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Abstract. Pose is one of the most important factors affecting perfor-
mance of face related recognition algorithms including facial expression
recognition (FER). Traditionally, non-frontal FER is conducted by either
performing face formalization or designing separate models for different
poses. Different from those methods, we propose a one-stage FER app-
roach by training a pose invariant deep convolutional network (DCNN)
with the following novelties: First, we introduce the 3D face morphable
model to reconstruct high fidelity 3D faces for data augmentation which
increases the pose variety without losing expression information. Sec-
ond, we employ domain adversarial learning to eliminate the influence
of domain difference between real 2D face images and 3D synthetic face
images at feature level, which realizes a one-stage deep FER approach
that is robust to different face poses. Third, the proposed approach pro-
vides a solution for cross-domain problems involving data from different
sources, which can be applied to other face related recognition problems.
The method is validated using three FER datasets FER2013, multi-PIE
and BU-3DFE; and it outperforms the current state-of-the-art methods.

Keywords: Facial expression recognition · Deep learning · 3D
morphable model · Domain adaptation

1 Introduction

Computer vision based facial expression recognition (FER) has been a research
topic for many years. In the early time, Ekman et al. [1] defined six basic facial
expressions shared among human beings to express their emotions (i.e., anger,
disgust, fear, happiness, sadness and surprise). With the fast development of
artificial intelligence, FER has gained increasing attentions because of its valu-
able applications such as driver fatigue monitoring, human-computer interac-
tion, medical care, digital entertainment, etc. In general, FER is conducted by
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feature extraction and machine classification. Traditionally, feature extraction
is conducted by using hand-crafted feature extractors such as local binary pat-
terns (LBPs) [2], histogram of gradients (HOG) [3], and histogram of optical
flow (HOF) [11]; and for machine classification, it can be support vector machine,
Bayesian classifiers, random forest, etc. These methods achieved some success on
FER; however, in-the-wild facial expression recognition task is still a challenge
due to the high appearance changes.

Over the last several years, deep learning has achieved great success and
dominated the state-of-the-arts in many challenging problems [4], in which an
artificial neural network (ANN) with multiple hidden layers is used; and it has
been viewed as the most promising means for solving in-the-wild FER problem.
However, deep learning based approach is a data-driven strategy which relies on
large amount of relevant training data; in practice, the available datasets mainly
consist of frontal face images, that makes the FER with large pose face images
remain a challenge.

There has been methods addressing non-frontal face expression recognition
problems, which involves 3D and 2D methods [5–7]. Traditionally, the 3D method
was suffering from the computation efficiency and hard-to-converge problems
[5]; and the 2D based methods are usually designed as view-specific and they
required a similar amount of data in different poses for the training, which limits
the performance of the methods because that there exists a disproportion in
the availability of frontal and non-frontal view facial expression data [6]. Such
problem is more distinct in deep learning based method because of the inherent
data-hungry and data-dependence. During the past several years, the 3D face
morphable model has achieved impressive progress and the model has been used
to reconstruct high fidelity tridimensional faces which can not only construct the
3D face shape from a 2D face image but can also reserve the other attributes
such as face expressions [7,8]. With the fact that 3D model is able to produce
2D face images from arbitrary views, it can be used to improve the face related
recognition algorithms.

In this paper, we propose a one-stage pose-invariant FER approach by train-
ing a DCNN. First, the 68-landmarks are located accurately from a 2D face
image. Then, the state-of-the-art 3D morphable model (3DDFA) [8] is used to
reconstruct the 3D face model from the 2D image without losing the original
facial expression information; and the reconstructed 3D face is used to produce
high fidelity 2D face images with the same emotion as the original face at mul-
tiple poses. At last, the augmented facial image data, including original and
3D generated face images, are utilized to perform a joint, alternative training
for FER where feature-level domain adversarial learning is utilized for network
training to eliminate the influence of domain difference between 3D-generated
face images and the real 2D face images. The experimental results demonstrate
the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Sect. 2, it introduces the works
related to the proposed method. In Sect. 3, it discusses the proposed method.
In Sect. 4, it presents the experimental settings and the results. In Sect. 5, it
concludes the paper.
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2 Related Works

Systematic FER has been discussed in some survey papers [9–11]. Here, we first
review some FER works related to this work. Then, we give a brief introduc-
tion to other related works including 3D face morphable model and generative
adversarial learning.

