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Abstract. Recently Siamese trackers have drawn great attention due to
their considerable accuracy and speed. To further improve the discrim-
inability of Siamese networks for visual tracking, some deeper networks,
such as VGG and ResNet, are exploited as backbone. However, high-
level semantic information reduces the location discrimination. In this
paper, we propose a novel Attentional Convolutional Siamese Networks
for visual tracking (ACST), to improve the classical AlexNet by fus-
ing spatial and channel attentions during feature learning. Moreover, a
response-based weighted sampling strategy during training is proposed
to strengthen the discrimination power to distinguish two objects with
the similar attributes. With the efficiency of cross-correlation operator,
our tracker can be trained end-to-end while running in real-time at infer-
ence phase. We validate our tracker through extensive experiments on
OTB2013 and OTB2015, and results show that the proposed tracker
obtains great improvements over the other Siamese trackers.

Keywords: Visual tracking · Siamese networks · Visual attentions

1 Introduction

Visual tracking is a one of the most important problems in computer vision due to
its applications in diverse fields such as video monitoring, human-computer inter-
actions, and industrial automation. Given only a bounding box of an arbitrary
target in the first frame, the objective is to obtain the target region in the sub-
sequent frames. Although great progress has been achieved in the past decades,
it is still a herculean task to design a real-time high-performance tracker which
can overcome all challenges including illumination, deformation, fast motion,
occlusion and so on.

Recently, trackers based on Siamese networks [1,6,11,15,16,27,29,35,36]
have achieved outstanding performances on various tracking datasets. In these
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methods, tracking an arbitrary object is formulated as a similarity learning prob-
lem. To ensure tracking efficiency, the similarity function is learned in an initial
offline phase and often fixed during online tracking. One of the representative
works is the SiamFC [1], which feeds a candidate image and a much larger search
image into a fully convolutional network with a cross correlation layer. Because of
the translation invariance of the embedding function, it can compute the similar-
ity at all translated sub-windows on a dense grid in a single evaluation. However,
to satisfy the strict spatial translation invariance, SiamFC is restricted to use
the no-padding AlexNet [14] as the backbone which is not powerful enough. To
address this issue, some modern networks, such as VGG [22] and ResNet [10],
are embedded into the Siamese framework. However, deeper networks are hard
to train from limited data and high-level semantic information reduces the loca-
tion discrimination. In RASNet [29], a spatial residual attention and a channel
favored attention are exploited to enhance the discriminative capacity of cross-
correlation layer, but it does not strength the ability to extract the underlying
semantic features for the targeted objects. Inspired by [30], we improve the clas-
sical AlexNet by fusing spatial and channel attentions during feature learning.

Another issue is the imbalance of positive and negative samples caused by
the dense spatial sampling. Although average weighted logistic loss is used in the
SiamFC, it is unreasonable to assign the same weight to all negative samples.
Zheng et al. [36] introduced an effective sampling strategy to control the sample
distribution and make the model focus on the semantic distractors. Rather than
a distractor-aware incremental learning phase in [36], we use the feed-forward
response map to penalize the effects of simple and hard negative samples simul-
taneously, which can be seen as a spatial regularization (Fig. 1).

ACST SiamFC ECO SiamRPN

Fig. 1. Snapshots of the proposed tracker on sequence Soccer with comparison to
SiamFC [1], ECO [5] and SiamRPN [16]. The right of each frame shows the response
map produced by our tracker, which indicates the probability of target appears at every
location.
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Based on the above, we have developed an effective and efficient tracker,
referred as ACST, where an improved attentional AlexNet is used as backbone
and the learning phase is regularized by the response-based weighted sampling
strategy. The model is trained with VID [21] and TrackingNet [19] and fine-
tuned by ALOV [23] in an end-to-end manner. We evaluate our tracker on two
benchmark datasets: OTB2013 [31] with 50 videos and OTB2015 [32] with 100
videos. Results show that our tracker performs favorably against a number of
state-of-the-art trackers with the running speed over 30 frames per seconds.

