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Abstract The challenges surrounding the optimal operation of power systems
are growing in various dimensions, due in part to increasingly distributed energy
resources and a progression towards large-scale transportation electrification. Cur-
rently, the increasing uncertainties associated with both renewable energy genera-
tion and demand are largely being managed by increasing operational reserves—
potentially at the cost of suboptimal economic conditions—in order to maintain the
reliability of the system. This chapter looks at the big picture role of forecasting
in power systems from generation to consumption and provides a comprehensive
review of traditional approaches for forecasting generation and load in various
contexts. This chapter then takes a deep dive into the state-of-the-art machine
learning and deep learning approaches for power systems forecasting. Furthermore,
a case study of multi-time-horizon solar irradiance forecasting using deep learning
is discussed in detail. Smart grids form the backbone of the future interdependent
networks. For addressing the challenges associated with the operations of smart grid,
development and wide adoption of machine learning and deep learning algorithms
capable of producing better forecasting accuracies is urgently needed. Along with
exploring the implementation and benefits of these approaches, this chapter also
considers the strengths and limitations of deep learning algorithms for power
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systems forecasting applications. This chapter, thus, provides a panoramic view
of state-of-the-art of predictive analytics in power systems in the context of future
smart grid operations.

Keywords Smart grid · Deep learning · Predictive analytic · Machine learning ·
Time series · Energy forecast · Power systems

7.1 Introduction

Overview The challenges surrounding the optimal operation of power systems
are growing in various dimensions, due in part to increasingly distributed energy
resources and a progression towards large-scale transportation electrification. Cur-
rently, the increasing uncertainties associated with both renewable energy genera-
tion and demand are largely being managed by increasing operational reserves—
potentially at the cost of suboptimal economic conditions—in order to maintain the
reliability of the system. This chapter looks at the big picture role of forecasting
in power systems from generation to consumption and provides a comprehensive
review of traditional approaches for forecasting generation and load in various
contexts. This chapter then takes a deep dive into the state-of-the-art machine
learning and deep learning approaches for power systems forecasting. Furthermore,
a case study of multi-time-horizon solar irradiance forecasting using deep learning
is discussed in detail. Smart grids form the backbone of the future interdependent
networks. For addressing the challenges associated with the operations of smart grid,
development and wide adoption of machine learning and deep learning algorithms
capable of producing better forecasting accuracies is urgently needed. Along with
exploring the implementation and benefits of these approaches, this chapter also
considers the strengths and limitations of deep learning algorithms for power
systems forecasting applications. This chapter, thus, provides a panoramic view
of state-of-the-art of predictive analytics in power systems in the context of future
smart grid operations.

Forecasting has long played an essential role in power systems planning and
operations. With the introduction of deregulated markets, forecasting has emerged
as a critical component of electricity markets as well. Reliable forecasting mod-
els allow electrical utilities and independent systems operations (ISOs) to make
optimal capacity building and dispatch decisions by understanding their economic
implications while still maintaining a reliable energy supply. Forecasting models
are also used by the market participants to place strategic bids. The significance of
forecasting has dramatically increased because of the rapidly changing landscape
of traditional power systems. Some of the main drivers of this change are (1)
increasing penetration of intermittent renewable energy resources on utility scale
as well as distributed energy resources (DERs), (2) deployment of various smart
grid technologies such as advanced metering infrastructure, (3) deregulation of
electricity markets, (4) demand response programs turning static loads into dynamic
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loads, (5) forthcoming electrification of the transportation fleet, (6) greenhouse gas
reduction targets, and (7) declining costs of energy storage technologies, among
others.

The forecasted data in power systems include meteorological variables such as
solar irradiance, wind speed, and wind direction; energy production from renewable
energy sources such as photovoltaic plants, wind farms, and hydroelectric dams;
load or demand; price of electricity or locational marginal prices; price of fossil
fuels such as coal, oil, and natural gas; electric vehicle (EV) charging loads,
and so on. These quantities are forecasted for different timescales as well as
different spatial resolutions. Long-term forecasts are useful for power systems
infrastructure building decisions while short-term forecasts are utilized to inform
optimal decision-making by system operators dispatching energy on the grid and
market participants trading energy in the markets.

7.1.1 Motivation

Traditionally, in the regulated electricity sector, mostly vertically integrated utilities
had a monopoly. The reliability of supply was primarily the utilities’ responsibility
and was maintained using short-term load forecasts. The fossil fuel-based genera-
tion sources were dispatchable so that variability associated with the demand was
the primary source of uncertainty in the system. Electricity users were passive con-
sumers; that is, there was neither a bidirectional flow of energy from the distribution
grid end nor any provision of demand response. Planning and investment in new
capacity were based on long-term demand forecasts and utilities were responsible
for building the transmission capacity to serve their customers. Traditional forecast-
ing methodologies served well in this regulated business scenario.

Competitive electricity markets have been introduced since the last decade of
the twentieth century as a part of the deregulation of the electricity sector [1].
Consequently, energy is now traded in competitive markets, making electricity
price and demand forecasts fundamental inputs to the day-to-day decision-making
process of the various energy-selling entities, including the utilities, independent
power producers, large industrial customers with significant amounts of distribution
generation production, and so on.

Moreover, building new transmission capacity is not a straightforward decision
made by a single utility anymore. FERC Order No. 1000 [2] established new rules
regarding the transmission planning and cost allocation requirement for public
utility transmission providers, which have made capacity expansion a competitive
process as well. As a result, accurate long-term load forecasting for different
geographic areas has become even more important for maintaining the reliability of
the system and economically expanding the network to accommodate future demand
growth as well as distributed generation penetration on the grid.

The shift toward a digital and electrified economy is causing increased research
and planning for networks of electrified transportation and a smart grid, operating
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interdependently. Forecasting will play an essential role in the transition to this
new system as well. These future interdependent networks require reliable long-
term EV growth forecasts for the planning of EV charging infrastructure as well
as distribution network enhancements to accommodate the high penetrations of
dynamic EV charging loads. In the operations domain, short-term forecasts of
EV charging or discharging are required to get accurate load forecasts. Additional
complexity is added when daily EV charging profiles are optimized using intelligent
controls. The operational schedule of EV charging responds to the market price
(even without the initiation of demand response events from the utility), making
it even more challenging for traditional forecasting approaches to predict the
dynamically changing demand.

The macrogrid in the USA (as well as many other industrialized countries) is
a century old. Various components of generation, transmission, and distribution
systems are reaching the end of their useful life and need to be refurbished.
Though there are significant capital costs necessary to renovate the thousands
of miles of distribution infrastructure, the reliability threats are even more dire.
Several recent wildfires in California can be attributed to the aging power systems
infrastructure of Pacific Gas and Electric [3]. The remaining useful life of the
assets can be assessed to strategically plan the renovation of aging power systems
infrastructure by leveraging advanced machine learning and deep learning-based
predictive analytics. Accurate remaining useful life predictions for distribution grid
components can inform economic investment such that the components with the
highest risk of failure are replaced first.

