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Abstract Transmission system is one of the most important assets in secure power
delivery. Recent advancements toward automation of smart grids and application
of supervisory control and data acquisition (SCADA) systems have increased
vulnerability of power grids to cyberattacks. Cyberattacks on transmission network,
specifically the power transmission lines, are among crucial emerging challenges
for the operators. If not identified properly and in a timely fashion, they can cause
cascading failures leading to blackouts. This chapter tackles false data injection
modeling from the attacker’s perspective. It further develops an algorithm for
detection of false data injections in transmission lines. To this end, first, a bi-level
mixed integer programming problem is introduced to model the attack scenario,
where the attacker can target a transmission line in the system and inject false data
in load measurements on targeted buses in the system to overflow the targeted line.
Second, the problem is analyzed from the operator’s viewpoint and a detection
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algorithm is proposed using l1 norm minimization approach to identify the bad
measurement vector in data readings. In order to evaluate the effectiveness of the
proposed attack model, case studies have been conducted on IEEE 57-bus test
system.

Keywords Cyberphysical security · Optimal attacker strategy · Attack
detection · Sparsity-based decomposition · Energy systems · Smart grid

8.1 Introduction

8.1.1 Overview

Transmission system is one of the most important assets in secure power delivery.
Recent advancements toward automation of smart grids and application of supervi-
sory control and data acquisition (SCADA) systems have increased vulnerability of
power grids to cyberattacks. Cyberattacks on transmission network, specifically the
power transmission lines, are among crucial emerging challenges for the operators.
If not identified properly and in a timely fashion, they can cause cascading
failures leading to blackouts. This chapter tackles false data injection modeling
from the attacker’s perspective. It further develops an algorithm for detection of
false data injections in transmission lines. To this end, first, a bi-level mixed
integer programming problem is introduced to model the attack scenario, where
the attacker can target a transmission line in the system and inject false data in load
measurements on targeted buses in the system to overflow the targeted line. Second,
the problem is analyzed from the operator’s viewpoint and a detection algorithm
is proposed using l1 norm minimization approach to identify the bad measurement
vector in data readings. In order to evaluate the effectiveness of the proposed attack
model, case studies have been conducted on IEEE 57-bus test system.

In recent years, as online monitoring devices have widely being developed and
implemented in smart grids, cybersecurity has also become a more serious issue
to be tackled. In addition, interconnection of power systems in different areas
and development of advanced communication technologies to automate smart grid
assets have made the grid more vulnerable to cyber-physical attacks. A cyberattacker
can therefore inject computer viruses or anomalies to endanger the security and
resiliency of the smart grid system [1–4]. Example of such attach includes Russian’s
cyberattack on obtaining detailed data on nuclear power plants and water facilities
in the USA in 2018 [6]. Another real-world example is the successful cyberattack by
Russian hackers in December 2015 on the Ukraine power grid. In this cyberattack,
30 substations were switched off by hackers which resulted in a power outage of
1–6 h for almost 230,000 people [7].

Transmission lines are the most important assets in power delivery in smart
grids, and if failed, can cause serious cascading problems leading to blackouts. One
example of such cascading failure was a blackout in Italy that happened in 2004
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[8]. Cyberattacks on transmission lines are normally designed to overflow a line or
series of lines with the aim of cascading failures. Such transmission line congestion
can be achieved if an attacker injects false data on load measurements without being
detected by bad data detection algorithms in state estimation process. Recent studies
show that by having information on the topology of the system, these false data
injections can be designed in a way to bypass state estimation methods without
being detected [9–11]. Thus, to protect the smart grid against these vulnerabilities
and increase the resiliency of the system, it is crucial to understand the problem
from attacker’s point of view and develop models that account for various attack
scenarios in transmission line congestion.

A few studies developed models for false data injection attacks with the aim of
bypassing state estimation in smart grids [12–17]. For instance, [12] extensively
modeled false data injection attacks which could not be detected by DC state
estimation algorithms. It was shown that if the injected false values in load buses
follow system’s admittance matrix (B), the attack can be successful. To identify the
worst attacking strategy in false data injection attacks, a heuristic algorithm was
developed in [14]. Furthermore, an attack model was formulated in [16] that would
allow the attacker to make profits in real-time markets. Moreover, a comparison
between few bad data detection algorithms were reported in [17]. Although these
studies provided a full insight to false data injection problems in smart grids, they
did not focus on transmission line congestion and also would require the attacker to
have complete access to the system, which was not realistic.

There are also several studies which aimed to generalize false load data injection
attacks by focusing on incomplete power system models and limited access by the
attackers [18–22]. For example, a practical model on false data injection attack was
introduced in [19]. Physical constraints of the smart grid system were considered to
formulate the model. The model was developed based on the fact that the attackers
could not alter the generator output powers. As a result, the power balance needed
to be met continuously. Furthermore, an attack model was developed in [18],
which only relied on the data and the topology of a local targeted region that
could bypass the bad data detection algorithm. Recent studies showed that mixed
integer linear programming (MILPs) modeling of the cyberattacks is the most
suitable and practical modeling procedures for false data injection attacks [19, 21].
Several studies introduced MILP attack models to initially maximize the system
costs [20, 22]. Nevertheless, the main focus of these studies were on attacks which
maximized the system costs, and attacks on transmission lines’ congestion were not
considered.

