type and Term Equivalence. Since the syntax of kinds, types, and
terms is mutually recursive, the corresponding notions of equivalence are also
mutually recursive. They are congruences closed under a few axioms for term
equivalence. Thus, the rules for kind and type equivalences are not very inter-
esting, except that implicit CSP is allowed. We show a few representative rules
below.

Γ �Σ K ≡ J@A

Γ �Σ K ≡ J@Aα
(QK-Csp)

Γ �Σ τ ≡ σ :: ∗@A

Γ �Σ τ ≡ σ :: ∗@Aα
(QT-Csp)

Γ �Σ τ ≡ σ :: (Πx : ρ.K)@A Γ �Σ M ≡ N : ρ@A

Γ �Σ τ M ≡ σ N :: K[x �→ M ]@A
(QT-App)

We show the rules for term equivalence in Fig. 3, omitting straightforward
rules for reflexivity, symmetry, transitivity, and compatibility. The rules Q-β, Q-
��, and Q-Λ correspond to β-reduction, �-reduction, and Λ-reduction, respec-
tively.

The only rule that deserves elaboration is the last rule Q-%. Intuitively, it
means that the CSP operator applied to term M can be removed if M is also
well-typed at the next stage Aα. For example, constants do not depend on the
stage (see T-Const) and so Γ �Σ %αc ≡ c : τ@Aα holds but variables do
depend on stages and so this rule does not apply.
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Fig. 3. Term Equivalence Rules.

Example. We show an example of a dependently typed code generator in
a hypothetical language based on λ�%. This language provides definitions by
let, recursive functions (represented by fix), if -expressions, and primitives cons,
head, and tail to manipulate vectors. We assume that cons is of type Πn :
Int.Int → Vector n → Vector (n + 1), head is of type Πn : Int.Vector (n + 1) →
Int, and tail is of type Πn : Int.Vector (n + 1) → (Vector n).

Let’s consider an application, for example, in computer graphics, in which
we have potentially many pairs of vectors of the fixed (but statically unknown)
length and a function—such as vector addition—to be applied to them. This
function should be fast because it is applied many times and be safe because
just one runtime error may ruin the whole long-running calculation.

Our goal is to define the function vadd of type

Πn : Int.∀β.�β(Vector (%αn) → Vector (%αn) → Vector (%αn)).

It takes the length n and returns (β-closed) code of a function to add two vectors
of length n. The generated code is run by applying it to ε to obtain a function
of type Vector n → Vector n → Vector n as expected.

We start with the helper function vadd1, which takes a stage, the length n of
vectors, and two quoted vectors as arguments and returns code that computes
the addition of the given two vectors:

let vadd1 : ∀α.Πn : Int.�αVector n → �αVector n → �αVector n
= fix f.Λα.λn : Int. λv1 : �αVector n. λv2 : �αVector n.

if n = 0 then �αnil
else �α( let t1 = tail (�αv1) in

let t2 = tail (�αv2) in
cons (head (�αv1) + head (�αv2))

�α(f (n − 1) (�αt1) (�αt2)))

Note that the generated code will not contain branching on n or recursion.
(Here, we assume that the type system can determine whether n = 0 when
then- and else-branches are typechecked so that both branches can be given
type �αVector n.)

Using vadd1, the main function vadd can be defined as follows:
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let vadd : Πn : Int.∀β.�β(Vector (%βn) → Vector (%βn) → Vector (%βn))
= λn : Int.Λβ.�β(λv1 : Vector (%βn). λv2 : Vector (%βn).

�β(vadd1 β n (�β v1) (�β v2)))

The auxiliary function vadd1 generates code to compute addition of the formal
arguments v1 and v2 without branching on n or recursion. As we mentioned
already, if this function is applied to a (nonnegative) integer constant, say 5,
it returns function code for adding two vectors of size 5. The type of vadd 5,
obtained by substituting 5 for n, is ∀β.�β(Vector (%β5) → Vector (%β5) →
Vector (%β5)). If the obtained code is run by applying to ε, the type of vadd 5
ε is Vector 5 → Vector 5 → Vector 5 as expected.

There are other ways to implement the vector addition function: by using
tuples instead of lists if the length for all the vectors is statically known or by
checking dynamically the lengths of lists for every pair. However, our method
is better than these alternatives in two points. First, our function, vadd1 can
generate functions for vectors of arbitrary length unlike the one using tuples.
Second, vadd1 has an advantage in speed over the one using dynamic checking
because it can generate an optimized function for a given length.

We make two technical remarks before proceeding:

1. If the generated function code is composed with another piece of code of
type, say, �γVector 5, Q-% plays an essential role; that is, Vector 5 and
Vector (%γ5), which would occur by applying the generated code to γ (instead
of ε), are syntactically different types but Q-% enables to equate them. Inter-
estingly, Hanada and Igarashi [14] rejected the idea of reduction that removes
%α when they developed λ�%, as such reduction does not match the oper-
ational behavior of the CSP operator in implementations. However, as an
equational system for multi-stage programs, the rule Q-% makes sense.

2. By using implicit type-level CSP, the type of vadd could have been written
Πn : Int.∀β.�β(Vector n → Vector n → Vector n). In this type, Vector n
is given kind at stage ε and type-level CSP implicitly lifts it to stage β.
However, if a type-level constant takes two or more arguments from different
stages, term-level CSP is necessary. A matrix type (indexed by the numbers
of columns and rows) would be such an example.

3.4 Staged Semantics

The reduction given above is full reduction and any redexes—even under �α—
can be reduced in an arbitrary order. Following previous work [14], we intro-
duce (small-step, call-by-value) staged semantics, where only β-reduction or Λ-
reduction at stage ε or the outer-most �-reduction are allowed, modeling an
implementation.

We start with the definition of values. Since terms under quotations are not
executed, the grammar is indexed by stages.
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Definition 2 (Values). The family V A of sets of values, ranged over by vA, is
defined by the following grammar. In the grammar, A′ �= ε is assumed.

vε ∈ V ε ::= λx : τ.M | �αvα | Λα.vε

vA′ ∈ V A′
::= x | λx : τ.vA′ | vA′

vA′ | �αvA′α | Λα.vA′ | vA′
B

| �αvA′′
(if A′ = A′′α for some α,A′′ �= ε)

| %αvA′′
(if A′ = A′′α)

Values at stage ε are λ-abstractions, quoted pieces of code, or Λ-abstractions.
The body of a λ-abstraction can be any term but the body of Λ-abstraction has
to be a value. It means that the body of Λ-abstraction must be evaluated. The
side condition for �αvA′

means that escapes in a value can appear only under
nested quotations because an escape under a single quotation will splice the code
value into the surrounding code. See Hanada and Igarashi [14] for details.

In order to define staged reduction, we define redex and evaluation contexts.

Definition 3 (Redex). The sets of ε-redexes (ranged over by Rε) and α-redexes
(ranged over by Rα) are defined by the following grammar.

Rε ::= (λx : τ.M) vε | (Λα.vε) ε

Rα ::= �α�αvα

Definition 4 (Evaluation Context). Let B be either ε or a stage variable β.
The family of sets ECtxA

B of evaluation contexts, ranged over by EA
B , is defined

by the following grammar (in which A′ stands for a non-empty stage).

Eε
B ∈ ECtxε

B ::= � (if B = ε) | Eε
B M | vε Eε

B | �αEα
B | Λα.Eε

B | Eε
B A

EA′
B ∈ ECtxA′

B ::= � (if A′ = B) | λx : τ.EA′
B | EA′

B M | vA′
EA′

B

| �αEA′α
B | �αEA

B (where Aα = A′)

| Λα.EA′
B | EA′

B A | %α EA
B (where Aα = A′)

The subscripts A and B in EA
B stand for the stage of the evaluation context

and of the hole, respectively. The grammar represents that staged reduction is
left-to-right and call-by-value and terms under Λ are reduced. Terms at non-ε
stages are not reduced, except redexes of the form �α�αvα at stage α. A few
examples of evaluation contexts are shown below:

� (λx : Int.x) ∈ ECtxε
ε

Λα.� ε ∈ ECtxε
ε

�α�α�α� ∈ ECtxα
ε

We write EA
B [M ] for the term obtained by filling the hole � in EA

B by M .
Now we define staged reduction using the redex and evaluation contexts.
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Definition 5 (Staged Reduction). The staged reduction relation, written
M −→s N , is defined by the least relation closed under the rules below.

EA
ε [(λx : τ.M) vε] −→s EA

ε [M [x �→ vε]]

EA
ε [(Λα.vε) A] −→s EA

ε [vε[α �→ A]]

EA
α [�α�αvα] −→s EA

α [vα]

This reduction relation reduces a term in a deterministic, left-to-right, call-
by-value manner. An application of an abstraction is executed only at stage ε
and only a quotation at stage ε is spliced into the surrounding code—notice
that, if �αvα is at stage ε, then the redex �α�αvα is at stage α. In other words,
terms in brackets are not evaluated until the terms are run and arguments of
a function are evaluated before the application. We show an example of staged
reduction. Underlines show the redexes.

(Λα.(�α�α�α((λx : Int.x) 10))) ε

−→s(Λα.(�α((λx : Int.x) 10))) ε

−→s(λx : Int.x) 10

−→s10

4 Properties of λMD

In this section, we show the basic properties of λMD: preservation, strong nor-
malization, confluence for full reduction, and progress for staged reduction.

The Substitution Lemma in λMD is a little more complicated than usual
because there are eight judgment forms and two kinds of substitution. The Term
Substitution Lemma states that term substitution [z �→ M ] preserves derivability
of judgments. The Stage Substitution Lemma states similarly for stage substi-
tution [α �→ A].

We let J stand for the judgments K kind@A, τ :: K@A, M : τ@A, K ≡
J@A, τ ≡ σ@A, and M ≡ N : τ@A. Substitutions J [z �→ M ] and J [α �→ A] are
defined in a straightforward manner. Using these notations, the two substitution
lemmas are stated as follows:

We proved the next two leammas by simultaneous induction on derivations.

Lemma 1 (Term Substitution). If Γ, z : ξ@B,Δ �Σ J and Γ �Σ N : ξ@B,
then Γ, (Δ[z �→ N ]) �Σ J [z �→ N ]. Similarly, if �Σ Γ, z : ξ@B,Δ and Γ �Σ N :
ξ@B, then �Σ Γ, (Δ[z �→ N ]).

Lemma 2 (Stage Substitution). If Γ �Σ J , then Γ [β �→ B] �Σ J [β �→ B].
Similarly, if �Σ Γ , then �Σ Γ [β �→ B].

The following Inversion Lemma is needed to prove the main theorems. As
usual [27], the Inversion Lemma enables us to infer the types of subterms of a
term from the shape of the term.
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Lemma 3 (Inversion).

1. If Γ �Σ (λx : σ.M) : ρ then there are σ′ and τ ′ such that ρ = Πx : σ′.τ ′,
Γ �Σ σ ≡ σ′@A and Γ, x : σ′@A �Σ M : τ ′@A.

2. If Γ �Σ �αM : τ@A then there is σ such that τ = �ασ and Γ �Σ M : σ@A.
3. If Γ �Σ Λα.M : τ then there is σ such that σ = ∀α.σ and Γ �Σ M : σ@A.

Proof. Each item is strengthened by statements about type equivalence. For
example, the first statement is augmented by

If Γ �Σ ρ ≡ (Πx : σ.τ) : K@A, then there exist σ′ and τ ′ such that
ρ = Πx : σ′.τ ′ and Γ �Σ σ ≡ σ′ : K@A and Γ, x : σ@A �Σ τ ≡ τ ′ : J@A.

and its symmetric version. Then, they are proved simultaneously by induction
on derivations. Similarly for the others. �

Thanks to Term/Stage Substitution and Inversion, we can prove Preservation
easily.

Theorem 1 (Preservation). If Γ �Σ M : τ@A and M −→ M ′, then Γ �Σ

M ′ : τ@A.

Proof. First, there are three cases for M −→ M ′. They are M −→β M ′, M −→Λ

M ′, and M −→� M ′. For each case, we can use straightforward induction on
typing derivations. �

Strong Normalization is also an important property, which guarantees that
no typed term has an infinite reduction sequence. Following standard proofs (see,
e.g., [15]), we prove this theorem by translating λMD to the simply typed lambda
calculus.

Theorem 2 (Strong Normalization). If Γ �Σ M1 : τ@A then there is no
infinite sequence (Mi)i≥1 of terms such that Mi −→ Mi+1 for i ≥ 1.

Proof. In order to prove this theorem, we define a translation (·)	 from λMD to
the simply typed lambda calculus. Second, we prove the �-translation preserves
typing and reduction. Then, we can prove Strong Normalization of λMD from
Strong Normalization of the simply typed lambda calculus. �

Confluence is a property that any reduction sequences from one typed term
converge. Since we have proved Strong Normalization, we can use Newman’s
Lemma [2] to prove Confluence.

Theorem 3 (Confluence). For any term M , if M −→∗ M ′ and M −→∗ M ′′

then there exists M ′′′ that satisfies M ′ −→∗ M ′′′ and M ′′ −→∗ M ′′′.

Proof. We can easily show Weak Church-Rosser. Use Newman’s Lemma. �
Now, we turn our attention to staged semantics. First, the staged reduction

relation is a subrelation of full reduction, so Subject Reduction holds also for
the staged reduction.
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Theorem 4. If M −→s M ′, then M −→ M ′.

Proof. Easy. �
The following theorem Unique Decomposition ensures that every typed term

is either a value or can be uniquely decomposed to an evaluation context and a
redex, ensuring that a well-typed term is not immediately stuck and the staged
semantics is deterministic.

Theorem 5 (Unique Decomposition). If Γ does not have any variable
declared at stage ε and Γ �Σ M : τ@A, then either

1. M ∈ V A, or
2. M can be uniquely decomposed into an evaluation context and a redex, that

is, there uniquely exist B,EA
B , and RB such that M = EA

B [RB ].

Proof. We can prove by straightforward induction on typing derivations. �
The type environment Γ in the statement usually has to be empty; in other

words, the term has to be closed. The condition is relaxed here because variables
at stages higher than ε are considered symbols. In fact, this relaxation is required
for proof by induction to work.

Progress is a corollary of Unique Decomposition.

Corollary 1 (Progress). If Γ does not have any variable declared at stage ε
and Γ �Σ M : τ@A, then M ∈ V A or there exists M ′ such that M −→s M ′.

5 Related Work

MetaOCaml is a programming language with quoting, unquoting, run, and CSP.
Kiselyov [17] describes many applications of MetaOCaml, including filtering in
signal processing, matrix-vector product, and a DSL compiler.

Theoretical studies on multi-stage programming owe a lot to seminal work
by Davies and Pfenning [11] and Davies [10], who found Curry-Howard corre-
spondence between multi-stage calculi and modal logic. In particular, Davies’
λ◦ [10] has been a basis for several multi-stage calculi with quasi-quotation.
λ◦ did not have operators for run and CSP; a few studies [3,24] enhanced and
improved λ◦ towards the development of a type-safe multi-stage calculus with
quasi-quotation, run, and CSP, which were proposed by Taha and Sheard as
constructs for multi-stage programming [31]. Finally, Taha and Nielsen invented
the concept of environment classifiers [30] and developed a typed calculus λα,
which was equipped with all the features above in a type sound manner and
formed a basis of earlier versions of MetaOCaml. Different approaches to type-
safe multi-stage programming with slightly different constructs for composing
and running code values have been studied by Kim, Yi, and Calcagno [16] and
Nanevski and Pfenning [25].

Later, Tsukada and Igarashi [32] found correspondence between a variant
of λα called λ� and modal logic and showed that run could be represented as
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a special case of application of a transition abstraction (Λα.M) to the empty
sequence ε. Hanada and Igarashi [14] developed λ�% as an extension λ� with
CSP.

There is much work on dependent types and most of it is affected by the
pioneering work by Martin-Löf [21]. Among many dependent type systems such
as λΠ [22], The Calculus of Constructions [9], and Edinburgh LF [15], we base
our work on λLF [1] (which is quite close to λΠ and Edinburgh LF) due to its
simplicity. It is well known that dependent types are useful to express detailed
properties of data structures at the type level such as the size of data struc-
tures [34] and typed abstract syntax trees [19,33]. The vector addition discussed
in Sect. 3 is also such an example.

The use of dependent types for code generation is studied by Chlipala [8]
and Ebner et al. [12]. They use inductive types to guarantee well-formedness
of generated code. Aside from the lack of quasi-quotation, their systems are for
heterogeneous meta-programming and compile-time code generation and they
do not support features for run-time code generation such as run and CSP, as
λMD does.

We discuss earlier attempts at incorporating dependent types into multi-stage
programming. Pasalic and Taha [26] designed λH◦ by introducing the concept of
stage into an existing dependent type system λH [28]. However, λH◦ is equipped
with neither run nor CSP. Forgarty, Pasalic, Siek and Taha [13] extended the
type system of MetaOCaml with indexed types. With this extension, types can
be indexed with a Coq term. Chen and Xi [7] introduced code types augmented
with information on types of free variables in code values in order to prevent code
with free variables from being evaluated. These systems separate the language of
type indices from the term language. As a result, they do not enjoy full-spectrum
dependent types but are technically simpler because there is no need to take stage
of types into account. Brady and Hammond [5] have discussed a combination
of (full-spectrum) dependently typed programming with staging in the style of
MetaOCaml to implement a staged interpreter, which is statically guaranteed
to generate well-typed code. However, they focused on concrete programming
examples and there is no theoretical investigation of the programming language
they used.

Berger and Tratt [4] gave program logic for Mini-ML�
e [11], which would

allow fine-grained reasoning about the behavior of code generators. However, it
cannot manipulate open code which ours can deal with.

6 Conclusion

We have proposed a new multi-stage calculus λMD with dependent types, which
make it possible for programmers to express finer-grained properties about the
behavior of code values. The combination leads to augmentation of almost all
judgments in the type system with stage information. CSP and type equivalence
(specially tailored for CSP) are keys to expressing dependently typed practical
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code generators. We have proved basic properties of λMD, including preserva-
tion, confluence, strong normalization for full reduction, and progress for staged
reduction.

Developing a typechecking algorithm for λMD is left for future work. We
expect that most of the development is straightforward, except for implicit CSP
at the type-level and %-erasing equivalence rules.

Acknowledgments. We would like to thank John Toman, Yuki Nishida, and anony-
mous reviewers for useful comments.
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21. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Logic Collo-
quium, vol. 80, p. 73, January 1973

22. Meyer, A.R., Reinhold, M.B.: “Type” is not a type. In: Proceedings of the 13th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
POPL 1986, pp. 287–295. ACM, New York (1986)

23. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17, 348–375 (1978)

24. Moggi, E., Taha, W., Benaissa, Z.E.-A., Sheard, T.: An idealized metaML: simpler,
and more expressive. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp.
193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49099-X 13

25. Nanevski, A., Pfenning, F.: Staged computation with names and necessity. J.
Funct. Program. 15(5), 893–939 (2005)

26. Pasalic, E., Taha, W., Sheard, T.: Tagless staged interpreters for typed languages.
In: Proceedings of the Seventh ACM SIGPLAN International Conference on Func-
tional Programming ICFP 2002, pp. 218–229. ACM, New York (2002)

27. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
28. Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified bina-

ries. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages POPL 2002, pp. 217–232. ACM, New York (2002)

29. Taha, W.: A gentle introduction to multi-stage programming, part II. In: Lämmel,
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Abstract. Information-flow security type systems ensure confidentiality
by enforcing noninterference: a program cannot leak private data to pub-
lic channels. However, in practice, programs need to selectively declas-
sify information about private data. Several approaches have provided
a notion of relaxed noninterference supporting selective and expressive
declassification while retaining a formal security property. The labels-as-
functions approach provides relaxed noninterference by means of declas-
sification policies expressed as functions. The labels-as-types approach
expresses declassification policies using type abstraction and faceted
types, a pair of types representing the secret and public facets of val-
ues. The original proposal of labels-as-types is formulated in an object-
oriented setting where type abstraction is realized by subtyping. The
object-oriented approach however suffers from limitations due to its
receiver-centric paradigm.

In this work, we consider an alternative approach to labels-as-types,
applicable in non-object-oriented languages, which allows us to express
advanced declassification policies, such as extrinsic policies, based on a
different form of type abstraction: existential types. An existential type
exposes abstract types and operations on these; we leverage this abstrac-
tion mechanism to express secrets that can be declassified using the pro-
vided operations. We formalize the approach in a core functional calcu-
lus with existential types, define existential relaxed noninterference, and
prove that well-typed programs satisfy this form of type-based relaxed
noninterference.

1 Introduction

A sound information-flow security type system ensures confidentiality by means
of noninterference, a property that states that public values (e.g. StringL) do
not depend on secret values (e.g. StringH). This enables a modular reasoning
principle about well-typed programs. For instance, in a pure language, a function
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f : StringH → StringL is necessary a constant function because the (public) result
cannot leak information about the (private) argument.

However, noninterference is too stringent and real programs need to explic-
itly declassify some information about secret values. A simple mechanism to
support explicit declassification is to add a declassify operator from secret to
public expressions, as provided for instance in Jif [11]. However, the arbitrary
use of this operator breaks formal guarantees about confidentiality. Providing a
declassification mechanism while still enforcing a noninterference-like property
is an active topic of research [5,6,8,9,13,16].

One interesting mechanism is the labels-as-functions approach of Li and
Zdancewic [9], which supports declassification policies while ensuring relaxed
noninterference. Instead of using security labels such as L and H that are taken
from a security lattice of symbols, security labels are functions. These functions,
called declassification policies, denote the intended computations to declassify
values. For instance, the function λx.λy.x == y denotes the declassification pol-
icy: “the result of the comparison of the secret value x with the public value y can
be declassified”. The identity function denotes public values, while a constant
function denotes secret values. Then, any use of a value that does not follow its
declassification policy yields a secret result. The labels-as-functions approach is
very expressive, but its main drawback is that label ordering relies on a semantic
interpretation of functions and program equivalence, which is hard to realize in
practice and rules out recursive declassification policies1.

An alternative approach to labels-as-functions is labels-as-types, recently pro-
posed by Cruz et al. [5]. The key idea is to exploit type abstraction to control
how much of a value is open to declassification. The approach was originally
developed in an object-oriented language, where type abstraction is realized by
subtyping. A security type T � U is composed of two facets: the safety type
T denotes the secret view of the value, and the declassification type U (such
that T <: U) specifies the public view, i.e. the methods that can be used to
declassify a secret value. For instance, the type String � String denotes a pub-
lic string value, i.e. all the methods of String are available for declassification,
while the type String � � (where � is the empty interface type) denotes a secret
String value, i.e. there is no method available to declassify information about
the secret. Then, the interesting declassification policies are expressed with a
type interface between String and �; e.g. the type String � StringLen exposes
the method length of String for declassification. With this type-based approach,
label ordering is simplified to standard subtyping, which is a simple syntactic
property, and naturally supports recursive declassification. Also, this type-based
approach enforces a security property called type-based relaxed noninterference,
which accounts for type-based declassification and provides a modular reasoning
principle similar to standard noninterference.

We observe that developing type-based relaxed noninterference in an object-
oriented setting, exploiting subtyping as the type abstraction mechanism,

1 Li and Zdancewic [9] rule out recursive declassification because otherwise the sub-
typing relation induced by security labels (sets of functions) would be undecidable.
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imposes some restrictions on the declassification policies that can be expressed.
In particular, because security types are of the form T � U where the declassifica-
tion type U is a supertype of the safety type T—a necessary constraint to ensure
type safety—means that one cannot declassify properties that are extrinsic to
(i.e. computed externally from) the secret value. For instance, because a typical
String type does not feature an encrypt method, it is not possible to express
the declassification policy that “the encrypted representation of the password is
public”.

In this paper, we explore an alternative approach to labels-as-types and
relaxed noninterference, exploiting another well-known type abstraction mech-
anism: existential types. An existential type ∃X.T provides an abstract type
X and an interface T to operate with values of the abstract type X. Then
instances of the abstract type X are akin to secrets that can be declassi-
fied using the operations described by T . For instance, the existential type
∃X.[get : X, length : X → Int] makes it possible to obtain a (secret) value of
type X with get, that only can be “declassified” with the length function to
obtain a (public) integer.

Because existential types are the essence of abstraction mechanisms like
abstract data types and modules [10], this work shows how the labels-as-types
approach can be applied in non-object-oriented languages. The only required
extension is the notion of faceted types, which are necessary to capture the nat-
ural separation between privileged observers (allowed to observe secret results)
and public observers (i.e. the attacker, which can only observe public values)2.
Additionally, the existential approach is more expressive than the object-oriented
one in that extrinsic declassification policies can naturally be encoded with exis-
tential types.

The contributions of this work are:

– We explore an alternative type abstraction mechanism to realize the labels-as-
types approach to expressive declassification, retaining the practical aspect of
using an existing mechanism (here, existential types), while supporting more
expressive declassification policies (Sect. 2).

– We define a new version of type-based relaxed noninterference, called exis-
tential relaxed noninterference, which accounts for extrinsic declassification
using existential types (Sect. 3).

– We capture the essence of the use of existential types for relaxed noninter-
ference in a core functional language λ∃

SEC (Sect. 4), and prove that its type
system soundly enforces existential relaxed noninterference (Sect. 5).

Section 6 explains how the formal definitions apply by revisiting an example
from Sect. 3. Section 7 discuses related work and Sect. 8 concludes.

2 To account for n > 2 observation levels, faceted types can be extended to have n
facets.
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2 Overview

We now explain how to use the type abstraction mechanism of existential types to
denote secrets that can be selectively declassified. First, we give a quick overview
of existential types, with their introduction and elimination forms. Next, we
develop the intuitive connection between the type abstraction of standard exis-
tential types and security typing. Then, we show that to support computing
with secrets, which is natural for information-flow control languages, we need to
introduce faceted types.

2.1 Existential Types

An existential type ∃X.T is a pair of an (abstract) type variable X and a type
T where X is bound; typically T provides operations to create, transform and
observe values of the abstract type X [10].

For instance, the type AccountStore below models a simplified user repository.
It provides the password of a user at type X with the function userPass and a
function verifyPass to check (observe) whether an arbitrary string value is equal
to the password.

AccountStore � ∃X.[ userPass : String → X
verifyPass : String → X → Bool]

Values of an existential type ∃X.T take the form of a package that packs
together the representation type for the abstract type X with an implementation
v of the operations provided by T . One can think of packages as modules with
signatures.

For instance, the package p
�
= pack(String, v) as AccountStore is a value of

type AccountStore, where String is the representation type and v, defined below,
is a record implementing functions userPass and verifyPass:

v � [ userPass = λx : String. userPassFromDb(x)
verifyPass = λx : String.λy : String. equal(x, y)]

Note that the implementation, v, directly uses the representation type String,
e.g. userPass has type String → String and is implemented using a primitive
function userPassFromDb : String → String to retrieve the user password from a
database. Likewise, the implementation of verifyPass uses equality between its
arguments of type String.

To use an existential type, we have to open the package (i.e. import the
module) to get access to the implementation v, along with the abstract type
that hides the actual representation type. The expression open(X,x) = p in e′

opens the package p above, exposing the representation type abstractly as a type
variable X, and the implementation as term variable x, within the scope of the
body e′. Crucially, the expression e′ has no access to the representation type
String, therefore nothing can be done with a value of type X, beyond using it
with the operations provided by AccountStore.
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2.2 Type-Based Declassification Policies with Existential Types

We can establish an analogy between existential types and selective declassifica-
tion of secrets: an existential type ∃X.T exposes operations to obtain secret val-
ues, at the abstract type X, and the operations of T can be used to declassify
theses secrets.

For instance, AccountStore provides a secret string password with the function
userPass, and the function verifyPass expresses the declassification policy: “the
comparison of a secret password with a public string can be made public”. With
this point of view, concrete types such as Bool and String represent public values.
A fully-secret value, i.e. a secret that is not declassified, can be modeled by an
existential type without any observation function for the abstract type.

We can use the declassification policy modeled with AccountStore to imple-
ment a valid well-typed login functionality. The login function below is defined
in a scope where the package p of type AccountStore is opened, providing the
type name X for the abstract type and the variable store for the package imple-
mentation.

open(X, store) = p in
...
String login (String guess, String username){

if ( store . verifyPass (guess, store .userPass(username)))
...

}
The login function first obtains the user secret password of type X with
store.userPass(username), and then passes the secret password (of type X) to the
function verifyPass with the guess public password to obtain the public boolean
result. The above code makes a valid use of AccountStore and therefore is well-
typed.

The type abstraction provided by AccountStore avoids leaking information
accidentally. For instance, directly returning the secret password of type X
is a type error, even though internally it is a string. Likewise, the expression
length(store.userPass(username)) is ill-typed.

Note that because declassification relies on the abstraction mechanism of
existential types, we work under the assumption that the person that writes
the security policy—the package implementation and the existential type—is
responsible for not leaking the secret due to a bad implementation or specifi-
cation (e.g. exposing the secret password through the identity function of type
X → String).

Progressive Declassification. The analogy of existential types as a mechanism
to express declassification holds when one considers progressive declassifica-
tion [5,9], which refers to the possibility of only declassifying information after a
sequence of operations is performed. With existential types, we can express pro-
gressive declassification by constraining the creation of secrets based on other
secrets.
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Consider the following refinement of AccountStore, which supports the declas-
sification policy “whether an authenticated user’s salary is above $100,000”:

AccountStore � ∃X,Y,Z.[ userPass : String → X
verifyPass : String → X → Option [Y ]
userSalary : Y → Z
isSixDigit : Z → Bool]

AccountStore provides extra abstract types Y and Z, denoting an authentica-
tion token (for a specific user) and a user salary, respectively. The type signatures
enforce that, to obtain the user salary, the user must be authenticated: a value
of type Y is needed to apply userSalary. Such a value can be obtained only after
successful authentication: verifyPass now returns an Option [Y ] value, instead
of a Bool value. Note that the salary itself is secret, since it has the abstract
type Z. Finally, isSixDigit function reveals whether a salary is above $100,000 by
returning a public boolean result.

Observe how the use of abstract type variables allows the existential type to
enforce sequencing among operations. Also, we can provide more declassification
policies for a user salary Z, and can use the authentication token Y with more
operations. An existential type is therefore an expressive means to capture rich
declassification policies, including sequencing and alternation.

2.3 Computing with Secrets

As we have seen, with standard existential types, values of an abstract type X
must be eliminated with operations provided by the existential type. While so
far the analogy between type abstraction with existential types and expressive
declassification holds nicely, there are some obstacles.

First, with standard existential types, it is simply forbidden to compute with
secrets. For instance, applying the function length: String → Int with a (secret)
value of type X is a type error. However, information-flow type systems are
more flexible: they support computing with secret values, as long as the com-
putation itself is henceforth considered secret, e.g. the value it produces is itself
secret [18]. Allowing secret computations is useful for privileged observers, which
are authorized to see private values.

Faceted types were introduced to support this “dual mode” of information-
flow type systems in the labels-as-types approach [5]. While that work is based
on objects and subtyping, here we develop the notion of existential faceted types:
faceted types of the form T@U , where T indicates the safety type used for the
implementation and U the declassification type used for confidentiality.

Figure 1 shows AccountStore with existential faceted types. Given a public
string (TL denotes T@T ), userPass returns a value that is a string for the privi-
leged observer, and a secret of type X for the public observer (i.e. the attacker).

When computing with a value of type String@X, there are now two options:
either we use a function that expects a value of type String@X as argument,
such as verifyPass, or we use a function that goes beyond declassification, such
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Fig. 1. Account store with faceted types

as length, and should therefore produce a fully private result. What type should
such private results have? In order to avoid having to introduce a fresh type
variable, we assume a fixed (unusable) type �, and write IntH to denote Int@�.

This supports computing with secrets as follows:

StringH login (StringL guess, StringL username){
if ( length( store .userPass(username)) == length(guess ))...;

}
Instead of being ill-typed, length(store.userPass(username)) is well-typed at type
IntH, so the function login can return a private result, e.g. a private string at
type StringH.

2.4 Public Data as (Declassifiable) Secret

Information-flow type systems allow any value to be considered private. With
existential faceted types, this feature is captured by a subtyping relation such
that for any T , T@T <: T@�, and for any X, T@X <: T@�. Value flows
that are justified by subtyping are safe from a confidentiality point of view. In
particular, if a (declassifiable) value of type String@X is passed at type StringH,
it is henceforth fully private, disallowing any further declassification.

Additionally, in the presence of declassifiable secrets, of type T@X, one would
also expect public values to be “upgraded” to declassifiable secrets. This requires
the security subtyping relation to admit that, for any type T and type variable
X, we have TL <: T@X.

Note that admitting such flows means that type variables in a declassifica-
tion type position are more permissive than when they occur in a safety type
position. For instance, isSixDigit can be applied to any public integer (of type
IntL), and not only to ones returned by userSalary. In contrast, userSalary can only
be applied to a value opaquely obtained as a result of verifyPass. In effect, the rep-
resentation of authentication tokens is still kept abstract, at type YL (i.e. Y @Y ).
This prevents clients from actually knowing how these tokens are implemented,
preserving the benefits of standard existential types. Conversely, the salary and
password expose their representation types (Int and String respectively), thereby
enabling secret computation by clients.

3 Relaxed Noninterference with Existential Types

Existential faceted types support a novel notion of type-based relaxed non-
interference called existential relaxed noninterference (ERNI) that defines if a
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program with existential faceted types is secure. ERNI is based on type-based
equivalences between values at existential faceted types. We formally define the
notions of type-based equivalence and ERNI in Sect. 5, but here we provide an
intuition for this security criterion and the associated reasoning. Let us first
consider simple types, before looking at existential types.

Type-Based Relaxed Noninterference. Two integers are equivalent at type
Int@Int = IntL if they are syntactically equal, meaning that a public observer can
distinguish between two integers at type IntL. We can characterize the meaning
of the faceted type IntL with the partial equivalence relation EqInt = {(n, n) ∈
Int × Int}. Using this, two integers v1 and v2 are equivalent at type IntL if they
are in the relation EqInt—meaning they are syntactically equal.

Dually, the type Int@� = IntH characterizes integer values that are indistin-
guishable for a public observer, therefore any two integers are equivalent at type
IntH. Consequently, the meaning of the faceted type IntH is the total relation
AllInt = Int × Int that relates any two integers v1 and v2.

With these base type-based equivalences, one can express the security prop-
erty of functions, open terms, and programs with inputs as follows: a program
p satisfies ERNI at an observation type Sout if, given two input values that are
equivalent at type Sin, the executions of p with each value produce results that
are equivalent at type Sout. This modular reasoning principle is akin to standard
noninterference [18] and type-based relaxed noninterference [5].

Intuitively, Sin models the initial knowledge of the public observer about
the (potentially-secret) input, and Sout denotes the final knowledge that the
public observer has to distinguish results of the executions of the program p.
The program p is secure if, given inputs from the same equivalence class of Sin,
it produces results in the same equivalence class of Sout. Consider the program
e = length(x) where x has type StringH. The program e does not satisfy ERNI at
type IntL, because given two strings “a” and “aa” that are equivalent at StringH,
i.e. (“a”, “aa”) ∈ AllString, we obtain the results 1 and 2, which are not equivalent
at type IntL, i.e. (1, 2) /∈ EqInt. However, e is secure at type IntH.

Relaxed Noninterference and Existentials. When we introduce faceted types with
type variables such as Int@X, we need to answer: what values are equivalent at
type Int@X? Without stepping into technical details yet, let us say that the
meaning of a type Int@X is an arbitrary partial equivalence relation RX ⊆ Int×
Int, and two values v1 and v2 are equivalent at Int@X if they are in RX . Because
X is an existentially-quantified variable, inside the package implementation that
exports the type variable X, RX is known, but outside the package, i.e. for
clients of a type Int@X, RX is completely abstract: a public observer that opens
a package exporting the type variable X does not know anything about values
of type Int@X.
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For instance, consider again the program e = length(x) but assume that x
now has type String@Y . Does e satisfy ERNI at type IntL? Here, we need to know
what is the relation RY that gives meaning to String@Y . Instead of picking only
one relation RY , ERNI quantifies over all possible relations RY . This universal
quantification over RY corresponds to the standard type abstraction mechanism
for abstract types (i.e. parametricity [15]). That is, the program e satisfies ERNI
at type Int@Int, if it is secure for all relations RY ⊆ String × String. Then, to
show that ERNI at type Int@Int does not hold for e it suffices to exhibit a specific
relation for which ERNI is violated. Take the relation RY = {(“a”, “aa”)}, and
observe that length(“a”) �= length(“aa”).

Illustration. Finally, we give an intuition of how ERNI accounts for extrinsic
declassification policies. We reuse the salary operations from AccountStore, sim-
plifying the retrieval of the secret salary. The type SalaryPolicy provides a secret
salary and a function isSixDigit to declassify the salary as before.

SalaryPolicy
�
= ∃Z.[salary : Int@Z, isSixDigit : Int@Z → BoolL]

Intuitively two package values p1
�
= pack(Int, v1) as SalaryPolicy and p2

�
=

pack(Int, v2) as SalaryPolicy are equivalent at SalaryPolicyL if v1.salary and v2.salary
are equivalent at Int@Z and v1.isSixDigit and v2.isSixDigit are equivalent at
Int@Z → BoolL, i.e. the functions isSixDigit of v1 and v2 produce equivalent
results at BoolL when given equivalent arguments at Int@Z.

Consider now the program e′ = x.isSixDigit(x.salary) with input x of type
[salary : Int@Z, isSixDigit : Int@Z → BoolL]. Taking into account the above
equivalence for SalaryPolicy, the program e′ satisfies ERNI at type BoolL because
it adheres to the salary policy. Indeed, given any two equivalent packages p1

�
=

pack(Int, v1) as SalaryPolicy and p2
�
= pack(Int, v2) as SalaryPolicy, the expressions

v1.isSixDigit(v1.salary) and v2.isSixDigit(v2.salary) are necessarily equivalent at
type BoolL. However, the program (x.salary)%2 does not satisfy ERNI at IntL,
because given equivalent package implementations v1 � [salary = 100001, · · ·]
and v2 � [salary = 100002, · · ·], it yields 1 for v1 and 0 for v2, and both values
are not equivalent at IntL, i.e. (1, 0) /∈ EqInt.

4 Formal Semantics

We model existential faceted types in λ∃
SEC, which is essentially the simply-typed

lambda calculus augmented with the unit type, pair types, sum types, existen-
tial types, and faceted types. All the examples presented in Sect. 2 can thus
be encoded in λ∃

SEC using standard techniques. This section covers the syntax,
static and dynamic semantics of λ∃

SEC. The formalization of existential relaxed
noninterference and the security type soundness of λ∃

SEC are presented in Sect. 5.
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Fig. 2. λ∃
SEC: syntax

4.1 Syntax

Figure 2 presents the syntax of λ∃
SEC. Expressions e are completely standard [14],

including functions, applications, variables, primitive values, binary operations
on primitive values, the unit value, pairs with their first and second projections,
injections inl e and inr e to introduce sum types, as well as a case construct
to eliminate sums; finally, pack and open introduce and eliminate existential
packages, respectively. Types T include function types S → S, primitive types
P , the unit type 1, sum types S + S, pair types S × S, existential types ∃X.T ,
type variables X and the top type �. A security type S is a faceted type T@U
where T is the safety type and U is the declassification type.

Well-Formedness of Security Types. We now comment on the rules for valid
security types, i.e.facet-wise well-formed types. We have three general form of
security types TL and TH and T@X. While there is no constraint on forming
types TL and TH, such as IntL, XL and IntH, we need two considerations for types
such as Int@X.

The first consideration is that inside an existential type ∃X.T the type vari-
able X, when used as a declassification type, must be uniquely associated to a
concrete safety type. For instance, the existential type ∃X.(String@X → Int@X)
is ill-formed, while ∃X.(Int@X → Int@X) and ∃X.(X@X → Int@X) are well-
formed. For such well-formed types, we use the auxiliary function sftype(∃X.T )
to obtain the safety type associated to X; for instance sftype(∃X.(X@X →
Int@X)) = Int (undefined on ill-formed types).

The second consideration is when a client opens a package. The expression
open(X,x) = e in e′ binds the type variable X in e′, therefore the expression e′

can declare security types of the form T ′@X. However, for the declaration of the
type T ′@X to be valid, the safety type of the declassification type variable X
must be T ′. For instance, if the safety type of X is Int, the expression e′ cannot
declare security types such as String@X, otherwise computations over secrets
could get stuck. The question is how to determine the safety type T ′ of X in e′.
Crucially, the expression e necessarily has to be of type (∃X.T )L, therefore we
can obtain the safety type for X with sftype(∃X.T ). To keep track of the safety
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type for each type variable X, we use a type variable environment Δ that maps
type variables to types T (i.e. Δ :: = • | Δ,X : T )

With the previous considerations in mind, the rules for well-formed security
types are straightforward. In the rest of the paper, we use the judgment Δ |= S
to mean well-formed security types S under type environment Δ. A well formed
security type S is both facet-wise well-formed and closed with respect to type
variables. We also use Δ |= Γ to indicate that a type environment is well-formed,
i.e. all types in Γ are well-formed. In the following, we assume well-formed
security types and environments.

4.2 Static Semantics

Figure 3 presents the static semantics of λ∃
SEC. Security typing relies on a subtyp-

ing judgment that validates secure information flows. The left-most rule justifies
subtyping by reflexivity. The middle rule justifies subtyping for two security
types with the same safety type, when the declassification type of right security
type is �. Finally, the right-most rule justifies subtyping between a public type
TL and T@X.

As usual, the typing judgment Δ;Γ � e : S denotes that “the expression e
has type S under the type variable environment Δ and the type environment
Γ”. The typing rules are mostly standard [14]. Here, we only discuss the special
treatment of security types.

Rule (TVar) gives the security type to a type variable from the type envi-
ronment and rule (TS) is the standard subtyping subsumption rule. Rules
(TP), (TFun), (TPair), (TU), (TInl), (TInr) and (TPack) introduce primitive,
function, pair, unit, sum and existential types, respectively. In particular, rule
(TPack) requires the representation type of the package to be more precise than
the safety type associated to X in the existential type, i.e. T ′ 	 sftype(∃X.T ).
The precision judgment has only two rules: reflexivity T 	 T , and any type is
more precise than a type variable T 	 X.

Rules (TApp), (TOp), (TFst), (TSnd), (TCase) and (TOpen) are elimination
rules for function, primitive, pair, sum and existential types, respectively. When
a secret is eliminated, the resulting computation must protect that secret. This
is done with 
S′�S , which changes the declassification type of S′ to � if the type
S is not public:


T1@U1�T2@U2 = T1@U1 if T2 = U2, otherwise T1@�
Let us illustrate the use of rule (TApp). On the one hand, if the type of the

function expression e1 is (S1 → S2)L, i.e. it represents a public function, then
the type of the function application is S2. On the other hand, if the function
expression e1 has type (S1 → T2@U2)@X or (S1 → T2@U2)H, i.e. it represents
a secret, then the function application has type T2@�.

Rule (TOp) uses an auxiliary function Θ to obtain the signature of a prim-
itive operator and ensures that the resulting type protects both operands with


P ′′@P ′′�P@U�P ′@U ′ . Rules (TFst) and (TSnd) use the same principle to pro-
tect the projections of a pair. Rule (TCase) requires the discriminee to be of
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Fig. 3. λ∃
SEC: static semantics

type (S1 + S2)@U , and both branches must have the same type S′. Likewise, it
protects the resulting computation with 
S′�S .

Finally, rule (TOpen) applies to expressions of the form open(X,x) = e in e′,
by typing the body expression e′ in an extended type variable environment
Δ,X : T ′ and a type environment Γ, x : TL. Two points are worth noticing.
First, the association X : T ′ allows us to verify that security types of the form
T ′@X defined in the body expression e′ are well-formed. Second, we make the
well-formedness requirement explicit for the result type Δ |= S′, which implies
that S′ is facet-wise well-formed and closed under Δ—i.e. the type variable X
cannot appear in S′.

4.3 Dynamic Semantics and Type Safety

The execution of λ∃
SEC expressions is defined with a standard call-by-value small-

step dynamic semantics based on evaluation contexts (Fig. 4). We abstract over
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the execution of primitive operators over primitive values using an auxiliary
function θ.

Fig. 4. λ∃
SEC: Dynamic semantics

We define the predicate safe(e) to indicate that the evaluation of the expres-
sion e does not get stuck.

Definition 1 (Safety). safe(e) ⇐⇒ ∀e′. e �−→∗ e′ =⇒ e′ = v or ∃e′′. e′ �−→ e′′

Well-typed λ∃
SEC closed terms are safe.

Theorem 1 (Syntactic type safety). � e : S =⇒ safe(e)

Having formally defined the language λ∃
SEC, we move to the main result of

this paper, which is to show that the λ∃
SEC is sound from a security standpoint,

i.e. its type system enforces existential relaxed noninterference.

5 Existential Relaxed Noninterference, Formally

In Sect. 3 we gave an overview of existential relaxed noninterference (ERNI),
explaining how it depends on type-based equivalences. To formally capture these
type-based equivalences, we define a logical relation, defined by induction on the
structure of types. To account for type variables, we build upon prior work on
logical relations for parametricity [2,15,17]. Then, we formally define ERNI on
top of this logical relation. Finally, we prove that the type system of λ∃

SEC enforces
existential relaxed noninterference.

5.1 Logical Relation for Type-Based Equivalence

As explained in Sect. 3, two values v1 and v2 are equivalent at type S, if they
are in the partial equivalence relation denoted by S. To capture this, the logical
relation (Fig. 5) interprets types as set of atoms, i.e. pairs of closed expressions.
We use Atom [T1, T2] to characterize the set of atoms with expressions of type T1

and T2 respectively. This definition appeals to a simply-typed judgment Δ;Γ �1
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e : T that does not consider the declassification type and is therefore completely
standard. The use of this simple type system clearly separates the definition of
secure programs from the enforcement mechanism, i.e. the security type system
of Fig. 3.

In Sect. 3 we explained what it means to be equivalent at type Int@X appeal-
ing to a relation on integers RX ⊆ Int × Int. To formally characterize the set of
valid relations RX for types T1 and T2 we use the definition Rel [T1, T2]. To keep
track of the relation associated to a type variable, most definitions are indexed
by an environment ρ that maps type variables X to triplets (T1, T2, R), where T1

and T2 are two representation types of X and R is a relation on closed values of
type T1 and T2 (i.e. ρ :: = ∅ | ρ [X �→ (T1, T2, R)]). We will explain later where
these types T1 and T2 come from. We write ρ1(U) (resp. ρ2(U)) to replace all
type variables of ρ in types with the associated type T1 (resp. T2), and ρR(X)
to retrieve the relation R of a type variable X in ρ.

Figure 5 defines the value interpretation of a type T , denoted V[[T ]]ρ, then
the value interpretation of a security type S, denoted V[[S]]ρ, and finally the
expression interpretation of a type S, denoted C[[S]]ρ.

Interpreting Concrete Types. We first explain the definitions that do not involve
types variables. V[[T@�]]ρ (resp. V[[T@T ]]ρ) characterizes when values of T are
indistinguishable (resp. distinguishable) for the public observer. V[[T@�]]ρ is
defined as Atom [ρ1(T ), ρ2(T )] indicating that any two values of type T are
equivalent at type T@�. Note that this also includes values of type X@�.

Two public values are equivalent at a security type T@T if they are equiv-
alent at their safety type, i.e. V[[TL]]ρ = V[[T ]]ρ. The definition V[[P ]]ρ relates
syntactically-equal primitive values at type P . Two functions are equivalent at
type S1 → S2, denoted V[[S1 → S2]]ρ, if given equivalent arguments at type S1,
their applications are equivalent expressions at type S2. Two pairs are equivalent
at type S1×S2 if they are component-wise equivalent. Two values are equivalent
at S1 + S2 if they are either both left-injected values inl v1 and inl v2 such as v1
and v2 are equivalent at S1, or both right-injected values inr v1 and inr v2 such
as v1 and v2 are equivalent at S2.

Finally, two expressions e1 and e2 are equivalent at type T@U , denoted
C[[T@U ]]ρ, if they both reduce to values v1 and v2 respectively and these values
are related at type T@U . (Note that all well-typed λ∃

SEC expressions terminate.)

Interpreting Existential Types. We now explain the value interpretation of exis-
tential types ∃X.T , type variables X and security types of the form T@X, which
all involve type variables.

Two public package expressions pack(T1, v1) as ∃X.T and pack(T2, v2) as ∃X.T
are equivalent at type ∃X.T , denoted V[[∃X.T ]]ρ, if there exists a relation R on the
representation types T1 and T2 that makes the package implementations v1 and
v2 equivalent at type T , denoted (v1, v2) ∈ V[[T ]]ρ [X �→ (T1, T2, R)]. Note that if
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Fig. 5. λ∃
SEC Logical relation for type-based equivalence

the existential type ∃X.T has a concrete safety type T ′ (not a type variable) for X,
then both T1 and T2 necessarily have to be equal to T ′. Otherwise, T1 and T2 are
arbitrary types. Two values are related at type X, denoted V[[X]]ρ, if they are in
the relational interpretation R associated to X (retrieved with ρR(X)). Two values
are related at type T@X, denoted V[[T@X]]ρ, if they are in ρR(X), or if they are
publicly-equivalent values of type T (i.e. a package can accept public values of type
T where values of T@X are expected).

We illustrate these formal type-based equivalences in Sect. 6, after formally
defining existential relaxed noninterference and proving security type soundness.

5.2 Existential Relaxed Noninterference

As illustrated in Sect. 3, ERNI is a modular property that accounts for open
expressions over both variables and type variables. To account for open expres-
sions, we first need to define the relational interpretation of a type environment
Γ and a type variable environment Δ:

G[[·]]ρ = {(∅, ∅)}
G[[Γ ;x : S]]ρ = {(γ1 [x �→ v1], γ2 [x �→ v2]) | (γ1, γ2) ∈ G[[Γ ]]ρ ∧ (v1, v2) ∈ V[[S]]ρ}
D[[·]] = {∅}
D[[Δ;X : T ]] = {ρ [X �→ (T1, T2, R)] | ρ ∈ D[[Δ]] ∧ T1 � T ∧ T2 � T ∧ R ∈ Rel [T1, T2]}

The type environment interpretation G[[Γ ]]ρ is standard; it characterizes when
two value substitutions γ1 and γ2 are equivalent. A value substitution γ is a
mapping from variables to closed values (i.e. γ :: = ∅ | γ [x �→ v]). Two value
substitutions are equivalent if for all associations x : S in Γ , the mapped values
to x in γ1 and γ2 are equivalent at S. Finally, the interpretation of a type variable
environment Δ, denoted D[[Δ]], is a set of type substitutions ρ with the same
domain as Δ. For each type variable X bound to T in Δ, such a ρ maps X to
triples (T1, T2, R), where T1 and T2 are closed types that are more precise than
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T . R must be a valid relation for the types T1 and T2. We write ρ1(e) (resp.
ρ2(e)) to replace all type variables of ρ in terms with their associated type T1

(resp. T2),
We can now formally define ERNI. An expression e satisfies existential

relaxed noninterference for a type variable environment Δ and a type variable
Γ at the S, denoted ERNI(Δ,Γ, e, S) if, given a type substitution ρ satisfying Δ
and two values substitutions γ1 and γ2 that are equivalent at Γ , applying the
substitutions produces equivalent expressions at type S.

Definition 2 (Existential relaxed noninterference)

ERNI(Δ,Γ, e, S) ⇐⇒ ∃T,U. S � T@U ∧ Δ;Γ �1 e : T ∧ Δ |= Γ ∧ Δ |= S ∧
∀ρ, γ1, γ2. ρ ∈ D[[Δ]]. (γ1, γ2) ∈ G[[Γ ]]ρ =⇒ (ρ1(γ1(e)), ρ2(γ2(e))) ∈ C[[S]]ρ

5.3 Security Type Soundness

Instead of directly proving that the type system of Fig. 3 implies existential
relaxed noninterference for all well-typed terms, we prove it through the standard
definition of logically-related open terms [5]:

Definition 3 (Logically-related open terms)

Δ;Γ � e1 ≈ e2 : S ⇐⇒ Δ;Γ � ei : S ∧ Δ |= Γ ∧ Δ |= S ∧
∀ρ, γ1, γ2. ρ ∈ D[[Δ]].(γ1, γ2) ∈ G[[Γ ]]ρ =⇒ (ρ1(γ1(e1)), ρ2(γ2(e2)) ∈ C[[S]]ρ

The next lemma captures that if an expression is logically related to itself,
then it satisfies ERNI.

Lemma 1 (Self logical relation implies PRNI). Δ;Γ � e ≈ e : S =⇒
ERNI(Δ,Γ, e, S)

The proof of security type soundness relies on the Fundamental Property of
the logical relation: a well-typed λ∃

SEC term is related to itself.

Theorem 2 (Fundamental property). Δ;Γ � e : S =⇒ Δ;Γ � e ≈ e : S

Security type soundness follows from Lemma 1 and Theorem 2.

Theorem 3 (Security type soundness). Δ;Γ � e : S =⇒ ERNI(Δ,Γ, e, S)

Proof. By induction on the typing derivation of e. Following Ahmed [2], we define
a compatibility lemma for each typing rule; then, each case of the induction
directly follows from the corresponding compatibility lemma. ��
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6 Illustration

With all the formal definitions at hand, we end by revisiting the informal example
of Sect. 3. SalaryPolicy can be encoded in λ∃

SEC as follow: ∃X.Int@X × (Int@X →
BoolL). Let us show that the following two packages are equivalent at type
SalaryPolicyL (gte is a curried comparison function, and we omit the as):

p1
�
= pack(Int, 〈100001, gte(100000)〉) p2

�
= pack(Int, 〈100002, gte(100000)〉)

The definition of V[[SalaryPolicy]]∅ requires picking a relation R ∈ Rel [Int, Int].
Pick R = {(100001, 100002)}. Then apply the rest of the definitions
to verify that the package implementations are equivalent at V[[Int@X ×
(Int@X → BoolL)]]∅ [X �→ (Int, Int, R)]. Use the ρR(X) part of the definition
of V[[Int@X]]∅ [X �→ (Int, Int, R)] to show that the first components 100001 and
100002 are equivalent at Int@X, i.e. (100001, 100002) ∈ ρR(X).

First we illustrate the formal reasoning that we obtain from Theorem 3. Let
us pose Δ = X : Int and Γ = x : (Int@X × (Int@X → BoolL))L. The program
e = (snd x) (fst x) has type BoolL, therefore, by Theorem 3, ERNI(Δ,Γ, e,BoolL)
holds—e is secure at BoolL. We can verify this formally. By Definition 2 we
have to assume an arbitrary type substitution ρ ∈ D[[X : Int]] and two
values substitutions (γ1, γ2) ∈ G[[x : (Int@X × (Int@X → BoolL))L]]ρ and to
show that (ρ1(γ1((snd x) (fst x))), ρ2(γ2((snd x) (fst x)))) ∈ C[[BoolL]]ρ. From
(γ1, γ2) ∈ G[[x : (Int@X × (Int@X → BoolL))L]]ρ we know that γ1 = x �→ v1
and γ1 = x �→ v2, such as (v1, v2) ∈ V[[(Int@X × (Int@X → BoolL))L]]ρ. Then
(snd v1) (fst v1) �−→∗ v′

11 v′
12 and (snd v2) (fst v2) �−→∗ v′

21 v′
22, such that

(v′
11, v

′
21) ∈ V[[Int@X → BoolL]]ρ and (v′

12, v
′
22) ∈ V[[Int@X]]ρ. After the previ-

ous reductions we have to verify that (v′
11 v′

12, v
′
21 v′

22) ∈ C[[BoolL]]ρ. At this
point, instantiate (v′

11, v
′
21) ∈ V[[Int@X → BoolL]]ρ with (v′

12, v
′
22) ∈ V[[Int@X]]ρ

to obtain (v′
11 v′

12, v
′
21 v′

22) ∈ C[[BoolL]]ρ.
Second, we formally show why ERNI(Δ,Γ, (fst x)%2, IntL) does not hold.

Instantiate Definition 2 with ρ = X �→ (Int, Int, R) and γ1 = x �→
〈100001, gte(100000)〉 and γ2 = x �→ 〈100002, gte(100000)〉. Note that
ρ = X �→ (Int, Int, R) ∈ D[[X : Int]] and (γ1, γ2) ∈ G[[Γ ]]ρ. To
show (ρ1(γ1((fst x)%2)), ρ2(γ2((fst x)%2))) ∈ C[[IntL]]ρ requires showing
(100001%2, 100002%2) ∈ C[[IntL]]ρ, which means showing (1, 0) ∈ C[[IntL]]ρ—
which is false. Similarly, we can verify that ERNI(Δ,Γ, x.salary, IntL) does not
hold, which means that a declassifiable secret cannot be directly observed by a
public observer.

7 Related Work

We have already extensively discussed the relation to the original formulation of
the labels-as-types approach in an object-oriented setting [5], itself inspired by
the work on declassification policies (labels-as-functions) of Li and Zdancewic
[9]. Formulating type-based declassification with existential types shows how to
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exploit another type abstraction mechanism that is found in non-object-oriented
languages, with abstract data types and modules. Also, existential types support
extrinsic declassification policies, which are not expressible in the receiver-centric
approach of objects. For instance, the AccountStore example of Sect. 2 is not
supported by design in the object-oriented approach.

The extrinsic declassification policies supported by our approach are closely
related to trusted declassification [8], where declassification is globally defined,
associating principals that own secrets with trusted (external) methods that
can declassify these secrets. In our approach, the relation between secrets and
declassifiers is not globally defined, but is local to an existential type and its
usage. In both approaches the implementations of declassifiers have a privileged
view of the secrets.

Bowman and Ahmed [3] present a translation of noninterference into para-
metricity with a compiler from the Dependency Core Calculus (DCC) [1] to Sys-
tem Fω. In a recent (as yet unpublished) article, Ngo et al. [13] extend this work
to support translating declassification policies, inspired by prior work on type-
based relaxed noninterference [5]. They first provide a translation into abstract
types of the polymorphic lambda calculus [15], and then into signatures of a
module calculus [4]. While that work and ours encode declassification policies via
existential types (module signatures), we focus on providing a surface language
for information flow control with type-based declassification. In particular, their
translated programs do not support computing with secrets, which is enabled in
both this work and the original work of Cruz et al. [5] thanks to faceted types.
Additionally, they only model first-order secrets (integers), while our modular
reasoning principle seamlessly accommodates higher-order secrets.

In another very recent piece of work, Cruz and Tanter [6] extend the object-
oriented approach to type-based relaxed noninterference with parametric poly-
morphism, thereby supporting polymorphic declassification policies. Polymor-
phic declassification for object types is achieved with type variables at the
method signature level, which supports the specification of polymorphic poli-
cies of the form T � X. Existential types are closely related to universal types.
In particular, the client of a package that exports a type variable X must be
polymorphic with respect to X; hence our work supports a form of declassifi-
cation polymorphism in the client code. It would be interesting to extend λ∃

SEC

with universal types in order to study the interaction of both abstraction mech-
anisms in a standard functional setting. Finally, because of the receiver-centric
perspective of objects, they have to resort to ad-hoc polymorphism to properly
account for primitive types. Here, primitive types do not require any special
treatment for declassification polymorphism, because of our extrinsic approach
to declassification.

The idea of using the abstraction mechanism of modules to express a form of
declassification can also be found in the work of Nanevski et al. [12] on Relational
Hoare Type Theory (RHTT). RHTT is formulated with a monadic security type
constructor STsec A(p, q), where p is a pre-condition on the heap, and q is a post-
condition relating output values, input heaps and output heaps. Thanks to the
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expressive power of the underlying dependent type theory, preconditions and
postconditions can characterize very precise declassification policies. The price
to pay is that proofs of noninterference have to be provided explicitly as proof
terms (or discharged via tactics or other means when possible), while our less
expressive approach is a simple, non-dependent type system. Finding the right
balance between the expressiveness and the complexity of the typing discipline
to express security policies is an active subject of research.

8 Conclusion

We present a novel approach to type-based relaxed noninterference, based on
existential types as the underlying type abstraction mechanism. In contrast to
the object-oriented, subtyping-based approach, the existential approach natu-
rally supports external declassification policies. This work shows that the gen-
eral approach of faceted security types for expressive declassification can be
applied in non-object-oriented languages that support abstract data types or
modules. As such, it represents a step towards providing a practical realization
of information-flow security typing that accounts for controlled and expressive
declassification with a modular reasoning principle about security.

An immediate venue for future work that would be crucial in practice is to
develop type inference for declassification types, which should reduce to stan-
dard type inference [7]. Finally, a particularly interesting perspective is to study
the combination of the existential approach with the object-oriented approach,
thereby bridging the gap towards a practical implementation in a full-fledged
programming language like Scala that features all these type abstraction mech-
anisms.
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Abstract. Widening ensures or accelerates convergence of a program
analysis, and sometimes contributes a guarantee of soundness that would
otherwise be absent. In this paper we propose a generalised view of
widening, in which widening operates on values that are not necessar-
ily elements of the given abstract domain, although they must be in
a correspondence, the details of which we spell out. We show that the
new view generalizes the traditional view, and that at least three dis-
tinct advantages flow from the generalization. First, it gives a handle on
“compositional safety”, the problem of creating widening operators for
product domains. Second, it adds a degree of flexibility, allowing us to
define variants of widening, such as delayed widening, without resorting
to intrusive surgery on an underlying fixpoint engine. Third, it adds a
degree of robustness, by making it difficult for an analysis implementor
to make certain subtle (syntactic vs semantic) category mistakes. The
paper supports these claims with examples. Our proposal has been imple-
mented in a state-of-the-art abstract interpreter, and we briefly report
on the changes that the revised view necessitated.

1 Introduction

A central problem in abstract interpretation is fixpoint finding: designing meth-
ods to find fixpoints of functions defined over certain mathematical structures,
usually lattices, ideally producing results that are optimal in some sense. Here
we shall assume that we are concerned with finding least fixpoints, or if that
turns out to be difficult, fixpoints that are as small as we can manage.

Least fixpoints are usually found with Kleene’s method, through repeated
iteration starting from a smallest domain element. However, this iteration may
not terminate, or may converge too slowly to be practical.Widening operators
[8] serve a critical role in this, enforcing termination of Kleene iteration by jump-
ing over infinite ascending chains, or simply accelerating analysis by somehow
skipping long chain segments. Since widening may incur a loss of precision, the
introduction of widening into an abstract interpretation engine becomes an art.
c© Springer Nature Switzerland AG 2019
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The details of when and how to apply widening touch upon delicate trade-offs
between the speed and the precision of program analysis.

A classical example is the widening operator often used with interval analysis
[8,11]. This analysis determines for each program variable x at each program
point, which values x could possibly take, in the form of an interval [lo, hi].

Fig. 1. Code snippet

For the program in Fig. 1, an interval analysis can
determine that, after the loop body has been executed
3 times, x is in the interval [3,6] and y is in [0,3]. Naive
interval analysis, however, may not terminate, as it does
not track the correspondence between x and y: after 100
iterations, it will see further (spurious) iterates {x ∈
[0, 100], y ∈ [0, 101]}, etc. Note that, as is common, inter-
val analysis over-approximates the set of runtime states.
In general, even if the least fixpoint is finitely reachable,
it may take intolerably many iterations to reach.

Cousot and Cousot [8] introduced widening operations to cope with the prob-
lem of naive analysis being slow or non-terminating, and narrowing to improve
on results (post-fixpoints) obtained after widening. Loosely, the idea behind
widening is to introduce means for program analysis to skip long, possibly infi-
nite, chains. For the interval analysis above, we might recognise that y’s lower
bound seems to remain unchanged in successive iterations, whereas its upper
bound changes. Based on this we might move straight to the interval [0,∞] for
y. Alternatively we might look for suggestions for less radical widening, provided
by the surrounding program text, for example in the form of constants used in
loop conditions. (We later discuss some of the variants of widening that have
been proposed.) Narrowing may improve of the result of widening, although it
is no panacea [25]. In this paper we are concerned exclusively with widening.

We propose a definition of widening which generalises the original concept in
a small but critical way. We do not suggest that there is anything wrong with the
original definition(s), and indeed a large number of useful and practical analysis
tools have been built based on the standard view. However, isolating the termi-
nation aspect of widening from the task of finding upper bounds in an abstract
domain has advantages, as we hope to show. By not conflating the two aspects,
our definition of “isolated” widening covers some common constructions which
are not true widenings in the classical sense. At the same time it simplifies cer-
tain implementation tasks, enabling compositional design of widening operators,
and it eliminates certain pitfalls that surround the implementor.

In Sect. 2 we recapitulate the classical definition, and in Sect. 3 we demon-
strate the pitfalls alluded to above. Section 4 defines the notion of isolated widen-
ing, and in Sect. 5 we demonstrate how isolated widenings resolve some com-
mon difficulties. Section 6 reports on our experience with the effort required to
incorporate isolated widening in a generic abstract interpretation framework.
Section 7 discusses related work and puts our proposal in the context of various
forms of widening previously suggested, and Sect. 8 concludes.
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2 Kleene Iteration with Widening

At an appropriate level of abstraction, a static analysis problem can be expressed
as the search for solutions to an equation system

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

...
Fn(x1, x2, . . . , xn)

⎞
⎟⎟⎟⎠ (1)

This assumes a set Loc = {1, . . . , n} of program locations of interest, with xi ∈ C
representing (or approximating) the set of program states that may be observed
at location i. Fi is the transfer function for location i, specifying how infor-
mation pertaining to that location is computed from the information available
at locations feeding into i. The concrete domain is assumed to be a partially
ordered set (C,⊆), and each Fi : Cn → C is assumed to be monotone, with Cn

ordered component-wise.
We say that xi depends on xj iff the definition of Fi mentions xj . The depen-

dency graph for (1) is the directed graph with Loc as its set of nodes and an
edge from i to j iff xi depends on xj .

Working directly with C is typically impractical, so analysis is performed
on some alternate abstract domain (D,�). D is related to C by a monotone
concretisation function γ.1 We say abstract state y abstracts concrete state x
iff x ⊆ γ(y). Similarly, we say abstract transfer function F � abstracts transfer
function F iff for all y1, . . . , yn:

F (γ(y1), . . . , γ(yn)) ⊆ γ(F �(y1, . . . , yn)) (2)

This ensures that, though F � may not itself be monotone, it is an upper bound of
the image (under γ) of the monotone F . So long as (2) holds, any (post-)fixpoint
of F � is a sound approximation of the sequence [F (⊥), F 2(⊥), . . .].

Circumstances under which (1) or its abstraction have a solution are well
known. For example, D may be a complete lattice. Even so, simple iteration
techniques such as Kleene iteration may fail to find a solution in finite time, if
D has infinite ascending chains. Or, they may just be too slow to be practical,
in the context of long ascending chains, even if these are finite. To solve this
problem, Cousot and Cousot suggested the use of a widening operator.

Definition 1 (Widening [11]). A widening over domain (D,�) is a binary
operator � : D × D → D such that

– ∀x, y ∈ D : x � x� y
– ∀x, y ∈ D : y � x� y
– For all increasing chains x0 � x1, . . ., the increasing chain defined by y0 =

x0, . . . , yi+1 = yi � xi+1, . . . is not strictly increasing.
1 Many variants of the concrete/abstract correspondence exist [10]. Here we deliber-

ately adopt a relaxed formalisation which imposes few requirements on the domain.
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Some later formulations of � (e.g., [7]) impose a stricter condition:

For all(ai), the sequence (a�
i ) defined as:

a�
0 = a0, a�

n+1 = a�
n � an+1 is ultimately stationary (3)

The idea is to choose, judiciously, a set W ⊆ Loc of widening points, so that
for every cycle C in the dependency graph for (1), W ∩ C 
= ∅. (Such a set W
always exists, but the aim is usually to choose a smallest possible set of widening
points.) For each location i ∈ W , the equation for xi in (1) is replaced by

xi = xi �Fi(x1, x2, . . . , xn) (4)

The impact on Kleene iteration is that the sequence of iterates for location i ∈ W
becomes, using (4),

x0
i = ⊥, xk+1

i = xk
i �Fi(xk

1 , x
k
2 , . . . , x

k
n) (5)

rather than x0
i = ⊥, xk+1

i = Fi(xk
1 , x

k
2 , . . . , x

k
n) using (1). The properties of �

ensure the convergence of (5). Equation (5) also clearly shows the different roles
of �’s arguments. The left argument holds “historical” information and we shall
refer to it as the widener. The right argument holds “current” information, which
may be weakened as a result of widening; we shall refer to it as the “widenee”.

The widening operator � lacks a property that is shared by other domain
operators: � is not required to be monotone. Moreover, unlike other upper bound
operators used in the context of abstract interpretation, � is not normally com-
mutative, nor is it intended to be commutative. This is because its role in the
system of recurrent equations is very different to other operators: Widening
points are the only locations for which xi is defined in terms of its own past
values, in the history of iterations. At all other locations, xi is defined in terms
of the values obtained for neighbouring locations.

In spite of these anomalies, the classical formulation of � leads to a sound
analysis framework. There tends, however, to be a distinct mismatch between the
formulation and the way widenings are constructed and used in practice. This
mismatch manifests in a number of ways, requiring awkward choices in analysis
engines. As we shall see, it occasionally causes unexpected non-termination.

Cousot and Cousot [11] demonstrate �’s lack of monotonicity in the context
of interval analysis. Consider the complete lattice of intervals (I,�) with

I = {⊥} ∪ {[�, u] | � ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, � ≤ u}
The ordering � is defined by z � z′ iff lo(z′) ≤ lo(z) ∧ hi(z) ≤ hi(z′), where

lo(z) =
{∞ if z = ⊥

x if z = [x, y] hi(z) =
{−∞ if z = ⊥

y if z = [x, y]

(see Fig. 2, ignoring the dashed lines for now).
For this domain, a natural widening operation is �I defined as follows:

⊥�I Y = Y
X �I ⊥ = X

[x�, xu] �I [y�, yu] = [if y� < x� then −∞ else x�, if xu < yu then ∞ else xu]
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Fig. 2. The integer interval domain as a Hasse diagram. The role of the red dashed
lines will be made clear in Sect. 4. (Color figure online)

That is, unstable bounds get extrapolated, lower bounds to −∞ and upper
bounds to ∞. To show that � fails to be monotone in the widener, Cousot
and Cousot [11] note that [0, 1] � [0, 2] but [0, 1]�I [0, 2] = [0,∞] whereas
[0, 2]�I [0, 2] = [0, 2]. While this particular � happens to be monotone in its
widenee, the definition of widening does not enforce such monotonicity.

To see that � may lack monotonicity in either argument position, consider
the complete lattice (N∪{∞},�), with � defined x � y iff x ≤ y ∨ y = ∞ (with
≤ being the usual ordering on N). Define widening on this lattice as follows:

x� y =
{

max(x, y) if y = 2
∞ otherwise

Here 1 � 2 but ∞ = 0� 1 
� 0� 2 = 2, so � is not monotone in the widenee.
Yet � is an upper bound operator, and for every increasing chain x0, x1, . . ., the
increasing chain y0 = x0, yi+1 = yi � xi+1 stabilises, so the classical requirements
for a widening operation are satisfied.

It is worth highlighting the impact of (3). Definition 1 only guarantees con-
vergence if the sequence of widenees is increasing. If the abstract transformer
F � relating successive iterations is monotone, this property is ensured. However,
the monotonicity of F � can be easily lost in a number of ways:

– If the abstraction D is not a join semi-lattice (e.g. [16,17,20]), there is no
least-upper bound, thus successive values at control-flow join points may not
strictly increase [15].

– If F � is not the best abstraction of F , but some relaxation (as is common for
non-linear operations), the sequence of iterates again may be non-monotone.
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– A special case of the above is use of reduction operations to propagate infor-
mation between multiple domains (discussed in Sect. 3.1). If the operators
for channeling information between domains are not idempotent, and are not
iterated to a fixpoint, monotonicity is again lost.

In any of these situations, a widening that only satisfies Definition 1 makes no
guarantees of termination. Fortunately, the stabilisation-based widenings com-
monly used for numeric domains all satisfy (3), and for other cases, alternative,
stricter, definitions of widening have been proposed.

3 Problems and Pitfalls

To motivate a fresh look at widening, we first discuss some irregular properties
of widening: an absence of compositionality, a lack of flexibility, and a certain
lack of robustness. In Sect. 5 we return to these aspects, to show how a different
view of widening can remove or mitigate some drawbacks.

3.1 Problems of Compositionality

Abstract interpretation makes use of a number of domain product constructions.
The reduced product of abstract domains [5,9] is a powerful concept, but difficult
to implement in practice. Granger products [21] are a frequent compromise,
equipping a pair of domains with ‘reduction’ operators to propagate information
between them. In essence, both approaches take the quotient of D1 × D2 under
some equivalence relation ≡. However, it is not in general safe to use widenings
for D1 and D2 directly as a widening for (D1 × D2)/≡.

Example 1. Consider D1 = D2 = N ∪ {∞}, with the usual ordering ≤, and
define:

w �e x =

⎧⎪⎪⎨
⎪⎪⎩

w if x ≤ w
x if x > w, w is even, and x is odd
x + 1 if x > w, w is even, and x is even
∞ otherwise

w �o x =

⎧⎪⎪⎨
⎪⎪⎩

w if x ≤ w
x if x > w, w is odd, and x is even
x + 1 if x > w, w is odd, and x is odd
∞ otherwise

Note that �e always converges: if the first value is even, the second iterate will
become odd, after which the third increasing step will jump to ∞. �o converges
by analogous reasoning.

In the reduced product D1 × D2, the meaning of (x, y) is simply min(x, y).
Consider what happens to the strictly increasing sequence 0, 1, 2, . . .

Sequence to stabilise: 0 1 2 3 4 . . .

Result of (�e, �o) at iteration i: (0, 0) (1, ∞) (∞, 2) (3, ∞) (∞, 4) . . .

Reduced element at iteration i: 0 1 2 3 4 . . .
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When we map the two individual components back onto the quotient class, we
regain information that was discarded by the previous widening. As a result,
stabilisation is lost. ��
Example 1 shows that traditional widening does not guarantee compositional
stabilisation. Each of the widening operators in the example provides stabilisa-
tion, one in D1, the other in D2, and yet their natural composition does not
provide stabilisation in the reduced product of D1 and D2. Each has the effect
of undermining the other.

The lack of compositionality manifests itself in other ways.

Example 2. Widening with thresholds [24,25] is a common strategy for avoiding
precision loss in widening. However, implementing widening with thresholds for a
large number of numeric abstract domains is tedious, and it would be preferable
to utilise an existing widening operator. Indeed, in Crab [14], a generic version
of widening with thresholds was previously implemented as follows:

s�T
A t =

(s�A t) �A (from-interval(to-interval(s)�T
I to-interval(t))) (6)

That is, given an arbitrary numerical abstract domain A, extract interval approx-
imations from s, t ∈ A, using the function to-interval that converts from A
to I. Then, apply (non-threshold) widening to the A-operands, apply interval
widening with thresholds to the I-operands, convert from I to A using the
function from-interval, and take the meet of the two results.

This sequence of operations ought to be innocuous. With the assumption that
widening is applied in an unbroken sequence, and non-widening steps are not
allowed after widening, the suggested solution should be safe: �T

I can be safely
interleaved with increasing functions, so the interval component will eventually
converge. And since the resulting intervals are stable, adding them back into
s�A t should have no effect. Nevertheless, this widening strategy would—on
very rare occasions—cause non-termination.2 ��

It turns out that the problem in Example 2 is due to the call to-interval(s),
where we find the interval approximation of a previous iterate. To compute the
tightest interval approximation of s, to-interval must normalise s, that is,
explicate the transitive closure of its representation. Not knowing that s is ‘really’
a widener, to-interval helpfully modifies s in place, inadvertently breaking
the termination conditions. There is nothing wrong with (6), read declaratively,
and it is hard to blame the implementation of to-interval. The root cause is
that the termination invariant required by widening relies on invisible properties
which are not captured at the semantic (or API) level. What was intended as a
syntactic object (a set of constraints) is treated as a semantic object (a set of
models). Clearly it would be nice to have a “widening API” that prevents this
kind of category confusion.

2 The bug was fixed on July 1st, 2018 in commit https://github.com/seahorn/crab/
commit/72ed05690bc2bbee19141f5513cb6a8e8ab3ce9a.

https://github.com/seahorn/crab/commit/72ed05690bc2bbee19141f5513cb6a8e8ab3ce9a
https://github.com/seahorn/crab/commit/72ed05690bc2bbee19141f5513cb6a8e8ab3ce9a
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3.2 Flexibility: Handling Variants of Widening

Widenings frequently achieve convergence by retaining only ‘stable’ information,
and discarding everything else. This is excellent for attaining fast termination,
but risks throwing away the properties we are attempting to infer.

The threshold widening discussed above is one of many different approaches
to avoid excessive information loss in widening. Another common strategy to
retain some information is delayed widening [3]: perform a bounded number of
initial steps using join (�)—in the hope of obtaining stable invariants—before
eventually resorting to widening.

These are simple and effective strategies, but implementing variants of widen-
ing is surprisingly messy [12]. For example, for delayed widening we need to track
how many times each widening point has been processed, but where does this
count belong? A common strategy is to remove this decision from the domain
entirely, relying on the analysis engine to decide when to switch from “join”
mode to “widen” mode. Alternatively, one can place an iteration counter some-
where with shared visibility. In any case, the traditional solutions involve disrup-
tive changes to an underlying fixpoint engine, or a baroque redesign of abstract
domains. A cleaner and less intrusive solution would be desirable.

3.3 Problems of Fragility: Termination

Termination problems similar to that of Example 2 are easily provoked.
Miné [27,28] observed a related problem with his weakly relational domains:
The implementation of these domains rely on transitive closure operations to
make implicit binary relations explicit at certain points. For example, a set
{x ≤ y, y ≤ z} of constraints may be normalised as {x ≤ y, y ≤ z, x ≤ z}.
However, applying transitive closure to the post-widening state can result in
non-termination, even though the set of models is unchanged. The root cause of
the trouble [27,28] (and in Example 2) is that the domain conflates two views of
an abstract state: the lattice operations and abstract transformers see states as
semantic objects, so two states with identical models are equivalent; closure is,
viewed from that angle, a no-op. Widening, however, is non-semantic in its left
argument: Once some constraint is discarded as unstable, it must not re-appear
in future iterations. If transitive closure is applied between widening steps, we
may re-infer relaxed forms of the discarded invariants, which may appear stable
in the next iteration, breaking the invariant we need for termination.

Example 3. Miné [27] first identified the problem and gave a concrete example.
Consider the sequence of iterates pi = {|y−x| ≤ i+1, |z−x| ≤ i+1, |z−y| ≤ 1}
for i = 0, 1, 2, . . .. With the standard representation of difference constraints
as directed graphs, we can depict the sequence as in the bottom row of Fig. 3.
To maintain precision, it is important to apply a transitive closure operation to
constraint sets, to detect implied constraints (we say we “normalise” constraints).
Now starting a sequence ω0, ω1, . . . from ω0 = {|y − x| ≤ 1, |z − y| ≤ 1} is fine,
except we run into trouble if we normalise the results of widening. Normalising
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Fig. 3. An example of a divergent sequence of difference constraints, adapted from [27].
At each step, the edges between x and either y or z are discarded, but closure then
recreates weaker relations (shown dashed), which are stable during the next iteration.

ω0 yields ω∗
0 = {|y − x| ≤ 1, |z − y| ≤ 1, |z − y| ≤ 2}. Under normalisation,

the remainder of the widening sequence is shown in the top row of Fig. 3. For
example, ω2 comes about as the closure of ω1 � p1 = {|z − y| ≤ 1, |z − x| ≤ 2},
with closure adding the constraint |y − x| ≤ 3. As can be seen, the widening
sequence will not stabilise. The problem arises because closure—which makes no
semantic difference—restores some constraints discarded by widening, breaking
the very property that termination relied on. ��

In Sect. 5 we return to the challenges discussed in this section. But first we
introduce a different view of widening.

4 Isolated Widening

In the classical treatment of abstract interpretation, the widening iterates inhabit
the same type as our abstract domain. But as observed above, this view can mis-
lead the implementor of an abstract domain. For the implementor it is critically
important to isolate the effects of a semantic widenee from the non-semantic
widener. As we show in Sect. 5.1, this isolation also aids compositionality.

To make the two aspects of widening transparent, we let the different roles
of the widener and widenee be reflected in �’s argument types. That is, we relax
the requirement that both arguments are of type D for some abstract domain
D. Instead, we take the widener to be an inhabitant of some partially ordered
set (W,�) (not necessarily a lattice) which has the “ascending chain” property.

Definition 2 (Acc-poset). A partially ordered set (S,≤) satisfies the ascend-
ing chain condition iff, for every sequence s0 ≤ s1 ≤ s2 ≤ . . . of S, there is some
k ∈ N such that sk = sk+1 = sk+2 = . . .. We refer to such a set as an acc-poset.

Example 4. Consider again the interval domain (I,�) from Sect. 2. The full and
dotted lines in Fig. 2 show the lattice as a Hasse diagram. The natural widening
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operation �I defined in Sect. 2 is not monotone. However, consider an alternative
ordering �, defined by: ⊥ � d � d for all d ∈ I, and

[a, b] � [c, d] iff (c = −∞ ∧ d ∈ {b,∞}) ∨ (d = ∞ ∧ c ∈ {−∞, a})

This results in an order illustrated in Fig. 2 by considering edges that transi-
tively cross a red dashed line. Nodes within one red bordered region are pairwise
incomparable. Clearly � is a coarsening of �: we have i1 � i2 ⇒ i1 � i2, but �
makes certain elements of I incomparable which were comparable under �.

Viewed with respect to �, �I satisfies an interesting property:

w � w′ ∧ x �x′ ⇒ w �I x � w′ �I x′.

That is, �I is monotone after all, but with respect to different orderings of its
left and right operands. But though � induces a lattice, �I does not coincide
with the join operation over (I,�), even though that operation does exist. In
fact, �I is not an upper bound operation at all under �, only under �. For
example, [−10, 10]�I [0, 3] = [−10, 10], but [0, 3] 
� [−10, 10]. ��

Example 4 provides motivation for the introduction of an isolated widening
domain W, since the key to widening is really an independent acc-poset. The set
W is related to a given abstract domain D, as specified in Definition 3 below. It
is equipped with three operations:

reflect : D → W reify : W → D �� : W × D → W

Here, reflect lifts an abstract state to initialize an ascending sequence, �� com-
putes successive (widening) steps in our (finite) ascending chain, and reify maps
the current iterate back onto the abstract domain, in preparation for computing
the next step in the sequence.

Definition 3 (Isolated widening). Let (D,�) be an abstraction of poset
(C,⊆) given by concretisation γ. The quintuple 〈W,�, reflect , reify ,��〉 is an
isolated widening (I-widening) for (D,�) iff (W,�) is an acc-poset and the
operators reflect : D → W, reify : W → D, and �� : W × D → W, satisfy:

∀x ∈ D. γ(x) ⊆ γ(reify(reflect(x))) (7)

∀w ∈ W, x ∈ D. w � (w �� x) (8)

∀w ∈ W, x ∈ D. γ(x) ⊆ γ(reify(w �� x)) (9)

Equations (7)–(9) generalise the corresponding conditions for classical widen-
ings. Indeed, if W = D and reflect(x) = reify(x) = x then (7) is a tautology,
and (8) and (9) ensure �� is an upper bound operator. We do not require the
sets W and D to be identical, however. And, importantly, the left argument
(the widener) and right argument (widenee) are generally subject to different
orderings.
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Theorem 1. Consider abstraction (D,�) of domain (C,⊆) given by γ : D → C.
Let 〈W,�, reflect , reify ,��〉 be an I-widening for lattice (D,�). For every x ∈ D,
monotone function f : C → C and abstraction f � : D → D of f , the sequence
given by

w0 = reflect(x)
wi = wi−1 �� f �(reify(wi−1))

stabilises after k steps for some k ∈ N, and fn(γ(x))� γ(reify(wk)) for all n ∈ N.

Proof. Stabilisation follows directly from (8), and W having only finite ascending
chains. At each iteration, either wi = wi−1 (in which case wi �� f(reify(wi)) = wi,
so the sequence has stabilised), or else wi � wi−1. The latter may happen only
finitely many times, so the sequence stabilises after finitely many steps.

Mathematical induction shows the final result is a post-fixpoint of f . Assume
stabilisation happened at iteration k. We wish to show that, for every i ∈ N,
f i(γ(x)) ⊆ γ(reify(wi)). From the outset, for i = 0, we have wi = reflect(x), so
by (7) we have γ(x) ⊆ γ(reify(wi)).

Now assume f i−1(γ(x))� γ(reify(wi−1)). By (9), we have:

γ(f �(reify(wi−1)))� γ(reify(wi−1 �� f(reify(wi−1)))) = γ(reify(wi)).

As f is monotone, we have f i(γ(x)) = f(f i−1(γ(x))) ⊆ f(γ(reify(wi−1))). And
as f � abstracts f , and γ is monotone, we have:

f(γ(reify(wi−1))) ⊆ γ(f �(reify(wi−1))) ⊆ γ(reify(wi)).

Hence f i(γ(x)) ⊆ γ(reify(wi)) for all i ≥ 0. Thus γ(reify(wk)) is a post-fixpoint
of f . ��
Theorem 2. Consider a widening (in the sense of Definition 1) � on poset
(D,�) abstracting (C,⊆), which satisfies (3). Let id : D → D be the identity
function, and let � be the relation given by:

u � v iff u = v ∨ ∃x. u � x = v,

with �∗ its transitive closure. Then 〈D,�∗, id, id,�〉 is an I-widening for (D,�).

Proof. �∗ is reflexive and transitive by construction. Consider u, v ∈ D such
that u �∗ v and v �∗ u. So either u = v, or ∃x1, . . . , xn. v = u � x1 � . . . � xn,
and ∃y1 . . . , ym. u = v � y1 � . . . � ym. Since � is an upper bound operation in
(D,�), we have v �u and u � v. Thus u = v. Therefore (D,�∗) is a partially
ordered set.

Assume (D,�∗) has some infinite ascending chain. Then (D,�) must simi-
larly have an infinite ascending chain v0, v1, . . .. From the definition of �, there
must then be a sequence x1, . . . ∈ D such that vi = vi−1 � xi. But (3) guarantees
there is no such sequence. Hence (D,�∗) has no infinite ascending chain, that
is, it is an acc-poset.
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Finally we show that (7)–(9) hold for 〈D,�∗, id, id,�〉. Equation (7) follows
directly, as x � id(id(x)) = x. The relation � is defined such that w � (w � x)
for all x, and �⊆�∗, so (8) also holds. Equation (9) follows from the second
condition of Definition 1, which requires x �w � x. As γ is monotone, we have
γ(x) ⊆ γ(w � x).

We conclude that 〈D,�∗, id, id,�〉 is an I-widening for 〈D,�〉. ��
Theorem 2 states that each classical widening [11] induces an isolated widen-

ing. The I-widening derived from an arbitrary classical widening is not necessarily
monotone. Indeed, for arbitrary fixed reflect , reify , and �, there may be no best
widening (though if (W,�) has a unique greatest element �, there is always
some monotone widening, namely w �� x = �).

5 Properties of Isolated Widening

We now return to the problems and pitfalls identified in Sect. 3. The aim is to
show how the separation of concerns that was proposed in Sect. 4 can resolve
some of the classical difficulties surrounding widening: lack of compositionality
(as seen in product widening), rigidity (as seen in the difficulty of extending the
definition of widening to cover variants such as delayed and threshold widening),
and fragility (as seen in well-known implementation pitfalls).

5.1 Compositionality: Domain Products and Widening

Example 1 exposed the dangers surrounding synthesis of widening operators for
product domains. We now show that I-widening provides compositional stabil-
isation, also in the presence of reduction. We characterise direct, Granger, and
reduced products as quotients of a direct product under a reduction operation.

Definition 4 (Product with reduction). Let (C,⊆) be a meet semi-lattice3

with abstractions (D1,�1) and (D2,�2) given by γ1 and γ2. Let D1×2 = D1×D2.
A function ρi : D1×2 → Di is a reduction operator if it satisfies:

ρi(y1, y2) �i yi i ∈ {1, 2} (10)
γ1×2(y1, y2) � γi(ρi(y1, y2)) i ∈ {1, 2} (11)

Equation (10) ensures ρi are decreasing, and (11) ensures ρi do not discard any
sound concrete states.

We use ρ to denote the pointwise application of (ρ1, ρ2):

ρ〈y1, y2〉 = 〈ρ1〈y1, y2〉, ρ2〈y1, y2〉〉.
From (10) and (11), we conclude:

γ1×2(ρ(x)) = γ1×2(x) (12)

A product with reduction is the quotient class D1×2|ρ.
3 The requirement for a meet semi-lattice is merely so γ1×2 is expressible. With a

different formalisation (taking γ as a relation γ ⊆ C × D), we may take (D, �) as a
poset, and replace (11) by (y1, x) ∈ γ1 ∧ (y2, x) ∈ γ2 ⇒ (ρi(〈y1, y2〉), x) ∈ γi.
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In this view, ρ = id yields the direct product, and the reduced product is obtained
with the tightest possible ρ. The continuum of Granger products sit between.

Theorem 3. Consider domain (C,⊆) with abstractions (D1,�1), (D2,�2) given
by γ1, γ2 resp., and reduction operator ρ inducing domain (D1×2|ρ,�1×2|ρ).

Let 〈W1,�1, reflect1, reify1,��1〉 be an I-widening for poset (D1,�1) and let
〈W2,�2, reflect2, reify2,��2〉 be an I-widening for poset (D2,�2). Define

reflect〈x1, x2〉 = 〈reflect1(x1), reflect2(x2)〉
reify×〈w1, w2〉 = 〈reify1(w1), reify2(w2)〉
reify〈w1, w2〉 = ρ(reify×〈w1, w2〉)

〈w1, w2〉��〈x1, x2〉 = 〈w1 ��1 x1, w2 ��2 x2〉

Then 〈W1 × W2,�, reflect , reify ,��〉 is an I-widening for domain (D1×2|ρ,
��1×2|ρ) with

(x1, x2) � (x′
1, x

′
2) iff x1 �1 x′

1 ∧ x2 �2 x′
2

(w1, w2) � (w′
1, w

′
2) iff w1 �1 w′

1 ∧ w2 �2 w′
2

Proof. The fact that 〈W1 × W2,�〉 has no infinite ascending chains follows
straightforwardly from this property of �1 and �2.

We now show conditions (7–9) hold. By (7) for W1, W2 and (12) we have
γ1×2(x)� γ1×2(reify×(x)) = γ1×2(ρ(reify×(x))) = γ1×2(reify(x)), so (7) holds.
Equation (8) follows from the definitions of �� and �. For (9), (12) the corre-
sponding condition of W1 and W2 we have

γ1×2(x)� γ1×2(reify×(w � x)) = γ1×2(ρ(reify×(w � x))) = γ1×2(reify(w � x)).

Thus (9) holds. We conclude that 〈W1×W2,�, reflect , reify ,��〉 is an I-widening
for domain (D1×2|ρ,⊆1×2|ρ). ��

As a special case of Theorem 3, we may safely combine multiple widenings
for the same domain, in the same manner. Indeed, recall our troublesome con-
struction from Example 2. Using reflect and reify , this becomes perfectly safe:
W stores the stable relations and interval properties separately, and they are
combined only upon calls to reify . The safe replacement for (6) becomes:

reflectAI(s) = 〈reflectA(s), reflectI(to-interval(s))〉
reifyAI(〈r, i〉) = reifyA(r)� reifyA(from-interval(reifyI(i)))

〈r, i〉��AI s = 〈r �A s, i�T
I to-interval(s)〉

5.2 Flexibility: Variations of Widening

Another advantage of capturing termination aspects of widening via a separate
domain W is that it becomes possible to define variants of widening without any
need for surgery to an underlying fixpoint engine. We now show how delayed
widening can be implemented generically.
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We simply define a widening combinator, which lifts an isolated widening W
to a new isolated widening kW for some given k, as follows. The values in the
widening domain are from a discriminated union with constructors U : W → kW
and P : (N × D) → kW. Let � be any upper bound operator on D (for lattices,
this will be the least upper bound). The operations are defined by:

reflectkW(s) = P (k, s)
reifykW(P (l, s)) = s
reifykW(U(w)) = reifyW(w)

P (0, s)��kW s′ = U(reflectW(s � s′))
P (l, s)��kW s′ = P (l − 1, s� s′), l > 0
U(w)��kW s′ = U(w ��W s′)

The ordering �−
kW is defined as:

P (l, s) �−
kW P (l′, s′) ⇔ (l = l′ ∧ s = s′) ∨ (l > l′ ∧ s � s′)

P (l, s) �−
kW U(w) ⇔ γ(s) ⊆ γ(reifyW(w))

U(w) �−
kW U(w′) ⇔ w �W w′

U(w) �−
kW P (k, s) ⇔ false

The ordering of the new domain �kW is defined as the transitive closure of �−
kW.

Proposition 1. Consider domain (C,⊆) with abstraction (D,�) equipped with
upper bound operator �, and let 〈W,�W, reflectW, reifyW,��W〉 be an I-
widening for (D,�). Then 〈kW,�kW, reflectkW, reifykW,��kW〉 is an I-widening
for (D,�).

Proof. We show that �kW is a partial order. Reflexivity follows immediately
from the definition of �−

kW, specifically the first and third rules.
To see that �kW is anti-symmetric, assume x �kW y and y �kW x. Clearly

x and y must have the same constructor or one condition cannot hold. If x =
P (l, s) and y = P (l′, s′) then since x �kW y there is a finite chain of possibly
different values x = x0 = P (l0, s0), x1 = P (l1, s1), . . . , xn = P (ln, sn) = y where
P (li, si) �−

kW P (li+1, si+1) for each i ∈ 0..n − 1. The chain is finite since to be
different each l value must be different and this is bounded by k. Now (li =
li+1 ∧si = si+1)∨ (li > li+1 ∧si � si+1). Similarly since y �kW x there is a finite
chain of possibly different values y = y0 = P (l′0, s

′
0), y1 = P (l′1, s

′
1), . . . , ym =

P (l′m, s′
m) = x where P (l′i, s

′
i) �−

kW P (l′i+1, s
′
i+1) for each i ∈ 0..m− 1, and

(l′i = l′i+1 ∧ s′
i = s′

i+1) ∨ (l′i > l′i+1 ∧ s′
i � s′

i+1). The only solution to these
conditions is that for all i ∈ 0..n, j ∈ 0..m we have that li = l′j ∧ si = s′

j .
So x = y. If x = U(w) and u = U(w′) then U(w) �kW U(w′) and since �W

is already transitively closed, equivalently U(w) �−
kW U(w′) thus w �W w′.

Similarly w′ �W w. Hence w = w′. In either case, x = y, establishing anti-
symmetry.

�kW is transitive by construction.
We show the required properties hold for reflectkW, reifykW, and ��kW.

Clearly x = reifykW(reflectkW(x)) by definition, guaranteeing (7) holds.
To show (8) w �kW w �� x and (9) γ(x) ⊆ γ(reifykW(w ��kW x)) we examine

the different cases for w: If w = P (0, s) then w ��kW x = U(reflectW(s � x)).
From (7), γ(s) ⊆ γ(s � x) ⊆ γ(reifyW(reflectW(s � x))) = γ(reifykWw ��kW x),
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so we have P (0, s) �−
kW U(w ��kW x). Similarly we have reify(w) = s � s � x. By

monotonicity of γ, together with (7), we have

γ(reify(w)) ⊆ γ(s � x) ⊆ γ(reifyW(reflectW(s � x))) = γ(reify(w ��kW x)).

If w = P (l, s) for l > 0 then w ��kW x = P (l − 1, s� x). We have l − 1 <
l ∧ s � s � x, so w �−

kW w ��kW x. And γ is monotone, so γ(x) ⊆ γ(s � x) =
γ(reify(w ��kW x)). Finally, if w = U(w′) then w ��kW x = U(w ��W x). The
result follows since w′ �W w ��W x and γ(x) � γ(reifyW(w ��W x)).

Equations (8) and (9) hold for all cases, thus all conditions for an I-widening
are satisfied. ��

The I-widening framework makes it easy to define delayed widening because
it allows the separation of widening control from whatever abstract domain we
may be using. Other variations of delayed widening are also simple to encode.
For example, we can define P (l, s)��kW s′ = P (l, s) when s � s′ = s which may
lead to more accurate widening.

5.3 Convergence

Recall the problem of non-convergent DBMs (or octagons), outlined in Sect. 3.3.
The underlying problem is a subtle difference in the interpretation of a state
between the (normal) domain operations and the widening operation.

Viewed in terms of � and �, it is clear where things go astray in Example 3.
Computing ω∗

0 � p0 yields the set of constraints ω = {|z − y| ≤ 1, |y − x| ≤ 1}.
This is safe, as ω∗

0 � ω, and p0 � reify(ω). But performing transitive closure on
ω yields a result ω1 = ω∪{|z −x| ≤ 2}. And although ω∗

1 is still an upper bound
of ω∗

0 and p0 with respect to �, ω∗
0 
� ω1—so the ascending chain of wideners is

broken.
The normal lattice operators view Octagons as the quotient class of sets

of octagon constraints under entailment: two sets of constraints are equiva-
lent iff they have the same set of models. The termination argument views
Octagon states as sets of constraints: at each iteration, the number of constraints
decreases, so the iteration process terminates. These are, very subtly, different
sets, which are equipped with different partial orders, let us call them �8 and
�8, defined by

S �8 T iff ∀cT ∈T . S ⇒ cT

S �8 T iff ∀cT ∈T . cT ∈ S

Viewing widening through this lens, it becomes clear what goes wrong: The
normalization operator (which performs transitive closure) is semantically (that
is, with respect to �8) a no-op—it is merely the identity function. But with
respect to �8, closure moves downwards. So composing � and closure is no
longer necessarily an upper bound operation with respect to �8.

Formulated as an isolated widening, these sets are kept distinct. Let ≡8 be the
equivalence relation induced by �8 – that is, S ≡8 T ⇔ S �8 T ∧T �8 S, and let
=8 be the equivalence relation similarly induced by �8. Then domain elements
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occupy the quotient class O/≡8 , where O is the set of Octagon constraints. In this
domain, transitive closure is indeed safe. But widening operands are members
of O/=8 , which is simply not equipped with a closure operator.

With isolated widening, we cannot make this mistake: transitive closure is
defined on the domain of abstract states and cannot be applied to a widener
(which acts on a different set).

6 Implementation

We have implemented isolated widening for Crab [22], a parametric framework
for building abstract interpreters. Crab is written in C++ and provides a front-
end for analyzing LLVM bitcode. We have used Crab to evaluate the use of
isolated widening on a large number of C programs from SV-COMP 2019. Our
main aim with the implementation has been to gauge the extent to which isolated
widening requires a larger implementation effort than the alternatives.

We modified the Crab fixpoint iterator [1] in order to call reflect , reify , and
��. This required only three new lines of C++ code. Before a new cycle in the
weak topological ordering (wto) [4] of the control-flow graph (CFG) is analyzed,
the new code calls reflect . Then, the cycle is analyzed recursively (i.e., analyzing
other nested cycles) until a fixpoint is reached. Before a new fixpoint iteration
starts, the new code calls reify . Finally, the standard call to Cousot’s widening
was replaced with a call to ��. In addition, we extended each Crab abstract
domain D so as to implement the trivial isolated widening 〈D,�∗, id, id,�〉.
This required 10 lines of C++ code since all domains share the same
implementation.

For proofs of concept, we implemented (a) delayed widening and (b) the
reduced product of an arbitrary numerical domain with intervals as I-widening.
Recall that the reduction with intervals was motivated by a desire to exploit
widening-with-thresholds from the interval domain, so as to implement threshold
widening for a number of numerical abstract domains, with less effort. Regarding
(a), Crab already implemented delayed widening on top of the fixpoint iterator.
We replaced that code with the isolated widening defined in Sect. 5.2. The effort
was minimal and it did not add more lines of C++ code. For (b), we needed to
add more code although the amount was still relatively small (around 130 lines
of C++ code).

Crab provides standard numerical domains such as Interval, Zone, Octagon,
and Polyhedra. Since numerical domains are typically insufficient to prove non-
trivial properties, Crab allows combining numerical domains as reduced prod-
ucts. Moreover, Crab provides array domains which are implemented as functor
domains whose parameters can be arbitrary abstract domains.

With this in mind, we first implemented the I-widening described in Sect. 5.1.
The implementation is parametric on the particular numerical domain, and took
some 50 lines of code. We also implemented, in 40 lines, an I-widening for the
reduced product of two numerical domains and a numerical domain with a finite
lattice domain (used to track Boolean variables). Finally, we implemented an
I-widening for the array smashing domain, another 40 lines of C++ code.
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To test the correctness of the implementation, we compared it against the old
implementation, using 2736 programs from the SV-COMP 2019 competition (the
categories ReachSafetyControlFlow, ReachSafetyLoops, and System Device-
DriversLinux64). We noted that the new implementation of delayed widening
did not affect precision of analysis, nor analysis time.

In conclusion, the implementation of isolated widening in an existing abstract
interpreter has been almost effortless.

7 Related Work

The concept of widening in abstract interpretation is almost as old as abstract
interpretation itself [8]. Its essential role in both the theory and practice of
program analysis was clarified by Cousot and Cousot [11]. While it was initially
designed as a tool to ensure or speed up the discovery of fixpoints for monotone
functions, it has utility beyond that; non-monotone analyses have been proposed
that rely on widening to escape iteration sequences that may be looping rather
than ascending [15].

We have assumed the definition of (classical) widening given by Cousot and
Cousot [11]. Many definitions found in the literature differ in subtle ways, and
not all are strictly equivalent. For example, from the earliest work on widening,
P. and R. Cousot pointed out that it is not necessary to restrict widening to be
a single mechanism; widening could involve the use of a succession of different
mechanisms. Cousot [6] thus views a widening operator as having type N →
(D × D) → D, to allow for such “dynamic”, as well as delayed, widening.

Bourdoncle [4] analysed the use of chaotic iteration with widening and
explored how iteration strategy affects both precision and overall efficiency of
analysis. A central problem (not discussed in this paper) is how to select a good
set W of widening points. Bourdoncle [4] introduced weak topological orderings
and demonstrated their utility in the choice of W .

Much of the research on widening has been in the context of relational or
weakly-relational abstract domains. Widening plays a central role in the seminal
work on polyhedral analysis [13]. The implementation problems caused by the
non-semantic nature of the left (widener) were previously observed in work on
Zones, Octagons and convex polyhedra [2,27,28], although a general solution
has not been suggested, to our knowledge.

Delayed widening [3] is an obvious approach to limiting the loss of precision
incurred by widening. Widening is delayed for a fixed number k of iterations,
so that the widening operator associated with a widening point is treated as a
join for k steps. More sophisticated delay can be introduced by taking syntactic
aspects of the given program into account. Halbwachs, Proy and Roumanoff [24]
proposed such a widening “up to” scheme, which has since been extended and
dubbed “widening with thresholds” [25]. Simon and King [29] propose a gener-
alisation (“widening with landmarks”) in the context of polyhedral analysis.

Widening/narrowing does not always deal well with complex program struc-
ture, including nested loops. Much work has focused on improved precision of
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analysis, at a reasonable cost of overhead. Our particular perspective on widen-
ing (and the implementation discipline it enforces) does not preclude the use of
a number of these proposed widening-related techniques. This includes “looka-
head widening” and similar “analysis guiding” techniques for loops that exhibit
multi-phase behaviour [18,19], widening with landmarks [29], and post-fixpoint
improvements such as those suggested by Halbwachs and Henry [23].

A work that is close to ours as far as motivation is concerned, is Mihaila
et al.’s recasting of “widening as abstract domain” [26]. The authors also seek a
systematic, modular approach to composing abstract domains in the presence of
widening, so that ad hoc design or modifications of a fixpoint engine is avoided.
They show how different widening strategies can be built into abstract domains,
including delayed widening, widening with thresholds, and lookahead widening.
The proposed machinery, however, is very different to ours. It assumes that a
program location � is a widening point if and only if it is the target of a back-edge
in a control flow graph, in which case �’s join is replaced by a widening operation.
Our approach does not restrict the choice of widening points. Rather than force
different widening techniques into a given abstract domain, our proposal is to
separate syntactic and semantic aspects of analysis, by clearly distinguishing the
roles of the (syntactic) widener and the (semantic) widenee.

8 Conclusion

We have proposed an alternative approach to accelerating fixpoint finding in
abstract interpretation. The approach, which we have called isolated widening, is
a generalisation of the classical widening technique, in that any classical widening
can be trivially translated to an I-widening, but the converse does not hold. This
generality allows isolated widening to retain any information about the history
of widening at a program point, beyond simply the previous and next abstract
states, allowing for more flexible widenings than the traditional approach sup-
ports, such as delayed widening, all while isolating any added information from
the abstract domain itself.

Importantly, this isolation also sidesteps certain pitfalls that arise with clas-
sical widenings. For example, it clarifies the distinction between the semantics of
an abstract domain, such as Octagons, from the syntactic view of the represen-
tation used during widening. Isolated widening makes this distinction explicit,
preserving the semantic view in the abstract domain, and transforming the syn-
tactic view into its own view with a distinct semantics in the widening domain.
Crucially, this approach keeps the widening information in its own represen-
tation rather than immediately transforming it to the abstract domain, avoid-
ing the accidental strengthening of abstract states that Miné and others have
observed to undo the effect of widening and cause nontermination of analysis [28].
Additionally, we have shown that I-widenings are compositional, unlike classical
widenings, simplifying the implementation of product domains.

We have implemented our approach in the context of the Crab abstract
interpretation framework [14], finding that it required minimal effort, and did
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not affect performance or analysis precision. We conclude that I-widening is a
practical generalisation of classical widening.
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Abstract. Static analysis tools help to detect programming errors but
generate a large number of alarms. Repositioning of alarms is recently
proposed technique to reduce the number of alarms by replacing a group
of similar alarms with a small number of newly created representative
alarms. However, the technique fails to replace a group of similar alarms
with a fewer representative alarms mainly when the immediately enclos-
ing conditional statements of the alarms are different and not nested.
This limitation is due to conservative assumption that a conditional
statement of an alarm may prevent the alarm from being an error.

To address the limitation above, we introduce the notion of non-
impacting control dependencies (NCDs). An NCD of an alarm is a tran-
sitive control dependency of the alarm’s program point, that does not
affect whether the alarm is an error. We approximate the computation
of NCDs based on the alarms that are similar, and then reposition the
similar alarms by considering the effect of their NCDs. The NCD-based
repositioning allows to merge more similar alarms together and represent
them by a small number of representative alarms than the state-of-the-
art repositioning technique. Thus, it can be expected to further reduce
the number of alarms.

To measure the reduction obtained, we evaluate the NCD-based repo-
sitioning using total 105,546 alarms generated on 16 open source C appli-
cations, 11 industry C applications, and 5 industry COBOL applications.
The evaluation results indicate that, compared to the state-of-the-art
repositioning technique, the NCD-based repositioning reduces the num-
ber of alarms respectively by up to 23.57%, 29.77%, and 36.09%. The
median reductions are 9.02%, 17.18%, and 28.61%, respectively.

1 Introduction

Static analysis tools help to automatically detect common programming errors
like division by zero and array index out of bounds [2,3,5,33] as well as help
in certification of safety-critical systems [6,10,17]. However, these tools report a
large number of alarms that are warning messages notifying the tool-user about
potential errors [11,15,22,29,31]. Partitioning the alarms into true errors and
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false alarms (false positives) requires manual inspection [11,19,30]. The large
number of false alarms generated and effort required to analyze them manually
have been identified as primary reasons for underuse of static analysis tools in
practice [4,7,15,19].

Clustering is commonly used to reduce the number of alarms reported to the
user [14,26]. State-of-the-art clustering techniques [13,20,24,34] group similar
alarms1 together such that (1) there are few dominant and many dominated
alarms; and (2) when the dominant alarms of a cluster are false positives, all
the alarms in the cluster are also false positives. The techniques count only the
dominant alarms as the alarms obtained after the clustering.

Repositioning of alarms [27] is recently proposed technique to overcome lim-
itations of the clustering techniques [13,20,24,34]. To achieve the reduction in
alarms, the technique repositions a group of similar alarms to a program point
where they can be safely replaced by a fewer newly created representative alarms
(called as repositioned alarms). The alarms repositioning is safe and performed
only if the following repositioning criterion is met—when a repositioned alarm
is a false positive, its corresponding original alarms are also false positives, and
vice versa. Thus, the repositioned alarms act as dominant alarms for the original
(similar) alarms that are replaced by them.

Problem. The alarms repositioning technique [27] described above fails to repo-
sition and merge similar alarms when their immediately enclosing conditional
statements are different and not nested. As a consequence, in these cases, the
repositioning technique does not reduce the number of alarms. We call these
cases repositioning limitation scenarios. We illustrate this limitation using the
alarms (red rectangles) shown in Fig. 1. The code is excerpted from archimedes-
0.7.0. The two code examples shown in Figs. 1a and b are independent of each
other. Analyzing the code in Fig. 1a (resp. Fig. 1b) using any static analysis tool
generates two (resp. four) alarms corresponding to array index out of bounds
(resp. division by zero). Grouping these alarms using the state-of-the-art clus-
tering techniques [13,20,24,34] does not reduce their number.

