
GORO 2.0: Evolving an Ontology for
Goal-Oriented Requirements Engineering

César Henrique Bernabé1(B), Vı́tor E. Silva Souza1,
Ricardo de Almeida Falbo1, Renata S. S. Guizzardi1, and Carla Silva2

1 Ontology and Conceptual Modeling Research Group (NEMO),
Department of Computer Science, Federal University of Esṕırito Santo (UFES),

Vitoria, Brazil
{chbernabe,vitorsouza,falbo,rguizzardi}@inf.ufes.br

2 Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
ctlls@cin.ufpe.br

Abstract. Goal-Oriented Requirements Engineering (GORE) gained
prominence by covering some of the limitations of traditional Require-
ments Engineering (RE). As a result, many GORE modeling languages
have been proposed since this field emerged. Aiming at providing for-
mal semantics to the concepts of GORE, the Goal-Oriented Require-
ments Ontology (GORO) was proposed as a common vocabulary for this
domain. However, the first version of GORO lacks important concepts
and its applicability was not demonstrated in practice. In this paper,
we present GORO 2.0, an evolution of the first version of GORO that
overcomes several limitations of its first version, presenting new concepts
such as obstacles, conflicts and contributions.

Keywords: Goal-oriented requirements engineering · Goal modeling ·
Ontology

1 Introduction

Goal-Oriented Requirements Engineering (GORE) emerged in the mid-1990s
and became popular for overcoming some of the limitations of traditional
Requirements Engineering (RE). For example, goals provide precise criteria for
requirements completeness and adequate rationale and justification for a require-
ment’s existence [15]. They are also an efficient tool for identification and nego-
tiation of conflicts [16]. As a result, many GORE modeling languages have been
proposed since this field emerged [12].

The multitude of languages and their constructs motivated the creation of
the Goal-Oriented Requirements Ontology (GORO), which was proposed with
the aim of providing formal semantics to the concepts of GORE [20]. As a con-
sequence, GORO can be used to enable interoperability between models from
different GORE languages as it provides a common vocabulary about the GORE
domain (and, therefore, improves the communication between stakeholders).
c© Springer Nature Switzerland AG 2019
G. Guizzardi et al. (Eds.): ER 2019 Workshops, LNCS 11787, pp. 169–179, 2019.
https://doi.org/10.1007/978-3-030-34146-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34146-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-34146-6_15


170 C. H. Bernabé et al.

Moreover, GORO allows previous and new modeling languages to clearly spec-
ify their semantics by grounding their concepts in a formal reference ontology.
By providing a common vocabulary, the ontology can also support modelers to
create ontologically correct models.

The first version of GORO, however, suffers from some limitations, namely:
(i) the ontology was captured from and had its concepts mapped to only three
GORE languages (i* [24], KAOS [7] and Techne [3]) and considered only a subset
of concepts of these languages; (ii) it lacks integration with other ontologies on
the Software Engineering (SE) domain to strengthen its semantic foundations;
and (iii) its applicability was not properly demonstrated as, for example, using
a model conversion tool. Hence, we evolved GORO into a new version, hereafter
GORO 2.0, in order to overcome the aforementioned limitations.

This paper presents GORO 2.0 and is organized as follows: Sect. 2 briefly
summarizes the GORE domain; Sect. 3 presents the method used to build GORO
2.0; Sect. 4 presents GORO 2.0; Sect. 5 compares our ontology with related work;
and Sect. 6 concludes the paper.

2 GORE Modeling Languages

NFR [19] was the first GORE language proposed (1992) and brought the con-
cept of goals as desirable qualities in a system. It introduced the concept of
contribution between Softgoals (goals without clear criteria of satisfaction). In
1993, KAOS was proposed and redefined goals as states of affairs desired by
stakeholders, categorizing them as Goal (not sufficiently refined to be assigned
to a stakeholder), Expectation (under the responsibility of a human agent) and
Requirement (under the responsibility of a software agent). It also introduced
the concepts of Operation (a task/plan that can be performed to achieve a goal),
Domain Property (a presupposition about the system context considered to be
true in certain situations) and Obstacle (an undesired behavior in the context).