In [23], in order to overflow transmission lines, a tri-level MILP solution was
developed. This model took into account the security constrained economic dispatch
problem to find an optimal strategy to overflow multiple targeted transmissions lines
through data falsification. Although this model is effective for the scenario in which
attacker has access to all lines, in realistic scenarios attacker does not have access
to all buses. Due to complexity of tri-level model, it increases the complexity of
protection schemes as well. In order to tackle the complexity issues regarding the
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model in [23], a bi-level MILP model was proposed in [24]. This model also ignored
some practical limits. Optimal injection on load buses was not modeled in this study,
i.e., there is no specific strategy to choose the most vulnerable bus from attacker’s
perspective. In practice, this may not be possible due to limited access to a part of
network.

This study addresses two cybersecurity problems from two completely different
perspectives: (1) optimal attack strategy from the attacker’s viewpoint, (2) state
estimation to identify bad data injection considering presence of cyberattacks from
operator’s viewpoint. The main advantages of the presented MILP approach for the
attacker are:

• Optimizing false data injections rather than number of target buses to achieve a
more realistic attack model to overflow the transmission lines.

• Restricting transmission line overflow to a certain upper limit to prevent unrealis-
tic spike in line flow, e.g., two times as compared with normal operating scenario
in some cases [24].

• Making the realistic assumption that all lines/buses may not be accessible to the
attacker. To this end, our model assumes attacking to a target load bus without
being detected by the operator.

• Developing a bi-level MILP model as an alliterative to tri-level methods. This
simplifies protection scheme in resilient power system studies. Further, we have
included load injection limits to outperform the bi-level model in [24].

More importantly, this chapter proposes a detection framework that identifies the
false data injections in smart grids, this has never been studied in the existing
literature.

The organization of this chapter is as follows. Section 8.2 provides the pre-
liminaries regarding DC power flow model. Section 8.3 explains the false data
injection attacks and their effect on smart grid state estimation. Section 8.4 explores
a bi-level MILP model to find the optimal strategy of an attacker in transmission
networks. Section 8.5 is devoted to the operator’s strategy for bad data injection
identification using sparsity-based decomposition. Section 8.6 includes the case
studies on IEEE 57-bus benchmark model, followed by Sect. 8.7 that concludes the
paper. The overall structure of this study is provided in Fig. 8.1.

8.2 DC Power Flow Model

Here, we provide the preliminaries for DC power flow formulation. This notation
is used both for finding the optimal cyberattack strategy for the attacker and
developing a bad data detection method for the operator.

The following assumptions are made due to the physical characteristics of
transmission networks to obtain linear DC power flow formulation as opposed to
nonlinear AC power flow model:
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Fig. 8.1 Overall structure of this study: exploring the cyberattack from attacker’s and operator’s
perspectives

1. Due to the high X/R ratio in transmission networks, only the inductive compo-
nent of impedance is considered [25], i.e., Rij = 0 for all lines.

2. Voltage mismatch among neighboring (connected) buses is negligible, i.e., δi −
δj ≈ 0; hence, we can make the following approximations cos(δi − δj ) ≈ 1 and
sin(δi − δj ) ≈ 0.

3. Due to the low voltage deviation in transmission networks, all voltage magni-
tudes are set to 1 p.u.

Newton–Raphson power flow method is the most suitable approach to solve
the power flow equations due to its quadratic convergence. DC power flow is
a simplified version of decoupled power flow by further dropping the Q − |V |
equations and assuming a constant voltage profile for all the buses in the system.
Therefore, it is assumed that |Vi | = 1 p.u. for all the buses. Assuming the system
has N buses and bus number 1 is the slack bus (e.g., V1 = 1� 0 p.u.), the decoupled
power flow can be modeled by

[
�P

�Q

]
=

[
J1 0
0 J4

] [
�θ

�|V |
]

(8.1)

where �P = [�P2,�P3, . . . ,�PN ] and �Q = [�Q2,�Q3, . . . ,�QN ] are vec-
tors representing the mismatch between the scheduled and calculated active/reactive
powers (e.g., �Pi = P sch

i − P
(k)
i , �Qi = Qsch

i − Q
(k)
i ), J1 and J4 are elements of

Jacobean matrix represented by
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J1 =

⎡
⎢⎢⎢⎢⎣

∂P2

∂θ2
. . .

∂P2

∂θN
...

. . .
...

∂PN

∂θ2
. . .

∂PN

∂θN

⎤
⎥⎥⎥⎥⎦ , J4 =

⎡
⎢⎢⎢⎢⎣

∂Q2

∂|V |2 . . .
∂Q2

∂|V |N
...

. . .
...