Among the six alarms shown in Fig. 1, there exist three groups of similar
alarms: A10 and A15, D38 and D45, and D42 and D48. The alarms repositioning
technique cannot determine whether the control dependencies2 (i.e. the enclosing
conditional statements) of these alarms can prevent the alarms from being an
error. Thus, the technique conservatively assumes that the control dependencies
of these alarms can prevent the alarms from being an error, i.e., the dependencies
can impact those alarms. For example, the values read for nx at line 33 can be
zero due to which two similar alarms D38 and D45 get generated. However, the
technique conservatively assumes that the control dependencies of these alarms
can prevent the zero value read for nx from reaching to lines 38 and 45. As
a result of the conservative assumption, the repositioning criterion cannot be

1
Broadly, two alarms are said to be similar if the property/condition checked in one alarm implies
the property/condition checked in the other alarm (Sect. 2).

2
A control dependency of a program point p is a conditional edge in the control flow graph [1],
that decides whether p is to be reached or not (see Sect. 2).
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Fig. 1. Examples of alarms to illustrate their NCD-based repositioning. (Color figure
online)

guaranteed for repositioning of these two similar alarms (D38 and D45) to any
program point, e.g., to line 36. That is, the resulting repositioned alarm can be an
error while none of these two alarms is an error. Thus, the repositioning technique
fails to reposition and merge these two similar alarms together. Similarly, the
technique also fails to reposition the other two groups of similar alarms shown
in Fig. 1. As a result, the repositioning technique does not reduce the number of
alarms shown in Fig. 1.

We find that the above assumption about the control dependencies of the
alarms’ program points limits the reduction achieved by the repositioning tech-
nique, because not every control dependency of an alarm’s program point can
prevent the alarm being an error. For example, the conditions corresponding to
the control dependencies of the alarms shown in Fig. 1 are most likely to deter-
mine whether the program points of those alarms are to be reached and not to
prevent the alarms from being an error.

Our pilot study on 16 open source applications indicates that, 38% of the
alarms reported after their repositioning are still similar and appear in the repo-
sitioning limitation scenarios. These results suggest the scope for improvement.

Our Solution. To overcome the problem above and further reduce the num-
ber of alarms, we introduce the notion of non-impacting control dependencies
(NCDs). An NCD of an alarm is a transitive control dependency of the alarm’s
program point, that does not affect whether the alarm is an error. As we intend to
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reposition and merge more similar alarms together for reducing their number, we
restrict the scope of NCDs computation to the similar alarms only. Since deter-
mining whether a control dependency is an NCD is undecidable, we compute
the NCDs of similar alarms approximately (described in Sect. 4.2). The NCDs
computed are subsequently used to reposition the similar alarms by considering
the effect of their NCDs (NCD-based repositioning). Thus, NCD-based reposi-
tioning allows to reposition more similar alarms together and replace them by
a fewer repositioned (dominant) alarms than the state-of-the-art repositioning
technique. For example, our approach to compute NCDs, identifies the control
dependencies of the alarms shown in Fig. 1 as NCDs. Repositioning each group
of the similar alarms using the NCDs allows to replace the group by a newly
created dominant alarm (shown using green circles). Thus, NCD-based reposi-
tioning reduces the number of alarms by three.

Although NCD-based repositioning is performed based on approximated
NCDs, the repositioned alarms do not miss detection of an error uncovered by
the original alarms. Thus, NCD-based repositioning can be expected to further
safely reduce the overall number of alarms.

To measure the reduction obtained, we evaluate NCD-based repositioning
on total 105,546 alarms generated for the following kinds of applications: (i) 16
open source C applications (ii) 11 industry C applications; and (iii) 5 industry
COBOL applications. The alarms are generated by a commercial tool for five
safety properties. The evaluation results indicate that, compared to the state-of-
the-art repositioning technique, NCD-based repositioning reduces the number of
alarms on these applications, respectively by up to 23.57%, 29.77%, and 36.09%.
The median reductions are 9.02%, 17.18%, and 28.61%, respectively.

Following are the key contributions of our work.

1. The notion of NCDs of alarms and computing them for similar alarms.
2. An NCD-based repositioning technique to reduce the number of alarms.
3. A large-scale empirical evaluation of the NCD-based repositioning technique

using 105,546 alarms on 16 open source and 16 industry applications.

Paper Outline. Sect. 2 presents terms and notations that we use throughout
the paper. Section 3 describes the pilot study. Section 4 describes the notion of
NCDs and NCD-based repositioning. Section 5 presents a technique/algorithm
to implement NCD-based repositioning. Section 6 discusses our empirical evalu-
ation. Section 7 presents related work, and Sect. 8 concludes.

2 Terms and Notations

Control Flow Graph. A control flow graph (CFG) [1] of a program is a directed
graph 〈N , E〉, where N is a set of nodes representing the program statements
(e.g., assignments and conditional statements); and E is a set of edges such that
an edge 〈n, n′〉 represents a possible flow of program control from n ∈ N to
n′ ∈ N without any intervening node. We use n → n′ to denote an edge from
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node n to node n′. Depending on whether the program control flows condition-
ally or unconditionally along an edge, the edge is labeled either as conditional
or unconditional. We denote the condition corresponding to a conditional edge
u → v as cond(u → v). A CFG has two distinguished nodes Start and End ,
representing the entry and exit of the corresponding program, respectively. For
a given node n, we use pred(n) to denote predecessors of n in the graph.

Except for the Start and End nodes, we assume that there is a one-to-one
correspondence between the CFG nodes and their corresponding program state-
ments. Thus, we use the terms statement and node interchangeably. Henceforth,
in code examples we use nm to denote the node of a program statement at
line m. For the sake of simplicity, we assume that the program statements do
not cause side effects and the conditional statements (branching nodes) do not
update values of a variable.

Program Points. We write entry(n) and exit(n) to denote the entry and exit of
a node n, i.e., the program points just before and immediately after the execution
of statement corresponding to the node n, respectively. The entry or exit of a
node is assumed not to be shared with entry or exit of any other node even
though they may indicate the same program point/state. A program point p1
dominates a program point p2 if every path from the program entry to p2 contains
p1. A program point p1 post-dominates a program point p2 if every path from
p2 to the program exit contains p1.

Data Dependencies. A variable v at a program point p is said to be data
dependent on a definition d of v, if d is a reaching definition [16,28] of v at
p. Data dependencies of a variable v are the definitions on which v is data
dependent.

Control Dependencies. A node w is said to be control dependent on a condi-
tional edge u → v if w post-dominates v; and if w �= u, w does not post-dominate
u [9,12]. Control dependencies of a node n or a program point entry(n) (or
exit(n)) are the conditional edges on which the node n is control dependent.
A conditional edge e is called as transitive control dependency of a point p if
e belongs to the transitive closure of control dependencies of p. We use e � p
to denote that e is a transitive control dependency of a program point p. We
say that the conditions of two conditional edges e1 and e2 are equivalent if
cond(e1) ⇔ cond(e2). In the other case, we say that the conditions of the two
dependencies are different. On similar lines, we call two conditional edges n → n′

and m → m′ condition-wise equivalent only if (1) their conditions are equivalent;
and (2) every variable in their conditions has same data dependencies at exit(n)
and exit(m).

Static Analysis Alarms. A static analysis tool reports an alarm at the location
where the run-time error corresponding to the alarm is likely to occur. We refer
to the tool generated alarms as the original alarms and to their locations as
the original locations. We use cond(φ) to denote alarm condition of an alarm φ,
i.e., the check performed by the analysis tool for detecting an error. The alarm
condition holds iff the corresponding alarm is a false positive. For example,
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nx �= 0 is the alarm condition of the alarms D38 and D45 shown in Fig. 1b. We
use safe values (resp. unsafe values) to refer to the set of values of the variable(s)
in cond(φ) due to which φ is a false positive (resp. an error).

We call two alarms φ and φ′ similar if cond(φ) ⇒ cond(φ′) or cond(φ′) ⇒
cond(φ). An alarm φ is said be a dominant alarm of an alarm φ′ only if when φ is
a false positive, φ′ is also a false positive. We use φp to denote an alarm φ located
at a program point p, and thus we say that the transitive control dependencies
of φp are same as the transitive control dependencies of p. We write e � φ to
indicate that e is a transitive control dependency of an alarm φ. We use tuple
〈c, p〉 to denote a repositioned alarm at p with c as its alarm condition.

3 Pilot Study

As a sanity check we performed a study to measure (1) what percentage of
alarms resulting after the state-of-the-art repositioning [27] are similar; and (2)
what percentage of these similar alarms appear in the repositioning limitation
scenarios (Sect. 1). The similar alarms appearing in those limitation scenarios
are candidates for reducing their number through NCD-based repositioning.

We selected 16 open source C applications that were previously used as bench-
marks for evaluating the alarms clustering techniques [21,34] and the reposition-
ing technique [27]. We analyzed these applications using our commercial static
analysis tool, TCS ECA [32], for five safety properties: division by zero, array
index out of bounds (AIOB), arithmetic overflow and underflow, dereference of a
null pointer, and uninitialized variables. The generated alarms are postprocessed
using the clustering techniques [21,24] and then the resulting dominant alarms
are repositioned using the state-of-the-art technique [27]. �

We first identified groups of similar alarms from 64779 alarms generated by
the setup above. Next we identified similar alarms in each group that have same
data dependencies for their variables, and counted those alarms as the similar
alarms appearing in the repositioning limitation scenarios. The study indicates
that, on an average, 50.89% of the alarms obtained after the state-of-the-art
repositioning are similar, and 74% of these similar alarms—38% of the total
alarms—appear in the repositioning limitation scenarios. Based on these results
we expect postprocessing the alarms using NCD-based repositioning can help
to reduce their number. Due to lack of space, the selected applications and the
study results are provided in extended version of the paper, available at http://
www.win.tue.nl/∼aserebre/APLAS2019.pdf.

4 NCDs of Similar Alarms

4.1 The Notion of NCD of an Alarm

Definition 1 (NCD of an alarm). Let φ be an alarm reported in a program
P, and (n → n′) is a transitive control dependency of φ. Let P’ be obtained from
P by replacing the condition of the branching node n with a non-deterministic

http://www.win.tue.nl/~aserebre/APLAS2019.pdf
http://www.win.tue.nl/~aserebre/APLAS2019.pdf
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Fig. 2. Examples to illustrate ICDs and NCDs of alarms.

choice function. We say that the dependency n → n′ is an impacting control
dependency (ICD) of φ only if φ is a false positive in P but an error in P’. Oth-
erwise, say that the dependency n → n′ is a non-impacting control dependency
(NCD) of φ. �

We illustrate the notion of NCD/ICD by categorizing the effect of a control
dependency e � φp on φp, where e = n → n′. The classification is based on the
values that can be assigned to variables in cond(φp).

Class 1. The variables in cond(φp) are assigned with safe values by their data
dependencies, and thus φp is a false positive. In this case, e is an NCD of φp:
replacing the condition of the branching node n—the source node of e—by a
non-deterministic choice function does not cause φp to be an error.

Class 2. The variables in cond(φp) are assigned with unsafe values by their data
dependencies, and φp is an error if the unsafe values reach the alarm program
point p. In this case, the effect of e on φp is in one of the following two ways
depending on whether the unsafe values reach φp.

Class 2.1: The condition cond(e) prevents the flow of the unsafe values from
reaching φp and thus φp is a false positive. In this case, if the condition of
the source node n of e is replaced by a non-deterministic choice function, the
alarm is an error as those unsafe values reach φp. That is, e affects whether
φp is an error or a false positive. Thus, in this case, we say that e is an ICD
of φp, and cond(e) is a safety condition for φp because e prevents the alarm
from being an error. For example, in Fig. 2, the control dependency n7 → n8

of A8 is ICD.
Class 2.2: The condition cond(e) does not prevent the flow of the unsafe values

from reaching φp and thus φp is an error. In this case, if the condition of
the source node n of e is replaced by a non-deterministic choice function,
the alarm would still remain as an error. That is, e does not affect whether
φp is an error or a false positive. Thus, we say that e is an NCD of φp. For
example, in Fig. 2, the control dependency n9 → n10 of D11 is NCD.
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4.2 Computation of NCDs of Similar Alarms

Computing whether a given dependency e of an alarm φ is an ICD or NCD
includes determining whether φ is a false positive. As determining whether φ
is a false positive is undecidable in general [11,22], determining whether e is
an ICD/NCD of φ is also undecidable. Thus, we compute approximation of
ICDs/NCDs. As we aim to reposition similar alarms together, we focus on com-
puting NCDs of those similar alarms only. For a given set of similar alarms ΦS

and φ ∈ ΦS , the approximation of NCDs/ICDs of φ is described below.

Computation of ICDs. For an alarm φ, we compute its transitive control
dependency e � φ as ICD, only if every path reaching each alarm φ′

p ∈ ΦS has
a dependency e′ � φ′

p on it such that e and e′ are condition-wise equivalent. For
example, the control dependencies of the similar alarms A10 and A15 in Fig. 2
are ICDs.

Computation of NCDs. For an alarm φ, we compute its transitive control
dependency e � φ as NCD, if there exists a path reaching at an alarm φ′

p ∈ ΦS

without having a dependency e′ � φ′
p on it such that e and e′ are condition-wise

equivalent. For example, in Fig. 1, the control dependencies of the similar alarms
D38 and D45 are NCDs.

In other words, when φ ∈ ΦS , e � φ, and a condition equivalent to cond(e)
appears on every path to each of the similar alarms ΦS , then we treat cond(e)
as a potential safety condition for each alarm in ΦS , and thus e as an ICD of φ.
Otherwise, e is an NCD of φ.

Intuition Behind the Approximation. The NCDs of similar alarms com-
puted above approximate NCDs as defined in Definition 1. The idea of the
approximation is based on the earlier observation by Kumar et al. [18] that
removing statements which merely control reachability of an alarm’s program
point rarely affects whether the alarm is false positive or not: removing the non-
value impacting control statements of the alarms changed only 2% of the false
positive alarms into errors. This suggests that for a given dependency e � φ,
cond(e) is rarely a safety condition for φ, i.e., e is rarely an ICD of φ. Thus, intu-
itively, the chance of existing different safety condition for each of the alarms
in ΦS is even lower : if there exists a safety condition to prevent an alarm from
being an error, an equivalent condition also should exist for every other similar
alarm. For example, in Fig. 1, if the condition strcmp(pos, “DOWN”) == 0 is a
safety condition for D38, the same condition should also have been for its similar
alarm D45. Thus, we approximate the control dependencies of those two alarms
to be NCDs. On similar lines, the control dependencies of the other alarms in
Fig. 1 are NCDs.

In the next section we discuss that, although the above computation of NCDs
is observation-based and approximated, the NCDs computed can be safely used
to reduce the overall number of alarms.
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4.3 NCD-Based Repositioning of Similar Alarms

To overcome the limitation of the state-of-the-repositioning (Sect. 1), we reposi-
tion a group of similar alarms by considering the effect of their NCDs. We design
NCD-based repositioning to satisfy the following constraints, where R is the set
of alarms resulting from the repositioning of a set of similar alarms ΦS .

C1: The program points of the repositioned alarms R together dominate the
program point of every alarm φ ∈ ΦS , so that when the repositioned alarms
R are false positives, the original alarms ΦS are also false positives.

C2: All the paths between the repositioned alarms R and every alarm φ ∈ ΦS

does not have an ICD of φ (that is, all the control dependencies of an alarm
φ ∈ ΦS along a path between the repositioned alarms R and φ are NCDs).

C3: The number of the repositioned alarms R is strictly not greater than the
number of original alarms ΦS .

The constraint C1 ensures that when φ ∈ ΦS is an error, at least one of the
repositioned alarms R is also an error. Thus, the repositioning is safe, and the
repositioned alarms R together act as dominant alarms of the original alarms
ΦS . However, as the repositioned alarms are newly created, with C1 we cannot
guarantee that when a repositioned alarm rp ∈ R is an error, at least one of
its corresponding original alarms Φ′ ⊆ ΦS is an error. That is, rp may detect
an error spuriously. The spurious error detection occurs only when every path
between rp and each φ ∈ Φ′ has an ICD of φ.

To overcome the problem above—a repositioned alarm detecting a spurious
error—we add the second constraint C2. The constraint C1 together with C2
guarantees that when a repositioned alarm is an error, at least one of its corre-
sponding original alarms is also an error, and vice versa. In other words, when
the repositioned alarms R are false positives, the original alarms ΦS are also false
positives, and vice versa. Thus, NCD-based repositioning with these two con-
straints, C1 and C2, meets the repositioning criterion (Sect. 1). As NCD-based
repositioning creates new alarms, with the third constraint C3, we ensure that
the repositioning never results in more alarms than the input for repositioning.
Thus, NCD-based repositioning performed with constraints C1, C2, and C3 is
safe, without spurious error detection by the repositioned alarms, and without
increasing the overall number of alarms.

For example, Fig. 1 also shows NCD-based repositioning of the similar alarms,
obtained using the NCDs computed above (Sect. 4.2). The repositioned alarms
are shown using green circles. The shown NCD-based repositioning satisfies the
three repositioning constraints (C1, C2, and C3).

During the repositioning of a set of similar alarms, when a repositioned alarm
can be created at multiple locations satisfying the three repositioning constraints,
we choose the location that is closer to its corresponding original alarms. Note
that, although NCD-based clustering is performed using approximated NCDs,
the repositioning obtained is still safe (Constraint C1).

When the approximate NCDs computation results in identifying ICDs of a
group of similar alarms as NCDs, the obtained repositioned alarm(s) may result
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in detection of a spurious error. Due to this, (1) educating the tool user about
the spurious error detection is required; and (2) we also report traceability links
between the repositioned and their corresponding original alarms. The trace-
ability links help user to inspect the corresponding original alarms when when a
repositioned alarm is found to be an error. We experimentally evaluate the spu-
rious error detection rate incurred due to computing the NCDs approximately.

Moreover, when the approximate ICDs/NCDs computation results identify-
ing NCDs of a group of similar alarms as ICDs, NCD-based repositioning fails
to reposition those alarms.

5 NCD-Based Repositioning Technique: Algorithm

This section presents a technique for NCD-based repositioning of alarms. The
technique computes ICDs of the alarms instead of NCDs: ICDs and NCDs of an
alarm are mutually exclusive. For efficiency the technique is designed to com-
pute ICDs of alarms while the alarms are repositioned: we do not compute the
ICDs separately before the repositioning is performed. We begin describing the
technique by defining live alarm conditions similarly to the live variables [16].

Definition 2 (Live Alarm-condition). An alarm condition c is said to be live
at a program point p, if a path from p to the program exit contains an alarm φ
reported at a program point q with c as its alarm condition, and the path segment
from p to q is definition free for any operand of c. �

For example, in Fig. 1b, condition ny �= 0 is live at exit(n34) due to the
alarms D42 or D48. However, the same condition is not live at entry(n33).

5.1 Live Alarm-Conditions Analysis

Analysis Overview. In this analysis, alarm conditions of a given set of origi-
nal alarms Φ are propagated in the backward direction by computing them as
live alarm-conditions (liveConds). We use data flow analysis [16,28] to compute
liveConds at every program point in the program. The aim of this analysis, that
we call liveConds analysis, is to compute repositioned alarms for Φ. To this end,
for every liveCond � that we compute at a program point p, we also compute
the following information.

1. The original alarm(s) due to which � is a liveCond at p. We refer to these
alarms as related original alarms (relOrigAlarms) of �.

2. The program point(s) that are later used to create repositioned alarms: a
(new) repositioned alarm with � as its alarm condition is created at each
of these program points. In other words, these program points denote the
locations where the relOrigAlarms of � are to be repositioned. Thus, we refer
to these program points as repositioning locations (reposLocations) of �. A
reposLocation of � is either the location of an original alarm due to which � is a
liveCond at p, or a program point computed during its backward propagation
(the meet operation discussed later).
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3. The transitive control dependencies of the reposLocations of � such that for
every dependency there exists a condition-wise equivalent dependency on all
the paths from p to every reposLocation. We refer to these dependencies as
relatedICDs of �, because their conditions denote at least one safety condition
of the alarms that will get created at the reposLocations of �.

To compute traceability links between the repositioned alarms and their cor-
responding original alarms (and vice versa), we compute the relOrigAlarms of
� reposLocation-wise: reposLocations of � are the program points where relOri-
gAlarms of � are to be repositioned. We refer to the alarms computed corre-
sponding to a reposLocation p as relOrigAlarms of p. The relOrigAlarms of �
can be obtained by collecting together the relOrigAlarms of reposLocations of �.

Notations. Let 〈N , E〉 be the control flow graph of the program: N is the set
of nodes and E is the set of edges. Let P be the set of all program points in the
program. Let Ec ⊂ E be the set of all conditional edges in the CFG, i.e., the set
of all transitive control dependencies of each p ∈ P. Let L be the set of all alarm
conditions of a given set of original alarms Φ. Thus, the liveConds computed by
the liveConds analysis at a program point are given by a subset of L.

For a liveCond � computed at a program point p, the reposLocations of
� and their corresponding relOrigAlarms3 are given by a subset of 2A where
A = P × 2Φ. Thus, the values computed for a liveCond �—its reposLocations
(with their corresponding relOrigAlarms) and its relatedICDs—are given by an
element of X, where X = 2A × 2Ec . We use a function f : L → X that maps
a liveCond � ∈ L to a pair of its reposLocations A ∈ 2A and relatedICDs
E ∈ 2Ec . We write the liveCond � with the mapped values as tuple 〈�, A,E〉.
Thus, at a program point p, the liveConds analysis computes a subset of Lb,
where Lb = {〈�, A,E〉 | � ∈ L, f(�) = 〈A,E〉}.

For a given set S ⊆ Lb and A ∈ 2A we define:

– condsIn(S) = {� | 〈�, A′, E′〉 ∈ S}, the set of all liveConds in S.
– points(A) = {p | 〈p, Φ′〉 ∈ A}, the set of all reposLocations in A.
– origAlarms(A) = ∪〈p,Φ′〉∈A Φ′, the set of all relOrigAlarms in A.

Lattice of liveConds Analysis. As liveConds analysis computes subsets of
Lb flow-sensitively at every program point p ∈ P, we denote the lattice of these
values by 〈B = 2Lb ,n�B〉. We use n�B to denote the meet of the values flowing
in at the exit of a branching node n. For simplicity of the equation, we have
assumed that the branching node n corresponding to a meet operation is known
when the meet is performed. This meet operation is shown using Eq. 1, and it is
idempotent, commutative, and associative. The meet operation for a liveCond �
is described below.

1. When � flows-in at the meet point through only one branch, its reposLocations
and relatedICDs remain unchanged (Eq. 2).

3 Note that the related original alarms (relOrigAlarms) of a liveCond � are computed
corresponding to its reposLocations (reposLocation-wise).
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2. Following are the updates when (i) � flows-in at the meet point through
both the branches, (ii) the reposLocations of � flowing in through both the
branches are different; and (iii) the relatedICDs of � flowing in through both
the branches does not have a condition-wise equivalent dependency (Eqs. 2
and 5). The reposLocations of � are updated to entry(n), and the relOri-
gAlarms of this reposLocation are obtained by combining together all the
relOrigAlarms of � flowing in through both the branches. Moreover, the relate-
dICDs of � are updated to ∅. These updates denote creation of a new reposLo-
cation entry(n): we use entry(n) instead of the meet point exit(n) assuming
that the branching nodes do not update values of a variable.

Given S, S′ ∈ B :

S
n�B S

′
=

⋃

�∈
(
condsIn(S) ∪ condsIn

(
S′))

{ meetInfo(�, n, S, S
′
) } (1)

meetInfo(�, n, S, S
′
) =

⎧
⎪⎨

⎪⎩

merge(�, n, A, E, A′, E′) 〈�, A, E〉 ∈ S, 〈�, A′, E′〉 ∈ S′

〈�, A, E〉 〈�, A, E〉 ∈ S, � /∈ condsIn(S′)
〈�, A′, E′〉 〈�, A′, E′〉 ∈ S′, � /∈ condsIn(S)

(2)

merge(�, n, A, E, A
′
, E

′
) = mergeInfo(�, n, A, A

′
, meetICDsInfo(E, E

′
)) (3)

meetICDsInfo(E, E
′
) =

{
e, e

′
∣∣∣∣

e ∈ E, e′ ∈ E′,
e and e′ are equivalent condition-wise

}
(4)

mergeInfo(�, n, A, A
′
, E) =

{
〈�, reposAlarm

(
n, A, A′) , ∅〉 points(A) �= points(A′), E = ∅

〈�, A ∪ A′, E〉 otherwise

(5)
reposAlarm(n, A, A

′
) =

{ 〈entry(n), origAlarms(A) ∪ origAlarms(A′
)〉} (6)

3. In the cases other than (1) and (2), the reposLocations of � flowing in from
both the branches are combined together without updating their respective
relOrigAlarms, and the relatedICDs are updated to the control dependencies
that are condition-wise equivalent (Eqs. 4 and 5).

Data Flow Equations. Figure 3 shows data flow equations of the liveConds
analysis that computes liveConds in intraprocedural setting. Outn and Inn

denote the values computed by the liveConds analysis, respectively, at the exit
and entry of a node n (Eqs. 7 and 9, respectively).

Equation 14 indicates that a liveCond � is generated for every original alarm
φ reported for a node n, with ∅ as the relatedICDs of �, and entry(n) as the only
reposLocation of �. When the same liveCond l also flows in at entry(n) from a
successor of n, (i) the relOrigAlarms of the liveCond flowing in are also added to
relOrigAlarms of the reposLocation entry(n) (Eq. 15); and (ii) propagation of the
values of l flowing in at entry(n) is stopped (Eq. 16). With this computation and
the meet operation (Eq. 1), we ensure that at any program point there exists
only one tuple for a liveCond and the values computed for it. Note that the
reposLocations of a liveCond are updated only when the liveCond is generated
(Eq. 14) or the meet operation is performed (Eq. 1).

Following are the updates to relatedICDs of a liveCond �. (i) When � gets
propagated through a transitive control dependency e of its reposLocation, e
is added to the relatedICDs of � (Eq. 8). (ii) For a relatedICD e of �, if an
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Fig. 3. Data flow equations of the liveConds analysis.

assignment node assigns values to a variable in cond(φ), then e is removed from
the relatedICDs of � (Eq. 12).

For example, in Fig. 1b, nx �= 0 and ny �= 0 are two liveConds computed by
the liveConds analysis at entry(n34), i.e. in In34. At this point, the reposLoca-
tions (with their relOrigAlarms) and relatedICDs of the first liveCond, nx �= 0,
respectively are {〈entry(n37), {D38,D45}〉} and ∅. Moreover, the reposLocations
(with their relOrigAlarms) and relatedICDs of the second liveCond, ny �= 0,
respectively are {〈entry(n41), {D42,D48}〉} and ∅.

5.2 NCD-Based Repositioning Using LiveConds Analysis Results

Creation of Repositioned Alarms. As discussed in Sect. 5.1, the liveConds
analysis results are used to create repositioned alarms for the original alarms
Φ: the repositioned alarms are the results of NCD-based repositioning of Φ.
For a liveCond � computed at a program point p, a repositioned alarm 〈�, q〉 is
created at each reposLocation q of � (that is, � is the condition of the alarm
repositioned at every reposLocation of �). Moreover, the relOrigAlarms of q are
identified as the original alarms corresponding to the repositioned alarm 〈�, q〉,
and thus use them to report the traceability links between the repositioned alarm
〈�, q〉 and its corresponding original alarms. As a special case, to avoid creating
duplicate repositioned alarms, we do not create the repositioned alarm 〈�, q〉 if
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Fig. 4. Examples to illustrate postprocessing of the repositioned alarms.

(1) a repositioned alarm 〈�′, q〉 that is similar to 〈�, q〉 is already created, or (2)
the node n corresponding to q has an original alarm φ and cond(φ) = �.

At every program point p, we collect the liveConds that are liveConds at
p but not at a program point just prior to p, and use each of them to create
repositioned alarms as described above. The liveConds to be collected are the
liveConds that are killed at every node n, given by Killn(Outn). This approach
to collect the liveConds removes redundancy in creating the repositioned alarms.
As a special case, we collect the liveConds that reach the procedure entry (given
by InStart), because a liveCond can reach this point (Start node) when all the
variables in the liveCond are local and uninitialized.

The above approach to collect the liveConds for creating the repositioned
alarms ensures the following: each liveCond � that got generated at p due to
an original alarm φp ∈ Φ gets collected and used to create a repositioned alarm
along every path starting at the program entry and ending at p. Thus, along every
path reaching p, there exists a repositioned alarm with � = cond(φ) as its alarm
condition. As a consequence of this, the repositioned alarms corresponding to the
original alarm φp together dominate φp. This indicates that the repositioning of Φ
thus obtained is safe, i.e., the repositioning satisfies the constraint C1 (Sect. 4.3).
Note that, the Eqs. 1, 8, and 12 together indicate that a repositioned alarm is
created only when the constraint C2 is satisfied (Sect. 4.3).

Clustering of the Repositioned Alarms. Let RΦ be the set of all reposi-
tioned alarms created using the liveConds analysis results (described above). As
a repositioned alarm can be a dominant alarm for another repositioned alarm,
we postprocess RΦ for their clustering using the state-of-the-art clustering tech-
niques [20,24,34]. As an example, consider the code in Fig. 4a that has three
AIOB alarms reported at lines 5, 9, and 12. The repositioned alarms computed
for these alarms are RΦ = {N7, A5}, where N7 = 〈0 ≤ i ≤ 9, entry(n8)〉 with
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A9 and A12 as its corresponding original alarms. Observe that N7 is a dominant
alarm of A5. Thus, to further reduce the number of alarms, we cluster these two
alarms. As a result, only one repositioned alarm N7 gets reported with all the
three original alarms as its corresponding original alarms.

Computation of Final Repositioned Alarms. Let R′
Φ be the set of repo-

sitioned alarms obtained after their clustering discussed in Sect. 5.2. As a lim-
itation of our technique, in rare cases, repositioning of a given set of original
alarms can result into more repositioned alarms than the original alarms. We
illustrate this using the two AIOB alarms shown in Fig. 4b. The repositioning
of these two alarms results in three repositioned alarms RΦ = {A26, A31, 〈0 ≤
i ≤ 9, entry(n23)〉}. This limitation case arises because variables in their con-
ditions have different data dependencies. Clustering these repositioned alarms
also results in the same set of the repositioned alarms, i.e., R′

Φ = RΦ. Thus, we
identify the cases where the repositioning of a group of similar alarms Φ′ ⊆ Φ
results in more repositioned alarms than Φ′; and then apply fallback in these
cases: we report Φ′ instead of reporting their corresponding repositioned alarms.
Thus, in this example, finally A26 and A31 get reported.

Note that the above limitation may occur only when the similar alarms being
repositioned have different data dependencies. Avoiding such similar alarms in
the input to NCD-based repositioning will miss to merge a few similar alarms,
e.g., the similar alarms N7 and A5 discussed above. Thus, as we intend to repo-
sition more similar alarms together, we accept all the tool-generated alarms
as input to NCD-based repositioning and resort to fallback in such limitation
cases. Additionally, we apply fallback when the repositioning of a group of sim-
ilar alarms results in equal number of the repositioned alarms. Applying the
fallback ensures that the repositioning obtained using the technique satisfies the
constraint C3 (Sect. 4.3). Thus, our technique never increases the number of
alarms reported to the user than the input original alarms.

Due to lack of space, we provide the overall algorithm of the repositioning
technique, theorems and their proofs in extended version of the paper, available
at http://www.win.tue.nl/∼aserebre/APLAS2019.pdf.

6 Empirical Evaluation

In this section we evaluate the NCD-based repositioning technique (Sect. 5) in
terms of the reduction in the number of alarms.

Implementation. We implemented the NCD-based repositioning technique
using analysis framework of our commercial static analysis tool, TCS ECA [32].
The analysis framework supports analysis of C and COBOL programs. The
framework allows to implement data flow analyses using function summaries.
We implemented the liveConds analysis to compute liveConds inter-functionally
and by considering transitivity. In the inter-functional implementation, the data
flow analysis is solved in bottom-up order only: liveConds are propagated from a
called-function to its callers but not from a caller-function to the called functions.

http://www.win.tue.nl/~aserebre/APLAS2019.pdf
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Table 1. Experimental results for NCD-based clustering.

(a) Open source applications

Application
Size
(KL
OC)

Input
Alarms

%
Redu-
ction

Time
(mins)

%
Over-
head

archimedes-0.7.0 0.8 2275 10.55 1.9 24.5
polymorph-0.4.0 1.3 25 12.00 0.6 27.5
acpid-1.0.8 1.7 25 8.00 0.4 23.5
spell-1.0 2.0 71 5.63 0.8 18.4
nlkain-1.3 2.5 319 1.57 0.5 15.7
stripcc-0.2.0 2.5 229 8.30 1.0 16.8
ncompress-4.2.4 3.8 92 3.26 0.5 23.6
barcode-0.96 4.2 1064 9.02 2.4 17.7
barcode-0.98 4.9 1310 9.08 2.8 15.7
combine-0.3.3 10.0 819 23.57 4.3 55.3
gnuchess-5.05 10.6 1783 15.09 8.6 95.4
antiword-0.37 27.1 613 9.95 26.7 72.2
sudo-1.8.6 32.1 7433 8.69 133.2 22.5
uucp-1.07 73.7 2068 6.58 21.6 7.5
ffmpeg-0.4.8 83.7 45137 10.41 239.0 11.6
sphinxbase-0.3 121.9 1516 5.67 6.5 17.3

(b) Industry apps. (C & COBOL)

Appli-
cation

Size
(KL
OC)

Input
Alarms

%
Redu-
ction

Time
(mins)

%
Over-
head

C App 1 3.4 383 12.79 1.8 13.3
C App 2 14.6 422 2.37 4.5 15.8
C App 3 18.0 441 22.00 4.0 12.4
C App 4 18.1 1055 20.47 5.6 23.7
C App 5 18.3 535 23.55 4.7 12.5
C App 6 30.5 1001 29.77 5.1 23.4
C App 7 30.9 1379 17.19 42.3 2.8
C App 8 34.6 23404 4.28 186.9 17.8
C App 9 111.0 2241 12.72 7.0 22.2
C App 10 127.8 987 12.97 1.8 21.7
C App 11 187.2 4494 18.09 36.2 36.7
COBOL 1 11.4 341 5.57 1.1 78.3
COBOL 2 11.9 601 28.62 7.1 20.9
COBOL 3 16.7 499 0.40 6.4 179.4
COBOL 4 26.8 1158 32.21 25.7 63.0
COBOL 5 37.8 1826 36.09 3.7 80.0

Selection of Applications and Alarms. To evaluate the applicability and
performance of the NCD-based repositioning technique in different contexts, we
select in total 32 applications that belonged to the following three categories.
(i) 16 open source applications written in C and previously used as benchmarks
for evaluating the alarms clustering and repositioning techniques [21,27,34]; (ii)
11 industry C applications from the automotive domain; and (iii) 5 industry
COBOL applications from the banking domain.

We analyzed the applications using TCS ECA for five commonly checked cat-
egories of run-time errors (safety properties): array index out of bounds (AIOB),
division by zero (DZ), integer overflow underflow (OFUF), uninitialized vari-
ables (UIV), and illegal dereference of a pointer (IDP). The IDP property is
not applicable for COBOL applications as COBOL programs do not have point-
ers. The tool-generated alarms are postprocessed using the alarms clustering
techniques [21,24] and then the resulting dominant alarms are postprocessed
using the state-of-the-art repositioning [27]. The resulting repositioned alarms
are provided as input to NCD-based repositioning. All the applications in the
three sets were analyzed and the alarms were postprocessed using a machine
with i7 2.5 GHz processor and 16 GB RAM.

Results. Table 1 presents the evaluation results as per the categories of the
applications (open source and industry). The column Input Alarms presents the
number of alarms that were given as input to the NCD-based repositioning tech-
nique, while the column % Reduction presents the percentage reduction achieved
in the number of alarms by the technique. The evaluation results indicate that,
compared to state-of-the-art repositioning, the NCD-based repositioning tech-
nique reduces the number of alarms on the three sets of applications—open
source, C industry, and COBOL industry—by up to 23.57%, 29.77%, and 36.09%
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respectively. The median reductions are 9.02%, 17.18%, and 28.61%, respectively.
Moreover, the average reductions respectively are 10.16%, 8.97%, and 27.68%.

The column Time in Table 1 presents the time taken to (i) analyze the
applications for those five properties, (ii) postprocess the TCS ECA-generated
alarms using the clustering and the state-of-the-art repositioning techniques.
The columns % Overhead presents the performance overhead incurred due to
the extra time taken by the NCD-based repositioning technique. We believe the
performance overhead added is acceptable because the alarms reduction can be
expected to reduce the users’ manual effort which is much more expensive than
machine time. Moreover, the reduced alarms may result in performance gain
when the alarms are postprocessed for false positives elimination using time-
expensive techniques like model checking.

Other Observations: (1) We measured the reduction in the number of alarms
generated for each of the properties selected. The median reductions computed
property-wise on all the applications, are 25.8% (AIOB), 45.72% (DZ), 6.89%
(OFUF), 18.17% (UIV), and 10.3% (IDP). (2) The fallback got applied (Sect. 5.2)
in 2592 instances during the NCD-based repositioning of the total 105,546
alarms. (3) Around 43% of the dominant alarms resulting after the NCD-based
repositioning on the open source applications are found to be similar alarms,
and 64% of these similar alarms appear in the repositioning limitation scenar-
ios. Our manual analysis of 200 alarms appearing in these limitation scenarios
showed they are not merged together due to (i) presence of common safety con-
ditions (ICDs), (ii) limitations in our implementation to compute the liveConds
inter-functionally, or (iii) the fallback got applied.

Evaluation of Spurious Error Detection by the Repositioned Alarms.
As discussed in Sect. 4.3, a repositioned alarm obtained through repositioning
based on the approximated NCDs can be a spurious error. A repositioned alarm
is a spurious error when a NCD computed with our approach is actually an
ICD. To measure the spurious error detection rate, we manually analyzed 150
repositioned alarms that were created due to merging of two or more similar
alarms: each repositioned alarm has two or more original alarms corresponding
to it. The analyzed alarms are randomly selected from the repositioned alarms
generated on the first nine open source applications (Table 1a) and two industry
applications (C applications 4 and 7 in Table 1b). These selected 150 repositioned
alarms have in total 482 original alarms corresponding to them. In our manual
analysis, we checked each of the selected alarms whether it is a spurious error.
We found three repositioned alarms to be spurious errors, and thus, the spurious
error detection rate to be 2%. This indicates that our approach to compute the
NCDs/ICDs of similar alarms is effective, and for the analyzed cases, the NCD-
based repositioning technique reduced the number of alarms by 70% but at the
cost of detecting a few spurious errors (2%).
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7 Related Work

Heckman and Williams [14], and Muske and Serebrenik [26] have recently sur-
veyed literature on postprocessing static analysis alarms. Among the techniques
surveyed, our approach to reposition alarms belongs to the category of clustering
of alarms together with the work of Lee et al. [20], Muske et al. [24,27] and Zhang
et al. [34]. However, those techniques are unable to group some of the similar
alarms which could be grouped/merged together (discussed in Sect. 1). Among
those techniques, as the state-of-the-art repositioning technique [27] overcomes
the limitations of the other alarms-clustering techniques [20,24,34], we compared
and evaluated our NCD-based repositioning against it.

On the similar lines to alarms repositioning, Cousot et al. [8] have proposed
hoisting necessary preconditions for providing the preconditions required by the
Design by Contract [23]. Furthermore, Muske et al. [25] have proposed grouping
the related/similar alarms based on similarity of modification points. In their
approach [24], as the grouped alarms are inspected using values at the modifica-
tion points of alarm variables, the inspection often finds spurious errors when the
alarms are actually false positives solely due to their transitive control dependen-
cies (ICDs). However, none of these techniques [8,24,25] identifies the conditional
statements (control dependencies) that are non-impacting to the similar alarms.

Kumar et al. [18] identify the conditional statements that are value-impacting
to the alarms. However, the notion of value-impacting conditional statements
(resp. non value impacting conditional statements) is different from the ICDs
(resp. NCDs) of the alarms. That is, a transitive control dependency identified
as non value-impacting to an alarm can actually be an ICD of the alarm, and a
control dependency identified as value-impacting can be an NCD. For example,
in Fig. 2, the control dependency n7 → n8 of A8 is ICD, whereas the technique by
Kumar et al. identifies the same dependency is non-value impacting. To the best
of our knowledge, no other static analysis technique or alarms postprocessing
technique has formally proposed the notion of NCDs/ICDs of alarms or used
them in alarms postprocessing.

As the NCD-based clustering of alarms is orthogonal to other alarms post-
processing techniques, it can be applied in conjunction with those. We believe
that the combinations will provide more benefits as compared to the benefits
obtained by applying them individually.

8 Conclusion

We have proposed the notion of NCDs of alarms, and NCD-based repositioning
to reduce the number of alarms. Our approach to compute approximated NCDs
of similar alarms is observation-based, and the computation is based on whether
conditions in the enclosing conditional statements of a group of similar alarms
are equivalent. This approximated approach is required, because the existing
alarms clustering and repositioning techniques, being conservative, still report
high percentage of similar alarms. The reported large number of alarms increases
the cost to postprocess them manually or automatically.
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We performed an evaluation of NCD-based repositioning using a large set of
alarms on three kinds of applications, 16 open source C applications, 11 indus-
try C applications, and 5 industry COBOL applications. The evaluation results
indicate that, compared to the state-of-the-art repositioning technique, NCD-
based repositioning reduces the number of alarms respectively by up to 23.57%,
29.77%, and 36.09%. The median reductions are 9.02%, 17.18%, and 28.61%,
respectively. Our manual analysis showed that our approach to approximately
compute NCDs of similar alarms is effective: the approximation helped to reduce
the alarms in the analyzed cases by 70%, however it resulted in 2% of the repo-
sitioned alarms detecting a spurious error.

We believe that NCD-based repositioning, being orthogonal to many of the
existing approaches to postprocess alarms, can be applied in conjunction with
those approaches. We plan to (i) explore a few more techniques to compute
NCDs for alarms (similar as well as non-similar alarms); and (ii) use the NCDs
to improve the other alarms-postprocessing techniques like automated false pos-
itives elimination and version-aware static analysis.
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Abstract. Higher-order modal fixpoint logic (HFL) is a higher-order
extension of the modal μ-calculus, and strictly more expressive than the
modal μ-calculus. It has recently been shown that various program veri-
fication problems can naturally be reduced to HFL model checking: the
problem of whether a given finite state system satisfies a given HFL
formula. In this paper, we propose a novel algorithm for HFL model
checking: it is the first practical algorithm in that it runs fast for typical
inputs, despite the hyper-exponential worst-case complexity of the HFL
model checking problem. Our algorithm is based on Kobayashi et al.’s
type-based characterization of HFL model checking, and was inspired by
a saturation-based algorithm for HORS model checking, another higher-
order extension of model checking. We prove the correctness of the algo-
rithm and report on an implementation and experimental results.

1 Introduction

Higher-order modal fixpoint logic (HFL) has been proposed by Viswanathan
and Viswanathan [20]. It is a higher-order extension of the modal μ-calculus and
strictly more expressive than the modal μ-calculus; HFL can express non-regular
properties of transition systems. There have recently been growing interests in
HFL model checking, the problem of deciding whether a given finite state system
satisfies a given HFL formula. In fact, Kobayashi et al. [11,21] have shown that
various verification problems for higher-order functional programs can naturally
be reduced to HFL model checking problems.

Unfortunately, however, the worst-case complexity of HFL model checking is
k-EXPTIME complete (where k is a parameter called the order of HFL formu-
las; order-0 HFL corresponds to the modal μ-calculus) [2], and there has been
no efficient HFL model checker. Kobayashi et al. [10] have shown that there are
mutual translations between HFL model checking and HORS model checking
(model checking of the trees generated by higher-order recursion schemes [16]).
Since there are practical HORS model checkers available [4,8,9,17,19], one may
expect to obtain an efficient HFL model checker by combining the translation
from HFL to HORS model checking and a HORS model checker. That approach
does not work, however, because the translation of Kobayashi et al. [10] from
HFL to HORS model checking involves a complex encoding of natural numbers
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as higher-order functions, which is impractical. Considering that the other trans-
lation from HORS to HFL model checking is simpler and more natural, we think
that HFL model checking is a more primitive problem than HORS model check-
ing. Also in view of applications to verification of concurrent programs [12,20]
(in addition to the above-mentioned applications to higher-order program veri-
fication), a direct tool support for HFL model checking is important.

In the present paper, we propose a novel HFL model checking algorithm that
is practical in the sense that it does not always suffer from the bottleneck of the
worst-case complexity, and runs reasonably fast for typical inputs, as confirmed
by experiments. To our knowledge, it is the first such algorithm for HFL model
checking.

Our algorithm is based on Kobayashi et al.’s type-based characterization [10],
which reduces HFL model checking to a typability game (which is an instance
of parity games), and was inspired by the saturation-based algorithm for HORS
model checking [19]. The detail of the algorithm is, however, different, and its
correctness is quite non-trivial. Actually, the correctness proof for our algorithm
is simpler and more streamlined than that for their algorithm [19].

We have implemented a prototype HFL model checker based on the proposed
algorithm. We confirmed through experiments that the model checker works well
for a number of realistic inputs obtained from program verification problems,
despite the extremely high worst-case complexity of HFL model checking.

The rest of this paper is structured as follows. Section 2 recalls the definition
of HFL model checking, and reviews its type-based characterization. Section 3
formalizes our type-based HFL model checking algorithm, and Sect. 4 gives an
outline of its correctness proof. Section 5 is devoted to reporting on implementa-
tion and experimental results. Section 6 discusses related work, and Sect. 7 con-
cludes the paper. Omitted details are found in a longer version of the paper [6].

2 Preliminaries

In this section, we review the notion of HFL model checking [20] and its type-
based characterization. The latter forms the basis of our HFL model checking
algorithm.

2.1 HFL Model Checking

We first review HFL model checking in this section.
A (finite) labeled transition system (LTS) L is a quadruple (Q,A,−→, q0),

where Q is a finite set of states, A is a finite set of actions, −→ ⊆ Q × A × Q
is a transition relation, and q0 ∈ Q is a designated initial state. We use the
metavariable a for actions. We write q

a−→ q′ when (q, a, q′) ∈ −→.
The higher-order modal fixpoint logic (HFL) [20] is a higher-order extension

of the modal μ-calculus. The sets of (simple) types and formulas are defined by
the following BNF.1

1 Following [10], we exclude out negations, without losing the expressive power [14].



138 Y. Hosoi et al.

ϕ (formulas) ::= true | false | X | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| 〈a〉ϕ | [a]ϕ | μXη.ϕ | νXη.ϕ

| λXη.ϕ | ϕ1 ϕ2

η (simple types) ::= o | η1 → η2

The syntax of formulas on the first two lines is identical to that of the modal
μ-calculus formulas, except that the variable X can range over higher-order pred-
icates, rather than just propositions. Intuitively, μXη.ϕ (νXη.ϕ, resp.) denotes
the least (greatest, resp.) predicate of type η such that X = ϕ. Higher-order
predicates can be manipulated by using λ-abstractions and applications. The
type o denotes the type of propositions. A type environment H for simple types
is a map from a finite set of variables to the set of simple types. We often treat H
as a set of type bindings of the form X : η, and write X : η ∈ H when H(X) = η.
A type judgment relation H 	 ϕ : η is derived by the typing rules in Fig. 1.

Fig. 1. Typing rules for simple types

Note that, for each pair of a type environment H and an HFL formula ϕ,
there is at most one simple type η such that the type judgment relation H 	 ϕ :η
is derivable. We say an HFL formula ϕ has type η under a type environment H
if the type judgment relation H 	 ϕ : η is derivable.

For each simple type η, we define order(η) inductively by: order(o) = 0,
order(η1 → η2) = max(order(η1) + 1, order(η2)). The order of an HFL formula
ϕ is the highest order of the types of the variables bound by μ or ν in ϕ. An
order-0 HFL formula of type o can be viewed as a modal μ-calculus formula, and
vice versa. We write FV (ϕ) for the set of free variables occurring in a formula ϕ.
An HFL formula ϕ is said to be closed if FV (ϕ) = ∅, and a closed formula is said
to be well-typed if it has some simple type under the empty type environment.

The Semantics. Let L = (Q,A,−→, q0) be an LTS. The semantics of a well-typed
HFL formula of type η with respect to L is given as an element of a complete
lattice (DL,η,�L,η) defined by induction on the structure of η. For the base case,
(DL,o,�L,o) is defined by DL,o = 2Q and �L,o=⊆, that is, (DL,o,�L,o) is the
powerset lattice of the state set Q. For the step case, DL,η1→η2 is defined as the
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set of monotonic functions from DL,η1 to DL,η2 , and �L,η1→η2 is defined as the
pointwise ordering over it.

For each type environment H, we define [[H]]L as the set of functions ρ such
that, for each X ∈ dom(H), the image ρ(X) is in the semantic domain of its type
H(X), that is, [[H]]L = {ρ :dom(H) →

⋃
η DL,η | ∀X : η ∈ H. ρ(X) ∈ DL,η}. The

interpretation of a type judgment relation H 	 ϕ : η is a function [[H 	 ϕ : η]]L :
[[H]]L → DL,η defined by induction on the derivation of H 	 ϕ : η by:

[[H 	 true : o]]L(ρ) = Q

[[H 	 false : o]]L(ρ) = ∅
[[H 	 X : η]]L(ρ) = ρ(X)
[[H 	 ϕ1 ∨ ϕ2 : o]]L(ρ) = [[H 	 ϕ1 : o]]L(ρ) ∪ [[H 	 ϕ2 : o]]L(ρ)
[[H 	 ϕ1 ∧ ϕ2 : o]]L(ρ) = [[H 	 ϕ1 : o]]L(ρ) ∩ [[H 	 ϕ2 : o]]L(ρ)

[[H 	 〈a〉ϕ : o]]L(ρ) = {q ∈ Q | ∃q′ ∈ [[H 	 ϕ : o]]L(ρ). q a−→ q′}
[[H 	 [a]ϕ : o]]L(ρ) = {q ∈ Q | ∀q′ ∈ Q. q

a−→ q′ ⇒ q′ ∈ [[H 	 ϕ : o]]L(ρ)}
[[H 	 μXη.ϕ : η]]L(ρ) = ⊔L,η{d ∈ DL,η | [[H 	 λXη.ϕ : η → η]]L(ρ)(d) �L,η d}
[[H 	 νXη.ϕ : η]]L(ρ) =

⊔
L,η{d ∈ DL,η | d �L,η [[H 	 λXη.ϕ : η → η]]L(ρ)(d)}

[[H 	 λXη1 .ϕ : η1 → η2]]L(ρ) = λd ∈ DL,η1 .[[H ∪ {X : η1} 	 ϕ : η2]]L(ρ[X �→ d])
[[H 	 ϕ1 ϕ2 : η]]L(ρ) = [[H 	 ϕ1 : η2 → η]]L(ρ)([[H 	 ϕ2 : η2]]L(ρ)).

Here, ρ[X �→ d] denotes the function f such that f(X) = d and f(Y ) = ρ(Y )
for Y �= X, and the unary operator

⊔
L,η ( ⊔L,η, resp.) denotes the least upper

bound (the greatest lower bound, resp.) with respect to �L,η.
Finally, for each closed HFL formula ϕ of type η, we define the interpretation

[[ϕ]]L by [[ϕ]]L = [[∅ 	 ϕ : η]]L(ρ∅), where ρ∅ is the empty map. We say that a closed
propositional HFL formula ϕ is satisfied by the state q when q ∈ [[ϕ]]L.

Example 1. Let ϕ1 be μF o→o.λXo.X ∨〈a〉(F (〈b〉X)). The formula ϕ1 (〈c〉true)
can be expanded to:

(λX.X ∨ 〈a〉(ϕ1 (〈b〉X))) (〈c〉true)
≡ 〈c〉true ∨ 〈a〉(ϕ1 (〈b〉〈c〉true))
≡ 〈c〉true ∨ 〈a〉((λX.X ∨ 〈a〉(ϕ1 (〈b〉X))) (〈b〉〈c〉true))
≡ 〈c〉true ∨ 〈a〉(〈b〉〈c〉true ∨ 〈a〉(ϕ1 (〈b〉〈b〉〈c〉true)))
≡ 〈c〉true ∨ 〈a〉〈b〉〈c〉true ∨ 〈a〉〈a〉〈b〉〈b〉〈c〉true ∨ · · · .

Thus, the formula ϕ1 (〈c〉true) describes the property that there exists a tran-
sition sequence of the form anbnc for some n ≥ 0. As shown by this example,
HFL is strictly more expressive than the modal μ-calculus. ��

We write L |= ϕ when the initial state of L satisfies the property described
by ϕ. The goal of HFL model checking is to decide, given L and ϕ as input,
whether L |= ϕ holds.

Example 2. To see how HFL model checking can be applied to program verifi-
cation, let us consider the following OCaml-like program, which is a variation of
the program considered in [11].
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let rec f x k = if * then (close x; k())
else (read x; read x; f x k) in

let d = open_in "foo" in f d (fun _ -> ())

Here, the asterisk * in the if-condition is a non-deterministic Boolean value. The
program first opens the file foo, and then calls the function f with the opened
file as an argument. The function f recursively reads the given file even times
and closes it upon a non-deterministic condition.

Suppose we wish to check that the file foo is safely accessed as a read-only
file. In the reduction methods by Kobayashi et al. [11], a program is transformed
to an HFL formula that intuitively says “the behavior of the program conforms
to the specification described as an LTS.” In this case, the verification problem
is reduced to the HFL model checking problem of deciding whether L2 |= ϕ2

holds, where ϕ2 = (νF .λk.〈close〉k ∧ 〈read〉〈read〉(F k)) (〈end〉true) and L2 is
the following LTS, which models the access protocol for read-only files.

q0 q1 q2

read

close end

The formula ϕ2 can be expanded to
∧∞

n=0〈read〉2n〈close〉〈end〉true, and check-
ing whether L2 |= ϕ2 holds is equivalent to checking whether (every prefix of)
any sequence of the form read2n · close · end belongs to the prefix-closure of
read∗ · close · end, which is actually true. See [11] for systematic translations
from program verification to HFL model checking. ��

2.2 Type-Based Characterization of HFL Model Checking

We now review the type-based characterization of the HFL model checking prob-
lem [10], which is going to be used as the basis of our algorithm given in Sect. 3.

To provide the type-based characterization, an HFL formula is represented in
the form of a sequence of fixpoint equations (F1 : η1 =α1 ϕ1; · · ·; Fn : ηn =αn

ϕn),
called a hierarchical equation system (HES). Here, for each j ∈ {1, . . . , n}, Fj is
a distinct variable, αj is either μ or ν, and ϕj is a fixpoint-free HFL formula that
has type ηj under the type environment {F1 : η1, . . . , Fn : ηn}. We also require
that if ηj = ηj,1 → · · · → ηj,� → o, then ϕj is of the form λX

ηj,1
1 . · · · λX

ηj,�

� .ψj ,
where ψj is a propositional formula that does not contain λ-abstractions. For
each HES E , we define a closed HFL formula toHFL(E) inductively by:

toHFL(F : η =α ϕ) = αF η.ϕ
toHFL(E ; F : η =α ϕ) = toHFL([αF η.ϕ/F ] E),

where [ϕ/X] E denotes the HES obtained by replacing all free occurrences of the
variable X in E with the formula ϕ. Any HFL formula can be transformed to an
HES, and vice versa. For example, νX.μY.(〈a〉X ∨ 〈b〉Y ) can be expressed as an
HES: X =ν Y ;Y =μ 〈a〉X ∨ 〈b〉Y . We write L |= E when L |= toHFL(E) holds.
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Given an LTS L = (Q,A,−→, q0), the set of (refinement) types for HFL
formulas, ranged over by τ , is defined by:

τ ::= q | σ → τ σ ::= {τ1, . . . , τk},

where q ranges over Q. Intuitively, q denotes the type of formulas that hold at
state q. The type {τ1, . . . , τk} → τ describes functions that take a value that
has type τi for every i ∈ {1, . . . , k} as input, and return a value of type τ (thus,
{τ1, . . . , τk} is an intersection type). We often write � for ∅, and τ1 ∧ · · · ∧ τk for
{τ1, . . . , τk}. Henceforth, we just call τ and σ types, and call those ranged over
by η simple types or kinds.

The refinement relations τ :: η and σ :: η, read “τ and σ are refinements of
η”, are inductively defined by:

q ∈ Q
q :: o

∀τ ∈ σ. τ :: η
σ :: η

σ :: η1 τ :: η2
σ → τ :: η1 → η2

Henceforth, we consider only those that are refinements of simple types, exclud-
ing out ill-formed types like {q, q → q} → q.

A type environment Γ is a finite set of type bindings of the form X : τ , where
X is a variable and τ is a type. Note that Γ may contain more than one type
binding for the same variable. We write dom(Γ ) for the set {X | ∃τ. X : τ ∈ Γ}
and Γ (X) for the set { τ | X : τ ∈ Γ}. We also write {X : σ} for the set
{X : τ1, . . . , X : τk} when σ = {τ1, . . . , τk}. The type judgment relation Γ 	L ϕ : τ
for fixpoint-free formulas is defined by the typing rules in Fig. 2.

The typability of an HES E is defined through the typability game TG(L, E),
which is an instance of parity games [5].

Definition 1 (Typability Game). Let L = (Q,A,−→, q0) be an LTS and
E = (F1 : η1 =α1 ϕ1; · · ·; Fn : ηn =αn

ϕn) be an HES with η1 = o. The typability
game TG(L, E) is a quintuple (V0, V1, v0, E0 ∪ E1, Ω), where:

– V0 = {Fj : τ | j ∈ {1, . . . , n}, τ :: ηj} is the set of all type bindings.
– V1 = {Γ | Γ ⊆ V0} is the set of all type environments.
– v0 = F1 : q0 ∈ V0 is the initial position.
– E0 = {(Fj : τ, Γ ) ∈ V0 × V1 | Γ 	L ϕj : τ}.
– E1 = {(Γ, Fj : τ) ∈ V1 × V0 | Fj : τ ∈ Γ}.
– Ω(Fj :τ) = Ωj for each Fj :τ ∈ V0, where Ωj is inductively defined by: Ωn = 0

if αn = ν, Ωn = 1 if αn = μ; and for i < n, Ωi = Ωi+1 if αi = αi+1, and
Ωi = Ωi+1 + 1 if αi �= αi+1. In other words, Ωi (1 ≤ i < n) is the least even
(odd, resp.) number no less than Ωi+1 if αi is ν (μ, resp.).

– Ω(Γ ) = 0 for all Γ ∈ V1.

A typability game is a two-player game played by player 0 and player 1. The set
of positions Vx belongs to player x. A play of a typability game is a sequence
of positions v1v2 . . . such that (vi, vi+1) ∈ E0 ∪ E1 holds for each adjacent pair
vivi+1. A maximal finite play v1v2 . . . vk is won by player x iff vk ∈ V1−x, and an
infinite play v1v2 . . . is won by player x iff lim supi→∞ Ω(vi) = x (mod 2). We
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Fig. 2. Typing rules (where L = (Q, A, −→, q0))

say a typability game is winning if the initial position v0 is a winning position for
player 0, and call a winning strategy for her from v0 simply a winning strategy
of the game (such a strategy can be given as a partial function from V0 to V1).

Intuitively, in the position Fj : τ , player 0 is asked to show why Fj has type
τ , by providing a type environment Γ under which the body ϕj of Fj has type
τ . Player 1 then challenges player 0’s assumption Γ , by picking a type binding
F ′ : τ ′ ∈ Γ and asking why F ′ has type τ ′. A play may continue indefinitely, in
which case player 0 wins if the largest priority visited infinitely often is even.

The following characterization is the basis of our algorithm.

Theorem 1 ([10]). Let L be an LTS and E = (F1 :η1 =α1 ϕ1; · · ·; Fn :ηn =αn
ϕn)

be an HES with η1 = o. Then, L |= E if and only if the typability game TG(L, E)
is winning.

Example 3. Let Eex be the following HES:

S =ν 〈a〉(F (〈b〉S)); F =μ λXo.X ∨ 〈c〉S ∨ 〈a〉(F (〈b〉X)).

It expresses the property that there is an infinite sequence that can be partitioned
into chunks of the form akbk or akc (where k ≥ 1), like a3b3a2ca2b2a3c · · ·.

Let Lex be an LTS shown on the left side of Fig. 3. It satisfies the HES Eex

as the sequence abacabac · · · is enabled at the initial state q0. The corresponding
typability game TG(Lex, Eex) is defined as shown (partially) on the right side of
Fig. 3, and a winning strategy (depicted by two-headed arrows) is witnessed by
the type judgments {S : q2, F : q1 → q1} 	Lex

ϕS : q0, {F : � → q0} 	Lex
ϕS : q2,
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∅ 	Lex
ϕF : q1 → q1, and {S : q0} 	Lex

ϕF : � → q0, where ϕS and ϕF denote the
right-hand side formulas of the variables S and F , respectively. ��

Fig. 3. LTS Lex (on the left side) and a part of the corresponding typability game
TG(Lex, Eex) (on the right side)

3 A Practical Algorithm for HFL Model Checking

We present our algorithm for HFL model checking in this section.
Theorem 1 immediately yields a naive model checking algorithm, which first

constructs the typability game TG(L, E) (note that TG(L, E) is finite), and
solves it by using an algorithm for parity game solving. Unfortunately, the algo-
rithm does not work in practice, since the size of TG(L, E) is too large; it is
k-fold exponential in the size of L and E , for order-k HES.

The basic idea of our algorithm is to construct a subgame TG′(L, E) of
TG(L, E), so that TG′(L, E) is winning if and only if the original game TG(L, E)
is winning, and that TG′(L, E) is often significantly smaller than TG(L, E). The
main question is of course how to construct such a subgame. Our approach is to
consider a series of recursion-free2 approximations E(0), E(1), E(2), . . . of E , which
are obtained by unfolding fixpoint variables in E a certain number of times, and
are free from fixpoint operators. The key observations are: (i) for sufficiently
large m (that may depend on L and E), L |= E(m) if and only if L |= E , (ii)
for such m, a winning strategy for TG(L, E) can be constructed by using only
the types used in a winning strategy for TG(L, E(m)), and (iii) (a superset
of) the types needed in a winning strategy for TG(L, E(m)) can be computed
effectively (and with reasonable efficiency for typical inputs), based on a method
similar to saturation-based algorithms for HORS model checking [4,19]. (These
observations are not trivial; they will be justified when we discuss the correctness
of the algorithm in Sect. 4.)

2 We say an HES is recursion-free if there is no cyclic dependency on fixpoint variables,
so that fixpoint variables can be completely eliminated by unfolding them; we omit
the formal definition.
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In the rest of this section, we first explain more details about the intuitions
behind our algorithm in Sect. 3.1.3 We also introduce some definitions such as
E(m) during the course of explanation. These concepts are not directly used in
the actual algorithm, but would help readers understand intuitions behind the
algorithm. We then describe the algorithm in Sect. 3.2.

3.1 The Idea of the Algorithm

We first define a non-recursive HES as an approximation of E . By the Kleene
fixpoint theorem, we can approximate E by unfolding fixpoint variables finitely
often, and the approximation becomes exact when the depth of unfolding is
sufficiently large. Such an approximation can be naturally represented by a non-
recursive HES E(m) defined as follows.

Definition 2 (Non-Recursive HES E(m)). Let E = (F1 : η1 =α1 ϕ1; · · ·; Fn :
ηn =αn

ϕn) be an HES and m be a positive integer. We define E(m) = (F (m)
1 :

η1 =α1 ϕ
(m)
1 ; · · · ) as a non-recursive HES consisting of equations of the form

F β
j : ηj =αj

ϕβ
j .4 Here, β = (β1, . . . , βj) is a tuple of integers satisfying 0 ≤ βk ≤

m for each k ∈ {1, . . . , j}, and ϕβ
j is an HFL formula defined by:

ϕβ
j =

{
λX

ηj,1
1 . · · · λX

ηj,�

� . α̂j (if βj = 0)
[F β(1)

1 /F1, . . . , F
β(n)
n /Fn] ϕj (if βj �= 0).

Here, ηj = ηj,1 → · · · → ηj,� → o, ν̂ = true, μ̂ = false, and β(k) is defined by:

β(k) =

⎧
⎨

⎩

(β1, . . . , βk) (if k < j)
(β1, . . . , βj − 1, m, . . . , m

︸ ︷︷ ︸
(k−j)times

) (if j ≤ k).

We call the superscript β an index. Intuitively, an index β indicates how many
unfoldings are left to be done to obtain the formula represented by E(m).

Example 4. Recall the HES Eex in Example 3:

S =ν 〈a〉(F (〈b〉S)); F =μ λXo.X ∨ 〈c〉S ∨ 〈a〉(F (〈b〉X)).

Then, a finite approximation E(1)
ex is:

S(1) =ν 〈a〉(F (0,1) (〈b〉S(0))); S(0) =ν true;
F (0,1) =μ λXo.X ∨ 〈c〉S(0) ∨ 〈a〉(F (0,0) (〈b〉X)); F (0,0) =μ λXo.false;
F (1,1) =μ λXo.X ∨ 〈c〉S(1) ∨ 〈a〉(F (1,0) (〈b〉X)); F (1,0) =μ λXo.false.

��
3 Those intuitions may not be clear for non-expert readers. In such a case, readers

may safely skip the subsection (except the definitions) and proceed to Sect. 3.2.
4 Since E(m) does not contain recursion, the order of equations (other than the first

one) does not matter.
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For E(m), its validity can be checked by “unfolding” all the fixpoint variables. The
operation of unfolding is formally expressed by the following rewriting relation.

Definition 3 (Rewriting Relation on HFL formulas). Let E = (F1 :η1 =α1

ϕ1; · · ·; Fn : ηn =αn
ϕn) be an HES. The rewriting relation −→E is defined by the

rule:

C[Fj χ1 · · · χ�] −→E C[[χ1/X1, . . . , χ�/X�]ψj ] if ϕj = λX1. · · · λX�.ψj .

Here, C ranges over the set of contexts defined by:

C ::= [ ] | C ∨ χ | χ ∨ C | C ∧ χ | χ ∧ C | 〈a〉C | [a]C,

and C[χ] denotes the formula obtained from C by replacing [ ] with χ. We write
−→∗

E for the reflexive transitive closure of the relation −→E .

Note that the relation −→E preserves simple types and the semantics of
formulas. By the strong normalization property of the simply-typed λ-calculus, if
the HES E does not contain recursion, it is strongly-normalizing. Thus, for E(m),
the initial variable F

(m)
1 (which is assumed to have type o) can be rewritten to

a formula χ without any fixpoint variables, such that an LTS L satisfies χ if
and only if L satisfies E(m) (and for sufficiently large m, if and only if L satisfies
E). Furthermore, if the initial state q0 of L satisfies χ, then from the reduction
sequence:

F
(m)
1 = χ0 −→E(m) χ1 −→E(m) · · · −→E(m) χm′ = χ,

one can compute a series of type environments Γm′ = ∅, Γm′−1, . . . , Γ1, Γ0 =
{F

(m)
1 : q0} such that Γi 	L χi : q0 in a backward manner, by using the stan-

dard subject expansion property of intersection type systems (i.e., the prop-
erty that typing is preserved by backward reductions) [3]. These type environ-
ments provide sufficient type information, so that a winning strategy for the
typability game TG(L, E(m)) can be expressed only by using type bindings in
Γ (m) = Γm′ ∪ · · · ∪Γ0. If m is sufficiently large, by using the same type bindings
(but ignoring indices), we can also express a winning strategy for TG(L, E).
Thus, if we can compute (a possible overapproximation of) Γ (m) above, we can
restrict the game TG(L, E) to the subgame TG′(L, E) consisting of only types
occurring in Γ (m), without changing the winner.

The remaining issue is how to compute an overapproximation of Γ (m). It
is unreasonable to compute it directly based on the definition above, as the
“sufficiently large” m is huge in general, and the number m′ of reduction steps
may also be too large. Instead, we relax the rewriting relation −→E for the
original HES E by adding the following rules:

C[Fj χ1 · · · χ�] −→′
E

{
C[true] if αj = ν
C[false] if αj = μ.

The resulting relation −→′
E simulates −→E(m) for arbitrary m, in the sense that

for any reduction sequence:

F
(m)
1 = χ0 −→E(m) χ1 −→E(m) · · · −→E(m) χm′ = χ,
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there exists a corresponding reduction sequence:

F1 = χ′
0 −→′

E χ′
1 −→′

E · · · −→′
E χ′

m′ = χ,

where each χ′
i is the formula obtained by removing indices from χi. Thus, to

compute Γ (m), it suffices to compute type environments for χ′
i’s, based on the

subject expansion property. We can do so by using the function FL,E defined
below, without explicitly constructing reduction sequences.

Definition 4 (Backward Expansion Function FL,E). Let L be an LTS, and
E = (F1 : η1 =α1 ϕ1; · · ·; Fn : ηn =αn

ϕn) be an HES. Let TE denote the set of all
type environments for the fixpoint variables of E, that is, TE = {Γ | dom(Γ ) ⊆
{F1, . . . , Fn}, ∀Fj : τ ∈ Γ . τ :: ηj}. The function FL,E : TE → TE is a monotonic
function defined by:

FL,E(Γ ) = Γ ∪ { Fj : τ | τ :: ηj

ϕj = λX1. · · · λX�.ψj ,
τ = σ1 → · · · → σ� → q,
∃Δ. dom(Δ) ⊆ FV (ψj) ∩ {X1, . . . , X�},
Γ ∪ Δ 	L ψj : q, ∀k ∈ {1, . . . , �}. σk = Δ(Xk),
∀Xi ∈ dom(Δ). ∃ϕ ∈ FlowE(Xi). ∀τ ′ ∈ Δ(Xi). Γ 	L ϕ : τ ′ }.

Here, FlowE(Xi) denotes the set { ξi | F1 −→∗
E C[F ξ1 · · · ξ�] }, where Xi is

the i-th formal parameter of F (i.e., the equation of F is of the form F =α

λX1. · · · λX�.ψ).5

The following lemma justifies the definition of FL,E (see [6] for a proof). It
states that the function FL,E expands type environments in such a way that
we can go backwards through the rewriting relation −→E without losing the
typability.

Lemma 1. If F1 −→∗
E ϕ −→E ϕ′ and Γ 	L ϕ′ : q, then FL,E(Γ ) 	L ϕ : q.

Let Γ0 be the set of strongest type bindings (with respect to subtyping) for the
ν-variables of E , that is, Γ0 = {Fj : τ | αj = ν, τ :: ηj , τ = � → · · · → � → q}.
The following lemma states that, if we are allowed to use the strongest type
bindings contained in Γ0, then we can also go backwards through the relaxed
rewriting relation −→′

E using the same function FL,E .

Lemma 2. If F1−→′
E

∗
ϕ −→′

E ϕ′, Γ 	L ϕ′ :q, and Γ ⊇ Γ0, then FL,E(Γ ) 	L ϕ:q.

Let us write (FL,E)ω(Γ0) for
⋃

i∈ω(FL,E)i(Γ0). As an immediate corollary
of Lemma 2, we have: if F1 = χ′

0 −→′
E χ′

1 −→′
E · · · −→′

E χ′
m′ = χ and ∅ 	L

χ : q0, then (FL,E)ω(Γ0) 	L χ′
i : q0 for every i. Thus, (FL,E)ω(Γ0) serves as an

overapproximation of Γ (m) mentioned above.

5 Without loss of generality, we assume that X1, . . . , X� are distinct from each other
and do not occur in the other equations.
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Algorithm 1. The proposed HFL model checking algorithm
Γ := Γ0

while Γ �= F ′
L,E(Γ ) do

Γ := F ′
L,E(Γ )

end while
return whether the subgame SG(L, E , Γ ) is winning

3.2 The Algorithm

Based on the intuitions explained in Sect. 3.1, we propose the algorithm shown
in Algorithm 1.

In the algorithm, the function F ′
L,E is an overapproximation of the function

FL,E , obtained by replacing FlowE in the definition of FL,E with an overapprox-
imation Flow ′

E satisfying ∀X. FlowE(X) ⊆ Flow ′
E(X). This is because it is in

general too costly to compute the exact flow set FlowE(X). The overapproxima-
tion Flow ′

E can typically be computed by flow analysis algorithms for functional
programs, such as 0-CFA [18]. The first four lines compute

⋃
i∈ω(F ′

L,E)i(Γ0),
which is an overapproximation of

⋃
i∈ω(FL,E)i(Γ0) discussed in the previous

subsection.
SG(L, E , Γ ) on the last line denotes the subgame of TG(L, E), obtained by

restricting the game arena. It is defined as follows.

Definition 5 (Subgame). Let L = (Q,A,−→, q0) be an LTS, E = (F1 :η1 =α1

ϕ1; · · ·; Fn : ηn =αn
ϕn) be an HES with η1 = o, and Γ ∈ TE be a type environ-

ment for E. The subgame SG(L, E , Γ ) is a parity game defined the same as
TG(L, E) except that the set of positions is restricted to the subsets of Γ . That
is, for TG(L, E) = (V ′

0 , V ′
1 , v′

0, E
′
0 ∪ E′

1, Ω
′), SG(L, E , Γ ) is the parity game

(V0, V1, v0, E0 ∪ E1, Ω), where:

– V0 = Γ ∪ {v′
0}, V1 = {Γ ′ | Γ ′ ⊆ Γ},

v0 = v′
0, E0 = E′

0 ∩ (V0 × V1), E1 = E′
1 ∩ (V1 × V0).

– Ω is the restriction of Ω′ to V0 ∪ V1.

The following theorem claims the correctness of the algorithm.

Theorem 2 (Correctness). Let L be an LTS and E = (F1 :η1 =α1 ϕ1; · · ·; Fn :
ηn =αn

ϕn) be an HES with η1 = o. Algorithm 1 terminates. Furthermore, it
returns “yes” if and only if L |= E.

Example 5. Recall the HES Eex and the LTS Lex in Example 3. The fixpoint
computation from the initial type environment Γ0 = {S : q0, S : q1, S : q2} by the
function FLex,Eex

(with a few simple optimizations)6 proceeds as shown in Table 1.
Note that the flow set FlowEex

(X) for the formal parameter X of the fixpoint
variable F is calculated as {〈b〉S, 〈b〉〈b〉S, . . .}, and thus the only candidates for

6 Using subtyping relations, we can refrain from unnecessary type derivations like
{S : q0, X : q1} �Lex ψF : q0 in this example. See [6] for more details.
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the type environment Δ in the algorithm are Δ = ∅ and Δ = {X :q1}. The expan-
sion reaches the fixpoint after two iterations,7 and the algorithm returns “yes”
as the resulting type environment contains sufficient type bindings to construct
the winning strategy depicted in Fig. 3 of Example 3. ��

Table 1. Fixpoint computation by the function FLex,Eex

Iteration number k Type environment Γk Newly derivable type judgments

0 {S : q0, S : q1, S : q2} {X : q1} �Lex
ψF : q1

{S : q0} �Lex
ψF : q0

1 Γ0 ∪ {F : q1 → q1, F : � → q0} {F : � → q0} �Lex
ψF : q2

2 Γ1 ∪ {F : � → q2} -

4 Correctness of the Algorithm

We sketch a proof of Theorem 2 in this section. A more detailed proof is found in
[6]. We discuss soundness and completeness (Theorems 3 and 4 below) separately,
from which Theorem 2 follows.

4.1 Soundness of the Algorithm

The soundness of the algorithm follows immediately from the fact that the
replacement of TG(L, E) with the subgame SG(L, E , Γ ) restricts only the moves
of player 0, so that the resulting game is harder for her to win.

Theorem 3 (Soundness). Let L be an LTS and E = (F1 : η1 =α1 ϕ1; · · ·; Fn :
ηn =αn

ϕn) be an HES with η1 = o. If L � E, then the algorithm returns “no”,
that is, the subgame SG(L, E , (F ′

L,E)ω(Γ0)) is not winning.

Proof. We show the contraposition. Suppose that SG(L, E , (F ′
L,E)ω(Γ0)) is a

winning game. Then, there exists a winning strategy ς of player 0 for the node
F1 : q0 in that game. This strategy ς also gives a winning strategy of player 0
for the node F1 : q0 in the original typability game TG(L, E); note that for each
position Γ ∈ V1 of SG(L, E , (F ′

L,E)ω(Γ0)), the set of possible moves of player
1 in TG(L, E) is the same as that in SG(L, E , (F ′

L,E)ω(Γ0)). Therefore, L |= E
follows from Theorem 1. ��

7 Actually, our prototype model checker reported in Sect. 5 does not derive the type
binding F : � → q2, and thus the computation terminates in one iteration. This is
because it uses information of types in flow analysis, which reveals that it does not
affect the result whether formulas of the form F ϕ have type q2. See [6] for details.
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4.2 Completeness of the Algorithm

The completeness of the algorithm is stated as Theorem 4 below.

Theorem 4 (Completeness). Let L be an LTS and E = (F1 : η1 =α1 ϕ1; · · ·;
Fn : ηn =αn

ϕn) be an HES with η1 = o. If L |= E, then the algorithm returns
“yes”, that is, the subgame SG(L, E , (F ′

L,E)ω(Γ0)) is winning.

The proof follows the intuitions provided in Sect. 3.1. Given a type envi-
ronment Γ for E(m), we write Forget(Γ ) for the type environment obtained by
removing all the indices from Γ . Theorem 4 follows immediately from Lemmas 3
and 4 below.

Lemma 3. If the typability game TG(L, E) is winning, then for sufficiently
large m, the subgame SG(L, E ,Forget((FL,E(m))ω(∅))) is also winning.

Lemma 4. Forget((FL,E(m))ω(∅))) ⊆ (FL,E)ω(Γ0).

Note that Lemma 4 implies that the game SG(L, E , (F ′
L,E)ω(Γ0)) is more advan-

tageous for player 0 than the game SG(L, E ,Forget((FL,E(m))ω(∅))), which is
winning when L |= E by Lemma 3.

Lemma 4 should be fairly obvious, based on the intuitions given in Sect. 3.1.
Technically, it suffices to show that F β

j : τ ∈ (FL,E(m))i(∅) implies Fj : τ ∈
(FL,E)i(Γ0) by induction on i, with case analysis on βj . If βj = 0, then αj = ν

and the body of F β
j is λX̃ .true. Thus, Fj : τ = Fj : � → · · · → � → q ∈ Γ0 ⊆

(FL,E)i(Γ0). If βj > 0, then the body of F β
j is the same as that of Fj except

indices. Thus, Fj :τ ∈ (FL,E)i(Γ0) follows from the induction hypothesis and the
definition of the function FL,E . See [6] for details.

To prove Lemma 3, we define another function Regress on type environments.
Let �k be the lexicographic ordering on the first k elements of tuples of integers,
and ≺k be its strict version. We write β1 =k β2 if β1 �k β2 and β2 �k β1.
For example, (1, 2) =0 (1, 2, 3), (1, 2) =1 (1, 2, 3), (1, 2) =2 (1, 2, 3), and (1, 2) ≺3

(1, 2, 3). Note that indices β combined with the order �k can be used to witness
a winning strategy of a parity game through a proper assignment of them (a
parity progress measure [7]) to positions of the game. The function Regress is
defined as follows.

Definition 6 (Function Regress). First, we define Γ β
μ and Γ β

ν for a type envi-
ronment Γ for E(m) and an index β of length j by:

Γ β
μ = {Fj′ : τ | ∃F β ′

j′ : τ ∈ Γ . β′ ≺j β}
Γ β

ν = {Fj′ : τ | ∃F β ′
j′ : τ ∈ Γ . β′ �j−1 β},

that is, Γ β
α is a type environment for the original HES E consisting of all type

bindings in Γ with indices “smaller” than β (the meaning of “smaller” depends
on the fixpoint operator α). Using this Γ β

α , we define Regress as a monotonic
function on type environments for E(m) by:

Regress(Γ ) = {F β
j : τ ∈ Γ | Γ β

αj
	L ϕj : τ},
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that is, Regress(Γ ) consists of all F β
j :τ ∈ Γ such that the right-hand side formula

ϕj of Fj in the original HES E has type τ under the type environment Γ β
αj

.

Note that Regress is a monotonic function on a finite domain. We write
Regressω(Γ ) for

⋂
i∈ω Regressi(Γ ), which is the greatest Γ ′ such that Γ ′ ⊆ Γ

and Regress(Γ ′) = Γ ′. Lemma 3 follows immediately from the following two
lemmas (Lemmas 5 and 6).

Lemma 5. If Γ ⊆ (FL,E(m))ω(∅) is a fixpoint of Regress, then Forget(Γ ) is a
subset of the winning region of player 0 for SG(L, E ,Forget((FL,E(m))ω(∅))).

This is intuitively because, for each Fj : τ ∈ Forget(Γ ), we can find F β
j : τ ∈ Γ

such that choosing Γ β
αj

at Fj : τ gives a winning strategy for player 0. Now it
remains to show:

Lemma 6. If the typability game TG(L, E) is winning, then for sufficiently
large m, F1 : q0 ∈ Forget(Regressω((FL,E(m))ω(∅))).

We prepare a few further definitions and lemmas. Let Γ
(m)
ω be (FL,E(m))ω(∅)

and Γ ′
ω
(m) be Regressω(Γ (m)

ω ). For each k = 1, 2, . . ., we define Dk as the set
of type bindings removed by the k-th application of Regress to Γ

(m)
ω , that is,

Dk = Regressk−1(Γ (m)
ω )\Regressk(Γ (m)

ω ).

Lemma 7. If F β
j : τ ∈ Dk and βj = 0, then αj = ν.

Lemma 8. If F β
j : τ ∈ Dk and βj �= 0, then there exists k′ satisfying 1 ≤ k′ < k

such that F
β(j′)
j′ : τ ′ ∈ Dk′ holds for some j′ and τ ′.

We are now ready to prove Lemma 6.

Proof of Lemma 6. We show the lemma by contradiction. Since the typability
game TG(L, E) is winning, we have F

(m)
1 :q0 ∈ Γ

(m)
ω for sufficiently large m (this

is intuitively because TG(L, E(m)) is also winning; see [6] for a formal proof).
Suppose it were the case that F

(m)
1 : q0 /∈ Γ ′

ω
(m). Then there must be a positive

integer k such that F
(m)
1 :q0 ∈ Dk. Therefore, by Lemma 8, there exists a sequence

of type bindings F
(m)
1 : q0 = F

β0
j0

: τ0, F
β1
j1

: τ1, . . . , F
β�
j�

: τ� such that (i) β� ends

with 0, and (ii) βi = βi−1(ji) and F
βi
ji

: τi ∈ Dki
hold for each i ∈ {1, . . . , �},

where k = k0 > k1 > · · · > k�. Moreover, we have αj�
= ν by Lemma 7. Let

β� = (β1, . . . , βj�−1, 0). Then, (β1, . . . , βj�−1,m), (β1, . . . , βj�−1,m − 1), . . ., and
(β1, . . . , βj�−1, 1) must exist in the sequence β0, β1, . . . , β�−1 in this order (see
[6] for a proof).

For each i ∈ {0, . . . , m}, let �i be the integer with β�i
= (β1, . . . , βj�−1, i).

Since the number of intersection types τ ′ satisfying τ ′ :: ηj�
is finite, there must

exist duplicate types in the sequence τ�0 , τ�1 , . . . , τ�m
for sufficiently large m.

Let τ�a
and τ�b

be such a pair with �a < �b. Then, we have F
β�a
j�

: τ�a
∈ Dk�a

and F
β�b
j�

: τ�b
∈ Dk�b

. However, since αj�
= ν and β�a

=j�−1 β�b
, we have
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Γ
β�a
αj�

= Γ
β�b
αj�

for any Γ . Therefore, by the definition of the function Regress and

the assumption τ�a
= τ�b

, the type bindings F
β�a
j�

: τ�a
and F

β�b
j�

: τ�b
must be

removed by Regress at the same time. This contradicts the assumption �a < �b.
Therefore, F

(m)
1 : q0 ∈ Γ ′

ω
(m) holds for sufficiently large m. ��

5 Implementation and Experiments

We have implemented a prototype HFL model checker HomuSat8 based on
the algorithm discussed in Sect. 3. As mentioned in footnotes in Sect. 3, some
optimization techniques are used to improve the performance of HomuSat. See
[6] for an explanation on these optimizations.

We have carried out experiments to evaluate the efficiency of HomuSat. As
benchmark problems, we used HORS model checking problems used as bench-
marks for HORS model checkers TravMC2 [15], HorSatP [19], and Hor-
Sat2 [9]. These benchmarks include many typical instances of higher-order
model checking, such as the ones obtained from program verification problems.
They were converted to HFL model checking problems via the translation by
Kobayashi et al. [10]. The resulting set of benchmarks consists of 136 problems
of orders up to 8. Whereas the LTS size is moderate (around 10) for most of
the instances, there are several instances with large state sets (including those
with |Q| > 100). HES sizes vary from less than 100 to around 10,000; note that
in applications to higher-order program verification [11,21], the size of an HES
corresponds to the size of a program to be verified. As to the number of alter-
nations between μ and ν within the HES, over half of the instances (83 out of
136) have no alternation (that is, they are μ-only or ν-only), but there are a cer-
tain number of instances that have one or more alternations, up to a maximum
of 4. The experiments were conducted on a machine with 2.3 GHz Intel Core
i5 processor and 8 GB memory. As a reference, we have compared the result
with HorSatP, one of the state-of-the-art HORS model checkers,9 run for the
original problems.

The results are shown in Figs. 4 and 5. Figure 4 compares the running times
of HomuSat with those of HorSatP. As the figure shows, HomuSat often out-
performs HorSatP. Although it is not that this result indicates the proposed
algorithm is superior as a higher-order model checking algorithm to HorSatP
(the two model checkers differ in the degree of optimization),10 the fact that
HomuSat works fast for various problems obtained via the mechanical conver-
sion from HORS to HFL, which increases the size of inputs and thus makes

8 The source code and the benchmark problems used in the experiments are available
at https://github.com/hopv/homusat.

9 For the restricted class of properties expressed by trivial automata, HorSat2 is the
state-of-the-art.

10 Actually, as the two algorithms are both based on type-based saturation algo-
rithm [4], various type-oriented optimization techniques used in HomuSat can also
be adapted to HorSatP and are expected to improve its performance.

https://github.com/hopv/homusat
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Fig. 4. The experimental results: comparison with HorSatP (timeout = 180 s)

them harder to solve, is promising. Evaluation of the efficiency of the proposed
algorithm against a set of problems obtained directly as HFL model checking
problems is left for future work.

Figure 5 shows the distribution of the running times of HomuSat with
respect to the input HES size. As the figure shows, despite the k-EXPTIME
worst-case complexity, the actual running times do not grow so rapidly. This is
partially explained by the fact that the time complexity of HFL model checking
is fixed-parameter polynomial in the size of HES [10].

6 Related Work

The logic HFL has been introduced by Viswanathan and Viswanathan [20].
Later, Lange and his colleagues studied its various theoretical properties [1,2,
12]. In particular, they have shown that HFL model checking is k-EXPTIME
complete for order k HFL formulas. There has been, however, no practical HFL
model checker. Lozes has implemented a prototype HFL model checker, but it
is restricted to order-1 HFL, and scales only for LTS of size up to 10 or so [13].

Our algorithm is based on the type-based characterization of HFL model
checking [10], and type-based saturation algorithms for HORS model checking [4,
19]. In particular, the idea of restricting the arena of the typability game follows
that of Suzuki et al. [19]. The detail of the algorithms are however different; in
particular, the initial type environment in Suzuki et al. [19] contains F : � →
· · · → � → q for any recursive function F , whereas in our algorithm, Γ0 contains
F :� → · · · → � → q only for fixpoint variables bound by ν. The use of a smaller
initial type environment may be one of the reasons why our model checker tends
to outperform theirs even for HORS model checking problems. Another difference
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Fig. 5. HES size |E| versus time required for model checking (timeout = 180 s)

is in the correctness proofs. In our opinion, our proof is significantly simpler and
streamlined than theirs. Their proof manipulates infinite derivation trees. In
contrast, our proof is a natural generalization of the correctness proof for the
restricted fragment of HORS model checking (which corresponds to the μ-only
or ν-only fragment of HFL model checking) [4], using the standard concept of
parity progress measures.

7 Conclusion

We have proposed the first practical algorithm for HFL model checking, and
proved its correctness. We have confirmed through experiments that, despite
the huge worst-case complexity, our prototype HFL model checker runs fast for
typical instances of higher-order model checking.
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Abstract. λ-calculi come with no fixed evaluation strategy. Different
strategies may then be considered, and it is important that they satisfy
some abstract rewriting property, such as factorization or normalization
theorems. In this paper we provide simple proof techniques for these
theorems. Our starting point is a revisitation of Takahashi’s technique to
prove factorization for head reduction. Our technique is both simpler and
more powerful, as it works in cases where Takahashi’s does not. We then
pair factorization with two other abstract properties, defining essential
systems, and show that normalization follows. Concretely, we apply the
technique to four case studies, two classic ones, head and the leftmost-
outermost reductions, and two less classic ones, non-deterministic weak
call-by-value and least-level reductions.

1 Introduction

The λ-calculus is the model underlying functional programming languages and
proof assistants. The gap between the model and its incarnations is huge. In
particular, the λ-calculus does not come with a fixed reduction strategy, while
concrete frameworks need one. A desirable property is that the reduction which
is implemented terminates on all terms on which β reduction has a reduction
sequence to normal form. This is guaranteed by a normalization theorem. Two
classic examples are the leftmost-outermost and head normalization theorems
(theorems 13.2.2 and 11.4.8 in Barendregt [4]). The former states that if the
term has a β-normal form, leftmost-outermost reduction is guaranteed to find it;
the latter has a similar but subtler statement, roughly head reduction computes
a head normal form, if the term has any.

Another classic theorem for head reduction states that head reduction
approximates the β-normal form by computing an essential part of every evalu-
ation sequence. The precise formulation is a factorization theorem: a sequence of
β steps t →∗

β s can always be re-arranged as a sequence of head steps (→h) fol-
lowed by a sequence of non-head steps (→¬h), that is, t →∗

h u →∗
¬h s. Both head
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and leftmost-outermost reductions play a key role in the theory of the λ-calculus
as presented in Barendregt [4] or Krivine [16].

Variants of the λ-calculus abound and are continuously introduced: weak,
call-by-value, call-by-need, classical, with pattern matching, sharing, non-
determinism, probabilistic choice, quantum features, differentiation, etc. So, nor-
malization and factorization theorems need to be studied in many variations.
Concepts and techniques to prove these theorems do exist, but they do not have
the essential, intuitive structure of other fundamental properties, such as con-
fluence.

This Paper. Here we provide a presentation of factorization and normalization
revisiting a simple technique due to Takahashi [28], making it even simpler and
more widely applicable. We separate the abstract reasoning from the concrete
details of head reduction, and apply the revisited proof method to several case
studies. The presentation is novel and hopefully accessible to anyone familiar
with the λ-calculus, without a background in advanced notions of rewriting
theory.

We provide four case studies, all following the same method. Two are revis-
itations of the classic cases of head and leftmost-outermost (shortened to �o)
reductions. Two are folklore cases. The first is weak (i.e. out of λ-abstractions)
call-by-value (shortened to CbV) reduction in its non-deterministic presentation.
The second is least-level (shortened to ��) reduction, a reduction coming from
the linear logic literature—sometimes called by levels—and which is usually pre-
sented using proof nets (see de Carvalho, Pagani and Tortora de Falco [6] or
Pagani and Tranquilli [24]) or calculi related to proof nets (see Terui [30] or
Accattoli [1]), rather than in the ordinary λ-calculus. The �o and �� cases are
full reductions for β, i.e. they have the same normal forms as β. The head and
weak CbV cases are not full, as they may not compute β normal forms.

Takahashi. In [28], Takahashi uses the natural inductive notion of parallel1 β
reduction (which reduces simultaneously a number of β-redexes; it is also the key
concept in Tait and Martin-Löf’s classic proof of confluence of the λ-calculus)
to introduce a simple proof technique for head factorization, from which head
normalization follows. By iterating head factorization, she also obtains leftmost-
outermost normalization, via a simple argument on the structure of terms due
to Mitschke [19].

Her technique has been employed for various λ-calculi because of its simplic-
ity. Namely, for the λ-calculus with η by Ishii [13], the call-by-value λ-calculus by
Ronchi Della Rocca and Paolini [25,27], the resource λ-calculus by Pagani and
Tranquilli [23], pattern calculi by Kesner, Lombardi and Ŕıos [14], the shuffling
calculus by Guerrieri, Paolini and Ronchi Della Rocca [8–10], and it has been
formalized with proof assistants by McKinna and Pollack [17] and Crary [7].

1 The terminology at work in the literature on λ-calculus and the rewriting terminology
often clash: the former calls parallel β reduction what the latter calls multi-step β
reduction—parallel reduction in rewriting is something else.
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Takahashi Revisited. Despite its simplicity, Takahashi’s proof [28] of factoriza-
tion relies on substitutivity properties not satisfied by full reductions such as �o
and ��. Our first contribution is a proof that is independent of the substitutivity
properties of the factorizing reductions. It relies on a simpler fact, namely the
substitutivity of an indexed variant n⇒β of parallel β reduction ⇒β . The defini-
tion of n⇒β simply decorates the definition of ⇒β with a natural number n that
intuitively corresponds to the number of redexes reduced in parallel by a ⇒β

step.
We prove factorization theorems for all our four case studies following this

simpler scheme. We also highlight an interesting point: factorization for the two
full reductions cannot be obtained directly following Takahashi’s method2.

From Factorization to Essential Normalization. The second main contribution
of our paper is the isolation of abstract properties that together with factoriza-
tion imply normalization. First of all we abstract head reduction into a generic
reduction →e, called essential, and non-head reduction →¬h into a non-essential
reduction →¬e. The first additional property for normalization is persistence:
steps of the factoring reduction →e cannot be erased by the factored out →¬e.
The second one is a relaxed form of determinism for →e. We show that in such
essential rewriting systems →e has a normalization theorem. The argument is
abstract, that is, independent of the specific nature of terms. This is in contrast to
how Takahashi [28] obtains normalization from factorization: her proof is based
on an induction over the structure of terms, and cannot then be disentangled by
the concrete nature of the rewriting system under study.

Normalizing Reductions for β. We apply both our techniques to our case studies
of full reduction: �o and ��, obtaining simple proofs that they are normalizing
reductions for β. Let us point out that �o is also—at present—the only known
deterministic reduction to β normal form whose number of steps is a reason-
able cost model, as shown by Accattoli and Dal Lago [2]. Understanding its
normalization is one of the motivations at the inception of this work.

Normalization with Respect to Different Notions of Results. As a further feature,
our approach provides for free normalization theorems for reductions that are
not full for the rewrite system in which they live. Typical examples are head
and weak CbV reductions, which do not compute β and CbV normal forms,
respectively. These normalization theorems arise naturally in the theory of the λ-
calculus. For instance, functional programming languages implement only weak
notions of reduction, and head reduction (rather than �o) is the key notion for
the λ-definability of computable functions.

We obtain normalization theorems for head and weak CbV reductions. Catch-
ing normalization for non-full reductions sets our work apart from the recent
studies on normalization by Hirokawa, Middeldorp, and Moser [12] and Van
Oostrom and Toyama [22], discussed below among related works.
2 It can be obtained indirectly, as a corollary of standardization, proved by Takahashi

[28] using the concrete structure of terms. Thus the proof is not of an abstract nature.
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Factorization, Normalization, Standardization. In the literature of the λ-calculus,
normalization for �o reduction is often obtained as a corollary of the standard-
ization theorem, which roughly states that every reduction sequence can be re-
organized as to reduce redexes according to the left-to-right order (Terese [29] fol-
lowing Klop [15] and Barendregt [4], for instance). Standardization is a complex
and technical result. Takahashi [28], using Mitschke’s argument [19] that iterates
head factorization, obtains a simpler proof technique for �o normalization—and
for standardization as well. Our work refines that approach, abstracts from it and
shows that factorization is a general technique for normalization.

Related Work. Factorization is studied in the abstract in [1,18]. Melliès axiomatic
approach [18] builds on standardization, and encompasses a wide class of rewrit-
ing systems; in particular, like us, he can deal with non-full reductions. Accattoli
[1] relies crucially on terminating hypotheses, absent instead here.

Hirokawa, Middeldorp, and Moser [12] and Van Oostrom and Toyama [22]
study normalizing strategies via a clean separation between abstract and term
rewriting results. Our approach to normalization is similar to the one used in [12]
to study �o evaluation for first-order term rewriting systems. Our essential sys-
tems strictly generalize their conditions: uniform termination replaces determin-
ism (two of the strategies we present here are not deterministic) and—crucially—
persistence strictly generalizes the property in their Lemma 7. Conversely, they
focus on hyper-normalization and on extending the method to systems in which
left-normality is relaxed. We do not deal with these aspects. Van Oostrom and
Toyama’s study [22] of (hyper-)normalization is based on an elegant and pow-
erful method based on the random descent property and an ordered notion of
commutative diagrams. Their method and ours are incomparable: we do not rely
on (and do not assume) the random descent property (for its definition and uses
see van Oostrom [21])—even if most strategies naturally have that property—
and we do focus on factorization (which they explicitly avoid), since we see it as
the crucial tool from which normalization can be obtained.

As already pointed out, a fundamental difference with respect to both works
is that we consider a more general notion of normalization for reductions that
are not full, that is not captured by either of those approaches.

In the literature, normalization is also proved from iterated head factorization
(Takahashi [28] for �o, and Terui [30] or Accattoli [1] for �� on proof nets-like
calculi, or Pagani and Tranquilli [24] for �� on differential proof nets), or as a
corollary of standardization (Terese [29] following Klop [15] and Barendregt [4]
for �o), or using semantic principles such as intersection types (Krivine [16] for
�o and de Carvalho, Pagani and Tortora de Falco [6] for �� on proof nets). Last,
Bonelli et al. develop a sophisticated proof of normalization for a λ-calculus with
powerful pattern matching in [5]. Our technique differs from them all.

Proofs. Omitted proofs are available online in [3], the long version of this paper.
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Fig. 1. Diagrams: (a) factorization, (b) weak postponement, (c) merge, (d) split.

2 Factorization and Normalization, Abstractly

In this section, we study factorization and normalization abstractly, that is,
independently of the specific structure of the objects to be rewritten.

A rewriting system (aka abstract reduction system, see Terese [29, Ch. 1]) S
is a pair (S,→) consisting of a set S and a binary relation → ⊆ S × S called
reduction, whose pairs are written t → s and called →-steps. A →-sequence
from t is a sequence t → s → . . . of →-steps; t →k s denotes a sequence of k
→-steps from t to s. As usual, →∗ (resp. →=) denotes the transitive-reflexive
(resp. reflexive) closure of →. Given two reductions →1 and →2 we use →1 ·→2

for their composition, defined as t →1 ·→2 s if t →1 u →2 s for some u.
In this section we focus on a given sub-reduction →e of →, called essential,

for which we study factorization and normalization with respect to →. It comes
with a second sub-reduction →¬e, called inessential, such that →e ∪ →¬e =→.
Despite the notation, →e and →¬e are not required to be disjoint. In general,
we write (S, {→a,→b}) for the rewriting system (S,→) where → =→a ∪ →b.

2.1 Factorization

A rewriting system (S, {→e,→¬e}) satisfies →e-factorization (also called post-
ponement of →¬e after →e) if t →∗ s implies that there exists u such that
t →∗

e u →∗
¬e s. Compactly, we write →∗ ⊆→∗

e ·→∗
¬e. In diagrams, see Fig. 1a.

Proving Factorization. Factorization is a non-trivial rewriting property, because
it is global, that is, quantified over all reduction sequences from a term. To
be able to prove factorization, we would like to reduce it to local properties,
i.e. properties quantified only over one-step reductions from a term. At first
sight it may seem that a local diagram such as the one in Fig. 1b would give
factorization by a simple induction. Such a diagram however does not allow to
infer factorization without further hypotheses—counterexamples can be found
in Barendregt [4].

The following abstract property is a special case for which a local condition
implies factorization. It was first observed by Hindley [11].

Lemma 1 (Hindley, local postponement). Let (S, {→e,→¬e}) be a rewrit-
ing system. If →¬e ·→e ⊆→∗

e ·→=
¬e then →∗ ⊆→∗

e ·→∗
¬e.
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Proof. The assumption →¬e · →e ⊆→∗
e · →=

¬e implies (#) →¬e · →∗
e ⊆→∗

e · →=
¬e

(indeed, it is immediate to prove that →¬e ·→k
e ⊆→∗

e ·→=
¬e by induction on k).

We then prove that →k ⊆→∗
e ·→∗

¬e, by induction on k. The case k = 0 is trivial.
Assume →·→k−1. By i.h., →·→∗

e ·→∗
¬e. If the first step is →e, the claim is proved.

Otherwise, by (#), from (→¬e ·→∗
e)·→∗

¬e we obtain (→∗
e ·→=

¬e)·→∗
¬e. ��

Hindley’s local condition is a strong hypothesis for factorization that in gen-
eral does not hold in λ-calculi—not even in the simple case of head reduction.
However, the property can be applied in combination with another standard
technique: switching to macro steps that compress →∗

e or →∗
¬e into just one

step, at the price of some light overhead. This idea is the essence of both Tait–
Martin-Löf’s and Takahashi’s techniques, based on parallel steps. The role of
parallel steps in Takahashi [28] is here captured abstractly by the notion of
macro-step system.

Definition 2 (Macro-step system). A rewriting system S = (S, {→e,→¬e})
is a macro-step system if there are two reductions ⇒ and ⇒¬e (called macro-
steps and inessential macro-steps, respectively) such that

– Macro: →¬e ⊆ ⇒¬e ⊆ →∗
¬e.

– Merge: if t ⇒¬e ·→e u then t ⇒ u. That is, the diagram in Fig. 1c holds.
– Split: if t ⇒ u then t →∗

e ·⇒¬e u. That is, the diagram in Fig. 1d holds.

Note that ⇒ just plays the role of a “bridge” between the hypothesis of the
merge condition and the conclusion of the split condition—it shall play a crucial
role in the concrete proofs in the next sections. In this paper, concrete instances
of ⇒ and ⇒¬e shall be parallel β reduction and some of its variants.

Proposition 3 (Factorization). Every macro-step system (S, {→e,→¬e})
satisfies →e-factorization.

Proof. By Merge and Split, ⇒¬e ·→e ⊆⇒ ⊆→∗
e ·⇒¬e ⊆→∗

e ·⇒=
¬e. By Hindley’s

lemma (Lemma 1) applied to →e and ⇒¬e (rather than →e and →¬e), we obtain
(→e ∪ ⇒¬e)∗ ⊆→∗

e · ⇒∗
¬e. Since →¬e ⊆⇒¬e, we have (→e ∪ →¬e)∗ ⊆ (→e

∪ ⇒¬e)∗ ⊆→∗
e ·⇒∗

¬e. As ⇒¬e ⊆→∗
¬e, we have →∗

e ·⇒∗
¬e ⊆→∗

e ·→∗
¬e. Therefore,

→∗= (→e ∪ →¬e)∗ ⊆→∗
e ·→∗

¬e. ��

2.2 Normalization for full reductions

The interest of factorization comes from the fact that the essential reduction →e

on which factorization pivots has some good properties. Here we pinpoint the
abstract properties which make factorization a privileged method to prove nor-
malization; we collect them into the definition of essential system (Definition 5).
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Normal Forms and Normalization. Let us recall what normalization is about.
In general, a term may or may not reduce to a normal form. And if it does,
not all reduction sequences necessarily lead to normal form. A term is weakly
or strongly normalizing, depending on if it may or must reduce to normal form.
If a term t is strongly normalizing, any choice of steps will eventually lead to a
normal form. However, if t is weakly normalizing, how do we compute a normal
form? This is the problem tackled by normalization: by repeatedly performing
only specific steps, a normal form will be computed, provided that t can reduce
to any.

Recall the statement of the �o normalization theorem: if t →∗
β u with u β-

normal, then t �o-reduces to u. Observe a subtlety: such a formulation relies on
the determinism of �o reduction. We give a more general formulation of normal-
izing reduction, valid also for non-deterministic reductions.

Formally, given a rewriting system (S,→), a term t ∈ S is:

– →-normal (or in →-normal form) if t 	→, i.e. there are no s such that t → s;
– weakly →-normalizing if there exists a sequence t →∗ s with s →-normal;
– strongly →-normalizing if there are no infinite →-sequences from t, or equiv-

alently, if all maximal →-sequences from t are finite.

We call reduction for → any →e ⊆→. It is full if →e and → have the same
normal forms.3

Definition 4 (Normalizing reduction). A full reduction →e for → is nor-
malizing (for →) if, for every term t, t is strongly →e-normalizing whenever it
is weakly →-normalizing.

Note that, since the normalizing reduction →e is full, if t is strongly →e-
normalizing then every maximal →e-sequence from t ends in a →-normal form.

Definition 5 (Essential system). A rewriting system (S, {→e,→¬e}) is
essential if the following conditions hold:

1. Persistence: if t →e s and t →¬e u, then u →e r for some r.
2. Uniform termination: if t is weakly →e-normalizing, then it is strongly →e-

normalizing.
3. Terminal factorization: if t →∗ u and u is →e-normal, then t →∗

e ·→∗
¬e u.

It is moreover full if →e is a full reduction for →.

Comments on the definition:

– Persistence: it means that essential steps are out of reach for inessential steps,
that cannot erase them. The only way of getting rid of essential steps is by
reducing them, and so in that sense they are essential to normalization.

3 In rewriting theory, a full reduction for → is called a reduction strategy for →. We
prefer not to use the term strategy because it has different meaning in the λ-calculus,
where it is a deterministic, not necessarily full, reduction for →.
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– From determinism to uniform termination: as we already said, in general →e

is not deterministic. For normalization, then, it is not enough that there is a
sequence t →∗

e u with u →-normal (as in the statement of �o-normalization).
We need to be sure that there are no infinite →e-sequences from t. This is
exactly what is ensured by the uniform termination property. Note that if →e

is deterministic (or has the diamond or random descent properties) then it is
uniformly terminating.

– Terminal factorization: there are two subtleties. First, we need only a weak
form of factorization, namely factorization is only required for →-sequences
ending in a →e-normal form4. Second, the reader may expect terminal fac-
torization to be required with respect to →-normal rather than →e-normal
forms. The two notions coincide if →e is full, and for the time being we only
discuss full essential systems. We discuss the more general case in Sect. 2.3.

Example 6. In the λ-calculus with β reduction, head reduction →h and its asso-
ciated →¬h reduction (defined in Sect. 4) form an essential system. Similarly,
leftmost-outermost →�o reduction and its associated →¬�o reduction (Sect. 7)
form a full essential system. Two more examples are in Sects. 6 and 8.

Theorem 7 (Essential full normalization). Let (S, {→e,→¬e}) be a full
essential system. Then →e is a normalizing reduction for →.

Proof. Let t be a weakly →-normalizing term, i.e. t →∗ u for some term u in
→-normal form (and so in →e-normal form, since →e ⊆→).

1. Terminal factorization implies t →∗
e s →∗

¬e u for some s, since u is →e-normal.
2. Let us show that s is →e-normal: if not, then s →e r for some r, and a

straightforward induction on the length of s →∗
¬e u iterating persistence gives

that u →e p for some p, against the hypothesis that u is →e-normal. Absurd.
3. By the previous point, t is weakly →e-normalizing. By uniform termination,

t is strongly →e-normalizing. ��

2.3 A More General Notion of Normalizing reduction.

Essential systems actually encompass also important notions of normalization
for reductions that are not full, such as head normalization. These cases arise
naturally in the λ-calculus literature, where partial notions of result such as head
normal forms or values are of common use. Normalization for non-full reductions
is instead not so common in the rewriting literature outside the λ-calculus. This
is why, to guide the reader, we presented first the natural case of full reductions.

4 The difference between factorization and its terminal case is relevant for normaliza-
tion: van Oostrom and Toyama [22, footnote 8] give an example of normalizing full
reduction for a rewriting system in which factorization fails but terminal factoriza-
tion holds.
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Let us first discuss head reduction: →h is deterministic and not full with
respect to →β , as its normal forms may not be →β-normal forms. The well-
known property of interest is head normalization (Cor. 11.4.8 in Barendregt’s
book [4]):

If t →∗
β s and s is head normal then →h terminates on t.

The statement has two subtleties5. First, t may →β-reduce to a term in →h-
normal form in many different ways, possibly without using →h, so that the
hypotheses may not imply that →h terminates. Second, the conclusion is “→h

terminates on t” and not t →∗
h s, because in general the maximal →h-sequence

from t may end in a term u 	= s. For instance, let I = λy.y: then I(x(II)) →β

I(xI) →β xI is a →β-sequence to head normal form, and yet the maximal →h-
sequence I(x(II)) →h x(II) ends in a different term.