Growing uncertainty in energy consumption, increasing penetration of inter-
mittent renewable energy generation sources (at both utility scale and for small
DERs), the burgeoning share of microgrid deployment, smart grid technologies
enabling the internet of things (IoT), aging grid infrastructure, and the forthcoming
revolution of electrified transportation are rapidly changing the landscape of power
systems. Advanced and innovative predictive analytics approaches are urgently
needed to enable more accurate forecasts to improve decision-making and provide
the foundation for a smart, resilient, and sustainable grid of the future.

7.1.2 Classification of Power Systems Forecasting Models

Power systems forecasts may be done for various timescales based on the appli-
cation of the predicted data. These forecasts can also be classified based on their
application domain and their role in the power systems generation, transmission,
distribution, and consumption areas. When a quantity is forecasted for different
time horizons, the input variables used for producing the forecast also change.
For example, when forecasting load for a long-term horizon in a given geograph-
ical area, inputs such as macroeconomic uncertainty, population growth, climate
change patterns (for predicting the extreme loads), and distributed generation
penetration projections are considered. For short-term load forecasting like day-
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ahead forecasting, input variables such as day of week, time of day, and past load
consumption are relied upon instead. The effectiveness of machine learning and
deep learning algorithms varies based on the timescale and type of input variables.
The classification of forecasting models is discussed in detail in the following
sections.

7.1.2.1 Classification Based on the Domain of Application in Power
Systems

There are three functionally different parts of power systems studies and man-
agement, which make it possible to provide reliable and economical electricity to
consumers in the present and in the future. These three parts—planning, operations,
and market—are described in the following sections. Different types of predictive
models are used in these three parts for obtaining forecasts for different quantities,
such as load, resource, production, and so on, as shown in Fig. 7.1.

Forecasting Models

Planning

Load Forecast (peak demand, 
annual energy sales considering 
maroeconomic uncertainity and 

extreme weather load)

Resource Forecast (changes in 
wind patterns and solar 

irradiance based on climate 
change)

DER growth forecast (based on 
falling prices of renewable 

technologies and policy 
incentives)

Operations

Load Forecast (system-level for 
ISOs, building-level load 
forecasting for DER and 
microgrid optimization)

Resource Forecast (day-ahead 
solar and wind forecast for 

bidding in day-ahead markets, 
hourly and subhourly for 
economic dispatch and 

operational reserve 
management)

Markets

Electricity Price Forecast (for 
bidding in day-ahead and real-

time energy markets)

Fig. 7.1 Classification of forecasting models based on domain of applicability



152 S. Mishra et al.

7.1.2.1.1 Planning

The process of power systems planning is ever evolving and has the largest strategic
impact on the future of power systems. Future power systems are planned using a set
of forecasts, including load forecasting (which in turn depends on macroeconomic
uncertainty, extreme weather, and climate changes for a given geographic location),
distributed generation technologies growth predictions (which depend on the rate
of decrease in the cost of these technologies and energy policy that provides incen-
tives), and resource forecasting (which includes short-term production forecasts
as well as long-term changes in solar irradiance and wind patterns for a given
geographic area).

Smart and clean energy technologies form the foundation of the future smart
grid. The key to enabling the adoption of clean energy technologies lies in how
well power systems enhancements are planned to accommodate new technologies,
enabling their smooth integration with the existing power systems. The goal of
planning is to build and modify the generation, transmission, and distribution
infrastructure that are needed to meet predicted future needs. Therefore, power sys-
tems planning has traditionally been divided into centralized generation planning,
transmission planning, and distribution planning. The outcome of planning studies
is to address what to build (more generation or transmission/distribution), how much
to build, and where to build.

Traditionally, generation planning begins with load forecasting. Reliability
evaluation is then conducted to determine if and when additional generation is
needed. The remaining useful life of existing base load plants, which are largely
powered by fossil fuels, is also accounted for in the next step. This is followed
by capacity expansion studies based on economic considerations [4]. Nowadays,
however, generation planning is not a solitary process. DER penetration forecasts,
including behind-the-meter distributed generation, need to be accounted for in
the process. Also, economical siting of utility-scale renewable generation plants
depends on availability of solar and wind resources, which may or may not coincide
with the demand pockets and existing transmission infrastructure. High penetration
of utility-scale renewable energy resources, given their intermittent and variable
nature, adds increased complexity to generation planning studies that depend on
renewable resource forecasts [5, 6].

Transmission planning is aimed at optimizing the use of a generation portfolio
by supplying loads from the most economical sources of power and improving
the reliability of overall systems by operating generation stations flexibly [7].
Generation and transmission planning are closely related because the powerflows
through the transmission system are a direct result of generation dispatch [8, 9].
Distribution system planning, on the other hand, is optimized for the lowest cost
operation that meets the desired reliability of the electricity service. However,
the introduction and increased adoption of DERs has changed the process of
distribution system planning drastically. This is because components of distribution
and transmission systems are not designed to handle the bidirectional flow of power
from the DERs, so additional measures must be taken to refurbish the distribution
grid with this capability [10, 11].
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For generation and transmission planning, load forecasting is done for a long time
horizon—often between 2 and 10 years. This is because system capacity expansion
projects require a long lead time. Peak annual demand/load (in kilowatts) and total
annual energy sales (in kilowatt-hours) are calculated for long-term load forecasts
[12]. Peak load is highly correlated with weather. Therefore, peak load forecast is
normalized based on extreme weather predictions. Projected EV and DER growth
in the future has led to researching and employing methodologies that explicitly
consider DERs as well as EV load along with its charging patterns [13, 14].
Load forecasting also needs to be specific to geographical locations, along with
maintaining reasonable accuracies of the predicted magnitude.

7.1.2.1.2 Operations

Power systems operations are associated with making decisions regarding the use of
existing equipment and infrastructure to generate, transmit, and deliver energy. It is
primarily aimed at doing so safely, reliably, and efficiently. The operations domain
deals with three different time horizons: (1) operations planning (a few weeks to
months), (2) near real time (a few hours to days), and (3) real time (typically 5–
10 min) [15].

Operations planning ensures that sufficient resources are available to meet
demand for the next few months. It takes load forecasts (and associated errors),
utility-scale renewable generation forecasts, and generation and transmission out-
ages into account. Operations planning also defines the reserve capacity require-
ments to mitigate the risk imbalances because of forecast errors and unplanned
outages of generation or transmission components [16]. The aim of near real-time
operations is to select the most economic generation portfolio for the next few days
using a process called unit commitment. Real-time operations are aimed at ensuring
system reliability and supply sufficiency by revising the near real-time schedule on
an as-needed basis.

Load forecasting is the first step of all three time horizons of power systems
operations, making it a critical component. For the operations planning and near
real-time applications, hourly load forecasts are used. For real-time applications,
however, subhourly (minute-level) resolution is typically required. Once the mag-
nitude and geographic location of demand are obtained using load forecasts,
least-cost generation is scheduled to meet that demand. The production forecasts
of utility-scale renewable generation plants are also considered while scheduling
the generation. In the regions with high DER penetration, their production is also
considered; behind-the-meter DERs are typically considered negative load.