In 1995, Yu formalized the specification of i*, which focuses on the represen-
tation of stakeholders’ interests within the organizational context. The i* core
concept is the Actor, which depends on others to accomplish goals and perform
tasks. The language also highlighted the differentiation between Goal and Soft-
goal: the former would have a clear satisfaction criteria, while the latter did
not. In the following year, GBRAM [2] emerged and defined a method for goal
analysis in which the concept of Scenarios, a description of a system and its
environment, is used to identify Goals and Obstacles.

In 2004, GSN [14] was proposed with focus on security systems, such as
information security, air traffic control and safety systems. In the same year,
Tropos [4], a variation of i*, emerged and brought the concept of Capability
as the “ability of an actor of defining, choosing and executing a plan for the
fulfillment of a goal”. In 2009, the first version of Techne was presented. Based
on an ontology, Techne made a more precise differentiation between Hard and
Softgoals, as the latter can be restricted through Quality Constraints.

In 2010, GRL [1], a variation of i*, introduced a differentiation of the OR-
Decomposition relation (exclusive and inclusive) and the concept of Correlation



GORO 2.0 171

(a relation of side effects rather than desired impacts as in the contribution rela-
tion). Finally, in 2016, i* was revised and its second version, now spelled iStar,
had some elements and relationships removed, and new elements that were pop-
ularly used by the community were added. For instance, Softgoal was renamed
as Quality; and the means-end and task-decomposition links were grouped in the
Refinement Link.

3 Method

GORO 2.0 was built using the Systematic Approach to Building Ontologies
(SABiO) [8], an Ontology Engineering method, successful in the development
of domain ontologies, particularly in SE. To provide a solid semantic founda-
tion, GORO 2.0 is based on the Unified Foundational Ontology (UFO) [10],
and reuses existing ontologies, such as the Common Ontology for Value and
Risk (COVR) [23] and the Reference Software Requirements Ontology (RSRO),
which is part of the Software Engineering Ontology Network (SEON) [22].

In order to improve domain coverage, GORO 2.0 was created based on the
modeling languages mentioned in Sect. 2, which were studied and analyzed to
extract concepts that, in fact, belong to the GORE domain. GBRAM, GRL, i*,
KAOS, Techne and Tropos were first selected based on a literature review [12].
NFR was added to the list as it is cited in Van Lamsweerde’s guided tour on
GORE [15]. Finally, when searching for related works (cf. Sect. 5), we also iden-
tified GSN. The selected languages were validated with domain experts who
advised us to consider i* and iStar as different languages, given the perceptible
differences between them. GORO, as its name states, is focused on Requirements.
Hence, we do not consider other languages that use goal related constructs but
are not specifically GORE modeling languages.

Regarding scope, we have applied two criteria for the inclusion of a con-
struct: it must I1: appear in more than two GORE modeling languages; and I2:
be considered a GORE concept by domain experts—a group of five academic
professionals with more than ten years of experience. We applied I1 in order to
exclude constructs that were not GORE, but actually extra features of specific
languages. In order to verify if different languages’ elements shared the same
meaning, we also consulted the group of experts. It is worth to highlight that
GORO 2.0 is concerned with the part of the GORE domain that is covered by
the languages selected according to the described heuristics. This decision has
been made because one of the purposes of this work is to provide interoper-
ability among the selected GORE languages. As a consequence, other concepts
pertaining to GORE domain, but not covered in the selected languages, were
not considered to be part of GORO 2.0.

To evaluate GORO, we conducted three activities: verification, validation
and an application-based evaluation. To check whether GORO satisfies its own
requirements, we verified if its conceptual model can answer all of the pro-
posed Competency Questions (CQs). To validate GORO’s domain coverage, we
mapped concepts of the GORE modeling languages listed in Sect. 2 to the con-
cepts of the ontology. Finally, to assess the feasibility of GORO in enabling



172 C. H. Bernabé et al.

Fig. 1. GORO 2.0’s first module: mental moments, goals and assumptions.

interoperability between GORE languages, we implemented a model conversion
tool that uses the ontology as an interlanguage. The CQs, the concepts mapping
and the conversion tool source code (and conversion examples) are available at
https://nemo.inf.ufes.br/projects/rose/.