Now, let us abstract from head normalization, taking into account that in gen-
eral the essential reduction →e—unlike head reduction—may not be determinis-
tic, and so we ask for strong →e-normalization rather than for →e-termination.

Theorem 8 (Essential normalization). Let (S, {→e,→¬e}) be an essential
system. If t →∗ u and u is →e-normal, then t is strongly →e-normalizing.

Proof. Exactly as for Theorem 7, fullness is not used in that proof. ��
In the next section we shall apply Theorem 8 to head reduction and obtain

the head normalization theorem we started with. Another example of a normal-
ization theorem for a non-full reduction is in Sect. 6. Note that the full variant of
the theorem (Theorem 7) is in fact an instance of the general one (Theorem 8).

3 The λ-Calculus

This short section recalls basic definitions and properties of the λ-calculus and
introduces the indexed variant of parallel β.

The set Λ of terms of the λ-calculus is given by the following grammar:

Terms t, s, u, r ::= x | λx.t | ts

We use the usual notions of free and bound variables, t{x�s} for the meta-level
capture-avoiding substitution of s for the free occurrences of x in t, and |t|x for
the number of free occurrences of x in t. The definition of β reduction →β is:

β reduction

(λx.t)s →β t{x�s}
t →β t′

ts →β t′s
t →β t′

λx.t →β λx.t′
t →β t′

st →β st′

Let us recall two basic substitutivity properties of β reduction.
5 “t has a head normal form” is the usual formulation for “t →∗

β s for some s that is
head normal”. We prefer the latter to avoid the ambiguity of the former about the
reduction leading from t to one of its head normal forms (→∗

β or →∗
h?).
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1. Left substitutivity of →β : if t →β t′ then t{x�s} →β t′{x�s}.
2. Right substitutivity of →β : if s →β s′ then t{x�s} →∗

β t{x�s′}. It is possible
to spell out the number of →β-steps, which is exactly the number of free
occurrences of x in t, that is, t{x�s} →|t|x

β t{x�s′}.

Parallel β reduction. Parallel β-reduction ⇒β is defined by:

Parallel β reduction

x ⇒β x
t ⇒β t′

λx.t ⇒β λx.t′
t ⇒β t′ s ⇒β s′

ts ⇒β t′s′
t ⇒β t′ s ⇒β s′

(λx.t)s ⇒β t′{x�s′}
Tait–Martin-Löf’s proof of the confluence of →β relies on the diamond property
of ⇒β

6, in turn based on the following property (see Takahashi [28, p. 1])

Substitutivity of ⇒β : if t ⇒β t′ and s ⇒β s′ then t{x�s} ⇒β t′{x�s′}.

While the diamond property of ⇒β does not play a role for factorization, one of
the contributions of this work is a new proof technique for factorization relying
on the substitutivity property of an indexed refinement of ⇒β .

Indexed parallel β reduction. The new indexed version n⇒β of parallel β reduction
⇒β is equipped with a natural number n which is, roughly, the number of redexes
reduced in parallel by a ⇒β ; more precisely, n is the length of a particular way
of sequentializing the redexes reduced by ⇒β . The definition of n⇒β is as follows
(note that erasing the index one obtains exactly ⇒β , so that ⇒β =

⋃
n∈N

n⇒β):

Indexed parallel β reduction

x
0⇒β x

t
n⇒β t′

λx.t
n⇒β λx.t′

t
n⇒β t′ s

m⇒β s′

ts
n+m⇒β t′s′

t
n⇒β t′ s

m⇒β s′

(λx.t)s
n+|t′|x·m+1⇒β t′{x�s′}

The intuition behind the last clause is: (λx.t)s reduces to t′{x�s′} by

1. first reducing (λx.t)s to t{x�s} (1 step);
2. then reducing in t{x�s} the n steps corresponding to the sequence t

n⇒β t′,
obtaining t′{x�s};

3. then reducing s to s′ for every occurrence of x in t′ replaced by s, that is, m
steps |t′|x times, obtaining t′{x�s′}.

Points 2 and 3 hold because of the substitutivity properties of β reduction.
It is easily seen that 0⇒β is the identity relation on terms. Moreover, →β =

1⇒β , and n⇒β ⊆ →n
β , as expected. The substitutivity of n⇒β is proved by simply

indexing the proof of substitutivity of ⇒β .

Lemma 9 (Substitutivity of n⇒β). If t
n⇒β t′ and s

m⇒β s′, then t{x�s} k⇒β

t′{x�s′} where k = n + |t′|x · m.
6 Namely, if s1 β⇐ t ⇒β s2 then there exists u such that s1 ⇒β u β⇐ s2.
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Proof. By induction on the derivation of t
n⇒β t′. Consider its last rule. Cases:

– Variable: two sub-cases
• t = x: then t = x

0⇒β x = t′ then t{x�s} = x{x�s} = s
m⇒β s′ =

x{x�s′} = t′{x�s′} that satisfies the statement because n + |t′|x · m =
0 + 1 · m = m.

• t = y: then t = y
0⇒β y = t′ and t{x�s} = y{x�s} = y

0⇒β y =
y{x�s′} = t′{x�s′} that satisfies the statement because n + |t′|x · m =
0 + 0 · m = 0.

– Abstraction, i.e. t = λy.u
n⇒β λy.u′ = t′ because u

n⇒β u′; we can suppose
without loss of generality that y 	= x and y is not free in s (and hence in s′),
so |u′|x = |t′|x and t{x�s} = λy.(u{x�s}) and t′{x�s′} = λy.(u′{x�s′}).

By i.h., u{x�s} n+|u′|x·m⇒β u′{x�s′}, thus

u{x�s} n+|u′|x·m⇒β u′{x�s′}
t{x�s} = λy.u{x�s} n+|t′|x·m⇒β λy.u′{x�s′} = t′{x�s′}

.

– Application, i.e. t = ur
n⇒β u′r′ = t′ with u

nu⇒β u′, r
nr⇒β r′ and n = nu + nr.

By i.h., u{x�s} nu+|u′|x·m⇒β u′{x�s′} and r{x�s} nr+|r′|x·m⇒β r′{x�s′}. Then

u{x�s} nu+|u′|x·m⇒β u′{x�s′} r{x�s} nr+|r′|x·m⇒β r′{x�s′}
t{x�s} = u{x�s}r{x�s} k⇒β u′{x�s′}r′{x�s′} = t′{x�s′}

where k = nu + |u′|x· m + nr + |r′|x· m = n + (|u′|x + |r′|x) · m = n + |t′|x· m.
– β-step, i.e. t = (λy.u)r n⇒β u′{y�r′} = t′ with u

nu⇒β u′, r
nr⇒β r′ and

n = nu+|u′|y ·nr+1. We can assume without loss of generality that y 	= x and
y is not free in s (and so in s′), hence |t′|x = |u′{y�r′}|x = |u′|x + |u′|y · |r′|x
and |u′{x�s′}|y = |u′|y and t{x�s} = (λy.u{x�s})(r{x�s}) and t′{x�s′} =
u′{x�s′}{y�r′{x�s′}}.

By i.h., u{x�s} nu+|u′|x·m⇒β u′{x�s′} and r{x�s} nr+|r′|x·m⇒β r′{x�s′}. Then

u{x�s} nu+|u′|x·m⇒β u′{x�s′} r{x�s} nr+|r′|x·m⇒β r′{x�s′}
t{x�s} = (λy.u{x�s})(r{x�s}) k⇒β u′{x�s′}{y�r′{x�s′}} = t′{x�s′}

where k = nu + |u′|x · m + |u′|y · (nr + |r′|x · m) + 1 = nu + |u′|y · nr + 1 +
|u′|x · m + |u′|y · |r′|x · m = n + |t′|x · m. ��

4 Head Reduction, Essentially

We here revisit Takahashi’s study [28] of head reduction. We apply the abstract
schema for essential reductions developed in Sect. 2, which is the same schema
used by Takahashi, but we provide a simpler proof technique for one of the
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required properties (split). First of all, head reduction →h (our essential reduc-
tion here) and its associated inessential reduction →¬h are defined by:

Head reduction

(λx.t)s →h t{x�s} t →h s t 	= λx.t′

tu →h su

t →h s

λx.t →h λx.s

¬Head reduction

t →β t′

(λx.t)s →¬h (λx.t′)s
t →β t′

st →¬h st′
t →¬h t′

λx.t →¬h λx.t′
t →¬h t′

ts →¬h t′s
.

Note that →β =→h ∪ →¬h but →h and →¬h are not disjoint: I(II) →h II and
I(II) →¬h II with I = λz.z. Indeed, I(II) contains two distinct redexes, one is
I(II) and is fired by →h, the other one is II and is fired by →¬h; coincidentally,
the two reductions lead to the same term.

As for Takahashi, a parallel ¬head step t ⇒¬h s is a parallel step t ⇒β s
such that t →∗

¬h s. We give explicitly the inference rules for ⇒¬h:

Parallel ¬head reduction

x ⇒¬h x
t ⇒β t′ s ⇒β s′

(λx.t)s ⇒¬h (λx.t′)s′
t ⇒¬h t′

λx.t ⇒¬h λx.t′
t ⇒¬h t′ s ⇒β s′

ts ⇒¬h t′s′

Easy inductions show that →¬h ⊆⇒¬h ⊆→∗
¬h. It is immediate that →h-normal

terms are head normal forms in the sense of Barendregt [4, Def. 2.2.11]. We do
not describe the shape of head normal forms. Our proofs never use it, unlike
Takahashi’s ones. This fact stresses the abstract nature of our proof method.

Head Factorization. We show that →h induces a macro-step system, with respect
to →¬h, ⇒β , and ⇒¬h, to obtain →h-factorization by Proposition 3.

Therefore, we need to prove merge and split. Merge is easily verified by
induction on t ⇒¬h s. The interesting part is the proof of the split property, that
in the concrete case of head reduction becomes: if t ⇒β s then t →∗

h · ⇒¬h s.
This is obtained as a consequence of the following easy indexed split property
based on the indexed variant of parallel β. The original argument of Takahashi
[28] is more involved, we discuss it after the new proof.

Proposition 10 (Head macro-step system)

1. Merge: if t ⇒¬h ·→h u then t ⇒β u.
2. Indexed split: if t

n⇒β s then t ⇒¬h s, or n > 0 and t →h ·n−1⇒ β s.
3. Split: if t ⇒β s then t →∗

h ·⇒¬h s.

That is, (Λ, {→h,→¬h}) is a macro-step system with respect to ⇒β and ⇒¬h.

Proof. 1. Easy induction on t ⇒¬h s. Details are in [3].
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2. By induction on t
n⇒β s. We freely use the fact that if t

n⇒β s then t ⇒β s.
Cases:

– Variable: t = x
0⇒β x = s. Then t = x ⇒¬h x = s.

– Abstraction: t = λx.t′ n⇒β λx.s′ = s with t′ n⇒β s′. It follows from the i.h.
– Application: t = rp

n⇒β r′p′ = s with r
n1⇒β r′, p

n2⇒β p′ and n = n1 + n2.
There are only two subcases:

• either rp ⇒¬h r′p′, and then the claim holds;
• or rp 	⇒¬h r′p′, and then neither r ⇒¬h r′ nor r is an abstraction

(otherwise rp ⇒¬h r′p′). By i.h. applied to r
n1⇒β r′, n1 > 0 and there

exists r′′ such that r →h r′′ n1−1⇒ β r′. Thus, t = rp →h r′′p and

r′′ n1−1⇒β r′ p
n2⇒β p′

r′′p n1−1+n2⇒β r′p′ = s
.

– β-step: t = (λx.u)r n⇒β u′{x�r′} = s with u
n1⇒β u′, r

n2⇒β r′′ and
n = n1 + |u′|x · n2 + 1 > 0. We have t = (λx.u)r →h u{x�r} and by

substitutivity of n⇒β (Lemma 9) u{x�r} n1+|u′|x·n2⇒β u′{x�r′} = s.
3. If t ⇒β s then t

n⇒β s for some n. We prove the statement by induction n.
By indexed split (Point 2), there are only two cases:

– t ⇒¬h s. This is an instance of the statement (since →∗
h is reflexive).

– n > 0 and there exists r such that t →h r
n−1⇒ β s. By i.h. applied to

r
n−1⇒ β s, there is u such that r →∗

h u ⇒¬h s, and so t →∗
h u ⇒¬h s. ��

Theorem 11 (Head factorization). If t →∗
β u then t →∗

h ·→∗
¬h u.

Head Normalization. We show that (Λ, {→h,→¬h}) is an essential system (Def-
inition 5); thus the essential normalization theorem (Theorem 8) provides nor-
malization. We already proved factorization (Theorem 11, hence terminal fac-
torization). We verify persistence and determinism (which implies uniform ter-
mination) of →h.

Proposition 12 (Head essential system)

1. Persistence: if t →h s and t →¬h u then u →h r for some r.
2. Determinism: if t →h s1 and t →h s2 then s1 = s2.

Then, (Λ, {→h,→¬h}) is an essential system.

Theorem 13 (Head normalization). If t →∗
β s and s is a →h-normal form,

then →h terminates on t.
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4.1 Comparison with Takahashi’s Proof of the Split Property

Our technique differs from Takahashi’s in that it is built on simpler properties:
it exploits directly the substitutivity of ⇒β , which is instead not used by Taka-
hashi. Takahashi’s original argument [28] for the split property (if t ⇒β s then
t →∗

h · ⇒¬h, what she calls the main lemma) is by induction on the (concrete)
definition of ⇒β and relies on two substitutivity properties of →h and ⇒¬h.
Looking at them as the reductions →e and →¬e of an essential system, these
properties are:

– Left substitutivity of →e: if u →e q then u{x�r} →e q{x�r};
– Left substitutivity of ⇒¬e: if u ⇒¬e q then u{x�r} ⇒¬e q{x�r}.

From them, left substitutivity of the composed reduction →∗
e ·⇒¬e easily follows.

That is, Takahashi’s proof of the split property is by induction on t ⇒ s using
left substitutivity of →∗

e · ⇒¬e for the inductive case.
We exploit the substitutivity of n⇒ instead of left substitutivity of →e and

⇒¬e. It holds for a larger number of essential systems because n⇒ is simply a dec-
oration of ⇒, which is substitutive by design. There are important systems where
Takahashi’s hypotheses do not hold. One such case is �o reduction (Sect. 7)—the
normalizing reduction of the λ-calculus—we discuss the failure of left substitu-
tivity for �o at the end of Sect. 7; another notable case is �� reduction (Sect. 8);
both are full reductions for β.

Let us point out where the idea behind our approach stems from. In a sense,
Takahashi’s proof works by chance: the split hypothesis is about a parallel step
⇒β but then the key fact used in the proof, left substitutivity of →∗

h · ⇒¬h,
does no longer stay in the borders of the parallel step, since the prefix →∗

h is an
arbitrary long sequence that may reduce created steps. Our proof scheme instead
only focuses on the (expected) substitutivity of n⇒, independently of creations.

5 The Call-by-Value λ-Calculus

In this short section, we introduce Plotkin’s call-by-value λ-calculus [26], where β
reduction fires only when the argument is a value. In the next section we define
weak reduction and prove factorization and normalization theorems using the
essential technique, exactly as done in the previous section for head reduction.

The set Λ of terms is the same as in Sect. 3. Values, call-by-value (CbV) β-
reduction →βv

, and CbV indexed parallel reduction n⇒βv
are defined as follows:

Values v ::= x | λx.t

βv reduction

v value
(λx.t)v →βv

t{x�v}
t →βv

t′

λx.t →βv
λx.t′

t →βv
t′

ts →βv
t′s

t →βv
t′

st →βv
st′
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Indexed parallel βv reduction

x
0⇒βv x

t
n⇒βv t′

λx.t
n⇒βv λx.t′

t
n⇒βv t′ s

m⇒βv s′

ts
n+m⇒βv t′s′

t
n⇒βv t′ v

m⇒βv v′

(λx.t)v
n+|t′|x·m+1⇒βv t′{x�v′}

The only difference with the usual parallel β (defined in Sect. 3) is the require-
ment that the argument is a value in the last rule. As before, the non-indexed
parallel reduction ⇒βv

is simply obtained by erasing the index, so that ⇒βv
=

⋃
n∈N

n⇒βv
. Similarly, it is easily seen that 0⇒βv

is the identity relation on terms,

→βv
= 1⇒βv

and n⇒βv
⊆→n

βv
. Substitutivity of n⇒βv

is proved exactly as for n⇒β

(Lemma 9).

Lemma 14 (Substitutivity of n⇒βv
). If t

n⇒βv
t′ and v

m⇒βv
v′, then

t{x�v} k⇒βv
t′{x�v′} where k = n + |t′|x · m.

6 Weak Call-by-Value Reduction, Essentially

The essential step we study for the CbV λ-calculus is weak CbV reduction →w,
which does not evaluate function bodies (the scope of λ-abstractions). Weak
CbV reduction has practical importance, because it is the base of the ML/CAML
family of functional programming languages. We choose it also because it admits
the natural and more general non-deterministic presentation that follows, even
if most of the literature rather presents it in a deterministic way.

Weak CbV reduction

(λx.t)v →w t{x�v}
t →w t′

ts →w t′s
t →w t′

st →w st′

Note that in the case of an application there is no fixed order in the →w-reduction
of the left and right subterms. Such a non-determinism is harmless as →w satis-
fies a diamond-like property implying confluence, see Proposition 17.2 below. It
is well-known that the diamond property implies uniform termination, because
it implies that all maximal sequences from a term have the same length. Such a
further property is known as random descent, a special form of uniform termi-
nation already considered by Newman [20] in 1942, see also van Oostrom [21].

The inessential reduction →¬w and its parallel version ⇒¬w are defined by:

¬Weak reduction

t →βv
s

λx.t →¬w λx.s

t →¬w t′

ts →¬w t′s
t →¬w t′

st →¬w st′

Parallel ¬weak reduction

x ⇒¬w x
t ⇒βv

t′

λx.t ⇒¬w λx.t′
t ⇒¬w t′ s ⇒¬w s′

ts ⇒¬w t′s′

It is immediate to check that →βv
=→w ∪ →¬w and →¬w ⊆⇒¬w ⊆→∗

¬w.
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Weak CbV Factorization. We show that (Λ, {→w,→¬w}) is a macro-step system,
with ⇒βv

,⇒¬w as macro-steps. Merge and split are proved exactly as in Sect. 4.

Proposition 15 (Weak CbV macro-step system)

1. Merge: if t ⇒¬w · →w u then t ⇒βv
u.

2. Indexed split: if t
n⇒βv

s then t ⇒¬w s, or n > 0 and t →w ·n−1⇒ βv
s.

3. Split: if t ⇒βv
s then t →∗

w ·⇒¬w s.

That is, (Λ, {→w,→¬w}) is a macro-step system with respect to ⇒βv
and ⇒¬w.

Theorem 16 (Weak CbV factorization). If t →∗
βv

s then t →∗
w ·→∗

¬w s.

Plotkin’s Left Reduction. The same argument at work in this section adapts
easily to factorization with respect to leftmost weak reduction (used by Plotkin
[26]), or to rightmost weak reduction, the two natural deterministic variants of
→w.

Weak CbV Normalization. To obtain a normalization theorem for →w via the
essential normalization theorem (Theorem 8), we need persistence and uniform
termination. The latter follows from the well-known diamond property of →w.

Proposition 17 (Weak CbV essential system)

1. Persistence: if t →w s and t →¬w u then u →w r for some r.
2. Diamond: if s w← ·→w u with s 	= u then s →w ·w← u.

Then, (Λ, {→w,→¬w}) is an essential system.

Theorem 18 (Weak CbV normalization). If t →∗
βv

s and s is a →w-normal
form, then t is strongly →w-normalizing.

CbV is often considered with respect to closed terms only. In such a case the
→w-normal forms are exactly the (closed) values. Then weak CbV normalization
(Theorem 18) implies the following, analogous to Corollary 1 in Plotkin [26] (the
result is there obtained from standardization).

Corollary 19. Let t be a closed term. If t →∗
βv

v for some value v, then every
maximal →w-sequence from t is finite and ends in a value.

7 Leftmost-Outermost Reduction, Essentially

Here we apply our technique to leftmost-outermost (shortened to �o) reduction
→�o, the first example of full reduction for →β . The technical development is
slightly different from the ones in the previous sections, as factorization relies on
persistence. The same shall happen for the full �� reduction of the next section.
It seems to be a feature of full reductions for →β .

�o and ¬�o reductions.The definition of �o reduction relies on two mutually recur-
sive predicates defining normal and neutral terms (neutral = normal and not an
abstraction):
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Normal and neutral terms

x is neutral
t is neutral t is normal

ts is neutral
t is neutral
t is normal

t is normal
λx.t is normal

Dually, a term is not neutral if it is an abstraction or it is not normal. It is
standard that these predicates correctly capture β normal forms and neutrality.

The reductions of the �o macro-step system are:

�o reduction

(λx.t)s →�o t{x�s} t →�o s t 	= λx.t′

tu →�o su

t →�o s

λx.t →�o λx.s
u is neutral t →�o s

ut →�o us

¬�o reduction

t →β t′

(λx.t)s →¬�o (λx.t′)s
t is not neutral s →β s′

ts →¬�o ts′

t →¬�o t′

ts →¬�o t′s
t →¬�o t′

st →¬�o st′
t →¬�o t′

λx.t →¬�o λx.t′

Parallel ¬�o reduction

x ⇒¬�o x
t is not neutral t ⇒¬�o t′ s ⇒β s′

ts ⇒¬�o t′s′

t ⇒β t′ s ⇒β s′′

(λx.t)s ⇒¬�o (λx.t′)s′
t ⇒¬�o t′

λx.t ⇒¬�o λx.t′
t neutral s ⇒¬�o s′

ts ⇒¬�o ts′

As usual, easy inductions show that →β =→�o ∪ →¬�o and →¬�o⊆⇒¬�o⊆→∗
¬�o.

Factorization depends on persistence, which is why for �o reduction most
essential properties are proved before factorization. The proofs are easy
inductions.

Proposition 20 (�o essential properties)

1. Fullness: if t →β s then there exists u such that t →�o u.
2. Determinism: if t →�o s1 and t →�o s2 then s1 = s2.
3. Persistence: if t →�o s1 and t →¬�o s2 then s2 →�o u for some u.

Proposition 21 (�o macro-step system)

1. Merge: if t ⇒¬�o · →�o u then t ⇒β u.
2. Indexed split: if t

n⇒β s then t ⇒¬�o s, or n > 0 and t →�o ·n−1⇒ β s.
3. Split: if t ⇒β s then t →∗

�o ·⇒¬�o s.

That is, (Λ, {→�o,→¬�o}) is a macro-step system with respect to ⇒β and ⇒¬�o.
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Proof. We only show the merge property, and only the case that requires
persistence—the rest of the proof is in the Appendix of [3]. The proof of the
merge property is by induction on t ⇒¬�o s. Consider the rule

r not neutral r ⇒¬�o r′ p ⇒β p′

t = rp ⇒¬�o r′p′ = s
.

Since r is not neutral, it is an abstraction or it is not normal. If r is an abstraction
this case continues as the easy case of ⇒¬�o for β-redexes (see the Appendix of
[3]). Otherwise, r is not normal, i.e. r →β q. By fullness r →�o q′ for some q′,
and by persistence (Prop. 20.3) r′ →�o r′′ for some r′′. The hypothesis becomes
t = rp ⇒¬�o r′p′ →�o r′′p′ = u with r ⇒¬�o r′ →�o r′′. By i.h., r ⇒β r′′. Then,

r ⇒β r′′ p ⇒β p′

t = rp ⇒β r′′p′ = u
. ��

�o split. As pointed out in Sect. 4.1, Takahashi’s proof [28] of the split property
relies on left substitutivity of head reduction, that is, if t →h s then t{x�u} →h

s{x�u} for all terms u. Such a property does not hold for �o reduction. For
instance, t = x(Iy) →�o xy = t′ but t{x�λz.zz} = (λz.zz)(Iy) 	→�o (λz.zz)y =
t′{x�λz.zz}. Therefore her proof technique for factorization cannot prove the
factorization theorem for �o reduction (see also footnote 2).

From Proposition 21 it follows the factorization theorem for �o reduction,
that together with Proposition 20 proves that (Λ, {→�o,→¬�o}) is an essential
system, giving normalization of →�o for →β .

Theorem 22

1. �o factorization: if t →∗
β u then t →∗

�o · →∗
¬�o u.

2. �o normalization: →�o is a normalizing reduction for →β.

8 Least-Level Reduction, Essentially

In this section we study another normalizing full reduction for →β , namely least-
level (shortened to ��) reduction →��, which is non-deterministic. The intuition
is that �� reduction fires a β-redex of minimal level, where the level of a β-redex
is the number of arguments containing it.

The definition of →�� relies on an indexed variant →β:k of →β , where k ∈ N

is the level of the fired β-redex (do not mix it up with the index of n⇒β). We
also define a parallel version ⇒β:n (with n ∈ N ∪ {∞}) of →β:k, obtained as a
decoration of ⇒β , where n is the minimal level of the β-redexes fired by a ⇒β

step (⇒β:∞ does not reduce any β-redex). From now on, N∪ {∞} is considered
with its usual order and arithmetic, that is, ∞ + 1 = ∞.

β reduction of level k

(λx.t)s →β:0 t{x�s}
t →β:k t′

λx.t →β:k λx.t′
t →β:k t′

ts →β:k t′s
t →β:k t′

st →β:k+1 st′
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Parallel β reduction of least level n

t ⇒β:k t′ s ⇒β:h s′

(λx.t)s ⇒β:0 t′{x�s′}
t ⇒β:k t′

λx.t ⇒β:k λx.t′
t ⇒β:k t′ s ⇒β:h s′

ts ⇒β:min{k,h+1} t′s′ x ⇒β:∞ x

Note that t →β s if and only if t →β:k s for some k ∈ N.
The least (reduction) level ��(t) ∈ N ∪ {∞} of a term t is defined as follows:

��(x) = ∞ ��(λx.t) = ��(t) ��(ts) =

{
0 if t = λx.u

min{��(t), ��(s)+1} otherwise.

The definitions of ��, ¬��, and parallel ¬�� reductions are:

�� reduction t →�� s if t →β:k s with ��(t) = k ∈ N;
¬�� reduction t →¬�� s if t →β:k s with ��(t) < k ∈ N;

Parallel ¬�� reduction t ⇒¬�� s if t ⇒β:k s with k=∞ or k>��(t).

As usual, easy inductions show that →β=→�� ∪ →¬�� and →¬��⊆⇒¬��⊆→∗
¬��.

Proposition 23 (Least level properties). Let t be a term.

1. Computational meaning of ��: ��(t) = inf{k ∈ N | t →β:k u for some term u}.
2. Monotonicity: if t →β s then ��(s) ≥ ��(t).
3. Invariance by →¬��: if t →¬�� s then ��(s) = ��(t).

Point 1 captures the meaning of the least level, and gives fullness of →��. In
particular, ��(t) = ∞ if and only if t is →β-normal, since inf ∅ = ∞. Monotonic-
ity states that β steps cannot decrease the least level. Invariance by →¬�� says
that →¬�� cannot change the least level. Essentially, this is persistence.

Proposition 24 (�� essential properties)

1. Fullness: if t →β s then t →�� u for some u.
2. Persistence: if t →�� s1 and t →¬�� s2 then s2 →�� u for some u.
3. Diamond: if s ��← · →�� u with s 	= u then s →�� · ��← u.

As for �o, merge needs persistence, or, more precisely, invariance by →¬��.

Proposition 25 (�� macro-step system)

1. Merge: if t ⇒¬�� s →�� u, then t ⇒β u.
2. Indexed split: if t

n⇒β s then t ⇒¬�� s, or n > 0 and t →�� · n−1⇒β s.
3. Split: if t ⇒β s then t →∗

�� · ⇒¬�� s.

That is, (Λ, {→��,→¬��}) is a macro-step system with respect to ⇒β and ⇒¬��.

Theorem 26

1. �� factorization: if t →∗
β u then t →∗

�� · →∗
¬�� u.

2. �� normalization: →�� is a normalizing reduction for →β.
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�� split and �o vs. ��. As for �o reduction, left substitutivity does not hold
for →��. Consider t = x(Iy) →�� xy = t′ where the step has level 1, and
t{x�λz.zz} = (λz.zz)(Iy) 	→�� (λz.zz)y = t′{x�λz.zz} since now there also
is a step (λz.zz)(Iy) →�� (Iy)(Iy) at level 0.

Moreover, �� and �o reductions are incomparable. First, note that →�� but
	→�o: t = (λx.II)y →�� (λx.I)y = s, because t →β:0 (λx.I)y and ��(t) = 0,
but t 	→�o s, indeed t →�o II. This fact also shows that →�� is not left–
outer in the sense of van Oostrom and Toyama [22]. Second, →�o but 	→��:
t = x(x(II))(II) →�o x(xI)(II) = s but t 	→�� s, indeed t →¬�� s because
t →β:2 s and ��(t) = 1, and t →�� x(x(II))I 	= s.

9 Conclusions

We provide simple proof techniques for factorization and normalization theorems
in the λ-calculus, simplifying Takahashi’s parallel method [28], extending its
scope and making it more abstract at the same time.

About the use of parallel reduction, Takahashi claims: “once the idea is stated
properly, the essential part of the proof is almost over, because the inductive ver-
ification of the statement is easy, even mechanical” [28, p. 122]. Our work rein-
forces this point of view, as our case studies smoothly follow the abstract schema.

Range of Application. We apply our method for factorization and normalization
to two notions of reductions that compute full normal forms:

– the classic example of �o reduction, covered also by the recent techniques by
Hirokawa, Middeldorp and Moser [12] and van Oostrom and Toyama [22];

– �� reduction, which is out of the scope of [12,22] because it is neither deter-
ministic (as required by [12]), nor left–outer in the sense of [22] (as pointed
out here in Sect. 8).

Our approach naturally covers also reductions that do not compute full nor-
mal forms, such as head and weak CbV reductions. These results are out of reach
for van Oostrom and Toyama’s technique [22], as they clarify in their conclusions.

Because of the minimality of our assumptions, we believe that our method
applies to a large variety of other cases and variants of the λ-calculus.

Acknowledgments. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1
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Abstract. We present new proofs—formalized in the Coq proof
assistant—of the correspondence among call-by-need and (various defini-
tions of) call-by-name evaluations of λ-calculus with mutually recursive
bindings.

For non-strict languages, the equivalence between high-level speci-
fications (call-by-name) and typical implementations (call-by-need) is
of foundational interest. A particular milestone is Launchbury’s natu-
ral semantics of call-by-need evaluation and proof of its adequacy with
respect to call-by-name denotational semantics, which are recently for-
malized in Isabelle/HOL by Breitner (2018). Equational theory by Ariola
et al. is another well-known formalization of call-by-need. Mutual recur-
sion is especially challenging for their theory: reduction is complicated
by the traversal of dependency (the “need” relation), and the correspon-
dence of call-by-name and call-by-need reductions becomes non-trivial,
requiring sophisticated structures such as graphs or infinite trees.

In this paper, we give arguably simpler proofs solely based on (finite)
terms and operational semantics, which are easier to handle for proof
assistants (Coq in our case). Our proofs can be summarized as follows:
(1) we prove the equivalence between Launchbury’s call-by-need seman-
tics and heap-based call-by-name natural semantics, where we define a
sufficiently (but not too) general correspondence between the two heaps,
and (2) we also show the correspondence among three styles of call-by-
name semantics: (i) the natural semantics used in (1); (ii) closure-based
natural semantics that informally corresponds to Launchbury’s denota-
tional semantics; and (iii) conventional substitution-based semantics.

1 Introduction

Church proposed λ-calculus with substitution-based reduction which takes place
anywhere, including the inside of λ-abstractions [10, pp. 347–348]. The call-by-
name evaluation strategy, whose origin dates back to ALGOL 60, has been
recognized as a theoretical foundation of non-strict languages [1,25]. Meanwhile,
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the call-by-need strategy [31], which memoizes values of function arguments, is
adopted by typical implementations. Correspondence between the two strategies
has thus been of natural interest for non-strict languages. Launchbury’s natural
semantics [19] and the equational theories of Ariola and Felleisen [3] and Maraist
et al. [21] are representative previous research on this topic. The former showed
the adequacy of his natural semantics with respect to call-by-name denotational
semantics. This proof is recently formalized [7] in Isabelle/HOL. The latter two
works proved the correspondence—based on term graphs—between call-by-name
and (their definition of) call-by-need reductions. However, mutual recursion was
challenging for their formalism [3, section 8].

In this paper, we give new proofs of the correspondence among call-by-need
and call-by-name evaluations, and formalize them in the proof assistant Coq.
Our proofs are arguably simpler in that they are solely based on syntactic terms
and operational semantics. Our proofs consist of the following three correspon-
dences: (1) the correspondence between (a variant of) Launchbury’s call-by-need
natural semantics and heap-based call-by-name natural semantics, where we
define a sufficiently general but simple correspondence between the two heaps
without using induction or coinduction; (2) between heap-based and closure-
based natural semantics of call-by-name, based on possibly recursive (but still
syntactic) environments, which informally corresponds to Launchbury’s denota-
tional semantics; and (3) between heap-based and substitution-based semantics
of call-by-name, by technical but natural correspondence between terms which
distinguishes bindings introduced by function applications and by let. We note
that, although all of these proofs are based on natural (big-step) semantics, our
mechanical formalization partly adopted small-step reductions (with formal cor-
respondence proofs between the two styles of operational semantics) to avoid an
ad hoc restriction on coinductive proofs in Coq.

Structure of the Paper. In Sect. 2, we define the syntax of our target language—
λ-calculus with mutually recursive bindings—as well as its call-by-need and
call-by-name natural semantics. Section 3 outlines our correspondence proofs.
Section 4 describes notable points for their mechanical formalization in Coq,
Sect. 5 discusses related work, and Sect. 6 concludes with future work.

2 Target Language

2.1 Syntax

The syntax of our λ-calculus with mutual recursion is defined in Fig. 1. Note that
unlike Launchbury’s definition [19, section 3.1], the syntax is not normalized to
a restricted form, that is, function arguments are not necessarily thunk locations
and can be general terms. We use de Bruijn indices [8] for the representation of
bindings. The indices introduced by let-bindings are deterministically numbered
left-to-right. Unlike the locally nameless representation [9], free variables are
also indicated by de Bruijn indices (of environments, in Subsect. 2.3). Note that
locations (representation of memory addresses; see [27, chapter 13] for example)
of thunks are distinguished from variables.
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Fig. 1. The syntax of λ-calculus with mutually recursive bindings

Fig. 2. Evaluation rules for our variant of Launchbury’s natural semantics

2.2 Heap-Based Natural Semantics for Call-by-Need and
Call-by-Name

The evaluation rules for our variant of Launchbury’s call-by-need natural seman-
tics are shown in Fig. 2. This semantics consist of inductively defined quaternary
relation 〈H〉 e ⇓d 〈H ′〉 v (the term e under heap H evaluates to v together with
the modified heap H ′) as well as coinductively defined binary relation 〈H〉 e ⇑d

(the term e under heap H diverges when evaluated). We use subscripts d and
m to distinguish call-by-need and call-by-name evaluations. Unlike his original
definition [19], we use the latter, coinductive big-step operational semantics [20]
to distinguish divergence and stuck state. (Although Sestoft’s small-step opera-
tional semantics [29] can also separate divergence and stuck state, it is abstract-
machine-based rather than structural.)

For simplicity of mechanical formalization (in Coq), we define heaps H by
sequences of terms e. We write |e| for the length of e. The expression H.l denotes
the l-th element (numbered from 0) of the sequence H. We write H[l �→ v]
for H where the l-th item is replaced with v. The sequence H, e denotes the
concatenation of H and e, while e[x �→ e′] denotes capture-avoiding substitution
of e′ for each free occurrence of x in e. The expression e[∀x �→ e′

x] denotes
capture-avoiding parallel substitution of e′

x for each free variable x in e. It is
naturally extended for sequences e[∀x �→ e′

x].
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The evaluation rule for locations (the first rule of Fig. 2) implements the
essence of call-by-need: when the content e of the thunk H1.l assigned to the
location l needs to be evaluated, the thunk is updated with the (syntactic) value
v of e, that is, the heap H2 after the evaluation is modified to H2[l �→ v]. We omit
Launchbury’s trick (called “black-hole” [19]) that explicitly detects certain non-
terminating evaluations in finite time, since it does not affect the correspondence
of call-by-need to call-by-name.

For example, assuming integer arithmetic and using standard notation
instead of de Bruijn indices, we have 〈〉 let y = (λx. x + x) (1 + 2) in y + y ⇓d

〈l1 �→ 6, l2 �→ 3〉 12 (since the thunk l1 for y is allocated before the thunk l2 for
x).

We note that syntactic values are obviously normal forms:

Lemma 1. For any heap H, we have 〈H〉 v ⇓d 〈H〉 v, while 〈H〉 v ⇑d does not
hold.

Proof. By case analysis of the value v. 	

A similar lemma will also hold for call-by-name.

The call-by-name version of the above natural semantics is obtained from
Fig. 2 by replacing ⇓d with ⇓m and the location rule with the following

H1.l = e 〈H1〉 e ⇓m 〈H2〉 v

〈H1〉 loc l ⇓m 〈H2〉 v

whereas 〈H〉 e ⇑m is obtained just by replacing ⇑d with ⇑m and ⇓d with ⇓m. For
instance, the previous example is evaluated like 〈〉 let y = (λx. x + x) (1 +
2) in y + y ⇓m 〈l1 �→ (λx. x + x) (1 + 2), l2 �→ 1 + 2, l′2 �→ 1 + 2〉 12, where the
subterm 1 + 2 is computed 2 × 2 = 4 times in total.

The above modification leads the following property:

Lemma 2 (monotonic increase of heap). If 〈H〉 e ⇓m 〈H ′〉 v then H ⊆ H ′

(that is, H is a prefix of H ′).

Proof. By straightforward induction on the derivation of 〈H〉 e ⇓m 〈H ′〉 v. 	

Note that, under call-by-need evaluation, the size |H| of the heap H increases
monotonically as well, but its contents may be changed by thunk updates.

We will also use the fact that call-by-name evaluation is deterministic thanks
to left-to-right thunk allocation (as in the concatination (H1, e[∀x �→ loc (|H1|+
x)]) in the evaluation rule for let e in e):

Lemma 3 (determinacy of heap-based call-by-name evaluation).

1. If 〈H〉 e ⇓m 〈H ′〉 v and 〈H〉 e ⇓m 〈H ′′〉 v′, then H ′ = H ′′ and v = v′.
2. For any H, H ′, e, and v, we have at most one of 〈H〉 e ⇓m 〈H ′〉 v or 〈H〉 e ⇑m.

Proof. By straightforward inductions on the derivation of 〈H〉 e ⇓m 〈H ′〉 v. 	
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Fig. 3. The syntax of environments

Similar lemmas hold for call-by-need and other call-by-name evaluations.
Although we could actually do without determinacy, it is convenient for sim-
plifying the correspondence proofs.

We will show in Sect. 3 that the above call-by-need and call-by-name seman-
tics correspond to each other.

2.3 Closure-Based Natural Semantics for Call-by-Name

The previous heap-based natural semantics is just one (not so standard) style
of formalization of call-by-name evaluation. We define a higher-level alternative
natural semantics, which informally corresponds to Launchbury’s denotational
semantics [19, section 5.2.1], based on environments and closures. An environ-
ment is essentially a partial function associating free variables to their semantic
values. Our semantic values are closures [18], that is, pairs of an environment
and a (possibly open) term.

We define the syntax of environments as in Fig. 3. The meaning of environ-
ment E is given by the following partial function E(x) which returns the x-th
(semantic) value of E.

ε(x) = undefined

(c::E)(x) =
{

c (x = 0)
E(x − 1) (x > 0)

((μ.e) ++ E)(x) =
{
cls((μ.e) ++ E, e.x) (x < |e|)
E(x − |e|) (x ≥ |e|)

Note that the environment (μ.e) ++ E informally corresponds to the semantic
recursive function μE′. (x1 �→ [[e1]]E′ · · · xn �→ [[en]]E′)
E (cf. [19, section 5.2.1]).

We show the closure-based evaluation rules in Fig. 4. The inductively defined
ternary relation {E}e ⇓m c means that the term e in the environment E evaluates
to closure c, and the coinductively defined binary relation {E}e ⇑m that the
evaluation does not terminate.

2.4 Substitution-Based Natural Semantics for Call-by-Name

Finally, we define a call-by-name semantics in the most conventional style since
Church [10]: substitution. Although conventional substitution-based semantics
of λ-calculus are usually small-step, we adopt big-step semantics since its corre-
spondence to previous natural semantics is simpler.

The substitution-based evaluation rules for call-by-name are shown in Fig. 5.
This natural semantics is almost straightforward except the rules for let-
expressions, where we duplicate the mutually recursive bindings when they
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Fig. 4. Closure-based natural semantics for call-by-name

Fig. 5. Substitution-based natural semantics for call-by-name

are unfolded: for instance, let var 1,var 0 in app (var 0) (var 1), which is
let x = y, y = x in x y in usual notation, is expanded to app (let var 1,
var 0 in var 1) (let var 1,var 0 in var 0), which is (let x = y, y =
x in y) (let x = y, y = x in x).

3 Outline of Our Proofs

We now outline our proofs of the correspondence among call-by-need and call-by-
name evaluations. The correspondence proofs are threefold: (1) correspondence
between heap-based call-by-need and (also heap-based) call-by-name natural
semantics, (2) between the heap-based and closure-based call-by-name natural
semantics, and (3) between heap-based and substitution-based natural semantics
for call-by-name. We recall that (1) the heap-based call-by-name semantics is
convenient for proving the correspondence with call-by-need, (2) the closure-
based natural semantics informally corresponds to Launchbury’s denotational
semantics, and (3) the substitution-based semantics is (a big-step version of)
traditional evaluation in λ-calculus (in Sect. 4, we also prove the correspondence
with small-step substitution-based semantics), thus proving all the three styles
of call-by-name semantics.
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3.1 Correspondence Between Heap-Based Call-by-Need and
Call-by-Name Evaluations

In this subsection, we show the correspondence between heap-based call-by-need
and call-by-name evaluations, that is:

If the heap-based call-by-need evaluation ⇓d of a term e under an empty
heap 〈〉 halts, like 〈〉 e ⇓d 〈H ′

1〉 v1, then its heap-based call-by-name evalu-
ation ⇓m also halts, like 〈〉 e ⇓m 〈H ′

2〉 v2, and vice versa. Furthermore, the
results 〈H ′

1〉v1 and 〈H ′
2〉v2 “correspond” to each other.

We aim to prove the above main theorem by induction on the derivation of the
evaluations. As is often the case with any inductive proof, we need to general-
ize its statement for evaluations 〈H1〉e ⇓d and 〈H2〉e ⇓m under non-empty and
“corresponding” heaps H1 and H2. Moreover, we naturally have to consider eval-
uations of not necessarily the same, but “corresponding” terms e1 and e2, like
〈H1〉e1 ⇓d and 〈H2〉e2 ⇓m. What is then the sufficiently general “correspondence”
between the heap-term pairs 〈H1〉e1 and 〈H2〉e2?

First Try. Naively, one might consider an overly general correspondence, coin-
ductively defined as a compatibility (context-preserving relation) satisfying:

〈H1〉H1.l1 ∼ 〈H2〉H2.l2

〈H1〉loc l1 ∼ 〈H2〉loc l2

〈H1〉 e1 ⇓d 〈H ′
1〉 v1 〈H2〉 e2 ⇓m 〈H ′

2〉 v2 〈H ′
1〉v1 ∼ 〈H ′

2〉v2
〈H1〉e1 ∼ 〈H2〉e2

However, this definition is too inconvenient: for example, monotonicity with
respect to heap extension is hard to prove.

Second Try. To find a more specific definition of correspondence, let us consider
the call-by-name and call-by-need evaluations of

let x = (let y = 1 + 2, z = z in y) in x + x

for instance. Here we use the usual syntax based on variable names rather than
de Bruijn indices, as well as arithmetic expressions. To evaluate the above term
under an empty heap 〈〉, we shall evaluate

〈l1 �→ let y = 1 + 2, z = z in y〉 l1 + l1

both in call-by-need and in call-by-name. By substituting the first occurrence of
l1, we obtain

〈l1 �→ let y = 1 + 2, z = z in y〉 (let y = 1 + 2, z = z in y) + l1

and then:

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3〉 l2 + l1
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By substituting l2, we have

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3〉 (1 + 2) + l1

and, by evaluating 1 + 2,

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3〉 3 + l1

Now, in call-by-need, the content 1 + 2 of the location l2 is updated to its
value 3

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 3, l3 �→ l3〉 3 + l1

and similarly for l1,
〈l1 �→ 3, l2 �→ 3, l3 �→ l3〉 3 + l1.

The value of l1 is then reused

〈l1 �→ 3, l2 �→ 3, l3 �→ l3〉 3 + 3

and thus:
〈l1 �→ 3, l2 �→ 3, l3 �→ l3〉 6

On the other hand, in call-by-name, no such updates occur

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3〉 3 + l1

and the evaluations of l1 and l2 are repeated, like

〈l1 �→ let y = 1+2, z = z in y, l2 �→ 1+2, l3 �→ l3〉 3+(let y = 1+2, z = z in y)

and

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3, l
′
2 �→ 1 + 2, l′3 �→ l′3〉 3 + l′2

for l1, and

〈l1 �→ let y = 1+2, z = z in y, l2 �→ 1+2, l3 �→ l3, l
′
2 �→ 1+2, l′3 �→ l′3〉 3+(1+2)

and

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3, l
′
2 �→ 1 + 2, l′3 �→ l′3〉 3 + 3

for the copy l′2 of l2, giving:

〈l1 �→ let y = 1 + 2, z = z in y, l2 �→ 1 + 2, l3 �→ l3, l
′
2 �→ 1 + 2, l′3 �→ l′3〉 6

These evaluations lead us to the following three observations: (1) there is
some correspondence between the call-by-need and call-by-name heaps; (2) the
correspondence, however, is not one-to-one but one-to-many, like {(l2, l2), (l2, l′2)}
and {(l3, l3), (l3, l′3)}; and (3) the contents of the corresponding locations are
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Fig. 6. The correspondence of terms for heap-based natural semantics

either the same (up to multiple call-by-name locations corresponding to a call-
by-need location, like l2 and l′2 to l2, and l3 and l′3 to l3), or else (re-)evaluating
the contents of the call-by-name heap gives the same value as the call-by-need
heap.

Based on these observations, we could define the correspondence H1 ≤R H2

between the call-by-need heap H1 and call-by-name H2 under the one-to-many
correspondence R between their locations, by coinduction as follows (where ∼R

is the equality of terms modulo R, in Fig. 6):

For all (l1, l2) ∈ R, either H1.l1 ∼R H2.l2 or
∃R′ ⊇ R. ∃H ′

2, v2. 〈H2〉 H2.l2 ⇓m 〈H ′
2〉 v2 ∧ (H1 ≤R′ H ′

2) ∧ (H1.l1 ∼R′ v2)
H1 ≤R H2

Here the location correspondence R′ is extended from R as the heap H ′
2 is

extended from H2 by allocations during the (re-)evaluation of H2.l2. However
again, such a coinductive definition is still inconvenient (when proving that it is
preserved by heap updates, for example).

Our Solution. To avoid such a coinductive definition as above, we actually adopt
the following definition

Definition 1 (lazy correspondence of heaps). H1 ≤R H2 iff for all
(l1, l2) ∈ R, either H1.l1 ∼R H2.l2 or ∃S,H ′

2, v2. 〈H2〉 H2.l2 ⇓m 〈H ′
2〉 v2∧(H2 ∼S

H ′
2) ∧ (H1.l1 ∼(R◦S)∪R v2) ∧ (∀l′2. (l1, l′2) ∈ R =⇒ H2.l2 ∼R−1◦R H2.l

′
2).

with an auxiliary definition:

Definition 2 (homomorphic heaps). H ∼R H ′ iff ∀(l, l′) ∈ R. H.l ∼R H ′.l′.

The fundamental difference from the previous coinductive definition is that,
instead of the extended location correspondence R′ and the coinductive occur-
rence of ≤R′ , we consider only the increased part S of the correspondence, under
which the increased heap H ′

2 is homomorphic to the original H2 and the value
v2 recomputed in call-by-name corresponds to the value H1.l1 already memoized
in call-by-need.

Moreover, the condition ∀l′2. (l1, l′2) ∈ R =⇒ H2.l2 ∼R−1◦R H2.l
′
2 in Defini-

tion 1 ensures that the contents of “equivalent” call-by-name locations (that is,
locations corresponding to a common call-by-need location) are always equiva-
lent (that is, the same if we identify equivalent locations). Indeed, this condition
always holds for any call-by-name heap corresponding to a call-by-need heap:
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Lemma 4. If H1 ≤R H2 then H2 ∼R−1◦R H2.

Proof. Straightforward by following the definitions of H1 ≤R H2 and H2 ∼R−1◦R
H2.

The binary relation R−1◦R means “going back and forth” along R, that is, pairs
of call-by-name locations which correspond to a common call-by-need location.
Thus H2 ∼R−1◦R H2 implies the contents of equivalent locations in the call-by-
name heap H are equivalent.

We check the following basic properties of ∼ for terms and heaps.

Lemma 5. 1. If e ∼R e′ then e′ ∼R−1 e.
2. If e ∼R e′ and e′ ∼S e′′, then e ∼R◦S e′′.
3. If R ⊆ S and e ∼R e′, then e ∼S e′.

Proof. By inductions on the derivation of e ∼R e′. 	

Lemma 6. 1. If H ∼R H ′ then H ′ ∼R−1 H.
2. If H ∼R H ′ and H ′ ∼S H ′′, then H ∼R◦S H ′′.
3. If H1 ∼R H2, H1 ⊆ H ′

1, and H2 ⊆ H ′
2, then H ′

1 ∼R H ′
2.

Proof. Clear from basic properties of the correspondence over terms. 	

Furthermore, call-by-name evaluations are preserved by the correspondence of
locations:

Lemma 7 (conversion of call-by-name evaluation).
If 〈H1〉 e1 ⇓m 〈H ′

1〉 v1 with H1 ∼R H2 and e1 ∼R e2, then 〈H2〉 e2 ⇓m 〈H ′
2〉 v2 with

H ′
1 ∼R′ H ′

2 and v1 ∼R′ v2 for some R′ ⊇ R, H ′
2, and v2.

Proof. By induction on the derivation of 〈H1〉 e1 ⇓m 〈H ′
1〉 v1. 	


The preservation of call-by-name evaluation leads to the following composition
property of heap homomorphism and lazy correspondence of heaps.

Lemma 8. If H1 ≤R H2, H2 ∼S H ′
2, and H2 ⊆ H ′

2, then H1 ≤(R◦S)∪R H ′
2.

Proof. By Lemma 7 and the definition of H1 ≤R H2. 	

Note that, by applying this lemma to Definition 1 (with Lemma 2), we obtain the
same premise H1 ≤R′ H ′

2 (with R′ = (R ◦ S) ∪R) as in the previous coinductive
definition of H1 ≤R H2, allowing the same inversion principle.

Now we are ready to establish the correspondence between heap-based call-
by-name and call-by-need evaluations. Our goal is generalized and divided into
the following four theorems. The first theorem means that, if call-by-need eval-
uation converges to a value, call-by-name evaluation of a corresponding (heap
and) term also converges and gives a corresponding value.

Theorem 1 (call-by-need ⇒ call-by-name convergence). If 〈H1〉 e1 ⇓d

〈H ′
1〉 v1 with H1 ≤R H2 and e1 ∼R e2, then 〈H2〉 e2 ⇓m 〈H ′

2〉 v2 with H ′
1 ≤R′ H ′

2

and v1 ∼R′ v2 for some R′ ⊇ R, H ′
2, and v2.
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Proof Outline. By induction on the derivation of 〈H1〉 e1 ⇓d 〈H ′
1〉 v1. The essen-

tial case is evaluation of locations, that is, when e1 = loc l1 and e2 = loc l2.

〈H1〉 H1.l1 ⇓d 〈H ′′
1 〉 v1

〈H1〉 loc l1 ⇓d 〈H ′′
1 [l1 �→ v1]〉 v1

Here H ′′
1 [l1 �→ v1] = H ′

1. From H1 ≤R H2, we have two subcases.

Subcase: H1.l1 ∼R H2.l2. Intuitively, this subcase corresponds to thunk update.

We have
〈H2〉 H2.l2 ⇓m 〈H ′

2〉 v2
〈H2〉 loc l2 ⇓m 〈H ′

2〉 v2
. To show H ′′

1 [l1 �→ v1] ≤R′ H ′
2 by (the latter half

of) Definition 1 (lazy correspondence of heaps), we use the induction hypothesis
and apply Lemma 7 (conversion of call-by-name evaluation) to 〈H2〉 H2.l2 ⇓m

〈H ′
2〉 v2 with H2 ∼(R−1◦R)◦(R′−1◦R′) H ′

2 (which follows from H1 ≤R H2 and
H ′′

1 ≤R′ H ′
2 with Lemmas 4, 6.2, and 6.3) to obtain 〈H ′

2〉 H2.l
′
2 ⇓m 〈H ′′

2 〉 v′
2 with

H ′
2 ∼S H ′′

2 and v2 ∼S v′
2 for some S ⊇ (R−1 ◦ R) ◦ (R′−1 ◦ R′).

Subcase: 〈H2〉 H2.l2 ⇓m 〈H ′
2〉 v2, H2 ∼S H ′

2, H1.l1 ∼(R◦S)∪R v2. This corresponds
to reevaluation of H2.l2. From H1.l1 ∼R◦S v2, we know that H1.l1 is a value.
Furthermore, from 〈H1〉 H1.l1 ⇓d 〈H ′′

1 〉 v1 and the determinacy of call-by-need
evaluation, we also know H1.l1 = v1. Thus, the thunk update is idempotent,
that is, H ′′

1 [l1 �→ v1] = H ′′
1 . The correspondence H1 ≤(R◦S)∪R H ′

2 is shown by
Lemma 8 with H1 ≤R H2, H2 ∼S H ′

2, and Lemma 2. 	

The second theorem states that, if call-by-need evaluation diverges, then call-by-
name evaluation of a corresponding (heap and) term also diverges. Recall that
an evaluation either converges to a value, diverges, or neither (“gets stuck”).

Theorem 2 (call-by-need ⇒ call-by-name divergence). If 〈H1〉 e1 ⇑d with
H1 ≤R H2 and e1 ∼R e2, then 〈H2〉 e2 ⇑m.

Proof Outline. By straightforward coinduction. We note that Theorem1 is
required in the case e1 = app e11 e12, e2 = app e21 e22, and 〈H1〉 e11 ⇓d

〈H ′
1〉abs e10. 	


The third theorem is the converse of Theorem 1: if call-by-name evaluation con-
verges to a value, call-by-need evaluation of a corresponding (heap and) term
also converges and gives a corresponding value.

Theorem 3 (call-by-name ⇒ call-by-need convergence). If 〈H2〉 e2 ⇓m

〈H ′
2〉 v2 with H1 ≤R H2 and e1 ∼R e2, then 〈H1〉 e1 ⇓d 〈H ′

1〉 v1 with H ′
1 ≤R′ H ′

2

and v1 ∼R′ v2 for some R′ ⊇ R, H ′
2, v2.

Proof Outline. By induction on the derivation of 〈H1〉 e1 ⇓d 〈H ′
1〉 v1. Surpris-

ingly, most cases except reevaluation are the same as in Theorem 1. For the case
of reevaluation, let e1 = loc l1, e2 = loc l2, 〈H2〉 H2.l2 ⇓m 〈H ′

2〉 v2, H2 ∼S H ′
2,

and H1.l1 ∼(R◦S)∪R v2. Since H1.l1 is a value (as H1.l1 ∼(R◦S)∪R v2), we have
〈H1〉 H1.l1 ⇓d 〈H1〉 H1.l1 by Lemma 1. Similarly to the case of Theorem 1, we
obtain H1 ≤(R◦S)∪R H ′

2 by composing H1 ≤R H2 and H2 ∼S H ′
2. 	
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Fig. 7. The correspondence of terms for closure-based natural semantics

The last theorem in this subsection is the converse of Theorem 2: if call-by-name
evaluation diverges, call-by-need evaluation of a corresponding (heap and) term
also diverges.

Theorem 4 (call-by-name ⇒ call-by-need divergence). If 〈H2〉 e2 ⇑m with
H1 ≤R H2 and e1 ∼R e2, then 〈H1〉 e1 ⇑d.

Proof Outline. Similar to Theorem 2 (using Theorem 3) because ⇑m is defined
just by replacing ⇑d with ⇑m and ⇓d with ⇓m in the second half of Fig. 2. 	


3.2 Correspondence Between Heap-Based and Closure-Based
Call-by-Name Evaluations

In the previous subsection, we showed the correspondence between heap-based
call-by-need evaluation and heap-based call-by-name evaluation. We now show
the correspondence between heap-based call-by-name evaluation and closure-
based call-by-name evaluation, that is:

If the heap-based call-by-name evaluation of a term e under an empty heap
〈〉 halts, like 〈〉 e ⇓m 〈H ′〉 v, then its closure-based call-by-name evaluation
under an empty environment ε also halts, like {ε}e ⇓m c, and vice versa.
Furthermore, the results 〈H ′〉v and c correspond to each other.

Consequently, we obtain the correspondence between heap-based call-by-need
and closure-based call-by-name evaluations. Similarly to the previous subsection,
we generalize the above statement for evaluations 〈H〉e1 ⇓m and {E}e2 ⇓m of
corresponding terms e1 and e2 under corresponding heap H and environment E.

To find an appropriate definition of correspondence, let us consider the heap-
based and closure-based call-by-name evaluations of let var 0,abs (var 1) in
var 1 (which is let x = x, y = λz. x in y in usual notation). We have the heap-
based evaluation

〈〉 let var 0,abs (var 1) in var 1 ⇓m 〈l1 �→ loc l1, l2 �→ abs (loc l1)〉abs (loc l1)
and closure-based evaluation

{ε}let var 0, abs (var 1) in var 1 ⇓m cls((μ. var 0,abs (var 1)) ++ ε, abs (var 1))

where the result of the latter is the closure consisting of the environment
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(μ. var 0, abs (var 1)) ++ ε and the (syntactic) value abs (var 1). Recall that
the closure is recursive (see Subsect. 2.3): let E be (μ. var 0,abs (var 1)) ++ ε;
then E(0) = cls(E, var 0) and E(1) = cls(E, abs (var 1)). From the above
evaluations, we observe that: (1) there is a correspondence between the heap
and the recursive environment, requiring some form of coinductive definition;
(2) the domain and contents of the corresponding heap and environment are
also corresponding.

We thus coinductively define the correspondence H ≤R E between the heap
H and the environment E, under the correspondence R between the locations
and variables in the domain of H and E.

For all (l, x) ∈ R, ∃R′, E′, e. H.l ∼0
R′ e ∧ E(x) = cls(E′, e) ∧ H ≤R′ E′

H ≤R E

Here e1 ∼0
R e2 is the correspondence of terms e1 and e2 under R (Fig. 7).

Intuitively, this rule means that, for any location l and variable x corre-
sponding in R, the contents H.l of the heap H and the term part e of the
closure cls(E′, e) obtained from E(x)—as well as H and the environment part
E′ of E(x)—are corresponding under some R′. Note that the environment E′

(hence resp. R′) may be different from E (resp. R). Unlike the correspondence of
heaps in the previous subsection, coinduction is not problematic because heaps
and environments are immutable in call-by-name evaluations (while call-by-need
heaps are destructively updated).

The correspondence e1 ∼n
R e2 (Fig. 7) of terms is indexed by an integer n ≥ 0

to distinguish indices of bound variables (x < n, as in the top-left rule) and free
variables (x ≥ n as in the bottom-left), adjusted in the rules for binders (abs
and let).

Now we prove the correspondence between heap-based and closure-based
call-by-name evaluations as four theorems, like the previous subsection.

Theorem 5 (heap-based ⇒ closure-based convergence). If 〈H〉 e1 ⇓m

〈H ′〉 v1 with H ≤R E and e1 ∼0
R e2, then {E}e2 ⇓m cls(E′, v2) with H ′ ≤R′ E′

and v1 ∼0
R′ v2 for some R′, E′, and v2.

Proof Outline. By induction on the derivation of 〈H〉 e1 ⇓m 〈H ′〉 v1. The essential
case is evaluation of let-bindings, that is, when e1 = let e11 in e12 and e2 =
let e21 in e22.

〈H, e11[∀x �→ loc (|H| + x)]〉 e12[∀x �→ loc (|H| + x)] ⇓m 〈H ′〉 v1

〈H〉 let e11 in e12 ⇓m 〈H ′〉 v1

We aim to derive
{(μ. e21) ++ E}e22 ⇓m cls(E′, v2)
{E}let e21 in e22 ⇓m cls(E′, v2)

. To apply the induction

hypothesis, we check (H, e11[∀x loc (|H| + x)]) ≤{(l,x+|e11|)|(l,x)∈R}∪{(|H|+

x,x)|x<|e11|} (μ. e21)++ E, which follows straightforwardly from the above coinduc-

tive definition of ≤. Note that the original correspondence R is shifted by |e11| like
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{(l, x + |e11|)|(l, x) ∈ R} and extended with the newly introduced correspondence
{(|H| + x, x)|x < |e11|}. 	

Theorem 6 (heap-based ⇒ closure-based divergence). If 〈H〉 e1 ⇑m with
H ≤R E and e1 ∼0

R e2, then {E}e2 ⇑m.

Proof Outline. By straightforward coinduction with Theorem5 when the func-
tion part of app converges. 	

Theorem 7 (closure-based ⇒ heap-based convergence). If {E}e2 ⇓m

cls(E′, v2) with H ≤R E and e1 ∼0
R e2, then 〈H〉 e1 ⇓m 〈H ′〉 v1, H ′ ≤R′ E′,

and v1 ∼0
R′ v2 for some R′, H ′, and v.

Proof Outline. By induction on the derivation of {E}e2 ⇓m cls(E′, v2), similar
to Theorem 5. 	

Theorem 8 (closure-based ⇒ heap-based divergence). If {E}e2 ⇑m,
H ≤R E, and e1 ∼0

R e2, then 〈H〉 e1 ⇑m.

Proof Outline. By straightforward coinduction similar to Theorem6. 	

Note that, unlike the correspondence between heap-based call-by-need and
call-by-name semantics, these correspondence proofs between heap-based and
closure-based call-by-name semantics are more “symmetric” and straightforward
since both evaluations are call-by-name and the correspondence between the
heap and the environment is “at most one-to-one” rather than one-to-many.

3.3 Substitution-Based and Heap-Based Call-by-Name Evaluations

Our last main theorem is the correspondence between heap-based and
substitution-based call-by-name evaluations. This time, we define some corre-
spondence of a pair 〈H〉e1 of heap H and term e1, to a term e2 after substitution.

To define an appropriate correspondence, let us consider, for example,
let x = λw. x in (λy. λz. x y) true (assuming the Boolean constant true), whose
de Bruijn index version e is:

let (abs (var 1)) in app (abs (abs (app (var 2) (var 1)))) true

Its heap-based evaluation gives λz. l1 l2 under the heap {l1 �→ λw. l1, l2 �→ true}
〈〉 e ⇓m 〈abs (loc 0), true〉abs (app (loc 0) (loc 1))

while the corresponding substitution-based evaluation is λz. (let x =
λw. x in λw. x) true.

e ⇓m abs (app (let (abs (var 1)) in (abs (var 1))) true)

Note that the variable x (or var 2 in de Bruijn indices) is substituted with
let x = λw. x in λw. x (or let (abs (var 1)) in abs (var 1)).
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Fig. 8. The correspondence of terms for substitution-based natural semantics

Recall that we aim to establish a correspondence between heap-term pairs
and after-substitution terms. Thus: (1) there is a mapping R from heap locations
to terms substituted for variables corresponding to the locations, for example
R = {l1 �→ let x = λw. x in λw. x, l2 �→ true} in the above evaluations; (2) the
recursive binding x of λw.x is expanded to let x = λw. x in λw. x in R for l1;
(3) on the other hand, the non-recursive binding of y to true is put in R for l2
with no such expansion.

Hence we define the correspondence e1 ∼R e2 between terms e1 and e2 under
the mapping R from locations to terms, and aim to prove theorems as in previous
subsections. However, unlike the other semantics, there is no explicit evaluation
rule for variable (or location) dereference in the substitution-based semantics
(recall Fig. 5). As a result, we face difficulties in proving some of the theorems:
specifically, (a) when the heap-based evaluation diverges, we do not immedi-
ately get the divergence of substitution-based evaluation, since the former might
involve an infinite number of location dereferences while the latter does not;
(b) when the substitution-based evaluation converges, we do not immediately
know whether the heap-based evaluation converges, for the same reason. A more
careful observation leads us to the distinction that (i) bindings introduced by
function applications are non-recursive, and therefore their dereferences are finite
(intuitively like administrative reductions in CPS transformation [28] are finite),
while (ii) let-bindings may be recursive and may cause infinite dereferences,
but those dereferences always involve let-expansions in the substitution-based
semantics. We therefore distinguish the two different kinds of bindings in our
correspondence 〈H〉e1 ∼R e2 of heap-based term e1 to substitution-based e2,
as defined in Fig. 8. Here R only accounts for correspondence between loca-
tions and terms substituted for variables introduced by let-bindings, while H
remembers terms bound by function applications as represented by the rule
〈H〉H.l ∼R e2
〈H〉loc l ∼R e2

. Note that the dereference of location l to its contents H.l on

the left-hand side is implicit on the right since the corresponding substitution
was already applied to e2 at the time of function application (that introduced l
on the left-hand side).

Note also the shift operations ↑d on the codomain (terms) of H and R in
the rules for binders (abs and let) in Fig. 8, which increases by d all the free
variables in H and the codomain of R.
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Fig. 9. Heap-based small-step operational semantics for call-by-name

We now prove the four correspondence theorems with the following auxiliary
definition:

Definition 3 (let-only correspondence). We write letR(H) iff for all
(l, e2) ∈ R, ∃e21, e22. e2 = let e21 in e22 ∧ 〈H〉H.l ∼R e22[∀i �→ let e21 in e21.i].

Theorem 9 (heap-based ⇒ substitution-based convergence). If 〈H〉 e1 ⇓m

〈H ′〉 v1 with letR(H) and 〈H〉e1 ∼R e2, then e2 ⇓m v2 with letR′(H ′) and
〈H ′〉v1 ∼R′ v2 for some R′ ⊇ R and v2.

Proof Outline. By straightforward induction on the derivation of 〈H〉 e1 ⇓m

〈H ′〉 v1. 	

Theorem 10 (heap-based ⇒ substitution-based divergence). If 〈H〉 e1 ⇑m

with letR(H) and 〈H〉e1 ∼R e2, then e2 ⇑m.

Proof Outline. By nested induction on the derivation of 〈H〉e1 ∼R e2 inside
coinduction on 〈H〉 e1 ⇑m. The essential cases are evaluation of applications and
locations.

Case: e1 = app e11 e12, e2 = app e21 e22.

〈H〉 e11 ⇓m 〈H ′〉abs e10 〈H ′, e12〉 e10[0 �→ loc |H ′|] ⇑m

〈H〉app e11 e12 ⇑d H ′v

By Theorem 9, we have e21 ⇓m abs e20 with letR′(H ′) and 〈↑1H ′〉e10 ∼↑1R′ e20.
To apply the hypothesis of the outer coinduction, we derive 〈H ′, e12〉e10[0 �→
loc |H ′|] ∼R′ e20[0 �→ e22], which follows from a kind of “substitution lemma”.

Case: e1 = loc l. From 〈H〉e1 ∼R e2, we have two subcases.

Subcase:
〈H〉H.l ∼R e2
〈H〉loc l ∼R e2

. Immediate from the inner induction hypothesis.

Subcase:
(l, e2) ∈ R

〈H〉loc l ∼R e2
. From (l, e2) ∈ R, we have e2 = let e21 in e22 with

〈H〉H.l ∼R e22[∀i �→ let e21 in e21.i]. By the hypothesis of the outer coinduction,

we have the divergence of the let-expanded term:
e22[∀i �→ let e21 in e21.i] ⇑m

let e21 in e22 ⇑m
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Fig. 10. Substitution-based small-step operational semantics for call-by-name

Theorem 11 (substitution-based ⇒ heap-based convergence). If e2 ⇓m

v2 with letR(H) and 〈H〉e1 ∼R e2, then 〈H〉 e1 ⇓m 〈H ′〉 v1 with letR′(H ′) and
〈H〉v1 ∼R v2 for some R′ ⊇ R, H ′, and v2.

Proof Outline. By nested induction on the derivation of 〈H〉e1 ∼R e2 inside
induction on the derivation of e′ ⇓m v′. The essential case, that is, evaluation of
locations, is similar to Theorem 10. 	

Theorem 12 (substitution-based ⇒ heap-based divergence). If e2 ⇑m v2
with letR(H) and 〈H〉e1 ∼R e2, then 〈H〉 e1 ⇑m.

Proof Outline. By straightforward coinduction. 	


4 Formalization in Coq

Our proofs are almost straightforwardly formalized in Coq.1 However, formal-
ization of Theorem 10 (if heap-based call-by-name evaluation diverges, then
substitution-based call-by-name evaluation of the corresponding term also
diverges) is subtle because the syntactic guardedness condition [11,13] of coin-
duction as implemented in Coq—the conclusion must be derived from the
coinduction hypothesis only via (possibly other) coinductive definitions—is too
restrictive for our proof (mixture of coinduction and induction).

To avoid this problem, we take a “detour” using small-step operational
semantics instead of the coinductive definition of divergence. The reduction rules
for heap-based and substitution-based small-step semantics are shown in Figs. 9
and 10. Their correspondences with natural semantics required for our proof are
stated as follows, where →∗

m is the reflexive transitive closure of →m, and e→m

means that there is a substitution-based reduction e →m e′ for some term e′

(〈H〉e→m is similarly defined for heap-based reduction).

Lemma 9 (heap-based big-step ⇒ small-step divergence). If 〈H〉 e ⇑m

and 〈H〉e →∗
m 〈H ′〉e′, then 〈H ′〉e′ →m.

Proof. By induction on the number of steps in 〈H〉e →∗
m 〈H ′〉e′. 	


Lemma 10 (substitution-based small-step ⇒ big-step divergence). If
∀e′. e →∗

m e′ =⇒ e′ →m, then e ⇑m.

1 https://github.com/fetburner/cbn

https://github.com/fetburner/cbn
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Proof. By coinduction and case analysis on e. In the case e = app e1 e2, we
use the law of the excluded middle for ∃e′

1. e1 →∗
m e′

1 ∧ e′
1 �→m and its negation

(requiring Classical in Coq). 	

Note that we also avoid coinductive definition of divergence in the small-step
semantics by considering an arbitrary but finite number of reductions instead of
an infinite sequence of reductions.

Now Theorem 10 is proved without coinduction:

Alternative Proof Outline of Theorem 10. To apply Lemmas 9 and 10, we aim to
derive: if ∀H ′, e′

1. 〈H〉e1 →∗
m 〈H ′〉e′

1 =⇒ 〈H ′〉e′
1 →m and e2 →∗

m e′
2 with 〈H〉e1 ∼R

e2 and letR(H), then e′
2 →m. This property is shown by nested induction on the

derivation of 〈H〉e1 ∼R e2 inside induction on the number of steps in e2 →∗
m

e′
2. Each case is analogous to the original proof of Theorem10 albeit without

coinduction. 	


5 Related Work

While call-by-need is often considered an efficient implementation of call-by-
name and has been discussed via abstract machines such as G-machines (e.g.
[16,26]), Launchbury [19] defined big-step natural semantics, followed by small-
step reduction semantics of Ariola and Felleisen [2] and Maraist et al. [21]. Cor-
respondence of call-by-need and call-by-name semantics has thus been of natural
interest.

In Launchbury [19], applications are restricted to the form e x, that is, the
argument must be a variable. To ensure this convention, preprocessing like K-
normalization [5] is required. This syntactic restriction would simplify our proof
of the correspondence between substitution-based and heap-based call-by-name
evaluations (Subsect. 3.3)—more specifically, bindings by function applications
become trivial—but the correspondence proof between the normalized and origi-
nal terms would anyway require a similar approach to account for administrative
reductions [28].

Launchbury also introduced the notion of a “black-hole” to detect cycles in
heap dereferences, which we have omitted in the present paper. Our evaluation
is probably equivalent to Launchbury’s, as his cycle detection does not actually
affect the result of an evaluation. Such cycle detection may be useful for an
implementation of an interpreter or a compiler to signal an error ⊥, but his
natural semantics cannot anyway distinguish divergence from stuckness (errors)
caused by cycle detection. In contrast, we have defined divergence ⇑d (caused by
cyclic dereferences such as let x = x in x, as well as “real” infinite loops such
as (λx. x x) (λx. x x)) by coinduction, discriminating it from stuckness.

Finally, Launchbury showed the adequacy of his call-by-need evaluation with
respect to call-by-name denotational semantics (via auxiliary, heap-based defini-
tion of call-by-name evaluation). Our closure-based natural semantics informally
corresponds to his denotational semantics (see Subsect. 2.3). The adequacy proof
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between his heap-based call-by-name semantics and denotational semantics is,
in an informal sense, similar to our correspondence between heap-based and
closure-based semantics of call-by-name evaluation. The fixed-point induction in
his adequacy proof is replaced by straightforward coinduction in our proof of
Theorem 5.

Ariola and Felleisen [3, section 8] introduced elaborate call-by-need reduc-
tion for λ-calculus with mutually recursive bindings. Ariola and Blom [2, section
8] defined its non-deterministic variant. The latter also showed the correspon-
dence between their call-by-need and call-by-name reductions. However, their
correspondence proof is based on term graphs, which are hard to formalize in
proof assistants (like Coq in our case). Maraist et al. [21] also defined small-step
reduction for call-by-need λ-calculus, but only without recursive bindings.

Nakata and Hasegawa [23] modified Launchbury’s natural semantics [19] and
small-step semantics by Ariola et al. [3] to handle black-holes explicitly (and
to omit the normalization of terms). In contrast to Launchbury’s, their natu-
ral semantics can distinguish black-holes from stuckness, thanks to the explicit
introduction of • (meaning ⊥) as a special value. Moreover, they proved the ade-
quacy of their small-step semantics with respect to call-by-name denotational
semantics through (the adequacy of) their natural semantics. Their theory of
blackholes may also be incorporated into our operational semantics as well.

Stelle and Stefanovic [30] developed a formally verified compiler for a non-
strict language. They adopt call-by-name semantics for the target language,
while their actual implementation is call-by-need, and thus their formaliza-
tion includes the correspondence between call-by-need and call-by-name eval-
uations. However, their target language does not contain explicit recursion.
Although recursion can be encoded by fixed-point combinators such as Curry’s
Y, such representation destroys sharing. For instance, in the evaluation of
Y (λx. I (λy. x)) I I where I is λx. x, the subterm I (λy. x) is reduced twice, in
contrast to the evaluation of let x = I (λy. x) in x I I.

We [22] mechanically formalized (a variant of) Ariola and Felleisen’s call-
by-need reduction [3] (in Coq). We also gave an alternative proof of the cor-
respondence between call-by-need and call-by-name evaluations, by using the
standardization theorem [12]. However, our target language does not include
explicit recursion, either.

More recently, Hackett and Hutton [14] showed their non-deterministic call-
by-value evaluation corresponds to Launchbury’s call-by-need evaluation. They
also discussed how replacing thunk updates with non-determinism simplifies
operational reasoning, especially cost analysis. Other recent work on call-by-
need evaluation (albeit without explicit recursion) includes Kesner et al. [17].
They proved observational equivalence between call-by-need and (weak-head)
needed reduction [4] (another “oracle-based” semantics of non-strict languages)
using non-idempotent intersection types [6].
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6 Conclusion

We gave arguably simpler proofs, which are easier to formalize in proof assis-
tants such as Coq, of the correspondence among call-by-need and call-by-name
evaluations, solely based on operational semantics.

Our approach may also be applicative for proving the correctness of imple-
mentations of lazy data structures (such as [24, section 6.3.2] and [15, exercise
2.4.3.6] for example). Correspondence to call-by-name (as in [24, section 5.2])
would be similar to the present work, whereas correspondence to call-by-value
(as in [15, section 2.4.3]), assuming convergence, would be somewhat simpler, as
divergence and “reevaluation” (like call-by-name) should be omitted.

As future work, we plan to extend our target language with cycle detection
(black-holes) like Nakata and Hasewaga [23] as well as with data constructors and
pattern matchings (cf. [19, subsection 9.1], [29, section 5]). We conjecture that
our simple proofs scale easily to the latter extension since the only fundamental
difference between call-by-need and call-by-name in (variants or extensions of)
Launchbury’s natural semantics is the evaluation rule for variable dereferences
even if the target language is extended. Moreover, our techniques may also be
applicable for cost analysis of call-by-need evaluations, and verification of com-
pilers (such as GHC) for non-strict languages.
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9. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3),
363–408 (2012)

10. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/BFb0014548


Call-by-Need and Call-by-Name Evaluations with Mutual Recursion 201

11. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

12. Curry, H.B., Feys, R.: Combinatory Logic, Studies in Logic and the Foundations
of Mathematics, vol. 1. North-Holland, Amsterdam (1958)

13. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 3

14. Hackett, J., Hutton, G.: Call-by-need is clairvoyant call-by-value. In: ICFP (2019,
to appear)

15. Halim, S., Halim, F.: Competitive Programming, 3rd edn. Lulu, Morrisville (2013)
16. Johnsson, T.: Efficient compilation of lazy evaluation. In: ACM SIGPLAN Sym-

posium on Compiler Construction, pp. 58–69 (1984)
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Abstract. Program calculation, a programming technique to derive
efficient programs from naive ones by program transformation, is chal-
lenging for program optimization. Tesson et al. have shown that Coq,
a popular proof assistant, provides a cost-effective way to implement a
powerful system for verifying correctness of program transformations,
but their applications are limited to list functions in the Theory of Lists.
In this paper, we propose an easy-to-use Coq library to prove more
advanced calculation rules in Coq for various recursion schemes, which
capture recursive programs on an arbitrary algebraic datatype. We prove
all the lemmas and theorems about recursion schemes in Coq includ-
ing histomorphisms and futumorphisms proposed by Uustalu et al. Our
library can be used to obtain certified runnable programs from their def-
initions written with recursion schemes in Coq scripts. We demonstrate
a certified runnable program for the Fibonacci numbers and unbounded
knapsack problem from their histomorphic definitions.

Keywords: Program calculation · Functional programming ·
Recursion schemes · Coq

1 Introduction

Naive programs tend to be easy to implement but are often inefficient. In con-
trast, efficient programs require difficult programming techniques. Achieving
both “program efficiency” and “ease of implementation” is an important chal-
lenge in the study of programming.

Program calculation [1,2,11,17,18] is a technique to derive highly technical
and efficient programs from simple and inefficient programs. This technique uses
many transformation rules, such as the map-map fusion law:

map g ◦ map f = map (g ◦ f), (1)

where map is the higher-order function that applies a given function to each
element of a given list: map f [a1, . . . , an] = [f a1, . . . , f an]. Applying the map-
map fusion law to transform a program can make the resulting program faster.

The aim of this study is to verify the “correctness” of program calculations.
This “correctness” consists of both the correctness of the transformation rules
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themselves and their correct application. The ultimate purpose of this study is
to establish a method for verifying these aspects.

Coq [16], an interactive theorem prover, is a good choice for certified pro-
grams. Coq has the Gallina language, which is a typed functional language to
write programs. One can write programs in Gallina and prove properties about
them.

Tesson et al. [15] designed a tactic library for program calculation in Coq.
Their library provides tactic notations for writing Coq scripts in the “chains of
equality” style, which is a common notation in program calculation. This tactic
library allows users to write Coq proof scripts that are almost the same as hand-
written proofs. They also formalized the Theory of Lists [1], which provides a
set of calculation rules for list-functions based on the Bird-Meertens Formalism
(BMF).

Functional programmers like to use several algebraic datatypes (ADTs) such
as natural numbers and trees. Tesson et al. focused only on functions on
lists, but a novel framework for program calculation has to support several
ADTs. Fortunately, several studies have proposed calculation rules for arbi-
trary ADTs [11,17,18]. In this paper, we call such rules “datatype-generic rules.”
Datatype-generic rules are stated with terminology of basic category theory: ini-
tial algebras and terminal coalgebras for modeling ADTs and recursion schemes,
such as catamorphism, anamorphism, and paramorphism for modeling programs
recursively defined on arbitrary ADTs. For instance, the map-map fusion law is
generalized for any ADT by using a bifunctor F with its initial algebra and
catamorphism [11,18]: map f = ( inF ◦ F (f, id) ) also satisfies Formula (1).

In this paper, we propose an easy-to-use Coq library for “certified” program
calculation. The library is mainly based on that by Tesson et al. [15], and we
improved their library for the recursion schemes. The important features of our
library can be summarized as follows.

Adopting the shallow embedding approach. This approach enables users
to write Gallina programs in terms of recursion schemes; i.e., their pro-
grams written with recursion schemes can run in Coq. We call such programs
“recursion-scheme-style (RS-style) programs”. Users can then verify proper-
ties of the RS-style programs in Coq.

Providing notations for concise program definitions and proof scripts.
Our library provides concise notations for RS-style programs and the equa-
tional proofs. Thanks to these notations, users can write proofs that are
almost the same as hand-written proofs in program-calculation papers. We
give an example of proof scripts in Sect. 4 and RS-style program definitions in
Sect. 5. As we explain in Sect. 5, this conciseness is due to our typeclass-based
definitions and the powerful inference of implicit parameters in Coq.

Our contributions are summarized as follows.

1. We provide a novel certified program calculation library, as mentioned above.
2. We prove all the lemmas and theorems proposed by Uustalu et al. [17] in

Coq by using our library. This includes advanced recursion schemes and the
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set of calculation rules useful for dynamic programming (DP), an important
technique for practical programming. An example of the proofs and a list of
propositions that we proved are given in Sect. 4.

3. Our library enables users to obtain verified Coq programs and extract
runnable programs in various languages. We show that it is possible to obtain
programs for the n-th Fibonacci number and for the unbounded knapsack
problem (UKP) from their histomorphic definitions. This is explained in
Sect. 5.

The remainder of the paper is organized as follows. In Sect. 2, we give an
overview of Coq and the tactic library [15] for program calculation and introduce
notions of category theory and recursion schemes. In Sect. 3, we explain how to
prove equalities of two coinductively defined objects. In Sect. 4, we discuss a
method of formalizing ADTs and recursion schemes using typeclasses. In Sect. 5,
we explain instantiation of the class of ADTs and give example calculation. In
Sect. 6, we describe related work; and we present our conclusions and future work
in Sect. 7.

Our Coq scripts are available at the GitHub repository1.

2 Preliminaries

In this section, we introduce Coq and a tactic library for program calculation
proposed by Tesson et al. [15]. We also introduce notions in basic category theory
for describing datatype-generic theorems.

2.1 Overview of Coq and a Tactic Library for Program Calculation

A Coq script consists of definitions for datatypes, formulas of propositions that
we want to prove, and their proofs. A Coq proof is written with tactics, which are
commands for constructing proofs. Coq has a sub-language Ltac for program-
ming user-defined tactics. Ltac provides Tactic Notation commands defining
various user notation in Coq. For further details, see the Coq reference man-
ual [16].

Tesson et al. [15] designed and implemented a tactic library for program
calculation in Coq. Their tactic library provides tactic notations that make it
possible to write a Coq script in the “chains of equalities” style, which is a
common notation in program calculation.

We re-implemented their library mainly for maintainability. Our library is
mainly for equational reasoning and provides the following three tactics:

Tactic 1. Left = 〈term〉 Tactic 2. = 〈term〉 { 〈tactic〉 }
Tactic 3. = Right

These tactics are implemented using Tactic Notation commands.

1 https://github.com/muratak17/Recursion-Schemes-in-Coq.

https://github.com/muratak17/Recursion-Schemes-in-Coq
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Fig. 1. Progress of interactive proof in Coq IDE

Figure 1 illustrates an interactive proof with our library to show the propo-
sition ∀ (x y z : nat), (x = y) → (z = x + x) → (x + y = z). For a goal
t = s, Tactic 1 starts the proof by rewriting t to the given term by using the
tactic reflexivity. This can be seen in the first step in Fig. 1. Its specified
term is the same as the LHS of the goal; thus, the goal remains unchanged.
Tactic 2 advances the chain of the equational reasoning in a similar man-
ner (see the 2nd through 4th steps in Fig. 1). Tactic 3 finishes the chain; it
directly proves the current goal s = s by using reflexivity. Note that the
term “d := direction Rightwards : Prop” in Fig. 1 is used to memorize the
direction of the chain growth.

To make a script shorter and easier to read, we implement short-hands of
these tactics. For instance, “= s” is equal to “= s { easy }”, and “= s { by
t }” is equal to “= s { rewrite t + rewrite <- t }”; the last tactic tries
rewriting the current goal using equation t and then rewrites backwards by t if
the forward rewriting fails.

Note that our library adopts the textbook style

f1
= f2 {the reason why f1 = f2 holds},
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instead of usual Dijkstra-Feijen style

f1
= {the reason why f1 = f2 holds}

f2.

This is because we think this style is better for a short-hand notation such as
Left = t. = s., in which reasons are trivial and omitted, than Dijkstra-Feijen
style.

To improve readability, we write Coq scripts using roman and sans serif fonts,
as used in mathematical expressions, instead of typewriter font.

2.2 Basic Notions of Category Theory

We use the basic notions of category theory for describing datatype-generic the-
orems. We work the category Set, the category of sets and total functions.

We admit the functional extensionality axiom about the equality of functions,
i.e., for any two functions f, g : A → B, the equality f = g holds if and only if
∀ (x ∈ A), f x = g x. Given two sets A, B, we write A ∗ B for the product (just
like the Coq standard library), and A + B for the sum. We write fst : A ∗ B → A
and snd : A ∗ B → B for the left and right projection functions, inl : A → A + B
and inr : B → A+B for the constructors of the sum. For f : A → B and g : A →
C, we use 〈f, g〉 : A → B ∗ C for the unique morphism h such that fst ◦ h = f
and snd ◦ h = g. For f : A → C and g : B → C, we use [f, g] : A + B → C for
the unique morphism h such that h ◦ inl = f and h ◦ inr = g. Figure 2 shows the
definitions for such morphisms in Coq. These morphisms satisfy the following
equalities:

fst ◦ 〈f, g〉 = f, snd ◦ 〈f, g〉 = g,
[f, g] ◦ inl = f, [f, g] ◦ inr = g,
〈fst ◦ f, snd ◦ f〉 = f, (i ⊗ j) ◦ 〈f, g〉 = 〈i ◦ f, j ◦ g〉,
[f ◦ inl, f ◦ inr] = f, [f, g] ◦ (i ⊕ j) = [f ◦ i, g ◦ j].

These equations are easily proven in Coq by using functional extensionality and
are often used implicitly in program calculations.

We define 0 as the initial object, and 1 as the terminal object in Set; so 0 is
the empty set { }, and 1 is a singleton set {()} with solo element ().

2.3 Modeling Datatypes and Basic Recursion Schemes

We adopt a traditional method of modeling inductively- and coinductively-
defined datatypes, namely to use “initial F -algebras” and “terminal F -
coalgebras” where F : Set → Set is a polynomial functor. For a polyno-
mial functor F : Set → Set, we write (μF, inF ) for the initial F -algebra and
(νF, outF ) for the terminal F -coalgebra. Note that the set μF is the least fixed
point of F , and the set νF is the greatest fixed point of F . For any polynomial
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Fig. 2. Definitions for product and sum of morphisms in Coq

functor F : Set → Set, there uniquely exists the initial F -algebra and termi-
nal F -coalgebra up to isomorphism. We also use polynomial functors indexed
by a constant set A, e.g., FA : Set → Set such as FA(X) = 1 + A ∗ X.
Indexed functors, such as FA(X), can be seen as a partial application of bifunctor
F : Set → Set → Set.

Below are examples of initial algebras and terminal coalgebras for modeling
finite and infinite datatypes. Note that we use Coq-like notations for lambda
abstraction, i.e. we write λ x ⇒ M for the lambda term λ x.M .

Natural numbers. Let N(X) = 1 + X. The initial N -algebra (μN, inN ) cor-
responds to the pair (nat, [λ _ ⇒ O,S]), where nat is the set of natural
numbers and O and S are constructors corresponding to the zero and succes-
sor, respectively.

Lists. Let LA(X) = 1+ A ∗ X. The initial LA-algebra (μLA, inLA
) corresponds

to the pair (list A, [λ _ ⇒ [ ], ::]), where list A is the set of finite lists of A
and [ ] and :: are constructors corresponding to ‘nil’ and ‘cons’, respectively.

Streams. Let SA(X) = A ∗ X. The terminal SA-coalgebra (νSA, outSA
) corre-

sponds to the pair (Stream A, 〈hd, tl〉), where Stream A is the set of streams
(infinite sequences) of elements in A, hd is the function that returns the head
(the first element) of the given stream, and tl is the function that returns the
tail (the remainder of the stream except its first element) of the given stream.

Recursion schemes capture the typical patterns of recursively and corecur-
sively defined computations. We introduce some recursion schemes below.

Catamorphism. Catamorphisms capture the typical patterns of recursive com-
putations called “fold” that tears down a given tree. Let (μF, inF ) be the initial
F -algebra. Given a morphism ϕ : F (X) → X, morphism ( ϕ )F : μF → X is the
catamorphism for which the equation ϕ◦F (( ϕ )F ) = ( ϕ )F ◦ inF holds. We write
( ϕ ) instead of ( ϕ )F when it is obvious what F is. We use the same abbreviations
for the other recursion schemes.

Note that inF is an isomorphism. Its inverse is given by in−1
F = ( F (inF ) ).

This result is known as Lambek’s lemma; thus μF ∼= F (μF ) and indeed μF is a
fixed point of F .

Catamorphisms can express many recursive functions on inductively-defined
datatypes such as natural numbers and lists. For instance, the addition on the
natural numbers plus : nat → nat → nat can be defined as follows: plus x =



208 K. Murata and K. Emoto

( [λ _ ⇒ x,S] )N . The ‘append’ function on lists append : list A → list A →
list A can be defined by append x y = ( [λ _ ⇒ y, ::] ) x.

Let F be a polynomial bifunctor. The mapping fmapF f = ( inF ◦ F (f, id) )
is corresponds to the datatype-generic map function (Vene call it “data
functor” [18]). For instance, LA has the initial algebra (list A, [λ _ ⇒
[ ], ::]); thus, the mapping fmapL is defined: it is the map function on lists
fmapL f [a1; . . . ; an] = [f a1; . . . ; f an] where [a1; . . . ; an] is the abbreviation
of a1::(· · · ::(an::[ ]) · · · ). For any F , the data functor satisfies the following prop-
erty called the map-map fusion law: fmapF (g ◦ f) = fmapF g ◦ fmapF f .

Anamorphism. Anamorphisms are the dual of catamorphisms and capture
computations of building up trees. Let (νF, outF ) be the terminal F -coalgebra.
Given a morphism ϕ : X → F (X), morphism (ϕ) : X → νF is the anamorphism,
for which the equation F ( (ϕ) ) ◦ ϕ = outF ◦ (ϕ) holds. Similarly to catamor-
phism, outF is an isomorphism, and its inverse is given by an isomorphism, and
its inverse is given by out−1

F = (F (outF )) .
In the case of streams, i.e., F = SA, the anamorphism an isomorphism, and

its inverse is given by (〈a, f〉) SA
applied to x generates an infinite sequence: a x,

a (f x), a (f2 x), . . .. This example shows that the anamorphism corresponds
to the function unfold, which is a well-known function in Haskell.

Histomorphism. Let us consider the following definition of Fibonacci numbers,
fibo : nat → nat:

fibo 0 = 1, fibo 1 = 1, fibo (S (S n)) = fibo (S n) + fibo n. (2)

This definition is one of the natural characterizations of the function that com-
putes the n-th Fibonacci number, but it is difficult to translate the definition
into one in terms of catamorphisms. Catamorphisms can only use the results of
directly previous computation, but the RHS of the third equation requires the
value of fibo n, not a computation on the “direct” substructure of S (S n).

To capture such computation, Uustalu et al. defined a recursion scheme called
histomorphisms [17]. This scheme can remember and use the results of all previ-
ous computations (i.e. all the results of computations on substructures). In other
words, it enables us to carry out dynamic programming (DP) algorithms in the
field of functional programming. The key idea of histomorphisms is to introduce
an intermediate data structure for memoizing the results of subcomputations.

First, we define a datatype for the intermediate data structure. Let F : Set →
Set be a polynomial functor and A be an object. We define a polynomial functor
F ×

A : Set → Set indexed by A as

F ×
A (X) = A ∗ F (X), F ×

A (f) = idA ⊗ F (f)

and define another functor ˜F : Set → Set as

˜F (A) = νF ×
A , ˜F (f) = (〈f ◦ εA, θA〉) F×

B
,
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Fig. 3. Conceptual diagram for memoization tree that is element of ˜F (A) and return
values of εA and θA

where f : A → B, εA = fst ◦ outF×
A

, and θA = snd ◦ outF×
A

. The ˜F (A) is a
datatype for intermediate data structures for memoization. Intuitively, it is the
recursive datatype in which every node of νF is annotated by a value of type A.
Therefore, ˜F (1) ∼= νF . Figure 3 is a conceptual drawing for ˜F (A). The elements
a, a1, . . . , an in this figure are annotation values of type A. The function εA

returns the annotation value of the root node, which is a for the tree in Fig. 3,
and θA returns the remainder that is the annotated subtrees without the root.

We now define histomorphisms. Given a morphism ϕ : (F ◦ ˜F )(A) → A,
morphism {ϕ}F : μF → A is the histomorphism for which the following equation
holds:

f ◦ inF = ϕ ◦ F ( (〈f, in−1
F 〉) ) ⇐⇒ f = {ϕ}F . (3)

Intuitively, (〈f, in−1
F 〉) : μF → ˜F (A) builds a memoization tree in which each

node holds the partial results, and ϕ advances the computation by using the
memoized results. Note that ϕ can use values in the memoization tree, which
means that it can access all the results of previous computations.

Formula (3) describes one of the characterizations of histomorphisms, but the
left side of the iff arrow is a functional equation on f . In fact, Uustalu et al. gave
the direct solution described by the following equation: f = εA◦( out−1

F×
A

◦〈ϕ, id〉 ).
This equation provides a direct definition and a cost-effective way to compute
histomorphisms.

Histomorphisms have a powerful expressiveness and can represent fibo :
nat → nat. For F (X) = 1 + X, fibo can be defined as

fibo = {[onec, [onec ◦ snd, add ◦ (id ⊗ (fst ◦ outF×
nat

))] ◦ distl ◦ outF×
nat

]}
where onec = λ _ ⇒ 1, add (m, n) = m + n,

distl (a, inl b) = inl (a, b), distl (a, inr c) = inr (a, c).
(4)

Note that distl in the above definition has the following polymorphic type:
∀ {A B C : Type}, A ∗ (B + C) → (A ∗ B) + (A ∗ C).

Other Recursion Schemes. Uustalu et al. [17] described paramorphisms,
apomorphisms, and futumorphisms.
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3 Bisimulation for Coinductively Defined Equality

From the perspective of program calculation, equality of coinductively defined
objects is important. In particular, anamorphisms generate coinductively defined
objects; thus, proving the equation of anamorphisms requires equational reason-
ing on coinductively defined objects. In this section, we explain how to prove the
equality of coinductively defined objects.

Just as equality of inductively-defined objects is proved by induction, that
of coinductively-defined object is proved by coinduction [13]. To describe the
principle of coinduction formally, we begin with defining the F -bisimulation.

Throughout this section, F is a polynomial functor.

Definition 1. A relation ∼ ⊆ νF × νF is an F -bisimulation if there exists γ
such that the two equations F (fst) ◦ γ = outF ◦ fst and F (snd) ◦ γ = outF ◦ snd
both hold.

This definition leads to the following coinduction principle.

Theorem 1. If ∼ ⊆ νF × νF is F -bisimulation, then ∼ ⊆ ΔνF where ΔνF is
the diagonal relation on νF .

Proof. By finality of νF , it follows that fst = snd on pairs (x, y) such that x ∼ y.

The theorem provides a strong principle to prove equalities on coinductively
defined objects (for details, see [13]). The following two propositions are examples
of bisimilar equalities. The proofs of the propositions are straightforward; thus,
omitted.

Proposition 1. Let (SA, 〈hd, tl〉) be the terminal SA-coalgebra. A relation ∼⊆
νSA × νSA is the SA-bisimulation iff for all (s, t) ∈ ∼,

(hd s = hd t) ∧ (tl s ∼ tl t).

Proposition 2. Let ( ˜N(nat), 〈ε, θ〉) be the terminal N×
nat-coalgebra. A relation

∼ ⊆ ˜N(nat) × ˜N(nat) is an N×
nat-bisimulation iff for all (s, t) ∈ ∼,

(ε s = ε t) ∧
(

(θ s = θ t = inl ())
∨ (∀s′, t′. (θ s = inr s′) → (θ t = inr t′) → (s′ ∼ t′))

)

.

This proposition is used for defining instances of terminal coalgebras in
Sect. 5.

4 Recursion Schemes in Coq

In this section, we describe how to model datatypes and recursion schemes in
Coq. Types and functions in Coq can be regarded as objects and morphisms in
the category Set. Thus, what we need is to simply translate the notions used in
the category theory into Coq’s wording.
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One of the key features of our formalization is using notations very similar
to those in the original paper in program calculation [17], such as the “chain
of equalities” notation introduced in Sect. 2.1. Thanks to this notation, we can
easily build the formal proof because we simply write almost the same proof as
a hand-written proof in the original paper. We use unicode parentheses, such as
( (U+2987) and ( (U+3016), in our Coq scripts to follow the notation used in the
original paper, by exploiting Coq’s flexibility on characters.

4.1 Polynomial Functor

First, we begin with defining the notion of polynomial functors. Figure 4 shows
the definitions and shorthand notation for polynomial functors in Coq. A functor
consists of the following two mappings: one from objects to objects and the
other from morphisms to morphisms. To define polynomial functors inductively,
we first define inductive datatype PolyF to represent the ASTs of polynomial
bifunctors and then use it to define the following two mappings for F : PolyF.

– inst F : Type → Type → Type and its shorthand �F � to map types (objects)
to types (objects).

– fmap F : (A0 → A1) → (X0 → X1) → �F � A0 X0 → �F � A1 X1 and its
shorthand F❲−❳[−] to map morphisms to morphisms.

We can obtain definitions for functors by partial applications: �F � A and
F❲@id A❳[−] define a functor indexing by type A.

We now give examples for PolyF . Let L = Sum one (Prod arg1 arg2). For
A : Type, the type-level function �L� A : Type → Type means the functor LA

defined in Sect. 2.
Polynomial functors must satisfy the functor laws. We proved the following

two lemmas of the functor laws by using simple induction on F .

– Lemma functor_comp :

∀ (F : PolyF) {A0 A1 A2 X0 X1 X2 : Type}
(f0 : A0 → A1) (f1 : A1 → A2) (g0 : X0 → X1) (g1 : X1 → X2),
F❲f1 ◦ f0❳[g1 ◦ g0] = F❲f1❳[g1] ◦ F❲f0❳[g0].

– Lemma functor_id :

∀ (F : PolyF) {A X : Type}, F❲@id A❳[@id X] = id.

Note that the occurrences of “@id A” in the above definition are needed for
deciding the type indexing F ; otherwise, Coq cannot infer the type of �F � in
“F [g1 ◦ g0] = F [g1] ◦ F [g0].”

4.2 Initial Algebras and Terminal Coalgebras in Coq

Next, we define notions of the initial algebras and terminal coalgebras in Coq.
The basic idea is to write their axioms as typeclasses.
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Fig. 4. Definitions for polynomial functors in Coq

Initial Algebras and Catamorphisms. We define a typeclass to capture the
axiom of initial F -algebras as follows:

Class initial_algebra (F : PolyF) (A : Type) (μF : Type)
:= {cata := ∀ (X : Type), (�F � A X → X) → (μF → X);

in_ := �F � A μF → μF ;
cata_charn : ∀ (X : Type) (f : μF → X) (ϕ : �F � A X → X),

f ◦ in_ = ϕ ◦ F [f ] ↔ f = cata X ϕ}.
Notation "( f )" := (cata _ _ f) (at level 5).

For f : �F � A X → X, the term cata X f is the catamorphism of f (i.e. ( f )).
The (μF, in_) is the initial algebra of �F � A. Note that the μF usually depends
on A but we not use the variable name μFA but use μF , because we do not
want to use a type function μF : Type → Type.

Next, we prove some properties of initial algebras and catamorphisms. In the
type context

Variable (F : PolyF) (A μF : Type) (ia : initial_algebra F A μF ),

we prove that initial algebras and catamorphisms satisfy the following three
properties given in Uustalu et al. [17].
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– Proposition cata_cancel :
∀ (X : Type) (ϕ : �F � A X → X), ( ϕ ) ◦ in_ = ϕ ◦ F [( ϕ )].

– Proposition cata_refl : ( in_ ) = id
– Proposition cata_fusion :

∀ (X Y : Type) (ϕ : �F � A X → X) (ψ : �F � A Y → Y ) (f : X → Y ),
f ◦ ϕ = ψ ◦ F [f ] → f ◦ ( ϕ ) = ( ψ ).

These properties are useful for proving the map-map fusion law [18], which
is discussed in Sects. 1 and 2.3. Below is the Coq definition of fmap using a
catamorphism in the typeclass initial_algebra:

Definition fmap (f : A → B) := ( in_ ◦ F❲f❳[id] ).

Note that this definition is in the following type contexts:

Variable (F : PolyF) (μFA μFB A B : Type)
(ia1 : initial_algebra F A μFA)
(ia2 : initial_algebra F B μFB).

We prove that this definition satisfies the following map-map fusion law in the
appropriate type context:

Theorem map_map_fusion :
∀ (f : A → B) (g : B → C), (fmap g) ◦ (fmap f) = fmap (g ◦ f).

Example of Proof Scripts. We have already introduced some properties of
catamorphisms. These properties are easily proven because we can simply write
almost the same proof as the hand-written proof in previous papers [17,18]
thanks to the “chain of equalities” notation introduced in Sect. 2.1. For instance,
Fig. 5 shows the Coq proof of map_map_fusion; the proof script is very similar
to that described by Vene (cf. Theorem 2.3 [18]).

Definition and Proposition for Inverse of in. The inverse of in_ can be
defined as

Definition in_inv {F : PolyF}{A μF : Type}
{ia : initial_algebra F A μF} := ( F❲@id A❳[in_] ).

We prove the following proposition for characterization of in_inv in the appro-
priate type context: in_ ◦ in_inv = id ∧ in_inv ◦ in_ = id. Proving this propo-
sition in Coq corresponds to formalizing Lambek’s lemma.

Terminal Coalgebras and Anamorphisms. Similarly to the definitions
of the initial F -algebras and catamorphisms, the terminal F -coalgebras and
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Fig. 5. Coq proof script of map_map_fusion written with our tactic library

anamorphisms can be defined as

Class terminal_coalgebra (F : PolyF) (A : Type) (νF : Type)
:= {ana := ∀ (X : Type), (X → �F � A X) → (X → νF ;

out_ := νF → �F � A νF ;
ana_charn : ∀ (X : Type) (f : X → νF ) (ϕ : X → �F � A X),

out_ ◦ f = F [f ] ◦ ϕ ↔ f = ana X ϕ}.
Notation " (f) " := (ana _ _ f) (at level 5).

In the appropriate type context, we can prove the theorems about terminal F -
coalgebras and anamorphisms listed in Table 1.

4.3 More Advanced Recursion Schemes

We define the more advanced recursion schemes such as paramorphisms and
histomorphisms and formalize all the properties listed in Table 1 by chain-style
scripts. For instance, histomorphisms can be defined as

Definition histo (F : PolyF) (μF C νFC : Type)
(ia : initial_algebra F C μF )
(tc : terminal_coalgebra (Prod arg1 F ) C νFC)
(ϕ : �F � C νFC → C)

:= fst ◦ out_ ◦ ( out_inv ◦ 〈ϕ, id〉 ).
Notation "{ϕ}" := (histo _ _ _ _ _ _ ϕ).
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Table 1. Theorems and some definitions (shaded) for recursion schemes proposed by
Uustalu et al.: we omit type contexts due to space limitation

In this definition, the constructor arg1 is used for the index type C in F ×
C .

We omit the complete definitions and proofs due to space limitation.

5 Instantiating and Extracting Recursion Schemes

Users can obtain RS-style programs by instantiating the typeclasses. In this
section, we discuss obtaining runnable histomorphic programs for the n-th
Fibonacci number and the UKP.

Instances of Initial Algebras and Catamorphisms. First, we give an exam-
ple of capturing nat as an instance of initial_algebra, where nat is the
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standard type of the natural numbers in Coq. We can define an instance of
initial_algebra as

Instance Nat_ia (C : Type) : initial_algebra (Sum one arg2) C nat
:= {cata X f := fix cataf (n : nat) :=

match n with
O ⇒ f (inl ()) | Sn′ ⇒ f (inr (cataf n′)) end;

in_ := [λ _ ⇒ O,S] }.

The incomplete proofs of cata_charn are easy.
The instance Nat_IA make it possible for users to define and evaluate cata-

morphisms in nat. For example, users can define addition on the natural num-
bers in the RS-style as follows: Definition plus x = ( [λ _ ⇒ y,S] ). Users can
also evaluate the plus by the following command: Eval cbv in (λ (y : nat) ⇒
( [λ _ ⇒ y, S] )) 100 11. This returns 111.

Such RS-style definitions are possible because of using typeclasses. Consider
the notation of RS-style definition ( ϕ ) of catamorphisms and recall that cata-
morphisms are indexed by polynomial functors. To use this simple expression
in program calculations, the Coq system needs to determine the following three
items that are arguments of the catamorphisms: (1) a Coq implementation (def-
inition) of the catamorphism associated with the type ϕ, (2) a Coq datatype of
the initial algebra (object) associated with the type of ϕ, and (3) a polynomial
functor F that is associated with the type of ϕ. An instance of the typeclasses
glues these items together and associates them with a polymorphic type of ϕ,
so that the Coq system can find these items from the type of the given ϕ (by
using ad-hoc polymorphism). Without using typeclasses, it is difficult for the
Coq system to find these items correctly from the type of a given ϕ; thus, a user
would need to write more in her/his Coq script to specify the catamorphism.

Instances of Terminal Coalgebras and Anamorphisms. The terminal
F -coalgebras correspond to coinductive datatypes such as streams, and Coq
allows us to define coinductive datatypes by using CoInductive commands.
The typeclass terminal_coalgebra can be instantiated in the same manner as
initial_algebra, but the former has a significant problem that is specific to
coinductive datatypes in Coq: because the default equality eq in Coq is defined
inductively, proving the equality of two coinductively-defined objects is very
difficult [5].

We need a new coinductively-defined equality relation for proving an equality
of coinductively-defined objects. Unfortunately, no relation suitable for all coin-
ductive datatypes exists, so we need to define a new relation for each coinductive
datatype. For instance, the Coq standard library Coq.Lists.Streams provides
the coinductively-defined equality relation EqSt : ∀ {A : Type}, Stream A →
Stream A → Prop for streams. The relation EqSt can be derived from Proposi-
tion 1.

Proving the datatype-generic rules in Sect. 4 would need an datatype-generic
equality relation, but there is no such relation; we need to define an equality
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relation for each concrete ADT. We need to add the following axioms for each
coinductive datatype νF and F -bisimilar relation ∼:

Axiom eq_ext : ∀ (t1 t2 : νF ), t1 ∼ t2 → t1 = t2.

This axiom is justified by Theorem 1 introduced in Sect. 3.
Instantiate Terminal N×

nat-Coalgebra. To give an example of instantiating
terminal coalgebras, we illustrate instantiation for the terminal N×

nat-coalgebra,
which was described in Sect. 3. First, we give the coinductive definition for
˜N(nat) in Coq:

CoInductive mid_tree
:= Nil : nat → mid_tree | Cons : nat → mid_tree → mid_tree.

It is named mid_tree because it represents the intermediate (tree) data structure
of the computation. We can easily derive the following Coq definition of the
equality relation of mid_tree from Proposition 2:

CoInductive EqMidtree (t1 t2 : mid_tree) : Prop :=
| eqmid : ε t1 = ε t2

→ (θ t1 = inl tt ∧ θ t2 = inl tt)
∨(∀ a b, θ t1 = inr a → θ t2 = inr b → EqMidtree a b)

→ EqMidtree t1 t2.

We then add the following axiom because EqMidTree is N×
nat-bisimilar:

Axiom eq_ext : ∀ (t1 t2 : mid_tree), EqMidtree t1 t2 → t1 = t2.

Next, ε and θ are defined as
Definition ε (t : mid_tree) : nat :=

match t with Nil n ⇒ n | Cons n _ ⇒ n end.
Definition θ (t : mid_tree) : nat :=

match t with Nil _ ⇒ inl () | Cons _ t′ ⇒ inr t′ end.