2.1 Facial Expression Recognition

Deep learning based methods have been used for FER with the availability of
large amount training data. Mollahossein et al. [12,13] introduced deep neural
networks for automatic feature extraction which outperformed the hand-crafted
feature extraction methods. Jung et al. [14] fine-tuned a deep neural network for
FER. Hasani et al. [15] proposed a spatio-temporal FER method using DCNN
and conditional random field. Based on local facial action units, Liu et al. [16,17]
extract facial features on several key points for FER. These works achieved very
good performances for frontal face expression recognition; however, they are suf-
fering from performance degradation with large pose face images. Pose-invariant
FER has been studies for many years of which the traditional pattern classifi-
cation methods were employed [18–20]. Recently, deep learning based methods
have also been utilized to address this issue. Zhang et al. [21] combined tradi-
tional feature extraction method (SIFT) with deep neural network for multi-view
FER. Liu et al. [22] proposed a multi-channel pose-aware CNN for multi-view
FER. Lai et al. [23] employed generative adversarial networks (GANs) to perform
face frontalization before expression recognition of non-frontal faces. A common
issue in deep learning based methods is the lacking of sufficient labeled face data
which results a network either biased to the frontal face recognition or with poor
performance.

2.2 3D Face Morphable Model

Blanz et al. [24] proposed the 3D face morphable model which can be directly
matched to a 2D image, where the head pose, expression, illumination and other
parameters are free variables subject to be optimized. Based on accurate land-
mark detection, it can be used to reconstruct photo-realistic face from a 2D face
image [7]. Recently, by introducing deep neural networks, the state-of-the-art of
3D face alignment has been pushed to a new level. For example, Zhu et al. [8] uti-
lized deep neural network to regress the 3DMM parameters from 2D face images
to reconstruct high fidelity 3D faces where the landmark information is used.
Chang et al. [25] proposed ExpNet which regress the 3D expression parameters
directly from the face images without using landmark detection. In this work,
we used the 68-landmark detection as a proxy step and reconstruct 3D face from
a 2D face image with expression label to generate face images at multiple poses
for data augmentation.
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2.3 Domain Adversarial Learning

Goodfellow et al. [26] proposed the generative adversarial network (GAN) which
can be trained to generate real-like images by minimizing the distribution dif-
ference of the data generated from random noise or from real-world by playing
a max-min game. While GAN provided a strategy to generate real-like data at
the image level, Ganin et al. [27] proposed deep domain adaptation which can
transfer two or multiple domains to a common domain at feature level. The
com-mon thing is that they both used the adversarial loss to make the gener-
ated images/features indistinguishable by the discriminator (i.e., eliminate the
domain difference between two datasets at image/feature level). In this work,
we introduced the domain adversarial learning for a joint training to eliminate
the domain difference between 3D-generated face images and the real face image
which reserves the facial expression information in the meanwhile.

3 Proposed Method

3.1 Overview

This approach employs the 3DMM for data augmentation and proposes a novel
learning strategy to overcome the domain problem that has troubled the net-
work training. Figure 1 is an overview of the proposed method. Given a 2D face
image, it first performs 68-landmark detection with a well-trained deep convo-
lutional neural network. Then the landmarks and the original 2D face image is
sent to 3DDFA to fit the 3D morphable model (3DMM) and reconstruct a 3D
face with high fidelity where the expression parameters are also well regressed.
The 3D model is then used to produce 2D face images with different poses for
non-frontal-face data augmentation. Ideally with sufficient data, the deep classi-
fication network can be trained to recognition different facial expressions; how-
ever, it is found that the network can well classify the 3D generated face images
but suffered performance degradation when dealing with the real 2D data. In
order to eliminate the influence of domain difference between the generated face
images and the original 2D face image, it introduces feature-level domain adap-
tation to perform a joint training which updates the network parameters with
original 2D face image and generated 2D face image alternatively, following the
training of a generative adversarial network (GAN).