∂QN

∂|V |2 . . .
∂QN

∂|V |N

⎤
⎥⎥⎥⎥⎦ (8.2)

Disregarding the resistance of transmission lines, this model can be further simpli-
fied to the DC power flow formulation as,

⎡
⎢⎣

�P2
...

�PN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

B11 B12 B13 . . . B1N

B21 B22 B23 . . . B2N

...
...

...
. . .

...

BN1 BN2 BN3 . . . BNN

⎤
⎥⎥⎥⎦

⎡
⎢⎣

�θ2
...

�θN

⎤
⎥⎦ (8.3)

where Bik = − 1

xik

and Bii = ∑N
i=1

1

xik

, and xik is the reactance of the transmission

line between bus i and bus k. In a matrix form, the DC power flow is formulated as

P − D = Bθ (8.4)

where P is the vector of generated active powers and D is the demand vector in the
system. The power flow in transmission lines between bus i and k using DC power
flow is formulated by

Pik = 1

xik

(θi − θk) (8.5)

8.3 False Data Injection Attacks Based on DC
State Estimation

In smart grids, the supervisory control and data acquisition is in charge of estimating
the parameters of the system based on received phasor measurement unit (PMU)
measurements. This is mainly to ensure an error-free measurement by running a
bad data detection algorithm in state estimation process. State estimation is the
process of using sample measurements to calculate the values of state variables
in power systems. In DC power flow, since the only variables are bus voltage
angles, the objective of state estimation is to estimate the bus voltage angles using
measured values. The maximum likelihood criterion is normally used to estimate
the parameters of the system in this case. The objective of maximum likelihood
criterion is to maximize the probability that estimated value (x̂) is the true value of
the state variable x. This can be formulated as
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P(x̂) = x (8.6)

In the maximum likelihood criterion, it is assumed that the probability density
function (PDF) of the random measurement errors is known. However, if the PDF
of sample measurements is assumed to follow a normal (Gaussian) distribution
function, the least square estimates can be used to estimate the states of the system
[26]. Therefore, if a single parameter, θ , is to be estimated using Nm measurements,
the objective is to [26]

min
Nm∑
i=1

[
θmeas
i − fi(θ)

]2

σ 2
i

(8.7)

where fi(θ) is the function used to calculate the bus voltage angles, which is equal
to Hθ in DC power flow. It is noted that H is an Nm × Ns matrix of the coefficients
of linear function fi(θ) and is related to transmission line reactances. Furthermore,
σ 2

i is the variance of ith measurement, θmeas
i is the measured bus voltage angle, and

Nm is the total number of measurements in the system. By converting (8.7) to matrix
form, the problem can be written as [26]

min J (θ) = [θmeas − Hθ ]T W−1[θmeas − Hθ ] (8.8)

where J (θ) is the measurement residual, and θmeas and W are defined as

θmeas =

⎡
⎢⎢⎢⎣

θmeas
1

θmeas
2
...

θmeas
Nm

⎤
⎥⎥⎥⎦ ,W =

⎡
⎢⎢⎢⎣

σ 2
1

σ 2
2

. . .

σ 2
Nm

⎤
⎥⎥⎥⎦ (8.9)

To find the minimum of J (θ) in (8.8), the gradient of measurement residual must be
zero (e.g., ∇J (θ) = 0), this will result in a solution of estimated values

θ̂ = [HT W−1H ]−1HT W−1θmeas (8.10)

After deriving the estimated values, the SCADA system normally runs a bad data
check to calculate the two-norm value of the mismatch between the estimated values
and measured values. If the error is greater than the threshold, the bad data is
detected. It was proved in [23] that an attacker can bypass the bad data detection
algorithm if the false data is designed to satisfy

�z = H�θ (8.11)

where �θ is the change in the bus voltage angles, and �z is the change in the
measurement vector due to the false data injection.
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It should be noted that the successful attack might not be guaranteed, this is
because of the fact that after the false data injections, the control center should adjust
the generation powers for an optimal power flow that results in a lower system cost.
The economic dispatch problem will then be run in presence of false data injection,
which results in a new transmission flow that deviates from normal load flow results.
Since the economic dispatch might have multiple solutions, the success of attack
cannot be guaranteed [23]. The main assumptions for false data injection attacks
due to system limitations can be listed as [27]:

• The synchronous generator readings cannot be altered
• The measurement tampering on each load is limited within its nominal rating
• Power balance, which is a mismatch between the generation and load, should

always be met

These limitations will mathematically be modeled and included in the cyberattack
problem to be formulated in the next section. It is also assumed that the attacker
has limited access to the system buses for false data injection. Therefore, a subset
of all system buses (F ) that the attacker can access is defined to highlight the
fact that the attack can only be done on the subset. In addition, to avoid supply–
demand violation, sum of injected powers by the attacker has to be zero, this can be
formulated as

∑
i∈F

�Di = 0 (8.12)

where �Di is false active power injection at bus i. To account for limited injection
on each measurement, a new constraint has to be defined,

− τDi ≤ �Di ≤ τDi (8.13)

where τ is the limit on the maximum injection and is considered as 15% in this
study, and Di is the nominal load at bus i.