We now show that the pair of the type EqMidtree and function 〈ε, θ〉 is an
instance of the typeclass of terminal N×

nat-coalgebras.

Instance Mid_tree_tc : terminal_coalgebra (Prod arg1 (Sum one arg2))
nat mid_tree

:= {ana X f x := match (f x) with
| (n, ux) ⇒ match ux with

| inl () ⇒ Nil n
| inr x ⇒ Cons n (mid_tree_ana X f x)
end

end
out_ := 〈ε, θ〉 }.

The axiom eq_ext is needed to prove ana_charn, which is the remaining proof
in the above scripts. Proving ana_charn also requires coinduction; it is necessary
to pay attention to the guarded condition.
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Verifying Histomorphic Definitions and Extracting Histomorphism.
With the above preparations, we can obtain a runnable fibo program written as
the following histomorphism:

Definition fibo
:= {[onec, [onec ◦ snd, add ◦ (id ⊗ (fst ◦ out_))] ◦ distl ◦ out_]},

where the functions onec, add, distl correspond to onec, add, distl in For-
mula (4), respectively.

This histomorphic definition satisfies the property

Goal fibo 0 = 1 ∧ fibo 1 = 1
∧ ∀ (n : nat), fibo (S (S n)) = fibo (S n) + fibo n,

which corresponds to Formula (2). The property can be proven by a simple script
in Coq. Note that our proof of the third clause uses induction on n. This proof
verifies that this program fibo is definitely the function that computes the n-th
Fibonacci number.

The definition gives a runnable program. The following command makes Coq
evaluate the histomorphism and return 10946 as the result: Eval cbv in fibo 20.
This is also extractable: we can obtain OCaml and Haskell programs of fibo
from the above definition.

More Practical Example. A more practical example of a DP algorithm is the
UKP, which is described as follows. For a given list wvs = [(w1, v1), . . . , (wn, vn)]
of items, each a pair of its weight and value and a fixed weight capacity of the
knapsack c, maximize the total value

∑n
i=1 vixi subject to

∑n
i=1 wixi ≤ c and

xi is a natural number. For the sake of clarity, we assume that wi, vi and c are
all natural numbers and wi > 0. The following program knapsack is a typical
example of a Haskell-like program solving the UKP:

knapsack wvs O = 0
knapsack wvs (S c) = maximize f wvs

where f (w, v) = if w ≤ S c then v +
(

knapsack wvs (S c − w)
)

else 0.

Note that maximize f [a1, . . . , an] returns the maximum value of f a1, . . . , f an.
We easily obtain the DP program from the above definition by memoizing the
result of recursive calls knapsack wvs (S c − w). Thus, the above definition is
easy to translate into a histomorphic definition. Figure 6 shows a histomorphic
definition for the UKP.

6 Related Work

Program Calculations and Recursion Schemes. This paper mainly focuses
on the study by Uustalu et al. [15] which proposed histomorphisms and futu-
morphisms, but there have been many other studies on program calculations,
and recursion schemes.
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Fig. 6. Histomorphic definition for unbounded knapsack problem

Bird and Meertens proposed a methodology for deriving efficient programs
from naive programs by applying various transformation rules. This methodology
is mainly for finite list programs [1] and is called BMF. It has been extended
for various datatypes by the notions of category theory. Meijer et al. [11] and
Meertens [10] proposed a methodology for programming using recursion schemes
such as catamorphism, anamorphism, hylomorphism and paramorphism.

An important recursion scheme that we have not discussed in this paper is
hylomorphism. It is useful for modeling computation using intermediate data
structures. It first builds up intermediate data structures and then tears down
the intermediate data structures. Hylomorphisms are expressive. Hu et al. [8]
proposed an algorithm for deriving hylomorphisms from the normal-style recur-
sive definitions. Hylomorphisms also have many useful properties such as the
acid-rain theorem [14]. However, hylomorphisms are only defined on a specific
category such as Cpo (the category of complete partial ordered sets and strict
continuous functions) that has the property that for every polynomial functor F
its least fixed point μF equals its greatest fixed point νF . Our library is based
on shallow embedding approach; thus, we work on the category Set because Coq
functions always terminate and are total. This approach cannot define hylomor-
phisms because μF �= νF in category Set.

Histomorphisms and futumorphisms are good examples of recursion schemes
nicely working in Set. Another example is recursive coalgebras [3]. A recursive
coalgebra captures the recursive definitions of the functions that satisfy the hylo
scheme. An important example captured by recursive coalgebras is the quick
sort algorithm.
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A recent important issue is the unifying treatment of recursion schemes.
Hinze et al. [7] argued that various recursion schemes, such as catamorphism,
mutumorphism, and histomorphism, can be uniformly described with adjoint
folds.

Certified Program Calculation Rules by Proof Assistant. Our library of
program calculation allows users to calculate their programs in a certified man-
ner. Mu et al. [12] built the Agda library, AoPA, for program calculation. Their
library enables users to write relational proofs in a style similar to Algebra of
Programming [2]. Chiang et al. formalized the derivation of greedy algorithms [4]
using AoPA. They use the deep embedding approach and their formalization is
based on the relational approach that captures programs as relations. Thus,
extracting runnable programs with this approach is not easy.

Another topic of certified program calculation is automatic calculation sys-
tems. Loulergue et al. proposed a Coq library for automatic parallelization of
sequential programs [9], and Emoto et al. [6] proposed a Coq library that can
automatically derive linear programs from exponential programs.

7 Conclusion and Future Work

We formalized all the propositions and theorems proposed by Uustalu et al. [17]
and showed that the formal theorems can be applied to Coq programs. We also
showed that the programs can be extracted for various languages.

One direction of our future work is to build support systems for defining
the initial F -algebras and terminal F -coalgebras. From the perspective of math-
ematics, the initial F -algebra and terminal F -coalgebra can be automatically
derived from F . Due to the limitations of the type theory in Coq, its fully auto-
matic derivation is difficult. As a practical compromise, it is conceivable to leave
the definitions of catamorphism and anamorphism to the user and program a
tactic for proving the propositions automatically.
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paper. We are also grateful to the anonymous reviewers for their valuable feedback.
This work was supported by JSPS KAKENHI Grant Number JP19K11903.
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Abstract. Meta-interpreters in Prolog are a powerful and elegant way
to implement language extensions and non-standard semantics. But how
can we bring the benefits of Prolog-style meta-interpreters to systems
that combine functional and logic programming? In Prolog, a program
can access its own structure via reflection, and meta-interpreters are
simple to implement because the “pure” core language is small. Can we
achieve similar elegance and power for larger systems that combine dif-
ferent paradigms?

In this paper, we present a particular kind of functional logic meta-
programming, based on embedding a small first-order logic system in an
expressive host language. Embedded logic engines are not new, as exem-
plified by various systems including miniKanren in Scheme and LogicT
in Haskell. However, previous embedded systems generally lack meta-
programming capabilities in the sense of meta-interpretation. Indeed,
shallow embeddings usually do not support reflection.

Instead of relying on reflection for meta-programming, we show how
to adapt popular multi-stage programming techniques to a logic pro-
gramming setting and use the embedded logic to generate reified first-
order structures, which are again simple to interpret. Our system has an
appealing power-to-weight ratio, based on the simple and general notion
of dynamically scoped mutable variables.

We also show how, in many cases, non-standard semantics can be
realized without explicit reification and interpretation, but instead by
customizing program execution through the host language. As a key
example, we extend our system with a tabling/memoization facility. The
need to interact with mutable variables renders this a highly nontrivial
challenge, and the crucial insight is to extract symbolic representations
of their side effects from memoized rules. We demonstrate that multiple
independent semantic modifications can be combined successfully in our
system, for example tabling and tracing.
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1 Introduction

An appealing aspect of pure logic programming is its declarative nature. For
example, it is easy to take a formal system, expressed as inference rules on
paper, and turn it into a logic program. If the formal system describes typing
rules, the same logic program might be able to perform type checking, type
reconstruction, and type inhabitation. Yet, we want more.

First, we would like to leverage abstractions known from functional program-
ming to structure our logic programs. Where logic programming sports search,
nondeterminism, and backwards computation, functional programming excels at
parameterization, modularity and abstraction. These strengths are complemen-
tary, and there is great value in combining them, as evidenced by a large body of
ongoing research. Languages such as Curry [17] focus on integrating functional
and logic programming into one coherent declarative paradigm.

Second, we would like to customize the execution of logic programs. For
example, we want to be able to reason about both failures and successes. In case
of success, we may want a proof, i.e., a derivation tree, for why the relation holds.
In case of failure, feedback is even more important, and yet, by default, a logic
program that fails is one that returns no answers. In Prolog, these tasks can be
solved through meta-programming, which, in the context of this paper, means to
implement a meta-interpreter for Prolog clauses. A meta-interpreter for “pure”
Prolog clauses, written in Prolog, can customize the search strategy, inspect
proof trees or investigate failures [34,35]. However, for non-trivial applications
such as abstract interpretation [10], these meta-interpreters do not usually stick
to the “pure” Prolog subset themselves. In many cases, for example if we want to
extend the execution logic with tabling or memoization, it is necessary to exploit
decidedly un-declarative and imperative features of Prolog—in some sense the
“dirty little secret” of logic programming.

In this paper, we present a pragmatic solution to combining functional
and logic programming on one hand, and declarative logic programming with
restricted notions of state on the other hand. We make the case for a particular
style of functional logic meta-programming: embedding a simple, first-order logic
programming system in an expressive, impure, higher-order functional host lan-
guage, optionally supported by best-of-breed external constraint solver engines
such as Z3 [25] or CVC4 [2], and providing explicit support for dynamically
scoped, i.e., “thread-local” state. In the tradition of miniKanren [4–6,13,14],
which embeds logic programming in Scheme, we present Scalogno, a logic pro-
gramming system embedded in Scala, but designed from the ground up with
modularity and customization in mind and with explicit support for dynami-
cally scoped mutable variables.

This paper makes the following contributions:

– We introduce our system, Scalogno, and highlight the benefit of deep lin-
guistic reuse in logic programming based on examples, e.g., how higher-order
functions of the host language can model higher-order relations (e.g., map,
flatMap, fold). The logic engine can remain first order, keeping theory and
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implementation simple. Scalogno can reuse Scala’s type classes (e.g., Ord),
while the logic engine need not be aware of this feature at all. This flexibility
goes beyond dedicated functional logic languages like Curry, which do not
support type classes for complexity reasons [24] (Sect. 2).

– Tracing, proof trees, etc. are examples of a whole class of use cases where a
meta-interpreter augments execution with some state. We introduce dynami-
cally scoped mutable variables to capture this design pattern, enabling mod-
ular extensions through the host language as an alternative to explicit inter-
pretation. We discuss the implementation of Scalogno in more detail, and
also show how dynamic variables support a generic term reification facility,
directly adapting popular multi-stage programming approaches to a logic set-
ting (Sect. 3).

– We show how we can customize the execution order while maintaining the
behavior of other extensions that rely on dynamic mutable state. To this end,
we extend our logic engine to implement tabling, i.e., memoization. Unlike
most existing Prolog implementations (there are exceptions [11]), the imple-
mentation directly corresponds to a high-level description of the tabling pro-
cess, understood in terms of continuations. A key challenge is to interact with
mutable variables, which we solve by extracting symbolic representations of
their side effects from memoized rules. To the best of our knowledge, ours
is the first logic engine that integrates tabling with mutable state in a pre-
dictable way (Sect. 4).

Section 5 discusses related work and Sect. 6 offers concluding thoughts. Our code
is available at aplas19.namin.net.

2 Embedded Logic Programming

When embedding a language into an expressive host, we benefit from deep lin-
guistic reuse: we can keep the embedded language simple by directly exploiting
features of the host language. In this section, we illustrate deep linguistic reuse
with Scalogno in Scala—the embedded logic system is first-order, and re-uses the
host language for key features such as naming and structuring logic fragments.

2.1 Relations as Functions

As a running example, we model a graph connecting three nodes a, b, c in a
cycle.

a

bc
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In Prolog (on the left), we can model this graph with a relation, edge, listing
all the possible edges. In Scalogno (on the right), we can define the same relation
as a regular Scala function:

edge(a,b).
edge(b,c).
edge(c,a).

def edge(x: Exp[String],
y: Exp[String]): Rel =

(x === "a") && (y === "b") ||
(x === "b") && (y === "c") ||
(x === "c") && (y === "a")

In Scalogno, infix methods are used for unification (===), conjunction (&&)
and disjunction (||). The type Rel represents a relation, while the type Exp[T]
represents a term (possibly including unbound logic variables) of type T.

We can now run a query on the just defined relation.

| ?- edge(X,Y).
↪→ X=a,Y=b; X=b,Y=c; X=c,Y=a.

run[(String,String)] {
case Pair(x,y) => edge(x,y) }

↪→ pair(a,b); pair(b,c);
pair(c,a).

In Scalogno, we apply the edge relation like any ordinary function. The
run form serves as an interface between the host and the embedded language,
returning an answer list of reified values of the variable it scopes. Here, we
directly use pattern matching to introduce the variables x and y as a pair. We
can also use the exists form to explicitly introduce new logical variables in
scope, as in the next example.

In Prolog, we can naturally define relations recursively, and so too in
Scalogno. For example, the relation path finds all the paths in the graph.

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

def path(x: Exp[T], y: Exp[T]):
Rel = edge(x,y) ||
exists[T] { z => edge(x,z) &&

path(z,y) }

| ?- path(a,Q).
↪→ Q=b; Q=c; ...

runN[String](10) { q =>
path("a",q) }

↪→ b; c; a; b; c; a; b; c; a; b.

Here, asking for all answers (with run instead of runN) would diverge as
there are infinitely many paths through the cycle. In Sect. 3, we show how to
cope with this divergence by changing the evaluation semantics through meta-
programming.

2.2 Higher-Order Relations as Higher-Order Functions

In Scalogno, we can exploit higher-order functions (and hence, relations too), for
example parameterizing the relation path by the relation edge so that it works
for any graph:

def generic_path(edge: (Exp[T],Exp[T]) => Rel)(x: Exp[T], y: Exp[T]): Rel =
edge(x,y) || exists[T] { z => edge(x,z) && generic_path(edge)(z,y) }
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We could also recognize that the path relation is really just the reflexive
transitive closure of the edge relation, and since generic_path is already
parameterized over an arbitrary binary relation, rename it accordingly as
refl_trans_closure. This enables defining path as:

val path = refl_trans_closure(edge)

The usual higher-order combinators, such as map, flatMap, and fold also
have natural higher-order relational counterparts.

2.3 Object-Oriented Encapsulation

To enable additional abstractions that are not present in typical logic program-
ming settings, we can exploit the object-oriented features of the host language:

trait Graph[T] {
def edge(x: Exp[T], y: Exp[T]): Rel // left abstract
def path(x: Exp[T], y: Exp[T]): Rel = // defined as before

edge(x,y) || exists[T] { z => edge(x,z) && path(z,y) }}
val g = new Graph[String] {

def edge(x:Exp[String],y:Exp[String]) = // defined as before
(x === "a") && (y === "b") ||
(x === "b") && (y === "c") ||
(x === "c") && (y === "a") }

The object g inherits the definition of path from Graph.
We can also use the pattern known as ‘type classes as objects and implic-

its’ [28], for example to support a relational ordering on polymorphic lists.

3 Dynamic Scope as Meta-Interpreter (Design Pattern)

Here is the recipe for Prolog-style meta-interpreters in Scala: a meta-interpreter
(a Scalogno relation itself) is configured with a Scalogno meta-relation to build
a reified representation of a Scalogno object-relation (e.g. path). In other words,
we stay completely in the realm of logic programming.

In this section, we consider a different approach: use the host language to
augment the execution of logic programs by customizing the logic engine directly.
For this approach to be viable, the logic embedding has to be designed with cer-
tain kinds of extensions in mind. Within Scalogno, for example, it is difficult to
use mutable state because the execution order uses various flavors of interleav-
ing, as opposed to Prolog’s deterministic Selective Linear Definite (SLD) clause
resolution. But of course interleaving is desirable, so we would like a model that
supports a notion of “thread local” state that is attached to a particular execution
path, similar to notions of state in Or-parallel logic programming [16].
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Fig. 1. Scalogno engine implementation

3.1 Designing Logic Engines for Meta-Programming

In designing the Scalogno implementation, we have put emphasis on modular-
ity and enabling independent extensions of different parts of the system. An
overview of the core Scalogno system is shown in Fig. 1, and we discuss individ-
ual aspects step by step below.

Our starting point is an implementation of a Depth-First Search (DFS)
engine, where we reuse the host control flow (stack and exception) to manage
the pending goals. Nevertheless, Scalogno is modular and supports a range of
search strategies, as well as external solvers.

The engine knows generically about goals and their state. A goal is repre-
sented as a thunk of a relation. A relation knows how to execute itself via the
exec method, given an executor engine call for solving subgoals and a success
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continuation k for returning satisfied. Failure is achieved through throwing a
Backtrack exception, to backtrack.

Before showing the engine, it’s helpful to see a few primitives and means
of combination for relations. Unconditional success, Yes, immediately success-
fully continues. Unconditional failure, No, immediately throws. The conjunction
of two goals, &&, executes the first, and successfully continues with the second.
The disjunction of two goals, ||, executes the first, and thereafter through back-
tracking as defined by the delimited subcall, the second. These goal combinators
make use of call-by-name parameters (denoted by an => after the : and before
the parameter type in Scala).

Finally, our DFS engine, in call, pushes the current state on to the stack,
runs the goal delegating execution to the underlying relation, catches failures
and restores the state upon recursive exits.

This engine cannot do much, because we do not have any constraints to solve
yet. So let us introduce a domain of terms, and equality constraints between
terms.

A term is uniquely identified. A term constraint IsTerm(id,key,args) iden-
tifies a term id as being bound to a value key(args). An unbound term cor-
responds to a free logic variable. An equality constraint IsEqual(x,y) is intro-
duced by unification, enforcing that two terms, x and y, have the same structure,
that is the same keys and, recursively, arguments.

We define new relations using our constraints. The form exists takes a
query—a goal with a hole—and fills the hole with a fresh variable. The form
=== unifies two terms by registering an equality constraint with the solver. The
form term introduces a new term also through constraint registration.

This style of “sea of nodes” construction by side effects is reminiscent of multi-
stage programming frameworks like LMS [30]; we will have more to say about
this in Sect. 3.4.

We package the core engine in a runnable interface, which takes a pseudo-
goal rather than a thunk, but parameterized by a free logic variable, which is
the query variable. The interface runN caps the number of returned answers to
a given maximum, while run is intended to return all answers. (We could also
have used a streaming interface.)

We simplistically reify answers into strings. Using polytypic typing as dis-
cussed in Sect. 2, we could improve the model to reify depending on the type of
the query variable.

For conflict detection, we keep track of the transitive closure of the set of con-
straints registered. One can implement a number of performance improvements,
including index structures that enable more efficient lookup and matching of
constraints.

If we abstract a solver interface, in particular, how state is pushed and
restored in the engine, it becomes easy to interface with external SMT solvers.

We are now ready to run some queries.

def e(x: Any) = term(x.toString, Nil)
run[Any]{q => q === e(1) || q === e(2)}
↪→ List(1,2)
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As a summary, going back to the basics, what is the essence of a logic pro-
gramming system? The two main components are (1) search, i.e., nondetermin-
istic execution, and (2) unification and constraints. We implement nondeter-
ministic execution using continuation-passing style (CPS). The class Rel comes
with implementations for disjunctions and conjunctions, but can be extended for
other execution patterns. Method run uses an auxiliary call to execute indi-
vidual relations, and the exec method of a Rel object can invoke its parameter
call to invoke other relations. The Depth-First Search (DFS) implementation of
call passes itself to Rel.exec. A Breadth-First Search (BFS) implementation
would pass a different method that would just collect the calls in a list. This
BFS engine just needs to override the run method but can share all other code
with the DFS implementation.

The handling of constraints and unification is only sketched in Fig. 1. It is
a conscious design choice to keep constraints and execution separate as far as
possible. The benefit is that both aspects can be extended independently. We
model the constraint store cstore as a dynamic variable, which keeps its value
in a particular execution path (see Sect. 3.2 below). Invoking the infix method
=== on a logic term registers and checks a new constraint on its arguments in
the constraint store of the current execution path.

3.2 An Alternative to Reification and Interpretation

Among the usual use cases for meta-interpreters we find tracing, proof trees and
similar extensions. What they all have in common is that they augment a vanilla
interpreter to thread a piece of state through the execution.

Let us consider how we can implement such functionality without an explicit
meta-interpreter, taking tracing as example. Instead of threading state, we can
just use mutable state directly. However there is a catch: we cannot directly
use a mutable variable in Scala, because we need to keep apart the state from
different nondeterministic branches.

In Scalogno, we provide an abstraction for this: mutable variables with
dynamic extent (DVar). In contrast to meta-interpreters, these variables can
exist side by side, so we can have multiple independent extensions at the same
time. Intuitively, dynamic variables have the same extent as the substitution map
in miniKanren [6] and the constraint store in cKanren [1], and they correspond
to certain realizations of mutable state in Or-parallel logic programming [16].

3.3 Tracing with Dynamic Variables

In the simplest case, we can directly modify the relation we are interested in
monitoring:

val globalTrace = DVar(nil: Exp[List[List[String]]])
def path(x: Exp[T], y: Exp[T]): Rel = {

globalTrace := cons(term("path",List(x,y)), globalTrace())
edge(x,y) || exists[T] { z => edge(x,z) && path(y,b) }}
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But of course this approach is not very modular. Instead, we can introduce a
generic abstract operator for named rules:

def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) => Rel

Now, we modify the path relation to explicitly use this rule abstraction
to indicate that we are indeed defining a named relation, as opposed to just a
meta-language abstraction:

def path: (Exp[T],Exp[T])=> Rel = rule("path") { (x,y) =>
edge(x,y) || exists[T] { z => edge(y,z) && path(z,y) }}

Instead of modifying the relation directly, we can also build a subclass of
Graph:

trait TracingGraph[T] extends Graph[T] {
override def path(x:Exp[T],y:Exp[T]) = rule("path")(super.path)(x,y) }

In order to implement the actual tracing logic, we define an implementation
of the abstract interface as a trait which defines the rule method as follows. In
Scala, we can mix in this behavior with the otherwise default implementation of
the logic engine. We keep the global trace in a variable with dynamic extent.

val globalTrace = DVar(nil: Exp[List[List[String]]])
def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) =>

Rel = { (a,b) =>
globalTrace := cons(term(s,List(a,b)), globalTrace())
f(a,b) }

We get the same result we would expect:

runN[(String,List[String])](5) {
case Pair(q1,q2) => g.path("a",q1) && globalTrace() === q2 }

↪→ pair(b,cons(path(a,b),nil));
pair(c,cons(path(b,c),cons(path(a,c),nil))); ...

We have identified a general design pattern: many meta-interpreters just
thread a piece of state. By adding support for this pattern to our engine, we
have achieved an alternative implementation approach that removes the need
for an entire class of explicit interpreters.

3.4 Clause Reification as Controlled Side Effect

While we have seen that we can often achieve the desired meta-programming
effects without explicit meta-interpreters, we may still want explicit interpreters
in certain cases. With this goal in mind, we demonstrate another use of dynamic
scope: turning logic programs into program generators.

Since we do not want to interpret the meta-language, we need to leverage
regular program execution. What can we do? We augment what the program
does when run. In an impure language we would use side effects, in a judicious
and very controlled way [31]: a reflect operation would emit code as side-
effect, and a reify operation would accumulate code that was produced in its
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scope. This multi-stage evaluation mechanism is used in program generation
frameworks such as LMS [30]. A simple example would be the following:

def const(x: Int) = x.toString
def plus(x: String, y: String) = reflect(s"$x + $y")
def times(x: String, y: String) = reflect(s"$x * $y")
reify { plus(times(const(2), const(3)), times(const(4), const(5))) }

↪→
"val x1 = 2 * 3
val x2 = 4 * 5
val x3 = x1 + x2
x3"

Each individual reflected expression generates a val binding, captured by the
nearest enclosing reify. The underlying implementation of reify and reflect can
be as simple as this:

var code: Code
def reify(f: => String) = {

val temp = code; code = ""
val res = f
try (code + res) finally code = temp }

def reflect(rhs: String) = {
val id = fresh
code += s"val $id = $rhs\n"
id }

Note how reify sets and resets code based on the dynamic scope.
How can we adapt this idea to our logic settings? In the place of strings we

use a list of goals to accumulate generated terms, based on a dynamic variable
to manage scope. The implementation to reflect and reify goals is as follows:

val moregoals = DVar(fresh[List[Goal]])
def reifyGoals(goal: => Rel)(goals: Exp[List[Goal]]): Rel = {

moregoals := goals
goal && moregoals() === nil }

def reflectGoal(goal: Exp[Goal]): Rel = {
val hole = moregoals()
moregoals := fresh
hole === cons(goal,moregoals()) }

reifyGoals(reflectGoal("path(a,b)") => "cons(path(a,b),nil)"

We maintain a global list of clauses, and we can reify clauses given a goal:

var allclauses = Map[String,Clause]()
def reifyClause(goal: => Rel)(head: Exp[Goal], body: Exp[List[Goal]]):

Rel = reifyGoals(goal)(cons(head,nil)) &&
allclauses(extractKey(head))(head,body)

run[List[Any]] { q =>
exists[Goal,List[Goal]] { (head,body) =>

q === cons("to prove", cons(head, cons("prove", cons(body, nil)))) &&
reifyClause(path(fresh,fresh))(head,body) }}
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↪→
cons(to prove,cons(path(a,b),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(b,c),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(c,a),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(a,x0),cons(prove,cons(cons(path(b,x0),nil),nil)))),
cons(to prove,cons(path(b,x0),cons(prove,cons(cons(path(c,x0),nil),nil)))),
cons(to prove,cons(path(c,x0),cons(prove,cons(cons(path(a,x0),nil),nil))))

We use the same rule abstraction as in the previous section to denote named
rules. It adds the clause definition to the global table and reflects the goal as a
side effect.
def rule[A,B](s: String)(f:(Exp[A], Exp[B]) => Rel) = {

def goalTerm(a: Exp[A], b: Exp[B]) = term[Goal](s,List(a,b))
allclauses += s -> { (head: Exp[Goal], body: Exp[List[Goal]]) =>

exists[A,B] { (a,b) =>
(head === goalTerm(a,b)) && reifyGoals(f(a,b))(body) }}

(a: Exp[A], b: Exp[B]) => reflectGoal(goalTerm(a,b))}

Finally, we adapt a vanilla interpreter to this new model. This interpreter
matches the head of the goal against the global clause table, turned into a
disjunction.
def allclausesRel: Clause = { (head: Exp[Goal], body: Exp[List[Goal]]) =>

allclauses.values.foldLeft(No:Rel)((r,c) => r || c(head,body)) }
def vanilla(goal: => Rel): Rel =

exists[List[Goal]] { goals => reifyGoals(goal)(goals) && vanilla(goals) }
def vanilla(goals: Exp[List[Goal]]): Rel =

goals === nil || exists[Goal,List[Goal],List[Goal]] { (g, gs, body) =>
(goals === cons(g,gs)) && allclausesRel(g,body) && vanilla(body) &&

vanilla(gs) }

In the same way, we can implement any other meta-interpreter, such as a tracing
interpreter.

4 Tabling as an Alternative Execution Strategy

In this section we show how to implement an alternative evaluation strategy. In
functional languages, memoization is a well-known way to speed up computations
by reusing intermediate results. The logic programming analogue is known as
tabling.

We will implement a memo combinator below that can be used as follows to
designate particular relations to be tabled:
def fib(x:Exp[Int], y:Exp[Int]): Rel = memo(term("fib",List(x,y))) {

(x === 0) && (y === 1) || (x === 1) && (y === 1) || {
val x1,x2,y1,y2 = fresh[Int]
(x === succ(x1)) && (x === (succ(succ(x2)))) &&
fib(x1,y1) && fib(x2,y2) && add(y1,y2,y) }}

The tabled version of fib will only compute a linear number of recursive calls
instead of an exponential number.
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4.1 Implementation: Meta-Programming via the Host Language

Tabling is one of the cases that can not be implemented by a purely declarative
meta-interpreter. Instead, imperative features have to be used. Common Prolog
implementations are quite intricate, although the concept is simple. The core is
described nicely by Warren [37], which we take as blueprint for our implemen-
tation, shown in Fig. 2. The evaluation of a logic program forms a search tree
for solutions. We can think of exploring this tree either as a nondeterministic
process, or as a set of concurrent deterministic processes. In this latter view,
multiple processes are active at the same time. When one process reaches a
choice point it forks into two new ones, and when it reaches a failure condition,
it terminates.

To add tabling or memoization, the first step is to add a global table
callTable that keeps track of every call to a memoized rule and all the answers
returned for it. In contrast to standard functional memoization, though, there
may be any number of answers for each call. An answer in this context con-
sists of additional constraints that will be applied to the goal as a side effect of
executing the rule (details elided in Fig. 2). For example, the answer to the goal
fib(5,x0) will be fib(5,8) or equivalently the effect of applying constraint
x0=8 to the goal.

When a process is about to call a memoized rule, it checks the global call table
to see if the call has already been made. If not, it adds its continuation to the table
and continues evaluating the rule body. When the process is about to return from
the call—and this may happen multiple times if the process is forked—then it
records the answer it has just computed and resumes all continuations registered
for this call with this new answer. If the answer is already in the table, then it
is a duplicate, and the process terminates.

When a process calls a memoized rule and the call is already in the table,
then the current continuation is invoked once for each recorded answer. The con-
tinuation is also registered in the table, since we cannot know if computation of
answers has already finished. More answers may become available in the future,
and will trigger this continuation again.

4.2 Memoization with Symbolic State Transitions

A key question is how our tabling combinator interacts with state. As a first
approximation, we make the input and output state of each call explicit by
collecting the values of all dynamic variables. We thus represent a call such as
path(a,b) as goal(path(a,b),state0(x0..),state1(x1..)), where x0..
are the dynamic variables before the call, and x1.. the dynamic variables after
the call. In other words, we make the state transformation explicit.

However, straightforwardly memoizing these augmented goals would not lead
to the desired result. State is often used to accumulate extra contextual infor-
mation, so it changes all the time. It is rare that a rule is called twice in exactly
the same state and we would like to be sure that adding a piece of state to the
program should not change the memoization behavior.
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Fig. 2. Tabling combinator implementation. Continuations and answers are memoized
in global tables.

For this reason, we memoize not based on the augmented goals but on the
call patterns only, ignoring input and output state. But how can we describe
a rule’s state modification independent of a particular input state? To achieve
this, we evaluate rule bodies with a fresh input state to obtain a symbolic rep-
resentation of the rule’s state modification. Implementation-wise, this is easy to
achieve because we already maintain a global table of dynamic variables (dvars
in Fig. 1). Before evaluating the body of a memoized rule, we replace all dvars
entries with fresh logic variables, which enables us to observe the effects on them
when an answer is produced. When resuming a continuation, the symbolic effects
need to be unified with the current valuations of the dynamic variables.
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With this mechanism in place, we can generate the following answer term for
our example of tracing a path relation in a graph:

goal(path(a,b),state0(x0),state1(cons(path(a,b),x0))),

This term makes explicit that the state after the call—that is, the augmented
trace—is the state before the call x0, with the current head consed in front.

Using logic variables to abstract over the state before and after the call
ensures that we can represent any kind of relation between the two states that
can be modelled through matching terms. So dropping an element from the front
of a list would be easy (match on cons on the left-hand side), recursive predicates
such as removing from the middle of collection would be harder.

4.3 Example: Tabled Graph Evaluation

We first note that, as expected, tabling enables left as well as right recursive
relations:

def pathL(a: Exp[String], b: Exp[String]): Rel =
memo(term("path",List(a,b))) {

edge(a,b) || exists[String] { z => pathL(a,z) && edge(z,b) }

Furthermore, we can combine tabling with tracing:

val globalTrace = DVar(nil: Exp[List[List[String]]])
def pathLT(a: Exp[String], b: Exp[String]): Rel =

memo(term("path",List(a,b))) {
globalTrace := cons(term("path",List(a,b)), globalTrace())
edge(a,b) || exists[String] { z => pathLT(a,z) && edge(z,b) }}

And we can verify that the combination works as we would expect. Here is an
example query:

run[(String,List[String])] { case Pair(q1,q2) => pathLT("a",q1) &&
globalTrace() === q2 }

↪→
pair(b,cons(path(a,b),nil))
pair(c,cons(path(a,b),cons(path(a,c),nil)))
pair(a,cons(path(a,b),cons(path(a,c),cons(path(a,a),nil))))

As we can see, the mutable variable globalTrace behaves in the way we
would expect, recording paths ab, abc, and abca even though we have drastically
changed the evaluation order. Here is the execution trace:

goal(path(a,x0),state0(x1,nil),state1(x2,x3))
−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,nil),state1(x2,x3))
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−−→ goal(path(a,c),state0(x0,x1),
state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,c),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0,state0(x1,nil),state1(x2,x3))
−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

Note how state1 is expressed in terms of state0: the first component of
state0/state1 is ignored because dynamic var 0 is used internally—dynamic
var 1 is the trace.

4.4 Application: Definite Clause Grammar (DFG)

A well-known application of tabling is to turn parsing in logic programming from
naive recursive descent strategies to more efficient strategies, variants of Earley’s
and chart parsing algorithms. As a case study, we consider an example of parsing
an arithmetic expression from prior work on tabling in Prolog [7]:

expr(S0, S) :- expr(S0, S1), S1 = [+| S2 ], term(S2, S).
expr(S0, S) :- term(S0, S).
term(S0, S) :- term(S0, S1), S1 = [*| S2 ], fact(S2, S).
term(S0, S) :- fact(S0, S).
fact(S0, S) :- S0 = [ '(' | S1 ], expr(S1, S2), S2 = [ ')' | S ].
fact(S0, S) :- S0 = [ N | S ], integer(N).

Notably, the grammar is left-recursive, so we cannot use it as a parser in regular
Prolog as the standard depth-first resolution strategy would go into an infinite
loop. However, in an implementation that supports tabling, the following works
and produces expected results:

? - expr ([3 , + , 4 , *] , []). ↪→ no
? - expr ([3 , + , 4 , * , 7] , []). ↪→ yes
? - expr ([ '(' , 3 , + , 4 , ')' , * , 7] , []). ↪→ yes
? - E = [_ ,_ ,_ ,_ ,_ ,_ ,_ , _ ] , expr (E , []). ↪→ no

The Prolog grammar above translates to Scalogno with tabling as follows:

def exp(s0: Exp[List[String]], s: Exp[List[String]]): Rel =
memo(term("exp", List(s0,s))) {

{ val s1,s2 = fresh[List[String]]
exp(s0,s1) && (s1 === cons("+",s2)) && trm(s2,s) } ||

trm(s0, s) }
def trm(s0: Exp[List[String]], s: Exp[List[String]]): Rel =

memo(term("trm", List(s0,s))) {
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{ val s1,s2 = fresh[List[String]]
trm(s0,s1) && (s1 === cons("*",s2)) && fct(s2,s) } ||

fct(s0, s) }
def fct(s0: Exp[List[String]], s: Exp[List[String]]) = memo(term("fct",

List(s0,s))) {
{ val s1,s2 = fresh[List[String]]

s0 === cons("(", s1) && exp(s1, s2) && s2 === cons(")", s) } ||
{ val n = fresh[String]

s0 === cons(n, s) && dgt(n) }
}
def dgt(n: Exp[String]) = memo(term("dgt",List(n))) {

n === "0" || n === "1" || n === "2" || n === "3" || n === "4" ||
n === "5" || n === "6" || n === "7" || n === "8" || n === "9"

}

We obtain the same behavior as in Prolog: without tabling, search diverges, but
with the memo call in place, we automatically obtain an Earley-style bottom-up
parser from the given left-recursive grammar. The embedded setting of Scalogno
has the additional advantage that we can easily combine the parser with normal
deterministic Scala code that performs IO and/or tokenization:

run[List[String]] { q => exp(tokenize("(3+4)*7"), nil) } ↪→ x0

The result is a single unbounded logic variable that indicates success, without
constraining q.

5 Related Work

There is a long tradition of meta-programming in Prolog, going back at least to
the early 1980s. Warren [36], O’Keefe [27], and Naish [26] discuss how to express
higher-order “meta-predicates” inspired by functional programming, such as map
and fold; O’Keefe uses Prolog’s standard call operator, while Warren and
Naish advocate using an apply operator closer in spirit to Lisp. Warren claims
that λ-terms are neither necessary nor desirable for higher-order programming in
Prolog, arguing that passing the names of top-level predicates to meta-predicates
is the best tradeoff between expressivity and keeping the Prolog language simple.
Naish believes that apply is a more natural construct for higher-order program-
ming than Prolog’s traditional call operator, and claims that reliance on call
by the logic languages Mercury [32] and HiLog [8] make higher-order program-
ming in those languages awkward. Our host language Scala supports λ-terms
and apply—we therefore inherit both the expressivity and the complexity of
these language features.

According to Martens [23], interest in Prolog meta-interpreters was spurred
by two articles [3,15] from a 1982 collection edited by Clark and Tärnlund. Intro-
ductory books on Prolog [27,34] further popularized meta-interpreters, which
are now considered a standard approach to Prolog meta-programming. Hill and
Lloyd claim that meta-interpreters in Prolog are fatally flawed, since they often
use non-declarative features, and since it can be difficult to assign a semantics
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to untyped, unground logic programs; their strongly statically typed functional-
logic-constraint language Gödel [19] (and Lloyd’s followup language, Escher [22])
is specifically designed for declarative meta-programming. Martens [23] defends
Prolog-style meta-interpreters, arguing that all forms of untyped logic program-
ming have the same issues that Hill and Lloyd point out, but that reasonable
semantics can be applied to meta-programming in untyped logic languages. Our
perspective is that untyped meta-interpreters are clearly useful, as demonstrated
by their long history in Prolog; however, when embedding a system similar to
Scalogno in a host language with an expressive static type system (such as Scala,
with its type classes), the type system can be put to good use for writing meta-
interpreters or achieving similar effects through other means, such as typed vari-
ables with dynamic scope. In the spirit of exploiting types but in an orthogonal
fashion, OCanren [21] implements an embedding similar to miniKanren while
exploiting the type system of OCaml to ensure a well-typed unification from the
perspective of the end user.

There is also a long history of trying to combine functional programming
and logic programming, once again going back to the early 1980s. There have
been many attempts to embed a Prolog-like language in Lisp [12,18,29], and
more recently, in Haskell [9,20,33]; to our knowledge, there is no work in the
literature on how to best write meta-interpreters for these embedded languages.

6 Conclusion

In this paper, we explored various techniques to meta-program logic programs
embedded in a functional host: deep linguistic re-use, reification (of program,
and dually, of context), dynamically scoped variables (capturing the common
pattern of recording extra information about each run), among others. Like in
the Prolog tradition of meta-interpreters, these techniques enable transforming
the evaluation of a logic program without complicating its description. In the
embedded setting, we have the choice of meta-programming within the embedded
language, or stepping out to the host language. By embracing this flexibility, we
gain simplicity: the embedded logic language remains “pure” and first-order,
tailored for relational programming.
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Abstract. Modern memory allocators have to balance many simulta-
neous demands, including performance, security, the presence of con-
currency, and application-specific demands depending on the context of
their use. One increasing use-case for allocators is as back-end implemen-
tations of languages, such as Swift and Python, that use reference count-
ing to automatically deallocate objects. We present mimalloc, a memory
allocator that effectively balances these demands, shows significant per-
formance advantages over existing allocators, and is tailored to support
languages that rely on the memory allocator as a backend for reference
counting. Mimalloc combines several innovations to achieve this result.
First, it uses three page-local sharded free lists to increase locality, avoid
contention, and support a highly-tuned allocate and free fast path. These
free lists also support temporal cadence, which allows the allocator to pre-
dictably leave the fast path for regular maintenance tasks such as sup-
porting deferred freeing, handling frees from non-local threads, etc. While
influenced by the allocation workload of the reference-counted Lean and
Koka programming language, we show that mimalloc has superior per-
formance to modern commercial memory allocators, including tcmalloc
and jemalloc, with speed improvements of 7% and 14%, respectively, on
redis, and consistently out performs over a wide range of sequential and
concurrent benchmarks. Allocators tailored to provide an efficient run-
time for reference-counting languages reduce the implementation burden
on developers and encourage the creation of innovative new language
designs.

1 Introduction

Modern memory allocators have to balance many simultaneous demands, includ-
ing performance, security, parallelism, and application-specific demands depend-
ing on the context of their use. One increasing use-case for allocators is as back-
end implementations of languages, such as Swift [34], that use reference counting
to automatically deallocate objects, or like Python [29], that typically allocate
many small short-lived objects.

When developing a shared runtime system for the Lean [26] and Koka [18,19]
languages, these two use cases caused issues with current allocators. First of all,
both Lean and Koka are functional languages that perform many small short-
lived allocations. In Lean, using a custom allocator for such small allocations
outperformed even highly optimized allocators like jemalloc [8]. Secondly, just
c© Springer Nature Switzerland AG 2019
A. W. Lin (Ed.): APLAS 2019, LNCS 11893, pp. 244–265, 2019.
https://doi.org/10.1007/978-3-030-34175-6_13
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like Swift and Python, the runtime system uses reference counting [32] to manage
memory. In order to limit pauses when deallocating large data structures, we
also need to support deferred decrementing of reference counts. To do this well,
cooperation from the allocator is required – as the best time to resume a deferred
decrement is when there is memory pressure.

To address these issues, we implemented a new allocator that uses various
novel ideas to achieve excellent performance:

– The main idea is to use extreme free list sharding : instead of one large free list
per size class, we instead have a free list per mimalloc page (usually 64KiB).
This keeps locality of allocation as malloc allocates inside one page until that
page is full, regardless of where other objects are freed in the heap.

– Moreover, we use separate thread-free lists for frees by other threads to avoid
atomic operations in the fast path of malloc. These thread-free lists are also
sharded per page to minimize contention among them. Such list is moved to
the local free list atomically every once in a while which effectively batches
the remote frees [24].

– Finally, we use a third local-free list per page for thread-local frees. When the
allocation free list becomes empty, the local-free list becomes the new free
list. This design ensures that the generic allocation path is always taken after
a fixed number of allocations, establishing a temporal cadence. This routine
can now be used to amortize more expensive operations: (1) do free-ing for
deferred reference count decrements, (2) maintain a deterministic heartbeat,
and (3) collect the concurrent thread-free lists. Using the separate local-free
list thus enables us to have a single check in the fast allocation path to handle
all the above scenarios through the generic “collection” routine.

– We highly optimize the common allocation and free code paths and defer
to the generic routine in other cases. This means that the data structures
need to be very regular in order to minimize conditionals in the fast path.
This consistent design also reduces special cases and increases code reuse –
leading to more regular and simpler code. The core library is less than 3500
LOC, much smaller than the core of other industrial strength allocators like
tcmalloc (~20k LOC) and jemalloc (~25k LOC).

– The allocator is completely lock free, and all thread interaction is done using
atomic operations. It has bounded worst-case allocation times, and meta-
data overhead is about 0.2% with at most 12.5% (18 th) waste in allocation
size classes.

We tested mimalloc against many other leading allocators over a wide range of
benchmarks and mimalloc consistently outperforms all others (Section). More-
over, we succeeded to outperform our own custom allocators for small objects in
Lean. Our results show that mimalloc has superior performance to modern com-
mercial memory allocators, including tcmalloc and jemalloc, with speed improve-
ments of with speed improvements of 7% and 14%, respectively, on redis, and
consistently out performs over a wide range of sequential and concurrent bench-
marks with similar peak memory usage.



246 D. Leijen et al.

Historically, allocator design has focused on performance issues such as reduc-
ing the time in the allocator, reducing memory usage, or scaling to many con-
current threads. Less often, allocator design is primarily motivated by improving
the reference locality of the application. For example VAM [9] and early versions
of PHKmalloc also use free list sharding to ensure that sequential allocations
often come from the same page. mimalloc also improves application memory
reference locality and improves on VAM by implementing multi-threading and
adding additional sharded free lists to reduce contention and support amortizing
maintenance tasks. Our design demonstrates that allocators focused on improv-
ing application memory locality can also provide high allocator performance and
concurrent scalability.

In the rest of this paper, we present the design of mimalloc, including moti-
vating the three free lists, consider issues such as security and portability, and
evaluate its performance against many state of the art allocator implementa-
tions. mimalloc is implemented in C, and runs on Linux, FreeBSD, MacOSX,
and Windows, and is freely available on github [20], and with its simplified and
regular code base, is particularly amenable to being integrated into other lan-
guage runtimes.

2 Free List Sharding

We start with an overview of the specifics of free list sharding, the local free
list, and the thread free list. After this, Sect. 3 goes into the details of the full
heap layout (Fig. 1) and the implementation of malloc and free, followed by
the benchmark results in Sect. 4.

2.1 The Allocation Free List

The allocation pattern for functional style programming is to allocate and free
many small objects. Many allocators use a single free list per size class which can
lead to bad spatial locality where objects belonging to a single structure can be
spread out over the entire heap. Consider for example the following heap state
(A) where the free list spans a large part of the heap:

free

freep

(A)

(B)

When allocating a list p of three elements, we end up in state (B) where
the newly allocated list is also spread out over a large part of the heap with
bad spatial locality. This is not an uncommon situation. On the contrary, most
functional style programs will converge to this form of heap state. This happens
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in particular when folding over older data structures and building new data
structures of a different size class where the interleaved allocation leads to these
spread-out free lists.

To improve the spatial locality of allocation, mimalloc use free list sharding
where the heap is divided into pages (per size-class) with a free list per page
(where pages1 are usually 64KiB for small objects). The previous heap state will
now look like following situation (A), where each page has a small free list:

After allocating the three element p list, we end up in state (B) where the
list is now fully allocated within the page with much better spatial locality. We
believe that the good performance of mimalloc comes in a large part from the
improved allocation locality.

To test this, we did an experiment in the Lean compiler [26]. Version 3 of
the compiler had a custom allocator for allocating small objects where it used
a single free list. We replaced this implementation with just a sharded free list
per slab (page) and on some benchmarks with large data structures in a 1GiB
heap, we saw performance improvements of over 25% with this single change!
Early work by Feng and Berger [9] on the locality improving VAM allocator also
used a sharded free list design and they measured a significant reduction in the
L2 cache misses.

2.2 No Bump Pointer

The allocation path for allocating inside a page can now simply pop from the
page local list:

void* malloc_in_page( page_t* page, size_t size ) {
block_t* block = page->free; // page-local free list
if (block==NULL) return malloc_generic(size); // slow path
page->free = block->next;
page->used++;
return block;

}

where

struct block_t { struct block_t* next; }

1 Do not confuse the word page with OS pages. A mimalloc page is larger and corre-
sponds more closely to a superblock [4] or subslab [24] in other allocators.
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There is just a single conditional and a pop in the fast path now. The used
increment is needed to be able to efficiently determine when all objects in a
page are freed. Many allocators use a reap design where a bump pointer is used
initially when the page is empty [6,9,24]. We tested a variant of mimalloc with
bump pointer allocation but across our benchmarks it was consistently about 2%
worse. One reason might be that adding bump pointer allocation means there
are now 2 conditionals in the fast path: either use the bump pointer, or use
the free list. Moreover, these conditionals cannot be predicted well as each one
depends on the page where one happens to allocate in. Moreover, for security
reasons it is not good to allocate predictably in a sequential way which rules
out bump pointers too. As shown in Sect. 3.5, we initialize the free list in a fresh
page in a randomized way.

2.3 The Local Free List

For the Koka and Lean runtimes, we wanted to bound the worst-case allocation
and free times. In particular, when freeing large data structures, the number
of recursive free calls need to be limited. Koka and Lean use reference count-
ing in the runtime (similar to Swift and Python), but the problem occurs in
any language with large data structures. Limiting the number of free calls with
reference counting can be done with a simple limit counter and pushing the
remaining pointers on a deferred decrement list.

The question is when to free again from this deferred decrement list? Here
cooperation from allocator is necessary since the best time to do this is when
the allocator is under pressure and needs to find more free space. The mimalloc
allocator calls a user defined deferred_free callback when that happens. This
is called from the slow path in mimalloc in the malloc_generic routine exactly
when the page local free list is empty. This nicely combines with the single
conditional in the fast path. We will see that we reuse this technique again, and
put any more expensive operations into the generic routine guarded by the single
conditional.

However, this does not quite work yet as there is no guarantee that the generic
routine is called regularly: a user may free and allocate repeatedly within one
page with the free list in the page never becoming empty. What we want instead
is to ensure the generic routine is called after some fixed number of allocations.

Therefore, we shard the free list once more: we add a sharded local free list
to each page and while we allocate from the regular free list, we put any freed
objects on the local free list instead. This guarantees that the free list becomes
empty after a fixed number of allocations. In the generic routine we can now
simply move the local free list to the free list and keep allocating:

page->free = page->local_free; // move the list
page->local_free = NULL; // and the local list is empty again

Note again that we did not need to add a conditional in the fast path for this
situation and put the work into the slow path. Now that deferred_free is
guaranteed to be called regularly after a bounded number of allocations, we
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can also use it as a deterministic heartbeat. This is used in Lean as a form of
portable timer to time-out threads if they take too long (for proofs). In that
case we cannot use wall-clock time since that would not be deterministic across
machines while the heartbeat is.

2.4 The Thread Free List

In mimalloc, pages belong to a thread-local heap and allocation is always done
in the local heap. This way no locks are needed for thread local allocations.
Nevertheless, any thread can free an object. To avoid locks for thread local frees
as well, we shard the free list one more final time and add a sharded thread free
list per page, where other threads push freed objects in that page.

If a non-local free happens, we use atomic operations to push the freed object
p atomically on the thread free list:

atomic_push( &page->thread_free, p );

where

void atomic_push( block_t** list, block_t* block ) {
do { block->next = *list; }
while (!atomic_cas(list, block /*new*/, block->next /*compare*/));

}

The beauty of the sharded thread free list is that it also reduces contention
among threads since threads freeing in different pages do not contend with each
other. On current architectures, uncontended atomic operations are very efficient
and usually implemented as part of the cache consistency protocol [30].

Again, we use the generic routine to collect the thread free list and add it to
the free list, just as we did with the local free list:

tfree = atomic_swap( &page->thread_free, NULL );
append( page->free, tfree );

Since the entire thread free list is moved at once, this effectively batches non-local
free calls as well. This is especially important for asymmetric concurrent work
loads where some threads predominantly free objects and others predominantly
allocate. The snmalloc allocator [24] was especially created to handle this situa-
tion well and also uses a batching technique to reduce expensive synchronization.
This workload is tested by the xmallocN benchmark in Sect. 4.

3 Implementation

Given the sharded free lists, we can now understand the full design of the allo-
cator, where Fig. 1 shows a detailed overview of the layout of the heap. Except
for the sharded lists, the overall design is otherwise quite similar to other size-
segregated thread-caching allocators.
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Fig. 1. Heap layout

3.1 Malloc

To allocate an object, mimalloc first gets a pointer to the thread local heap (tlb).
From there it needs to find a page of the right size class. For small objects under
1Kb the heap contains a direct array of pointers to the first available page in
that size class. For small object allocation, the code becomes:

void* malloc_small( size_t n ) { // 0 < n <= 1024
heap_t* heap = tlb;
page_t* page = heap->pages_direct[(n+7)>>3]; // divide up by 8
block_t* block = page->free;
if (block==NULL) return malloc_generic(heap,n); // slow path
page->free = block->next;
page->used++;
return block;

}

which expands to efficient assembly with only one conditional.
As seen in Fig. 1, the pages and the page meta-data all live in large segments

(sometimes called slab or arena in other allocators). These segments are 4MiB
(or larger for huge objects that are over 512KiB), and start with the segment- and
page meta data, followed by the actual pages where the first page is shortened
by the size of the meta data plus a guard page. There are three page sizes: for
small objects under 8KiB the pages are 64KiB and there are 64 in a segment;
for large objects under 512KiB there is one page that spans the whole segment,
and finally huge objects over 512KiB have one page of the required size. The
reason to still use a segment and single page for large and huge objects is to
simplify the data structures and reduce the code size and complexity by having
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a consistent interface and code with few special cases. This pays off in practice
and the code size of mimalloc is far smaller than most other allocators.

3.2 Free

Pages and their meta data are allocated in a segment mostly to reduce expensive
allocation calls to the underlying OS, but there is another important reason:
when freeing a pointer, we need to be able to find the page meta data belonging
to that pointer. The way this is done in mimalloc is to align the segments to a
4MiB boundary. Finding the segment holding a pointer p can then be done by
masking the lower bits. The code for free becomes:

void free( void* p ) {
segment_t* segment = (segment_t*)((uintptr_t)p & ~(4*MB));
if (segment==NULL) return;
page_t* page = &segment->pages[(p-segment) >> segment->page_shift];
block_t* block = (block_t*)p;
if (thread_id() == segment->thread_id) { // local free

block->next = page->local_free;
page->local_free = block;
page->used–;
if (page->used - page->thread_freed == 0) page_free(page);

}
else { // non-local free

atomic_push( &page->thread_free, block);
atomic_incr( &page->thread_freed );

}
}

The free function first gets the segment pointer by masking the lower bits of the
freed pointer p. When the pointer is NULL, the segment will be NULL too and we
check for that. In the generated assembly this removes an explicit comparison
operation as the bitwise and sets the zero-flag if the result is zero. From there
we can calculate the page index by taking the difference and shifting by the
segment page_shift: for small pages this is 16 (= 64KiB), while for large and
huge pages it is 22 (= 4MiB) such that the index is always zero in those cases
(as there is just one page). Again, by using a uniform representation we avoid
special cases and conditionals in the fast path.

The main conditional tests whether this is a thread local free, or a free by
another thread. Here mimalloc relies on an efficient thread_id() call to get
the id of the current thread and comparing that to the thread_id field of the
segment. On most operating systems this can be done very efficiently by loading
the thread id from a fixed address of the thread local data (for example, on
Linux on 64-bit Intel/AMD chips this at offset 0 relative to the fs register).

If the free is done by another thread, the object is pushed atomically on the
thread_free list. Otherwise, the free is local and we simply push the object on
the local_free list. We also test here if all objects are freed in that page and
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free the page in that case. We could skip this and instead only collect full free
pages when looking for a fresh page in the slow path, but for certain work loads
it turns out to be more efficient to try to make such pages available as early as
possible.

Note that we read the thread shared thread_freed count without a read-
barrier meaning there is tiny probability that we miss that all objects in the
page were just all freed. However, that is okay – since we are guaranteed to call
the generic allocation routine sometimes, we can collect any such pages later on
(and indeed – on asymmetric workloads where some threads only allocate and
others only free, the collection in the generic routine is the only way such pages
get freed).

3.3 Generic Allocation

The generic allocation routine, malloc_generic, is our “slow path” which is guar-
anteed to be called every once in a while. This routine gives us the opportunity
to do more expensive operations whose cost is amortized over many allocations,
and can almost be seen as a form of garbage collector. In pseudo code:

void* malloc_generic( heap_t* heap, size_t size ) {
deferred_free();
foreach( page in heap->pages[size_class(size)] ) {

page_collect(page);
if (page->used - page->thread_freed == 0) {

page_free(page);
}
else if (page->free != NULL) {

return malloc(size);
}

}
.... // allocate a fresh page and malloc from there

}

void page_collect(page) {
page->free = page->local_free; // move the local free list
page->local_free = NULL;
... // move the thread free list atomically

}

The generic routine linearly walks through the pages of a size class and frees any
pages that contain no more objects. It stops when it finds the first page that has
free objects. In the actual implementation not all pages are immediately freed
but some are retained a bit in a cache for possible future use; also, the maximum
number of freed pages is bounded to limit the worst-case allocation time. When
a page is found with free space, the page list is also rotated at that point so that
a next search starts from that point.
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3.4 The Full List

The implementation as described already performs very well on almost all of our
wide range of benchmarks – except some. In particular, on the SpecMark gcc
benchmark we observed a 30% slowdown compared to some other allocators.
This anecdote shows that there is no silver bullet and an industrial strength
memory allocator needs to address many corner cases that might show up only
for particular workloads.

In the case of the gcc benchmark it happens to use its own custom allocators
and allocate many large objects initially that than stay live for a long time.
For mimalloc this leads to many (over 18000) full pages that are now traversed
linearly every time in the generic allocation routine.

The solution that we implemented is to have a separate full list that holds
all the pages that are full, and move those back to the regular page lists when an
object is freed in such page. This fixes the gcc benchmark but unfortunately this
seemingly small change introduces significant complexity for the multi-threaded
case.

In particular, on a non-local free of an object in a full page, we need to
somehow signal the owning heap that the page is no longer full, and if possible
without taking an expensive lock. We are going to do this through a heap-owned
list of thread delayed free blocks. In the generic routine, we first atomically take
over this list and free all the blocks in the delayed free list normally – possibly
moving pages from the full list back to the regular lists.

But how does a non-local free know whether to push on the page local thread
free list, or whether do push on the owning heap thread delayed free list? For
this we use the 2 least significant bits in the thread free list pointer to atomically
encode 3 states: NORMAL, DELAYED, and DELAYING. Usually, the state is NORMAL
and we push on the local thread free list. When a page is moved to the full list,
we set the DELAYED state – signifying that non-local free operations should push
on the owning heap delayed free list. While doing that, the DELAYING state is
temporarily set to ensure the owning heap structure itself stays valid in case the
owning thread terminates in the mean time. After a delayed free, the state is
always set to NORMAL again since we only need one delayed free per page to check
if the page is no longer full. This turns out to be an important optimization:
again, with asymmetric concurrent workloads the freeing thread may free many
objects and we should ensure the more expensive initial delayed free is only done
once. Without this optimization, the xmalloc-test benchmark is 30% slower.

3.5 Security

The design of mimalloc lends itself well to implement various security mitigations
that one would consider required in browser environments for example. For a
good overview we refer to Novark and Berger [27] and Berger and Zorn [5]. We
implemented a secure variant of mimalloc (called smimalloc) that implements
various security mitigations:
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– It puts OS guard pages in-between every mimalloc page such that heap over-
flow attacks are always limited to one mimalloc page and can never overflow
into the heap meta data.

– The initial free list in a page is initialized randomly such that there is no
predictable allocation pattern (to protect against heap feng shui [31]). Also,
on a full list, the secure allocator will sometimes extend instead of using the
local free list to increase randomness further.

– To guard against heap block-overflow attacks that overwrite the free list, we
xor -encode the free list in each page. This prevents overwriting with known
values but also allows efficient detection of such attack.

– Already, mimalloc efficiently supports multiple heaps. This can further
increase security by allocating internal objects like virtual method tables etc.
in a separate heap from other application allocated objects.

As we see in Sect. 4, the secure version of mimalloc is on average about 3%
slower plain mimalloc. This was quite surprising to us as we initially expected
much larger slowdowns due to the above mitigations.

4 Evaluation

We tested mimalloc against many other top allocators over a wide range of bench-
marks, ranging from various real world programs to synthetic benchmarks that
see how the allocator behaves under more extreme circumstances. The bench-
mark suite is fully scripted and available on Github [21].

Allocators are interesting as there exists no algorithm that is generally opti-
mal – for a given allocator one can usually construct a workload where it does
not do so well. The goal is thus to find an allocation strategy that performs
well over a wide range of benchmarks without suffering from underperformance
in less common situations (which is what the second half of our benchmark set
tests for).

In our benchmarks, mimalloc always outperforms all other leading allocators
(jemalloc, tcmalloc, Hoard, etc), and usually uses less memory (up to 25% more
in the worst case). A nice property is that it does consistently well over the
wide range of benchmarks: only snmalloc shares this property while all other
allocators exhibit sudden (severe) underperformance in certain situations. We
try to highlight and explain these situations in the text and hope these insights
can lead to improvements in other allocator designs as well.

4.1 Allocators

We tested mimalloc with 7 leading allocators over 12 benchmarks and the Spec-
Mark benchmarks. The tested allocators are:

– mi: The mimalloc allocator [20], using version tag v1.0.0. We also test a
secure version of mimalloc as smi which uses the techniques described in
Sect. 3.5.



Mimalloc: Free List Sharding in Action 255

– tc: The tcmalloc allocator [10] which comes as part of the Google per-
formance tools and is used in the Chrome browser. Installed as package
libgoogle-perftools-dev version 2.5-2.2ubuntu3.

– je: The jemalloc allocator by Evans [8] is developed at Facebook and widely
used in practice, for example in FreeBSD and Firefox. Using version tag 5.2.0.

– sn: The snmalloc allocator is a recent concurrent message passing allocator
by Liétar et al. [24], using git-0b64536b. We would like to remark that since
these results, the authors have improved performance considerably where it
performs close to mimalloc now (2019-08). Many improvements, like the addi-
tion of free-list sharding, were directly inspired by the initial technical report
on mimalloc.

– rp: The rpmalloc allocator uses 32-byte aligned allocations and is developed
by Jansson [14] at Rampant Pixels. Using version tag 1.3.1.

– hd: The Hoard allocator by Berger et al. [4]. This is one of the first multi-
thread scalable allocators. Using version tag 3.13.

– glibc: The system allocator. Here we use the glibc allocator (which is origi-
nally based on Ptmalloc2), using version 2.27.0. Note that version 2.26 signif-
icantly improved scalability over earlier versions.

– tbb: The Intel TBB allocator that comes with the Thread Building
Blocks (TBB) library [12,13,15]. Installed as package libtbb-dev, version
2017~U7-8.

All allocators run exactly the same benchmark programs on Ubuntu 18.04.1
and use LD_PRELOAD to override the default allocator. The wall-clock elapsed
time and peak resident memory (rss) are measured with the time program. The
average scores over 5 runs are used. Performance is reported relative to mimalloc,
e.g. a time of 1.5× means that the program took 1.5× longer than mimalloc.

4.2 Benchmarks

The first set of benchmarks are real world programs and consist of:

– cfrac: by Dave Barrett, implementation of continued fraction factorization
which uses many small short-lived allocations – exactly the workload we are
targeting for Koka and Lean.

– espresso: a programmable logic array analyzer, described by Grunwald, Zorn,
and Henderson [11] in the context of cache aware memory allocation.

– barnes: a hierarchical n-body particle solver [3] which uses relatively few
allocations compared to cfrac and espresso. Simulates the gravitational
forces between 163840 particles.

– leanN: The Lean compiler by de Moura et al. [26], version 3.4.1, compiling
its own standard library concurrently using N threads (./lean –make -j N).
Big real-world workload with intensive allocation.

– redis: running the redis 5.0.3 server on 1 million requests pushing 10 new list
elements and then requesting the head 10 elements. Measures the requests
handled per second.

https://redis.io/
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– larsonN: by Larson and Krishnan [17]. Simulates a server workload using
100 separate threads which each allocate and free many objects but leave
some objects to be freed by other threads. Larson and Krishnan observe
this behavior (which they call bleeding) in actual server applications, and the
benchmark simulates this.

The second set of benchmarks are stress tests and consist of:

– alloc-test: a modern allocator test developed by OLogN Technologies AG
(ITHare.com) [28]. Simulates intensive allocation workloads with a Pareto
size distribution. The alloc-testN benchmark runs on N cores doing 100 · 106
allocations per thread with objects up to 1KiB in size. Using commit 94f6cb
(master, 2018-07-04)

– sh6bench: by MicroQuill [25] as part of SmartHeap. Stress test where some
of the objects are freed in a usual last-allocated, first-freed (LIFO) order, but
others are freed in reverse order. Using the public source (retrieved 2019-01-
02)

– sh8benchN: by MicroQuill [25] as part of SmartHeap. Stress test for multi-
threaded allocation (with N threads) where, just as in larson, some objects
are freed by other threads, and some objects freed in reverse (as in sh6bench).
Using the public source (retrieved 2019-01-02)

– xmallocN: by Lever and Boreham [22] and Christian Eder. We use the
updated version from the SuperMalloc repository [16]. This is a more extreme
version of the larson benchmark with 100 purely allocating threads, and 100
purely deallocating threads with objects of various sizes migrating between
them. This asymmetric producer/consumer pattern is usually difficult to han-
dle by allocators with thread-local caches.

– cscratch: by Berger et al. [4]. Introduced with the Hoard allocator to test for
passive-false sharing of cache lines: first some small objects are allocated and
given to each thread; the threads free that object and allocate immediately
another one, and access that repeatedly. If an allocator allocates objects from
different threads close to each other this will lead to cache-line contention.

4.3 On a 16-Core AMD EPYC

Figure 2 (and Fig. 6 for memory in the Appendix) shows the benchmark results
on a r5a.4xlarge [2] instance consisting of a 16-core AMD EPYC 7000 at 2.5GHz
with 128 GB ECC memory, running Ubuntu 18.04.1 with LibC 2.27 and GCC
7.3.0.

In the first five benchmarks we can see mimalloc outperforms the other allo-
cators moderately, but we also see that all these modern allocators perform well
– the times of large performance differences in regular workloads are over. In
cfrac and espresso, mimalloc is a tad faster than tcmalloc and jemalloc, but a
solid 10% faster than all other allocators on espresso. The tbb allocator does not
do so well here and lags more than 20% behind mimalloc. The cfrac and espresso
programs do not use much memory (~1.5 MB) so it does not matter too much,
but still mimalloc uses about half the resident memory of tcmalloc.

https://github.com/node-dot-cpp/alloc-test
http://www.microquill.com/smartheap/shbench/bench.zip
http://www.microquill.com/smartheap/SH8BENCH.zip
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Fig. 2. Time benchmark on a 16-core AMD Epyc r5a-4xlarge instance. Benchmarks
ending with “N” run in parallel on all cores.

The leanN program is most interesting as a large realistic and concurrent
workload and there is a 8% speedup over tcmalloc. This is quite significant: if
Lean spends 20% of its time in the allocator that means that mimalloc is 1.3×
faster than tcmalloc here. This is surprising as that is not measured in a pure
allocation benchmark like alloc-test. We conjecture that we see this outsized
improvement here because mimalloc has better locality in the allocation which
improves performance for the other computations in a program as well.
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The redis benchmark shows more differences between the allocators where
mimalloc is 14% faster than jemalloc. On this benchmark tbb (and Hoard) do not
do well and are over 40% slower.

The larson server workload which allocates and frees objects between many
threads shows even larger differences, where mimalloc is more than 2.5× faster
than tcmalloc and jemalloc which is quite surprising for these battle tested allo-
cators – probably due to the object migration between different threads. This is
a difficult benchmark for other allocators too where mimalloc is still 48% faster
than the next fastest (snmalloc).

The second benchmark set tests specific aspects of the allocators and shows
even more extreme differences between them.

The alloc-test is very allocation intensive doing millions of allocations in var-
ious size classes. The test is scaled such that when an allocator performs almost
identically on alloc-test1 as alloc-testN it means that it scales linearly. Here,
tcmalloc, snmalloc, and Hoard seem to scale less well and do more than 10%
worse on the multi-core version. Even the best allocators (tcmalloc and jemalloc)
are more than 10% slower as mimalloc here.

Also in sh6bench mimalloc does much better than the others (more than 2×
faster than jemalloc). We cannot explain this well but believe it is caused in part
by the “reverse” free-ing pattern in sh6bench.

Again in sh8bench the mimalloc allocator handles object migration between
threads much better and is over 36% faster than the next best allocator, snmalloc.
Whereas tcmalloc did well on sh6bench, the addition of object migration caused
it to be almost 3 times slower than before.

The xmallocN benchmark simulates an asymmetric workload where some
threads only allocate, and others only free. The snmalloc allocator was especially
developed to handle this case well as it often occurs in concurrent message pass-
ing systems. Here we see that the mimalloc technique of having non-contended
sharded thread free lists pays off and it even outperforms snmalloc. Only jemal-
loc also handles this reasonably well, while the others underperform by a large
margin. The optimization on mimalloc to do a delayed free only once for full
pages is quite important – without it mimalloc is almost twice as slow (as then
all frees contend again on the single heap delayed free list).

The cscratch benchmark also demonstrates the different architectures of the
allocators nicely. With a single thread they all perform the same, but when
running with multiple threads the allocator induced false sharing of the cache
lines causes large run-time differences, where mimalloc is more than 18× faster
than jemalloc and tcmalloc! Crundal [7] describes in detail why the false cache
line sharing occurs in the tcmalloc design, and also discusses how this can be
avoided with some small implementation changes. Only snmalloc and tbb also
avoid the cache line sharing like mimalloc. Kukanov and Voss [15] describe in
detail how the design of tbb avoids the false cache line sharing.
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4.4 On a 4-Core Intel Xeon Workstation

Figure 3 shows the benchmark results on an HP Z4-G4 workstation with a 4-core
Intel® Xeon® W2123 at 3.6GHz with 16GB ECC memory, running Ubuntu
18.04.1 with LibC 2.27 and GCC 7.3.0. This time we added the secure version
of mimalloc as smi.

Overall, the relative results are quite similar as before. Most allocators fare
better on the larsonN benchmark now – either due to architectural changes (AMD
vs. Intel) or because there is just less concurrency.

Fig. 3. Time benchmark on a 4-core Intel Xeon workstation. Benchmarks ending with
“N” run in parallel on all cores.
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Fig. 4. Time benchmark on a 4-core Intel Xeon workstation for selected SpecMark
2019 benchmarks.

The secure mimalloc version uses guard pages around each (mimalloc) page,
encodes the free lists and uses randomized initial free lists, and we expected it
would perform quite a bit worse – but on the first benchmark set it performed
only about 3% slower on average, and is second best overall.

4.5 SpecMark 2019

We also ran SpecMark 2019 benchmarks. Most benchmarks there do not allocate
a lot and all the modern allocators perform mostly identical for most of them.
There are only 4 of them that show larger differences, which we show in Figs. 4
and 5: 602.gcc, 620.omnetpp, 623.xalancbmk, and 648.exchange2.

On these benchmarks mimalloc does well but is slightly slower than tcmalloc,
jemalloc, and snmalloc, on omnetpp and xalancbmk. As discussed in Sect. 3.4, the
gcc benchmarks allocates a lot of initial long lived data and we needed the full
list to avoid long searches. We conjecture this is happening in tcmalloc and tbb as
well, as both have a similar underperformance of about 30% (just like mimalloc
before the optimization). We see something similar happen in the xalancbmk
benchmark for rp and glibc but we are not sure what is the cause of that.

In Fig. 5 the relative peak memory usage is shown. Interestingly, the gcc
benchmark shows two outliers too, but this time Hoard and tbb underperform
by 30%. On the exchange2 benchmark it is surprising to see that both tcmalloc
and jemalloc use significantly more memory than mimalloc even though especially
jemalloc is optimized to reduce the resident memory usage for long running server
programs.
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Fig. 5. Peak memory usage on a 4-core Intel Xeon workstation for selected SpecMark
2019 benchmarks.

5 Related Work

Feng and Berger’s VAM [9] is the allocator design most closely related to mimal-
loc. VAM pioneered the idea of prioritizing application reference locality over
reducing memory fragmentation and our sharded free list design improves on
VAM’s original design. VAM maintained free lists per 4k hardware page and sup-
ported bump-pointer allocations (which we considered but rejected). As many
allocators contemporaneous with VAM did, VAM treated large and medium-
sized objects differently than small objects by incorporating inline meta data
with each object to support a best-fit allocation strategy. VAM was not a multi-
threaded allocator design, as mimalloc is, and its implementation is not currently
available for measuring.

Grunwald et al. [11] highlight the impact of allocator design on overall appli-
cation reference locality and argue that a segregated size-class approach, as
implemented in QuickFit [33] would provide better reference locality. While
Grunwald argues that QuickFit is only part of a more general allocator solu-
tion, unlike Grunwald or VAM, mimalloc demonstrates that a uniform approach
to object representation across all sizes leads to significant benefits in reduced
complexity and improved performance.

The Intel TBB (Thread Building Block) multi-threaded allocator [12,15] has
elements in common with mimalloc. It uses size-segregated bins, has thread-local
free lists, allocates from a private free list and and has a public free list per bin
that foreign threads return local objects to. Unlike mimalloc, TBB does not have
a separate private free list that local objects are returned on, choosing instead
to immediately reuse freed objects instead of deferring reuse.
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We recently learned of the scalloc allocator [1] which provide scalable multi-
core allocation through global sharing of spans (segments) which is possible
through scalable lock-free pools and queue data structures. Another recent allo-
cator is snmalloc which focuses on improving the performance of multi-threaded
producer/consumer workloads [23], as exemplified by the xmallocN benchmark.
snmalloc uses a novel radix-tree structure to avoid potential bottlenecks with
different consumer threads contending with each other on returning an object
to the same producer. mimalloc handles contention between threads performing
frees of non-local objects by sharding the thread free list in every page.

6 Conclusion

We present mimalloc, an allocator motivated by the need to support deferred
reference decrements in language runtimes and focused on improving the overall
reference locality of an application. mimalloc provides three sharded free lists
per software page (64KiB), increasing overall locality, reducing multi-threaded
contention, and supporting temporal cadence, where slow-path operations are
deferred but guaranteed to happen with regularity. To avoid costly branches
on the fast path, mimalloc simplifies object representation and eliminates com-
plexities such as doing bump-pointer allocation, representing medium-objects
differently, etc. Comparing against state-of-the-art commercial allocator imple-
mentations, we show that mimalloc consistently outperforms other allocators in
their default configuration including on both single-threaded workloads, such
as redis, as well as on multi-threaded stress tests. mimalloc is implemented in
C, is freely available on github [20] and with its simple and small code base is
particularly amenable to being integrated into other language runtimes.

Acknowledgements. We would like to thank Matthew Parkison, and the other
authors of snmalloc, for the valuable feedback, and encouragement to include the xmal-
locN benchmark.

A Evaluation of Peak Working Memory

Figure 6 shows the peak working memory (RSS) relative to mimalloc. These
figures correspond to the earlier performance Figs. 2 and 3 respectively. Note
that the memory usage of xmallocN should be disregarded as the faster the
benchmark runs, the more memory it uses. Also the cfrac, espresso, and cscratchN
benchmarks use just little active memory and the differences in RSS are not very
important here.
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Fig. 6. Peak memory usage on a 16-core AMD Epyc r5a-4xlarge instance. (xmallocN
is not normalized and should be disregarded)
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Abstract. Proof assistants, such as Isabelle/HOL, offer tools to facili-
tate inductive theorem proving. Isabelle experts know how to use these
tools effectively; however, there is a little tool support for transferring
this expert knowledge to a wider user audience. To address this prob-
lem, we present our domain-specific language, LiFtEr. LiFtEr allows
experienced Isabelle users to encode their induction heuristics in a style
independent of any problem domain. LiFtEr’s interpreter mechanically
checks if a given application of induction tool matches the heuristics,
thus automating the knowledge transfer loop.

Keywords: Induction · Isabelle/HOL · Domain-specific language

1 Introduction

Consider the following reverse functions, rev and itrev, presented in a tutorial
of Isabelle/HOL [26]:

primrec rev::"’a list =>’a list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"’a list =>’a list =>’a list" where
"itrev [] ys = ys"

| "itrev (x#xs) ys = itrev xs (x#ys)"

where # is the list constructor, and @ appends two lists. How do you prove the
following lemma?

lemma "itrev xs ys = rev xs @ ys"
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Since both rev and itrev are defined recursively, it is natural to imagine that we
can handle this problem by applying induction. But how do you apply induction
and why? What induction heuristics do you use? In which language do you
describe those heuristics?

Modern proof assistants (PAs), such as Isabelle/HOL [26], are forming the
basis of trustworthy software. Klein et al., for example, verified the correctness of
the seL4 micro-kernel in Isabelle/HOL [11], whereas Leroy developed a certifying
C compiler, CompCert, using Coq [15]. Despite the growing number of such
complete formal verification projects, the limited progress in proof automation
still keeps the cost of proof development high, thus preventing the wide spread
adoption of complete formal verification.

A noteworthy approach in proof automation for proof assistants is hammer
tools [1]. Sledgehammer, for example, exports proof goals in Isabelle/HOL to var-
ious external automated theorem provers (ATPs) to exploit the state-of-the-art
proof automation of these backend provers; however, the discrepancies between
the polymorphic higher-order logic of Isabelle/HOL and the monomorphic first-
order logic of the backend provers severely impair Sledgehammer’s performance
when it comes to inductive theorem proving (ITP).

This is unfortunate for two reasons. Firstly, many Isabelle users chose
Isabelle/HOL precisely because its higher-order logic is expressive enough to
specify mathematical objects and procedures involving recursion without intro-
ducing new axioms. Secondly, induction lies at the heart of mathematics and
computer science. For instance, induction is often necessary for reasoning about
natural numbers, recursive data-structures, such as lists and trees, computer
programs containing recursion and iteration [3].

This is why ITP remains as a long-standing challenge in computer science,
and its automation is much needed. Facing the limited automation in ITP, Gram-
lich surveyed the problems in ITP and presented the following prediction in 2005
[6]:

in the near future, ITP will only be successful for very specialized domains
for very restricted classes of conjectures. ITP will continue to be a very
challenging engineering process.

We address this conundrum with our domain-specific language, LiFtEr. LiFtEr
allows experienced Isabelle users to encode their induction heuristics in a style
independent of problem domains. LiFtEr’s interpreter mechanically checks if a
given application of induction is compatible with the induction heuristics written
by experienced users. Our research hypothesis is that:

it is possible to encode valuable induction heuristics for Isabelle/HOL in
LiFtEr and these heuristics can be valid across diverse problem domains,
because LiFtEr allows for meta-reasoning on applications of induction
methods, without relying on concrete proof goals, their underlying proof
states, nor concrete applications of induction methods.
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We developed LiFtEr as an Isabelle theory and integrated LiFtEr into Isabelle’s
proof language, Isabelle/Isar, and its proof editor, Isabelle/jEdit. This allows for
an easy installation process: to use LiFtEr, users only have to import the relevant
theory files into their theory files, using Isabelle’s import keyword. Our working
prototype is available at GitHub [20].

The important difference of LiFtEr from other tactic languages, such as
Eisbach [16] and Ltac [4], is that LiFtEr itself is not a tactic language but
a language to write how one should use Isabelle’s existing proof method for
induction. To the best of our knowledge, LiFtEr is the first language in which
one can write how to use a tactic by mechanically analyzing the structures of
proof goals in a style independent of any problem domain.

2 Induction in Isabelle/HOL

To handle inductive problems, modern proof assistants offer tools to apply
induction. For example, Isabelle comes with the induct proof method and the
induction method1. Nipkow et al. proved our ongoing example as follows [25]:

lemma model_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

Namely, they applied structural induction on xs while generalizing ys before
applying induction by passing the string ys to the arbitrary field. The resulting
sub-goals are:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!a xs ys. (!!ys. itrev xs ys = rev xs @ ys) ==>

itrev (a # xs) ys = rev (a # xs) @ ys

where !! is the universal quantifier and ==> is the implication in Isabelle’s meta-
logic. Due to the generalization, the ys in the induction hypothesis is quantified
within the hypothesis, and it is differentiated from the ys that appears in the
conclusion. Had Nipkow et al. omitted arbitrary: ys, the first sub-goal would
be the same, but the second sub-goal would have been:

2. !!a xs. itrev xs ys = rev xs @ ys ==>
itrev (a # xs) ys = rev (a # xs) @ ys

Since the same ys is shared by the induction hypothesis and the conclusion, the
subsequent application of auto fails to discharge this sub-goal.

It is worth noting that in general there are multiple equivalently appropriate
combinations of arguments to prove a given inductive problem. For instance, the
following proof snippet shows an alternative proof script for our example:

lemma alt_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct) by auto

1 Proof methods are the Isar syntactic layer of LCF-style tactics.
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Here we passed the itrev.induct rule to the rule field of the induct method
and proved the lemma by recursion induction2 over itrev. This rule was derived
by Isabelle automatically when we defined itrev, and it states the following:

(!!ys. P [] ys) ==>
(!!x xs ys. P xs (x # ys) ==> P (x # xs) ys) ==>
P a0 a1

Essentially, this rule states that to prove a property P of a0 and a1 we have to
prove it for two cases where a0 is the empty list and the list with at least two
elements. When the induct method takes this rule and xs and ys as induction
variables, Isabelle produces the following sub-goals:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!x xs ys. itrev xs (x # ys) = rev xs @ x # ys ==>

itrev (x # xs) ys = rev (x # xs) @ ys

where the two sub-goals correspond to the two clauses in the definition of itrev.
There are other lesser-known techniques to handle difficult inductive prob-

lems using the induct method, and sometimes users have to develop useful aux-
iliary lemmas manually; however, for most cases the problem of how to apply
induction boils down to the following three questions:

– On which terms do we apply induction?
– Which variables do we generalize?
– Which rule do we use for recursion induction?

Isabelle experts resort to induction heuristics to answer such questions and decide
what arguments to pass to the induct method; however, such reasoning still
requires human engineers to carefully investigate the inductive problem at hand.
Moreover, Isabelle experts’ induction heuristics are sparsely documented across
various documents, and there was no way to encode their heuristics as programs.
For the wide spread adoption of complete formal verification, we need a program
language to encode such heuristics and the system to check if an invocation of
the induct method written by an Isabelle novice complies with such heuristics.
We developed LiFtEr, taking these three groups of questions as a design space.

3 Overview and Syntax of LiFtEr

We designed LiFtEr to encode induction heuristics as assertions on invocations
of the induct method in Isabelle/HOL. An assertion written in LiFtEr takes
the pair of a proof goal with its underlying proof state and arguments passed to
the induct method. When one applies a LiFtEr assertion to an invocation of
the induct method, LiFtEr’s interpreter returns a boolean value as the result
of the assertion applied to the proof goals and their underlying proof state.
2 Recursion induction is also known as functional induction or computation induction.
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Fig. 1. The workflow of LiFtEr.

The goal of a LiFtEr programmer is to write assertions that implement
reliable heuristics. A heuristic encoded as a LiFtEr assertion is reliable when it
satisfies the following two properties:

1. The LiFtEr interpreter is likely to evaluate the assertion to True when the
arguments of the induct method are appropriate for the given proof goal.

2. The LiFtEr interpreter is likely to evaluate the assertion to False when the
arguments are inappropriate for the goal.

Figure 1 illustrates the workflow of LiFtEr. Firstly, Isabelle experts encode
the gist of promising applications of induction based on experts’ proofs. Note
that the heuristics encoded in LiFtEr become applicable to problem domains
that the experts users have not even encountered at the time of writing the
assertions.

When new Isabelle users are facing an inductive problem and are unsure if
their application of induction is a valid approach or not, they can apply LiFtEr
assertions written by experts using the assert LiFtEr keyword to their proof
goal and their candidate arguments.

LiFtEr’s interpreter checks if the pair of new users’ proof goal and candidate
arguments to the induct method is compatible with the experts’ heuristics. If the
interpreter evaluates the pair to True, Isabelle prints “Assertion succeeded.”
in the Output panel of Isabelle/jEdit [28]. If the interpreter evaluates the pair
to False, Isabelle highlights the assert LiFtEr in red and prints “Assertion
failed.” in the Output panel.

Program 1 shows the essential part of LiFtEr’s abstract syntax. LiFtEr has
four types of variables: number, rule, term, and term occurrence. A value of
type number is a natural number from 0 to the maximum of the following two
numbers: the number of terms appearing in the proof goals at hand, and the
maximum arity of constants appearing in the proof goals. A value of type rule
corresponds to a name of an auxiliary lemma passed to the induct method as
an argument in the arbitrary field.
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Program 1 The Abstract Syntax of LiFtEr.

assertion := atomic | connective | quantifier | ( assertion )

type := term | term occurrence | rule | number

modifier term := induction term | arbitrary term

quantifier := ∃x : type. assertion
| ∀x : type. assertion
| ∃x : term ∈ modifier term . assertion
| ∀x : term ∈ modifier term . assertion
| ∃x : rule . assertion
| ∃x : term_occurrence ∈ y : term . assertion
| ∀x : term_occurrence ∈ y : term . assertion

connective := True | False | assertion ∨ assertion | assertion ∧ assertion
assertion → assertion | ¬ assertion

pattern := all only var | all constructor | mixed

atomic :=

rule is_rule_of term occurrence
| term occurrence term_occurrence_is_of_term term
| are_same_term ( term occurrence , term occurrence )

| term occurrence is in term occurrence term occurrence
| is_atomic term occurrence
| is_constant term occurrence
| is_recursive_constant term occurrence
| is_variable term occurrence
| is_free_variable term occurrence
| is_bound_variable term occurrence
| is_lambda term occurrence
| is_application term occurrence
| term occurrence is_an_argument_of term occurrence
| term occurrence is_nth_argument_of term occurrence
| term is_nth_induction_term number
| term is_nth_arbitrary_term number
| pattern_is ( number , term occurrence , pattern )

| is_at_deepest term occurrence
| ...

The difference between term and term occurrence is crucial: a value of
term is a term appearing in proof goals, whereas a value of term occurrence
is an occurrence of such terms. It is important to distinguish terms and term
occurrences because the induct method in Isabelle/HOL only allows its users to
specify induction terms but it does not allow us to specify on which occurrences
of such terms we intend to apply induction.

The connectives, ∧, ∨, ¬, and → correspond to conjunction, disjunction,
negation, and implication in the classical logic, respectively; and → admits the
principle of explosion.

LiFtEr has four essential quantifiers and two quantifiers as syntactic sugar.
As is often the case, ∀ quantifies over variables universally, and ∃ stands for
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the existence of a variable it binds. Again, it is important to notice the dif-
ference between the quantifiers over term and the ones over term occurrence.
For example, ∀ . ∈ term quantifies all sub-terms appearing in the proof goals,
whereas ∀ . ∈ term occurrence quantifies all occurrences of such sub-terms.
Quantified variables restricted to induction term by the membership function
∈ are quantified over all terms passed to the induct method as induction terms,
while quantified variables restricted to arbitrary term are quantified over all
terms passed to the induct method as arguments in the arbitrary field.

Some atomic assertions judge properties of term occurrences, and some judge
the syntactic structure of proof goals with respect to certain terms, their occur-
rences, or certain numbers. While most atomic assertions work on the syntactic
structures of proof goals, Pattern provides a means to describe a limited amount
of semantic information of proof goals since it checks how terms are defined.
Section 4 explains the meaning of important atomic assertions through LiFtEr’s
standard heuristics.

Attentive readers may have noticed that LiFtEr’s syntax does not cover any
user-defined types or constants. This absence of specific types and constants
is our intentional choice to promote induction heuristics that are valid across
various problem domains: it encourages LiFtEr users to write heuristics that are
not specific to particular data-types or functions. And LiFtEr’s interpreter can
check if an application of the induct method is compatible with a given LiFtEr
heuristic even if the proof goal involves user-defined data-types and functions
even though such types and functions are unknown to the LiFtEr developer
or the author of the heuristic but come into existence in the future only after
developing LiFtEr and such heuristic.

4 LiFtEr’s Standard Heuristics

This section presents LiFtEr’s standard heuristics and illustrates how to use
those atomic assertions and quantifiers to encode induction heuristics.

4.1 Heuristic 1: Induction Terms Should Not Be Constants

Let us revise the first example lemma about the equivalence of two reverse
functions, itrev and rev. One naive induction heuristic would be “any induction
term should not be a constant”3 In LiFtEr, we can encode this heuristic as the
following assertion4:

∀ t1 : term ∈ induction_term.
∃ to1 : term_occurrence.

3 This naive heuristic is not very reliable: there are cases where the induct method
takes terms involving constants and apply induction appropriately by automatically
introducing induction variables. See Concrete Semantics [25] for more details.

4 For better readability we omit parentheses where the binding of terms is obvious
from indentation.
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( to1 term_occurrence_is_of_term t1 )
∧

¬ ( is_constant to1 )

Fig. 2. The user interface of LiFtEr.

Note the use of quantifiers over induction terms and term occurrences: when
LiFtEr handles induction terms, LiFtEr treats them as terms, but it is often
necessary to analyze the occurrences of these terms in the proof goal to decide
how to apply induction. In our example lemma, xs is a variable, which appears
twice: once as the first argument of itrev, and once as the first argument of
rev. With this in mind, the above assertion reads as follows:

for all induction terms, named t1, there exists a term occurrence, named
to1, such that to1 is an occurrence of t1 and to1 is not a constant.

Now we compare this heuristic with the model proof by Nipkow et al.
The only induction term, xs, has two occurrences in the proof goal both

as variables. Therefore, if we apply this LiFtEr assertion to the model proof,
LiFtEr’s interpreter acknowledges that the model proof complies with the induc-
tion heuristic defined above.

Figure 2 shows the user interface of LiFtEr. In the second line where the
cursor is staying, LiFtEr’s interpreter executes the aforementioned reasoning
and concludes that the model proof by Nipkow et al. is compatible with this
heuristic, printing “Assertion succeeded.” in the Output panel. On the con-
trary, the fourth line applies the same heuristic to another possible combination
of arguments to the induct method (induct itrev arbitrary: ys) and con-
cludes that this candidate induction is not compatible with our heuristic because
itrev is a constant. LiFtEr also highlights this line in red to warn the user.

It is a common practice to analyze occurrences of specific terms when
describing induction heuristics. Therefore, we introduced two pieces of syntac-
tic sugar to avoid boilerplate code: ∃ : term occurrence ∈ : term and ∀
: term occurrence ∈ : term. Both of these quantify over term occurrences
of a particular term rather than all term occurrences in the proof goal at hand.
Using ∃ : term occurrence ∈ : term, we can shrink the above assertion from
5 lines to 3 lines as follows:
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∀ t1 : induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

¬ ( is_constant to1 )

In English, this reads as follows:

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that to1 is not a constant.

4.2 Heuristic 2. Induction Terms Should Appear at the Bottom of
Syntax Trees

Not applying induction on a constant would sound a plausible heuristic, but
such heuristic is not very useful.

In this sub-section, we encode an induction heuristic that analyzes not only
the properties of the induction terms but also the location of their occurrences
within the proof goal at hand. When attacking inductive problems with many
variables, it is sometimes a good attempt to apply induction on variables that
appear at the bottom of the syntax tree representing the proof goal. We encode
such heuristic using is at deepest as the following LiFtEr assertion:

∀ t1 : induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

is_atomic to1 → is_at_deepest to1

In English, this assertion reads as follows:

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that if to1 is an atomic term then to1 lies at the deepest layer in
the syntax tree that represents the proof goal.

We used the infix operator, →, to add the condition that we consider only the
induction terms that are atomic terms. An atomic term is either a constant,
free variable, schematic variable, or variable bound by a lambda abstraction. We
added this condition because it makes little sense to check if the induction term
resides at the bottom of the syntax tree when an induction term is a compound
term: such compound terms have sub-terms at lower layers.

LiFtEr’s interpreter acknowledges that the model solution provided by Nip-
kow et al. complies with this heuristic when applied to this lemma: there is only
one induction term, xs, and xs appears as an argument of rev on the right-hand
side of the equation in the lemma at the lowest layer of this syntax tree.

4.3 Heuristic 3. All Induction Terms Should Be Arguments of the
Same Occurrence of a Recursively Defined Function

Probably, it is more meaningful to analyze where induction terms reside in the
proof goal with respect to other terms in the goal. More specifically, one heuristic
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for promising application of induction would be “apply induction on terms that
appear as arguments of the same occurrence of a recursively defined function”. We
encode this heuristic using LiFtEr’s atomic assertions, is recursive constant
and is an argument of, as follows:

∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

∀ t2: term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.

is_recursive_constant to2 ∧ to2 is_an_argument_of to1

where is recursive constant checks if a constant is defined recursively or not,
and is an argument of takes two term occurrences and checks if the first one
is an argument of the second one.

Note that using is recursive constant this assertion checks not only the
syntactic information of the proof goal at hand, but it also extracts an essential
part of the semantic information of constants appearing in the goal, by inves-
tigating how these constants are defined in the underlying proof context. As a
whole, this assertion reads as follows:

there exists a term, named t1, such that there exists an occurrence of t1,
named to1, such that for all induction terms, named t2, there exists an
occurrence of t2, named to2, such that to1 is defined recursively and to2
appears as an argument of to1.

Attentive readers may have noticed that we quantified over induction terms
within the quantification over to1, so that this induction heuristic checks if all
induction terms occur as arguments of the same constant.

The LiFtEr interpreter confirms that the model proof is compatible with
this heuristic as well: the constant, itrev, is defined recursively and has an
occurrence that takes the only induction variable xs as the first argument.

4.4 Heuristic 4. One Should Apply Induction on the nth Argument
of a Function where the nth Parameter in the Definition of the
Function Always Involves a Data-Constructor

The previous heuristic checks if all induction terms are arguments of the same
occurrence of a recursively defined function. Sometimes we can even estimate on
which arguments of such function we should apply induction by inspecting the
definition of the function more carefully.

We introduce two constructs to support this style of reasoning:
is nth argument of and pattern is. is nth argument of takes a term occur-
rence, a number, and another term occurrence, and it checks if the first term
occurrence is the nth argument of the second term occurrence where count-
ing starts at 0. pattern is takes a number, a term occurrence, one of three
patterns: all only var, all constructor, and mixed. Each of such patterns
describes how the term is defined.
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For example, pattern is (n, to, all only var) denotes that the nth
parameter is always a variable on the left-hand side of the definition of the
term that has the term occurrence, to. Likewise, all constant denotes the
case where the corresponding parameter of the definition of a particular con-
stant always involves a data-constructor, whereas mixed denotes that the corre-
sponding parameter is a variable in some clauses but involves a data-constructor
in other clauses. With these atomic assertions in mind, we write the following
LiFtEr assertion:

¬ (∃ r1 : rule. True)
→

∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

is_recursive_constant to1
∧

∀ t2 : term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.

∃ n : number.
pattern_is (n, to1, all_constant)

∧
is_nth_argument_of (to2, n, to1)

This roughly translates to the following English sentence:

if there is no argument in the rule field in the induct method, then there
exists a recursively defined constant, t1, with an occurrence, to1, such that
for all induction terms t2, there exists an occurrence, to2, of t2, such that
there exists a number, n, such that the nth parameter involves a data-
constructor in all the clauses of the definition of t1, and to2 appears as the
nth argument of to1 in the proof goal.

Note that we added ¬ (∃r1 : rule. True) to focus on the case where the
induct method does not take any auxiliary lemma in the rule field since this
heuristic is known to be less reliable if there is an auxiliary lemma passed to the
induct method.

LiFtEr’s interpreter confirms that Nipkow’s proof about itrev and rev con-
forms to this heuristic: there exists an occurrence of itrev, such that itrev is
recursively defined and for the only induction term, xs, there is an occurrence
of xs on the left-hand side of the proof goal, such that itrev’s first parameter
involves data-constructor in all clauses of its definition, and this occurrence of
xs appears as the first argument of the occurrence of itrev in the goal5.

5 Note that in reality the counting starts at 0 internally. Therefore, “the first argu-
ment” in this English sentence is processed as the 0th argument within LiFtEr.
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4.5 Heuristic 5. Induction Terms Should Appear as Arguments of a
Function that Has a Related .induct Rule in the rule Field

When the induct method takes an auxiliary lemma in the rule field that Isabelle
automatically derives from the definition of a constant, it is often true that we
should apply induction on terms that appear as arguments of an occurrence of
such constant.

See, for example, our alternative proof, alt_prf, for our ongoing example
theorem. When Nipkow et al. defined the itrev function with the fun key-
word, Isabelle automatically derived the auxiliary lemma itrev.induct, and
the occurrence of itrev on the left-hand side of the equation takes xs and ys as
its arguments. Furthermore, the alternative proof passes xs and ys to the rule
field in the same order they appear as the arguments of the occurrence of itrev
in the proof goal.

We introduce is rule of to relate a term occurrence with an auxiliary lemma
passed to the rule field. is rule of takes a term occurrence and an auxiliary
lemma in the rule field of the induct method, and it checks if the rule was
derived by Isabelle at the time of defining the term. Moreover, we introduce
is nth induction term, which allows us to specify the order of induction terms
passed to the induct method: is nth induction term takes a term and a num-
ber, and it checks if the term is passed to the induct method as the nth induc-
tion term. Using these constructs, we can encode the aforementioned heuristic
as follows:

∃ r1 : rule. True
→

∃ r1 : rule.
∃ t1 : term.

∃ to1 : term_occurrence ∈ t1 : term.
r1 is_rule_of to1

∧
∀ t2 : term ∈ induction_term.

∃ to2 : term_occurrence ∈ t2 : term.
∃ n : number.

is_nth_argument_of (to2, n, to1)
∧

t2 is_nth_induction_term n

As a whole this LiFtEr assertion checks if the following holds:

if there exists a rule, r1, in the rule field of the induct method, then
there exists a term t1 with an occurrence to1, such that r1 is derived by
Isabelle when defining t1, and for all induction terms t2, there exists an
occurrence to2 of t2 such that, there exists a number n, such that to2 is
the nth argument of to1 and that t2 is the nth induction terms passed to
the induct method.
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Our alternative proof is compatible with this heuristic: there is an argument,
itrev.induct, in the rule field, and the occurrence of its related term, itrev,
in the proof goal takes all the induction terms, xs and ys, as its arguments in
the same order.

4.6 Heuristic 6. Generalize Variables in Induction Terms

Isabelle’s induct method offers the arbitrary field, so that users can specify
which terms to be generalized in induction steps; however, it is known to be a
hard problem to decide which terms to generalize.

Of course LiFtEr cannot provide you with a decision procedure to determine
which terms to generalize, but it allows us to describe heuristics to identify
variables that are likely to be generalized by experienced Isabelle users. For
example, experienced users know that it is usually a bad idea to pass induction
terms themselves to the arbitrary field. We also know that it is often a good
idea to generalize variables appearing within induction terms if induction terms
are compound terms.

We can encode the former heuristic using are_same_term, which checks if
two terms are the same term or not. For instance, we can write the following:

∀ t1 : term ∈ arbitrary_term.
¬ (∃ t2 : term ∈ induction_term. are_same_term (t1, t2))

By now, it should be easy to see that this assertion checks if the following holds:

for all terms in the arbitrary field, there is no induction term of the same
term in the induct method.

The latter heuristic involves the description of the term structure constituting
the proof goal. For this purpose we use is in term occurrence to check if a
term occurrence resides within another term occurrence. With this construct,
we can encode the latter heuristic as follows:

∃ t1 : term ∈ induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

∀ t2 : term.
∃ to2 : term_occurrence ∈ t2 : term.

( to2 is_in_term_occurrence to1 ∧ is_free_variable to2 )
→

∃ t3 : term ∈ : arbitrary_term. are_same_term (t2, t3)

Again, we used the implication (_ → _) to avoid applying this generalization
heuristics to the cases without compound induction terms.
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Fig. 3. The test all LiFtErs command.

4.7 Apply All Assertions Using the test all LiFtErs Command

In this section we have written eight assertions (two assertions from each of
Sects. 4.1 and 4.6). To exploit all the available LiFtEr assertions, we developed
the test all LiFtErs command. The test all LiFtErs command first takes a
combination of induction arguments to the induct method. Then, it applies all
the available LiFtEr assertions to the pair of the combination of arguments and
the proof goal at hand. Finally, it counts how many assertions return True. For
example, the second line in Fig. 3 executed the eight available assertions to the
combination of arguments ([on["xs"], arb["ys"], rule[]]) and the proof
goal. The output panel shows the result: Out of 8 assertions, 8 assertions
succeeded. This indicates that the model proof by Nipkow is indeed a good
solution in terms of all the heuristics we discussed in this section.

5 Induction Heuristics Across Problem Domains

In Sect. 4 we wrote eight assertions in LiFtEr. When writing these eight asser-
tions, we emphasized that none of them is specific to the data structure list or
the function itrev appearing in the proof goal. In this section we demonstrate
that the LiFtEr assertions written in Sect. 4 are applicable across domains, tak-
ing an inductive problem from a completely different domain as an example.
The following code is the formalization of a simple stack machine from Concrete
Semantics [25]:

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname => val"
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"

fun exec1 :: "instr => state => stack => stack" where
"exec1 (LOADI n) _ stk = n # stk"

| "exec1 (LOAD x) s stk = s(x) # stk"
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| "exec1 ADD _ (j#i#stk) = (i + j) # stk"

fun exec :: "instr list => state => stack => stack" where
"exec [] _ stk = stk"

| "exec (i#is) s stk = exec is s (exec1 i s stk)"

exec1 defines how the stack machine in a certain state transforms a given stack
into a new one by executing one instruction, whereas exec specifies how the
machine executes a series of instructions one by one. Nipkow et al. proved the
following lemma using structural induction.

lemma exec_append_model_prf[simp]:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 arbitrary: stk) by auto

This lemma states that executing a concatenation of two lists of instructions
in a state to a stack produces the same stack as executing the first list of the
instructions first in the same state to the same stack and executing the second
list again in the same state again but to the resulting new stack. As in the case
with the equivalence of two reverse functions, there is also an alternative proof
based on recursion induction:

lemma exec_append_alt_prf:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 s stk rule:exec.induct) by auto

where exec.induct is automatically derived by Isabelle when defining exec.
Now we check if the heuristics from Sect. 4 correctly recommend these proofs.

Heuristic 1. Both exec append model prf and exec append alt prf com-
ply with this heuristic. For example, is1 is the only induction term in
exec append model prf, and it has occurrences in the proof goal, where it occurs
as a variable.

Heuristic 2. exec append model prf complies with the second heuristic: its only
induction term, is1, occurs at the bottom of the syntax tree as a variable, which
is an atomic term. exec append alt prf also complies with this heuristic: is1,
s, and stk as the arguments of the inner exec on the right-hand side of the
equation are all atomic terms at the deepest layer of the syntax tree.

Heuristic 3. Both proof scripts comply with this heuristic. For example, the inner
occurrence of exec on the right-hand side of the equation takes all the induction
terms of the alternative proof (namely, is1, s, and stk) as its arguments.

Heuristic 4. This heuristic works for both proof scripts, but it explains the model
answer particularly well: it has a recursively defined constant, exec, and the inner
occurrence of exec on the right-hand side of the equation has an occurrence that
takes the only induction term is1 as its first argument, and the first parameter
of exec always involve a data-constructor in the definition of exec.
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Heuristic 5. This heuristic also works for both proof scripts, but it fits par-
ticularly well with the alternative answer: the rule exec.induct is derived by
Isabelle when defining exec, while exec has an occurrence as part of the third
argument of another exec on the right-hand side of the equation, and this inner
occurrence of exec takes all the induction terms (is1, s, and stk) in the same
order.

Heuristic 6. None of our proofs involve induction on a compound term, making
the second assertion in Sect. 4.6 rather irrelevant, whereas the first assertion in
Sect. 4.6 explains the model answer well: the only generalized term, stk, does
not appear as an induction term.

6 Real World Example

In Sects. 4 and 5, we introduced simple LiFtEr assertions applied to smaller
problems. For example, all induction terms in the examples were variables, even
though Isabelle’s induct method can induct on non-atomic terms.

Program 2 is a more challenging proof about a formalization of an imperative
language, IMP2 [14], from the Archive of Formal Proofs [12]. Due to the space
constraints, we refrain ourselves from presenting the complete formalization of
IMP2 but focus on the essential part of the proof document.

In this project, Lammich et al. proved the equivalence between IMP2’s big-
step semantics and small-step semantics. smalls seq in Program 2 is an aux-
iliary lemma useful to prove the equivalence. The proof of smalls seq appears
to be somewhat similar to that of alt prf in Sect. 2 and exec append alt prf
in Sect. 5: smalls seq’s proof uses the auxiliary lemma small steps.induct,
which Isabelle derived automatically when Lammich et al. defined small steps.
Furthermore, the three induction terms, π, (c, s), and Some (c’, s’), are the
arguments of one occurrence of small steps.

The difference from the preceding examples is the generalization of four free
variables appearing in induction terms: in Program 2, c and s appear within
(c, s), while c’ and s’ appear within Some (c’, s’). As we discussed in
Sect. 4.6, when applying induction on non-atomic terms in Isabelle/HOL it is
often a good idea to generalize free variables appearing within such non-atomic
induction terms.

To encode such heuristic, we strengthened Example 5 in Sect. 4 using the
is in term occurrence assertion. Program 3 checks if any induction term is
non-atomic and contains a free variable, all such free variables are generalized
in the arbitrary field. Note that LiFtEr’s interpreter evaluates the univer-
sal quantifier over to3 to True when all induction terms are atomic, since to3
term occurrence is of term t3 is guarded by ¬ ( is atomic to2 ), making
this assertion valid even for the cases where induction terms are atomic variables.
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Program 2 A Proof about the Semantics of an Imperative Language, IMP2.

datatype com =

SKIP (*No-op*)

(*Assignment*)

| AssignIdx vname aexp aexp (*Assign to index in array*)

| ArrayCpy vname vname (*Copy whole array*)

| ArrayClear vname (*Clear array*)

| Assign_Locals "vname => val" (*Assign all local variables*)

(*Block*)

| Seq com com (*Sequential composition*)

| . . .

fun small_step :: "program => com × state => (com × state) option" where

"small_step π ((AssignIdx x i a, s) =

Some (SKIP, s(x := (s x)(aval i s := aval a s)))"

| "small_step π (ArrayCpy x y, s) = Some (SKIP, s(x := s y))"

| "small_step π (ArrayClear x, s) = Some (SKIP, s(x := (λ_. 0)))"

| "small_step π (Assign_Locals l, s) = Some (SKIP, <l|s>)"

| "small_step π (SKIP ;; c, s) = Some (c, s)"

| "small_step π (c1 ;; c2, s) = (case small_step π (c1, s) of

Some (c1’, s’) => Some (c1’ ;; c2, s’) | _ => None)"

| . . .

inductive small_steps ::

"program => com × state => (com × state) option => bool" where

"small_steps π cs (Some cs)"

| "small_step π cs = None −→ small_steps π cs None"

| "small_step π cs = Some cs1 −→
small_steps π cs1 cs2 −→ small_steps π cs cs2"

lemma smalls_seq:

"small_steps π (c, s) (Some (c’, s’)) =⇒
small_steps π (c ;; cx, s) (Some (c’;; cx, s’))"

apply (induct π "(c, s)" "Some (c’, s’)"

arbitrary: c s c’ s’ rule: small_steps.induct)

apply (auto dest: small_seq intro: small_steps.intros)

by (metis option.simps(1) prod.simps(1)

small_seq small_step.simps(31) small_steps.intros(3))
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Program 3 An Assertion for the Generalization of Variables in Induction Terms.
∃ r1 : rule. True

→
∃ r1 : rule.

∃ t1 : term.

∃ to1 : term ∈ t1 : term.

r1 is_rule_of to1
∧

∀ t2 : term ∈ induction_term.

∃ to2 : term_occurrence ∈ t2 : term.

∃ n1 : number.

is_nth_argument_of (to2, n1, to1)
∧

t2 is_nth_induction_term n1
∧

∀ to3 : term_occurrence.

¬ ( is_atomic to2 )

∧
is_free_variable to3

∧
to3 is_in_term_occurrence to2

→
∃ t3 : arbitrary_term.

to3 term_occurrence_is_of_term t3

7 Conclusions, Related and Future Work

ITP has been considered as a very challenging task. To address this issue, we
presented LiFtEr. LiFtEr is a domain-specific language in the sense that we
developed LiFtEr to encode induction heuristics; however, heuristics written in
LiFtEr are often not specific to any problem domains. To the best of our knowl-
edge, LiFtEr is the first programming language developed to capture induction
heuristics across problem domains, and its interpreter is the first system that
executes meta-reasoning on interactive inductive theorem proving.

The recent development in proof automation for higher-order logic takes the
meta-tool approach. Gauthier et al., for example, developed an automated tactic
prover, TacticToe, on top of HOL4 [5]. TacticToe learns how human engineers
used tactics and applies the knowledge to execute a tactic based Monte Carlo
tree search. To automate proofs in Coq [27], Komendantskaya et al. developed
ML4PG [13]. ML4PG uses recurrent clustering to mine a proof database and
attempts to find a tactic-based proof for a given proof goal. Both of them try to
identify useful lemmas or hypotheses as arguments of a tactic; however, they do
not identify promising terms as arguments of a tactic even though identifying
such terms is crucial to apply induction effectively.
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The most well-known approach for ITP is called the Boyer-Moore waterfall
model [17]. This approach was invented for a first-order logic on Common Lisp.
Most waterfall provers attempt to apply six proof techniques (simplification,
destructor elimination, cross-fertilization, generalization, elimination of irrele-
vance, and induction) in a fixed order, store the resulting sub-goals in a pool,
and keep applying these techniques until the pool becomes empty.

ACL2 [18] is the most commonly used waterfall model based prover, which
has achieved industrial-scale proofs [10]. When deciding how to apply induction,
ACL2 computes a score, called hitting ratio, to estimate how good each induction
scheme is for the term which it accounts for and proceeds with the induction
scheme with the highest hitting ratio [2,19].

Compared to the hitting ratio used in the waterfall model, LiFtEr’s atomic
assertions let us analyze the structures of proof goals directly while LiFtEr’s
quantifiers let us keep LiFtEr assertions non-specific to any problem. While
ACL2 produces many induction schemes and computes their hitting ratios,
LiFtEr assertions do not directly produce induction schemes but analyze the
given proof goal and the arguments passed to the induct method, re-using
Isabelle’s existing tool to (implicitly) produce induction principles. We consider
LiFtEr’s approach to be a reasonable choice, since it extends the usability of the
already well-developed proof assistant, Isabelle/HOL, while avoiding to reinvent
the mechanism to produce induction principle.