4 GORO 2.0

Figure 1 presents the module of GORO 2.0 that defines concepts related to men-
tal moments existentially dependent on a single individual, which can be classi-
fied as Beliefs, Desires and Intentions. Agent’s beliefs are assumed to be true in
a given set of situations. Given that desires and intentions are both related to
agents’ goals, the difference between them is actually related to the fact that the
former is only a will of an agent towards a state of affairs (situation) in reality,
whereas the latter is an intended state of affair (situation) for which the agent
commits to pursuing, causing the agent to perform actions [10].

GORO 2.0 inherits the Stakeholder definition from RSRO: a Stakeholder can
be a Requirements Stakeholder, when in the role of the person that provides needs
and expectations for the product, or a Requirements Engineer, when in the role
of conducting the requirements development activities.

https://nemo.inf.ufes.br/projects/rose/


GORO 2.0 173

Fig. 2. GORO 2.0’s second module: tasks, goals and relations.

A Goal is the propositional content of an Intention/Desire, which inheres in
an Agent, supertype of Stakeholder. Therefore, a Requirement is a goal elicited
from a stakeholder’s intention/desire. A Requirement can be a Non-functional
Requirement or a Functional Requirement. When applying a GORE approach to
a Requirements Engineering process, a traditional Requirement becomes a Goal-
Based Requirement, which can be a Hardgoal or a Softgoal. Both definitions are
extracted from [17] and represented in GORO 2.0 with the NFRO prefix.

By combining two perspectives, we end up with four different classifications
for a goal-based requirement [17]: Functional Requirement & Hardgoal, Func-
tional Requirement & Softgoal, Non-functional Requirement & Hardgoal and Non-
functional Requirement & Softgoal, implicitly represented in Fig. 1. Hence, GORO
2.0 is compatible with NFRO, making adaptations where necessary. We highlight
that such adaptations are now incorporated in NFRO. A Goal-Based Requirement
Artifact describes a Goal-Based Requirement in the same way that a Requirement
Artifact describes a Requirement, differentiating a documented requirement from
a requirement that exists only in the stakeholder’s mind. It is important to note
that, in GORO 2.0, an Assumption still has the same classifications proposed in
GORO 1.0 [20], not shown here due to space limitations and for not being a
contribution of this paper.

Figure 2 shows GORO 2.0 second module. A Task intends to operationalize a
Goal-Based Requirement. Tasks can be Complex Tasks, when composed of two or
more Tasks, or Atomic Tasks otherwise. A Task can require or produce a Resource.
As with Tasks, a Goal-Based Requirement Artifact can also be complex or atomic.
Complex Goal-Based Requirement Artifact (or Complex GBRA) is further refined
into Or/And-Complex GBRA, which are satisfied when at least one/all of their
components are satisfied. GORO does not allow tasks to be refined into goals.
Yu [24] argues that the refinement between goals and tasks is a way to capture the
transition between the problem domain (goal) and the solution domain (task).
In addition, according to him, refining a task into a goal would be natural in
the analysis and modeling cycle, which generally iterates between these two
domains. However, by ontologically analyzing these concepts, the relationship
between a task and a goal is not a “refinement”. Rather, the task analysis shows
that new goals should be considered in the model. In other words, task analysis
may motivate the “emergence” of new goals, possibly better characterized if



174 C. H. Bernabé et al.

Fig. 3. GORO 2.0’s third module: obstacles, conflicts and contribution.

different models are created for the different analysis’ cycles. This is an example
of how the ontological analysis performed with GORO may have methodological
impact.

Figure 3 introduces concepts not previously considered in GORO 1.0, namely:
obstacle, conflict and contribution. Van Lamsweerde [16] defines obstacle as a
dual notion of goals: “while goals capture desired conditions, obstacles capture
undesirable (but nevertheless possible) ones”. We argue that obstacles can be
equated, here, to the definition used by the Common Ontology for Value and
Risk (COVR) [23], i.e., a condition that may be satisfied in certain situations
in which something of human value has been put at stake and the outcome is
uncertain. Thus, an Obstacle is seen as a Threatening Proposition, which satisfies
a Threatening Situation and obstructs a Goal-Based Requirement satisfaction.