8.4 Attacker’s Problem: Finding the Optimal Set
of Target Transmission Lines using MILP

In this section, the attacker’s problem is modeled as a bi-level mixed integer
linear programming (MILP) optimization model, where an attacker can target a
transmission line and overflow the targeted line by injecting false data on targeted
buses. The assumption is that the attackers have enough information on topology
of the system to conduct attacks; however, they might not have access to all buses
in the system. The attacker’s problem is designed in a way that the transmission
flow of a targeted line always exceeds the maximum thermal limit of the line after
running the security constraint economic dispatch problem. As a result, regardless
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of the economic dispatch solution (it might have multiple solutions), the targeted
line will always be overflowed. Another assumption of this problem is that all
generating units are online in the period of false data injection. Thus, instead of
unit commitment, economic dispatch is formulated.

min
∑
i∈F

�Di (8.14)

s.t. P t
ij + UiM ≥ αP max

ij (8.15)

− P t
ij + (1 − Ui)M ≥ αP max

ij (8.16)

− 1.2 ≤ P t
ij

P max
ij

≤ 1.2 (8.17)

∑
i∈F

�Di = 0 (8.18)

− τDi ≤ �Di ≤ τDi (8.19)

P − (D + �D) = Bθt (8.20)

P t
ij = θ t

i − θ t
j

xij

(8.21)

− 2π ≤ θ t
i ≤ 2π (8.22)

min
nG∑
i=1

Cg,i(PG,i) (8.23)

s.t. Cg,i(PG,i) = ai + biPG,i + ciP
2
G,i (8.24)

P − (D + �D) = Bθf (8.25)

P min
G,i ≤ PG,i ≤ P max

G,i (8.26)

− P max
ij ≤ θ

f
i − θ

f
j

xij

≤ P max
ij (8.27)

The developed MILP problem is separated into two sub-problems known as
upper level and lower level problems. The upper level problem formulates the
attack using a given power flow results and outputs the injection vector on targeted
lines to ensure bypassing the bad data detection method in DC optimal power flow.
The lower level problem formulates the DC economic dispatch problem with false
data injections to retain the operation of power system within the desired limits.
The problem is shown in (8.14)–(8.27).
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The upper level objective function (8.14) is designed to find the minimum
injections needed in a subset of targeted buses (F ). The main target of the attacker
is to overflow a targeted transmission line, it is also noted that the transmission line
flow can be bi-directional, this can be formulated as

|P t
ij | ≥ αlP

max
ij (8.28)

where |P t
ij | is the transmission flow between bus i and j , the absolute value

is used to reflect the fact the flow can be bi-directional, P max
ij is the maximum

thermal limit of the line between bus i and j , and α is a number greater than 1 to
ensure the transmission line flow will be greater than the limit. Due to the existence
of absolute value in the constraint (8.28), the problem becomes nonlinear. To solver
the issue, this constraint can be linearized by introducing a binary variable Ui and
a large enough constant M . The linearization will result in two constraints shown
in (8.15) and (8.16). The readers are encouraged to refer to [28] for more information
on linearizing the constraints with absolute value using the big M method.

Constraint (8.17) enforces the overflow to be within 20% of maximum power
flow, although the main target is to overflow a line, to avoid being detected by the
operator, the max flow should be limited. Constraint (8.18) is designed to ensure
the power balance is always met; therefore, summation of all the injections should
be zero at any moment. Constraint (8.19) refers to the fact that an attacker cannot
inject any amount of data at any load bus; therefore, the false injected power at
any bus is limited to τ% of the nominal load at that bus. Constraint (8.20) ensures
bypassing the bad data detection. As it was mentioned in (8.11), the attacker
can bypass the DC state estimation without being detected if the injected data is
designed based on (8.11). By rearranging (8.20),

(P − D) + �D = Bθ + B�θ (8.29)

where �θ is the change in the bus voltage angles due to false data injection. Know-
ing the fact that P − D = Bθ , (8.29) can be simplified to (8.11). Constraints (8.21)
and (8.22) relate the transmission flow to maximum allowable limits of bus voltage
angles. The lower level problem is the economic dispatch problem based on DC
power flow, which is formulated through (8.23)–(8.27). In the lower level problem,
the objective is to minimize the generation cost for all nG generators in the system.
It is assumed that the generating units do not contain several control valves. Hence,
the “convex” cost function of the generators is represented by ai + biPG,i + ciP

2
G,i ,

where PG,i is the active power generated by generator i, and a, b, and c are
cost function constants (constraint (8.24)). Constraint (8.25) represents the power
balance equation in presence of false data injection, constraints (8.26) and (8.27)
ensure the generator powers and transmission line flows are within the limit after
injection, where xij is the reactance of the transmission line between bus i and j .
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8.4.1 Identifying Feasible Attacks

Realistically, physical limitations of power systems and solution of economic
dispatch problem limit the feasibility of the attacks from attacker’s point of view.
In other words, it is impractical to target all the transmission lines in the system
and only a few lines might be practically targeted at any moment. Therefore, the
attacker’s first step is to recognize the feasible attacks and then inject data on
selected buses (targeted buses) to overflow those lines that can result in a feasible
solution. An algorithm is defined to identify the feasible solution of overflowing
transmission lines in the system. The model requires the power flow data from
previous step to result in a successful subset of transmission line numbers that can
be targeted without violating the bad data detection algorithm in state estimation
procedure. The flowchart of the proposed algorithm that results in feasible solutions
of the line overflows is shown in Fig. 8.2.