Furthermore, the choice of Isabelle/HOL as the host system of LiFtEr
allowed us to take advantage of human interaction more aggressively both from
Isabelle experts and new Isabelle users: Isabelle experts can encode their own
heuristics since LiFtEr is a language, and new Isabelle users can inspect the
results of LiFtEr assertions and decide how to attack their proof goals instead
of following the fixed order of six proof techniques as in the waterfall model.

Heras et al. used ML4PG learning method to find patterns to generalize and
transfer inductive proofs from one domain to another in ACL2 [8]. Jiang et al.
followed the waterfall model and ran multiple waterfalls [9] to automate ITP in
HOL light [7]. However, when deciding induction variables, they naively picked
the first free variable with recursive type and left the selection of appropriate
induction variables as future work.

To determine induction variables automatically, we developed a proof strat-
egy language PSL and its default proof strategy, try_hard for Isabelle/HOL [23].
PSL tries to identify useful arguments for the induct method by conducting a
depth-first search. Sometimes it is not enough to pass arguments to the induct
method, but users have to specify necessary auxiliary lemmas before applying
induction. To automate such labor-intensive work, PGT [24], a new extension to
PSL, produces many lemmas by transforming the given proof goal while trying
to identify a useful one in a goal-oriented manner.

The drawback of PSL and PGT is that they cannot produce recommendations
if they fail to complete a proof search: when the search space becomes enormous,
neither PSL and PGT gives any advice to Isabelle users.
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PaMpeR [22], on the other hand, recommends which proof method is likely to
be useful to a given proof goal, using a supervised learning applied to the Archive
of Formal Proofs [12]. The key of PaMpeR was its feature extractor: PaMpeR first
applies 108 assertions to each invocation of proof methods and converts each pair
of a proof goal with its context and the name of proof method applied to that
goal into an array of boolean values of length 108 because this simpler format is
amenable for machine learning algorithms to analyze. The limitation of PaMpeR
is, unlike PSL, it cannot recommend which arguments in the induct method to
tackle a given proof goal.

Taking the same approach as PaMpeR, we attempted to build a recommen-
dation tool, MeLoId [21], to automatically suggest promising arguments for
the induct method without completing a proof: we wrote many assertions in
Isabelle/ML. Unfortunately, encoding induction heuristics as assertions directly
in Isabelle/ML caused an immense amount of code-clutter, and we could not
encode even the human-friendly notion of depth in syntax tree since multi-arity
functions are represented as curried functions in Isabelle. Therefore, we devel-
oped LiFtEr, expecting that LiFtEr serves as a language for feature extraction.

We hope that when combined into the supervised learning framework
of MeLoId, assertions written in LiFtEr extract the essence of induction in
Isabelle/HOL in a cross-domain style and produce a useful database for machine
learning algorithms, so that new Isabelle users can have the recommendation of
promising arguments for the induct method in a fully automatic way.

References

1. Blanchette, J., Kaliszyk, C., Paulson, L., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593

2. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in Com-
puting, vol. 23. Academic Press, Boston (1979)

3. Bundy, A.: The automation of proof by mathematical induction. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp.
845–911. Elsevier and MIT Press (2001)

4. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

5. Torra, V., Karlsson, A., Steinhauer, H.J., Berglund, S.: Artificial intelligence. In:
Said, A., Torra, V. (eds.) Data Science in Practice. SBD, vol. 46, pp. 9–26. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-97556-6 2

6. Gramlich, B.: Strategic issues, problems and challenges in inductive theorem prov-
ing. Electr. Notes Theor. Comput. Sci. 125(2), 5–43 (2005). https://doi.org/10.
1016/j.entcs.2005.01.006

7. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/978-3-319-97556-6_2
https://doi.org/10.1016/j.entcs.2005.01.006
https://doi.org/10.1016/j.entcs.2005.01.006
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814


286 Y. Nagashima

8. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recog-
nition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 27

9. Jiang, Y., Papapanagiotou, P., Fleuriot, J.: Machine learning for inductive theorem
proving. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI),
vol. 11110, pp. 87–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99957-9 6

10. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Trans. Software Eng. 23(4), 203–213 (1997). https://doi.
org/10.1109/32.588534

11. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010). https://doi.org/10.1145/1743546.1743574

12. Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: The Archive of Formal Proofs
(2004). https://www.isa-afp.org/

13. Komendantskaya, E., Heras, J.: Proof mining with dependent types. In: Geuvers,
H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS
(LNAI), vol. 10383, pp. 303–318. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62075-6 21

14. Lammich, P., Wimmer, S.: IMP2 - simple program verification in Isabelle/HOL.
Arch. Formal Proofs 2019 (2019). https://www.isa-afp.org/entries/IMP2.html

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

16. Matichuk, D., Murray, T.C., Wenzel, M.: Eisbach: a proof method language for
Isabelle. J. Autom. Reasoning 56(3), 261–282 (2016). https://doi.org/10.1007/
s10817-015-9360-2

17. Moore, J.S.: Computational logic: structure sharing and proof of program prop-
erties. Ph.D. thesis, University of Edinburgh, UK (1973). http://hdl.handle.net/
1842/2245

18. Moore, J.S.: Symbolic simulation: an ACL2 approach. In: Formal Methods in
Computer-Aided Design, Second International Conference, FMCAD 1998, Palo
Alto, California, USA, 4–6 November 1998, Proceedings, pp. 334–350 (1998).
https://doi.org/10.1007/3-540-49519-3 22

19. Moore, J.S., Wirth, C.: Automation of mathematical induction as part of the his-
tory of logic. CoRR abs/1309.6226 (2013). http://arxiv.org/abs/1309.6226

20. Nagashima, Y.: data61/PSL. https://github.com/data61/PSL/releases/tag/v0.1.
4-alpha

21. Nagashima, Y.: Towards machine learning mathematical induction. CoRR
abs/1812.04088 (2018). http://arxiv.org/abs/1812.04088

22. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, 3–7 September
2018, pp. 362–372 (2018). https://doi.org/10.1145/3238147.3238210

23. Nagashima, Y., Kumar, R.: A proof strategy language and proof script generation
for Isabelle/HOL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp.
528–545. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 32

24. Nagashima, Y., Parsert, J.: Goal-oriented conjecturing for Isabelle/HOL. In: Rabe,
F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI),
vol. 11006, pp. 225–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96812-4 19

https://doi.org/10.1007/978-3-642-45221-5_27
https://doi.org/10.1007/978-3-319-99957-9_6
https://doi.org/10.1007/978-3-319-99957-9_6
https://doi.org/10.1109/32.588534
https://doi.org/10.1109/32.588534
https://doi.org/10.1145/1743546.1743574
https://www.isa-afp.org/
https://doi.org/10.1007/978-3-319-62075-6_21
https://doi.org/10.1007/978-3-319-62075-6_21
https://www.isa-afp.org/entries/IMP2.html
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
http://hdl.handle.net/1842/2245
http://hdl.handle.net/1842/2245
https://doi.org/10.1007/3-540-49519-3_22
http://arxiv.org/abs/1309.6226
https://github.com/data61/PSL/releases/tag/v0.1.4-alpha
https://github.com/data61/PSL/releases/tag/v0.1.4-alpha
http://arxiv.org/abs/1812.04088
https://doi.org/10.1145/3238147.3238210
https://doi.org/10.1007/978-3-319-63046-5_32
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1007/978-3-319-96812-4_19


LiFtEr: Language to Encode Induction Heuristics for Isabelle/HOL 287

25. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10542-0

26. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

27. The Coq development team: The Coq proof assistant. https://coq.inria.fr
28. Wenzel, M.: Isabelle/jEdit – a prover IDE within the PIDE framework. In: Jeur-

ing, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5 38

https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://coq.inria.fr
https://doi.org/10.1007/978-3-642-31374-5_38


Concurrency



Android Multitasking Mechanism: Formal
Semantics and Static Analysis of Apps

Jinlong He1,3, Taolue Chen2,4, Ping Wang1,3, Zhilin Wu1,5(B), and Jun Yan1,3

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wuzi@ios.ac.cn
2 Birkbeck, University of London, London, UK

3 University of Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, China
5 Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

Abstract. In this paper we formalize the semantics of the Android mul-
titasking mechanism and develop efficient static analysis methods with
automated tool supports. For the formalization, we propose an exten-
sion of the existing Android Stack Machine model to capture all the
core elements of the mechanism, in particular, the intent flags used in
inter-component communication. For the static analysis, we consider the
configuration reachability and stack boundedness problem, designing new
algorithms and developing a prototype tool TaskDroid to fully support
automated model construction and analysis of Android apps. The experi-
mental results show that TaskDroid is effective and efficient in analyzing
Android apps in practice.

1 Introduction

Android, a mobile operating system developed by Google, features over 2 billion
monthly active users and over 80% of the share of the global mobile operat-
ing system market.1 The Google Play store, Google’s official pre-installed app
store on Android devices, has supplied 2 million apps since 2016.2 Multitask-
ing is a fundamental mechanism of the Android operating system. Its unique
design, via activities, back stacks and task stacks, greatly facilitates organizing
user sessions through tasks, and provides rich features such as handy appli-
cation switching, background app state maintenance, and smooth task history
navigation (using the “back” button) [13]. Although the Android multitasking
mechanism has substantially enhanced user experiences of the Android system
and promoted personalized features in app design, it is notoriously complex and

1 https://expandedramblings.com/index.php/android-statistics/.
2 https://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/.
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difficult to understand. As a witness, it constantly baffles app developers and
has become a common topic of question-and-answer websites.3 In addition, such
a complex mechanism is plagued by serious security concerns, e.g., GUI phishing
and hijacking attacks, denial of service attacks, and privilege leakage [3,13,15].

The Android multi-tasking mechanism, despite its importance, had not been
systematically studied until very recently. Lee et al. formalized the operational
semantics of the Android multitasking mechanism [7,8]. Independently, we intro-
duced a formal model, i.e., Android Stack Machine (ASM), to capture the funda-
mental aspects of the multitasking mechanism [5], where the first step was made
towards static analysis of Android apps based on the ASM model. It appears
that, despite these initiatives, much more studies are needed to understand the
multitasking mechanism, and to utilize it to design, analyse, test and verify
Android apps. For instance, the operational semantics [8] is lengthy and hard
to grip, while the ASM model [5], being more succinct and accessible, is incom-
plete, as intent flags, an important and pervasive feature of the multitasking
mechanism, were not taken into account. More importantly, static analysis of
the multitasking behavior of apps and its supporting tools, which is the focus of
the current paper, are largely missing (with the exception that a static analysis
tool was developed in [7], but was specialised for detecting activity injection
attacks while did not fit for general-purpose analysis). This is in contrast to the
large body of work on the static analysis of the other aspects of Android apps.

Contributions. The current paper aims to deepen the understanding of the
Android multitasking mechanism via formalization of its semantics, and to
develop effective and efficient approaches to the general-purpose static analy-
sis of the multitasking behavior of Android apps.

For the formal semantics of the multitasking mechanism (Sect. 3), we signif-
icantly extend the ASM model [5]. The most pronounced extension lies in the
introduction of intent flags which are pervasive for Android inter-component
communication but which were ignored by the original ASM model. Our
improvements over the operational semantics [8] are as follows: (1) We for-
malize the semantics for Android 7.0/8.0, which is—interestingly and perhaps
surprisingly—different from that of Android 6.0. (The semantics for Android 7.0
and 8.0 also have slight differences.) In particular, we identify the notion of real
activity which plays an essential role in allocating newly launched activities into
respective tasks (referred to as the task allocation mechanism). In contrast, the
semantics given before [7,8] is for Android 6.0 and uses a different and simpler
tasking allocation mechanism. To the best of our knowledge, this is the first time
that the discrepancies of the multitasking mechanism for different Android ver-
sions are thoroughly studied and formalized. (2) The semantics we give is more
succinct and structured. Instead of an explicit enumeration which takes tens of
pages [8], we organize and group different cases, leading to a much shorter and
more accessible description with underlying principles identified which greatly
facilitate the understanding. (3) We validate the semantics against the actual
behavior of the Android system by designing a diagnosis app and conducting
3 For instance, https://stackoverflow.com/questions/3219726/.

https://stackoverflow.com/questions/3219726/
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exhaustive experiments. All the experimental data are made publicly available
to encourage reproductivity (cf. the full version [6]).

For static analysis (Sect. 4), we consider some of the most fundamental prob-
lems based on the extended ASM model. In particular, we consider configura-
tion reachability analysis, which is arguably the cornerstone of any automated
analysis of this kind. By this analysis, one can determine whether a particular
configuration of the app can be reached by interacting with the mobile phone
users and/or possible interaction with other (potentially malicious) apps. It is
not very difficult to envisage that most existing security vulnerabilities related to
the multitasking mechanism can be reduced to such an analysis. We also consider
the stack boundedness analysis. In general, app developers may be interested in
checking whether there is a sequence of user actions which can force the height
of some task(s) to grow unboundedly. If this were the case, there would be a
security risk that the app may crash or even lead to rebooting of mobile devices,
if a user or a malicious app interacts with the app by following the sequence.
The stack boundedness analysis is used to detect such a vulnerability.

To carry out such analysis, we build ASM models from Android apps by
first constructing the call graphs and control flow graphs based on the soot
tool [14], then applying control and data flow analysis (Sect. 4.1). We give new,
practical algorithms to solve the configuration reachability and stack bounded-
ness problems (Sect. 4.2). For the configuration reachability problem, we reduce
the problem to the reachability problem of finite state machines, by imposing
a (specified) constant bound on the height of tasks. The latter problem can be
solved by off-the-shelf symbolic model checkers (e.g., nuXmv [4]) efficiently. For
the stack boundedness problem, the algorithm searches witness cycles of tran-
sitions for each task along which its back stack may run unbounded with the
involvement of other tasks.

To evaluate our approaches, we implement a prototype tool TaskDroid and
carry out extensive experiments on over 4, 000 apps, which are either open-
source apps from F-Droid or apps downloaded from app markets, e.g., Google
Play (Sect. 5). The experimental results show that our approaches are effective
and efficient in analysing the apps in practice. Remarkably, TaskDroid enables us
to detect that 29 apps from F-Droid are stack unbounded, and our experiments
confirm that the stack unboundedness poses a real threat (Sect. 5.2): The 29
stack-unbounded F-Droid apps, when being fed into the Monkey tool to simulate
the detected witness cycles for hundreds or thousands of times, exhibit black
screen, app crash, or even rebooting of mobile devices.

Related Work. We discuss the related work from the following three perspectives.

Android GUI Models. Some models addressing GUI activities of Android
apps have been proposed. Activity transition graphs [2] were probably the first
model to represent Android GUI activity transitions, but they are essentially a
syntactic model without addressing the semantics sufficiently. Window transition
graphs [17] can represent the possible GUI activity (window) sequences and
their associated events and callbacks, and thus can capture how the events and
callbacks modify the task stack. However, this model addresses neither the launch
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modes other than “standard” nor task affinities. Labeled transition graphs with
stack and widget (LATTE [16]) consider the effects of launch modes on the
task stack, but not those of task affinities. Essentially, it provides a finite-state
abstraction of the behavior of the task stack. The ASM model [5] is the basis of
the current work, but its was oversimplified for the purpose of formalizing the
semantics of Android multi-tasking mechanism.

Static Analysis. Static analysis for Android apps has been thoroughly studied,
and we refer the readers to [9], which provides a systematic literature review
involving 124 research papers published during the period for 2011–2015. More
recently, [12] investigated the problem of composite constant propagation, which
was able to infer Android inter-component communication values, and developed
a tool called IC3. Our model construction may use IC3 but we choose not to
do mainly because: (1) IC3 is unable to discover the indirect activation between
activities in general. (For instance, if the activity A calls a function of the non-
activity class C in which the activity B is started, then IC3 does not conclude
that B can be started by A, since it will ignore the function call from A to
C.) (2) IC3 analyses more information than what the ASM model needs making
it less efficient for the purpose of ASM model generation. Finally, we mention
recent work which exploits neural networks or probabilistic models to improve
the precision and scalability of static analysis [11,19]. On a different matter, [18]
introduced a launch-mode aware context-sensitive activity transition analysis,
but did not consider task affinities or intent flags.

Security Related to Multi-tasking Mechanism. Various work has identified
potential security vulnerabilities related to the android multitasking mechanism,
which has become one of the strong motivations to provide a complete formal-
ization. [13] firstly reported task hijacking attacks, which means “malware reside
side by side with the victim apps in the same task and hijack the user sessions
of the victim apps.” [7] analyzed the activity injection vulnerability referring
to “inject malicious activities into a victim app’s activity stack to hijack user
interaction flows.” As discussed in the introduction, our formalization provides
several improvements over this work. Static analysis was also considered there,
but was restricted to the detection of activity injection vulnerabilities. [15] rec-
ognized that the multitasking mechanism could give additional privilege to apps,
which can be exploited by attackers. The authors analyzed the system/app con-
ditions that can enable privilege leakage and identified new end-to-end attacks
where attackers can actively interfere with victim apps to steal sensitive infor-
mation. [10] introduced TDroid, an approach to detecting app switching attacks,
which combines both static and dynamic analysis.

2 Android Multitasking Mechanism

This section provides an overview of the Android system mainly from an UI
perspective focusing on the multitasking mechanism. For the purpose of this
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paper, an Android app can be considered as a collection of activities.4 An activity
is an instance of the android.content.Activity class, and provides GUI on screen [1].
A task, as a logical notion, is a collection of activities that users interact with
when performing a certain job. The running activities of a task are managed
by Android as a stack in the order that each activity is opened. Such a stack is
usually referred to as a back stack. (Unfortunately the terminologies in literature
are not necessarily consistent, for instance, [5] use back stack differently.) In the
sequel, we will usually identify a back stack and the task it belongs to. In a task
there are two distinguished activities, i.e., the “root activity” which is the one
sitting at the bottom, and the “top activity” which is the topmost activity. Note
that in Android, activities from different apps can stay in the same task, and
activities from the same app can enter different tasks.

The Android system may have multiple tasks: one foreground task and pos-
sibly several background tasks. They are organized as a stack as well, which is
referred to as a task stack [7] (aka. activity stack [13]). The foreground task, as
expected, sits on the top of the task stack. When a task comes to the foreground,
its top activity is displayed on the device screen. When an activity finishes, it is
popped from the back stack. If the back stack is not empty, the new top activity
is displayed on the screen. Otherwise, the task itself finishes in which case it is
popped from the task stack. We mention that, the Home screen comes to the
foreground when a user presses the Home button (in this case the task stack
will be emptied) or when the task stack becomes empty. The task stack is the
central data structure for Android multi-tasking mechanism, and we are mostly
interested in its evolution in response to activity activation. When an activity is
started, there are three basic attributes which determine the resulting task stack:
launch mode, task affinity, and intent flags. All the activities of an app, as well as
their launch modes and task affinities, are defined in the manifest file (Android-
Manifest.xml). Differently, intent flags are set by caller activities to declare how
to activate target activities by calling startActivity() or startActivityForResult()
with the intent flags as its arguments. The launch mode attribute specifies one
of four modes to launch an activity: standard, singleTop, singleTask, and single-
Instance, with standard being the default. The task affinity attribute specifies to
which task the activity prefers to belong. By default, all the activities from the
same app have the same affinity (i.e., all activities in the same app prefer to be
in the same task). However, one can modify the default affinity of the activity.
Android allows a great degree of flexibility: activities defined in different apps
can share a task affinity whilst activities defined in the same app can be assigned
with different task affinities.

Android supports inter-component communication via intents. An intent is
an asynchronous message that activates activities. Android provides 21 intent
flags related to activities, but only part of them may govern activity activation.

4 In this paper, activities as viewed as atomic objects, and thus sub-components (e.g.,
fragments, https://developer.android.com/guide/components/fragments) contained
in activities are simply ignored.

https://developer.android.com/guide/components/fragments
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Intent flags are set by caller activities to declare how to activate target activities
and are passed to startActivity() or startActivityForResult() as their arguments.

3 Formalization

In this section, we provide a formalization of the semantics of the Android multi-
tasking mechanism. We focus on the evolution of the task stack when an activity
is launched. For this purpose we adapt and extend the ASM model [5]. For k ∈ N,
let [k] = {1, · · · , k}.

Following the overview of Sect. 2, we shall concentrate on the launch mode,
the task affinity, and the intent flags when an activity is launched. There are four
launch modes in Android: “standard” (STD), “singleTop” (STP), “singleTask”
(STK) and “singleInstance” (SIT). For the task affinity, we note that its default
value is the package name of the app (i.e., when it is not specified explicitly).
However, we find that Android system exhibits unexpected behavior when it
is an empty string. Our formal semantics takes special care of this which has
not been addressed before, to the best of our knowledge. Furthermore, Android
provides 21 intent flags related to activities5, namely, the flags whose names start
with FLAG ACTIVITY. Among these 21 intent flags, we consider the following
seven that are commonly used in Android apps,

– FLAG ACTIVITY NEW TASK (NTK),
– FLAG ACTIVITY CLEAR TOP (CTP),
– FLAG ACTIVITY SINGLE TOP (STP),
– FLAG ACTIVITY CLEAR TASK (CTK),
– FLAG ACTIVITY MULTIPLE TASK (MTK),
– FLAG ACTIVITY REORDER TO FRONT (RTF),
– FLAG ACTIVITY TASK ON HOME (TOH).

The rest will not be addressed in this paper. We remark that some flags, i.e.,
NTK, CTP, STP, can be modeled by launch modes, as mentioned in [5]. However,
CTK, MTK, RTF, and TOH cannot be captured.

3.1 The Extended ASM Model

Let F = {NTK,CTP,STP,CTK,MTK,RTF,TOH} denote the set of intent flags,
B(F) denote the set of formulae φ =

∧

F∈F
θF , where θF = F or ¬F .

Definition 1 (Android stack machine). An Android stack machine (ASM)
is a tuple A = (Sig,Δ), where

– Sig = (Act, Lmd,Aft, A0) is the activity signature, where
• Act is a finite set of activities,
• Lmd : Act → {STD,STP,STK,SIT} is the launch-mode function,

5 https://developer.android.com/reference/android/content/Intent#flags.

https://developer.android.com/reference/android/content/Intent#flags
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• Aft : Act → [m] ∪ {0} is the task-affinity function, where m = |Act|,
• A0 ∈ Act is the main activity,

– Δ ⊆ (Act ∪ {�}) × Inst is the transition relation, where Inst = {back} ∪
{α(A,φ) | α ∈ {start, finishStart}, A ∈ Act, φ ∈ B(F)} such that (A, back) ∈
Δ for each A ∈ Act. (Intuitively, the back button can be pressed in any time)
and for each transition (�, inst) ∈ Δ, it holds that inst = start(A0,

∧

F∈F
¬F ).

Intuitively, � denotes an empty task stack, Aft(A) = 0 denotes the task affinity of
A being the empty string, back denotes the pop action, (A, start(B,φ)) denotes
the action that the activity B is started with some intent flags satisfying φ, and
(A, finishStart(B,φ)) is the same as (A, start(B,φ)), except that the activity A
is popped after starting B. For convenience, we usually write (A,α(B,φ)) ∈ Δ

as A
α(φ)−−−→ B, where A is the caller activity, and B is the callee activity.

Remark 1. The main differences wrt [5] are: introducing intent flags, removing
control states, and assuming that back actions are always enabled.

3.2 Semantics of ASM

We first discuss briefly how the core concepts such as tasks, task stack, and
configurations are formalized. In general, a task is encoded as a word S =
[A1, · · · , An] ∈ Act+ which denotes the content of its back stack, where n
is called the height of S. A task stack is encoded as a non-empty sequence
ρ = ((S1, A1), · · · , (Sn, An)), where for each i ∈ [n], Si is a task and Ai is the
real activity of Si. The real activity6 of a task is the activity which was pushed
into the task—as the bottom activity—when the task is created. For any activity
A, we refer to an A-task as a task whose real activity is A. The tasks S1 and
Sn are called the top and the bottom task respectively. (Intuitively, S1 is the
foreground task.) The symbol ε is used to denote the empty task stack. The
affinity of a task is defined as the affinity of its real activity.

A task is called the main task of the task stack if it is the first task that
was created when launching the app. Note that the current task stack may
not contain the main task, since it may have been popped out from the task
stack. This notion is introduced since the semantics of ASM is also dependent
on whether the task stack contains the main task or not.

A configuration of A is a pair = (ρ, 	), where ρ = ((S1, A1), · · · , (Sn, An))
with Si = [Bi,1, · · · , Bi,mi

] for each i ∈ [n] and Bi,j ∈ Act for j ∈ [mi], moreover,
	 ∈ [n]∪{0}. We require (ρ, 	) to satisfy that if 	 ∈ [n], then A� = A0. Intuitively,
	 is the index of the main task. (If 	 = 0, then ρ contains no main task.) Let
ConfA denote the set of configurations of A. The initial configuration of A is
(ε, 0). The height of ρ is defined as max

i∈[m]
|Si|, where |Si| is the height of Si. By

convention, the height of ε is defined as 0.

6 The name is inherited from the Android system.
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We use the relation A−→ which comprises the quadruples

((ρ, 	), τ, i, (ρ′, 	′)) ∈ ConfA × Δ × {0, 1, 2} × ConfA

to formalize the semantics of A.

Auxiliary Functions and Predicates. To specify the transition relation precisely
and concisely, we define the following functions and predicates. Here (ρ, 	) is a
configuration with ρ = ((S1, A1), · · · , (Sn, An)) and B ∈ Act.

– Let S = [B1, · · · , Bm′ ] be a task, then Top(S) = B1 and Btm(S) = Bm′ .
– TopTsk(ρ) = S1, TopAct(ρ) = Top(TopTsk(ρ)).
– Push((ρ, 	), B) = (((([B] · S1), A1), (S2, A2), · · · , (Sn, An)), 	).
– MvAct2Top((ρ, 	), B) = ((([B] · S′

1 · S′′
1 ), (S2, A2), · · · , (Sn, An)), 	), if S1 =

S′
1 · [B] · S′′

1 with S′
1 ∈ (Act \ {B})∗.

– ClrTop((ρ, 	), B) = (((S′′
1 , A1), (S2, A2), · · · , (Sn, An)), 	) if S1 = S′

1 · S′′
1 with

S′
1 ∈ (Act \ {B})∗B.

– ClrTsk((ρ, 	)) = ((([], A1), (S2, A2), · · · , (Sn, An)), 	).
– Let i ∈ [n], then MvTsk2Top((ρ, 	), Si) = (((Si, Ai), (S1, A1), · · · ,

(Si−1, Ai−1), (Si+1, Ai+1), · · · , (Sn, An)), 	′), where 	′ is defined as follows:
if 	 = 0, then 	′ = 0; if 	 = i, then 	′ = 1; if i + 1 ≤ 	 ≤ n, then 	′ = 	; if
1 ≤ 	 ≤ i − 1, then 	′ = 	 + 1.
[Note that 	′ is the simply the new position of the main task.]

– NewTsk((ρ, 	), B) = ((([B], B), (S1, A1), · · · , (Sn, An)), 	′), where 	′ = 0 if
	 = 0, and 	′ = 	 + 1 otherwise.

– GetRealTsk(ρ,B) = Si such that i ∈ [n] is the minimum index satisfying
Ai = B if such an index i exists; GetRealTsk(ρ,B) = ∗ otherwise.

– GetTsk(ρ,B) = Si such that i ∈ [n] is the minimum index satisfying Aft(Ai) =
Aft(B), if such an index i exists; GetTsk(ρ,B) = ∗ otherwise.

– Let i ∈ {1, 2} and Si = [B1, · · · , Bm′ ]. Then

RmAct((ρ, �), i) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, (((S1, A1), · · · , (Si−1, Ai−1),

(Si+1, Ai+1), · · · , (Sn, An)), 0))
if m′ = 1 and � = 0 or i,

(0, (((S1, A1), · · · , (Si−1, Ai−1),

(Si+1, Ai+1), · · · , (Sn, An)), �))
if m′ = 1 and 1 ≤ � ≤ i − 1,

(0, (((S1, A1), · · · , (Si−1, Ai−1),

(Si+1, Ai+1), · · · , (Sn, An)), � − 1))
if m′ = 1 and i + 1 ≤ � ≤ n,

(i, (((S1, A1), · · · , (Si−1, Ai−1), ([B2, · · · , Bm′ ], Ai),

(Si+1, Ai+1), · · · , (Sn, An)), �))
if m′ > 1.

Intuitively, RmAct((ρ, 	), i) = (i′, (ρ′, 	′)), where (ρ′, 	′) is obtained from (ρ, 	)
by removing the top activity of Si from ρ, and i′ = 0, 1, 2 denotes the position
of the task Si in ρ′. (In particular, i′ = 0 denotes that the task Si disappears
in ρ′.)
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Transition Relation. For readability, we write ((ρ, 	), τ, i, (ρ′, 	′)) ∈ A−→ as
(ρ, 	) A−−→

τ,i
(ρ′, 	′). Intuitively, (ρ, 	) is the current configuration, (ρ′, 	′) is the

configuration obtained after executing the transition rule τ , and i = 0, 1, 2 cor-
responds to the cases that the top task of ρ is absent in ρ′, remains to be the top
task of ρ′, or becomes the task immediately below the top task of ρ′, respectively.

For τ = (A, back) such that TopAct(S1) = A,

– if S1 contains at least two activities, then (ρ, 	) A−−→
τ,1

(ρ′, 	′) with ρ′ =

((S′
1, A1), (S2, A2), · · · , (Sn, An)), where S′

1 is obtained from S1 by removing
the top activity A from S1;

– otherwise, we have (ρ, 	) A−−→
τ,0

(ρ′, 	′) with ρ′ = ((S2, A2), · · · , (Sn, An)) and

	′ = 	 − 1 if 	 > 1 and 0 otherwise.

For τ = � → start(A0,
∧

F∈F
¬F ), if (ρ, 	) is the initial configuration (ε, 0), we

have (ρ, 	) A−−→
τ,0

(([A0], A0), 1). (Here 0 is used because there is no top task in ρ.)

In the sequel, we first present the semantics for τ = A
start(φ)−−−−→ B, which will

be followed by the semantics for τ = A
finishStart(φ)−−−−−−−−→ B.

Suppose ρ = ((S1, A1), · · · , (Sn, An)) for some n ≥ 1. Let A = TopAct(ρ).

Transition rules for τ = A
start(φ)−−−−→ B

We distinguish two cases, i.e., φ |= ¬TOH or φ |= TOH.

Case φ |= ¬TOH
Case Lmd(B) = SIT

– if GetRealTsk(ρ,B) = Sj for some j ∈ [n], then
• if j = 1, then i = 1 and (ρ′, 	′) = (ρ, 	),
• if j 	= 1, then i = 2 and (ρ′, 	′) = MvTsk2Top((ρ, 	), Sj),

– if GetRealTsk(ρ,B) = ∗, then i = 2 and (ρ′, 	′) = NewTsk((ρ, 	), B).

Case Lmd(B) = STK

– if GetRealTsk(ρ,B) = Sj or GetRealTsk(ρ,B) = ∗ ∧ GetTsk(ρ,B) = Sj , then
i = 1 if j = 1, and i = 2 otherwise. Moreover,

• if φ |= ¬CTK, then
∗ if B 	∈ Sj , then (ρ′, 	′) = Push(MvTsk2Top((ρ, 	), Sj), B),
∗ if B ∈ Sj , then (ρ′, 	′) = Push(ClrTop(MvTsk2Top((ρ, 	), Sj), B), B),

• if φ |= CTK, then (ρ′, 	′) = Push(ClrTsk(MvTsk2Top((ρ, 	), Sj)), B),
– if GetTsk(ρ,B) = ∗, then i = 2 and (ρ′, 	′) = NewTsk((ρ, 	), B).

Case Lmd(B) = STD

– if Lmd(A) 	= SIT and φ |= ¬NTK, then i = 1 and
• if φ |= STP ∨ RTF ∨ CTP and TopAct(ρ) = B, then (ρ′, 	′) = (ρ, 	),
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• if φ |= ¬STP∧¬RTF∧¬CTP, or φ |= STP∧¬RTF∧¬CTP and TopAct(ρ) 	=
B,
or φ |= RTF ∨ CTP and B /∈ TopTsk(ρ), then (ρ′, 	′) = Push((ρ, 	), B),

• if φ |= RTF ∧ ¬CTP and B ∈ TopTsk(ρ), then (ρ′, 	′) =
MvAct2Top((ρ, 	), B),

• if φ |= CTP and B ∈ TopTsk(ρ), then (ρ′, 	′) = Push(ClrTop((ρ, 	), B), B),
– if φ |= NTK ∧ MTK, or Lmd(A) = SIT and φ |= MTK, then i = 2 and

(ρ′, 	′) = NewTsk((ρ, 	), B),
– if φ |= NTK ∧ ¬MTK, or Lmd(A) = SIT and φ |= ¬MTK, then

• if GetRealTsk(ρ,B) = Sj , then i = 1 if j = 1, and i = 2 otherwise.
Moreover,

∗ if φ |= ¬CTP ∧ ¬CTK, then
· if j 	= 	, or φ |= STP and Top(Sj) = B, then

(ρ′, 	′) = MvTsk2Top((ρ, 	), Sj),

· otherwise, (ρ′, 	′) = Push(MvTsk2Top((ρ, 	), Sj), B),
∗ if φ |= CTP ∧ ¬CTK, then

· if B 	∈ Sj , then (ρ′, 	′) = Push(MvTsk2Top((ρ, 	), Sj), B),
· otherwise,(ρ′, 	′) = Push(ClrTop(MvTsk2Top((ρ, 	), Sj), B), B),

∗ if φ |= CTK, then (ρ′, 	′) = Push(ClrTsk(MvTsk2Top((ρ, 	), Sj)), B),
• if GetRealTsk(ρ,B) = ∗ and GetTsk(ρ,B) = Sj , then i = 1 if j = 1, and

i = 2 otherwise. Moreover,
∗ if φ |= ¬STP ∧ ¬CTP ∧ ¬CTK, or φ |= STP ∧ ¬CTP ∧ ¬CTK and
Top(Sj) 	= B, then (ρ′, 	′) = Push(MvTsk2Top((ρ, 	), Sj), B),

∗ if φ |= STP ∧ ¬CTP ∧ ¬CTK and Top(Sj) = B, then (ρ′, 	′) =
MvTsk2Top((ρ, 	), Sj),

∗ if φ |= CTP ∧ ¬CTK, then
· if B 	∈ Sj , then (ρ′, 	′) = Push(MvTsk2Top((ρ, 	), Sj), B),
· otherwise, (ρ′, 	′) = Push(ClrTop(MvTsk2Top((ρ, 	), Sj), B), B),

∗ if φ |= CTK, then (ρ′, 	′) = Push(ClrTsk(MvTsk2Top((ρ, 	), Sj)), B),
• if GetTsk(ρ,B) = ∗, then i = 2 and (ρ′, 	′) = NewTsk((ρ, 	), B).

Case Lmd(B) = STP

The semantics is adapted from the case Lmd(B) = STD by assuming φ |=
STP (cf. the full version [6] for details).

Case φ |= TOH

We then consider the transition rules τ = A
start(φ)−−−−→ B with φ |= TOH. It

turns out that we can largely reuse the semantic definitions of the case that

φ |= ¬TOH. Namely, let τ ′ = A
start(φ′)−−−−−→ B where φ′ is obtained from φ by

replacing TOH with ¬TOH. (The behavior of τ ′ is fully prescribed before, viz,
(ρ, 	) A−−→

τ ′,i
(ρ′, 	′) where ρ′ = ((S′

1, A
′
1), · · · , (S′

n′ , A′
n′)).) Then we have that

– if i = 1, then (ρ, 	) A−−→
τ,i

(ρ′, 	′),
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– if i = 2, then (ρ, 	) A−−→
τ,0

(((S′
1, A

′
1)), 	

′′), and 	′′ = 1 if 	′ = 1; 0 otherwise.

Note that if i = 2, then due to the effect of TOH, all the tasks in ρ′, except the
top one, will be removed.

Transition rules for τ = A
finishStart(φ)−−−−−−−−→ B

We now consider τ = A
finishStart(φ)−−−−−−−−→ B. Intuitively, A

finishStart(φ)−−−−−−−−→ B specifies
that B is started with the intent flags φ followed by the termination of A. Let

τ ′ = A
start(φ)−−−−→ B and (ρ, 	) A−−→

τ ′,i
(ρ′, 	′), with ρ′ = ((S′

1, A
′
1), · · · , (S′

n′ , A′
n′)).

Then the semantics of τ = A
finishStart(φ)−−−−−−−−→ B is defined as follows.

– If i = 0 (this may happen when φ |= TOH), then (ρ, 	) A−−→
τ,0

(ρ′, 	′).

– If i = 2, then (ρ, 	) A−−→
τ,i′

(ρ′′, 	′′), where (i′, (ρ′′, 	′′)) = RmAct((ρ′, 	′), 2).

– If i = 1, then
• if |S′

1| = |S1| + 1 (in this case, the top activity of S′
1 is B, and the top

second is A), then let S′′
1 obtained from S′

1 by removing the second activity
from the top, and ρ′′ obtained from ρ′ by replacing S′

1 with S′′
1 , then we

have (ρ, 	) A−−→
τ,1

(ρ′′, 	′),

• if |S′
1| = |S1|, then (ρ, 	) A−−→

τ,i′
(ρ′′, 	′′), where if Top(S′

1) = A, then

(i′, (ρ′′, 	′′)) = RmAct((ρ′, 	′), 1), otherwise (in this case, φ |= RTF,
Top(S′

1) = B, and the top second activity of S′
1 is A), i′ = 1, 	′′ = 	′, and

ρ′′ is obtained from ρ′ by removing from S′
1 the top second activity,

• if |S′
1| < |S1|, then (ρ, 	) A−−→

τ,1
(ρ′, 	′).

3.3 High-Level Descriptions

We now present some high-level description which would facilitate the under-
standing of the semantics.

Task Allocation Mechanism. One of the main elements of the semantics of ASM is
the task allocation mechanism, namely, to specify, when an activity is launched,
to which task will it be allocated. Via extensive experiments, we identify a crucial
notion, i.e., real activity of tasks, in Android 7.0 and 8.0, which plays a pivotal
role in such a mechanism.

Generally speaking, for an activity B which is not to land on the top task,
the following three steps will apply: (1) If there is any task whose real activity
is B, then B will be put on the task; (2) Otherwise, if there is any task whose
real activity has the same task affinity as B, then B will be put on the task
(3) Otherwise, a new task is created to hold B. In the first two cases, if there
are multiple instances, the first occurrence starting from the top task will be
selected. Note that, due to the CTK flag, the bottom activity of a task may not
be the real activity of the task.
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Dependencies Between Launch Modes and Intent Flags. For transitions A
α(φ)−−−→

B, the launch modes of A,B and the intent flags in φ may depend on each other.
The dependency can exhibit in the following three forms: n subsumes n′, i.e.,
n′ is ignored if n co-occurs with n′, (2) n enables n′, i.e., n′ takes effect if n
co-occurs with n′, (3) n implies n′, i.e., if n′ subsumes (resp. enables) n′′, then n
subsumes (resp. enables) n′′ as well. We summarize these dependencies in Fig. 1,
where the solid lines represent the “subsume” relation, the dashed lines represent
the “enable” relation, the dotted lines represent the “implies” relation.

The following properties hold for these relations: (1) the “subsume” and
“imply” relations are transitive, (2) the composition of the “imply” relation
and the “subsume” (resp. “enable”) relation is a subset of the “subsume” (resp.
“enable”) relation. Moreover, we remark that the two “enable” edges to TOH
in Fig. 1 are “incomplete” for TOH, in the sense that the two edges do not
fully cover the situations where TOH takes effect, viz. the situations where the
launched activity B is not to land on the original top task.

Fig. 1. Dependency graph for launch modes and intent flags in transitions A
α(φ)−−−→ B.

The launch modes (resp. the intent flags) are in boxes (resp. circles)

The Empty-String Task Affinity. Intuitively, if the task affinity of some activity
A is the empty string, then the transition rules involving A are the same as if the
task affinity of A were different from those of all the other activities. Formally,
suppose A1, · · · , Am′ are an enumeration of all the activities with the empty-
string task affinity, then the semantics of A is defined as that of A′, where A′

is obtained from A by setting Aft(Aj) = m + j for each j ∈ [m′] (recall that
m = |Act|).
The Differences of the Semantics for Android 6.0, 7.0, and 8.0. The semantics
of ASM for Android 7.0 and Android 8.0 are almost the same except that: In
Android 7.0, in case that Lmd(A) 	= SIT, Lmd(B) = STD/STP, B occurs on the
top task of ρ, and φ |= ¬NTK∧RTF∧ ¬CTP, the successor configuration (ρ′, 	′)
is obtained from (ρ, 	) by first clearing the top task, then pushing B into it. Note
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that here, RTF acts like CTK,7 although CTK is not enabled and takes no effect
(see Fig. 1).

The task allocation mechanism of Android 6.0 is considerably different, which
is irrelevant to the real activities of tasks and only uses the affinities of tasks. Its
semantics can be adapted from that of Android 8.0 and is given in the full version
[6]. We remark that the semantics of ASM for Android 6.0 formalized here is
essentially the same as that in [7,8] modulo some minor differences. Indeed,
we have found that some of transition rules given in [8] are inconsistent to our

semantics. For instance, in case A
start(φ)−−−−→ B where Lmd(A) = SIT, Lmd(B) =

STD, φ |= MTK ∧ STP, and there exists some task with the same affinity as B
in the current task stack: according to the 6th rule on page 22 of [8], the task
whose affinity is Aft(B) and which is closest to the top task will be moved to top
and no new task will be created, whereas in our semantics, a new task S′ = [B]
will be created and become the top of the task stack.

Validation of the Formal Semantics. To validate that the formal semantics of
ASM conforms to the actual behavior of the respective Android versions, we have
conducted exhaustive experiments by designing a diagnosis app and comparing,
for each case in the definition of the formal semantics, the exhibited behavior
of the app against the formal semantics. The details of the experiments can be
found in the full version [6].

4 Static Analysis of Apps

In this section, we consider static analysis of Android apps. At first, we show
how to build the ASM model out of Android apps. Then, we illustrate how to
solve the reachability and boundedness problems of ASM.

4.1 From Apps to ASM

We show how to construct an ASM model for an Android app. Recall that an
ASM model comprises a signature of activities and a transition relation.

We take the input as either an Android PacKage (apk) file or simply the
source code. We extract the manifest file from the source code or by decompiling
the apk file. From the manifest file, we can obtain the signature of activities,
namely, a list of activities of the app with their launch modes and task affinities,
as well as the main activity. In addition, the intent filters, which include actions,
categories and data, are also extracted from the manifest file to facilitate the
construction of the transition relation.

In a nutshell, we construct the transition relation by the static analysis of

the control- and data-flow of Android apps. Recall that a transition A
α(φ)−−−→ B

contains a caller activity A, a callee activity B, an action α, and intent flags

7 It is a confirmed bug of the multitasking mechanism affecting Android 4.4, 7.0 and
7.1.1; see https://issuetracker.google.com/issues/36986021 for the discussions.

https://issuetracker.google.com/issues/36986021
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φ. It is noteworthy that a caller activity can start a callee activity, and finish
itself at the same time by invoking the function finish(). In terms of modeling
by an ASM, the action is finishStart if finish() is invoked, and start otherwise.
As mentioned before, Android may use intents and the functions startActivity()
and startActivityForResult() to activate activities. There are two types of intents:
explicit intents and implicit intents. The former sets the name of the callee
activity directly, while the latter declares the desired values of actions, categories
and data fields. Activities that can be activated by implicit intents will declare
intent filters in the manifest file. Android starts the activity that an implicit
intent intends to run by matching the parameters of the intent with all the intent
filters. If an implicit intent matches several intent filters of different activities,
users can pick up which activity to launch.

We locate all the methods invoking functions startActivity() or startActivity-
ForResult(), and all the activities accessing these methods, which are the caller
activities in these transitions. We then exploit data-flow analysis to identify the
sets of possible values of the parameters of the intents. From these values, we
then obtain the intent flags directly. For explicit intents, we also obtain the callee
activities whereas for implicit intents, we compute the set of callee activities by
matching the values of these parameters with the intent filters obtained from
the manifest file.8

Remark that, in this work, we focus on activities and ignore the other
Android application components (e.g., services). Therefore, during the con-
struction of the ASM model, we ignore all the occurrences of startActivity()
and startActivityForResult() in the functions related to these components, e.g.,
“onServiceConnected()”.

4.2 Static Analysis of ASM

We perform static analysis for Android apps based on the ASM model. We
shall focus on two types of analysis, i.e., configuration reachability and stack
boundedness analysis, with applications. For simplicity, we restrict our attention
to ASMs where the intent flag MTK is absent. This is not a severe restriction
as the proportion of benchmarks containing the MTK flag is approximately 1%
(37/3,245). However, it could tremendously facilitate our analysis because in
each configuration of the ASM, the affinities of non-SIT tasks would be distinct.

Configuration Reachability. The configuration reachability problem is formally
defined as follows: Given an ASM A and a configuration ρ, decide whether
([A0], 1) A=⇒ (ρ, 	) for some 	, where A=⇒ is the reflexive and transitive closure of
A−→. Note here we ignore the components (τ, i) in tuples (ρ, 	) A−−→

τ,i
(ρ′, 	′) and

take A−→ as a binary relation over ConfA × N.
In the sequel, we assume that there is a given constant bound � on the heights

of tasks in the configurations, and the resulting reachability relation is called �-
reachable. (Evidently, �-reachable implies reachable but not vice versa.) This
8 cf. https://developer.android.com/guide/components/intentsfilters.

https://developer.android.com/guide/components/intentsfilters
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assumption yields a finite, though exponential, state space, and the evolution
of configurations can be captured by a finite state machine (FSM). To tackle
the exponential state space we resort to the well-known symbolic model checker
nuXmv [4] to provide an efficient and scalable analysis.

Our general approach is to translate an ASM A with a constant bound �

(over heights of tasks) to an FSM MA, the size of which is polynomial in the
size of A. Intuitively, the states of MA represent the configurations of A whose
heights are bounded by �, and the transitions of MA simulate the transition
rules of A. More technically, since each configuration ρ contains at most m =
|Aft(Act \ ActSIT)| + |ActSIT| tasks and the height of each back stack is bounded
by �, ρ can be represented by a word of length exactly m(� + 1). In particular,
each task is represented by a word of length � + 1, where the last letter specifies
the real activity of the task. (Dummy symbols ⊥ 	∈ Act are to be appended if
the number of tasks in ρ is less than m or the height of a task is less than �.)

As per the semantics of ASM, after some transition, a task may emerge
to become the top task, which means that in the corresponding simulation, a
subword of length � + 1 will become the prefix of the new configuration repre-
sentation. It turns out that, for the translation purpose, this is cumbersome to
define, so we adapt the word representation of configurations as follows: an extra
“pointer” word v of length m is introduced where each letter of v refers to a task
currently in the configuration via its real activity. The order of the tasks can
then be captured by permutations of v. (Note that if the number of tasks is less
than m, then the dummy symbol ⊥ is also used in v.) Generally, the “pointer”
word is a word of real activities, possibly followed by multiple ⊥’s, with a total
length m. The detailed encoding is technical and is given in the full version [6].

The configuration reachability problem is fundamental to static program
analysis and has various applications. Below we present an example; A further
application is given in the stack boundedness section.

Back Pattern Analysis. The back pattern analysis computes, for a given
activity A in A, the set of activities B such that when pressing the back button,
the foreground activity can switch from A to B. We shall denote this set by
Actback(A). Such information is valuable for developers of Android apps, for
instance, to validate the multitasking design of the app and to detect unexpected
behaviors.

For a given A ∈ Act, it is not hard to see that we can compute the desired
set of activities B by solving for each B ∈ Act, a slightly more general version of
the configuration reachability problem, namely, whether a configuration match-
ing the regular expression e = A⊥∗B is reachable. The nuXmv tool facilitates
handling this generalized version of the reachability problem. Furthermore, for
each A and B ∈ Actback(A), a path can be generated by nuXmv to witness an
occurrence of (some word matching) e.

Stack Boundedness. Formally, an ASM A is said to be stack-unbounded, if for
every n ∈ N there is a configuration (ρ, 	) of A such that (ε, 0) A=⇒ (ρ, 	) and the
height of ρ is at least n. We will consider a relaxation of stack-unboundedness,
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i.e., k-stack unbounded where k is a (purported small) natural number. Intu-
itively, an ASM A is k-stack unbounded if A is stack-unbounded and the
unboundedness is caused by a particular task such that the height of the task
is unbounded during the evolution which involves the interplay with at most k
other tasks.

We are interested in the stack boundedness problem which is to decide whether
a given ASM is stack unbounded. While this turns out to be difficult, we hypoth-
esize that, most stack unbounded ASMs are actually k-stack unbounded for a
small number k (normally, k ≤ 2). As a result, as a practical solution, we can
appeal to checking k-stack unboundedness for a small k. (See the full version [6]
for justification.)

We start with some notations. Let Actreal be the set of activities A ∈ Act such
that one of the following conditions holds: (1) Lmd(A) = SIT, (2) Lmd(A) = STK,

(3) Lmd(A) = STD or STP, and A occurs in some transition B
α(φ)−−−→ A such

that Lmd(B) = SIT or φ |= NTK. Intuitively, Actreal is the set of activities that
may occur as a real activity of tasks.

Two activities A,B ∈ Actreal are said to represent different tasks if one of
the following conditions holds: (1) Lmd(A) = Lmd(B) = SIT and A 	= B, (2)
Lmd(A) = SIT and Lmd(B) 	= SIT, (3) Lmd(A) 	= SIT and Lmd(B) = SIT,
(4) Lmd(A) 	= SIT, Lmd(B) 	= SIT, and Aft(A) 	= Aft(B). For each activity
A ∈ Actreal such that Lmd(A) 	= SIT, let Reach(Δ,A) denote the least subset

Θ ⊆ Δ satisfying that B
α(φ)−−−→ C ∈ Θ (where α = start or finishStart) whenever

the following two constraints are satisfied:

– B = A or there exists a transition A′ α′(φ′)−−−−→ B ∈ Θ (where α′ = start or
finishStart),

– Lmd(C) 	= SIT, and if Lmd(C) = STK or φ |= NTK, then Aft(C) = Aft(A).

Intuitively, Reach(Δ,A) comprises all the transition rules that can be applied
and once applied would retain an A-task as the top task. By abusing the notation
slightly, Reach(Δ,A) also denotes the graph whose edge set is Reach(Δ,A).

Reach(Δ,A) can be generalized to the case that A ∈ Actreal and Lmd(A) =
SIT, where Reach(Δ,A) is regarded as the graph that contains a single node A
without edges.

In the rest of this section, we will sketch a procedure to check stack unbound-
edness for k = 0. The underpinning idea is to search, for each A ∈ Actreal, a
witness cycle, i.e., a sequence of transitions from Reach(Δ,A), the execution of
which would force the stack to grow indefinitely.

Formally, a witness cycle is a simple cycle in Reach(Δ,A) of the form

C = A1
α1(φ1)−−−−→ A2 · · · An−1

αn−1(φn−1)−−−−−−−−→ An

where n ≥ 2 and αi = start or finishStart for each i ∈ [n] satisfying the following
two constraints:

[Non-clearing.] The content of an A-task is not cleared when C is executed.
Namely, for each i ∈ [n − 1], φi |= ¬CTP, moreover, either φi |= ¬CTK, or
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φi |= ¬NTK and Lmd(Ai+1) 	= STK (intuitively, this means that CTK is not
enabled, cf. Fig. 1).

[Height-increasing.] The height of the task content is increasing after C is exe-
cuted. Namely, it is required that

∑
i∈[n−1] weightC(τi) > 0, where for each

i ∈ [n − 1], τi = Ai
αi(φi)−−−−→ Ai+1 and weightC(τi) is defined as follows.

– If αi = start, then
• if φi |= RTF, then weightC(τi) = 0,
• if φi |= ¬RTF, Ai = Ai+1, and either φi |= STP or Lmd(Ai+1) = STP,

then weightC(τi) = 0,
• otherwise, weightC(τi) = 1.

– If αi = finishStart, then
• if φi |= RTF, then weightC(τi) = −1,
• if φi |= ¬RTF, Ai = Ai+1, and either φi |= STP or Lmd(Ai+1) = STP,

then weightC(τi) = −1,
• otherwise, weightC(τi) = 0.

If a witness cycle exists for some A ∈ Actreal, the algorithm returns “stack
unbounded”. Otherwise, if Δ is a directed acyclic graph, then the algorithm
returns “stack bounded”. Otherwise, the procedure reports “unknown”.

The more general cases for k ≥ 1 are much more technical and involved. We
introduce the concept of “virtual transitions” for tasks to capture the situation
that the content of a task can be indirectly modified by first jumping off the
task and returning to the task later on. When this happens, the procedure adds
virtual transitions for each task before checking the existence of witness cycles.
The details of the procedure can be found in the full version [6].

As mentioned before, stack unboundedness suggests a potential security vul-
nerability. As a result, when this is spotted, it is desirable to synthesize a concrete
transition sequence so that the developers can, for instance, follow this sequence
to test and improve their apps. It turns out that the synthesis can be reduced to
the more general version of the configuration reachability problem mentioned in
the back pattern analysis. This can be easily incorporated and has been imple-
mented in the tool.

5 Evaluation

We implement the procedures in Sect. 4 and develop a tool TaskDroid which
comprises two modules, APP2ASM and ASMAnalyzer.

The former module builds ASM models from Android apps. The inputs
of APP2ASM are either Android PacKage (apk) files or simply source codes.
APP2ASM is based on the widely adopted Java bytecode analysis framework
soot [14]. APP2ASM uses soot to create call graphs (CG) to represent the calling
relationship between functions, and the control flow graphs (CFG) of functions
to represent the control flow of the function bodies. APP2ASM includes two sub-
modules, i.e., Manifest Analyzer and Transition Extractor which generate the



308 J. He et al.

signature Sig and the transition relation Δ of the ASM model respectively (cf.
Definition 1). Manifest Analyzer extracts the manifest file from the source code
or by decompiling the apk file. It then obtains the signature Sig from the mani-
fest file. Moreover, it also gets the intent filters from the manifest file and passes
them to the Transition Extractor for further analysis. Transition Extractor con-
structs the transition relation Δ from the call graph and the control flow graphs
of functions (cf. Sect. 4.1). In order to make the model-building process more
efficient, Transition Extractor applies the program slicing technique to extract
those statements that are related to the attributes of intent objects correspond-
ing to callee activity classes, intent flags, as well as actions, categories, and data
of intent filters.

ASMAnalyzer carries out the static analysis on ASM models. ASMAnalyzer
includes two submodules for Reachability analysis and Boundedness analysis
respectively which implement the procedures given in Sect. 4.2. Note that the
Reachability submodule can generate witness paths for reachability. The Bound-
edness submodule utilises the Reachability module to generate a path starting
from the main activity when the ASM is found to be stack unbounded.

Benchmarks. The benchmarks comprise 4,496 apps (apk files) collected from
three sources, i.e., the open-source F-Droid repository (https://f-droid.org/),
the Google Play market, and app market Wandoujia (https://www.wandoujia.
com/). The statistics of these apps can be found in Table 1. For F-Droid, we
use a web crawler to download all the available apps. For Google Play (resp.
the app market X), we download the first 500 apps of each of the 32 categories
(resp. 14 categories) according to the displaying order. (Note that Google Play
disallows direct app-downloading, so we use a third-party website APKLeecher
http://apkleecher.com/.) Note that we have removed the apps that use fragment
components which are not considered in this paper.

Table 1. Statistics of the benchmarks

Source F-Droid Google play Market Wandoujia

Num. of apps 674(15.0%) 2,068(46.0%) 1,754(39.0%)
Avg. Size 3.1 MB 15 MB 18 MB
Max. Size 158.0 MB 103.9 MB 428.7 MB
Total num. of apps 4,496

We carry out all experiments on a Linux server with a CPU of Intel® Xeon®

Processor E5-2680 v4 at 2.40 GHz and 64 GB memory.

5.1 Scalability of Our Approaches

APP2ASM. We evaluate the scalability of APP2ASM on the 4,496 apps, where
the timeout is set to 600 s. The experimental results are shown in Table 2. Out

https://f-droid.org/
https://www.wandoujia.com/
https://www.wandoujia.com/
http://apkleecher.com/


Android Multitasking Mechanism 309

of these 4,496 apps, there are 1,251 apps that the soot tool fails to handle. The
average/maximum time of APP2ASM on these apps is 33.7/599.2 s. In the end,
APP2ASM outputs 3,245 ASM models to the ASMAnalyzer module.

Table 2. Scalability: APP2ASM

Total num. of apps Num. of soot-failing apps Avg. time Max. time

4,496 1,251 33.7 s 599.2 s
Num. of ASMs output by APP2ASM

3,245

Reachability Analysis. We evaluate the performance of the Reachability analysis
submodule by carrying out the back pattern analysis on the 3,245 ASMs (gener-
ated by the APP2ASM module), where the stack height bound � is set to 4 and
the timeout period is set to 60 s. The experimental results are shown in Table 3.
Only 9 (0.3%) ASMs out of the 3,245 ASMs time out. Furthermore, relatively
large ASM models (e.g., with 50 activities and 128 transitions, or 72 activities
and 72 transitions) can be handled successfully. The average (resp. maximum)
running time is only 0.1 s (resp. 3.3 s).

Boundedness Analysis. We evaluate the performance of the Boundedness sub-
module based on the same 3,245 ASM models. The parameter k (i..e., the number
of interplaying tasks, cf. Sect. 4.2) is set to 2 and the timeout is set to 60 s. The
experimental results are shown in Table 4. On this occasion, no timeout hap-
pened and the average (resp. maximum) running time is only 0.01 (resp. 0.4) s.

It is noteworthy that, for the reachability analysis, we hypothesize that the
heights of involved tasks are bounded by a small number (i.e., � ≤ 4). Likewise,
for the stack-boundedness analysis, we hypothesize that only a small number of
tasks are involved (k ≤ 2). In the full version [6] we empirically justify these
hypotheses which give sufficiently precise results for the � and k we have set.

Table 3. Scalability: reachability (Back pattern)

Avg. size (|Act|, |Δ|) of ASMs (6.7, 12.0)
Max. size (|Act|, |Δ|) of ASMs (130, 292)/(63, 677)
Num. of T.O. ASMs 9(0.3%)
Max. size of non-T.O. ASMs (50, 128)/(72, 72)
Avg. time 0.1 s
Max. time 3.3 s
Avg. of |Actback(A)| 1.7
Max. of |Actback(A)| 18
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Table 4. Scalability: boundedness

Total num. of ASMs 3,245
Avg. size (|Act|, |Δ|) of ASMs (6.7, 12.0)
Max. size (|Act|, |Δ|) of ASMs (130, 292)/(63, 677)
Num. of T.O. ASMs 0
Num. of stack-unbounded ASMs 989
Avg. time 0.01 s
Max. time 0.4 s

The experimental results demonstrate efficiency and scalability of the model
construction and static analysis when applied to real-world Android apps.

5.2 Threat of Stack Unboundedness

As shown in the preceding section, TaskDroid has discovered that 989 ASMs
out of 3,245 ASMs are stack unbounded (cf. Table 4). We investigate whether
the stack unboundedness pose genuine threats in practice. Out of those 989
stack-unbounded ASMs, we select apps from F-Droid as examples to evaluate
the threat of the stack-unboundedness.9 We carry out the experiments using
Android Emulator10 to create a virtual device for Nexus 6 (RAM size 512 MB,
heap size 16 MB, and Android version 7.1.1). Moreover, we use Monkey11 and
ADB (Android Debug Bridge12) tools. The experiments proceed in the follow-
ing steps: (1) Generate a witness cycle as well as a reachability path for stack
unboundedness. (Note that the witness cycle is a segment of the reachability
path.) (2) For each activity A in the reachability path, locate the UI widget
corresponding to A by reading the source code and locating the occurrence of
the intent object corresponding to the activation of A. (3) Find the coordinates
of the UI widgets which are used to generate a Monkey script, specifically, a
sequence of click operations, to simulate the witness cycle. (4) Install the app
in the virtual device, simulate the sequence of click operations manually until
reaching the witness cycle, then use Monkey to repeatedly run the script (corre-
sponding to the witness cycle). We use ADB to obtain the number of activities
in tasks and calculate the number of repetitions of the witness cycle.

The results of the experiments are reported in Table 5. Out of the analysed
101 F-Droid apps, the witness cycles synthesized by TaskDroid can be success-
fully simulated in 29 apps. After hundreds or thousands of repetitions of the

9 The experiments need considerable manual work and are very time-consuming, we
choose to conduct experiments on the F-Droid apps only as they are relatively small
in size. We plan to carry out more extensive experiments in the near future.

10 https://developer.android.com/studio/run/emulator.
11 http://developer.android.com/tools/help/monkey.html.
12 https://developer.android.com/studio/command-line/adb.

https://developer.android.com/studio/run/emulator
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/studio/command-line/adb
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witness cycle, the 29 apps end up with either app crash, or black screen, or even
rebooting of device. These suggest that stack-unbounded apps can be poten-
tially harmful to, and thus a vulnerability of, the Android system, highlighting
the importance of such an analysis. For the other 72 apps, we were unable to sim-
ulate the witness cycles, due to the following reasons: login is required (23 apps),
apps crash immediately after launching (14 apps), ASM models are imprecise
(35 apps) so the potential threat returned by TaskDroid may be spurious.

Table 5. Threat of stack unboundedness

Abnormal behavior Num. of apps Num. of repetitions of the witness cycle
Avg. Min. Max

App crash 21 709 66 1418
Black screen 6 1002 228 1213
Device reboot 2 2451 406 4495

6 Conclusion

We have provided a rigorous formalization of the Android multitasking mech-
anism, which gives a considerably more complete and concise account of the
evolution of the Android task stack in relation to activity activation, and high-
lights the discrepancy between the semantics of different Android versions. Based
on the formalized Android stack machine model and its semantics, we have pro-
vided new modeling and static analysis methods for Android apps, which have
been implemented in a prototype tool TaskDroid. Experiments on large-scale
benchmarks confirmed the efficacy and efficiency of our approaches.

Future work includes further improving the precision of the ASM modeling
and analysis, more extensive experiments on Android app markets, and in-depth
investigations of the decidability and complexity of static analysis.
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Abstract. Concurrent data structures implemented with software
transactional memory (STM) perform poorly when operations which
do not conflict in the definition of the abstract data type nonetheless
incur conflicts in the concrete state of an implementation. Several works
addressed various aspects of this problem, yet we still lack efficient,
general-purpose mechanisms that allow one to readily integrate black-
box concurrent data-structures into existing STM frameworks.

In this paper we take a step further toward this goal, by focusing
on the challenge of how to use black-box concurrent data structures
in an optimistic transactional manner, while exploiting an off-the-shelf
STM for transaction-level conflict detection. To this end, we introduce
two new enabling concepts. First, we define data-structure conflict in
terms of commutativity but, unlike prior work, we introduce a new for-
mat called conflict abstractions, which is kept separate from the object
implementation and is fit for optimistic conflict detection. Second, we
describe shadow speculation for wrapping off-the-shelf concurrent objects
so that updates can be speculatively and opaquely applied—and even
return values observed—but then later dropped (on abort) or else atom-
ically applied (on commit). We have realized these concepts in a new
open-source transactional system called ScalaProust, built on top of
ScalaSTM and report encouraging experimental results.

Further detail and experimental results can be found in the extended
version of this paper [8].

1 Introduction

Modern software transactional memory (STM) systems typically perform syn-
chronization on the basis of read-write conflicts: two transactions conflict if they
access the same memory location, and at least one access is a write. It is well
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understood that this technique works poorly for contended data objects because
operations that could have correctly executed concurrently are deemed to con-
flict, causing unnecessary rollbacks and serialization.

Some prior works were aimed at this problem and found solutions to some
cases. Transactional Boosting [17] centers around constructing a transactional
“wrapper” for legacy thread-safe concurrent data structures. Designing a boost-
ing wrapper requires identifying which operations commute, as well as providing
operation inverses. Boosting can take advantage of existing thread-safe libraries,
so there is no need to re-invent the wheel, but is limited to pessimistic treat-
ment of object operations. Hassan et al. [14] provide an optimistic strategy, but
requires white-box access to the data-structure. Transactional Predication [4]
maps semantic conflicts onto read-write conflicts handled by an underlying STM.
Predication can exploit highly-optimized mechanisms provided by off-the-shelf
STM systems, but applies only to sets and maps. Software Transactional Objects
(STO) [18] is an STM design that provides built-in primitives to track conflicts
among arbitrary operations, not just read-write conflicts. Similarly, Transac-
tional Data Structure Libraries [30] describes techniques for building libraries of
transaction-aware data structures. The latter two works do not readily support
existing concurrent ADT implementations (e.g. java.util.concurrent), which
would be appealing because these implementations are highly optimized.

Despite the advances noted above, we still lack general approaches to building
transactional systems that exploit both the conflict resolution of state-of-the-art
STM systems, as well as the high performance of off-the-shelf concurrent abstract
data type (ADT) implementations. Here is an example: imagine we wanted to
use an off-the-shelf concurrent priority queue that supported efficient (copy-
on-write) snapshots, but had no efficient inverse for insert. These seemingly
simple requirements escape all prior techniques. Predication [4] doesn’t quite
fit the bill because it is limited to sets/maps. Optimistic boosting [14] requires
white-box access to the data-structure. Boosting [17] could be made to work
with an inefficient synthetic inverse; however, it would still require pessimistic
synchronization, which isn’t a good fit for most STMs. Thus, new abstractions
must be developed to support efficient use of ADTs with STM systems.

This paper takes a step further toward this goal: we address the challenge
of how to allow updates to black-box highly concurrent objects to be performed
optimistically, while exploiting off-the-shelf STMs. To this end, we introduce
two new key concepts—conflict abstractions and shadow speculation—which,
together, enable programmers to build such transactional systems.

We first consider the challenge of defining and detecting conflict. Conflict
between ADT operations is typically understood in terms of commutativity spec-
ifications [2,17,23,31] which are implementation-independent, but aren’t easily
translated into code. To resolve this tension, we introduce an approximation of
commutativity, called conflict abstractions specifically fit for optimistic synchro-
nization. We build upon the idea that commutativity-based conflict specifica-
tions can be kept separate from object itself, by extending the concept to keep
implementations of commutativity-based conflict detection separate from the
implementation of the data structure. In fact, we can even use the STM itself to
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detect non-commutativity, even when the data structure implementation doesn’t
use the STM at all. The principal advantage is that a programmer can readily
integrate an off-the-shelf concurrent object into a transactional setting, without
knowing the complex implementation details of the object. Instead, the program-
mer simply needs to understand the abstract type.

Conflict abstractions can be used with optimistic STMs (such as ScalaSTM)
to enable optimistic commutativity-based conflict detection. But now how do
we cope with operations being speculatively applied to the objects themselves?
One could potentially delay the application of operations to commit time, but
what about operations that involve return values that are needed by the trans-
action to continue? This requires the ability to predict the effects of operations
which have not yet been applied. To this end, we introduce the idea of shadow
speculation, allowing a transaction to speculatively apply ADT operations to an
object while ensuring the updates cannot be viewed by concurrent transactions.
These updates can be atomically applied at commit time or else discarded in
the case of an abort. This is achieved by first tracking operation replay logs.
We then describe two strategies (based on snapshots and memoization) that
each allow transactions to maintain their own shadow of a shared data structure
and observe return values of their speculative operations. By combining these
shadow copies with commutativity-based conflict abstractions, we enable non-
commutative operations to be applied speculatively to off-the-shelf ADTs and
in a way that is opaque to concurrent transactions.

We have incorporated these ideas into a new transactional object system
called ScalaProust1, built on top of ScalaSTM. ScalaProust, unlike predica-
tion, goes beyond sets/maps and can support objects of arbitrary abstract type
such as priority queues and non-zero indicators. Meanwhile, unlike boosting,
ScalaProust allows optimistic synchronization and integrates with the under-
lying STM, to take advantage of well-engineered STM conflict-detection mecha-
nisms. While the ScalaProust tool also supports pessimistic updates, this paper
focuses on contributions pertaining to optimistic updates.

In summary, we make the following contributions:

1. Conflict abstractions provide a novel way to concretely realize an abstract
data type’s semantic notions of conflict so it can efficiently cooperate with a
generic software transactional memory run-time (Sect. 3).

2. Shadow speculation allows individual transactions to make private speculative
updates to highly-concurrent black-box objects (Sect. 4).

3. The ScalaProust transactional system,2 built on top of ScalaSTM and com-
bines off-the-shelf ADTs with existing STMs (Sect. 5).

4. An experimental evaluation demonstrates scalability competitive with exist-
ing specialized approaches such as transactional predication, but with a wider
range of applicability (Sect. 6).

1 This name is a portmanteau of predication and boosting, both influential prior works.
The name is also an hommage to Marcel Proust, an author famous for his exploration
of the complexities of memory.

2 www.github.com/ScalaProust/ScalaProust/.

www.github.com/ScalaProust/ScalaProust/
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Limitations. The mechanisms described in this paper are designed for trans-
actional objects and currently don’t support mixtures between transactional
objects and STM-managed read/write operations. We leave this to future work.
This paper makes conceptual contributions and experimental demonstrates their
impact. A proof of opacity could perhaps be achieved by adapting existing the-
oretical models (e.g. [22]), another important step for future work.

2 Overview

We now highlight the key ideas of this paper with two example concurrent
ADTs—a priority queue and a non-zero indicator (NZI)—and describe how con-
flict abstractions and shadow speculation allow black box implementations of the
ADTs to be used optimistically with an off-the-shelf STM.

2.1 From Commutativity to Conflict Abstractions

Let us first consider the priority queue ADT, supporting the three operations
min()/x, removeMin()/x, and insert(x). We assume that the programmer
already has a concurrent implementation (e.g. from java.util.concurrent).
Moreover, like in transactional boosting [17], we will first require the program-
mer to be aware which operations commute under which circumstances. (Recent
work has shown that commutativity can be synthesized from the ADT’s specifi-
cation [1].) We say that two ADT operations commute provided that they lead to
the same final state and return the same values, regardless of the order in which

min()/x removeMin()/x insert(x)

min()/y true false y ≤ x

removeMin()/y false x = y y ≤ x

insert(y) y ≥ x y ≥ x true

they are applied. As a
reminder, the table to the
right summarizes sound
commutativity conditions
for pairs of priority queue
operations. For a more complete collection of commutativity conditions of
ADTs, see [1,19]. In the above example, insert(42) always commutes with
removeMin()/1 because the value inserted (42) was greater than the minimum
value (1) in the priority queue. Also, insertions always commute because the
internal order of the inserted elements will be dictated by their values.

While commutativity specifications benefit from being independent of the
implementation, they are difficult to translate into program source code. In the
pessimistic setting, transactional boosting [17] uses so-called abstract locking
and, for priority queues, gives an example of a single read/write lock to approx-
imate commutativity. The challenge remains: how can we use commutativity
specifications as the basis for optimistic conflict detection and, moreover, can we
exploit black-box optimistic STMs to perform this abstract conflict detection?

Toward this challenge, we begin by introducing conflict abstractions. The
idea is to approximate commutativity-based conflict detection by using the STM
itself, keeping the implementation of conflict detection separate from the imple-
mentation of the ADT (which may not even use the STM at all). Let’s say
thread T1 would like to perform min() and thread T2 would like to perform
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removeMin(). The (logical) commutativity of these operations tells us that we
should assume these operations conflict. The idea of a conflict abstraction is to
represent this logical notion of conflict by introducing concrete STM-managed
variables and rules for when those variables should be read/written so that the
STM will detect a conflict when these two transactions try to proceed with non-
commutative operations. As a trivial example, we could create a new variable v,
and require T1 to read v and T2 to write (some random fresh value) to v. In this
way, the read(v) summarizes the logical “read-only” nature of min, while the
write(v) summarizes the logical update made by removeMin(). Notice that we
have now (in a limited way) tricked the STM to perform commutativity-based
conflict detection and have not had to touch the internals of the priority queue.
Note that, in some cases, this new variable v could potentially be removed by a
compiler, and so we must protect v with an annotation such as volatile.

Let’s now generalize beyond this single-variable example. The idea is that
threads summarize the ADT operations they plan to perform—a sort of digest—
through a few read/write operations on some freshly-introduced STM-managed
variables. The primitives in this digest are chosen to reflect various conceptual
aspects of the object’s abstract state (e.g. a priority queue’s minimum value,
size, and multiset). This digest, if written correctly, is such that whenever the
ADT operations being performed by two threads do not commute, operations on
the digest primitives will be found to conflict. This mapping of abstract state to
STM variables, and the rules for which to read and which to write—as a function
of the ADT operation being performed—is what we call a conflict abstraction.
Here is a conflict abstraction for the priority queue ADT:

Conflict Abstraction for Priority Queue
CA STM vars: vmin, vincr, vdecr, with CA operation rules:

min()/x : rd(vmin)
removeMin()/x : wr(vdecr);wr(vmin)
insert(x) : wr(vincr); if (x < min())) wr(vmin) else rd(vmin)
size()/n : rd(vdecr); rd(vincr)

In this conflict abstraction (CA), we use STM-managed variables vmin, vincr, and
vdecr. Intuitively, vmin summarizes whether operations are somehow dependent
upon the minimum element. Writing to variable vincr summarizes whether the
operation increases the size of the queue, while reading from vincr indicates that
the operation is sensitive to whether the size will increase. vdecr is similar. Notice
that if we take any initial state, and consider any pair of ADT operations, if the
CA operation rules are followed, then the STM will detect some kind of conflict
on at least one of the memory locations vmin, vincr or vdecr.

As an example, let’s say that we have operations T1 : removeMin()/42 and
T2 : insert(1). In general these operations do not commute because the element
being inserted is less than the current minimum value so, depending on the order
of the operations, T1 will observe different values (and the final state of the ADT
will be different). Following the CA operation rules, T1 will write vdecr and write
vmin. Meanwhile, T2 will write vincr and either read or write vmin, depending on
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the ADT’s current min. (Here min is a another ADT method, which will itself
perform a read on vmin.) Off-the-shelf STMs will detect some kind of conflict,
e.g., a write/read or write/write conflict on vmin, effectively doing the work
of non-commutativity detection. On the other hand, let’s assume that initially
33 is the minimal element of the priority queue and consider two commutative
operations: T1 : insert(42) and T2 : min/33. In this case T1 will write vincr and
read vmin, while T2 will read vmin. An off-the-self STM won’t detect any conflicts
(two reads on vmin don’t conflict), correctly reflecting that these abstract ADT
operations commute.

This approach is not limited to priority queues. Let’s consider a second exam-
ple: a Counter that is capable of non-zero indication (NZI), as inspired by Ellen
et al. [10]. Like the priority queue, this is a standard ADT, but not a map/set-
like structure required by predication [4]. NZI provides three operations: inc(),

inc() dec()/p zero()/p

inc() true ¬p ¬p

dec()/q ¬q q = p q = p

zero()/q ¬q q = p true

dec()/p, zero()/p, where dec() returns a
flag indicating if the operation failed because
the NZI was already zero. The commutativ-
ity is to the right. Two inc() operations are
independent, as are two zero() operations.
Naturally, an inc() may alter the return value of zero() and dec() which fur-
ther complicates matters. In these cases, commutativity depends on the return
values of dec() and zero(). Once again, we cannot directly use this commuta-
tivity specification, because it is not in a format readily understood by STMs.
The following corresponding conflict abstraction can be:

Conflict Abstraction for Non-Zero Indicator (NZI)
CA STM vars: vzero, with CA operation rules:

inc() : if (zero()) wr(vzero) else rd(vzero)
dec()/q : if (willBeZero()) wr(vzero)else rd(vzero)
zero()/q : read(vzero)

For NZI, one can use a single STM memory location vzero to summarize the
abstract conflict. As we discuss in Sect. 3, one can construct a CA differently,
depending on the ADT and how finely grained one would like to characterize
conflict. Taking an example of T1 : inc() and T2 : zero(), it is easy to see that an
STM will detect conflict on vzero, depending on whether the NZI is zero. Notice
that we have used zero() which, itself is an operation. The ScalaProust system,
outlined in Sect. 5, is able to support CAs that, themselves contain other method
calls, by collecting transitive dependencies. Our conflict abstraction above also
used another helper method willBeZero(). This function depends not only the
NZI ADT’s current state, but also on potential future states, to characterize
its commutativity. In the Sect. 4 we will describe how we support such helper
functions to examine aspects of the state (and even predicted state) and enable
more precise conflict abstractions.

While this paper focuses on optimism, as a side node, conflict abstractions can
also be used for pessimistic conflict detection, by defining boosting-like abstract
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locks. Each CA variable can instead be a lock and the conflict abstraction indi-
cates whether the lock should be acquired in read or write mode.

2.2 Support for Shadow Speculation

While conflict abstractions provide a route to optimistic, commutativity-based
conflict detection, the question remains: is it safe to perform the ADT opera-
tions optimistically? The answer is, of course, no. Optimistic transactions may
abort and, to ensure opacity, their uncommitted effects must not be observed
by concurrent transactions. The next idea of this paper—called shadow spec-
ulation—allow one to take an off-the-shelf ADT implementation and perform
speculative updates on it, and even view return values. Our strategy makes
these speculative updates invisible to concurrent transactions and permits them
to be either discarded (on abort) or atomically applied (on commit). In Sect. 4
we describe how to achieve shadow speculation using a combination of wrappers,
operation replay logs, and one of two techniques to predict values: fast snapshots
and memoization.

2.3 The ScalaProust Transactional System

With conflict abstractions and shadow speculation, we now have a path to use
black-box ADTs in an optimistic setting, with black-box optimistic STMs. In
Sect. 5 we discuss ScalaProust, built on top of ScalaSTM [5].

In Sect. 6 we conclude with an evaluation, demonstrating that black-box ADT
implementations can be used on top of high-performance STMs with optimistic
read/write conflict detection. Moreover, we can obtain performance that is on
the order of transactional predication, yet permits a more expressive class of
objects (beyond map/set-like structures).

2.4 Related Work

In Sect. 1, we noted prior works including transactional boosting [17],
transactional predication [4], optimistic boosting [14], software transactional
objects [18], and transactional data structure libraries [30]. While these prior
works were sources of inspiration, each of them tackled slightly different prob-
lems. The concepts of conflict abstractions and shadow speculation described
here are novel, as well as our new ScalaProust transactional system.

Two aforementioned recent works aimed at developing data-structure imple-
mentations from the ground-up so that they are amenable to a transactional
setting. Herman et al. [18] build on top of a core infrastructure that provides
operations on version numbers and abstract tracking sets that can be used to
make object-specific decisions at commit time. Spiegelman et al. [30] describe
how to build data-structure libraries using traditional STM read/write tracking
primitives. In this way, the implementation can exploit these STM internals.
Unlike these prior works, our aim is to reuse existing linearizable objects and
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exploit the decades of hard-work and ingenuity that went into their implemen-
tations.

In recent years, it has been shown the commutativity can be verified [19]
or even synthesized [1] from ADT specifications. Early work on exploiting com-
mutativity for concurrency control includes Korth [20], Weihl [32], CRDTs [29],
and Galois [24]. Some false conflicts in STMs can be alleviated by other escape
mechanisms such as open nesting [25], elastic transactions [11], and transactional
collection classes [6]. Other mechanisms that exploit commutativity include auto-
matic semantic locking [13] and dynamic race detection [9].

3 Conflict Abstractions

The principal challenge for any type-specific transactional object implementation
is how to map type-specific notions of conflict into a low-level synchronization
framework. Like others [4,17,21,22], we identify type-specific synchronization
conflicts with a failure to commute: two operations commute if applying them in
either order yields the same return values and the same final object state. In this
section, we describe conflict abstractions which permit optimistic transactional
conflict detection, without exposing the internals of a black-box object. Our
approach symbolically represents aspects of the object’s abstract state as STM-
managed memory locations, kept separate from the ADT implementation itself.

We will use the following definitions. M are the set of object methods
o.m, o.n, etc. A method signature is denoted o.m(x̄) where x̄ represents the
vector of arguments to method m. A are method argument values. We denote
a vector of argument values as ᾱ where each element α is the value for the cor-
responding element in x̄ (as denoted earlier in this paper). An invocation is an
application of a method to a vector of arguments, o.m(ᾱ), o.n(β̄), etc. Σo is the
abstract state space for object o; we do not need to model the implementation
of o. We also assume that the object provides (or can be extended to provide)
various read-only methods that permit a transaction to query aspects of the
object’s abstract state, such as o.size(), etc. Finally, we write P : Σ → B to be
the type of a state predicate.

As discussed in Sect. 2.1, a conflict abstraction (CA) is a way of approxi-
mating commutativity by summarizing the effects of black-box object methods
using a series of memory operations. More precisely,

Definition 1 (Conflict abstraction). A conflict abstraction is a pair (X, f)
where X is a finite set of variables and f : M → A → Σ → (P ×X×{rd,wr})list.

Intuitively, a conflict abstraction first has a set of abstract locations X, represent-
ing STM-managed memory (or locks if used pessimistically). For a given object
method o.m(ᾱ) with arguments ᾱ and object state σo, the conflict abstraction
function f returns a list of (p, x,mode) tuples. Each tuple consists of a condition
p, a location x and a mode (read or write). For each tuple, if the condition p holds,
then the thread is instructed to access location x with the given read-vs-write
mode. Recall from Sect. 2.1 the priority queue example. We can now define the
conflict abstraction so that f(o.insert, [1], σpq) = {(true, vincr,wr), (1 < o.min(),
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vmin,wr), (1 ≥ o.min(), vmin, rd)}. That is, the transaction is instructed to write
to vincr and then read or write to vmin depending on whether 1 is less than
the current minimum value. (Note o.min() appears in the CA of o.insert(),
so o.insert()’s CA depends on o.min()’s.) Similarly, we let f(o.min, [], σpq) =
{(true, vmin, rd)}. In Sect. 5 we describe how these conflict abstractions are used
inside “wrappers” so that transactions perform these STM read/write operations
just before the corresponding operation and again before commit.

The impact of conflict abstractions is that we can leverage an STM to perform
transactional conflict detection, even though the ADT is treated as black-box.
In the above example, the STM will detect a read/write conflict on vmin and we
have enabled efficient STMs to do the work of conflict detection.

Conflict abstractions have several benefits over conflict strategies based on
abstract locks [17] or commutativity alone. The format of a conflict abstraction
is more algorithmic and less declarative than prior strategies. A programmer
will already have at least an intuitive understanding of the black-box object’s
abstract state, and it is easier to translate this into a series of STM locations and
read/write operations. This avoids the need to think about pair-wise reasoning
(as in commutativity or abstract locks) upfront: one instead simply considers
the effects of each operation independently. Later, one can verify the correctness
of their conflict abstraction through pair-wise reasoning (see discussion below).

Notice that a conflict abstraction can be more fine-grained or more coarse-
grained with respect to how it represents the object’s abstract state. A trivial
coarse-grained conflict abstraction would have cardinality 1 and use a single
STM location x, and map all read-oriented object methods to read x and map
all object mutator methods to write x. While simple and correct, the downside is
of course that concurrency may be lost. The choice of granularity (cardinality) is
often specific to the data structure and the workload. Regardless, it is important
that the conflict abstraction be correct:

Definition 2 (Correctness). A conflict abstraction (X, f) is correct provided
that for every m(ᾱ) and n(β̄) that do not commute, and every σo, there exists
some (p, v,m1) ∈ f(o.m, ᾱ, σo) and (q, v,m2) ∈ f(o.n, β̄, σo) such that p(σo) and
q(σo) and either m1 = wr or m2 = wr.

A CA is correct if, for any pair of non-commutative method invocations, there
will be some location with either a read/write or write/write conflict.

Verifying Conflict Abstractions. Existing software verification tools can verify
the correctness of a conflict abstraction. Specifically, the question of correctness
can be reduced to satisfiability, fit for reasoning with SAT/SMT tools. We do not
need the ADT’s implementation; instead, it is sufficient to work with a model
(or sequential implementation) of the abstract data type. As done previously [1],
it is easy to model a variety of ADTs in SMT.

Once we have modeled object methods m and n, we further model con-
flict abstractions. SMT reasoning then proceeds by asserting the following series
of constraints: (1) Method m performs its conflict abstraction reads/writes.
(2) Method m performs its data-structure operation. (3) Method n performs
its conflict abstraction reads/writes. (4) No read/write or write/write conflict



322 T. Dickerson et al.

occurs. (5) Method n performs its data-structure operation. We now need to
ensure that the resulting state is the same as it would have been if the operations
executed in the opposite order. Using different variable names for the interme-
diate states, we then assert the other order (n before m). Finally, we assert that
the results (return values and final state) were different and check whether this
is satisfiable. If it is not satisfiable, then the conflict abstraction is correct.
Other ADTs. To highlight the generality of our approach, we now describe
conflict abstractions for some other ADTs.

– Stack. Since stack operations are typically focused only on the top element,
most operations conflict. A suitable conflict abstraction can consist of a single
variable v, where both push and pop write to v. If the stack supports a peek
operation (i.e. inspecting the top element without removing it), then peek
can simply perform a read of v, enabling concurrent peek operations. A more
sophisticated conflict abstraction could take into account the values on the
stack.

– Sets and Map. A conflict abstraction for a Set or Map can use a strategy
similar to boosting [17]. Since the number of elements/keys could be large,
one may not want a CA that separately tracks each element or key. Instead,
some smaller number N of CA locations can be used and, when an element e
is accessed, the CA can instead read or write location ve%N . The choice of N
can depend on the workload. Naturally, put(k,v), for example, would write
to location vk%N , while get(k) would read.

– Directed Graph. Consider a directed graph with methods addNode(nid),
addEdge(nid,nid’), and getNext(nid)/nids. As with Sets and Hashta-
bles, the number of nodes n may be large so we may want to only have
some N << n CA locations. We can thus define a conflict abstraction (X, f)
where X = {v0, . . . , vN} and

f(addNode, [nid], σ) = {(true, vnid%N ,wr)}
f(getNext, [nid], σ) = {(true, vnid%N , rd)}
f(addEdge, [nid,nid’], σ) = {(true, vnid%N ,wr)}

The idea is to approximate conflict by focusing on the nodes. This node-based
notion of conflict is one approach but one could imagine an alternative CA
that uses edges as a basis for conflict. Each strategy is an approximation
of conflict and the choice of strategy may depend on the specific semantics
of the graph, methods, and/or workload. Indeed, one could even use edges
and nodes as a basis for a CA, if a very fine-grained notion of conflict is
needed. Notice that this CA places no restrictions on how the directed graph
is actually implemented.

4 Shadow Speculation

Transactional Boosting [17] performed ADT operations eagerly and used inverse
operations to apply an operation undo log to cleanup an aborted transaction.
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Unfortunately, this approach was coupled with pessimistic conflict resolution,
where execution blocks when a conflict is detected. In an optimistic setting,
transactions execute as if they will not encounter conflicts, and abort/retry if
conflicts are detected. The key challenge is that a transaction must be able to
observe the results of its own speculative updates to shared objects, without
those updates becoming visible to other transactions until a successful commit
occurs.

This is where shadow speculation helps. Shadow speculation is a technique
for transactional objects, where updates are made on a separate local copy of
a data-structure and then later merged with the master copy at commit time,
similar to version control. This is conceptually similar to the thread-local copies
used by lock-free and wait-free universal constructions [15,16]; however, con-
flict abstractions allow our approach to support finer grained concurrency, and
we describe several techniques which allow our shadow copies to incur a lower
memory overhead.
Replay Logs. We begin by creating wrappers around a black-box ADT imple-
mentation so that we can replace the default behavior of a method invocation
(i.e. immediately applying it to the object) with a more speculative strategy.

To support commit, we maintain an operation replay log, tracking the method
names and arguments of all operations performed by a transaction rather than
applying operations directly on the object (as seen in Boosting). Then, at com-
mit, we can use a single data-structure lock to atomically replay the log of
operations onto the shared object.

Unfortunately, this is insufficient for most applications as once an active
transaction enqueues an operation to the log, it may need to know the return
value in order to continue.
Speculative Wrapper. Conceptually, the natural next step is for active trans-
actions to be able to operate on their own local or shadow copy of the shared
data-structure. This allows those transactions to perform operations that are
invisible to concurrent transactions, and in particular, it also allows transac-
tions to view the return values of these uncommitted operations. Our shadow
copies are implemented inside the wrapper and designed so that when client
code (speculatively) calls ADT operations, it predicts the result of each oper-
ation, intuitively reaching forward in time to see what return value would be
generated if the transaction were to commit. The predicted values for a trans-
action T is calculated based on the committed state of the (black-box) object,
combined with the uncommitted operations performed thus far by T . When a
transaction aborts, a wrapper of this variety has no further work, because the
underlying data structure has not been altered, and the shadow copy can be
discarded. On the other hand, when a transaction commits, the wrapper must
use the operation replay log to ensure that every speculative operation is finally
applied to the underlying object.

While shadow copies are conceptually simple, they are not practical if imple-
mented näıvely. Therefore, we must consider how to efficiently implement shadow
copies for a variety of data structures.
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Efficient Shadow Copies. Here we describe two approaches for efficient
shadow copies.

1. Memoization. For some data-structures, the results of an operation (even an
update) can be computed purely from the initial state of the wrapped data-
structure, or from the arguments of other pending operations. In these cases,
we may implement shadow copies by memoization. Repeated operations to
the same key can be cached in a transaction-local table, and queried, to deter-
mine the results of the next operation on that key. If the key is not present,
it’s state can be determined by reading the unmodified backing data struc-
ture. Then, when the transaction commits, we can replay a single synthetic
operation for each key in the table, to capture its final state.

Memoization works particularly well for ADTs such as maps and sets:
the result of m.set(a,x) followed by m.get(a) (a read-only operation) is x.
We implemented this approach in our LazyHashMap, using Java’s Concurren-
tHashMap as the underlying data-structure.

2. Snapshots. For many data structures, memoization will be insufficient.
A more general approach uses the fast-snapshot semantics provided by many
concurrent data structures [3,26–28] to support shadow speculation. Such
snapshots typically employ a lazy copy-on-write strategy to allow snapshots
to initially share their internal structure with the original, and only copy as
much data as is needed to perform each subsequent modification.

Using snapshots for our shadow copies, the first time a transaction attempts
to perform an update, a snapshot is made, and all further updates are per-
formed on that snapshot. Whenever a transaction commits, any changes to
the snapshot are replayed onto the shared copy.

Snapshot implementations of shadow copies are also helpful in providing
the “peek” methods such as min (priority queue) and zero/willBeZero (NZI)
discussed above. For example, shadow copies let us determine ahead of time
if the operation in question will change the result of zero() before and after
the invocation.

We implemented two data-structures this way: LazyTrieMap (based on
Scala’a TrieMap) and LazyPriorityQueue (based on a concurrent Braun heap
[7]).

5 The ScalaProust Transactional System

In this section we describe our implementation ScalaProust, an open source
transactional system, available at the following URL:

www.github.com/ScalaProust/ScalaProust/

Our implementation includes support for both pessimistic operations on
black-box highly concurrent ADTs (similar to boosting) as well as optimistic
operations, as discussed in this paper. In this way the tool generalizes both
boosting and predication. In this paper, however, we focus on how ScalaProust

www.github.com/ScalaProust/ScalaProust/
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is used for optimistic operations, based on conflict abstractions (Sect. 3) and
shadow speculation (Sect. 4).

We first define a conflict abstraction (X, f) for the ADT, as discussed in
Sect. 3. Next, we create a ScalaProust wrapper and decide whether the wrapper
will manage shadow speculation via snapshots or via a memoization table, as
discussed in Sect. 4. The wrapper can then be constructed, as defined to the right,
to invoke each supported operation. proust apply must execute in the context of
a transaction T in order to register onCommit events.

1 let proust apply(T, o.m, ᾱ) =
2 let locs = f(o.m, ᾱ, σo) in
3 foreach (fun (p, v, mode) →
4 if p(ᾱ, σo) then match mode with
5 | rd → stm read(v)
6 | wr → stm write(v)
7 ) locs
8 let rv = Predict(o.m,ᾱ) in
9 T .onCommit(fun () → { o.m(ᾱ);

10 foreach (fun ( ,v, ) → stm read(v) )
11 locs });
12 return rv

The wrapper proceeds as fol-
lows. First, the conflict abstraction
f is consulted for the given method
m and arguments ᾱ, returning the
list of (p, v,mode) tuples (Line 2).
Next, the wrapper follows the
instructions of each tuple of the
conflict abstraction: if p(ᾱ, σo)
holds, then location v is either read
or written (Line 3). The shadow
speculation facility is used next
(Line 8) to speculatively apply the
method and obtain a return value rv. Finally, the wrapper registers an onCommit
handler (Line 9) which will invoke the method on the shared object and once
again read all of the conflict abstraction memory locations to guard against
opacity violations.

ScalaProust includes a library API implementing conflict abstractions, as
well as replay logs for both shadow speculation techniques. ScalaProust also
provides a number of wrapped data structures out of the box, including both
transactional maps and transactional priority queues, which can be used as-is,
or serve as example code for developers to create their own wrappers.

6 Evaluation

Our goal in this section is to evaluate whether our optimistic treatment of black-
box ADTs is efficient. Notably, our evaluation includes experiments to determine
whether ScalaProust is competitive with the state-of-the-art specialized opti-
mistic treatment of set/map-like structures found in predication [4]. Note that,
for lack of space, we summarize the experimental results here. In the extended
version of this paper [8], we have included additional experimental results and a
discussion of how ScalaProust can be used pessimistically.

We focus our evaluation on time-efficiency rather than memory-efficiency
for several reasons. First, it is difficult to reproducibly measure memory usage
on the JVM due to its weak guarantees concerning garbage collection. Second,
the memory usage is likely to be dependent on the specific implementation of
the shadow copy, as well as the workload. However, we expect that for tree-
like data-structures which exploit structural sharing for fast snapshots, the first
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Fig. 1. Time to process 106 operations on concurrent maps (smaller is better), varying
%-updates and #ops/txn. For each chart, the x-axis is the number of threads from 0 to
32 and the y-axis is the average time in milliseconds from 0 to 250. The (NS) variants
disabled size().

Fraction of operations that are writes (u)
15.052.0

O
ps

pe
r
tr
an

sa
ct
io
n
(o
)

25
6

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Traditional
Predication

Proust[Lazy/Opt]-CHashMap (NS)
Proust[Lazy/Opt]-HashMap (NS)

5 10 15 20 25 30
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providing a substantial decrease in execution time. Smaller is better.

modification will introduce O(log(n)) memory overhead, and gradually saturate
towards O(n).

We classify data structure wrappers based on conflict abstractions along two
axes: their choice of synchronization strategy (optimistic or pessimistic), and
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their choice of update strategy (lazy or eager). Optimistic synchronization has
been the primary focus of this work; however, pessimistic synchronization has
been used in transactional boosting [17]. Similarly, lazy updates based on shadow
copies and replay logs have been the primary focus this work; however, the con-
flict abstraction methodology can also be applied to eager updates based on
inverses and undo logs à la boosting. We present results for three of the four
possible quadrants: lazy/optimistic, eager/optimistic, and eager/pessimistic.
Lazy/pessimistic wrappers are possible, but it seems unlikely that the extra
memory overhead for lazy updates will pay off when pessimistic synchronization
already ensures exclusive access to the relevant portions of the shared state.
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Maps. We benchmarked several ScalaProust map wrappers (including vari-
ants with and without a size() operation) against both predication and a tra-
ditional pure-STM hash map, with a setup similar to that used by Bronson, et al.
for predication [4]. We ran our experiments on an Amazon EC2 m4.10xlarge
instance,3 which has 40 vCPUs and 160 GB of RAM. For each experiment, we
performed 106 random operations on a shared map, split across t threads, with
o operations per transaction. A fraction u of the operations were writes (evenly
split between put and remove), and the remaining (1 − u) were get operations.
We varied t, o, and u to achieve different levels of contention4. For each configura-
tion, we warmed up the JVM for 10 executions, then timed each of the following
10 executions, garbage collecting in between to reduce jitter, and reported the
mean and standard deviation.
Notes on Experimental Setup. First, our implementation was limited in its
communication with the CCSTM contention manager. ScalaProust can com-
municate conflicts with CCSTM but currently does not provide the reason for
the conflict. Consequently, CCSTM is limited in its ability to intelligently sched-
ule retries. In particular, we found that under the artificially high contention
seen in these experiments, longer transaction times could lead to live-lock, as
the STM lacked required information about the instigating (non-STM) memory
accesses. For this reason, we only show the pessimistic results in the initial o = 1
experiments. Second, though the Eager/Optimistic configuration does not sat-
isfy opacity under the CCSTM backend for ScalaSTM, we benchmarked it any-
way, and did not observe any instances where this violated correctness (notably
our benchmark makes no explicit control flow decisions based on the results of
map accesses, and ScalaSTM performs an abort and retry if it ever observes
an unchecked exception). It seems likely that a performance penalty was paid
for late detection of inconsistent memory accesses, and we believe this speaks
well to the potential performance of Eager/Optimistic wrappers on STMs where
they satisfy opacity. Third, substantial performance differences between the stan-
dard and (NS) wrapper variants illustrate the previously discussed impedance
mismatch between “pure” writes in a conflict abstraction and “impure” writes
provided by STMs. We note that disabling the size operation for the (NS)
variants did not require modifications to the underlying data structure, merely
that we control which operations of the underlying data structure are exposed
through the wrapper.
Results. The experimental results depicted in Fig. 1 display the effects of several
competing trends. Intuitively, ScalaProust’s performance scales much better
than the traditional STM implementation as contention increases, due to vary-
ing t and u (though we are consistently outperformed by the highly engineered

3 https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-
reduction-on-m3-c4/.

4 We did not vary key range as in the predication paper, as garbage collection was not
a focus of this implementation.

https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-reduction-on-m3-c4/
https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-reduction-on-m3-c4/
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predication implementation5); however, increasing values of o have a negative
influence on the relative performance of the ScalaProust wrappers. Intuitively,
this is to be expected, as our log sizes (either to undo or replay) are propor-
tional to the number of updates performed, whereas predication and traditional
implementations replay with time proportional to the number of unique mem-
ory locations updated, and as o increases, so does the probability that multiple
writes will alter the same location. An optimization for memoization-, rather
than snapshot-, based shadow speculation is to apply only the final state of each
abstract state element; resulting in Fig. 2. The overhead of the wrapper, relative
to the base data structure can be seen in Fig. 4.
Priority Queues. We used a nearly identical experimental setup to compare
the runtimes of two priority queues based on Braun heaps (one traditional STM
implementation and one wrapper around the snapshot-able concurrent imple-
mentation referenced earlier [7]). The writes were split evenly between insert
and removeMin operations.

The experimental results in Fig. 3 show that across a variety of conditions, the
queue was competitive with, or outperformed, the traditional implementation.
In general, run times were substantially longer than for the map throughput test,
as the min-element is subject to heavy contention; however, unlike for map, the
effects of additional operations per transaction were less pronounced, as most
contention is discovered early in the transaction. The overhead of the wrapper,
relative to the base data structure is shown in Fig. 4.

7 Conclusions and Future Work

We introduced conflict abstractions and shadow speculation, permitting us to
use existing highly-concurrent objects in an optimistic transactional manner,
separately using off-the-shelf STMs for performing commutativity-based conflict
detection. Benchmarks show we outperform, or are competitive with fine-tuned
STM techniques (i.e. predication), while we are able to leverage existing ADT
libraries and avoid implementing them from scratch. While we are outperformed
by predication on the map throughput tests, we believe that our utility as a tool
for wrapping arbitrary data structures will encourage use beyond sets and maps.

One important direction forward is to integrate pessimistic and optimistic
treatment of black-box ADTs with standard STM memory operations. This
brings with it some opacity challenges. To further improve performance, one
could also explore an extension of our log-combining optimization from mem-
oized replays to snapshot replays and undo logs. Alternatively, shadow copies
based on confluently persistent data structures could even be merged without an
explicit log [12]. In another direction, the use of conflict abstractions to describe
commutativity and synchronization reveals a use-case for STMs to support “pure
5 Predication as a technique is specialized to maps and sets, in essence embedding their

conflict abstraction as the member elements of the backing collection and allowing
frequent updates to the same element to avoid updating the concrete state of the
backing data structure.
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writes”, allowing them to match the expressivity of handcrafted locks. Finally,
automatic verification techniques (such as those mentioned in Sect. 3) might be
used as a building-block for an automatic synthesis technique, perhaps along the
lines of recent techniques for synthesizing commutativity conditions [1].
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Abstract. Many systems use ad hoc collections of files and directories to
store persistent data. For consumers of this data, the process of properly
parsing, using, and updating these filestores using conventional APIs is
cumbersome and error-prone. Making matters worse, most filestores are
too big to fit in memory, so applications must process the data incremen-
tally while managing concurrent accesses by multiple users. This paper
presents Transactional Forest (TxForest), which builds on earlier work on
Forest to provide a simpler, more powerful API for managing filestores,
including a mechanism for managing concurrent accesses using serializ-
able transactions. Under the hood, TxForest implements an optimistic
concurrency control scheme using Huet’s zippers to track the data asso-
ciated with filestores. We formalize TxForest in a core calculus, develop
a proof of serializability, and describe our OCaml prototype, which we
have used to build several practical applications.

Keywords: Data description languages · File systems · Ad hoc data ·
Concurrency · Transactions · Zippers

1 Introduction

Modern database systems offer numerous benefits to programmers, including rich
query languages and impressive performance. However, programmers in many
areas including finance, telecommunications, and the sciences, rely on ad hoc
data formats to store persistent data—e.g., flat files organized into structured
directories. This approach avoids some of the initial costs of using a database
such as writing schemas, creating user accounts, and importing data, but it also
means that programmers must build custom tools for correctly processing the
data—a cumbersome and error-prone task.

In many applications, multiple users must read and write the data stored
on the file system concurrently, and even in settings where there is only a sin-
gle user, parallelism can often be used to improve performance. For example,
many instructors in large computer science courses rely on filestores to manage
student data, encoding assignments, rosters, and grades as ad hoc collections of
directories, CSVs, and ASCII files respectively. During grading, instructors use
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various scripts to manipulate the data—e.g., computing statistics, normalizing
raw scores, and uploading grades to the registrar. However, these scripts are
written against low-level file system APIs and rarely handle multiple concurrent
users. This can easily lead to incorrect results or even data corruption in courses
that use large numbers of TAs to help with grading.

The PADS/Forest family of languages offers a promising approach for man-
aging ad hoc data. In these languages, the programmer specifies the structure of
an ad hoc data format using a simple, declarative specification, and the compiler
generates an in-memory representation for the data, load and store functions for
mapping between in-memory and on-disk representations, as well as tools for
analyzing, transforming, and visualizing the data. PADS focused on ad hoc data
stored in individual files [6], while Forest handles ad hoc data in filestores—
i.e., structured collections of files, directories, and links [5]. Unfortunately, the
languages that have been proposed to date lack support for concurrency.

To address this challenge, this paper proposes Transactional Forest (TxFor-
est), a declarative domain-specific language for correctly processing ad hoc data
in the presence of concurrency. Like its predecessors, TxForest uses a type-based
abstraction to specify the structure of the data and its invariants. From a TxFor-
est description, the compiler generates a typed representation of the data as
well as a high-level programming interface that abstracts away direct interac-
tions with the file system and provides operations for automatically loading and
storing data, while gracefully handling errors. TxForest also offers serializable
transactions to help implement concurrent applications.

The central abstraction that facilitates TxForest’s serializable semantics, as
well as several other desired properties, is based on Huet’s zippers [10]. Rather
than representing a filestore in terms of the root node and its children, a zipper
encodes the current node, the path traversed to get there, and the nodes encoun-
tered along the way. Importantly, local changes to the current node as well as
common navigation operations involving adjacent nodes can be implemented in
constant time. Additionally, by replacing the current node with a new value and
then ‘zipping’ the tree back up to the root, modifications can be implemented
in a purely functional way.

As others have also observed [11], zippers are a natural abstraction for file-
stores, for several reasons: (1) the concept of the working path is cleanly captured
by the current node; (2) most operations are applied close to the current working
path; (3) the zipper naturally captures incrementality by loading data as it is
encountered in the zipper traversal; and (4) a traversal (along with annotations
about possible modification) provides all of the information necessary to provide
rich semantics, such as copy-on-write, as well as a simple optimistic concurrency
control scheme that guarantees serializability.

In this paper, we first formalize the syntax and semantics of TxForest assum-
ing a single thread of execution, and we establish various correctness properties,
including roundtripping laws in the style of lenses [8]. Next, we extend the seman-
tics to handle multiple concurrent threads, and introduce a transaction manager
that implements a standard optimistic concurrency scheme. We prove that all



334 J. DiLorenzo et al.

Fig. 1. Example: file system fragment used to store course data.

transactions that sucessfully commit are serializable with respect to one another.
Finally, we present a prototype implementation of TxForest as an embedded lan-
guage in OCaml, illustrating the feasibility of the design, and use it to implement
several realistic applications.

Overall, the contributions of this paper are as follows:

– We present Transactional Forest, a declarative domain-specific language for
processing ad hoc data in concurrent settings (Sects. 3 and 4).

– We describe a prototype implementation of Transactional Forest as an embed-
ded domain-specific language in OCaml (Sect. 5).

– We prove that our design satisfies several formal properties including round-
tripping laws and serializability.

The rest of this paper is structured as follows: Sect. 2 introduces a simple
example to motivate TxForest. Section 3 presents the syntax and single-threaded
semantics of TxForest. Section 4 adds the multi-threaded semantics and the seri-
alizability theorem. Section 5 discusses the OCaml implementation of TxForest
and an application. We review related work in Sect. 6 and conclude in Sect. 7.
The proofs of formal properties are in the technical report [2].

2 Example: Course Management System

This section introduces an example of an idealized course management system
to motivate the design of TxForest. Figure 1 shows a fragment of a filestore used
in tracking student grades. The top-level directory (grades) contains a set of
sub-directories, one for each homework assignment (hw1–hw5). Each assignment
directory has a file for each student containing their grade on the assignment
(e.g., aaa17), as well as a special file (max) containing the maximum score for
that homework. Although this structure is simple, it closely resembles filestores
that have actually been used to keep track of grades at several universities.

There are various operations that one might want to perform on this filestore,
but to illustrate the challenges related to concurrency, we will focus on normal-
ization. Normalization might be used to ensure that the grades for a particular
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homework fall between some specified limits or match a given distribution. We
assume an idempotent operation f that takes assignment statistics and the cur-
rent score as arguments and computes a normalized score.

OCaml Implementation. To start, let us see how we might write a renormaliza-
tion procedure for this filestore in a general-purpose language—e.g., OCaml. For
simplicity, the code relies on helper functions, which are explained below.

let renormalize f hw gmin =

let hwDir = sprintf "grades/hw%d" hw in

let gmax = get_score (hwDir ^/ "max") in

let studentFiles = get_students hwDir in

let (cmin, cmax) = get_min_and_max studentFiles in

map_scores (f cmin cmax gmin gmax) studentFiles

The renormalize function takes as input a function to normalize individual
scores (f), the identifier of a homework assignment (hw), and the minimum
score to use when scaling scores (gmin). It retrieves the value from the max file,
using the get score helper, which reads the file and parses it into a score. Next,
it retrieves the paths to every student file (studentFiles) and computes the
minimum (cmin) and maximum (cmax) score over all students using a helper
function (get min and max), which again accesses data in the underlying file
system. Finally, it maps the function f over each score (using the aggregate
statistics), and writes the new score back to the file, again using a helper function
to perform the necessary iteration (map scores) and file writes.

Although this procedure is simple, there are several potential pitfalls that
could arise because of its use of low-level file system APIs. For example, one of the
files or directories might not exist or there might be extra files in the file system.
The structure of the filestore might be malformed, or might change over time.
Any of these mistakes could lead to run-time errors, or worse they might silently
succeed but produce incorrect results. This implementation also suffers from a
more insiduous set of problems related to concurrency. Consider what happens
if multiple members of the course staff execute the renormalization procedure
concurrently. If the stage that computes the minimum and maximum scores is
interleaved with the stage that invokes f and writes the normalized values back
to the file system, we could easily be left with a mangled filestore and incorrect
results—something that would likely be difficult to detect, diagnose, and fix.

Classic Forest Implementation. Next, let us consider an implementation in For-
est [5]. We start by specifying the structure of the filestore as follows:

grades = [h :: hws | h <- matches RE "hw[0-9]+"]

students = file

hws = directory {

max is "max" :: file;

students is [s :: students | s <- matches RE "[a-z]+[0-9]+"];

}
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The grades specification describes the structure of the top-level directory: a list
of homework directories, each containing a file named max and a list of students
(each represented as a file1).