To summarize, the main contributions of this work are listed below in three-
fold:

– We improve the classical AlexNet by fusing spatial and channel attentions,
which is embedded into the Siamese Network structure.

– We propose a response-based weighted sampling strategy to balance the
training samples, which improve the discrimination ability to distinguish two
objects with the similar attributes.

– A novel ACST tracker is proposed, which can be trained end-to-end and runs
in real-time while achieves good performances.

The rest of the paper is organized as follows. Section 2 introduces the related
works. The proposed architecture and training and tracking details are intro-
duced in Sect. 3. While Sect. 4 presents the experimental results and Sect. 5 con-
cludes this paper.

2 Related Work

In this section, we provide a brief review on methods closely related to this work.

2.1 CNNs in Visual Tracking

Recently, convolutional neural networks (CNNs) have made great breakthrough
in many tasks of computer vision including visual tracking. A CNN is made up of
several layers of convolution, activation, normalization and pooling operations.
Existing trackers with CNNs can be roughly classified into two categories. One
is that a CNN is used as a feature extractor which is combined with traditional
machine learning methods [5,12,18,34]. [12] combines a pretrained CNN and
online SVMs to find the target location directly from saliency map. In [18],
features extracted from a pretrained deep CNN are exploited to train adaptive
correlation filters (CF), which are then widely used in subsequent CF-based
trackers [5,34]. However, these trackers suffer from slow speed and some are
not particularly good compared to well-designed handcrafted trackers [25,26] in
accuracy. The other is that CNNs are used for feature embedding in deep tracking
networks [3,4,7,24,33]. [20] proposes a multi-domain CNN to identify target
in each video domain, which is then improved by [13]. And recently Siamese
networks-based trackers [1,6,11,15,16,27,29,35,36] have drawn great attentions
due to the balance in speed and accuracy.
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2.2 Siamese Trackers

Tao et al. [27] first apply Siamese networks into visual tracking where ROI
pooling is used to evaluate the similarity of two regions. Then [11] trains a
Siamese network to regress directly from two images to the location in the second
image of the object shown in the first image. [1] exploits fully-convolutional
Siamese networks with cross correlation operations to directly produce a response
map. Although [1] achieves a good performance in both speed and accuracy, it
still has a gap to the best online tracker. To further improve the performance
of the Siamese tracking framework, a great deal of work has been done such as
combing with RPN [15,16], using deeper networks [15,17,35], online learning [2,
8,28], augmented loss function [6,36] and so on.

3 The Proposed Tracker

In this section, we firstly introduce the architecture of proposed attentional con-
volutional Siamese network. Then a response-based weighted sampling strategy
is developed to solve the unbalance of simple and hard samples. Finally, we
present the online tracking pipeline of our ACST tracker.

Fig. 2. The structure of fully-convolutional Siamese networks for visual tracking. The
backbone extracts features from candidate and search image, which are then used to
produce a response map with a cross-correlation layer.

3.1 Attentional Convolutional Siamese Network

We first review the Siamese network with fully-convolutional operations. A fully-
convolutional network with integer stride k can be seen an embedding function
ϕ satisfy

ϕ (Lkτ (x)) = Lτ (ϕ (x)) (1)

where Lτ is the translation operator (Lτx) [u] = x[u − τ ] for any translation τ .
The advantage of fully-convolutional Siamese networks is that it can compute
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the similarity at all translated sub-windows on a dense grid in a single evaluation
by a cross-correlation operator f by

f (z, x) = ϕ (z) ∗ ϕ (x) + b1l (2)

where z and x are a candidate image and a much larger search image respectively,
b1l denotes a bias term at every location. Figure 2 shows the structure of Siamese
network for visual tracking.

The discriminative ability of the above model depends largely on the back-
bone network ϕ which extracts features for the image. Inspired by [30], we exploit
the attentional convolutional block to improve the classical AlexNet.

Fig. 3. The architecture of the proposed attentional AlexNet which is used as the
backbone. The attentional convolutional block is illustrated in the right, where channel
and spatial attention are applied to refine the input feature. Note that both max-
pooling and average-pooling outputs are utilized in the channel attention with a shared
Multi-Layer Perception (MLP), while the spatial attention concatenates two outputs
that are pooled along the channel axis and forward them to a convolution layer.

