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Control of Cooperative Unmanned Aerial
Vehicles: Review of Applications,
Challenges, and Algorithms
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Abstract A system of cooperative unmanned aerial vehicles (UAVs) is a group
of agents interacting with each other and the surrounding environment to achieve
a specific task. In contrast with a single UAV, UAV swarms are expected to
benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the
provision of external communications potentially exposes them to an additional
layer of faults, failures, uncertainties, and cyberattacks and can contribute to the
propagation of error from one component to other components in a network. Also,
other challenges such as complex nonlinear dynamic of UAVs, collision avoidance,
velocity matching, and cohesion should be addressed adequately. Main applications
of cooperative UAVs are border patrol; search and rescue; surveillance; mapping;
military. Challenges to be addressed in decision and control in cooperative systems
may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity
matching, and cohesion. In this paper, emerging topics in the field of cooperative
UAVs control and their associated practical approaches are reviewed.
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CML Concurrent mapping and localization
DDDAS Dynamic Data-Driven Application System
DDF Decentralized Data Fusion
DI Dynamic inversion
DoS Denial of service
ECM Electronic Counter-Measure
EJ Escort Jamming
FDI Fault Detection and Identification
FTC Fault Tolerant Controllers
GNN Grossberg Neural Network
LIDAR Light detection and ranging
LOS Line of Sight
LQR Linear Quadratic Regulator
PC Probability collective
PDF Probability Density Function
POMDP Observable Markov Decision Process
PN Proportional navigation
PP Pure pursuit
PRS Personal Remote Sensing
ROS Robot Operating System
SAM Surface-to-Air Missile
SLAM Simultaneous Localization and Mapping
SWEEP Swarm Experimentation and Evaluation Platform
TDS Time delay switch
UAV Unmanned Aerial Vehicles
UCAVs Unmanned Combat Air Vehicles
WSN Wireless Sensor Network

10.1 Introduction

Swarm intelligence deals with physical and artificial systems formed of entities that
have internal and external interactions coordinating by incentive or a predefined
control algorithm. Flocking of birds, swarming of insects, shoaling of fishes, and
herding of quadrupeds were a motive for the cooperated control of UAVs. A group
of UAVs can be modeled similar to natural animal cooperation where bodies operate
as a system toward reaching mutual benefits. Animals can benefit from swarm
performance in defending against predators, food seeking, navigation, and energy
saving. Cooperative multi-robots complete a task in a shorter time [1], have synergy
[2, 3], and cover a larger area. They are also more cost-effective using smaller,
simpler, and more durable robots [4]. Furthermore, they can complete a task more
accurately and robustly [5].
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Cooperative control is one of the most attractive topics in the field of control sys-
tems which has received the attention of many researchers. Cooperative algorithms
and utilization are mainly discussed in the recent decade. Many useful surveys have
been done to review the recent contributions in this field [6–11]. However, most
of them were just focused on the algorithms and on the consensus control theory.
A valuable review of the consensus control problem was done by Ren et al. [6];
however, significant contributions have been done thereafter. Anderson et al. [7]
also focused on consensus control of the multi-agent systems. Wang et al. [8] and
Zhu et al. [10] reviewed most of the consensus control problems; however, other
cooperative techniques and the application of these algorithms were not discussed.
Senanyake et al. investigated cooperative algorithms for searching and tracking
applications [11]; however, the other algorithms and applications of the cooperative
system were not considered.

To enhance the current related literature mentioned above and cover most of the
applications and algorithms, the recent research studies in the field of cooperative
control design will be reviewed. The applications, algorithms, and challenges
are considered. The applications are categorized into surveillance, search and
rescue, mapping, and military applications; then, the recent developments related to
each category are reviewed. Similarly, the algorithms can be categorized into three
main classes: consensus control, flocking control, and guidance based cooperative
control. The challenges related to the cooperative control and applications of
cooperative algorithms are investigated in a separate section. Moreover, the related
mathematics of cooperative control algorithms is simplified to make it easier for
readers to understand the concepts.

This paper is organized as follows: Sect. 10.2 provides potential applications of
cooperative control, and Sect. 10.3 highlights possible challenges when applying
cooperative control. Section 10.4 reviews algorithms used in cooperative control
design. Finally, Sect. 10.5 provides the summary and conclusion of this work.