An Obstacle, according to Van Lamsweerde [16], can be mitigated by an
agent’s goal. We consider that what mitigates or contingencies a risk is an action
(task) and not a goal. Although KAOS uses goals to mitigate obstacles, the
task that intends to operationalize this goal is indirectly mitigating the obstacle.



GORO 2.0 175

We also argue that this task definition is overloaded and, thus, propose two
distinct types of actions (tasks): contingency (action taken after a Threatening
Situation to decrease damage) and mitigation (can reduce or prevent the risk
rate of an event to happen). A Threatening Proposition satisfies a Threatening
Situation in the same way as a Proposition satisfies a Situation, hence, the former
relation is derived from the latter (denoted by a/symbol). Like goals, an Obstacle
can be decomposed in complex/atomic ones, and Complex Obstacles are further
refined in Or/And Complex Obstacles, with analogous satisfaction rules.

A conflict happens when two or more goals cannot be achieved in the same
solution set of a domain problem [16]. In other words, given goals G1 and G2

and a model M , there is no solution set S of M that contains both G1 and G2.
In GORO, Conflicts are modeled as a relator between Goal-based Requirement
Artifacts, which potentially conflicts with another. It is important to emphasize
the difference between conflict and obstacle: the former describes situations in
which two goals cannot be achieved in the same solution, although both are
desired by stakeholders, whereas the latter describes an undesired state of affairs.

In GORO 2.0, contributions are represented by a Contribution relator that
stands between a Goal-Based Requirement Artifact or a Task and a Non-functional
Goal-Based Requirement Artifact, which is a non-functional requirement used in a
GORE approach. We argue that contributions should only have non-functional
requirements as targets because: (i) in the case of total contributions, a nega-
tive contribution to a functional requirement would be semantically similar to a
Conflict, while a positive contribution would have the same meaning of Complex
GBRA or operationalization (intends to operationalize); (ii) in the case of partial
contributions, it does not make sense to partially satisfy/deny a GBRA which,
in turn, has a precise satisfaction criteria. Several GORE languages have certain
types of contribution relations: i*, iStar and the NFR Framework, for instance,
have some types of contributions, e.g. make, help, hurt and break [6,19,24]. Make
and Break are positive and negative contributions that sufficiently satisfy a non-
functional requirement, respectively, whereas Help and Hurt are partial positive
and negative contributions.

5 Related Works

The initial set of related work was raised based on relevant references of the
area, such as Horkoff et al. [12] and Guizzardi et al. [11]. We consider as related
works: (i) the ones that use ontologies as basis for analysis or construction of
GORE languages, (ii) the ones that proposed metamodels with the purpose of
unifying concepts of goal modeling languages.

Regarding the use of ontologies: the Core Ontology for Requirements
Engineering (CORE) [13] has as main objective to review the conceptualization
of several RE elements and is the foundation of Techne. However, it is based
on a foundational ontology in which essential aspects of conceptual modeling
(e.g., material relations and relational properties) have not received sufficiently
detailed attention [20]. Guizzardi et al. [11], in turn, use UFO as a reference



176 C. H. Bernabé et al.

model to analyze i* and its many variants, therefore aiming to promote interop-
erability between them, but the work is constrained to the i* family of languages.

Regarding the use of metamodels: in the work of Fayoumi et al. [9], the
concepts of eight modeling languages are raised and organized in a metamodel,
in which the main objective is the interoperability between GORE models. The
work of Lucena et al. [18] presents a metamodel created to unify two variants of i*
(its original version and Tropos), considering similarities and differences between
them. The work of Cares & Franch [5] defines a supermetamodel created on the
basis of different variations of i* (GRL and Tropos), which is validated through
a translation algorithm that uses the XML-based iStarML format to depict the
relation between tools. Patricio et al. [21] propose a unified GORE language
called Unified Goal-oriented Language (UGL), which incorporates concepts of
i*, GRL and KAOS and whose metamodel is based on existing metamodels
of i* and KAOS. We argue that, unlike ontologies, metamodels do not provide
sufficient semantic foundation to explain complex domain concepts. Metamodels
are not efficient enough to promote interoperability between languages because,
although they are powerful structures for defining the syntax of a language, they
suffer for several limitations in relation to semantic clarifications [11].