3.2 2D Facial Landmark Detection

Landmark detection has been a proxy step for 3DMM fitting of which a 2D image
and the corresponding key points are necessary to construct a high fidelity 3D
face. Comparing to regressing a complicated 3D face morphable model (some
recent work has tried to regress 3D face model directly from 2D image [25]),
the landmarks detection using a DCNN is relatively easy and the effectiveness
has been studied and verified by many references [28]. In this work, we start
from performing the 68-facial landmarks detection from 2D face images (i.e.,
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Fig. 1. Overview of the proposed method.

performing a 2D face alignment) with a deep convolutional network. Then the
landmark information and the original 2D image are used to reconstruct the
corresponding 3D face with 3D face morphable model.

For landmark alignment, the most widely used dataset 300-W-LP [29] is
introduced; it is obtained by expanding the 300-W dataset where the landmark
annotation is available. Following [30], we directly train a deep convolutional
network to regress the landmark coordinates with the normalized mean error
loss:

NME =
1
N

N∑

k=1

‖xk − yk‖2
d

(1)

where x is the ground truth (GT) landmarks of a 2D face image, y is the esti-
mated landmark coordinates obtained by the deep network, and d is the square-
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root of the GT bounding box. VGG-16 is used as the base network for the train-
ing and the network is fine-tuned based on the state-of-the-art face recognition
network [31].

3.3 Multi-pose Data Augmentation with 3D Model

3D Face Reconstruction. Blanz et al. [24] developed the 3D morphable model
for human-face description with the following formulation:

S = S̄ + Aidαid + Aexpαexp (2)

where S is a 3D face model, S̄ is a mean face model, Aid is the principle axes
trained on the 3D face scans with neutral expression, αid is the shape parameter,
Aexp is the principle axes trained on the offsets between expression scans and
neutral scans and αexp is the expression parameter. It has been studied in many
works [7,8] that with the accurate 68-landmarks and the original face image,
the 2D image can be mapped to the 3D model to obtain a 3D face. In this
paper, it employs the state-of-the-art 3D face alignment method [8] where a deep
convolutional network is trained for parameter optimization via minimizing the
difference of the generated 2D face and the real 2D face. By this way, a high
fidelity 3D face can be constructed from the related real 2D face image with the
same facial emotion. Refer [8] for more details about the face reconstruction.

Data Augmentation. After the 3D face is constructed, it can be projected
onto specific 2D plane with the scale orthographic projection:

V (p) = f ∗ Pr ∗ R ∗ (s̄ + Aidαid + Aexpαid) + t2d (3)

where V (p) is the model construction and projection function, leading to the 2D
positions of model vertices, f is the scale factor, Pr is the orthographic projection
matrix, R is the rotation matrix and t2d is the translation vector.

Based on the 3D-2D geometric mapping described above, it can generate 2D
face images of arbitrary poses with the same expression label as the original
image which can be used to augment the image data of non-frontal face. In our
experiments, yaw angles of 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ are produced for each
face; and they are used to train a deep neural network for FER.

3.4 Joint Training with Domain Adaptation

Ideally, if the related data is sufficient (i.e., non-frontal face images with different
poses), the network could be trained to recognize facial expressions under differ-
ent poses with a classic 6-class Sofmax loss. However, in our initial attempts, it
was found that the network achieved very bad performance on the testing set for
both frontal and non-frontal face images, even worse than the network trained
without using data augmentation [refer Sect. 4.3]. After further exploration, it
was found that the network did well on the 3D generated face images. That
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indicates: (1) the 2D images generated from the 3D model is facial expression
distinguishable; (2) the 3D model was well aligned which reserved the expression
information; (3) the generated 2D images are not totally the same as the images
captured directly using a camera.

In conclusion, there is a domain difference between the generated 2D images
from the 3D model and the real 2D images which has failed the network training.
That is, the “well-trained” network is a biased one which tends to deal with the
generated images well; however, the true target, FER from real 2D face images,
was not achieved. While the network can be used for the FER task by first fitting
a 2D image to a 3D model and then generates a face image for FER, it is time
consuming and tedious.