10.2 Applications and Literature Review

Cooperative control of multiple unmanned vehicles is one of the topics in control
areas that have received increasing interest in the past several years. Single
UAVs have been applied for various applications, and recently, investigators have
attempted to expand and improve their applications by using a combination of
multiple agents. The multiple agents concept has been used for search and rescue
[2, 12–16], geographic mapping [17–20], military applications [21–23], etc. In this
section, the current and potential applications of the cooperative control of UAVs
are surveyed.
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Fig. 10.1 A cooperative approach to search for a victim in a hard to access area [25]

10.2.1 Search and Rescue

UAVs have been used for several years for search and rescue purposes since they
are more compact and cost-effective and require less amount of time to deploy than
a plane or helicopter, particularly when multiple numbers of UAVs are required
to accomplish the task. Figure 10.1 displays a scenario for cooperative control
of quadrotors to search for and rescue a patient or missing person in a hard to
access environment. In this kind of operation, search time is the most critical
factor. To satisfy the time constraint, Scherer et al. implemented a distributed
control system in the robot operating system (ROS) of the multiple multi-copters,
to capture the situations and display them as video streams in real-time at base
stations [24]. Since UAVs have their advantages such as agility, swiftness, remote-
controlling, birds eye-vision, and other integrities, they can creditably perform
practical work promptly. However, when those advantageous of UAVs are operated
by a cooperative control algorithm to complete a mission, the requirement of
minimum time delay and other critical constraints can be achieved in searching and
rescuing casualties or victims.

Many types of research and experiments are performed in search and rescue
requiring cooperative control unmanned aerial vehicles (CCUAVs). For example,
Waharte et al. showed that employing multiple autonomous UAVs has excellent
benefits in the search and rescue operations for the corollary of Hurricane Kat-
rina in September 2006. The notable sophistication of their work was that they
divided the real-time approaches into three main categories which were greedy
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heuristics, potential-based heuristics, and partially observable Markov decision
process (POMDP) based heuristics [25]. In a case of fire, Maza et al. investigated
a multi-UAV firefighters monitoring mission in the framework of the AWARE
Project using two autonomous helicopters to monitor the firemen’s performance
and safety in real-time from a simulated situation where firefighters are assisting
injured people in front of a burning building. This work has been done based
on their previous work’s algorithm [26], SIT algorithm, which follows a market-
based approach combined with a network of ground cameras and a wireless sensor
network (WSN) [27]. Another scenario that CCUAVs can be wholly beneficial is
to search and rescue missing persons in a wilderness. It has been many centuries
that travelers had been lost in wildernesses such as mountains, oceans, deserts,
jungles, rain forests, or any abandoned or uncolonized areas. Some of the missing
people could be found and rescued, but many of them were lost from their families
forever. Goodrich et al. have shown and identified a set of operational practices for
using mini unmanned aerial vehicles (mUAVs) to support wilderness search and
rescue (WiSAR) operations. In their work, technical operations such as sequential
operations, remote-led operations, and base-led operations have been used to gather
and analyze evidence or potential signs of a lost person to simulate a stochastic
model of his behavior and a geographic description of a particular region. If the
model is well matched to a specific victim, then the location of the missing person
would be estimated according to the probability of the area where the lost person
could be located [12]. The result of their research shows that the mUAVs could
address the limitations of human-crewed aircraft which also upholds the research
algorithm of CCUAVs.

10.2.2 Surveillance

Surveillance is one of the applications of UAVs that have been widely used.
Figure 10.2 shows an overall scheme of the surveillance application using the
cooperative quadrotors system. Bread et al. studied aerial surveillance of fixed-
wing multi-UAVs. Fixed-wing aircraft may have a significant advantage in speed.
However, the lack of hovering ability would increase their chance of collision
when they work in cooperative control mode. To mitigate and overcome this
constraint, Bread et al. presented an approach which consists of four significant
steps: cooperation objective and constraints, coordination variable and coordination
function, centralized cooperation scheme, and consensus building [28].

Ahmadzadeh et al. [16] have studied the cooperative motion-planning problem
for a group of heterogeneous UAVs. In their work, the surveillance operations
were conducted via the body-fixed cameras equipped on their fixed-wing UAV.
They demonstrated multi-UAV cooperative surveillance with spatiotemporal spec-
ifications [16]. Besides, they used an integer programming strategy to reduce the
computational effort. The main contribution of their study was to generate an
appropriate trajectory associated with the complexities of coupling cameras field
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Fig. 10.2 Cooperative surveillance concept for patrolling urban areas

of view with flight paths. Paley et al. designed a glider with a coordinated control
system for long-duration ocean sampling using real-time feedback control [23].
In their design, agents were modeled as Newtonian particles to steer a set of
coordinated trajectories. However, this model cannot be applied for closed flocking
due to the assumption that there is enough space between particles.

In the case of persistent surveillance, Nigam et al. have intensively researched on
UAVs for persistent surveillance and their works have been consecutively released
in the past few years. Their early efforts focused on investigating techniques for a
high-level, scalable, reliable, efficient, and robust control of multiple UAVs [14]
and derived an optimum policy with a single UAV [29]. They also suggested
that modifications of the existing control policies would improve the system
performance under dynamic constraints and proposed multi-agent reactive policy
to integrate multiple UAVs and optimized the performance using a real-encode
probability collective (PC) optimization framework. In the later works, Nigam et
al. have developed algorithms to control multiple UAVs for persistent surveillance
and devised a semi-heuristic approach for a surveillance task using multiple UAVs
[15]. Their research considered the effect of aircraft dynamics on the performance of
the designed cooperative mission and the advantages of their policy’s performance
was demonstrated by comparing it with other benchmark approaches such as
the potential field-like approach, the planning-based approach, and the optimum
approach. Paley and Peterson developed their previous research for ocean sampling
[23], for environmental monitoring and surveillance [30]. Each UAV was considered
as a Newton particle which was incorporated in a gyroscopic steering control
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system. This design has several drawbacks: first, obstacle avoidance in Newton
particle method is not considered; second, all UAVs are moving in the same
direction which is not flexible for surveillance and searching tasks; third, each UAV
orbit around an inertially fixed point at constant radius which is not an energy
efficient method for monitoring and surveillance.