6 Conclusions

In this paper, we defined GORO 2.0, a domain reference ontology about Goal-
Oriented Requirement Engineering, built based on GORO 1.0, by including con-
cepts related to GORE that had not yet been covered in its previous version.
Nine goal modeling languages were chosen based on both literature review and
experts’ opinion. Their concepts were analyzed and those considered GORE con-
cepts were included. Then, these same concepts were mapped to GORO 2.0 in
order to verify and validate the new ontology. Further, a GORO-based tool that
converts between two GORE languages (iStar and KAOS), was developed as a
proof-of-concept. Evaluation results were not presented here due to space con-
straints, but are available at https://nemo.inf.ufes.br/projects/rose/. GORO 2.0
was built with a strong foundation as it was based on both relevant literature on
GORE and on UFO [10]. It also reuses concepts from other ontologies, namely
COVR [23] and RSRO. As the latter is part of SEON [22], GORO 2.0 becomes
part of this ontology network as well.

By performing validation on GORO, in addition to verifying domain cover-
age, we were able to notice a few issues in the design of the analyzed languages.
Regarding the relations between elements defined in each language, for instance,
we could identify that some of them are overloaded. GORO defines decompo-
sition of Goal-Based Requirement Artifacts (GBRA) (Fig. 2), Tasks (Fig. 2) and
Obstacles (Fig. 3); the Conflict relator between GBRA (Fig. 3); Contribution rela-
tion between a GBRA and a Non-functional GBRA (Fig. 3); and finally, an Opera-
tionalization relation between a Task and a GBRA (Fig. 2). It was identified that
some elements were, at the same time, both an And-Complex GBRA aggregation

https://nemo.inf.ufes.br/projects/rose/


GORO 2.0 177

(when a GBRA is AND decomposed into other GBRAs) and an operational-
ization relation (when a GBRA is operationalized into Tasks) or both an Or-
Complex GBRA aggregation and an operationalization relation. This is the case,
for instance, of Techne’s Inference relation.

In terms of interoperability, it is important to mention that, in some cases, ele-
ments of a given language cannot be directly converted into elements of another.
In this case, we plan to propose conversion patterns as future work. Currently,
the tool proposed in this paper creates a log with the elements that were not
converted, leaving the user to make the best decision regarding the new model.

In future works, we also intend to: (a) extend the model conversion tool,
adding support for more GORE languages and improving its user interface;
(b) use GORO 2.0 to make a systematic ontological analysis of GORE languages,
verifying possible inconsistencies, construct overload, and other opportunities of
improvement in such languages; (c) through the activities performed in (b),
propose ontology-based modeling patterns to ensure consistency in the creation
of GORE models; (d) use the ontology to identify and incorporate other GORE
concepts that the current modeling languages do not cover; (e) use GORO as
base for the abstract syntax of a more complete GORE language; and (f) improve
the validity of GORE language constructs definition (which was interpreted by
our domain experts group), by analysing models on the same subject with the
help of GORO.

Acknowledgments. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. NEMO
(.inf.ufes.br) is currently supported by CNPq (processes 407235/2017-5, 433844/
2018-3), CAPES (process 23038.028816/2016-41), and FAPES (process 69382549/
2015).