7.1.2.1.3 Markets

The landscape of the power sector has substantially changed after the introduction
of competitive markets coupled with the deregulation of the industry. This has led
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to the trading of electricity under market rules using spot and derivative contracts.
But the price dynamics of this unique commodity is different from any other
commodity because of its unique properties, requirements, and dependencies. For
example, energy typically experiences a constant balance between production and
consumption because large quantities are not economically storable. Additionally,
power demand can depend on weather factors, such as temperature, precipitation,
and wind speeds, and on the magnitude of activity in different sectors (i.e., holidays
vs. workdays, weekdays vs. weekends, on-peak vs. off-peak hours).

Electricity prices in the wholesale market, therefore, exhibit seasonality at
various timescales (daily, weekly, annually) as well as abrupt and brief price spikes.
According to [17], “[t]he costs of over-/under-contracting and then selling/buying
power in the balancing (or real-time) market are typically so high that they can lead
to huge financial losses or even bankruptcy. Extreme price volatility, which can be
up to two orders of magnitude higher than that of any other commodity or financial
asset, has forced market participants to hedge not only against volume risk but also
against price movements.”

Short-term electricity price forecasting is done for the day-ahead market, where
the bids are submitted for the delivery of electricity during each load period,
which can be hourly or subhourly. Medium-term time horizons are used for risk
management and derivative pricing. These forecasts can either be point-forecasts or
probability distributions of the prices. Long-term electricity price forecasts are done
for planning and economic feasibility analysis of future power plants, establishing
long-term power purchase agreements, forward capacity markets, seasonal capacity
markets, financial transmission rights auctions, and so on. The time horizon can vary
from months to years for such applications.

Renewable generation forecasts in the short term are also required for owners
to bid in the market. ISOs need the production forecasts of intermittent energy
sources to schedule the generation with sufficient reserves to minimize the risk
of underproduction. To avoid financial losses associated with underbidding or
overbidding, renewable generation plant owners need reasonably accurate forecasts
of solar and wind resources [18].

For each time horizon, the choice of input variables plays a significant role in the
effectiveness of the model for both traditional forecasting approaches as well as deep
learning methods. For short-term forecasts, the daily and hourly variability must be
considered. On the other hand, medium-term forecasting favors annual variations
more than weekly ones. For long-term price forecasts, seasonality itself becomes
irrelevant. Instead, long-term trends such as load-growth in a certain geographic
area, large penetration of cheap renewable energy resources in close proximity, and
EV load demand play the major role.

7.1.2.2 Classification Based on Timescale

In the previous section, various power systems forecasting models were discussed
in the context of their applicability to planning, operation, and market domains.
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Table 7.1 Types of forecasting models based on timescale

Forecasting type Time horizon Applications Methods

Nowcasting 5 min–6 h Load frequency
control, battery-use
optimization, real-time
market participation,
economic dispatch

Satellite-based
physical models (use
cloud motion
vector-based method);
sky imagery-based
physical models;
statistical/machine
learning models based
on historical data (e.g.,
persistence, ARMA,
SVRs, deep learning)

Short-term forecasting 6 h–1 week Unit commitment,
switching source,
rescheduling means of
production, day-ahead
market participation

Hybrid
NWP/statistical/machine
learning models

Medium-term forecasting 1 week–2 year Scheduling
maintenance, capacity
markets bidding, and
pricing

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models)

Long-term forecasting 2 year–5 year Long-term purchase
agreements, forward
capacity market,
management of
multiyear reservoirs,
nuclear fuel
management

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models)

Very long-term forecasting 25+ year Capacity expansion,
infrastructure
retirement,
policymaking

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models); general
circulation models
(climate models)

Another way of classifying the forecasting models in power systems is based on the
timescale for which the quantities are being forecasted. These timescales can mainly
be classified into five types, as given in Table 7.1.

7.1.3 Organization of the Chapter

The introduction section first lays out the motivation behind exploring newer
approaches such as deep learning for power systems predictive analytics. The
power systems forecasting problems are then classified in broad categories based on
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timescale of forecasting as well as their application in power systems planning, oper-
ations, and market domains. The second section, forecasting power systems using
classical approaches, takes a deeper look at the widely used statistical times-series
forecasting methods as well as traditional machine learning-based approaches.
The third section then introduces state-of-the-art deep learning algorithms and
explores their recent applications in the power systems forecasting literature. A solar
irradiance forecasting case study is discussed in detail in the fourth section. The fifth
section identifies future work areas in this domain and concludes the chapter.

7.2 Forecasting in Power Systems Using Classical
Approaches

The power systems forecasting problems discussed in the previous section most
closely align with the mathematical framework of the time series forecasting
problem. This section introduces this general mathematical framework and provides
a broad overview of several statistical and machine learning approaches to time
series forecasting. Note that deep learning methods are left to Sect. 7.3 to be
explored in more detail.

7.2.1 Time Series Data

A general time series dataset can be written as

{x1, x2, x3, . . . } , (7.1)

where each xt for t = 1, 2, 3, . . . represents the realization of some random variable.
A common additive modeling approach to characterizing Eq. (7.1) is to partition the
time series into a trend, seasonality, and stochastic term,

xt = Tt + St + Zt . (7.2)

The trend term Tt represents the long-term, nonperiodic changes in the data,
the seasonality term St describes any periodic behavior of the time series, and the
stochastic term Zt is stationary process (defined later) that models the random noise
in the data.

Note that Eq. (7.1) frames the time series data in terms of scalar-valued
quantities. This is done to simplify the discussion in this section in order to provide
a clear and broad overview of traditional approaches to time series forecasting. The
extension of this perspective to the multivariate case is relatively straightforward.
One feature of multivariate time series data that is important to power systems mod-
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eling is the concept of exogenous variables. In time series forecasting, exogenous
variables are causally independent of other factors in the system. In the case of
solar irradiance forecasting, examples of exogenous variables may include factors
like wind speed and cloud cover. Including exogenous variables in the forecasting
process may improve performance.

Recall that each xt in Eq. (7.1) is a realization of some random variable. The
complete time series is then fully characterized by the joint distribution of these ran-
dom variables. However, such a perspective is typically impractical or impossible
for real-world applications. A more reasonable approach is to characterize the time
series in terms of secondary properties, such as the mean and covariance functions
of the series,

μt = E [xt ] and σt,s = Cov [xt , xs] = E [(xt − μt) (xs − μs)] . (7.3)

The dependence of the value of xt on previous terms is characterized by
the autocovariance function γ t(h) = σ t, t + h and the autocorrelation function
ρt(h) = γ t(h)/γ t(0), where h is the lag parameter.

A key property of time series data is the idea of stationarity. A given time series
is said to be strictly stationary if any two subseries,

{xt , xt+1, xt+2, . . . , xt+n} and {xs, xs+1, xs+2, . . . , xs+n} for t, s, n ∈ N,

(7.4)

have the same joint distribution. Notice that if each xt in a given time series
is independent and identically distributed (iid), then the time series is strictly
stationary. Such a sequence drawn from a distribution with mean 0 and variance
σ 2 is typically referred to as white noise.

As discussed earlier, characterizing the full joint distribution of a time series
is not realistic for most real-world applications, making the identification of a time
series as strictly stationary infeasible. Alternatively, a time series is said to be weakly
(or wide-sense) stationary if any two subseries have the same mean and covariance
functions, μt and σ t, s, respectively. Equivalently, a weakly stationary time series
has mean and covariance functions that are independent of t. That is, μt = μ and
σ t, s = σ . Notice that this also implies that the autocovariance and autocorrelation
functions only depend on the lag parameter, γ t(h) = γ (h) and ρt(h) = ρ(h). Because
this definition is of more practical use, it is common to use the term stationary to
refer to weakly stationary and specifically refer to a time series as strictly stationary
when the stricter definition is meant.