8.5 Operator’s Problem: Bad Data Detection to Prevent
Outages Caused by Cyberattack

In the previous section, we explained the algorithm for finding the optimal attack
strategy from attacker’s perspective. Successful attack will affect the result of
DC power flow problem. Power system operator is responsible for maintaining
situational awareness, as well as ensuring resilient and secure energy delivery by
identifying these attacks and deploying preventive measures [29]. In this section, we
focus on a specific algorithm to identify bad data injection attacks, i.e., attacks that
manipulate the measurement vector to falsify the real values used for DC power flow
calculation in transmission networks. The main idea is to design a state estimator
which is robust to error/attack in the measurement vector while obtaining the power
flows. This estimator leverages the structure of admittance matrix to efficiently
identify bad data injection attacks.

The following section is devoted to the details of this state estimator. To this
end, we build on the proposed sparsity-based error detection algorithm proposed in
[30]. This algorithm leverages the singularity of B matrix due to the geographically
dispersed transmission networks, as well as the sparse nature of estimation error
vector. Sparsity-based cyberattack detection algorithm is based on the following
steps:

1. Reformulating the DC power flow problem into a sparse vector recovery problem
2. Deploying l1-norm minimization approach [31]
3. Obtaining the bad data elements in the measurement vector
4. Identifying bad data injection attacks and measurement error given the normal

distribution of measurement noise
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Fig. 8.2 Flowchart of the
proposed BMILP program for
line overflow feasibility in

1-Load the system data
2- Select the targeted line to attack (  )
3- Select the buses to target

Run the BMILP 
Problem

Line    is 
overflowed?

Print: Line    is 
overflowed

i=i+1,
i=N?

Print: Line    is 
not overflowed

=  +1,
=N?

End

No

Yes

seYoN

Yes

No

l

ll

l l
l

l

Print: False 
Data Injections 

(             ) iDΔ

There is a low dimensional structure in most of the collected data and measure-
ments in real-world applications, including DC power flow problem. This has been
leveraged by some of the prior studies to improve sparse vector recovery [31, 32],
e.g., they have explored sparse vector recovery in case of having limited available
measurements. In order to recover an N -dimensional sparse vector, these algorithms
do not necessarily require N data points [32, 33].

Candes et al. [32] proposed a sparse vector recovery algorithm that only needs a
minor portion of random orthogonal projection [30]. Let v ∈ R

N denote an arbitrary
sparse vector with its number of non-zero components defined as l0-norm, i.e., ‖v‖0.
We define set of orthonormal basis matrix as O ∈ R

N×N . We have
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OT O = I, (8.30)

where I represents identity matrix. We represent a set of random columns from O
as M ∈ R

N×m. We further let μ denote the lowest value that meets the following
inequality:

max
i

‖MT ei‖2 ≤ μm

N
, (8.31)

where ei denotes a standard basis. Note that the dimension of space is N ×m. Small
values of μ refers to the fact that the subspace corresponding to columns of M is not
in the same direction as standard basis. The orthogonal matrix M is used to measure
the sparse vector. As we use this matrix to measure sparse vector, it should not be
sparse.

According to [32], if

m ≥ c‖v‖0μ log
N

δ
(8.32)

where c is a constant, then, solution of following optimization problem

min
ẑ

‖ẑ‖1

subjectto MT ẑ = MT v
(8.33)

is the same as v with a lower probability bound of (1 − δ), i.e., we can reconstruct
the N -dimensional vector given a limited set of random measurements [34].

Given the above-mentioned preliminaries on sparse vector recovery, we now
explain the sparsity-based decomposition algorithm for bad data injection in DC
power flow calculation [30]. In the B matrix, due to the row corresponding to slack
bus, there is at least one row which can be obtained as linear combination of the
other rows, i.e., B matrix is not full rank. Let rB denote rank of B matrix. Hence,
we can reformulate DC power flow problem as p = Qθ + ε, where Q ∈ R

ℵ×rB

represents orthonormal basis for column subspace of B matrix. Conventionally, in
order to estimate the coefficient vector, which is equivalent to the voltage angles
vector in DC power flow problem (i.e., θ ) least square approach is used as follows:

min
θ̂

‖p − Qθ̂‖2 (8.34)