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. Int. J. Intell.
Syst. 25(8), 841–877 (2010)

2. Anton, A.: Goal-based requirements analysis. In: Proceedings of the 2nd Interna-
tional Conference on Requirements Engineering (RE). pp. 136–144. IEEE Comput.
Soc. Press (1996)

3. Borgida, A., et al.: A(nother) Requirements Modeling Language. Technical report,
Department Computer Science University of Toronto (2010). ftp://www.cs.toronto.
edu/dist/reports/csri/593/techne-techrep-v1.pdf

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agents Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Cares, C., Franch, X.: A metamodelling approach for i* model translations. In:
Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 337–351.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4 26

6. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. CoRR
abs/1605.07767 (2016)

ftp://www.cs.toronto.edu/dist/reports/csri/593/techne-techrep-v1.pdf
ftp://www.cs.toronto.edu/dist/reports/csri/593/techne-techrep-v1.pdf
https://doi.org/10.1007/978-3-642-21640-4_26


178 C. H. Bernabé et al.

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)

8. Falbo, R.A.: SABiO: systematic approach for building ontologies. In: Proceedings
of the 1st Joint Workshop on Ontologies in Conceptual Modeling and Information
Systems Engineering, vol. 1201. CEUR (2014)

9. Fayoumi, A., Kavakli, E., Loucopoulos, P.: Towards a unified meta-model for goal
oriented modelling. In: Proceedings of the 12th European, Mediterranean & Middle
Eastern Conference on Information Systems (EMCIS), pp. 1–10 (2015)

10. Guizzardi, G., Falbo, R., Guizzardi, R.S.S.: Grounding software domain ontologies
in the Unified Foundational Ontology (UFO): the case of the ODE software pro-
cess ontology. In: Proceedings of the 11th Ibero American Conference on Software
Engineering (CIbSE) (2008)

11. Guizzardi, R., Franch, X., Guizzardi, G., Wieringa, R.: Using a foundational ontol-
ogy to investigate the semantics behind the concepts of the i* language. In: Pro-
ceedings of the 6th International i* Workshop (iStar), vol. 978, pp. 13–18. CEUR
(2013)

12. Horkoff, J., et al.: Goal-oriented requirements engineering: an extended systematic
mapping study. Requirements Eng. 24, 133–160 (2017)

13. Jureta, I.J., Mylopoulos, J., Faulkner, S.: A core ontology for requirements. Appl.
Ontol. 4(3–4), 169–244 (2009)

14. Kelly, T., Weaver, R.: The goal structuring notation–a safety argument notation.
In: Proceedings of Dependable Systems and Networks 2004 Ws on Assurance Cases
(2004)

15. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engineer-
ing, pp. 249–262. IEEE Comput. Soc (2001)

16. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Software Eng. 26(10), 978–1005 (2000)

17. Li, F.L., et al.: Non-functional requirements as qualities, with a spice of ontology.
In: 2014 IEEE 22nd International Requirements Engineering Conference (RE), pp.
293–302. IEEE (2014)

18. Lucena, M., Santos, E., Silva, C., Alencar, F., Silva, M.J., Castro, J.: Towards a
unified metamodel for i (2008)

19. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Software Eng. 18(6), 483–
497 (1992)

20. Negri, P., Souza, V., Leal, A., Falbo, R., Guizzardi, G.: Towards an ontology of
goal-oriented requirements. In: Proceedings of the 20th Ibero-American Conference
on Software Engineering (CIbSE) (2017)

21. Patricio, P., Amaral, V., Araujo, J., Monteiro, R.: Towards a unified goal-oriented
language. In: Proceedings of the 35th Annual Computer Software and Applications
Conference, pp. 596–601. IEEE (2011)

22. Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S.,
Guizzardi, G.: SEON: a software engineering ontology network. In: Blomqvist,
E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol.
10024, pp. 527–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49004-5 34

https://doi.org/10.1007/978-3-319-49004-5_34
https://doi.org/10.1007/978-3-319-49004-5_34


GORO 2.0 179

23. Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos,
J.: The common ontology of value and risk. In: Trujillo, J.C., et al. (eds.) ER 2018.
LNCS, vol. 11157, pp. 121–135. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00847-5 11

24. Yu, E.S.K.: Modelling strategic relationships for process reengineering. Ph.D.
thesis, PhD thesis, University of Toronto (1996)

https://doi.org/10.1007/978-3-030-00847-5_11
https://doi.org/10.1007/978-3-030-00847-5_11

	GORO 2.0: Evolving an Ontology for Goal-Oriented Requirements Engineering
	1 Introduction
	2 GORE Modeling Languages
	3 Method
	4 GORO 2.0
	5 Related Works
	6 Conclusions
	References