Given this specification, the Forest compiler generates an in-memory repre-
sentation for the data, as well as associated functions for loading data from and
storing data to the file system:

type students_rep = string

type hws_rep = { max : string; students : students_rep list}

type grades_rep = hws_rep list

type grades_md = hws_md list md

val grades_load : filepath -> grades_rep * grades_md

val grades_store : filepath -> grades_rep * grades_md -> unit

The md types store metadata including permissions and information about
whether errors were encountered during loading. The load and store functions
map between the on-disk and in-memory representations, and automatically
check for errors and inconsistencies in the data. Using these functions, we can
write the renormalize procedure as follows:

let renormalize f hw gmin : unit =

let (gr,gmd) = grades_load (baseDir ^/ "grades") in

if gmd.num_errors = 0 then

let (hwr,hwmd) = find (sprintf "hw%d" hw) (gr,gmd) in

let gmax = get_score hwr.max in

let (cmin, cmax) = get_min_max hwr in

map_scores (f cmin cmax gmin gmax) hwr hwmd

else

failwith (String.concat "\n" gmd.error_msg)

This code is similar to the OCaml implementation, but there are a few key
differences. It first loads the entire grades directory and checks that it has no
errors. This makes the auxilliary functions, like get score (which now just turns
a string into an integer) and set score simpler and more robust, since they no
longer need to worry about such issues. It then locates the representation and
metadata for the assignment, computes aggregate statistics, and invokes f to
renormalize and update the scores. The get min max and map scores helpers
are similar to the direct versions discussed previously.

The Forest implementation offers several important benefits over the OCaml
code: (1) the structure of the filestore is explicit in the specification and the
code; (2) the use of types makes certain programming mistakes impossible, such
as attempting to read a file at a missing path; and (3) any part of the filestore
not conforming to the specification is automatically detected.
1 By integrating with PADS [6], we could go a step further and specify the contents

of the file as well—i.e. a single line containing an integer.
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However, the Forest code still suffers from the same concurrency issues dis-
cussed above. Further, it is unnecessary (and often infeasible) to load the entire
filestore into memory—e.g., suppose we only need to manipulate data for a single
homework or an individual student.

Transactional Forest Implementation. TxForest offers the same advantages as
Forest, while dealing with issues related to concurrency and incrementality. The
only cost is a small shift in programming style—i.e., navigating using a zipper.

The TxForest specification for our running example is identical to the Forest
version. However, this surface-level specification is then translated to a core lan-
guage (Sect. 3) that uses Huet’s zipper internally and also provides transactional
guarantees. The TxForest code for the renormalize function is different than
the Forest version. Here is one possible implementation:

let renormalize f hw gmin zipper : (unit,string) Result.t =

let%bind hwZ = goto_name_p (sprintf "hw%d" hw) zipper in

let%bind gmax = goto_name_p "max" hwZ >>= get_score in

let%bind studentZ = goto "students" hwZ in

let%bind (cmin, cmax) = get_min_and_max studentZ in

map_scores (f cmin cmax gmin gmax) studentZ

Note that the type of the function has changed so that it takes a zipper as an
argument and returns a value in the result monad:

type (’a,’b) Result.t = Ok of ’a | Error of ’b

Intuitively, this monad tracks the same sorts of errors seen in the Forest code—
e.g. from malformed filestores, but not from concurrency issues.

The goto name p function traverses the zipper—e.g., goto name p "hw1"
zipper navigates to the comprehension node named hw1 and then down to
the corresponding file system path, ending up at a hws node. The bind operator
(>>=) threads the resulting zipper through the monad. The let%bind x = e1
in e2 syntax is shorthand for e1 >>= fun x -> e2 . The goto function is simi-
lar to goto name p, but is limited to directories and does not walk down the last
path operator. Finally, the helper functions, map scores and get min max, use
TxForest library functions to map and fold over the zipper respectively.

To use the renormalize function, users need some way to construct a zipper.
The TxForest library provides functions called run txn and loop txn:

type txError = TxError | OpError of string

val run_txn : spec -> path -> (zipper -> (’a,string) Result.t) ->

(unit -> (’a,txError) Result.t)

val loop_txn : spec -> path -> (zipper -> (’a,string) Result.t) ->

(unit -> (’a,string) Result.t)

which might be used as follows:
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match run_txn grades_spec "grades" (renormalize 1 60) () with

| Error TxError -> printf "Transaction aborted due to conflict"

| Error(OpError err) -> printf "Transaction aborted with error: %s" err

| Ok _ -> printf "Renormalization successful"

The run txn function takes a specification, an initial path, and a function
from zippers to results and produces a thunk. When the thunk is forced, it con-
structs a zipper focused on the given path and runs the function. If this execution
results in an error, the outer computation produces an OpError. Otherwise, it
attempts to commit the modifications produced during the computation. If the
commit succeeds, it returns the result of the function, otherwise it discards the
results and returns a TxError. The loop txn function is similar, but retries the
transaction until there is no conflict or the input function produces an error.

TxForest guarantees that transactions will be serializable with respect to
other transactions—i.e., the final file system will be equivalent to one produced
by executing the committed transactions in some serial order. See Sect. 4 for the
formal concurrent semantics and the serializability theorem. In our example, this
means that no errors can occur due to running multiple renormalization transac-
tions simultaneously. Furthermore, TxForest automatically provides incremen-
tality by only loading the data needed to traverse the zipper—an important
property in larger filestores. Incremental Forest [3] provides a similar facility,
but requires explicit user annotations. Overall, TxForest provides incremental
support for filestore applications in the presence of concurrency. The next two
sections present the language in detail, develop an operational model, and estab-
lish its main formal properties.

3 Transactional Forest

This section presents TxForest in terms of a core calculus. We discuss the goals
and high level design decisions for the language before formalizing the syntax and
semantics as well as several properties including round-tripping laws, equational
identities, and consistency relations. Finally, we give a taste of the core calculus
by using it to encode functions that would be useful for the course management
example above. This section deals primarily with the single-threaded semantics,
while the next section presents a concurrent model.

The main goals of this language are to allow practical processing of filestores
for non-expert users. This leads to several requirements: (1) an intuitive way
of specifying filestores [5]; (2) automatic, incremental processing, as filestores
are typically large; (3) automatic concurrency control, as concurrency is both
common and difficult to get right; and (4) transparency, as filestore interaction
can be expensive and should therefore be explicit.

The zipper abstraction that our language is based on helps us achieve our
second and fourth requirement. Both of these requirements and concurrency are
then further addressed by our locality-centered language design: The semantics
of every command and expression only considers the locale around the focus
node of the zipper. This means that every command can restrict its attention to
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a small part of the filestore, which, along with the fact that data can be loaded
as-required while traversing the zipper, gives us incrementality. We believe that
the combination of locality and explicit zipper traversal commands also gives us
transparency. In particular, the footprint of any command is largely predictable
based on the filestore specification and current state. Predictability also simplifies
tasks such as logging reads and writes, which is useful for concurrency control.

3.1 Syntax

Fig. 2. Preliminaries

In our formal model, we view a file system as a map from paths to file system
contents, which are either directories (a set of their children’s names) or files
(strings). For a path and file system, p and fs, we define p ∈ fs � p ∈ dom(fs).
See Fig. 2 for the metavariable conventions used in our formalization. We assume
that all file systems are well formed—i.e., that they encode a tree, where each
node is either a directory or a file with no children:

Definition 1 (Well-Formedness). A file system fs is well-formed iff:

1. fs(/) = Dir (where / is the root node)
2. p/u ∈ fs ⇐⇒ fs(p) = Dir {u; . . . }
In this definition, the notation indicates an irrelevant hole which may be filled
by any well-typed term. We use this convention throughout the paper.

In the previous section, we gave a flavor of the specifications one might write
in TxForest. We wrote these specifications in our surface language, which com-
piles down to a core calculus, whose syntax is given in Fig. 3. The core specifica-
tions are described fully below, but first, we will provide the translation of the
hws specification from Sect. 2 to provide an intuition:

directory {

max is "max" :: file;

students is [s :: students | s <- matches RE "[a-z]+[0-9]+"]

}

becomes

〈max : ”max” :: File, 〈dir : Dir , [s :: students | s ∈ e]〉〉
where e = filter (Run Fetch_Dir dir) "[a-z]+[0-9]+"
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Fig. 3. Main syntax

Directories become dependent pairs, allowing earlier parts of directories to
be referenced by later parts. Comprehensions, which use regular expressions to
query the file system, also turn into dependent pairs: The first component of the
pair is a Dir . The second component fetches from and filters the first component
using a regular expression. Section 3.4 gives examples of functions written against
this specification using the command language described below. We proceed by
describing the syntax shown in Fig. 3 in-depth.

Formally, a TxForest specification s describes the shape and contents of a
filestore, which is a structured subtree of a file system. Such specifications are
almost identical to those in Classic Forest [5]. To a first approximation, they can
be understood as follows:

– Files and Directories. The File and Dir specifications describe filestores with
a file and directory, respectively, at the current path.

– Paths. The e :: s specification describes a filestore modeled by s at the
extension of the current path denoted by e.

– Dependent Pairs. The 〈x : s1, s2〉 specification describes a filestore modeled
by both s1 and s2. Additionally, s2 may use the variable x to refer to the
portion of the filestore matched by s1.

– Comprehensions. The [s | x ∈ e] specification describes a filestore modeled
by s when x is bound to any element in the set e.
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– Options. The s? specification describes a filestore that is either modeled by s
or where the current path does not exist.

– Predicates. The P(e) specification describes a filestore where the boolean e
is true. This construct is typically used with dependent pairs.

Most specifications can be thought of as trees with as many children as they
have sub-specifications. Comprehensions are the exception; we think of them as
having as many children as there are elements in the set e.

To enable incremental and transactional manipulation of data contained in
filestores, TxForest uses a zipper which is constructed from a specification. The
zipper traverses the specification tree while keeping track of an environment
that binds variables from dependent pairs and comprehensions. The zipper can
be thought of as representing a tree along with the particular node of the tree
that is in focus. We use the symbol current to represents the focus node, while
left and right represent its siblings to the left and right respectively. The
symbol ancestor tracks the focus node’s ancestors by containing the zipper we
came from before moving down to this depth of the tree. Key principles to keep
in mind regarding zippers are that (1) the tree can be unfolded as it is traversed
and (2) operations near the current node are fast, thus optimizing for locality.

To express navigation on the zipper, we use standard imperative (IMP) com-
mands, c, as well as special-purpose Forest Commands, fc, which are divided
into Forest Navigations, fn, and Forest Updates, fu. Navigation commands are
those that traverse the zipper, while Update commands modify the file system.
Expressions are mostly standard and pure: they never modify the file system
and only Forest Expressions query it. Forest Commands and Expressions will
be described in greater detail in Sect. 3.2. To ensure serializability among mul-
tiple TxForest threads executing concurrently, we will maintain a log. An entry
Read T p indicates that we have read T at path p while Write file T1 T2 p
(respectively Write dir T1 T2 p) indicates that we have written the file (respec-
tively directory) T2 to path p, where T1 was before.

3.2 Semantics

Having defined the syntax, we now present the denotational semantics of TxFor-
est. The semantics of IMP commands are standard and thus elided. We start by
defining the semantics of a program:

�(p, s, c)�g fs � project fs (�c�c ({}, p, {}, �{}, s�) fs)

The denotation of a TxForest program is a function on file systems. We use
the specification s to construct a new zipper, seen in the figure using our zipper
notation defined after this paragraph. Then we execute the command c using the
denotation of commands �·�c . The denotation function takes a context, which we
construct using the zipper and the path p, and a file system fs as arguments. The
denotation function then produces a new context and file system, from which
we project out the file system with project fs.
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Definition 2 (Zipper Notation). We define notation for constructing and
deconstructing zippers. To construct a zipper we write

left ↼ �current�z ⇀ right � {ancestor = Some(z ); left; current; right},

where any of ancestor, left, and right can be omitted to denote a zipper with
ancestor = None, left = [], and right = [] respectively. For example:

�current� � {ancestor = None; left = []; current; right = []}

Likewise, to destruct a zipper we write left ↼ �current�z ⇀ right where any
part can be omitted to ignore that portion of the zipper, but any included part
must exist. For example, z = � �z

′
:⇐⇒ z .ancestor = Some(z ′).

The two key invariants that hold during the execution of any command
are (1) that the file system remains well-formed (Definition 1) and (2) that
if �fc�c ( , p/u, , ) fs = (( , p′/u ′, , ), fs ′, ) and p ∈ fs, then p′ ∈ fs ′. The first
property states that no command can make a well-formed file system ill-formed.
The second states that, as we traverse the zipper, we maintain a connection
to the real file system. It is important that only the parent of the current file
system node is required to exist as this allows us to construct new portions of
the filestore and handle the option specification. A central design choice that
underpins the semantics is that each command acts locally on the current zip-
per and does not require further context. This makes the cost of the operation
apparent and, as in Incremental Forest [3], facilitates partial loading and storing.
These properties can be seen from Fig. 4 which defines the semantics of Forest
Commands.

As illustrated in the top row of the table, each row should be interpreted as
defining the meaning of evaluating a command in a given context, (E , p, ps , z ),
and file system, fs, provided the conditions hold. The denotation function is par-
tial, being undefined if none of the rows apply. Intuitively, a command is unde-
fined when it is used on a malformed filestore with respect to its specification,
or when it is ill-typed—i.e. used on an unexpected zipper state. Operationally,
the semantics of each command can be understood as follows:

– Down and Up are duals: the first traverses the zipper into a path expression,
simultaneously moving us down in the file system, while the other does the
reverse. Additionally, Down queries the file system, producing a Read.

– Into and Out are duals: the first traverses the zipper into its respective type
of specification, while the second moves back out to the parent node. Addi-
tionally, their subexpressions may produce logs.
For dependent pairs, we update the environment of the second child with a
context constructed from the first specification.
For comprehensions, the traversal requires the set denoted by e to be non-
empty, and maps it to a list of children with the same specification, but
environments with different mappings for x , before moving to the first child.
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Fig. 4. fc command semantics

– Next and Prev are duals: the first traverses the zipper to the right sibling and
the second to the left sibling.

– Store File e, Store Dir e, and Create Path all update the file system,
leaving the zipper untouched. All of the functions they call out to close the
file system to remain well-formed and their definitions can be found in the
technical report [2]. These functions produce logs recording their effects.
For Store File e, e must evaluate to a string, u, after which the command
turns the current file system node into a file containing u.
For Store Dir e, e must evaluate to a string set, �, after which the command
turns the current file system node into a directory containing that set. If
the node is already a directory containing �′, then any children in �′ \ � are
removed, any children in � \ �′ are added (as empty files) and any children in
� ∩ �′ are untouched.
For Create Path, the current node is turned into a directory containing the
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Fig. 5. Expression semantics

path that the path expression points to. The operation is idempotent and
does the minimal work required: If the current node is already a directory,
then the path is added. If the path was already there, then Create Path is a
no-op, otherwise it will map to an empty file.

With that, we have covered the semantics of all of the Forest Commands,
but their subexpressions remain. The semantics of non-standard expressions is
given in Fig. 5. The interpretation of each row is the same as for commands.
There is one Fetch expression per specification except for pairs, which have no
useful information available locally. Since a pair is defined in terms of its sub-
specifications, we must navigate to them before fetching information from them.
This design avoids incurring the cost of eagerly loading a large filestore.

Fetching a file returns the string contained by the file at the current path.
For a directory, we get the names of its children. Both of these log Reads since
they inspect the file system. For a path specification, the only locally available
information is the actual path. For a comprehension, we return the set e. For
an option, we determine whether the current path is in the file system and log
a Read regardless. Finally, for a predicate, we determine if its condition holds.

There are two Run expressions. The subexpression, e, must evaluate to a
context. These can only come from a dependent pair, which means that Runs
can only occur as subexpressions of specifications. We utilize them by performing
traversals (Run fn e) and evaluating Forest expressions (Run fe e) in the input
context. For example, a filestore defined by a file index.txt and a set of files
listed in that index could be described as follows:

〈index : ”index.txt” :: File, [x :: File | x ∈ e]〉
where e = lines_of (Run Fetch_File (Run Down index))
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where lines of maps a string to a string set by splitting it by lines.
Finally, Verify checks the partial consistency of the traversed part of the

filestore—i.e. whether it conforms to our specification. Unfortunately, checking
the entire filestore, even incrementally can be very expensive and, often, we have
only performed some local changes and thus do not need the full check. Partial
consistency is a compromise wherein we only check the portions of the filestore
that we have traversed, as denoted by the path set. This ensures that the cost
of the check is proportional to the cost of the operations we have already run.
Partial consistency is formally defined in the next subsection, which among other
properties, details the connection between partial and full consistency.

3.3 Properties

This section establishes properties of the TxForest core calculus: consistency and
partial consistency, equational identities on commands, and round-tripping laws.

The formal definition of partial consistency is given in Fig. 6. Intuitively, full
consistency (Consistent) captures whether a filestore conforms to its specifi-
cation. For example, the file system, fs, at p conforms to File if and only if
fs(p) = File and to e :: s if e evaluates to u and fs at p/u conforms to s. Par-
tial consistency (PConsistent) then checks partial conformance (i.e. does the
filestore conform to part of its specification). PConsistent returns two booleans
(and a log), the first describing whether the input filestore is consistent with the
input specification and the second detailing whether that consistency is total
or partial. The definition of full consistency is very similar to partial, except
that there are no conditions and the path set is ignored. The properties below
describe the relationship between partial consistency and full consistency. Their
proofs can be found in the technical report [2].

Theorem 1. Consistency implies partial consistency:
∀ps. consistent? (Consistent (p, ps , z ) fs) =⇒

consistent? (PConsistent (p, ps , z ) fs)

Theorem 2. Partial Consistency is monotonic w.r.t. the path set:
∀ps1, ps2. ps2 ⊆ ps1 =⇒

consistent? (PConsistent (p, ps1, z ) fs) =⇒
consistent? (PConsistent (p, ps2, z ) fs)

∧ complete? (PConsistent (p, ps2, z ) fs) =⇒
complete? (PConsistent (p, ps1, z ) fs)

This theorem says that if ps1 is partially consistent, then any path set, ps2,
that is a subset of ps1 will also be partially consistent. Conversely, if the consis-
tency of ps2 is total, or complete, then ps1 will also be totally consistent.

Theorem 3. Given a specification s and a path set ps that covers the entirety
of s, partial consistency is exactly full consistency:
∀ps. ∃ps ′. Cover (p, ps ′, z ) fs ∧ ps ′ ⊆ ps =⇒

consistent? (Consistent (p, ps, z ) fs) ⇐⇒
consistent? (PConsistent (p, ps, z ) fs)
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Fig. 6. Partial consistency and cover

This theorem says that if the path set, ps is a superset of one that covers
the entirety of the filestore, ps ′, as defined in Fig. 6, then the filestore is totally
consistent exactly when it is partially consistent. Intuitively, if a path set covers
a filestore then we can never encounter a path outside of the path set while
traversing the zipper.

Other properties of the language include identities of the form �Down; Up�c ≡
�Skip�c where ≡ denotes equivalence modulo log when defined. That is, either
�Down; Up�c is undefined, or it has the same action as �Skip�c , barring logging.
Additionally, we have proven round-tripping laws in the style of lenses [8] stating,
for example, that storing just loaded data is equivalent to Skip. Further identities
and formal statements of these laws can be found in the technical report [2].
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3.4 Examples

This subsection details the core calculus encodings of a few useful functions for
interfacing with the course management system introduced in Sect. 2. The goal
is to build an intuition for the language and how programming against the zipper
abstraction might look. In practice, one would compile a higher-level language
down to this core calculus for ease of use.

For the purposes of these examples, we will assume that in variables contain
our input arguments at the start of each function and that out should contain the
output of the function, if any, at the end. Additionally, all of our examples will
be written against the same single-homework specification that we saw earlier
in both our higher-level description language and in the core calculus:

directory {

max is "max" :: file;

students is [s :: students | s <- matches RE "[a-z]+[0-9]+"]

}

that is,

〈max : ”max” :: File, 〈dir : Dir , [s :: students | s ∈ e]〉〉
where e = filter (Run Fetch_Dir dir) "[a-z]+[0-9]+"

With that said, we will proceed to encode simple primitive functions for
getting and setting the score of a single student and adding a student, a fold
function over path comprehensions and finally a function for getting the average
score of all students for a single homework.

getScore := λ(). to_int Fetch_File

setScore � Store_File (of_int in)

In getScore and setScore, we assume that the zipper is already at a student.
getScore, which we can define as an expression in the language, takes a unit
input and fetches the current file, converting the string to an integer. setScore,
like the rest of our examples, is instead a metavariable representing a particular
command. This command converts in to a string before storing it as a file.

addStudent �
Into_Pair; Next; Into_Pair; # Go to dir
Store_Dir (Fetch_Dir ∪ {in}); # Add in to the directory

Out; Prev; Out # Return

In addStudent, we start from the root of the filestore and navigate to the first
component of the internal pair. We then fetch the names of the current files in
the directory before adding in and storing it back. Finally, we return to the root.
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Fig. 7. Global semantics additional syntax

fold �
num := length Fetch_Comp; Into_Comp;
While num > 0 Do

Down; # Enter path

inAcc := inF inAcc; # Execute function and update accumulator

Up; Next; num := num − 1 # Go to next element

Out;

out := inAcc

In fold, the zipper should start at a comprehension whose subspecification
is a path expression. We take two inputs: inAcc, which is the initial accumulator
value, and inF , which is a function that produces a new accumulator from the
old one. The code for fold starts by getting the number of elements in the
comprehension, before traversing the elements one by one and calling inF to
update the accumulator at each element.

Finally, getAvg computes the average score across all students:

getAvg �
Into_Pair; Next; Into_Pair; Next;
number := length Fetch_Comp;

inAcc := 0;
inF := λx. getScore () + x;
fold;

Prev; Out; Prev; Out;
out := out / number

It starts at the root of the filestore and navigates to the comprehension. Next,
it stores the number of students in number , sets inAcc to 0 and constructs inF ,
which gets the score of the current student and adds it to its argument. Then it
folds, returns to the root of the filestore and divides the result of the fold (out)
by the number of students to obtain the final result.

4 Concurrency Control

This section introduces the global semantics of Transactional Forest, using both
a denotational semantics to concisely capture a serial semantics, and an opera-
tional semantics to capture thread interleavings and concurrency. We also state
a serializability theorem that relates the two semantics.
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Fig. 8. Global operational semantics

Figure 7 lists the additional syntax used in this section. Timestamped logs
are the logs of the global semantics. They are identical to local logs except that
each entry also contains a timestamp signifying when it was written to the log.

Each Thread is captured by its local context, which, along with its transac-
tional state, TxState, denotes a Transaction. The transactional state has 3 parts:
(1) the command the transaction is executing; (2) the time when the transaction
started; and (3) the transaction-local log recorded so far.

Our global denotational semantics is defined as follows:

�((ctxt , , c), )�G fs � project fs (�c�c ctxt fs)

���G fs � fold fs � �·�G

The denotation of one or more transactions is a function on file systems. For a
single transaction, it is the denotation of the command with the encapsulated
context except for the file system which is replaced by the input. For a list of
transactions, it is the result of applying the local denotation function in serial
order. Note that the denotation of a transaction is precisely the denotation of a
program, �·�g , which can be lifted to multiple programs by folding. The key point
to note about this semantics is that there is no interleaving of transactions. By
definition, the transactions are run sequentially. While this ensures serializability,
it also does not allow for any concurrency.

We will instead use an operational semantics that more easily models thread
interleaving and prove that it is equivalent to the denotational semantics. First,
we introduce an operational semantics for local commands. This semantics is
standard for IMP commands, but for Forest Commands, it uses the denotational
semantics, considering each a single atomic step, as seen below:

((E ′, p′, ps ′, z ′), fs ′, σ) = �fc�c (E , p, ps , z ) fs

〈(E , p, ps , z ), fs , fc〉 σ−→L 〈(E ′, p′, ps ′, z ′), fs ′, Skip〉
Next, we can construct the global operational semantics, as seen in Fig. 8. The

global stepping relation is between two global contexts which have three parts:
A global file system, a global log, and a thread pool, or bag of transactions.
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Fig. 9. merge and check log

There are only three actions that the global semantics can take:

1. A transaction can step in the local semantics and append the resulting log.
2. A transaction that is done, and does not conflict with previously committed

transactions, can commit. It must check that none of its operations conflicted
with those committed since its start. Conflicts occur when the transaction
read stale data. Then, it will update the global file system according to any
writes performed. Finally, the transaction will leave the thread pool. The
definitions of check log and merge can be found in Fig. 9.

3. A transaction that is done, but conflicts with previously committed trans-
actions, cannot commit and instead has to restart. It does this by getting a
fresh timestamp and resetting its log and local context.

In the operational semantics, thread steps can be interleaved arbitrarily, but
changes will get rolled back in case of a conflict. Furthermore, while Forest
Commands are treated as atomic for simplicity they could also be modeled at
finer granularity without affecting our results.

With a global semantics where transactions are run concurrently, we now
aim to prove that our semantics guarantees serializability. The theorem below
captures this property by connecting the operational and denotational semantics:

Theorem 4 (Serializability). Let FS ,FS ′ be file systems, GL,GL′ be global
logs, and T a thread pool such that ∀t ∈ T . initial FS t, then:

〈FS ,GL,T 〉 →∗
G 〈FS ′,GL′, {}〉 =⇒ ∃� ∈ Perm(T ). ���G FS = FS ′

where →∗
G is the reflexive, transitive closure of →G.

The serializability theorem states that given a starting file system and a
thread pool of starting threads, if the global operational semantics commits them



TxForest: A DSL for Concurrent Filestores 351

all, then there is some ordering of these threads for which the global denotational
semantics will produce the same resulting file system. Note that although it is
not required by the theorem, the commit order is one such ordering. Additionally,
though not explicitly stated, it is easy to see that any serial schedule that is in
the domain of the denotation function is realizable by the operational semantics.
See the technical report [2] for the proof.

The prototype system described in the next section implements the local
semantics from the previous section along with this global semantics, reducing
the burden of writing correct concurrent applications.

5 Implementation

This section describes our prototype implementation of Transactional Forest as
an embedded domain-specific language in OCaml. Our prototype comprises 6089
lines of code (excluding blank lines and comments) and encodes Forest’s features
as a PPX syntax extension.

We have implemented a simple course management system similar to the
running example from Sect. 2. It has several additional facilities beyond renor-
malization, including computing various statistics about students or homeworks
and changing rubrics while automatically updating student grades accordingly.
The most interesting piece of the example is based on our experience with a
professional grading system which uses a queue from which graders can get new
problems to grade. Unfortunately, this system did not adequately employ con-
currency control, resulting in duplicated work. Using TxForest, we implemented
a simple grading queue where graders can add and retrieve problems, which does
not suffer from such concurrency issues.

The embedded language in our prototype implementation implements almost
precisely the language seen in Sect. 3. Additionally, we provide a surface syntax
(as seen in Sect. 2 and papers on the earlier versions of Forest [3,5]) for specifica-
tions that compiles down to the core calculus seen in Sect. 3. This specification
can then be turned into a zipper by initiating a transaction. The majority of
the commands and expressions seen in the core semantics are then exposed as
functions in a library. Additionally, there is a more ad hoc surface command
language that resembles the surface syntax and parallels the behavior of the
core language. Finally, the global semantics looks slightly different compared to
in Sect. 4, though this should not affect users and the minor variant has been
proven correct. We provide a simple shell for interacting with filestores, which
makes it significantly easier to force conflicts and test the concurrent semantics.

6 Related Work

We discuss four families of related work: languages for ad hoc data processing,
zippers, transaction semantics, and transactional file systems.
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Ad hoc Data Processing. Transactional Forest builds on a long line of work
in ad hoc data processing. PADS [6,7] (Processing Ad hoc Data Streams) is a
declarative domain-specific language designed to deal with ad hoc data. It allows
users to write declarative specifications describing the structure of a file and
uses such descriptions to generate types, transformations between on-disk and
in-memory representations with robust error handling, and various statistical
analysis tools.

Forest [5] extends the concept of PADS to full filestores and additionally
provides formal guarantees about the generated transformations in the form
of bidirectional lens laws. The original version of Forest was implemented in
Haskell and relied on its host language’s laziness to load only required data.
Unfortunately, it was not always clear what actions might trigger loading the
entire filestore. For example, checking if there were errors at any level would
load everything below that level. Incremental Forest [3] addressed this issue by
introducing delays to make explicit the amount of loading corresponding to any
action. It also supported a cost semantics that precisely characterized the cost
of any such action for varied, user-defined notions of cost. It did not address
concurrent access to Incremental Forest-described filestores, however.

A bit farther afield, Microsoft’s LINQ [12] and F#’s Type Providers [16] share
the Forest family’s goal of making data-oriented programming easier. While they
lack support for declarative specifications of filestores, LINQ and Type Providers
both include nice interfaces for interacting with data. In contrast, languages
like XFiles [1] do allow declarative filestore specifications, but do not directly
interoperate with general purpose programming languages.

Zippers. Huet [10] introduced Zippers as an elegant data structure for travers-
ing and updating a functional tree. There has been much work studying zippers
since, though the closest to our work is Kiselyov’s Zipper file system [11]. Kise-
lyov builds a small functional file system with a zipper as its core abstraction.
This file system offers a simple transaction mechanism by providing each thread
its own view of the file system. The system lacks formal guarantees and is generic:
it does not support an application-specific view of the file system as a filestore.
In contrast, Transactional Forest uses type-based specifications to describe the
structure and invariants of filestores. Further, we present a formal syntax and
semantics for our core language, a model of concurrency, and a proof of serializ-
ability.

Transaction Semantics. Moore and Grossman [14] present a family of languages
with software transactions, investigating how these languages support paral-
lelism and what restrictions are necessary to ensure correctness in the presence of
weak isolation. Additionally, they provide a type-and-effect system which ensures
the serializability of well-typed programs. At a high level, they describe what the
core of a language used to write concurrent programs might look and act like,
including constructs like spawning threads or atomic sections. Our transactional
semantics is higher-level and specific to our domain, describing a transaction
manager designed simply to ensure serializability among TxForest threads.
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Transactional File Systems. General support for transactional file systems has
been well studied [4,9,13,15]. All of this work starts at a lower level than Trans-
actional Forest, providing transaction support for file system commands. We,
instead, provide transactions from the perspective of the higher-level application,
easily allowing an arbitrary high-level computation to be aborted or restarted if
there is a conflict at the file system level.

7 Conclusion

We have presented the design, syntax, and semantics of Transactional Forest, a
domain-specific language for incrementally processing ad hoc data in concurrent
applications. TxForest aims to provide an easier and less error-prone approach to
modeling and interacting with a structured subset of a file system, which we call
a filestore. We achieve this by leveraging Huet’s Zippers [10] as our core abstrac-
tion. Their traversal-based structure naturally lends itself to incrementality and
a simple, efficient logging scheme that we use for our optimistic concurrency
control. We provide a core language with a formal syntax and semantics based
on zipper traversal, both for local, single-threaded applications, and for a global
view with arbitrarily many Forest processes. We prove that this global view
enforces serializability between threads, that is, the resulting effect on the file
system of any set of concurrent threads is the same as if they had run in some
serial order. Our OCaml prototype provides a surface language mirroring Classic
Forest [5] and a library of functions for manipulating the filestore.
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Abstract. The MapReduce framework for data-parallel computation
was first proposed by Google [10] and later implemented in the Apache
Hadoop project. Under the MapReduce framework, a reducer computes
output values from a sequence of input values transmitted over the net-
work. Due to non-determinism in data transmission, the order in which
input values arrive at the reducer is not fixed. In relation to this, the
commutativity problem of reducers asks if the output of a reducer is
independent of the order of its inputs. Indeed, there are several advan-
tages for a reducer to be commutative, e.g., the verification problem
of a MapReduce program can be reduced to the problem of verifying
a sequential program. We present the tool J-ReCoVer (Java Reducer
Commutativity Verifier) that implements effective heuristics for reducer
commutativity analysis. J-ReCoVer is the first tool that is specialized
in checking reducer commutativity. Our experimental results over 118
benchmark examples collected from open repositories are very positive;
J-ReCoVer correctly handles over 97% of them.

1 Introduction

MapReduce belongs among the most popular frameworks for data parallel com-
putation. A MapReduce program [10] consists of several pairs of mappers and
reducers running on a machine cluster for handling big data in parallel. Usually,
mappers and reducers are the only components in a MapReduce program that
involve concurrency. Mappers read data from a distributed database and out-
put a sequence of key-value pairs. The elements of the sequence (i.e., key-value
pairs) with the same key are sent to the same reducer for further processing.
Due to scheduling policies and network latency, the same inputs may arrive at
a reducer in different orders in different executions. Therefore, reducers are typ-
ically required to be commutative, that is, the output of a reducer is required to
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be independent of the order of its inputs. The problem of checking whether this
is indeed the case is known as the commutativity problem of reducers [6,8,9,17].

If a reducer is commutative, it will have the same external behaviour under all
possible schedules, and one then suffices with considering any chosen interleaving
of input values when examining its behaviour instead of having to consider all
of them. By fixing a schedule, the verification problem of a MapReduce program
reduces to the verification problem of a sequential program, which is known to
be much easier than the verification problem of concurrent programs.

On the other hand, the non-commutative behaviour of a reducer is often
the source of very tricky bugs. A study conducted by Microsoft investigated the
commutativity problem of 508 reducers running on their MapReduce server [17].
These reducers were carefully checked using all traditional means such as code
review, testing, and experiments with real data for months. Still, five of these
programs contained very subtle bugs caused by non-commutativity (which was
confirmed by the programmers).

However, checking reducer commutativity is a difficult problem on its own
right [6–8]. Even for a simple case in which all values are mathematical integers,
it is proved undecidable in [6]. For the case when all values are machine integers
(e.g., 64-bits integers), the problem is decidable, but the only available algorithm,
which was proposed in [6] too, is of very high complexity and hence of theoretical
interest only.

In this paper, we present the J-ReCoVer tool (Java Reducer Commutativity
Verifier), which is available at http://www.jrecover.tk/. The tool implements
a heuristic approach for checking the commutativity problem that—despite its
simplicity—works very efficiently on a large set of practical integer reducer pro-
grams as shown by our experiments. The main ingredient of the approach is a
reduction from the commutativity problem to an SMT problem. The reduction
is incomplete but sound. It is accompanied with several heuristics which enable
the approach to scale to real-world examples. For the case when the reducer is
not proven commutative, we complement the approach by using testing to find
concrete counterexamples.

We collected benchmarks from open repositories such as GitHub and Bit-
bucket to evaluate J-ReCoVer. With the help of a search engine searchcode.com
over those repositories, we collected 118 programs. We provide this collection of
programs to other interested researchers as a side contribution of the paper. Our
tool J-ReCoVer is able to correctly analyse all but three of the programs.

Related Work. The reducer commutativity problem can be reduced to a pro-
gram equivalence problem. One creates another program R′ that first non-
deterministically swaps two consecutive input values and then executes the code
of R. If R′ and R are equivalent, using the fact that all permutations of a list

http://www.jrecover.tk/
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can be obtained by swapping consecutive list elements finitely many times1, R
can be proved to be commutative. A series of research works address program
equivalence checking (or closely related topics such as regression verification and
translation validation), cf. [3,11,13,15] to name a few.

From a high-level view, checking equivalence of two programs P and P ′ can
be reduced to a sequential verification problem by executing P ′ after P , followed
by checking whether the two programs always produce the same outputs. The
approach can be made more efficient by finding the right synchronization points
and combining the code of P and P ′ in an interleaved manner. A lot of research
effort have been invested into finding good synchronization points. In this work,
we propose the head of the top-level reducer loop as the synchronization point
suitable for reducer commutativity analysis. According to our experience, dis-
cussed later on, the reducers usually contain just a single such loop. Moreover,
for the case when there are more top-level loops in a reducer, we propose a way
of breaking the reducer into several ones to be checked independently.

However, we observe that if one naively reduces the commutativity prob-
lem to an equivalence problem and checks it in a precise manner, many reduc-
ers cannot be verified. Therefore, J-ReCoVer uses an over-approximation of the
reducer’s behaviour. This approximation allows for a much more efficient, yet—
according to our experiments—precise enough commutativity analysis.

Our approach can be seen as using some form of sequentialisation of the con-
current behaviour. Sequentialisation is the key approach behind many current
successful approaches for verifying multithreaded programs [12,14]. However, our
sequentialisation approach is specialised for the case of reducers and quite dif-
ferent from what is used in sequentialisation of multithreaded programs: indeed,
in MapReduce programs there is no notion of threads nor context switches.

Various forms of sequentialisation are also used in works dealing with the
concept of robustness of event-driven asynchronous programs [5] or works dealing
with programs running under some relaxed memory models [1,2,4]. However,
their computation models are again quite different from that of reducers, and
their results cannot be directly applied. Besides verification, another interesting
research direction, using commutativity analysis as a component, is synthesis of
MapReduce programs [16].

2 Notations and Definitions

We use [n,m] to denote the set of integers {k | n ≤ k ≤ m} and lift the equality
predicate = to tuples in the standard, component-wise, way.

1 Here is an example to produce [3;2;5;1;4] from [1;2;3;4;5] by swapping consecutive ele-
ments: [1;2;3;4;5] → [2;1;3;4;5] → [2;3;1;4;5] → [2;3;1;5;4] → [2;3;5;1;4] → [3;2;5;1;4].
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Fig. 1. A reducer
that computes the
average value.

To present our approach, we introduce a highly simpli-
fied language for describing reducers. Let Var be a set of
integer variables. An integer expression in Exp can either
be a variable from Var, a constant value, a call to the cur()
function that reads and consumes an input value of the
reducer, a non-deterministically chosen integer value ∗, or
a combination of integer expressions over basic arithmetic
operations. A command in Cmd can be an assignment, a
branch statement, a sequence of commands, or an out(v)
statement that outputs the value of v ∈ Var. A reducer pro-
gram is defined as s1;Loop{s2}; s3 where s1, s2, s3 ∈ Cmd.
According to our observation over hundreds of reducer programs in open repos-
itories, reducer programs are almost always in this form. The Loop{s2} state-
ment enters the loop body to execute s2 repeatedly for each input element until
the entire input list is consumed. An example of a reducer is shown in Fig. 1.
In the paper, to simplify the presentation, we assume that a reducer does never
produce any output in the loop body s2. J-ReCoVer implements an algorithm to
deal with an output inside the loop (as briefly mentioned at the end of Sect. 4.2).

Some reducers use two (or more) top-level loops to compute the output, pos-
sibly interleaved with some non-looping code. These loops are executed sequen-
tially, repeatedly iterating over the input list from its beginning. For example,
for calculating the standard deviation, one first computes the average of inputs
and then uses it to compute the final result (using two passes over the input
list). In that case, we suggest to verify the reducer by first partitioning it into
two (or more) reducers, each containing a single top-level loop, and then verify-
ing these reducers separately.2 The top-level loops communicate through shared
variables. After the transformation, reducers corresponding to the second top-
level loop (and possibly further such loops) will work with random initial values
of the shared variable, which over-approximates the original behaviour. In our
experience, the second (or further) top-level loop are usually commutative even
with arbitrary initial shared variable values, and so J-ReCoVer can be used to
handle such reducers.

3 Overview of the J-ReCoVer tool

The input of J-ReCoVer is a reducer program written in Java, which is the
most popular programming language used in the Hadoop MapReduce frame-
work. The J-ReCoVer tool has three main components, Preprocessor, Prover,
and BugFinder. As the name suggests, Preprocessor reads as input a reducer
program and performs the required preprocessing. The goal of Prover is to show
that a given reducer is commutative, and the goal of BugFinder is the opposite.
The architecture of J-ReCoVer can be found in Fig. 2. The user can input a
2 Nested loops can be removed by adding additional branch statements since both the

inner and outer loop are over the same input list. In fact, such a program construct
has never occurred in the examples we have seen.
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reducer program to J-ReCoVer either through our web-interface or use a binary
application installed on his/her own machine.

Fig. 2. Overview of the J-ReCoVer tool.

The Preprocessor compo-
nent first compiles a reducer
program to bytecode and uses
the tool Soot3 to further convert
it to the so-called “Jimple” for-
mat, which is an intermediate
language designed to simplify
the analysis of Java programs.
Under the Hadoop MapRe-
duce framework, the permuta-
tion of the input is handled
by the scheduler/shuffler com-
ponent and is affected by issues
like network latency, which are
not controllable by program-
mers. In order to deal with such
issues, we wrote our own dummy Hadoop environment for the reducer as a part
of the Preprocessor component so that the input order of the reducer is now
controlled by J-ReCoVer. Finally, the Preprocessor performs a program trans-
formation to simplify the analysis.

The BugFinder component generates random pairs of lists, with the list
of each pair being permutations of each other. A concrete counterexample is
reported if the reducer outputs different results for the two lists of a generated
pair. Our procedure for generating random pairs is quite naive. We use five differ-
ent input list of lengths 5, 7, 9, 11, and 13. For each length, we generate 100 lists
and pick uniformly at random one of its permutations. Although the approach
is simple; in practice, it finds counterexamples in all of our non-commutative
benchmarks in few seconds.

The Prover component reduces the commutativity problem to an SMT prob-
lem. From a high-level point of view, we are checking equivalence between a
reducer program and its variant that has two consecutive inputs swapped. We
show that this equivalence check can be reduced to a first-order formula and
give it to the SMT solver Z3 for solving. In case that Z3 proves the formula
unsatisfiable, we know that swapping any two consecutive inputs of the reducer
will not change its output. Since all permutations of a list can be obtained by
swapping consecutive elements finitely many times, it follows that the reducer
outputs the same value for all permutations of the same list of inputs. In this
case, J-ReCoVer stops and reports that the reducer is commutative.

3 https://github.com/Sable/soot.

https://github.com/Sable/soot
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4 The Preprocessor and the Prover

Before entering the Prover component, the Preprocessor first performs a program
transformation to simplify the verification task (Sect. 4.1). The output of the
preprocessor is a commutativity-equivalent reducer program. The algorithm of
the Prover is then explained in Sect. 4.2.

4.1 The Program Transformation in the Preprocessor

In real-world reducers, it is often the case that the s1 part of the reducer reads
from the input. Since our reduction of the commutativity problem to SMT solv-
ing, which is presented in Sect. 4.2, concentrates on the influence of the input on
the loop s2 only, we need to transform the reducer such that any input happens
in the loop only.

Fig. 3. The max+

reducer with input
before the main loop.

To illustrate the issue, we consider the reducer
shown in Fig. 3. The reducer presented in the figure
remembers the first input value in the variable m,
increases its value by 10, and then updates its
value to bigger ones if any occur in the loop.
The main loop of the reducer is commutative in
this case, but the reducer is not commutative. A
counterexample can be easily found. With the list
[1, 2, 3, 4, 5] and its permutation [5, 4, 3, 2, 1] as the
inputs, the reducer outputs 11 and 15, respectively.

Our transformation will handle the example from
Fig. 3 as follows. We move the prefix s1 into the loop
body and use a new variable s to force that the exe-
cution of s1 is always before the original loop body.
The result after the transformation is demonstrated in Fig. 4. The new reducer
program has the same inputs/outputs as the original one. Therefore, if the new
reducer is commutative, the original one is also commutative.

Fig. 4. The max+fix reducer.

In general, the problem with the input
before the loop can be handled as follows,
including the case where cur() occurs mul-
tiple times in s1. Assume that the s1 part of
the reducer s1;Loop{s2}; s3 has the form
c0;x1:=cur(); c1; . . . ;xm:=cur(); cm where
cur() does not occur in c0, c1, . . . , cm. In the
transformed reducer, the part before the
loop will be c0; s := 1, and the loop body
will contain several new branch statements.
In particular, for all j ∈ [1,m], we add
the branch statement if s = j then xj :=
cur(); cj ; s := s + 1. Moreover, we trans-
form the original loop body into the branch
if s = m + 1 then s2.
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4.2 The Prover: Reduce Commutativity Checking to SMT Solving

After the transformation described above, the reducer s1;Loop{s2}; s3 never
calls the cur() function in the s1 part before entering the loop. Further, we
assume w.l.o.g. that the reducer reads exactly one input in one loop iteration.
When multiple reads from the input occur in a single execution path from the
begin to the end of the loop body, we can use additional variables and branch
statements to break the path into several auxiliary ones, each reading just once.

The command s2 can be viewed as a function F that reads the values of
all variables and the current input before executing s2 and outputs the val-
ues of all variables after s2. Note that s2 contains no nested loop structure.
Hence, a bounded summary in quantifier-free linear integer arithmetic is suffi-
cient for describing F .

Formally, the function F (n, x1, x2, . . . , xk) : Zk+1 → Z
k returns a tuple of

values x′
1, x

′
2, . . . , x

′
k where n is the current input value of the reducer, xi and x′

i

are the values of the variables before and after the execution of s2, respectively,
for i ∈ [1, k]. The construction of F from s2 can be done in the standard way.

We reduce the reducer commutativity verification to checking validity of the
following formula for all possible values of n1, n2, x1, x2, . . . , xk:

F (n1, F (n2, x1, x2, . . . , xk)) = F (n2, F (n1, x1, x2, . . . , xk)). (1)

Intuitively, the formula says that starting from the same initial valuations of
variables and with two different input orders, [n1;n2] and [n2;n1], the values of
all program variables are the same after we execute the loop body twice. The
first execution reads n1 and then reads n2. The other execution reads the two
inputs in the reverse order. Since any permutation of the input can be obtained
by a sequence of permutations of neighbouring inputs, the validity of Formula 1
implies that the permutations will not change the final variable valuation and
hence the output in s3.

Consider the reducer computing the average value (Fig. 1) as an example.
The reducer has two variables s and c. We get that Faverage(n, s, c) = (s +
n, c + 1). In this case, Formula 1 is valid since Faverage(n1, Faverage(n2, s, c)) =
Faverage(n1, s + n2, c + 1) = (s + n1 + n2, c + 2) = Faverage(n2, s + n1, c + 1) =
Faverage(n2, Faverage(n1, s, c)). This implies that the reducer is commutative.

A Note on Dealing with Output in the Main Loop. So far we have assumed that
there was no output in the main loop and mentioned that this restriction is
lifted in J-ReCoVer. Due to space restrictions, a proper explanation of the way
of handling this issue is beyond the scope of this paper, but we give at least a
brief sketch of the solution. In particular, the Preprocessor performs one more
transformation which adds an assignment v := e for every out(e) statement in
the main loop where v is a fresh variable assigned just once in the loop body.
This makes the output visible for our analysis since v appears in Formula 1. The
Prover then makes an additional check whether the value of F (n, x1, x2, . . . , xk)
projected on v stays the same for any input value n and any initial values of the
variables xi.
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4.3 An Optimisation by Live Variable Analysis

We now explain how a simple live variable analysis is used in J-ReCoVer to
significantly improve the precision of commutativity checking.

In our initial experiments, we realised that Formula 1 is too strong, too often
violated by reducers that are commutative. To illustrate the issue, we present a
simple example. In the loop body, the input is first stored in a variable t and this
is then assigned to s, i.e., t := cur(); s := s+t. After the loop, the value of s is out-
put. In this case, the function F returns the updated values of both s and t after
the execution of the loop body. Observe that F (c1, F (c2, s, t)) = (s+ c1 + c2, c1)
and F (c2, F (c1, s, t)) = (s + c1 + c2, c2). It follows that Formula 1 is invalid.
The second component of the returned tuples, which causes the invalidity, corre-
sponds to the value of t after executing the loop body twice. Their values are c1
and c2, respectively, in F (c1, F (c2, s, t)) and F (c2, F (c1, s, t)). However, in this
case, the value of t will not affect the output of the reducer.

To handle the above issue, we perform a simple backward live variable anal-
ysis to collect all variables whose value may propagate to the output command
after the loop execution. Only these variables are then required to be equiva-
lent. For the example above, the variable t will be ignored in the equivalence
checking and hence the program can be proven commutative. In our evaluation,
the ratio of reducers that our approach can successfully analyse is significantly
increased—in particular, from 6.8% to 97.5%—by using this optimisation.

5 Evaluation

J-ReCoVer is implemented in Java and built on top of Soot 2.5.0 and Z3 4.7.1.
We ran J-ReCoVer on a virtual machine with 4 GB of memory running Ubuntu
16.04.5 LTS on a server with AMD Opteron 6376 CPU.

Table 1. Size of the reducers.

Line Variable Branch
Min. 5 4 0
Avg. 20.5 14.7 1.2
Max. 58 37 5

Benchmark Collection. In order to properly
evaluate the performance of J-ReCoVer, we used
the search engine searchcode.com to collect Java
programs containing the key strings “public void
reduce” or “protected void reduce”. Since there
is an upper bound on the number of results
returned from the search engine, we added different search filters in order to
get more data. We tried all 12 combinations of six filters on the code length
{< 50, 50–250, 250–450, 450–650, 650–850, 850–1050, 1050–1250} and two fil-
ters for data sources {github.com, bitbuckect.com}. In total, we got 11, 346 Java
programs. We excluded cases that were not Hadoop MapReduce reducer pro-
grams (those do not import the Hadoop library, do not extend or implement
the reducer interface) and obtained 1, 273 examples. We further removed dupli-
cates, those that could not be compiled, and those with non-numerical data
types (e.g., strings). We obtained 118 reducers as the final benchmarks. Table 1
contains more details of the considered reducer functions.

https://www.github.com
https://www.bitbuckect.com
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Results. J-ReCoVer successfully handled 115 cases (97.5%) out of the considered
ones. Among them, 106 cases are commutative, while 9 are not. The analysis
time ranged between 9.8 and 8.6 s. On average, 72% of the execution time was
spent in compiling Java source code to bytecode, which is the input of the Soot
tool. Further, 27% of the execution time was spent in the Preprocessor, in which
Soot is used to transform Java bytecode to Jimple and perform the program
transformation. The time spent in Solver is quite limited (<1%) since the real-
world integer reducer programs are usually not that big.

There is no other tool that could handle the reducers as they are. Perhaps
some other tools could be applied on the transformed programs, but the transfor-
mation would still be needed, and our SMT-based back-end verifier (the Solver)
turned out to work efficiently. Hence, we did not feel a need to replace it by
another verification tool. Of course, in the future, this can be done if need be.

J-ReCoVer failed in three cases out of the considered ones because the three
reducers use more complicated control structures than what J-ReCoVer cur-
rently supports. Namely, they use a branch statement before entering the loop,
i.e., they have the form of if g then (s1;Loop{s2}; s3) else (s′

1;Loop{s′
2}; s′

3).
In theory, such a program can be handled by more sophisticated program trans-
formation. For example, we can merge the two loops and push the outer branch
condition into the merged loop. Extensions of J-ReCoVer to be able to handle
such constructions, together with a support for more data types, is among our
future directions.
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Abstract. Separation logic is successful for software verification in both
theory and practice. Decision procedure for symbolic heaps is one of the
key issues. This paper proposes a cyclic proof system for symbolic heaps
with general form of inductive definitions called cone inductive defini-
tions, and shows its soundness and completeness. Cone inductive def-
initions are obtained from bounded-treewidth inductive definitions by
imposing some restrictions for existentials, but they still include a wide
class of recursive data structures. The completeness is proved by using
a proof search algorithm and it also gives us a decision procedure for
entailments of symbolic heaps with cone inductive definitions. The time
complexity of the algorithm is nondeterministic double exponential. A
prototype system for the algorithm has been implemented and experi-
mental results are also presented.

1 Introduction

Separation logic is successful for software verification [6,7,25]. Several systems
based on this idea have been actively investigated and implemented. One of
the keys of these systems is the entailment checker that decides the validity of
a given entailment of symbolic heaps, which are restricted forms of separation
logic formulas.

Inductive predicates are used to describe recursive data structures such as lists
and trees. In order to verify programs with recursive data structures, symbolic
heaps with inductive predicates are useful. Our purpose is to obtain a decision pro-
cedure for entailments of symbolic heaps with general inductive definitions.

The validity of entailments for symbolic heaps with inductive definitions
is known to be undecidable [1]. Hence it is important to find an expressive
class of inductive definitions such that we have efficient decision procedure. Iosif
et al. [19] proposed the system SLRDbtw, which is the first decidable system
for entailments of symbolic heaps with general inductive definitions. The con-
dition on inductive definitions imposed in [19] is called the bounded-treewidth
condition, which is one of the most flexible conditions for decidability.
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In [19], the decision procedure is given by model theoretic engine. On the
other hand, proof theoretic engine, namely proof search based on some proof
theory, has several advantages. (1) We can extend it by adding new inference
rules. (2) It provides reasons for the output. (3) It may be fast when the input
entailment is valid. (4) We can easily change it into a semi-decision procedure
by adding some heuristics for proof search. There are some decision procedure
based on proof systems for separation logic [6,7]. However, they have only hard-
coded predicates such as only lists and trees. Therefore, it is important to find
an expressive class of inductive definitions such that we can present decision
procedure based on a proof system.

Many proof systems with inductive definitions use Martin-Löf style introduc-
tion and elimination rules to describe inductive predicates. On the other hand,
cyclic-proof systems [10,11] may give us a better system for our purpose. In
cyclic proof systems, the induction is represented as a cyclic structure, where
some open assumptions are allowed as induction hypotheses. This mechanism
gives us more efficient proof search, since we need not fix an induction formula
in advance. In fact, some systems (explicitly or implicitly) based on cyclic-proof
systems have been proposed for the entailment checking problem for separation
logic [10,11,15,29,30]. However it is not well studied on complete cyclic-proof
systems for separation logic.

Our contributions are: (1) We propose a new class of inductive definitions,
called the cone inductive definitions. This class is useful since it is sufficiently
large, and we can present a proof system with the following nice properties. (2)
We propose a new cyclic proof system for entailment with symbolic heaps and
cone inductive definitions. (3) We will show that our proof system is complete.
(4) We present a proof search algorithm for the proof system, which decides the
validity of entailment. (5) In order to make these possible, we develop new ideas:
(a) a new rule for spatial factorization, called the factor rule, to divide a spatial
atomic formula, (b) a new rule for the split rule that can handle disjunction in
the succedent, and (c) an auxiliary extension of the language for explicit case
analysis. Furthermore, in order to confirm that our results are useful, we imple-
mented a prototype system based on our proof-search algorithm and present
some experimental results.

The class of the cone inductive definitions is obtained from the class of
the bounded-treewidth by imposing an additional condition that the definition
body itself guarantees existentials to be allocated. The cone inductive definition
requires that every definition clause of the inductive predicate P (x,−→y ) contains
x �→ (t) for some t. We call the first argument x a root of P (x,−→y ), since it
is the root of a tree-like structure described by the predicate. An example of
cone inductive definitions is the following singly-linked list: ls(x, y) =def x �→
y ∨ ∃z(x �→ (z) ∗ ls(z, y)), where it is a bounded tree-width inductive definition
and the existential z is guaranteed to be allocated by ls(z, y) in the definition
clause. The cone inductive definitions are still quite expressive, since this class
contains doubly-linked lists, skip lists, nested lists, and so on.

Based on the Unfold-Match strategy to the cone inductive definitions and
the cyclic proofs, our algorithm will use the following Unfold-Match-Remove-
Split strategy (written as U-M-R-S). First, unfold predicates of the same root x
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in both antecedent and succedent. Next, the existentials of the antecedent are
replaced by fresh variables and instantiate the existentials of the succedent by
matching. Then, remove the same x �→ (t) in both antecedent and succedent.
Finally we split F1 ∗ F2 � G1 ∗ G2 into F1 � G1 and F2 � G2 by the split rule of
separation logic. We repeat these steps for each subgoal.

However the U-M-R-S strategy may get stuck when we cannot find predicates
which have a common root on both sides. In order to solve this problem, we
propose a new inference rule called the factor rule, which uses inductive wands.
The inductive wand P—∗indQ represents a subheap of Q which is obtained by
removing a heap which satisfies P . The inductive wands are also predicates
defined by cone inductive definitions. By the inductive wand, we can divide a
predicate P (x) in into two predicates Q(y)—∗indP (x) and Q(y), where we can
find the root y in Q(y) which occurs as a root on both sides. The definition
clauses of the inductive wand Q(y)—∗indP (x) are automatically generated from
the definitions of P (x) and Q(y), and they satisfy the condition of the cone
inductive definition. We will also use the factor rule in order to make the allocated
variables of the antecedent and each disjunct of the succedent coincide when we
apply the split rule.

A similar idea to the inductive wand has been proposed as the inductive
segment in [5], where they used it for software verification by abstract interpre-
tation. By the inductive segment, they can unfold inductive predicates in the
reverse direction to find some fixed points in shape analysis. On the other hand,
we will use inductive wands for a different purpose, namely, deciding entailments
of symbolic heaps.

We will show the class of cone inductive predicates is closed under inductive
wands. It is not easy to obtain a useful class of inductive definition that is
closed under inductive wands. For example, the class of inductive definitions
with bounded treewidth is not closed under inductive wands. Magic wands often
causes undecidability [4]. By this closure property, it is not necessary to add any
special clauses to the definition of semantics for inductive wands.

The split rule is new since it handles disjunctions in the succedent. The ideas
for the split rule will be fully explained in Sect. 4.

For completeness, we extend the succedent to disjunctions and introduce
predicates t ↓ and t ⇑, where t ↓ means that t is in the domain of the heap, and
t ⇑ means that t is not related to the heap. They will be defined in Sect. 3 and
explained in Sect. 4.

Many entailment checkers for symbolic heaps with inductive definitions have
been discussed. Several of them do not have general inductive definitions and
have only hard-coded inductive predicates [6,7,16,22,23]. The entailment check-
ers for general inductive definitions are studied in [10,11,14,15,17–21,24,29–31].
The systems in [17–21,24,31] are all model theoretic. The algorithm in [21] has
better time complexity than ours. The system in [20] does not have disequal-
ity. The systems in [10,11,15,29,30] use cyclic proofs, but neither of them is
complete. The system in [14] is based on ordinary sequent calculus and is not
complete.
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The cyclic proofs have been intensively investigated for the first-order pred-
icate logic [2,3,9,11,26], a bunched implication system [8], and a symbolic heap
system [10,11].

Section 2 defines separation logic with inductive definitions. In Sect. 3 we
extend our language. In Sect. 4, we explain main ideas. Section 5 defines the
system CSLIDω and proves its soundness. In Sect. 6 we give the proof search
algorithm, and show its partial correctness and termination. Section 7 proves the
completeness of CSLIDω. Section 8 presents experimental results. We conclude
in Sect. 9.

2 Symbolic Heaps with Inductive Definitions

This section defines symbolic heaps, inductive definitions, and their semantics.
We will use vector notation −→x to denote a sequence x1, . . . , xk for simplicity.

|−→x | denotes the length of the sequence. Sometimes we will also use a notation of a
sequence to denote a set for simplicity. Then we will write −→p +−→q for the disjoint
union set of the sets −→p and −→q . We write ≡ for the syntactical equivalence.

2.1 Language

Our language is a first order language with a new connective ∗ and inductive
predicates, and defined as follows.

First-order variables x, y, z, w, v, . . ..
Terms t, u, p, q, r:: = x | nil. Inductive Predicate Symbols P,Q, . . ..
We define formulas F,G of separation logic as those of the first-order language

generated by these terms, the propositional constant emp, predicate symbols =,
�→, P ,Q,. . ., and an additional logical connective ∗. We write t �= u for ¬t = u.
We assume some number ncell for the number of elements in a cell. Next we
define symbolic heaps.

Pure formulas Π:: = t = t | t �= t | Π ∧ Π.
Spatial formulas Σ:: = emp | t �→ (t1, . . . , tncell) | P (

−→
t ) | Σ ∗ Σ.

We suppose ∗ binds more tightly than ∧. We will sometimes write P (t) for
P (t,

−→
t ). We write ∗i∈[1,n]Pi(xi) for P1(x1) ∗ . . . ∗ Pn(xn). Similarly we write

∗i∈IPi(xi). We write Π ⊆ Π ′ when all the conjuncts of Π are contained in those
of Π ′.

qf-Symbolic Heaps A,B:: = Π ∧ Σ | Σ. Symbolic Heaps φ:: = ∃−→x A.
Entailments A � B1, . . . , Bn where the succedent is a set {Φ1, . . . , Φn}.
The language has inductive definitions of inductive predicates.

Inductive Definitions P (x,−→y ) =def

∨

i

φi(x,−→y ) where φi is a definition clause.

Definition Clauses φ(x,−→y ) ≡ ∃−→z (Π ∧ x �→ (−→u ) ∗ ∗i∈IPi(zi,
−→
t i)), where

– {zi | i ∈ I} ⊆ −→u (connectivity).
– −→z = {zi | i ∈ I} (strong establishment).
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We call the first argument x of a spatial atomic formula P (x,
−→
t ) a root.

The strong establishment implies the establishment condition required by
the bounded-treewidth condition. These conditions guarantee that the cell at
address x decides the content of every existential variable. It is similar to the
constructively valued condition in [13].

We give some examples of the inductive definitions in the following.
The list segment: ls(x, y) =def x �→ y ∨ ∃z(x �→ (z) ∗ ls(z, y)).
The doubly-linked list: dll(h, p, n, t) =def h = t ∧ h �→ (p, n) ∨ ∃z(h �→ (p, z) ∗

dll(z, h, n, t)).
The nested list: listnest(x) =def ∃z(x �→ (z,nil) ∗ ls(z,nil)) ∨ ∃z1z2(x �→

(z1, z2) ∗ ls(z1,nil) ∗ listnest(z2)).
The nested list segment: lsnest(x, y) =def ∃z(x �→ (z,nil) ∗ ls(z, y)) ∨

∃z1z2(x �→ (z1, z2) ∗ ls(z1, y) ∗ lsnest(z2, y)).
The skip list: skl1(x, y) =def x �→ (nil, y) ∨ ∃z(x �→ (nil, z) ∗ skl1(z, y)),

skl2(x, y) =def ∃z(x �→ (y, z) ∗ skl1(z, y)) ∨ ∃z1z2(x �→ (z1, z2) ∗ skl1(z2, z1) ∗
skl2(z1, y)).

Many examples in [10] are definable in our system as follows: List, ListE,
ListO are definable, RList is not definable. DLL, PeList, SLL, BSLL, BinTree,
BinTreeSeg, BinListFirst, BinListSecond, BinPath are not definable but will be
definable in a straightforward extension of our system by handling emp in the
base cases.

We prepare some notions. We define P (m) by

P (0)(−→x ) ≡ (nil �= nil),

P (m+1)(−→x ) ≡
∨

i

φi[P := P (m)],

where P (−→x ) =def

∨

i

φi. P (m) is m-time unfold of P . We define F (m) as obtained

from F by replacing every inductive predicate P by P (m).
We write T for a finite set of terms. We define (�= (T1, T2)) as∧

t1∈T1,t2∈T2,t1 �≡t2

t1 �= t2. We write y �= −→
t for (�= ({y},

−→
t )). We define (�= (T )) as

(�= (T ∪ {nil}, T )).

2.2 Semantics

This subsection gives semantics of the language.
We define the following structure: Vars is the set of variables, Val = N ,

Locs = {x ∈ N |x > 0}, Heaps = Locs →fin Valncell , Stores = Vars → Val.
Each s ∈ Stores is called a store. Each h ∈ Heaps is called a heap, Dom(h) is the
domain of h, and Range(h) is the range of h. We write h = h1+h2 when Dom(h1)
and Dom(h2) are disjoint and the graph of h is the union of those of h1 and h2.
A pair (s, h) is called a heap model, which means a memory state. The value s(x)
means the value of the variable x in the model (s, h). Each value a ∈ Dom(h)
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means an address, and the value of h(a) is the content of the memory cell at
address a in the heap h. We suppose each memory cell has ncell elements as its
content.

The interpretation s(t) for any term t is defined as 0 for nil and s(x) for the
variable x. For a formula F we define the interpretation s, h |= F as follows.

s, h |= t1 = t2 if s(t1) = s(t2),
s, h |= F1 ∧ F2 if s, h |= F1 and s, h |= F2,
s, h |= ¬F if s, h �|= F ,
s, h |= emp if Dom(h) = ∅,
s, h |= t �→ (t1, . . . , tncell) if Dom(h) = {s(t)} and h(s(t)) = (s(t1), . . . , s(tncell)),

s, h |= F1 ∗ F2 if s, h1 |= F1 and s, h2 |= F2 for some h1 + h2 = h,
s, h |= P (

−→
t ) if s, h |= P (m)(

−→
t ) for some m,

s, h |= ∃zF if s[z := b], h |= F for some b ∈ Val.
We write A |= B1, . . . , Bn for ∀sh(s, h |= A→((s, h |= B1)∨. . .∨(s, h |= Bn))).

The entailment A � B1, . . . , Bn is said to be valid if A |= B1, . . . , Bn holds. Our
goal in this paper is to decide the validity of a given entailment.

For saving space, we identify some syntactical objects that have the same
meaning, namely, we use implicit transformation of formulas by using the fol-
lowing properties: ∧ is commutative, associative, and idempotent; ∗ is com-
mutative, associative, and has the unit emp; = is symmetric; ∃xG ↔ G,
∃x(F ∧ G) ↔ ∃xF ∧ G, and ∃x(F ∗ G) ↔ ∃xF ∗ G, when F,G are formulas
and x /∈ FV(G); Π ∧ (F ∗ G) ↔ (Π ∧ F ) ∗ G.

3 Language Extension

3.1 Extended Language

In this section, we extend our language from symbolic heaps by ↓, ⇑ and —∗ind,
since they are necessary to show the completeness.

We extend inductive predicate symbols with Q1—∗ind . . . —∗indQm—∗indP
where Q1, . . . , Qm, P are original inductive predicate symbols. We call m
the depth of wands. We write Q1(

−→
t 1)—∗ind . . . —∗indQm(

−→
t m)—∗indP (

−→
t ) for

(Q1—∗ind . . . —∗indQm—∗indP )(
−→
t ,

−→
t 1, . . . ,

−→
t m).

We extend our first-order language with the extended inductive predicate
symbols and unary predicate symbols ↓ and ⇑. t ↓ means that t is in Dom(h)
and t ⇑ means that t is unrelated to the heap. We write t ↑ for ¬t ↓. Then t ↑
means that t is not in the domain of the heap.

We write F,G,Σ,A,B, φ for the same syntactical objects with the extended
inductive predicate symbols. We also extend definition clauses with the extended
inductive predicate symbols. We use X,Y for a finite set of variables and write
X ↑ for

∧
{t ↑ | t ∈ X}. X ↓ and X ⇑ are similarly defined. We write ∃−→x ↓ for

∃−→x (−→x ↓ ∧ . . .). Similarly we write ∃−→x ⇑.
We define: P:: = �→ | P where P varies in inductive predicate symbols,
Cones Δ:: = P(

−→
t ) ∧ X ↓, and Γ :: = Δ | Γ ∗ Γ , and ψ:: = Y ↑ ∧Π ∧ Γ , and

Φ:: = ∃−→x ∃−→y ⇑ (Π ∧ Γ ).
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A cone P(
−→
t )∧X ↓ is a unit of our spatial formula. It means that the atomic

formula P(
−→
t ) specifies the heap as well as the variables X are allocated in the

heap. Γ is a separating conjunction of cones. ψ will be used as an antecedent of
our extended entailment and has more information that the variables Y are not
allocated in the heap. Φ will be used in a succedent of our extended entailment
and it existentially quantifies variables −→x −→y with information that the variables−→y are not related to the heap.

We define entailments as ψ � Φ1, . . . , Φn.
We write J for an entailment. In ψ,Φ, we call Γ a spatial part and Π a pure

part.
We define Roots(X ⇑ ∧Y ↑ ∧Π ∧∗i∈I(Pi(xi,

−→
t i)∧Xi ↓)) = {xi|i ∈ I}. Then

we define Roots(∃xΦ) = Roots(Φ) if x /∈ Roots(Φ), and undefined otherwise. We
define Cells(X ⇑ ∧Y ↑ ∧Π ∧ ∗i∈I(Xi ↓ ∧Pi(xi))) =

⋃
i∈I Xi. Then we define

Cells(∃xΦ) = Cells(Φ) − {x}. We write Alloc(F ) for Roots(F ) ∪ Cells(F ) and
call them allocated variables of F . Alloc(F ) means the set of variables allocated
in the heap.

We define a substitution as a map from the set of variables to the set of
terms. For a substitution θ, we define Dom(θ) = {x|θ(x) �≡ x} and Range(θ) =
{θ(x)|x ∈ Dom(θ)}. We define a variable renaming as a substitution that is a
bijection among variables with a finite domain.

We define semantics of the extended language.

Definition 3.1. s, h |= t ↓ if s(t) ∈ Dom(h).
s, h |= t ⇑ if s(t) /∈ Range(h) ∪ Dom(h).
We say ψ � Φ1, . . . , Φn is valid when for all s, h, if s, h |= ψ then there is

some i such that s, h |= Φi. We write ψ |= Φ1, . . . , Φn when ψ � Φ1, . . . , Φn is
valid.

For saving space, we identify some syntactical objects that have the same
meaning, namely, we use implicit transformation of formulas by using the fol-
lowing property: (F ∗ G) ∧ X ⇑↔ (F ∧ X ⇑) ∗ (G ∧ X ⇑).

3.2 Inductive Wand

This section gives the definition clauses for inductive predicates that contain the
inductive wand.

Definition 3.2. The definition clauses of Q(y,−→w )—∗indP (x,−→y ) are as follows:
Case 1. ∃(−→z − zi)((−→w =

−→
t i ∧ Π ∧ x �→ (−→u ) ∗ ∗l �=iPl(zl,

−→
t l))[zi := y]) where

Q = Pi and ∃−→z (Π ∧ x �→ (−→u ) ∗ ∗lPl(zl,
−→
t l)) is a definition clause of P (x,−→y ).

Case 2. ∃−→z (Π ∧ x �→ (−→u ) ∗ ∗l �=i,l∈LPl(zl,
−→
t l) ∗ (Q(y,−→w )—∗indPi(zi,

−→
t i)))

where i ∈ L and ∃−→z (Π ∧ x �→ (−→u ) ∗ ∗l∈LPl(zl,
−→
t l)) is a definition clause of

P (x,−→y ).

Q(y)—∗indP (x) is inductively defined by the definition clauses obtained by
removing Q(y) from the definition clauses of P (x). The inductive wand
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Q(y)—∗indP (x) plays a similar role to the ordinary magic wand Q(y)—∗P (x),
but it is stronger than the ordinary magic wand and it is defined syntactically.
Roughly speaking, it is defined to be false if it cannot be defined syntactically.

Example 3.3. ls(y, v)—∗indls(x,w) =def w = v ∧ x �→ (y) ∨ ∃z(x �→ (z) ∗
(ls(y, v)—∗indls(z, w))).

We can show P (x)—∗indQ(y)—∗indR(z) and Q(y)—∗indP (x)—∗indR(z) are
equivalent.

Lemma 3.4. If
−→
R is P1(

−→
t 1), . . . , Pn(

−→
t n) and

−→
R ′ is its permutation, then−→

R ′—∗indP (
−→
t ) is equivalent to

−→
R—∗indP (

−→
t ).

We have an elimination rule for inductive wands.

Lemma 3.5 (Strong Wand Elimination). (Q(y,−→w )—∗indP (x,−→z )) ∗
(
−−−−−→
R(v,−→u )—∗indQ(y,−→w )) |= −−−−−→

R(v,−→u )—∗indP (x,−→z ).

We define Dep(P ) as the set of inductive predicate symbols that appear in
the unfolding of P .

We have an introduction rule for inductive wands.

Lemma 3.6 (Strong Wand Introduction). x �= y ∧ y ↓ ∧(
−−−−−→
R(v,−→u )—∗ind

P (x,−→z )) |= {∃−→w ((Q(y,−→w ),
−−−−−−−→
R1(v1,−→u 1)—∗indP (x,−→z )) ∗ (

−−−−−−−→
R2(v2,−→u 2)—∗indQ(y,

−→w )) | −−−−−→
R(v,−→u ) = (

−−−−−−−→
R1(v1,−→u 1) +

−−−−−−−→
R2(v2,−→u 2)), Q ∈ Dep(P ),

−→
R 2 ⊆ Dep(Q)}.

4 Main Ideas

We explain our main ideas of our contributions. They are for the language exten-
sion and the proof search algorithm.

A rule is defined to be locally complete if all its assumptions are valid when
its conclusion is valid.

(1) We extend our language to t ↓ and t ↑ and disjunction in a succedent. We
use them to case analysis. One of advantages by this case analysis is to guide
how to use the split rule. For a formula F , by case analysis, we can assume every
variable x is in Alloc(F ) or has x ↑ in F . Then we can impose the condition
Alloc(F1) = Alloc(G1) and Alloc(F2) = Alloc(G2) to use the split rule

F1 � G1 F2 � G2

F1 ∗ F2 � G1 ∗ G2

without loss of generality in proof search, since a valid subgoal has the same
allocated variables on both sides.

Disjunction of a succedent is necessary for completeness. If we unfold P (x)
in the succedent of A � P (x) ∗ B and P (x) has two definition clauses R1(x) and
R2(x), we need A � ((R1(x) ∗ B) ∨ (R2(x) ∗ B)) to preserve the validity of the
entailment by unfolding. We will write A � R1(x) ∗ B,R2(x) ∗ B for it.
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(2) Our new inference rules are the factor rule and the split rule. The factor
rule transforms P (x) into (Q(y)—∗indP (x)) ∗ Q(y), where Q(y)—∗indP (x) is
an atomic formula with another inductive predicate Q(−)—∗indP (−), which is
called an inductive wand. The factor rule exposes a hidden y as the root of
the inductive predicate Q, and this will be used for the unfolding step in our
proof search algorithm. Since the factor rule divides a single atomic formula
P (x) into two atomic formulas Q(y)—∗indP (x) and Q(y) where x is allocated in
one formula and y is allocated in the other formula, this will also enable us to
split separating conjunction according to allocated variables in our proof search
algorithm.

We may consider a nested inductive wand like R(−)—∗ind(Q(−)—∗indP (−)).
We will show that the depth of necessary inductive wands for our proof search
algorithm has a fixed upper bound.

(3) The split rule is new since it handles disjunctions in the succedent.
For our proof search algorithm, we need the split rule that keeps validity.

A naive split rule does not keep validity. For example, consider F1 ∗ F2 � G1
1 ∗

G1
2, G

2
1∗G2

2 where Alloc(F1) = Alloc(Gi
1) and Alloc(F2) = Alloc(Gi

2) for i = 1, 2.
Then, if s, h1 |= F1 and s, h2 |= F2, and s, h1+h2 |= Gi

1∗Gi
2, then s, h1 |= Gi

1 and
s, h2 |= Gi

2 because of the shape of a heap for a cone. Then we have F1 � G1
1, G

2
1

and F2 � G1
2, G

2
2. If we transform it into F1 � G1

1, G
2
1 and F2 � G1

2, G
2
2, this

transformation does not keep validity, namely, the naive split rule

F1 � G1
1, G

2
1 F2 � G1

2, G
2
2

F1 ∗ F2 � G1
1 ∗ G1

2, G
2
1 ∗ G2

2

is locally complete but may not be sound, since there is a case when G1
1 and G2

2

are true but G1
2 and G2

1 are false. We will propose a new split rule for disjunction.
We do not transform the goal into a single subgoal set that keeps validity, but
instead we will transform the goal into a set of subgoal sets such that at least one
subgoal set keeps validity. We will say these rules are selectively local complete.
For example, by our split rule, F1 ∗ F2 � G1

1 ∗ G1
2, G

2
1 ∗ G2

2 will be transformed
into four subgoal sets:

(A) F1 � G1
1 and F1 � G2

1 and F2 � G1
2, G

2
2,

or (B) F1 � G2
1 and F2 � G2

2,
or (C) F1 � G1

1 and F2 � G1
2,

or (D) F1 � G1
1, G

2
1 and F2 � G1

2 and F2 � G2
2.

Then we can show that at least one of these four cases is valid when F1∗F2 |=
G1

1 ∗ G1
2, G

2
1 ∗ G2

2.
(4) We explain an outline of our proof search algorithm.
Our proof search algorithm is based on the U-M-R-S strategy illustrated in

the introduction. Given a goal entailment J , we start with a singleton subgoal
set {J}. We repeatedly apply the following steps to a subgoal set to transform
a goal entailment into subgoal entailments keeping validity. When the subgoal
set becomes empty, we return Yes. If a new subgoal entailment is the same
as that appeared already during computation, we finish this subgoal, since we
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can discharge this subgoal by the bud-companion relation in cyclic proofs. This
algorithm is nondeterministic because of choice of the split rules at the step 6.

Step 1. Choose a subgoal entailment J from a subgoal set.
Step 2. Unfold atomic formulas of the root x in both antecedent and succe-

dent of J , for some common root x in the antecedent and each disjunct of the
succedent. If necessary, we use the factor rule to find a common root.

Step 3. Match the atomic formula x �→ (
−→
t ) of root x in both antecedent and

succedent.
Step 4. Remove the same x �→ (

−→
t ) in both the antecedent and the succedent.

Step 5. If the antecedent has emp, do the following. If the succedent also has
emp, then we finish this subgoal (this subgoal is valid) and remove it from the
subgoal set. Otherwise we return No (this subgoal is invalid).

Step 6. Apply the split rule repeatedly until the spatial part of the antecedent
in every entailment becomes atomic. According to our split rule, we will split
it so that the allocated variables of the antecedent and each disjunct of the
succedent coincide. If necessary, use the factor rule to divide an atomic formula
so that the split rule is applicable.

This algorithm terminates since the set of entailments whose antecedent spa-
tial part is atomic is finite up to variable renaming after some normalization. If
the algorithm were not terminating, by executing the step 6 infinitely many time,
we would have infinitely many such entailments, which leads to contradiction.

5 Logical System CSLIDω

This section defines our logical system CSLIDω and shows its soundness.

5.1 Inference Rules

This subsection gives the set of inference rules.
We write F [F ′] to explicitly display the subformula F ′ at a positive position

in F . We say Φ is equality-full when Π contains (�= (−→y , V ∪ −→y ∪ {nil})) where
Φ is ∃−→x ∃−→y ⇑ (Π ∧ Γ ) and V = FV(Φ).

Standard or easy inference rules are given in Fig. 1. The other inference rules
are given in Fig. 2. A set of rules is defined to be selectively locally complete if
there is some locally complete rule in the set.

The rule (Factor) is sound, since P (t) from (Q(y)—∗indP (t)) ∗ Q(y) is true
by the definition of —∗ind. For local completeness, the rule (Factor) lists up all
possible cases for Q(y) in the disjunction.

The rules (∃ Amalg1, 2) amalgamate ∃x’s under some condition, which guar-
antees that existentials have the same values. The soundness and local complete-
ness of these rules can be shown by using the definition of t ↓ and t ⇑.

The rule (∗) is a new split rule since it handles disjunction in the succe-
dent. We explain the idea of our split rule. Consider F1 ∗ F2 |= G1

1 ∗ G1
2, G

2
1 ∗

G2
2, G

3
1∗G3

2, G
4
1∗G4

2 where Alloc(F1) = Alloc(Gi
1) and Alloc(F2) = Alloc(Gi

2) for
i = 1, 2, 3, 4. Let I be {1, 2, 3, 4}. Then for any I ′ ⊆ I we have F1 |= {Gi

1 | i ∈ I ′}
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Fig. 1. Inference rules 1

or F2 |= {Gi
2 | i ∈ I − I ′}. It is because F1 �|= {Gi

1 | i ∈ I ′} and F2 �|= {Gi
2 | i ∈

I − I ′} imply F1 ∗ F2 �|= G1
1 ∗ G1

2, G
2
1 ∗ G2

2, G
3
1 ∗ G3

2, G
4
1 ∗ G4

2. For example, by
taking I ′ to be {1, 2}, we have F1 |= G1

1, G
2
1 or F2 |= G3

2, G
4
2. The split rule is

defined by picking up either of F1 � {Gi
1 | i ∈ I ′} or F2 � {Gi

2 | i ∈ I − I ′} for
each I ′ ⊆ I and taking them to be the assumptions. Then each of these rules
becomes sound, by some property of propositional logic. Moreover at least one
of these rule becomes locally complete, since either of F1 |= {Gi

1 | i ∈ I ′} or
F2 |= {Gi

2 | i ∈ I − I ′} for all I ′ ⊆ I.

5.2 Proofs in CSLIDω

We define a proof in CSLIDω. It is the same as that in [9] except we use a slightly
different form of global trace condition.

Definition 5.1. For CSLIDω, we define a preproof to be an ordinary proof
figure by the inference rules with open assumptions. For a preproof, we consider
a map (called a bud-companion relation) from the set of occurrences of open
assumptions (called a bud) to the set of inner occurrences of sequents (called
a companion). For CSLIDω, We define a cyclic proof to be a preproof with a
bud-companion relation where each bud has a companion below it and there is
some rule (∗ �→) between them.
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Fig. 2. Inference rules 2

Instead of the global trace condition in ordinary cyclic proof systems [9],
CSLIDω requires some (∗ �→) rule between a bud and its companion.

We can show the soundness theorem of CSLIDω by using the fact that
|Dom(h)| decreases upwardly by the rule (∗ �→).

Theorem 5.2 (Soundness). If J is provable in CSLIDω, then J is valid.

6 Proof Search Algorithm

This section gives the proof search algorithm to decide the provability of a given
entailment. It will also be shown to decide the validity of a given entailment.
First we define normal form, next define the algorithm, then we will show the
partial correctness, and finally the termination of the algorithm by using normal
form.

6.1 Normal Form

This section defines normal form.
In our proof search algorithm, a normal form appears as a bud in cyclic

proofs. A normal form is obtained from an entailment such that the spatial part
of its antecedent is a single cone, by transforming it into a simpler form keeping
validity. The set of normal forms with d can be shown to be finite up to renaming.
Since there is some d such that we can show that extended inductive predicates
of depth ≤ d are sufficient for the algorithm, the termination of the algorithm
will be proved by counting normal forms.

Definition 6.1 (Normal Form). For a given number d, an entailment J is
called normal with d if J is of the form Y ↑ ∧Π ∧ Γ � {Φi | i ∈ I} and Φi is of
the form ∃−→x i∃−→y i ⇑ (Πi ∧ Γi) and by letting V be FV(J),

1. Γ is a single cone (single cone condition),
2. Y + Alloc(Γ ) = V (variable condition),
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3. Roots(Φi) is defined (disjunct root condition),
4. Alloc(Γ ) = Alloc(Φi) for every i ∈ I (allocation condition),
5. −→x i ⊆ Cells(Γi) (disjunct existential condition),
6. Π is (�= V ) (equality condition),
7. Πi is (�= (−→x i

−→y i, V + {−→x i
−→y i,nil}) (disjunct equality condition),

8. if i �= j, then Φi �≡ Φjθ for all variable renaming θ such that Dom(θ) ∩
FV(Γ ) = ∅ (disjunct renaming condition),

9. FV(Y,Π) ⊆ FV(Γ, (Φi)i) (antecedent variable condition),

10. |−→Q | ≤ d for every predicate symbol
−→
Q—∗indP in J (wand condition).

For example, the following is a normal form:

{y, z} ↑ ∧ �= ({x, y, z})∧ls(x, y) � ∃w ⇑ (w �= {x, y, z,nil}∧ls(y, w)—∗indls(x, z)).

6.2 Definition of Proof Search Algorithm

For a given entailment A � −→
B of quantifier-free symbolic heaps, our proof search

algorithm returns Yes or No according to whether A � −→
B is valid or not.

The function MainLoop is called in the main function of the algorithm.
Mainloop repeatedly executes the unfold-match-remove-split steps, to produce
subgoals from a subgoal. When the same subgoal is generated as that gener-
ated already, by cyclic proof mechanism, this subgoal is discharged immediately.
Because of a choice of the split rules, MainLoop is executed nondeterministically.

Let kmax be the maximum arity for predicate symbols in the original lan-
guage.

We assume a satisfiability checking procedure for ψ by extending that for
symbolic heaps given in [12]. This procedure is given in [32].

In our algorithm, we do the following trivial steps at several places and we omit
their description for simplicity: (1) case analysis by x = t∨x �= t for each variable
x and term t, (2) case analysis by x ↓ ∨x ↑, (3) transformation into the form of
entailment ψ � −→

Φ , (4) removing unsatisfiable disjuncts, (5) removing a subgoal
when its antecedent is unsatisfiable. For (1), the case analysis by x = t ∨ x �= t

in the antecedent means to transform F � −→
G into two subgoals x = t, F � −→

G

and x �= t, F � −→
G . The case analysis by x = t ∨ x �= t in the succedent means to

transform F � (Gi)i into a subgoal F � (Gi ∧x = t,Gi ∧x �= t)i. For (2), the case
analysis in the antecedent and the succedent is similarly defined to (1).

The proof search algorithm is defined in Algorithm 1.
The input for the proof search algorithm is an entailment of quantifier-free

symbolic heaps. First we do case analysis of =, �= and ↓, ↑ to produce subgoals−→
J . For example,

ls(x, y) ∗ ls(y, z) � ls(x, z)

is transformed into subgoals, one subgoal of which is equivalent to

z ↑ ∧z = x ∧ z �= y ∧ z �= nil ∧ ls(x, y) ∗ ls(y, z) � ls(x, z) ∧ y ↓ .
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Algorithm 1: Proof Search Algorithm

input: quantifier-free symbolic heap A � −→
B

output: Yes or No

Do case analysis of =, �= and ↓, ↑ on A � −→
B to obtain subgoal entailments

−→
J .

for each J in
−→
J do

dwand := kmax + |Alloc(antecedent of J)|.
Call MainLoop(J, dwand).
if some nondeterministic computation of MainLoop returns Yes then

continue
else return No
end if

end for
return Yes.

MainLoop is nondeterministically executed. When some nondeterministic com-
putation returns Yes, J is valid and we go to the next subgoal. If every nonde-
terministic computation returns No, J is invalid and we return No. When all the
subgoals are solved, we return Yes.

The function MainLoop is defined in Algorithm 2.
The input J of MainLoop is a goal entailment J and the input d is the depth

for the factor procedure. First we set S to be {(J, ∅)}. S is a set of pairs of a
subgoal and a history (a set of entailments that appear already). In the while
loop, we take a subgoal J and a history H from the set S. If J appears already,
we can discharge J by cyclic proof mechanism, and go to the next subgoal.
We add J to the history H. If J does not have common roots on both sides,
then we call the factor procedure with depth d. The factor procedure applies

the factor rule with the condition |
−−−−−→
Q1(

−→
t 1), Q(y,−→w )| ≤ d and |

−−−−−→
Q2(

−→
t 2)| ≤ d.

Then we do the unfold-match-remove steps, namely, we unfold predicates with
the common root x in the antecedent and each disjunction of the succedent, and
we match x �→ (

−→
t ) on both sides of the antecedent and the succedent, and we

remove the same x �→ (
−→
t ) from the antecedent and the succedent. Then we

check termination condition as follows when the spatial part of the antecedent
is emp: if the spatial part of some disjunct in the succedent is emp, we discharge
this subgoal (J is valid), and otherwise we return No (J is invalid). Then we
apply the split procedure. In the split procedure, first we apply the factor rule to
divide an atomic formula if necessary, next we apply (∃Amalg1) and (∃Amalg2)
for dividing existential scopes if necessary, and then we apply the split rule under
the condition Alloc(Fj) = Alloc(Gi

j) for j = 1, 2 and i ∈ I. Since the split rules
at this step are selectively locally complete, we try all the split rules and we
produce a set G of subgoal sets instead of a single subgoal set. We repeat until
subgoals become those with a single cone. At least one subgoal set in G keeps
validity. Hence we nondeterministically continue computation for each subgoal
set R in G. Then we transform each subgoal in R into normal form and put it
into the subgoal set S.
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Algorithm 2: Function MainLoop
input: goal entailment J , maximum inductive wand depth d
output: Yes or No
S := {J}. H := ∅.
while S �= ∅ do

Choose J ∈ S.
S := S − {J}.
if there are some J ′ ∈ H and θ such that J ′θ ≡ J then continue
H := H + {J}
if J does not have common roots then

apply the factor procedure with depth d to J .
end if
Do unfold-match-remove steps to J .
if antecedent of J has emp then

if succedent of J has emp then continue
else return No

end if
Apply the split procedure repeatedly to J to obtain a set G of subgoal sets

with a single cone.
Nondeterministically choose a subgoal set R ∈ G.
for each J in R do

Normalize J .
S := S ∪ {J}.

end for
end while
return Yes

We can show the partial correctness of the algorithm with Yes, by checking
each step consists of application of inference rules. We will discuss the case with
No in the completeness proof later. Note that we can transform a cyclic proof
produced by the algorithm such that the companion may not be below some
bud into a cyclic proof such that the companion is below any bud, by expanding
each bud by the companion some times and finding a repetition on each path.

Lemma 6.2 (Partial Correctness). If the algorithm returns Yes, then the
input entailment is provable.

6.3 Termination

This subsection shows the termination of the algorithm.
Since a normal form during the loop has the maximum depth of inductive

wands, the number of normal forms up to variable renaming is proved to be
finite.

Lemma 6.3. The set of normal forms with d up to variable renaming is finite.

We can show the termination by using the finiteness.
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Lemma 6.4 (Termination). (1) Every nondeterministic computation of
MainLoop terminates.

(2) The proof search procedure terminates.

The proof of the previous lemma evaluates the length of the history H used
in the algorithm. By using it, we can show time complexity of the algorithm.

Proposition 6.5. The time complexity of the proof search algorithm is nonde-
terministic double exponential time.

7 Completeness of CSLIDω

This section shows the completeness of CSLIDω by using the algorithm.
By using the properties of each step in the algorithm, we can show that for

a valid input, some nondeterministic computation does not return No.

Lemma 7.1. (1) Each step in the proof search algorithm except the application
of the split rule and the factor rule transforms a valid entailment into valid
entailments.

(2) In the proof search algorithm there is some nondeterministic computation
in which every application of the split rule and the factor rule is locally complete.

(3) If a valid entailment is given to MainLoop, some nondeterministic com-
putation does not return No.

Finally we can prove the completeness of CSLIDω.

Theorem 7.2 (Completeness). (1) The system CSLIDω is complete. Namely,
if a given entailment J is valid, then it is provable in CSLIDω.

(2) The proof search algorithm decides the validity of a given entailment.
Namely, For a given input J , the proof search algorithm returns Yes when the
input is valid, and it returns No when the input is invalid.

Proof. (1) Assume J is valid in order to show J is provable in CSLIDω. When we
input J to the algorithm, by Lemma 7.1 (3), in each case of calling MainLoop,
some nondeterministic computation does not return No. By Lemma 6.4 (1), the
nondeterministic computation returns Yes. Hence the algorithm returns Yes. By
Lemma 6.2, J is provable.

(2) Assume J is valid, in order to show the algorithm with input J returns
Yes. In the same way as (1), the algorithm is shown to return Yes.

Assume J is invalid, in order to show the algorithm with input J returns
No. By Lemma 6.4 (2), the algorithm terminates. Assume that it returns Yes,
in order to show contradiction. By Lemma 6.2, J is provable. By Theorem 5.2,
J is valid, which leads to contradiction. �
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8 Implementation and Experiments

This section explains our entailment checker Cycomp, which is an implemen-
tation of our proof search algorithm. Cycomp is implemented in OCaml with
about 7600 lines of codes (including the internally-called satisfiability checker
and some optimization). The core part is an implementation of the pseudocode
given in a detailed version of this paper [32]. The test problems for evaluating
Cycomp and the definitions of inductive predicates used in the problems are
presented in Tables 1 and 2, respectively.

The table also compares Cycomp with the other two state-of-the-art entail-
ment solvers for separation logic with general inductively defined predicates:
Songbird and Cyclist. Songbird searches structural induction proofs synthesiz-
ing lemmas which would be induction hypotheses. We used the latest version
of Songbird (called SLS [28]), which can solve most of the valid entailments
from SL-COMP [27]. Cyclist [33] is based on a proof search procedure with the
Unfold-Match strategy on cyclic proofs. Our test was done with the option of
Cyclist that enables lemma synthesis. OutScope in the Songbird column about

Table 1. Experimental results

No Problem Status Cycomp Cyclist Songbird

1 ls(x, y) ∗ list(y) � list(x) Valid 0.020 0.072 0.098

2 ls(x1, x2) ∗ ls(x2, x3) � ls(x1, x3) Valid 0.121 0.075 0.071

3 ls(x1, x2) ∗ ls(x2, x3) ∗ ls(x3, x4) � ls(x1, x4) Valid 0.446 0.546 0.102

4 ls(x, y) � lsO(x, y), lsE(x, y) Valid 0.258 Timeout OutScope

5 ls(x, y) � lsO(x, y) Invalid 0.122 Timeout (UN)6.345

6 lsO(x, y) ∗ lsE(y, z) � ls(x, z) Valid 1.953 1.534 0.056

7 ls(x, y) � lsa(x, y, y) Invalid 0.239 Timeout (IC)6.251

8 ls(x, z) ∗ ls(z, x) � lsa(x, x, z) Valid 0.187 14.241 0.158

9 lsa(x, x, y) � lsa(y, y, x) Valid 0.819 Timeout (IC)0.040

10 h �→ (p, z) ∗ dll(z, h, n, t) � dll(h, p, n, t) Valid 15.157 0.019 0.031

11 dll(h, nil, nil, t) � dllr(t, nil, nil, h) Valid 0.342 Timeout 13.320

12 dll(h, p, n, t) � dllr(t, n, p, h) Valid 225.930 0.257 0.099

13 x �→ (y, a) ∗ slk1(a, y) ∗ slk2(y, z) � slk2(x, z) Valid 1.167 0.016 0.212

14 x �→ (y, a) ∗ slk1(a, b) ∗ slk1(b, y) ∗ slk2(y, nil) � slk2(x, nil) Valid 2.154 4.421 0.136

15 bpath(x, y) ∗ bpath(y, z) � bpath(x, z) Valid 0.422 0.169 0.057

16 bpath(x, y) � bts(x, y) Valid 1.309 0.124 0.081

17 bts(x, nil) � bt(x) Valid 0.117 0.280 0.591

18 bt(x) � bts(x, nil) Valid 0.086 0.256 0.630

19 bts(x, y) ∗ bt(y) � bt(x) Valid 2.457 0.398 1.060

20 bpath(x, y) ∗ bts(y, nil) � bt(x) Valid 1.016 20.046 0.959

21 dll(h, p, z, w) ∗ dlist(z, w, t) � dlist(h, p, t) Valid Timeout 0.066 0.051

22 dll(h, nil, z, u) ∗ dll(z, u, nil, t) � dll(h, nil, nil, t) Valid Timeout 2.457 0.071

23 slk2(x, y) ∗ slk2(y, nil) � slk2(x, nil) Valid Timeout 0.182 0.117

24 bts(x, y) ∗ bts(y, nil) � bts(x, nil) Valid Timeout 0.749 0.299

25 bpath(x, y) ∗ y �→ (l, r) ∗ bt(l) ∗ bts(r, nil) � bts(x, nil) Valid Timeout 1.394 0.585

26 ls(x, x) ∗ list(y) � list(x) Invalid 0.018 Timeout (UN)0.342

27 ls(x1, x2) ∗ ls(x2, x3) � ls(x1, x1) Invalid 0.038 Timeout (UN)0.041

28 lsO(x, y) ∗ lsE(y, z) � ls(x, x) Invalid 0.333 Timeout (UN)7.461

29 dll(h, nil, nil, t) � h �→ (nil, nil) Invalid 0.029 Timeout (UN)0.039

30 dll(h, nil, nil, t) � dllr(h, nil, nil, t) Invalid 0.055 Timeout (UN)8.863
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the problem 4 means that the format of the problem is out of the syntactic restric-
tion of Songbird, namely the problem contains multiple conclusions. Times with
(UN) and (IC) in that column mean that Songbird answered “Unknown” and
an incorrect answer with that time, respectively.

The test was done on a laptop PC with a 1.60 GHz Intel(R) Core(TM) i5-
8250U CPU, 8 GB memory, and Linux Mint 19. The inputs were executed with
600 seconds timeout setting.

In general, for valid problems, the performance of Cycomp strongly depends
on the numbers of inductive predicates and variables that appear in an input
entailment. These numbers cause increasing of the number of succedents after
applying the factor rule, then the number of the case analysis for (∗)-rule dras-
tically increases, since it requires 2n cases for an subgoal entailment with n-
succedents. Our implementation contains some simple optimization processes
to reduce this increase as much as possible. With this optimization, Cycomp
quickly shows problems with small numbers, such as the problems 1, 2, and 3.
The problem 11 is obtained from the problem 12 by substituting nil for the vari-
ables p and n. Cycomp can show the problem 11 faster than the problem 12,
since the number of variables are decreased by the substitution. (Interestingly,
Cyclist and Songbird have the opposite results.) However, for more complicated
valid problems such as the problems from 21 to 25, Cycomp causes time out.
In order to obtain a more efficient procedure, it would be important to intro-
duce suitable heuristics to handle numbers of succedents. Supporting the lemma
synthesis mechanism would be a possible direction.

For invalid problems, Cycomp explores all branches including back-tracking
of the (∗)-split rule and finally answers “Invalid” when all the branches are fin-
ished with failure. Although this mechanism may potentially take time depend-
ing on problems, Cycomp can finish quickly if it finds a contradiction of each

Table 2. Definitions of inductive predicates

Singly-linked list list(x) := x �→ (nil) ∨ ∃z(x �→ (z) ∗ list(z))

Lseg with odd length lsO(x, y) := x �→ (y) ∨ ∃z(x �→ (z) ∗ lsE(z, y))

Lseg with even length lsE(x, y) := ∃z(x �→ (z) ∗ lsO(z, y))

Lseg with allocated celllsa(x, y, z) := x = z ∧ x �→ (y) ∨ ∃w(x = z ∧ x �→ (w) ∗ lsa(w, y, w))

∨∃w(x �→ (w) ∗ lsa(w, y, z))

Doubly-linked list dlist(h, p, t) := h = t ∧ h �→ (p, nil) ∨ ∃z(h �→ (p, z) ∗ dlist(z, h, t))

Reversed dll dllr(h, p, n, t) := h = t ∧ h �→ (n, p) ∨ ∃z(h �→ (z, p) ∗ dllr(z, h, n, t))

Skip list (1st level) slk1(a, b) := a �→ (nil, b) ∨ ∃c(a �→ (nil, c) ∗ slk1(c, b))

Skip list (2nd level) slk2(x, y) := x �→ (y, y) ∨ ∃z, a(x �→ (z, z) ∗ slk2(z, y))

∨∃z, a(x �→ (z, a) ∗ slk1(a, z) ∗ slk2(z, y))

Binary tree bt(x) := x �→ (nil, nil) ∨ ∃l(x �→ (l, nil) ∗ bt(l)) ∨ ∃r(x �→ (nil, r) ∗ bt(r))

∨∃l, r(x �→ (l, r) ∗ bt(l) ∗ bt(r))

Binary tree segment bts(x, y) := x �→ (y, nil) ∨ x �→ (nil, y) ∨ ∃l(x �→ (l, nil) ∗ bts(l, y))

∨∃r(x �→ (nil, r) ∗ bts(r, y)) ∨ ∃l, r(x �→ (l, r) ∗ bt(l) ∗ bts(r, y))

∨∃l, r(x �→ (l, r) ∗ bts(l, y) ∗ bt(r))

Path in binary-tree bpath(x, y) := x �→ (nil, y) ∨ x �→ (y, nil) ∨ ∃z(x �→ (z, nil) ∗ bpath(z, y))

∨∃z(x �→ (nil, z) ∗ bpath(z, y))
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branch at an earlier stage, as our experimental results of the problems 5, 7, and
26–30 show. For these invalid problems, Cyclist timed out and Songbird almost
answered “Unknown”, since they are not decision procedures. It would be an
advantage of Cycomp against these existing solvers.

9 Conclusion

We have proposed the cyclic proof system CSLIDω for symbolic heaps with cone
inductive definitions, and have proved its soundness theorem and its complete-
ness theorem, and have given the proof search algorithm that decides the validity
of a given entailment. Furthermore we have implemented a prototype system for
the algorithm and have presented experimental results.

Future work would be to extend ideas in this paper to other systems, in
particular, a system with arrays.
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Abstract. Recently, a proper bisimulation equivalence relation for ran-
dom process model has been defined in a model independent approach.
Model independence clarifies the difference between nondeterministic
and probabilistic actions in concurrency and makes the new equivalence
relation to be congruent. In this paper, we focus on the finite state ran-
domized CCS model and deepen the previous work in two aspects. First,
we show that the equivalence relation can be decided in polynomial time.
Second, we give a sound and complete axiomatization system for this
model. The algorithm and axiomatization system also have the merit of
model independency as they can be easily generalized to the randomized
extension of any finite state concurrent model.

1 Introduction

Probabilistic processes have been studied for many years as an important exten-
sion of classical concurrency theory. Representative work includes the probabilis-
tic extensions of CCS [9,14], the probabilistic CSP [20], the probabilistic ACP
[1], and the probabilistic asynchronous π calculus [15].

As being summarized in [8], there are mainly two kinds of channel random-
ness used in these works. One is generative models [9,17] which bind probabilistic
choice to external actions, and the other is reactive models [5,11,19] which inter-
leave nondeterministic choice with probabilistic distributions (i.e., probabilistic
choice). The former setup could lead to difficulties in the interleaving of process
operations such as composition and restriction. The latter one, however, forces
an alternation between nondeterministic choice and probabilistic distribution
which brings unnecessary complexity to the system. A different approach is pro-
posed to tackle these problems, by taking a fundamental separation between
nondeterministic interaction and probabilistic choice [8]. More specifically, the
only probabilistic choice (or random choice) allowed in this new setup is defined
as ⊕

i∈I

piτ.Ti (1)

where the size of the index set I is at least 2 and
∑

i∈I pi = 1. For any (non-
probabilistic) process model M, τ is an abstraction for its internal actions. As
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probabilistic choice only happens via τ , (1) ensures the probabilistic choice to
be independent of the settings of the original model M. Thus we can uniformly
extend M into its randomized version. In addition to the syntax conciseness,
using this extension the probabilistic model will have some elegant algebraic
properties. In [8], the author has proposed two examples (processes A,C) to
show that (1) helps to overcome the possible confusing caused by traditional
syntax, especially under process combinators such as summation, composition,
and restriction. At the same time, the corresponding branching bisimilarity rela-
tion is shown to be congruent.

Apart from the nice properties brought by this model independent approach,
there are still a few issues which require re-investigation, such as equivalence
checking and axiomatization. Equivalence checking is one of the important prob-
lems in the area of automatic verification. Given two processes E and F of a
model, equivalence checking decides whether E and F can be related by a specific
equivalence relation. There has been a lot of work on equivalence checking since
1980s [18]. At the same time, axiomatization aims at understanding a language
through a set of axioms and inference rules that help to reason about the prop-
erties of programs [5]. It is worthwhile to work out a complete axiomatization
system for the branching bisimilarity defined in [8].

In this paper we focus on these two problems for randomized model. As a case
study, we consider the randomized CCS (Milner’s Calculus of Communicating
Systems [21]) model. As CCS model is Turing complete the general equivalence
checking problem is undecidable, it is standard to consider the finite state sub-
model [10,22]. Studies on these problems can shed light on the study of other
probabilistic process models, such as probabilistic π et al.

The rest of the paper is structured as follows. Section 2 gives preliminary def-
initions, notational conventions, the random process model and the equivalence
congruence; Sect. 3 gives the polynomial equivalence checking algorithm; Sect. 4
axiomatizes the relation of Sect. 2 and shows the soundness and completeness of
the axiomatic system; Sect. 5 contains some concluding remarks.

2 Preliminary

Let Chan be the set of channels, ranged over by lowercase letters. The set of
nondeterministic actions is denoted as Actd = Chan∪{τ}, ranged over by small
Greek letters. The set of probabilistic actions is Actp = {qτ | 0 < q < 1}.
Act = Actd ∪ Actp. For a natural number k ∈ N, we use [k] to denote the set
{1, 2, . . . , k}.

2.1 Finite State Random Process Model

It is well known that Milner’s CCS [21] is Turing complete, which means that
RCCS (Randomized CCS) in [8] is also Turing complete as it is an extension of
CCS. In order to get any meaningful algorithmic results, as well as what is more
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suitable for modeling the reality, we will concentrate on the finite state fragment
of the full model, denoted as RCCSfs. The grammar of RCCSfs, is as follows:

T := X
∣∣∣

∑

i∈I

αi.Ti

∣∣∣ μX.T
∣∣∣

⊕

i∈I

piτ.Ti (2)

In (2), X is a variable.
∑

i∈I αi.Ti means nondeterministic choice term.⊕
i∈I piτ.Ti means probabilistic choice term. μX.T means fixpoint term. The

indexing set I is finite and
∑

i∈I pi = 1. We write 0 for the nondeterminis-
tic term

∑
i∈∅ αi.Ti in which ∅ is the empty set. A trailing 0 is often omitted.

Particularly, sometimes instead of the standard form T =
∑

i∈I αi.Ti we use
T = T ′ + α.T ′′ to specify one of the summand terms α.T ′′.

A process variable X that appears in
∑

i∈I αi.Ti or
⊕

i∈I piτ.Ti is guarded,
X appears in a.Ti for some visible action a is strongly guarded. We use fv(T )
to stand for the set of variables occurring free (i.e., not bound by μ) in T . A
term is a process if it contains no free variables. We will use X,Y,Z for process
variables and A,B,C,D,E, F,G,H,L for processes. The set of all RCCSfs pro-
cesses (terms resp.) will be represented by PRCCSfs

(TRCCSfs
resp.). Comparing

to the definition in [8], we drop the composition operation for its combination
with fixpoint operator could lead to processes with infinite state. A simple coun-
terexample is μX.(s + t|τ.X).

The transition semantics of RCCSfs is generated by the following labelled
transition rules, where λ ∈ Act:

X
X−→ 0

∑
i∈I αi.Ti

αi−→ Ti

⊕
i∈I piτ.Ti

piτ−−→ Ti

T{μX.T/X} λ−→ T ′

μX.T
λ−→ T ′

(3)

Follow the convention used in [8], for an equivalence relation E on PRCCSfs
,

we write AEB for (A,B) ∈ E . The notation PRCCSfs
/E stands for the set of

equivalence classes defined by E . The equivalence class containing A is denoted
by [A]E . For C ∈ PRCCSfs

/E we write A
l−→ C for the fact that A

l−→ A′ ∈ C for
some A′.

We use Tv to stand for terms that are actually a variable (the one in the
first rule). Terms that can immediately do a nondeterministic choice (as in the
second rule) are called nondeterministic terms, denoted as Td. Terms that can
immediately do a probabilistic action are called probabilistic terms, denoted as
Tp (as in the last rule). It is obvious that TRCCSfs

= Td ∪ Tp ∪ Tv.
For terms S and T , if S can be transformed into T via one or a sequence of

rules in (3), we say that S can reach T , or equivalently, T is reachable from S.
Given S ∈ PRCCSfs

, we use RS to stand for the set of process expressions
reachable from S. The following proposition justifies the finite state property of
the model defined in (2).

Proposition 1. Given S ∈ PRCCSfs
, RS is finite.
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The proposition can be proved by induction on the grammar depth which is
standard. We omit the details here.

2.2 Branching Bisimulation Congruence

Here we give the bisimulation relation for which we will study the equivalence
checking algorithm and axiomatization. For self-containment, we include relating
definitions in this section.

The collective silent transition is firstly introduce in [8]:
⊕

i∈I

piτ.Ti

∐
i∈I piτ−−−−−−→

∐

i∈I

Ti

Definition 1 (ε-tree [8]). Let A ∈ PRCCSfs
be a process and E be an equiva-

lence relation on PRCCSfs
An ε-tree tAE of A with regard to E is a labeled-tree

such that the following statements hold true.

– Every node of tAE is labeled by elements of [A]E . The root is labeled by A.
– The edges are labeled by elements of (0, 1].
– If an edge from a node B to a node B′ is labeled p for some p ∈ (0, 1), then

some collective silent transition B

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Bi exists such that for

every i ∈ [k], there exists an edge from B to Bi labeled pi, and B1, . . . , Bk are
the only children of B.

– If an edge from a node B to a node B′ is labeled 1, then B
τ−→ B′ and B′ is

the only child of B.

Intuitively epsilon-tree is a random version of a sequence of state-preserving
internal actions. Sometimes we will use t instead of tAE for simplicity when A and
E are unstressed in the context.

A branch in an ε-tree t is either a finite path going from the root to a leaf
or an infinite path. The length |π| of a branch π is the number of edges in π if
π is finite; it is ω otherwise. For i ≤ |π| let π(i) be the label of the i-th edge.
The probability P(π) of a finite branch π is

∏
i≤|π| π(i). A branch of length zero

is a single node, and its probability is 1. The probability of an infinite path
A

p1−→ p2−→ . . .
pk−→ . . . is limk→∞

∏
i≤k pi.

Given an ε-tree t, the probability of the finite branches of t is defined by
P

f (t) = limk→∞ P
k(t), where

P
k(t) =

∑
{P(π) | π is a finite branch in t such that |π| ≤ k}.

An ε-tree tAE is regular if Pf (tAE ) = 1.

Definition 2 (l-transition [8]). For l ∈ Actd and B ∈ PRCCSfs
/E, suppose

l �= τ ∨ B �= [A]E . An l-transition from A to B with regard to E consists of a
regular ε-tree tAE of A with regard to E and a transition L

l−→ L′ ∈ B for every

leaf L of tAE . We will write A �E
l−→ B if there is an l-transition from A to B

with regard to E.