The next two sections explore various statistical and machine learning
approaches to time series forecasting. In general, the goal of forecasting is to
predict values of future datapoints

{
x̂n+1, x̂n+2, . . .

}
given a finite set of observed

data {x1, x2, x3, . . . , xn}. Generally, time series forecasting is classified according to
the horizon out to which the forecast is made, as illustrated in Table 7.1.

The differences between short-, medium-, and long-term forecasts are highly
dependent on the problem under consideration. However, short- and medium-
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Fig. 7.2 Total solar irradiance measured daily from 1980 to 2000. These data come from the
NOAA’s National Centers for Environment Information database [19]

term forecasts typically are more dependent on autocorrelation factors and shorter
seasonality behaviors. These prediction horizons tend to be more amenable to the
types of data-driven methods covered here. Long-term forecasting seeks to model
trends in the data and often depends on the additional models of the relevant systems
to help predict changes in these trends.

Power systems forecasting is a particularly difficult problem. Figure 7.2 shows
an example time series data of total solar irradiance over a 20-year range [19]. It is
immediately obvious that this dataset is nonstationary (as is the case of many time
series data arising from power systems). The data show seasonal cycles of increased
and decreased solar irradiance that have a period of approximately 11 years. In
addition to fluctuations in the mean of the data, the seasonality also changes the
variance of the data. The time series varies more significantly during periods of
high solar irradiance and less significantly during periods of low solar irradiance.
Lastly, the example data in Fig. 7.2 highlight the differences in short-, medium-, and
long-term forecasting. Short-term forecasts are focused on accurately capturing the
high-frequency fluctuations in the data. Medium- and long-term predictions cannot
hope to perfectly predict these behaviors and instead focus on the large-scale trends
and seasonal characteristics in the time series.

7.2.2 Statistical Forecasting Approaches

7.2.2.1 Naïve Model Approach

The naïve model approach to time series forecasting simply predicts that the next
value in the sequence is the same as the current value,

x̂t+1 = xt . (7.5)
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This approach produces the optimal prediction for random walk data and is
therefore also known as the random walk model for time series forecasting. The
main purpose of this model is to serve as a simple baseline to compare with
more sophisticated models. This naïve model approach is also called the persistence
model [20].

7.2.2.2 Exponential Smoothing

Exponential smoothing is a relatively simple approach to modeling time series that
predicts new values in time series using a weighted moving average that more
heavily favors recent datapoints [21]. Given time series data {x1, x2, x3, . . . , xn},
the simple exponential smoothing model computes the smoothed approximation of
x̂n+1 as

x̂n+1 = αxn + (1 − α) x̂n, (7.6)

where α ∈ (0, 1) is the smoothing factor. Notice that this method computes a
weighted average of the current true value and the current predicted (or smoothed)
value. The current smoothed value was computed similarly. Thus, previous terms
contribute to the current predict value with exponentially decreasing importance.
The rate of this decay is controlled by the smoothing factor α. Extensions to simple
exponential smoothing incorporate trends and seasonality [22, 23].

Simple exponential smoothing is among the earliest forecasting techniques
applied to load forecasting [24]. In particular, this work explores the application of
exponential smoothing to short-term forecasting at hourly intervals. More recently,
several studies have explored the application of double seasonality exponential
smoothing to short-term load forecasting and found this approach to be robust
despite its relative simplicity [25, 26].

7.2.2.3 Autoregressive Moving Average (ARMA) Models

The autoregressive moving average (ARMA) model and its variations are powerful
forecasting tools that are among the most popular statistical methods for power
systems analysis. The ARMA model has long been used for power-related problems,
such as solar irradiance and load forecasting [27, 28]. More recently, an ARMA
variant called ARIMA (covered in the next section) has been applied to short-
term solar forecasting [29, 30], next-day electricity pricing [31], and hourly load
predictions [32].

As the name suggests, the ARMA model makes two key assumptions on the
time series. The first is that the time series data can be modeled by an autoregressive
process. An autoregressive process of order p, denoted by AR(p), assumes a linear
dependence of the current timestep on the previous p timesteps,
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x̂t =
p∑

i=1

ωixt−i + zt , (7.7)

where ωi are constants and zt is a white noise term. The second assumption of the
ARMA model is that of a moving average model. The moving average model of
order q, denoted by MA(q), represents the sequence as a linear relationship of some
other white noise sequence,

x̂t =
q∑

i=1

θizt−i + zt , (7.8)

where θ i are constants and each zt is an iid white noise term. The ARMA model of
orders p and q, denoted by ARMA(p, q), combines Eqs. (7.7) and (7.8) to form

x̂t =
p∑

i=1

ωixt−i +
q∑

i=1

θizt−i + zt . (7.9)

The ARMA model is typically solved using the Box-Jenkins method [33]. This
is an iterative process of specifying the model, fitting the parameters, and verifying
the process. Specifying the model involves the order of the ARMA(p, q) model (i.e.,
selecting the appropriate values of p and q). Heuristically, this can be accomplished
by examining the autocorrelation function ρt(h) and the partial autocorrelation
function. Recall that the autocorrelation function explains the relationship between
two terms with lag h. However, because this relationship can have a recursive
structure, it may be difficult to distinguish between a time series that is dependent
on the previous n points and one that is highly dependent only on the previous one.
The partial autocorrelation addresses this concern by filtering out the influence of
the intermediate terms {xt − 1, xt − 2, . . . , xt − h + 1}. This is computed by solving the
linear system

�α = γ, (7.10)

where (�)i, j = γ t(i − j) and (γ)i = γ t(i) for i, j = 1, 2, . . . , h. The partial
autocorrelation with lag h is αt(h) = (α)h. Reasonable guesses of p and q for
ARMA can be made from examining plots of the autocorrelation and partial
autocorrelation functions. If the autocorrelation plot slowly decays to zero and the
partial autocorrelation plot abruptly decays to zero after a lag of h, then the model is
likely ARMA(h, 0), or equivalently AR(h). Alternatively, if the partial autocorrelation
plot slowly decays to zero and the autocorrelation plot abruptly decays to zero after
a lag of h, then the model is likely ARMA(0, h) or MA(h). If both values slowly decay
to zero, then the model is likely ARMA(p, q) where the orders are taken to be a lag
after which the plots have sufficiently decayed. Selecting the appropriate value of p
and q can be difficult and take some trial and error.
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Once the order of the ARMA model has been determined, the parameters ωi

and θ i must be fit. This is accomplished using any preferred numerical optimization
method to solve for the maximum likelihood estimate of these parameters. Once
ωi and θ i have been computed, the model is examined for errors and overfitting. If
necessary, the process is repeated with a new model selection.