To develop a straight-forward FER deep network from 2D face images, we
introduce the domain adaptation where the domain adversarial loss is utilized:

Ladv = −Ex∈I [logD(x)] (4)

where x is the input face image, I is the 3D generated image dataset. It is
combined with the regular softmax loss to perform a joint training which elimi-
nates the domain difference between the generated face images and the real 2D
face images. Different from other joint learning approaches which combined the
losses as whole for the training, we treated them separately and updated the
parameters alternatively using the images from the two domains. Thus, when
the input image is a real 2D face image, it updates the network with the gra-
dient computed from the domain loss ∂Lr

d

∂θ ; however, when the input image is a
3D generated image, it updates the network using both the domain loss and the
expression class loss, of which the negative gradient of the domain loss is used
which aims at eliminating the domain difference between generated face images
and real face images. Finally, the full objective is

Lfinal = 1{x ∈ I} ∗ (Ladv + λ1Ld) + 1{x ∈ R} ∗ λ2Ld (5)

where I is the 3D generated dataset, R is the real dataset, and λ1 and λ2 are
experimental results 0.30 and 0.65, respectively.

3.5 Implementation

As illustrated in Fig. 1, the network architecture is detailed as follows:
C 96 7 2 - ReLU - C 128 3 2 - ReLU - C 128 3 1 - ReLU - C 256 3 2 - ReLU -
C 256 3 1 - ReLU - C 256 3 2 - ReLU - C 512 3 1 - ReLU - C 512 3 2 - ReLU -
C 512 3 1 - ReLU - C 512 3 2 - ReLU - FC 512 - ReLU - FC 6/FC 2- SF 6/SF 2
The naming rule follows the format: “layer type channel number kernel
size stride”; “C” denotes convolution; “FC” is fully connected layer; and SF
is the softmax layer. For instance, “C 64 7 2” means that the first layer is a
convolutional layer and the number of channels is 64, the kernel size is 7 and the
stride is 2. Note that the FC 6 is designed for the classification of 6 expressions;
FC 2 is designed for the adversarial learning where the 2 channels represent for
the two domains.
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For training, different from other joint learning approaches which combined
the losses as whole for the training, we adopt the training strategy of GAN
and treated the two losses separately and update the network parameters by
alternatively backpropogating the domain loss and the 6-class classification loss
where the adversarial loss with negative gradients is back-propagated when the
input sample is from 3DMM model.

4 Experiments

4.1 Dataset and Settings

To evaluate the proposed method, we compare with different methods including
the traditional handcrafted-feature extraction and deep learning based meth-
ods. The confusion matrix and overall accuracy on the multi-view FER datasets
Multi-PIE [32] and BU-3DFE [33] are computed quantitatively to verify the
effectiveness of the propose method.

Multi-PIE database [32] contains the face images of 337 subjects, 235 male
instances and 107 female instances; there are more than 750000 images captured
with fifteen cameras on different illuminations and viewpoints. Each subject was
asked to give six different kinds of expressions: neutral (NE), smile (SM), squint
(SQ), surprise (SU), disgust (DI), and scream (SC). Finally, the data of 100
subjects were selected which includes complete six emotions with good quality,
and 13 poses are used in the experiments which includes 0◦, ±15◦, ±30◦, ±45◦,
±60◦, ±75◦, 90◦ face views. The training testing split is 80:20.

BU-3DFE database [33] is a 3D facial emotion dataset which contains face
images of 100 subjects, 56 female instances and 44 male instances. Slightly differ-
ent form the Multi-PIE data, there are seven different facial expressions includ-
ing anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), surprise
(SU), and neutral (NE) in four levels. In the experiments, the models are used to
generate 2D face images under different views including 0◦, ±30◦, ±45◦, ±60◦,
90◦. The 100 subjects are randomly divided into 80 training subjects and 20
testing subjects.

4.2 Experimental Results

To provide an objective evaluation of the proposed method, we compare
the proposed method with nine existing methods including kNN, LDA, LPP,
D-GPLVM, GPLRF, GMLDA, GMLPP, MvDA, and DS-GPLVM as reported
in [34]. As shown in Table 1, the proposed method achieves new state-of-the-
art in average accuracy; and it also outperforms the other methods at different
poses including the recognition from frontal faces. Moreover, different from most
previous methods, the proposed method achieves close results (around 93%) on
different poses which demonstrates the pose robustness of the propose method.
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Table 1. Overall accuracy of different methods on Multi-PIE

Method Pose Avg.