392 W. Zhang et al.

Intuitively l-transition characterizes that after some state-preserving silent
transitions, an l-action is performed and the resulting processes should be in the
same equivalence class.

Suppose L

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Li such that ∃i ∈ [k], Li ∈ B �= [L]E . We define

P(L
∐

i∈[k] piτ−−−−−−→ B) =
∑

{pi|L
piτ−−→ Li ∈ B ∧ i ∈ [k]}

Define the weighted probability

PE(L
∐

i∈[k] piτ−−−−−−→ B) = P(L
∐

i∈[k] piτ−−−−−−→ B)/(1 − P(L
∐

i∈[k] piτ−−−−−−→ [L]E))

Definition 3 (q-transition [8]). A q-transition from A to B with regard to E
consists of a regular ε-tree tAE of A with regard to E and for every leaf L of tAE , a

collective silent transition L

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Li such that PE(L

∐
i∈[k] piτ−−−−−−→ B) =

q. We use A �E
q−→ B to mean there is a q-transition from A to B with regard to

the relation E.

Intuitively q-transition characterizes that after some state-preserving silent
transitions, random choices with total conditional probability q are performed
and the resulting processes should be in the same equivalence class.

Definition 4. [8] An equivalence E on P is a branching bisimulation if (1, 2)
are valid.

1. If BEA �E
l−→ C ∈ P/E such that l �= τ ∨ C �= [A]E , then B �E

l−→ C.
2. If BEA �E

q−→ C ∈ P/E such that C �= [A]E , then B �E
q−→ C.

Finally we can define the equality on PRCCSfs
. It is the largest branching

bisimulation on PRCCSfs
, denoted by �RCCSfs

. Sometimes we will use � instead
of �RCCSfs

for simplicity when its meaning is clear from the context.
The following proposition is a special case of the Theorem 17 in [8]. Here we

present it without proof.

Proposition 2. The equality �RCCSfs
is a congruence.

3 Equivalence Checking Algorithm

Equivalence checking is one of the key problems in verification. It gives the
answer whether two systems are related by a given equivalent relation. As far as
branching bisimulation is concerned, some representative includes [7,16]. Mean-
while, to the probabilistic process calculus model, there are also some interesting
work such as [3,23].

Here we develop an algorithm to decide the equivalence relation �RCCSfs

for RCCSfs processes. Recall that for a given random process A, we use RA

to denote the set of all processes reachable from A. In Proposition 1, we have
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already known that this set is finite, here we will further show that it can be
constructed in polynomial time with respect to the length of the given process.
Pseudocode of our algorithm is given in Algorithm 1.

Algorithm 1. Compute RA

Input: A ∈ PRCCSfs

Output: RA

1: RA := ∅, R′ := {A}
2: while R′ �= ∅ do
3: Choose a process B from R′, R′ := R′ − {B}, RA := RA ∪ {B}
4: if B =

∑
i∈I αi.Ti then

5: R′ := R′ ∪ {Ti : i ∈ I} \ RA

6: else if B =
⊕

i∈I piτ.Ti then
7: R′ := R′ ∪ {Ti : i ∈ I} \ RA

8: else if B = μX.T then
9: R′ := R′ ∪ {T{μX.T/X}} \ RA

10: return RA

For a better understanding of the algorithm, we give one simple example
here.

Example 1. Let H = μX.( 12τ.(a + τ.X) ⊕ 1
2τ.(b + τ.X)), then Algorithm 1 will

return

RH =
{

H,
1
2
τ.(a + τ.H) ⊕ 1

2
τ.(b + τ.H), a + τ.H, b + τ.H,0

}
.

As usual, a partition of process set P is a collection of X containing pairwise
disjoint subsets of P such that each element A ∈ P is contained in some C ∈ X .
The equivalence class containing A is denoted by [A]X . Let EX be the equivalence
relation induced by the partition X . Given two partitions X1 and X2 of the same
set. We say X1 is coarser than X2 (or equivalently X2 is finer than X1) if every
element in X2 is a subset of some element in X1.

Next we propose a technical definition which is closely related to the concep-
tion of ε-tree given in Definition 1.

Definition 5. The ε-graph of A with regard to an equivalence relation E is a
weighted directed graph, denoted by GA

E . GA
E is defined by merging nodes of the

same name from an ε-tree tAE into one node. A vertex in GA
E is called a sink

node if its out degree is 0. Let sn(GA
E ) be the set of all sink nodes of GA

E .

For given process A and E , though there could be infinitely many different
ε-trees, the number of all possible ε-graphs of A with regard to E is finite.

Proposition 3. Let P be a process set and E be an equivalence relation. For a
process A ∈ P, and a process set P ′ ⊆ P, there exists a regular ε-tree tAE with
leaf nodes set P ′ (all of the same name) if and only if there exists an ε-graph
GA

E with a sink node named P ′.
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By Proposition 3, the transformation from ε-tree to ε-graph will not affect the
bisimilarity relation. Yet ε-graph is technically more convenient for presenting
our equivalence checking algorithm.

We put an example here to explain the difference between ε-tree and ε-graph.

Example 2. For the process H in Example 1, a branching bisimulation for PH is
the equivalence E rendering the truth that [H]E = [a + τ.H]E = [b + τ.H]E . For
the ε-tree in Fig. 1(a), the corresponding ε-graph has a sink node b + τ.H. For
the second one in Fig. 1(b) the sink node is a + τ.H. For the ε-tree in Fig. 1(c),
there does not exist a visible action that all leaves can immediately do, and there
does not exist a sink node for the ε-graph.

Fig. 1. ε-trees and corresponding ε-graphs

Here we will introduce one more convention for the description of our algo-
rithm. We use the symbol ϕ̂τ to represent any pτ where p ∈ (0, 1]. In other words,
using ϕ̂τ means we are talking about a probabilistic action without specifying
the concrete probability value.

Definition 6. Let X be a partition of process set P. A splitter of a partition X
is a triple (C1, l, C2) consisting of C1, C2 ∈ X and an action l ∈ Actd ∪{ϕ̂τ}. One
of the following statements is valid:

1. If l ∈ Actd, and C1 �= C2 when l = τ , then there exist some A,A′ ∈ C1,
such that for exactly one of A,A′, there is an ε-graph GA

X (GA′
X resp.), all of

sn(GA
X ) (sn(GA′

X ) resp.) can do an immediate l action to C2.
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2. If l = ϕ̂τ , and C1 �= C2, then there exist A,A′ ∈ C1 and q ∈ (0, 1], such
that for exactly one of A,A′, there is an ε-graph GA

X (GA′
X resp.), for any

T ∈ sn(GA
X ) (sn(GA′

X ) resp.), PEX (T
∐

i∈[k] piτ−−−−−−→ C2) = q.

Intuitively speaking, our equivalence checking strategy starts with a finite
set which contains all reachable states for a pair of processes (the coarsest par-
tition). Keep refining the current sets into finer ones according to their one-step
difference until no further refinement is possible (the finest partition), where
states of the same set are equivalent to each other.

In detail, to refine the partition X , according to Definition 6, there are two
cases to be considered:

1. If X has a splitter (C1, ϕ̂τ, C2).
Let tn(P,X ) ⊆ P be the set composed of all processes that can perform
probabilistic τ step into a different class with nonzero probability. Firstly,
we split C1 ∩ tn(P,X ) into C1 ∩ tn(P,X )/ =p, where A =p A′ iff

PX (A
∐

i∈[k] piτ−−−−−−→ C2) = PX (A′
∐

i∈[k] piτ−−−−−−→ C2). Then, an equivalent class
B ∈ C1 ∩ tn(P,X )/ =p is enriched with process B ∈ C1 \ tn(P,X ) which
satisfies (denoted as Δ) :
(a) There exists an ε-graph GB

X with sn(GB
X ) ⊆ B.

(b) For any other B′ ∈ C1 ∩ tn(P,X )/ =p, there does not exist an ε-graph
GB

X with sn(GB
X ) ⊆ B′.

Let B def= B ∪ {B : B ∈ C1, B satisfies Δ} be the closure of B. We put the
remaining processes into
Res(C1)

def= {C ∈ C1 : C does not satisfies Δ for any B ∈ C1 ∩ tn(P,X )/ =p}.
Formally, the strategy we used for refining X via a splitter (C1, pτ, C2) is:

Refine(X , (C1, τ, C2))
def=(X \ {C1}) ∪ {B : B ∈ C1 ∩ tn(P,X )/ =p}

∪ ({Res(C1)} \ {∅}).

2. If X has a splitter (C1, α, C2), α ∈ Actd, and C1 �= C2 when α = τ .
Let D def= {B ∈ C1 : there exists an ε-graph GB

X , all of sn(GB
X ) can do an

immediate α action to C2}. We can define the method for refining X via a
splitter (C1, α, C2):

Refine(X , (C1, α, C2))
def= (X \ {C1}) ∪ D ∪ (C1 \ D).

Note that for every partition X which is coarser than P/ � and every
nonempty splitter (C1, l, C2) of X , the partition Refine(X , (C1, l, C2)) is no finer
than P/ � while strictly finer than X . If there is no splitter for X (i.e., if neither
of the above two cases applies), then through proof by contradiction, it can be
easily concluded that X = P/ �. This analysis turns out to be the proof of the
following proposition.

Proposition 4. Let X be a partition of process set P. If X cannot be refined
anymore, then X = P/ �.
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This justifies the correctness of Algorithm 2.

Algorithm 2. Equivalence Checking Algorithm
Input: Process A , B
Output: Is A � B?
1: Compute R := RA ∪ RB

2: X := {R}
3: while X contains a splitter (C1, l, C2) do
4: X := Refine(X , (C1, l, C2))

5: if [A]X = [B]X then
6: return true
7: else
8: return false

Theorem 1. �RCCSfs
can be decided in polynomial time.

Proof. There exists a constant c, such that the numbers of elements in R is
bounded by c · (|A|+ |B|) and for process E ∈ R, |E| < c · (|A|+ |B|). The while
loop of line 3–4 can be repeated at most c · (|A| + |B|) times. For each l and C2,
we can construct the process set S = {A | A ∈ C1, A

l−→ C2} in O((|A| + |B|)3)
time and then decide the condition in line 3 by searching for an ε-graph with
sink nodes in S. It can be done by depth first search in O((|A| + |B|)3) time.
Overall the algorithm will terminate in O((|A| + |B|)4) time.

4 Axiomatizations

4.1 Discussion of the Axioms

In the original CCS model, a complete axiomatization for branching bisimula-
tion congruence of finite process will first convert any expression into a strongly
guarded one. If two strongly guarded expressions are branching bisimilar, they
can be proved to be equal in axiomatic system [10]. However, in probabilistic
model, there exist some expressions that cannot be transformed to a strongly

guarded one, e.g., μX(τ.(
1
2
τ.X ⊕ 1

2
τ.b) + a). It means that a τ -loop containing

probabilistic τ may be not state-preserving under �. We will define probabilis-
tically guarded. Intuitively X is probabilistically guarded in T if T can not do
some τ actions to X with probability 1.

Definition 7. The variable X is probabilistically guarded in T if at least one of
the following statements is true:

– There is no free occurrence of X in T , or every free occurrence of X in T
occurs within some subexpression a.F .

– If T ∈ Td, then for any term T ′ such that T
τ−→ T ′, X is probabilistically

guarded in T ′.
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– If T ∈ Tp, then there exists a term T ′ such that T
pτ−→ T ′, X is probabilistically

guarded in T ′.

Otherwise X is probabilistically unguarded in T .

Example 3. X is probabilistically guarded in
1
2
τ.(

1
2
τ.a ⊕ 1

2
τ.X) ⊕ 1

2
τ.(

1
2
τ.X ⊕

1
2
τ.X). X is probabilistically unguarded in a.X + τ.X.

If for every occurrence of μX.T in E, X is probabilistically guarded in T , we
call process E is probabilistically guarded. Let Pg

RCCSfs
be the set of probabilis-

tically guarded processes.
The axioms that characterize the equivalence relation given in Sect. 2.2 are

listed below. We will prove that this set of axioms is sound and complete for the
relation �RCCSfs

.
E1 T = T

E2 if S = T then T = S

E3 if S = T and T = R then S = R

E4 if Si = Ti for each i ∈ I then
∑

i∈I αi.Si =
∑

i∈I αi.Ti

E5 if Si = Ti for each i ∈ I and
∑

i∈I pi = 1, then
⊕

i∈I piτ.Si =
⊕

i∈I piτi.Ti

E6 if S = T then μX.S = μX.T

A1
⊕

i∈I piτ.Si ⊕ pτ.S ⊕ qτ.S =
⊕

i∈I piτ.Si ⊕ (p + q)τ.S, p + q < 1

A2 pτ.S ⊕ qτ.S = τ.S

B1
(∑

i∈I′⊆I αi.Si

)
+ τ.(

∑
i∈I αi.Si) =

∑
i∈I αi.Si

B2 if
p1

q1
= · · · = pi

qi
< 1 and

∑
i∈I qi = 1,

then
⊕

i∈I piτ.Si ⊕ pτ.(
⊕

i∈I qiτ.Si) =
⊕

i∈I qiτ.Si, p = 1 − ∑
i∈I pi

R1 μX.T = T{μX.T/X}
R2 if S = T{S/X} then S = μX.T , provided X is probabilistically guarded in T

R3 μX.(τ.X +
∑

i∈I αi.Ti) = μX(
∑

i∈I αi.Ti)

R4 μX.(τ.(τ.S +
∑

i∈I αi.Ti) +
∑

j∈J βj .Rj) = μX(τ.S +
∑

i∈I αi.Ti +
∑

j∈J βj .Rj),

provided X is probabilistically unguarded in S

One writes A � E = F , with A a list of axiom names, if the equation E = F
is derivable from the axioms in A. In this paper, we take the convention that
E1−6 and A1−2 are always in A.

Comparing to the earlier work on axiomatization for probabilistic bisim-
ulation [2,4,6,13,17,24], B2 highlights the nucleus of the model independent
approach for random process model. That is, instead of the absolute probability
value (or probability distribution), we use the weighted probability in [8], which
basically characterizes the conditional probability of transferring from one state
to another.
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Fig. 2. State-preserving τ and pτ actions

Axioms B1, B2 are both motivated by the axiom B in [10]. B1 modifies B in
two aspects: Firstly, it does not use the heading external action, as the grammar
ensures the terms are weak guarded; Secondly, it uses summation of a set of
terms rather than binary summation. The intuition of axiom B1 is showed in
Fig. 2(a) [12]. The τ action E1

τ−→ E2 is state-preserving if process E2 can do any
actions E1 can do. B2 is a random extension of B1. The intuition of axiom B2
is showed in Fig. 2(b). The probabilistic τ action F1

pτ−→ F2 is state-preserving if
process F2 can do exactly F1 can do with the same weighted probability(

pi

qi
is a

constant value for i ∈ {1, 2, 3}).
The presentation of our work on soundness and completeness follows a similar

strategy as in [10]. One can refer to van Glabbeek’s paper for a comparison.

4.2 Soundness

The soundness of E1−6 has been validated by Proposition 2. The soundness
of A1−2, B1 and R3 can be easily shown by the definition of the equivalence
relation. The soundness of R1 follows from the fact that μX.T

α−→ F ⇐⇒
T{μX.T/X} α−→ F . The soundness of the remaining axioms are given below.

Proposition 5 (Soundness of B2). If
p1
q1

= · · · =
pi

qi
< 1 and

∑
i∈I qi = 1,

then
⊕

i∈I piτ.Ei ⊕ pτ.(
⊕

i∈I qiτ.Ei) �
⊕

i∈I qiτ.Ei, p = 1 −
∑

i∈I pi.

Proof. Let F1 =
⊕

i∈I qiτ.Ei and F2 =
⊕

i∈I piτ.Ei ⊕ pτ.(
⊕

i∈I qiτ.Ei). We
consider the following two cases:

– ∀i ∈ I, Ei � F1.
For every ε-tree t

Fj	 , j ∈ {1, 2}, we can construct an ε-tree t
F3−j	 with the

same set of leaf nodes of t
Fj	 . Thus F1 � F2.

– ∃i ∈ I, Ei �� F1.
Let I ′ ⊆ I be the set of indices satisfying Ei′ �� F1, i′ ∈ I ′. Let ri′ =

qi′∑
i′∈I′ qi′

, then Fj �E
ri′−−→ [Ei′ ]	 for j ∈ {1, 2}.
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Definition 8. A branching bisimulation up to � is a symmetric relation R ⊆
PRCCSfs

× PRCCSfs
such that

– if ERF and E �	
l−→ B1 such that l �= τ ∨B1 �= [E]	, then there exists E′, F ′

such that E′ ∈ B1 ∧ F ′ ∈ B2 ∧ F �	
l−→ B2 ∧ (E′, F ′) ∈ R.

– if ERF and E �	
q−→ B1 such that B1 �= [E]	, then there exists E′, F ′ such

that E′ ∈ B1 ∧ F ′ ∈ B2 ∧ F �	
q−→ B2 ∧ (E′, F ′) ∈ R.

Proposition 6. If R is a branching bisimulation up to � and ERF , then
E � F .

Proposition 7. Variable X is probabilistically guarded in a term T ∈ TRCCSfs
.

If there is an l-transition or q-transition from T{F/X} to B, then there is a
process T ′{F/X} ∈ B such that T ′ is reachable from T .

Proof. Induction on the structure of T .

Proposition 8 (Soundness of R2). If F � S{F/X}, then F � μX.S, pro-
vided X is probabilistically guarded in S.

Proof. Consider the following relation

R =
{(

T{F/Y }, T{μX.S/Y }
) ∣∣∣ fv(T ) = {Y }

}
.

Then (F, μX.S) ∈ R. By Proposition 6, it suffices to prove that the symmetric
closure of R is a branching bisimulation up to �.

– If T{F/Y } �	
l−→ B1 such that l �= τ ∨ B1 �= [T{F/Y }]	.

Consider the ε-tree t
T{F/Y }
	 , we can construct an ε-tree t

T{μX.S/Y }
	 from

t
T{F/Y }
	 by recursively replace the subtree from node F with an ε-tree

t
S{F/X}
	 .

If there is a process E′ = T ′{F/Y } ∈ B1 such that T ′ is reachable from T ,
then E′RF ′ = T ′{μX.S/Y } ∈ B2 and T{μX.S/Y } �	

l−→ B2.
Otherwise, every branch of t

T{F/Y }
	 steps into F . Let E′ ∈ B1, E′ is reach-

able from F . Since F � S{F/X}, and X is probabilistically guarded in S,
by Proposition 7, there is a process E′′{F/X} � E′ where E′′ is reach-
able from S. What’s more, there is a process F ′ = E′′{μX.S/X} ∈ B2 and
T{μX.S/Y } �	

l−→ B2. Then we have

(E′′{F/X}, F ′) = (E′′{Y/X}{F/Y }, E′′{μX.Y/X}{μX.S/Y }) ∈ R

– If T{F/Y } �	
q−→ B1 such that B1 �= [T{F/Y }]	.

Similar with the case of l-transition.
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Proposition 9 (Soundness of R4). μX.(τ.(τ.S +
∑

i∈I αi.Ti) +
∑

j∈J βj .Rj)
� μX(τ.S +

∑
i∈I αi.Ti +

∑
j∈J βj .Rj), provided X is probabilistically unguarded

in term E.

Proof. Let
A1 = μX.(τ.(τ.S +

∑

i∈I

αi.Ti) +
∑

j∈J

βj .Rj)

A2 = τ.S{A1/X} +
∑

i∈I

αi.Ti{A1/X}

B1 = μX(τ.S +
∑

i∈I

αi.Ti +
∑

j∈J

βj .Rj)

First, we show that A1 � A2. It is obvious that A1 can simulate A2. For
the other direction, since X is probabilistically unguarded in S, actions li ∈
{τ} ∪ {pτ | 0 < p < 1} in A2

τ−→ S{A1/X} l1−→ S1{A1/X} l2−→ . . .
lm−→ A1, can

be proved state-preserving. We can construct an ε-tree tA2	 with every branch
stepping into A1. Thus for every tA1	 , there is an ε-tree tA2	 with the same set of
leaf nodes.

With the fact A1
τ−→ A2 is state-preserving, A1 can simulate B1. For the

other direction, we will construct an ε-tree tB1	 by a given tA1	 . tB1	 does nothing
if A1

τ−→ A2 in tA1	 , and follows tA1	 in other cases. It can be seen that tA1	 and
tB1	 have the same set of leaf nodes.

Corollary 1 (Soundness). For E, F ∈ PRCCSfs
, if B1−2, R1−4 � E = F ,

then E � F .

4.3 Completeness

By induction on the structure of TRCCSfs
, we can prove that:

Lemma 1. For a term T ∈ TRCCSfs
,

– if T
X−→ 0, then � T = X;

– if T ∈ Td, then � T =
∑

i∈I{αi.Ti|T αi−→ Ti};
– if T ∈ Tp, then � T =

⊕
i∈I{piτ.Ti|T

piτ−−→ Ti}.

Definition 9. A recursive specification S is a set of equations {X = SX |X ∈
VS} with VS being a variable set. Process E A-provably satisfies the recursive
specification S in the variable X0 ∈ VS if there are processes EX for X ∈ VS with
E = EX0 , such that for X ∈ VS

A � EX = SX{EY /Y }Y ∈VS

Let S be a specification, and X,Y ∈ VS define X >u Y if Y occurs free and
probabilistically unguarded in EX . S is called guarded if >u is well-founded on
VS.
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Proposition 10 (Unique Solutions). If S is a finite guarded recursive speci-
fication and X0 ∈ VS, then there is a process E which R1-provably satisfies S in
X0. Moreover if there are two such processes E and F , then R2 � E = F .

Proof. By induction on the number of equations of S as in [22].

Proposition 11. Let E0, F0 ∈ Pg
RCCSfs

. If E0 � F0, then there is a finite
guarded recursive specification S provably satisfied in the same variable X0 by
both E0 and F0.

Proof. Take a fresh set of variables VS = {XEF |E ∈ PE0 , F ∈ PF0 , E � F}.
X0 = XE0F0 . Now for XEF ∈ VS, S contains the following equations:

1. If E ∈ Tp, and for every E′ such that E
pτ−→ E′, E′ � E, then XEF =⊕

{pτ.XE′F |E pτ−→ E′}.
2. If condition in case 1 is not satisfied, F ∈ Tp, and for every F ′ such that

F
pτ−→ F ′, F ′ � F , then XEF =

⊕
{pτ.XEF ′ |F pτ−→ F ′}.

3. If conditions in case 1 and 2 are not satisfied, and E ∈ Tp, F ∈ Tp, then
for every Bi such that E �	

q−→ Bi, F �	
q−→ Bi, choose a pair of processes

Ei, Fi ∈ Bi, XEF =
⊕

Bi
{qτ.XEiFi

}.
4. If E ∈ Td, F ∈ Td then XEF =

∑
{α.XE′F ′ |E α−→ E′, F α−→ F ′, E′ � F ′} +∑

{τ.XE′F |E τ−→ E′, E′ � F} +
∑

{τ.XEF ′ |F τ−→ F ′, E � F ′}.
5. Otherwise, XEF =

∑
{τ.XE′F |E τ−→ E′, E′ � F} +

∑
{τ.XEF ′ |F τ−→ F ′, E �

F ′}.

The corresponding process of variable XEF is E. We will prove B1−2, R1−2 �
E = SXEF

{E′/XE′F ′}XE′F ′∈VS
. Then E0 is B1−2, R1−2 provably satisfying S

in X0. The same statement for F0 then follows by symmetry.
The case 1, 2, 5 can be proved directly by Lemma 1.
Case 3 is the different part with the proof in [10]. In case 3, E ∈ Tp, F ∈ Tp,

and both of E and F can directly do some probabilistic τ action to a different
equivalence class. It will be sufficient to prove the following claim:

Claim. For G ∈ Pg
RCCSfs

, if G �	
qi−→ Ei for i ∈ I, then B1−2, R1−2 � G =⊕

i∈I qiτ.Ei.

Proof. Define the lexicographic ordering (m,n) < (m′, n′) as m < m′ or (m = m′

and n < n′). We also define (m1, n1) + (m2, n2) = (m1 + m2, n1 + n2) and
(m,n)1 = m, (m,n)2 = n.

Define the following rank function r : Pg
RCCSfs

→ N × N:

r(0) = (0, 0)

r(
⊕

i∈I

piτ.Ei) = (0, 1) + max
i∈I

{r(Ei)}

r(
∑

i∈I

αi.Ei) = max
{

{(0, 1) + r(Ei)|αi = τ} ∪ {(0, 1)|αi �= τ}
}

r(μX.T ) = (1 + r(T{0/X})1, 0)
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By induction on r(G), we can formally prove case 3:

– If r(G) = (0, 1), and G �	
qi−→ Ei for i ∈ I.

Then G must be of the form
⊕

i∈I{
⊕

j∈Ji
pjτ.Ei|

∑
j∈Ji

pj = qi}. Then
(A1) � G =

⊕
i∈I qiτ.Ei.

– If r(G) = (m,n) > (0, 1), and G �	
qi−→ Ei for i ∈ I.

• G =
∑

j∈J αj .Gj . For every j ∈ J , αj = τ and G � Gj �	
qi−→ Ei. And

r(Gj) < r(G).
By induction hypothesis, B1−2, R1−2 � Gj =

⊕
i∈I qiτ.Ei for every

j ∈ J . We can conclude that B1−2, R1−2 � G =
⊕

i∈I qiτ.Ei for every
j ∈ J .

• G =
⊕

j∈J pjτ.Gj . If there exists some j ∈ J , Gj �� G, by Lemma 1,

� G =
⊕

i∈I{piτ.Ei|
pi

qi
= c < 1, G

piτ−−→ Ei �� G} ⊕
⊕

j∈J−I{pjτ.Gj :

G
pjτ−−→ Gj � G}. For every j ∈ J − I, r(Gj) < r(G). By induction

hypothesis, B1, B2, R2 � Gj =
⊕

i∈I qiτ.Ei for every j ∈ J − I, then
B2(A1) � G =

⊕
i∈I qiτ.Ei.

If for every j ∈ J , Gj � G. Then for every j ∈ J , Gj �	
qi−→ Ei and

r(Gj) < r(G). By induction hypothesis, B1−2, R1−2 � Gj =
⊕

i∈I qiτ.Ei,
then (A1) � G =

⊕
i∈I qiτ.Ei.

• G = μX.T

T{μX.T/X} �	
qi−→ Ei, then T{

⊕
i∈I qiτ.Ei/X} �	

qi−→ Ei. Since
r(μX.T )1 = 1 + r(T{

⊕
i∈I qiτ.Ei/X})1, r(μX.T ) > r(T{

⊕
i∈I qiτ.Ei/

X}).
By induction hypothesis, � T{

⊕
i∈I qiτ.Ei/X} =

⊕
i∈I qiτ.Ei , R2 �

μX.T =
⊕

i∈I qiτ.Ei.

In case 4, E ∈ Td and F ∈ Td. We need to prove

B1 � E =
∑

{α.E′|E α−→ E′, F α−→ F ′, E′ � F ′}

+
∑

{τ.E′|E τ−→ E′, E′ � F} +
∑

{τ.E|F τ−→ F ′, E � F ′}
(4)

By Lemma 1, � E =
∑

i∈I{αi.Ei : E
αi−→ Ei}, then

B1 � E =
∑

{α.E′|E α−→ E′, F α−→ F ′, E′ � F ′}

+
∑

{τ.E′|E τ−→ E′, E′ � F} + τ.E
(5)

If there exists a process F ′ with F
τ−→ F ′ � E, (4) and (5) are equal directly.

Otherwise, every action from E should be bisimulated by F directly, which means
the set {αi.Ei : E

αi−→ Ei} equals to the set {α.E′|E α−→ E′, F α−→ F ′, E′ �
F ′} ∪ {τ.E′|E τ−→ E′, E′ � F}.

Corollary 2 (Completeness for probabilistically guarded processes).
For E, F ∈ Pg

RCCSfs
, if E � F then B1−2, R1−2 � E = F .
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Proposition 12. For E ∈ PRCCSfs
, there exists a probabilistically guarded pro-

cess E′ with R1, 3, 4 � E = E′.

Proof. Induction on the depth of nesting of recursions in μX.T [10].

Corollary 3 (Completeness for all processes). For E,F ∈ PRCCSfs
, if E �

F then B1−2, R1−4 � E = F .

5 Concluding Remarks

We have studied algorithm and axiomatization of the branching bisimulation
relations for randomized CCS model. We give a polynomial time algorithm for
equivalence checking and show that our axiom system is sound and complete.
These two results, besides their value to the randomized CCS model itself, can
be generalized to other randomized finite state models. The reason is that the
essence of our work is dealing with probabilistic actions, which however, is model
independent.

We are currently planning to extend our axiomatization to the divergence-
sensing branching bisimulation and other equivalences such as testing equiva-
lence. Another interesting topic is to implement the ε-tree technique on other
classical probabilistic process calculi. We believe this is an expecting topic as it
can be regarded as an extension and application of the philosophy of the model
independent method.
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Abstract. Analyzing and verifying heap-manipulating programs automatically
is challenging. A key for fighting the complexity is to develop compositional
methods. For instance, many existing verifiers for heap-manipulating programs
require user-provided specification for each function in the program in order to
decompose the verification problem. The requirement, however, often hinders the
users from applying such tools. To overcome the issue, we propose to automat-
ically learn heap-related program invariants in a property-guided way for each
function call. The invariants are learned based on the memory graphs observed
during test execution and improved through memory graph mutation. We imple-
mented a prototype of our approach and integrated it with two existing program
verifiers. The experimental results show that our approach enhances existing veri-
fiers effectively in automatically verifying complex heap-manipulating programs
with multiple function calls.

1 Introduction

Analyzing and verifying heap-manipulating programs (hereafter heap programs) auto-
matically is challenging [45]. Given the complexity, the key is to develop compositional
methods which allow us to decompose a complex problem into smaller manageable
ones. One successful example is the Infer static analyzer [1], which applies techniques
like bi-abduction for local reasoning [36] to infer a specification for each function in a
program to be analyzed.

While Infer generates function specifications for identifying certain classes of pro-
gram errors, we aim to develop compositional methods for the more challenging task of
verifying heap programs with data structures. In recent years, there have been multiple
tools developed to verify heap programs in a compositional way, including Dafny [31],
GRASShopper [43,44] and HIP [10]. These tools are, however, far from being appli-
cable to real-world complex programs. One reason is that substantial user effort is
needed. In particular, besides providing a specification to verify against, users must pro-
vide auxiliary specification to decompose the verification problem. For instance, Dafny,
GRASShopper and HIP all require users to provide a specification for each function
used in the program. Writing the function specification is highly non-trivial. It is thus
desirable to develop approaches for verifying heap programs in a compositional way
which requires minimum user effort.
c© Springer Nature Switzerland AG 2019
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34175-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-34175-6_21


406 L. H. Pham et al.

In this work, we propose to automatically generate function specifications for com-
positional verification of heap programs. Our approach differs from existing approaches
like Infer in three ways. Firstly, because our goal is to verify the correctness of heap
programs with data structures, our approach generates more expressive function speci-
fications than those generated by Infer.

Secondly, we learn a specification of each function call (rather than each function)
in a property-guided way. For instance, assume that we have the following verifica-
tion problem (expressed in the form of a Hoare triple) {pre}func(); func(); {post}
where pre is a precondition, post is a postcondition and func(); func() are two con-
secutive calls of the same function. We automatically generate a program invariant inv
after the first function call and before the second function call. As a result, we gener-
ate the specification {pre}func(){inv} for the first function call and the specification
{inv}func(){post} for the second function call. The (smaller) problems of verifying
these two Hoare triples thus replace the problem of verifying the original Hoare triple.

Thirdly, our invariant generation method is based on a novel technique, namely, a
combination of classification andmemory-graphmutation.We startwith generatingmul-
tiple random test cases (based on existingmethods [37]).We then instrument the program
and execute the test cases to obtain values of multiple features which are related to the
memory graphs before and after each function call in the program. The obtained fea-
ture vectors are labeled according to the testing results (i.e., whether the postcondition
is satisfied or not). Then we apply a classification algorithm [8] to find an invariant that
separates the feature vectors with different labels. The invariant is an arbitrary boolean
formula of the features, which is then used to decompose the verification problem.

There are two technical challenges which we must solve in order to make the above
approach work. First, what features of the memory graphs shall we use? In this work,
we adopt an expressive specification language for heap programs which combines sep-
aration logic, user-defined inductive predicates and arithmetic [10,23,27,45]. We then
define a set of features based on the specification language. In addition, our approach
allows users to define their own features. Secondly, how do we solve the problem of
the lack of labeled samples, i.e., the test cases which we learn from may be limited. To
overcome the problem, we mutate the memory graphs according to the learned invariant
to validate whether the learned invariant is correct. We refine the invariant based on the
validation result (if necessary) and repeat the process until the invariant is validated.

We implement our idea in a prototype, called SLearner, which takes a program to be
verified as input, generates multiple invariants and outputs a set of decomposed verifi-
cation tasks. We integrate SLearner with two existing state-of-the-art verifiers for heap
programs, i.e., GRASShopper and HIP. Experiments are then performed on 110 pro-
grams manipulating 10 challenging data structures. The experimental results show that,
enhanced with our approach, both GRASShopper and HIP are able to successfully ver-
ify programs with multiple function calls without user-provided function specifications.

The novelty of our work is in learning heap-related specification in a property-
guided way and applying graph mutation to improve the learning process. The rest of
the paper is organized as follows. Section 2 presents an illustrative example. Section 3
presents the details of our approach. Section 4 evaluates our approach. Section 5 reviews
related work. Finally, Sect. 6 concludes.
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Fig. 1. An illustrative example

2 An Illustrative Example

In this section, we illustrate our approach with an example. The program is shown
as function main in Fig. 1, where function createSLL(n) returns a singly-linked list
with length n and function getSum(x, y) returns the sum of the data in two disjoint
singly-linked list objects (pointed to by the two pointers x and y). Note that both func-
tions are recursively defined. The precondition and postcondition are shown at line 2
and 6 respectively. They are specified in an assertion language based on separation
logic (refer to details in Sect. 3). The precondition is self-explanatory. The postcondi-
tion sll(x, )∗sll(y, ) intuitively means that x and y are two disjoint singly-linked
list objects, i.e., sll(x, n) is an inductive predicate denoting that x is a singly-linked
list object with n nodes, and ∗ is the separating conjunction predicate specifying the dis-
jointness in separation logic. Besides the postcondition, we assume that memory safety
is always implicitly asserted and thus must be verified. For instance, we aim to verify
that x.data at line 19 would not result in null-pointer de-referencing.

Our experiment shows that state-of-the-art verifiers like GRASShopper and HIP
cannot verify this program. Only after specifications for both functions createSLL
and getSum are provided manually, the program is verified. On one hand, providing a
specification for every function called by the given program is highly nontrivial. On the
other hand, part of the function specification may be irrelevant to verifying the given
program. For an extreme example, if we change the postcondition of the program shown
in Fig. 1 to true, a complete specification for singly-linked lists would not be necessary
to verify the program.

Our approach is to automatically learn a just-enough invariant before and after
each function call so that we can verify the program in a compositional way. For this
example, we learn two invariants: inv1 right after the first function call at line 3 and
inv2 right after the second function call at line 4. Next, we verify the program by
verifying the following three Hoare triples: {m ≤ n}createSLL(m){inv1[res/x]};
{inv1}createSLL(n){inv2[res/y]}; and {inv2}getSum{sll(x, )∗sll(y, )} with
res is a special variable for the return value of a function and inv1[res/x] is a sub-
stitution of all variable x in inv1 by variable res. As the program in each Hoare triple
involves only one function, existing verifiers like GRASShopper and HIP can automat-
ically verify the Hoare triples.
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Table 1. Collected feature vectors and labels

is sll(x) is sll(y) is sll(x) ∧ is sll(y) ∧ sep(x, y) len sll(x) ≤ len sll(y) label

m=1, n=0 true true true false negative

m=0, n=1 true true true true positive

To learn inv1 and inv2, we instrument the program to collect a set of features at
the learning points and collect their values during test executions. For instance, Table 1
shows a few of the features and their values for the above program after line 4 for
learning inv2. The first row shows the features and the second and third rows show
the values of the features given two test cases {m=1, n=0} and {m=0, n=1} respec-
tively. The features are designed based on our assertion language. In particular, feature
len sll(x) is a numeric value denoting the length of a singly-linked list x which is
extracted based on the user-defined predicate sll; feature is sll(x) denotes whether
x points to a singly-linked list, and feature sep(x, y) denotes whether x and y are dis-
joint in the heap. We label each feature vector with either negative or positive, where
negative means that a memory error is generated, the postcondition is violated, or the
test case likely runs into infinite loop (i.e., it does not stop after certain time units); and
positive means otherwise.

Next, we apply a classification algorithm [8] to generate a predicate which separates
the positive and negative feature vectors. The predicate takes the form of an arbitrary
boolean formula of the features. Given the feature vectors in Table 1, the generated
predicate is: len sll(x) ≤ len sll(y). Although this predicate is an invariant after
line 4, it is not strong enough to verify the postcondition. This is in general a problem
due to having a limited number of test cases. To solve the problem, we systematically
mutate the memory graphs obtained during the test executions to obtain more labeled
feature vectors with the aim to improve the predicate (see details in Sect. 3.5). In our
example, with the additional feature vectors, the classification algorithm generates the
following predicate for inv2.

(is sll(x) ∧ is sll(y) ∧ sep(x, y) ∧ x=null) ∨
(is sll(x) ∧ is sll(y) ∧ sep(x, y) ∧ len sll(x) ≤ len sll(y))

We obtain x=null ∨ (is sll(x) ∧ len sll(x) ≤ n) similarly for inv1 after line 3.
Afterwards, inv1 and inv2 are translated into the formulas in our assertion lan-

guage. Note that the translation is straightforward since the features are designed based
on the assertion language. The last step is to verify three verification problems. This
is done using state-of-the-art verifiers for heap programs. For instance, HIP solves the
three verification problems automatically, which verifies the program.

For efficiency, in the verification step we perform the following two simplifications.
First, for dead code detection, we invoke a separation logic solver (e.g., the one pre-
sented in [27,29]) to check the satisfiability of inferred invariant. Secondly, we identify
and eliminate the frame of a Hoare triple before sending them to the verifiers. For exam-
ple, for the Hoare triple {inv1}createSLL(n){inv2[res/y]}, we find that x has not
been accessed by the code, the occurrences of the singly-linked list x in both the pre-
condition and postcondition of the triple are eliminated before sending it to the verifiers.
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Fig. 2. Syntax: where c is a data type; k is an integer value; ti, v, r are variables; and t̄ is a
sequence of variables

3 Our Approach

3.1 Problem Definition

Our input is a Hoare triple {pre}prog{post}, where pre is a precondition, post is post-
condition and prog is a heap program which may invoke other functions. One exam-
ple is the function main shown in Fig. 1. The precondition and postcondition are in an
expressive specification language previously developed in [10,23,27,45]. The language
supports separation logic, inductive predicates and Presburger arithmetic [19], which is
shown to be expressive to capture many properties of heap programs.

The syntax of the language is presented in Fig. 2. In general, a predicate Φ in this
language is a disjunction of multiple symbolic heaps. A symbolic heap Δ is an exis-
tentially quantified conjunction of a heap formula κ (i.e., a predicate constraining the
memory structure) and a pure formula π (i.e., a predicate constraining numeric vari-
ables). A heap formula κ is an empty heap predicate emp, a points-to predicate r �→c(t̄)
(where r is its root variable), a user-defined predicate P(t̄), or a spatial conjunction of
two heap formulas κ1 ∗ κ2. User-defined predicates are defined in the same language.
A pure formula π can be true , an (in)equality on variables, a Presburger arithmetic
formula, negation of a formula, or their conjunction. We refer the readers to [19] for
details on Presburger arithmetic. We note that v1 �=v2 (resp. v �=null) is used to denote
¬(v1=v2) (resp. ¬(v=null)) and we may use to indicate “don’t care” values.

For instance, the following predicate sll(x,n) defines a singly-linked list (with a
root-pointer x and size n), which is used in the illustrative example.

sll(x, n) ≡(emp ∧ x=null ∧ n=0)
∨ (∃ q, n1· x�→Node( , q) ∗ sll(q, n1) ∧ n=n1+1)

Our problem is to automatically verify the Hoare triple. Different from existing
approaches, we aim to do that in a compositional way without user-provided function
specifications.

3.2 Test Generation and Code Instrumentation

Given {pre}prog{post}, we first automatically generate a test suite S using existing
test case generation methods like [37]. Note that we do not require the test cases to
satisfy the precondition because negative feature vectors from invalid test cases will be
filtered out by our learning process. Based on the testing results, we divide S into two
disjoint sets. One set includes passed test cases that terminate normally without any
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memory error or violation of the postcondition, denoted as S+. The other set contains
the remaining ones, denoted as S−. Note that we heuristically consider that a test case
does not terminate after waiting for a threshold number of time units. Afterwards, we
identify all function calls in prog and add learning points before and after each call. At
each learning point l, we identify a set of relevant variables, denoted as Vl. We apply
static program slicing to remove the variables which are visible at l but irrelevant to
the postcondition or memory safety. In the example shown in Fig. 1, the sets of relevant
variables at learning point 1 and 2 are {x, n} and {x, y} respectively. For each learning
point, we instrument the program to extract a vector of features from each test.

3.3 Feature Extraction

Central to our approach is the answer to the question: what features to extract? In this
work, we view a program state as a memory graph and systematically extract two groups
of features based on the memory graph. One group contains generic features of the
memory graph and the other contains features which are specific to the verification
task. Formally, a memory graph G is a tuple (M, init, E, Ty, L) such that

– M is a set of heap nodes including a special node null;
– init ∈ M is a special initial node;
– E is a set of labeled and directed edges such that (s, n, s′) ∈ E means that we can
access heap node s′ via a pointer named n from s. An edge starting from init is
always labeled with one of the variables in the program.

– Ty is a total labeling function which labels each heap node in M by a type;
– and L is a labeling function which labels a heap node of primitive type by a value.

Fig. 3. A memory graph

Given a test case and a learning point, we represent the
program state at the learning point during the test execu-
tion in the form of a memory graph (M, init, E, Ty, L).
Figure 3 shows the memory graph for our example at the
learning point 2 with test input m = 0 and n = 1. Note
that any rooted path of a memory graph represents a vari-
able, e.g., the path with the sequence of labels 〈y, next〉
in the above memory graph is a variable y.next at learn-
ing point 2. For complicated programs, the memory graph
might contain many paths and thus many variables from
which we can extract features. We thus set a bound on the
number of de-referencing to limit the number of variables.
For example, if we set the bound to be 2, we focus on vari-

ables {x, x.data, x.next, y, y.data, y.next} at learning point 2 and similarly variables
{x, x.data, x.next, n} at learning point 1. With length bounded to 1, we focus only on
{x, y} at learning point 2 and {x, n} at learning point 1.

We extract two groups of boolean features based on the memory graph. The first
group contains generic heap-related features, which include the following.

– For each reference type variable x, we extract two features which represent if it is
null or not, i.e, whether its corresponding path leads to the special node null.
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Table 2. Features

# feature # feature # feature

1 x = null 10 x �→Node()∧is sll(y)∧sep(x, y) 19 len sll(x) + len sll(y) > 0

2 y = null 11 is sll(x)∧y �→Node()∧sep(x, y) 20 len sll(x) − len sll(y) > 0

3 x �→Node() (a.k.a. x �= null) 12 is sll(x)∧is sll(y)∧sep(x, y) 21 −len sll(x) + len sll(y) > 0

4 y �→Node() (a.k.a. y �= null) 13 len sll(x) > 0 22 −len sll(x) − len sll(y) > 0

5 x = y 14 len sll(y) > 0 23 len sll(x) + len sll(y) = 0

6 x �= y 15 len sll(x) < 0 24 len sll(x) − len sll(y) = 0

7 is sll(x) 16 len sll(y) < 0 25 −len sll(x) + len sll(y) = 0

8 is sll(y) 17 len sll(x) = 0 26 −len sll(x) − len sll(y) = 0

9 x �→Node()∧y �→Node()∧sep(x, y) 18 len sll(y) = 0

– For each pair of reference type variables, we extract two features which represent if
the two variables are aliasing or not, i.e., whether their corresponding paths
lead to the same non-null node.

– For each pair of reference type variables, we extract a feature which represents
whether two variables are separated in the memory. Assume that variables x and
y lead to nodes nx and ny , x and y are separated, denoted as sep(x, y), if and only
if all reachable nodes except null from nx (including nx) are not reachable from
ny and vice versa.

– For each pair of the numeric variables, we extract boolean features in difference
logic and the octagon abstract domain [34], e.g., ±x ±y >c, ±x ± y = c, ±x>c or
x=c where c is a constant. We apply a heuristic to collect constants in conditional
expressions in the given program as candidate values for c. The value 0 is chosen by
default.

While general heap-related features are often useful, some programs can only be proven
with features which are specific to the verification problem. Thus, we extract a second
group of features based on user-defined predicates used to assert the correctness of the
given program, which include the following.

– For every permutation of n variables, we extract a feature which represents whether
the variables satisfy the predicate. For instance, given the user-defined predicate
sll which has one reference type parameter, we extract a feature which represents
whether x satisfies the predicate, for each reference variable x.

– For a pair of two sequences of variables X and Y which satisfy some user-defined
predicates, we extract a feature which represents whether the variables are separated
in the memory, i.e., all nodes reachable from any variable in X (except null) are
not reachable from any node in Y and vice versa. This feature is inspired by the
separation conjunction operator ∗ in our assertion language. For instance, given x
and y which both satisfy is sll, this feature value is true if and only if all objects
in the singly-linked list x and singly-linked list y are disjoint in memory. Note that
this feature subsumes the feature sep(x, y) explained above.

– For each numeric parameter of the user-defined predicate, we use a variable to repre-
sent its value for each sequence of variables which satisfy the predicate. For instance,
as sll has a numeric parameter, if variable x satisfies sll, we use a fresh variable
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(denoted as len sll for readability) to represent the value of the numeric param-
eter. Boolean features of these numeric variables, together with existing numeric
variables, are then extracted in the chosen abstract domains.

In general, user-defined predicates can be complicated. Existing heap program veri-
fiers like GRASShopper and HIP maintain a library of commonly used predicates. We
adopt the predicates in their library and define the corresponding functions to extract the
above-mentioned features in the form of an extensible library for our approach. Note
that this is a one-time effort. For instance, Table 2 shows the list of 26 features which
we extract at learning point 2 for the program shown in Fig. 1.

3.4 Learning for Compositional Verification

In the following, we present our approach on learning an invariant based on the
extracted feature vectors. Recall that we systematically instrument the program at every
learning point, then extract a value for every feature we discussed above. In our imple-
mentation, each feature is extracted using a function which returns a boolean value.
Afterwards, each test case is executed so that we collect a vector of boolean values
(a.k.a. a feature vector) which represents an abstraction of the memory graph accord-
ing to the chosen features. If the test case finishes successfully, the feature vector is
labeled positive; otherwise, it is labeled negative. The labeled feature vectors can be
organized into a matrix M whose rows are feature vectors and whose columns are the
feature values in all test cases. To ensure all feature vectors have the same dimension,
if a feature does not apply (e.g., a variable is not accessible in the test case), we set the
corresponding feature value to a special default value. For instance, Table 3 shows the
matrix where the features are sequenced in the same order of Table 2.

The first step in our learning process is normalising the matrix M . If there are
two rows with the same feature values and same labels, one of them is redundant and
removed. Next, we apply the algorithm in [8] to learn a boolean combination of fea-
tures to separate positive and negative vectors. Informally, the algorithm considers each
feature vector as a point in space and every positive point is connected to every negative
point by a line. A feature ‘cuts’ a line if the corresponding positive point and negative
point have different values for the feature. The goal is to find a list of features that can
cut all the lines, i.e., separate all positive and negative points. The features are chosen
using a greedy algorithm. At each step, the feature which cuts the most number of uncut
lines is selected. After all lines are cut, the selected features partition the space into mul-
tiple regions, each of which contains either positive points only or negative points only.
Each region can be characterised by a conjunction of the features and the disjunction of
all the formulas characterising the positive regions is a boolean formula which separates
all the positive and negative feature vectors.

The details are shown in Algorithms 1 and 2. In Algorithm 1, the input is a nor-
malised matrix M and the output is the list of features K which can classify all positive
and negative rows in M . K is initialised as an empty list (line 1). A list L is initial-
ized to contain all pairs of rows (i, j) such that i is the index of a positive row and j
is that of a negative row (line 1). During each iteration, the feature k that ‘cuts’ the
most number of pairs in L is identified (line 3). Note that we do not consider the case
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Table 3. Matrix of feature vectors

Vectors obtained from test cases
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Label
1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 positive
1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 positive
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 positive
0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 negative

Vectors obtained from memory graph mutation
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 positive
0 0 1 1 0 1 0 1 1 1 0 0 N 1 N 0 N 0 N N N N N N N N negative
0 1 1 0 0 1 0 1 0 1 0 0 N 0 N 0 N 1 N N N N N N N N negative
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 negative
1 0 0 1 0 1 1 0 0 0 1 0 0 N 0 N 1 N N N N N N N N N negative
0 0 1 1 0 1 1 0 1 0 1 0 1 N 0 N 0 N N N N N N N N N negative
0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 negative

Algorithm 1: Choose the list of features choose(M)

1 K = {}; L = {(i, j) | row i is positive and row j is negative};
2 while L is not empty do
3 Find k s.t. {(i, j) ∈ L | Mik = 1 ∧ Mjk = 0} is the largest;
4 if the number of pairs (i, j) that k can classify is 0 then
5 Stop and ask for user input for a new feature;

6 else
7 Remove (i, j) s.t. Mik = 1 ∧ Mjk = 0 from L;
8 Add k to K;

9 Return K;

Mik = 0 ∧ Mjk = 1 because it will create the negations of features, which may not
be easily transformed into separation logic. We then remove from L the pairs that are
classified correctly by k (line 7) and add the new feature k into K (line 8). The loop
stops when L is empty (line 2) or the best feature at the current iteration cannot classify
more pairs (line 4). In the former case, we return the list of features K (line 9). In the
latter case, it means the features are not sufficient to distinguish all positive and negative
rows. We thus stop and may ask users to provide a new feature (line 5).

Algorithm 2 then shows how a boolean formula that classifies all positive and neg-
ative rows in M is constructed from the chosen features. The input is a normalised
matrix M and a list of features K chosen using Algorithm 1 and the output is a boolean
combination of these features. Initially, the list of regions R is empty; PP and NP are
the set of indexes of positive and negative rows respectively (line 1). Recall that each
row can be seen as a point in space. All points in PP are marked as uncovered at line
2. Favoring simple hypothesis (which is a heuristics often applied in machine learning),
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Algorithm 2: Combine the features combine(M,K)
1 R = {}; PP = {p | row p is positive}; NP = {n | row n is negative};
2 Mark all p ∈ PP as uncovered;
3 for i = 1 to |K| do
4 Create all combinations C with i elements from the list of features K;
5 for each combination c ∈ C do
6 if ∀n ∈ NP ∃k ∈ c : Mnk = 0 then
7 CP = {p | p ∈ PP and ∀k ∈ c : Mpk = 1};
8 if CP contains at least one uncovered index then
9 Remove from R the combinations that have the covered indexes are

proper subsets of CP ;
10 Add c to R; Mark all p ∈ CP as covered;
11 if all p ∈ PP are covered then
12 Return R;

we try the combination from 1 feature to |K| (which is the number of features in K)
features (line 3). At line 4, all the combinations of i features are created. For each com-
bination (line 5), we check if the created region contains no negative points (line 6). If
it is the case, we find a list of positive points that are covered by the region (line 7). If
this region contains at least one uncovered point (line 8), we add this combination into
R and mark the positive points in the region as covered (line 10). Line 9 simplifies the
results by removing the chosen regions that only cover a proper subset of positive points
in the new region. When all positive points are covered, we return the set of combina-
tions R (lines 11 and 12). Each combination is a conjunction of features and the set of
combinations is the disjunction of these conjunctions.

For our example, at the learning point 2, after removing redundant rows, we have
a matrix with 4 rows and 26 columns, i.e., the bolded rows in Table 3. Rows 1, 2 and
3 are positive, whereas row 4 is negative. To separate these rows, two columns 1 and
4 are chosen. From this, we can form two regions, in particular, the first one with only
column 1, the second one with only column 4. These two columns represent feature
x = null (column 1) and y �= null (column 4). As a result, we learn the predicate
x = null ∨ y �= null. Note that this predicate is incorrect and it is to be improved
later.

It can be shown that Algorithms 1 and 2 always terminate. The worst-case complexity
of Algorithm 1 is O(Row4 ∗ Col) where Row and Col are the number of rows and
columns in the input matrix respectively. For Algorithm 2, the worst-case complexity
is O(2|K| ∗ (Row ∗ Col + Row3)). While the worst-case complexity is high, these
algorithms are often reasonably efficient (as we show in our empirical study). The main
reason is that the number of features K (which dominates the overall complexity) is
often small (average 1.05 in our experiments).



Compositional Verification of Heap-Manipulating Programs 415

3.5 Automatic Memory Graph Mutation

Recall that we only need a correct predicate, which is an invariant at the learning point
and sufficient to prove the postcondition. A fundamental limitation of using classifica-
tion techniques is that the learned predicate is likely incorrect if the feature vectors (i.e.,
test cases) are insufficient. One way to solve this problem is to use a program verifier
to check whether the predicate is correct. If it is not correct, the verifier would gener-
ate a counterexample and the learning process can continue with a new feature vector
obtained from the counterexample. This approach is not ideal for two reasons. One is
that verifying heap programs is often costly and thus we would like to avoid it as long
as possible. The other is that it is highly nontrivial to construct counterexamples when
verifying heap programs [5].

Because of that, in this work, to improve the learned predicate, we apply an idea
similar in spirit to [11] to automatically mutate the memory graphs obtained from the
test cases and generate more program states. For each learned predicate Φ, we system-
atically apply a set of mutation operators based on Φ. For each variable x in Φ, if it is a
reference type, the following mutation operators are applied.

1. Point x to a freshly constructed object of the right type.
2. Point x to a heap node of the right type in the memory graph (including null).
3. Swap x with another reference type variable.

If x is a primitive type, we follow the idea in [42] and mutate it by setting it to a
constant, increasing/decreasing its value with a pre-defined offset, or swapping it with
another primitive variable. The number of mutants we generate depends on the current
learned predicate.

These mutation operators are designed to create states which potentially invalidate
the learned predicate. For instance, if the current predicate is is sll(x) ∧ is sll(y)
∧ sep(x, y), where x and y are two reference variables, applying the mutation opera-
tors allows us to obtain memory graphs which invalidate is sll(x), is sll(y) and/or
sep(x, y). The expectation is that such a mutated program state would lead to violation
of the postcondition and thus be labeled with negative. If our expectation is met, the
predicate is now more likely to be correct; otherwise, the predicate is incorrect and is
refined with the new feature vector.

In the extreme cases when all feature vectors are labeled positive or negative, the
learned predicates are true or false respectively. We then apply all mutation opera-
tors to all variables at the learning point. In our implementation, the mutation is done
automatically by instrumenting statements which mutate the according variables at the
learning point. We then run the test suite with the mutated program, collect new feature
vectors and new test results. These new feature vectors are added into the matrix to
learn new predicates.

The mutation at a learning point in the middle of the program may result in program
states which may not be reachable. As a result, the final learned predicate, which is
expected to be an invariant, may be weaker than the actual one (if the mutated program
state is labeled as positive). However, a weaker invariant may still serve our goal of
verifying the program. To give an example, in the extreme case, if the postcondition is
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true (and there is no risk of memory error), it is sufficient to learn the invariant true.
We repeat this process of mutation and learning until the learned invariant converges.

For our example, at the learning point 2, after obtaining the first predicate x =
null∨ y �= null, we apply mutation and obtain more feature vectors. The new feature
vectors are shown in Table 3 where N is a special value denoting that the feature is not
applicable. Next, applying Algorithm 1, the chosen features this time are x = null,
is sll(x) ∧ is sll(y) ∧ sep(x, y), len sll(x) < len sll(y), and len sll(x) =
len sll(y) (column 1, 12, 21 and 24). From these 4 columns, we form 3 regions:
{12, 1}, {12, 21} and {12, 24}, which are transformed into the invariant inv2 we show
in Sect. 2. Similarly, with the help of state mutation, we improve the learned invariant
at l1 from x = null ∨ n > 0 to x = null ∨ (is sll(x) ∧ len sll(x) ≤ n).

The process of mutation and learning always terminates. As we only have a finite
set of variables and features, the set of feature vectors is finite and thus the process
of mutation converges eventually. Furthermore, matrix normalisation guarantees we do
not have redundant rows in the matrix and, hence, the matrix is finite and the learning
process always terminates.

3.6 Compositional Verification

Lastly, we show how we use the learned invariants to verify heap programs in a compo-
sitional way. Firstly, we transform each loop in the program into a fresh tail recursive
function. Then the loop is replaced with a call to the corresponding function. Note that
in the case of nested loops, we create multiple functions in which the function accord-
ing to the outer loop will call the function according to the inner loop. This is a standard
strategy adopted from existing program verifiers for heap programs [10]. We then treat
loops in the same way as (recursive) function calls.

Secondly, we identify the learning points, i.e., before and after each function call
statements and learn invariants at these points. Note that we do not learn before/after
recursive function calls. This is because program verifiers for heap programs like
GRASS-hopper and HIP support inductive reasoning and thus one specification for
each recursive function is sufficient. Assume that the invariant learned before function
call Ci is Ii and the one learned after Ci is Ii+1.

Thirdly, for each function call Ci, we generate a proof obligation in the form of
a Hoare triple {Ii}Ci{Ii+1}, to prove that calling function Ci with Ii being satisfied
results in a state satisfying Ii+1. Each proof obligation is submitted to a program ver-
ifier. Once the proof obligation is discharged, we replace the function call Ci with its
now-established specification, i.e., two statements assert Ii; assume Ii+1. That is,
we instrument the learned invariants into the program such that the invariant learned
before/after Ci becomes an assert/assume-statement respectively.

Finally, we use an existing program verifier to verify the transformed program. Note
that the program does not contain any function call (other than possibly a recursive call
of itself) now. It is straightforward to see that the program satisfies the postcondition
and is memory-safe with the precondition if all proof obligations are discharged and
the transformed program is verified. If any part is not proved and a counterexample is
constructed by the verifier, we use the counterexample to learn new invariants and then
try to prove new Hoare triples.
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Table 4. Results on GRASShopper (Gh)

Gh Gh+SLearner Gh+SLearner-Mutation

Data structure Functions #Calls #Progs #V Time(s) #V Time(s) L Time(s) #V Time(s) L Time(s)

Singly-linked
list

Traverse, Dispose, Insert,
Remove, Concat

1 5 5 1.50 5 1.50 0 5 1.50 0

2 12 0 - 12 4.97 202 0 - 32

3 18 0 - 18 10.74 610 0 - 99

Sorted list Traverse, Dispose, Insert 1 3 3 1.40 3 1.40 0 3 1.40 0

2 6 0 - 6 4.94 152 4 2.71 12

3 6 0 - 6 6.96 368 2 2.32 32

Binary tree Traverse, Dispose, Insert 1 3 3 43.63 3 43.63 0 3 43.63 0

2 6 0 - 4 90.23 134 4 90.23 12

3 6 0 - 2 89.26 313 2 89.26 30

4 Implementation and Evaluation

Our approach has been implemented as a prototype, called SLearner, with 3070 lines of
Java code. In the following, we evaluate SLearner to answer multiple research questions
(RQ). All experiments are conducted on a laptop with one 2.20 GHz CPU and 16 GB
RAM. To reduce the effect of randomness, we run each experiment 20 times with 10
random test cases each time.

RQ1: Can our approach enhance state-of-the-art verifiers for heap programs?We inte-
grate SLearner into two state-of-the-art verifiers for heap programs: GRASShopper
and HIP. Although GRASShopper and HIP target the same class of programs, their
approaches differ in multiple ways, e.g., they provide a different library of user-defined
predicates and they have different verification strategies. They thus allow us to check
whether SLearner is general enough to support different program verifiers. We remark
that alternative program verifiers like CPAChecker [6] and SeaHorn [20] target differ-
ent classes of programs or program properties and hence are not applicable. The only
other tool which is capable of verifying heap programs with heap-related specification
is jStar [12], which is, however, no longer maintained.

We conduct two sets of experiments based on these two verifiers. Our first experi-
ment is with GRASShopper. Although GRASShopper supports inductive predicates for
describing data structures, unlike HIP, it does not support reasoning about separation
logic directly. The inductive predicates in GRASShopper are defined based on first-
order logic with some built-in predefined predicates. Due to GRASShopper’s limitation,
we conduct an experiment based on a set of benchmark programs in its distribution. All
programs and experimental results are available at [2] and the tool is available at [3].

The GRASShopper distribution contains many functions for different types of data-
structures. We focus on those non-trivial recursive functions with precondition and post-
condition. To check howGRASShopper performs with and without SLearner, we gener-
ate a set of composite programs which randomly invoke one or more of these functions.
The function call sequence is formed such that the postcondition of a previous function
is identical (via syntactical checking) to the precondition of the subsequent function.
The precondition of the composite program is composed from preconditions of invoked
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functions and the postcondition of the last function in the call sequence is the postcondi-
tion of the composite program. In total, we generate 65 composite programs containing
1, 2 and 3 function calls.

Table 5. Results on HIP

HIP HIP+SLearner HIP+SLearner-Mutation

Data structure Program Result #Succ Time(s) Result #Succ Time(s) L Time(s) Result #Succ Time(s) L Time(s)

Singly-linked list Clean Fail 0 - Succ 20 0.37 17 Fail 0 - 3

Clone Fail 0 - Succ 20 0.45 17 Fail 0 - 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 2

Reverse Fail 0 - Fail 0 - 17 Fail 0 - 3

Sort Fail 0 - Fail 0 - 17 Fail 0 - 3

Insert Fail 0 - Succ 20 0.42 38 Fail 0 - 3

Delete Fail 0 - Succ 20 0.42 37 Fail 0 - 2

Append Fail 0 - Succ 20 0.45 90 Fail 0 - 6

GetLast Fail 0 - Succ 20 0.42 17 Fail 0 - 3

GetSum Fail 0 - Succ 15 1.02 77 Fail 0 - 6

ToDll Fail 0 - Succ 20 0.30 17 Fail 0 - 3

Doubly-linked list Clean Fail 0 - Succ 20 0.43 17 Succ 20 0.43 3

Clone Fail 0 - Succ 20 0.67 17 Succ 20 0.67 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 3

Reverse Fail 0 - Fail 0 - 17 Fail 0 - 3

Sort Fail 0 - Fail 0 - 17 Fail 0 - 3

Insert Fail 0 - Succ 20 0.58 18 Succ 19 0.58 3

Delete Fail 0 - Succ 20 0.65 17 Succ 20 0.65 3

Append Fail 0 - Succ 20 0.40 92 Fail 5 - 6

Sorted list Clean Fail 0 - Succ 20 0.35 17 Succ 20 0.37 3

Clone Fail 0 - Succ 20 0.37 17 Succ 18 0.35 3

Min Fail 0 - Succ 20 0.37 17 Succ 19 0.37 3

Travel Fail 0 - Succ 20 0.54 17 Succ 18 0.54 2

Insert Fail 0 - Fail 0 - 16 Fail 0 - 3

Delete Fail 0 - Fail 0 - 18 Fail 0 - 3

Cycle list Clean Fail 0 - Fail 0 - 17 Fail 0 - 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 3

Travel Fail 0 - Succ 20 0.30 17 Fail 0 - 3

ToSll Fail 0 - Fail 0 - 17 Fail 0 - 3

Binary tree InOrder Fail 0 - Succ 20 0.43 16 Succ 20 0.43 2

PreOrder Fail 0 - Succ 20 0.46 17 Succ 20 0.46 3

PostOrder Fail 0 - Succ 20 0.45 17 Succ 20 0.45 3

Min Fail 0 - Succ 20 0.51 17 Succ 20 0.51 3

Max Fail 0 - Succ 20 0.51 17 Succ 20 0.51 3

Prec Fail 0 - Succ 20 0.57 17 Succ 20 0.57 3

Succ Fail 0 - Succ 20 0.57 17 Succ 20 0.57 3

Insert Fail 0 - Succ 20 0.67 17 Succ 20 0.67 3

Delete Fail 0 - Fail 0 - 22 Fail 0 - 3

AVL tree Insert Fail 0 - Fail 0 - 17 Fail 0 - 3

Delete Fail 0 - Fail 0 - 24 Fail 0 - 3

Red-black tree Insert Fail 0 - Fail 0 - 22 Fail 0 - 3

Delete Fail 0 - Fail 0 - 38 Fail 0 - 3

MCF Travel Fail 0 - Fail 0 - 17 Fail 0 - 3

Rose tree Travel Fail 0 - Fail 0 - 17 Fail 0 - 3

Tll SetRight Fail 0 - Succ 20 2.40 16 Succ 19 2.40 2
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Table 4 shows the results, where the first four columns show the type of data struc-
ture, the involved functions, the number of function calls and the number of programs
in the category. The next column shows the result of GRASShopper without the help
of SLearner, i.e., the program is verified using GRASShopper without the specification
of each invoked function in the program. We measure the number of verified programs
(column #V) and the time taken. The next column shows the results of GRASShopper
enhanced with SLearner. No additional user-defined predicates besides those provided
in GRASShopper are used in our experiments. Note that we extract features automati-
cally based on the user-defined predicates in GRASShopper in the experiment.

Without SLearner, GRASShopper only verifies 11 (out of 65) programs with 1 func-
tion call. For the remaining 54 programs which have 2 or 3 function calls, GRASS-
hopper fails to verify any of them. This is expected as GRASShopper is unable to derive
the necessary function specification automatically. Enhanced with SLearner, GRASS-
hopper verifies 59 (out of 65) programs. For all these programs, we learn the correct
invariants in every one of the 20 runs.

The second experiment is with HIP. We generate 45 programs based on common
operations for 10 different data structures. Each program consists of multiple function
calls. Each program starts with a call of a constructor which creates an object of the tar-
get data structure (e.g., a singly-linked list), or a function which reads the data structure
(e.g., checking whether the root node is null, or traveling through the data structure).
Lastly, a function supported by HIP for this data structure is called which may modify
the data structure. The postcondition of the program is the postcondition of the last func-
tion. The precondition is manually written and checked to guarantee that the program
terminates and satisfies the postcondition without any memory error.

Table 5 shows the results, where column Program shows the last function called
in the program. Column HIP+SLearner shows the results using HIP enhanced with
SLearner. Note that we may not be able to learn the same invariants every time due
to randomness in generating the initial set of test cases. Thus, we add a column #Succ
to show how many times, out of 20, we are able to learn the invariant and verify the
program. No additional user-defined predicates besides those defined in HIP are used
in our experiments. Column HIP shows that without SLearner, none of these programs
is verified. With SLearner, HIP successfully verifies 27 programs. In all but 1 case
(highlighted with bold) we are able to learn the same invariant consistently.

RQ2: Which features are useful in verifying heap programs? We learn invariants based
on two groups of features, i.e., general heap-related features and those specific to user-
defined predicates. The question is whether these two groups of features are useful and
whether there are other features which we could learn based on.

In total, SLearner learned 104 invariants (74 with GRASShopper and 30 with HIP)
to help solving the verification tasks. Among them, 93 invariants (66 with GRASShop-
per and 27 with HIP) contain only features extracted based on the user-defined predi-
cates (e.g., ds(x) or ds(x)∗ds(y) with ds being a user-defined predicate). The remain-
ing 11 invariants are additionally constituted with generic features (e.g., x = null or
x �= null). None of the invariants is constituted with general heap-related features
only. The results show that the user-defined predicates are important and invariants spe-
cific to a verification problem are needed for proving the program. Generic heap-related
features are also necessary sometimes (in 11% of the cases).
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A total of 24 programs (6 with GRASShopper and 18 with HIP) are not verified.
There are two main reasons why they cannot be proved even with the help of SLearner.
Firstly, some programs can only be verified with complex function specifications which
require features that are not supported in SLearner. For example, to prove the remaining
6 programs in the experiment with GRASShopper, we need a feature characterizing the
paths in the tree, which cannot be derived from user-defined predicates. This is simi-
larly the case for experiments with HIP. One remedy is to extend our implementation
with additional features through automatic lemma learning [28]. Secondly, there are
programs that have a hierarchy of function calls, e.g., function calls within recursive
functions. Some of the function calls occur under strict condition which is never satis-
fied by the test cases and thus we are unable to learn the specification of those function
calls. This is a fundamental limitation of dynamic analysis approaches, which could be
overcome with a comprehensive test suite from a systematic test case generation app-
roach [39–41].

RQ3: Is memory graph mutation helpful?We compare the performance of the enhanced
GRASShopper and HIP with and without memory graph mutation. The results are
shown in the last columns of Tables 4 and 5. It can be observed that without memory
graph mutation, the number of verified programs by GRASShopper is reduced from
59 to 23, and the number of verified programs by HIP is reduced from 27 to 17. It
thus clearly shows that memory graph mutation helps to improve the correctness of the
learned invariants. Furthermore, we observe that without memory graph mutation, it is
more likely that different invariants are learned in different runs of the same experi-
ments (refer to column #Succ). This is expected as without memory graph mutation, we
cannot discard invariants which are the result of limited test cases.

RQ4: What is the overhead of invariant generation?Wemeasure the time taken to learn
the invariants. Columns L Time in Tables 4 and 5 show the results. In general, the learn-
ing time depends on the number of learning points, the complexity of the program and
the initial test suite. Overall, the time required for learning is reasonable, ranging from
seconds to minutes. In the most time consuming case, we spent 92 s to learn two invari-
ants for program “doubly-linked list append”. For most of the cases, the learning time
is about 20 s for each learning point.

RQ5: Does our invariant generation approach complement existing ones? The most
noticeable invariant generation tool for heap program is Infer [1]. However, Infer is
not designed to support verification task. Instead, it generates generic specifications to
capture the footprints of the pointers used in the functions based on bi-abduction. We
apply Infer to generate specifications (e.g., pre/postconditions) for every function exper-
imented above and notice that they are too weak for program verification.

Threats to Validity. Firstly, the set of programs used in our experiments are limited com-
pared to real-world data-structure libraries. This is because state-of-the-art verifiers for
heap programs are still limited to relatively simple programs due to the great difficulty
in verifying heap properties. As our experiments show, SLearner successfully enhances
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the capability of state-of-the-art heap program verifiers so that programs with multiple
functions can be automatically verified. Secondly, SLearner only works when we have
the right features in the learning process. We expect that applying lemma synthesis
could help us obtain more features and overcome this limitation.

5 Related Work

The closest to our work is approach for invariant inference using dynamic analysis
with separation logic abstraction [30]. Similar to our work, it generates invariant based
on user-defined predicates (i.e., features in our work). In contrast to ours, it made use
of positive features only and did not support mutation. Close to our work are propos-
als for automatic program verification using black-box techniques adopted from the
machine learning community. In particular, the method presented in [47] is based on
user-supplied templates. It is designed to learn specification for heap programs which
ensures no memory errors. The approach in [32] proposes to learn features from graph-
structured inputs based on neural networks. The authors showed an application on ver-
ifying memory safety using the learning results. In contrast to [32], our goal is to learn
invariants to compositionally verify the program against a given specification as well as
ensure no memory errors. In [25], the authors presented a method to learn shared mod-
ule codes and reuse them during an analysis. The work in [16] builds polynomial time
active learning algorithms for automaton model of array and list structures. Our pro-
posal also relies on a learning algorithm and actively improves the learned invariants.
In [35], the authors proposed a learning method targeted lists only. This method learns
the sequence of actions (remove or insert) from a program and infers the data structures
manipulated by the program. However, it is hard to extend the method to support arbi-
trary heap programs. Similarly to ours, [7] guesses invariants from concrete program
states and checks them by a theorem prover. However, their work only focuses on list-
based programs. The ICE method proposed in [17,18] supports inductive properties of
loop invariant learning. Besides using the positive and negative points, ICE proposes
additional implication points to encode the inductive checking for learning invariant. It
is our future work to integrate the idea of ICE learning with our graph-based learning.
The work in [38] presents an approach for precondition inference. The main contribu-
tion is feature learning for functional programs. It is interesting to apply the feature
learning techniques in our future work.

Our work is also related to automatic and static analyzers for the shape analysis
problems, e.g., TVLA [46] and separation logic [9,10,13,22,26], and for the verifica-
tion problem of programs that requires both heap and data reasoning, e.g., PDR [24],
interpolation [4] and template-based invariant generation [33]. To infer shape-based
specification, while tools [9,13,26] are based on the bi-abduction technique, we use
machine learning to obtain a generalized invariant from a set of concrete executions. In
our implementation, we use GRASSHopper and HIP as external verification engines.
As our approach is independent from the program verifiers, we plan to build a general
framework so that different verifiers can be used. Lastly, this work is related to previ-
ous works on invariant generation, e.g., Daikon [14], or Houdini [15]. However, those
works do not focus on learning invariants related to data structures like this one.
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6 Conclusion

We have presented a novel learning approach to the automated and compositional veri-
fication of heap programs. The essence of our approach is an algorithm to infer invari-
ants based on a set of memory graphs representing the program states obtained from
concrete executing traces. We further enhance the precision of learned invariant with
memory graph mutation. We have implemented a prototype tool and evaluated it over
a set of programs which manipulate complex data structures. The experimental results
show that our tool enhances the capability of existing program verifiers to verify non-
trivial heap programs. In the future, we might apply our tool to more verifiers and more
test subjects as well as compare our tool with other tools, e.g., Predator [13], Forester
[21,22], S2 [26], and SLING [30].
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Abstract. We present the first machine-checked formalization of Jaffe
and Ehrenfeucht, Parikh and Rozenberg’s (EPR) pumping lemmas in the
Coq proof assistant. We formulate regularity in terms of finite derivatives,
and prove that both Jaffe’s pumping property and EPR’s block pumping
property precisely characterize regularity. We illuminate EPR’s classical
proof that the block cancellation property implies regularity, and discover
that—as best we can tell—their proof relies on the Axiom of Choice. We
provide a new proof which eliminates the use of Choice. We explicitly
construct a function which computes block cancelable languages from
well-formed short languages.

Keywords: Pumping lemmas · Axiom of Choice · Coq

1 Overview

Pumping properties of formal languages have a rich history. Rabin and Scott pro-
vided a pumping lemma that displays properties of regular languages; Bar-Hilel,
Perles, and Shamir did the same for context-free languages [17,24]. Pumping lem-
mas describe how words belonging to the relevant language L can be “pumped”,
e.g. if L is regular then a word u ∈ L can be split into parts xyz (vwxyz in the
context-free case) such that for all n ∈ N, xynz ∈ L (respectively vwnxynz ∈ L).
Because pumping lemmas are often stated as necessary conditions of a language
being regular or context-free, they are often used in modus tollens form to show
that certain languages are not regular or context-free because they do not satisfy
the pumping property. Pumping lemmas are also used to prove other properties
of regular or context-free languages, e.g. that every context-free language over
the unary alphabet {0} is regular and that every automatic function increases
the length of its input by at most a constant.
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The converse question of whether pumping properties can also serve as suf-
ficient conditions for a language to be regular or context-free is less straightfor-
ward. Sommerhalder [29] showed that even a more restrictive “matching” form
of Rabin-Scott’s pumping lemma—that both a language and its complement
satisfy the pumping property—fails to precisely characterize regular languages
because there are non-regular languages that satisfy it. Jaffe [18] was the first to
provide a pumping lemma that precisely characterizes regularity, i.e. that gives
both a necessary and a sufficient condition for regularity.

1.1 Jaffe’s Pumping Lemma

Theorem 1 (Jaffe). A language L is regular iff there is a constant k s.t.

∀x ∈ Σ∗. |x| = k ⇒ ∃u, v, w ∈ Σ∗.
x = uvw ∧ v �= ε ∧ ∀h ∈ N, z ∈ Σ∗. (uvwz ∈ L ⇔ uvhwz ∈ L)

Jaffe’s pumping lemma is a reformulation of the Myhill-Nerode theorem [23].
The pumping constant k in Jaffe’s pumping lemma refers to the length of word
prefixes, equivalently the length of the language’s derivative labels.

Definition 1 (Derivative). The derivative of a language L with respect to a
word x ∈ Σ∗, written Lx, is another language that accepts words y iff L accepts
xy, i.e. xy ∈ L ⇔ y ∈ Lx.

Theorem 2 (Myhill-Nerode). A language L is regular iff it has a finite num-
ber of derivatives.

1.2 The Block Pumping Lemma

Ehrenfeucht, Parikh and Rozenberg [14] provided a pumping property that gives
a more sophisticated characterization of the regular languages.

Theorem 3 (EPR). A language L is regular iff there is a constant k s.t. for
any splitting of a word x into k + 2 blocks, i.e. x = w, u1, · · · , uk, w′, one can
find a an interval ui · · · uj of blocks that can be pumped any number h of times:

∀x,w, u1, · · · , uk, w′ ∈ Σ∗. x = wu1 · · · ukw′ ⇒
∃i, j ∈ N. 1 ≤ i < j ≤ k ∧ ∀h ∈ N,

wu1 · · · ui+1 · · · uj · · · ukw′ ∈ L ⇔ w · · · (ui+1 · · · uj)h · · · ukw′ ∈ L

We call languages that satisfy EPR’s “block pumping” property “block pumpable
languages”, and we write “L is block pumpable with k” to specify the block
pumping constant. Furthermore, one can postulate that u1, · · · , uk are non-
empty without changing the notion of block pumpable.

An advantage of block pumping over Rabin-Scott pumping is that it allows
one to directly obtain block pumping constants for combined languages such as
L ∩ H, L ∪ H and L · H from the constants for L and H, as we will show
in Sect. 3. Rabin-Scott pumping does not allow this: e.g. regular languages L =
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{0k1n2m : k = 1 ⇒ (n = m mod h)} and H = {0}·{1}∗ ·{2}∗ both have pumping
constant 2, but L ∩ H requires pumping constant h + 1, which is independent
of the pumping constants of L and H.

To compare EPR’s pumping property with Rabin-Scott’s, Chak et al. [4]
investigated languages that satisfy the block pumping property with the ⇔
restricted to the ⇒ direction only:

Definition 2 (One-sided block pumpable language). A language L is one-
sided block pumpable iff there is a constant k s.t.

∀x ∈ Σ∗. x ∈ L ⇒ ∀w, u1 · · · uk, w′ ∈ Σ∗. x = wu1 · · · ukw′ ⇒
∃i, j ∈ N. 1 ≤ i < j ≤ k ∧ ∀h ∈ N, w · · · (ui+1 · · · uj)h · · · ukw′ ∈ L

Chak et al. [4] showed that one-sided block pumpable languages not only need
not be regular, but need not even be computable! Accordingly, these languages
cannot be reasoned about in the same automata-theoretic way as other languages
in the Chomsky hierarchy. Instead, proofs about one-sided block pumpable lan-
guages have a distinctly combinatorial flavor, relying critically on Ramsey theory.

1.3 Contributions

We present the first machine-checked proofs of the pumping lemmas of Jaffe and
Ehrenfeucht, Parikh and Rozenberg in the Coq proof assistant. Jaffe’s pumping
lemma is straightforward to mechanize, but we present it nonetheless as a way
to introduce the novelties of our setup. In particular, we use Myhill-Nerode to
define the regularity of a language as having finitely many derivatives. We then
present machine-checked proofs from block pumpable language theory that, to
the best of our knowledge, are the first of formal language classes orthogonal
to the Chomsky hierarchy. We introduce relevant definitions by presenting a
mechanization of the closure properties of one-sided block pumpable languages:
they are closed under intersection, union and concatenation [4, Thm 15].

We then proceed with EPR’s more complex pumping lemma. This complexity
is in part due to some omissions concerning the concept of “finiteness”. We fill
in the gaps of their proof and discover that it appears to require the Axiom of
Choice to construct the inverse to a partial injective function.

Although not diehard constructivists, we find the Axiom of Choice a bit
objectionable. One well-known consequence is the Banach-Tarski paradox [2]:

Given a solid 3-D ball, one can decompose (“cut”) it into five disjoint sub-
sets (“pieces”), which can be reassembled using rigid motions (movements
and rotations) to yield two identical copies of the original ball.

Coq offers a variety of flavors of the Axiom of Choice, but their use leads to the
unfortunate (full or partial) collapse of the distinction between the set of math-
ematically true facts (Prop) and computationally decidable facts (Type) [3].

Accordingly, we present a new proof of EPR’s pumping lemma that eliminates
the Axiom of Choice by explicitly constructing the inverse function in question.
This inverse function can compute block cancelable languages from well-formed
input languages. The rest of this paper is organized as follows:
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Section 2 We present our basic setup and prove Jaffe’s pumping lemma.
Section 3 We define block pumpable languages and prove closure properties.
Section 4 We mechanize the original proof of EPR’s pumping lemma. In the

process we clarify several areas of the proof, in particular its treatment of
finiteness. We show how EPR’s proof uses the Axiom of Choice.

Section 5 We present our construction of an explicit inverse function and prove
that it can enable a new choice-free proof of EPR’s pumping lemma.

Section 6 We discuss related work before concluding in Sect. 7.

Along the way, we highlight aspects of our formalization which leverage features
of Coq’s type theory and/or contribute broadly applicable definitions and proofs
for which we could not find existing alternatives. The present work includes
results from the Capstone project of Li [21]. Our proofs are entirely machine-
checked in Coq and available at

https://github.com/atufchoice/blockpump.

2 Regularity and Jaffe’s Pumping Lemma

Here we present the first mechanization of Jaffe’s pumping lemma, and with it
the basics of our formal setup. We begin with the axioms we add to CiC:

1. Functional extensionality:
(∀x. f(x) = g(x)

) ⇒ (f = g)
2. Propositional extensionality: (P ⇔ Q) ⇒ (P = Q)
3. Law of excluded middle: P ∨ ¬P
4. Functional choice: (∀a. ∃b. aRb) ⇒ (∃f. ∀a. aR(f(a))

)

Specifically: Jaffe (Sect. 2), EPR’s original proof (Sect. 4), and our new EPR
proof (Sect. 5) use functional and propositional extensionalities to prove lan-
guage equivalence and (via proof irrelevance) equality on dependent types.
Proofs about block pumping, i.e. closure properties for block pumpable lan-
guages (Sect. 3), EPR’s original proof (Sect. 4) and our new Choice-free proof
(Sect. 5) use the law of excluded middle due to the fact that block pumpable
languages are not Turing-decidable, and as a result, we cannot check language
membership computationally. Lastly, EPR’s original proof (Sect. 4) uses func-
tional choice.

We next present the basic mathematical definitions of alphabets, words, and
languages. We use Σ to refer to a finite alphabet, and σ to refer to symbols in
the alphabet. For simplicity in Coq, we use a three-letter alphabet (type T):

Inductive T : Type := aa | bb | cc.

We use variables x, y, z, w, v to denote words; |w| to denote the length of w; and
the symbol ε to denote the empty word. In Coq, words are just lists of letters:

Definition word := list T.

https://github.com/atufchoice/blockpump
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We use L, H to denote languages, i.e. sets of words:

Definition language : Type := word -> Prop.

We use functional and propositional extensionality to prove language equality:

Lemma language_equality : forall (l1 l2: language),
l1 = l2 <-> forall (w: word), l1 w <-> l2 w.

Instead of using the standard representations of regular languages, i.e. finite
automata or regular expressions, we use Myhill-Nerode’s Theorem definition-
ally to represent regular languages as languages with finitely many derivatives.
We write Lx to denote the derivative of a language with respect to a word x
(sometimes Lσ with a single alphabet symbol), i.e.:

Definition derivative_of (L: language) (x: word) : language :=
fun w => L (x ++ w).

We say that Lx is a derivative of L when there exists a derivative label x such
that for all words w, Lx accepts w iff L accepts xw.

Definition is_deriv (L L_x: language) : Prop :=
exists (x: word), forall (w: word), L_x w <-> L (x ++ w).

We leverage Coq’s inductively defined lists to express the finiteness of a property
in terms of the existence of a list of elements satisfying that property:

Definition is_finite {X: Type} (P: X->Prop) : Prop :=
exists (L : list X), forall (x: X), In x L <-> P x.

A language L is regular iff it has finitely many derivatives:

Definition regular (L: language) : Prop :=
is_finite (is_deriv L).

We define regularity in this way because (1) Coq formalizations of regular expres-
sions, finite automata and their equivalence already exist [9,12,13,15]; and (2)
Jaffe’s and EPR’s proofs critically rely on the exact notion of finiteness cap-
tured in our definition. Sometimes, for proof engineering purposes we use a
dependently-typed notion of finiteness as follows:

Definition is_finite_dep {X: Type} (P: X->Prop) :=
exists (L: list {x | P x}), forall (dep_x : {x | P x}), In dep_x L.

The following equivalence lets us use one or the other as locally convenient.

Lemma is_finite_equiv : forall {X: Type} (P: X->Prop),
is_finite_dep P <-> is_finite P.

2.1 Jaffe’s Pumping Lemma

Jaffe provides the following necessary and sufficient condition for regularity. The
napp function performs word concatenation: napp h v is equivalent to vh, or
v concatenated to itself h times.
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Definition jaffe_pumpable_with (k: nat) (L: language) :=
forall (y: word), length y = k ->

exists (u v w: word),
y = u ++ v ++ w /\ v <> [] /\

forall (h: nat) (z: word),
L (u ++ napp h v ++ w ++ z) <-> L (y ++ z).

Jaffe’s pumping lemma amounts to proving two theorems, the first of which is:

Theorem reg_to_jaffe : forall (L: language),
regular L -> exists (k: nat), jaffe_pumpable_with k L.

From regularity we have a finite list of derivatives LD, from which we obtain the
pumping constant |LD| + 1. Given y, we construct a list of derivatives of length
|LD| + 1, which by the pigeonhole principle must contain a repeated derivative.
We then split y based on the two prefixes of the repeated derivative language
such that they correspond to u and u++v respectively.

The second theorem is the converse:

Theorem jaffe_to_reg : forall (k: nat) (L: language),
jaffe_pumpable_with k L -> regular L.

The following helper lemma is required to prove the converse direction, and
captures the central intuition of Jaffe’s pumping lemma: for any Jaffe-pumpable
with k language, every derivative is equivalent to some derivative with label
length shorter than k. This lemma is proven via strong induction on |x|.
Lemma jaffe_helper : forall (k: nat) (L: language),

jaffe_pumpable_with k L -> forall x, exists v,
length v <= k /\ derivative_of L x = derivative_of L v.

We now prove that Jaffe’s pumping condition implies regularity, i.e. that we
can construct a list of finitely many derivative languages for L. The list LD we
construct is the list of derivatives labeled by all words up to length k, where k
is Jaffe’s pumping constant. Proving that every language in LD is a derivative of
L is direct by definition. Proving that every derivative L x of L is in LD requires
jaffe helper and case analysis on the derivative label’s length, i.e. |x|. When
|x| ≤ k, L x is in LD by construction; when |x| > k, by jaffe helper it is
equivalent to some derivative whose label is shorter than or equal to k, which is
in LD by construction.

3 Block Pumpable Languages and Their Closure
Properties

In this section we define the block pumping and block cancellation properties,
and prove that one-sided block pumpable languages are closed under union,
intersection, and concatenation.

We use i, j to denote natural numbers and bp1, bp2 to denote breakpoints,
i.e. indices into a word w. We define word parts in terms of indices of type nat
rather than subwords of type list to allow Coq’s omega tactic to automatically
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discharge associated proof goals. Pumping the empty word leaves it unchanged,
so we can assume |w| ≥ 1 and at least two possible breakpoints (0 and |w|). We
use k to denote block pumping or cancellation constants. Therefore, k is at least
2, breakpoint sets are lists of k increasing, within-bounds indices into a word,
and breakpoints are members of such lists. We leverage Coq’s dependent types
to track these technicalities as follows:

Definition block_pumping_constant := {p: nat | p >= 2}.
Definition breakpoint_set (k: block_pumping_constant) (w: word)
:= {bl: list nat | length bl = k

/\ increasing bl
/\ last bl d <= length w}.

Definition breakpoint {k: block_pumping_constant} {w: word}
(bl: breakpoint_set k w) := {i: nat | In i bl}.

Recall from (Sect. 1, Theorem 3) EPR’s block pumping property, i.e. in Coq:

Definition block_pumpable_matching_with (k: block_pumping_constant)
(L: language) :=

forall (w: word) (bl: breakpoint_set k w),
exists (i j: breakpoint bl), i < j /\

forall (m: nat),
L w <->
L (firstn i w++napp m (pumpable_block i j w)++skipn j w).

Here firstn, napp, pumpable block, and skipn build the pumped word.
EPR [14] also established a variant of the block pumping property called the
block cancellation property: rather than repeating the word, we omit it. The
last two lines of block pumpable matching with are replaced with:

L w <-> L (firstn i w++skipn j w).

While the one-sided block cancellation property is weaker than its pump-
ing counterpart, the (two-sided) block cancellation and pumping properties are
equivalent. Indeed, the block cancellation property plays a critical role in both
EPR’s theorem in Sect. 4, and the construction of our new Choice-free proof in
Sect. 5.

3.1 Ramsey Theory

Proofs about block pumpable languages use Ramsey’s theorem [28], a founda-
tional result in combinatorics. Ramsey’s theorem is typically stated on graphs.

Theorem 4 (Ramsey’s theorem for graphs). One can always find
monochromatic cliques in any edge-coloring of a sufficiently large complete graph.

We re-express Ramsey’s theorem in terms of sets by representing vertices as
elements of some set and edges as pairs of elements in the set as follows:

Theorem 5 (Ramsey’s theorem for sets). For every natural number k and
finite set of colors Q, there exists a natural number r(k) such that for every
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ordered set I with r(k) elements and for every function mapping each pair (i, j)
to a color C(i, j), there exists a subset J ⊂ I with k elements such that all pairs
in J are mapped to the same color.

We then formalize two-color Ramsey’s theorem for sets in Coq using bool to
represent two distinct colors:

Theorem Ramsey_single :
forall (k: nat), k > 0 ->
exists (rk: nat), rk >= k /\
forall (l: list nat), length l = rk ->
forall (f: nat -> nat -> bool),

(exists (bl: list nat), length bl = k /\ subseq bl l /\
forall (i j: nat), i < j < k ->
f (nth i bl d) (nth j bl d) = true)

\/ (exists (bl: list nat), length bl = k /\ subseq bl l /\
forall (i j: nat), i < j < k ->
f (nth i bl d) (nth j bl d) = false).

We further specialize Ramsey to block pumping as follows:

Theorem Ramsey_single_prop :
forall (k: block_pumping_constant),
exists (rk: block_pumping_constant), rk >= k /\
forall (w: word) (bps: breakpoint_set rk w)

(P: nat -> nat -> Prop),
exists (bps’: breakpoint_set k w),

sublist bps’ bps /\
((forall (bp1 bp2: breakpoint bps’), bp1<bp2 -> (P bp1 bp2))

\/ (forall (bp1 bp2: breakpoint bps’), bp1<bp2 -> ˜(P bp1 bp2))).

We use “Ramsey’s constant” to refer to the existential witness r(k) dependent
on k given by Ramsey’s theorem. Instead of a computable two-element color-
ing function, we use an arbitrary predicate P; for this reason the proof of this
formulation of Ramsey requires LEM.

3.2 Closure Properties of One-Sided Block Pumpable Languages

We next formalize the results from [4] that one-sided block pumpable languages
are closed under union, intersection and concatenation. The proofs turn on find-
ing the right block pumping constant for the combined language. We present the
definitions for combined languages, and refer the reader to our Coq development
for statements of the closure properties. We use l1, l2 and k1, k2 to denote
two languages and their pumping constants.
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For union lang l1 l2, the new pumping constant is max k1 k2. The
proof follows directly from case analysis on whether the word is in l1 or in l2,
and applying the block pumping property for the respective language.

For intersection lang l1 l2, the new pumping constant is Ramsey’s
constant rk for max k1 k2. We know from Ramsey’s theorem that every break-
point set of size rk contains a subset bl of size k such that either all the break-
point pairs form pumps for w into l1 or they do not. By the one-sided block
pumping property for l1 and l2 we know that all breakpoint sets of size k con-
tain one pair of breakpoints which form pumps for w into l1 and l2 respectively.
In the case that bl contains all pumps for w into l1, we apply the one-sided
block pumping property for l2 to obtain a pair of pumps for both l1 and l2.
Otherwise, we find a contradiction.

For concat lang l1 l2, the new pumping constant is k1+k2. For any
word w=w1++w2, either all of w1’s breakpoints are in itself, in which case we
pump w1, or all of w2’s breakpoints are in itself, in which case we pump w2.
The proof proceeds by case analysis on the above two possibilities.

4 Ehrenfeucht, Parikh and Rozenberg’s Pumping Lemma

Having presented all the relevant formal definitions, we move on to EPR’s pump-
ing lemma. EPR’s pumping lemma states the following equivalence:

Theorem 6 (EPR’s pumping lemma). The block pumping property, the block
cancellation property and regularity are equivalent.

Fig. 1. The EPR commutative triangle

EPR’s pumping lemma amounts to
the commutative triangle in Fig. 1. The
equivalence can be shown by proving
either the clockwise or counterclockwise
direction of the triangle. EPR choose
regular → block pumping property →
block cancellation property. We call
languages that satisfy the block cancel-
lation property (respectively the block
pumping property) with pumping con-
stant k “BC(k) languages” (respectively “BP (k) languages”). Of the three
arrows, showing that the block cancellation property implies regularity (6) is
by far the most difficult and involved.

Lemma 1 (EPR’s Lemma 1). Block cancellation property implies regularity.

EPR splits this proof into three sub-lemmas:

Lemma 2 (EPR’s Lemma 2). BC(k) languages are finite.

Lemma 3 (EPR’s Lemma 3). If a language is BC(k), so are all of its
derivatives.
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Lemma 4 (EPR’s Lemma 4). Let P be some property of languages such that
(i) there are only finitely many languages that P, and (ii) forall σ in Σ, if L has
P then Lσ has P. Then P implies regularity.

EPR’s Lemma 4 follows directly from Myhill-Nerode [23], and Lemma 3 is
straightforward. On the other hand, EPR’s proof of Lemma 2 is a bit tricky
to pin down. In [14], EPR claim that the following is sufficient to show that
BC(k) languages are finite.

Lemma 5 (EPR’s Lemma 2-ish). Two BC(k) languages that agree on words
shorter than r(k), where r(k) is Ramsey’s constant, are equal.

EPR’s proof explains how to prove this lemma, but does not explain why it
is sufficient, i.e. why it implies the finiteness of block cancelable languages. We
complete EPR’s proof by re-interpreting Lemma 2-ish as follows, and then using
a classical set-theoretic fact about finiteness and injectivity which uses Lemma
2-ish to obtain the finiteness of block cancelable languages1.

Definition is_short_lang (n: nat) (L: language) : Prop :=
forall (w: word), L w -> length w <= n.

Definition filter_shortlang (n: nat) : language -> language :=
fun L: language => (fun w: word => L w /\ length w <= n).

Theorem real_injectivity : forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
injective (block_cancellable_matching_with k)

(is_short_lang rk)(filter_shortbclang k rk).

The definition of injective is standard and taken from Coq’s Logic
library, while block cancellable matching with and is short lang
rk describe the properties of the domain and codomain, i.e. block cance-
lable languages and short languages. The filter shortbclang function is
a dependently-typed version of the simpler filter shortlang shown above
which transforms languages in the domain into languages in the codomain by
“shearing” off the long words. Thus, in set-theoretic terms, our formulation of
EPR’s Lemma 2-ish states that the shearing of a BC(k) language down to a
language containing only “short” words of length less than r(k), where r(k) is
Ramsey’s constant, is injective. Next, we use the following set-theoretic fact:

Lemma 6. Every injective mapping onto some finite set is from a finite set.

Theorem inj_finite {X Y: Type} :
forall (P: X->Prop) (Q: Y->Prop) (f: {x | P x}->{y | Q y}),

inhabited {x | P x} -> injective P Q f -> is_finite_dep Q ->
is_finite_dep P.

1 In our Coq development, we define block cancellable matching with as the
two-sided cancellation property, i.e. both L and L’s complement satisfy it, while
block cancellable with refers to the one-sided cancellation (pumping) property.
The same applies for the block pumping property.
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We know that the function which shears a block cancelable language down to
short words is injective from EPR’s 2-ish. We easily know that short languages
containing length-bounded words are finite: there are exactly 2|Σ|m many of
them, where |Σ| is the size of the alphabet, and m is the length bound on words.
Therefore, by the above fact, we know that block cancelable languages are finite.

We instantiate P with block cancellable matching with k, Q with
is short lang and f with our dependently-typed length-shearing function. We
additionally prove that there is at least one BC(k) language:

Lemma inhabited_bc : forall k : block_pumping_constant,
inhabited (bc_language k).

This allows us to finally show that BC(k) languages are finite:

Theorem bc_k_is_finite_dep: forall k : block_pumping_constant,
is_finite_dep (block_cancellable_matching_with k).

Digression on the Axiom of Choice. The theorem inj finite is classical
because constructing a finite set from another finite set requires an inverse func-
tion of an injective function, which is constructed via the Axiom of Choice. As
mentioned in Sect. 2, we use functional choice (FunctionalChoice on from
Coq.Logic.ChoiceFacts). It is conceivable that this is a little stronger than
is required. While we cannot use constructive versions of Choice because the type
of the domain is uncountable (sets of sets of words), it is plausible that with some
additional gyrations we might be able to use the weaker Axiom of Description,
a.k.a. the Axiom of No Choice (FunctionalRelReification on):

(∀a. ∃!b. aRb) ⇒ (∃f. ∀a. aR(f(a))
)

While weaker, relying on the Axiom of No Choice would still be unfortunate.
We exorcise all forms of Choice by explicitly constructing the inverse in Sect. 5.

5 There and Back Again: An Explicit Inverse

We now present a Choice-free proof of EPR’s Lemma 2. Our proof is comprised
of three parts. First, we show that well-formed short languages are finite. Sec-
ond, we explicitly construct a function that computes a characteristic function
from a list of words. Finally, we prove correctness: that our function, when given
a well-formed short language represented as a list of words, computes the block
cancelable language that agrees with it on short words. We show that (i) when
given a well-formed short language our function returns a block cancelable lan-
guage; and (ii) every block cancelable language is in the image of our function.

5.1 Well-Formed Short Languages Are Finite

Our function must be computable so it inputs short languages as list word
rather than word -> Prop. We require two properties of such lists to be suit-
able for building a block cancelable language: (P1) that they contain only “short”
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words, i.e. of length less than some r(k); and (P2) that they agree with some
BC(k) language for all words up to length r(k).

Informally, the fact that there are a finite number of sets containing words
bounded by some length m is obvious: the cardinality is 2|Σ|m . Proving this using
Coq lists is less straightforward. Consider the following statement:

Lemma is_finite_shortlang_false : forall (rk: nat),
exists (LW: list (list word)), forall (l: list word),

In l LW <-> forall (w: word), In w l -> length w <= rk.

This statement is false because lists satisfying the right-hand side of the <->
are infinite: they can contain duplicates. We must also contend with the hassles
of permutations and ordering. We circumvent constructing and reasoning about
duplicate-free, length-lexicographically sorted lists of words by proving the finite-
ness of a stronger property, and then weakening it to obtain the length property
we require. We leverage Coq’s inductive definitions to define a relation subseq,
an order-preserving sublist relation of type list -> list -> Prop.

Inductive subseq (X: Type) : list X -> list X -> Prop :=
| subseq_nil : forall (l: list X), subseq [] l
| subseq_hm : forall (x: X) (l1 l2: list X),

subseq l1 l2 -> subseq (x :: l1) (x :: l2)
| subseq_hn : forall (x: X) (l1 l2: list X),

subseq l1 l2 -> subseq l1 (x :: l2).

We can show that any list has a finite number of subseq lists, the proof of
which proceeds by induction on the subseq relation.

Theorem subseq_finite: forall (l: list word),
is_finite (fun s => subseq s l).

To show that there are finitely many lists containing words up to some length n,
we want to instantiate l with the list containing all words up to length n. We
define a function generate words of length with correctness property:

Lemma generate_words_length_correct : forall (n: nat) (w: word),
In w (generate_words_of_length n) <-> length w = n.

We then use it to define a function generate words upto length with cor-
rectness property:

Lemma generate_words_upto_correct : forall (n: nat) (w: word),
In w (generate_words_upto n) <-> length w <= n.

Now we can state the finiteness of (P1) using generate words upto:

Theorem is_finite_shortwords: forall (n: nat),
is_finite (fun lw => subseq lw (generate_words_upto n)).

Next, we want to prune the lists that satisfy (P1) from is finite shortwords
andkeep only those that also satisfy (P2), i.e. that agreewith someBC(k) language
up to some length. We first prove that any subset of a finite list is finite:

Lemma p_in_list_finite {X: Type}: forall (P: X->Prop) (L: list X),
is_finite (fun l => P l /\ In l L).
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This allows us to state that finiteness is preserved over conjunction:

Lemma is_finite_conj {X: Type} : forall (P: X->Prop) (Q: X->Prop),
is_finite (fun l => P l) ->
is_finite (fun l => P l /\ Q l).

Instantiating properties P and Q with (P1) and (P2) respectively, we obtain the
finiteness of well-formed short languages and are ready to define our inverse
function in Sect. 5.2.

Theorem is_finite_subseq_wf:
forall (k rk: block_pumping_constant),
is_finite (fun lw => subseq lw (generate_words_upto rk) /\

exists (l : bc_language k), agreement_upto k rk l lw 0).

5.2 The unshear Function

Our unshear function inputs a list of words lw, and computes a characteristic
function—i.e. a word membership decider—for a block cancelable language.

We begin with a bird’s eye view description of unshear’s behavior.
unshear considers some arbitrary word w of length n. Starting with its input list
lw init, unshear incrementally considers sets of words of increasing length,
adding those that pass some condition check until it has considered every word
of length up to n. It then checks whether w is a member of the list computed so
far, which we denote lw. The intuition behind unshear turns on the fact that
block cancellation decreases word length, and that block cancelable languages
are uniquely determined by a subset of words up to some length.

We follow with details of the function unshear. We accompany each com-
putational function in bool with a correctness specification in Prop, and prove
correctness: the prop holds iff the function returns true.

A block canceled word with breakpoints i, j, is the word with the subword
between the i-th and j-th symbol removed. We say that two indices cancel some
word w into L if the block canceled word is a member of L. We build a block
canceled word using firstn and skipn as follows:

Definition cancelled_word (w: word) (i j: nat) :=
firstn i w ++ skipn j w.

First, we construct the function which checks words to be added to the list
maintained by unshear. In particular, given some word w, we check for the
existence of a k-size breakpoint set out of all possible k-size breakpoint sets
for w, in which all pairs of breakpoints cancel w into some target list of words2.

We first define a function which checks whether, for a given breakpoint set,
all pairs of breakpoints cancel some word into a target list. The inner function
are all pumps helper takes one breakpoint hd and a list of breakpoints
tl, and recursively traverses tl, pairwise checking the membership of the can-
celed word in the target list using a simple list membership checking function,
is member. We omit both functions for brevity.
2 We postpone discussion of why this condition works until Sect. 5.3.
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The outer function recursively traverses a list of breakpoints and calls the
inner function with each head element on the rest of the list, thus guaranteeing
pairs are checked in order. We express the ordered correctness property for this
function in terms of list indexing:

Fixpoint are_all_pumps (w: word) (l: list word)
(bps: list nat) :=

match bps with
| [] => true
| hd :: tl => if are_all_pumps_helper w l hd tl

then are_all_pumps w l tl
else false end.

Definition are_all_pumps_prop (w: word) (l: list word)
(bps: list nat) :=

forall (i j : nat), i < j < (length bps) ->
In (cancelled_word w (nth i bps d) (nth j bps d)) l.

We want to apply this function to all possible k-size breakpoint sets for some w.
We generate all k-size breakpoint sets via an order-preserving choose function
which chooses n elements from a list of greater than or equal to n elements.

Fixpoint choose {X: Type} (L: list X) (k: nat) {struct L} :=
match k with
| 0 => nil :: nil
| S k’ => match L with

| nil => nil
| h :: L’ => (map (fun l => h :: l) (choose L’ k’))

++ (choose L’ k) end end.

The list we give to choose is the list of all possible breakpoints for w, i.e. the
list starting from 0 and ending at S (length w).

Definition get_k_bps (w: word) (k: nat) :=
choose (iota 0 (S (length w))) k.

We use Coq’s existsb function to check if there is a k-size breakpoint set in the
list of all k-size breakpoint sets for which all pairs of breakpoints form pumps.

Definition exists_all_pumps_bps (w: word) (l: list word)
(k: nat) :=

existsb (are_all_pumps w l) (get_k_bps w k).
Definition exists_all_pumps_bps_prop (w: word) (l: list word)

(k: nat) :=
exists lp : list nat,

are_all_pumps_prop w l lp /\ In lp (get_k_bps w k).

Thus far, we have built the condition checker for an individual word w to be
added to lw maintained by unshear that is parameterized by a list word,
i.e. the target list in which canceled word membership is checked. However, the
role of lw in unshear is twofold: not only does it accept new words, it also serves
as the target list to determine the acceptance of future new words. unshear
considers individual words in batches of a certain length. When w contains words
of length up to some m, unshear considers all words of length S m. lw helps
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unshear determine which new words of length S m to add, and then accepts
the ones that pass, updating itself to now contain words of length up to S m.

We first define the function which considers all words of some length. Here,
rk is the length bound of our initial list, n is the difference between the length
of the candidate word and rk, and lref is our target list.

Definition chuck (k rk n: nat) (lref: list word) :=
filter (fun w=>check w lref k) (generate_words_of_length (n+rk))

++ lref.
Definition chuck_prop (k rk n: nat) (lref: list word) (w: word) :=

(exists_all_pumps_bps_prop w lref k /\ length w = n+rk)
\/ In w lref.

We then define the recursive function which adds words of up to some length to
be structurally decreasing over word length nat.

Fixpoint chuck_length (k rk n: nat) (lref: list word) :=
match n with
| 0 => lref
| S n’ => chuck k rk n (chuck_length k rk n’ lref) end.

We are now ready to define unshear, with return type word->Prop, or
language. We include an intermediate representation unshear bool with
return type word->bool.

Definition unshear_bool (k rk: nat) (lref: list word) :=
fun w => is_member w (chuck_length k rk (length w) lref).

Definition unshear (k rk: nat) (lref: list word) :=
fun w => unshear_bool k rk lref w = true.

5.3 Functional Correctness of unshear

To use unshear to prove that there are finitely many block cancelable lan-
guages, we need to show that when given a well-formed short language repre-
sented as a list lw, unshear computes the block cancelable language that agrees
with lw on short words. Proving the correctness of unshear thus amounts to
proving the following theorem:

Theorem unshear_correctness: forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word),
agreement_upto k rk l (chuck_length k rk lw 0) 0 ->
(forall w, In w lw <-> (shear_language rk (unshear k rk lw)) w)
/\ unshear k rk lw = (bc_language_dec_proj1 l).

The theorem states that for any decidable BC(k) language L and list of words
which agree with L up to length rk, (1) shear (unshear) lw = L, and (2)
unshear (shear) L = lw, i.e. shearing an unsheared list returns us the input
list, and unshearing a sheared language recovers us the language.

(1) amounts to showing unshear does not remove words from its input list or
add words of length less than rk, and is straightforward.
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(2) amounts to showing unshear recovers the block cancelable language L.
This direction requires us to show the correctness of our chucking condition
described above [Sect. 5.2], and involves Ramsey’s theorem. In particular, we
need to show that chuck preserves language agreement between lw and L,
with language agreement defined as follows:

Definition agreement_upto (k rk: block_pumping_constant)
(l: bc_language_dec k)
(lw: list word) (m : nat) :=

forall w, In w lw <-> (length w <= m + rk
/\ bc_language_dec_proj1 l w).

First, we show that given a list of words lw which agrees with some block
cancelable language L up to length m, chucking in words of length m+1 results
in a list which agrees with L up to length m+1. This further breaks down into
two directions: (1) any word added by chuck must be in L and of length no
more than m+1, and (2) any word in L and of length no more than m+1 must
pass chuck’s condition check.

Lemma IH_chuck_step: forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word) (m: nat),
agreement_upto k rk l lw m ->
agreement_upto k rk l (chuck k rk (S m) lw) (S m).

For the first direction, we have a word w that is either in lw or newly chucked
in, and we must show (i) |w| ≤ S m + rk and (ii) L w. In the case that w
is in lw, we are done. In the case that w is newly chucked, it satisfies the
length requirement by definition. By our chucking condition, there exists a k-
size breakpoint set lp with all breakpoint pairs forming pumps for w into lw.
We apply L’s block cancellation property with w and lp to obtain a cancelled
word w’ which agrees with w on membership in L, use the induction hypothesis
to obtain that w’ is in L, and thus complete the proof that w is in L.