7.2.2.4 Autoregressive Moving Integrated Average (ARIMA) Models

The success and popularity of the ARMA model have led to multiple variations and
extensions of the method. The autoregressive integrated moving average (ARIMA)
model was introduced to address the stationarity assumption on the time series
data. ARIMA has been used recently for predicting the EV charging demand
for stochastic power systems operation [34]. It incorporates differencing of the
time series data to attempt to remove any nonstationary behavior. The number of
differencing steps d is treated as another modeling parameter so that the model is
written ARIMA(p, d, q).

Notice that the discussion of the Box–Jenkins method discussed in the previous
section appears to assume that both the autocorrelation and the partial autocorrela-
tion functions will eventually decay to zero (whether slowly or rapidly). If this is not
the case, then differencing may be applied to the data to remove the nonstationarity.
Differencing is a common approach to producing a stationary time series. One
differencing iteration produces a new time series with

yt = xt+1 − xt . (7.11)

The Box–Jenkins method determines d by differencing on the time series until the
autocorrelation and partial autocorrelation plots decay appropriately.

7.2.3 Machine Learning Forecasting Approaches

Supervised machine learning seeks to construct a predictive model f�(x), based
on a given training set of data {xi , yi}Ni=1, where xi and yi represent the
feature vector and the target value [35]. For time series forecasting, the feature
vectors are typically constructed by a moving window over the given data,
xi = [xi, xi + 1, xi + 2, . . . , xi + n]�, and the target value is the first datapoint after
this window, yi = xi + n + 1. The subscript � in the model denotes the collection of
parameters that are tuned to best fit the data. Machine learning methods fit the model
parameters from the data through iterative updates to reduce some loss function,
such as the squared-error loss L = ∑N

i=1(yi − f� (xi ))
2 or the absolute-error loss

L = ∑N
i=1 |yi − f� (xi )|.
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This section introduces two popular machine learning methods for time series
forecasting: the support vector regression (SVR) and the Gaussian process regres-
sion (GPR). There are many more approaches that may be appropriate depending
on the specific problem at hand, such as k-nearest neighbor regression or regression
trees. A more comprehensive overview of these methods can be found in [20, 36,
37]. Deep learning (or neural network) methods tend to fall within the realm of
machine learning as well. However, their discussion is reserved for Sect. 7.3 so that
they may be explored more in depth.

7.2.3.1 Support Vector Regression

Support vector regression (SVR) is a form of the popular machine learning approach
known as support vector machine (SVM) [38]. The linear SVR attempts to fit the
model

y = θ�x + θ0 (7.12)

to the data while minimizing ‖θ‖. A linear model may be insufficient to describe
the complex relationships underlying real-world datasets. Nonlinear or kernel SVR
reformulates the model as

y =
N∑

i=1

θik (xi , x) + θ0, (7.13)

where k(·, ·) is a kernel function such as the radial basis function, or squared-
exponential kernel k(xi, xj) = exp (−γ (xi − xj)2), where γ is a hyperparameter
that can be tuned using a grid search with cross-validation. The use of the kernel
function implicitly defines a nonlinear mapping of the feature vector to some higher-
dimensional space where a linear model is applied. This nonlinear mapping provides
greater flexibility than simply applying the linear model directly to the features as in
Eq. (7.12). Such a mapping is guaranteed to exist, provided that the kernel satisfies
the so-called Mercer condition [39].

As mentioned previously, training any machine learning model requires the
formulation of some loss function that informs the optimal set of model parameters.
For SVR, it is common to use the ε-insensitive loss function. This loss ignores
any points within ±ε of the model prediction and is equal to the absolute error in
the model for datapoints outside this range. Using the ε-insensitive loss, the SVR
learning problem can be stated as

min
	

‖	‖ + c

N∑

i=1

ξi subject to

∣∣∣∣∣
yi −

N∑

i=1

θik (xi , x) + θ0

∣∣∣∣∣
≤ ε + ξi (7.14)
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where ξ i are slack variables that penalize deviation outside the ε-insensitive region
of the loss function.

SVR is a popular machine learning approach to load forecasting [40–42]. SVRs
have also been combined with other approaches to enhance performance on the
short-term load forecasting problem. For example, an SVR can be combined with a
locally weighted regression method that more heavily favors nearby points when
making predictions [43]. Another approach combines SVRs with the empirical
mode decomposition that separates out the high- and low-frequency components
of a time series [44]. Both of these hybrid approaches were found to outperform the
classical SVR method.

7.2.3.2 Gaussian Process Regression

Gaussian process regression (GPR) approaches time series forecasting from a
Bayesian perspective by assuming that the underlying model for the data is drawn
from prior distribution of functions [45]. For GPR, this prior is assumed to be a
mixture of multivariate Gaussian random variables, or a Gaussian process,

f (x) ∼ GP (
m (x) , k

(
x, x′)) , (7.15)

where m(x) and k(x, x
′
) are the mean and variance function, respectively. Often, the

problem is formulated with mean zero and the kernel function equal to the squared-
exponential from SVR.

Conditioning on the given dataset generates the posterior distribution of f, which
is also a Gaussian process with mean and variance

E
[
f (x) |{xi , yi}Ni=1

]
= k(x)�K−1y,

Var
[
f (x) |{xi , yi}Ni=1

]
= k (x, x) − k(x)�K−1k (x) , (7.16)

where (y)i = yi, (K)i, j = k(xi, xj) and (k(x))i = k(xi, x) for any x. Using the decaying
exponential kernel, it can be shown that the model interpolates the data without any
variance. By assuming the data are corrupted by Gaussian noise with variance σ 2,
the posterior distribution then has mean and variance

E
[
f (x) |{xi , yi}Ni=1

]
= k(x)�

(
K + σ 2I

)−1
y,

Var
[
f (x) |{xi , yi}Ni=1

]
= k (x, x) − k(x)�

(
K + σ 2I

)−1
k (x) . (7.17)
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Gaussian processes have been applied to the load forecasting problem with
promising success [46]. Additionally, GPR has been used for renewable energy
forecasting relating to solar radiation [47] and wind power [48]. One study used
GPRs with time-based composite covariance to handle seasonality in solar radiation
data [49].

7.2.4 Shortcomings of Classical Approaches

Statistical and machine learning approaches to time series forecasting are powerful
tools for understanding and modeling power systems forecasts. These methods
have been performing reasonably well for short- and medium-term forecasting
with traditionally acceptable level of accuracies. However, these methods can
require significant data preprocessing that is not explored deeply here. For exam-
ple, most of the statistical approaches assume stationary time series data with
variable-independence and normality assumptions. Extensions to these methods that
effectively deal with nonstationary data require manual tuning of various meta-
parameters that essentially transform the data to be stationary.

Additionally, with the increasing dynamism in the future power systems, there
is a need to obtain forecasts with higher accuracy than what is being achieved
with traditional statistical and machine learning methods. The operations of power
systems are getting more dynamic in nature with bidirectional flow of power
through distributed energy resources, prosumer participation with demand-response,
and other smart grid technologies. Increasing renewable energy penetration and
decreasing synchronous generation resources are reducing the overall inertia of
the grid [50]. This requires a finer temporal resolution of the forecasts in order to
maintain reliable real-time operations of the grid. Furthermore, price forecasting for
electricity markets can benefit greatly from a small percentage gain in the prediction
accuracy, and better renewable energy forecasts are required by ISOs to lower the
amount of the costly operational reserves [51].