The optimization problem in (8.34) basically projects p on the columns subspace
of Q. Hence, the effectiveness of the estimator depends on the noise vector ε and
its projection on column subspace of B matrix. Note that noise vector aims at
modeling the natural measurement noise in normal situation. However, in presence
of attackers (e.g., the attack scenario that has been introduced in previous section) or
measurement anomalies (e.g., communication failure or defective equipment), some
elements of this vector will have abnormal value.
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We assume that the error/attack vector ε is a sparse vector, i.e., attackers cannot
manipulate all measurements at the same time. As opposed to l2-minimization, l1-
minimization methods are adaptive in presence of sparse error/attack vector [34, 35],
i.e., if ε is sufficiently sparse and Q meets incoherency criterion [31, 35], solution
of

min
θ̂

‖p − Qθ̂‖1 (8.35)

is θ .
In the proposed sparsity-based decomposition algorithm in [30], based on the

sparsity assumption for B matrix, rB < ℵ. If Q⊥ ∈ R
ℵ×(ℵ−rB) represent the

matrix that complements the column subspace of Q, according to [31, 35], we can
rewrite (8.35) as

min
ε̂

‖ε̂‖1

subjectto (Q⊥)T ε̂ = (Q⊥)T p
(8.36)

If the following inequality holds,

(ℵ − rB) ≥ c‖ε‖0μB log
N

δ
(8.37)

then, with a lower bound probability of (1 − δ), the optimal solution of (8.36) is θ ,
where μB is obtained using the following:

max
i

‖(Q⊥)Ti ‖2 ≤ μB(ℵ − rB)

ℵ (8.38)

Consequently, given the assumption regarding low rank of B matrix ((ℵ − rB) is
fairly large), the optimization problem in (8.35) can find the exact estimation.

8.6 Case Studies

The proposed BMILP cyberattack model is validated in IEEE 57-bus benchmark
model using MATLAB. The parameters of the system are derived from MAT-
POWER toolbox, which is an open access MATLAB toolbox used for load flow
studies [36]. The maximum flow limits (P max

ij ) for IEEE 57-bus system were not
provided in the toolbox, and it was considered to be 120 MW for each transmission
line. The structure of the system is illustrated in Fig. 8.3, the system is composed
of 7 generators, 80 transmission lines, and 42 loads. The upper level problem for
best scenario false data injection attacks represented in (8.14)–(8.22) is solved using
(“intlinprog”) function of MATLAB, which is designed to solve mixed integer linear
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Fig. 8.3 Schematic of the IEEE 57-bus system studied in this work; transmission lines highlighted
by red color indicate the potential lines that can be targeted by attackers. The highlighted area is
used to illustrate the effect of gaining access to a complete area in the system

programming problems. The lower problem represented in (8.23)–(8.27) involves a
nonlinear objective function and therefore, a nonlinear solver of MATLAB named
(“fmincon”) is used to solve the lower level problem. A few case studies are carried
out in the following sections.

8.6.1 Feasibility of Line Overflow

Due to the physical limitations imposed on cyberattacks and false data injections,
the attackers cannot target any transmission line in the system. For example, the
factor τ limits the injection on each load to 15% in this study. Furthermore, the
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Table 8.1 Feasibility of line overflow in IEEE 57 case

Line number From bus To bus Ui

3 3 4 0

15 1 15 1

37 24 26 0

79 38 48 1

flow of a line cannot exceed 120% of the maximum limit (1.2 × 120 MW). These
limitations will leave the attackers with few options to overflow. The proposed attack
model in (8.14)–(8.27) can be run for all the buses in the system in order to identify
a list of transmission lines that can be overflowed successfully. In this case study,
the algorithm was run for all 80 transmission lines in the IEEE 57-bus system to
identify a list of lines to be targeted for overflowing. To solve this problem, the
objective function in (8.14) is run for all buses in the system instead of a subset F

of system buses. This means, the subset F is considered as i = 1, 2, . . . , 57.
Test results for the list of feasible attacks on targeted transmission lines to

overflow in IEEE 57-bus system are illustrated in Table 8.1. It is seen that four
transmission lines can be targeted in this system by attackers, which includes
transmission lines number 3, 15, 37, and 79. The second and third column represent
that each line number is assigned based on the MATPOWER data from one bus to
another, and the last column shows the value of the binary variable for overflowing
the line (Ui). These transmission lines are highlighted by red color in IEEE 57-bus
system depicted in Fig. 8.3. It is worth mentioning that the results in Table 8.1 are
only valid for the conditions considered in this case (e.g., τ = 15%, α = 1.01).
Therefore, the results might change if the security constraints in (8.15), (8.16),
and (8.19) are relaxed.