10.2.3 Localization and Mapping

High agility, wide vision, and accessibility are some of the significant factors that
made the UAVs a popular tool to map and model lands or terrains [18]. UAVs
have been used to map in several types of research [18–20]. Figure 10.3 shows
the concept of cooperative 3D mapping by multiple quadrotors. Remondino et al.
used UAVs for space-mapping and 3D-modeling in several types of vehicles and
techniques [18]. One of the high systems in the mapping technology of UAVs is
known as light detection and ranging (LIDAR) was employed by Lin et al. [19].
They have applied the LIDAR-based system on a mini-UAV-borne cooperating with
Ibeo Lux and Sick laser scanners and an AVT Pike F-421 CCCD camera to map a
local area in Vanttila, Espoo, Finland in a fine-scale.

As the surveillance and searching algorithms, the cooperative mapping task of
UAVs can help to improve the accuracy and reduce the operation time through
sharing their responsibilities. Cooperative control of autonomous vehicles can be

Fig. 10.3 Cooperative three-dimensional mapping using quadrotor UAVs
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used to make a map for an unknown environment and 3D-modeling. Fenwick
et al. introduced a novel algorithm for concurrent mapping and localization (CML)
which combines the information of navigation and sensors of multiple unmanned
vehicles [17]. This algorithm is working based on stochastic estimation and to
extract landmarks from the mapping area using a feature-based approach. Gktoan
et al. developed and demonstrated the multiple sensing nodes of numerous UAV
platforms using decentralized data fusion (DDF) algorithm to simultaneously
localize and map the flight simulator in real-time [31].

Simultaneous localization and mapping (SLAM) presented by Williams et al.
[32] can be used to examine the prospect of the constrained local submap filter
(CLSF) algorithm and applied to the multi-UAVs as SLAM algorithm. The advan-
tage of this approach is that it allows the cross-covariance process to be scheduled
at convenient intervals and aids in the data association problem.

Localization and mapping in unsafe or obscure places is another critical appli-
cation of UAVs. Multi-UAV cooperative control has been used for mapping in wild
or unknown areas in several types of research [33, 34] such as the continuation
of the SLAM algorithm and its applications presented by Bryson and Sukkarieh
[33]. Han et al. have introduced personal remote sensing (PRS) multi-UAVs for
contour mapping in two scenarios of nuclear radiation [34]. Their work also
focused on the costs of the multi-UAVs and the efficiency of atomic radiation
detection in a necessary time which were the main advantages over a single UAV
mapping. Kovacina et al. also focused on mapping a hazardous substance which
was a chemical cloud. To map the chemical cloud, Kovacina et al. used swarm
experimentation and evaluation platform (SWEEP) with their developed rule-based,
decentralized control algorithm to simulate an air vehicle swarm searching for and
mapping a chemical cloud [35].

10.2.4 Military Applications

The cooperative control of UAVs has various practical and potential military appli-
cations varying from reconnaissance and radar deception to surface-to-air-missile
jamming. It has been demonstrated that a group of low-cost and well-organized
UAVs can have better effects than a single high-cost UAV [36]. Generally, the
application of cooperative control for the unmanned system in the military can
be categorized into two main categories: reconnaissance and penetrating strategies.
To achieve these types of applications, UAVs may need to flying near each other
with a specific structure. Formation flight control is one of the most straightforward
cooperative strategies which consists of a set of aircrafts flying near to each other
in a defined distance [37]. One of the advantages of flight formation is a significant
reduction in fuel consumption through locating the follower aircraft such that the
vortex of the leader aircraft reduces the induced drag of the follower aircraft [38].
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Fig. 10.4 Target detection using multiple cooperative UAVs in a reconnaissance mission [44]

10.2.4.1 Reconnaissance Strategy

A formation or cooperative design of UAVs can be used as reliable radars or
reconnaissance tools to detect enemy troops and ballistic missiles [39, 40]. The
integration of the UAVs radars will help to identify incursion objects or observe
ground activities of an adversary [41, 42]. Ahmadzadeh et al. introduced a coop-
erative strategy to enable a heterogeneous team of UAVs to gather information for
situational awareness [43]. In their work, an overall framework for reconnaissance
and an algorithm for cooperative control of UAVs considering collision and obstacle
avoidance were presented. Figure 10.4 shows a reconnaissance mission using
multiple cooperative UAVs.