The next section examines the history and current state-of-the-art in deep learn-
ing methods for power systems forecasting. With their ability to represent complex
nonlinear behaviors in nonstationary, high-frequency, and high-dimensional time
series data, these methods have been shown to be more robust to some of the
abovementioned pitfalls of traditional approaches, but at the expense of some new
hurdles.

7.3 Forecasting in Power Systems Using Deep Learning

7.3.1 Deep Learning

Artificial neural networks (ANN) are universal function approximators [52]; that
is, it is possible to represent complex nonlinear behavior in a high-dimensional,
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high-frequency, and nonstationary time series using ANNs. A deep neural network
is an ANN with multiple hidden layers and nodes cascaded between input and
output layers. Deep neural networks are sophisticated neural networks that have
been successfully applied to analyze data in many disciplines in the past several
years such as computer vision, image recognition, automatic speech recognition,
bioinformatics, finance, and nature language processing [53].

In general, supervised machine learning algorithms are particularly task specific.
However, deep learning networks are capable of learning intricate structures in
large datasets, allowing them to generalize better to scenarios not present in the
training data. Because of their capability to learn nonlinear relationships between
input features, these networks can identify and ignore features that do not impact
the target variable by minimizing the appropriate weights. Consequently, deep
learning algorithms typically do not require the type of extensive data preprocessing
and feature engineering that is required of other traditional machine learning
methods. Additionally, deep learning algorithms are also capable of managing high-
dimensional datasets better than traditional machine learning algorithms.

Recurrent neural networks (RNN), long short-term memory networks (LSTM),
convolutional neural networks (CNN), autoencoders, restricted Boltzmann
machines, deep belief networks, and deep Boltzmann machines are all common
types of deep learning algorithms. The following sections introduce deep learning
algorithms that are often applied to power systems forecasting problems and
describe their mathematic framework briefly.

7.3.1.1 Recurrent Neural Network

Unlike traditional feedforward neural networks in which information flows from
each layer to the next, RNNs allow the output from a layer to flow back into itself.
This allows RNNs to process sequential data without assuming the independence
among the time series samples or the datapoints [54]. Feedforward networks lose
any knowledge of the system state after processing each time series sample, thereby
failing to account for the relationship between exogenous variables along the
temporal dimension. The recurrent edges in an RNN introduce temporal coupling
into the model. The internal memory, formed by the feedback connections of the
neurons in the hidden-layer nodes, updates the states of each neuron in the network
with the previous input. The addition of this temporal coupling, which unfolds over
time, allows RNNs to learn and exhibit complex system dynamics, making them
efficient at time series forecasting problems.

The input to an RNN is a sequence of real-valued datapoints {x1, x2, x3, . . . },
where xt represents the value of time series variables timestep t. Given a finite input
subsequence of length n, the target output for the RNN is the next value yn + 1.
Note that the target y values may contain the same variables as the input x values
but at future timesteps, or they may be different if the input includes exogenous
variables. The network output (i.e., the predictions from the network) is denoted
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Fig. 7.3 Unfolding of an RNN over the temporal dimension

by ŷt . Figure 7.3 shows how the network unfolds the data along the temporal
dimension. Mathematically, this unfolding is written as

ht = fh (Whxxt + Whhht−1 + bh) ,

ŷt+1 = fo

(
Wyhht + by

)
, (7.18)

where the current input datapoint xt is fed into the network along with the output of
the hidden layer from the previous timestep ht − 1, and the output from the hidden
layer is used to generate the prediction ŷt+1. The remaining terms in Eq. (7.18)
include the activation functions fo and fh, the weight matrices Whx, Whh, and Wyh,
and the biases for each layer bh and by.

7.3.1.2 Long Short-Term Memory Network

In theory, RNNs should be capable of handling long-term temporal relationships
because of their ability to retain information from previous timesteps. In practice,
vanishing gradients make it difficult for them to learn long-term dependencies. Long
short-term memory networks (LSTM) are a variation on the traditional RNN that are
more effective at learning long-term trends in data, making them efficient at time
series forecasting problems.

The key difference between RNNs and LSTMs is that the latter replaces hidden
nodes with a more complex memory cell that handles the recurrent transfer of
information (see Fig. 7.4). Four layers of neural connections, which exchange
information in a particular special way, form the foundation of these memory cells.
LSTMs are capable of learning long-term dependencies because the memory cells
retain the existing information and append the unit with the new information; in
RNNs, the content of the hidden node is replaced with the new value calculated
from the current input.
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Fig. 7.4 LSTM memory cell diagram (from [55])

The mathematical formulation governing the flow of information in a LSTM
cell is

ft = σ

(
Wf

[
h�

t−1 x�
t

]� + bf

)
,

it = σ

(
Wi

[
h�

t−1 x�
t

]� + bi

)
,

∼
Ct = tanh

(
Wc

[
h�

t−1 x�
t

]� + bc

)
,

Ct = ft ◦ Ct−1 + it ◦ ∼
Ct ,

ot = σ

(
Wo

[
h�

t−1 x�
t

]� + bo

)
,

ht = ot ◦ tanh (Ct ) . (7.19)

Note that the nodes in the cell operate on the concatenated vector
[
h�

t−1 x�
t

]�
where xt is the current input vector and ht − 1 denotes the output

from the cell at the previous timestep. The value Ct is the current state of the cell
and is defined by a combination of the information from the forget gate ft and the
input gate it (where ◦ denotes the element-wise Hadamard product). The output
gate ot is acted on by the cell state to produce the output of the cell ht. The various
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W’s and b’s represent the weights and biases in the cell, while σ and tanh are the
sigmoid and hyperbolic tangent activation functions, respectively.

Once the model is chosen, there are two main iterative phases in the learning
algorithm: (1) forward propagation and (2) weight update. For an RNN or LSTM,
the architecture first unfolds the time series input along the temporal dimension,
making the network similar to a traditional feedforward neural network. In the
forward propagation phase, the input vector propagates through the hidden layers
(using randomly initialized values for the weight matrices and biases) to compute
the output vector. The mismatch between the interim prediction output and the
actual target is calculated as a loss function (e.g., the mean squared-error loss).
The weights are updated using gradient descent with the gradients with respect to
the loss function computed using the backpropagation through time algorithm.

7.3.1.3 Other Relevant Models

WaveNet deep learning models were recently introduced that apply deep learning
techniques from audio signal processing and computer vision models to time series
(sequential) data [56]. Convolutional neural networks (CNN) are a type of deep
feedforward ANN that have been used to analyze visual imagery on a large scale.
A deep convolutional WaveNet architecture, which is variation of CNN, has been
successfully used for conditional time series forecasting [57].

7.3.2 Deep Learning Applications

Deep learning has been applied to a variety of power systems prediction problems
recently, including solar forecasting, building load forecasting, system load fore-
casting, wind forecasting, and electricity price forecasting. RNN and LSTMs are the
most popular architectures published in the literature for power systems forecasting
problems. The following sections discuss the recent literature of power systems
predictive analytics using deep learning.