8.6.2 Targeted Attack on Line 15

This case investigates targeted attacks to overflow transmission line number 15,
which connects bus 1 to bus 15 in IEEE 57-bus system as shown in Fig. 8.3. Since
the attacks are targeted, the attacker can target any set of buses to inject false data
and overflow this line. Ideally, the attacker would access buses close to the targeted
line and inject data. A few set of feasible solutions to overflow line number 15 is
shown in Table 8.2. Three different combinations are considered to overflow line
15, in the first scenario, the attacker targets buses 12, 44, 47, and 49 that are very
close to the targeted transmission line. In the second case, the attacker targets buses
8, 9, and 12, and finally, it is shown that if the attacker only targets buses 9 and
12, the attack can successfully be done. Table 8.2 shows the attack results for these
three test scenarios. It is noted that the attackers target specific buses in the system
that they can access and the program outputs the minimum injections needed to
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Table 8.3 False data injection on buses to overflow one area

Targeted buses �D Targeted buses �D

1 −11 MW 12 28 MW

13 −3.6 MW 16 −8.4 MW

17 −8.6 MW 49 3.6 MW

P15 = 125.9 MW

Cost (no attack) = $ 45,342

Cost (with attack) = $ 45,685

overflow the targeted transmission line. It is observed that the targeted line 15 is
overflowed in all three cases as its power flow (P15) is more than 120 MW limit.
The last two columns show the cost of the system with no attack and after attack,
it can be inferred from the Table 8.2 that in case 2 and 3, the system cost is less
with data injections, compared to the no data injection case, which might trick the
operator to choose this scenario as an acceptable economic dispatch case study.

8.6.3 Severe Attack on an Area

This case study considers a severe false data injection attack, where the attacker(s)
can access an area in the power system and can inject false data in any bus within
that area. This concept is illustrated in the highlighted area shown in Fig. 8.3.
The attacker targets line 15 and injects data on buses 1, 12, 13, 16, 17, and 49
within the area. Results of false data injection on the whole area are illustrated in
Table 8.3. The false data injections are also shown in second and fourth column for
each bus. It is observed that the attack can successfully overflow line 15 and the cost
of operation has also increased after the attack.

8.7 Conclusion

In this chapter, a framework was proposed to initially model the false data injection
attacks on smart grids with the aim of transmission line congestion on targeted buses
and eventually proposed a detection framework to detect such injections. A bi-level
mixed integer programming problem was considered for the attacker’s problem that
would allow attackers to target a transmission line in the system and inject false data
on targeted buses in vicinity of the targeted transmission line to cause congestion
without being detected by DC state estimation algorithm. Through case studies, it
was shown that the proposed attack model results in a list of available transmission
lines to overflow. Furthermore, it was shown that the attacker can inject false data
on selected buses or buses in a hacked area in the system to overflow a targeted
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line. To detect these attacks, a detection framework from operator’s point of view is
also developed that uses l1 norm minimization to identify the bad measurement
vector. The proposed model can easily be integrated to the security constraint
economic dispatch problem in order to protect the smart grid against transmission
lines congestion cyberattacks. Future research will focus on (1) validating the
detection algorithm in IEEE benchmarks, (2) proposing a framework that would
protect the system against congestion attacks on multiple lines at the same time, and
(3) introducing market frameworks in which market participants can gain profit by
contributing to mitigation of system congestion caused by cyberattacks.
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and Education (CSRE) seed grant 2019.

References

1. X. Yu, Y. Xue, Smart grids: a cyberphysical systems perspective. Proc. IEEE 104(5),
1058–1070 (2016)

2. M.H. Cintuglu, O.A. Mohammed, K. Akkaya, A.S. Uluagac, A survey on smart grid cyber-
physical system testbeds. IEEE Commun. Surv. Tutorials 19(1), 446–464 (2017)

3. H. Chung, W. Li, C. Yuen, W. Chung, Y. Zhang, C. Wen, Local cyber-physical attack for
masking line outage and topology attack in smart grid. IEEE Trans. Smart Grid 10, 4577–4588
(2019)

4. A. Imteaj, M.H. Amini, J. Mohammadi, Leveraging decentralized artificial intelligence to
enhance resilience of energy networks (2019). arXiv preprint arXiv:1911.07690

5. Y. Tang, Q. Chen, M. Li, Q. Wang, M. Ni, and X. Fu, Challenge and evolution of cyber attacks
in cyber physical power system, in 2016 IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC) (IEEE, Xi’an, 2016), pp. 857–862

6. N. Perlroth, D.E. Sanger, Cyberattacks put Russian fingers on the switch at power plants, US
says. New York Times 15 (2018)

7. T. Maurer, Cyber Mercenaries (Cambridge University Press, Cambridge, 2018)
8. Y. Cai, Y. Cao, Y. Li, T. Huang, B. Zhou, Cascading failure analysis considering interaction

between power grids and communication networks. IEEE Trans. Smart Grid 7(1), 530–538
(2015)

9. X. Liu, Z. Li, X. Liu, and Z. Li, Masking transmission line outages via false data injection
attacks. IEEE Trans. Inf. Forensics Secur. 11(7), 1592–1602 (2016)

10. L. Wei, D. Gao, C. Luo, False data injection attacks detection with deep belief networks in
smart grid, in 2018 Chinese Automation Congress (CAC) (2018), pp. 2621–2625

11. Y. Xiang, Z. Ding, Y. Zhang, L. Wang, Power system reliability evaluation considering load
redistribution attacks. IEEE Trans. Smart Grid 8(2), 889–901 (2016)

12. Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric
power grids. ACM Trans. Inf. Syst. Secur. 14(1), 13 (2011)

13. L. Liu, M. Esmalifalak, Q. Ding, V.A. Emesih, Z. Han, Detecting false data injection attacks
on power grid by sparse optimization. IEEE Trans. Smart Grid 5(2), 612–621 (2014)

14. O. Kosut, L. Jia, R.J. Thomas, L. Tong, Malicious data attacks on the smart grid. IEEE Trans.
Smart Grid 2(4), 645–658 (2011)

15. G. Chaojun, P. Jirutitijaroen, M. Motani, Detecting false data injection attacks in AC state
estimation. IEEE Trans. Smart Grid 6(5), 2476–2483 (2015)

16. L. Xie, Y. Mo, B. Sinopoli, Integrity data attacks in power market operations. IEEE Trans.
Smart Grid 2(4), 659–666 (2011)



202 M. H. Amini et al.

17. S. Barreto, M. Pignati, G. Dán, J.-Y. Le Boudec, M. Paolone, Undetectable timing-attack
on linear state-estimation by using rank-1 approximation. IEEE Trans. Smart Grid 9(4),
3530–3542 (2018)

18. X. Liu, Z. Li, Local load redistribution attacks in power systems with incomplete network
information. IEEE Trans. Smart Grid 5(4), 1665–1676 (2014)

19. Y. Yuan, Z. Li, K. Ren, Quantitative analysis of load redistribution attacks in power systems.
IEEE Trans. Parallel Distrib. Syst. 23(9), 1731–1738 (2012)

20. Z. Li, M. Shahidehpour, A. Alabdulwahab, A. Abusorrah, Bilevel model for analyzing coor-
dinated cyber-physical attacks on power systems. IEEE Trans. Smart Grid 7(5), 2260–2272
(2016)

21. M. Tian, M. Cui, Z. Dong, X. Wang, S. Yin, L. Zhao, Multilevel programming-based
coordinated cyber physical attacks and countermeasures in smart grid. IEEE Access 7,
9836–9847 (2019)

22. J. Liang, L. Sankar, O. Kosut, Vulnerability analysis and consequences of false data injection
attack on power system state estimation. IEEE Trans. Power Syst. 31(5), 3864–3872 (2016)

23. X. Liu, Z. Li, Trilevel modeling of cyber attacks on transmission lines. IEEE Trans. Smart Grid
8(2), 720–729 (2017)

24. Y. Tan, Y. Li, Y. Cao, M. Shahidehpour, Cyber-attack on overloading multiple lines: a bilevel
mixed-integer linear programming model. IEEE Trans. Smart Grid 9(2), 1534–1536 (2018)

25. G. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, B. Wollenberg, Monitoring and
optimization for power grids: a signal processing perspective. IEEE Signal Process. Mag.
30(5), 107–128 (2013)

26. A.J. Wood, B.F. Wollenberg, G.B. Sheblé, Power Generation, Operation, and Control (Wiley,
New York, 2013)

27. Y. Yuan, Z. Li, K. Ren, Modeling load redistribution attacks in power systems. IEEE Trans.
Smart Grid 2(2), 382–390 (2011)

28. G. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, 2016)
29. A. Gholami, T. Shekari, M.H. Amirioun, F. Aminifar, M.H. Amini, A. Sargolzaei, Toward

a consensus on the definition and taxonomy of power system resilience. IEEE Access 6,
32035–32053 (2018)

30. M.H. Amini, M. Rahmani, K.G. Boroojeni, G. Atia, S.S. Iyengar, O. Karabasoglu, Sparsity-
based error detection in dc power flow state estimation, in 2016 IEEE International Conference
on Electro Information Technology (EIT) (IEEE, Grand Forks, 2016), pp. 0263–0268

31. M. Rahmani, G.K. Atia, High dimensional low rank plus sparse matrix decomposition. IEEE
Trans. Signal Process. 65(8), 2004–2019 (2017)

32. E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Probl.
23(3), 969 (2007)

33. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

34. E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding
strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

35. E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12),
4203–4215 (2005)

36. R.D. Zimmerman, C.E. Murillo-Sanchez, R.J. Thomas, MATPOWER: steady-state operations,
planning, and analysis tools for power systems research and education. IEEE Trans. Power
Syst. 26(1), 12–19 (2011)


	8 Bi-level Adversary-Operator Cyberattack Framework and Algorithms for Transmission Networks in Smart Grids 
	8.1 Introduction
	8.1.1 Overview

	8.2 DC Power Flow Model
	8.3 False Data Injection Attacks Based on DC State Estimation
	8.4 Attacker's Problem: Finding the Optimal Set of Target Transmission Lines using MILP 
	8.4.1 Identifying Feasible Attacks

	8.5 Operator's Problem: Bad Data Detection to Prevent Outages Caused by Cyberattack
	8.6 Case Studies
	8.6.1 Feasibility of Line Overflow
	8.6.2 Targeted Attack on Line 15
	8.6.3 Severe Attack on an Area

	8.7 Conclusion
	References