10.2.4.2 Penetrating Strategy

The new and robust defense mechanism of rivals makes it difficult to penetrate to
their territories. To this aim, various strategies have been designed to deceive the
target radar and defense mechanism [45–47].

Being hidden from the enemy radars through electronic counter-measure (ECM)
is called radar jamming which is a very important action that is mostly used by
unmanned combat air vehicles (UCAVs) to protect or defend themselves from
surface-to-air missiles when the vehicles reconnoiter into enemy territories. The
radar jamming consists of sending some noise to deceive the enemies radar signal.
The radar jamming and deception can be more effective when a group of UCAVs
works together. Jongrae et al. focused on the escort jamming (EJ) of the UAVs while
a close formation and cooperative control procedure are designed to deceive the
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Fig. 10.5 Cooperative radar
jamming using multiple
UAVs [45]

tracking radar of the surface-to-air missile (SAM) [45]. Generally, jamming can be
classified into two categories: self or support jamming. Figure 10.5 shows the two
mentioned methods of interference, where “D” shows the self-jamming and “A, B,
C” UAVs show the support jamming.

The missiles control system is similar to the UAV control system. However, they
are not designed to come back to the station. Since penetrating to the high-tech
defense mechanism of a target is very complicated, a group of cooperative missiles
will have more chance to penetrate a defense mechanism in comparison with being
independently operated [46, 47]. Figure 10.6 shows a collective missile attack to a
ship target.

10.3 Challenges

Multi-UAV systems have advantages over single UAVs in the impact of failure,
scalability, survivability, the speed of the mission, cost, required bandwidth, and
range of antennas [48]. However, these systems are complex and hard to coordinate.
Gupta and Vaszkun considered three challenges in providing a stable and reliable
UAV network: architectural design of networks; routing the packet from an origin
to a destination and optimizing the metric; transferring from an out-of-service UAV
to an active UAV, and energy conservation [48]. According to a study at MIT,
the main challenges associated with the development and testing of cooperative
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Fig. 10.6 Cooperative
missile attacking concept to a
target

UAVs in dynamic and uncertain situations are real-time planning; designing a robust
controller; and using communication networks [23]. Ryan et al. address issues
in cooperative UAV control which are aerial surveillance, detection, and tracking
which allows vision-based control; collision and obstacle avoidance and formation
reconfiguration; high-level control needed for real-time human interfacing; and
security of communication links [49]. Oh et al. addressed the problem of modeling
the agent’s interactions with each other and with the environment which is chal-
lenging to predict [50]. The most significant challenges in cooperative control of
multi-agent systems can be summarized as below.

1. In cooperative control, instead of developing a control objective for a single
system, it is necessary to devise control objectives for several sub-systems.
Moreover, the relation between the team goal and agent goal needs to be
negotiated and balanced [51].

2. The communication bandwidth and quality of connection among agents in the
system are limited and variable. Moreover, the security of communication links
in the presence of intruders should be considered in the design [52–55]. The
CUAV is vulnerable to a range of cyberattacks such as denial of service (DoS)
and time delay switch (TDS) attacks [56–59].

3. The aerodynamic interference of the agents on each other should be considered
in the design [50]. Close cooperative flight control or formation has also
specific aerodynamic challenges which are called aerodynamic coupling. These
aerodynamic interferences are caused by the vortex effect of the leading aircraft
and should be modeled and quantified in the controller design to avoid their
critical impact on the system stability. Otherwise, unwanted rolling or yawing
moment will be generated which can destabilize the overall system [60, 61].
However, incorporating the coupled dynamic in the formation design can help
to reduce energy consumption through the mission [62, 63].
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4. The controller design of CUAV should include fault tolerable algorithms through
software redundancy because hardware redundancy is not an option for mini-
UAVs. The fault tolerant control design for one UAV is a challenging task by
itself, which has been discussed in the literature [64, 65].

10.4 Algorithms

The cooperative algorithms can be categorized into three main groups based on their
methodologies. They are (1) consensus techniques; (2) flocking techniques; and (3)
formation based techniques. Figure 10.7 shows the main algorithms that are used for
the UAVs system. Algorithms for consensus control, flocking control, and formation
control are discussed below, respectively.

10.4.1 Consensus Strategies

In the area of cooperative control, consensus control is an important and complicated
problem. In consensus control, a group of agents communicates with each other
through a sensing or communication network to reach a common decision. The
roots of the consensus control belong to computer science and parallel computing
[66, 67]. In the last decade, the research works of Jadbabaie et al. [68] and Olfati-
Saber et al. [69] had a considerable impact on other researchers to work on
consensus control problems. Generally, Jadbabaie et al. [68] provided a theoretical
explanation for the alignment behavior of the dynamic model introduced by Vicsek
[70], and Olfati-Saber introduced a general framework to solve consensus control
problem of the networks of the integrators [69]. In the following subsection, the
basic concepts of the consensus control will be explained; then, recent research
works in this area will be reviewed. In the cooperative control, the communications
among agents are modeled by undirected graphs. Thus, a basic knowledge of graph

Cooperative Algorithms

Consensus
Algorithms

Flocking
Algorithms

Guidance-Law
Algorithms

Fig. 10.7 Cooperative algorithms are categorized and explained in three main algorithms
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Fig. 10.8 Directed and undirected graph structure

theory is needed to understand the concept of cooperative algorithms. Therefore, the
basic concept of graph theory will be briefly explained, followed by the concept of
consensus control theory.