−30 −15 0 15 30

KNN 80.88 81.74 68.36 75.03 74.78 76.15

LDA 92.52 94.37 77.21 87.07 87.47 87.72

LPP 92.42 94.56 77.33 87.06 87.68 87.81

D-GPLVM 91.65 93.51 78.70 85.96 86.04 87.17

GMLDA 90.47 94.18 76.60 86.64 85.72 86.72

GMLPP 91.86 94.13 78.16 87.22 87.36 87.74

MvDA 92.49 94.22 77.51 87.10 87.89 87.84

Zhang [35] 90.97 94.72 89.11 93.09 91.30 91.80

Proposed 93.10 94.96 92.80 94.60 92.20 93.53

From Table 2, the proposed method achieves very good recognition perfor-
mance for different expressions. But the recognition accuracies of DI and SQ are
lower than the other expressions; it is similar as the results reported in some
references [36] which indicates that the recognition of the emotions is inherently
difficult. For the results on BU-3DFE, since it is 3D data, the proposed method
achieves very good result because the method itself is based on 3D model.

Table 2. Confusion matrix on Multi-PIE and BU-3DFE

Dataset Multi-PIE BU-3DFE

DI 91.92 0 1.90 5.60 0 2.80 AN 95.30 2.70 0 1.30 0 1.07

SC 0.38 98.00 0 0 2.48 0 DI 0.27 85.48 0.20 4.36 2.10 5.93

SM 3.40 0 94.25 2.00 1.05 0 FE 0.50 0 92.82 5.44 0.17 0.20

SQ 4.20 0 1.80 91.9 0 5.70 HA 1.53 2.20 5.25 82.50 5.53 3.40

SU 0 2.00 0.45 0 95.42 1.20 SA 2.40 1.08 1.19 3.22 89.00 3.90

SE 0.10 0 1.60 0.50 1.05 90.3 SU 0 8.54 0.54 3.18 3.20 85.50

DI SC SM SQ SU NE SU SA HA FE DI AN

4.3 Ablation Study

The advantage of the proposed method is effective data augmentation which
introduced 3D generated data to train the network. Here, we perform the abla-
tion studies with the following settings: (1) directly training a CNN; (2) directly
introduce extra data to train the CNN; (3) introduce the 3D model to augment
the data at different poses and train the CNN; (4) train the CNN with 3D aug-
mentation and domain adversarial learning. They are used to demonstrate the
effectiveness of 3D model and the necessary of the proposed domain adversarial
learning.
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Table 3. Ablation study

Method Pose Avg.

−30 −15 0 15 30

CNN 90.67 94.53 89.01 93.01 91.10 91.66

CNN + FER2013 90.01 94.21 93.21 92.57 90.47 92.09

CNN + FER + 3D 70.10 71.10 72.32 71.20 70.13 70.97

CNN + 3D + DA (Proposed) 93.10 94.96 92.80 94.60 92.20 93.53

In Table 3, it shows that directly training a CNN achieved similar results as
the deep learning method in [35], in which the recognition of large yaw angle
faces are better than those frontal faces. By introducing the extra data FER2013,
the CNN are trained to achieve better results on frontal faces (pose with 0◦);
however, there is performance degradation on the non-frontal faces. The results
indicate that the deep network is data-dependence and the network was trained
biased to the frontal faces since the FER2013 contains more frontal faces. For
the approach that directly training the CNN with 3D augmented data, as dis-
cussed in the method part, the method achieved very bad results on all different
poses due to the domain difference. Finally, the proposed method with domain
adversarial learning overcomes the problem and achieves new state-of-the-art
performance.

5 Conclusion

In this paper, we have proposed a novel deep learning strategy for pose-invariant
facial expression recognition. It introduced 3DMM for data augmentation which
has first shown that there exists a domain difference between the real 2D images
and the generated images with 3DMM and such difference can fail the training.
More important, it proposed a solution for this problem by introducing the
feature-level domain adversarial learning to train the network which eliminated
the influence of the domain difference without losing the expression information.
The experimental results demonstrated the effectiveness of the proposed method
and it achieved new state-of-the-art on two multi-view FER datasets. In the
future, we will apply the proposed method to other face related recognition
tasks.
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