As is shown in Fig. 3, the attentional convolutional block is made up of a
basic convolution block and a dual attention module which operates along two
separate dimensions, channel and spatial. Given an intermediate feature map,
the output is obtained by sequentially multiplying the attention maps to it for
adaptive feature refinement. Specifically, channel attention focuses on ‘What’ is
meaningful while spatial attention focuses on ‘Where’ is an informative part.

We illustrate the Attentional Convolutional Siamese Network configuration in
Table 1. In particularly, we modify the first 4 conv layers of no-padding AlexNet
in [1] by the attentional convolutional block. Then we use a combination of cross
correlation layers for calculating score maps. The generated maps indicate the
similarity information between the candidate image and search image.
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Table 1. Architecture of Attentional Convolutional Siamese Network which is modified
from the no-padding AlexNet.

Layer Exemplar output size Search output size

Input 127× 127 255× 255

Conv1 3, 96, 11× 11, stride = 3 59× 59 123× 123

Pool1 3× 3, stride = 2 29× 29 61× 61

AttConvBlock1

Conv2 96, 256, 5× 5, stride = 1 25× 25 57× 57

Pool2 3× 3, stride = 2 12× 12 28× 28

AttConvBlock2

Conv3 256, 384, 3× 3, stride = 1 10× 10 26× 26

AttConvBlock3

Conv4 384, 384, 3× 3, stride = 1 8× 8 24× 24

AttConvBlock4

Conv5 384, 256, 3× 3, stride = 1 6× 6 22× 22

CrossCorrelation 17× 17

3.2 Weighted Sampling Training

We perform the following steps one by one to generate sample pairs and corre-
sponding labels.

– Randomly choose two frames with a max interval N from a video and decode
into 32-bit floating point raw pixel values in [0, 255].

– Extract the exemplar image centered on the target following the way in [1].
– Extract the instance image which is translated within T pixels as well as

scaled by a random stretch factor in [1 − α, 1 + α].
– Calculate the labels for the training pair, which are belong to positive if they

are within radius R of the target center c (accounting for the stride k)

y [u] =
{

1 , if k ‖u − c‖ ≤ R
0 , otherwise

(3)

In [1], the average weighted logistic loss is adopted to train the network.
However, assigning the same weight to all negative samples will reduce the ability
to distinguish two objects with similar semantic information. Here we weight
the training sample on the dense grid by the feed-forward response map, shown
in Fig. 4. Given a real-valued score of a single exemplar-candidate pair v, we
first calculate the sigmoid output s [u] = sigmoid (v [u]), which indicates the
similarity of the training pair. Then the weight for each position is

w [u] =

⎧⎪⎨
⎪⎩

s[u]
2

∑

u∈y+
s[u] , if k ‖u − c‖ ≤ R

s[u]
2

∑

u∈y−
s[u] , otherwise

(4)
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(a) (b) (c) (d)

Fig. 4. Illustration of the weighted sampling strategy. (a) is the tracking frame. (b)
is the candidate image extracted from the first frame. (c) is the search image with a
response map added on it, which indicates the similarity between dense grid samples
and candidate image. (d) is a hard sample with a similar attributes with candidate
image, which is assigned more weight.

We choose the cross-entropy loss as the loss function, so the final weighted
average loss is

loss(v, y) = −
∑

u

w [u] (y [u] ln (s [u]) + (1 − y [u]) ln (1 − s [u])) (5)

Furthermore, Stochastic Gradient Descent with momentum is applied to obtain
the network parameters.

3.3 Tracking

Given the first frame with the target annotated, we extract the exemplar image
and feed it into the attentional convolutional network to obtain the filter kernel.
Note that we do not update the kernel for speed consideration. When there
comes a new frame, the target is searched around the previous position. To
handle the scale variances, multi-scaled search patches are extracted as a mini-
batch, which is used to input into the network and then calculate the cross-
correlation with the kernel. The obtained response maps are up-sampled by
bi-cubic interpolation and penalized by the scale factor. Meanwhile, a cosine
window is added to the response maps to penalize large displacements. The peak
of response maps indicates the position of the target and the scale is updated
with a decay.