7.3.2.1 Load Forecasting

Load forecasting may be done at either a systems level or building level and
for different time horizons. Deep neural networks have been used for building
energy load forecasting using an LSTM and an LSTM-based sequence to sequence
modeling approach [58]. Short-term residential load forecasting is done using
an LSTM in [59]. Shi et al. [60] propose a pooling-based RNN architecture,
which outperforms traditional RNNs, along with other traditional machine learning
algorithms in residential load forecasting. Another variation of RNN, called the
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gated recurrent unit network, is used in [61] for daily peak load forecasting. CNNs
with k-means clustering have also been applied for short-term load forecasting for
smart grids [62].

7.3.2.2 Generation Forecasting

In the field of renewable energy, deep learning has been applied for wind and solar
forecasting problems. A short-term wind forecasting problem is addressed using
RNNs with a so-called infinite feature selection method in [63] and using CNNs
in [64]. A hybrid deep learning approach is proposed for day-ahead wind power
forecasting in [65]. Wind and solar irradiance forecasting are done using CNNs
with input data obtained from numerical weather prediction in [66].

Solar forecasting methodologies vary widely based on the type of inputs being
used for the process. For example, a standard time series forecasting problem may
only make use of previous solar irradiance measurement (endogenous variables).
Alternatively, one might use ground-based meteorological parameters (exogenous
variables) or sky imagery/video for predicting solar irradiance. Siddiqui et al.
propose a deep learning-based approach for solar irradiance forecasting using sky
videos [67]. LSTMs are used for solar power forecasting by Gensler et al. in [68]
and RNNs are used in [69] for solar irradiance forecasting. Section 7.4 in this
chapter examines a case study in multi-time-horizon solar irradiance forecasting
using RNNs and LSTMs [55, 70].

7.3.2.3 Electricity Price Forecasting and Electric Vehicle Charging

Electricity price forecasting in competitive energy markets is a challenging predic-
tion problem because of the rare characteristics of electricity. Electricity cannot be
treated like other commodities because trading requires a balance between supply
and demand at every point in time. The failure to maintain this balance results in
blackouts and brownouts that are hugely detrimental to the society as a whole. The
research around deep learning-based approaches to electricity price forecasting is
growing. There have been a few articles exploring this topic [71–75]. Deep learning
has also been applied for demand-side management for smart charging of EVs [76].

7.3.3 Deep Learning Strengths and Shortcomings

Deep learning has shown promising results in the field of predictive analysis,
because of its ability to model complex, nonlinear relationships between various
exogenous input variables and the associated output. It is capable of uncovering
trends in the historical dataset, providing highly accurate forecasts. For power
systems forecasting problems, deep learning algorithms are increasingly outpacing
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traditional approaches for nowcasting and short-term forecasting. In order to
produce such accurate predictions for these time horizons, deep learning algorithms
require a relatively significant amount of training data. The next two sections
summarize the strengths and weaknesses of deep learning approaches in the context
of power systems forecasting problems.

7.3.3.1 Strengths

Deep learning algorithms with recurrent connections (e.g., RNN and LSTM) are
capable of capturing short- and long-term trends in time series data. When trained
using exogenous variables, these algorithms are effective at finding and modeling
the complex temporal relationships between various input variables. Deep learning
also has the rather unique capability of performing in situ feature engineering;
that is, extensive manual feature engineering is not required for deep learning
algorithms like traditional machine learning algorithms. The data availability in
power systems has exploded in recent years, creating a natural environment for the
emergence of deep learning algorithms. For this reason, it is reasonable to assume
that deep learning has yet to reach its full potential in revolutionizing power systems
predictive analytics field.

7.3.3.2 Shortcomings

Deep learning models have traditionally been difficult to train because of their
expensive computational costs. This limitation has been overcome in recent years
with technical advances in GPUs, network architectures, and development of perfor-
mance optimization techniques. While ANNs act as universal function approxima-
tors, they are also often a black-box approach to modeling. They lack interpretability
and are prone to overfitting because of the high capacity to learn (especially deep
neural networks). Also, deep learning algorithms require significant amounts of data
for training. For cases where data are limited, deep learning algorithms may not be
the optimal method to use. Lastly, for long-term forecasting horizons (5+ years),
statistical methods still provide reasonably good predictions, given the limited data
availability.

7.4 Case Study: Multi-Timescale Solar Irradiance
Forecasting Using Deep Learning

This section reviews an example of using deep learning for real-time forecasting
of solar irradiance [55, 70], where a unified architecture is proposed for predicting
multi-time-horizon solar irradiance. This work uses both RNNs and LSTMs to make
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Fig. 7.5 The seven SURFRAD research stations distributed across the continental USA

predictions of global horizontal irradiance (GHI), also referred to as the total solar
irradiance. Recall from Sect. 7.3 that these deep learning architectures use data from
previous timesteps to inform the current one. This allows the models to learn the
underlying dynamics of system in order to enhance their predictive capabilities.

7.4.1 Data

The data for this study come from the seven Surface Radiation Budget Network
(SURFRAD) measurement stations, scattered across the continental USA (see
Fig. 7.5) that measure various meteorological parameters, including solar radiation.
The distribution of these research stations across various climate zones demonstrates
the robustness of the constructed networks in predicting GHI.1 Minute-by-minute
meteorological data for 2009–2011 from this database is used in this study. The
data are averaged over each hour to obtain mean hourly GHI values for forecasting.

1Because the supervised training approach relies on the data from the given geographic location
to learn the relationships between the various meteorological inputs and the GHI, it is difficult to
transport/reuse this model for a climatically different geographical location. Thus, the model will
need to be trained with a location-specific dataset for using it in various geographical locations.
Therefore, the algorithm itself is robust for various locations, but the model needs to be retrained
for different locations.
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Data from 2010 and 2011 at each location are used for training while corresponding
data from 2009 are used for measuring performance.

7.4.1.1 Global Horizontal Irradiance

Global horizontal irradiance (GHI) refers to the total solar power per unit area that is
incident on some surface (e.g., a photovoltaic solar panel) and is typically measured
in W/m2. This value has two main components: (1) direct normal irradiance (DNI)
and (2) diffuse horizontal irradiance (DHI). The GHI at a particular time t can be
expressed as

GHIt = DNIt × cos (θ) + DHIt , (7.20)

where θ denotes the solar zenith angle, which is the angle between the zenith
(overhead) and the sun. This value is important to understanding the availability
of solar energy on the grid.

The constructed networks (discussed in Sect. 7.4.2) directly predict a value
known as the clear-sky index Kt. This value is a ratio of the true GHI to the expected
GHI in a cloud-free scenario,

Kt = GHIt
/

GHIclear
t

. (7.21)

The clear-sky index is a dimensionless value that describes the total solar
irradiance relative to a theoretical upper limit, which occurs in cloud-free situations.
This acts as a type of normalization for the model that can increase robustness to
location or seasonality. The clear-sky GHI (GHIclear

t ) in Eq. (7.21) is calculated
using the Bird clear-sky model [77] based on latitude, longitude, elevation, and
atmospheric parameters, such as column water vapor, ozone optical thickness, and
aerosol optical depth. Based on this calculation and the predicted clear-sky index
from the deep learning model, one can easily obtain the predicted GHI.