10.4.1.1 Graph Theory Basics in Communication Systems

Communications or sensing among the agents of a team is commonly modeled by
undirected graphs. An undirected graph is denoted by G = (V , ε,A), where V =
{1, 2, . . . , N} is the set of N nodes or agents in the network, and ε(i, j) ∈ V × V

is set of edges between the ordered pairs of j th and ith agents. β = [aij ] ∈ RN×N

is the adjacency matrix associated with graph G which is symmetric, and ai,j is a
positive value if (i, j) ∈ ε and i �= j , otherwise aij =0. Figure 10.8 shows the basic
structure of a directed and undirected graph.

For example the adjacency matrix associated with the undirected graph shown in
Fig. 10.8 is

β =

⎡
⎢⎢⎣

0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 0 1 1 0

⎤
⎥⎥⎦ (10.1)

where node A, B, C, D, and E are considered to be nodes 1, 2, 3, 4, and 5,
respectively.
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10.4.1.2 Consensus Control Theory

The basic concept of the consensus control theory is to stimulate similar dynamics
on the state’s information of each agent in the group. Based on the communication
type, each agent (vehicle) in the system can be modeled based on differential
or difference equations. If the bandwidth of the communication network among
the agents is large enough to allow continuous communication, then a differential
equation can be used to model agent dynamics. Otherwise, the transmitted data
among agents should be sent through discrete packets that need difference equations
to model the agent dynamics. These are briefly explained here.

• Continuous-time Consensus: The most common consensus algorithm used for
the dynamics defined by differential equations can be presented as [6, 71, 72]

ẋi (t) = −
n∑

j=1

aij (t)
(
xi(t) − xj (t)

)
, i = 1, . . . , n (10.2)

where xi(t) is the information state of the ith agent, and aij (t) is the (i, j)

element of the adjacency matrix β which is obtained from the graph G. If aij = 0,
it indicates that there is no connection between agents i and j , subsequently, they
cannot exchange any information between them. The consensus algorithm shown
in Eq. 10.2 can be rewritten in a matrix form as

ẋ(t) = −L(t)x(t) (10.3)

where the Laplacian matrix L = [lij ] ∈ RN×N is related to the graph G and can
be obtained as follows

lij =
{∑

j∈Ni
, i = j

−ai,j , i �= j
(10.4)

Since the lij has zero row sums, an eigenvalue of L is 0, which is associated with
an eigenvector of 1. Because L is symmetric, in a connected graph, L has N − 1
real eigenvalues on the right side of the imaginary plane. Thus, N eigenvalues of
L can be defined as follows

0 = λ1 < λ2 ≤ λ2 . . . ≤ λN (10.5)

Based on this condition and the fact that L is symmetric, the diagonalized L

can be obtained by orthogonal transformation matrix as

L = PJP T (10.6)

where P consists of the eigenvectors of the L and J is a diagonal form of L

which are defined as follows
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P = [r1 r2 . . . rn]

J =
[

0 01×(N−1)

0(N−1)×1 γ

]

where γ is a matrix with diagonal form which contains N − 1 eigenvalues of L

which have positive values, and ri , i ∈ {1, 2, . . . , N} describes the eigenvectors
of L where rT

i ri = 1 [6].
It can be claimed that consensus is achieved for a team of agents for all xi(0)

and all i, j = 1, . . . , n, if limt→∞|xi(t) − xj (t)| = 0 [6].
• Discrete-time Consensus: The discrete-time consensus is used when the com-

munication bandwidth among the agents in the team is weak or occurs at discrete
instants. In this case, the information states are updated through difference
equations. The following form commonly presents the discrete-time consensus
[73–76]

xi[k + 1] =
n∑

j=1

dij [k]xj [k], i = 1, . . . , n (10.7)

where k is the solving step associated to the communication event; dij [k] is the
(i, j) element of the stochastic matrix D = [dij ] ∈ Rn×n. The discrete-time
consensus algorithm in Eq. 10.7 can be rewritten in a matrix form as

x[k + 1] = D[k]x[k] (10.8)

where D = [dij ] > 0, if i �= j and the information flows from the agent j to i,
otherwise dij [k] = 0 [75]. Similarly, a discrete-time consensus is achieved for a
team of agents for all xi[0] and all i, j = 1, . . . , n, if we have limk→∞|xi[k] −
xj [k]| = 0 [75].