4 Experiments

In this section, we firstly provide details of training and tracking implementation.
Then experiments on OTB2013 [31] and OTB2015 [32] are conducted to evaluate
the proposed tracker and the results are compared with some state-of-the-arts.
Finally, we show qualitative results on some challenging videos.
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4.1 Implementation Details

During training phase, the weights of convolutional layers are initialized with
Kaiming algorithm [9] and all bias are initialized to zero. For batch normalization
layers, γ and β vectors are initialized to one and zero respectively. We first use
VID [21] and TrackingNet [21] to train the model with a batch size 32. And SGD
is applied with a warm-up learning rate increasing linearly for the first 5 epochs
from 5 × 10−3 to 2.5 × 10−2 and decayed by 0.8576 for 15 epochs. Then the last
two convolution layers of backbone are fine-tuned using ALOV [23] with a batch
size 8. The learning rate of SGD is decayed by 0.8576 for 30 epochs. Moreover,
the preprocessing steps are described in Sect. 3.2 with N = 100, T = 64, and
α = 0.1.

During tracking, the weight of cosine window is set to 0.31 and the up-
sampled factor of response map is set to 16. We search for the object over 3
scales 1.0375{−1,0,1} and update the scale by a liner interpolation with a factor
of 0.59. The proposed model is implemented in PyTorch 1.0 on a workstation
with an Intel E5-1650 v4 CPU, 32G RAM, NVIDIA TITAN Xp GPU. Our
tracker can run over 30 fps on OTB benchmark.

4.2 Experimental Validations

We evaluate the proposed tracker, referred as ACST, on OTB2013 and OTB2015
datasets which contain 50 and 100 videos respectively, with comparison to some
state-of-the-art methods. We quantitatively evaluate trackers using center loca-
tion error and overlap ratio. And for completeness, we also report qualitative
results on some challenging videos.

Quantitative Analysis. We provide a comparison of ACST with 14 state-
of-the-art trackers: MDNet [20], SCT [4], SiamFC [1], CREST [24], ECO [5],
ADNet [33], SANet [7], SiamRPN [16], SiamTri [6], DaSiamRPN [36], ACT [3],
SiamDW-FC [35], SiamDW-RPN [35] and SiamRPN++ [15]. Figure 5 shows the
precision plots and success plots under one-pass evaluation (OPE) on OTB2013
and OTB2015 for all the 15 trackers which are ranked using the AUC (area
under the curve) displayed in the legend.

Fig. 5. Precision plots and Success plots under one-pass evaluation (OPE) on OTB2013
and OTB2015.
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Qualitative Analysis. Figure 6 shows the tracking results of 4 methods:
ECO [5], SiamFC [1], SiamRPN [16] and the proposed ACST on 6 challeng-
ing sequences. The ECO tracker performs well in sequences with illumination
and fast motion (Singer2, DragonBaby) but fails when occlusion and rotation
(MotoRolling, Freeman4). SiamRPN performs well in sequences with deforma-
tion, but fails when back-ground clutter (Tiger1). Our tracker performs well on
all these videos, which validates the effectiveness.

ACST SiamFC ECO SiamRPN

Singer2

DragoonBaby

MotorRolling

Walking2

Tiger1

Freeman4

Fig. 6. Qualitative results of our ACST and 3 compared trackers: SiamFC [1], ECO [5]
and SiamRPN [16].

5 Conclusion

In this paper, we improve the classical AlexNet with attention mechanism, which
is used as the backbone of Siamese Networks for visual tracking. Furthermore, we
enhance the ability of the proposed network to distinguish targets with similar
attributes. Based on the above, we propose an ACST tracker, which achieves
great performance on OTB2013 and OTB2015 datasets while running in real-
time. In the future, we will make efforts to improve our tracker with RPN.
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