7.4.1.2 Exogenous Input Variables

The input to the deep learning model is a vector of 20 exogenous variables for each
timestep:

• downwelling global solar (W/m2),
• upwelling global solar (W/m2),
• direct-normal solar (W/m2),
• downwelling diffuse solar (W/m2),
• downwelling thermal infrared (W/m2),
• downwelling infrared case temperature (K),
• downwelling infrared dome temperature (K),
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• upwelling thermal infrared (W/m2),
• upwelling infrared case temperature (K),
• upwelling infrared dome temperature (K),
• global UVB (mW/m2),
• photosynthetically active radiation (W/m2),
• net solar (W/m2),
• net infrared (W/m2),
• net radiation (W/m2),
• 10-mean air temperature (C),
• relative humidity (%),
• wind speed (m/s),
• wind direction (

◦
),

• station pressure (mb).

Not all of the variables listed here are necessarily important to the solar irradiance
forecast, but they have been used in this case study. As an extension to this work,
further experiments can be conducted to understand the relevance of the individual
input variables and accordingly reduce the dimensionality of the dataset.

7.4.1.3 Data Preprocessing and Postprocessing

The algorithmic approach in this case study begins by preprocessing the data. This
includes removing extreme outliers (values which are +/− 4 standard deviation
away from the mean) as well as nighttime values, filling in missing data with the
mean value of surrounding points, and normalizing the input data vectors. The
clear-sky GHI is computed using the Bird model (see Sect. 7.4.1.1) and used to
transform target GHI values to the clear-sky index Kt. Postprocessing the data
includes recovering the predicted GHI from the clear-sky index and computing the
performance of the network using the mean squared error.

7.4.2 Model Architecture and Training

This case study examines two scenarios: (1) a fixed-time horizon that is similar
to other statistical and machine learning forecasting approaches (such as those
discussed in Sects. 7.2.2 and 7.2.3) and (2) a multi-time-horizon that is better suited
for the flexibility of a deep learning model. In the fixed-time case, separate models
are trained for each desired time horizon (1, 2, 3, and 4 h) while a single model is
used to predict all of the time horizons in the multi-time case. In both scenarios,
separate models are trained for each of the seven SURFRAD locations.

For the fixed-time-horizon problem, this study only considers traditional RNN
models and compares the performance of this deep learning method to standard
machine learning approaches. The network is constructed using rectified linear units
(ReLU) activation functions for all hidden layers and a linear activation on the
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output layer. The output is scalar-valued because the goal is to predict GHI for a
single time horizon.

The multi-time-horizon networks predict GHI at 1-, 2-, 3-, and 4-h time
horizons simultaneously, producing a four-dimensional output vector. This work
also proposes an extension to the unified architecture for predicting multi-time-
scale solar irradiance, which covers 5-min, 15-min, and other such intrahour
time horizons. This work compares LSTMs and RNNs; however, no comparison
is made to traditional machine learning methods because these approaches are
unable to perform multi-time-horizon predictions. The RNNs have similar activation
architectures to the fixed-time-horizon case. The LSTM networks use sigmoid and
hyperbolic tangent activations within the memory cells.

For training, the deep learning models have access to the target GHI values so
that the mean squared loss can be computed. The models are trained using stochastic
gradient descent where the gradients with respect to this loss are computed using
backpropagation through time. The training minibatch sizes are n = 100, and the
networks are trained for 1000 epochs.

7.4.3 Results

7.4.3.1 Single Time Horizon Model

Table 7.2 shows the comparison between the RNN performance and the perfor-
mance of other machine learning forecasting approaches. The values in the ML
column are those presented in [78] where the authors perform the same fixed-time-
horizon study using several traditional machine learning algorithms (SVRs, random
forests, and gradient boosting) as well as a traditional feedforward neural network.
The listed performance is the optimal performance across all testing algorithms for
each horizon/location combination. In each case, the RNN approach significantly
outperforms the others.

7.4.3.2 Multi-Time-Horizon Model

Table 7.3 contains the results of the RNN/LSTM comparison study for the multi-
time-horizon problem.2 Recall that for this study, a single RNN or LSTM network
is trained for each location that forecasts GHI out to all four time horizons. Neither
network architecture outperformed the other across all seven locations. However,
within each location there is a significant increase in error from the 3-h to the 4-h

2Note that Table 7.2 compares the GHI W/m2 values between RNN and traditional ML approaches
while Table 7.3 is comparing the performance of RNN and LSTM algorithms based on clear-sky
index (which is a dimensionless parameter).
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forecasting horizon. This could indicate that autocorrelation in the time series data
decays after 3 h.

7.5 Summary and Future Work

Given the rapidly occurring technological changes in power systems and their
forthcoming transformation into the smart grid, which operates as a part of a
complex amalgamation of interdependent transportation, communication, and IoT
networks, there is an urgent need for developing and deploying better algorithms
for forecasting the various power systems quantities. Moreover, operational uncer-
tainties continue to increase with the burgeoning share of utility-scale as well
as DER-scale renewable energy generation on the grid, calling for better short-
term forecasts. These play a significant role in the optimization of the operational
efficiency of power systems, both economically and in terms of reliability.

Forecasting accuracies for electricity price prediction play a major role in
maintaining the economic viability of energy producers’ businesses in the market.
Resource and load forecasting also have a major role to play in large-scale
deployment of microgrids because these quantities are the main inputs to the
optimization algorithms aimed at operating the microgrids intelligently (i.e., maxi-
mizing economic benefit while maintaining the reliability of the local supply).

Deep learning algorithms (e.g., RNNs and LSTMs) have been applied to power
systems forecasting problems with promising results in the recent literature. They
also offer the potential to continue improving as they are trained further on the
continuous stream of newly generated data. As with any research area, the goal is
to ultimately move these algorithms to the industry deployment phase. Because of
their low forward inference time (on the order of milliseconds), these algorithms and
architectures can provide forecasts in the near real-time horizon. The performance
of the deployed systems can be further improved by implementing sophisticated
hyperparameter tuning mechanisms.

The following two sections briefly note some areas where there is plenty of scope
as well as a need for further development of deep learning applications for power
systems.

7.5.1 Deterministic Versus Probabilistic Forecasting

The forecasted values from the deep learning models discussed in Sect. 7.3 are
deterministic in nature. That is, given the same sequence of inputs, the networks will
always produce the same output. Furthermore, there is no measure of confidence
related to the predictions. Recall the Gaussian process regression (GPR) from Sect.
7.2.3.2. This probabilistic forecasting approach naturally produces a measure of
confidence based on the variance in the GP. As the predicted values get further
from any given data, the variance grows and the confidence in the predicted value
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decreases. Such understanding of uncertainties in power systems forecasting is
critical because of the highly variable nature of the data and the large cost of grid
blackouts and brownouts. Some work has considered how deep learning can be
recast as a probabilistic model [79, 80], but continued research into the topic is
critical.

7.5.2 Other Potential Applications

Anomaly detection in smart grids is a timely and relevant topic as the distribution
grid infrastructure in industrialized countries like the USA has aged and needs
refurbishment and replacement to maintain the reliability of the supply. There has
been relatively less progress in applying deep learning algorithms for anomaly
detection in power systems prognostics and fault prediction problems [81–83]. The
application areas include anomaly detection for predicting the remaining useful life
of the components of power systems, predicting impending fault on power systems,
and predicting building level faults based on the data from building sensors.
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