10.4.1.3 Consensus Recent Researches

The consensus control algorithm, which is based on graph theory, has received a
growing interest among researchers [77, 78]. Jamshidi et al. developed a testbed and
a consensus technique for cooperative control of UAVs [77]. Rezaee and Abdollahi
proposed a consensus protocol for a class of high-order multi-agent systems [78].
They showed how agents achieve consensus on the average of any shared quantities
using their relative positions. Li presented a geometric decomposition approach for
cooperative agents [79]. Under topology adjustments, decomposing a system into
sufficiently simple sub-systems facilitates subsequent analyses and provides the
flexibility of choice. Liang et al. introduced an observer-based discrete consensus
control system. The nonlinear observer was used to obtain the states of the agents,
and a feedback control law was designed based on the data received from the
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Fig. 10.9 Multi-consensus control of three subgroups by Han et al. [82]

observer [80]. Xia et al. introduced an optimal design for consensus control of
agents with double-integrator dynamics with collision avoidance considerations
[81]. Han et al. introduced a nonlinear multi-consensus control strategy for multi-
agent systems [82]. In their research, both of the switching and fixed topology
were considered, and their consensus controller could control three subgroups,
as shown in Fig. 10.9. They were also compared their research work with their
previous work [83] in which they could reduce the convergence time in consensus
control. Shoja et al. introduced an estimator based consensus control scheme for
agents with nonlinear and nonidentical dynamic systems [84]. In their design, they
used an undirected graph model for their communication system among the agents,
and multiple leaders were considered in their design. A sliding mode consensus
control design for double-integrator multi-agent systems and 3-DoF helicopters
was introduced by Hou et al. [85]. The advantage of their proposed method
was achieving synchronization in the presence of disturbances and the ability to
be implemented on 3-DoF model of helicopters.

Taheri et al. introduced an adaptive fuzzy wavelet network approach for con-
sensus control of a class of a nonlinear second-order multi-agent system [86]. The
adaptive laws were obtained using the Lyapunov theory to maintain the nonlinear
dynamic stability. Then, an adaptive fuzzy wavelet network was used to compensate
for the effect of unknown dynamics and time delay in the system. However, the
authors did not address the design of a consensus control design for a second-
order multi-agent system with a directed graph. Neural networks and robust control
techniques have been used in [87] and [88] to design a consensus controller for
higher-order multi-agent systems and their semi-global boundedness of consensus
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error was ensured by choosing sufficiently large control gains. Consensus fault
tolerant controllers (FTC) with the ability to tolerate faults in the actuators of agents
in a multi-agent system were also investigated [89–91]. Gallehdari et al. introduced
an online redistributed control reconfiguration approach that employed the nearest
neighbor information and the internal fault detection and identification (FDI) of the
agent to keep the consensus control in the presence of faults in the actuators. They
used the first-order dynamic model for their agents, and their proposed controller
was designed based on minimizing the cost of faulty agent performance index
which led to optimizing the performance index of the team. Later, they developed
their work to optimize all the agents in the consensus FTC system [90]. Hua et al.
introduced a consensus FTC design for time-varying high-order linear systems
which could tolerate faults in the actuators [91].

Wang et al. introduced a new smooth function-based adaptive consensus control
approach for multi-agent systems with nonlinear dynamic, unknown parameters,
and uncertain disturbances without the need for the assumption of linearly param-
eterized reference trajectory [92]. Their approach was based on the premise of
transmitting data among the agents based on an undirected graph model. Later, they
extended their work for directed graph model as well [93].

10.4.2 Flocking Based Strategies

Flocking can be defined as a form of collective behavior of a group of interacting
agents with mutual objectives. Flocking algorithms are inspired by a flock of birds
and developed based on Reynolds rules. Reynolds modeled the steering behavior
of each agent based on the positions and velocities of nearby flock-mates, using
three terms of separation (collision avoidance), alignment (velocity matching), and
cohesion (flock centering) [94].

10.4.2.1 Flocking Control Theory

Similar to consensus algorithms, flocking algorithms are based on graph theory.
Unlike the formation strategies that require the group of agents to be in a particular
shape, the group of agents in the flocking is not necessarily in a rigid shape or form.
In other words, in flocking control, as long as the flock goals are satisfied, transition
in the shape of the flock is allowed, e.g., it can be transformed from a rectangular
shape to a triangular shape.

Several flocking algorithms have been devised for multi-agent systems with a
second-order dynamic model [95–97]. The following equation of motion can present
a group of agents with a second-order dynamic model.
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{
q̇i = pi

ṗi = ui
(10.9)

where qi is the position of agent (node) i and pi is the velocity. pi, qi, ui ∈ Rm and
i ∈ V = 1, 2, . . . , N (set of N nodes or agents in the network). Flocking algorithms
consists of three terms: (1) a gradient-based term, (2) a consensus term, and (3) a
navigational feedback term, and can be presented as follows [96]

ui =
∑
j∈Ni

φα(‖qj − qi‖)nij

︸ ︷︷ ︸
gradient-based term

+
∑
j∈Ni

aij (q)(pj − pi)