For the second direction, we have a word w with (i) |w| ≤ S m + rk and
(ii) L w, and we must show that it is chucked in. This amounts to showing
that it satisfies the chucking condition: that there exists a k-size breakpoint set
containing all cancelable pumps for w into lw. This direction turns on Ramsey’s
theorem, as presented in (Sect. 2). From Ramsey’s theorem, we know that for
any r(k)-size breakpoint set, there exists a k-size breakpoint set with all pairs
either forming cancelable pumps for L or cancelable pumps for L’s complement.
In the first case, we have exactly the chucking condition. In the negative case,
we have a contradiction from L’s block cancellation property.

IH chuck step can be seen as the inductive step for chuck’s correctness
proof. We use it to prove chuck length’s correctness theorem, which shows
by induction that chuck length preserves language agreement up to length m
+ rk for any arbitrary m, where rk is the length bound of lw.
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Lemma IH_chuck:
forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word) (m: nat),
agreement_upto k rk l (chuck_length k rk 0 lw) 0 ->
agreement_upto k rk l (chuck_length k rk m lw) m.

This completes the proof of the second obligation for unshear’s correctness:
unshear adds exactly the same words that its associated block cancelable lan-
guage L accepts up to some length m + rk. Therefore, by language equality,
the resulting language is equivalent to L.

6 Related Work

Automata Theory. Automata and formal languages have been foundational top-
ics to computing since Turing’s introduction of his Machine [30]. Chomsky,
together with Marcel P. Schützenberger, introduced the Chomsky hierarchy
[5,6] of regular, context-free, context-sensitive and recursively enumerable sets
of strings. These classes of languages have been extensively studied over the
decades since to yield results of both practical and theoretical interest [17].

Pumping Lemmas. Pumping lemmas connect the finite automata mechanism
to the words such mechanisms can accept. The best-known pumping lemmas
are by Rabin and Scott for regular languages and by Bar-Hilel, Perles, and
Shamir for context-free languages [17,24]. Jaffe [18] and Ehrenfeucht, Parikh
and Rozenberg [14] pioneered the study of pumping properties that characterize
the regular languages. Follow-up work [29] provided evidence that other pumping
conditions are insufficient to give a characterization. Varrichio [31] solved an open
problem of EPR by establishing that the positive block pumping property (the
pump can be repeated but not canceled) also characterizes regular languages.
Chak, Freivalds, Stephan and Tan [4] studied the class of languages that are
block pumpable but whose complement is not.

Constructive Mathematics. Brouwer originated the ideas of intuitionistic mathe-
matics [16], which removes the Law of Excluded Middle as a universal reasoning
principle. The generalized Axiom of Choice is not admitted by intuitionistic logic:
Diaconescu’s theorem shows that it leads to the Law of Excluded Middle [11].

Martin-Löf developed intuitionistic type theory [22] and the notion of depen-
dent types, thereby contributing to many associated mechanized proof environ-
ments. Thierry Coquand took these ideas and built the calculus of construc-
tions [8], which in turn led to the calculus of inductive constructions [27], the
underlying logic of the Coq proof assistant [7]. Coq separates computation (i.e.
Type) from mathematical truths (i.e. Prop). The Axiom of Choice, in a type-
theoretical context, essentially erases this distinction.
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Mechanizations of Automata Theory. Interest in mechanizing automata theory
began over thirty years ago [20]. Existing work in formalizing automata theory
focuses on languages in the Chomsky hierarchy: Kreitz [20] and Constable et al.
[10] formalize finite automata-based regular language theory in NuPRL, Dockzal
et al. [12,13] formalize regular language theory in Coq, Ramos et al. [26] formalize
context-free language theory in Coq and Zhang et al. [32] formalize the Myhill-
Nerode theorem using only regular expressions in Isabelle/HOL.

Some of these proofs are constructive, although in a few cases the authors
assume that they are working in the Chomsky hierarchy to begin with. For
example, Dockzal et al. [12] use the Coq type word -> bool to represent
languages, rather than word -> Prop as we do, and then go on to prove Myhill-
Nerode constructively. In a certain sense this begs the question, however.

There is also substantial existing work focusing on verified translation and
decision procedures for representations of regular languages. Filliatre [15] con-
structively proves the expressive equivalence of regular expressions and finite
automata in Coq, and extracts a functional program which translates a regular
expression to a finite automata, Almeida et al. [1] prove the correctness of a par-
tial derivative automata construction from regular expressions in Coq, Coquand
and Nipkow et al. [9,25] verify a decision procedure for regular expression equiv-
alence in Coq, and Krauss et al. [19] verify a regular expression equivalence
checker in HOL/Isabelle etc.

7 Conclusion

To the best of our knowledge, the present work is the first mechanization of lan-
guage classes, namely the one-sided block pumpable and one-sided block cance-
lable languages, that are orthogonal to the Chomsky hierarchy and furthermore,
cannot be characterized algebraically or automata-theoretically. We have formal-
ized two important and significantly different pumping lemmas which both char-
acterize regularity: Jaffe’s pumping lemma and EPR’s block pumping lemma. We
have also formalized closure properties of one-sided block pumpable languages.
We have presented a new Choice-free proof of EPR’s theorem by defining an
inverse function from block cancelable to well-formed short languages.
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Automata Complementation
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Abstract. Complementation of Büchi automata is an essential tech-
nique used in some approaches for termination analysis of programs.
The long search for an optimal complementation construction climaxed
with the work of Schewe, who proposed a worst-case optimal rank-based
procedure that generates complements of a size matching the theoretical
lower bound of (0.76n)n, modulo a polynomial factor of O(n2). Although
worst-case optimal, the procedure in many cases produces automata that
are unnecessarily large. In this paper, we propose several ways of how
to use the direct and delayed simulation relations to reduce the size of
the automaton obtained in the rank-based complementation procedure.
Our techniques are based on either (i) ignoring macrostates that can-
not be used for accepting a word in the complement or (ii) saturating
macrostates with simulation-smaller states, in order to decrease their
total number. We experimentally showed that our techniques can indeed
considerably decrease the size of the output of the complementation.

1 Introduction

Büchi automata (BA) complementation is a fundamental problem in program
analysis and formal verification, from both theoretical and practical angles. It is,
for instance, a critical step in some approaches for termination analysis, which
is an essential part of establishing total correctness of programs [9,14,19]. More-
over, BA complementation is used as a component of decision procedures of some
logics for reasoning about programs, such as S1S capturing a decidable fragment
of second-order arithmetic [6] or the temporal logics ETL and QPTL [35].

The study of the BA complementation problem can be traced back to 1962,
when Büchi introduced his automaton model in the seminal paper [6] in the con-
text of a decision procedure for the S1S fragment of second-order arithmetic. In
the paper, a doubly exponential complementation algorithm based on the infinite
Ramsey theorem is proposed. In 1988, Safra [32] introduced a complementation
procedure with an nO(n) upper bound and, in the same year, Michel [28] estab-
lished an n! lower bound. From the traditional theoretical point of view, the
problem was already solved, since exponents in the two bounds matched under
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the O notation (recall that n! is approximately (n/e)n). From a more practi-
cal point of view, a linear factor in an exponent has a significant impact on
real-world applications. It was established that the upper bound of Safra’s con-
struction is 22n, so the hunt for an optimal algorithm continued [38]. A series
of research efforts participated in narrowing the gap [15,23,24,39,41]. The long
journey climaxed with the result of Schewe [33], who proposed an optimal rank-
based procedure that generates complements of a size matching the theoretical
lower bound of (0.76n)n found by Yan [41], modulo a polynomial factor of O(n2).

Although the algorithm of Schewe is worst-case optimal, it often gener-
ates unnecessarily large complements. The standard approach to alleviate this
problem is to decrease the size of the input BA before the complementation
starts. Since minimization of (nondeterministic) BAs is a PSpace-complete
problem, more lightweight reduction methods are necessary. The most prevalent
approaches are those based on various notions of simulation-based reduction,
such as reductions based on direct simulation [7,36], a richer delayed simula-
tion [12], or their multi-pebble variants [13]. These approaches first compute
a simulation relation over the input BA—which can be done with the time
complexity O(mn) [8,20,22,30,31] and O(mn3) [12] for direct and delayed sim-
ulation respectively, with the number of states n and transitions m—and then
construct a quotient BA by merging simulation-equivalent states, while preserv-
ing the language of the input BA. The other approach is a reduction based on
fair simulation [18]. The fair simulation cannot, however, be used for quotient-
ing, but still it can be used for merging certain states and removing transitions.
The reduced BA is used as the input of the complementation, which often sig-
nificantly reduces the size of the result.

In this paper, we propose several ways of how to exploit the direct and delayed
simulations in BA complementation even further to obtain smaller complements
and shorter running times. We focus, in particular, on the optimal rank-based
complementation procedure of Schewe [33]. Essentially, the rank-based construc-
tion is an extension of traditional subset construction for determinizing finite
automata, with some additional information kept in each macrostate (a state
in the complemented BA) to track the acceptance condition of all runs of the
input automaton on a given word. In particular, it stores the rank of each state in
a macrostate, which, informally, measures the distance to the last accepting state
on the corresponding run in the input BA. The main contributions of this paper
are the following optimisations of rank-based complementation for BAs, for an
input BA A and the output of the rank-based complementation algorithm B.

1. Purging : We use simulation relations over A to remove some useless macro-
states during the construction of B. In particular, if a state p is simulated
by q in A, this puts a restriction on the relation between the ranks of runs
from p and from q. As a consequence, macrostates that assign ranks violating
this restriction can be purged from B.

2. Saturation: We saturate macrostates with states that are simulated by the
macrostate; this can reduce the total number of states of B because two or
more macrostates can be mapped to a single saturated macrostate. This is
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inspired by the technique of Glabbeek and Ploeger that uses closures in finite
automata determinization [17].

The proposed optimizations are orthogonal to simulation-based size reduction
mentioned above. Since the quotienting methods are based on taking only the
symmetric fragment of the simulation, i.e., they merge states that simulate each
other, after the quotienting, there might still be many pairs where the simulation
holds in only one way, and can therefore be exploited by our techniques. Since
the considered notions of simulation-based quotienting preserve the respective
simulations, our techniques can be used to optimize the complementation at no
additional cost. Our experimental evaluation of the optimizations showed that in
many cases, they indeed significantly reduce the size of the complemented BA.

2 Preliminaries

We fix a finite nonempty alphabet Σ and the first infinite ordinal ω = {0, 1, . . .}.
For n ∈ ω, by [n] we denote the set {0, . . . , n}. An (infinite) word α is represented
as a function α : ω → Σ where the i-th symbol is denoted as αi. A finite word w
of length n + 1 is represented as a function w : [n] → Σ. The finite word of
length 0 is denoted as ε. We abuse notation and sometimes also represent α as
an infinite sequence α = α0α1 . . . and w as a finite sequence w = w0 . . . wn−1.
The suffix αiαi+1 . . . of α is denoted by αi:ω. We use Σω to denote the set
of all infinite words over Σ and Σ∗ to denote the set of all finite words. For
L ⊆ Σ∗ we define L∗ = {u ∈ Σ∗ | u = w1 · · · wn ∧ ∀1 ≤ i ≤ n : wi ∈ L} and
Lω = {α ∈ Σω | α = w1w2 · · · ∧ ∀i ≥ 1 : wi ∈ L} (note that {ε}ω = ∅). Given
L1, L2 ⊆ Σ∗, we use L1L2 to denote the set {w1w2 | w1 ∈ L1, w2 ∈ L2}.

A (nondeterministic) Büchi automaton (BA) over Σ is a quadruple A =
(Q, δ, I, F ) where Q is a finite set of states, δ is a transition function δ : Q×Σ →
2Q, and I, F ⊆ Q are the sets of initial and accepting states respectively. We
sometimes treat δ as a set of transitions p

a−→ q, for instance, we use p
a−→ q ∈ δ

to denote that q ∈ δ(p, a). Moreover, we extend δ to sets of states P ⊆ Q
as δ(P, a) =

⋃
p∈P δ(p, a). A run of A from q ∈ Q on an input word α is an

infinite sequence ρ : ω → Q that starts in q and respects δ, i.e., ρ0 = q and
∀i ≥ 0 : ρi

αi−→ ρi+1 ∈ δ. We say that ρ is accepting iff it contains infinitely many
occurrences of some accepting state, i.e., ∃qf ∈ F : |{i ∈ ω | ρi = qf}| = ω.
A word α is accepted by A from a state q ∈ Q if there is an accepting run ρ of
A from q, i.e., ρ0 = q. The set LA(q) = {α ∈ Σω | A accepts α from q} is called
the language of q (in A). Given a set of states R ⊆ Q, we define the language
of R as LA(R) =

⋃
q∈R LA(q) and the language of A as L(A) = LA(I). For

a pair of states p and q in A, we use p ⊆L q to denote LA(p) ⊆ LA(q).
Without loss of generality, in this paper, we assume A to be complete, i.e.,

for every state q and symbol a, it holds that δ(q, a) �= ∅. A trace over a word α

is an infinite sequence π = q0
α0−→ q1

α1−→ · · · such that ρ = q0q1 . . . is a run of A
over α from q0. We say π is fair if it contains infinitely many accepting states.
Moreover, we use p

w� q for w ∈ Σ∗ to denote that q is reachable from p over
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the word w; if a path from p to q over w contains an accepting state, we can
write p

w�
F

q. In this paper, we fix a complete BA A = (Q, δ, I, F ).

2.1 Simulations

We introduce simulation relations between states of a BA A using the game
semantics in a similar manner as in the extensive study of Clemente and
Mayr [26]. In particular, in a simulation game between two players (called Spoiler
and Duplicator) in A from a pair of states (p0, r0), for any (infinite) trace over
a word α that Spoiler takes starting from p0, Duplicator tries to mimic the trace
starting from r0. On the other hand, Spoiler tries to find a trace that Duplica-
tor cannot mimic. The game starts in the configuration (p0, r0) and every i-th
round proceeds by, first, Spoiler choosing a transition pi

αi−→ pi+1 and, second,
Duplicator mimicking Spoiler by choosing a matching transition ri

αi−→ ri+1 over
the same symbol αi. The next game configuration is (pi+1, ri+1). Suppose that
πp = p0

α0−→ p1
α1−→ · · · and πr = r0

α0−→ r1
α1−→ · · · are the two (infinite) traces

constructed during the game. Duplicator wins the simulation game if Cx(πp, πr)
holds, where Cx(πp, πr) is a condition that depends on the particular simulation.
In the current paper, we consider the following simulation relations:

– direct [11]: Cdi(πp, πr)
def⇐⇒ ∀i : pi ∈ F ⇒ ri ∈ F,

– delayed [12]: Cde(πp, πr)
def⇐⇒ ∀i : pi ∈ F ⇒ ∃k ≥ i : rk ∈ F, and

– fair [21]: Cf (πp, πr)
def⇐⇒ if πp is fair, then πr is fair.

A maximal x-simulation relation �x ⊆ Q × Q, for x ∈ {di , de, f}, is defined
such that p �x r iff Duplicator has a winning strategy in the simulation game
with the winning condition Cx starting from (p, r). Formally, we define a strategy
to be a (total) mapping σ : Q×(Q×Σ×Q) → Q such that σ(r, p a−→ p′) ∈ δ(r, a),
i.e., if Duplicator is in state r and Spoiler selects a transition p

a−→ p′, the strategy
picks a state r′ such that r

a−→ r′ ∈ δ (and because A is complete, such a transition
always exists). Note that Duplicator cannot look ahead at Spoiler’s future moves.
We use σx to denote any winning strategy of Duplicator in the Cx simulation
game. Let σx and σ′

x be a pair of winning strategies in the Cx simulation game.
We say that σx is dominated by σ′

x if for all states p and all transitions q
a−→ q′ it

holds that σx(p, q
a−→ q′) �x σ′

x(p, q
a−→ q′), and that σx is strictly dominated by σ′

x

if σx is dominated by σ′
x and σx does not dominate σ′

x. A strategy is dominating
if it is not strictly dominated by any other strategy. Strategies are also lifted
to traces as follows: let πp be as above, then σ(r0, πp) = r0

α0−→ r1
α1−→ · · · where

for all i ≤ 0 it holds that σ(ri, pi
αi−→ pi+1) = ri+1. The considered simulation

relations form the following hierarchy: �di ⊆ �de ⊆ �f ⊆ ⊆L . Note that
every maximal simulation relation is a preorder, i.e., reflexive and transitive.
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2.2 Run DAGs

In this section, we recall the terminology from [33] (which is a minor modification of
the terminology from [24]). We fix the definition of the run DAG of A over a word α
to be a DAG (directed acyclic graph) Gα = (V,E) of vertices V and edges E where

– V ⊆ Q × ω s.t. (q, i) ∈ V iff there is a run ρ of A over α with ρi = q,
– E ⊆ V × V s.t. ((q, i), (q′, i′)) ∈ E iff i′ = i + 1 and q′ ∈ δ(q, αi).

Given Gα as above, we will write (p, i) ∈ Gα to denote that (p, i) ∈ V . We call
(p, i) accepting if p is an accepting state. Gα is rejecting if it contains no path
with infinitely many accepting vertices. A vertex (p, i) ∈ Gα is finite if the set of
vertices reachable from (p, i) is finite, infinite if it is not finite, and endangered
if (p, i) cannot reach an accepting vertex.

We assign ranks to vertices of run DAGs as follows: Let G0
α = Gα and j = 0.

Repeat the following steps until the fixpoint or for at most 2n + 1 steps, where
n is the number of states of A.

– Set rankα(p, i) := j for all finite vertices (p, i) of Gj
α and let Gj+1

α be Gj
α minus

the vertices with the rank j.
– Set rankα(p, i) := j + 1 for all endangered vertices (p, i) of Gj+1

α and let Gj+2
α

be Gj+1
α minus the vertices with the rank j + 1.

– Set j := j + 2.

For all vertices v that have not been assigned a rank yet, we assign rankα(v) := ω.
(Note that since A is complete, then G1

α = G0
α.)

Lemma 1. If α /∈ L(A), then 0 ≤ rankα(v) ≤ 2n for all v ∈ Gα. Moreover, if
α ∈ L(A), then there is a vertex (p, 0) ∈ Gα s.t. rankα(p, 0) = ω.

Proof. Follows from Corollary 3.3 in [24]. ��

3 Complementing Büchi Automata

We use as the starting point the complementation procedure of Schewe [33,
Section 3.1], which we denote as CompS (the ‘S’ stands for ‘Schewe’). The pro-
cedure works with the notion of level rankings. Given n = |Q|, a (level) ranking
is a function f : Q → [2n] such that {f(qf ) | qf ∈ F} ⊆ {0, 2, . . . , 2n}, i.e.,
f assigns even ranks to accepting states of A. 1 For a ranking f , the rank of f
is defined as rank(f) = max{f(q) | q ∈ Q}. For a set of states S ⊆ Q, we call f
to be S-tight if (i) it has an odd rank r, (ii) {f(s) | s ∈ S} ⊇ {1, 3, . . . , r}, and
(iii) {f(q) | q /∈ S} = {0}. A ranking is tight if it is Q-tight; we use T to denote

1 Note that our basic definitions slightly differs from the ones in Sect. 2.3 of [33]. This
is because of a typo in [33]; indeed, if the procedure from [33] is implemented as is, the
output does not accept the complement (there might be a macrostate (S, O, f) where
S contains accepting states and O is empty, and, therefore, the whole macrostate is
accepting, which is wrong).
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the set of all tight rankings. For a pair of rankings f and f ′, a set S ⊆ Q, and
a symbol a ∈ Σ, we use f ′ ≤S

a f iff for every q ∈ S and q′ ∈ δ(q, a) it holds that
f ′(q′) ≤ f(q).

The CompS procedure constructs the BA BS = (Q′, δ′, I ′, F ′) whose compo-
nents are defined as follows:

– Q′ = Q1 ∪ Q2 where
• Q1 = 2Q and
• Q2 ={(S,O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n − 2} |

f is S-tight, O ⊆ S ∩ f−1(i)},
– I ′ = {I},
– δ′ = δ1 ∪ δ2 ∪ δ3 where

• δ1 : Q1 × Σ → 2Q1 such that δ1(S, a) = {δ(S, a)},
• δ2 : Q1 × Σ → 2Q2 such that δ2(S, a) = {(S′, ∅, f, 0) | S′ = δ(S, a),

f is S′-tight}, and
• δ3 : Q2 × Σ → 2Q2 such that (S′, O′, f ′, i′) ∈ δ3((S,O, f, i), a) iff S′ =

δ(S, a), f ′ ≤S
a f , rank(f) = rank(f ′), f ′ is S′-tight, and

* i′ = (i + 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or
* i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O �= ∅, and

– F ′ = {∅} ∪ ((2Q × {∅} × T × ω) ∩ Q2).

Intuitively, CompS is an extension of the classical subset construction for deter-
minization of finite automata. In particular, Q1, δ1, and I1 constitute the deter-
ministic finite automaton obtained from A using the subset construction. The
automaton can, however, nondeterministically guess a point at which it will make
a transition to a macrostate (S,O, f, i) in the Q2 part; this guess corresponds
to a level in the run DAG of the accepted word from which the ranks of all lev-
els form an S-tight ranking, where the S component of the macrostate is again
a subset from the subset construction. In the Q2 part, BS makes sure that in
order for a word to be accepted by BS , all runs of A over the word need to touch
an accepting state only finitely many times. This is ensured by the f compo-
nent, which, roughly speaking, maps states to ranks of corresponding vertices
in the run DAG over the given word. The O component is used for a standard
cut-point construction, and is used to make sure that all runs that have reached
an accepting state in A will eventually leave it (this can happen for different
runs at a different point). The S,O, and f components were already present
in [24]. The i component was introduced by Schewe to improve the complexity
of the construction; it is used to cycle over phases, where in each phase we focus
on cut-points of a different rank. See [33] for a more elaborate exposition.

Proposition 1 (Corollary 3.3 in [33]). L(BS ) = L(A).

4 Purging Macrostates with Incompatible Rankings

Our first optimisation is based on removing from BS macrostates (S,O, f, i) ∈
Q2 whose level ranking f assigns some states of S an unnecessarily high rank.
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Intuitively, when S contains a state p and a state q such that p is (directly)
simulated by q, i.e. p �di q, then f(p) needs to be at most f(q). This is because
in any word α and its run DAG Gα in A, if p and q are at the same level i
of Gα, then the ranks of their vertices vp and vq at the given level are either
both ω (when α ∈ L(A)), or such that rankα(vp) ≤ rankα(vq) otherwise. This
is because, intuitively, the DAG rooted in vp in Gα is isomorphic to a subgraph
of the DAG rooted in vq.

Formally, consider the following predicate on macrostates of BS :

Pdi(S,O, f, i) iff ∃p, q ∈ S : p �di q ∧ f(p) > f(q). (1)

We modify CompS to purge macrostates that satisfy Pdi . That is, we create
a new procedure Purgedi obtained from CompS by modifying the definition
of BS such that all occurrences of Q2 are substituted by Qdi

2 and

Qdi
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i)}. (2)

We denote the BA obtained from Purgedi as Bdi
S . The following lemma, proved

in Sect. 4.1 states the correctness of this construction.

Lemma 2. L(Bdi
S ) = L(BS )

The following natural question arises: Is it possible to extend the purging tech-
nique from direct simulation to other notions of simulation? For fair simulation,
this cannot be done. The reason is that, for a pair of states p and q s.t. p �f q,
it can happen that for a word β ∈ Σω, there can be a trace from p over β that
finitely many times touches an accepting state (i.e., a vertex of p in the corre-
sponding run DAG can have any rank between 0 and 2n), while all traces from q
over β can completely avoid touching any accepting state. From the point of
view of fair simulation, these are both unfair traces, and, therefore, disregarded.

On the other hand, delayed simulation—which is often much richer than
direct simulation—can be used, with a small change. Intuitively, the delayed
simulation can be used because p �de q guarantees that on every level of trees
in Gα rooted in vp and in vq respectively, the rank of the vertex vp is at most
by one larger than the rank of vertex vq (or by any number smaller). Formally,
let Pde be the following predicate on macrostates of BS :

Pde(S,O, f, i) iff ∃p, q ∈ S : p �de q ∧ f(p) > ��f(q)��, (3)

where ��x�� for x ∈ ω denotes the smallest even number greater or equal to x
and ��ω�� = ω. Similarly as above, we create a new procedure, called Purgede ,
which is obtained from CompS by modifying the definition of BS such that all
occurrences of Q2 are substituted by Qde

2 and

Qde
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pde(S,O, f, i)}. (4)

We denote the BA obtained from Purgede as Bde
S .

Lemma 3. L(Bde
S ) = L(BS )
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The use of ��f(q)�� in Pde results in the fact that the two purging techniques are
incomparable. For instance, consider a macrostate ({p, q}, ∅, {p �→ 2, q �→ 1}, 0)
such that p �di q and p �de q. Then the macrostate will be purged in Purgedi ,
but not in Purgede .

The two techniques can, however, be easily combined into a third procedure
Purgedi+de , when Q2 is substituted in CompS with Qdi+de

2 defined as

Qdi+de
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i) ∨ Pde(S,O, f, i)}. (5)

We denote the resulting BA as Bdi+de
S .

Lemma 4. L(Bdi+de
S ) = L(BS )

4.1 Proofs of Lemmas 2, 3, and 4

We first give a lemma that an x-strategy σx preserves an x-simulation �x.

Lemma 5. Let �x be an x-simulation (for x ∈ {di , de, f }). Then, the following
holds: ∀p, q ∈ Q : p �x q ∧ p

a−→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q
a−→ q′ ∈ δ ∧ p′ �x q′.

Proof. Let p, q ∈ Q such that p �x q and p
a−→ p′ ∈ δ, and let πp be a trace starting

from p with the first transition p
a−→ p′. From the definition of x-simulation, there

is a winning Duplicator strategy σx; let πq = σx(q′, πp) and let q
a−→ q′ be the first

transition of πq. Let πp′ and πr′ be traces obtained from πp and πr by removing
their first transitions. It is easy to see that if Cx(πp, πr) then also Cx(πp′ , πr′)
for any x ∈ {di , de, f }. It follows that σx is also a winning Duplicator strategy
from (p′, r′). ��
Next, we focus on delayed simulation and the proof of Lemma 3. In the next
lemma, we show that if there is a pair of vertices on some level of the run
DAG where one vertex delay-simulates the other one, there exists a relation
between their rankings. This will be used to purge some useless rankings from
the complemented BA.

Lemma 6. Let p, q ∈ Q such that p �de q and Gα = (V,E) be the run DAG of
A over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤
��rankα(q, i)��.
Proof. Consider some (p, i) ∈ V and (q, i) ∈ V . First, suppose that rankα(q, i) =
ω. Since the rank can be at most ω, it will always hold that rankα(p, i) ≤
��rankα(q, i)��.

On the other hand, suppose that rankα(q, i) is finite, i.e., αi:ω is not accepted
by q. Then, due to Lemma 1, 0 ≤ rankα(q, i) ≤ 2n. Because p �de q, it holds
that αi:ω is also not accepted by p, and therefore also 0 ≤ rankα(p, i) ≤ 2n. We
now need to show that 0 ≤ rankα(p, i) ≤ ��rankα(q, i)�� ≤ 2n.

Let {Gk
α}2n+1

k=0 be the sequence of run DAGs obtained from Gα in the ranking
procedure from Sect. 2.2. In the following text we use the abbreviation v ∈
Gm

α \ Gn
α for v ∈ Gm

α ∧ v /∈ Gn
α . Since the rank of a node (r, j) is given as the

number l s.t. (r, j) ∈ Gl
α \Gl+1

α , we will finish the proof of this lemma by proving
the following claim:
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Claim. Let k and l be s.t. (p, i) ∈ Gk
α \Gk+1

α and (q, i) ∈ Gl
α \Gl+1

α . Then k ≤ ��l��.

Proof: We prove the claim by induction on l.

– Base case: (l = 0) Since we assume A is complete, no vertex in G0
α is finite.

(l = 1) We prove that if (q, i) is endangered in G1
α, then (p, i) is endangered

in G1
α as well (so both would be removed in G2

α). For the sake of contradic-
tion, assume that (q, i) is endangered in G1

α and (p, i) is not. Therefore, since
G1

α contains no finite vertices, there is an infinite path π from (p, i) s.t. π
contains at least one accepting state. In the following, we abuse notation
and, given a strategy σde and a state s ∈ Q, use σde((s, i), π) to denote the
path (s0, i)(s1, i + 1)(s2, i + 2) . . . such that s0 = s and ∀j ≥ 0, it holds
that sj+1 = σde(sj , ri+j

αi+j−−−→ ri+j+1) where πx = (rx, x) for every x ≥ 0.
Since p �de q, there is a corresponding infinite path π′ = σde((q, i), π) that
also contains at least one accepting state. Therefore, (q, i) is not endangered,
a contradiction to the assumption, so we conclude that l = 1 ⇒ k = 1.

– Inductive step: We assume the claim holds for all l < 2j and prove the
inductive step for even and odd steps independently.

(l = 2j) We prove that if (q, i) is finite in Gl
α (and therefore would be

removed in Gl+1
α ), then either (p, i) /∈ Gl

α, or (p, i) is also finite in Gl
α. For

the sake of contradiction, we assume that (q, i) is finite in Gl
α and that (p, i)

is in Gl
α, but is not finite there (and, therefore, k > l). Since (p, i) is not

finite in Gl
α, there is an infinite path π from (p, i) in Gl

α. Because p �de q, it
follows that there is an infinite path π′ = σde((q, i), π) in G0

α (π′ is not in Gl
α

because (q, i) is finite there). Using Lemma 5 (possibly multiple times) and
the fact that (q, i) is finite, we can find vertices (p′, x) in π and (q′, x) in π′

s.t. p′ �de q′ and (q′, x) is not in Gl
α, therefore, (q′, x) ∈ Ge

α \ Ge+1
α for some

e < l. Because (p′, x) ∈ Gl
α and it is not finite (π is infinite), it follows that

(p′, x) ∈ Gf
α\Gf+1

α for some f > l, and since e < l < f , we have that f �≤ e+1,
implying f �≤ ��e��, which is in contradiction to the induction hypothesis.

(l = 2j+1) We prove that if (q, i) is endangered in Gl
α (and therefore would

be removed in Gl+1
α ), then either (p, i) /∈ Gl

α, or (p, i) is removed at the latest
in Gl+1

α . For the sake of contradiction, assume that (q, i) is endangered in Gl
α

while (p, i) is removed later than in Gl+1
α . Therefore, since Gl

α contains no
finite vertices (they were removed in the (l − 1)-th step), there is an infinite
path π from (p, i) s.t. π contains at least one accepting state. Because p �de q,
there is a corresponding path π′ = σde((q, i), π) from (q, i) in G0

α that also
contains at least one accepting state and moreover π′ /∈ Gl

α. Since π′ has an
infinite number of states (and at least one accepting), not all states from π′

were removed in Gl−1
α , i.e., there is at least one node with rank less or equal to

l − 2. Using Lemma 5 (also possibly multiple times) we can hence find states
(p′, x) in π and (q′, x) in π′ s.t. p′ �de q′ and (q′, x) is not in Gl

α and has
a rank less or equal to l − 2, therefore, (q′, x) ∈ Ge

α \ Ge+1
α for some e < l − 1.

Because (p′, x) ∈ Gl
α, it follows that (p′, x) ∈ Gf

α \ Gf+1
α for some f ≥ l, and,

therefore, f �≤ e + 1, which is in contradiction to the induction hypothesis. �

This concludes the proof. ��



456 Y.-F. Chen et al.

Lemma 7. Let p, q ∈ Q such that p �di q and Gα = (V,E) be the run DAG of
A over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤
rankα(q, i).

Proof. Can be obtained as a simplified version of the proof of Lemma 6. ��

We are now ready to prove Lemma 3.

Lemma 3. L(Bde
S ) = L(BS )

Proof. (⊆) Follows directly from the fact that Bde
S is obtained by removing states

from BS .
(⊇) Let α ∈ L(BS ). As shown in the proof of Lemma 3.2 in [33], there are two
cases. The first case is when all vertices of Gα are finite, which we do not need
to consider, since we assume complete automata.
The other case is when Gα contains an infinite vertex. In this case, BS contains
an accepting run

ρ = S0S1 . . . Sp(Sp+1, Op+1, fp+1, ip+1)(Sp+2, Op+2, fp+2, ip+2) . . .

with

• S0 = I,Op+1 = ∅, and ip+1 = 0,
• Sj+1 = δ(Sj , αj) for all j ∈ ω,

and, for all j > p,

• Oj+1 = f−1
j+1(ij+1) if Oj = ∅ or

Oj+1 = δ(Oj , αj) ∩ f−1
j+1(ij+1) if Oj �= ∅, respectively,

• fj is the Sj-tight level ranking that maps each q ∈ Sj to the rank of (q, j) ∈
Gα,

• ij+1 = ij if Oj �= ∅ or
ij+1 = (ij + 2) mod (rank(f) + 1) if Oj = ∅, respectively.

The ranks assigned by fj to states of Sj match the ranks of the corresponding
vertices in Gα.
� Using Lemma 6, we conclude that ρ contains no macrostate (S,O, f, j) where
f(p) > ��f(q)�� and p �de q for p, q ∈ S. Therefore, ρ is also an accepting run
in Bde

S . (We use � to refer to this paragraph later.) ��

Lemma 2. L(Bdi
S ) = L(BS )

Proof. The same as for Lemma 3 with � substituted by the following:
� Using Lemma 7, we conclude that ρ contains no macrostate (S,O, f, j) where
f(p) > f(q) and p �di q for p, q ∈ S. So ρ is also an accepting run in Bdi

S . ��

Lemma 4. L(Bdi+de
S ) = L(BS )

Proof. The same as for Lemma 3 with � substituted by the following:
� Using Lemmas 7 and 6, we conclude that ρ contains no macrostate (S,O, f, j)
where either f(p) > f(q) and p �di q, or f(p) > ��f(q)�� and p �de q for p, q ∈ S.
Therefore, ρ is also an accepting run in Bdi+de

S . ��
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5 Saturation of Macrostates

Our second optimisation is inspired by an optimisation of determinisation of
classical finite automata from [17, Section 5]. Their optimisation is based on
saturating every constructed macrostate in the classical subset construction with
all direct-simulation-smaller states. This can reduce the total number of states
of the determinized automaton because two or more macrostates can be mapped
to a single saturated macrostate. (In Sect. 5.2, we show why an analogue of their
compression cannot be used.)

We show that a similar technique can be applied to BAs. We do not restrain
ourselves to direct simulation, though, and generalize the technique to delayed
simulation. In particular, in our optimisation, we saturate the S components of
macrostates (S,O, f, i) obtained in CompS with all �de -smaller states. Formally,
we modify CompS by substituting the definition of the constructed transition
function δ′ with δ′

Sat defined as follows:

– δ′
Sat = δSat1 ∪ δSat2 ∪ δSat3 where
• δSat1 : Q1 × Σ → 2Q1 with δSat1 (S, a) = {cl [δ(S, a)]},
• δSat2 : Q1 × Σ → 2Q2 with δSat2 (S, a) = {(S′, ∅, f, 0) | S′ = cl [δ(S, a)]},

and
• δSat3 : Q2 × Σ → 2Q2 with (S′, O′, f ′, i′) ∈ δSat3 ((S,O, f, i), a) iff S′ =

cl [δ(S, a)], f ′ ≤S
a f , rank(f) = rank(f ′), and

* i′ = (i + 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or
* i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O �= ∅,

where cl [S] = {q ∈ Q | ∃s ∈ S : q �de s}. We denote the obtained procedure as
Saturate and the obtained BA as BSat .

Lemma 8. L(BSat) = L(BS )

Obviously, as direct simulation is stronger than delayed simulation, the previ-
ous technique can also use direct simulation only (e.g., when computing the full
delayed simulation is computationally too demanding). Moreover, Saturate is
also compatible with all Purgex algorithms for x ∈ {di , de, di + de} (because
they just remove macrostates with incompatible rankings from Q2)—we call
the combined versions Purgex+Saturate and the complement BAs they out-
put Bx

Sat .

Lemma 9. L(Bdi
Sat) = L(Bde

Sat) = L(Bdi+de
Sat ) = L(BS )

5.1 Proofs of Lemmas 8 and 9

We start with a lemma, used later, that talks about languages of states related
by delayed simulation when there is a path between them.

Lemma 10. For p, q ∈ Q such that p �de q, let L� = {w ∈ Σ∗ | p
w�
F

q} and

L⊥ = {w ∈ Σ∗ | p
w� q}. Then L(q) ⊇ (L∗

⊥L�)ω.
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Proof. First we prove the following claim:

Claim. For every word α = w0w1w2 · · · ∈ Σω where wi ∈ L� ∪ L⊥, we can
construct a trace π = p

w0� q0
w1� q1

w2� · · · over α such that p �de q0 and
qi �de qi+1 for all i ≥ 0.

Proof: We assign q0 := q and construct the rest of π by the following inductive
construction.

– Base case: (i = 0) From the assumption it holds that p
w1� q0 and p �de q0.

From Lemma 5 there is some r ∈ Q s.t. q0
w1� r and q0 �de r. We assign

q1 := r, so q0 �de q1.
– Inductive step: Let π′ = p

w0� q0
w1� · · · wi� qi be a prefix of a trace such that

qj �de qj+1 for every j < i. From the transitivity of �de , it follows that
p �de qi. From Lemma 5 there is some r ∈ Q s.t. qi

wi� r and q �de r. We
assign qi+1 := r, so qi �de qi+1. �

Consider a word α ∈ (L∗
⊥L�)ω such that α = w0w1w2 . . . for wi ∈ L� ∪L⊥. We

show that α ∈ L(q). According to the previous claim, we can construct a trace
π = p

w0� q = q0
w1� q1

w2� · · · over α s.t. p �de q0 and qi �de qi+1 for all
i ≥ 0. Since p �de q, from Lemma 5 it follows that we can construct a trace
π′ = q

w0� r0
w1� r1

w2� · · · s.t. qi �de ri for every i ≥ 0. Because α contains
infinitely often a subword from L�, there is some � ∈ ω such that q�

w�� q�+1 and
r�

w�� r�+1 for w� ∈ L�. Note that it holds that p �de q� �de r�. We can again
use the claim above to construct a trace π� = p

w��
F

q = s0
w�+1� s1

w�+2� · · · over

α� = w�w�+1w�+2 . . . such that p �de s0 and si �de si+1 for all i ≥ 0. Since
p �de r�, we can simulate π� from r� by a trace π�′, and because p

w��
F

q, we

know that π�′ will touch an accepting state in finitely many steps (this holds
because w� is from L�, which are the words over which we can go from p to q and
touch an accepting state). Consider m ≥ � such that sm is the first state after
the accepting state that is one of the {s0, s1, . . .} in π�′. This reasoning could be
repeated for all occurrences of a subword from L� in π�, therefore α ∈ L(q). ��

Next, we give a lemma used for establishing correctness of saturating
macrostates with �de -smaller states.

Lemma 11. Let p, q, r ∈ Q such that r
a−→ q ∈ δ and p �de q. Further, let

A′ = (Q, δ′, I, F ) where δ′ = δ ∪ {r a−→ p}. Then L(A) = L(A′).

Proof. (⊆) Clear.
(⊇) Consider some α ∈ L(A′) and an accepting trace π in A′ over α. There are
two cases:

1. (π contains only finitely many transitions r
a−→ p)

In this case, π is of the form π = πiπω where πi is a finite prefix πi = q0
w0�

r
a−→ p

w1� r
a−→ p

w2� · · · wn� r
a−→ p, for q0 ∈ I, and πω is an infinite trace from p

that does not contain any occurrence of the transition r
a−→ p. We construct
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in A a trace π′ = q0
w0� r

a−→ q
w1� r1

a−→ q1
w2� · · · wn� rn

a−→ qn.π′
ω as follows.

Let σde be a strategy for �de . We set r1 := σde(q, p
w1� r), so r �de r1. Since

r
a−→ q ∈ δ, it follows that there is r1

a−→ q1 ∈ δ such that p �de q1. For i > 1, we
set ri := σde(qi−1, p

wi� r). By induction, it follows that ∀1 ≤ i ≤ n : p �de qi,
in particular p �de qn. We set π′

ω := σde(qn, πω). Since πω starts in p and
contains infinitely many accepting states and π′

ω starts in qn and p �de qn,
then π′

ω also contains infinitely many accepting states. It follows that π′ is
accepting, so α ∈ L(A).

2. (π contains infinitely many transitions r
a−→ p)

In this case, π is of the form π = q0
w0� r

a−→ p
w1� r

a−→ p
w2� · · · wn� r

a−→ p
wω� · · · ,

for q0 ∈ I and α = w0aw1aw2 . . . Since π is accepting, for infinitely many
i ∈ ω, we have p

wia�
F

p in A′ and hence also p
wia�
F

q in the original BA A.

Using Lemma 10 and the fact that p �de q, we have w1aw2a · · · ∈ L(q) and
hence α = w0aw1aw2a · · · ∈ L(A). ��

The following lemma guarantees that adding transitions in the way of Lemma 11
does not break the computed delayed simulation and can, therefore, be performed
repeatedly, without the need to recompute the simulation.

Lemma 12. Let �de be the delayed simulation on A. Further, let p, q, r ∈ Q be
such that r

a−→ q ∈ δ and p �de q, and let A′ = (Q, δ′, I, F ) where δ′ = δ∪{r a−→ p}.
Then �de is included in the delayed simulation on A′.

Proof. Let σde be a dominating strategy compatible with �de and σ′
de be a strat-

egy defined for all s ∈ Q such that r �de s as σ′
de(s, x) = σde(s, x) when

x �= (r a−→ p) and σ′
de(s, r

a−→ p) = σde(s, r
a−→ q). Note that σ′

de is also dominating
wrt �de . This can be shown by the following proof by contradiction: Suppose σ′

de

is not dominating; then there is a strategy ρ such that σ′
de(s, r

a−→ p) must be
simulated by ρ(s, r a−→ p) = t. But then σde(s, r

a−→ q) must also (transitivity of
simulation) be simulated by t, so σde is not dominating. Contradiction.

Further, let t, u ∈ Q be such that t �de u. Let πt = t
w1� tf

w2� r
a−→ p.π′

t

be a trace over α = w1w2awω ∈ Σω in A′ such that tf is an accepting state
and tf

w2� r does not contain any occurrence of r
a−→ p. Further, let πu = u0

w1�
uf

w2� ui
a−→ui+1.π

′
u be a trace corresponding to a run u0u1u2 . . . over α in A,

where u0 = u, constructed as πu = σ′
de(u, πt).

Claim. There is a trace πv = t
w1� vf .π′

v over α such that π′
v contains an accepting

state and πv is �de -simulated by πu at every position.

Proof: We have the following two cases:

– (t w1� tf does not contain any occurrence of r
a−→ p)

Let πv = t
w1� tf

w2� r
a−→ q.π′

v be a trace in A over α obtained from πt

by starting with its prefix up to r, taking r
a−→ q, and continuing with π′

v =
σ′
de(q, π

′
t). Since in πv, it holds that tf is at the same position as tf in πt,

the first part of the claim holds. Further, πu clearly �de -simulates πv on
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t
w1� tf

w2� r, and because σ′
de simulates r

a−→ p by a transition to a state ui+1

such that q �de ui+1 and π′
v is constructed using σ′

de , then also the second
part of the claim holds.

– (t w1� tf contains at least one occurrence of r
a−→ p)

Suppose that πt starts with t
w11� r

a−→ p
w12� tf such that t

w11� r does not
contain any r

a−→ p. Then let us start building πv such that it starts with
t

w11� r
a−→ q. On this prefix, πv is clearly �de -simulated by the corresponding

prefix of πu. We continue from q using the strategy σ′
de . In particular, the next

time we reach r
a−→ p in πt while we are at some state v1 such that r �de v1,

we simulate the transition by σ′
de(v1, r

a−→ p) and so on. We can observe that
when we arrive to tf in πt, we also arrive to vf in πv such that tf �de vf .
Therefore, π′

v contains an accepting state. Moreover, since σ′
de is dominating,

the second part of the claim also holds. �

From the claim above, it follows that the trace uf
w2� ui

a−→ui+1.π
′
u contains an

accepting state, so Cde(πt, πu). ��

Finally, we are ready to prove Lemma 8.

Lemma 8. L(BSat) = L(BS )

Proof. (⊆) Let α ∈ L(BSat) and ρ be an arbitrary accepting run over α in BSat
such that ρ = S0S1 . . . Sn−1(Sn, On, fn, in)(Sn+1, On+1, fn+1, in+1) . . . . For the
sake of contradiction, assume that α ∈ L(A), therefore, there is a run ρ′ on α
in A having infinitely many accepting states. From the fact that tight level
rankings form a non-increasing sequence, we have that fn(ρ′(n)) ≥ fn+1(ρ′(n +
1)) ≥ · · · . This sequence eventually stabilizes and from the property of level
rankings and the fact that ρ′ is accepting, it stabilizes in some � such that
f�(ρ′(�)) is even. This, however, means that the O component of macrostates
in ρ cannot be emptied infinitely often, and, therefore, ρ is not accepting, which
is a contradiction. Hence α /∈ L(A), so (from Proposition 1) α ∈ L(BS ).
(⊇) Consider some α ∈ L(BS ). Let A′ be a BA obtained from A by adding
transitions according to Lemma 12. Then from Lemma 11, we have that L(A) =
L(A′). Therefore, α ∈ L(B′

S ) where B′
S is the BA obtained from A′ using CompS.

It is easy to see that we can construct a run in BSat that mimics the levels of run
DAG of α in A′ (i.e., we are able to empty the O component infinitely often).
Hence α ∈ L(BSat). ��

Lemma 9. L(Bdi
Sat) = L(Bde

Sat) = L(Bdi+de
Sat ) = L(BS )

Proof. (⊆) This part is the same as in the proof of Lemma 8.
(⊇) Consider some α ∈ L(BS ). Let A′ be a BA obtained from A by adding
transitions according to Lemma 12. Then from Lemma 11, we have that L(A) =
L(A′). Therefore, α ∈ L(B′

S ) where B′
S is the BA obtained from A′ using CompS.

It is easy to see that we can construct a run in BSat that mimics the levels of run
DAG of α in A′ (i.e., we are able to empty the O component infinitely often).
Using Lemmas 7 and 6, we can conclude that the run contains no macrostate
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of the form (S,O, f, j), where f(p) > f(q) and p �di q, or f(p) > ��f(q)�� and
p �de q for p, q ∈ S. Therefore, ρ is also an accepting run in Bdi+de

Sat . Hence
α ∈ L(Bdi+de

Sat ). ��

5.2 Remarks on Compression of Macrostates

An analogy to saturation of macrostates is their compression [17, Section 6],
based on removing simulation-smaller states from a macrostate. This is, however,
not possible even for direct simulation, as we can see in the following example.

Example 1. Consider the BA over Σ = {a} given below.

pq r
a a

aa a

For this BA we have q �di r and r �di q. If we compress the macrostates
obtained in CompS, there is the following trace in the output automaton:

{p} a−→({p, q}, ∅, {p �→ 3, q �→ 2, r �→ 1}, 0)
a−→({p, r}, {r}, {p �→ 3, q �→ 1, r �→ 2}, 2)

a−→({p, q}, ∅, {p �→ 3, q �→ 2, r �→ 1}, 2)
a−→({p, r}, {r}, {p �→ 3, q �→ 1, r �→ 2}, 0)

a−→({p, q}, ∅, {p �→ 3, q �→ 2, r �→ 1}, 0)
a−→ · · ·

This trace contains infinitely many final states (we flush the O-set infinitely
often), hence we are able to accept the word aω, which is, however, in the lan-
guage of the input BA. ��

6 Use After Simulation Quotienting

In this short section, we establish that our optimizations introduced in Sects. 4
and 5 can be applied with no additional cost in the setting when BA comple-
mentation is preceded with simulation-based reduction of the input BA (which
is usually helpful), i.e., when the simulation is already computed beforehand for
another purpose. In particular, we show that simulation-based reduction pre-
serves the simulation (when naturally extended to the quotient automaton).
First, let us formally define the operation of quotienting.

Given an x-simulation �x for x ∈ {di , de}, we use ≈x to denote the x-
similarity relation (i.e., the symmetric fragment) ≈x = �x ∩ �−1

x . Note that
since �x is a preorder, it holds that ≈x is an equivalence. We use [q]x to denote
the equivalence class of q wrt ≈x. The quotient of a BA A = (Q, δ, I, F ) wrt ≈x

is the automaton
A/≈x = (Q/≈x, δ≈x

, I≈x
, F≈x

) (6)
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with the transition function δ≈x([q]x, a) = {[r]x | r ∈ δ([q]x, a)} and the set of
initial and accepting states I≈x

= {[q]x ∈ Q/≈x | q ∈ I} and F≈x
= {[q]x ∈

Q/≈x | q ∈ F} respectively.

Proposition 2 ([7], [12]). If x ∈ {di , de}, then L(A/≈x) = L(A).

Remark 1 ([12]). L(A/≈f ) �= L(A)

Finally, the following lemma shows that quotienting preserves direct and delayed
simulations, therefore, when complementing A, it is possible to first quotient A
wrt a direct/delayed simulation and then use the same simulation (lifted to the
states of the quotient automaton) to optimize the complementation.

Lemma 13. Let �x be the x-simulation on A for x ∈ {di , de}. Then the relation
�≈

x defined as [q]x �≈
x [r]x iff q �x r is the x-simulation on A/≈x.

Proof. First, we show that �≈
x is well defined, i.e., if q �x r, then for all q′ ∈ [q]x

and r′ ∈ [r]x, it holds that q′ �x r′. Indeed, this holds because q′ ≈x q and
r ≈x r, and therefore q′ �x q �x r �x r′; the transitivity of simulation yields
q′ �x r′.

Next, let σx be a strategy that gives �x. Consider a trace defined as [πq]x =
[q0]x

α0−→[q1]x
α1−→ · · · over a word α ∈ Σω in A/≈x. Then,

1. for x = di there is a trace πq = q′
0

α0−→ q′
1

α1−→ · · · in A s.t. q′
0 ∈ [q0]x and

qi �x q′
i for i ≥ 0. Therefore, if [qi]x is accepting then so is q′

i;
2. for x = de there is a trace πq = q′

0
α0−→ q′

1
α1−→ · · · in A s.t. q′

0 ∈ [q0]x, qi �x q′
i

for i ≥ 0 and, moreover, if [qi]x is accepting then there is q′
k for k ≥ i s.t.

q′
k ∈ F .

Further, let [q0]x �≈
x [r0]x. Then there is a trace πr = σx(r, πq) = (r =

r0)
α0−→ r1

α1−→· · · simulating πq in A from r. Further, consider its projection
[πr]x = [r0]x

α0−→[r1]x
α1−→ · · · into A/≈x. For all i ≥ 0, we have that qi �x ri,

and therefore also [qi]x �≈
x [ri]x. Since Cx(πq, πr), then also Cx([πq]x, [πr]x).

Finally, we show that �≈
x is maximal. For the sake of contradiction, suppose

that [r]x is x-simulating [q]x for some q, r ∈ Q s.t. q ��x r. Consider a word
α ∈ Σω and a trace πq = (q = q0)

α0−→ q1
α1−→· · · over α in A. Then there is

a trace [πq]x = [q = q0]x
α0−→[q1]x

α1−→· · · over α in A/≈x. According to the
assumption, there is also a trace [πr]x = [r = r0]x

α0−→[r1]x
α1−→· · · such that

[πr]x is x-simulating [πq]x. But then there will also exist a trace πr = (r =
r0)

α0−→ r′
1

α1−→ r′
1

α2−→· · · such that ri �x r′
i for all i ∈ ω and Cx(πq, πr) (see the

previous part of the proof). Therefore, since �x is maximal, we have that q �x r,
which is in contradiction with the assumption. ��

7 Experimental Evaluation

We implemented our optimisations in a prototype tool 2 written in Haskell and
performed preliminary experimental evaluation on a set of 124 random BAs with
2 https://github.com/vhavlena/ba-complement .

https://github.com/vhavlena/ba-complement
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Fig. 1. Comparison of the number of states of complement BAs generated by CompS

and our optimizations (lower is better)

a non-trivial language over a two-symbol alphabet generated using Tabakov and
Vardi’s model [37]. The parameters of input automata were set to the following
bounds: number of states: 6–7, transition density: 1.2–1.3, and acceptance den-
sity: 0.35–0.5. Before complementing, the BAs were quotiented wrt the direct
simulation for experiments with Purgedi and the delayed simulation for exper-
iments with Purgede and Purgedi+de . The timeout was set to 300 s.

We present the results for our strongest optimizations for outputs of the size
up to 500 states in Fig. 1. As can be seen in Fig. 1a, purging alone often signif-
icantly reduces the size of the output. The situation with saturation is, on the
other hand, more complicated. In Fig. 1b, we can see that in some cases, the
saturation produces even smaller BAs than only purging, on the other hand, in
some cases, larger BAs are produced. This is expected, because saturating the
S component of macrostates also means that more level rankings (the f compo-
nent) need to be considered.

For outputs of a larger size (we had 11 of them), the results follow a sim-
ilar trend, but the probability that saturation will increase the size of the
result decreases. For some concrete results, for one BA, the size of the out-
put BA decreased from 4065 (CompS) to 985 (Purgedi+de) to 929 (Purgedi+de
+Saturate), which yields a reduction to 24 %, resp. 22 %! Further, we observed
that all Purgex methods usually give similar results, with the difference of only
a few states (when Purgedi and Purgede differ, Purgedi usually wins over
Purgede).

8 Related Work

BA complementation has a long research track. Known approaches can be
roughly classified into Ramsey-based [34], determinization-based [29,32], rank-
based [33], slice-based [23,39], learning-based [25], and the recently proposed
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subset-tuple construction [4]. Those approaches build on top of different con-
cepts of capturing words accepted by a complement automaton. Some concepts
can be translated into others, such as the slice-based approach, which can be
translated to the rank-based approach [40]. Such a translation can help us get a
deeper understanding of the BA complementation problem and the relationship
between optimization techniques for different complementation algorithms.

Because of the high computational complexity of complementing a BA, and,
consequently, also checking BA inclusion and universality (which use comple-
mentation as their component), there has been some effort to develop heuris-
tics that help to reduce the number of explored states in practical cases. The
most prominent ones are heuristics that leverage various notions of simulation
relations, which often provide a good compromise between the overhead they
impose and the achieved state space reduction. Direct [7,36], delayed [12],
fair [12], their variants for alternating Büchi automata [16], and multi-pebble
simulations [13] are the best-studied relations of this kind. Some of the relations
can be used quotienting, but also for pruning transitions entering simulation-
smaller states (which may cause some parts of the BA to become inaccessible).
A series of results in this direction was recently developed by Clemente and
Mayr [10,26,27].

Not only can the relations be used for reducing the size of the input BA,
they can also be used for under-approximating inclusion of languages of states.

For instance, during a BA inclusion test L(AS)
?
⊆ L(AB), if every initial state

of AS is simulated by an initial state of AB , the inclusion holds and no comple-
mentation needs to be performed. But simulations can also be used to reduce
the explored state space within, e.g., the inclusion check itself, for instance in
the context of Ramsey-based algorithms [1,2]. Ramsey-based complementation
algorithms [34] in the worst case produce 2O(n2) states, which is a significant
gap from the lower bound of Michel [28] and Yan [41]. The Ramsey-based con-
struction was, however, later improved by Breuers et al. [5] to match the upper
bound 2O(n log n). The way simulations are applied in the Ramsey-based app-
roach is fundamentally different from the current work, which is based on rank-
based construction. Taking universality checking as an example, the algorithm
checks if the language of the complement automaton is empty. They run the
complementation algorithm and the emptiness check together, on the fly, and
during the construction check if a macrostate with a larger language has been
produced before; if yes, then they can stop the search from the language-smaller
macrostate. Note that, in contrast to our approach, their algorithm does not
produce the complement automaton.

9 Conclusion and Future Work

We developed two novel optimizations of the rank-based complementation algo-
rithm for Büchi automata that are based on leveraging direct and delayed simu-
lation relations to reduce the number of states of the complemented automaton.
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The optimizations are directly usable in rank-based BA inclusion and universal-
ity checking. We conjecture that the decision problem of checking BA language
inclusion might also bring another opportunities for exploiting simulation, such
as in a similar manner as in [3]. Another, orthogonal, directions of future work
are (i) applying simulation in other than the rank-based approach (in addition
to the particular use within [1,2]), e.g., complementation based on Safra’s con-
struction [32], which, according to our experience, often produces smaller com-
plements than the rank-based procedure, (ii) applying our ideas within deter-
minization constructions for BAs, and (iii) generalizing our techniques for richer
simulations, such as the multi-pebble simulation [13] or various look-ahead sim-
ulations [26,27]. Since the richer simulations are usually harder to compute, it
would be interesting to find the sweet spot between the overhead of simulation
computation and the achieved state space reduction.
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state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175
(2005)

13. Etessami, K.: A hierarchy of polynomial-time computable simulations for
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Abstract. We propose an efficient algorithm for determinising counting
automata (CAs), i.e., finite automata extended with bounded counters.
The algorithm avoids unfolding counters into control states, unlike the
näıve approach, and thus produces much smaller deterministic automata.
We also develop a simplified and faster version of the general algorithm
for the sub-class of so-called monadic CAs (MCAs), i.e., CAs with count-
ing loops on character classes, which are common in practice. Our main
motivation is (besides applications in verification and decision procedures
of logics) the application of deterministic (M)CAs in pattern matching
regular expressions with counting, which are very common in e.g. net-
work traffic processing and log analysis. We have evaluated our algorithm
against practical benchmarks from these application domains and con-
cluded that compared to the näıve approach, our algorithm is much less
prone to explode, produces automata that can be several orders of mag-
nitude smaller, and is overall faster.

1 Introduction

The counting operator—also known as the operator of limited repetition—is an
operator commonly used in extended regular expressions (also called regexes).
Limited repetitions do not extend expressiveness beyond regularity, but allow one
to succinctly express patterns such as representing all words where
ab appears 1–100 times. Such expressions are very common (cf. [3]), e.g., in the
RegExLib library [20], which collects expressions for recognising URIs, markup
code, pieces of Java code, or SQL queries; in the Snort rules [17] used for finding
attacks in network traffic; or in real-life XML schemas, with the counter bounds
being as large as 10 million [3]. This observation is confirmed by our own exper-
iments with patterns provided by Microsoft for verifying absence of information
leakage from network traffic logs. Counting constraints may also naturally arise
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in other contexts, such as in automata-based verification approaches (e.g. [11])
for describing sets of runs through a loop with some number of repetitions.

Several finite automata counterparts of regular counting constraints have
appeared in the literature (e.g. [13,15,24,25]), all essentially boiling down to
variations on counter automata with counters limited to a bounded range of
values. Such counters do not extend the expressive power beyond regularity, but
bring succinctness, exactly as the counters in extended regular expressions. In
this paper, we call these automata counting automata (CAs).

The main contribution of this paper is a novel succinct determinisation of
CAs. Our main motivation is in pattern matching, where deterministic automata
allow for algorithms running reliably in time linear to the length of the text. How-
ever, the näıve determinisation of CAs (and counting constraints in general)—
which encodes counter values as parts of control states, leading to classical non-
deterministic finite automata (NFAs), which are then determinised using the
standard subset construction—can easily lead to state explosion, causing the
approach to fail. See, e.g., the CA in Fig. 1, for which the minimal deterministic
finite automaton (DFA) has 2k+1 states with k being the upper bound of the
counter. Backtracking-based algorithms, which can be used instead, are slower
and unpredictable, may easily require a prohibitively large time, and are even
prone to DoS attacks, cf. [19]. A viable alternative is on-the-fly determinisation,
which determinises only the part of the given NFA through which the input
word passes, as proposed already in [27]. However, the overhead during match-
ing might be significant, and the construction can still explode on some words,
much like the full determinisation, especially when large bounds on counters are
used (which, in our experience, makes some regex matchers to give up already
the translation to NFAs).

Our algorithm, which allows one to succinctly determinise CAs, is there-
fore a major step towards alleviating the above problems by making the
determinisation-based algorithms applicable more widely. We note that this has
been an open problem (whose importance was stressed, e.g., in [25]) that a num-
ber of other works, such as [13,15], have attempted to solve, but they could
only cope with very restricted fragments or alleviate the problem only partially,
yielding solutions of limited practical applicability only.

Our algorithm is general and often produces small results. Moreover, we also
propose a version specialised to counting restricted to repetition of single char-
acters from some character class, called monadic counting here (e.g.,
is monadic while is not). This class is of particular practical relevance
since we discovered that most of the regular expressions with counters used in
practice are of this form. Our specialised algorithm can produce deterministic
CAs exponentially more succinct than the corresponding DFAs and its worst-case
complexity is only polynomial in the maximum values of counters (in contrast
to the exponential näıve construction).

We have implemented the monadic CA determinisation and evaluated it on
real-life datasets of regular expressions with monadic counting. We found that
our resulting CAs can be much smaller than minimal DFAs, are less prone to
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explode, and that our algorithm, though not optimised, is overall faster than the
näıve determinisation that unfolds counters. We also confirmed that monadic
regexes present an important subproblem, with over 95% of regexes in the
explored datasets being of this type.

Fig. 1. ACA for the regex .*a.{k} with
k ∈ N, I : s = q, F : s = r ∧ c =
k, and Δ : q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨
r−{c<k,c′=c+1}→r.

Running Example. To illustrate our
algorithms, consider the regex .*a.{k}
where k ∈ N. It says that the (k + 1)-th
letter from the end of the word must be a.
The minimal DFA accepting the language
has 2k+1 states since it must remember in
its control states the positions of all let-
ters a that were seen during the last k +1
steps. For this, it needs a finite memory
of k +1 bits, which has 2k+1 reachable configurations. The regex corresponds to
the nondeterministic CA of Fig. 1. In the transition labels, the predicates over
the variable l constrain the input symbol, the predicates over c constrain the
current value of the counter c, and the primed variant of c, i.e., c′, stands for
the value of c after taking the transition. The initial value of c is unrestricted,
and the automaton accepts in the state r if the value of c equals k. Our monadic
determinisation algorithm, presented in Sect. 4.2, then outputs the deterministic
CA (DCA) of Fig. 2 (for k = 1). Intuitively, it uses k + 1 counters to remember
how far back the last k + 1 occurrences of a appeared. Depending on k, the
resulting DCA has k+2 states, 4(k+1)+1 transitions, and k+1 counters. That
is, its size is linear to k in contrast to the factor 2k in the size of the minimal
DFA. ��

Fig. 2. The DCA generated from the CA of Fig. 1 for k = 1 by our algorithm for
determinisation of monadic CA (Sect. 4.2).

2 Counting Automata

Preliminaries. We use N to denote the set of natural numbers {0, 1, 2, . . .}. Given
a function f : A → B, we refer to the elements of f using a �→ b (when f(a) = b).
For the rest of the paper, we consider a fixed finite alphabet Σ of symbols. A word
over Σ is a finite sequence of symbols w = a1 · · · an ∈ Σ∗. We use ε to denote
the empty word.
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Given a set of variables V and a set of constants Q (disjoint with N), we
define a Q-formula over V to be a quantifier-free formula ϕ of Presburger arith-
metic extended with constants from Q and Σ, i.e., a Boolean combination of
(in-)equalities t1 = t2 or t1 ≤ t2 where t1 and t2 are constructed using +, N,
and V , and predicates of the form x = a or x = q for x ∈ V , a ∈ Σ, and q ∈ Q.
An assignment M to free variables of ϕ is a model of ϕ, denoted as M |= ϕ, if
it makes ϕ true. We use sat(ϕ) to denote that ϕ has a model.

Given a formula ϕ and a (partial) map θ : terms(ϕ) → S, where terms(ϕ)
denotes the set of terms in ϕ and S is some set of terms, ϕ[θ] denotes a term
substitution, i.e., the formula ϕ with all occurrences of every term t ∈ dom(θ)
replaced by θ(t). As usual, replacing a larger term takes priority over replacing
its subterms (we treat primed variables and parameters as atomic terms, hence
(p′ = 1)[{p �→ q}] is still p′ = 1). The substitution formula ϕθ of θ is defined
as the conjunction of equalities ϕθ

def=
∧

t∈dom(θ)(θ(t) = t). Finally, the set of
minterms of a finite set Φ of predicates is defined as the set of all satisfiable
predicates of {∧φ∈Φ′ φ ∧ ∧

φ∈Φ\Φ′ ¬φ | Φ′ ⊆ Φ}.

Labelled Transition Systems. We will introduce our counting automata, such as
that of Fig. 1, as a specialisation of the more general model of labelled transition
systems. This perspective and related notation allows for a more abstract and
concise formulation of our algorithms than the more standard approach, in which
one would define counting automata in a more straightforward manner as an
extension of the classical finite automata.

A labelled transition system (LTS) over Σ is a tuple T = (Q,V, I, F,Δ) where
Q is a finite set of control states, V is a finite set of configuration variables, I is the
initial Q-formula over V , F is the final Q-formula over V , and Δ is the transition
Q-formula over V ∪ V ′ ∪ {l} with V ′ = {x′ | x ∈ V }, V ∩ V ′ = ∅, and l ∈ V .
We call l the letter/symbol variable and allow it as the only term that can occur
within a predicate l = a for a ∈ Σ, called an atomic symbol guard.1 Moreover,
l is also not allowed to occur in any other predicates in Δ. A configuration
is an assignment α : V → N ∪ Q that maps every configuration variable to
a number from N or a state from Q. Let C be the set of all configurations. The
transition formula Δ encodes the transition relation �Δ� ⊆ C × Σ × C such that
(α, a, α′) ∈ �Δ� iff α∪{x′ �→ k | α′(x) = k}∪{l �→ a} |= Δ. We use |Δ| to denote
the size of �Δ�. For a word w ∈ Σ∗, we define inductively that a configuration α′

is a w-successor of α, written α
w−→ α′, such that α

ε−→ α for all α ∈ C, and
α

av−→ α′ iff α
a−→ ᾱ

v−→ α′ for some ᾱ ∈ C, a ∈ Σ, and v ∈ Σ∗. A configuration α
is initial or final if α |= I or α |= F , respectively. The outcome of T on a word w
is the set outT (w) of all w-successors of the initial configurations, and w is
accepted by T if outT (w) contains a final configuration. The language L(T ) of
T is the set of all words that T accepts.

1 To handle large or infinite sets of symbols symbolically, the predicates l = a may be
generalised to predicates from an arbitrary effective Boolean algebra, as in [6].
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Counting Automata. A counting variable (counter) is a configuration variable
c whose value ranges over N and which can appear (within Δ, I, and F ) only
in atomic counter guards of the form c ≤ k, c ≥ k, (using <,=, > as syntactic
sugar) or term equality tests t1 = t2, and in atomic counter assignments c′ = t
with t, t1, t2 being arithmetic terms of the form d+k or k with k ∈ N and d being
a counter. A control state variable is a variable s whose value ranges over states
Q and appears only in atomic state guards s = q and atomic state assignments
s′ = q for q ∈ Q. A Boolean combination of atomic guards (counter, state, or
symbol) is a guard formula and a Boolean combination of atomic assignments is
an assignment formula.

A (nondeterministic) counting automaton (CA) is a tuple A = (Q,C, I, F,Δ)
such that (Q,V, I, F,Δ) is an LTS with the following properties: (1) The set of
configuration variables V = C ∪ {s} consists of a set of counters C and a single
control state variable s s.t. s ∈ C. (2) The transition formula Δ is a disjunction
of transitions, which are conjunctions of the form s = q∧g∧f ∧s′ = r, denoted by
q−{g,f }→r, where q, r ∈ Q, g is the transition’s guard formula over V ∪{l}, and f is
the transition’s counter assignment formula, a conjunction of atomic assignments
to counters, in which every counter is assigned at most once. (3) There is a
constant maxA ∈ N such that no counter can ever grow above that value, i.e.,
∀c ∈ C ∀w ∈ Σ∗ ∀α ∈ outT (w) : α |= c ≤ maxA.

The last condition in the definition of CAs is semantic and can be achieved
in different ways in practice. For instance, regular expressions can be compiled
to CAs where assignment terms are of the form c + 1, 0, or c only, and every
appearance of c+1 is paired with a guard containing a constraint c ≤ k for some
k ∈ N. In this case, maxA = K + 1 where K is the maximum constant used in
the guards of the form c ≤ k.

We will often consider the initial and final formulae of CAs given as a disjunc-
tion

∨
q∈Q(s = q ∧ ϕq) where ϕq is a formula over counter guards, in which case

we write I(q) or F (q) to denote the disjunct ϕq of the initial or final formula,
respectively. An example of a CA is given in Fig. 1.

A deterministic counting automaton (DCA) is a CA A where I has at most
one model and, for every symbol a ∈ Σ, every reachable configuration α has
at most one a-successor (equivalently, the outcome of every word in A is either
a singleton or the empty set). Finally, in the special case when C = ∅, the CA is
a (classical) nondeterministic finite automaton (NFA), or a deterministic finite
automaton (DFA) if it is deterministic.

3 Determinisation of Counting Automata

In this section, we discuss an algorithm for determinising CAs. A näıve determin-
isation converts a given CA A into an NFA by hard-wiring counter configurations
as a part of control states, followed by the classical subset construction to deter-
minise the obtained NFA (the NFA is finite due to the bounds on the maximum
values of counters). The state space of the obtained DFA then consists of all
reachable outcomes of A. By determinising A in this way, the succinctness of
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using counters is lost, and the size of the DFA can explode exponentially not
only in the number of control states of A but also in the number of reachable
counter valuations, which makes the construction impractical. Instead, our con-
struction will retain counters (though their number may grow) and represent
possible word outcomes as configurations of the resulting DCA.

Spheres. In particular, the outcome of a word w ∈ Σ∗ in a CA A = (Q,C, I, F,Δ)
can be represented as a formula ϕ over equalities of the form c = k and s = q
where q ∈ Q, c ∈ C, k ∈ N. Intuitively, disjunctions can be used to obtain a
single formula for the possibly many configurations reachable in A over w. For
example, the outcome of the word aab in Fig. 1 is ϕ : s = q ∨ (s = r ∧ (c =
1 ∨ c = 2)). Generally, the outcome of aabi, for 0 ≤ i < k, assuming k > 2, is
ϕi : s = q ∨ (s = r ∧ (c = i ∨ c = i + 1)).

A crucial notion for our construction is then the notion of sphere. A sphere
ψ arises from an outcome ϕ by replacing the constants from N by parameters
drawn from a countable set P (disjoint from N, V , Q, and {l, s}). In the example
above, the sphere obtained from the ϕ is ψ : s = q ∨ (s = r ∧ (c = p0 ∨ c = p1)),
and the same sphere arises from all outcomes ϕi with 0 ≤ i < k.

Spheres will play the role of the control states of the resulting DCA. The
idea of the construction is that the outcome of every word w in a DCA Ad will
contain a single configuration (Ad is deterministic) consisting of a sphere ψ as
the control state and a valuation of its parameters η : P → N. The construction
will ensure that ψ[η] models the outcome outA(w) of w in A. In our example,
the outcome of aab in Ad would contain the single configuration {s �→ ψ, p0 �→
1, p1 �→ 2}, and the outcome of each ϕi, for 0 ≤ i < k, would contain the single
configuration {s �→ ψ, p0 �→ i, p1 �→ i + 1}. The example shows the advantage
of our construction. Every outcome ϕi would be a control state of the näıvely
determinised automaton, with a b-transition from each ϕj to ϕj+1, for 0 ≤ j <
k−1. In contrast to that, all these states and transitions will be in Ad replaced by
a single control state ψ with a single b-labelled self-loop that increments both p0

and p1. This structure can be seen in Fig. 2 (states are spheres, labelled by their
multiset representation introduced in Sect. 4.2).

3.1 Determinisation by Sphere Construction

We now provide a basic version of our sphere-based determinisation, which can
also be viewed as an algorithm that constructs parametric versions of the subsets
used in subset-based determinisation. For this basic algorithm, termination is
not guaranteed, but it serves as a basis on which we will subsequently build
a terminating algorithm. Let us first introduce some needed additional notation.

Given a formula ϕ, we denote by at(ϕ) and by num(ϕ) the sets of assignment
terms and numerical constants, respectively, appearing in ϕ. We will use the set
P ′ = {p′ | p ∈ P} and the substitution θunprime = {p′ �→ p | p ∈ P}. We
say that a formula over variables V ∪ V ′ ∪ {l} ∪ P is factorised wrt guards
if it is a disjunction

∨n
i=1(gi) ∧ (ui) of factors, each consisting of a guard gi

over V ∪ {l} ∪ P and an update formula ui over atomic assignments such that
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the guards of any two different factors are mutually exclusive, i.e., gi ∧ gj is
unsatisfiable for any 1 ≤ i = j ≤ n.2 For a set of variables U , we denote
by ∃∃∃ U : ϕ a formula obtained by eliminating all variables in U from ϕ (i.e.,
a quantifier-free formula equivalent to ∃U : ϕ).3

Algorithm 1: Sphere-based CA determinisation (non-terminating)
Input: A CA A = (Q,C, I, F,Δ).
Output: A DCA Ad = (Qd, P, Id, F d,Δd) s.t. L(A) = L(Ad).

1 Qd ← Worklist ← ∅; Δd ← ⊥;
2 ψI ← I[θconst ] for some total injection θconst : num(I) → P;
3 Id ← s = ψI ∧ ϕθconst ;
4 add ψI to Qd and to Worklist ;
5 while Worklist = ∅ do
6 ψ ← pop(Worklist);
7 Let

∨n
i=1(gi) ∧ (ui) be the formula ∃∃∃ C, s : ψ ∧ Δ factorised wrt guards;

8 foreach 1 ≤ i ≤ n do
9 ψi ← ui[θat ][θunprime ] for a total injection θat : at(ui) → P ′;

10 add ψ−{gi,ϕθat}→ψi to Δd;
11 if ψi ∈ Qd then add ψi to Qd and to Worklist
12 P ← all parameters found in Qd;
13 F d ← ∨

ψ∈Qd s = ψ ∧ ∃∃∃ C, s : ψ ∧ F ;
14 Id ← ground(Id);Δd ← ground(Δd);
15 return Ad = (Qd, P, Id, F d,Δd);

The Algorithm. The core of our determinisation algorithm is the sphere con-
struction described in Algorithm 1. It builds a DCA Ad = (Qd, P, Id, F d,Δd)
whose control states Qd are spheres. Its counters are parameters from the set P
that is built during the run of the algorithm. The initial formula Id defined on
line 3 assigns to s the initial control state ψI (obtained on line 2), which is a para-
metric version of I with integer constants replaced by parameters according to
the renaming θconst . Moreover, Id also equates the parameters in ψI with the
constants they are replacing in I. Hence, the formula ψI [θ−1

const ] models exactly
the initial configurations of A.

2 A Boolean combination of atomic guards and updates can be factorised through
(1) a transformation to DNF, yielding a set of clauses X; (2) writing each clause
ϕ ∈ X as a conjunction of a guard formula gϕ and an assignment formula fϕ; (3)
computing minterms of the set {gϕ | ϕ ∈ X}; (4) creating one factor (g) ∧ (f) from
every minterm g where f is the disjunction of all the assignment formulae fϕ with
ϕ ∈ X compatible with g (i.e., such that g ∧ fϕ is satisfiable).

3 We note that we only need to use a specialised, simple, and cheap quantifier elim-
ination. In particular, we only need to eliminate counter variables c from formulae
such that, in clauses of their DNF, c always appears together with a predicate c = p
where p is a parameter. Eliminating c from such a DNF clause is then done by simply
substituting occurrences of c by p. We do not need complex algorithms such as the
general quantifier elimination for Presburger arithmetic.
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Example 1. In the running example (Fig. 1), whenever referring to some variable
that is assigned multiple times during the run of the algorithm, we use super-
scripts to distinguish the different assignments during the run. On lines 1–4, the
initial sphere ψI is assigned the formula s = q, and the initial formula Id is set
to s = ψI , which specifies that ψI is indeed the initial control state only (I does
not constrain counters, hence Id does not talk about parameters). ��

The remaining states of Qd and transitions of Δd are computed by a worklist
algorithm on line 5 with the worklist initialised with ψI . Every iteration com-
putes the outgoing transitions of a control state ψ ∈ Worklist as follows: On
line 7, after eliminating C ∪ {s} from the formula ψ ∧ Δ, which describes how
the next state and counter values depend on the input symbol and the current
values of parameters, it is transformed into a guard-factorised form.

Example 2. When ψI is taken from Worklist as ψ1 on line 6, its processing
starts by factorising ∃∃∃ {c, s} : ψ1 ∧ Δ on line 7. Here, ψ1 ∧ Δ is the formula s =
q ∧ (q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨ r−{c<k,c′=c+1}→r), which can be also written as

s = q ∧ (s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r)) .

The elimination of {c, s} gives the formula s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r).
This formula is factorised into the following two factors:

(F1) (l = a) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r)),
(F2) (l = a) ∧ (s′ = q). ��
In the for-loop on line 8, every factor (gi)∧(ui) is turned into a transition with

the guard gi; the mutual incompatibility of the guards guarantees determinism.
The formula ui describes the target sphere in terms of the parameters of the
source sphere ψ, updated according to the transition relation. That is, it is
a Boolean combination of assignments of the form c′ = p + k or c′ = k for
c ∈ C, p ∈ P, and k ∈ N. Line 9 creates a sphere by substituting each of
the assignment terms (of the form p + k or k) with a parameter and replacing
primed variables by their unprimed versions.4 The corresponding assignment
term substitution θat records how the values of the new parameters are obtained
from the original values of the parameters occurring in ψ. It is used to define the
assignment formula of the new transition that is added to Δd on line 10. The
argument justifying that the construction preserves the language is the following:
if reading w ∈ Σ∗ takes Ad to ψ with a parameter valuation η such that ψ[η] is
equivalent to outA(w), then reading a next symbol a using a transition newly
created on line 10 takes Ad to ψ′ with the parameter valuation η′ such that ψ′[η′]
models outA(wa).

4 The choice of the parameters in the image of θat : at(ui) → P ′ on line 9 is arbitrary,
although, in practice, it would be sensible to define some systematic parameter
naming policy and reuse existing parameters whenever possible.
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Example 3. Factor F1 of Example 2 above is processed as follows. A possible
choice for θ1

at on line 9 is the assignment {0 �→ p0}. Its application followed by
θunprime creates

ψ1
1 : s = q ∨ (c = p0 ∧ s = r).

From θ1
at , we get the substitution formula ϕθ1

at
: (p′

0 = 0) on line 10, and so
the transition added to Δd is (s = q)−{l=a,p′

0=0}→ (s = q ∨ (c = p0 ∧ s = r)) . The
target ψ1

1 of the transition is added to Qd and to Worklist on line 11. Next, Factor
F2 generates the self-loop (s = q)−{l�=a,�}→ (s = q), which ends the first iteration
of the while-loop.

Let us also walk through a part of the second iteration of the while-loop, in
which ψ1

1 is taken from Worklist as ψ2 on line 6. The formula ψ2∧Δ from line 7 is
((s = r ∧ c = p0) ∨ s = q) ∧ (q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨ r−{c<k,c′=c+1}→r), which
is equivalent to (s = q ∧ (s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r))) ∨ (

s = r ∧ c = p0 ∧
c < k ∧ c′ = c + 1 ∧ s′ = r

)
. The elimination of {c, s} on line 7 then gives the

formula
(
s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r)

) ∨ (p0 < k ∧ c′ = p0 + 1 ∧ s′ = r),
which is factorised into the following four factors:

(F3) (l = a ∧ p0 < k) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r) ∨ (c′ = p0 + 1 ∧ s′ = r)),
(F4) (l = a ∧ p0 < k) ∧ (s′ = q ∨ (c′ = p0 + 1 ∧ s′ = r)),
(F5) (l = a ∧ p0 ≥ k) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r)), and
(F6) (l = a ∧ p0 ≥ k) ∧ (s′ = q).

In the for-loop on line 8, Factor F3 is processed as follows. Let the chosen sub-
stitution θ2

at on line 9 be {p0 + 1 �→ p1, 0 �→ p0}. Its application followed by
θunprime generates

ψ2
1 : s = q ∨ (c = p0 ∧ s = r) ∨ (c = p1 ∧ s = r).

The substitution formula ϕθ2
at

on line 10 is p′
1 = p0 + 1 ∧ p′

0 = 0, and so Δd

gets the new transition ψ1
1−{l=a∧p0<k,p′

1=p0+1∧p′
0=0}→ψ2

1 . The evaluation of the
while-loop would continue analogously. ��

In the final stage of the algorithm, when (and if) the while-loop terminates,
line 12 collects the set P of all parameters used in the constructed parametric
spheres of Qd as new counters of Ad. Further, line 13 derives the new final formula
by considering all computed spheres, restricting them to valuations where the
original final formula is satisfied, and quantifying out the original counters. This
way, final constraints on the original counters get translated to constraints over
parameters in P .

Example 4. In our running example, for the spheres discussed above, we would
have F (ψ1) : ⊥, F (ψ1

1) : p0 = 1, and F (ψ2
1) : p0 = 1 ∨ p1 = 1. ��

Finally, line 14 applies the function ground on the initial formula and the
transition formula of the constructed automaton before returning it. This step is
needed in order to avoid nondeterminism on unused and unconstrained counters.
The function ground conjuncts constraints of the form p = 0 with the initial
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formula and with the guard of every transition for every parameter p ∈ P that
is so far unconstrained in the concerned formula. Moreover, it will introduce
a reset p′ = 0 to the assignment formula of every transition for every counter
p ∈ P that is so far not assigned on the concerned transition. The while-loop of
Algorithm 1 needs, however, not terminate, as witnessed also by our example.5

Example 5. Continuing in Example 4, the DCA in Fig. 2 would be a part of
the DCA constructed by Algorithm 1, its states being the spheres ψ1, ψ1

1 , ψ2
1

from the left, but the while-loop would not terminate, with ψ2
1 . Instead, it would

eventually generate a successor of ψ2
1 , the sphere

ψ3
1 : s = q ∨ (c = p0 ∧ s = r) ∨ (c = p1 ∧ s = r) ∨ (c = p2 ∧ s = r),

i.e., a sphere similar to ψ2
1 but extended by a new disjunct with a new param-

eter p2. Repeating this, the algorithm would keep generating larger and larger
spheres with more and more parameters. ��

3.2 Ensuring Termination of the Sphere Construction

In this section, we will discus reasons for possible non-termination of Algorithm 1
and a way to tackle them. The main reason is that the algorithm may gen-
erate unboundedly many parameters that correspond to different histories of
a counter c when processing the input word (including also impossible ones in
which the counter exceeds the maximum value). The algorithm indeed “splits”
a parameter appearing in a sphere into two parameters in the successor sphere
when the transitions of A update the counter in two different ways.

In our terminating version of Algorithm 1, we build on the following: (1) dis-
tinguishing between histories that converge in the same counter value is not nec-
essary, they can be “merged”, and (2) the number of different reachable counter
values is bounded (by the definition of CAs). We thus enforce the invariant of
every reachable configuration of Ad that all parameters in the configuration have
distinct values. The invariant is enforced by testing equalities of parameters and
merging parameters with equal values on transitions of Ad. All transitions of Ad

entering spheres with more than maxA + 1 parameters can then be discarded
because the invariant implies that they cannot be taken at any configuration
of Ad. Furthermore, we will also ensure that the algorithm does not diverge
because of generating semantically equivalent but syntactically different spheres
(because of different names of parameters or different formulae structure).

A terminating determinisation of CAs is obtained from Algorithm 1 by
replacing lines 9–11 by the code in Algorithm 2. In order to ensure that param-
eters have pairwise distinct values, the transitions of Ad test equalities of the
5 For this step to preserve the language of the automaton, we need to assume that the

input CA does not assign nondeterministic values to live counters. We are refering
to the standard notion: a counter is live at a state if the value it holds at that state
may influence satisfaction of some guard in the future. Any CA can be transformed
into this form, and CAs we compile from regular expressions satisfy this condition
by construction.
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values assigned to parameters and ensure that two parameters are never used to
represent the same value. Different histories of counters are thus merged if they
converge into the same value. To achieve this, Algorithm 2 enumerates all feasi-
ble equivalences of the assignment terms of ui on line 16 and generates successor
transitions for each of them separately. When deciding whether an equivalence
∼ on the assignment terms is feasible, the algorithm performs two tests: (1) The
formula ϕ∼

def=
∧

t1∼t2,t1,t2∈at(ui)
(t1 = t2) ∧ ∧

t1 �∼t2,t1,t2∈at(ui)
(t1 = t2) is tested

for satisfiability, meaning that the equivalence is not trying to merge terms that
can never be equal (such as, e.g., p and p + 1). (2) The number of equivalence
classes should be at most maxA + 1 since this is the maximum number of dif-
ferent values that the counters can reach due to the requirement that the values
must be between 0 and maxA.

Algorithm 2: Ensuring termination of sphere-based CA determinisation
16 foreach equivalence ∼ on at(ui) s.t. sat(ϕ∼) and |at(ui)/∼| ≤ maxA + 1

do
17 let θat : at(ui) → P ′ be an injection;
18 ψi ← ui[θat ][θunprime ];
19 if ∃θrename : P ↔ P ∃σ ∈ Qd : ψi[θrename ] ⇔ σ then
20 add ψ−{gi∧ϕ∼[θat ],ϕθat [θ

′
rename ]}→σ to Δd;

21 else
22 add ψ−{gi∧ϕ∼[θat ],ϕθat}→ψi to Δd;
23 add ψi to Qd and to Worklist ;

Line 17 builds a term assignment replacement θat that maps all ∼-equivalent
terms to the same (future) parameter, and line 18 computes the target sphere,
reflecting the given merge. The test on line 19 checks whether the target sphere is
equal to some already generated sphere up to a parameter renaming (represented
by a bijection θrename : P ↔ P). If so, the created sphere is discarded, and a new
transition going to the old sphere is generated on line 20; we need to rename the
primed parameters used in the transition’s assignment appropriately according
to θ′

rename = {p′
0 �→ p′

1 | p0 �→ p1 ∈ θrename}. Otherwise, a transition into the
new sphere is added on line 22, and the new sphere is added to Qd and Worklist .
In both cases, the guard of the generated transition is extended by the formula
ϕ∼[θat ], which encodes the equivalence ∼, and hence explicitly enforces that ∼
holds when the transition is taken.

Note that the test on the maximum number of equivalence classes can be
optimised if finer information about the maximum reachable values of the indi-
vidual counters is available. Such information can be obtained, e.g., by looking at
the constants used in the guards of the transitions where the different counters
are increased. For any counter, one should then not generate more parameters
representing its possible values than what the upper bound on that counter is
(plus one).

Theorem 1. Algorithm 1 with the modification presented in Algorithm 2 ter-
minates and produces a DCA with L(A) = L(Ad) and |Qd| ≤ 2|Q|·(maxA+1)|C|

.
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Proof (idea). The fact that the algorithm indeed constructs a DCA is because
line 7 of Algorithm 1 generates pairwise incompatible guards on transitions only.
It is also easy to show by induction on the length of the words that the language
is preserved. The termination then follows from the facts that (1) the algorithm
has a bound on the maximum number of parameters in spheres (ensured by
the condition over ∼ on line 16 of Algorithm 2) and (2) no spheres equal up to
renaming are generated (ensured by the check on line 19). The bound on the
size follows from the structure of spheres. ��

The number of equivalences generated on line 16 of Algorithm 2 (and there-
fore also the number of transitions leaving ψ) may be large. Many of them
are, however, infeasible (cannot be taken in any reachable configuration of Ad),
and could be removed. In most cases, the majority of such infeasible transi-
tions may be identified locally, taking advantage of the invariant of all reachable
configurations of Ad enforced by Algorithm 2: namely, values of distinct param-
eters are always pairwise distinct. Therefore, before building a transition for an
equivalence ∼, we ask whether the ∼-equivalent assignment terms may indeed
be made equivalent assuming that the constructed transition guard gi and—
importantly—also the distinctness invariant hold right before the transition is
taken. Technically, we create new transitions only from those equivalences ∼
such that sat(

∧
p1,p2∈Pψ,dist(p1,p2)

(p1 = p2) ∧ gi ∧ ϕ∼) where Pψ is the set of
parameters of ψ and dist(p1, p2) holds iff p1 and p2 are distinct parameters.

3.3 Reachability-Restricted CA Determinisation

Above, we have described a terminating algorithm for CA determinisation. While
it is witnessed by our experiments that the algorithm often generates much
smaller automata than what could be obtained by transforming the automata
into NFAs and determinising them, a natural question is whether the gener-
ated DCA is always smaller or equal in size to the DFA built by getting rid
of the counters and using classical determinisation. Unfortunately, the answer
to this question is no. The reason is that the transformation to a DCA needs
not recognise that some generated transitions can never be executed and that
some spheres are not reachable. To see this, it is enough to imagine a transition
setting some counter c to zero and the only successor transition testing whether
c is positive. The latter transition would not be executed when generating the
DFA due to working with concrete values of counters, but it would be considered
when constructing the DCA (since the construction does not know the values of
the counters).

In our experiments with CAs obtained from real-life regexes, the above was
not a problem, but we note that, for the price of an increased cost of the con-
struction, one could further improve the algorithm by taking into account some
reachability information. In an extreme case, one could first generate the DFA
corresponding to the given CA and then use it when generating the DCA (as
a hopefully more compact representation of the DFA). In particular, whenever
adding some new sphere into the DCA being built, the algorithm can check
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whether there is a subset of states in the original CA represented as a state
of the DFA that is an instance of the sphere. If not, the sphere is not added.
The resulting DCA can then never be bigger than the DFA since each control
state of the DFA (i.e., a subset of states of the original CA) is represented by a
single sphere only, likewise each transition of the DFA is represented by a single
transition of the DCA, and there are not any unreachable spheres or transitions
that cannot be executed.

Notice that the reachability pruning is an alternative to Algorithm 2. Algo-
rithm 1 equipped with the reachability analysis is guaranteed to terminate. For
example, when run on the CA in Fig. 1, it would generate a DCA isomorphic to
that from Fig. 2.

4 Monadic Counting

We now provide a simplified and more efficient version of the determinisation
algorithm. The simplified version targets CAs that naturally arise from monadic
regexes, i.e., regular expressions extended with counting limited to character
classes. Their abstract syntax is

R ::= ∅ | ε | σ | R1R2 | R1 + R2 | R∗ | σ{n,m}

where σ is a predicate denoting a set of alphabet symbols, i.e., a character class
(σ will be used to denote character classes from now on), and n,m ≥ 0 are
integers. The semantics is defined as usual, with σ{n,m} denoting a string w
with n ≤ |w| ≤ m symbols satisfying σ.

The specialised determinisation algorithm is of a high practical relevance
since the monadic class is very common, as witnessed by our experiments, where
it covers over 95% of the regexes with counting that we found (cf. Sect. 5).

4.1 Monadic Counting Automata

Monadic regexes can be easily compiled to nondeterministic monadic CAs sat-
isfying certain structural properties summarised below.6 In particular, a (non-
deterministic) monadic counting automaton (MCA) is a CA A = (Q,C, I, F,Δ)
where the following holds:

1. The set Q of control states is partitioned into a set of simple states Qs and a
set of counting states Qc, i.e., Q = Qs � Qc.

2. The set of counters C = {cq | q ∈ Qc} consists of a unique counter cq for
every counting state q ∈ Qc.

6 We note that we restrict ourselves to range sub-expressions of the form σ{n, n}
or σ{0, n} only. This is without loss of generality since a general range expression
σ{m, n} can be rewritten as σ{m, m}.σ{0, n − m}.
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3. All transitions containing counter guards or updates must be incident with
a counting state in the following manner. Every counting state q ∈ Qc has
a single increment transition, a self-loop q−{σ∧cq<maxq,c′

q=cq+1}→q with the
value of cq limited by the bound max q of q, and possibly several entry tran-
sitions of the form r−{σ̄∧c′

q=0}→q, which set cq to 0. As for exit transitions,
every counting state is either exact or range, where exact counting states
have exit transitions of the form q−{σ∧cq=maxq}→s, and range counting states
have exit transitions of the form q−{σ,�}→s with s ∈ Q s.t. s = q. That is, an
exact counting state may be left only after exactly max q repetitions of the
incrementing transition (it corresponds to a regular expression σ{k}), while
a range counting state may be left sooner (it corresponds to a regular expres-
sion σ{0,k}). We denote the set of range counting states Qr and the set of
exact counting states Qe, with Qc = Qr � Qe.

4. The initial condition I is of the form I :
∨

q∈QI
s
s = q ∨∨

q∈QI
c
(s = q ∧ cq = 0)

for some sets of initial simple and counting states QI
s ⊆ Qs and QI

c ⊆ Qc,
respectively, with the counters of initial counting states initialised to 0.

5. The final condition F is of the form F :
∨

q∈QF
s ∪QF

r
s = q∨∨

q∈QF
e
(s = q∧cq =

max q) where QF
s ⊆ Qs is a set of simple final states, QF

r ⊆ Qr is a set of final
range counting states, and QF

e ⊆ Qe is a set of final exact counting states.
That is, final conditions on final states are the same as counter conditions on
exit transitions.7

4.2 Determinisation of MCAs

Algorithm 2 can be simplified when specialised to monadic CAs. The simplifi-
cation is based on the following observations. Observation 1. Counters are dead
outside their states. To simplify the representation of spheres, we use the fact
that every counter cq of an MCA is “active” in the state q only, while cq is
“dead” in other states (i.e., its current value has no influence on runs of the
MCA that are not in q). To represent different variants of cq, we use parameters
of the form cq[i] obtained by indexing cq by an index i, for 0 ≤ i ≤ max q,
while enforcing the invariant that, for distinct indices i and j, cq[i] and cq[j]
always have different values. Since the value of cq ranges from 0 to max q, at
most max q + 1 variants of cq are needed.8 Since spheres only need parameters
to remember values of live counters, every sphere can be equivalently written in
the normal form

ψ
def=

∨

q∈Q′
s

s = q ∨
∨

q∈Q′
c

(
s = q ∧

∨

0≤i≤max ′
q

cq = cq[i]
)

7 Notice that the guards cq < max q on the incrementing self-loops of exact counting
states could be removed without affecting the language since when cq exceeds max q,
then the run can never leave q and has thus no chance of accepting. We include these
guards only to conform to the condition on boundedness of counter values in the
definition of CAs.

8 Notice that maintaining a fixed association of a parameter to a counter is a difference
from Algorithms 1 and 2, where one parameter may represent different counters.
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for some Q′
s ⊆ Qs, Q′

c ⊆ Qc, and max ′
q ≤ max q. That is, a sphere ψ records

which states may be reached in the original MCA when ψ is reached in the
determinised MCA and also which variants of the counter cq may record the
value of cq when q is reached.

Observation 2. Variants of exact counting states can be sorted. For dealing
with any exact counting state q ∈ Qe, we may use the following facts: (1) If
executed, the increment transition of q increments all variants of cq whose values
are smaller than max q. (2) New variants of cq are initialised to 0 by the entry
transitions. (3) Variants whose value is max q can take an exit transition, after
which they become dead and their values do not need to be propagated to
the next configuration. It is therefore easy to enforce that the values of the
variants cq[i] stay sorted, so that i < j implies α(cq[i]) < α(cq[j]) in every
configuration α of Ad. The sortedness invariant implies that the variant of cq with
the highest index, called highest variant, has the highest value. This, together
with the invariant of boundedness by max q and mutual distinctness of values
of variants of cq, means that the highest variant is the only one that may satisfy
the tests cq = max q on exit transitions or fail the test cq < max q on the
incrementing transition. Hence, the deterministic MCA does not need to test all
variants of cq but the highest one only.

Observation 3. Only the smallest variants of range counting states are
important. For range counting states, we adapt the simulation pruning tech-
nique from [10]. The technique optimizes the standard subset-construction-based
determinisation of NFAs by exploiting a simulation relation [7] such that any
macrostate (which has the form of a set of states of the original NFA) obtained
during the determinisation can be pruned by removing those NFA states that
are simulated by other NFA states included in the same macrostate. The prun-
ing does not change the language: the resulting DFA is bisimilar to the one
constructed without pruning. For our DCA construction, we use the simula-
tion that implicitly exists between configurations α and α′ of A with the same
range counting state q = α(s) = α′(s), where α(cq) ≥ α′(cq) implies that α′

simulates α.9 Hence, the spheres only need to remember the smallest possible
counter value for every range counting state q, which may be always stored in
cq[0], and discard all other variants.

Determinisation of MCAs. Observations 1–3 above allow for representing
spheres using a simple data structure, namely, a multiset of states. By a slight
abuse of notation, we use ψ for the sphere itself as well as for its multiset rep-
resentation ψ : Q → N. The fact that ψ(q) > 0 means that q is present in the
sphere (i.e., s = q is a predicate in the normal form of ψ), and for a counting
state q, the counters cq[0], . . . , cq[ψ(q) − 1] are the ψ(q) variants of cq tracked in
the sphere (i.e., ψ(q) − 1 = max q′ in the normal form of ψ).

9 The fact that this relation is indeed a simulation can be seen from that both the
higher and lower value of cq can use any exit transition of q at any moment regardless
of the value of cq, but the lower value of cq can stay in the counting loop longer.
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The MCA determinisation is then an analogy of Algorithm 1 that uses the
multiset data structure and preserves the sortedness and uniqueness of variants
of exact counters. The initial sphere ψI assigns 1 to all initial states of I, and the
initial configuration Id assigns 0 to cq[0] for each counting state q in I. Further,
we modify the part of Algorithm 1 after popping a sphere ψ from Worklist in
the main loop (lines 7–11).

Let Δψ denote the set of transitions of A originating from states q with
ψ(q) > 0. Processing of ψ starts by removing guard predicates of the form
cq < max q from increment transitions of exact counting states in Δψ (since
they have no semantic effect as mentioned already above). Subsequently, we
compute minterms of the set of guard formulae of the transitions in Δψ. Each
minterm μ then gives rise to a transition ψ−{g,f }→ψ′ of Ad. The guard formula g,
assignment formula f , and the target sphere ψ′ are constructed as follows.

First, the guard g is obtained from the minterm μ by replacing, for all q ∈ Qc,
every occurrence of cq by cq[ψ(q)], i.e., the highest variant of cq. Intuitively,
the counter guards of transitions of Δψ present in μ will on the constructed
transition of Ad be testing the highest variants of the counters. This is justified
since (a) only the highest variant of cq needs to be tested for exact counting
states, as concluded in Observation 2 above, and (b) we keep only a single variant
of cq for range counting states (which is also the highest one), as concluded in
Observation 3.

We then initialise the target multiset ψ′ as the empty multiset {q �→ 0 | q ∈
Q} and collect the set Δμ of all transitions from Δψ that are compatible with the
minterm μ (recall that increment self-loops of exact states in Δψ have counter
guards removed, hence counter guards do not influence their inclusion in Δμ).
The transitions of Δμ will be processed in the following three steps.

Step 1 (simple states). Simple states with an incoming transition in Δμ get
ψ′(q) = 1.

Step 2 (increment self-loops). For exact states with the increment self-loop
in Δμ, ψ′(q) is set to ψ(q) − 1 if an exit transition of q is in Δμ, and to ψ(q)
otherwise. Indeed, if (and only if) an exit transition of q is included in Δμ, and
Δμ is enabled in some sphere, then the highest variant of cq has reached max q

in that sphere, and the self-loop cannot be taken by the highest variant of cq.
The lower variants of cq always have values smaller than max q, and hence can
take the self-loop. The assignment f then gets the conjunct cq[i]′ = cq[i] + 1 for
each 0 ≤ i < ψ′(q) since the variants that take the self-loop are incremented.
For range states with the increment self-loop in Δμ, we set ψ′(q) to 1, and
cq[0]′ = cq[0] + 1 is added to f (only one variant is remembered).

Step 3 (entry transitions). For each counting state q with an entry transition
in Δμ, ψ′(q) is incremented by 1 and the assignment cq[0]′ = 0 of the fresh
variant of cq is added to f . If the new value of ψ′(q) exceeds max q + 1, then
the whole transition generated from μ is discarded, since cq cannot have more
than max q + 1 distinct values. Otherwise, if q is an exact counting state, then
f is updated to preserve the invariant of sorted and unique values of cq: the
increments of older variants of cq are right-shifted to make space for the fresh



484 L. Hoĺık et al.

variant, meaning that each conjunct cq[i]′ = cq[i]+1 in f is replaced by cq[i+1]′ =
cq[i] + 1. If q ∈ Qr, then if the assignment cq[0]′ = cq[0] + 1 is present in f , it is
removed (as the fresh variant has the smallest value 0).

Example 6. Determinising the CA from Fig. 1 using the algorithm described in
this section would result in the DCA shown in Fig. 2. ��

The monadic determinisation has a much lower worst-case complexity than
the general algorithm. Importantly, the number of states depends on maxA

only polynomially, which is a major difference from the exponential bounds of
the näıve determinisation and our general construction.

Theorem 2. The specialised monadic CA determinisation constructs a DCA
with |Qd| ≤ (maxA + 1)|Q| and |Δd| ≤ |Σ| · (4 · (maxA + 1))|Q|.

Proof (idea). The bound on the number of states is given by the number of
functions Q → {0, . . . ,maxA}. The bound on the number of transitions is given
by the fact, that if a sphere multiset maps a state q to n, then the successors of the
sphere can map q to 0 (when q is not a successor), n − 1, n, or n + 1. Therefore,
for every symbol from Σ and every macrostate from at most (maxA + 1)|Q|

many of them, there are at most 4|Q| successors, and |Σ| · (maxA +1)|Q| · 4|Q| =
(4 · (maxA + 1))|Q|. ��

5 Experimental Evaluation

The main purpose of our experimentation was to compare the proposed app-
roach with the näıve determinisation and confirm that our method produces
significantly smaller automata and mitigates the risk of the state space explo-
sion causing a complete failure of determinisation (and the implied impossi-
bility to use the desired deterministic automaton for the intended application,
such as pattern matching). To this end, we extended the Microsoft’s Automata
library [18] with a prototype support for CAs, implemented the algorithm from
Sect. 4 (denoted Counting in the following), and compared it to the standard
determinisation already present in the library (denoted as DFA). For the evalua-
tion, we collected 2,361 regexes from a wide range of applications—namely, those
used in network intrusion detection systems (Snort [17]: 741 regexes, Yang [29]:
228 regexes, Bro [21]: 417 regexes, HomeBrewed [28]: 55 regexes), the Microsoft’s
security leak scanning system (Industrial: 17 regexes), the Sagan log analysis
engine (Sagan [26]: 14 regexes), and the pattern matching rules from RegExLib
(RegExLib [20]: 889 regexes). We only selected regexes that contain an occur-
rence of the counting operator, and from these, we selected only monadic ones
(there were over 95% of them, confirming the fragment’s importance). All bench-
marks were run on a Xeon E5-2620v2@2.4 GHz CPU with 32 GB RAM with
a timeout of 1 min (we take the mean time of 10 runs). In the following, we
use μ, m, and σ to denote the statistical indicators mean, median, and standard
deviation, respectively. All times are reported in milliseconds.
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Fig. 3. Comparison of running
times given in ms (the axes are
logarithmic).

The number of timeouts was 110 for
Counting, and 238 for DFA. The two meth-
ods were to some degree complementary, there
were only 62 cases in which both timed out.
This confirms that our algorithm indeed miti-
gates the risk of failure due to state space explo-
sion in determinisation. The remaining com-
parisons are done only with respect to bench-
marks for which neither of the methods timed
out.

In Fig. 3, we compare the running times of
the conversion of an NFA for a given regex to
a DFA (the DFA axis) and the determinisa-
tion of the CA for the same regex (the Count-
ing axis). If we exclude the easy cases where
both approaches finished within 1 ms, we can
see that Counting is almost always better than DFA. Note that the axes are
logarithmic, so the advantage of Counting over DFA grows exponentially wrt
the distance of the data point from the diagonal. The statistical indicators for
the running times are μ = 110, m = 0.17, σ = 1, 177 for DFA and μ = 0.23,
m = 0.13, σ = 0.09 for Counting.

Fig. 4. Comparison of numbers
of states (the axes are logarith-
mic).

In Fig. 4, we compare the number of states
of the results of the determinisation algorithms
(DCA for Counting and DFA for DFA). Also
here, Counting significantly dominates DFA.
The statistical indicators for the numbers of
states are μ = 4, 543, m = 41, σ = 57, 543
for DFA and μ = 241, m = 13, σ = 800 for
Counting. To better evaluate the conciseness
of using DCAs, we further selected 184 bench-
marks that suffered from state explosion during
determinisation (our criterion for the selection
was that the number of states increased at least
ten-fold in DFA) and explored how the CA
model can be used to mitigate the explosion.
Figure 5 shows histograms of how DCAs were
more compact than DFAs and also how much
the number of counters rose during the determinisation. From the histograms,
we can see that there are indeed many cases where the use of DCAs allows one
to use a significantly more compact representation, in some cases by the fac-
tor of hundreds, thousands, or even tens of thousands. Furthermore, the other
histogram shows that, in many cases, no blow-up in the number of counters
happened; though there are also cases where the number of counters increased
by the factor of hundreds.

In terms of numbers of transitions, the methods compare similarly as for num-
bers of states, as shown in Fig. 6. We obtained μ = 14, 282, m = 77, σ = 213, 406
for DFA and μ = 2, 398, m = 23, σ = 8, 475 for Counting. (We emphasize
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Fig. 5. Histograms of (a) the ratio of the number of states of a DFA and of the corre-
sponding DCA (i.e., a bar at value x of a height h denotes that the size of the DCA
was h times around x times smaller than the size of the corresponding DFA) and (b)
the ratio of the number of counters used by a CA after and before determinisation.
Note that the x-axes are logarithmic in both cases.

the number of states over the number of transitions in our comparisons since the
performance and complexity of automata algorithms is usually more sensitive to
the number of states, and large numbers of transitions are amenable for efficient
symbolic representations [6,12,16].)

Fig. 6. Comparison of numbers
of transitions (the axes are log-
arithmic).

Benefits of the Counting method were the
most substantial on the Industrial dataset. For
the regex ”.*A[^AB]{0,800}C[D-G]{43,53}
DFG[^D-H]” (which was obtained from the real
one, which is confidential, by substituting the
used character classes by characters A–H), the
obtained DFA contains 200,132 states, while
the DCA contains only 12 states (and 2 coun-
ters), which is 16,667 times less. When min-
imised, the DFA still has 65,193 states. There
were other regexes where Counting achieved
a great reduction, in total two regexes had
a reduction of over 10,000, three more regexes
had a reduction of over 1,000, and 45 more had
a reduction of over 100.

Additionally, we also compared our approach against the näıve determinisa-
tion followed by the standard minimisation. Due to the space restrictions and
since minimisation is not relevant to our primary target (preventing failure due
to state space explosion during determinisation), we present the results only
briefly. Minimisation increased the running times of DFA by about one half
(μ = 150, m = 0.35, σ = 1, 582 for the running times of DFA followed by min-
imisation). The minimal DFAs were on average about ten times smaller than the
original DFAs, and about ten times larger than our DCAs (μ = 385, m = 29,
σ = 4, 195 for the numbers of states of the minimal DFAs).
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6 Related Work

Our notion of CAs is close to the definition of FACs in [13], but our CAs are more
general, by allowing input predicates and more complex counter updates. Also R-
automata [1] are related but somewhat orthogonal to CAs because counters in R-
automata do not need to have upper bounds and cannot be tested or compared.
Counter systems are also related to CAs but allow more general operations over
counters through Presburger formulas [2]. CAs can also be seen as a special case
of extended finite state machines or EFSMs [5,22,24,25], but these already go
beyond regular languages.

Extended FAs (XFAs) augment classical automata with so-called scratch
memory of bits and bit-instructions [23,24], which can represent counters and
also reduce nondeterminism. Regexes are compiled into deterministic XFAs by
first using an extended version of Thompson’s algorithm [27], then determinised
through an extended version of the classical powerset construction, and finally
minimised. Although a small XFA may exist, the determinisation algorithm
incurs an intermediate exponential blowup of search space for inputs such as
.*a.{k} (cf. [23, Section 6.2]), i.e., the regex from our running example, and
handling of such cases remained an open problem.

Regular expressions with counters are also discussed in [8,13,15]. The
automata with counters used in [13], called FACs, correspond closely, apart
from our symbolic character predicates and transition representation, to the
class of CAs considered in our work. A central result in [13] is that for counter-
1-unambiguous regexes, the translation algorithm yields deterministic FACs and
that checking determinism of FACs can be done in polynomial time. There are
also works on regular expressions with counting that translate deterministic
regexes to CAs and work with different notions of determinism [4,9]. The related
work in [14] studies membership in regexes with counting. None of these papers
addresses the problem of determinising nondeterministic CAs.

7 Future Directions

Among future directions, we will consider optimisations of the current algorithm
by means of avoiding construction of unreachable parts of DCAs or by finding
efficient data structures, generalising the techniques used for monadic CAs to a
larger class of CAs, and building a competitive pattern matching engine around
the current algorithm. Since we believe that CAs have a lot of potential as a
general succinct automata representation, we will work towards filling in efficient
CA counterparts of standard automata algorithms, such as Boolean operations,
minimisation, or emptiness test, that could also be used in other applications
than pattern matching, such as verification and decision procedures of logics.
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