︸ ︷︷ ︸
consensus term

+ f
γ

i (qi, pi, qr , pr)︸ ︷︷ ︸
Navigational-based term

(10.10)

where φ(•) is a potential function, and nij = σε(qj−qi) = (qj−qi/

√
1 + ε‖qjqi‖2)

is a vector along the line connecting qi to qj in which ε ∈ (0, 1) is a constant
parameter of the norm in σ -norm. The pair (pr , qr ) ∈ Rm × Rm is the state of a γ

agent. The navigational feedback term f
γ

i is given as follows

f
γ

i (qi, pi, qr , pr) = −c1(qi − qr) − c2(pi − pr), c1, c2 > 0 (10.11)

The flocking algorithm in Eq. 10.10 can be developed by using some updating terms
to tackle the problem of uncertainties in the flock control. One major problem
with flocking control is its incapability of covering a large area. Thus, a semi-
flocking algorithm was introduced to tackle this problem [98]. In the semi-flocking
algorithm, the navigation feedback term is modified to make each agent able to
decide whether to track a target or to search for a new one.

10.4.2.2 Flocking Recent Researches

Moshtagh and Jadbabaie introduced a novel flocking and velocity alignment
algorithm to control the kinematic agents using graph theory [95]. In their design
which was capable of flocking control in two and three dimensions, they used a
geodesic control to minimize the misalignment potential which leads to flocking
and velocity alignment. They also demonstrated that their method could keep the
flocking even when the topology of proximity graph changes, and as long as the
joint connectivity is well-maintained, the algorithm will be successful in consensus
control. However, to guarantee the flocking success, still, one problem has to be
solved, and that is how to keep the connectivity condition in the proximity graph.
Olfati-Saber introduced a systematic approach for the generation of cost functions
for flocking [96]. In these cost functions, the deviation from flock objects will be
penalized. They demonstrated that a peer-to-peer network of agents could be used
for the migration of flocks and the need for a single leader for the flock can be
eliminated. The simulation results for flocking hundreds of agents in 2-D and 3-D,
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squeezing, and split/reuniting maneuvers were provided that showed the success of
the proposed algorithm in the presence of obstacles. Saif et al. introduced a linear
quadratic regulator (LQR) controller for a flock of UAVs which is independent of
the number of agents in the flock [97]. This control strategy can satisfy the Reynolds
rules, and independent of the number of UAVs in the flock it allows designing an
LQR controller for each of the UAVs. Chapman and Mesbahi designed an optimal
controller for UAV flocking in the presence of wind gusts, using a consensus-based
leader-follower system to improve velocity tracking [99].

Tanner et al. introduced a control law for flocking of multi-agent systems
with double-integrator dynamics and arbitrary switching in the topology of agent
interaction network [100]. The non-smooth analysis was used to accommodate
arbitrary switching the agent’s network, and they demonstrated that their control
law is robust against arbitrary changes in the agent communication network as long
as they are connected in their maneuvers. Hung and Givigi developed a model-
free reinforcement learning approach to flocking of small fixed-wing UAVs in a
leader-follower topology [4]. In their study, agents experience disturbances in a
stochastic environment. The advantage of their online learning design is that their
model is not dependent on the environment; hence, it can be implemented in a
different environment without any information about the plant and disturbances in
the system. This characteristic increases the adaptability of the system to unforeseen
situations. However, the learning rate and convergence speed of flocking are two
factors that still need to be solved. Quintero et al. introduced a leader-follower
design for flocking control of multiple UAVs to conduct a sensing task [101]. The
UAVs were considered as fixed-wing airplanes flying at a constant speed with fixed
altitude which limits its movement in a 2-D planar surface. In their strategy, each
of the followers is controlled using a stochastic optimal control problem where
the cost function is the heading and distance toward the leader. This algorithm
was successfully applied and implemented in three UAVs equipped with cameras;
however, the offline solving the optimization problem cannot guarantee the flocking
behavior of the system in the presence of nonlinear behavior of flock and its agents.

McCune et al. introduced a framework based on a dynamic data-driven appli-
cation system (DDDAS) to predict, control, and improve decision making artificial
swarms using repeated simulations and synergistic feedback loops [5]. Using this
strategy helps to improve the decision making in the process of swarm control;
however, the time frame for the real-time application of this strategy has not
been considered which can affect the effectiveness of this approach. Martin et al.
[102] considered a system of agents with second-order dynamics. They determined
conditions to ensure that agents agree on a common velocity to achieve system
flocking. The significance of their design was the allowance for disconnected
communication links that were unnecessary for flocking. Practical bounds for two
different communication rules were investigated; first, the agents communicate
within the radius of communication bound; second, agents communicate with each
other with different and randomly communication radiuses. Overall, they concluded
that by choosing a proper initial velocity disagreement or by setting a small enough
time step, flocking can be achieved with random communication radiuses. One of
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the drawbacks of their approach was an asymmetric requirement in the interaction
among the agents. Generally, other types of interaction (i.e., assuming that agents
interact with the nearest neighbors with a fixed parameter which is called topological
interaction rule) can happen in the flock. Riehl et al. introduced a receding-horizon
search algorithm for cooperative UAVs [2]. In order to find a target in the minimum
time, each of the UAVs was equipped with a gimbal sensor which could be rotated
to observe the nearby target; then by gathering information on a potential location
for the target, they could find it. The algorithm helps to minimize the expected
time for finding the target by controlling the position of UAVs and their sensors.
The optimization process is a receding-horizon algorithm based on a graph with
variable target probability density function (PDF). This algorithm was successfully
tested using two small UAVs equipped with gimbaled video cameras.

10.4.3 Guidance Law Based Cooperative Control

This subsection is separated from the other cooperative control techniques because
they do not deal with the guidance system in their design. In order to achieve a
formation, the acceleration and angular velocity of each agent in the formation group
should be calculated separately [103]. To this aim, guidance law techniques are
used to obtain the desired acceleration and angular velocities. Pure pursuit (PP)
guidance algorithm is one of the most practical leader-follower guidance techniques
in the formation control. This algorithm was initially implemented on ground-attack
missile systems that aim to hit the target [104]. Later by introducing the concept
of the virtual leader (or target) it has been developed for the formation of flight
control which the followers keep their line of sight (LoS) in-line with the leader
movement. In other words, the velocity direction of the agents should be aligned
with the velocity of the leader [103].

In the PP algorithm, between the follower speed vector �V and the virtual leader
�R the following equation is maintained:

�Vf × �R = 0 (10.12)

Figure 10.10 shows the geometry between the virtual leader and the follower in the
PP algorithm. In this figure, dxref

, dyref
, and dzref

represent the distance between
the leader and the virtual leader in the longitudinal axis, lateral axis, and the vertical
axis, respectively. The required acceleration in the follower aircraft to reach the
virtual leader can be calculated as follows [105, 106]

�Af = N( �Vf × �R) × �Vf

‖ �Vf ‖ ‖ �R‖ (10.13)
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Fig. 10.10 Geometry of the PP guidance algorithm [105]

where N is the navigational constant which is usually chosen between 0.3 and 0.5.
Proportional navigation (PN) guidance is another candidate that can be applied in
the formation control design; however, because when the closing velocity is negative
(the leader velocity is higher than the follower aircraft), the PN guidance is likely to
guide the follower away from the leader [106]. In contrast, the PP guidance does not
depend on the leader velocity and always guides the follower in the direction of the
leader. Thus, we discussed the PP guidance laws application in the control design of
the flight formation systems.

10.4.3.1 Guidance Law Based Recent Researches

Gu et al. [107] introduced a nonlinear leader-follower based formation control law.
A two-loop controller was designed where nonlinear dynamic inversion (DI) was
used to design the velocity and position tracker in the outer-loop, and a linear
controller was used to track the leader attitude in the inner-loop. This two-loop
design is based on the difference in the changing rate of the inner-loop and outer-
loop dynamic parameters. The introduced controller was experimentally tested
on two WVU YF-22 aircrafts as leader and follower. The experimental results
demonstrated the effectiveness of their proposed formation control law. Yamasaki
et al. introduced a PP guidance based formation control system for a group of UAVs
[106]. Their proposed control system uses a PP guidance algorithm and a velocity
controller based on the DI control technique to avoid a collision. The attitude
controller of the follower aircraft was designed based on a two-loop DI controller.
Sadeghi et al. improve the Yamasaki work [106] and introduced a new approach
to integrating the guidance and control system through a PID control design [37].
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Their proposed approach could improve the PP guidance algorithm accuracy and
the maneuverability of the formation group.

Zhu et al. introduced a least-squares method for the estimation of the leader
location, then, a guidance law based on sliding mode control was designed to
control the heading rate of the follower aircrafts toward the leader estimated location
[108]. Ali et al. presented a guidance law for lateral formation control of UAVs
based on sliding mode theory [109]. Two sliding surfaces were integrated into
series to improve the control response in the formation design. A new approach for
UAVs formation control considering obstacle/collision avoidance using modified
Grossberg neural network (GNN) was developed by Wang et al. [110]. In order to
track the desired trajectory, a model predictive controller was used. They simulated
their collision/obstacle avoidance design in a 3-D environment. A LOS guidance
law approach for formation control of a group of under-actuated vessels is studied in
[111]. In their approach, a nonlinear synchronization controller was combined with
the LOS-based path following controller to make the overall system more robust
and controllable under the under-actuation situation.

10.5 Summary and Conclusion

In this chapter, the algorithms and applications of cooperative control techniques
for UAVs are reviewed. By categorizing the recent researches to applications and
methods, each was discussed separately. The latest studies in the field of cooperative
control of UAVs have been investigated and the advantages and disadvantages of
methods were discussed. Applications of cooperative UAVs mission in various fields
have been explored. Although some studies in the cooperative field may have been
missed in this survey, it is hoped that this survey would be helpful for researchers to
overview the major achievements in cooperative control of UAVs.
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